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ABSTRACT

Human locomotion is often assumed to beegaed by optimality principles. To the extent that

this is true, it should be possible to reproduce various human gaits (walking, running, sprinting)
with a predictive approach employing some sort of optimality criterion in an optimization
framework. Whié there are many instances of humans using aperiodic gaits in everyday life and
sporting activities, previous simulations of bipedal locomotion have focused almost exclusively
on periodic gaits. The main purpose of this dissertation is to implement-trasi optimal

controls approaches to create novel bipedal gait simulations that are both periodic and aperiodic.
Those simulations are used to investigate new optimality criteria for normal human walking and
to characterize relationships between musculeskkarchitecture and human sprinting

performance.

In our first study, a novel computational model and a simulation framework were
developed to create the first simulation of aperiodic sprinting from rest. The model used was a
modified springloaded inveted pendulum (SLIP) biped driven by torque actuators at the hip and
force actuators on retracting legs. The direct multiple shooting method was used to formulate the
optimization problem in which the time to traverse 20 m from rest was minimized. The initi
guess to the simulation was a 0j odprvatmego si mul
feedback to control trunk attitude, swing leg angle, and leg retraction and extension. Although
the model was very simple, it exhibited a number of featurescteaistic of human sprinters,
such as forward trunk lean at the start, straightening of the trunk during acceleration, and a dive
at the finish.

In our second study, a muscle driven computational model was developed to create

simulations of normal bipetialking using the direct multiple shooting method and evaluation



of optimality criteriaWe implemented a set of optimality measures derived from muscle
activation, mechanical energy expenditure, or metabolic energy expenditure to represent effort;
and tunk angle as well as vertical ground reaction force (GRF). Initial guesses to the
optimizations were generated using a feedforward control that relied on muscle reflex loops. The
simulations converged tistinct gait cycles for different optimality crite. The additionairunk

angle and vertical GRF terrelped to alleviate some undesired behaviors observed in

predictive simulations of normal walking such as spikes in GRF and excessive trunk excursion.

In our third study, maximum speed sprinting siations were created with a muscle
actuated bipedal model and the direct multiple shooting method. The simulation framework and
model successfully reproduced salient features of human sprinting once maximum speed has
been attained. We perturbed several caleskeletal architecture parameters of the
plantarflexors in isolation (maximum isometric force, optimal fiber length, tendon stiffness, and
moment arm) to investigate how variations in musculotendon architecture affect maximum speed
bipedal sprinting pédormance. We found that increases in each parameter analyzed in the study
enhanced maximum speed bipedal sprinting performance.

In our fourth study, we used the computational model and simulation framework
developed in the third study to investigate hasations in the maximum isometric force
parameter ofach major muscle group affegrinting performance. The maximum isometric
force parameter of each musculotendon actuator in the model was perturbed in isolation. The
results showed that increasingela mu s ¢ Fgenératingf capacityeenhanced sprinting
performance, but hip flexors and quadriceps were found to have the most and least potential,

respectively, to increase sprinting speed. The model employed mechanisms similar to those



observed in hunmasprinters to attain higher speeAdditional plantarflexor and hip flexor force
increagd speed primarily by enhanciagide length and stride frequency, respectively.

In conclusion, this dissertation is the first study to create an aperiodic bgpentding
simulation from rest. We demonstrated that additional optimality criteria, vertical GRF and trunk
angle, have the potential to eliminate some undesired behaviors and increase fidelity of
predictive walking simulations. Contrary to the experimiimaings showing that sprinters
have smaller plantarflexor moment arms, we found that larger plantarflexor moment arms favor
sprinting performance in the maximum speed sprinting pAdmeresults suggest thepecial
attention should be given to strelnghing hip flexor and plantarflexor muscles to increase
maximum sprinting speed. The models and simulation frameworks described in this thesis can be

used to simulate other bipedal gaits with only minor modifications.
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Chapter 1

Introduction

1.1 Background
Bipedal locanotion is accomplished using a variety of gaits and the study of gait mechanics
often assumes that some optimality criterion is being satisfied for each different gait. For
instance, by using the cost of transport as the optimality criterion, Alexan@ér &hel 1992)
simulated bipedal and quadruped gaits with simple planar models, while Anderson and Pandy
(20018) simulated normal human walking with a complex musculoskeletal model. Indeed, there
are experimental (Ralston, 1976) and computational modelidgest(Srinivasan and Ruina,
2006) demonstrating that humans walk at speeds that use the least energy and energetic economy
is a commonly understood goal for distance running. For these reasons, energy expenditure has
been used frequently as an optimatitigerion in dynamic simulations of walking and running.
However, estimating energy expenditure or effort in a mustieated computational model
requires somewhat complex calculations of energy consumption by individual muscles, and so
alternative optinality criteria have been implemented. The most commonly used such alternative
is muscle activation, which is already a state in most dynamidations. Nevertheless, while
there is experimental evidence indicating that humans prefer to walk with mireffant)
previous simulations using such an optimality criterion have not been able to reproduce several
important features of human walking.

Computer modeling of human walking and running typically has focused on simulations
in which periodic strides a@nstrained to occur. The periodic nature of stesidie gait

justifies simulation of a single stride in which the initial conditions are equivalent to the terminal



conditions (or simulation of a half of a stride if right/left symmetry is also assuraifs

appropriate for simulation using this approach include ststatg walking (Ackermann and van

den Bogert, 2010) and running (Schultz and Mombaur, 2010), and sprinting (Miller et ah) 2012

that occurs once top speed has been reached and maintdieezlare, however, gaits which are

necessarily aperiodic such as sprinting from rest or initiation of a walking gait before a steady

state motion is reached. Simulation of aperiodic gaits has received little attentions from previous

researchers but is netheless important because the mechanics of some gaits are quite different

in periodic and aperiodic phases of motion. Such aperiodic gait simulations would allow better

evaluation of how the musculoskeletal system couteid to aspes of performance,

understanding of factors limiting the ability to reach steady state, and assessment of asymmetry.
Simul ations of | ocomotion may be devel oped

measured in the motion laboratory or by predicting movementsejiagsent ojtal

performanceGenerally, n a tracking simulatiorthe muscle excitation histories are searched

that would minimize the deviations frotime experimentally measurgdint angles and the

ground reaction foreeor they aréreatedasconstraintghatmustbe satisfiedvithin a prescribed

tolerance (Pandy, 200I)he tracking approach has several advantages: the motions and forces

measured in an experiment are often reproduced with great accuracy; once a simulation has been

developed, the modeler has thdigbto estimate variables that cannot be measured in the

laboratory; and the information available from such a simulation may be useful in investigating

causeeffect relationships (for example, simulatibased estimates of joint and tendon loads

may berelated to injury mechanisms). The tracking approach has been used to perform muscle

induced acceleration analyses that estimate the contributions of individual muscles to propulsion

and support during locomotion. On the other hand, a predictive appsoaebdssary under the



following conditions (Anderson and Pandy, 2001b): when accurate experimental data is not
available or is not easy to collect experimental data with current techniques (e.g., for walking in
other planets); when the optimality criteisaa timedependent performance metric (e.g.,
maximuntheight in jJumping or minimum time in sprinting); or there is a need for creating novel
simulations (e.g., for sensitivity analysis). Therefore, predictive simulations have the potential to
be used to sty the roles of muscles in maximywarformance tasks or in the absence of

accurate experimental data in ways that would go beyond miusicleed acceleration analysis

in a tracking simulation. It can be quite challenging to create predictive simulditmwsyer,

due to problems in convergence to a solution and high computational demands.

1.2 Purpose of the dissertation

The general purpose of this dissertation is to make use of an optimal controls approach to
develop novel simulations of bipedal gait. $aeimulations are used to investigate new

optimality criteria and explore the functional roles of muscles in sprinting. Another purpose is to
demonstrate how an approach of adding feedback and feedforward control loops to the model
may be useful to obtainitial guesses to the optimization problems and to demonstrate abilities
of computer models employed in the study. The last main purpose of this dissertation is to show
how variations in architecture of musculoskeletal system influence sprinting pentm@mwih a

simulation approach.

1.3 Specific aims
The dissertation had three proposed specific aims:
i) To create a simulation framework with a simple bipedal tedjen model and
synthesize optimal sprinting from rest by minimizing the locomotion tima for

prescribed distance.



i) To use the same simulation framework developed above as the basis for more
complex muscl@riven models.
iii) To use the model developed in 6iid to
a. Analyze sensitivity of sprint performance to musculoskeletal architecture
parametersf plantarflexor muscles
b. Analyze sensitivity of sprint performance to maximum isometric force capacity of

ankle, knee, and hip muscles

c. Investigate and compare commonly used optimality measures for normal walking

1.4 Organization of the dissertation

In thefollowing chapters, four research studies along with a review of the relevant literature and
a final discussion will be presented. The literature review is presented in Chapter 2. Chapter 3
presents a novel aperiodic sprinting simulation. Chapter 4 desaimusculoskeletal model and

a hybrid approach to create predictive simulations of normal walking and evaluate optimality
criteria. In Chapter 5, a maximum sprinting simulation is developed to explore how variations in
architecture of plantarflexors iniénce sprinting performance. In Chapter 6, the same model and
simulation framework are used to study sensitivity of maximum simulated sprinting speed to the
maximum forcegenerating capacity of individual muscles. The closing chapter, Chapter 7,

includes asummary of four studies and conclusion of the dissertation.



Chapter 2

Literature Review

2.1 Computer simulation of bipedal locomotion

2.1.1 Formulations of optimization problem
The human locomotor system is a redundant system in that the number of mustbesaictlae
human body is larger than the number of degrees of freedom at the joint level. This redundancy
makes the human locomotor system an indeterminant system, for which the same motor output
could be generated by a theoretically infinite numbeiisifritt combinations of muscle
excitations.

The classic conjecture is that human sensorimotor system favors optimality while
performing motor tasks (Todorov, 2004). Thus, when previous researchers have tried to
reproduce human gaits using computer sitmha they usually have used an optimization
framework that minimizes or maximizes some optimality criterion such as muscle force or
muscle energy expenditure, or some combinatio
optimizationd and odddy nhaarwiec boepetni miszed t o sol ve
static optimization (e.g., Seireg and Arvikar, 1975; Crowninshield and Brand, 1981), intrinsic
muscle dynamics are mostly neglected, and muscle forces are estimated in a series of postural
configurations assuming static equilibrium and minimal muscular effort in an optimization
framework. As its name suggests, dynamic optimization accounts for theepeadent
dynamics of the muscles and the body segments. Dynamic simulations usually arebgreated
either tracking movements and external forces previously measured in the gait laboratory or by

predicting movements that represent optimal behavior without tracking.



Dynamic simulations are usually treated as optimal controls or trajectory optimizatio
problems. Methods for solving such problems are generally classified as direct or indirect (please
refer to Betts 1998 and 2010 for detailed descriptions and formulations of direct and indirect
methods). A direct method seeks a minimum of the objeativetion for the discretized form of
the problem while an indirect method attempts to find a root of the necessary conditions for
optimality with explicit derivation of the necessary conditions for the original problem.
However, due to major difficulties ithe application of indirect methods (Betts, 2010), they are
not often preferred for creating computer simulations of bipedal simulation.

In direct methods, the optimal controls problems are transcribed into nonlinear
programming (NLP) problems. A NLP gol@m requires locating a finite number of variables
such that an objective function is optimized without violating a set of linear or nonlinear
constraints and simple bounds (Betts, 2010). For the transcription of the problem, the following
three methodbave been used widely: (1) direct single shooting, (2) direct collocation, and (3)
direct multiple shooting. Direct single shooting is the most extensively used of these methods,
perhaps because it describes the NLP with a relatively small number ofzapiomivariables (a
subset of initial and final conditions, control histories, and parameters such as final time) and
because¢he implementation of single shooting is generally straightforward. In dynamic
simulations of human gait, direct single shooimgiost commonly used to search for muscle
control histories that minimize an optimality measure while trying to satisfy periodicity
constraints on initial and final states (e.g. Anderson and Pandya)2@0tect collocation, a
method heavily used for dptization of aircraft trgectories has been implemented to create gait
simulations (e.g., Ackermann and van den Bogert, 2010) in which muscle controls along with

state trajectories are searched to minimize an objective function subjected to algebraic



congraints originated from the governing equations of the system, and any other constraints such
as periodicity. Direct multiple shooting (e.g., Diehl et al., 2006) combines features of direct
single shooting and direct collocation. In this method, the @igiroblem is discretized at

many nodes, thus the total time span of the simulation is divided into several short integration
intervals (= n-1), each of which has a set of initial states and controls. An optimality measure
is minimized subject to comrsiints requiring that the terminal values for the states at the end of
each integration interval are equal to the initial values for the next interval along with any other
constraints of the simulation. Direct multiple shooting is a robust method thdsaame
shortcomings of other methods. For example, accumulation of nonlinearity on the terminal
conditions and numerical instability during forward integration are the major issues in direct
single shooting because changes early in the trajectory pregagae end of the trajectory

(Betts, 1998). Direct collection eliminates forward integration, but error between discretizations
mustbe estimated with rgriddingi.e., the optimal controls problem must be solved repeatedly
progressively finer meshes. i§tprocess generally requires implementations of complex

meshing algorithms, but has not properly addressed in most simulations (Diehl et al., 2006).

2.1.2 Simulations of walking
Human locomotion has been simulated with a wide variety of models thatframgsimple
torguedriven models to highly complex musaleiven models. Several simulation approaches,
from passive walking to inverse dynamics based numerical optimization, have been implemented
to explore bipedal locomotion.

Passive walkers have beesed to gain insight into the underlying passive mechanics of
bipedal gait. McGeer (1990) built an extremely simple walking model without actuators that can

effectively walk down a shallow ramp with a gait that is comparable to human gait. The energy



lost in the inelastic foot strikes are compensated for by gravity, and the resulting walking motion
is periodic in nature. Garcia et al. (1998) developed an irreducibly simple passive dynamic
walking model with a point mass at the hip, two rigid massless lagedhiat the hip, and

infinitesimal point masses at the feet. Collins et al. (2001) increased the number of kinematic
degrees of freedom (dof) by building the first thce@mensional passive dynamical walker with
knees. Kuo (2002) introduced the ideaofiami mal | y actuated biped by
simplest walking model for level walking by applying an impulse immediately before tiodftoe

and a torque applied on the stance leg. Wisse et al. (2004) added a passive upper body to the
simplest walkig model which improves the resistance to disturbances. Gomes and Ruina (2011)
showed with a threknk walking model that level walking is possible with zero energy input

into the system provided that the foot collision occurs at zero velocity.

The simuldéions created with torque and/or force driven models enabled to investigate
locomotor function in the joint level with ideal actuators. Chow and Jacobson (1971) were the
first to study human locomotion with optimal controls (indirect single shooting) with
minimization of mechanical energy expenditure of a todyixen planar computational model.
Although they had a muHltink model including ankle, knee, and hip joints, they actually
performed optimization on the swing leg by introducing several simplditato the problem.

The main reason for the simplifications was the limited computational power available at the
time. Onyshko and Winter (1980) developed a seven segment walking model driven by torques
at each joint. They changed the manually derivasgtgung equations of motion from phase to

phase by changing the topology of the model. The model was actuated by joint moment histories
evaluated by inverse kinematic analysis of experimentally obtained human walking data. To

compensate for differences iveten model and subjects, they made manual adjustment on initial



states and joint moment histories to able to create gait cycles. Pandy and Berme (1988) used
open and closed kinematic chains to simulate human walking in single and double support
phases of alking respectively. The authors used experimentally obtained initial states and
obtained estimates of the joint moments through trial and error. The improvement of that model
study was that it offered an alternative to manually deriving the equationsdedi

mathematical model for human gait. Gilchrist and Winter (1997) improved the model of
Onyshko and Winter (1980) by extending it to three dimensions and increasing the number of
segments to nine. The authors equipped the model with torsional andspniegs and dampers

to ensure a smooth motion. The joint moments obtained from an inverse dynamics analysis were
used to drive the model, along with controls on the trunk and physiological range of motion of
joints. By using optimal controls, Srinivasand Ruina (2006) simulated possible gaits of a

minimal biped actuated by force actuators, and the model discovered walking at low speeds and
running at higher speeds to minimize energy expenditure. In an another predictive dynamic
simulation, Ren et al. ®7) simulated normal bipedal walking at 1.5 m/s by minimizing
mechanical energy expenditure in an inverse dynamics optimization framework. Several gait
patterns emerged with varying levels of energy cost, but the best gait pattern in terms of
reproducingratural human walking was the one with lowest energy cost. However, there were
still significant deviations from natural human walking such as relatively large trunk excursions
and norsmooth ground reaction forces. Xiang, Arora, and Abdalek (2011) use inverse

dynamics in an optimization framework to simulate asymmetric human gait with a-tingee

38-dof 3D model. The sum of the joint torques squared used as the optimality measure. The joint

angle histories were discretized usingBine interpoltion, then joint torques and ground



reaction forces were solved using inverse dynamics. The simulation framework was able to
generate gaits with different left and right step lengths.

Tracking simulations obtained through dynamic optimization of mwdgsolen models
have been used to reproduce experimentally measured motion and muscle activation trajectories
with high accuracy and to assess muscle function during gait. Davy and Audu (1987) used
dynamic optimization to predict muscle forces in the swirgsptof walking by using an
optimality measure combination of tracking error and metabolic energy consumption. They used
a threedof lower limb model driven by nine muscle groups. The authors compared muscle
forces obtained by dynamic optimization with fescestimated through static optimization, and
pointed that the former ones are generally larger and latter. Yamaguchi and Zajac (1990) used a
3D eightdof model with a compliant contact model to simulate functional neuromuscular
stimulation assisted wallgnby minimizing an objective functions consisted of deviations from
the nominal trajectory and the sum of cubed muscle stresses. The simulation results suggested
using an ankldoot orthosis would help to stabilize the stance leg. Piazza and Delp (1996)
simulated swing phase of gait with a figegment leg model actuated by 12 muscle grothes.
authors did not minimize the deviation error from experimental measurements; instead they used
averaged experimental trajectories and muscle controls directlgifibéation demonstrated
that removal of rectus femoris action causes knee hyperflexion. Neptune, Kautz, and Zajac
(2001) created a normal walking simulation with a muscle (15 muscle actuators per leg) driven
model of a trunk, right and left legs (thighask, patella and foot) to evaluate contributions of
ankle plantarflexors to support, forward progression and swing initiation. The objective function
was solely tracking errofhe aithorsextended the capabilities of the tracking simulation by

adding musle induced acceleration analysis. The musulieiced accelerations were determined
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by applying estimated individual muscle forces at a time in a series of snapshots of postural
configurations. The simulation results suggested that both plantarflexoresipsoVide vertical
support in the single support phase of walking, yet only gastrocnemmtrgates to swing
initiation. Sasaki and Neptune (2006) used a planar model to create another thadedg
dynamic simulation of normal walking and runningleg tvalkrun transition speed to
investigate differences in muscle function during walking and running at the same speed.
Authors reported that muscle function is different between two gaits at the same speed, and
extensor muscles produced greater powegpudui he efficiency of tracking simulations was
i mproved using the AComputed Muscle Control o
not tracking error but the sum of volume scaled second power of muscle activations were
minimized. The optimization carerges to a solution when the error between experimentally
obtained accelerations and model accelerations driven by optimized muscle activation profiles
falls below a threshold value. The error is controlled with a feedback controller and fed to the
optimization process. Authors reported that they were able to reproduce joint motions in a
walking step with high accuracy (mean rootansquared errors generally less than 1 degree) in
30 minutes. Researchers from our laboratory (Hast and Piazza, 2013)eekalsimilar
approach to reproduce knee motion and muscle activity with high accuracy. Such a simulation
could be used to estimate contact forces in knee that are otherwise not measureable without an
invasive technique.

The predictive dynamics simulationsth muscledriven models facilitate creating gait
cycles without relying experimentally obtained gait data, discovering novel gaits, and estimating
muscle forces guided by some optimality critefiais approach also enables to synthesize gait

cycles oraltered or different conditions to make sensitivity studfesbably the most famous
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predictive dynamic simulation was created by Anderson and Pandyaj200bse authors used

a 3D model with 23 kinematics dof and 54 muscle actuators to simulate nommanh kvalking.

Their objective function was to minimize metabolic energy expenditure per unit distance
traveled, i.e., cost of transport. Although the simulation reproduced significant features of normal
gait, the problem never satisfied the terminal coonl#t even after 10,000 hours of CPU time in
parallel machines. Further, the simulation overestimated metabolic energy expenditure by 47
percent. To evaluate their newly developed human muscle energy expenditure model, Umberger,
Gerritsen, and Martin (2008)eated a simulation of one full step of walking of a planar model.
The simulation searched for switching times and excitation amplitudes while minimizing cost of
transport. The model estimated wholedy rate of energy expenditure as 4.4 W/kg which was
very close experimental value (4.8.3 W/kg) at the prspecified walking speed and inertial
properties. By using a family of objective functions based on muscle activation integrals and
direct collocation method, Ackermann and van den Bogert (2010)a®aduhormal bipedal

walking at 1.1 m/s with a sevesegment planar model actuated by eight muscles on each leg.
The objective functions were classified as either cost or fatigeelepending upon weighting
factors and exponents. It was demonstrateddiff@rent cost functions lead to substantially
distinct gait simulations. For instance, effbke cost functions converged to straigagged

pattern in the stance phase; on the other hand, fdtlgueost functions illustrated stance phase
knee flexion. Same authors used the same simulation framework to simulate gait in ars (g
3.72 m/4) and Moon (goon = 1.63 m/8) (Ackermann and van den Bogert, 2012) at a speed 1.1
m/s and 2.0 m/s. The simulation results suggested that skipping gait isfiicegaten terms of

effort and less fatiguing than walking or running under low gravity.
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2.1.3 Simulations of running

Running is simulated by using various models such as passive running, actively controlled and
torque driven, optimality introduced, andistle driven models. Tad McGeer is a pioneer
researcher not only in passive dynamic walking but also in passive dynamic running. He
simulated humatike level running with a model consisting of two telescoping legs with linear
springs, connected by a hipnt with a torsional spring that make the legs swing in a scissor
action (McGeer, 1994). The stride frequency of the model was very close to the natural
frequency of the scissoring oscillations of the legs (McGeer,li 3d6xander, 1995). Prior to
thatBlickhan (1989) developed a simple massless spriags model for running and hopping;

even the simplicity of the model, it predicted the mass specific energy fluctuations of the center
of mass per distance to be similar for animals of various sizegrdbed reaction forces

produceddy these models, however, were smooth curves with a single maximum which do not
resemble the initial peak force at the foot contact. In addition, these models were passive models
running in a periodic motion with no viscouswiaing and without any control input to the

system. On the other hand, running was also simulated by actively observing and controlling the
motion of the models. For instance, Raibert (1985) developed physical and computer models of
hoppers, bipeds, and qirapeds that run by observing and controlling its hopping height,

forward speed, and body attitude. Neptune, Wright, and van den Bogert (2000) used a tracking
approach to simulate stance phase of running, and the simulation framework was able to
reproducs ubj ectsé | i mb motion and ground contact
Schultz and Mombaur (2010) simulated running of a torjieen 3D running model which has

25 kinematic dof. The torques drive the model was estimated by minimizing a casirfunc

composed by addition elements of weighted torques squared and variations in torques squared
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vectors. They did not validate their cost function, but the model imitated the maximal sprinting
of Griffith-Joyner, who is the world record holder in #@0~vomen. Van den Bogert and

Ackermann (2009) simulated maximum speed sprinting with a ssagment muscldriven

model using direct collocation. The simulation converged to solution with a maximal sprint
velocity of 7.45 m/s at a stride frequency of 1.90 When the moment arm parameter of the

gluteal muscle group was perturbed, larger moment arms increased the maximum sprint velocity.
Miller et al. (2012c) simulated human running using a predictive approach and a planar bipedal
model, @ad demonstrated thaven theres experimental evidence to indicate humans run at
speeds that would minimize cost of transport, the simulation in which muscle activation integrals
used as the optimality criteria agreed most with the experimental kinetic, kinematic, and EMG
dat collected from human runners. Miller et al. (2012 a, b) made two sprinting simulations using
the same simulation framework. Miller et al. (2012a) perturbed the characteristic parameters of
the muscle forceelocity relationship, and showed that maximprirging speed is most

sensitive to maximum shortening velocity parameter. Miller et al. (2012b) removed muscle
mechanical properties in isolation to quantify their influence on maximum sprinting speed, and
illustrated that muscle foreeelocity relationstp is the most influential property of in terms of

limiting maximum sprinting speed.

2.2 Determinants of sprinting performance

2.2.1 Mechanics of human sprinting

Sprinting is a gait that enables one to traverse a distance in the minimum time which nbay lead
catching prey, avoiding a predator, or winning a trophy. Unlike walking and running, sprinting is
an explosive motion and ngueriodic in nature with a rapid acceleration phase at the start. In a

dash race, sprinter gives his or her maximum efforttelarate in the first strides, reaches the
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maximum speed after a couple of strides, and then tries to keep the pace until the end of the race.
The characteristics of the first strides of a sprinter are different from those of the strides that
follow due b the transient system dynamics, rapid acceleration phase, postural configuration,

and demand from the musculoskeletal system. Indeed, these first strides have the utmost
importance, since they are the ones that differentiate an elite sprint perfornteneerfrerely

good one (Baumann, 1976; Hunter et al., 2005).

The sprint start from starting blocks and the accelerations in the first steps are the most
important phases of a sprint race in terms of their contribution to the final result. Athletes
accelera rapidly (approximately 10 m?sin the first few meters to reach maximum speed as
quickly as possible. Coh et al. (1998) found that the kinetic parameters such as maximal force,
maximal force gradient, force impulse, and time to maximal force; and kireeparameters
such as horizontal start velocity of center of gravity and the ankle angle in the front starting
block are correlated with the sprint start acceleration. Harland et al. (1997) suggested such a
postural configuration at the block that framd rear knee angles are 90 and 130 degrees
respectively, with the hips held moderately high to develop the maximum force for the minimum
block clearance time, the maximum block leaving velocity, and the maximum block leaving
acceleration. Slawinski et §2010) studied kinetics and kinematics of sprint start and two
subsequent steps on elite and vikined athletes. They indicated that impulsive forces (276.2
N-s vs 215.4 N-s) and average speed (start, 3.48 m/s vs 3.24 m/s; steps, 4.06 m/s vs &87 m/s)
elite athletes are significantly greater than vixgined ones in the sprint start and two
subsequent steps. Eriksen et al. (2008) studied the running of the fastest man in the world, Usain

Bolt, who traversed 10feter in 9.69 seconds, reached totdpespeed 12.2 m/s, had a speed of
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9.05 m/s at 10neter, and used only 40 strides to finish the race (four less than any of the other

athletes in the field) in the 2008 Beijing Olympic Games.

2.2.2 Musculoskeletal architecture of elite sprinters

Muscles & the actuators of the locomotor system. As with many systems in the nature, muscle

is a nonlinear system and force development in muscle depend on both nonlinekenigitte

and forcevelocity properties. A.V. Hill conducted a series of experimenisalated muscle

fibers and proposed an empirical rel ation whi
specifies that the lower a muscles shortening velocity, the higher the force in the muscle

(McMahon, 1984). The force length property specities there is an optimal length for muscle

to produce the maximum isometric force, and this optimal length is around the sarcomere rest
length (Rassier et al., 1999). Muscle does not produce passive force unless it is lengthened more
than its rest length.

According to the crosbridge theory (Huxley, 1957), the sliding motion in sarcomere is
enabled by the physical attachment of myosin protein heads to actin protein helix. The force
length and forcerelocity relationships of muscle are influenced by theraattions of these
proteins (Bodine et al., 1982). Shortening velocity of sarcomere is dependent on the attachment
and detachments rates of the myosin and the actin proteins (McMahon, 1984jwisttvand
fasttwitch fibers have different shortening veity characteristics, and this affect specific
tensions of fibers (Powell et al, 1984). For fagtch mammalian muscle fiber, the specific
tension value is 22.5 N/cnbut it is less for sloviwitch fiber (Lieber et al., 2000).

Physiological cross sectial area (PCSA), muscle fiber length, and pennation angle are
other factors affecting force producing properties of muscle (Lieber et al., 2000). Higher PCSA

means more parallel muscle fibers, so more tension in the muscle. Longer fiber length is also
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conducive to force production, since longer fibers are able to maintain near maximal muscle
tension for fast and large joint excursions. Higher pennation angles, however reduce the amount
of force and excursion transferred to the tendon, but increases the PCSA

Hildebrand and Goslow (1995) discussed rigorously the morphology of various animals
that surpass other species in running, jumping, digging, etc., and their functional needs to
survive. Although, the morphologynction relationship seems to be welltsthacross species,
this does not seem to be the case within species. The best animal sprinters, such as the cheetah
and the greyhound, have long forefoot and short heel bones (Hudson et al., [204d/hieh
suggest higher gear ratio, the ratio of theugbreaction force (GRF) moment arm to the muscle
moment arm (Hildebrand, 1960). Higher gear ratio favors reduces ankle extensor muscles
shortening velocity and thus increases muscle force. Carrier et al. (1994) stated that human feet
and toes provide a maBanism for changing the gear ratio of the ankle extensor, and this variable
gear ratio could allow muscle contractile properties to remain optimized despite rapid changes in
running speed as experienced in the first phase of sprinting (Hudson et ak, B)1Although
some musculoskeletal architecture parameters such as smaller muscle moment arm and larger
PCSA of muscle may be a sign of better sprinting ability, there are some other factors that affect
performance. For instance, the greyhound is sldiagr cheetah, even though greyhounds seem
to have smaller moment arms and larger musculature than those of the cheetah (Hudson et al.,
2011 ap). On the other hand, cheetah has longer heavier hindlimb and higher duty factor which
promote longer stridesd ground contact times respectively.

There are also significant variations within the human beings, and those variations have
been linked with sprinting ability. Healthy young people mostly walk at a similar pace (around

1.3 m/s), but when they sprirthe pace would significantly differ from person to person. Is there
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are a relation between observed variations in human and sprinting performance? It has been
mentioned that reaction time, technique, electromyographic (EMG) activity, force production,
neural factors, and muscle structure are the significant factors of sprinting performance (Mero et
al., 1981, 1990, and 1992). The authors suggested that running velocity is positively correlated
with fast twitch fibers, stride rate, upward speed strengtiard speed strength, and maximal
isometric force; and to optimize starting action it is desirable to activate muscles before any force
detected against the blocks.

The leg muscles of elite sprinters have longer muscle fascicles thapnoter. Longer
muscle fascicles enhance force generation in fibers because longer fibers would operate in more
favorable ranges (i.e., nearer to isometric) on the flzmegth curve. Abe et al. (2000) compared
fascicle length of leg muscles of elite sprinters (100 e tih®.010.9 s), elite distance runners,
and untrained subjects. The vastus | ateralis
fascicle lengths were estimated from images obtained via ultrasound imBggnaLthorsfound
that fascicle length okly muscles is significantly greater in sprinters than distance runners. On
the other hand, they did not find a similar significant difference between distance runners and
untrained subjects. Kumagai et al. (2000) and Abe et al. (2001) investigatedtibaskip
between sprint performance and fascicle length, and showed that fascicle length is positively
correlated with sprinting performance.

Previous experimental studies showed that sizes of certain muscles of sprinters are larger
when comparedtonespr i nt ers. Muscle size is wusually qu;
cross sectional area (PCSA) (Powell et al., 1984), and greater PCSA indicates higher muscle
strength. Maughan et al. (1983) measured knee extensor muscle cross sectional areasxf sprinte

distance runners, and untrained subjects using computed tomography. In the same experiment,
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maximum isometric voluntary isometric force exerted by the knee extensor muscles was also

measured using an isometric chair. Bathors found the knee extensouscle cross sectional

areas of sprinters to be larger than those of distance runners and untrained subjects. They also

reported that maximum isometric voluntary isometric force of sprinters were significantly more

than endurance runners but not more tinainained subjects. In the same study mentioned

above, Abe et al. (2000) also reported that the thickness of the knee extensors and plantarflexors

were greater among sprinters than for distance runners and untrained subjects. Kubo et al. (2011)

showed thaplantarflexor and medial side knee extensor muscle thickness was larger for

sprinters when compared to nsprinters. Furthermore, a significant correlation between 100m

sprint time and muscle thickness at the medial side of knee extensor was estirtfageshme

study. To date, there is no study that related size of hip flexor and sprinting performance.
Experimental studies showed that sprinters

nonsprinters. Arampatzis et al. (2007) took images of distaheproses of the gastrocnemius

muscle of sprinters, distance runners, andtnaimed adults using ultrasound imaging technique

during the MVC to estimate tendon stiffness. They also recorded isometric maximal voluntary

plantar flexion contractions (MVC)oa dynamometer. The results of the study indicated that

sprinters have higher normalized stiffness (relationship between tendon force and tendon strain)

than the distance runners and +icained subjects. Authors also reported significant correlations

between tendon stiffness and maximal tendon force achieved during the MVC. However, they

did not relate tendon with sprinting performance. Kubo et al. (2000) studied the relationship

between tendon stiffness of leg muscles and sprinting performance. Awkdraltrasound

imaging to measure elongation of tendon of vastus lateralis and medial gastrocnemius muscles of

sprinters and notrained subjects during isometric knee extension and planter flexion
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respectively. The results of the study illustrated thateths no significant differences on tendon
stiffness between sprinters and reprinters, yet the tendon of vastus lateralis was more
compliant for sprinters. Kubo et al. (2011) studied tendon stiffness in another study and came up
with results similar apreviously reported. The authors also did not find any significant
correlation between tendon stiffness of leg muscles and sprinting performance. Indeed, there is
no study reporting such a relationship yet.

Previous work in our laboratory (Lee and Pig24209; Baxter et al, 2012) showed that
human sprinters have shorter moment arms and longer toes thanrhaighéed nossprinters by
using imaging instruments and measurement tools. Furthermore, Baxter et al. (2012) linked
shorter moment arms of sprintevgh differences in the location of the center of rotation rather
than differences in the path of the Achilles tendduoscle force is transferred to tendon, and it
converts force to torques and excursions around the joint rotation center by a moment arm.
Although higher moment arm seems to favor higher torque around the joint rotation center, it is
not the case since the muscle force is a nonlinear function of muscle length and shortening
velocity as mentioned above. A larger moment arm increases miiselshortening and rate of
shortening, which decrease the tension in the muscle (Nagano et al., 2003). Hence, the increased
moment produced by having a longer moment arm may not compensate for the loss in muscle
tension that is also required for torquangeation. This reasoning was used by Lee and Piazza
(2009) and Baxter and Piazza (2012) to explain what advantage human runner sprinters may
have by having shorter plantarflexor moment arms tharspadnters of similar size. However,
Karamanidis et al. (211) could not find the correlations between musculoskeletal architecture
parameters and sprint performance among elite sprinters. All these suggest that musculoskeletal

architecture affects sprinting ability in complex ways.
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2.3 Use of simulation to iderify muscle roles

Commonly used computational methods in biomechanics such as forward and inverse dynamics
cannot be used to relate individual actuator contribution to the tasks in locomotion such as for
propulsion, support, and braking of the body. Becatigelocomotion tasks are at different
coordinate systems and time scales than the actuators have. A methodological approach known
as muscle induced acceleration (MIA) analysis is capable of solving this problem (Zajac and
Gordon, 1989). Anderson and Pgr{@003) used MIA analysis to quantify individual muscle
contribution to support the body during normal gait. Authors demonstrated that plantarflexors
support body almost solely in late stance phase and cause second bump in the vertical ground
reaction cuwves. Neptune et al. (2004) showed that muscle force redistributes segmental power
for forward progression of trunk and legs during walking by using MIA analysis. In-pdwo

review article, Zajac, Neptune, and Kautz (2002 and 2003) presented a breadaevi

individual muscle contribution to trunk support and forward progression in normal walking by
analysis of MIA and segmental powers.

In a study of running and sprinting, Hamner et al. (2010) employed MIA analysis to
assess individual muscle contrilmrtito braking, propulsion, and support of body during running
steady state at 3.96 m/s. They found that ankle plantarflexors, the soleus and gastrocnemius
make the greatest contribution to propulsion and support of body during the second half of the
stancephase. Hamner et al. (2013) extended their original work by analyzing MIA over a range
of running speeds (2.0, 3.0, 4.0, and 5.0 m/s). The results of the analysis indicated that the
plantarflexor soleus generates the greatest upward mass center aoced@tirunning speeds.
Dorn et al. (2012) used MIA analysis to investigate muscle contributions to running (at 3.5, 5.0,

and 7.0 m/s) and sprinting (>8.0 m/s). The results of the analysis illustrated that plantarflexors
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contribute to vertical supportiites most significantly speeds up to 7 m/s. After that speed, hip

muscles accelerated hip and knee joints more vigorously.
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Chapter 3

Simulation of aperiodic bipedal sprinting

3.1 Introduction
The mathematical models used to simulate human walking and ruravagybnerally taken one
of two forms: (1) complex models that incorporate many degrees of freedom (DOF), joints with
realistic kinematics, and dozens of mugeledon actuators; or (2) simple models that have many
fewer DOFand minimal actuationComplex nusculoskeletal models are needed to understand
the roles played by individual muscles when the movements under consideration involve
multiple joints and are governed by coupled dyitaeguations of motion (e.g., Anderson and
Pandy, 2002a Analysis of simje models has also yielded valuable insights that have changed
our understandin@f the dynamics of locomotioror example, the knowledge gained from
simple dynamic models has informed tresigin of legged robots (e.g., Collins et al., 20&&d
artificial limbs (e.g., Hansen et al., 2006

Examples of simple models of bipedal locomotion include the tegeent ballistic
walking modelof Mochon and McMahon (1980which led to the development of passive
dynamic wiking simulations and robots (McGeer, T99These studies demonstrated that stable
downhill walking patterns comparable to human walking could be realized without active control
or actuation of the jats. Garcia et al. (1998extended this approach by developing an
irreducibly simple passive damic walking model with a point mass at the hip, two rigid
massless legs, and infinitesimally small point masseiseateet.Alexander (1992presented a
model with forceactuated telescoping legs and torgueéuatedrevolutejoint hips. The model
could be made to walk or run depending on how the work performedhe actuators is

minimized. Srinivasan and Ruina (2006sed a minimal biped model with telescoping legs that
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Adi scoveredo wal king at | ow speeds ammizer unni i
energy expenditure.

Common to nearly all previous simulations of walking and running is the congtratn
the motion be periodicApplication of this constraint enhances computational tractability
because it permits simulation of a single strfde a halfstride if symmetric gait is assumed).

The assumption of periodicity is a sensible one for stasgate walking or running because such
gaits are generally considered to repeat after several transient cystesatesl with gait
initiation. There are, however, necessarily aperiodic gaits such as sprinting from rest and the
initiation of walking that have received less attemtistom previous investigatorsSeveral
aperiodic nodocomotor activities have been simulated with numerical optimizatmiuding:
maximumheight human jumping (Pandy et al., 1990); rising from a chair (Pandy et al., 1995);
optimal high dives (Albro et al., 2000); and vaulting (Cheng et al., 2009)

Sprinting has unique qualities that sepanatfrom other bipedal gait3.he initiation of
running at the start of a long distance race is not important to the outcome of the race, but the
rapid acceleration at the start of a sprint naceritical to performance (Baumann, 1976; Hunter
et al., 200%. During this periodthe mgsl es wor k t o i ncrease the for
center of mass and it is unlikely that this acceleration is accomplished with the same concern for
energetic efficiency that we commonly attach to walkamgd distance runningSimilar to
maximal heght jumping, sprinting has an unambiguous objective: to traverse a given distance in
the shortest time possible.

Bipedal sprinting has been simulated using models of varyomgplexity. Vaughan
(1983) simulated a sprinter using a mass subject to grounctioeaforces anddrag forces.

Ward-Smith (1985)used a mathematical model based on the first law of thermodynamics to
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explain why peak velocity is not achieved until the middle stages of anl@@e.Putnam et al.
(1987) described a sensitivity study wwhich joint moments were systematically changed to
elucidate joint mechanics during recovery action in $imgnThelen et al. (2005)sed a 34dof
muscle actuated model to simulate the swing phase of sprinting to investigate muscle and tendon
injury meclanians. Lee and Piazza (200%9imulated pusioff a sprinter with a threénk
muscledriven model, and demonstrated why longer toes and shorter plantarflexor moment arms
might enhance th@eneration of forward impulsé/an den Bogert et al. (200%imulatel
periodic maximal spnting with a seversegment 3of muscledriven model by discretizing the
system dynamics into a set of algebraic equations and solving for the maximum forvestd spe
Schultz and Mombaur (201@)mulated contact and flight phasespefriodic sprinting using a
torquedriven theedimensional model with 25 dofThe joint torque controls were estimated by
minimizing a cost function that was a weighted sum of torque magnitudes and torque variations
while satisfying a forward velocity meting constraint.

To our knowledge, there are no previous reports of simulated sprinting from rest in which
a biped model takes multiple discretelaperiodic step3.he purpose of this study was to create
a dynamic simulation of a sevw®0OF planar bipednodel that begins from rest and traverses 20
m with timeoptimal control without the imposition of a periodicity constraint. The results of the

optimization were examined in order to identify features in common with human sprinting.

3.2Methods

3.2.1 Thebiped nodel
We sought to create a planar biped model that was at once simple enough to facilitate control yet
complex enough to reproduce recognieaf#atures of human sprintinghe modified spring

loaded inverted pendulum (SLIP) biped model (FigBiE) employed in the present study had
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seven degrees of freedom controlled by four actuators and was based on models previously used
in successful simations of locomotion (e.g., Alexander, 1992; Abdallah et al., 2008; Raibert,
1986. The model was composetitelescoping legs that were fitted with springs, dampers, and
axial actuators, poirfeet (with massry), and a rigid trunk segment (with massand moment

of inertial;). The upper portion of each leg had masgg and moment of inertid§y). Eachleg

was connected to the trunk by a revolute hip joint. Flexion/extension tofqueasd T, were

applied at each hip joint and the leg actuators applied féicesmdF, that extended or retracted

the lower part of each leg with respect to the upper Jdntis, the controls were:
u=[T, T, F F] (3.1)
The model had seven generalized position variables: the horizontal and vertical positions of hip
(%, y); the lengths of legdy( |,); the angle between the trunk and the vertidd| énd the Ip
angles between the legs and the vertidald,):
P=[% Ykl @ o (32)
The dynamics of the system was described by the nonlinear second order system
MPY =f@Epu) (3.3)
in which M(p) was 7x7 positive definite symmetric masgtrix, andf was 7x1 vector of
functions encompassing Coriolis, centrifugal, gravitational, and contact forces that depended on
positions and velocities
V=gVl g9 (34)
and the control forces and torques giverubyheexplicit form ofthe Equation 3 was given in

the Appendix A. The model had also seven generalized speed variables which were the
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derivatives of the generalized position variables,vep, Then, the dynamics of the system was
described by first order differential eafions:
p=v (3.5)
M)WV =f@pu) (3.6)
The mass matrix was inverted using a symbolic manipulator package (MATLAB Symbolic Math
Toolbox v5.5) in order to obtain firstrder differential equations of motion in the form:

p=v (3.7)

V=MTEX @ pu) (3.8)

3.2.2 The foofloor contact nodel

A modified version of the model developed Marhefka and Orin (1999)as used to simulate
foot-floor contact. According to this model, the floor applpoint forces to one foot or both feet

that depend on the penetration depth of each contacting foot into the floor and the velocity of the
foot with respect to the flooiThe formulation of the model eliminates discontinuous impact

forces and sticky tens forces. The vertical component of the point force

GRF, = a’(1 +b'y (3.9)
was a nonlinear function of wvertical penetr at
the vertical penetratiord(idt) , and t he@ a&hid swe€aert seobdtical sti ff

parameters respectively. The vertical penetration
d=y, Hy:) (3.10)
was a function of the height of the foot above the flogy &nd an approximation of the

Heaviside step functioH. Similarly, the vertical penetration velocity
d= 3, Hy) (3.11)
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was a function of vertal foot velocity and the appxionate Heaviside step functiohe

discontinuous Heaviside step function was approximated with a smooth function

H(z) % %tan

o TN

(3.12)

to guarantee differentiabilityfThe horizontal component of the feitwor contact force (i.e., the

frictional force) was a combination of Coulomb and viscous friction:
GRF = mGRF tanh? +6x (—| y) (3.13)
X y s

The Coulomb component was also modeled with the approximate Heaviside stepnftmctio
ensure differentiabilityThe viscous fition component was included to decrease slidindghef t
foot relative to the floorThe constantgl andc were Coulomb and viscous dtion parameters
respectively.All parameter values defining the fefdbor contact model are given in the

AppendixA.

3.23 Optimal control problem formulation
The problem was formulated to find the thoptimal solution

min t, (3.19)

that satisfies the constraints based on system dynamics,

P(t) = v(t) (319
v(t) =M PO & )P Ou ) (3.16)
simple bounds
rlover gr g PP (317
on all optimization problem variables,
r=g p®vue) (318
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and boundary conditions such as the initial and final configurations and initial (zero) velocity of
the model:
b(t=0) b, 6 (3.19

bt=t) b, €& (3.20)

3.24 Discretization of the optimal control problem

The optimal control problem described above with generalized states and controls that were
continuous functions dfme is of infinite dimensionWe chose to reduce the dimensionality and
nonlinearity of this problem byirkt discretizing the problenThis approach of first discretizing

then optimizing, alsc al | ed t he Adi r e c,tresuitseinnt theooptimal CoBteolt t s ,
problem being transfared into one of nonlinear programming (NLP).

A fimultiple shootingo approach was used
Multiple shooting, a method for solving boundary value problems (BVP), may be used to
transcribea BVP into a NLP problem (Be{ts2010; Diehl et al., 2006)Following this
transcription, zeros of functions in the BVP domain would enforce continuity of the state
trajectories and constraints corresponding to the boundary conditions in the NLP domain. Direct
multiple shooting offersdvantages of both collocation, which transcribes the original problem
into piecewise suproblems, and single shooting, which enables the use of adaptive, erro
controlled ODE solvers (Betts, 2010; Diehl et al., 200Myltiple shooting was implemented in
this case to benefit from these advantages, and also in order to avoid both the accumulation of
nonlinearity on the boundary conditions and the numerical instability that occurs with single
shooting.

In direct multiple shooting (Betts, 2010; Diehl et 2006) the time domain was broken

into n-1 intervals ah nodes
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t,=t ¢, < t<t, (3.2))
and the control functiong(t) were discretized with piecewise zevader polynomials
uy=z, i L..n, t [tt.,) (3.29
Each generalized timeontinuous pasion and velocity function was transformed into artificial
initial conditions p; and v;, i= 1 @) on discrete time nodes for multiple intelsrdorward
integration schemd-or each interval, the systergriamics equations (Equations 3.15 and B.16
were forward integrated with an err@ontrolled and adaptive AdanrBashforthiMoulton PECE
sdver (Shampine and Gordon, 19748) MATLAB. The relative and absolute error tolerances
were both set to 18. The integrated generalized positions and velocities froim t..; were
denoted by[EI and& respectively which were used to defimemany continuity constraintsren-
1) for each gneralized state (Equations 3.24 and B.&&so, simple bounds (Equation 3)26d

bounday conditions (Equations 3.27 and 3)28ere also transformed into discrete forms. The

discretized NLP problem was as follows:

mqintf subjecttc (3.23

Pp.-B B | E.m (3.29)
Vie-% ® ) E.m (3.25

q" ¢q F;p;viiz ge¢™, i l=n (3.26)
b(t)-b, © (3.27)

b(t,)-b, B (3.28
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3.2.5Initial guess for the first iteration

Successful solution of the NLP problem requires a good initial point from which to egin t
iterative solution proces$or our puposes, we sought an initial set of controls that caused the
model to run20 m with an alternating gait.o obtain this initial guess, an evdrdsed forward
simulation was performed by integrating the system differentjahtons defined in Equation
3.15and 3.16 Each event triggered a transition to another state of the model, and then the
system differential equations were numerically integrated forward in time by using error
controlled and adaptive time steps ltiie subsequent event occuhstegraion was stopped
when the model traverses the prescribed distance and the control and state trajectories were then
re-sampled ah-number of nodes and used as the initial glesshe optimization proces#
threephase proportionaderivative PD) control scheme similar to thatedcribed by Raibert
(1986)was implemented to control the model during this forward simulation: (i) servo the upper
body tod; = 0 when the model is at single stance posture, (ii) servo the swing leg to the
prescribed desired angular position, (iii) sweep the contact leg forgfusim landing, and

contract the swing leg for foot clearance.

3.2.6Solution of the NLP problem

The NLP problem was solved iteratively by using a sequential quadratic programming (SQP)
method. In SQP, the original nonlinearly constrained problem is solved using a sequence of
quadratic programming (QP) syboblems with linearized constraints. SNOPTa(MATLAB
executablemey interface from TOMLAB), an SQBased optimizer desbed by Gill et al.

(2005)was used to solve the optimization problem.
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The linear objective function, dj=t;, was also the first variabdlin the optimization
problem.For thisreason, the gradient of the objective function with respect to the optimization

problem variableg was:

el
LMD

g(g) g iés (3.29
e

&

The Jacobian of the nonlinear adjty constraints (Equation 3.24 and 3.2&s obtained
using an external spardinite difference techniqudzach column of the Jacobian matrix was
obtained by perturbing each optimization problem variable with fixed perturbatioresiz®.

The sparsity pattern was provided to the solver, allowing the solver to perturb more than one
variable at a time, and thus estimate the Jacobian in fewek#iafunction evaluations for a

system withk-many NLP variablesSpecifically, this problem had 181 NLP variables and

each nonlinear equality constraint depended on NLP variables atvamltime nodes so the
Jacobian could be estimated with approxi mat el
for the nonlinear equality constrésnof the NLP problem (Egs. 3.24, 3.25, 3.27, and)32&

set to 10.

All NLP variables except; werescaled using the bounds (Eg. 3)26 place them in the
interval 0.5 0.5] ([0 1] forty). The bounds on the controls were the maximum force rqué&o
capacity of the actuatorBor the generalized coordinate variables, the bounds were deved f
the ggometry of the modellhe bounds originated from actuators and geomeénevactive at
some time noded§.he bounds on the generalized speed variables were used only for purposes of
scaling, however, and were set wide enough such that none of these basgnastive on the

solution of the optimization problenThe initial velocities and initial leg lengths (&t0) were
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effectively eliminated from the optimization problem by setting both the lower and upper bounds
on these equal to zero (for the initial laipd leg extension velocities) and setting both bounds on
initial leg lengh to a nominal value of 1.0 nThe initial trunk and hip angles, however, were
includal in the optimization problenThe boundary conditions were that the mass center of the
trunk was located ak = 0 m att=0 and was located at = 20 m att=t;. The bounds on the
actuators and generalized coordinate variables are found ApgendixA.

The PD-controlled simulation for producing the initial guess required 30 sscondn
Intel XeonE53442 CPUln this initial guess simulation, the model traversieel 20 meters in
6.64 secondsThe positions, velocities, and control trajectories were thesamgpled using 40
nodes for each seconde(, 40 Hz), giving a total ofn = 265 discrete nodefor ezh state and
control variable Next, the initial guess for NLP was created by collecting all discrete state and
control nodes and the final time, a total of 4771 (265-14 + 265-4 + 1) variables. SNOPT was
then used to solve the optimal control pesh| which required 3.6 hours to converge on the

same processaor.

3.3Results

The optimization converged to a solution that represented a substantial improvement over the
initial guess provided to the solver (FiguBe2). The PD-controlled initial guess sintation
traversed 20 m in 6.64 seconds; following optimization, this timereduced to 2.79 Bor both

the initial guess and the optimized sprint, the model accelerated at the start and reached a
maximum speed (Figur&3), but the acceleration was acqaished more quickly (1.2 s versus

4.3 s) and resulted in a much higher stesidye top speed (8.5 thwversus 4.3 mY in the

optimized simulation.
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Ground reaction force (GRF) (Figu®4) was the only external force acting on the
model aside from gratyi, and the optimization produced a faster sprint by causing the model to
generate ground reaction forces moneofable to forward propulsiomuring the fourth step of
the sprint, which occurs during the critical initial acceleration phase when thedgaednodel
increases from zero to its maximum value, the propulsive impulse of the GRF was 0.167 BW s in
the optimized simulation, increased from 0.043 BW shm initial guess simulatioriThe net
horizontal impulses of the GRiere 1.011 BW s and 0.48BW s (summed over all steps and
both legs) for the time optimal arfeD-controlled initial guess simulations, respectively, with
greater forward impulses occurring for the first six steps and the final two steps for the optimized
simulation (Figures-5).

Several gait features acquired by the simulation during optimization correspond to
behaviors known to be ssciated with human sprintinylost obvious among these forward
lean of the trunkThe PD-controlled initial guess simulation began with an upgrighnk that
was controlled to remain upright throughout the simulation, but optimization produced a trunk
that leaned forward to the maximum extent allowed, such thastparallel to the ground with
d: = 90° att = 0.0 s (Figure3-6). Following the std, the trunk of the optimized sprint model
straightened, reding a minimum forward lean af = 35° att = 1.97 s, but then began to tilt
forward again in preparation for a forward dive that was executed as the model crossed the 20 m
mark (Figures3-2).

There were also differences in the timing of the footfalls thageaped following
optimization.The initial guess simulation exhibited footfalls that were of relatively long duration
(lasting 0.210 s on average throughout the simulation), but the optimmed model used

shorter contact times (0.065 s on average). At the start of the optimized sprint the model
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employed longer contact times that facilitated greater propulsive impulses but later in the race,
after top speed had been attained, the model asetact times of very short duration (FigGre

7). Prior to optimization, initial foot contact occurred with the ipsilateral hip in peak flexion but
following optimization this timing was altered such that the hip was beginning to flex at the time
of foot contact (Figure&-8). This behavior was exhibited for every foot contact in the optimized

simulation.

3.4 Discussion
The sprinting of a simple biped model was simulated successfully. Distinct from most previous
simulations of walking and running, theitgavas rot constrained to be periodid.o our
knowledge, the present study represents the first simulation of multistep aperrottiogmvith
optimd controls.While the model was simple, the optimized sprint simulation exhibited several
features in ommon with the sprinting of humansThese included: reaching a steasdgte
forward velocity after a rapid acceleration from rest; use of longer duration foot contacts during
the acceleration phase and short contacts later in the race; making contalee \gitbund while
the foot is being drawn backward relative to the body; maximizing forward impulse of the GRF
during the acceleration phase; beginning the race with the trunk pitched forward followed by
gradual trunk straightening; and, finally, a forwatigde at the end that ensured the trunk center
of masscrossed the finish line firstt should be noted that none of these behaviors was specified
explicitly by the constraints of the optimiza
as it attenpted to minimize the objective function, which was simply the time at which the trunk
center of mass reach&d 20 m.

Human sprinters are well known to benefit from a forward leaning posture during the

initial acceleration phase followed by a period dgrwhich thetrunk becomes more upright
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(Slawinski et al., 2010)The model in the optimized simulation took on a forwi@ahing trunk
posture (Figure8-2 and3-6) similar to that employed by human sprinters in the starting blocks.
This posture decreas the acute angle between the body and ground, permitting the linear
actuators in the leg to gerate higher forward impuls@nother benefit of leaning forward at the
start is to place the trunk center of mass close to the line of action of the GRprekanting

the body from tipping backward when large forward impulsive forces are applied to the feet.
Both hunan sprinters (Mann, 2018nd the model in the optimized simulation (Figusez and

3-6) rotate their trunk toward an upright position asessation progresses and a steathte
forward velocity is reached.

Patterns of foot striking in elite human sprinters are similar to those disdogrthe
optimized simulabn. Optimization reduced foetoor contact times from the values used in the
PD-controlled initial guess simulation, but the presence of ledgeation contacts early in the
race persisted in the optimized simulation (Fig3&). Similar contact time patterns are
observed in elite human sprinters, whose contact times duringitiaé steps are substantially
greater than thosemployed later in the race (Mann, 201The optimized simulation also
featured extension of the swing leg hip just prior to foot contact (FBy8)e behavior observed
in human sprinters that has begmpadthesized by other researchers to reduce the braking impulse
of GRF by minimizing the horizontal velocity of the foot relative to theugtbjust before the
impact (Hunter et al., 2005; Hay, 1994). Seyfarth et al. (2088) a simple model with a feed
forward controller to demonstrate that the stability of running animals is enhanced by leg
retraction, the increase in angle of attack between the leading leg and the ground before contact.
Such changes in the angle of attack follow from the hip extemgimst prior to every foot

contact in the optimized simulation of the present study.
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Perhaps the most remarkable feature of the optimized sprinting simulation is the dive
forward that the model makes at the end of the simulation. This dive is a comp#s}obeh
accomplished by a sequence of actions taken over thiesewaral steps of the sprirt the
conclusion of a sprint race, it is common to see theawstunge forward at the tap®ne
suggested technique has tilnthe head loweret &nd both arms s t h
thrust backwardtocremt a f or war d f al | i nTde naodel in thenoptimizd®o ger s
simulation performs a similar maneuver as it pitches the trunk fdrd@amgenerate forward
falling. The behavior of the motlenight be considered to be an exaggerated version of the
falling forward strategy that risks injury, but injury risk was not incorporated intoghte o mi z er 0 s
objective functionlt is interesting to note that in exceptionally close races it is not ahttssee
sprinters actually dive at the finish line; this notably occurred recently in the 100 m T37
disability classification final at th2012 London Paralympic Games, when Fanie van der Merwe
of South Africa dived across the finish line to win a gokedal and set a world record.

Previous simulations of sprinting have made use of periodicity constraats.den
Bogert et al. (2009%imulated a full step of maximal sprinting with a more complex rseve
segment muscidriven modelThe direct collocatioiDC) method was used to solve the optimal
control problem with constraints representin
function that naximized the forward velocitylThe optimization generated movement $amto
that of a human runneFor the formulation of the optimal control problem used in the present
study, however, DC method often produced isfiei@ or suboptimal solutions.In another
sprinting simulabn, Schultz et al. (201Qimulated one step of sprinting with a toreresen
threedimensional modelAs in the present study, direct multiple shooting was used to solve the

optimal control problem but with the addition of periodicity constraints, a fixed average forward
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speed, and minimization #brques and torque variatiomhe optimization process produced a
realistic simulation of maximal sprinting which provided insight into the internal forces and
torques required to produce natural human running.

Previous authors have used an optimal controls approach to cause a sintolation
Aidi s cov é&ndérsogand Rasdy (200d3ed a 23 DOF model actuated by 54 muscles that
discovered human walking following solution of an optimal control problem that minimized
muscle metabolic energy consumed per unit distance traveled by thd. Mbderesulting
simulation reproduced many feg@es of normal human walkingn another study, Srinivasan and
Ruina (2006) used a much simpler model to perform a similar optimization, and their minimal
biped model discovered walking at low speeds amthing at higher speeds when gge
expenditure was minimizedn the present study several features of human sprinting were
reproduced, but without attempting to minemmienergy consumption or coBbr sprinting, the
optimization would have attemptedsiead to maximize the useful expenditure of energy in
order to reach top speed as quickly as possible so that the final time would be minimized.

Certain Imitations affected our studythe model is a simple one with few degrees of
freedom and as such itn®t capable of reproducing features of sprinting assocwitédoints it
does not havdt does not, for example, possess ankle or knee joints and the function of these
joints is known to be critiddo human sprint performanchk addition, the modelvas actuated
by leg forces and hip tougs rather than muscle forcehis choice of actuation prevented
consideration of several factors known to affect performance, including muscle composition and
architecture and neural function.

While the optimized giint simulation represents a substantial reduction in time to run 20

m, we cannot know for certain thatrepresents a global optimum/e did perturb the optimal
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solution by restarting the optimizer following addition of uniform randuse to the solutn

vector. This perturbation did not cause the solution to migrate toweer objective function
value.lt is interesting to note that, while the contact times changed as the optimal solution was
reached, the number of steps taken by the model in theipptirandPD-controlled initial guess
simulation was nearly the same: 22 for the initial anfo21he optimized simulation$t may be

that the optimal control scheme could not find solutions that differed by much in terms of the
number of steps taken.

Several design choices made during creation of the sprinting simulation require further
explanation. One such choice was the selectior 20 m for the sprinting distance. This
distance was selected because it allowed the model to reach astwadyebcity, although 20
m is shorter than the 30 m to 40 m distance requioy elite human sprinters (Mann, 201d)
accomplish the same task. Usirg= 20 m rather than a greater distance also reduced the
dimensionality of the problem and thus enhanced tmeenigal tractability. It was possible to
create longer or shorter simulations using the same methods; a simulation with a final distance of
x =15 m was created for which an optimal solution was found in which the locomotion time was
reduced from 5.43 s .23 s and this simulation exhibited the same behaviors noted for the 20
m simulation, except for a shorter steadgte velocity phase. Another design choice was the
inclusion of spring and damper el emenWe al oni
chose to base our model on ones previously used to successfoillate locomotion (e.g.,
Alexander 1992; Abdallah et al., 200&ndRaibert, 1985 The spring and damping elements in
our model s | egs may have fsavhen hctive actuaat boandsnt r o |
were exceeded, but it is also possible that spring/damper elements are not essential to simulating

aperiodic sprinting if the actuator bounds were adjusted accordingly.
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To investigate the effects of actuator bound selectios, made two additional
simulations with the bounds on the controls increased and decreased by 10%. The time required
to traverse the 20 m was reduced from 2.79 s to 2.65 s when the bounds were increased, and
increased to 2.93 s when the bounds were madkiesn#sside from this small difference in final
time, the humatike sprinting behaviors in these simulations were much the same as in the
original simulation, although early simulations attempted with much tighter restrictions on the
controls resulted i nonalternating gait similar to skipping. There are actuator properties other
than these bounds that we would expect to affect sprint performance, such aslocity
properties and excitatieactivationdynamics of muscles (e.g.aw Soest et al., B0O; Rankinet
al., 2008, yet were not represented in this model. We are currently at work adding such
properties to a musclectuated model of sprinting.

Recent experimental studies suggest that there are differences in musculoskeletal
architecture betweetrained sprinters annonsprinters (Lee and Piazza, 2009; Kuboakt
2011; and Baxter et al., 2002and the methods employed in this study could be extended to
study the relationship between muscle and jointctine and optimal performanc8uch a
extension of the model would require the addition of musculotendon actuators and the inclusion
of additionalof joints, such as the anklel$.is hoped that such an approach will enhance our
understanding of the musculoskeletal characteristics thatndate gait speed in pathological
populatiors as well as in elitetlaletes.In addition, the results of this study could aid in the
identification of essential elements of effective sprinting that could be helpful to the creation of

controllers for sprintig robots.
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Figure 3-1 The simple biped model used to simulate sprinting. Body segment inertial properties
shown in the figure are defined in the text, as are the generalized coordinates of the model, hip
actuator torques, and leg actuator forces. The right and left legs of the model were identical;
labeling of the left leg inertial properties, generalized coordinates, and actuator forces and
torques are omitted here for purposes of clarity. Thehlpftflexion angled, is positive when

the hip is flexed.
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Figure 3-2 Stick-figure trajectories for the model (top) completing the 20 m course under PD
contr ol t hat produced a Aj ogo witinghfollodvingr at i on
optimization for which the course was covered in 2.79 s. The sprinting simulation begins with

the trunk flexed forward, straightens as the race progresses, and dives forward at the finish. The
first 5 meters of the sprinting simulation aikso shown in detail (bottom). The time between

frames represented in these illustrations are 125 ms (top) and 53 ms (middle and bottom).
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Figure 3-3 Forward velocity of the hip in for the initial gueBg o gray) arid sprinting i§lack

simulations. Both simulations began from rest. The feedbagknt r ol | e d Aj ogo
approached a steady forward velocity of approximately 4'‘mT he sprinting simulation gains

speed quickly over the first few stepisen reaches a steady speed of about & forsmuch of

the race, before diving forward at the end.
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Figure 3-4 The horizontal (continuous lines) and vertical (broken lines) ground reaction forces
ofthei ni ti al guess Ajogodo simulation (top) and ¢t}
forces for the left and right feet are shown in gray and black, respectively.
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Figure 3-5 The net horizontalnnpulses of the ground reaction force (GRF) for each step during
the initial guess fAjogo simulation (unfilled
Impulses for GRFs applied to both the right (diamonds) and left (squares) feet are thogen.

forward impulses were generated in the first few steps of the sprinting simulation and again in
the last two steps to generate the terminal dive.
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Figure 3-6 The angular position of the trunk inettsprinting simulation. The trunk angle was
defined such that negative values dyfcorresponded to forward flexion (Figu@el). The
negation of that angle is plotted here, with 90° corresponding to the trunk parallel to the ground
and 0° indicating an upright posture.
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Figure 3-7 Tenp o r a l foot contact pattern for the i
sprinting simulation (black). Both simulations resulted in alternating gaits. While the foot
contacts in the initial guess simulation were fairly constant in duration, ansgminting
simulation contact times were larger at the start during the acceleration phase and became much
shorter for the remainder of the simulation.
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Figure 3-8 Flexion of the right hip plotted verstisne for the sprinting simulation. Right foot

contact (circles), consistently occurred as the hip was beginning to extend following maximum
fl exion. This Al eg retractiond behavior was

which foot comact always coincided with maximum hip flexion.
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Chapter 4

A hybrid dynamic walking simulation with evaluation of optimality criteria

4.1 Introduction

There are two main approaches used to create dynamic gait simulations. One commonly used

approach is to track ererimentally measured joint angles and ground reaction forces (GRFs) by

minimizing the deviations from the experimental measurements in an optimization framework

(Zajac et al., 2003). This approach produces a simulation that reproduces what hapfrened

motion capture experiment and permits estimation of variables that cannot be measured (or are

not convenient to measure) in ianvivo experiment, such as muscle forces. The second approach

is to generate predictive dynamic simulations that rely on sqtmaality criterion (or

combination of criteria) in an optimization frameworkpt@dictjoint angles, GRFs, muscle

forces, and etc. This approach permits synthesis and analysis of gaits under altered conditions.

While the predictive power of such simutats exceeds what is possible with a tracking

simulation, creating predictive dynamic simulations can be quite challenging due to the highly

nonlinear nature of the problem and the complex gait machinery. Another challenge in creating

predictive simulationsf locomotion using optimal controls is to identify optimality measures

with the potential to predict important features of the specific gait under investigation.
Predictive simulations are generally created by transcribing the optimal control problem

into a nonlinear programming (NLP) problem using one of the following three methods: (1)

direct single shooting, (2) direct collocation, and (3) direct multiple shooting (F8g@re

AppendixB). While direct methods discretize the control problem andydgpP procedures;

indirect methods search a solution for the necessary conditions of optimality without

discretization. Direct single shooting (e.g., Anderson and Pandy, 2001) is the most commonly
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used method and searches for only muscle control histbaeminimize an optimality measure
while trying to satisfy periodicity constraints on initial and final states. Direct collocation (DC) is
a method borrowed from physibgised computer graphics that has recently been employed to
muscledriven gait simulabns (e.g., Ackermann and van den Bogert, 2010) in which muscle
control along with state trajectories are searched to minimize an optimality measure subjected to
algebraic constraints originated from the governing equations of the system, as well &&any ot
constraints such as periodicity (Betts, 2010). Direct multiple shooting (e.g., Diehl et al., 2006) is
another method in which the total time span of the simulation is divided into several short
integration intervals, each of which has a set of ingiates and controls. An optimality measure
is minimized subjected to constraints requiring that the terminal values for the states at the end of
each integration interval are equal to the initial values for the next interval along with any other
constraing of the simulation. Each integration interval is independent from the other integration
intervals and forward integration time spans are relatively shorter, thus possible integration
errors are distributed through intervals, in other words, propagatemasffrom initial to final
states are attenuated. Another advantage is that direct multiple shooting suits better to
parallelization paradigm due to independency of integration intervals.

A good initial guess is required regardless of the choice addrgmtion method. A
randomly chosen initial guess may be problematic since shooting methods require integration of
state equations, and a random initial guess for initial states may lead integration errors, so the fail
of the optimization process. Multiptdhooting, however, has the potential to tolerate a poor
initial guess, because that guess may be integrable in each of the shorter integration intervals.
Multiple shooting still requires an initial guess for the states and controls that gives initial

congraint violations small enough that a feasible solution is possible. One method for
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determination of the initial guess is to collect experimental gait data and solve for states and
controls using inverse dynamics and static optimization. Another methmdesierate an
approximation of the desired gait using forward dynamics and a feedback controller (Celik and
Piazza, 2013). A third approach might make use of-sigpendent muscle reflex loops to
synthesize walking (Geyer and Herr, 2010); an approattts been extended to walking and
running at different velocities by incorporating estimation of control parameters and initial states
while maximizing an optimality measure (Wang et al., 2012).

While there is no consensus on the best optimality me&sudgnamic simulation of
walking measures based on the following have been proposed:, mechanical energy (e.g., Ren et
al., 2007), metabolic energy (e.g., Anderson and Pandy, 2001), and muscle force (Pedotti et al.,
1978), muscle activation (e.g., Ackemmaand van den Bogert, 2010). Stability (e.g., Townsend
and Seireg, 1972) and trunk attitude and altitude (Gubina et al., 1974) have been used with
controllers that to synthesize bipedal locomotion. Selection of proper optimality criteria is
critical to ceating a predictive simulations, because simulation behavior at the level of muscle
force may be sensitive to this choice even when the overall output motion is not (Ackermann and
van den Bogert, 2010).

The purposes of this study were: (i) to creata@lioteve dynamic simulation of a complete
one full periodic walking cycle with direct multiple shooting method; and (ii) to evaluate a set of
optimality measures derived from muscle activation, or mechanical energy expenditure, or
metabolic energy expenditte t o represent o6effortd, as well
order to reproduce salient features of human walking. Initial guesses for the optimizations were
obtained using a simulation of bipedal walking that relied on muscle reflex loops (@Gdyer a

Herr, 2010).
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4.2 Methods

4.2.1The musculoskeletal biped model

The musculoskeletal model (Figusel in AppendixB) used in the simulations was planar and

had seven body segments: a trunk and right and left thighs, shanks, and feet. The body segments
were connected with revolute joints at ankle, knee, and hip and a planar joint connected the trunk
to the ground. The model was driven by sixteen (eight on each legyp#limusculotendon

actuators representing eight muscles or muscle groups on eaof thiddody: soleus (SOL),

tibialis anterior (TA), gastrocnemius (GAS), vasti (VAS), hamstrings (HAM), rectus femoris

(RF), glutei (GLU), and hip flexors (HFL).

The model had nine kinematic degrees of freedom (dof), each of which was associated
with two generalized states (position and velocity). Each musculotendon (MT) actuator also had
two states, a muscle fiber length and a muscle activation. Each MT actuator had a muscle control
variable, so the model had fifty states in all and sixteen muscle cofth@goint moments were
sums of products of MT force and moment arm, and passive joint moments, which were included
to model mechanical effects of other tissues than MT. Further details of the model can be found

in the AppendixB.

4.2.2The footgroundcontact model

The footground interaction was modelled with a compliant contact model with nonlinear
damping (Marhefka et al., 1999; van den Bogert et al., 2009). The model applies point forces in
horizontal and vertical directions which depend on petietrand penetration velocity of the
contact points with respect to the ground. To be able to eliminate discontinuity in the vertical

contact forces, a relatively small linear force was applied to the contact points when the leg was
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in the swing phase. THermula of the ground reaction force in vertical directiGiRE) is as

follows:

_\.e.- kiycp(l _b.ycp) if ycp e

GRF = ) .
YT Ky kD@ By ify, O<

(4.1)

A differentiable Coulomb friction model was used for the horizontal, i.e., friction forces
with the aid of a tangent hyperbolic functidre formula of the friction force is as follows:
GRF, = /1GRE tanh(cy,) (4.2)
There were eleven equidistant contact points between the ball of the foot and the heel. The

constants in Equatiorkl and4.2 and the coordinates of the contactnp®wee given in the

AppendixB.

4.2.30ptimization framework

The direct multiple shooting method (Diehl et al., 2006; Betts, 2010) was used to formulate the
optimization problem. Each continuous state trajectory was discretinethaty discrete nodes,

and castant muscle controls were used between those discrete nodes. Then, the system
dynamics equations were integrated not in a single shot but in multiple shots, where each discrete
state value at discretization node was used as an initial statenany inegration intervalsn(=

m- 1). The continuity violations were modelled as nonlinear constraints which were the
differences between the terminal values for the states at the end of each integration interval and
the initial values for the next interval (kige B-2 in AppendixB). Another nonlinear constraint

was derived from the locomotion velocity of the bipedal model. Bilateral symmetry was
imposed, so that only one step of walking was simulated, with thegidgterminal conditions
constrained to matdime leftside initial conditions and vieeersa. These periodicity constraints

were implemented as linear equality constraints. In addition to the linear and nonlinear
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constraints, simple bounds were set for every state and muscle control of the medeluids

on generalized position states were based on natural joint limits of human ankle, knee, and hip
joints as well as the geometry of the model. The bounds on generalized velocity and muscle fiber
length states were arbitrary values, and never aictitlee solution. They were implemented

solely to scale the optimization problem. The muscle activations and controls were bounded
between 0.01 and 1. The optimization variables were discrete values of states at discretization

n o d e ) afdEdhdiant conto | ) bétdie@nitwo subsequent discretization nodes, and the
final or step timetf). Fifty discretization node$¥50) were used for each state variable and

muscle control. A scalar objective function (see nextsadiion) was minimized subject tamte
constraints and simple bounds. The above described NLP problem was solved with a SQP solver,
specifically SNOPT (Gill et al., 2005). Initial guess of the NLP problem was generated by re
sampling state and control trajectories of a complete one flkingacycle which was obtained

by using muscle reflex loops previously described by Geyer and Herr (2010) to control the

model.

4.2.40bjective functions and simulations

Three optimality measures representing effort were tried, including terms basedab® mus
activation (1), mechanical energy expenditutg)( or metabolic energy expenditutd)( These
effort terms were augmented with additional terms based on trunk angle and vertical GRF to
stabilize the trunk and avoid GRF spikes resulting from fopipatg as

o’ 10 o
J :V\{91|2|3 "'Wz_a q Ws_ aGRFyrni (4-3)
ni; 2n

i3
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(%]
wherew;,w,,andws are weighting factors (either zero or ong)is the trunk angle in degrees

(%]
with respect to the vertical at the discrete no@&¥;, ground reactiofforce (in BW) in vertical

direction for right and left foot at the discrete nodes.

When an objective function which only represents effort is used, the bipedal model might
just try to traverse some distance with the prescribed average forward speisd 1tB&6 m /s in
all simulations (Kdaba et al., 1989); and wouldriof eel 6 an urge to keep
Normally, balancing the trunk segment in humans is a complex motor task with the involvement
of multiple sensory receptors, reflex loops, angsates. The trunk orientation in the sagittal
plane fluctuates about +1 degrees over a stride, and with relatively small accelerations of head,
human balance and postural system provides a stable base for visual and vestibular systems
(Winter, 1995). Our mdel does not rely on information from such sources for control of its
movements, as it utilizes optimal controls. Improved control of the trunk may enhance the ability
of the simulation in terms of reproducing more realistic walking cycles, so a ternediéom
the trunk angle was incorporated into the optimality criteria, and its influence on the simulations
was tested.

Although it is possible for the foot of the swing leg to slap the ground with minimal
neuromuscular control (and minimal effort) raality the body actively controls preparation for
stance by activating hip and knee extensors, along with dorsiflexors. While slapping the foot on
the ground would minimize activation and effort, the attendant repeated impulsive forces would
be implicatedn fatigue accumulation which may lead to tissue failure, thus mitigating such
forces at heddtrike is highly important to musculoskeletal tissue health (Collins et al., 1989;

Whittle, 1999; Warner et al., 2013). An objective function composed of ordffan term may
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thus be inadequate to promote such a control on stance preparation, and a term derived from
vertical GRF was incorporated and its effect was tested in the simulations.

Almost all simulations of walking utilizing an optimization framewarklude an effort
term as one of the optimality criteria (or the sole criterion). Such measures derived from muscle
stress (e.g., Glitsch and Baumann, 1997) or muscle activations (e.g., Ackermann and van den
Bogert, 2010) with various exponents and weigipfiactors were often implemented not only
their ability to reproduce salient features of gait but also their cozwveaiin application, since
they ae readily available variabs in simulations, thus they do metjuire additional modeling

effort. The frst effort term we implemented in this study was

1 ™
= V_ paddt .
4 havm% “‘Eﬁ “4)

whereVyis muscle volumeny, is number of muscles;is muscle activation, arfais duration of
integration in each multiple shooting interval. For torque driven sinouisitia sensible choice is
minimizing mechanical energy expenditure over a complete gait cycle (e.g., Ren et al., 2007). In
this study we used a muscle actuated model and included an effort term based on mechanical
energy expenditure on ankle, knee, andjbiipts per unit distance traveled to make comparisons
with other effort terms.

! a6 ﬁ v, \dt (4.5)

e =
n’l)odys_ i=1 o

wheremyogyis total body mass_is walking step lengtHjis joint moment, and is joint

angular velocity. Another effort term used in predictive dynamic simulations of walking is
minimizing metabolic energy expenditure per unit distance traveled (e.g., Anderson and Pandy,
2001), as it has been shown withman experiments that people prefer to walk at speeds which

would minimize cost of transportation (Ralston, 1976). The muscle energy expenditure rate (
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) was presented sum of four terms, namely, activation heattraketiie maintenance heat

Ernuscie
rate (h, ), the shortening/lengthening heat raltg Y, and the mechanical work rate of the
contractile element. ) (Umberger et al., 2003 and Umberg2010 for the detailed
description of the model)

Epusae=Na y I it (46)

The last effort term used in the simulations was

t t

%nwnmusc Enonmuscgt -|a m muscle . m scgt (47)
rn)odys_(; Ien ¥ I ﬁ i

&=

wheremhonmuscidS Mass of tissue in the body other than musgle;  _.is the rate metabolic

energy expenditure of nonmuscle tissue (was set to 1.2 W/kg, which is the normal energy rate for
standing (Umberger et al., 2003; Waters et al., 1998))scieiS the muscle mass of each muscle
modelled in the study. The integs in Equatiort.5 and4.7 were estimated with numerical

integration, but the integral in Equatidr was calculated analytically as the explicit form of it

was available and integrable. Four simulations were created for each effort term by setting such
weighting factors asaf,w»,ws) = (1,0,0), (1,Wo,ws) = (1,0,1), vi,Wo,w3) = (1,1,0), and

(w1,wo,w3) = (1,1,1) in Equatiod.3. Hereafter, independent of weighting factors combination,

the simulations used effort terfith 3 and (3 were named as muscle activation effort term,
mechanical energy expenditure effort term, and metabolic energy expenditure effort term

simulations.

4.3 Results
The initial guess for each optimization was a walking cycle; following optimizatine

simulations always converged to different walking cycles with substantially lower effort. For
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instance, the effort objective was decreased 65.7% for the muscle activation effort term
simulation with only effort term (i.e.wq,w2,w3) = (1,0,0)). Tle optimization located feasible

and optimal periodic walking simulations for muscle activation effort term and metabolic energy
expenditure effort term simulations. The optimality tolerance for the mechanical energy
expenditure effort term simulations, hever, were never satisfied even the solutions were
feasible. The waltlock times to create simulations showed variation among effort terms. For
example, the solutions were obtained approximately in an hour for muscle activation effort term
simulations wHe the other simulations took between 1.5 and 26 hours.

The model 6s SL and SF were very close to t
when mechanical energy expenditure based objective functions with such weighting factors as
(Wi, wo,w3) = (1,1,0)and (vi,w2,w3) = (1,1,1) were used. The model took relatively smaller steps
(1.15- 1.26 m) with higher cycling frequencies (1.0%.14 Hz) in muscle activation effort term
simulations (Figurd-1). The locomotion velocity was fixed as 1.306 m/s inialutations, but
the stride length (SL) and stride frequency (SF) were free to vary. SL and SF values of the
simulations were compared with the average experimental values derived from Kadaba et al.,
1989 (SL: 1.361 m, SF: 0.9596 Hz) in Figdré.

When caonpared to the experimental data, the joints generally followed similar
extension/flexion patterns (Figude2, 4-4, and4-6). Peak values for joint angles, however, did
show some discrepancies. For example, only the simulation with the mechanical efoetgy ef
criterion (Figured-4) was able to produce knee flexion during stance phase that was similar to
that observed during normal human walking. In terms of joint moments, the simulations did not
perform well to reproduce humdike trajectories (Figurd-2,4-4,and4-6 ) . The model 6s

moments did not exhibit smooth trajectories especially for hip moment in metabolic energy

58



expenditure effort term simulations, and for knee and hip moments in mechanical energy
expenditure effort term simulations.

When areffort term was used as the only optimality criterion, the peak vertical GRFs
were larger than 4 BW (Figuee2, 4-4, and4-6). When a vertical GRF term was added to the
objective function, the peak vertical contact forces ahdedstrikewere reducedot1.22 BW
(muscle activation effort term), 1.34 BW (mechanical energy expenditure effort term), and 1.13
BW (metabolic energy expenditure effort term); when vertical GRF and trunk angle terms were
included simultaneously, the peak vertical contact fortbselstrikewere further reduced or
stayed the same: 1.17, 1.19, and 1.13 BW (Figt2e4-4, and4-6). For normal human walking,
the average experimental values have been measured to be 1.10+0.08 BW (Chao et al., 1983).
The model exhibited relativelyrger trunk angles (up to minus 7.8 degrees) without the trunk
angle term included as an additional optimality criteria, but with the inclusion of the trunk angle
term, the trunk excursion was confined to +1 degree band (MeRyr4-4, and4-6).

Average nuiscle utilization over a stride increased by including the trunk angle and
vertical GRF terms. For example, average muscle utilization over a stride increased from 6.3% to
7.9%, 15.0% to 18.2%, and 5.2% to 8.4% for simulations created using muscleagtivati
metabolic energy expenditure, and mechanical energy expenditure effort terms, respectively. For
muscle activation effort term simulations, GAS action was late when compared to the
experimental data. Also, VAS, RF, and HFL muscles were not activatiee iaitial contact. On
the other hand, with the inclusion of the vertical GRF term, TA activation was increased at the
heelstrike up to similar amplitudes measured in human experiments (Figudeb, and4-7).

For the metabolic energy expenditure dfterm simulations, knee muscles HAM, VAS, RF

were not activated throughout the stride (Figt#®. Additionally, similar to the muscle
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activation effort term simulations, TA activation at the heelstrike was increased in metabolic
energy expenditure efforerm simulations with the inclusion of the vertical GRF term.

The model underestimated metabolic energy expenditure in metabolic energy expenditure
simulations (Figurd-8). The model consumed metabolic energy at a rate of4488; 3.37
3.83, and 7.88.63 W/kg for simulations created using muscle activation, metabolic energy
expenditure, and mechanical energy expenditure effort terms, respectively. &-8)urehile
oxygen consumption experiments indioated that

walking at 1.306 m/s was 4.7 W/kg (Burdett et al., 1983).

4.4 Discussion

The hybrid approach was successful in terms of creating predictive dynamic simulations of
periodic full normal walking cycles with various optimality criteria. The simulationsoid

track experimentally obtained gait data, but rather predicted joint angles, joint velocities, muscle
activations, muscle fiber lengths, muscle controls, and stride time in an optimal control
framework. Furthermore, the simulations did not have anjaixgependency on human
experimental data for the estimation of initial states or the initial guess for the muscle control
histories. The muscle activation effort term simulations converged to feasible and optimal
solutions in approximately one hour, bé other simulations used more computation time.
Different optimality criteria produced distinct gait cycles in terms of muscle utilization, peak
vertical ground reaction forces, stride length and frequency, and average metabolic energy
expenditure ratel he additional optimality criteria based on trunk angle and vertical GRF

yielded simulations with less trunk excursion over a stride and peak vertical contact forces at the

heelstrike.
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The novelty of this simulation study was tald. First, to our knovedge, the present
study is the first hybrid approach in terms of implementing a feedforward control with reflexes to
obtain initial guess data and test abilities of the mathematical model along with an optimal
control with direct multiple shooting to syrgsize human walking without using any
experimental human gait data explicitly. In previous predictive simulations, experimental gait
data was used to specify initial states (e.g., Anderson and Pandy, 2001), and to estimate initial
guess for states and ¢ovis (e.g., Ackermann and van den Bogert, 2010). Second, we introduced
new terms as optimality measures, namely, tru
ability in terms of reproducing salient features of normal human walking. Previous auth®rs hav
typically used efforts terms alone, such as cost of transport (Anderson and Pandy, 2001),
metabolic energy expenditures (Ren et al., 2007), and muscle activation integrals (Ackermann
and van den Bogert, 2010).

Inclusion of a GRF term in the objectiftenction in the present work reduced the spikes
in GRF that have been reported for previous predictive simulations. In general, predictive
simulations of walking produce spikes in the ground reaction forces. As evident from the current
study and previougwdies (Anderson and Pandy, 2001; Ren et al. 2007; and Ackermann and van
den Bogert, 2010), optimal control approach in predictive simulations did not yield smooth GRF
trajectories with an objective function consisting of only effort terms. Ren et a¥.,2@@ested
that lack of smooth GRF trajectories probably arose from model simplifications such as lack of a
pelvis segment. However, even when the pelvis segment was modeled by Anderson and Pandy
(2001), similar spikes were present. The results of theeptestudy suggest that this condition
does not arise from a lack of model complexity, but rather from poor muscle control as weight is

accepted at the beginning of stance phase. The relatively simple bipedal model used in this study
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equipped with reflexdops was able to produce GRF trajectories that closely resembled
experimental GRF traces. In optimal control simulations, the foot contacted with the ground with
larger horizontal velocities, yet reached zero velocity quicker when compared with the values
from human experiments (Winter, 1992). As also mentioned above, there was lack of adequate
and timely activation of muscle groups. For instance, in the HAM muscle, which could control
contact velocity prior heel contact (Winter, 1992), activity was redtilate and small in the
predictive simulations of walking (also in Anderson and Pandy, 2001; Ackermann and van den
Bogert, 2010). Furthermore, while average toe clearance was 1.29 cm in human subjects (Winter,
1992), the model ¢ Bimuatidne(asd in AndersorganPandy] 2001). t h e
These imply that optimal controller does not aim to produce a safe trajectory of the foot (Winter,
1992), but rather favor a trajectory that would minimize effort. In summation, our results showed
that GRF érms helped to prevent unrealistically high GRFs and to alleviate spikes by using such
strategies as a more active stance preparation by increasing TA activation before and after
contact with the ground.

Metabolic energy expenditure effort term simulatidigsnot produce the most realistic
gait in terms of metabolic energy expenditure. Specifically, metabolic energy expenditure
simulations underestimated the average metabolic energy expenditure rate (simulation values,
3.37-3.83 W/kg vs. experimental valué.7 W/kg (Burdett et al., 1983)), but the values for the
muscle activation simulations were closer to the experimental value4836V/kg). Similarly,
mechanical energy expenditure simulations underestimated average metabolic energy
expenditure rates{(mulation values, 0.5@.93 W/kg vs. experimental value, 1.09 W/kg
(Umberger and Martin, 2007)), whereas muscle activation{1.&® W/kg) and metabolic

energy expenditure simulations (1-3®30 W/kg) overestimated the metabolic energy
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expenditure raté/Vhile our simulations underestimated the optimality measure it minimized,

some other predictive simulations made overestimations; for instance, Anderson and Pandy
(2001) and Ren et al. (2007) estimated average metabolic and mechanical energy expenditure as
6.6 W/kg and 2.80 W/kg respectively. These results indicated that minimizing an optimality
measure does not necessarily lead to realistic gaits for that particular measure, and that some
other measures may perform better. The possible explanationsserdhserved

underestimations were that the modelnitiuse larger muscles such as VAS and HAM at all in

the metabolic energy expenditure simulations, because their usage would be costly in the
objective function, and cocontraction of agonist and aniagoruscles would be inefficient in

terms of producing joint motion yet would have stabilizing effect on joints.

In the present studgijrect multiple shooting produced predictive walking simulations
efficiently. Anderson and Pandy (2001) implementeddisingle shooting, and solution of their
optimization required 10,000 hours yet was never able to satisfy the periodicity constraints. It
should be noted, however, thiheauthors used a 3D model with 54 muscles and their
optimization problem was solvegsing processors available in 2001. The simulation times for
Ackermann and van den Bogert (2010) and Ren et al. (2007) were comparable to ours, but they
used approaches that do not require integration of state equations. In those intégeation
approachs, the error between discretization nodes should be estimateddlying the
optimization problem with a finer mesh which may increase the computation time dramatically;
otherwise, the influence of discretization error of the state trajectories ohjdative function
value will be unclear. In our simulations, with the parallelization of the independent integration
intervals, the overall execution time for forward integration was decreased by neaifigidour

with a fourcore processor. The trend atreasing the number of independent central processing
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units (cores) in a single computing component (die or chip) is expected to continue in the coming
years (Sutter, 2005). Thus it would possible to create more complex models and still solve
similar probbems in an acceptable time period. Unlike muscle activation effort term simulations,
the mechanical and metabolic energy effort term simulations took longer to converge. The reason
was probably that the gradient of the objective function suffered froertbes in numerical
integration process of the objective functions described in Equéband4.7. That indicates
computational times depend on the behavior of the optimality criteria to some extent.

There were several limitations of the study to coasMWe cannot know that a global
optimum was found buhe objective function values of the effort terms following convergence
were comparable to or even lower than the experimentally measured effort in humans. Also, the
model included not all but majaower extremity muscles. The choice of which muscles were
included depended on previous successful modeling studies of human locomotion (e.g., Geyer
andHerr, 2010; Wang et al., 201&ckermann and van den Bogert, 2D10he excluded
muscles were not printaovers, but might have had secondary effects. In the muscle activation
simulations, we used sum of the squared muscle activation integrals scaled with muscle volumes,
yet there were other studies implemented unitary weights aioigaxponents (e.g.,
Ackermann and van den Bogert, 201We chose such exponent and weight combinations to
emul ate oO6effortd, since higher exponents with
functions (Ackermann and van den Bogert, 2010). The selection of the expamite vertical
GRF term was also an open question; therefore, we tried powers of two, four, six, eight, and ten.
We selected the power of four because this choice resulted in better agreement with the

experimental data (Chao et al., 1983) in termsroiiarity of peak values.
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In conclusion, the computer model and simulation framework used in this study enabled
efficient synthesis of normal biped walking; howevesing only effort terms such as metabolic
and mechanical energy expenditure did not réypce several important features of human
walking. Our findings indicated that criteria other than effort need to be included if a truly
realistic predictive simulation is the goal. We proposed two new terms for the objective function,
minimizing trunk excesion and vertical GRF over a stride cycle. Including these terms helped to
alleviate some undesired behaviors, but those terms were generally considered as the outputs of
the motor behavior. Thus, future research might focus getting better resultsiatiyeed
simulations by incorporating additional terms such as comfort, safety, and disturbance rejection
that have the potential to reproduce desired behavior without explicitly incorporating output
variables. Predictive simulations have great potentibétased in addressing theoretical
guestions about gait, as well as for use in clinical applications. Producing faster simulations with

better realism would increase the value and applicability of predictive simulation approach.
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Figure 4-1 The stride length (SL) and stride frequency (SF) values observed in the walking
simulations. The diamond, plus sign, and square markers indicated muscle activation,
mechanical energy expenditure, and metabolic energyhditpee simulations respectively.

Cyan, red, blue, and green colors were used for weighting factors (1,0,0), (1,0,1), (1,1,0), and
(1,1,1) respectively. The black lines with the filled circular marker showed average experimental
values for SL and SF deriggdrom Chao et al., 1983.
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Figure 4-2 The joint angles, joint moments, and GRFs of the muscle activation simulations for

one full walking cycle from left foot heel strike to left foot heel strike. Cyad, blue, and green

colors were used for weighting factors (1,0,0), (1,0,1), (1,1,0), and (1,1,1) respectively. The

shaded gray areas in the ankle, knee, and hip angles and moments were reproduced from Kadaba

et al., 1989; which are enclosed byoneplilbamqmi nus st andard deviati ons
subjectsdé nine trials (three cycles x three d
knee flexion, and hip extension were negative. The shaded gray area in the trunk angle enclosed

by £1 degee (Winter, 1995). The shaded gray areas in GRFs were reproduced from Chao et al.,
1983; which are enclosed by one plus and minu
normal subjects.
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Figure 4-3 The muscle activations for one full walking cycle from left foot heel strike to left foot

heel strike for the muscle activation simulations. Cyan, red, blue, and green colors were used for
weighting factors (1,0,0), (1,0,1), (1,1,0), and (1,1,1) rethgedy. The gray lines were

reproduced from Kadaba et al., 1989; and represent the mean value of EMG envelopes of a
representative subjectsd nine trials (three ¢

68



































































































































































































