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ABSTRACT 

 

Human locomotion is often assumed to be governed by optimality principles. To the extent that 

this is true, it should be possible to reproduce various human gaits (walking, running, sprinting) 

with a predictive approach employing some sort of optimality criterion in an optimization 

framework. While there are many instances of humans using aperiodic gaits in everyday life and 

sporting activities, previous simulations of bipedal locomotion have focused almost exclusively 

on periodic gaits. The main purpose of this dissertation is to implement model-based optimal 

controls approaches to create novel bipedal gait simulations that are both periodic and aperiodic. 

Those simulations are used to investigate new optimality criteria for normal human walking and 

to characterize relationships between musculoskeletal architecture and human sprinting 

performance. 

 In our first study, a novel computational model and a simulation framework were 

developed to create the first simulation of aperiodic sprinting from rest. The model used was a 

modified spring-loaded inverted pendulum (SLIP) biped driven by torque actuators at the hip and 

force actuators on retracting legs. The direct multiple shooting method was used to formulate the 

optimization problem in which the time to traverse 20 m from rest was minimized. The initial 

guess to the simulation was a ñjoggingò simulation obtained using a proportional-derivative 

feedback to control trunk attitude, swing leg angle, and leg retraction and extension. Although 

the model was very simple, it exhibited a number of features characteristic of human sprinters, 

such as forward trunk lean at the start, straightening of the trunk during acceleration, and a dive 

at the finish. 

 In our second study, a muscle driven computational model was developed to create 

simulations of normal bipedal walking using the direct multiple shooting method and evaluation 
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of optimality criteria. We implemented a set of optimality measures derived from muscle 

activation, mechanical energy expenditure, or metabolic energy expenditure to represent effort; 

and trunk angle as well as vertical ground reaction force (GRF). Initial guesses to the 

optimizations were generated using a feedforward control that relied on muscle reflex loops. The 

simulations converged to distinct gait cycles for different optimality criteria. The additional trunk 

angle and vertical GRF terms helped to alleviate some undesired behaviors observed in 

predictive simulations of normal walking such as spikes in GRF and excessive trunk excursion.  

 In our third study, maximum speed sprinting simulations were created with a muscle-

actuated bipedal model and the direct multiple shooting method. The simulation framework and 

model successfully reproduced salient features of human sprinting once maximum speed has 

been attained. We perturbed several musculoskeletal architecture parameters of the 

plantarflexors in isolation (maximum isometric force, optimal fiber length, tendon stiffness, and 

moment arm) to investigate how variations in musculotendon architecture affect maximum speed 

bipedal sprinting performance. We found that increases in each parameter analyzed in the study 

enhanced maximum speed bipedal sprinting performance.  

 In our fourth study, we used the computational model and simulation framework 

developed in the third study to investigate how variations in the maximum isometric force 

parameter of each major muscle group affect sprinting performance. The maximum isometric 

force parameter of each musculotendon actuator in the model was perturbed in isolation. The 

results showed that increasing each muscleôs force-generating capacity enhanced sprinting 

performance, but hip flexors and quadriceps were found to have the most and least potential, 

respectively, to increase sprinting speed. The model employed mechanisms similar to those 
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observed in human sprinters to attain higher speeds. Additional plantarflexor and hip flexor force 

increased speed primarily by enhancing stride length and stride frequency, respectively. 

 In conclusion, this dissertation is the first study to create an aperiodic bipedal sprinting 

simulation from rest. We demonstrated that additional optimality criteria, vertical GRF and trunk 

angle, have the potential to eliminate some undesired behaviors and increase fidelity of 

predictive walking simulations. Contrary to the experimental findings showing that sprinters 

have smaller plantarflexor moment arms, we found that larger plantarflexor moment arms favor 

sprinting performance in the maximum speed sprinting phase. The results suggest that special 

attention should be given to strengthening hip flexor and plantarflexor muscles to increase 

maximum sprinting speed. The models and simulation frameworks described in this thesis can be 

used to simulate other bipedal gaits with only minor modifications.   
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Chapter 1  

 

Introduction  

1.1 Background 

Bipedal locomotion is accomplished using a variety of gaits and the study of gait mechanics 

often assumes that some optimality criterion is being satisfied for each different gait. For 

instance, by using the cost of transport as the optimality criterion, Alexander (1980 and 1992) 

simulated bipedal and quadruped gaits with simple planar models, while Anderson and Pandy 

(2001a) simulated normal human walking with a complex musculoskeletal model. Indeed, there 

are experimental (Ralston, 1976) and computational modeling studies (Srinivasan and Ruina, 

2006) demonstrating that humans walk at speeds that use the least energy and energetic economy 

is a commonly understood goal for distance running.  For these reasons, energy expenditure has 

been used frequently as an optimality criterion in dynamic simulations of walking and running. 

However, estimating energy expenditure or effort in a muscle-actuated computational model 

requires somewhat complex calculations of energy consumption by individual muscles, and so 

alternative optimality criteria have been implemented. The most commonly used such alternative 

is muscle activation, which is already a state in most dynamic simulations. Nevertheless, while 

there is experimental evidence indicating that humans prefer to walk with minimum effort, 

previous simulations using such an optimality criterion have not been able to reproduce several 

important features of human walking. 

 Computer modeling of human walking and running typically has focused on simulations 

in which periodic strides are constrained to occur. The periodic nature of steady-state gait 

justifies simulation of a single stride in which the initial conditions are equivalent to the terminal 
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conditions (or simulation of a half of a stride if right/left symmetry is also assumed).  Gaits 

appropriate for simulation using this approach include steady-state walking (Ackermann and van 

den Bogert, 2010) and running (Schultz and Mombaur, 2010), and sprinting (Miller et al., 2012a) 

that occurs once top speed has been reached and maintained. There are, however, gaits which are 

necessarily aperiodic such as sprinting from rest or initiation of a walking gait before a steady 

state motion is reached. Simulation of aperiodic gaits has received little attentions from previous 

researchers but is nonetheless important because the mechanics of some gaits are quite different 

in periodic and aperiodic phases of motion. Such aperiodic gait simulations would allow better 

evaluation of how the musculoskeletal system contributes to aspects of performance, 

understanding of factors limiting the ability to reach steady state, and assessment of asymmetry.  

 Simulations of locomotion may be developed by ñtrackingò movements previously 

measured in the motion laboratory or by predicting movements that represent optimal 

performance. Generally, in a tracking simulation, the muscle excitation histories are searched 

that would minimize the deviations from the experimentally measured joint angles and the 

ground reaction forces or they are treated as constraints that must be satisfied within a prescribed 

tolerance (Pandy, 2001). The tracking approach has several advantages: the motions and forces 

measured in an experiment are often reproduced with great accuracy; once a simulation has been 

developed, the modeler has the ability to estimate variables that cannot be measured in the 

laboratory; and the information available from such a simulation may be useful in investigating 

cause-effect relationships (for example, simulation-based estimates of joint and tendon loads 

may be related to injury mechanisms). The tracking approach has been used to perform muscle-

induced acceleration analyses that estimate the contributions of individual muscles to propulsion 

and support during locomotion. On the other hand, a predictive approach is necessary under the 
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following conditions (Anderson and Pandy, 2001b): when accurate experimental data is not 

available or is not easy to collect experimental data with current techniques (e.g., for walking in 

other planets); when the optimality criteria is a time-dependent performance metric (e.g., 

maximum-height in jumping or minimum time in sprinting); or there is a need for creating novel 

simulations (e.g., for sensitivity analysis). Therefore, predictive simulations have the potential to 

be used to study the roles of muscles in maximum-performance tasks or in the absence of 

accurate experimental data in ways that would go beyond muscle-induced acceleration analysis 

in a tracking simulation. It can be quite challenging to create predictive simulations, however, 

due to problems in convergence to a solution and high computational demands. 

1.2 Purpose of the dissertation 

The general purpose of this dissertation is to make use of an optimal controls approach to 

develop novel simulations of bipedal gait.  These simulations are used to investigate new 

optimality criteria and explore the functional roles of muscles in sprinting. Another purpose is to 

demonstrate how an approach of adding feedback and feedforward control loops to the model 

may be useful to obtain initial guesses to the optimization problems and to demonstrate abilities 

of computer models employed in the study. The last main purpose of this dissertation is to show 

how variations in architecture of musculoskeletal system influence sprinting performance with a 

simulation approach. 

1.3 Specific aims 

The dissertation had three proposed specific aims: 

i) To create a simulation framework with a simple bipedal torque-driven model and 

synthesize optimal sprinting from rest by minimizing the locomotion time for a 

prescribed distance.     
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ii)  To use the same simulation framework developed above as the basis for more 

complex muscle-driven models. 

iii)  To use the model developed in óiiô to 

a. Analyze sensitivity of sprint performance to musculoskeletal architecture 

parameters of plantarflexor muscles 

b. Analyze sensitivity of sprint performance to maximum isometric force capacity of 

ankle, knee, and hip muscles 

c. Investigate and compare commonly used optimality measures for normal walking 

1.4 Organization of the dissertation 

In the following chapters, four research studies along with a review of the relevant literature and 

a final discussion will be presented. The literature review is presented in Chapter 2. Chapter 3 

presents a novel aperiodic sprinting simulation. Chapter 4 describes a musculoskeletal model and 

a hybrid approach to create predictive simulations of normal walking and evaluate optimality 

criteria. In Chapter 5, a maximum sprinting simulation is developed to explore how variations in 

architecture of plantarflexors influence sprinting performance. In Chapter 6, the same model and 

simulation framework are used to study sensitivity of maximum simulated sprinting speed to the 

maximum force-generating capacity of individual muscles. The closing chapter, Chapter 7, 

includes a summary of four studies and conclusion of the dissertation. 
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Chapter 2  

 

Literature Review 

 

2.1 Computer simulation of bipedal locomotion 

2.1.1 Formulations of optimization problem 

The human locomotor system is a redundant system in that the number of muscle actuators in the 

human body is larger than the number of degrees of freedom at the joint level.  This redundancy 

makes the human locomotor system an indeterminant system, for which the same motor output 

could be generated by a theoretically infinite number of distinct combinations of muscle 

excitations.  

 The classic conjecture is that human sensorimotor system favors optimality while 

performing motor tasks (Todorov, 2004). Thus, when previous researchers have tried to 

reproduce human gaits using computer simulation, they usually have used an optimization 

framework that minimizes or maximizes some optimality criterion such as muscle force or 

muscle energy expenditure, or some combination of criteria. Two main techniques, óstatic 

optimizationô and ódynamic optimizationô have been used to solve this optimization problem. In 

static optimization (e.g., Seireg and Arvikar, 1975; Crowninshield and Brand, 1981), intrinsic 

muscle dynamics are mostly neglected, and muscle forces are estimated in a series of postural 

configurations assuming static equilibrium and minimal muscular effort in an optimization 

framework. As its name suggests, dynamic optimization accounts for the time-dependent 

dynamics of the muscles and the body segments. Dynamic simulations usually are created by 

either tracking movements and external forces previously measured in the gait laboratory or by 

predicting movements that represent optimal behavior without tracking. 
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 Dynamic simulations are usually treated as optimal controls or trajectory optimization 

problems. Methods for solving such problems are generally classified as direct or indirect (please 

refer to Betts 1998 and 2010 for detailed descriptions and formulations of direct and indirect 

methods). A direct method seeks a minimum of the objective function for the discretized form of 

the problem while an indirect method attempts to find a root of the necessary conditions for 

optimality with explicit derivation of the necessary conditions for the original problem. 

However, due to major difficulties in the application of indirect methods (Betts, 2010), they are 

not often preferred for creating computer simulations of bipedal simulation. 

 In direct methods, the optimal controls problems are transcribed into nonlinear 

programming (NLP) problems. A NLP problem requires locating a finite number of variables 

such that an objective function is optimized without violating a set of linear or nonlinear 

constraints and simple bounds (Betts, 2010).  For the transcription of the problem, the following 

three methods have been used widely: (1) direct single shooting, (2) direct collocation, and (3) 

direct multiple shooting. Direct single shooting is the most extensively used of these methods, 

perhaps because it describes the NLP with a relatively small number of optimization variables (a 

subset of initial and final conditions, control histories, and parameters such as final time) and 

because the implementation of single shooting is generally straightforward.  In dynamic 

simulations of human gait, direct single shooting is most commonly used to search for muscle 

control histories that minimize an optimality measure while trying to satisfy periodicity 

constraints on initial and final states (e.g. Anderson and Pandy, 2001a). Direct collocation, a 

method heavily used for optimization of aircraft trajectories, has been implemented to create gait 

simulations (e.g., Ackermann and van den Bogert, 2010) in which muscle controls along with 

state trajectories are searched to minimize an objective function subjected to algebraic 
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constraints originated from the governing equations of the system, and any other constraints such 

as periodicity. Direct multiple shooting (e.g., Diehl et al., 2006) combines features of direct 

single shooting and direct collocation. In this method, the original problem is discretized at n-

many nodes, thus the total time span of the simulation is divided into several short integration 

intervals (m = n-1), each of which has a set of initial states and controls. An optimality measure 

is minimized subject to constraints requiring that the terminal values for the states at the end of 

each integration interval are equal to the initial values for the next interval along with any other 

constraints of the simulation. Direct multiple shooting is a robust method that avoids some 

shortcomings of other methods. For example, accumulation of nonlinearity on the terminal 

conditions and numerical instability during forward integration are the major issues in direct 

single shooting because changes early in the trajectory propagate to the end of the trajectory 

(Betts, 1998). Direct collection eliminates forward integration, but error between discretizations 

must be estimated with re-gridding i.e., the optimal controls problem must be solved repeatedly 

progressively finer meshes. This process generally requires implementations of complex 

meshing algorithms, but has not properly addressed in most simulations (Diehl et al., 2006). 

2.1.2 Simulations of walking 

Human locomotion has been simulated with a wide variety of models that range from simple 

torque-driven models to highly complex muscle-driven models. Several simulation approaches, 

from passive walking to inverse dynamics based numerical optimization, have been implemented 

to explore bipedal locomotion. 

 Passive walkers have been used to gain insight into the underlying passive mechanics of 

bipedal gait. McGeer (1990) built an extremely simple walking model without actuators that can 

effectively walk down a shallow ramp with a gait that is comparable to human gait. The energy 
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lost in the inelastic foot strikes are compensated for by gravity, and the resulting walking motion 

is periodic in nature. Garcia et al. (1998) developed an irreducibly simple passive dynamic 

walking model with a point mass at the hip, two rigid massless legs hinged at the hip, and 

infinitesimal point masses at the feet. Collins et al. (2001) increased the number of kinematic 

degrees of freedom (dof) by building the first three-dimensional passive dynamical walker with 

knees. Kuo (2002) introduced the idea of a minimally actuated biped by powering Garcia et al.ôs 

simplest walking model for level walking by applying an impulse immediately before the toe-off 

and a torque applied on the stance leg. Wisse et al. (2004) added a passive upper body to the 

simplest walking model which improves the resistance to disturbances. Gomes and Ruina (2011) 

showed with a three-link walking model that level walking is possible with zero energy input 

into the system provided that the foot collision occurs at zero velocity. 

 The simulations created with torque and/or force driven models enabled to investigate 

locomotor function in the joint level with ideal actuators. Chow and Jacobson (1971) were the 

first to study human locomotion with optimal controls (indirect single shooting) with 

minimization of mechanical energy expenditure of a torque-driven planar computational model. 

Although they had a multi-link model including ankle, knee, and hip joints, they actually 

performed optimization on the swing leg by introducing several simplifications to the problem. 

The main reason for the simplifications was the limited computational power available at the 

time. Onyshko and Winter (1980) developed a seven segment walking model driven by torques 

at each joint. They changed the manually derived governing equations of motion from phase to 

phase by changing the topology of the model. The model was actuated by joint moment histories 

evaluated by inverse kinematic analysis of experimentally obtained human walking data. To 

compensate for differences between model and subjects, they made manual adjustment on initial 
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states and joint moment histories to able to create gait cycles. Pandy and Berme (1988) used 

open and closed kinematic chains to simulate human walking in single and double support 

phases of walking respectively. The authors used experimentally obtained initial states and 

obtained estimates of the joint moments through trial and error. The improvement of that model 

study was that it offered an alternative to manually deriving the equations defining a 

mathematical model for human gait. Gilchrist and Winter (1997) improved the model of 

Onyshko and Winter (1980) by extending it to three dimensions and increasing the number of 

segments to nine. The authors equipped the model with torsional and linear springs and dampers 

to ensure a smooth motion. The joint moments obtained from an inverse dynamics analysis were 

used to drive the model, along with controls on the trunk and physiological range of motion of 

joints. By using optimal controls, Srinivasan and Ruina (2006) simulated possible gaits of a 

minimal biped actuated by force actuators, and the model discovered walking at low speeds and 

running at higher speeds to minimize energy expenditure. In an another predictive dynamic 

simulation, Ren et al. (2007) simulated normal bipedal walking at 1.5 m/s by minimizing 

mechanical energy expenditure in an inverse dynamics optimization framework. Several gait 

patterns emerged with varying levels of energy cost, but the best gait pattern in terms of 

reproducing natural human walking was the one with lowest energy cost. However, there were 

still significant deviations from natural human walking such as relatively large trunk excursions 

and non-smooth ground reaction forces. Xiang, Arora, and Abdel-Malek (2011) used inverse 

dynamics in an optimization framework to simulate asymmetric human gait with a torque-driven 

38-dof 3D model. The sum of the joint torques squared used as the optimality measure. The joint 

angle histories were discretized using B-spline interpolation, then joint torques and ground 
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reaction forces were solved using inverse dynamics. The simulation framework was able to 

generate gaits with different left and right step lengths.  

 Tracking simulations obtained through dynamic optimization of muscle-driven models 

have been used to reproduce experimentally measured motion and muscle activation trajectories 

with high accuracy and to assess muscle function during gait. Davy and Audu (1987) used 

dynamic optimization to predict muscle forces in the swing phase of walking by using an 

optimality measure combination of tracking error and metabolic energy consumption. They used 

a three-dof lower limb model driven by nine muscle groups. The authors compared muscle 

forces obtained by dynamic optimization with forces estimated through static optimization, and 

pointed that the former ones are generally larger and latter. Yamaguchi and Zajac (1990) used a 

3D eight-dof model with a compliant contact model to simulate functional neuromuscular 

stimulation assisted walking by minimizing an objective functions consisted of deviations from 

the nominal trajectory and the sum of cubed muscle stresses. The simulation results suggested 

using an ankle-foot orthosis would help to stabilize the stance leg. Piazza and Delp (1996) 

simulated swing phase of gait with a five-segment leg model actuated by 12 muscle groups. The 

authors did not minimize the deviation error from experimental measurements; instead they used 

averaged experimental trajectories and muscle controls directly. The simulation demonstrated 

that removal of rectus femoris action causes knee hyperflexion.  Neptune, Kautz, and Zajac 

(2001) created a normal walking simulation with a muscle (15 muscle actuators per leg) driven 

model of a trunk, right and left legs (thigh, shank, patella and foot) to evaluate contributions of 

ankle plantarflexors to support, forward progression and swing initiation. The objective function 

was solely tracking error. The authors extended the capabilities of the tracking simulation by 

adding muscle induced acceleration analysis. The muscle-induced accelerations were determined 
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by applying estimated individual muscle forces at a time in a series of snapshots of postural 

configurations. The simulation results suggested that both plantarflexor muscles provide vertical 

support in the single support phase of walking, yet only gastrocnemius contributes to swing 

initiation. Sasaki and Neptune (2006) used a planar model to create another tracking-based 

dynamic simulation of normal walking and running at the walk-run transition speed to 

investigate differences in muscle function during walking and running at the same speed. 

Authors reported that muscle function is different between two gaits at the same speed, and 

extensor muscles produced greater power output. The efficiency of tracking simulations was 

improved using the ñComputed Muscle Controlò method (Thelen and Anderson, 2006) in which 

not tracking error but the sum of volume scaled second power of muscle activations were 

minimized. The optimization converges to a solution when the error between experimentally 

obtained accelerations and model accelerations driven by optimized muscle activation profiles 

falls below a threshold value. The error is controlled with a feedback controller and fed to the 

optimization process. Authors reported that they were able to reproduce joint motions in a 

walking step with high accuracy (mean root-mean-squared errors generally less than 1 degree) in 

30 minutes. Researchers from our laboratory (Hast and Piazza, 2013) exploited a similar 

approach to reproduce knee motion and muscle activity with high accuracy. Such a simulation 

could be used to estimate contact forces in knee that are otherwise not measureable without an 

invasive technique. 

 The predictive dynamics simulations with muscle-driven models facilitate creating gait 

cycles without relying experimentally obtained gait data, discovering novel gaits, and estimating 

muscle forces guided by some optimality criteria. This approach also enables to synthesize gait 

cycles on altered or different conditions to make sensitivity studies. Probably the most famous 



12 
 

predictive dynamic simulation was created by Anderson and Pandy (2001a). Those authors used 

a 3D model with 23 kinematics dof and 54 muscle actuators to simulate normal human walking. 

Their objective function was to minimize metabolic energy expenditure per unit distance 

traveled, i.e., cost of transport. Although the simulation reproduced significant features of normal 

gait, the problem never satisfied the terminal conditions even after 10,000 hours of CPU time in 

parallel machines. Further, the simulation overestimated metabolic energy expenditure by 47 

percent. To evaluate their newly developed human muscle energy expenditure model, Umberger, 

Gerritsen, and Martin (2003) created a simulation of one full step of walking of a planar model. 

The simulation searched for switching times and excitation amplitudes while minimizing cost of 

transport. The model estimated whole-body rate of energy expenditure as 4.4 W/kg which was 

very close experimental value (4.0 - 4.3 W/kg) at the pre-specified walking speed and inertial 

properties. By using a family of objective functions based on muscle activation integrals and 

direct collocation method, Ackermann and van den Bogert (2010) simulated normal bipedal 

walking at 1.1 m/s with a seven-segment planar model actuated by eight muscles on each leg. 

The objective functions were classified as either cost or fatigue-like depending upon weighting 

factors and exponents. It was demonstrated that different cost functions lead to substantially 

distinct gait simulations. For instance, effort-like cost functions converged to straight-legged 

pattern in the stance phase; on the other hand, fatigue-like cost functions illustrated stance phase 

knee flexion. Same authors used the same simulation framework to simulate gait in Mars (gMars = 

3.72 m/s
2
) and Moon (gMoon = 1.63 m/s

2
) (Ackermann and van den Bogert, 2012) at a speed 1.1 

m/s and 2.0 m/s.  The simulation results suggested that skipping gait is more efficient in terms of 

effort and less fatiguing than walking or running under low gravity. 
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2.1.3 Simulations of running 

Running is simulated by using various models such as passive running, actively controlled and 

torque driven, optimality introduced, and muscle driven models. Tad McGeer is a pioneer 

researcher not only in passive dynamic walking but also in passive dynamic running. He 

simulated human-like level running with a model consisting of two telescoping legs with linear 

springs, connected by a hip joint with a torsional spring that make the legs swing in a scissor 

action (McGeer, 1990b). The stride frequency of the model was very close to the natural 

frequency of the scissoring oscillations of the legs (McGeer, 1990b; Alexander, 1995). Prior to 

that Blickhan (1989) developed a simple massless spring-mass model for running and hopping; 

even the simplicity of the model, it predicted the mass specific energy fluctuations of the center 

of mass per distance to be similar for animals of various size. The ground reaction forces 

produced by these models, however, were smooth curves with a single maximum which do not 

resemble the initial peak force at the foot contact. In addition, these models were passive models 

running in a periodic motion with no viscous damping and without any control input to the 

system. On the other hand, running was also simulated by actively observing and controlling the 

motion of the models. For instance, Raibert (1985) developed physical and computer models of 

hoppers, bipeds, and quadrupeds that run by observing and controlling its hopping height, 

forward speed, and body attitude. Neptune, Wright, and van den Bogert (2000) used a tracking 

approach to simulate stance phase of running, and the simulation framework was able to 

reproduce subjectsô limb motion and ground contact forces within two standard deviations. 

Schultz and Mombaur (2010) simulated running of a torque-driven 3D running model which has 

25 kinematic dof. The torques drive the model was estimated by minimizing a cost function 

composed by addition elements of weighted torques squared and variations in torques squared 
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vectors. They did not validate their cost function, but the model imitated the maximal sprinting 

of Griffith-Joyner, who is the world record holder in 100-m women. Van den Bogert and 

Ackermann (2009) simulated maximum speed sprinting with a seven-segment muscle-driven 

model using direct collocation. The simulation converged to solution with a maximal sprint 

velocity of 7.45 m/s at a stride frequency of 1.90 Hz. When the moment arm parameter of the 

gluteal muscle group was perturbed, larger moment arms increased the maximum sprint velocity. 

Miller et al. (2012c) simulated human running using a predictive approach and a planar bipedal 

model, and demonstrated that even there is experimental evidence to indicate humans run at 

speeds that would minimize cost of transport, the simulation in which muscle activation integrals 

used as the optimality criteria agreed most with the experimental kinetic, kinematic, and EMG 

data collected from human runners. Miller et al. (2012 a, b) made two sprinting simulations using 

the same simulation framework. Miller et al. (2012a) perturbed the characteristic parameters of 

the muscle force-velocity relationship, and showed that maximum sprinting speed is most 

sensitive to maximum shortening velocity parameter. Miller et al. (2012b) removed muscle 

mechanical properties in isolation to quantify their influence on maximum sprinting speed, and 

illustrated that muscle force-velocity relationship is the most influential property of in terms of 

limiting maximum sprinting speed. 

2.2 Determinants of sprinting performance 

2.2.1 Mechanics of human sprinting 

Sprinting is a gait that enables one to traverse a distance in the minimum time which may lead to 

catching prey, avoiding a predator, or winning a trophy. Unlike walking and running, sprinting is 

an explosive motion and non-periodic in nature with a rapid acceleration phase at the start. In a 

dash race, sprinter gives his or her maximum effort to accelerate in the first strides, reaches the 
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maximum speed after a couple of strides, and then tries to keep the pace until the end of the race. 

The characteristics of the first strides of a sprinter are different from those of the strides that 

follow due to the transient system dynamics, rapid acceleration phase, postural configuration, 

and demand from the musculoskeletal system. Indeed, these first strides have the utmost 

importance, since they are the ones that differentiate an elite sprint performance from a merely 

good one (Baumann, 1976; Hunter et al., 2005). 

 The sprint start from starting blocks and the accelerations in the first steps are the most 

important phases of a sprint race in terms of their contribution to the final result. Athletes 

accelerate rapidly (approximately 10 m·s
-2

) in the first few meters to reach maximum speed as 

quickly as possible. Coh et al. (1998) found that the kinetic parameters such as maximal force, 

maximal force gradient, force impulse, and time to maximal force; and kinematic parameters 

such as horizontal start velocity of center of gravity and the ankle angle in the front starting 

block are correlated with the sprint start acceleration. Harland et al. (1997) suggested such a 

postural configuration at the block that front and rear knee angles are 90 and 130 degrees 

respectively, with the hips held moderately high to develop the maximum force for the minimum 

block clearance time, the maximum block leaving velocity, and the maximum block leaving 

acceleration. Slawinski et al. (2010) studied kinetics and kinematics of sprint start and two 

subsequent steps on elite and well-trained athletes. They indicated that impulsive forces (276.2 

N·s vs 215.4 N·s) and average speed (start, 3.48 m/s vs 3.24 m/s; steps, 4.06 m/s vs 3.87 m/s) of 

elite athletes are significantly greater than well-trained ones in the sprint start and two 

subsequent steps. Eriksen et al. (2008) studied the running of the fastest man in the world, Usain 

Bolt, who traversed 100-meter in 9.69 seconds, reached to the top speed 12.2 m/s, had a speed of 
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9.05 m/s at 10-meter, and used only 40 strides to finish the race (four less than any of the other 

athletes in the field) in the 2008 Beijing Olympic Games.  

2.2.2 Musculoskeletal architecture of elite sprinters 

Muscles are the actuators of the locomotor system. As with many systems in the nature, muscle 

is a nonlinear system and force development in muscle depend on both nonlinear force-length 

and force-velocity properties.  A.V. Hill conducted a series of experiments on isolated muscle 

fibers and proposed an empirical relation which today is known as Hillôs Equation. The equation 

specifies that the lower a muscles shortening velocity, the higher the force in the muscle 

(McMahon, 1984). The force length property specifies that there is an optimal length for muscle 

to produce the maximum isometric force, and this optimal length is around the sarcomere rest 

length (Rassier et al., 1999). Muscle does not produce passive force unless it is lengthened more 

than its rest length. 

According to the cross-bridge theory (Huxley, 1957), the sliding motion in sarcomere is 

enabled by the physical attachment of myosin protein heads to actin protein helix. The force-

length and force-velocity relationships of muscle are influenced by the interactions of these 

proteins (Bodine et al., 1982). Shortening velocity of sarcomere is dependent on the attachment 

and detachments rates of the myosin and the actin proteins (McMahon, 1984). Slow-twitch and 

fast-twitch fibers have different shortening velocity characteristics, and this affect specific 

tensions of fibers (Powell et al, 1984). For fast-twitch mammalian muscle fiber, the specific 

tension value is 22.5 N/cm
2
, but it is less for slow-twitch fiber (Lieber et al., 2000). 

Physiological cross sectional area (PCSA), muscle fiber length, and pennation angle are 

other factors affecting force producing properties of muscle (Lieber et al., 2000). Higher PCSA 

means more parallel muscle fibers, so more tension in the muscle. Longer fiber length is also 
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conducive to force production, since longer fibers are able to maintain near maximal muscle 

tension for fast and large joint excursions. Higher pennation angles, however reduce the amount 

of force and excursion transferred to the tendon, but increases the PCSA.  

Hildebrand and Goslow (1995) discussed rigorously the morphology of various animals 

that surpass other species in running, jumping, digging, etc., and their functional needs to 

survive. Although, the morphology-function relationship seems to be well stated across species, 

this does not seem to be the case within species. The best animal sprinters, such as the cheetah 

and the greyhound, have long forefoot and short heel bones (Hudson et al., 2011 a, b) which 

suggest higher gear ratio, the ratio of the ground reaction force (GRF) moment arm to the muscle 

moment arm (Hildebrand, 1960). Higher gear ratio favors reduces ankle extensor muscles 

shortening velocity and thus increases muscle force. Carrier et al. (1994) stated that human feet 

and toes provide a mechanism for changing the gear ratio of the ankle extensor, and this variable 

gear ratio could allow muscle contractile properties to remain optimized despite rapid changes in 

running speed as experienced in the first phase of sprinting (Hudson et al., 2011 a, b). Although 

some musculoskeletal architecture parameters such as smaller muscle moment arm and larger 

PCSA of muscle may be a sign of better sprinting ability, there are some other factors that affect 

performance. For instance, the greyhound is slower than cheetah, even though greyhounds seem 

to have smaller moment arms and larger musculature than those of the cheetah (Hudson et al., 

2011 a, b). On the other hand, cheetah has longer heavier hindlimb and higher duty factor which 

promote longer strides and ground contact times respectively.   

 There are also significant variations within the human beings, and those variations have 

been linked with sprinting ability. Healthy young people mostly walk at a similar pace (around 

1.3 m/s), but when they sprint, the pace would significantly differ from person to person. Is there 
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are a relation between observed variations in human and sprinting performance?  It has been 

mentioned that reaction time, technique, electromyographic (EMG) activity, force production, 

neural factors, and muscle structure are the significant factors of sprinting performance (Mero et 

al., 1981, 1990, and 1992). The authors suggested that running velocity is positively correlated 

with fast twitch fibers, stride rate, upward speed strength, forward speed strength, and maximal 

isometric force; and to optimize starting action it is desirable to activate muscles before any force 

detected against the blocks. 

 The leg muscles of elite sprinters have longer muscle fascicles than non-sprinter. Longer 

muscle fascicles enhance force generation in fibers because longer fibers would operate in more 

favorable ranges (i.e., nearer to isometric) on the force-length curve. Abe et al. (2000) compared 

fascicle length of leg muscles of elite sprinters (100 m time, 10.0-10.9 s), elite distance runners, 

and untrained subjects. The vastus lateralis and gastrocnemius medialis and lateralis musclesô 

fascicle lengths were estimated from images obtained via ultrasound imaging. The authors found 

that fascicle length of leg muscles is significantly greater in sprinters than distance runners. On 

the other hand, they did not find a similar significant difference between distance runners and 

untrained subjects. Kumagai et al. (2000) and Abe et al. (2001) investigated the relationship 

between sprint performance and fascicle length, and showed that fascicle length is positively 

correlated with sprinting performance. 

 Previous experimental studies showed that sizes of certain muscles of sprinters are larger 

when compared to non-sprinters. Muscle size is usually quantified as muscleôs physiological 

cross sectional area (PCSA) (Powell et al., 1984), and greater PCSA indicates higher muscle 

strength. Maughan et al. (1983) measured knee extensor muscle cross sectional areas of sprinters, 

distance runners, and untrained subjects using computed tomography. In the same experiment, 
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maximum isometric voluntary isometric force exerted by the knee extensor muscles was also 

measured using an isometric chair. The authors found the knee extensor muscle cross sectional 

areas of sprinters to be larger than those of distance runners and untrained subjects. They also 

reported that maximum isometric voluntary isometric force of sprinters were significantly more 

than endurance runners but not more than untrained subjects. In the same study mentioned 

above, Abe et al. (2000) also reported that the thickness of the knee extensors and plantarflexors 

were greater among sprinters than for distance runners and untrained subjects. Kubo et al. (2011) 

showed that plantarflexor and medial side knee extensor muscle thickness was larger for 

sprinters when compared to non-sprinters. Furthermore, a significant correlation between 100m 

sprint time and muscle thickness at the medial side of knee extensor was estimated in the same 

study. To date, there is no study that related size of hip flexor and sprinting performance.  

 Experimental studies showed that sprintersô have stiffer Achillesô tendon compared to 

non-sprinters. Arampatzis et al. (2007) took images of distal aponeuroses of the gastrocnemius 

muscle of sprinters, distance runners, and non-trained adults using ultrasound imaging technique 

during the MVC to estimate tendon stiffness. They also recorded isometric maximal voluntary 

plantar flexion contractions (MVC) on a dynamometer. The results of the study indicated that 

sprinters have higher normalized stiffness (relationship between tendon force and tendon strain) 

than the distance runners and non-trained subjects. Authors also reported significant correlations 

between tendon stiffness and maximal tendon force achieved during the MVC. However, they 

did not relate tendon with sprinting performance. Kubo et al. (2000) studied the relationship 

between tendon stiffness of leg muscles and sprinting performance. Authors used ultrasound 

imaging to measure elongation of tendon of vastus lateralis and medial gastrocnemius muscles of 

sprinters and non-trained subjects during isometric knee extension and planter flexion 
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respectively. The results of the study illustrated that there is no significant differences on tendon 

stiffness between sprinters and non-sprinters, yet the tendon of vastus lateralis was more 

compliant for sprinters. Kubo et al. (2011) studied tendon stiffness in another study and came up 

with results similar as previously reported. The authors also did not find any significant 

correlation between tendon stiffness of leg muscles and sprinting performance. Indeed, there is 

no study reporting such a relationship yet. 

 Previous work in our laboratory (Lee and Piazza, 2009; Baxter et al, 2012) showed that 

human sprinters have shorter moment arms and longer toes than height-matched non-sprinters by 

using imaging instruments and measurement tools. Furthermore, Baxter et al. (2012) linked 

shorter moment arms of sprinters with differences in the location of the center of rotation rather 

than differences in the path of the Achilles tendon. Muscle force is transferred to tendon, and it 

converts force to torques and excursions around the joint rotation center by a moment arm. 

Although higher moment arm seems to favor higher torque around the joint rotation center, it is 

not the case since the muscle force is a nonlinear function of muscle length and shortening 

velocity as mentioned above. A larger moment arm increases muscle fiber shortening and rate of 

shortening, which decrease the tension in the muscle (Nagano et al., 2003). Hence, the increased 

moment produced by having a longer moment arm may not compensate for the loss in muscle 

tension that is also required for torque generation. This reasoning was used by Lee and Piazza 

(2009) and Baxter and Piazza (2012) to explain what advantage human runner sprinters may 

have by having shorter plantarflexor moment arms than non-sprinters of similar size. However, 

Karamanidis et al. (2011) could not find the correlations between musculoskeletal architecture 

parameters and sprint performance among elite sprinters. All these suggest that musculoskeletal 

architecture affects sprinting ability in complex ways. 
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2.3 Use of simulation to identify muscle roles 

Commonly used computational methods in biomechanics such as forward and inverse dynamics 

cannot be used to relate individual actuator contribution to the tasks in locomotion such as for 

propulsion, support, and braking of the body. Because, the locomotion tasks are at different 

coordinate systems and time scales than the actuators have. A methodological approach known 

as muscle induced acceleration (MIA) analysis is capable of solving this problem (Zajac and 

Gordon, 1989). Anderson and Pandy (2003) used MIA analysis to quantify individual muscle 

contribution to support the body during normal gait. Authors demonstrated that plantarflexors 

support body almost solely in late stance phase and cause second bump in the vertical ground-

reaction curves. Neptune et al. (2004) showed that muscle force redistributes segmental power 

for forward progression of trunk and legs during walking by using MIA analysis. In a two-part 

review article, Zajac, Neptune, and Kautz (2002 and 2003) presented a broad review on 

individual muscle contribution to trunk support and forward progression in normal walking by 

analysis of MIA and segmental powers. 

 In a study of running and sprinting, Hamner et al. (2010) employed MIA analysis to 

assess individual muscle contribution to braking, propulsion, and support of body during running 

steady state at 3.96 m/s. They found that ankle plantarflexors, the soleus and gastrocnemius 

make the greatest contribution to propulsion and support of body during the second half of the 

stance phase. Hamner et al. (2013) extended their original work by analyzing MIA over a range 

of running speeds (2.0, 3.0, 4.0, and 5.0 m/s). The results of the analysis indicated that the 

plantarflexor soleus generates the greatest upward mass center acceleration at all running speeds. 

Dorn et al. (2012) used MIA analysis to investigate muscle contributions to running (at 3.5, 5.0, 

and 7.0 m/s) and sprinting (>8.0 m/s). The results of the analysis illustrated that plantarflexors 
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contribute to vertical support forces most significantly speeds up to 7 m/s. After that speed, hip 

muscles accelerated hip and knee joints more vigorously. 
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Chapter 3  

 

Simulation of aperiodic bipedal sprinting 

3.1 Introduction 

The mathematical models used to simulate human walking and running have generally taken one 

of two forms: (1) complex models that incorporate many degrees of freedom (DOF), joints with 

realistic kinematics, and dozens of muscle-tendon actuators; or (2) simple models that have many 

fewer DOF and minimal actuation. Complex musculoskeletal models are needed to understand 

the roles played by individual muscles when the movements under consideration involve 

multiple joints and are governed by coupled dynamic equations of motion (e.g., Anderson and 

Pandy, 2001a). Analysis of simple models has also yielded valuable insights that have changed 

our understanding of the dynamics of locomotion. For example, the knowledge gained from 

simple dynamic models has informed the design of legged robots (e.g., Collins et al., 2005) and 

artificial limbs (e.g., Hansen et al., 2006). 

Examples of simple models of bipedal locomotion include the three-segment ballistic 

walking model of Mochon and McMahon (1980), which led to the development of passive 

dynamic walking simulations and robots (McGeer, 1990). These studies demonstrated that stable 

downhill walking patterns comparable to human walking could be realized without active control 

or actuation of the joints. Garcia et al. (1998) extended this approach by developing an 

irreducibly simple passive dynamic walking model with a point mass at the hip, two rigid 

massless legs, and infinitesimally small point masses at the feet. Alexander (1992) presented a 

model with force-actuated telescoping legs and torque-actuated revolute-joint hips. The model 

could be made to walk or run depending on how the work performed by the actuators is 

minimized. Srinivasan and Ruina (2006) used a minimal biped model with telescoping legs that 
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ñdiscoveredò walking at low speeds and running at higher speeds as it attempted to minimize 

energy expenditure.  

Common to nearly all previous simulations of walking and running is the constraint that 

the motion be periodic. Application of this constraint enhances computational tractability 

because it permits simulation of a single stride (or a half-stride if symmetric gait is assumed).  

The assumption of periodicity is a sensible one for steady-state walking or running because such 

gaits are generally considered to repeat after several transient cycles associated with gait 

initiation. There are, however, necessarily aperiodic gaits such as sprinting from rest and the 

initiation of walking that have received less attention from previous investigators. Several 

aperiodic non-locomotor activities have been simulated with numerical optimization, including: 

maximum-height human jumping (Pandy et al., 1990); rising from a chair (Pandy et al., 1995); 

optimal high dives (Albro et al., 2000); and vaulting (Cheng et al., 2009). 

Sprinting has unique qualities that separate it from other bipedal gaits. The initiation of 

running at the start of a long distance race is not important to the outcome of the race, but the 

rapid acceleration at the start of a sprint race is critical to performance (Baumann, 1976; Hunter 

et al., 2005). During this period the muscles work to increase the forward velocity of the bodyôs 

center of mass and it is unlikely that this acceleration is accomplished with the same concern for 

energetic efficiency that we commonly attach to walking and distance running. Similar to 

maximal height jumping, sprinting has an unambiguous objective: to traverse a given distance in 

the shortest time possible. 

Bipedal sprinting has been simulated using models of varying complexity. Vaughan 

(1983) simulated a sprinter using a mass subject to ground reaction forces and drag forces.  

Ward-Smith (1985) used a mathematical model based on the first law of thermodynamics to 
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explain why peak velocity is not achieved until the middle stages of a 100 m race. Putnam et al. 

(1987) described a sensitivity study in which joint moments were systematically changed to 

elucidate joint mechanics during recovery action in sprinting. Thelen et al. (2005) used a 31-dof 

muscle actuated model to simulate the swing phase of sprinting to investigate muscle and tendon 

injury mechanisms. Lee and Piazza (2009) simulated push-off a sprinter with a three-link 

muscle-driven model, and demonstrated why longer toes and shorter plantarflexor moment arms 

might enhance the generation of forward impulse. Van den Bogert et al. (2009) simulated 

periodic maximal sprinting with a seven-segment 9-dof muscle-driven model by discretizing the 

system dynamics into a set of algebraic equations and solving for the maximum forward speed.  

Schultz and Mombaur (2010) simulated contact and flight phases of periodic sprinting using a 

torque-driven three-dimensional model with 25 dof.  The joint torque controls were estimated by 

minimizing a cost function that was a weighted sum of torque magnitudes and torque variations 

while satisfying a forward velocity matching constraint. 

To our knowledge, there are no previous reports of simulated sprinting from rest in which 

a biped model takes multiple discrete and aperiodic steps. The purpose of this study was to create 

a dynamic simulation of a seven-DOF planar biped model that begins from rest and traverses 20 

m with time-optimal control without the imposition of a periodicity constraint.  The results of the 

optimization were examined in order to identify features in common with human sprinting. 

3.2 Methods 

3.2.1 The biped model 

We sought to create a planar biped model that was at once simple enough to facilitate control yet 

complex enough to reproduce recognizable features of human sprinting. The modified spring 

loaded inverted pendulum (SLIP) biped model (Figure 3-1) employed in the present study had 
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seven degrees of freedom controlled by four actuators and was based on models previously used 

in successful simulations of locomotion (e.g., Alexander, 1992; Abdallah et al., 2008; Raibert, 

1986). The model was composed of telescoping legs that were fitted with springs, dampers, and 

axial actuators, point-feet (with mass mf), and a rigid trunk segment (with mass mt and moment 

of inertia It). The upper portion of each leg had mass (mleg) and moment of inertia (I leg).  Each leg 

was connected to the trunk by a revolute hip joint. Flexion/extension torques T1 and T2 were 

applied at each hip joint and the leg actuators applied forces F1, and F2 that extended or retracted 

the lower part of each leg with respect to the upper part.  Thus, the controls were: 

 [ ], , ,R L R LT T F F=u  (3.1) 

The model had seven generalized position variables: the horizontal and vertical positions of hip 

(x, y); the lengths of legs (l1, l2); the angle between the trunk and the vertical (ɗt); and the hip 

angles between the legs and the vertical (ɗR, ɗL): 

 [ ], , , , , ,R L t R Lx y l l q q q=p  (3.2)  

The dynamics of the system was described by the nonlinear second order system 

 ( ) ( , , )=M p p f p p u  (3.3) 

in which M (p) was 7x7 positive definite symmetric mass matrix, and f was 7x1 vector of 

functions encompassing Coriolis, centrifugal, gravitational, and contact forces that depended on 

positions and velocities 

 , , , , , ,R L t R Lx y l l q q qè ø=ê úv  (3.4) 

and the control forces and torques given by u. The explicit form of the Equation 3.3 was given in 

the Appendix A. The model had also seven generalized speed variables which were the 
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derivatives of the generalized position variables, i.e., v=p.  Then, the dynamics of the system was 

described by first order differential equations: 

 =p v  (3.5) 

 ( ) ( , , )=M p v f v p u  (3.6) 

The mass matrix was inverted using a symbolic manipulator package (MATLAB Symbolic Math 

Toolbox v5.5) in order to obtain first-order differential equations of motion in the form:  

 =p v  (3.7) 

 1( ) ( , , )-=v M p f v p u  (3.8) 

3.2.2 The foot-floor contact model 

A modified version of the model developed by Marhefka and Orin (1999) was used to simulate 

foot-floor contact.  According to this model, the floor applies point forces to one foot or both feet 

that depend on the penetration depth of each contacting foot into the floor and the velocity of the 

foot with respect to the floor. The formulation of the model eliminates discontinuous impact 

forces and sticky tensile forces. The vertical component of the point force 

 ( )3 1yGRF a bd d= +  (3.9)  

was a nonlinear function of vertical penetration of the foot (ŭ) into the ground and the velocity of 

the vertical penetration (dŭ/dt), and the constants óaô and óbô were vertical stiffness and damping 

parameters respectively.  The vertical penetration  

 ( )f fy yd=- H - (3.10) 

was a function of the height of the foot above the floor (yf) and an approximation of the 

Heaviside step function H.  Similarly, the vertical penetration velocity  

 ( )f fy yd=- H - (3.11) 
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was a function of vertical foot velocity and the approximate Heaviside step function. The 

discontinuous Heaviside step function was approximated with a smooth function 

 ()
1 1

tanh
2 2

z
z

s
H = +  (3.12) 

to guarantee differentiability. The horizontal component of the foot-floor contact force (i.e., the 

frictional force) was a combination of Coulomb and viscous friction: 

 ( )tanhx y f f

z
GRF GRF cx y

s
m= + H - (3.13) 

The Coulomb component was also modeled with the approximate Heaviside step function to 

ensure differentiability. The viscous friction component was included to decrease sliding of the 

foot relative to the floor. The constants µ and c were Coulomb and viscous friction parameters 

respectively. All parameter values defining the foot-floor contact model are given in the 

Appendix A. 

3.2.3 Optimal control problem formulation 

The problem was formulated to find the time-optimal solution 

 min ft  (3.14)  

that satisfies the constraints based on system dynamics, 

 ( ) ( )t t=p v  (3.15) 

 1( ) ( ( )) ( ( ), ( ), ( ))t t t t t-=v M p f v p u  (3.16) 

simple bounds 

 lower upper¢ ¢r r r  (3.17) 

on all optimization problem variables, 

 ; ( ); ( ); ( )ft t t tè ø=ê úr p v u  (3.18) 
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and boundary conditions such as the initial and final configurations and initial (zero) velocity of 

the model: 

 ( 0) 0bt= - =b b  (3.19) 

 ( ) 0f ft t= - =b b  (3.20) 

3.2.4 Discretization of the optimal control problem 

The optimal control problem described above with generalized states and controls that were 

continuous functions of time is of infinite dimension. We chose to reduce the dimensionality and 

nonlinearity of this problem by first discretizing the problem. This approach of first discretizing 

then optimizing, also called the ñdirect methodò (Betts, 2010), results in the optimal control 

problem being transformed into one of nonlinear programming (NLP). 

A ñmultiple shootingò approach was used to formulate the optimal control problem.  

Multiple shooting, a method for solving boundary value problems (BVP), may be used to 

transcribe a BVP into a NLP problem (Betts, 2010; Diehl et al., 2006). Following this 

transcription, zeros of functions in the BVP domain would enforce continuity of the state 

trajectories and constraints corresponding to the boundary conditions in the NLP domain. Direct 

multiple shooting offers advantages of both collocation, which transcribes the original problem 

into piecewise sub-problems, and single shooting, which enables the use of adaptive, error 

controlled ODE solvers (Betts, 2010; Diehl et al., 2006). Multiple shooting was implemented in 

this case to benefit from these advantages, and also in order to avoid both the accumulation of 

nonlinearity on the boundary conditions and the numerical instability that occurs with single 

shooting. 

In direct multiple shooting (Betts, 2010; Diehl et al., 2006), the time domain was broken 

into n-1 intervals at n nodes 
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1 2b n ft t t t t= < < < = (3.21) 

and the control functions u(t) were discretized with piecewise zero-order polynomials 

 [ )1( ) , 1 , ,i i it i n t t t += = Íu z  (3.22) 

Each generalized time-continuous position and velocity function was transformed into artificial 

initial conditions (pi and vi, i=1én) on discrete time nodes for multiple intervals forward 

integration scheme. For each interval, the system dynamics equations (Equations 3.15 and 3.16) 

were forward integrated with an error-controlled and adaptive Adams-Bashforth-Moulton PECE 

solver (Shampine and Gordon, 1975) in MATLAB.  The relative and absolute error tolerances 

were both set to 10
-12

. The integrated generalized positions and velocities from ti to ti+1 were 

denoted by Ĕip andĔiv respectively which were used to define m-many continuity constraints (m=n-

1) for each generalized state (Equations 3.24 and 3.25). Also, simple bounds (Equation 3.26) and 

boundary conditions (Equations 3.27 and 3.28) were also transformed into discrete forms. The 

discretized NLP problem was as follows: 

 min f
q

t subject to (3.23) 

 
1
Ĕ 0, 1j j j m+- = =p p  (3.24) 

 
1
Ĕ 0, 1j j j m+- = =v v  (3.25) 

 ; ; ; , 1lower upper

f i i it i nè ø¢ = ¢ =ê úq q p v z q  (3.26) 

 1( ) 0bt - =b b  (3.27) 

 ( ) 0n ft - =b b  (3.28) 
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3.2.5 Initial guess for the first iteration 

Successful solution of the NLP problem requires a good initial point from which to begin the 

iterative solution process. For our purposes, we sought an initial set of controls that caused the 

model to run 20 m with an alternating gait. To obtain this initial guess, an event-based forward 

simulation was performed by integrating the system differential equations defined in Equation 

3.15 and 3.16. Each event triggered a transition to another state of the model, and then the 

system differential equations were numerically integrated forward in time by using error-

controlled and adaptive time steps until the subsequent event occurs. Integration was stopped 

when the model traverses the prescribed distance and the control and state trajectories were then 

re-sampled at n-number of nodes and used as the initial guess for the optimization process. A 

three-phase proportional-derivative (PD) control scheme similar to that described by Raibert 

(1986) was implemented to control the model during this forward simulation: (i) servo the upper 

body to ɗt = 0 when the model is at single stance posture, (ii) servo the swing leg to the 

prescribed desired angular position, (iii) sweep the contact leg for push-off or landing, and 

contract the swing leg for foot clearance. 

3.2.6 Solution of the NLP problem 

The NLP problem was solved iteratively by using a sequential quadratic programming (SQP) 

method. In SQP, the original nonlinearly constrained problem is solved using a sequence of 

quadratic programming (QP) sub-problems with linearized constraints. SNOPT (via MATLAB 

executable, mex, interface from TOMLAB), an SQP-based optimizer described by Gill et al. 

(2005) was used to solve the optimization problem.  
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The linear objective function, f(q)=tf, was also the first variable in the optimization 

problem. For this reason, the gradient of the objective function with respect to the optimization 

problem variables q was: 

 

1

0
( )

0

f
g q

q

è ø
é ù

µ é ù¹ =
µ é ù

é ù
ê ú

 (3.29) 

The Jacobian of the nonlinear equality constraints (Equation 3.24 and 3.25) was obtained 

using an external sparse finite difference technique. Each column of the Jacobian matrix was 

obtained by perturbing each optimization problem variable with fixed perturbation size, e=10
-8

.  

The sparsity pattern was provided to the solver, allowing the solver to perturb more than one 

variable at a time, and thus estimate the Jacobian in fewer than k+1 function evaluations for a 

system with k-many NLP variables. Specifically, this problem had 18·n+1 NLP variables and 

each nonlinear equality constraint depended on NLP variables at only two time nodes so the 

Jacobian could be estimated with approximately 18Ā2 = 36 function evaluations. The tolerance 

for the nonlinear equality constraints of the NLP problem (Eqs. 3.24, 3.25, 3.27, and 3.28) was 

set to 10
-6

. 

All NLP variables except tf were scaled using the bounds (Eq. 3.26) to place them in the 

interval [-0.5 0.5] ([0 1] for tf). The bounds on the controls were the maximum force or torque 

capacity of the actuators. For the generalized coordinate variables, the bounds were derived from 

the geometry of the model. The bounds originated from actuators and geometry were active at 

some time nodes. The bounds on the generalized speed variables were used only for purposes of 

scaling, however, and were set wide enough such that none of these bounds was active on the 

solution of the optimization problem. The initial velocities and initial leg lengths (at t=0) were 
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effectively eliminated from the optimization problem by setting both the lower and upper bounds 

on these equal to zero (for the initial hip and leg extension velocities) and setting both bounds on 

initial leg length to a nominal value of 1.0 m. The initial trunk and hip angles, however, were 

included in the optimization problem. The boundary conditions were that the mass center of the 

trunk was located at x = 0 m at t=0 and was located at x = 20 m at t=tf. The bounds on the 

actuators and generalized coordinate variables are found in the Appendix A. 

The PD-controlled simulation for producing the initial guess required 30 seconds on an 

Intel Xeon E53442 CPU. In this initial guess simulation, the model traversed the 20 meters in 

6.64 seconds. The positions, velocities, and control trajectories were then re-sampled using 40 

nodes for each second (i.e., 40 Hz), giving a total of n = 265 discrete nodes for each state and 

control variable. Next, the initial guess for NLP was created by collecting all discrete state and 

control nodes and the final time, a total of 4771 (265·14 + 265·4 + 1) variables. SNOPT was 

then used to solve the optimal control problem, which required 3.6 hours to converge on the 

same processor. 

3.3 Results 

The optimization converged to a solution that represented a substantial improvement over the 

initial guess provided to the solver (Figure 3-2). The PD-controlled initial guess simulation 

traversed 20 m in 6.64 seconds; following optimization, this time was reduced to 2.79 s. For both 

the initial guess and the optimized sprint, the model accelerated at the start and reached a 

maximum speed (Figure 3-3), but the acceleration was accomplished more quickly (1.2 s versus 

4.3 s) and resulted in a much higher steady-state top speed (8.5 ms
-1

 versus 4.3 ms
-1

) in the 

optimized simulation. 
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Ground reaction force (GRF) (Figure 3-4) was the only external force acting on the 

model aside from gravity, and the optimization produced a faster sprint by causing the model to 

generate ground reaction forces more favorable to forward propulsion. During the fourth step of 

the sprint, which occurs during the critical initial acceleration phase when the speed of the model 

increases from zero to its maximum value, the propulsive impulse of the GRF was 0.167 BW s in 

the optimized simulation, increased from 0.043 BW s in the initial guess simulation. The net 

horizontal impulses of the GRF were 1.011 BW s and 0.447 BW s (summed over all steps and 

both legs) for the time optimal and PD-controlled initial guess simulations, respectively, with 

greater forward impulses occurring for the first six steps and the final two steps for the optimized 

simulation (Figure 3-5). 

Several gait features acquired by the simulation during optimization correspond to 

behaviors known to be associated with human sprinting. Most obvious among these is forward 

lean of the trunk. The PD-controlled initial guess simulation began with an upright trunk that 

was controlled to remain upright throughout the simulation, but optimization produced a trunk 

that leaned forward to the maximum extent allowed, such that it was parallel to the ground with 

ɗt = 90° at t = 0.0 s (Figure 3-6). Following the start, the trunk of the optimized sprint model 

straightened, reaching a minimum forward lean of ɗt = 35° at t = 1.97 s, but then began to tilt 

forward again in preparation for a forward dive that was executed as the model crossed the 20 m 

mark (Figure 3-2). 

There were also differences in the timing of the footfalls that appeared following 

optimization. The initial guess simulation exhibited footfalls that were of relatively long duration 

(lasting 0.210 s on average throughout the simulation), but the optimized sprint model used 

shorter contact times (0.065 s on average). At the start of the optimized sprint the model 
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employed longer contact times that facilitated greater propulsive impulses but later in the race, 

after top speed had been attained, the model used contact times of very short duration (Figure 3-

7). Prior to optimization, initial foot contact occurred with the ipsilateral hip in peak flexion but 

following optimization this timing was altered such that the hip was beginning to flex at the time 

of foot contact (Figure 3-8).  This behavior was exhibited for every foot contact in the optimized 

simulation. 

3.4 Discussion 

The sprinting of a simple biped model was simulated successfully. Distinct from most previous 

simulations of walking and running, the gait was not constrained to be periodic. To our 

knowledge, the present study represents the first simulation of multistep aperiodic sprinting with 

optimal controls. While the model was simple, the optimized sprint simulation exhibited several 

features in common with the sprinting of humans. These included: reaching a steady-state 

forward velocity after a rapid acceleration from rest; use of longer duration foot contacts during 

the acceleration phase and short contacts later in the race; making contact with the ground while 

the foot is being drawn backward relative to the body; maximizing forward impulse of the GRF 

during the acceleration phase; beginning the race with the trunk pitched forward followed by 

gradual trunk straightening; and, finally, a forward dive at the end that ensured the trunk center 

of mass crossed the finish line first. It should be noted that none of these behaviors was specified 

explicitly by the constraints of the optimization problem; each was ñdiscoveredò by the optimizer 

as it attempted to minimize the objective function, which was simply the time at which the trunk 

center of mass reached x = 20 m. 

Human sprinters are well known to benefit from a forward leaning posture during the 

initial acceleration phase followed by a period during which the trunk becomes more upright 



36 
 

(Slawinski et al., 2010). The model in the optimized simulation took on a forward-leaning trunk 

posture (Figures 3-2 and 3-6) similar to that employed by human sprinters in the starting blocks.  

This posture decreases the acute angle between the body and ground, permitting the linear 

actuators in the leg to generate higher forward impulse. Another benefit of leaning forward at the 

start is to place the trunk center of mass close to the line of action of the GRF, thus preventing 

the body from tipping backward when large forward impulsive forces are applied to the feet.  

Both human sprinters (Mann, 2011) and the model in the optimized simulation (Figures 3-2 and 

3-6) rotate their trunk toward an upright position as acceleration progresses and a steady-state 

forward velocity is reached. 

Patterns of foot striking in elite human sprinters are similar to those discovered by the 

optimized simulation. Optimization reduced foot-floor contact times from the values used in the 

PD-controlled initial guess simulation, but the presence of longer-duration contacts early in the 

race persisted in the optimized simulation (Figure 3-7). Similar contact time patterns are 

observed in elite human sprinters, whose contact times during the initial steps are substantially 

greater than those employed later in the race (Mann, 2011). The optimized simulation also 

featured extension of the swing leg hip just prior to foot contact (Figure 3-8), behavior observed 

in human sprinters that has been hypothesized by other researchers to reduce the braking impulse 

of GRF by minimizing the horizontal velocity of the foot relative to the ground just before the 

impact (Hunter et al., 2005; Hay, 1994).  Seyfarth et al. (2003) used a simple model with a feed-

forward controller to demonstrate that the stability of running animals is enhanced by leg 

retraction, the increase in angle of attack between the leading leg and the ground before contact.  

Such changes in the angle of attack follow from the hip extensions just prior to every foot 

contact in the optimized simulation of the present study. 
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Perhaps the most remarkable feature of the optimized sprinting simulation is the dive 

forward that the model makes at the end of the simulation. This dive is a complex behavior 

accomplished by a sequence of actions taken over the final several steps of the sprint. At the 

conclusion of a sprint race, it is common to see the runners lunge forward at the tape. One 

suggested technique has the sprinter cross the finish line ñwith the head lowered and both arms 

thrust backward to create a forward falling actionò (Rogers, 2000). The model in the optimized 

simulation performs a similar maneuver as it pitches the trunk forward to generate forward 

falling. The behavior of the model might be considered to be an exaggerated version of the 

falling forward strategy that risks injury, but injury risk was not incorporated into the optimizerôs 

objective function. It is interesting to note that in exceptionally close races it is not unusual to see 

sprinters actually dive at the finish line; this notably occurred recently in the 100 m T37 

disability classification final at the 2012 London Paralympic Games, when Fanie van der Merwe 

of South Africa dived across the finish line to win a gold medal and set a world record. 

Previous simulations of sprinting have made use of periodicity constraints. Van den 

Bogert et al. (2009) simulated a full step of maximal sprinting with a more complex seven-

segment muscle-driven model. The direct collocation (DC) method was used to solve the optimal 

control problem with constraints representing Newtonôs laws, periodicity, and an objective 

function that maximized the forward velocity. The optimization generated movement similar to 

that of a human runner. For the formulation of the optimal control problem used in the present 

study, however, DC method often produced infeasible or sub-optimal solutions. In another 

sprinting simulation, Schultz et al. (2010) simulated one step of sprinting with a torque-driven 

three-dimensional model. As in the present study, direct multiple shooting was used to solve the 

optimal control problem but with the addition of periodicity constraints, a fixed average forward 
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speed, and minimization of torques and torque variation. The optimization process produced a 

realistic simulation of maximal sprinting which provided insight into the internal forces and 

torques required to produce natural human running. 

Previous authors have used an optimal controls approach to cause a simulation to 

ñdiscoverò gaits.  Anderson and Pandy (2001) used a 23 DOF model actuated by 54 muscles that 

discovered human walking following solution of an optimal control problem that minimized 

muscle metabolic energy consumed per unit distance traveled by the model. The resulting 

simulation reproduced many features of normal human walking. In another study, Srinivasan and 

Ruina (2006) used a much simpler model to perform a similar optimization, and their minimal 

biped model discovered walking at low speeds and running at higher speeds when energy 

expenditure was minimized. In the present study several features of human sprinting were 

reproduced, but without attempting to minimize energy consumption or cost. For sprinting, the 

optimization would have attempted instead to maximize the useful expenditure of energy in 

order to reach top speed as quickly as possible so that the final time would be minimized. 

Certain limitations affected our study. The model is a simple one with few degrees of 

freedom and as such it is not capable of reproducing features of sprinting associated with joints it 

does not have. It does not, for example, possess ankle or knee joints and the function of these 

joints is known to be critical to human sprint performance. In addition, the model was actuated 

by leg forces and hip torques rather than muscle forces. This choice of actuation prevented 

consideration of several factors known to affect performance, including muscle composition and 

architecture and neural function. 

While the optimized sprint simulation represents a substantial reduction in time to run 20 

m, we cannot know for certain that it represents a global optimum. We did perturb the optimal 
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solution by restarting the optimizer following addition of uniform random noise to the solution 

vector. This perturbation did not cause the solution to migrate to a lower objective function 

value. It is interesting to note that, while the contact times changed as the optimal solution was 

reached, the number of steps taken by the model in the optimized and PD-controlled initial guess 

simulation was nearly the same: 22 for the initial and 21 for the optimized simulations. It may be 

that the optimal control scheme could not find solutions that differed by much in terms of the 

number of steps taken. 

Several design choices made during creation of the sprinting simulation require further 

explanation. One such choice was the selection of x = 20 m for the sprinting distance. This 

distance was selected because it allowed the model to reach a steady-state velocity, although 20 

m is shorter than the 30 m to 40 m distance required by elite human sprinters (Mann, 2011) to 

accomplish the same task. Using x = 20 m rather than a greater distance also reduced the 

dimensionality of the problem and thus enhanced the numerical tractability. It was possible to 

create longer or shorter simulations using the same methods; a simulation with a final distance of 

x = 15 m was created for which an optimal solution was found in which the locomotion time was 

reduced from 5.43 s to 2.23 s and this simulation exhibited the same behaviors noted for the 20 

m simulation, except for a shorter steady-state velocity phase.  Another design choice was the 

inclusion of spring and damper elements along with active actuators in the modelôs legs. We 

chose to base our model on ones previously used to successfully simulate locomotion (e.g., 

Alexander, 1992; Abdallah et al., 2008; and Raibert, 1986). The spring and damping elements in 

our modelôs legs may have facilitated control by generating forces when active actuator bounds 

were exceeded, but it is also possible that spring/damper elements are not essential to simulating 

aperiodic sprinting if the actuator bounds were adjusted accordingly. 
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To investigate the effects of actuator bound selection, we made two additional 

simulations with the bounds on the controls increased and decreased by 10%. The time required 

to traverse the 20 m was reduced from 2.79 s to 2.65 s when the bounds were increased, and 

increased to 2.93 s when the bounds were made smaller. Aside from this small difference in final 

time, the human-like sprinting behaviors in these simulations were much the same as in the 

original simulation, although early simulations attempted with much tighter restrictions on the 

controls resulted in a non-alternating gait similar to skipping. There are actuator properties other 

than these bounds that we would expect to affect sprint performance, such as force-velocity 

properties and excitation-activation dynamics of muscles (e.g., van Soest et al., 2000; Rankin et 

al., 2008), yet were not represented in this model. We are currently at work adding such 

properties to a muscle-actuated model of sprinting. 

Recent experimental studies suggest that there are differences in musculoskeletal 

architecture between trained sprinters and non-sprinters (Lee and Piazza, 2009; Kubo et al., 

2011; and Baxter et al., 2012), and the methods employed in this study could be extended to 

study the relationship between muscle and joint structure and optimal performance. Such an 

extension of the model would require the addition of musculotendon actuators and the inclusion 

of additional of joints, such as the ankles. It is hoped that such an approach will enhance our 

understanding of the musculoskeletal characteristics that determine gait speed in pathological 

populations as well as in elite athletes. In addition, the results of this study could aid in the 

identification of essential elements of effective sprinting that could be helpful to the creation of 

controllers for sprinting robots. 
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Figure 3-1 The simple biped model used to simulate sprinting.  Body segment inertial properties 

shown in the figure are defined in the text, as are the generalized coordinates of the model, hip 

actuator torques, and leg actuator forces.  The right and left legs of the model were identical; 

labeling of the left leg inertial properties, generalized coordinates, and actuator forces and 

torques are omitted here for purposes of clarity.  The left hip flexion angle ɗL is positive when 

the hip is flexed. 
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Figure 3-2 Stick-figure trajectories for the model (top) completing the 20 m course under PD 

control that produced a ñjogò with duration of 6.64 s; and (middle) sprinting following 

optimization for which the course was covered in 2.79 s.  The sprinting simulation begins with 

the trunk flexed forward, straightens as the race progresses, and dives forward at the finish. The 

first 5 meters of the sprinting simulation are also shown in detail (bottom). The time between 

frames represented in these illustrations are 125 ms (top) and 53 ms (middle and bottom).  
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Figure 3-3 Forward velocity of the hip in for the initial guess ñjogò (gray) and sprinting (black) 

simulations.  Both simulations began from rest.  The feedback-controlled ñjogò slowly 

approached a steady forward velocity of approximately 4 m s
-1

.  The sprinting simulation gains 

speed quickly over the first few steps, then reaches a steady speed of about 8 m s
-1

 for much of 

the race, before diving forward at the end.  
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Figure 3-4 The horizontal (continuous lines) and vertical (broken lines) ground reaction forces 

of the initial guess ñjogò simulation (top) and the sprinting simulation (bottom).  Ground reaction 

forces for the left and right feet are shown in gray and black, respectively.  
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Figure 3-5 The net horizontal impulses of the ground reaction force (GRF) for each step during 

the initial guess ñjogò simulation (unfilled markers) and the sprinting simulation (filled markers).  

Impulses for GRFs applied to both the right (diamonds) and left (squares) feet are shown.  Large 

forward impulses were generated in the first few steps of the sprinting simulation and again in 

the last two steps to generate the terminal dive.  

  



46 
 

 

Figure 3-6 The angular position of the trunk in the sprinting simulation. The trunk angle was 

defined such that negative values of ɗt corresponded to forward flexion (Figure 3-1).  The 

negation of that angle is plotted here, with 90° corresponding to the trunk parallel to the ground 

and 0° indicating an upright posture.  
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Figure 3-7 Temporal foot contact pattern for the initial guess ñjogò simulation (gray) and the 

sprinting simulation (black).  Both simulations resulted in alternating gaits.  While the foot 

contacts in the initial guess simulation were fairly constant in duration, in the sprinting 

simulation contact times were larger at the start during the acceleration phase and became much 

shorter for the remainder of the simulation.  
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Figure 3-8 Flexion of the right hip plotted versus time for the sprinting simulation.  Right foot 

contact (circles), consistently occurred as the hip was beginning to extend following maximum 

flexion.  This ñleg retractionò behavior was not present in the initial guess ñjogò simulation, for 

which foot contact always coincided with maximum hip flexion. 
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Chapter 4  

 

A hybrid dynamic walking simulation with evaluation of optimality criteria  

4.1 Introduction  

There are two main approaches used to create dynamic gait simulations. One commonly used 

approach is to track experimentally measured joint angles and ground reaction forces (GRFs) by 

minimizing the deviations from the experimental measurements in an optimization framework 

(Zajac et al., 2003). This approach produces a simulation that reproduces what happened in the 

motion capture experiment and permits estimation of variables that cannot be measured (or are 

not convenient to measure) in an in vivo experiment, such as muscle forces. The second approach 

is to generate predictive dynamic simulations that rely on some optimality criterion (or 

combination of criteria) in an optimization framework to predict joint angles, GRFs, muscle 

forces, and etc. This approach permits synthesis and analysis of gaits under altered conditions. 

While the predictive power of such simulations exceeds what is possible with a tracking 

simulation, creating predictive dynamic simulations can be quite challenging due to the highly 

nonlinear nature of the problem and the complex gait machinery. Another challenge in creating 

predictive simulations of locomotion using optimal controls is to identify optimality measures 

with the potential to predict important features of the specific gait under investigation.  

Predictive simulations are generally created by transcribing the optimal control problem 

into a nonlinear programming (NLP) problem using one of the following three methods: (1) 

direct single shooting, (2) direct collocation, and (3) direct multiple shooting (Figure B-2 in 

Appendix B). While direct methods discretize the control problem and apply NLP procedures; 

indirect methods search a solution for the necessary conditions of optimality without 

discretization. Direct single shooting (e.g., Anderson and Pandy, 2001) is the most commonly 
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used method and searches for only muscle control histories that minimize an optimality measure 

while trying to satisfy periodicity constraints on initial and final states. Direct collocation (DC) is 

a method borrowed from physics-based computer graphics that has recently been employed to 

muscle-driven gait simulations (e.g., Ackermann and van den Bogert, 2010) in which muscle 

control along with state trajectories are searched to minimize an optimality measure subjected to 

algebraic constraints originated from the governing equations of the system, as well as any other 

constraints such as periodicity (Betts, 2010). Direct multiple shooting (e.g., Diehl et al., 2006) is 

another method in which the total time span of the simulation is divided into several short 

integration intervals, each of which has a set of initial states and controls. An optimality measure 

is minimized subjected to constraints requiring that the terminal values for the states at the end of 

each integration interval are equal to the initial values for the next interval along with any other 

constraints of the simulation. Each integration interval is independent from the other integration 

intervals and forward integration time spans are relatively shorter, thus possible integration 

errors are distributed through intervals, in other words, propagation of error from initial to final 

states are attenuated. Another advantage is that direct multiple shooting suits better to 

parallelization paradigm due to independency of integration intervals.  

A good initial guess is required regardless of the choice of transcription method. A 

randomly chosen initial guess may be problematic since shooting methods require integration of 

state equations, and a random initial guess for initial states may lead integration errors, so the fail 

of the optimization process. Multiple shooting, however, has the potential to tolerate a poor 

initial guess, because that guess may be integrable in each of the shorter integration intervals. 

Multiple shooting still requires an initial guess for the states and controls that gives initial 

constraint violations small enough that a feasible solution is possible.  One method for 
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determination of the initial guess is to collect experimental gait data and solve for states and 

controls using inverse dynamics and static optimization. Another method is to generate an 

approximation of the desired gait using forward dynamics and a feedback controller (Celik and 

Piazza, 2013). A third approach might make use of state-dependent muscle reflex loops to 

synthesize walking (Geyer and Herr, 2010); an approach that has been extended to walking and 

running at different velocities by incorporating estimation of control parameters and initial states 

while maximizing an optimality measure (Wang et al., 2012). 

 While there is no consensus on the best optimality measure for dynamic simulation of 

walking measures based on the following have been proposed:, mechanical energy (e.g., Ren et 

al., 2007), metabolic energy (e.g., Anderson and Pandy, 2001), and muscle force (Pedotti et al., 

1978), muscle activation (e.g., Ackermann and van den Bogert, 2010). Stability (e.g., Townsend 

and Seireg, 1972) and trunk attitude and altitude (Gubina et al., 1974) have been used with 

controllers that to synthesize bipedal locomotion. Selection of proper optimality criteria is 

critical to creating a predictive simulations, because simulation behavior at the level of muscle 

force may be sensitive to this choice even when the overall output motion is not (Ackermann and 

van den Bogert, 2010).   

 The purposes of this study were: (i) to create predictive dynamic simulation of a complete 

one full periodic walking cycle with direct multiple shooting method; and (ii) to evaluate a set of 

optimality measures derived from muscle activation, or mechanical energy expenditure, or 

metabolic energy expenditure to represent óeffortô, as well as trunk angle and vertical GRF in 

order to reproduce salient features of human walking. Initial guesses for the optimizations were 

obtained using a simulation of bipedal walking that relied on muscle reflex loops (Geyer and 

Herr, 2010).  
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4.2 Methods 

4.2.1 The musculoskeletal biped model 

The musculoskeletal model (Figure B-1 in Appendix B) used in the simulations was planar and 

had seven body segments: a trunk and right and left thighs, shanks, and feet. The body segments 

were connected with revolute joints at ankle, knee, and hip and a planar joint connected the trunk 

to the ground. The model was driven by sixteen (eight on each leg) Hill-type musculotendon 

actuators representing eight muscles or muscle groups on each side of the body: soleus (SOL), 

tibialis anterior (TA), gastrocnemius (GAS), vasti (VAS), hamstrings (HAM), rectus femoris 

(RF), glutei (GLU), and hip flexors (HFL). 

 The model had nine kinematic degrees of freedom (dof), each of which was associated 

with two generalized states (position and velocity). Each musculotendon (MT) actuator also had 

two states, a muscle fiber length and a muscle activation. Each MT actuator had a muscle control 

variable, so the model had fifty states in all and sixteen muscle controls. The joint moments were 

sums of products of MT force and moment arm, and passive joint moments, which were included 

to model mechanical effects of other tissues than MT. Further details of the model can be found 

in the Appendix B.    

4.2.2 The foot-ground contact model 

The foot-ground interaction was modelled with a compliant contact model with nonlinear 

damping (Marhefka et al., 1999; van den Bogert et al., 2009). The model applies point forces in 

horizontal and vertical directions which depend on penetration and penetration velocity of the 

contact points with respect to the ground. To be able to eliminate discontinuity in the vertical 

contact forces, a relatively small linear force was applied to the contact points when the leg was 



53 
 

in the swing phase. The formula of the ground reaction force in vertical direction (GRFy) is as 

follows:  
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 A differentiable Coulomb friction model was used for the horizontal, i.e., friction forces 

with the aid of a tangent hyperbolic function. The formula of the friction force is as follows: 

 tanh( )x y cpGRF GRF cxm=-   (4.2) 

There were eleven equidistant contact points between the ball of the foot and the heel. The 

constants in Equations 4.1 and 4.2 and the coordinates of the contact points were given in the 

Appendix B. 

4.2.3 Optimization framework 

The direct multiple shooting method (Diehl et al., 2006; Betts, 2010) was used to formulate the 

optimization problem. Each continuous state trajectory was discretized at n-many discrete nodes, 

and constant muscle controls were used between those discrete nodes. Then, the system 

dynamics equations were integrated not in a single shot but in multiple shots, where each discrete 

state value at discretization node was used as an initial state in m-many integration intervals (n = 

m - 1). The continuity violations were modelled as nonlinear constraints which were the 

differences between the terminal values for the states at the end of each integration interval and 

the initial values for the next interval (Figure B-2 in Appendix B). Another nonlinear constraint 

was derived from the locomotion velocity of the bipedal model. Bilateral symmetry was 

imposed, so that only one step of walking was simulated, with the right-side terminal conditions 

constrained to match the left-side initial conditions and vice-versa. These periodicity constraints 

were implemented as linear equality constraints. In addition to the linear and nonlinear 
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constraints, simple bounds were set for every state and muscle control of the model. The bounds 

on generalized position states were based on natural joint limits of human ankle, knee, and hip 

joints as well as the geometry of the model. The bounds on generalized velocity and muscle fiber 

length states were arbitrary values, and never active in the solution. They were implemented 

solely to scale the optimization problem. The muscle activations and controls were bounded 

between 0.01 and 1. The optimization variables were discrete values of states at discretization 

nodes (50Ān) and constant controls (16Ān) between two subsequent discretization nodes, and the 

final or step time (tf). Fifty discretization nodes (n=50) were used for each state variable and 

muscle control. A scalar objective function (see next sub-section) was minimized subject to those 

constraints and simple bounds. The above described NLP problem was solved with a SQP solver, 

specifically SNOPT (Gill et al., 2005).  Initial guess of the NLP problem was generated by re-

sampling state and control trajectories of a complete one full walking cycle which was obtained 

by using muscle reflex loops previously described by Geyer and Herr (2010) to control the 

model. 

4.2.4 Objective functions and simulations 

Three optimality measures representing effort were tried, including terms based on muscle 

activation (Ů1), mechanical energy expenditure (Ů2), or metabolic energy expenditure (Ů3). These 

effort terms were augmented with additional terms based on trunk angle and vertical GRF to 

stabilize the trunk and avoid GRF spikes resulting from foot slapping as 
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where w1,w2,and w3 are weighting factors (either zero or one); 
tq
Ø

is the trunk angle in degrees 

with respect to the vertical at the discrete nodes;
rlfyGRF

Ø

ground reaction force (in BW) in vertical 

direction for right and left foot at the discrete nodes. 

 When an objective function which only represents effort is used, the bipedal model might 

just try to traverse some distance with the prescribed average forward speed, that is, 1.306 m /s in 

all simulations (Kadaba et al., 1989); and would not ñfeelò an urge to keep the trunk upright. 

Normally, balancing the trunk segment in humans is a complex motor task with the involvement 

of multiple sensory receptors, reflex loops, and muscles. The trunk orientation in the sagittal 

plane fluctuates about ±1 degrees over a stride, and with relatively small accelerations of head, 

human balance and postural system provides a stable base for visual and vestibular systems 

(Winter, 1995). Our model does not rely on information from such sources for control of its 

movements, as it utilizes optimal controls. Improved control of the trunk may enhance the ability 

of the simulation in terms of reproducing more realistic walking cycles, so a term derived from 

the trunk angle was incorporated into the optimality criteria, and its influence on the simulations 

was tested.  

 Although it is possible for the foot of the swing leg to slap the ground with minimal 

neuromuscular control (and minimal effort), in reality the body actively controls preparation for 

stance by activating hip and knee extensors, along with dorsiflexors. While slapping the foot on 

the ground would minimize activation and effort, the attendant repeated impulsive forces would 

be implicated in fatigue accumulation which may lead to tissue failure, thus mitigating such 

forces at heel strike is highly important to musculoskeletal tissue health (Collins et al., 1989; 

Whittle, 1999; Warner et al., 2013). An objective function composed of only an effort term may 
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thus be inadequate to promote such a control on stance preparation, and a term derived from 

vertical GRF was incorporated and its effect was tested in the simulations. 

 Almost all simulations of walking utilizing an optimization framework include an effort 

term as one of the optimality criteria (or the sole criterion). Such measures derived from muscle 

stress (e.g., Glitsch and Baumann, 1997) or muscle activations (e.g., Ackermann and van den 

Bogert, 2010) with various exponents and weighting factors were often implemented not only 

their ability to reproduce salient features of gait but also their convenience in application, since 

they are readily available variables in simulations, thus they do not require additional modeling 

effort. The first effort term we implemented in this study was  

 
2

1

1 0

1
f

m

i

i

tn

m i

im

V a dt
h V

e
=

= ä ñä
  (4.4) 

where Vm is muscle volume; nm is number of muscles; a is muscle activation, and h is duration of 

integration in each multiple shooting interval. For torque driven simulations, a sensible choice is 

minimizing mechanical energy expenditure over a complete gait cycle (e.g., Ren et al., 2007). In 

this study we used a muscle actuated model and included an effort term based on mechanical 

energy expenditure on ankle, knee, and hip joints per unit distance traveled to make comparisons 

with other effort terms. 
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where mbody is total body mass, sL is walking step length, Űj is joint moment, and vj is joint 

angular velocity. Another effort term used in predictive dynamic simulations of walking is 

minimizing metabolic energy expenditure per unit distance traveled (e.g., Anderson and Pandy, 

2001), as it has been shown with human experiments that people prefer to walk at speeds which 

would minimize cost of transportation (Ralston, 1976). The muscle energy expenditure rate (
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muscleE ) was presented sum of four terms, namely, activation heat rate (
Ah ), the maintenance heat 

rate (
Mh ), the shortening/lengthening heat rate (

SLh ), and the mechanical work rate of the 

contractile element (CEw ) (Umberger et al., 2003 and Umberger, 2010 for the detailed 

description of the model) 

 
muscle A M SL CEE h h h w= + + +  (4.6) 

The last effort term used in the simulations was 
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where mnonmuscle is mass of tissue in the body other than muscle; 
nonmuscleE is the rate metabolic 

energy expenditure of nonmuscle tissue (was set to 1.2 W/kg, which is the normal energy rate for 

standing (Umberger et al., 2003; Waters et al., 1999)) ; mmuscle is the muscle mass of each muscle 

modelled in the study. The integrals in Equation 4.5 and 4.7 were estimated with numerical 

integration, but the integral in Equation 4.4 was calculated analytically as the explicit form of it 

was available and integrable. Four simulations were created for each effort term by setting such 

weighting factors as (w1,w2,w3) = (1,0,0), (w1,w2,w3) = (1,0,1), (w1,w2,w3) =  (1,1,0), and 

(w1,w2,w3) = (1,1,1) in Equation 4.3. Hereafter, independent of weighting factors combination, 

the simulations used effort term Ů1, Ů2, and Ů3 were named as muscle activation effort term, 

mechanical energy expenditure effort term, and metabolic energy expenditure effort term 

simulations.  

4.3 Results 

The initial guess for each optimization was a walking cycle; following optimization, the 

simulations always converged to different walking cycles with substantially lower effort. For 
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instance, the effort objective was decreased 65.7% for the muscle activation effort term 

simulation with only effort term (i.e., (w1,w2,w3) =  (1,0,0)). The optimization located feasible 

and optimal periodic walking simulations for muscle activation effort term and metabolic energy 

expenditure effort term simulations. The optimality tolerance for the mechanical energy 

expenditure effort term simulations, however, were never satisfied even the solutions were 

feasible. The wall-clock times to create simulations showed variation among effort terms. For 

example, the solutions were obtained approximately in an hour for muscle activation effort term 

simulations while the other simulations took between 1.5 and 26 hours.  

The modelôs SL and SF were very close to the experimental values as 1.35 m at 0.97 Hz 

when mechanical energy expenditure based objective functions with such weighting factors as 

(w1,w2,w3) =  (1,1,0) and (w1,w2,w3) = (1,1,1) were used. The model took relatively smaller steps 

(1.15 - 1.26 m) with higher cycling frequencies (1.04 - 1.14 Hz) in muscle activation effort term 

simulations (Figure 4-1). The locomotion velocity was fixed as 1.306 m/s in all simulations, but 

the stride length (SL) and stride frequency (SF) were free to vary. SL and SF values of the 

simulations were compared with the average experimental values derived from Kadaba et al., 

1989 (SL: 1.361 m, SF: 0.9596 Hz) in Figure 4-1.  

When compared to the experimental data, the joints generally followed similar 

extension/flexion patterns (Figure 4-2, 4-4, and 4-6). Peak values for joint angles, however, did 

show some discrepancies. For example, only the simulation with the mechanical energy effort 

criterion (Figure 4-4) was able to produce knee flexion during stance phase that was similar to 

that observed during normal human walking. In terms of joint moments, the simulations did not 

perform well to reproduce human-like trajectories (Figure 4-2, 4-4, and 4-6). The modelôs joint 

moments did not exhibit smooth trajectories especially for hip moment in metabolic energy 
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expenditure effort term simulations, and for knee and hip moments in mechanical energy 

expenditure effort term simulations. 

When an effort term was used as the only optimality criterion, the peak vertical GRFs 

were larger than 4 BW (Figure 4-2, 4-4, and 4-6). When a vertical GRF term was added to the 

objective function, the peak vertical contact forces at the heelstrike were reduced to 1.22 BW 

(muscle activation effort term), 1.34 BW (mechanical energy expenditure effort term), and 1.13 

BW (metabolic energy expenditure effort term); when vertical GRF and trunk angle terms were 

included simultaneously, the peak vertical contact forces at heelstrike were further reduced or 

stayed the same: 1.17, 1.19, and 1.13 BW (Figure 4-2, 4-4, and 4-6). For normal human walking, 

the average experimental values have been measured to be 1.10±0.08 BW (Chao et al., 1983). 

The model exhibited relatively larger trunk angles (up to minus 7.8 degrees) without the trunk 

angle term included as an additional optimality criteria, but with the inclusion of the trunk angle 

term, the trunk excursion was confined to ±1 degree band (Figure 4-2, 4-4, and 4-6). 

Average muscle utilization over a stride increased by including the trunk angle and 

vertical GRF terms. For example, average muscle utilization over a stride increased from 6.3% to 

7.9%, 15.0% to 18.2%, and 5.2% to 8.4% for simulations created using muscle activation, 

metabolic energy expenditure, and mechanical energy expenditure effort terms, respectively. For 

muscle activation effort term simulations, GAS action was late when compared to the 

experimental data. Also, VAS, RF, and HFL muscles were not activated at the initial contact. On 

the other hand, with the inclusion of the vertical GRF term, TA activation was increased at the 

heelstrike up to similar amplitudes measured in human experiments (Figure 4-3, 4-5, and 4-7). 

For the metabolic energy expenditure effort term simulations, knee muscles HAM, VAS, RF 

were not activated throughout the stride (Figure 4-7). Additionally, similar to the muscle 
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activation effort term simulations, TA activation at the heelstrike was increased in metabolic 

energy expenditure effort term simulations with the inclusion of the vertical GRF term.  

The model underestimated metabolic energy expenditure in metabolic energy expenditure 

simulations (Figure 4-8). The model consumed metabolic energy at a rate of 4.46-4.83, 3.37-

3.83, and 7.82-8.63 W/kg for simulations created using muscle activation, metabolic energy 

expenditure, and mechanical energy expenditure effort terms, respectively. (Figure 4-8); while 

oxygen consumption experiments indicated that humansô energy consumption rate for level 

walking at 1.306 m/s was 4.7 W/kg (Burdett et al., 1983). 

4.4 Discussion 

The hybrid approach was successful in terms of creating predictive dynamic simulations of 

periodic full normal walking cycles with various optimality criteria. The simulations did not 

track experimentally obtained gait data, but rather predicted joint angles, joint velocities, muscle 

activations, muscle fiber lengths, muscle controls, and stride time in an optimal control 

framework. Furthermore, the simulations did not have any explicit dependency on human 

experimental data for the estimation of initial states or the initial guess for the muscle control 

histories. The muscle activation effort term simulations converged to feasible and optimal 

solutions in approximately one hour, but the other simulations used more computation time. 

Different optimality criteria produced distinct gait cycles in terms of muscle utilization, peak 

vertical ground reaction forces, stride length and frequency, and average metabolic energy 

expenditure rate. The additional optimality criteria based on trunk angle and vertical GRF 

yielded simulations with less trunk excursion over a stride and peak vertical contact forces at the 

heelstrike. 
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 The novelty of this simulation study was two-fold. First, to our knowledge, the present 

study is the first hybrid approach in terms of implementing a feedforward control with reflexes to 

obtain initial guess data and test abilities of the mathematical model along with an optimal 

control with direct multiple shooting to synthesize human walking without using any 

experimental human gait data explicitly. In previous predictive simulations, experimental gait 

data was used to specify initial states (e.g., Anderson and Pandy, 2001), and to estimate initial 

guess for states and controls (e.g., Ackermann and van den Bogert, 2010). Second, we introduced 

new terms as optimality measures, namely, trunk angle and vertical GRF to improve modelôs 

ability in terms of reproducing salient features of normal human walking. Previous authors have 

typically used efforts terms alone, such as cost of transport (Anderson and Pandy, 2001), 

metabolic energy expenditures (Ren et al., 2007), and muscle activation integrals (Ackermann 

and van den Bogert, 2010).   

 Inclusion of a GRF term in the objective function in the present work reduced the spikes 

in GRF that have been reported for previous predictive simulations. In general, predictive 

simulations of walking produce spikes in the ground reaction forces. As evident from the current 

study and previous studies (Anderson and Pandy, 2001; Ren et al. 2007; and Ackermann and van 

den Bogert, 2010), optimal control approach in predictive simulations did not yield smooth GRF 

trajectories with an objective function consisting of only effort terms. Ren et al., 2007 suggested 

that lack of smooth GRF trajectories probably arose from model simplifications such as lack of a 

pelvis segment. However, even when the pelvis segment was modeled by Anderson and Pandy 

(2001), similar spikes were present. The results of the present study suggest that this condition 

does not arise from a lack of model complexity, but rather from poor muscle control as weight is 

accepted at the beginning of stance phase. The relatively simple bipedal model used in this study 
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equipped with reflex loops was able to produce GRF trajectories that closely resembled 

experimental GRF traces. In optimal control simulations, the foot contacted with the ground with 

larger horizontal velocities, yet reached zero velocity quicker when compared with the values 

from human experiments (Winter, 1992). As also mentioned above, there was lack of adequate 

and timely activation of muscle groups. For instance, in the HAM muscle, which could control 

contact velocity prior heel contact (Winter, 1992), activity was relatively late and small in the 

predictive simulations of walking (also in Anderson and Pandy, 2001; Ackermann and van den 

Bogert, 2010). Furthermore, while average toe clearance was 1.29 cm in human subjects (Winter, 

1992), the model óbrushedô the ground in the simulations (also in Anderson and Pandy, 2001). 

These imply that optimal controller does not aim to produce a safe trajectory of the foot (Winter, 

1992), but rather favor a trajectory that would minimize effort. In summation, our results showed 

that GRF terms helped to prevent unrealistically high GRFs and to alleviate spikes by using such 

strategies as a more active stance preparation by increasing TA activation before and after 

contact with the ground. 

Metabolic energy expenditure effort term simulations did not produce the most realistic 

gait in terms of metabolic energy expenditure. Specifically, metabolic energy expenditure 

simulations underestimated the average metabolic energy expenditure rate (simulation values, 

3.37-3.83 W/kg vs. experimental value, 4.7 W/kg (Burdett et al., 1983)), but the values for the 

muscle activation simulations were closer to the experimental value (4.46-4.83 W/kg). Similarly, 

mechanical energy expenditure simulations underestimated average metabolic energy 

expenditure rate (simulation values, 0.57-0.93 W/kg vs. experimental value, 1.09 W/kg 

(Umberger and Martin, 2007)), whereas muscle activation (1.59-2.62 W/kg) and metabolic 

energy expenditure simulations (1.32-1.90 W/kg) overestimated the metabolic energy 
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expenditure rate. While our simulations underestimated the optimality measure it minimized, 

some other predictive simulations made overestimations; for instance, Anderson and Pandy 

(2001) and Ren et al. (2007) estimated average metabolic and mechanical energy expenditure as 

6.6 W/kg and 2.80 W/kg respectively.  These results indicated that minimizing an optimality 

measure does not necessarily lead to realistic gaits for that particular measure, and that some 

other measures may perform better. The possible explanations for those observed 

underestimations were that the model did not use larger muscles such as VAS and HAM at all in 

the metabolic energy expenditure simulations, because their usage would be costly in the 

objective function, and cocontraction of agonist and antagonist muscles would be inefficient in 

terms of producing joint motion yet would have stabilizing effect on joints.  

 In the present study, direct multiple shooting produced predictive walking simulations 

efficiently. Anderson and Pandy (2001) implemented direct single shooting, and solution of their 

optimization required 10,000 hours yet was never able to satisfy the periodicity constraints. It 

should be noted, however, that the authors used a 3D model with 54 muscles and their 

optimization problem was solved using processors available in 2001. The simulation times for 

Ackermann and van den Bogert (2010) and Ren et al. (2007) were comparable to ours, but they 

used approaches that do not require integration of state equations. In those integration-free 

approaches, the error between discretization nodes should be estimated by re-solving the 

optimization problem with a finer mesh which may increase the computation time dramatically; 

otherwise, the influence of discretization error of the state trajectories on the objective function 

value will be unclear. In our simulations, with the parallelization of the independent integration 

intervals, the overall execution time for forward integration was decreased by nearly four-fold 

with a four-core processor. The trend of increasing the number of independent central processing 
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units (cores) in a single computing component (die or chip) is expected to continue in the coming 

years (Sutter, 2005). Thus it would possible to create more complex models and still solve 

similar problems in an acceptable time period. Unlike muscle activation effort term simulations, 

the mechanical and metabolic energy effort term simulations took longer to converge. The reason 

was probably that the gradient of the objective function suffered from the errors in numerical 

integration process of the objective functions described in Equation 4.5 and 4.7. That indicates 

computational times depend on the behavior of the optimality criteria to some extent. 

 There were several limitations of the study to consider. We cannot know that a global 

optimum was found but the objective function values of the effort terms following convergence 

were comparable to or even lower than the experimentally measured effort in humans. Also, the 

model included not all but major lower extremity muscles. The choice of which muscles were 

included depended on previous successful modeling studies of human locomotion (e.g., Geyer 

and Herr, 2010; Wang et al., 2012; Ackermann and van den Bogert, 2010). The excluded 

muscles were not prime movers, but might have had secondary effects. In the muscle activation 

simulations, we used sum of the squared muscle activation integrals scaled with muscle volumes, 

yet there were other studies implemented unitary weights and various exponents (e.g., 

Ackermann and van den Bogert, 2010). We chose such exponent and weight combinations to 

emulate óeffortô, since higher exponents with unitary weights were considered as ófatigueô cost 

functions (Ackermann and van den Bogert, 2010). The selection of the exponent for the vertical 

GRF term was also an open question; therefore, we tried powers of two, four, six, eight, and ten. 

We selected the power of four because this choice resulted in better agreement with the 

experimental data (Chao et al., 1983) in terms of similarity of peak values. 
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 In conclusion, the computer model and simulation framework used in this study enabled 

efficient synthesis of normal biped walking; however, using only effort terms such as metabolic 

and mechanical energy expenditure did not reproduce several important features of human 

walking. Our findings indicated that criteria other than effort need to be included if a truly 

realistic predictive simulation is the goal. We proposed two new terms for the objective function, 

minimizing trunk excursion and vertical GRF over a stride cycle. Including these terms helped to 

alleviate some undesired behaviors, but those terms were generally considered as the outputs of 

the motor behavior. Thus, future research might focus getting better results in predictive 

simulations by incorporating additional terms such as comfort, safety, and disturbance rejection 

that have the potential to reproduce desired behavior without explicitly incorporating output 

variables. Predictive simulations have great potential to be used in addressing theoretical 

questions about gait, as well as for use in clinical applications. Producing faster simulations with 

better realism would increase the value and applicability of predictive simulation approach.   
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Figure 4-1 The stride length (SL) and stride frequency (SF) values observed in the walking 

simulations. The diamond, plus sign, and square markers indicated muscle activation, 

mechanical energy expenditure, and metabolic energy expenditure simulations respectively. 

Cyan, red, blue, and green colors were used for weighting factors (1,0,0), (1,0,1), (1,1,0), and 

(1,1,1) respectively. The black lines with the filled circular marker showed average experimental 

values for SL and SF derived from Chao et al., 1983.  
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Figure 4-2 The joint angles, joint moments, and GRFs of the muscle activation simulations for 

one full walking cycle from left foot heel strike to left foot heel strike. Cyan, red, blue, and green 

colors were used for weighting factors (1,0,0), (1,0,1), (1,1,0), and (1,1,1) respectively. The 

shaded gray areas in the ankle, knee, and hip angles and moments were reproduced from Kadaba 

et al., 1989; which are enclosed by one plus and minus standard deviationsô of a representative 

subjectsô nine trials (three cycles x three days). According to the sign convention, plantarflexion, 

knee flexion, and hip extension were negative. The shaded gray area in the trunk angle enclosed 

by ±1 degree (Winter, 1995). The shaded gray areas in GRFs were reproduced from Chao et al., 

1983; which are enclosed by one plus and minus standard deviationsô of the general pattern of 26 

normal subjects.  
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Figure 4-3 The muscle activations for one full walking cycle from left foot heel strike to left foot 

heel strike for the muscle activation simulations. Cyan, red, blue, and green colors were used for 

weighting factors (1,0,0), (1,0,1), (1,1,0), and (1,1,1) respectively. The gray lines were 

reproduced from Kadaba et al., 1989; and represent the mean value of EMG envelopes of a 

representative subjectsô nine trials (three cycles x three days).  


































































































































