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ABSTRACT 
 

 The majority of human body mass is comprised of soft tissue which can oscillate 

during human locomotion.  Models of human locomotion that contain a soft-tissue 

component can be used to study the potential role of soft-tissue oscillations.  Passive-

dynamic walkers (PDWs) are models of human ambulation that can be used to study the 

underlying dynamics of walking gait.  Passive-dynamic walkers can ambulate on an 

incline solely due to gravity.  A PDW with a soft-tissue component was modeled to study 

the effects of soft-tissue oscillation on human gait dynamics.  The control passive-

dynamic walker (CPDW) contained point masses at the hip and at each foot.  The legs 

were massless and rigid.  The oscillating passive-dynamic walker (OPDW) was identical 

to the CPDW except for the addition of spring-mass-damper system attached to the hip 

mass to simulate soft-tissue oscillation.  Floquet multipliers (FMs), local divergence 

exponents (LDEs), the basin of attraction (BOA), slope perturbation range (SPR), and 

step time variability (STV) were utilized to access stability.  Floquet multipliers and 

LDEs measure short-term step-to-step and short-term inter-step stability, respectively.  

The BOA measures long-term step-to-step stability.  Slope perturbation range and STV 

measure PDW robustness to uneven terrain in the short-term and long-term, respectively.  

The spring-damper parameters of the OPDW could be tuned such that the gait stability of 

the OPDW was greater than that of the CPDW by 38.1%, 6.2%, 135.1%, 131.9%, and 

40.3% for the FMs, LDEs, the BOA, the SPR, and the STV, respectively.  The walking 

gait of the PDW model with a soft-tissue component was more stable than the fully rigid 
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model.  This suggests damped soft-tissue oscillations may, in addition to their other roles, 

make human gait more stable.  
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Chapter 1  
 

Introduction 

1.1 General Introduction 

 Animal locomotion is one of the most deeply studied areas of biomechanics.  

Giovanni Borelli gave extensive thought on the movement of animals in the 1600’s.  Fast 

forward about 200 years and you could meet Edward Muybridge who took photographs 

of horses galloping to deduce whether their trotting gait contained a flight phase.  

Muybridge also took photographs of humans au naturel in order to characterize and study 

human walking.  Humans are great subjects for the study of bipedal locomotion.  Humans 

are versatile and come in many shapes and sizes.  However, depending on the research 

questions, this may be the biggest drawback of human subjects.  Humans are made up of 

many musculoskeletal and mechanical degrees of freedom.  The coordination of the 

neuromuscular system with the inertial dynamics of the human body is complex and near 

impossible to perfectly simulate.  Instead, simpler models are constructed in order to 

piece out the components of the human body and their contributions to movement.   

 Passive-dynamic walkers typically consist of a series of point mass or rigid bodies 

that are linked via hinge joints.  Given the right initial conditions these bipedal walkers 

can achieve stable walking cycles down an incline with gravity as the only power source.  

Due to the absence of a control system, they serve as a great tool to study the primal 
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dynamics of bipedal walking.  Furthermore, they can be modified to study different 

components of the human body and their effects on gait dynamics. 

1.2 Purpose of Study 

The human body is primarily made up of mass that can oscillate during 

locomotion.  The vast majority of models for the human body consist of masses that are 

completely rigid.  However, tissue that oscillates during locomotion would have a 

dynamical consequence on the stability of bipedal gait.  A purpose of the study was to 

quantify and assess the dynamic stability of a passive-dynamic walker with a soft tissue 

component compared to a passive-dynamic walker without a soft tissue component.  

Furthermore, another purpose of the study was to quantify the effects of soft tissue 

parameter variation on the dynamic stability of a passive-dynamic walker.   

1.3 Specific Aims 

The specific aims of the study were the following: 

1. To study the effects of soft tissue with varying spring-damper parameters on the 

orbital stability of passive-dynamic walking by calculating the maximum Floquet 

multiplier of period-1 stable gait cycles.  

2. To study the effects of soft tissue with varying spring-damper parameters on the 

local stability of passive-dynamic walking by calculating the principal local 

divergence exponent of period-1 stable gait cycles. 
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3. To study the effects of soft tissue with varying spring-damper parameters on the 

global stability of passive-dynamic walking by calculating the basin of attraction 

for the fixed point of period-1 stable gait cycles.        

4. To study the robustness of a passive-dynamic walker with and without a soft-

tissue component on rough terrain. 

1.4 Study Overview 

In this study a passive-dynamic walker with soft tissue was simulated in order to 

examine the effects of soft tissue on gait stability.  Many different aspects of stability 

were measured: orbital stability, local stability, global stability, and general robustness to 

external perturbations and perturbations in the environment.  The spring-damper 

parameters were systematically varied and the changes to gait stability were examined.  

The passive-dynamic walker with a soft tissue component was compared to a passive-

dynamic walker without a soft tissue component.   

1.5 Thesis Structure 

Chapter two of this thesis contains a literature review that focuses on passive-

dynamic walkers, human walking, and human soft tissue properties.  Chapter three is an 

overview of the methods that were utilized to examine the role of soft tissue on the 

stability of bipedal walking.  Chapter four reveals the results of the dynamic analysis on 

gait and stability.  Chapter five discusses the implications of the results on passive-
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dynamic walking and human walking.  An appendix and the references follow chapter 

five.    
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Chapter 2  
 

Literature Review 

2.1 Introduction 

Human locomotion manifests in many different forms. Each form is primarily 

dictated by the goal (e.g., running to maximize speed, walking to minimize energy 

expenditure, or crawling to complete a unique task).  The most common form of human 

locomotion is walking.  Walking requires little conscious effort but involves many 

components of the human body acting simultaneously.  It is difficult to determine the 

specific role that each component (e.g., tendons, muscles, nervous system) of the human 

body plays during human locomotion.  To add another layer of complexity, the functions 

of each component of the human body are heavily dependent upon each other.   

A solution to determine the role of a component within the human body during 

locomotion is to create a model.  Models can greatly reduce the degrees of freedom in 

order to tease out the role of a single component.  Passive-dynamic models are not 

influenced by neuromuscular dynamics.  Rather, they are purely driven by energy 

supplied from gravity or a simple actuator and the mechanical dynamics.  These 

mechanisms can be easily modified to include (or exclude) simple, representative 

components of the human body.  The following is a summary of literature related to 

passive-dynamic mechanisms, human walking, and measuring walking stability.   
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2.2 Passive-Dynamic Walkers 

2.2.1 History of Passive-Dynamic Walkers 

In 1887, George T. Fallis filed a patent application for a bipedal walking toy.  

This toy, when placed on a slight incline, could walk with gravity as the only power 

source.  It leaned on one leg to provide a clearance which allowed the opposite leg to 

swing.  Fallis’ description of the toy he invented illustrated a simple passive-dynamic 

walker (PDW).  Most passive-dynamic walkers, such as Fallis’ toy, exhibit compass gait.  

Compass gait is such that the pelvis follows the path of an inverted pendulum during each 

step cycle (McMahon, 1984).  The design of the inverted pendulum varies from a simple 

hinge joint with a point mass located at the proximal end (Garcia et al., 1998) to a rigid 

body pendulum with a rolling constraint (McGeer, 1990).   

  McGeer and Palmer (1989) 

derived the equations of a domino 

oscillating like an inverted pendulum.  

However the support of the pendulum 

transferred from one edge of the domino 

to the other as the domino oscillated fore 

and aft (Figure 2-1).  The incline of the 

ground was not assumed to be zero.  The 

transfer of support from one edge to the 

other was modeled as instantaneous and impulsive to simplify the equations of motion.  

Furthermore, the domino was assumed to oscillate at small angles such that sin(𝜃) ≈  𝜃.  

Figure 2-1.  A schematic of an oscillating domino 

that transfers support from one leg to the other.  

The system has a single point mass connected to 

both legs.  The stance leg angle, θ, is relative to the 

vertical axis and has an angular velocity of Ω.  The 

stance leg angle is the only degree of freedom for 

this system (McGeer and Palmer, 1989).   
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The equations of motion for 

the inverted pendulum were 

used to predict the period of 

one oscillation for an empty 

VHS box and an aluminum 

block.  A microphone was 

utilized to measure the 

sound at each support 

transfer (Figure 2-2).  The 

microphone provided a 

means to measure the period 

of each oscillation and the coefficient of restitution during support transfer.  The 

coefficient of restitution is the ratio of the angular velocity after support transfer to the 

angular velocity before support transfer.  McGeer and Palmer (1989) predicted the 

coefficient of restitution for the aluminum block and empty VHS tape by assuming that 

the angular momentum is conserved during the support transfer.  The predicted values for 

the coefficient of restitution were 0.003 greater and 0.008 less than the measured values 

for the aluminum block and VHS box, respectively.  This difference is due to the fact that 

the transfer of support is not a purely inelastic event.   

 McGeer (1990) formulated the equations of motion for a bipedal PDW that was 

partially based on the principles outlined by McGeer and Palmer (1989).  McGeer (1990) 

provided a detailed analysis of the dynamics of said PDW and the effects of parameter 

variation (e.g., leg length and mass distribution).  Furthermore, a physical PDW was 

Figure 2-2.  A plot of the sound level recorded by a 

microphone of an aluminum block oscillating fore and aft.  The 

height of the aluminum block, h, was 5.95 cm.  The base width 

of the aluminum block was 1.29 cm.  The ratio of the 

pendulum-mode frequency of the aluminum block to the 

frequency of a simple pendulum, σ, was utilized to scale time 

(McGeer and Palmer, 1989).   
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constructed to illustrate that a purely passively mechanism based on the dynamics of an 

inverted pendulum could achieve stable locomotion.  The majority of PDW research has 

stemmed from the analyses outlined by McGeer (1990).  The stability and efficiency of 

PDWs has been researched extensively.  Some PDWs have been modified to study the 

role of the upper body (e.g., Wisse et al., 2004), assess gait asymmetry (e.g., Gregg et al., 

2012), or examine the effects of elastic energy storage and release (e.g., Dean and Kuo, 

2009; Hu and Zhao, 2012).  Typically these bipedal models are used to examine the 

different components of the human body that shape walking gait.  They serve as a 

relatively simple model to understand the primal dynamics that dictate the stability and 

energetic cost of human locomotion.  

2.2.2 Model Types 

Passive-dynamic walkers have been modeled in many different ways.  Passive-

dynamic walkers can be very simple (e.g., a rimless wheel) or mildly complex (e.g., rigid 

body walker with an upper torso supported by torsional springs).  Typically, 

modifications are made to serve a functional purpose (e.g., the addition of a knee joint to 

eliminate scuffing of the swing foot during mid-swing) or to simulate a biological 

mechanism of the human body (e.g., soft tissue vibration).  The following section will 

outline some of the more common types of PDWs and passive components that they 

contain.   
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Garcia et al. (1998) studied one of the simplest and 

most common PDWs, the compass walker.  It consisted of a 

point mass located at the hip and each foot (Figure 2-3).  The 

legs between the feet and hip were rigid and massless.  The 

joint connecting the proximal end of the leg and hip allowed 

one rotational degree of freedom.  The stance foot was 

connected to the ground via a revolute joint that allowed one 

rotational degree of freedom.   

Garcia et al. (1998) demonstrated this PDW could achieve stable locomotion.  A 

numerical simulation that consisted of a system of first-order differential equations was 

used to examine the gait cycles on slopes, β, for 0 < β < 0.0192 radians.  The phase space 

of the walker was mapped and the eigenvalues of the Jacobian of said phase space were 

determined to analyze stability.  The PDW exhibited stable locomotion for β < 0.0151 

radians.  These gait cycles were period-1 limit cycles.  That is, each step was 

kinematically identical to following step.  As the slope increased to 0.0192 radians the 

gait cycle became unstable and failed to ambulate.  The walking velocity increased as the 

slope increased and the PDW fell forward once 

the ambulatory velocity was too great for the 

swing leg to keep up.

Collins et al. (2001) designed a 

physical, kneed PDW that stood 85 cm tall and 

weighed 4.8 kg (Figure 2-4).  Some of the more 

common modification to the compass walker 

Figure 2-3.  A Simple 

passive walker with four 

degrees of freedom.  The 

feet and hip were modeled 

as point masses.  The legs 

are rigid and massless 

(Garcia et al., 1998). 

 

Figure 2-4.  Kneed PDW with arms.  The 

arms swung in unison with the 

contralateral thigh (Collins et al., 2001). 
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are knees and arms.  Knees provide clearance between the foot and ground during leg 

swing.  In an attempt to make the PDW more stable in the frontal plane, Collins et al. 

(2001) also added arms to the model.  Opposite to human arm swing, as the arms of the 

PDW moved anteriorly they simultaneously swung laterally.  The opposite configuration 

caused the walker to topple, thus illustrating that lateral arm swing affects walking 

performance.  For each trial, the passive walker was placed at the top of a 5-meter ramp 

and released with added kinetic energy from the handler.  If the walker made it down the 

entire length of the ramp without falling, the trial was deemed successful.  The slope that 

resulted in the most successful trials was 3.1ᵒ.  The step length was approximately 30 cm, 

the step period was approximately 0.6 seconds, and the walking speed was approximately 

0.51 m/s.  

It is common to modify the compass walker by adding a mass that represents the 

torso or a spring connected to the stance leg and/or swing leg.  Wisse et al. (2004) 

simulated a compass walker with a torso-point mass connected to the hip mass via a rigid 

and massless bar.  Furthermore, to control the step frequency and produce stable walking 

cycles, a linear spring that connected the stance leg and swing leg was added.  Wisse et 

al. (2004) tested the stability by perturbing the initial conditions of a period-1 gait cycle 

and determining its basin of attraction.  The basin of attraction is the set of all initial 

conditions that resulted in walking that converged to the period-1 gait cycle.  The basin of 

attraction for a period-1 gait cycle was larger than that of the compass walker without a 

torso and spring component.  The stability of the walker was also dependent upon the 

spring stiffness values.  The spring stiffness could be tuned such that the gait cycle was 
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asymmetric.  This behavior is not uncommon in PDWs.  Garcia et al. (1998) found that 

slopes above 0.0151 radians resulted in asymmetric walking. 

The behavior of a PDW is highly sensitive to the internal structure of the biped.  

Therefore the modifications are made with careful consideration of their effects on 

bipedal gait.  Stable walking cycles become increasingly difficult to find as the number of 

degrees of freedom increase.  A common approach to reduce the number of degrees of 

freedom is to kinematically couple the generalized coordinates.  If the number of degrees 

of freedom is low enough, then analytical solutions of stable gait cycles can be 

approximated (McGeer, 1990). 

2.2.3 Model Applications 

Passive-dynamic walkers have a broad range of applications in the study of 

human walking.  An alteration to a PDW may change the gait in a substantial manner.  

These alterations can represent passive human components and give researchers insights 

into features of the human body that shape gait.  

Passive-dynamic walkers have been modified and utilized as tools to study the 

role of the nervous system in walking gait.  Gates et al. (2007) slightly altered the PDW 

described by Garcia et al. (1998) by adding a force that propels the swing leg forward on 

a level slope.  The equation for the propulsive force was the sum of theoretical “motor” 

noise, “sensory” noise, and the required propulsive force that resulted in sustainable 

walking.  Motor and sensory noise had an equal effect on the variability in stride period.  

The model reproduced variability in the stride period that was similar in magnitude to 
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published data of healthy and diseased people (Gates and Dingwell, 2007).  This PDW is 

a precursor to understanding the role that higher neurological disorders have on walking 

gait.  

 Passive-dynamic walkers are intrinsically efficient due to their ability to walk 

without actuators, thus they serve as a springboard to designing robots that minimize 

energy usage.  Collins et al. (2005) designed a robot (Cornell robot) based on the PDW  

presented in Collins et al. (2001).  The only power input was from a motor at the ankle 

that drove push-off.  The total power added to this system was nearly equal to the work 

done on the passive walker driven purely by gravity.  The Massachusetts Institute of 

Technology designed a bipedal robot with ankle actuators and passive hips (Collins et al., 

2005).  Conversely, the University of Delft designed a bipedal robot with hip actuators 

and passive ankles (Collins et al., 2005).  All three of these bipedal robots walked with a 

cost of transport similar to that of humans, whereas the Honda Asimo, which is not based 

on passive walkers, has a cost of transport well above that of a human (Collins et al., 

2005).  Furthermore, the Cornell and Delft robots were controlled simply by ground 

contact, which signaled the actuators to turn on or off.  This binary feedback control 

produced gait similar to human walking, whereas the Honda Asimo depended on 

complex algorithms to determine walking gait from sensory feedback. 

2.2.4 Optimization of Models 

The compass walker is inherently unstable due to the lack of a feedback 

controller.  However, it is for this reason that the compass walker is an excellent model 
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for studying how the human body passively or actively stabilizes human locomotion.  

Biologically inspired components can be added to the system and the parameters of said 

components can be optimized to maximize the stability of the compass walker.  Due to 

the inherent instability of the compass walker, even small changes in the dynamics of the 

walker can greatly increase the stability and provide insight into the human body.  

Hu and Zhao (2012) optimized 

the spring stiffness of two PDWs and 

compared it to a PDW without a spring 

(PASSIVE).  One PDW had a torsional 

spring acting at the hip (HIP), and the 

other walker had a linear spring 

connected to the swing leg’s center of 

mass and the center of mass of both legs 

(COM) (Figure 2-5).  Hu and Zhao (2012) quantified the walking velocity, v, and step 

length, σ, of all three models for varying slopes.  Hu and Zhao (2012) also quantified the 

walking trajectory after small state perturbations to measure the walker’s gait sensitivity 

norm (GSN).  The GSN, s, is a method for measuring when a walker will fall by 

monitoring gait indicators (e.g., step width, step time, foot-ground clearance) and 

comparing them to gait indicator values for which the walker is likely to fall (Hobbelen 

and Wisse, 2007).  The walking performance was calculated as,  

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑣. 𝑠3. 𝑒
−

|𝜎−𝜎0|
𝜎0  

Figure 2-5.  The HIP PDW (left) included a 

torsional spring at the hip.  The COM PDW 

(right) included a linear spring attached at one 

end to the swing leg’s center of mass and to the 

other end at the center of mass of both legs (Hu 

and Zhao, 2010). 
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where σ0 is a desired step length of 45% leg length.  Hu and Zhao (2012) optimized the 

spring stiffness and found that the step length decreased, GSN decreased, and walking 

velocity increased for the HIP and COM models.  The COM model had the largest 

decrease in GSN.  Energy expenditure was quantified as a ratio of gravitational potential 

energy and the product of weight and distance traveled.  The HIP and COM models 

exhibited greater energetic efficiency than the PASSIVE model.  Hu and Zhao (2012) 

illustrated that optimization of spring stiffness may increase gait stability and walking 

performance in PDWs.  

 Hass et al. (2006) analyzed the optimal distribution of mass during walking 

performance of a PDW over varying slopes.  The authors maximized walking speed and 

stability for slopes between 0.0001𝑜 and 15𝑜 by optimizing the mass distribution.  Hass 

et al. (2006) found that the period of one step approached zero as the position of the mass 

of the swing leg approached the hip and the radius of gyration approached zero.  

Simultaneously, the basin of attraction decreased which is indicative of a decrease in 

stability.  Hass et al. (2006) also found that as the mass distribution of the stance leg was 

moved posteriorly, the basin of attraction increased and velocity decreased.  As the slope 

increased the stability decreased and walking velocity increased, therefore the stance leg 

mass moved posteriorly to compensate for the loss in stability.  As the basin of attraction 

was increased with decreasing slope, the mass could move anteriorly to increase walking 

velocity.  Hass et al. (2006) demonstrated that mass distribution affected the stability and 

walking velocity of a PDW.  

 Schuitema et al. (2005) simulated a PDW with a minimal feedback controller 

located at the hip to stabilize the walker during perturbations in the walking environment.  
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The authors performed three optimization routines: minimizing cost of transport (CoT), 

maximizing walking speed, and both simultaneously. Cost of transport was defined as the 

ratio of external energy added to the system to the product of unit weight and distance 

traveled.  The simultaneous optimization yielded the best results.  The average speed was 

0.566 m/s and CoT was 0.121 J/m when optimized for both conditions.  Furthermore, to 

test the robustness of the walker, the floor height was randomly varied between steps.  

The model adapted to changes in floor heights of up to 1.0 cm without failing.  Schuitema 

et al. (2005) demonstrated the ability of a minimal feedback controller to optimize for 

multiple variables while maintaining robustness.  

 Researchers have demonstrated that models parameters of a PDW can be tuned 

and their performance optimized.  The human body has many passive components that 

may influence walking gait, i.e., tendons, ligaments, and other soft tissues.  The effect of 

passive components on walking gait is not fully understood and may be further 

investigated using PDWs that include these components.
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2.3 Human Walking 

2.3.1 Features of Walking 

Zatsiorky et al. (1994) published a comprehensive review of walking kinematics.  

One stride is characterized by a right swing/left support phase, a brief double support 

phase, a right support/left swing phase, then another brief double support phase.  Walking 

velocity (V) is the product of step length (L) and step frequency (F).  Step frequency is 

the most common measurement during walking analysis, and L is typically measured by 

the quotient of V and F (Zatsiorsky et al., 1994).  Yamasaki et al. (1984) measured the L 

and F for a range of walking speeds and treadmill inclines.  Yamasaki et al. (1984) 

reported two relations: 𝐿 = 5.72 × 𝑉0.57 and 𝐹 =  0.294 × 𝑉0.43.  Milner and 

Quanbury (1970) found a parabolic relation between F and V as well.  The critical 

frequency is the F at which double support phase disappears. That is, it is the F at which 

walking transitions into running.  Critical frequency ranges from 175-200 steps/min in a 

normal population (Ivanitsky, 1965). 

Cavagna et al. (1976) estimated the work done by ten male subjects while walking 

across a force platform.  The vertical ground reaction force (GRF), horizontal GRF, and 

an estimation of the whole-body center of mass were recorded.  The mechanical energy 

conservation during walking was measured for subject-selected walking speeds.  

Cavagna et al. (1976) found that at intermediate speeds (approximately 4 km/hr), the 
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mechanical energy conservation was approximately 65%.  The work against gravity 

increased as the speed decreased below 4 km/hr, resulting in a decrease in mechanical 

energy conservation.  The propulsive work increased as the speed increased above 4 

km/hr, resulting in a decrease in mechanical energy conservation.  Cavagna et al. (1976) 

found that the most efficient walking pattern was such that the gravitational potential 

energy and kinetic energy were out of phase, which is similar to that of an inverted 

pendulum.  

Usherwood et al. (2012) 

described some defining 

characteristics of the vertical 

ground reaction force (GRF) 

during stance phase of human 

walking (Figure 2-6).  The 

stance phase in most humans is 

characterized by heel-sole-toe 

contact with the ground.  During 

heel contact of the stance phase 

(I), the total mechanical energy of the center of mass decreases due to energy dissipation.  

The parabolic displacement of the center of mass occurs primarily during the sole 

contact, or vault phase (II), of single-leg stance.  The vertical GRF during walking is 

lowest during the vault phase.  This phase is characterized by low metabolic cost due to 

the ground reaction force passing through the ankle, thus reducing the necessity of 

muscle force production to maintain stability at the ankle (Cavagna et al., 1977).  During 

Figure 2-6.  A plot of the vertical GRF during the stance 

phase of walking.  The GRF is normalized by subject 

body weight.  Foot-ground contact is characterized by an 

impact phase (I), a vault phase (II), and a propulsive phase 

(III).   The dashed line represents 1 BW (Usherwood et al., 

2012).   
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the propulsive phase (III), the vertical GRF increases 

and is shifted anterior to the ankle. The vertical GRF 

is coupled with the force produced by the ankle 

plantarflexors to make the foot a stiff lever suited for 

toe push-off, which subsequently enables the storage 

and release of elastic energy in the Achilles tendon.  

Piazza & Delp (1996) analyzed the swing leg 

during walking with a musculoskeletal model of the 

lower extremity (Figure 2-7).  The simulation 

calculated the hip, knee, and ankle angle during the 

swing phase, which utilized published experimental 

data of the kinetics and kinematics of human walking 

and EMG of lower-extremity muscles.  A systematic 

variation of muscle excitation during each time step of 

the analysis revealed that a decrease in peak knee flexion resulted from a decrease in hip 

flexion moment, an increase in hip angular velocity at toe-off, and a decrease in knee 

angular velocity at toe-off (Piazza and Delp, 1996).  Interestingly, Piazza and Delp 

(1996) found that the gastrocnemius produces a knee extension moment during a portion 

of the swing phase due to two-body pendulum dynamics.  If the ankle plantarflexor 

moment is greater than the knee flexion moment, then it results in a net knee extension 

moment.  The knee is accelerating to extension throughout the entire simulation due to a 

combination of centrifugal, coriolis, and gravitational forces (Piazza and Delp, 1996).   

Figure 2-7. The lower extremity 

model of the swing leg during 

walking.  The model consisted of a 

pelvis, thigh, patella, shank, foot, 

and twelve muscles that spanned 

the joints (Piazza and Delp, 1996).  
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2.3.2 Measure of Stability 

The most common interpretation of human gait stability during walking is the 

capacity to walk without falling.  Formally, stability is defined by the method by which it 

is measured.  Rosenblatt and Grabiner (2010) discussed three methods of measuring gait 

stability during walking: step width (SW), step width variability (SWV), and margin of 

stability (MOS).  The authors suggested that SW and SWV are measures of lateral 

stability and MOS is a measure of dynamic stability.  The MOS was a percentage of the 

total time that the whole-body center of mass is directly above the body’s base of support.  

Dynamic stability increase as the MOS increases.  The margin of stability was at its 

lowest during heel strike due a small base of support.  Lateral stability was directly 

proportional to SW and inversely proportional to SWV.  Rosenblatt and Grabiner (2010) 

captured the motion and GRF of subjects walking on a treadmill and overground at 

varying speeds.  The SW, SWV, and MOS did not vary significantly with walking speed.  

The authors reported that SW and SWV varied across the walking tasks, but the MOS did 

not vary.  Step width was greatest for treadmill walking (p = 0.001) and SWV was 

greatest for overground walking (p = 0.001).  Rosenblatt and Grabiner (2010) suggested 

that the MOS of stability did not significantly change between walking speeds or walking 

trials because foot placement was consciously monitored by the subject.  

Schablowski and Gerner (2006) discussed two methods of measuring dynamic 

stability during human walking: Floquet multipliers (FMs) and local divergence 

exponents (LDEs). Floquet multipliers and LDEs are a measure of orbital and local 

stability, respectively.  Schablowski and Gerner (2006) captured the lower extremity 
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kinematics of ten subjects walking at speeds from 0.2-1.4 m/s in increments of 0.2 m/s 

for 90 seconds.  The authors then modeled the state space on a Poincaré map to find small 

oscillations within the state space.  Schablowski and Gerner (2006) reported that dynamic 

stability of one step, as measured by FMs, is highest at walking speeds between 1.0 and 

1.2 m/s.  The authors reported that dynamic stability was also dependent upon the time 

scale.  That is, period-one stability was highest at different walking speeds compared 

with stability over multiple 

steps.  The examination of 

LDEs revealed that short-

term dynamic stability for 

one step was maximized 

between 1.0 and 1.2 m/s, 

but that long-term dynamic 

stability (over four steps) 

decreased as the speed 

increased (Figure 2-8).   

Dingwell and Kang (2006) examined the relationship between orbital and local 

stability during human walking using FMs and LDEs, respectively.  Dingwell and Kang 

(2006) captured lower extremity kinematics and trunk accelerations of ten subjects on a 

level treadmill and walking on a flat 200-meter track at a subject-selected, comfortable 

walking speed.  The authors found that their subjects were orbitally stable during both 

overground and treadmill walking, but were not locally stable.  Dingwell and Kang 

(2006) found no correlation between orbital and local stability.  The state trajectory of a 

Figure 2-8.  A plot of the average sacral (velocity) long-term 

LDE, λLT, for varying walking speeds of ten subjects.  The LDE 

value is inversely related to stability.  LDE values less than zero 

are dynamically stable (Schablowski and Gerner, 2006).   
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body segment was recorded for multiple steps.  Each step represented one cycle and the 

mean state trajectory of all of the cycles was calculated.  Dingwell and Kang (2006) 

reported that the state trajectory would converge to the mean state trajectory, which is 

indicative of stable walking in terms of orbital stability.  However, the state trajectory of 

neighboring cycles diverge, which is indicative of unstable walking in terms of local 

stability.  It was not clear to the extent at which a human can be unstable locally and 

remain stable globally.   

There are many different methods to quantify dynamic stability, but the short list 

discussed here include measuring step width, step width variability, margin of stability, 

Floquet multipliers, and local divergence exponents.  Step width, step width variability, 

margin of stability, Floquet multipliers, and local divergence exponents can be quantified 

using force plate readings or motion data.  Floquet multipliers and local divergence 

exponents measure orbital and local stability, respectively.  The definition of stability is 

dependent upon the methods used to measure it.  This is important to note because 

stability measurement are not necessarily correlated.  That is, a mechanical system or 

person can be simultaneously stable in one aspect while simultaneously unstable in 

another.   
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2.4 Soft Tissue and Ground Contact 

2.4.1 Soft Tissue 

Human body segments are typically modeled as rigid bodies during locomotion 

despite the fact that the majority of human mass is made up of soft tissue (Clarys et al., 

1986).  Mechanical energy entering the dynamic system at initial foot contact could 

potentially be dissipated by soft tissue vibration.  Pain and Challis (2002) determined that 

an increase in soft tissue stiffness increased the loading rate and peak of the ground 

reaction force during vertical arm strikes.  Furthermore, soft tissue varies in stiffness and 

the underlying tissues may be oscillating at varying frequencies.  Energy may be 

dissipated through friction between the underlying tissues that make up the mechanical 

system.  

Clarys et al. (1986) dissected three male and female cadavers to validate the use 

of in vivo anthropometric measurements as an estimate of underlying tissue masses.  The 

cadavers were each partitioned into 14 segments: hand (2), forearm (2), arm (2), foot (2), 

shank (2), thigh (2), head, and torso.  Each segment was weighed with a balance beam 

and underwater with a Mettler Precision Scale.  The skin, adipose tissue, muscle, and 

bone were separated.  The mass, volume, density, and percentage of segment mass were 

calculated for each tissue type.  The tissue parameters were compared with regression 

models based on anthropometric measurement described by Marfell-Jones (1984).  The 

only measurement that had a correlation coefficient lower than 0.66 were skin tissue 

mass, hand adipose tissue mass, and foot adipose tissue mass (Clarys et al., 1986).  The 

majority of the other parameters had a correlation greater than 0.80.  Due to the focus of 
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this thesis, it is important to note that the percent of the segment mass that was identified 

as soft tissue was 90.3% and 77.6% for the thigh and shank, respectively (Clarys et al., 

1986).  

Pain and Challis (2002) analyzed forearm soft tissue displacement during 

repetitive vertical, downward strikes onto a force plate.  The subject struck the force plate 

with the palmar aspect of the hand with the forearm musculature relaxed, moderately 

tensed, and fully tensed a total of nine times for each condition.  The position of 28 

markers fixed to the anterior forearm and the ground reaction forces were recorded.  

Furthermore, the markers were partitioned into 18 sectors to analyze the change in area.  

The mean peak vertical ground reaction force for the relaxed and fully tensed conditions 

were not significantly different 

(p>0.01).  The sector area changes 

were 100% greater for the relaxed 

condition compared with the fully 

tensed condition for all 18 sectors.  

The mean change in area for the 

relaxed condition was 11%.  The 

sector areas and marker positions 

post impact were characteristic of 

a damped sinusoidal wave (Figure 2-9.  A representative vertical marker displacement 

following impact with a force plate.  This marker was attached to the anterior aspect of the 

forearm (Pain and Challis, 2002).).  Pain and Challis (2002) reported the lag time in 

response to impact between the proximal and distal markers to be 4.2 milliseconds.  

Figure 2-9.  A representative vertical marker 

displacement following impact with a force plate.  This 

marker was attached to the anterior aspect of the 

forearm (Pain and Challis, 2002). 
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These results indicated that the energy transmitted 

via soft tissue vibration was not negligible.  

Roughly 70% of dissipated energy immediately 

following impact was due to the soft tissue 

vibration (Pain and Challis, 2002).  The difference 

in marker displacement between the relaxed and 

fully tensed conditions were most likely due to 

changes in underlying muscular stiffness since 

palmar deformation and skin stiffness would have 

remained relatively constant (Pain and Challis, 

2002).  

 Pain and Challis (2006) measured the ground reaction force and soft tissue 

vibration of a subject during a 0.43-meter drop.  Subject segment kinematics were 

measured in order to provide a means of evaluating a computer simulation of models with 

and without wobbling masses (Figure 2-10).  The soft tissue oscillation of the subject’s 

posterior shank and anterior thigh using the same protocol described in Pain and Challis 

(2002) to determine the frequency and amplitude of tissue vibration.  The segment mass, 

center of mass location, moments of inertia, and soft tissue mass percentage were 

calculated for the model based on subject anthropometric parameters.  The joint spring-

damper actuator parameters were calculated so that the experimental and computer 

simulated ground reaction force curve matched for the wobbling mass model.  The fully 

rigid model ground reaction force and joint torques were calculated to match the 

experimental kinematics of the drop. Pain and Challis (2006) found that the difference 

Figure 2-10.  Computer simulated 

four-link wobbling model.  The inner 

tubes represent hard tissue, and the 

outer tubes represent soft tissue. (Pain 

and Challis, 2006). 
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between the 

experimental and 

wobbling model 

kinematics were 

less than or equal 

to 1o for the shank 

and 4.5o for the thigh.  The peak torque and force at each articulation was greater for the 

rigid model compared with the wobbling model (Table 2-1. Peak joint torques and forces of 

following impact with the ground from a 0.43 meter vertical drop (Pain and Challis, 2006).).  

The peak ground reaction forces for the subject, wobbling model, and rigid model were 

1640, 1620, and 4050 percent of the total bodyweights, respectively (Pain and Challis, 

2006).  Furthermore, the ground reaction force profile of the wobbling model was within 

12% of the first 40 milliseconds and 5% of the first 15 milliseconds following impact 

(Pain and Challis, 2006).  These results indicate that the wobbling model was a better 

predictor of impact ground reaction forces and joint kinetics compared with a fully rigid 

model.   

Zelik and Kuo (2010) indirectly evaluated the contribution of soft tissue 

deformation to energy dissipation during walking.  Ten subjects walked on a treadmill at 

systematically increased walking speeds between 0.7-2.0 m/s.  The kinematics and 

ground reaction forces of each subject were collected and analyzed over a forty second 

interval.  The joint work at the hip, knee, and ankle were calculated using inverse 

dynamics for each stride and averaged between subjects.  Furthermore, the work 

calculated from the center of mass (COM) energy of each segment was computed and 

Table 2-1. Peak joint torques and forces of following impact with the 

ground from a 0.43 meter vertical drop (Pain and Challis, 2006). 
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averaged across subjects.  Zelik 

and Kuo (2010) found that the 

total work calculated using 

traditional inverse dynamics 

methods increased as treadmill 

speed increased (Figure 2-11).  

In contrast, the total work 

calculated via the COM of each 

segment slightly decreased for 

all treadmill speeds (Zelik and 

Kuo, 2010).  It was also reported that the negative COM work directly proceeding 

collision was more than 300% greater than the joint work.  Zelik and Kuo (2010) 

determined that the traditional inverse dynamic method for measuring joint work does not 

account for negative joint work.  This indicated that the forces due to soft tissue 

deformation, which was not accounted for during traditional inverse dynamic analysis, 

did negative work directly following ground contact and dissipated energy during 

walking.   

 The vast majority of human mass is made up of soft tissue.  Traditional inverse 

dynamic analysis does not account for soft tissue vibration.  There is conclusive evidence 

that soft tissue vibration is a non-negligible phenomena resulting from energy transfer 

during human locomotion.  Results from multiple studies suggest that inclusion of soft 

tissue oscillation following heel-ground contact in computer simulations produce more 

characteristic kinematic profiles (Pain and Challis, 2002; Pain and Challis, 2006; Zelik 

Figure 2-11.  The summation of joint work calculated using 

traditional inverse dynamics and COM work for varying 

walking speed (Zelik and Kuo, 2010). 
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and Kuo, 2010).  Currently, passive-dynamic walkers have many kinematic similarities to 

human walking and are sensitive to external forces.  The addition of wobbling masses to 

a passive-dynamic walker may decrease the sensitivity of the walker to perturbations 

from the environment, thus increasing its stability.  

2.4.2 Modeling Impact and Elastic Contact 

 Blickhan (1989) modeled human locomotion with a simple, classic approach 

often used in biomechanics – a spring-mass model.  The model presented in Blickhan 

(1989) consisted of a rigid mass supported by a massless spring.  This model is most 

often used to study hopping and running.  Blickhan (1989) derived the equations for the 

contact phase and flight phase of the spring-mass model.  The author simulated running 

by “hopping forward” with a similar spring-mass model.  An important finding reported 

by Blickhan (1989) was that an infinite number of trajectories were possible when all the 

parameters of the model were held constant and only the landing speed and stiffness of 

the spring were changed.  Similar to hopping, the model could correctly predict running 

gait characteristics.  This model, although not a comprehensive or thorough tool for 

analyzing human locomotion, is an example of the usefulness of a simple model for 

analyzing the ground contact during human locomotion.   

  Zadpoor and Nikooyan (2010) developed a spring-mass-damper model to 

simulate the ground reaction force during running.  This model included four of the 

following: masses, springs, and dampers.  The masses of the system included a wobbling 

and rigid masses for both the upper and lower body.  In this model, the authors optimized 
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the spring stiffness and damping coefficients of the lower-body wobbling mass to 

minimize its oscillation.  The authors varied the surface stiffness and damping.  Zadpoor 

and Nikooyan (2010) reported that the peak ground reaction force during initial loading 

remained constant as the surface properties changed.  The results found by Zadpoor and 

Nikooyan (2010) indicated that the stiffness of the lower leg was important in 

determining the ground reaction force experienced for different surfaces.  When the 

lower-body wobbling mass stiffness was not optimized, the peak ground reaction force 

increased as the stiffness of the surface increased.  Increased muscle activity was a means 

to increase underlying soft tissue stiffness during forearm strikes (Pain and Challis, 

2002).  It may be that a role of muscular activity during human locomotion is to regulate 

underlying tissue stiffness and compensate for varying ground stiffness.  

 Qi et al. (2011) introduced an elastic contact between the feet and ground of 

planar passive-dynamic walkers in two dimensions.  Each leg of the passive walker was 

represented by one rigid body with round feet.  The parameters of the model were leg 

length, leg mass, leg moment of inertia, leg center of mass, and ramp incline.  The 

contact surfaces followed a Hertz contact model and Coulomb friction model.  The Hertz 

contact law was used to estimate the ground reaction force normal to the contact surfaces, 

which included both nonlinear spring and damping components.  The Coulomb friction 

law estimated the ground reaction force parallel to the contact surfaces, which was 

dependent upon the relative velocity of the foot in contact with the ground and coefficient 

of friction.  Qi et al. (2011) found that the passive-dynamic walker was unaffected by 

high damping coefficients, but at low damping coefficients the passive-dynamic walker 

could not sustain locomotion.  Qi et al. (2011) also found that coefficients of friction less 
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than or equal to 0.3 for static friction and 0.2 for dynamic friction caused the swing leg to 

slip during contact with the ground.  Qi et al. (2011) reported that a major determinant of 

walking gait was contact stiffness.  It was not surprising that as the contact stiffness 

decreased, the normal ground reaction force and walking speed decreased as well.   

2.5 Summary 

Passive-dynamic walkers have been utilized in many different forms to study 

human walking.  Passive-dynamic walkers are inherently sensitive to modifications of the 

model configuration and initial conditions, and therefore provide a great tool in studying 

the effects of the different components on human walking gait.  Human walking has been 

studied extensively since the 1800’s.  However the majority of models that represent the 

human body are a series of linked rigid bodies without a soft tissue component.  The vast 

majority of the human body is made up of soft tissue that vibrates during human 

locomotion.  Soft tissue vibration has been shown to dissipate energy and decrease the 

mechanical loading at the joints.  A soft tissue component may affect the dynamics of a 

bipedal walker such that the gait cycles become more dynamically stable and robust to 

perturbations of the environment; this will be the focus of subsequent chapters.  
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Chapter 3  
 

Methods 

3.1 Introduction 

The methods section will discuss the mathematical modeling of passive-dynamic 

walkers, and the stability analyses performed on the motion of these walkers.  The test 

model consisted of both rigid body components and a soft tissue component.  The soft 

tissue component was modeled as a mass-spring-damper system that stored and 

dissipated energy during the gait cycle.  The control model was mechanically the same 

model, except it lacked a soft tissue component.  Comparisons of the two models allowed 

assessment of the role of the soft tissue model component (oscillating mass) on model 

gait stability.  Section 3.1.1 will outline the nomenclature that will be used in the 

following sections and subsections.  Section 3.1.2 will describe the mathematical model 

of the PDWs.  Section 3.1.3 will give the simulation details for the following stability 

measurements.  Section 3.2.1 to Section 3.2.4 will outline the methods for the stability 

measurements calculated.   
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3.2 Simulation Overview 

3.2.1 Nomenclature 

 

3.2.2 Passive-Dynamic Walking Models 

A two-dimensional passive-dynamic walker (PDW) was modeled to study the 

effects of soft tissue vibrations on gait dynamics.  The PDW modeled in Garcia et al. 

2 



32 

 

(1998) served as a control walker.  The test walker was identical in every aspect except 

for the addition of a mass-spring-damper system attached at the hip joint.  Both walkers 

consisted of two point masses (hip mass, M, and foot mass, m) connected to the ends of 

massless, rigid legs (Figure 3-1).  One of the legs attached the hip mass to the ground by 

way of a revolute joint with a single degree of freedom located at the ground.  The other 

leg attached the foot mass to the hip mass with one rotational degree of freedom.  The 

joint was located at the center of the hip mass.  The equations of motion for this system is 

that of a double pendulum, 

�̈�1(𝑡) (1 + 2 
𝑚

𝑀
(1 − cos(𝜑1(𝑡) +  𝜑2(𝑡)))) +  �̈�2(𝑡)

𝑚

𝑀
(1 − cos(𝜑1(𝑡) +  𝜑2(𝑡)))

−
𝑚

𝑀
(�̇�2(𝑡)2 − 2�̇�1(𝑡)�̇�2(𝑡)) sin(𝜑1(𝑡) +  𝜑2(𝑡)) + 

𝑚

𝑀

𝑔

𝑙
(sin(𝜑2(𝑡)) − sin(𝜑1(𝑡)))

−  
𝑔

𝑙
sin(𝜑1(𝑡)) = 0  

�̈�1(𝑡)
𝑚

𝑀
(1 − cos(𝜑1(𝑡) + 𝜑2(𝑡)))  −  

𝑚

𝑀
�̈�2(𝑡)  + 

𝑚

𝑀
�̇�1(𝑡)2 sin(𝜑1(𝑡) + 𝜑2(𝑡)) + 

𝑚

𝑀

𝑔

𝑙
sin 𝜑2(𝑡) = 0    

Figure 3-1.  Diagram of a passive oscillating mass walker.  (a) The initial position of a step cycle.  

(b) An intermediate position of a step cycle.  (c) Foot ground contact at the end of a step cycle.   
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For these simulations, the hip mass was assumed to be much more massive than 

the foot mass.  That is,  
𝑚

𝑀
 ≈ 0 .  This assumption simplified the equation of motion for 

the stance leg (φ1) to an inverted pendulum, 

�̈�1(𝑡) = sin 𝜑1(𝑡)                                                          (1) 

Where time in Equation (1) and all following equations of motion was scaled by 

g/l.  The equation of motion for the swing leg (φ2) was,                                                             

           �̈�2(𝑡) =  �̈�1(𝑡) + �̇�1(𝑡)2  sin(𝜑1(𝑡) +  𝜑2(𝑡))                                   (2)

− cos 𝜑1(𝑡) sin(𝜑1(𝑡) +  𝜑2(𝑡))  

The equation of motion for Equation (2) is that of a simple pendulum where the 

hinge attachment is following the trajectory of an arc.  Due to the geometry of the PDW, 

foot-ground contact occurred when the following equation was satisfied, 

𝜑1(𝑡) − 𝜑2(𝑡)  + 2𝛽 =   0                                                      (3)   

Equation (3) was satisfied at two instances of the gait cycle.  One instance 

occurred when the swing leg was collinear to the stance leg.  This instance was ignored to 

allow the swing foot to pass through mid-stride.  The second instance was not ignored 

and indicated a transfer of the hip mass from the pre-collision stance leg to the post-

collision stance leg at the instant of foot-ground contact.  The transfer of swing-to-stance 

and stance-to-swing was instantaneous and the force applied to the new swing leg during 

the transition was assumed to be impulsive.  This required that the angular momentum 

was conserved from pre- to post-collision.  At foot-ground contact, the magnitude of the 

stance leg angle and swing leg angle were the same pre- and post-collision, and the post-

collision angular velocities were calculated by fulfilling the requirement for the 
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conservation of angular momentum.  The jump condition from the final state of a gait 

cycle to the initial state of the following cycle was calculated as,  

 𝜑1
+ =  −𝜑1

−                                                              (4) 

                                  �̇�1
+ =  �̇�1

−  cos 2 𝜑1
−    

                                  𝜑2
+ =  −𝜑1

−       

        �̇�2
+ =  �̇�1

+ (1 − cos 2 𝜑1
+) 

The “-” superscript denotes the position/velocity pre-foot-ground contact, and the 

“+“superscript denotes position/velocity post-foot-ground contact.  

 The addition of an oscillating mass to the hip required a modification of the 

equation of motion for the stance leg (5) and the addition of two equations of motion to 

prescribe the motion of the oscillating mass (6)-(7).  

�̈�1(𝑡)   =   sin 𝜑1(𝑡)                                                                           (5) 

−
𝑙 cos 𝜑1(𝑡)  [𝑘 𝑥(𝑡) + 𝑐 (�̇�(𝑡) + �̇�1(𝑡) cos 𝜑1(𝑡))]

𝑀 𝑔
      

−
𝑙 sin 𝜑1(𝑡)  [𝑘 𝑦(𝑡) + 𝑐 (�̇�(𝑡) + �̇�1(𝑡) sin 𝜑1(𝑡))]

𝑀 𝑔
         

  

�̈� =  −𝑙 
𝑘 𝑥(𝑡) +  𝑐 (�̇�(𝑡) + �̇�1(𝑡) cos 𝜑1(𝑡))

 𝑚𝑤 𝑔
                          (6) 

 

�̈� =  −𝑙 
𝑘 𝑦(𝑡) +  𝑐 (�̇�(𝑡) + �̇�1(𝑡) cos 𝜑1(𝑡))

𝑚𝑤 𝑔
                         (7) 



35 

 

 

Where 𝑥 was the position in the horizontal direction and 𝑦 was the position in the 

vertical direction relative to the hip mass.  The spring-damper parameters were denoted 

by 𝑘, the spring stiffness, and 𝑐, the damping coefficient.  The equation of motion for the 

swing leg remained unaltered. 

A fixed point for the equations of motion was an initial state that resulted in an 

identical initial state for the following step.  That is to say,  

𝑭(𝒒∗) = 𝒒∗                                                             (8) 

Where q* is the fixed point state of the system and F (q*) is the mapping 

function.  Garcia et al. (1998) derived an analytical solution that approximated fixed 

points for small slopes for the control walker modeled in equations (1)-(4).  Due to 

equation (3) prescribing the final state of the system, the analytical solution could be 

reduced to the state of the stance leg.  That is, fixed points of equations (1)-(2) were only 

dependent upon the state of the stance leg.  These fixed points were found numerically by 

systematically incrementing the damping and stiffness coefficients and allowing the gait 

cycle of the walker to converge to a period-n gait.  When all the fixed point values were 

located, they were plotted into bifurcation diagrams (damping was held constant and 

stiffness was the bifurcation parameter) to visually inspect the system dynamics.   

The PDWs were modeled and analyzed in MATLAB, which is a technical 

computing environment.  Specifically, the differential equation solver used was ode113.  

ode113 is a nonstiff solver that has high accuracy.  This solver using a variable-order 

Adams-Bashforth-Moulton (ABM) method (Gear, 1971).  The ABM method also utilizes 
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an adaptive step time.  The method takes into account the rate at which the system is 

changing for the preceding time steps.  If the system is changing at a high rate, then the 

step time is small and vice versa.  The precision of the machine was between 1x10-15 and 

1x10-16.  Therefore the precision of the integrator was tightened to allow absolute error up 

to 1x10-14.   

Five measures were used to test stability: Floquet multipliers, local divergence 

exponents (LDEs) (also known as Lyapunov exponents), basin of attraction, slope 

perturbation range, and step time variability.  Floquet multipliers measure step-to-step 

stability and LDEs measure inter-step stability.  The basin of attraction and slope 

perturbation range measure the maximum state perturbation and slope perturbation, 

respectively, that can be applied to the walker without the walker falling over during the 

subsequent steps.  The step time variability is a measure of the step variance for the 

walking on uneven terrain.   

      3.2.3 Simulation Details 

Limit cycles were found for varying spring-damper parameters and slopes.  Pilot 

simulations revealed that fixing the damping values and incrementing the stiffness values 

to find limit cycles was the most efficient approach.  The alternative approach was 

computationally heavy because the differential equations became stiff as the damping 

values increased above 12 N.s.m-1.  Furthermore, damping above 12 N.s.m-1 produced 

results that were overly complex in terms of the bifurcation dynamics, therefore outside 

of the scope of this research.  The damping values analyzed were between 0-12 N.s.m-1 in 
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increments of 0.25 N.s.m-1.  The spring stiffness values were incremented by 0.1 N.m-1 

(starting at 0 N.m-1) until the PDW failed.  Failure was detected when the PDWs hip mass 

made contact with the ground before the foot mass made contact with the ground, that is, 

the walker fell over.  Some examples of the initial conditions of the stance leg that 

resulted in period-1 gait cycles can be found in Table 3-1.  

Unless specified otherwise, simulations were run for 200 steps, or until the model 

failed.  Pilot simulations revealed that 200 steps was beyond a sufficient number of steps 

to reach a level of convergence (of a limit cycle) below a tolerance of 1x10-12 rad and 

1x10-12 rad.s-1.  The true fixed point of a period-1 gait cycle is at a level more precise than 

the machine accuracy.  Therefore, the fixed point oscillates in the state space immediately 

surrounding the fixed point.  The range of this state space was between 1x10-12 rad or 

rad.s-1 and 1x10-13 rad or rad.s-1.  Therefore, the convergence criterion was established as 

the upper limit of that range.  Unless specified otherwise, the slope for all analyses was 

0.009 radians.  Pilot simulations revealed that 0.009 radians was midrange in terms of the 

slope range for which the control walker ambulated.   

The control PDW and oscillating PDW can converge to two different limit cycles 

(depending on the initial conditions).  These limit cycles are termed short-period gait and 

Table 3-1.  The initial conditions of the stance leg for the control PDW and three oscillating 

PDWs that resulted in period-1 limit cycles.  The incline of the ground for these period-1 

limit cycles was 0.009 radians.  The counter-clockwise direction was the positive direction, 

therefore a negative stance leg angular velocity moved the hip of the PDWs to the right in 

Figure 3-1.   
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long-period gait.  A short-period gait had a period that was relatively small compared to 

the long-period gait cycle.  Furthermore the short-period gait has a much smaller range of 

motion (the short-period gait) at a lower walking velocity than the long-period gait.  Only 

the long-period gait of the PDWs were considered for simplicity in the analyses.  A large 

number of the limit cycles found were period-n, n>1.  A period-n limit cycle is a limit 

cycle that repeats every n-th period.  To simplify the analyses, only period-1 gait cycles 

were examined.  Without varying the slope, the control PDW ambulated only in period-1 

gait.   

Once the most stable gait cycles were found (in terms of local divergence 

exponents and Floquet multipliers) for each damping value (and corresponding spring 

value), the slope of the ground was varied to study the effects of slope on the stability of 

the PDWs.  Limit cycles were found for these spring-damper systems on all of the slopes 

the PDWs ambulated.    
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3.3 Measurement of Stability 

The following sub-sections will describe the stability analysis and slope variation 

in more detail.   

3.3.1 Floquet Multipliers 

Floquet multipliers are a measure of orbital stability (Hilborn, 2000).  That is to 

say, Floquet multipliers can be used to measure how a walker behaves from step-to-step.  

In Floquet theory, if a limit cycle is an attractor, then there is a region surrounding the 

limit cycle such that if the system’s state started in that region, it would converge to the 

limit cycle as time approaches infinity. A gait cycle, in the context of a passive-dynamic 

walker, is the state trajectory throughout one step cycle.  If a gait cycle is an attractive 

limit cycle, then the Floquet multiplier value would be less than unity (< |1|).  A period-

one gait cycle is a cycle that repeats itself every step.  As a result, each state of the state 

trajectory is a fixed point.  For simplicity, the fixed point analyzed for the walker was 

chosen to be the initial state of a limit cycle.  The PDWs only took one step in this 

analysis to determine the step-to-step Floquet multiplier.  The initial state, qn-1, was 

perturbed from the fixed point and the expansion of the distance between the initial state 

of the subsequent step, qn, and the fixed point was measured,  

𝒒𝒏 − 𝒒∗ = 𝑭(𝒒𝒏−𝟏) − 𝑭(𝒒∗)                                       (9) 

A linearization of the equation (9) resulted in,  
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𝒒𝒏 − 𝒒∗ =
𝑑𝑭

𝑑𝒒
|

𝒒∗

[𝒒𝒏−𝟏 − 𝒒∗]                                   (10) 

The fixed points were perturbed by ±1x10-6 units (rad or rad.s-1) to numerically 

estimate the Jacobian matrix in equation (10), and the eigenvalues of the matrix were 

computed.  The largest eigenvalue was the Floquet multiplier for the corresponding fixed 

point.  Floquet multipliers were found for all period-one gait cycles. 

3.3.2 Local Divergence Exponents 

Local divergence exponents (LDEs) are a measure of local stability (Hilborn, 

2000).  Local divergence exponents are measured in a fashion similar to Floquet 

multipliers, except that they account for the rate of divergence of a perturbed state 

trajectory relative to the limit cycle following a small increment in time,  

�̇�(𝒒𝜺, 𝒒∗) =
𝑑𝑭

𝑑𝒒
|

𝒒∗

𝜺(𝒒𝜺, 𝒒∗)                                                (11) 

Where qε  is the perturbed state 

and ε(qε, q*) is the difference between 

the perturbed state and the fixed point.  

The eigenvalues of the Jacobian matrix 

in equation (11) were numerically 

estimated for the state space 

immediately surrounding the fixed 

point (Figure 3-2).  The largest 

Figure 3-2.  Diagram of a perturbed trajectory 

(black solid line) relative to the limit cycle 

trajectory (red solid line).  The difference 

between the two trajectories is indicated by ε 

(black dotted line).  The time period, dt (blue 

solid line), is very small.  That is, dt << 1 sec. 
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eigenvalue of said estimated eigenvalues was considered the local divergence exponent.  

If the LDE was less than zero, then the system was stable.  LDEs were estimated between 

0-100% of one gait cycle in increments of 10%.  The initial state of a gait cycle occurs at 

0% of the gait cycle, and 100% of the gait cycle is the final state before foot-ground 

contact of the swing leg.  The largest LDE was termed the “max LDE” and the average of 

all the LDEs over an entire stride was termed the “principal LDE.”  Local divergence 

exponents were estimated for all period-one gait cycles. 

3.3.3 Basin of Attraction 

The basin of attraction (BOA) is a measure of global stability.  The BOA was the 

closed set of initial step conditions that converged to the fixed point (within 1x10-6 rad 

and rad.s-1 of the stance leg position and velocity, respectively).  The number of steps 

until the walker converged to the fixed point was recorded.  The basin of attraction was 

numerically estimated for the control walker and oscillating mass walkers with varying 

spring-damper parameters.  The parameters for the oscillating mass walkers were 

determined by the Floquet multiplier and LDE values.  The optimal spring-damper 

parameters, in terms of stability, depended upon the mode of analysis.  That is, the most 

stable parameters for the Floquet multiplier and LDE values did not coincide.  Therefore, 

for each damping condition (0-12 N.s.m-1 in increments of 0.25 N.s.m-1), the optimal 

spring stiffness parameters were found according to the Floquet multiplier and LDE 

values.  These spring-damper parameters were used for the BOA analysis.  
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The basin of 

attraction border search 

is illustrated in Figure 

3-3.  The initial search 

began at the fixed point 

(Figure 3-3a).  The state 

space immediately 

surrounding the fixed 

point was analyzed to 

determine whether those 

initial states resulted in 

subsequent gait cycles 

that converged to the 

limit cycle of the fixed 

point or failed to 

converge (Figure 3-3b).  The area surrounding the initial states that converged were then 

analyzed (Figure 3-3c-d) until the entire border of the basin of attraction was located.  If 

the initial state converged, the number of steps to convergence were recorded.  The 

search area was set to 1x10-12 rad2.s-1 to obtain high resolution data of the basin of 

attraction.   

Figure 3-3.  Diagram of the evolution of the basin of attraction 

border locator.  (a) The fixed point locator begins at the fixed 

point, the blue dot, and (b) locates the convergence state space 

surrounding it, the green dots.  (c & d) The convergent state 

space continues to grow until it approaches the border of the 

basin of attraction, the red dots.  The horizontal axis is the initial 

stance leg position, and the vertical axis is the initial stance leg 

velocity.  
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3.3.4 Slope Perturbation Range and Step Time Variability 

During PDW ambulation, the slope was perturbed for a single period-1 step cycle 

(Figure 3-4).  The initial conditions of the walker were chosen such that the walker 

started in a period-1 gait cycle.  Therefore, the walker did not take any steps before the 

first perturbation.  The subsequent 200 step cycles were recorded to detect if the PDW 

failed to ambulate.  The slope for all subsequent step cycles was 0.009 radians.  The slope 

perturbation was incremented +0.0002 radians until the walker failed to ambulate post-

perturbation.  For a further set of simulations, the slope perturbation was incremented by 

-0.0002 radians until the walker failed to ambulate post-perturbation.  The range of slope 

perturbation values that did not result in PDW failure was termed the slope perturbation 

range (SPR).  The SPR was found for all period-1 gait cycles for damping values between 

0 N.s.m-1 and 12 N.s.m-1.   

Figure 3-4.  A diagram of a passive-dynamic walker and the perturbation of the slope during a 

step cycle.  The perturbation, β*, is applied to a single step cycle.  Subsequently, the passive-

dynamic walker is simulated for 200 steps or until the walker fails.  If the walker does not fail, the 

slope perturbation is incremented by ±0.002 radians.   
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The control walker and the spring parameters for each damping condition that 

resulted in the largest SPR were analyzed further.  The slope was randomly varied by a 

percentage of the control SPR (0.009 ±5-45%) for 200 steps.  The control walker failed to 

ambulate for a total of 200 steps for percent values larger than 45% of the SPR.  The step 

time variability (STV) was calculated as the standard deviation of the step time for all 

steps.  

The same spring-damper conditions that were used to calculate the STV were 

utilized to calculate the range of slopes for which the oscillating PDWs could ambulate.  

The slope was systematically increased and decreased by 0.0001 radians until the walker 

failed to ambulate.  For each slope condition, the slope was held constant and the walker 

took 200 steps.  The range of slope values that the control PDW and oscillating PDWs 

could ambulate was termed slope range (SR).  The Floquet multipliers and LDEs for the 

slope values that resulted in period-1 gait were calculated.   

3.4 Summary 

Two PDWs were simulated and their motion analyzed.  The control PDW was a 

fully rigid body model with point masses at the feet and hip.  The oscillating PDW 

contained the same components as the control PDW with the addition of a spring-mass-

damper system that simulated soft tissue vibration.  The spring-damper parameters of the 

oscillating PDW were varied systematically to study the effects of soft tissue vibrations 

on the stability of walking.  Stability was tested by means of Floquet multipliers, local 
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divergence exponents, basin of attraction, step time variability, slope perturbation range, 

and slope range. 

All stability measurements were estimated by way of numerical methods.  All 

methods involved perturbing the parameters of the spring-damper system, the initial state 

conditions of a step, or the slope of the ground.  The number of steps that the PDWs took 

until the gait cycle converged to the limit cycle, how quickly the gait cycle converged, or 

the variability of the gait cycle were recorded.  These measurements served as the means 

for testing stability, and the effects of the spring-mass-damper system.   
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Chapter 4  
 

Results 

4.1 Introduction 

The results of the mathematical modeling of passive-dynamic walkers, and the 

stability analyses performed on the motion of these walkers will be revealed in this 

chapter.  Section 4.2.1 will describe the characteristics of the bifurcation diagrams with 

the spring stiffness as the bifurcation parameter.  Section 4.2.2 and Section 4.2.3 will 

outline the analysis of local divergence exponents and Floquet multipliers, respectively.  

Section 4.2.4 will reveal the basin of attraction data.  Section 4.2.5 contains the slope 

perturbation range, and step time variability results. 

4.2 Stability Results 

4.2.1 Bifurcation Diagrams 

The bifurcation diagrams provide a means of visualizing the stability of a system.  

For example, the point at which a period-1 cycle bifurcates into a period-2 cycle is where 

the Floquet multiplier (FM) crosses unity.  They also provide a means of predicting 

where another attracting limit cycle may exist due to a discontinuity in the graph.  

Furthermore, they serve as a general tools that help guide the stability analysis.  It is 

easier to set up an analysis if the general behavior of the system is known.   
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A 

The bifurcation diagrams grew and mutated as the spring-damper parameters were 

varied.  In this section, subcritical and supercritical bifurcations will be discussed.  A 

subcritical bifurcation is a discontinuous bifurcation.  A supercritical bifurcation is a 

continuous, smooth bifurcation.  In general, as the damping coefficient was increased, the 

range of stiffness values that produced stable walking increased.  In all cases, the 

damping coefficient was held constant and spring stiffness was the bifurcation parameter.  

The complexity of the bifurcation diagrams ranged from relatively simple to highly 

nonlinear (and discontinuous).  Characteristically, some of the bifurcation diagrams were 

very similar, therefore they will be discussed in groups.  The groups, based on damping 

coefficients, were as follows: 0 N.s.m-1, 0.5-3 N.s.m-1, 3.5-8.5 N.s.m-1, 9.0-10.5 N.s.m-1, 

11.0-11.5 N.s.m-1, and 12.0 N.s.m-1.    

Figure 4-1.  Bifurcation diagram at a damping coefficient of 0 N.s.m-1. This diagram plots the 

bifurcation of the stance leg angle, φ1, against the bifurcation parameter, spring stiffness.  The 

maximum spring stiffness is 7.9 N.m-1. 
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At no damping (Figure 4-1), the nonlinearity of the dynamics were in part due to 

the spring-mass system (in part because the dynamics of the walker are nonlinear without 

the spring-mass-damper system).  As the spring stiffness increased, the gait-cycle 

evolved through a series of three period-doubling events (period-1 → period-2 → period-

4 → period-8), then chaotic gait.  Chaotic gait appeared at stiffness values around 3.25 

N.m-1.  Chaotic gait was followed by a series of period-halving (period-8 → period-4 → 

period-2 → period-1).  The walker ambulated at period-1 gait as spring stiffness 

increased until the walker failed (approximately 7.9 N.m-1).  

At the introduction of damping (0.5-3 N.s.m-1), some of the bifurcations became 

discontinuous (Figure 4-2).  Furthermore, the damping eliminated, in part, the chaotic 

gait that appeared at stiffness values around 3.25 N.m-1.  The range of stiffness values 

slightly increased relative to the 0 N.s.m-1 condition, but the walker ambulated in a 

Figure 4-2.  Bifurcation diagram at a damping coefficient of 1 N.s.m-1. This diagram plots the 

bifurcation of the stance leg angle, φ1, against the bifurcation parameter, spring stiffness.  The 

maximum spring stiffness is 9.4 N.m-1. 
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chaotic fashion beyond the largest stiffness value at no damping (i.e., when the stiffness 

value was larger than approximately 7.9 N.m-1).  At a damping value of 0.5 N.s.m-1, the 

first bifurcation was period-doubling, but was quickly followed by a series of subcritical 

bifurcations (i.e., discontinuous bifurcations).  The subcritical bifurcations resulted in a 

chaotic-like gait.  A visual inspection estimated this period to be approximately period-

32.  This gait was very brief, because another series of subcritical bifurcations resulted in 

prolonged period-2 gait to period-1 gait, then brief chaotic walking until failure.  As 

damping increased to 3 N.s.m-1 (Figure 4-3), the supercritical and subcritical bifurcations 

at low stiffness values disappeared and the range of stiffness values where the PDW 

ambulated increased.  The chaotic walking at higher stiffness values was due to a rapid 

series of subcritical bifurcations until the walker failed.  

Figure 4-3.  Bifurcation diagram at a damping coefficient of 3.0 N.s.m-1. This diagram plots the 

bifurcation of the stance leg angle, φ1, against the bifurcation parameter, spring stiffness.  The 

maximum spring stiffness is 12.4 N.m-1. 



ii 

 

 

 At damping values above 3 N.s.m-1 (Figure 4-4), a large change in the bifurcation 

diagram occurred.  This change was due to a very large increase in the range of stiffness 

values for which ambulatory gait was found.  The chaotic behavior that resulted in failure 

at a damping value of 3.0 N.s.m-1 can be observed in the bifurcation diagram at a 

damping value of 3.5 N.s.m-1.  Although, that chaotic behavior was followed by 

subcritical, period-halving bifurcations that resulted in period-1 gait.  This period-1 gait 

was followed by a series of subcritical and supercritical period-doubling bifurcations 

(period-1 → period-2 → period-4 → period-8), then chaotic behavior.  The chaotic gait 

was followed by supercritical period-halving bifurcations to prolonged period-1 behavior, 

which was followed by brief chaotic behavior before failure at a spring stiffness value of  

Figure 4-4.  Bifurcation diagram at a damping coefficient of 3.5 N.s.m-1. This diagram plots the 

bifurcation of the stance leg angle, φ1, against the bifurcation parameter, spring stiffness.  The 

maximum spring stiffness is 65.0 N.m-1. 
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Figure 4-6.  Bifurcation diagram at a damping coefficient of 8.5 N.s.m-1. This diagram plots the 

bifurcation of the stance leg angle, φ1, against the bifurcation parameter, spring stiffness.  The 

maximum spring stiffness is 82.0 N.m-1. 

Figure 4-5. Bifurcation diagram at a damping coefficient of 9 N.s.m-1. This diagram plots the 

bifurcation of the stance leg angle, φ1, against the bifurcation parameter, spring stiffness.  The 

maximum spring stiffness is 195.0 N.m-1. 
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approximately 65-75 N.m-1.  As damping increased in 5 N.s.m-1, the chaotic behavior 

between 10-15 N.m-1 disappeared.  As damping increased to 8.5 N.s.m-1, the supercritical 

bifurcations leading to period-4, period-8 and more chaotic behavior devolved to period-2 

gait (Figure 4-6).   

 Another large change in the bifurcation diagram occurred at values above 8.5 

N.s.m-1 (Figure 4-5).  The range of viable stiffness values greatly increased to about 200 

N.m-1.  The vast majority of ambulatory gaits found were period-1.  At damping of 9 

N.s.m-1, there was a period-doubling bifurcation at about 125 N.m-1 followed by a period-

halving bifurcation at approximately 155 N.m-1.  At approximately 190 N.m-1 a very brief 

bout of chaotic behavior occurred, which was followed by period-4 behavior until the 

walker failed.  A large increase in stiffness values was observed at 11.0 N.s.m-1.  The 

Figure 4-7.  Bifurcation diagram at a damping coefficient of 11.5 N.s.m-1.  This diagram plots 

the bifurcation of the stance leg angle, φ1, against the bifurcation parameter, spring stiffness.  

The maximum spring stiffness is 370 N.m-1. 
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bifurcation patterns did not change as drastically in other simulations.  The chaotic and 

subsequent period-4 behavior at 190 N.m-1 disappeared.  Although, the same behavior 

appeared at the largest stiffness values (approximately 360-375 N.m-1) for 11.0 N.s.m-1 

damping.  There was an additional period-doubling and period-halving bifurcations at 

approximately 270 N.m-1 and 320 N.m-1, respectively.  The bifurcation plot is very 

similar at 11.5 N.s.m-1 except that the first instance of period-doubling and period-

halving disappeared.

Another large increase in stiffness values was observed at 12.0 N.s.m-1.  

Characteristically, the diagram was almost very similar to the bifurcation plot at 11.5 

N.s.m-1 (Figure 4-7).  The difference occurred at stiffness values above the highest values 

for which the walker ambulated at 11.5 N.s.m-1.  Two more period-doubling bifurcations 

followed by period-halving bifurcations occurred, which was followed by chaotic 

behavior, period-4 behavior, then chaotic behavior before failure at approximately 610 

N.m-1. 

In general, as the damping coefficient was increased the range for which stiffness 

values resulted in ambulatory gait increased.  Furthermore, the period-n, n>1, in each 

bifurcation diagram were devolved into period-1 gait as the damping parameter 

increased.  Bifurcations with slope as the bifurcation parameter were also analyzed.  The 

spring-damper parameters were chosen based on the most stable parameters according to 

the LDEs and Floquet multipliers.  For all damping parameters, excluding damping 

between 0.5-1.5 N.s.m-1, the gait behavior exhibited period-doubling until chaos and 

failure.  At low levels of damping, there were bouts of chaotic and period-3 behavior at 
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relatively small slopes (relative to the slope range).  These will be discussed further in the 

following sections. 

4.2.3 Local Divergence Exponents 

The principal local divergence exponents (LDEs) were calculated throughout a 

gait cycle for every period-1 gait found for the damping values between 0 and 12 N.s.m-1.  

A LDE with a value below zero is considered stable.  Table 4-1 contains the most stable 

principal LDE and slope range values for each grouping of damping parameters discussed 

in Section 4.2.1 and the corresponding spring-damper parameters.  

 

 In terms of the local stability of a gait cycle, the PDWs examined were unstable.  

Although, as the values for the spring-damper parameters increased, local instability 

decreased.  The maximal and principal LDEs were also found for the same spring-damper 

parameters for a PDW on varying incline.  Passive-dynamic walkers with low spring-

damper parameter values (< 3.0 N.s.m-1), excluding the control walker, were highly 

unstable (in a general sense) and could not ambulate on a relatively large range of slopes 

in period-1 gait (compared with the control walker).  The slope range, including the 

Table 4-1.  Principal LDE values are the mean LDE values over an entire gait cycle.  Slope range 

was the range of slopes for which the PDW could ambulate.  The spring-damper parameters were 

the values for which the Principal LDE and slope range were found.  The control walker was 

such that the spring-mass-damper system did not affect the gait dynamics.   
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period-n gait cycles, n = 1, 2, 4…, that the CPDW ambulated was from 0.0046 to 0.190 

radians. The principal LDE decreased very slightly as the slope increased for both the 

control PDW (CPDW) and oscillating PDW (OPDW).  The maximum LDE increased 

very slightly for the oscillating PDW and stayed constant for the control PDW as the 

slope increased. The largest slope range was found for spring-damper values of 55.5 

N.m-1 and 3.5 N.s.m-1.  That range was from 0.0002 radians to 0.0196 radians, which was 

a 34.7% increase compared with the CPDW.   

4.2.3 Floquet Multiplier 

The Floquet multipliers were calculated by comparing the initial step conditions 

from step-to-step following a perturbation.  The Floquet multipliers are a measurement of 

orbital stability.  If the Floquet multiplier value is less than unity, then the system was 

considered stable in the sense of orbital stability.  The same spring-damper parameters 

that were used to calculate the LDE values were used to calculate the Floquet multiplier 

values.  Table 4-2 highlights the most stable spring-damper parameters for each group 

discussed in Section 4.2.1.    

  

Table 4-2.  Floquet multipliers are a measurement of step-to-step stability.  The slope range was 

the range of slopes for which the PDW could ambulate.  The spring-damper parameters were the 

values for which the Floquet multipliers and Slope range were found.  The control walker was 

such that the spring-mass-damper system did not affect the gait dynamics.   
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In terms of the orbital step-to-step stability, the PDWs were stable.  Furthermore, 

all damping coefficient parameters yielded more step-to-step stability than the control 

walker.  The most stable step-to-step spring-damper parameters were 25.8 N.m-1 and 3.5 

N.s.m-1.  The Floquet multiplier value corresponding to those spring-damper parameters 

was 38.1% less than that of the CPDW.  The range of slopes for which the OPDWs could 

ambulate were calculated for the spring-damper parameters that exhibited the greatest 

orbital stability.  The spring-damper parameters of the OPDW with the largest slope 

ambulation range were 36.3 N.m-1 and 4.75 N.s.m-1.  The slope range corresponding to 

that value was 0.0029 radians to 0.0240 radians, which was 88.9% larger than the CPDW 

slope range. 

4.2.4 Basin of Attraction 

The basin of attraction (BOA) was estimated for the same spring-damper 

parameters that were used to calculate the Floquet multipliers.  The phase space of the 

BOA plane was the Poincare section of the initial state for each step.  The BOA estimated 

the size and location of said phase space.  The area was normalized by the search area of 

1x10-12 rad2.s-1.  For damping values greater than 3.5 N.s.m-1, the BOA increased as the  

 

Table 4-3.  The area of the basin of attraction was normalized to 1x10-12 rad2.s-1.  The table also 

includes the mean number of steps the PDW took to reach the gait limit cycle.  The control 

walker was such that the spring-mass-damper system did not affect the gait dynamics.   
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damping and stiffness values increased (Table 4-3).  The basin of attraction for values 

lower than 4.0 N.s.m-1, the BOA did not monotonously increase or decrease as the 

damping stiffness values increased. .  The largest BOA occurred at a damping value of 

11.75 N.s.m-1 and spring stiffness of 37.6 N.m-1.  This BOA was 135.1% larger than the 

CPDW. 

4.2.5 Slope Perturbation Range and Step Time Variability 

The slope perturbation range (SPR) was the difference between the maximal and 

minimal isolated perturbations in the slope that the PDWs could handle without failing to 

ambulate in the following 200 steps.  The SPR was calculated for all spring-damper 

conditions that resulted in period-1 gait at a ramp slope of 0.009 radians.  The SPR value  

for the CPDW was 0.0072 radians.  For each damping conditions, the spring stiffness 

could be tuned such that the SPR value was larger than the SPR value for the CPDW 

Figure 4-8.  A scatter plot of the greatest SPR values for each damping condition.  The SPR 

measured the PDWs robustness to an isolated change in the ramp slope. 
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(Figure 4-8).  The SPR value for an OPDW with spring-damper parameters of 53.7 N.m-1 

and 3.5 N.s.m-1 was 0.0167 radians, which was 131.9% greater than the CPDW.   

 

The step time variability (STV) was calculated as the standard deviation of the 

step time of 200 steps on uneven terrain.  The slope was randomly varied by a percentage 

of the SPR value for the CPDW.  All spring-damper conditions for which the SPRs were 

calculated had lower STV.  The spring-damper conditions for which the STV was 

smallest was dependent upon how much the ramp slope varied.  At small changes in ramp 

slope the OPDW with spring-damper conditions of 52.6 N.m-1 and 5.0 N.s.m-1 had the 

smallest STV.  At larger perturbations, the OPDW with the smallest STV had spring-

damper conditions of 50.5 N.m-1 and 6.75 N.s.m-1, which was 40.3% smaller compared 

with the CPDW (Table 4-4).  

Table 4-4.  The step-time variability for the CPDW and the OPDWs with 

spring-damper conditions that resulted in the lowest STV.   The slope was 

randomly varied by a percentage of the SPR value for the CPDW.   
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 4.3 Summary 

The bifurcation diagrams illustrated that the spring-damper parameters could be 

tuned such that the walker exhibited stable period-1 gait cycles, asymmetric period-n gait 

cycles (n >1), or chaotic gait cycles.  The local stability increased as the values for the 

spring-damper parameters increased.  Orbital stability of the OPDW was up to 38.1% 

more stable than the CPDW.  The range of slopes for which the OPDW could ambulate 

was up to 88.9% larger than the CPDW.  The basin of attraction for the OPDW was up to 

135.1% greater than the CPDW.  The SPR was up to 131.9% greater than the CPDW.  

For large variations in the slope from step-to-step, the STV was up to 40.3% less than the 

CPDW.  For all of the aspects of stability that were measured, the spring-damper 

parameters of the OPDW could be tuned such that the walking gait was more stable.    
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Chapter 5  
 

Discussion 

5.1 Introduction 

Passive-dynamic walkers (PDWs) have been utilized to study many aspects of 

human walking.    Stability is very low for a PDW with two degrees of freedom.  This 

thesis has demonstrated that the addition of a spring-mass-damper system to a simple 

PDW will increase many aspects of stability (e.g., step-to-step stability, or robustness to 

uneven terrain).  Varying the spring-damper parameters can have drastic effects on the 

stability of a bipedal walker.  Although, not all spring-mass-damper systems increase 

stability to the same degree.  Section 5.2 will discuss the implications of the results as 

they pertain to human walking and PDW walking.  

5.2.1 Summary of Findings 

 It has been illustrated that a PDW with a soft tissue component can increase many 

aspects of the stability of gait.  It has also been illustrated that varying the parameters of 

the soft tissue substantially affects this stability.  Some measures of stability are more 

sensitive to the soft tissue parameters than others.  For example, the spring-damper 

parameters that resulted in the most stable Floquet multiplier (FM) values did not 

correspond to the largest basin of attraction (BOA).  Furthermore, varying the spring-

damper parameters may not have affected the FM values, but had large effects on the 

BOA area. 
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 In terms of orbital stability, the spring-damper parameters of the OPDW could be 

tuned such that the walking gait was more stable than the walking gait of the CPDW.  

Orbital stability was quantified by finding the FM value for the period-1 gait cycles of the 

OPDW and CPDW.  The most stable FM value for the OPDW was 0.3545, which was 

39.7% more stable than the CPDW.  For a given set of spring-damper parameters, the FM 

value was dependent upon the slope of the incline.  Furthermore, the spring-damper 

parameters that resulted in the lowest FM values did not correspond to the largest range 

of ambulatory slopes.   

 In terms of local stability, all period-1 gait cycles that were tested for the OPDW 

and CPDW were unstable.  However, the local divergence exponent (LDE) values of all 

period-1 gait cycles for the OPDW indicated that the OPDW was less unstable than the 

CPDW.  As the ambulatory slope increased, the maximum LDE for a gait cycle increased 

and the principal LDE decreased.  The most stable principle LDE value for the OPDW 

was 0.9444, which was 6.2% more stable than the CPDW.   

 In terms of the global stability, the spring-damper parameters of the OPDW could 

be tuned such that the OPDW was more stable than the CPDW.  The area of the BOA for 

the CPDW and OPDW were relatively small.  The largest BOA for the OPDW was 

135.1% greater than that of the CPDW.   

 The slope perturbation range (SPR) and step time variability (STV) were 

measures of robustness to environmental perturbations.  For each damping condition the 

spring stiffness could be tuned such that the SPR value was greater for the OPDW 

compared with that of the CPDW.  The largest SPR value was 131.9% greater for the 

OPDW than that of the CPDW.  The STV was dependent upon how much the slope was 
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varied from step-to-step.  For relatively large slope variations, the STV for the OPDW 

was up to 40.3% less than that of the CPDW.      

5.2.2 Interpretation of Findings 

 Stability, in terms of human walking, is mostly associated with the ability to walk 

without falling.  However, it is still unclear what measures of stability are the best 

predictors of falling.  Furthermore, the mode at which the perturbation is applied (e.g., an 

external force or a change in the terrain) may change the stability measurement that is 

best at predicting a fall.  To date, there is no literature that reports on the effects of 

spring-damper parameters of the soft tissue component in a PDW on multiple aspects of 

stability and spatiotemporal variability.   

 Su and Dingwell (2007) found that the orbital stability of a compass walker was 

not correlated with the amplitude of a perturbation, and that FM values are poor 

predictors of PDW failure.  It may be that FMs are not well suited at determining a 

PDW’s response to external perturbations, but rather it assesses a PDW’s sensitivity to 

variations in its internal structure.  In this study, the amplitude of the applied 

perturbations to the PDW’s state were held constant, but the spring-damper parameters 

were varied.  Varying the spring-damper parameters substantially changed the FM 

values.  Granata and Lockhart (2008) reported that the orbital stability, as measured by 

FMs, of a fall-prone geriatric population was significantly lower compared with that of a 

younger population (p < 0.05).  It is well established that elderly populations have a 

higher body fat percentage (Fukagawa et al., 1990; Micozzi and Harris, 1990).  Muscle 
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and tendon tissues, which are dense in collagen and other elastic structures, have different 

mechanical properties than adipose tissue.  These findings suggest that altering the 

mechanical properties of soft tissue affects the orbital stability of bipedal walking.  It may 

be that lower orbital stability in elderly populations is due, in part, to different body mass 

composition.    

 It is not uncommon for human gait to be orbitally stable while simultaneously 

exhibiting local instability (Dingwell and Kang, 2006; Su and Dingwell, 2007; 

Schablowski and Gerner, 2006).  Local divergence exponents calculate the divergence (or 

convergence) of small perturbations within a relatively short time span (<1% of step 

time).  The entire gait cycle, excluding the switch between stance leg and swing leg, of 

the CPDW and OPDW was locally unstable.  This indicates that the switching condition 

between the stance and swing legs plays a crucial role in locally stabilizing a PDW 

simulation that does not include a model of the double-support phase.  The LDE values 

for these findings indicate that the compass walker is more unstable compared to that of 

humans (Buzzi et al., 2003).  Corrective measures that humans use to stabilize gait are 

affected by many components of the human body (e.g., proprioceptors, neuromuscular 

system, and musculotendon dynamics).  However, the evidence suggests that healthy 

human walking is subject to instability that is due, in part, to the primal dynamics of 

bipedal gait.   

 Some research has suggested that STV is significantly different amongst age 

groups (Beauchet et al., 2009; Yogev-Seligmann et al., 2010) and may reflect the risk of 

falling (Roos and Dingwell, 2010; Su and Dingwell, 2007).  These findings found that 

increased terrain variability led to increased STV variability in PDWs.  However, the 
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OPDW was affected by the terrain variability to a lesser extent compared with the 

CPDW.  Beauchet et al. (2009) reported that older populations walk slower to maintain 

low STV.  The OPDWs with the lowest STV had a higher walking velocity.  It may be 

that STV in human subjects is in part due to the intrinsic properties of the human body.   

 The BOA is a long-term measurement of step-to-step stability.  The stability of 

the OPDW in terms of the BOA had the largest relative increase compared with the 

CPDW.  Furthermore, the BOA varied by a relatively large amount for period-1 gait 

cycles compared to the other aspects of stability.  This indicates that soft tissue may play 

a relatively large role in global stability of human walking.   

 A stable gait cycle in a physical PDW is heavily dependent upon the initial 

conditions that the handler procures.  A PDW with a large BOA would be the easiest to 

produce stable walking gait.  This research suggests that a PDW with a mass oscillator 

about the pelvis can have a greater BOA and make the PDW less sensitive to the initial 

state that the handler procures for the walker.  Adding a spring-mass-damper system 

would be relatively simple compared to actuating a PDW.  The spring-mass-damper 

system is completely passive and therefore a highly efficient method of stabilizing a 

robotic walker. 

 Similar to the BOA, the maximum slope perturbation (SPR) and STV are more 

applicable tests of stability than FMs because the ground for which the PDW will 

ambulate may not be uniformly flat.  Maximum slope perturbation and STV directly 

measured the robustness of the PDWs to changes in the environment.  It has been shown 

that the stability of PDWs on mildly rough terrain (0.1% of leg length variability) is very 

low (Afshar and Ren, 2012).  Various methods that require joint actuation have been 
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implemented in order to stabilize compass PDWs on rough terrain (e.g., Iida and 

Tedrake, 2010; Manchester et al., 2011; Park, 2012).  These control systems can be very 

complex and impossible to implement in a physical PDW.  Change in floor height is an 

inevitable circumstance for humans and robotic walkers.  Therefore, it is crucial that 

robotic walkers can maintain stability on rough terrain. 

 The OPDWs, which could handle a range of floor height perturbations up to 

131.9% greater than the CPDW, exhibited greater robustness to terrain variability.  This 

indicated that passive robustness may be obtainable in PDW systems.  The benefit to 

using a passive system is two-fold: the method of control is relatively simple to simulate, 

and the controller easier to implement in a physical system compared to walkers that are 

not based on PDWs (Collins et al., 2005).  To include a complex controller in a physical 

system means that the PDW must be wired to a computer external to the PDW or the 

PDW must carry a computer and battery.  Connecting a PDW to an external computer 

means that the researcher must place the PDW on a boom to compensate for the 

instability caused by wires.  Connecting a PDW to a battery and computer makes the 

problem of addressing stability and mass distribution more difficult.   

 Short-term robustness is a better measurement for a PDWs ability to overcome a 

single obstacle (e.g., SPR).  However, the STV gives a better prediction of how an 

OPDW would react to real-world variability in terrain for long-term tasks.  The change in 

floor height could be described as environmental noise.  The STV variability has been 

used in PDWs to study the effects of controller noise on PDW ambulation (Roos and 

Dingwell, 2010).  In a real setting, there will be a level of random and systematic noise 

due to the environment and controller system.  It may be that an oscillating mass may 
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increase the PDWs robustness to noise and increase the long-term stability in an 

environment with varying floor height, this warrants investigation.  A further elaboration 

on the non-linear dynamics of the PDWs is provided in Appendix A. 

5.3 Study Limitations 

Limitations to the study are associated with the modeling of the bipedal walker.  

The first limitation is the nature of the foot-ground contact event.  The foot is modeled as 

point mass connected to the ground via a hinge joint.  This could be more realistic if the 

contact element was elastic and the foot was rounded.  Furthermore, this contact would 

have enabled a more sophisticated model that included a double-support phase.  The soft 

tissue component would affect the gait dynamics of the single-support phase differently 

than that of the double-support phase.  The contact dynamics between the PDW and the 

ground would heavily influence the subsequent dynamics of a soft tissue component.  

Larger contact forces would cause larger oscillations that have a larger amplitude and 

higher frequency modes.  A nonlinear spring-damper system would need to be 

implemented to account for this.  

Due to the low stiffness and damping values that were used to measure stability, 

the acceleration of the soft tissue in the vertical direction did not include a gravitational 

acceleration component.  If the effects of gravity were included in the soft tissue 

component of the model, then the weight of the soft tissue would extend the spring such 

that the mass was well below the ground.  A post-hoc analysis revealed that including 

gravitational acceleration to the soft tissue component of a PDW does have an effect on 
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the orbital and local stability.  The Floquet multiplier value of an OPDW (without gravity 

acting on the soft tissue component) with spring-damper parameters of 25.8 N.m-1 and 

11.5 N.s.m-1 was 0.5938.  The Floquet multiplier value of an OPDW with the same 

spring-damper parameters, but with gravity acting on the soft tissue component, was 

0.5520.  This indicates that the OPDW with gravity acting on the soft tissue component 

was more orbitally stable compared to the alternative.  However, an OPDW with spring-

damper parameters of 25.8 N.m-1 and 3.5 N.s.m-1 was oppositely affected.  The Floquet 

multiplier value was less in magnitude for the OPDW without gravity acting on the soft 

tissue component compared with an OPDW with gravity acting on the soft tissue 

component.  More research is needed to investigate the effects of a soft tissue component 

under the influence of gravity on the gait stability of PDWs. 

5.4 Future Research Direction 

The next step in analyzing the effects of soft tissue on walking dynamics in 

humans is to make the PDW model more realistic.  The following is a list of the 

components that may be added in future model designs:  rounded feet, elastic foot-ground 

contact, legs with soft tissue mass, knee and ankle joints, neuromuscular control of the 

joints, or a double-support phase.  Careful analysis can reveal how the stability of gait 

dynamics is affected by adding these components. 

Another future study could extend the two-dimensional PDW into three 

dimensions to examine the effects of soft-tissue oscillation on three-dimensional gait 

dynamics.  Modeling three-dimensional PDWs with rounded feet is a method for 
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eliminating foot scuffing without the inclusion of knees.  This would enable the walker to 

remain relatively simple and simulate PDW gait dynamics in a more realistic setting.   

An exciting study would be to apply this work to a physical PDW.  Soft tissue 

vibration can be designed using many different materials.  For example, a physical PDW 

with a hollow pelvis can accommodate a silicon mold that vibrates during PDW 

ambulation.  Furthermore, a simple control system with an actuator can be added to 

enable ambulation on a zero-degree incline.  A robotic walker that can walk for an 

extended period of time could provide enough kinematic and kinetic data to measure 

many aspects of walking gait stability.     

5.5 Thesis Conclusion 

This study presented evidence that soft tissue may contribute in many aspects of 

human walking stability.  A passive-dynamic walker with a soft tissue component was 

more stable than the passive-dynamic walker without a soft tissue component as assessed 

by Floquet multipliers, local divergence exponents, the basin of attraction, slope 

perturbation range, and the step time variability.  This indicated that mass vibration may 

be an effective method to passively stabilize a bipedal walker.  This study provided 

insight into the gait dynamics of passive-dynamic walkers with a soft tissue component 

and has built a framework for future studies that address the effects of soft tissue 

vibration on human and robotic walking dynamics.   
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Appendix A 

 

Additional Analysis of Passive-Dynamic Walking Gait Dynamics  

Bifurcation Diagrams and Floquet Multipliers 

Floquet multipliers are a measure of orbital stability.  A Floquet multiplier value 

that crosses unity (FM value ≥1) is indicative of a limit cycle that becomes unstable.  In a 

bifurcation diagram, this can be visualized by a period-1 to period-2 bifurcation.  That is, 

the FM value crosses unity at the bifurcation.  The spring-damper parameters of an 

Figure A-1.  A bifurcation diagram with unstable equilibria and chaos highlighted in green.  The 

unstable equilibria are marked by a dashed green line.  Chaos is highlighted by a green area. 
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oscillating passive-dynamic walker (OPDW) could be tuned such that the gait was 

asymmetric.  However, period-2 gait is stable in the general sense that the PDWs will still 

ambulate indefinitely.  The same is true for higher order periods and chaotic gait.  

For most damping conditions, a series of period-doubling bifurcations were 

followed by a series of period-halving bifurcations until the OPDW returned to a period-1 

gait cycle as stiffness increased.  The period-doubling bifurcations that lead to chaos are 

pitchfork bifurcations (Figure A-1); which means that the stable equilibria bifurcate and 

an unstable equilibrium appear at each bifurcation.  The unstable equilibria are repelling 

the fixed-point limit cycle away from the unstable equilibria.  The stable equilibria attract 

the fixed-point limit cycle.  The system enters chaos whenever all equilibria become 

unstable.   
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The mechanical energy (ME) of the initial state of each gait cycle (i.e., the fixed 

points) will oscillate around their corresponding unstable equilibria.  That is, during a 

period-2 limit cycle, the ME of the 

fixed point of the first gait cycle will 

be higher than the ME of the unstable 

fixed point equilibrium.  

Subsequently, the ME of the second 

fixed point of the period-2 limit cycle 

will be lower than the ME of the 

unstable fixed point equilibrium.  This 

oscillation becomes more complex as 

the period-n limit cycle order becomes 

larger (Figure A-2).  For example, the 

first gait cycle of a period-8 gait cycle will be one with the largest positive ME difference 

from the unstable fixed point equilibrium.  The following gait cycle will be the largest 

negative ME difference from the unstable fixed point equilibrium.  The third fixed point 

will be the smallest positive mechanical energy difference from the unstable fixed point.  

The fourth point will be the smallest negative ME difference from the unstable fixed 

point.  The ME oscillation continues with the second-most largest positive ME difference 

from the unstable fixed point.  The ME of the gait cycles for the period-8 limit cycle 

oscillate around the original unstable fixed point (i.e., the unstable limit cycle that 

originates during the period-1 to period-2 pitchfork bifurcation).   

Figure A-2.  The energy difference between the 

unstable equilibrium that resulted from the first 

bifurcation of a series of bifurcations and the stable 

equilibria of a period-8 limit cycle.  The red dashed 

line is the mechanical energy of the fixed point of an 

unstable period-1 limit cycle.  The purple dots are 

the mechanical energy of each fixed point of a 

period-8 gait cycle. 



77 

 

 The most stable period-1 gait cycles in terms of FMs occurred before the first 

pitchfork bifurcation for each damping condition.  The period-1 gait cycles that occurred 

after the period-halving series are ambulating at a faster velocity, and, consequently, have 

more kinetic energy.  These FM values for these period-1 gait cycles are higher than that 

of the control walker.  Furthermore, the lowest walking velocity for every damping 

condition occurred at a spring stiffness of 0 N.m-1.  These values also had a larger FM 

value.  Before the first period-doubling bifurcation, the eigenvalues of the Jacobian in 

Equation (10) are equal; at which the normalized FM value is smallest.  As the stiffness 

was increased, the eigenvalues of said Jacobian diverged and the eigenvalue associated 

with the stance leg angular velocity, �̇�1, crossed unity while the eigenvalue associated 

with stance leg angle, 𝜑1, remained less than unity.  This indicates that instability at these 

values of damping and stiffness are a result of angular velocity instability.   
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 A post hoc analysis of FMs was performed in order to find stable period-1 gait 

cycles beyond spring stiffness values previously reported in Chapter 4.  A pattern of 

period-1 limit cycle stability according to the FM values can be visualized in Figure A-4.  

Each arch is bordered by a red band (where the FM value is approaching unity).  Every 

Figure A-4. A spectrum of FM values for period-1 stable limit cycles with varying spring-

damper parameters.  White space indicates that no period-1 limit cycles were found.   

Figure A-3.  The FM values that were calculated below damping values of 3.5 N.s.m-1 

occurred in the first stable band located in the bottom-left corner of Figure A-4 between 

stiffness values of 0 N.m-1 and 1 N.m-1.  The FM values that were calculated for damping 

values greater than and equal to 3.5 N.s.m-1 occurred in blue spectrum of Figure A-4 between 

stiffness values of 25 N.m-1 and 40 N.m-1.   
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second arch is surrounded by a blue band, which corresponds to high stability relative to 

the CPDW.  The arches that are surrounded by the blue band correspond to period-1 to 

period-2 bifurcations due to instability of the stance leg angular velocity.  The post hoc 

analysis revealed that the spring-damper values that corresponded to the highest stability 

according to FMs occurred between damping values of 3.5 N.s.m-1 and 15 N.s.m-1 and 

between stiffness values of 25 N.m-1 and 55 N.m-1 (Figure A-3).  

 The FM values that cross unity at spring stiffness values after the series of period-

halving are not a result of unstable stance leg velocity.  The eigenvalue of the Jacobian in 

Equation (10) that is linked to the stance leg angle, crosses unity while the other 

eigenvalue that corresponded to the stance leg angular velocity remains below unity.  

That is, the walker loses stability due to the instability of the angular position.  The arches 

in Figure A-4 that are not surrounded by a blue band are indicative of when the angular 

position becomes unstable.  These arches correspond to bifurcations from a period-1 limit 

cycle to a period-2 limit cycle or period-1 limit cycle to a chaotic limit cycle.  If the 

spring-damper parameters are incremented such that they are approaching the center of 

an arch, the routes to chaos are very short and dramatic. 

 The eigenvalues for the Jacobian in Equation (10) for all of the period-n, n>1, 

limit cycles were indicative of saddle cycles.  That is, one eigenvalue was less than unity 

while the other eigenvalue was greater than unity.  Furthermore, the eigenvalues have a 

component in the real and complex planes, which indicates that the limit cycles are spiral 

saddle cycles.  A spiral saddle cycle is one in which a trajectory that is converging to the 

period-2 limit cycle approaches the limit cycle while simultaneously spiraling around the 

limit cycle.  For example, imagine a tornado that is twisting touches the ground at a 
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single point.  The stable limit cycle could be seen as the axis about which the tornado is 

swirling around.  As you descend into the tornado, the width of the rotating air decreases 

until it reaches zero (at the ground).  Imagine you are a piece of dust that is sitting 

perfectly on the eye of tornado (the axis of rotation).  Assuming that the air is not moving 

the dust, it would drop in free fall along the eye of the tornado.  However, if that piece of 

dust has its path of descent disturbed while it was descending, it would start twirling 

around the eye of the tornado as it descended.  Furthermore, as the piece of dust 

descended, it would get closer to the eye of the tornado because the width of rotating air 

is shrinking.  The trajectories of the passive walker behave in a similar fashion.  As they 

converge to the stable limit cycle, they also spiral around it. 

 A change in the spring-damper parameters forces a change in the walking velocity 

by means of changing the required initial conditions for stable locomotion.  At larger 

walking velocities, the damping component of the spring-damper system will have a 

larger effect on the amount of energy that is being dissipated.  Therefore, the higher 

spring stiffness values increase the walking speed of stable locomotion, which 

subsequently affects the amount of energy dissipation.  The spring-damper parameters 

and walking velocity will subtly interact and affect the FM values.  

Chaotic Gait Cycles and Strange Attractors 

 Chaotic gait cycles are such that two initial conditions that are arbitrarily close 

result in trajectories that diverge exponentially every step.  In the case of the PDWs, these 

types of gait cycles are caused by a strange attractor.  A strange attractor is a general 
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term for a limit cycle attractor that is characterized by an unusual shape.  A strange 

attractor is typically a result of a series of period-doubling bifurcations that become 

unstable.  However, a strange attractor can appear due to the overlap of an unstable gait 

with a stable period-1 gait cycle.  The trajectories of an attracting limit cycles overlap 

very briefly and the gait cycle will converge to the strongest attracting limit cycle (Li and 

Yang, 2012).  These attractors can be found if the numerical analysis is at a resolution 

high enough to approach the intersection (which is extremely brief) of the separate 

attracting limit cycles.  Furthermore, the strange attractor must be stronger than the 

period-1 limit cycle attractor to pull the stable period-1 limit cycle to the unstable chaotic 

cycle.  Figure A-5 illustrates 

an example of a strange 

attractor intersecting the same 

state space as a period-1 limit 

cycle attractor.  However, as 

the slope continued to 

decrease, the period-1 limit 

cycle attractor became 

stronger and pulled the gait 

cycle back to the period-1 limit 

cycle.   

 Finding and analyzing the strange attractor gait cycles could be a thesis on its 

own.  The existence of strange attractors and how they influence bipedal walkers is still 

largely uncharted territory.  Some strange attractors are much stronger than others.  The 

Figure A-5.  Bifurcation plot of a the initial stance angle, 

𝜙1, and the ramp slope as the bifurcation parameter.  The 

OPDW has spring-damper parameters of 5.6 N.m-1 and 0.5 

N.s.m-1.   
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OPDWs that have a larger 

set of spring-damper 

parameters for which the 

motion is chaotic indicates 

that the strange attractors 

are stronger.  However, the 

expense of having strong 

strange attractors in the 

case of the PDW is that the 

gait cycles enters chaos at 

smaller slope values (Figure A-6). 

 The strange attractor that is stronger has a larger basin of attraction (BOA) than a 

strange attractor that is weaker.  The border of the BOA is tangent to the border of the 

strange attractor (Cvitanović et al., 1988), thus it may be beneficial to have a strong 

strange attractor.  Further research needs to be done in order to determine if the BOA of a 

strong strange attractor are potentially larger than the strong attractors of a period-1 limit 

cycle and the conditions for which this might occur.    

The Basin of Attraction 

 The BOA may be both one of the most simple and most insightful measurements 

of stability.  Different initial conditions for a gait cycle are simulated to test whether the 

walker will fail or converge to the original limit cycle.  It is important to distinguish 

Figure A-6.  Bifurcation diagram of the initial stance angle, 𝜙1, 

with respect to the slope.  An OPDW with spring-damper 

parameters of 55.5 N.m-1 and 3.5 N.s.m-1 is plotted next to the 

CPDW.   
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between returning to the original limit cycle or another attracting limit cycle; with the 

right initial conditions, the PDW can converge to a completely different gait cycle.  This 

is an effective method for finding other attractors (e.g., period-n, n ≥ 1 and strange 

attractors).  The area of the BOA monotonously increases or decreases as the bifurcation 

parameter is incremented  (Schwab and Wisse, 2001).  Finding breaks in the monotonous 

change in the area of BOA is a sign that another attractor is nearby. 

Figure A-7.  The basin of attraction for an OPDW with spring-damper parameters of 94.9 N.m-1 

and 9.25 N.s.m-1.  This basin of attraction is fractal.  The area may have been underestimated if a 

portion of the basin of attraction was not directly adjacent to the one illustrated here.  
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  In a linear system, the initial distance from the equilibrium point is directly 

proportional to how much time (or, in this case, steps) it takes to reach the equilibrium.  

However, this is not the case for the CPDW and OPDW because the systems are 

nonlinear.  Furthermore, the BOA for the OPDW are fractal (Figure A-7).  That is, the 

border of the BOA is not continuous.  The search method that was implemented in this 

analysis may have underestimated the area of the BOA for the OPDW.  Fractal basins of 

attraction do not have to be adjacent, however this search method assumed that the BOA 

was closed.  The results of Schwab and Wisse (2001) indicated that the BOA area of the 

CPDW was not underestimated.   

Figure A-8.  The normalized basin of attraction plotted against damping values.  The area of the 

basin of attraction was normalized to the search area of 1x10-12 rad2.s-1.   The spring-damper 

values that were used to calculate the BOA were the most stable period-1 limit cycles in terms of 

Floquet multipliers.  The stiffness values are between 26.0 N.m-1 and 39.1 N.m-1, and 

monotonically increasing as the damping values increase between 4 N.s.m-1 and 12 N.s.m-1.  The 

areas in red are highlighted because the normalized BOA area is not monotonically increasing 

due to the presence of a separate attractor near the fixed point for which the BOA was calculated.    
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 The BOA of an OPDW with a relatively large amount of damping is 135.1% 

larger than the BOA of the CPDW.  The normalized BOA area is plotted in (Figure A-8).  

This plot illustrates that the area of the BOA monotonically increases or decreases as the 

bifurcation parameters are systematically increased.  The areas of the BOA for the fixed 

points located in the left half of the dark blue arch (stiffness values between 26.0 N.m-1 

and 39.1 N.m-1) in Figure A-4Error! Reference source not found. were calculated.  A 

separate attracting limit cycle is nearby the attracting limit cycle of the calculated BOA at 

damping values of 9.5 N.s.m-1 and 12.0 N.s.m-1.  However, the attracting limit cycle is 

closer to the border of the BOA and does not have a substantial effect.  These attracting 

limit cycles could be analyzed further and their behavior may be substantially different.   

Summary 

 The OPDWs presented dynamics that were both more complex and more stable 

than the CPDW.  The attractors for the different limit cycles grew in complexity as the 

limit cycle bifurcated and eventually became chaotic.  However, these analyses do not 

completely encompass the dynamics of the OPDW or CPDW.  There are clearly 

attractors that are stronger and possibly more stable than the ones that were analyzed.  

Bipedal walking is highly nonlinear by design.  Adding a soft tissue component illustrates 

that a larger spectrum of stability can be achieved by simply changing the spring-damper 

parameters of the OPDW.  Furthermore, the soft tissue may be realized in a passive-

dynamic walker with the addition of mass that oscillates.  It has been illustrated through 

computer simulation that mass oscillation increases a PDWs robustness to terrain 
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roughness.  It may be beneficial to add a soft tissue mass in order to increase a physical 

PDW’s long-term stability.    
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Appendix B 

 

Floquet Multiplier, Local Divergence Exponents, and Slope Perturbation 

Range Tables  

Table B-1. A table of the spring-damper parameters that resulted in the most 

stable period-1 gait cycles in terms of Floquet multipliers for each damping 

condition.   The range of slopes for which the OPDW and CPDW could 

ambulate and the normalized area of the basin of attraction was calculated for 

each spring-damper condition.    
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Table B-2.  A table of the spring-damper parameters that resulted in the 

most stable period-1 gait cycles in terms of local divergence exponents 

for each damping condition.   The range of slopes for which the OPDW 

and CPDW could ambulate was calculated for each spring-damper 

condition.    
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 Table B-3.  A table of the spring-damper parameters that resulted in the most 

stable period-1 gait cycles in terms of the slope perturbation range for each 

damping condition.   The resultant minimum and maximum slopes of the 

applied perturbation that were used to calculate the slope perturbation range are 

reported in the last two columns. 


