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Abstract

Malaria parasites have evolved astonishingly varied means of solving the same basic
problem of converting host resources—red blood cells—into parasite biomass that
can be transmitted to vectors and ultimately, new hosts. This diversity is challeng-
ing to explain, because if a life history trait improved transmission, parasites with
that trait would be expected to displace others. How can such divergent strategies
all lead to sustained transmission success? I focus on two aspects of the malaria
life cycle, synchronization of blood stage infection and allocation to transmission,
to examine how within-host ecology can maintain diverse parasite strategies. The
models I develop to address that question are also used to identify robust methods
for inferring parasite traits from time series data.

The models show that the advantages of synchrony depend on the interplay
between competition for host resources, immune clearance, and the odds of trans-
mitting to a vector, all of which vary with parasite densities. Using data from
lab-cultured parasites, I examine the intra-strain competitive interactions in more
detail, finding preliminary support for a form of density-dependent competition
that, counterintuitively, may benefit synchronous parasites. The model demon-
strates that traditional inference methods can give misleading estimates of par-
asites’ life cycle length. Within the host, the model suggests that competition
between coinfecting strains should reduce allocation to transmission stage produc-
tion. Allowing transmission investment to vary through time, the model indicates
that transmission investment is especially costly early in infection. Inspired by the
controversy in the literature concerning how best to infer transmission investment,
I use the model to show that current methods are likely incapable of ruling out
the null hypothesis that transmission investment is fixed through time rather than
plastic, and develop improved methods for inferring transmission investment. The
theory developed here can inform efforts to describe the rich diversity in parasite
life history as well as the adaptive significance of that diversity.
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Chapter 1
Introduction

Malaria life history is enormously variable (Garnham, 1966), but the patterns of

diversity are likely driven more by selection than by phylogenetic relationships

(Perkins & Schall, 2010). This group of parasites has evolved an impressive range

of strategies to cope with the challenges posed by immune defenses, resource com-

petition, and uncertain chances of transmission. Within the vertebrate host, two

life history traits have proven especially challenging to put into an adaptive context:

synchronized cycles of blood-stage infection, and low investment into transmission.

Parasites exhibit great diversity in their degree of synchronization (e.g., Kitchen,

1949; Garnham, 1966) and their investment in transmission (reviewed in Taylor &

Read, 1997) both within and across species, suggesting that these curious life his-

tory traits may represent not a fundamental constraint on the biology but rather

strategies whose adaptive benefits have yet to be characterized.

Synchronized dynamics

Periodic fevers are the classic malaria symptom, thought to be an outward manifes-

tation of highly synchronized parasite dynamics (reviewed in Mideo et al., 2013b).

Cycles of fever are thought to be triggered when waves of parasites burst out of red

blood cells in unison following tightly synchronized intra-erythrocytic development

(Kitchen, 1949; Kwiatkowski & Nowak, 1991). These fevers are debilitating, and

synchrony was once viewed as a host adaptation to minimize the ill-effects by con-

fining them to a relatively short period (Kitchen, 1949). Accordingly, observations
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of human infections suggest that asynchronous parasite development may cause

more severe symptoms (Touré-Ndouo et al., 2009). Once established, synchronous

dynamics might be sustained through fever, which is especially devastating to

late-stage parasites (Kwiatkowski, 1989). As waves of parasites burst out of red

blood cells, they may provoke a fever that kills any mature parasites that have

lagged behind, and models demonstrate that a density-dependent feedback loop of

that sort could maintain synchrony (Kwiatkowski & Nowak, 1991). Some form of

host-mediated intervention is needed to explain sustained synchrony, because cul-

tured parasites cannot maintain synchrony for long without artificial stimulation

(Trager & Jensen, 1976; Lambros & Vanderberg, 1979). However, fever cannot be

the cause of synchrony, since highly synchronized infections have been observed in

asymptomatic humans (Färnert et al., 1997).

The ability of the host to enforce synchrony may depend in part on how the

infection begins: Mosquitoes inoculate the host with parasite stages called sporo-

zoites that migrate to the liver, where they multiply before detaching from the

liver and releasing asexual merozoites that initiate blood-stage infection (Nardin

& Nussenzweig, 1993). Presumably, parasites could be released in a pulse or grad-

ually over many hours, though only gradual release has been documented so far

(Sturm et al., 2006), in a rodent malaria species that tends towards asynchronous

growth (P. berghei, Deharo et al., 1996). Thus the first round of infected red blood

cells could consist of either parasites at nearly the same point in development

or scattered across a broad range of life stages, reflecting either a synchronous

or asynchronous start to infection. While fever may not be required, other host

defenses could regulate synchrony in the parasite population, especially if their

efficacy varies with parasite numbers. Early host defenses may saturate at high

parasite density (Haydon et al., 2003; Elliott et al., 2007; McMorran et al., 2009;

Costa et al., 2011; Metcalf et al., 2011). Any parasites that fall out of sync would

be present in small numbers by definition, and immunity could effectively clear

those parasites away with only minimal effects on the large well-synchronized por-

tion of the population, thereby maintaining synchrony through time. In contrast,

specific immune measures are thought to scale up with parasite numbers (Antia &

Koella, 1994), but theory suggest that negative feedbacks on growth could main-

tain synchrony if their action is delayed, allowing a synchronized cohort to trigger
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strong immune defenses and escape by developing into a less vulnerable life stage

by the time immunity has been upregulated (Kwiatkowski & Nowak, 1991). Re-

cent theory suggests that synchrony could then benefit the host by allowing better

immune control of parasite numbers (McQueen & McKenzie, 2008).

Merozoites invade RBCs 
Interference competition reduces 

invasion success1 

Blood-stage 
infection (asexual) 

Trophozoite 
DNA synthesis begins4 

Target of platelet inhibition5 

Ring 
Early rings less 

susceptible to anti-
malarials2 

Bursting: 
Merozoites targeted 

by γδ T cells6 

Schizont 
Late schizonts less 
susceptible to anti-

malarials2 

Activates γδ T cells6 

Invading parasite 
takes a “big gulp” to 
form a food vacuole3 

Figure 1.1. Key events in the asexual life cycle. Sources: 1, Boyle et al. (2010); 2, ter
Kuile et al. (1993); 3, Elliott et al. (2008); 4, Arnot & Gull (1998); 5, McMorran et al.
(2009); 6, Costa et al. (2011).

Yet whatever the benefits for the host, synchrony should come at a cost to

parasites. Red blood cell-invasive forms (merozoites) have only minutes to invade

red blood cells, and their chances of success decline when greater numbers of mero-

zoites are present (Boyle et al., 2010). This competition should be most costly to

synchronous parasite populations, where huge numbers of merozoites burst out si-

multaneously. Consistent with this competitive cost, analysis of malaria infections

in humans suggests that ‘oscillatory’ (i.e., synchronous) infections may have lower

intrinsic growth rates than ‘non-oscillatory’ ones (Simpson et al., 2002). Such a
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growth disadvantage could be devastating in coinfections, which are common in

malaria (e.g., Jafari-Guemouri et al., 2006). Interestingly, synchronous dynamics

are associated with less diverse infections (Touré-Ndouo et al., 2009). The com-

petitive cost of synchrony will be balanced against its potential advantages in the

face of host defenses, with the fitness consequences playing out in the dynamics of

transmission to new hosts.

Generating new infections requires the production of sexual stages (game-

tocytes) capable of infecting mosquitoes, which develop from a small fraction

of infected red blood cells (reviewed in Taylor & Read, 1997). At least two

gametocytes—a male and a female—must be present in a blood meal to success-

fully infect a mosquito (reviewed in Bousema & Drakeley, 2011). Synchronized

waves of red blood cell invasion produce pulses of gametocytes later on, and it was

thought that synchronization was required to produce a large population of game-

tocytes that would mature at the right time of day to be passed onto mosquitoes

(Hawking et al., 1968; Hawking, 1970). This hypothesis has since been discarded

because the gametocytes of the human malaria parasite P. falciparum remain vi-

able for days (Hogh et al., 1995), and there is no clear correlation between peak

mosquito activity and peaks in either human infectivity or gametocyte densities

(Bray et al., 1976; Githeko et al., 1993; Magesa et al., 2000). The hypothesis

was further undercut by diversity in temporal dynamics of P. falciparum (Färnert

et al., 1997; Simpson et al., 2002; Dobaño et al., 2007; Touré-Ndouo et al., 2009)

which could not persist for long if synchronization were required for transmission.

Even though synchrony is not required to infect mosquitoes, it is still likely to

alter the dynamics of gametocyte production and hence transmission success. The

probability of infecting mosquitoes increases with greater gametocyte abundance

(Huijben et al. 2010a; Bell et al. 2012, reviewed in Taylor & Read 1997), but in a

nonlinear way. When gametocytes increase from low abundance, there is a dispro-

portionately large increase in the probability of infecting mosquitoes, attributed to

the difficulty of finding mates when gametocytes are rare (Bell et al., 2012), while

transmission success saturates with large numbers of gametocytes (Paul et al.,

2007; Huijben et al., 2010a; Bell et al., 2012). The challenge of finding mates when

population density is low (i.e., mate-finding Allee effects, Courchamp et al., 2008)

can be overcome by synchronized reproduction (Kelly & Sork, 2002), and analo-
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gously, the pulse of gametocyte production that would follow synchronized rounds

of blood-stage infection might be expected to greatly enhance transmission success,

at least when gametocyte populations are small. We would therefore expect that

the advantages of synchrony would be tied to the level of transmission investment.

Understanding how synchrony might be maintained over evolutionary time re-

quires accounting for the transmission consequences, as well as characterizing the

variation across parasite strains. That variation is nearly impossible to discern

in vivo, where the pattern of synchrony might be attributed to parasite, host, or,

most likely, some combination of the two. By sidestepping this complexity, in vitro

experiments provide the best evidence that parasites influence synchrony, since

different strains lose synchrony at different rates (Reilly et al., 2007), attributable

to the degree of variation in developmental rates. This developmental plasticity is

likely to influence the efficacy of anti-malarial drugs, which preferentially remove

parasites at particular stages of development (Yayon et al., 1983; Geary et al.,

1989; Delves et al., 2012). Even the present frontline drug artemisinin, which has

a broad range of action, does not efficiently remove parasites that have just in-

vaded red blood cells (early rings) or parasites that are nearly ready to burst out

(mature schizonts), most likely because those stages are not as metabolically active

(ter Kuile et al., 1993). The variability in life cycle length must be characterized

separately from other strain-specific traits likely to influence dynamics—including

burst sizes, invasion rates and frequency of multiple invasions—in order to under-

stand how host and parasite interact to generate the diverse temporal dynamics

we see in natural infections.

Transmission investment

Although greater numbers of gametocytes improve the odds of transmission, in-

vesting in gametocyte production comes at a clear cost to within-host growth

because sexual stages cannot infect further red blood cells. Commitment to sex-

ual differentiation occurs during the late schizont stage (Eksi et al., 2012), when

sexually-committed schizonts burst to release merozoites that infect red blood cells

and subsequently develop into gametocytes (Bruce et al., 1990). After invasion,

gametocytes require a developmental period considerably longer than the asex-
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ual cycle length before they are capable of infecting mosquitoes (two days for

the murine species P. chabaudi, a week or more for P. falciparum Gautret et al.,

1996; Lensen et al., 1999, respectively). Complicating the problem of balancing

growth and transmission, malaria parasites must also cope with a time delay be-

tween allocation to transmission and the potential fitness gains associated with a

mature gametocyte population. Such a time lag could erode the advantages of

plastic strategies (Padilla & Adolph, 1996), but in vitro assays show that parasites

can respond to crowded conditions by increasing their transmission investment,

with allocation ranging from less than a percent to over 70% (Bruce et al., 1990).

The variability hints at impressive potential for adaptive plasticity. Despite the

possibility of considerable transmission investment, many species—including P.

falciparum—respond to the tradeoff by investing surprisingly little into gameto-

cyte production (referred to as reproductive restraint, reviewed in Taylor & Read,

1997).

Reproductive restraint is predicted to be adaptive when parasites are competing

with other strains within the same host (McKenzie & Bossert, 1998; Mideo &

Day, 2008), because parasites need to invest in population expansion in order

to gain a substantial share of the host resources. This hypothesis is especially

appealing because malaria parasites commonly find themselves in coinfections with

other strains (e.g., Jafari-Guemouri et al., 2006), and it has found support in

experimental rodent infections with P. chabaudi (Pollitt et al., 2011b). While inter-

strain competition can explain reduced transmission investment in coinfections, it

cannot explain reproductive restraint per se. Single-strain infections of mice are

estimated to have transmission investment of less than 10% at most (Buckling

et al., 1999; Pollitt et al., 2011b), but realistic within-host models predict a level

closer to 25% (Crooks, 2008), indicating a gap in our understanding. Additionally,

the optimal balance between replication and transmission is expected to change

through time, especially given that both within-host success and between-host

transmission are strongly dependent on parasite numbers. Reproductive restraint

might therefore be selected for more strongly at certain points in infection (for

example, early in infection, Koella & Antia, 1995).

Aside from the difficulty of predicting the optimal level of transmission, testing

those predictions represents a further challenge. For example, parasites are ex-
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pected to alter their transmission investment in response to host condition (Pollitt

et al., 2011a), and red blood cell availability is one sensible proxy for host qual-

ity. Yet researchers examining the same data set came to opposite conclusions

about how transmission investment should vary with red blood cell numbers (Pol-

litt et al., 2011b; Cameron et al., 2012). Since it is only possible to directly observe

transmission investment under tightly controlled conditions in vitro (Bruce et al.,

1990), any efforts to quantify transmission investment under more realistic condi-

tions must rely on inference, and the inference methods used change the conclusion.

More work is needed both to generate predictions about transmission investment

strategies and to ensure that those predictions can be tested by robust methods.

Modeling malaria life history

Since malaria parasites interact with their environment in a fundamentally stage-

dependent manner, it makes sense to use compartmental models to describe the

dynamics. A straightforward approach is to assign a compartment to each of

the major players (e.g., uninfected red blood cells, infected red blood cells, mero-

zoites, gametocytes, immune effectors) and describe the transitions in and out of

each compartment with ordinary differential equations (ODEs), using numerical

methods to observe the transient dynamics that are likely to be most relevant to

acute infections(Hellriegel, 1992; Hetzel & Anderson, 1996). This type of model is

heuristically useful for understanding how parasite populations may be regulated

by resource availability and immunity. Hetzel & Anderson (1996) show that differ-

ent Plasmodium species have life history traits that ensure initial expansion in the

host, that immunity is required for clearance of the parasite population, and that

immunity must act more intensely against merozoites versus infected red blood

cells to generate the same change in dynamics, since the background mortality

rate of merozoites is so high. Hellriegel (1992) use the ODE framework to demon-

strate that immunity may regulate the interactions between coinfecting malaria

strains (Hellriegel, 1992), lending context to the later finding that parasites inocu-

lated into an already-infected mouse face much harsher competition than parasites

injected into näıve mice (de Roode et al., 2005).

Though appealing in their simplicity, these ODE models have serious flaws
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relating to the constant rates of transition between compartments and resulting

exponentially-distributed stage durations (Saul, 1998; Gravenor & Lloyd, 1998;

Crooks, 2008). While the mean stage duration is sensible (e.g., 48 hours for P.

falciparum), the variation around that mean is much too large, so that a large

fraction of parasites may burst out of red blood cells immediately following inva-

sion, leading to improbably large growth rates (Saul, 1998). Correspondingly, a

substantial fraction of invaded red blood cells immediately mature into gameto-

cytes, rather than taking required time for maturation, leading to major errors in

estimating the impact of different levels of transmission investment (Crooks, 2008).

The flaws in simpler ODE models have been represented as a limitation of

continuous time models (Crooks, 2008), and many subsequent efforts have instead

employed discrete time models. In particular, a discrete time framework been

used to good effect by fitting models to detailed time series data from P. chabaudi

infections to characterize the impact of immunity and erythropoiesis on parasite

dynamics (Miller et al., 2010), as well as strain-specific differences in preference

for immature red blood cells (reticulocytes), burst size, and invasion rates (Mideo

et al., 2008, 2011). Such models have also helped identify the timing and efficacy

of immune clearance, and characterized density-dependent growth within parasite

populations (Metcalf et al., 2011). As Crooks (2008) notes, these models are en-

tirely appropriate for highly synchronized infections (such as those observed in P.

chabaudi, O’Donnell et al. 2011, and sometimes observed in P. falciparum, White

et al. 1992), because bursting and invasion occur at discrete intervals. However,

many P. falciparum infections appear poorly synchronized (Färnert et al., 1997;

Magesa et al., 2000; Simpson et al., 2002; Touré-Ndouo et al., 2009). For an asyn-

chronous parasite population, bursting and invasion could occur at any point in

time, as evidenced by the continuous rather than discrete growth in asynchronous

P. falciparum infections (Färnert et al., 1997), dynamics that are difficult to de-

scribe with discrete time models. Splitting a discrete time model into two parasite

age compartments can allow dynamics beyond highly synchronized (Kwiatkowski

& Nowak, 1991), but incorporating immune defenses that are expected to occur in

continuous time can require a more complicated framework (Crooks, 2008).

An alternative approach is to keep the continuous time differential equation

framework, but constrain the distribution of stage durations to a reasonable range
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(Gravenor & Kwiatkowski, 1998; Gravenor & Lloyd, 1998; Hoshen et al., 2000).

While these types of models are more computationally intensive to analyze, they do

allow density-dependent processes, such as immune clearance, to occur in contin-

uous time, which would otherwise necessitate a complicated arrangement mixing

discrete and continuous time (Haydon et al., 2003). They have the benefit of being

readily able to describe a range of temporal dynamics, from asynchronous to highly

synchronized. Equally important for mapping the fitness consequences of plastic

transmission investment, we need to incorporate realistic time delays between the

decision to invest in gametocyte production and the fitness consequences of that

decision (Crooks, 2008). Models for other systems have shown that the benefits

of plasticity can disappear entirely depending on the time lag between sensing an

environmental changes and the ability to respond (Padilla & Adolph, 1996).

These continuous time models fall into the broad categories of fixed delay mod-

els, in which stage duration is constant with no variation (a Dirac-Delta distri-

bution, e.g., Hoshen et al., 2000), and distributed delay models, which allow the

stage duration to vary, but not to the unrealistic extremes seen in simpler ODE

models. These two formulations of time delays—fixed versus distributed—have

slightly different biological implications. It is clear that life cycle duration varies,

because synchrony decays rapidly in vitro (Trager & Jensen, 1976). However, syn-

chrony can be maintained within the host (e.g., Färnert et al., 1997), suggesting

that not all of the variation apparent in culture is expressed in vivo. Fixed time

delays might therefore be a good approximation of parasite development. A dis-

tributed delay model might be more realistic, at least for describing within-host

dynamics, but it also comes at the cost of an additional parameter to describe the

variability in the delay, which is not yet well-characterized. Further, variability

in life cycle length means that synchrony will be lost over time, which makes it

difficult to assess the fitness consequences of synchrony. Thus, fixed delays repre-

sent a good starting point for understanding complex within-host dynamics, but

describing how synchrony changes through time requires a distribution of delays.
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Objectives

To understand the fitness consequences of two curious aspects of malaria life

history—synchrony and reproductive restraint—I make use of delay models to

encapsulate the life stage- and density-dependent ways in which parasites interact

with their environment. In Chapter 2, I develop a fixed delay model to describe

the transmission consequences of synchronized infection dynamics within the host.

Model simulations are used to examine the influence of parasite density-dependent

transmission success, competition for red blood cells (interference), immune clear-

ance, in addition to the impact of a coinfecting malaria strain. In Chapter 3, I

develop a distributed delay model to examine the loss of synchrony in vitro, and

explore the extent to which times series can be used to quantify life cycle duration,

developmental plasticity, as well as intrinsic growth rates. Using two candidate

forms of density-dependent interference developed in Chapter 2, I fit the model to

detailed time series data to determine which form better describes dynamics while

simultaneously quantifying differences in cycle length and developmental plastic-

ity across strains. By analyzing invasion assays performed in collaboration with

Lindsey Turnbull, I assess whether interference is likely to alter invasion rates or

successful maturation within red blood cells. In Chapter 4, I return to the fixed

delay model developed in Chapter 2 to identify optimal fixed and time-varying

transmission investment strategies in vivo. I then simulate data from the fixed

delay model in Chapter 5 to show why existing inference methods are unable to

accurately describe transmission investment, and I develop a novel statistical ap-

proach to better characterize transmission investment strategies from existing data.

Finally, in Chapter 6, I discuss the implications of this work and identify future

directions.



Chapter 2
Synchrony in malaria infections:

How intensifying within-host

competition can be adaptive

2.1 Abstract

Malaria parasites exhibit great diversity in the coordination of their asexual life

cycle within the host, ranging from asynchronous growth to tightly synchronized

cycles of invasion and emergence from red blood cells. Synchronized reproduction

should come at a high cost—intensifying competition among offspring—so why

would some Plasmodium species engage in such behavior and others not? We

use a delayed differential equation model to show that synchronized infections

can be favored when: (1) there is limited interference among parasites competing

for red blood cells; (2) transmission success is an accelerating function of sexual

parasite abundance; (3) the target of saturating immunity is short-lived; and (4)

coinfections with asynchronous parasites are rare. As a consequence, synchrony

may be beneficial or costly, in line with the diverse patterns of synchronization

observed in natural and lab infections. By allowing us to characterize diverse

temporal dynamics, the model framework provides a basis for making predictions

about disease severity and for projecting evolutionary responses to interventions.
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2.2 Introduction

Synchronized reproduction represents a significant challenge to evolutionary the-

ory: what benefits outweigh the costs of escalating competition among offspring?

Despite the costs, many organisms do coordinate their reproductive efforts. Ex-

treme examples are mass emergence of periodical cicadas (Williams et al. 1993)

and mast-seeding of bamboos (Janzen 1976), but more subtle examples are com-

mon throughout the natural world (reviewed in Ims 1990, Kelly & Sork 2002).

Yet even among organisms sharing similar life-histories, some synchronize their

reproduction while others do not. Theory suggests that synchronized reproduction

can be an adaptation to expedite mate-finding and overwhelm natural enemies

(Ims 1990, Kelly & Sork 2002). These obstacles are not confined to free-living

organisms, however; parasites likewise vary in how closely they coordinate their

life cycles, with malaria species provide a striking example (Mideo et al. 2013b).

We apply an ecological approach to identify plausible mechanisms that could favor

synchronized infection cycles in malaria parasites even at the cost of intensifying

within-host competition.

Synchronized cycles of blood stage infection are a fascinating aspect of malaria

biology, with parasites invading red blood cells, reproducing asexually, and burst-

ing out in unison (e.g., Garnham 1966, Hawking et al. 1968, Hawking 1970). Even

considering a single malaria species, some human infections appear synchronous

and some do not (Färnert et al. 1997, Bruce et al. 2000b, Simpson et al. 2002,

Dobaño et al. 2007, Touré-Ndouo et al. 2009); these observations highlight vari-

ability in a fundamental aspect of within-host ecology, with critical implications

for human health. Synchrony should limit host exploitation by intensifying compe-

tition for resources. The degree of synchronization should also influence parasites’

susceptibility to anti-malarial drugs, which act against a subset of life stages (e.g.,

Yayon et al. 1983, Slater & Cerami 1992, ter Kuile et al. 1993, Dhar et al. 1998,

Delves et al. 2012). The synchrony inherent to parasite dynamics thus represents

a source of variation that could influence the course of evolution within the host,

modulating the degree of virulence and drug susceptibility.

All else equal, synchrony should be costly. Malaria parasites face intense com-

petition for red blood cells in vitro (Reilly et al. 2007, Boyle et al. 2010), and
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parasites have only minutes to invade red blood cells before their viability is lost

(Boyle et al. 2010). By bursting out of red blood cells in unison, synchronous

parasites should pay a vastly increased cost of competition. Whether synchrony is

ultimately beneficial or costly to the parasite will be determined by its effects on

the transmission to the mosquito vector. Accordingly, synchrony was first thought

to be an adaptation to enhance transmission (Hawking et al. 1968, Hawking 1970).

Infecting mosquitoes requires sexual gametocytes that spawn from a small fraction

of the asexual, blood-stage parasites (reviewed in Drakeley et al. 2006, Bousema

& Drakeley 2011). Coordinated waves of red blood cell invasion generate periodic

oscillations in gametocyte numbers that could be advantageous if peak gameto-

cyte numbers occur when mosquitoes are most likely to feed (Hawking et al. 1968,

Hawking 1970). However, neither peak infectivity (Bray et al. 1976, Githeko et al.

1993) nor peak gametocyte density (Magesa et al. 2000) have been shown to cor-

respond with peak vector activity time for human cases.

More recent theory has focused on the success of the asexual parasites that

ultimately produce transmission stages. Synchrony has been hypothesized to be

a consequence of host defenses that intensify with parasite numbers (Kwiatkowski

& Nowak 1991, Rouzine & McKenzie 2003). The reasoning is that if a particular

parasite stage is immunogenic, and a later stage is vulnerable to immune clear-

ance, then a large cohort of parasites may trigger an intense immune response

that would effectively clear away other cohorts of parasites, leaving a synchronized

group of parasites behind. While escalation might be characteristic of an adaptive

immune response (Antia & Koella 1994), innate host defenses may instead satu-

rate as parasite numbers increase. These early immune responses may be most

effective against small numbers of parasites, as suggested by data from rodent in-

fections (Haydon et al. 2003, Metcalf et al. 2011) and malaria parasites in vitro (P.

falciparum cultured with platelets, McMorran et al. 2009; and γδ T cells, Costa

et al. 2011).

If immunity can saturate, pulses in parasite numbers may overwhelm host de-

fenses, analogous to the way many organisms use synchronized reproduction as

a way to satiate predators. If immunity targets a transient part of the parasite

life cycle, synchronization would allow parasites in the vulnerable life stage to

disappear between brief periods of overwhelming numbers, analogous to the way
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Figure 2.1. When fitness is a convex function of density (e.g., the a values in the
accelerating part of the curve), oscillations in density can increase mean fitness as a
consequence of Jensen’s inequality (reviewed in Ruel & Ayres 1999). A strain that alter-
nates between densities a1 and a2 has higher mean fitness (red point) than a strain that
maintains a constant density amean (black point). If fitness is a concave or decelerating
function of density (d values), oscillations in numbers decrease mean fitness compared to
a strain that maintains a constant density (red versus black point). Cumulative fitness
is altered in an identical manner.

periodical cicadas emerge synchronously—and briefly—to satiate predators. If im-

munity targets a long-lived part of the parasite life cycle, then even small variation

in timing would result in vulnerable parasites persisting between peaks in abun-

dance. As parasite numbers increase, their survival saturates, and this saturating

fitness curve renders oscillations between high and low abundance costly (Fig. 2.1).

For synchrony to be advantageous, vulnerable parasites need to oscillate between

high and zero abundance, a scenario most likely with a short period of vulnera-

bility. The brevity of the life-stage vulnerable to immunity may help determine

whether synchronous parasites perform better in spite of increased competition for

host resources.

Distinct from the success of blood-stage infection, synchrony may improve

transmission by allowing the parasites to overcome Allee effects—where fitness

declines as a result of dwindling numbers (Courchamp et al. 2008)—that would

jeopardize the success of the small numbers of gametocytes present in a mosquito

bloodmeal. Sexual organisms may experience sharp increases in fitness as pop-

ulation sizes increase and mates become easier to find (Courchamp et al. 2008).
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Consequently, malaria transmission is a sigmoidal function of gametocyte density,

with the probability of mosquito infection first accelerating as gametocytes in-

crease and then saturating with large numbers of gametocytes (Paul et al. 2007,

Huijben et al. 2010a, Bell et al. 2012). In the accelerating part of the transmission

curve when gametocyte numbers are low, oscillations may improve mean fitness

(through Jensen’s inequality, Fig. 2.1). In contrast, fluctuating densities may be-

come a liability in the saturating part of the curve where gametocytes are abundant

(Fig. 2.1).

Here we develop a within-host model to estimate the probability of transmission

from synchronous versus asynchronous malaria infections while accounting for the

possibility of competition for red blood cells and saturating immunity. Treating

the intra-erythrocytic part of the life cycle as a fixed delay, the model predicts

that synchronous parasites have higher fitness when gametocyte investment is low,

both in single and coinfections. Competition for red blood cells may subtly favor

synchronous parasites in single infections by damping extreme changes in parasite

density, but in coinfections, competition strongly disfavors synchronous strains.

Saturating immunity favors synchrony, but only if the target is a brief life stage.

These model results lay out a framework for explaining the varied patterns of

synchronization observed in natural infections.

2.3 Methods

2.3.1 Delayed differential model

We model infection using a system of delayed differential equations, parameterized

for the rodent malaria Plasmodium chabaudi. The model framework assumes that

a fixed period of time is required for parasite development within red blood cells.

Any infected red blood cells that persist through the delay will burst to release the

parasite stages capable of invading new red blood cells (merozoites) or will develop

into mature transmission stages (gametocytes). This time delay before bursting is

essential for capturing synchronous infection dynamics (Hoshen et al. 2000). The

delayed system also solves many of the problems associated with continuous time

malaria models (reviewed in Crooks 2008), namely the implicit assumption that
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merozoite release and gametocyte production can occur at any time, even if a

red blood cell was only just infected. With a conventional compartmental model,

infected cells would burst at a fixed rate (i.e., exponentially-distributed develop-

mental periods). In the present model, we assume that the developmental period

is fixed (i.e., Dirac-Delta distributed), with all surviving infected cells bursting

exactly one day post-infection. We address the implications of assuming a fixed

delay in the discussion.

Single infections

The model tracks five life stages critical to the dynamics of malaria infection: unin-

fected red blood cells (R), infected red blood cells, either committed to the asexual

life cycle and bound to produce more merozoites (I) or committed to the sexual

life cycle and destined to produce transmissible gametocytes (IG), merozoites (M),

and gametocytes (G). The dynamics of uninfected red blood cells are governed by

the influx of new red blood cells via erythropoiesis and the outflux of red blood

cells due to intrinsic mortality (µ) or infection (p(t)):

dR(t)

dt
= λ

(
1− R(t)

Kstart

)
− µR(t)− p(t)R(t)M(t) (2.1)

where Kstart = λR∗/(λ − µR∗) so that in the absence of infection red blood cells

remain at a homeostatic equilibrium (R∗). The rate of erythropoiesis following

malaria infection in mice has been approximated as a linear function of red blood

cell numbers, with erythropoiesis responding to the loss of red blood cells after

a time lag of one or three days, depending on the immune status of the mice

(Metcalf et al. 2011). A time lag in the erythropoietic response might select for

parasites with a corresponding life cycle length, but it need not alter the fitness of

synchronous versus asynchronous parasites. We therefore keep erythropoiesis as a

linear function of red blood cell numbers and omit the time lag for simplicity. Red

blood cells are infected by merozoites at a rate of p(t). Invasion success declines

in an approximately hyperbolic fashion as the ratio of merozoites to red blood

cells increases, according to in vitro assays of P. falciparum (Reilly et al. 2007,

Boyle et al. 2010), although the biological mechanisms underlying this pattern

have not yet been worked out. We introduce the q parameter to specify the degree
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of merozoite interference:

p(t) =
pmax

1 + q(M(t)/R(t))
(2.2)

When q = 0, p(t) reduces to the maximum invasion rate, pmax, and for q > 0, the

invasion rate declines hyperbolically as the ratio of merozoites to red blood cells

increases. We hence refer to this form of intereference as ”hyperbolic”. We also

examine dynamics with an alternate invasion rate, z(t), analogous to functional

forms used to describe parasitoid inteference (Hassell 2000):

z(t) =
pmax

(M(t) + 1)m
(2.3)

Unless otherwise specified, we assumed hyperbolic merozoite inteference (Eqn. 2.2).

Whenever red blood cells become infected, a small fraction c are assumed to be

committed to the sexual cycle, while the rest continue to propagate blood-stage

infection through the production of merozoites:

dI(t)

dt
= (1− c)p(t)R(t)M(t)− µI(t)− a

b+ I(t)
I(t) (2.4)

−(1− c)p(t− α)R(t− α)M(t− α)S

Infected red blood cells are lost to intrinsic mortality (assumed to be equal to

mortality rate of uninfected red blood cells, µ) and to immune clearance, with a

proportion S surviving the length of the erythrocytic cycle (α) to burst and release

merozoites. Immune clearance is assumed to be a saturating function of infected

red blood cell density (type II functional responses in ecological terminology, Met-

calf et al. 2011), with a per capita clearance of a
b+I(t)

. The proportion, S, of infected

red blood cells that survive background mortality and immune clearance to pro-

duce merozoites is found by integrating the mortality rates over the developmental

period, α.

S = exp

(
−
∫ t

t−α
µ+

a

b+ I(ω)
dω

)
(2.5)
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Each infected red blood cell that survives for α days bursts to release β merozoites:

dM(t)

dt
= β(1− c)p(t− α)R(t− α)M(t− α)S − p(t)R(t)M(t)− µZM(t) (2.6)

Merozoites can infect red blood cells at the time-varying rate, p(t), but are subject

to intense background mortality (µZ).

We also consider the case where merozoites are the sole target of saturating

immunity, to determine how abbreviating the vulnerable life stage can affect the

benefit synchrony. If saturating immunity targets merozoites instead of infected

red blood cells, Eqns. D.2-D.4 become:

dI(t)

dt
= (1− c)p(t)R(t)M(t)− µI(t) (2.7)

−(1− c)p(t− α)R(t− α)M(t− α)S

S = exp

(
−
∫ t

t−α
µdω

)
= exp(−µα) (2.8)

dM(t)

dt
= β(1− c)p(t− α)R(t− α)M(t− α)S − p(t)R(t)M(t)

−µZM(t)− a

b+M(t)
M(t) (2.9)

No complicated survival functions are needed for merozoites (Eq. 2.9), because

their waiting times are assumed to be exponentially distributed (i.e., having fixed

hazard rates). To generalize the results from this modified model, we also consider

the case where immunity targets a brief portion of the intra-erythrocytic cycle

(details of age-structured model in appendix A.1.1). The rate of immune removal

competes with the rate of background mortality, so immunity was set to be stronger

when acting against a brief portion of the life cycle. To simplify our model, we

omit adaptive immunity, which is not likely to alter dynamics until later in the

infection (Metcalf et al. 2011).

For infected red blood cells committed to making gametocytes, the dynamics

are similar to Eq. D.2 save that there is a longer delay, αG, before an infected red

blood cell can develop into a gametocyte (Gautret et al. 1996).

dIG(t)

dt
= cp(t)R(t)M(t)− µIG(t)− cp(t− αG)R(t− αG)M(t− αG)SG (2.10)
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We simulate a range of c values suggested by studies of P. chabaudi infections (0.1%

to 5%, Pollitt et al. 2011b). We assume that the innate immune response ignores

parasites developing into gametocytes (IG) because immune measures most effec-

tive against sexual blood stages have so far been reported as antibody-dependent

rather than innate (reviewed in Bousema & Drakeley 2011, Riley & Stewart 2013).

Given the low proportion of parasites developing into gametocytes, innate immune

measures that act against sexual and asexual blood stages are unlikely to quali-

tatively alter the benefits of synchrony. At peak infection immune measures are

already saturated, and this peak generates the bulk of gametocytes.

The proportion surviving to become gametocytes, SG, is

SG = exp (−µαG) (2.11)

Unlike the asexual cycle, where one infected cell becomes several merozoites (ac-

cording to the burst size, β), each infected cell committed to the sexual cycle

develops into a single gametocyte.

dG(t)

dt
= cp(t− α)G)R(t− αG)M(t− αG)SG − µGG(t) (2.12)

Gametocytes are assumed to have an average lifespan of 1/µG. Gametocytes are

maximally infectious for six hours (Gautret et al. 1996), so the infective lifespan

of a P. chabaudi gametocyte is shorter than the length of the asexual life cycle (24

hours, Landau & Boulard 1978). We also extend gametocyte lifespan, a scenario

more relevant to P. falciparum infections, where it is longer than the length of the

asexual life cycle (reviewed in Bousema & Drakeley 2011).

The probability of transmission to the mosquito is assumed to be a sigmoidal

function of gametocyte density, as has been shown for both P. falciparum (Huijben

et al. 2010a) and P. chabaudi (Bell et al. 2012). We sum transmission probability

over the first 20 days of infection, which encompasses the first and largest peak

in parasite numbers, as our fitness measure. We use a sigmoidal curve parame-

terized for drug-sensitive P. chabaudi infections (Bell et al. 2012) to calculate the

cumulative the probability of transmission for synchronous versus asynchronous
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strains.

Probability of transmission to mosquito =
exp(−12.69 + 3.6 log10(G(t)))

1 + exp(−12.69 + 3.6 log10(G(t)))
(2.13)

Due to the extreme stiffness of this delayed system, the interpolating algorithm

occasionally returned abundances slightly below zero (most negative result on the

order of −10−19). Since negative values cannot be evaluated by Eqn. 2.13, we set

gametocyte abundance to zero whenever it became negative. We also calculate

the cumulative probability of transmission using two other sigmoidal curves rep-

resenting the extreme curves reported in the literature (Fig. A.1, equations and

parameter values from Huijben et al. 2010a, Bell et al. 2012). Parameter val-

ues are shown in Table 3.1, and all simulations were run in R version 2.15.2 (R

development team 2013), using the PBSddesolve package.

Table 2.1. Parameter values, units, and sources
Parameter Value Source

R∗ (red blood cell count at home-
ostasis)

8.5× 106 cells/µL Savill et al. 2009

λ (maximum new red blood cells) 3.7× 105 RBCs/µL/day Savill et al. 2009
µ (red blood cell mortality rate) 0.025/day Miller et al. 2010
p (max. per merozoite invasion
rate)

4× 10−6/day Mideo et al. 2008*

α (blood-stage delay) 1 day Landau & Boulard 1978
αG (gametocyte delay) 2 days Gautret et al. 1996
β (burst size) 10 merozoites Mideo et al. 2008*

µZ (merozoite mortality rate) 48/day
used in Hetzel & Anderson
1996, Mideo et al. 2008

µG (gametocyte mortality rate) 4/day Gautret et al. 1996†
*within realistic range
†length of most infectious
stage

Initial conditions

Infection is initialized with infected red blood cells to mimic the parasites being

released from the liver over a short or long time period, initiating a synchronous or

asynchronous infection respectively. Simulated synchronous versus asynchronous
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infections differ only in the age structure of the initial inoculum, specified by a

beta distribution. The initially infected red blood cells (I0) are all committed to

producing merozoites. For t ≤ α, Eqns D.2, 2.5, & D.4 are

dI(t)

dt
= (1− c)p(t)R(t)M(t)− µI(t)− a

b+ I(t)
I(t) (2.14)

−I(0)Beta(sP , sP )(t)S

S = exp

(
−
∫ t

0

µ+
a

b+ I(ω)
dω

)
(2.15)

dM(t)

dt
= βI(0)Beta(sP , sP )(t)S − p(t)R(t)M(t)− µZM(t) (2.16)

The beta distribution takes two shape parameters, both of which are set equal to

sP . With sP = 1, the starting population bursts uniformly over the first delay,

while sP = 100 yields a narrow bell curve centered around 0.5 (Fig. 2.2). The

underlying assumption is that the degree of synchronization is determined by the

genetics (or epigenetics) of the parasite strain at the start of infection.
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Figure 2.2. Synchronous versus asynchronous infections are initialized using a beta
distribution with large or small shape parameter, sP , to specify the bursting of the
initial inoculum (synchronous in black, sP = 100; and asynchronous in red sP = 1).
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Coinfection model.

Synchronous infections of humans seem to be more highly related than asyn-

chronous infections, which tend to show more diversity (Touré-Ndouo et al. 2009).

The advantages of synchrony may then depend on the presence of a competing

strain. We therefore expand the single strain model into a coinfection model (de-

tails in appendix A.1.2). In short, two strains are assumed to be released from

the liver on the same day, with the two strains differing only in the degree of

synchronization. The invasion rate per merozoite declines based on the ratio of

total merozoites to uninfected red blood cells, with both strains equally sensitive

to competition for resources. The immune response is assumed to be non-specific,

dependent on the total density of vulnerable parasites as has been suggested by

data from human infections (Bruce et al. 2000a). Since we are modeling early

infection, we again neglect adaptive immunity.

2.4 Results

2.4.1 Low gametocyte investment favors synchrony

In the absence of immunity or interference competition among merozoites, simu-

lated infections peak near day 10 (Fig. 2.3), with subsequent damped oscillations

towards an equilibrium. Infections peak due to resource limitation: parasite num-

bers begin to drop when there are more merozoites than uninfected red blood cells

to infect. In this simulation, immunity and merozoites interference are set to zero,

resulting in greater numbers of infected than uninfected red blood cells at peak

infection. In addition to the multi-day oscillations, synchronous strains showed

pronounced daily oscillations in abundance due to the 24 hour cycle length of the

parasite P. chabaudi (Landau & Boulard 1978).

With low gametocyte investment, synchronous strains have higher fitness (i.e.,

greater cumulative transmission potential). As a smaller proportion of infected

cells are committed to the sexual part of the life cycle, gametocyte abundance

decreases, but dynamics are qualitatively similar (Fig. 2.3A & B). The critical

difference is that the probability of transmission is an accelerating function of ga-

metocyte density at low gametocyte investment, so that oscillations in gametocyte
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Figure 2.3. Synchronous infections transmit better at low gametocyte investment—
without any qualitative change in dynamics—due to the sigmoidal shape of the rela-
tionship between gametocyte numbers and probability of transmission. Single-strain
infections were simulated in the absence of merozoite interference (q = 0) and immune
clearance (a = 0), with solid curves indicating synchronous infections and dashed lines re-
ferring to asynchronous dynamics. Abundance of uninfected and infected red blood cells
(RBCs) in the asexual cycle are shown with gametocyte (transmission stage) numbers (A
& B, logarithmic scale), with total transmission potential—the cumulative transmission
probability—shown below (C & D). Simulations in panels A & C assume low gameto-
cyte investment (c = 0.001), while panels B & D show dynamics with relatively high
gametocyte investment (c = 0.05).

density increase fitness (Fig. 2.3C). At high gametocyte investment, transmission

probability saturates (at day 10 in Fig. 2.3D) and oscillations reduce the trans-

mission potential. From Fig. 2.1, it can be seen that when numbers fluctuate
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in the accelerating part of the curve, mean and cumulative fitness are increased

compared to when numbers hold steady. Fluctuations in the saturating part of

the curve reduce fitness—the parasite strain would have done better to maintain

steady numbers.

2.4.2 Interference among merozoites can benefit synchronous

parasites

Interference competition increases uninfected red blood cell density and reduces

gametocyte abundance by limiting merozoite invasion success (Fig. 2.4). In the

absence of interference competition, gametocyte numbers are predicted to rise to

a high peak due to efficient depletion of uninfected red blood cells (Fig. 2.4A, B,

blue curves). Once red blood cells become limiting, there is a precipitous drop

in gametocyte numbers. When merozoites interfere with each other, red blood

cells cannot be depleted to the same degree (Fig. 2.4A), resulting in a lower peak

gametocyte density and subsequent shallower trough especially for synchronous

infections (Fig. 2.4B, orange curves). For certain parameter values, synchronous

infections can catch up and sometimes even exceed the transmission potential of

asynchronous infections (Fig. 2.4C).

Though asynchronous infections have superior gametocyte production in the

face of interference, greater gametocyte production does not always result in greater

transmission because of the sigmoidal relationship between gametocyte density and

probability of infecting a mosquito. Despite large differences in peak gametocyte

density, the corresponding probabilities of transmission saturate to similar values

(Fig. 2.4C). In the absence of interference competition, the synchronous strain

exhibits lower cumulative transmission potential than the asynchronous infection

(high transmission investment, Fig. 2.4C). Merozoite interference gives the syn-

chronous strain a larger pool of uninfected red blood cells post-peak, allowing

gains in gametocyte production and increasing transmission potential above that

of the asynchronous infection (Fig. 2.4C).
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Figure 2.4. Merozoite interference reduces anemia (A) and gametocyte abundance
(B), but increases transmission potential (cumulative probability of transmission, C).
Synchronized and asynchronous dynamics (solid and dashed lines, respectively) when
merozoite interference is present (orange curve, q = 10) or absent (blue curve, q = 0).
Gametocyte investment is set relatively high (c = 0.05) and immunity is absent (a = 0).
The blue curves are identical to the red blood cell and gametocyte abundance shown in
Fig. 3B, save that here they are plotted on a conventional rather than logarithmic scale.

2.4.3 Synchronous strains can transmit better from single

infections

We simulate single infections as a function of interference among merozoites and

gametocyte investment for three different immunity scenarios: (1) no immune re-

sponse; (2) saturating immunity targeting infected red blood cells in the asexual
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Figure 2.5. Synchronous parasites frequently transmit better from single infec-
tions. Smoothed relative fitness (ratio of cumulative probability transmission for syn-
chronous:asynchronous strain) with increasing competition among merozoites (x axis)
and investment in producing transmission stages (y axis). Synchronous infections trans-
mit better in the white/gray areas. Immunity is set to zero (A, a = 0), to target infected
red blood cells (B, a = 150, b = 100) or to remove merozoites (C, a = 7200, b = 100).
Immunity targeting short-lived merozoites increases the parameter space favorable to
synchronous infections.

cycle; (3) saturating immunity targeting merozoites. In simulations without immu-

nity, synchrony is only advantageous with minimal merozoite interference and low

gametocyte investment, and at intermediate levels of merozoite interference with

greater investment in gametocytes (Fig. 2.5A). When immunity removes infected
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red blood cells, it reduces the region of the parameter space where synchronous

strains have a relative fitness advantage (Fig. 2.5B versus A). When immunity

targets merozoites, synchronous strains transmit better over a wide range of pa-

rameter values because of efficient saturation of the immune response (Fig. 2.5C).

The parameter space favorable to synchronous strains is similarly increased when

immunity targets only a brief part of the intra-erythrocytic cycle (Fig. A.2). In

both cases, synchrony is advantageous because the vulnerable life-stage is either

present in overwhelming numbers or absent altogether.

2.4.4 Synchronous strains perform poorly in coinfections

When immunity is absent or when immunity acts on infected red blood cells, asyn-

chronous strains out-transmit synchronous strains in the same host for all parame-

ter values simulated (Fig. 2.6A & B). The success of asynchronous strains suggests

that interference competition among merozoites is much more devastating to syn-

chronous strains in coinfections. Synchronous strains do not deplete red blood

cells as efficiently in single infections (Fig. 2.4), and in coinfections, synchronous

parasites face more severe resource limitation as asynchronous strains efficiently

remove uninfected red blood cells. For these substantial costs, synchronous strains

are only predicted to out-transmit their asynchronous counterparts when immunity

targets the short-lived merozoite stage (Fig. 2.6C).

2.4.5 Sensitivity to model assumptions

Choice of transmission function. We find that the benefits of synchrony vary with

the transmission function used to calculate relative fitness, but two generalities

emerge: (1) synchronous strains have higher relative fitness over a greater portion

of the parameter space when immunity targets a short-lived life stage (Figs. 2.5C,

A.3C, A.4C); (2) the relative fitness of synchronous strains can be broadly under-

stood in terms of Jensen’s inequality (Fig. 2.1). The three different transmission

curves vary in the exact location of their inflection points—that is, the point where

the curve switches from accelerating to saturating (Fig. A.1). The inflection point

for the P. falciparum curve occurs at a lower gametocyte abundance than the drug-

sensitive P. chabaudi curve; thus there is a smaller range of gametocyte numbers
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Figure 2.6. Coinfections. Smoothed relative fitness of synchronous:asynchronous strain,
with increasing levels of merozoite competition and gametocyte investment. As in Fig 2.5,
values greater than 1 (white areas) indicate superior transmission of the synchronous
strain. Immunity is absent (A, a = 0), immunity acts on the total number of red blood
cells infected by asexual parasites of both strains (B, a = 150, b = 100) or on merozoites
of both strains (C, a = 7200, b = 100). Again, synchronous strains perform better when
immunity targets short-lived parasite stage.

where transmission is an accelerating function, and the region of the parameter

space where synchronous strains transmit better is accordingly reduced (compare

Fig. A.4A to Fig. 2.5A). The drug-resistant P. chabaudi transmission curve is

always saturating; thus the transmission of synchronous infections suffers and is
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relatively insensitive to changes in gametocyte investment (compare Fig. A.3A to

Fig. 2.5A).

Functional form of merozoite inteference. We also examine infection dynam-

ics for parasitoid-like merozoite interference (Eqn. 2.3). We observe damped os-

cillations in parasite abundance—qualitatively similar to early infections of ro-

dents, e.g., Metcalf et al. (2011)—for only a small range of m values (approx.

0 ≤ m ≤ 0.35). Larger m values cause infection to saturate at an equilibrium

with minimal oscillations. For m = 0.05, peak infection is substantially delayed

(Fig. A.5A, B) and transmission potential is reduced for synchronous and asyn-

chronous strains (Fig. A.5C). In contrast, hyperbolic interference (Eqn. 2.2) yields

damped oscillations for a much wider range of q values with only minimal shifts in

the timing of peak infection (Fig. 2.4). This form of competition increases trans-

mission potential even while depressing gametocyte abundance (Figs. 2.4B and

C). Using parasitoid-like merozoite interference therefore dramatically alters the

relative fitness landscape (Fig. A.5), but there are still portions of the parameter

space where synchronous strains have greater relative fitness because of merozoite

inteference (Fig. A.6). As with hyperbolic interference (Fig. 2.4), parasitoid-like

interference can preferentially increase the transmission potential of synchronous

infections. Gametocyte production is reduced by interference (Fig. A.6B), so the

improved transmission potential results from alterations to the timing of gameto-

cyte production.

Impact of gametocyte lifespan. Synchrony was initially viewed as an adapta-

tion to ensure that short-lived gametocytes would be present in the blood when

mosquitoes were feeding (Hawking et al. 1968). However P. falciparum gameto-

cytes are infectious for about a week in culture (Lensen et al. 1999) and circulate

for days in hosts (reviewed in Bousema & Drakeley 2011). Thus the parasites’

asexual cycle need not be precisely timed to ensure that infectious gametocytes

are present when mosquitoes are feeding (e.g., Bray et al. 1976). Although we

do not assume any particular vector feeding behavior, lengthening the infectious

period of gametocytes could still change the advantages of synchrony by damping

the otherwise sharp oscillations in gametocyte density. We therefore simulate in-

fections relaxing the assumption that gametocytes have a short infectious lifespan.

When gametocytes’ infectious lifespan is extended from a mean of six hours to
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approximately 20 hours, the net effect is to substantially increase the parameter

space where synchrony is advantageous (Fig. A.7). Individual simulations at high

gametocyte investment (5%) and no merozoite interference show that lengthen-

ing gametocyte longevity has two effects: damping the extreme daily oscillations

of synchronous strains and increasing gametocyte abundance (Fig. A.8A). Longer

gametocyte lifespan can improve the mean transmission probability of synchronous

strains by damping otherwise costly oscillations in gametocyte density late in in-

fection (as in Fig. A.8B, 20 hour lifespan). When gametocyte lifespan is increased

to 36 hours (longer than the length of the asexual cycle), mean transmission prob-

ability is similar between synchronous and asynchronous infections (Fig. A.8B).

2.5 Discussion

Synchronized reproduction increases the cost of competition for resources among

offspring while simultaneously easing the burden of natural enemies and mate-

finding. The optimal degree of synchronization strikes a balance between these

constraints; thus synchrony may shift from beneficial to costly with changes in

ecology. We apply these principles to malaria parasites to predict the fitness con-

sequences of synchronization across different within-host environments. Modeling

the malaria life cycle using our delayed differential equation framework, we find

that synchronized infection cycles may help malaria parasites (1) transmit effi-

ciently by ensuring successful mate-finding in the mosquito midgut; (2) overwhelm

host defenses; and (3) avoid over-exploiting host resources. Notably, these prop-

erties are sometimes but not always advantageous. The first two situations are

analogous to the evolution of synchronized reproduction in plants, which is most

likely for wind-pollinated species—that is, species at low risk of overwhelming their

means of dispersing sexual stages—and for species contending with predators ca-

pable of being satiated (Kelly & Sork 2002). The present modeling framework

builds on previous theory for malaria dynamics (e.g., Kwiatkowski & Nowak 1991,

Hoshen et al. 2000) to provide a more comprehensive explanation of diverse tem-

poral behavior.
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2.5.1 Model assumptions

Malaria life history is enormously complicated, and we make simplifying assumptions—

most notably a fixed life cycle length—to illustrate the key fitness consequences of

synchrony. The fixed delay framework allows us to compare transmission from syn-

chronous versus asynchronous infections by varying only the initial age-structure

of the parasites. Synchrony breaks down if the simulation is run long enough due

to the variability in life cycle length added by modest differences in how long mero-

zoites take to invade red blood cells, but this minimal variability allows strongly

synchronized dynamics to be maintained over the 20 days simulated so that we

can compare the costs and benefits of synchrony early in infection. Whether a

fixed life cycle length is a good approximation of within-host dynamics remains

an open question. There is some evidence for within-strain variation in the life

cycle length in vitro in that some strains maintain synchrony much more readily

than others (Reilly et al. 2007), but that variability could be lost as host circadian

rhythms constrict the timing of parasite development. Detailed data on the loss

of synchrony in in vivo infections may justify the use of distributed delay models

(e.g., Lloyd 2001) that can account for within-strain variability in life cycle length

and explore how selection may act on that variability.

2.5.2 Synchrony as an adaptation to improve transmission

Past theory suggested that synchrony should carry a transmission advantage by

ensuring that gametocytes will be mature when mosquito vectors are most active

(Hawking et al. 1968, Hawking 1970). Synchrony has since been discounted as

an adaptation to improve transmission by this mechanism, because daily peaks in

gametocyte density and infectivity do not align with peak mosquito activity times

(Bray et al. 1976, Githeko et al. 1993, Magesa et al. 2000). It has also been ar-

gued that since P. falciparum gametocytes maintain their infectiousness for weeks

(Smalley & Sinden 1977), there is no need to produce gametocytes on a circadian

schedule (Bray et al. 1976). With such a long lifespan, mature gametocytes will

be present when mosquitoes are biting, regardless of what time of day red blood

cells are infected.

Independent of any circadian rhythm in mosquito feeding behavior, Jensen’s
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inequality suggests that oscillations in gametocyte numbers will improve transmis-

sion, even if the period of those oscillations is several days. The present model

shows a 24-hour periodicity in transmissibility due to the length of the blood-stage

life cycle in P. chabaudi, but the periodicity need not be on that time scale for

other malaria species. Since P. falciparum has an asexual life cycle lasting approx-

imately 48 hours (Garnham 1966), any periodicity in transmission should be on

that time scale (Gautret et al. 2001). Two-day oscillations could still substantially

improve transmission over the long infectious periods sustained by human malaria

parasites, where strains can persist for weeks in coinfections (Daubersies et al.

1996) or hundreds of days in single infections (Miller et al. 1994). Any periodicity

in transmission success would be most easily detected where infectivity is an ac-

celerating function of gametocyte density, such that small changes in gametocyte

numbers translate into large changes in infectivity to mosquitoes.

Human infections often contain extremely small numbers of gametocytes (re-

viewed in Bousema & Drakeley 2011), suggesting that synchronized dynamics could

frequently enhance transmission. Minimal investment in gametocytes may be se-

lected for if large numbers of gametocytes increase mosquito mortality or trigger

transmission-blocking immunity (Taylor & Read 1997). Low transmission invest-

ment may also be favored when strains find themselves in competition with other

strains, as has been predicted by theory (McKenzie & Bossert 1998, Mideo & Day

2008) and shown for rodent malaria infections (Pollitt et al. 2011b). Modest ga-

metocyte investment may often be selected for, and synchronous dynamics along

with it.

Even at low gametocyte densities, periodic changes in infectivity may begin to

disappear if gametocytes persist for a long time. Discrete oscillations in gametocyte

numbers would then blur together as the infection progressed, making it difficult to

tell synchronous from asynchronous gametocyte dynamics. Nevertheless, synchro-

nized fluctuations could still benefit strains early in infection, and, incidentally,

that is when gametocyte populations are small and finding mates in the mosquito

midgut presents the greatest challenge. Synchrony may become costly later on,

when gametocyte populations have grown large enough to render periodic fluctu-

ations costly (Fig. 2.1), but simulations suggest that long gametocyte persistence

may help by smoothing away the oscillations later in infection (Fig. A.7). Fur-
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ther, any transmission benefits garnered by synchronous strains early on could be

amplified by superior survival against saturating immune measures, which should

be most severe for the small parasite numbers present early in infection (Metcalf

et al. 2011). Whether synchrony can be maintained through chronic infection—

and whether the fitness advantages carry over—will depend on the functional form

and target of immune clearance.

2.5.3 Merozoite interference and virulence

Synchronized dynamics have the potential to improve transmission, but may also

limit the exploitation of host resources and hence the virulence of infection. The-

ory has suggested that synchronous infections should cause less severe anemia

than asynchronous infections as periodic spikes above the host’s detection thresh-

old trigger a more effective immune response (McQueen & McKenzie 2008). The

present model also shows that synchronous infections result in less severe anemia,

but without making any assumptions about the immune response. The reduced

anemia of synchronous infections emerges as a consequence of interference among

merozoites as they compete for red blood cells. Consistent with this idea, syn-

chronous infections are frequently encounted in asymptomatic children (Färnert

et al. 1997, Bruce et al. 2000b) and less frequently encountered in symptomatic or

fatal cases (Touré-Ndouo et al. 2009 and Dobaño et al. 2007, respectively). Among

symptomatic individuals, there are some indications that asynchronous infections

are associated with more severe symptoms (Touré-Ndouo et al. 2009), a trend

that warrants further examination. While a correlation is all that can be assessed

from human infections, rodent malaria systems could be used to test whether syn-

chronous growth limits virulence by synchronizing parasites in the initial inoculum

as has been done in previous experiments (Deharo et al. 1994, Deharo et al. 1996).

Asynchronous parasites are less susceptible to interference among merozoites,

simply by virtue of their dynamics, and can exploit red blood cell populations to a

greater degree. More intense host exploitation leads to a sharper drop-off in par-

asite numbers that synchronous parasites are able to avoid. Synchrony may then

represent a prudent or risk-averse way of utilizing host resources. Surprisingly, we

find that interference among merozoites can improve transmission potential, but
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that result depends critically on the functional form of competition, and further

in vitro work is needed to elucidate the underlying biology. The present model

suggests that any benefits of interference competition for synchronous parasites

disappear in the presence of an asynchronous competitor. As the asynchronous

strain severely depletes the red blood cell population, the synchronous strain bears

the cost of overexploitation without receiving any of the benefits. In more di-

verse infections, there is a greater chance that a synchronized strain would suffer

from competition with a less synchronized strain. Correspondingly, asynchronous

infections of humans are likely to be more diverse than synchronous ones (Touré-

Ndouo et al. 2009). If synchronization is fixed, the model simulations suggest

that synchronous parasites would often be outcompeted when coinfection is fre-

quent. If synchrony is instead a facultative response, selection should tend to favor

parasites that de-synchronize in response to competitors. However, both reproduc-

tive restraint and relatedness could mitigate the predicted costs of synchrony in

coinfections. Selection may act to reduce gametocyte investment when parasites

have to compete with other strains (Pollitt et al. 2011b), driving dynamics into

a parameter space favorable to synchrony. Though multiple strain infections are

extremely common, recent data from P. falciparum-infected patients shows much

higher relatedness than expected (Nkhoma et al. 2012), meaning that synchronous

parasites might often share their hosts with parasites that exhibit similar temporal

dynamics.

2.5.4 Synchrony as a means of overwhelming natural ene-

mies

Even in the absence of benefits to transmission and host exploitation, theory sug-

gests that synchrony may arise due to the nature of host defenses (Kwiatkowski &

Nowak 1991). Theory so far has focused on synchronous infections faced with host

defenses that intensify with density (such as fever), but our model shows that sat-

urating immunity could selectively benefit synchronous parasites in the same way

that predator satiation favors synchronized reproduction in free-living organisms

(Ims 1990, Williams et al. 1993, Kelly & Sork 2002). It has been speculated that

synchronization might allow merozoites to overwhelm immune measures (Hoshen
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et al. 2000), and we use simulations to expand on that idea. The model suggests

that saturating immunity should benefit synchronous strains only when the tar-

get of defenses is a transient stage, for example either short-lived merozoites or

late-stage schizonts. Thus immunity against brief portions of the parasite life cycle

could select for synchronous strains. Recent experiments show that components

of the human immune system may behave in a way that should maximize the

benefit of synchrony: P. falciparum merozoites are cleared by γδ T cells—while

intracellular life-stages are relatively protected—and merozoite clearance declines

with increasing numbers of parasites per γδ T cells (Costa et al. 2011). Malaria

parasites may therefore have a lengthy, relatively protected life stage followed by

a transient, vulnerable stage, analogous to the life cycle of the periodical cicadas.

In this way, synchrony may be a strategy to overwhelm natural enemies.

2.5.5 Synchrony and drug treatment

Plasmodium falciparum infections exhibit both synchronous and asynchronous dy-

namics (e.g., Färnert et al. 1997, Simpson et al. 2002), and these diverse temporal

dynamics may correspond to critically different patterns of drug susceptibility. A

variety of anti-malarials, including the front-line drug artemisinin, disrupt partic-

ular portions of the life cycle, while leaving other stages relatively unscathed (e.g.,

ter Kuile et al. 1993). With a short half-life (reviewed in Meshnick et al. 1996),

artemisinin will be largely metabolized by the time drug-insensitive life stages have

matured into drug-sensitive ones, making it fundamentally different from other

drugs in its ability to select for particular temporal dynamics in malaria parasites.

If artemisinin were administered at the wrong time, a synchronous infection might

not be cleared effectively, hence the advocacy for monitoring the synchronization

of infections and treating accordingly (chronotherapy, Landau et al. 1991, White

et al. 1992, ter Kuile et al. 1993). If the timing of drug administration varies greatly

from person to person and clinic to clinic, asynchronous parasites may fare better

on average, since there are likely to be life stages able to survive drugs no matter

what time of day the anti-malarial is administered. Asynchronous growth could

therefore function as a form of non-classical resistance. Predicting the evolutionary

consequences of intervention requires putting the synchronization and timing of the
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malaria life cycle into the context of host and parasite fitness (outlined in Mideo

et al. 2013b). Efforts to disrupt disease transmission may incidentally shift the

balance to favor or disfavor synchrony, with the potential to select for within-host

dynamics inherently more devastating to human health.

2.5.6 Broader implications

Using a set of models, we have studied the costs and benefits of synchrony in the

within-host dynamics of malaria. Our conclusions are broadly similar to those

used to explain synchrony in free-living organisms (e.g., Kelly & Sork 2002, Rees

et al. 2002): synchrony is favored when competition is limited, when mate-finding

is difficult at low abundance, and when top-down controls can be saturated. How-

ever, we show that the fitness associated with synchrony versus asynchrony is a

surprisingly complex function of the dynamics within the vertebrate host as well

as nonlinearities in vector transmission. Relatively small changes in interference

competition among asexual stages, frequency of coinfections and allocation to sex-

ual versus asexual reproduction can shift a synchronous parasites from having a

robust fitness advantage to a severe disadvantage. The interplay between these

density-dependent relationships could explain the range of synchronization pat-

terns observed both within and among malaria species. The case study of malaria

further suggests that the transmission biology of the system could generate strong

selection for or against synchrony, with synchrony unlikely to evolve where parasites

are close to saturating their means of transmission. For instance, if lengthy blood

meals allow efficient transmission of small numbers of parasites to vectors, then

we might expect the probability of transmission to rapidly saturate with increas-

ing parasite abundance, favoring asynchronous dynamics. The question remains

whether similar factors can shed light on the enormous variation in developmental

synchrony across diverse parasites.
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Chapter 3
Characterizing malaria dynamics in

vitro: developmental plasticity and

interference

3.1 Abstract

Malaria infections exhibit surprisingly complex dynamics in vitro, and analysis of

those dynamics can be used to make inferences about key life history traits. Cul-

tures that begin with tightly synchronized development—culminating in discrete

bursts of population expansion—subside into asynchronous dynamics, with para-

sites distributed evenly throughout developmental stages. This loss of synchrony

suggests intra-strain variation in developmental rates, and the fact that different

strains lose synchrony at different rates suggests that strains may vary in their

distribution of developmental rates. As synchrony decays, the competition among

parasites at similar developmental stages may likewise fade, but the functional form

of that interference still needs to be characterized. We develop a mechanistic model

of in vitro growth and show that conventional methods yield biased estimates of

life cycle duration and may hence be incapable of assessing within-strain variation

in developmental rates. We fit the model to detailed time series data to distinguish

between two ways of describing interference competition for red blood cells, while

simultaneously inferring the life cycle length and variability in developmental rates.
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We find that strains are likely to differ in their life cycle duration, as well as the

range of variability in developmental rates. Interference competition is more likely

to vary according to the ratio of parasites to red blood cells, rather than taking

a form analogous to that used in host-parasitoid models. We use in vitro assays

and develop an image processing algorithm to count red blood cells, finding no

evidence that parasites are less likely to invade red blood cells as parasite numbers

increase. We instead find greater numbers of excess invasions—parasites invading

red blood cells that have already been infected—when greater numbers of parasites

are present. Infected red blood cells have been reported to produce a characteris-

tic number of new parasites, and while that number varies with strain, there is no

evidence that multiply-infected red blood cells produce a greater number of new

parasites. We therefore conclude that the cost of interference is likely to appear as

parasites waste their efforts invading cells that have already been infected.

3.2 Introduction

Malaria infections can be highly synchronized, with periodic spikes in parasitemia

as waves of parasites burst out of red blood cells and trigger a new cycle of in-

fection (e.g., Kitchen, 1949; Färnert et al., 1997). These synchronized dynamics

are lost when parasites are cultivated in vitro (Trager & Jensen, 1976), but can

be artificially-induced by removing parasites of a certain age through chemical or

mechanical means (e.g., Lambros & Vanderberg, 1979; Mata-Cantero et al., 2014).

Cultured parasites cannot maintain synchrony without intervention, but they lose

synchrony at strain-specific rates (Reilly et al., 2007). Therefore, whatever host

factors may be acting to enforce synchronized dynamics, different parasite strains

likely vary in their response. Theory suggests that highly synchronized populations

should experience more intense competition, since parasites will be competing for

the same resources at the same time (Greischar et al., 2014). In order to understand

and manipulate parasite dynamics in vivo, we need to characterize the competitive

interactions that regulate parasite abundance: during which life stages is compe-

tition most intense and how does the distribution of life stages change through

time? In vitro cultures provide a unique opportunity to observe parasite dynamics

in the absence of host influence, and the resulting decay in synchrony can help us
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identify the fundamental processes that regulate malaria infections.

Though the human malaria Plasmodium falciparum is typically said to require

48 hours to develop and replicate within red blood cells (Kitchen 1949; Garnham

1966, reviewed in Mideo et al. 2013b), cultured strains exhibit different cycle

lengths—ranging from 43 to 51 hours on average—and that variation is largely

heritable (Reilly Ayala et al., 2010). In addition to inter-strain variation, we expect

variability within a strain because if life cycle length were fixed, parasites would

be expected to maintain synchrony through time (Hoshen et al., 2000; Greischar

et al., 2014). The decay of synchrony in vitro suggests instead that there is varia-

tion in the time required for parasites to progress through the asexual life cycle, in

addition to inter-strain differences in developmental rates. Artificial synchroniza-

tion leaves only parasites in a subset of developmental stages, but variation in the

rate of development will subsequently increase the diversity of parasite life stages.

Critically, greater developmental plasticity should lead to more rapid loss of syn-

chrony, and a more rapid increase in the diversity of parasite life stages present

at any one time. It should therefore be possible to characterize parasites’ devel-

opmental heterogeneity by tracking the diversity of parasite life stages through

time following artificial synchronization, using the type of data that are collected

to measure life cycle length in different malaria strains (e.g., Deharo et al., 1994,

1996; Reilly et al., 2007; Reilly Ayala et al., 2010).

Yet the distribution of malaria life stages also varies depending on whether the

population is expanding or contracting (Khoury et al., 2014). The intrinsic growth

rate of the parasite population will interact with variability in developmental rates

to influence parasite dynamics. Classic models of disease spread can be modified

to include realistic variation in latent periods (e.g., Wearing et al., 2005; Feng

et al., 2007), analogous to the period of time a red blood cell is infected before

parasites burst. The classic assumption that hosts become infectious at a con-

stant rate—an exponential distribution of waiting times—generates far too much

variation in incubation periods, leading to systematic underestimates of the rate

of spread along with other unrealistic dynamics (Wearing et al., 2005). Applied

to the case of malaria infection within the host, exponentially-distributed devel-

opmental periods would mean that parasites could replicate at any time, with a

proportion of parasites completing development immediately after invasion (Saul,
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1998; Crooks, 2008). Incorporating realistic individual variation into simple com-

partmental models has dramatically improved our ability to predict disease spread

(Wearing et al., 2005), explain time series data on disease incidence (Lavine et al.,

2011), and—for malaria infections—describe the progression through the life cycle

in a biologically-sensible way (Gravenor & Lloyd, 1998).

Figure 3.1. P. falciparum parasites (called “merozoites”, purple dots) that have failed
to invade a red blood cell (pink circles), along with three parasites that have invaded
successfully but clustered within the same red blood cell (right). The three successful
invaders have developed into the so-called ring stage forms. These parasites are in the
Dd2 strain.

Distinct from the impact of developmental rates, competition for resources will

strongly influence dynamics. Even in culture, not all parasites that burst out

of red blood cells will find another red blood cell to infect (Fig. 3.1). In vitro

assays suggest that red blood invasive parasites (merozoites) have only minutes

to infect a red blood cell before losing viability, and that as merozoites become

more abundant, their success rate declines (Boyle et al., 2010). Other experiments

also indicate that merozoite success declines with increasing parasite abundance

(Reilly et al., 2007). Similarly, analysis of rodent infections suggests that early

parasite population growth saturates as the initial inoculum size increases (Metcalf

et al., 2011). These intra-stage competitive interactions are likely to interact with

variability in life cycle length, with competitive interactions potentially becoming

less important as synchrony decays: in a poorly synchronized infection, competition

for red blood cells may be weaker since only a subset of the parasite population
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will be capable of invading (Greischar et al., 2014). The rate of successful invasion

varies with the starting densities of parasites and red blood cells, so that percentage

data of the sort commonly reported (percent parasitemia, percent parasites in a

particular life stage, e.g., Deharo et al., 1994, 1996; Chimanuka et al., 1997; Reilly

et al., 2007; Reilly Ayala et al., 2010; Allen & Kirk, 2010) may be inadequate to

reconstruct infection dynamics without data on the total number of red blood cells.

Interference is common among consumers, including parasitoid-host and predator-

prey systems. By analyzing rates of prey-consumption, it is often possible to rule

out the null hypothesis that no interference is occurring and the per capita rate of

success saturates with host numbers (Holling Type II functional response, Skalski

& Gilliam, 2001). This null hypothesis may not be appropriate for malaria para-

sites in vitro—at least for the starting conditions that have been tested so far—

because the per merozoite rate of successful invasion increases with red blood cell

abundance, even when red blood cells are not limiting (Boyle et al., 2010). The

mechanism responsible has not yet been identified, making it difficult to determine

the appropriate formation of that density-dependent competition. Previous theory

described two candidate forms of interference, each giving dramatically different

infection dynamics (Greischar et al., 2014). The extreme differences in dynamics

suggest that it may be possible to distinguish between different forms of density-

dependence through analysis of time series data.

It is also unclear when in the life cycle interference occurs, whether it be at

the point of invasion, or as multiple parasites attempt to develop within a single

red blood cell, or both. Successful parasite invasion is typically defined as the

rate at which uninfected red blood cells are invaded (e.g., Boyle et al., 2010), but

researchers have also examined the rate at which parasites invade any red blood

cell, infected or not, and found differences between strains (Reilly et al., 2007).

The timing of such intra-stage competition is likely to be important for predicting

how external forces such as the immune system or antimalarial drugs can most

efficiently control parasite numbers, analogous to the efficiency of natural enemies

in controlling insect pest populations (Bjørnstad et al., 2001).

Even in the relatively simple environment of artificial culture, the interplay be-

tween competition for resources and variability in developmental rates may alter

dynamics in unexpected ways. To tease apart these processes, we model malaria
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dynamics in culture, incorporating interference competition for red blood cells

along with gamma-distributed variability in life cycle duration. Initial model sim-

ulations show that standard methods of assessing the life cycle length can confound

cycle duration, developmental synchrony and invasion rates. To characterize dif-

ferences in these parasite life history traits, we fit two candidate functional forms

described previously (Greischar et al., 2014) to detailed time series data for three

strains, identifying which form of density-dependence, cycle length, and distribu-

tion of developmental rates best fit the data. We then perform in vitro assays on

two of those strains to identify which points in the parasite life cycle are subject

to interference: the invasion process itself, development within a red blood cell, or

both.

3.3 Methods

3.3.1 Distributed-delay model framework

We model the asexual, blood-stage life cycle of P. falciparum parasites, tracking

numbers of uninfected red blood cells along with parasite life stages. The model

framework mirrors in vitro experiments (Reilly et al. 2007) in which infected red

blood cells are added to a pool of unparasitized red blood cells and no new cells

are added once the experiment begins, at least until parasitemia increases enough

to put the population in danger of crashing. The model could be modified to

incorporate subsequent additions of red blood cells, but since we lack data on

the timing and size of red blood cell additions, we instead focus on the simpler

dynamics that occur prior to any additions of red blood cells. Thus, uninfected

red blood cells (R) are subject to a low background mortality rate (µ = 1/120

days, Koury & Ponka 2004) or infection by red blood cell-invasive merozoites (M)

at a rate x(t):
dR(t)

dt
= −µR(t)− x(t)R(t)M(t) (3.1)

where x(t) is the merozoite invasion rate, which may decline as conditions become

more crowded. Since the mechanism of merozoite interference is unknown, we

consider two candidate functional forms described previously (Greischar et al.,

2014). Interference reduces invasion success as the ratio of merozoites to uninfected
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red blood cells increases (Boyle et al., 2010), so we first consider a functional form

in which invasion success declines hyperbolically with the ratio of merozoites to

red blood cells:

p(t) =
pmax

1 + q(M(t)/R(t))
. (3.2)

Alternatively, interference could take a form analogous to the saturating responses

used in host-parasitoid models (Hassell, 2000):

z(t) =
pmax

(M(t) + 1)m
. (3.3)

Previous simulations used Eqns. 3.2 and 3.3 in a fixed delay model of rodent malaria

infections, finding surprisingly different dynamics between the two functional forms

(Greischar et al., 2014). Therefore it is important to distinguish which functional

form is more likely based on time series data.

Upon infection, a red blood cell will progress through infection. At the end

of the parasites’ developmental period (α days on average), a surviving red blood

cell will burst open to release merozoites. We assume that the waiting times from

invasion until bursting are Gamma-distributed with an integer shape parameter n

(i.e., an Erlang distribution). Constraining n to be a positive integer allows the

infected red blood cell class to be modeled as n ordinary differential equations,

each with an exponential distribution of waiting times. With a single infected

compartment (n = 1), the waiting time until bursting would be exponentially-

distributed, leading to rapid desynchronization of development. As n increases,

the distribution of waiting times becomes narrow, limiting the variance around the

mean, and leading to more sustained developmental synchrony. The coefficient of

variation in life cycle length decreases as n increases according to 1/
√
n.

We split the developmental period between the immature stages (rings and

trophozoites, I(t)) and parasites in the mature schizont stage (S(t)). Thus we

assume it takes an average of α1 days for invaded red blood cells to mature into

schizonts, and another α2 days on average for those schizonts to burst and release

merozoites. The resulting chained ordinary differential equation model for early

and late development takes the form:
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Immature forms

(rings and trophozoites)

dI1(t)

dt
= x(t)R(t)M(t)− µI1(t)−

n1

α1

I1(t) (3.4)

dI2(t)

dt
=

n1

α1

I1(t)− µI2(t)−
n1

α1

I2(t) (3.5)

...
...

dIn1(t)

dt
=

n1

α1

In1−1(t)− µIn1(t)−
n1

α1

In1(t) (3.6)

Schizonts
dS1(t)

dt
=

n1

α1

In1(t)− µS1(t)−
n2

α2

S1(t) (3.7)

dS2(t)

dt
=

n2

α2

S1(t)− µS2(t)−
n2

α2

S2(t) (3.8)

...
...

dSn2(t)

dt
=

n2

α2

Sn2−1(t)− µSn2(t)−
n2

α2

Sn2(t) (3.9)

where n = n1 + n2. We constrain n1/α1 = n2/α2 so that the transitions through

compartments will occur at the same rate regardless of the life stage (immature

or schizont), thereby constraining the immature and schizont stages to have the

same variance to mean ratio. We make this simplifying assumption since we are

interested in the cycle length and the distribution of developmental rates over the

full length of the intraerythrocytic cycle. The split between immature and schizont

classes allows comparisons with commonly gathered experimental data.

Schizonts that survive through the n2 compartments are assumed to burst to

release β merozoites according to:

dM(t)

dt
= β

n2

α2

Sn2(t)− µzM(t)− x(t)R(t)M(t) (3.10)

We assume that merozoites die at rate µz, corresponding to an exponential half-

life of five minutes (in line with in vitro assays, Boyle et al., 2010). We do not

explicitly model multiply-invaded red blood cells. While multiple infections are
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common, especially in static cultures (Allen & Kirk, 2010), there is no evidence

that these multiply-infected red blood cells would have dynamics different from

what we describe in Eqns. 3.4-3.10. Previous in vitro experiments counted the

number of merozoites within mature segmenting schizonts, finding a unimodal

distribution (Fig. B.4 reproduced in the supplement Reilly et al., 2007). If a twice-

invaded cell burst to release twice the number of merozoites, we would expect

a bimodal distribution, which would necessitate a more complex model than the

one presented here. However, the unimodal distribution of burst sizes suggest

three possibilities: (1) multiply-infected red blood cells are inviable, producing no

merozoites, and those failures can be absorbed by the interference function; (2)

each parasite in a multiply-infected red blood cell produces a fraction of the usual

number of merozoites (for example, two parasites each producing half the usual

number of merozoites); (3) within a multiply-invaded red blood cell, only one

parasite successfully produces the usual number of merozoites, while the others

fail to develop. All three possibilities can be described with the current model

framework.

3.3.2 Model fitting

We fit the distributed delay model to detailed time series data taken from cultures

kept in 5mL flasks at 5% hematocrit. Red blood cell counts are not typically

made prior to setting up experiments; rather the stock is assumed to be at 50%

hematocrit and diluted down to the appropriate hematocrit (5%). A previous

study estimated red blood cell counts from human volunteers, finding 4.84 × 106

and 4.64 × 106 red blood cells per mL in two control groups, with hematocrits

of 42.9% and 41.9%, respectively (Gonzalez-Alonso et al., 2006). Averaging those

estimates, we obtain 2.37 million red blood cells in the culture flask. Since the

starting number of red blood cells is likely to influence the fits, we also re-fit the

model for one strain assuming a larger number of red blood cells (an estimated

5 × 109 red blood cells per mL used in a clinical trial, Etablissement Français du

Sang, 2012), which would yield a starting abundance of 2.5 billion red blood cells.

A synchronized inoculum of parasites was introduced at 0.5% parasitemia. Parasite

cultures were synchronized three times via sorbitol, which kills off mature stages
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leaving mainly rings (Lambros & Vanderberg, 1979), and allowed to progress to the

schizont stage before inoculating them into cultures with washed red blood cells

and culture medium (details of solution in Reilly et al., 2007). Synchronization was

not perfect, but the initial distribution of parasite life stages was observed from

a blood smear, which we use as the initial conditions for the model. We assume

no red blood cells are added after the start of the experiment, and truncate the

time series before red blood cells would have been added. Researchers usually aim

to keep the parasitemia from exceeding 5%, so red blood cell additions can be

detected by noting when the parasitemia exceeds 5% and is reduced by half or

more at the following time point (L. B. Turnbull, pers. comm).

The model was fit to data for three strains: Dd2 (a single replicate), HB3, and

3D7 (both with three replicates), with stage distribution and parasitemia calcu-

lated from blood smears at approximately eight hour intervals. We converted this

data to times series of percentage of sample in the schizont stage, and percentage

of the sample in the pre-schizont stages (i.e., rings and trophozoites). We used the

Nelder-Mead algorithm (Lagarias et al., 1998) to cycle through candidate param-

eter values for the shape parameter (n), the cycle length (α, where α = α1 + α2),

the proportion of the life stage spent in the schizont stage (used to calculate n1,

n2, α1 and α2), the maximum invasion rate (pmax), and the interference coefficient

(either q or m depending on the functional form of interference). The burst size

(β) was specified as 17.52 and 14.83 for Dd2 and HB3 (Reilly et al., 2007), and 15

for 3D7. We tried fits for both functional forms of interference (Eqns. 3.2-3.3) to

locate the functional form and parameter values that would give the best fit ac-

cording to weighted least squares (wls) criterion as appropriate for binomial data

with a large but unknown denominator:

wls =
k∑
i=1

(Ip,i − ˆIp,i)
2

ˆIp,i(1− ˆIp,i)
+

k∑
i=1

(Sp,i − Ŝp,i)2

Ŝp,i(1− Ŝp,i)
(3.11)

for k observations where Ip and Sp are observed percentages of pre-schizont and

schizont stage parasites (that is, the percentage of the entire sample, not the per-

centage of parasites), and Îp and Ŝp are the model-predicted values. The residuals

are weighted by the variance of expected from a binomial distribution so that poor

model fits at intermediate percentages—when the population variance would be



48

large—are less costly than poor fits at low percentages. We constrained the fit to

only consider α values between one day and three days, and constrained candidate

n values to vary between two (because one compartment is needed for pre-schizont

and schizont dynamics) and 1000 (see Discussion). The invasion parameters, pmax,

q and m, were constrained to be positive, and the proportion of the life cycle spent

in the schizont stage was constrained to vary between zero and one. Model fits

were performed USING the optim function in R (R Project for Statistical Comput-

ing, http://r-project.org/). Each strain was fit separately, but multiple replicates

were fit simultaneously to increase the chances of being able to distinguish between

different forms of density-dependent interference.

3.3.3 Invasion assays: experimental setup & analysis of

blood smear images

We set up assays to follow a cohort of mature schizonts through bursting and rein-

vasion, for two of the three strains examined with detailed time series (Dd2 and

HB3). Rather than recording only the number of red blood cells invaded, we also

tracked how many parasites successfully invaded, so that we could assess whether

interference occurs during invasion, post-invasion, or both. Detailed methods can

be found in (Reilly et al., 2007), but briefly, cultures were sorbitol synchronized and

subsequently magnet synchronized to get a highly purified solution of schizonts esti-

mated to represent a 10 hour-morphological window (L. B. Turnbull, pers. comm.).

These schizonts were combined with washed red blood cells and culture medium

to obtain a 1% parasitemia at 5% hematocrit. This 1% solution was then diluted

to obtain 3mL cultures at four target parasitemias (still maintaining 5% hema-

tocrit): 0.25%, 0.125%, 0.025%, and 0.0125%, with three replicates in for each

concentration. To allow comparisons with previous invasion assays (Reilly et al.,

2007), we did not shake the cultures. The cultures were left in the incubator until

they were expected to have burst, reinvaded, and formed into easily-identifiable

ring-stage parasites. At that point, a monolayer of red blood cells was smeared

over five slides for each replicate. The blood smears were fixed with methanol and

stained with Giemsa (as described previously, Reilly et al., 2007). Uninfected red

blood cells and infected red blood cells were counted, with infected red blood cells
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classified as rings, trophozoites, schizonts, representing the early, middle, and late

stages of intra-erythrocytic development, respectively. Although rare under these

artificial culture conditions, we occasionally observed transmission stages (game-

tocytes). Rings would be the result of successful invasion, while trophozoites and

schizonts would represent bystanders, parasites that escaped synchronization and

so did not burst on time to infect further red blood cells. Gametocytes were also

classified as bystanders, because they take more than a week to develop (Lensen

et al., 1999). For multiply infected red blood cells, we counted the number of par-

asites that successfully invaded. These counts were either made on the microscope

or from images of slides.

For slide images, at least 25 fields were captured for 0.25% starting concentra-

tion, at least 100 fields for 0.125% and 0.025% concentrations, and 200 fields for

0.0125% concentration. While an attempt was made to capture fields containing a

moderate number of red blood cells in a monolayer and no artifacts (such as sedi-

ment from the Giemsa staining), fields were captured without bias to the infection

status of the recorded cells. Given the large number of fields to sort, we developed

a macro in ImageJ (Rasband, 2013) to automate red blood cell counts. While par-

asite counts were still performed by visual assessment of images, the automated

red blood cell counts are especially useful when parasitemias are low, since most

images are devoid of parasites and a large number of fields must be counted to ob-

tain a reliable count. Further, this method of image processing allowed the images

to be randomized prior to scoring (as was done for the HB3 images), and to track

counts for individual fields, which were subsequently used to bootstrap confidence

intervals for each replicate. The code for the macro can be found in Appendix B.2.

We compare two measures of invasion success: number of parasites invading

successfully, and the excess invasions: the number of parasites invading already

infected red blood cells. The counts for each replicate span a different number

of red blood cells, so we make comparisons by calculating the expected number

of schizonts present given the number of cells observed. The expected number of

schizonts would be the ratio of schizonts to uninfected red blood cells from the

initial dilutions multiplied by the number of red blood cells sampled. However,

some of the sampled red blood cells contained bystanders (i.e., trophozoites, sch-

izonts or gametocytes) that would not have participated in the wave of bursting
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and invasion, but merely occupied red blood cells that would otherwise have been

available for invasion. We therefore calculate the expected number of schizonts as

the initial ratio of schizonts (S(0)) to uninfected red blood cells (R(0)) times the

number of uninfected red blood cells that would have been available to parasites

at the time of bursting, i.e., the sampled cells (j) minus bystander parasites (b):

E[S(t)] =
S(0)

R(0)
(j − b) (3.12)

For each field, we calculated the expected schizonts, the number of merozoites that

had invaded a red blood cell (whether that cell was already infected or not), and

the number of merozoites that invaded a cell that was already infected. Since we

had counts for each field, we subsampled the matrix of data for each replicate 5000

times to obtain bootstrapped 95% confidence intervals (boot package in R).

3.4 Results

3.4.1 Stage percentage data biases the estimated cycle length

Initial model simulations indicated that the apparent cycle length did not match

up with the cycle length specified in the parameter values (α). The discrepancy

highlights a bias in the way cycle length is typically estimated, as the period of

time between peaks in the percentage of parasites in a particular life stage (e.g.,

Deharo et al., 1994, 1996; Reilly et al., 2007; Reilly Ayala et al., 2010; O’Donnell

et al., 2011). Depending on whether the infection is growing or declining, the

percentage of parasites in the schizont stage may under- or over-estimate the true

cycle length (Fig. 3.2). The bias is exacerbated at higher intrinsic growth rates,

and less pronounced—though not absent—when the variability in developmental

rates is minimal (Fig. 3.3).

Greater variation in cycle length generates wide peaks in immature stage abun-

dance, delaying the peak percentage of schizonts when infection is declining, or

hastening the peak when infection is growing. Using only the percentage of para-

sites in the schizont stage ignores larger patterns of growth and decline in parasite

numbers, and in each case, the peak abundance of schizont stage parasites yields a
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Figure 3.2. The period between peaks in the percentage of parasites in the mature
schizont stage gives a biased estimate of the real cycle length, depending on whether the
infection is declining (A,C) or growing (B,D). Simulations were run assuming hyperbolic
interference (q = 10), a burst size of 16, and large variability in cycle length (n = 30,
CV = 0.18). In each case, the true cycle length was set at 42 hours (dashed vertical
line). In the left panels (A,C), the maximum invasion rate was set to 2× 10−9, while in
the right panels, the maximum invasion rate was 2× 10−8, leading to growth.

more accurate estimate of cycle length. Unsurprisingly, simulations also show that

quantifying the abundance of a short-lived life stage will yield better estimates of

cycle length. In the simulations, progressing through the immature stages takes

more than two-thirds of the life cycle on average (Fig. 3.2). The length of the life

cycle could be estimated as the period between two peaks in the abundance of par-

asites in a particular life stage, but the long duration of immature stages generates

plateaus rather than peaks in abundance. Without clear peaks, it is difficult to
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Figure 3.3. The maximum invasion rate can bias the apparent length of the life cycle, as
estimated by the proportion of parasites in the schizont stage. The true cycle length (42
hours) is indicated by a dashed black line, while the red curve refers to simulations run
with a high degree of developmental plasticity (n = 30) and the blue curve to simulations
with little variability in life cycle length (n = 300). Other parameters as in Fig. 3.2.

decide which two points should be compared to arrive at an estimate of life cycle

duration.

The proportion of parasites in the schizont stage undergoes damped oscillations

through time as synchrony is lost (Fig. 3.2A,B). However, in the simulations shown,

the variability in cycle length was kept the same, as were the initial conditions,

so that the only difference was in the maximum invasion rate. In both scenarios,

the proportion of parasites in the schizont stage was highest initially and rose to a

shorter peak roughly one life cycle length later, with that peak being even shorter

for a growing population because of the disproportionate increase in immature

stages (Fig. 3.2B, C). If these simulated populations were sampled at 42 hours,

for example, and the percentage of parasites in the schizont stage recorded, it

might be concluded that the populations differ in the degree of synchronization,

with the population in Fig. 3.2A being more highly synchronized because it has

a greater proportion of parasites in a narrow morphological window. The model

demonstrates that such apparent differences in synchrony could instead be caused
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by expansion versus contraction of the parasite population.

3.4.2 Model fits to detailed time series data

Fitting the model to time series data for three P. falciparum strains, we find that

hyperbolic interference (Eq. 3.2) yields the best fit overall (Fig. 3.4). When we

re-ran the optimization for Dd2 assuming high starting numbers of red blood cells,

we obtained better fits over all, but the hyperbolic form of interference still gave a

better fit than parasitoid-like interference (Fig. B.5). Interestingly, the algorithm

selected a much longer cycle length for Dd2 (52 hours, Table 3.1) than has been

previously reported (44.1 hours, Reilly et al., 2007). We plot the percentage of

schizonts found in the present time series against two replicates of Dd2 from a

previous experiment using similar methods (H. B. Reilly Ayala, pers. comm) for

comparison.

Table 3.1. Fit parameters

Interference Strain CV Cycle length Schizont stage

Weighted
least
square
error

Hyperbolic Dd2 0.131 52.1 hours 15.7 hours 0.0731

Parasitoid Dd2 0.302 72∗ hours 21.1 hours 0.147

Hyperbolic HB3 0.302 72∗ hours 23.8 hours 0.297

Parasitoid HB3 0.302 72∗ hours 27.0 hours 0.297

Hyperbolic 3D7 0.0579 53.4 hours 14.1 hours 0.0793

Parasitoid 3D7 0.289 57.3 hours 21.6 hours 0.165
*maximum allowable

cycle length

The model also fit well to 3D7, again with hyperbolic interference giving a

better fit, but both forms of interference converged on the same poor fit for HB3,
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Figure 3.4. Model fits assuming hyperbolic interference (black solid curve, Eq. 3.2) or
parasitoid-like interference (black broken curve, Eq. 3.3), with data is shown in colored
lines. The black curves for each strain indicate a single best model fit to both the
proportion of sampled red blood cells in the immature parasite stages (A-C) and in the
schizont stage (D-F). Weighted least squares errors corresponding to each fit can be
found in Table 3.1, along with the coefficient of variation in cycle length, cycle duration,
and schizont stage length. The associated invasion parameters are listed in Table B.1.

with unrealistically long cycle lengths and large coefficients of variation in life cycle

length, which has previously been characterized as having a life cycle closer to 50

hours and the capability to maintain a higher degree of synchrony than Dd2 (Reilly

et al., 2007). Again we can see differences in the dynamics comparing the present

data to those collected previously (Fig. B.7).

3.4.3 Invasion assays: interference

We find no evidence that interference occurs as merozoites are invading red blood

cells, which would appear as a nonlinear relationship between the number of suc-

cessful invasions as the expected number of schizonts increases. Instead, the num-
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ber of successful invasions increases approximately linearly with the expected num-

ber of schizonts (Fig. 3.5). With HB3 invasion success, the points fall below what

would be expected from minimum burst sizes and 100% invasion success, but pat-

tern is what would be expected given the short lifespan of merozoites. More sur-

prising is the high invasion success of Dd2 merozoites. Given that some merozoites

failed to invade (e.g., Fig. 3.1), the large number of invasion events suggests that

Dd2 may have a larger burst size than has been previously appreciated, at least

under certain conditions.
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Figure 3.5. The number of merozoites successfully invading red blood cells as a function
of the expected number of schizonts in the initial sample according to Eqn. 3.12 for Dd2
(A) and HB3 (B). Each blue dot represents a single replicate, with the blue lines indicated
95% confidence intervals obtained by bootstrapping the counts for individual fields. The
dashed black line represents the expected number of invasions if each schizont contained
the mean number of merozoites and each merozoite invaded, with dotted lines indicating
the expectation if every schizont contained the maximum versus minimum number of
merozoites reported (Reilly et al., 2007). The orange triangles indicate counts done on
a subset of the replicates by microscopy; thus these are not independent data points but
are included here to allow comparison between estimates obtained from automated red
blood cell counts and those derived from standard microscopy.

In contrast, we can see that many more merozoites are wasted—invading cells

that have already been invaded—as the expected number of schizonts increases
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(Fig. 3.6). As would be expected from the larger burst size of Dd2, the number of

excess invasions increases much more rapidly as the expected number of schizonts

increases, compared with HB3. Therefore the merozoite-wastage is dependent on

starting parasite abundance, and we can see that for Dd2 the wastage becomes

substantial at a lower schizont abundance than for HB3. Dd2 wastes a full schizont

when the expected number of schizonts reaches approximately four, while HB3

shows no significant wastage until the expected number of schizonts nears seven.
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Figure 3.6. The excess number of merozoites invading (that is, the number of mero-
zoites invading already-occupied red blood cells) as a function of the expected number
of schizonts in the initial sample according to Eqn. 3.12 for Dd2 (A) and HB3 (B). Each
blue dot represents a single replicate, with the blue lines indicated 95% confidence in-
tervals obtained by bootstrapping the counts for individual fields. Two samples had too
few invasions to construct reliable confidence intervals (B, black circles). As before, the
orange triangles indicate counts done on a subset of the replicates by microscopy for
comparison, and are not independent data points. The dashed line refers to the mean
burst size for each strain.
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3.5 Discussion

The dynamics of malaria parasites in vitro can inform our understanding of vari-

ability within and across strains, forming a basis for predicting how parasites will

respond to the selective pressures. The length of the intraerythrocytic cycle and

density-dependence in the rate of red blood cell invasion prove surprisingly difficult

to quantify, for all that they are very basic aspects of malaria biology. A major

part of the problem is that the stage distribution data commonly gathered (i.e.,

what fraction of parasites are in a particular life stage) tell only part of the story.

We use a mechanistic model to show that whether an infection is growing or de-

clining can give the appearance of differences in life cycle length and the degree

of synchronization. We fit the model to time series for three strains to distinguish

between different forms of interference competition, while providing estimates of

life cycle length and the variability in developmental rates. To identify where in

the life cycle competition is likely to occur, we performed invasion assays on two of

the three strains, which suggest that the cost of interference likely manifests when

parasite invasion is wasted on red blood cells that have already been infected.

Characterizing host-parasite interactions—especially the interplay between in-

fection and host circadian rhythms (reviewed in Mideo et al., 2013b)—requires

accurate estimates of parasite life cycle length. The length of the erythrocytic cy-

cle is typically calculated as the period between the peak percentages of a particular

life stage (Deharo et al., 1994, 1996; Reilly et al., 2007; Reilly Ayala et al., 2010;

O’Donnell et al., 2011). Though measuring mature schizont abundance might be

ideal, mature stages often sequester in the capillaries, making it difficult to accu-

rately assess cycle length from in vivo infections (MacPherson et al. 1985). The

model results suggest that estimates of intraerythrocytic cycle length obtained us-

ing the percentage of a particular life stage may over- or under-estimate the true

cycle length depending on whether the infection is growing or declining. The mag-

nitude of the error is likely to increase with variation in developmental rate. Past

work has estimated the life cycle length of two murine malaria strains, P. yoelii

and P. berghei, finding cycle lengths shorter than 24 hours as estimated by stage

percentage (Deharo et al., 1994, 1996). For both strains, the parasites show lit-

tle synchrony in vivo, and had to be artificially-synchronized prior to inoculation,
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meaning that errors in estimating life cycle length could be substantial. Further, in

at least one of the studies (Deharo et al., 1994) and presumably the other (Deharo

et al., 1996), the infection was growing while sampling was taking place. Model

simulations suggest that stage percentage data taken as the infection is expanding

may underestimate the true life cycle length, so that the surprisingly short life

cycle lengths reported (18 hours for P. yoelii and 21 hours for P. berghei, Deharo

et al., 1994, 1996, respectively) could actually be closer to the 24 hour life cycle

reported for the highly-synchronized murine species P. chabaudi (O’Donnell et al.,

2011). Unfortunately, these issues spill over into the in vitro case, where strains

are typically growing as cycle length is being assessed (Reilly et al., 2007; Reilly

Ayala et al., 2010). These estimates of life cycle length may therefore tend to un-

derestimate the true life cycle length, with the magnitude of the error varying with

the intrinsic growth rate (Fig. 3.3). This bias could explain the observed negative

correlation between cycle length and invasion efficiency (Reilly, 2007). Invasion

efficiency is itself heritable (Reilly, 2007), that could further complicate efforts to

quantify heritability in life cycle length.

This bias makes it difficult to compare previously reported cycle lengths to the

values estimated by fitting the present model. Since Dd2 grows quickly, conven-

tional methods are likely to underestimate the true cycle length, and that may be

part of the reason the the best fit cycle length for Dd2 (52 hours) falls outside the

range reported previously (39-48 hours, Reilly et al., 2007). Aside from the bias in-

troduced by intrinsic growth rates, the error in cycle length is likely to be increased

for strains with greater heterogeneity in developmental rates (Fig. 3.3). Dd2 may

have more variability in developmental rates than HB3, since it loses synchrony

faster (Reilly et al., 2007), and the cycle length estimates may therefore be more

error prone. Unfortunately, we cannot get a good sense of the variation in devel-

opmental rates from the single replicate for which data was available. Comparing

to a previous data set, for which only stage distribution data were available (H. B.

Reilly Ayala, pers. comm.), we note clear differences in the time series themselves

(Fig. B.6), suggesting that methodological differences might be partly responsible

for the long estimated life cycle length for Dd2. For the other strains, HB3 and

3D7, data were taken for multiple replicates, which can give us a sense for the nat-

ural variation in the dynamics. We fit the model to all replicates simultaneously so
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as to give the best chance of distinguishing between different forms of interference,

but the model could also be fit to each replicate independently, yielding three dif-

ferent estimates of cycle lengths and developmental plasticity, and allowing us to

make comparisons across strains and experiments.

The model suggests that stage distribution data give a similarly biased estimate

of the degree of synchronization (Fig. 3.2). While changes in the distribution of

parasite life stages might be expected to correlate with changes in the degree

of synchronization (e.g., Deharo et al., 1996), these simulations show that such

changes could instead be merely the byproduct of population growth. In particular,

the model suggests that, during periods of growth, the population of parasites is

likely to be biased towards immature stages, as has been found in rodents infected

with a poorly synchronized malaria strain (P. berghei, Khoury et al., 2014). This

bias makes estimates of synchrony challenging to interpret, even in the relatively

well-controlled environment of artificial culture. Synchrony has been reported to

decay more quickly when parasites are cultivated in static versus shaken cultures,

since maturing parasites are more likely to experience different nutrient micro-

environments in static culture and hence develop at rates that are more variable

(Allen & Kirk, 2010). However, Allen & Kirk (2010) also report that shaking

cultures great enhances the intrinsic growth rate of the population, consistent

with their observation that fewer merozoites are wasted in multiple infections of

red blood cells when cultures are shaken. Synchrony was assessed by observing

the number of mature stage parasites appearing on alternate days, when only

early stage parasites (rings) would be expected in a synchronous population. The

shaken cultures appeared more synchronized because they had fewer mature stages

compared with the slower-growing static cultures. While the logic is sound—

that static cultures would promote variation in developmental rates—we would

expect to see fewer mature stages present simply because the population expanding,

and from the data it is not clear whether shaking cultures actually facilitates the

maintenance of synchrony. Even more difficult to interpret are studies of human

infections that rely on the stage distribution from a single time point (e.g., Touré-

Ndouo et al., 2009), so that we cannot assess whether parasite populations are

growing or declining.

Quantifying how synchrony changes through time is challenging, with robust
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methods still being developed and tested (Bjørnstad et al., in revision). The com-

plex methods required to accurately quantify synchrony in simulated populations

again suggest that the simpler approaches used to quantify synchrony in malaria

parasites (e.g., using stage-distribution data, Deharo et al., 1996) may be inade-

quate. In addition to the problem of accounting for the intrinsic growth rate of

a population, the length of each morphological life stage is likely to be impor-

tant. The ring stage of development lasts nearly half the life cycle in P. falciparum

(Reilly et al., 2007), so for example, finding all parasites in the ring stage would not

give much information about the level of synchrony, while the percentage of para-

sites in a morphologically narrow window can provide better information. It can

also be seen that the progression of the life stages should be incorporated into syn-

chrony calculations. If parasites are evenly split between two adjacent life stages,

that would represent a higher degree of synchrony that if parasites were divided

between two life stages separated by a series of developmental steps. Therefore

methods using only stage distribution data, without incorporating knowledge of

the life cycle or parasite growth rates, are likely to give a skewed picture of the

pattern of synchronization.

These issues highlight the problems associated with trying to quantify a portion

of dynamics, such as cycle length or synchrony, in isolation. By fitting a mechanis-

tic model to data, we can begin to tease apart how different processes contribute to

the observed dynamics. One limitation of this approach is that distributed delay

models can be computationally intensive (Crooks, 2008), and in the present case,

the fitting algorithm was inclined to try larger and larger numbers of compart-

ments for marginal gains in the weighted least squares error. We addressed this

problem by constraining the number of compartments, so that the coefficient of

variation in life cycle length could not be below a minimum value. As more time

series data become available, it may be possible to clarify some the uncertainties

that remain with respect to life cycle length, and to set reasonable bounds on the

variability in developmental rates. Observing more replicates would be useful, as

would observing the cultures for longer periods, provided detailed notes were kept

on when and how many red blood cells were added to keep the culture from crash-

ing. Still, the present work demonstrates that it is possible to tease apart complex

processes—for example, obtaining estimated life cycle lengths while accounting for
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the intrinsic growth of a population—by fitting a mechanistic model to time series

data.

The growth rate of the population is itself complicated by the fact that the

success of individual parasites is likely to be density dependent (Reilly et al., 2007;

Boyle et al., 2010). A previous model showed that different forms of density-

dependence interference among parasites could generate very different dynamics

(Greischar et al., 2014), so we used the present model to determine what form

of density-dependence could best explain detailed time series data. In the two

cases where good model fits were identified (for strains Dd2 and 3D7), the hyper-

bolic form of interference (Eqn. 3.2) gave a better fit as well as more reasonable

estimates of cycle length and developmental plasticity (Table 3.1). This form of

interference has the interesting property that it can damp extreme oscillations in

parasite numbers—in effect keeping parasites from overexploiting resources and

crashing—a characteristic that could have adaptive significance particularly for

highly synchronized populations of parasites (Greischar et al., 2014).

We also make use of in vitro assays to identify when in the life cycle interference

is likely to take place: as parasites compete to infect red blood cells, during de-

velopment within multiply-infected red blood cells, or both. These invasion assays

were initialized with very low parasitemias, and it was necessary to observe a large

sample of red blood cells to obtain a robust estimate of invasion success. Devel-

oping an image-processing algorithm that enabled us to sample a greater portion

of the culture that would have been feasible with traditional microscopy counts.

Capturing images was labor-intensive, but subsequent red blood cell counts could

be done quickly, and with freely available software. The image processing algo-

rithm also stores information about each field, and in combination with manual

counts of parasite stages, we were able to use the variation across fields for each

replicate to calculate 95% confidence intervals for each axis, which is not practical

for counts done via microscopy. Critically, data points gathered using automated

red blood cell counts gave qualitatively similar estimates as those obtained through

traditional microscopy (blue dots versus orange triangles, Fig. 3.5).

Previous work reported invasion rates calculated from the percentage of red

blood cells infected (Boyle et al., 2010), implicitly assuming that parasites invad-

ing already-occupied cells are wasted. We find that per merozoite invasion success
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is an approximately linear function of the number of schizonts present (Fig. 3.5),

with no evidence that merozoites are less likely to invade at relatively high den-

sities. However, the number of merozoites invading already-occupied red blood

cells does increase with the initial number of schizonts. Taken together, there is

no evidence that merozoites are more or less likely to invade cells that have al-

ready been infected, in accordance with previous observations of human infections

(Simpson et al., 1999). Previous work suggested that Dd2 invades at a high rate

than HB3 regardless of whether multiply-infected red blood cells are counted as

one invasion event or multiple invasions (Reilly et al., 2007). We see the same

qualitative pattern, and note that Dd2 accrues excess invasions much more rapidly

than HB3 for the same starting number of schizonts (Fig. 3.6). The simplest ex-

planation is that Dd2 has a larger burst size than HB3 (Reilly et al., 2007), but

the reported difference is not sufficient to explain fully explain the pattern: Dd2

would be expected to waste a full schizont’s worth of merozoites on red blood cells

that are already infected when only four schizonts are present in the initial sam-

ple, whereas HB3 does not waste a full schizont’s worth of merozoites until seven

or more schizonts are present. In light of the unusually high invasion success of

Dd2 merozoites (Fig. 3.5), we cannot rule out that Dd2 has a much higher burst

size than has been observed previously, and that could serve to explain why Dd2

experiences more severe merozoite wastage.

An alternative explanation would be that Dd2 is only able to infect a subset of

the red blood cell population compared with HB3, and therefore tends to exhibit a

greater number of multiple invasions, a phenomenon termed “selectivity” (Simpson

et al., 1999). A pattern consistent with “selective” parasites has been observed

in human infections, where more multiply-infected cells were seen would be ex-

pected from a Poisson process, particularly when parasitemia was low (Simpson

et al., 1999). While we cannot rule out the possibility that Dd2 and HB3 infect

different subpopulations of red blood cells, we find the opposite pattern to that

reported by Simpson et al. (1999): that the number of multiply infected red blood

cells increases when more schizonts are present initially (Fig. 3.6). Sampling P.

falciparum infections in humans is complicated by the fact that mature parasite

stages sequester out of circulation, behavior that means parasitemia may be a poor

indicator of parasite biomass (reviewed in Cunnington et al., 2013). Artificial cul-
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ture avoids these sampling problems, potentially explaining why we see a different

pattern.

We find that interference is likely to occur during the lengthy period when

parasites are developing inside red blood cells rather than the transient period of

invasion, so that the host has a long time window in which to intensify competition

among parasites. One of the most important sources of parasite removal is the

spleen, which acts as a filter to remove infected red blood cells based on their

loss of surface area compared with uninfected red blood cells (Safeukui et al.,

2008, 2013). Although the spleen preferentially removes red blood cells containing

mature parasites—the ostensible reason for parasite sequestration (reviewed in

Cunnington et al., 2013)—it also removes substantial numbers of immature ring-

stage parasites (Safeukui et al., 2008). Since multiply-invaded red blood cells would

be expected to lose more surface area compared to singly-infected ones, the spleen

has the potential to greatly intensify interference among parasites before they have

a chance to sequester.

Since competitive interactions occur between individuals in a particular life

stage, control measures—such as antimalarial drugs or immune defenses—could

exacerbate or mitigate competition depending on which life stage is targeted. For

example, removing merozoites could reduce the numbers of multiply-infected red

blood cells, with negligible minimal reductions in parasite growth rates. Thus

while there are immune components that target merozoites (including γδ T cells,

Costa et al., 2011), there is no evidence from rodent malaria infections that mero-

zoite clearance is associated with control of peak parasite numbers (Miller et al.,

2010). In contrast, by targeting misshapen red blood cells, the spleen would be

expected to act synergistically with whatever interference occurs within red blood

cells. Analogous issues have been identified in the control of an insect pest: a para-

sitoid has been found to reduce the adult abundance of an insect pest by targeting

life-stages after major competitive interactions have occurred, while a virus does

not exert effective control because it acts too early, removing individuals before

they can engage in competition (Bjørnstad et al., 2001). Antimalarial drugs also

target certain parasite life stages (Geary et al., 1989; ter Kuile et al., 1993; Delves

et al., 2012), and timing drug treatment so as to maximize the effects of parasite

competition could be important, especially with less aggressive drug therapy. Such
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low-dose treatments have been suggested as a potential solution to the problem

of minimizing selection pressure for drug resistance while maintaining host health

(Read & Huijben, 2009; Huijben et al., 2010a, 2011, 2013).

Finally, given the stage-specific action of antimalarial drugs, effective treatment

requires good timing so that the majority of parasites are in a vulnerable life stage.

Antimalarial drugs therefore represent a selective pressure not unlike that of artifi-

cial synchronization in culture. Accurately assessing the efficacy of drug treatment

in patients requires knowledge of the synchronization of infection (White et al.,

1992), but the degree of synchronization is likely to be a complex function of the

cycle length, developmental plasticity, and the underlying competitive interactions.

The present model suggests that considering any of these factors independently is

likely to give a skewed perspective of infection dynamics and the intra- and inter-

strain variation in key traits. By considering these factors collectively, the model

has the potential to characterize life history variation in cultured parasite strains.

Although that variation is only a small fraction of the diversity present in natural

infections, it can serve to elucidate what infection dynamics are parasite-driven,

giving us a basis for understanding the complex interactions within the host.
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Chapter 4
Predicting optimal transmission

investment in malaria parasites

4.1 Abstract

Malaria parasites face a tradeoff between in-host replication and the production

of transmission stages that can be passed onto mosquitoes, analogous to growth-

reproduction tradeoffs in multicellular organisms. We use a fixed delay model

to identify the optimal strategy for investing in transmission during acute infec-

tion. By allowing the level of investment to vary dynamically through time and

maximizing the cumulative transmission potential, we show that plastic strate-

gies can substantially out-perform fixed transmission investment. We find that

host defenses, brief infections, and coinfecting malaria strains can select for in-host

replication at the expense of transmission investment, especially early in infection.

By competing time-varying investment strategies in coinfections, we show that

coinfecting parasites might be expected to converge on a single optimal transmis-

sion investment strategy, because—in addition to potent competition—coinfecting

strains also represent a source of mates. While we focus on tradeoffs in malaria

life history, the approach for identifying optimal dynamic investing strategies is

broadly applicable.
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4.2 Introduction

Tradeoffs between reproduction and growth are ubiquitous, with tension arising be-

tween immediate fitness gains and potentially greater fitness gains in the uncertain

future (e.g., Bell, 1980). The optimal balance depends on available resources and

the probability of survival (reviewed in Clutton-Brock, 1984), density-dependent

feedbacks and environmental variability (Metcalf et al., 2008), and—for organisms

capable of reproducing more than once—the reproductive effort expended previ-

ously (Charlesworth & Leon, 1976). Whenever successful reproduction requires

finding a mate, good strategies may also require matching the timing of reproduc-

tive effort to that of conspecifics (i.e., reproductive synchrony, reviewed in Kelly &

Sork, 2002). While the dilemma is often phrased in terms of macroorganisms (e.g.,

Bell, 1980; Clutton-Brock, 1984), malaria parasites provide a clear example of these

conflicting selection pressures as they attempt to balance within-host replication

and transmission to new hosts (reviewed in Taylor & Read, 1997). Parasites can

serve as model systems for understanding the tradeoff between growth and repro-

duction (Reece et al., 2009), and the theoretical approaches developed to identify

optimal strategies in the complex landscape of infection could have applications

well beyond malaria.

The fitness consequences of transmission investment emerge from malaria’s

complex life cycle: success within the vertebrate host depends strictly on replica-

tion (i.e., cycles of infection among red blood cells), but transmission to mosquitoes

and new hosts requires sexual transmission stages. These gametocytes cannot in-

vade red blood cells but instead differentiate into gametes upon ingestion by a

mosquito, where successful fertilization is necessary to infect the vector (reviewed

in Bousema & Drakeley, 2011). Upon infecting a red blood cell, a parasite can give

rise to one gametocyte (either a male or female) or several asexual parasites capa-

ble of infecting new red blood cells (e.g., 4-10 in the murine Plasmodium chabaudi,

8-32 in the human malaria P. falciparum, Landau & Boulard, 1978; Garnham,

1966, respectively). The optimal balance between opposing selection pressures

should change through time, and malaria parasites are predicted to vary their

reproductive investment—denoted the “conversion rate”—in response to changing

environmental conditions (Reece et al., 2009; Pollitt et al., 2011a; Carter et al.,
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2013). In other organisms, reproductive investment has been shown to change

with the probability of survival (Velando et al., 2006) and the presence of com-

petitors (Borg et al., 2012). By analogy, malaria parasites would be expected to

condition their level of reproductive investment based on the host immune response

and the length of infection, as well as the presence of coinfecting parasites (Reece

et al., 2009).

Within the vertebrate host, success depends on parasite numbers, which can

change by several orders of magnitude over the course of infection (Miller et al.,

1994). In-host replication is more rapid when larger numbers of parasites are inoc-

ulated (Timms et al., 2001; Metcalf et al., 2011), a pattern thought to be indicative

of immune measures that—while efficient at removing small numbers of parasites—

saturate as parasite numbers increase (Metcalf et al., 2011). Since reproductive

investment should limit within-host growth (Mideo & Day, 2008), gametocyte pro-

duction should be especially costly early in infection, reducing parasite growth at

a critical point and leaving parasites vulnerable to immune clearance. In contrast,

when infection is drawing to a close, reproductive investment should increase (Pol-

litt et al., 2011a), in analogy to the terminal investment predicted for animals near

the end of life (reviewed in Clutton-Brock, 1984).

The addition of a competing strain can dramatically alter infection dynamics

(e.g., Taylor et al., 1997a,b, 1998; de Roode et al., 2005; Wargo et al., 2007). Models

consistently predict that a coinfecting strain should select for reduced reproduc-

tive investment, because gametocyte production slows replication and allows the

other strain to get a larger share of host resources either through direct competi-

tion (Mideo & Day, 2008) or apparent competition (i.e., mediated by the immune

system, McKenzie & Bossert, 1998). Subsequent experimental infections of mice

confirmed that malaria strains facultatively reduce their transmission investment

in coinfections (Pollitt et al., 2011b). Yet selection on reproductive investment is

further complicated because coinfecting strains are not just competitors, but also

potential mates, as evidenced by the observation that malaria parasites modify

their sex ratios to take advantage of opportunities for outcrossing (Reece et al.,

2008).

Onward transmission to mosquitoes depends on whether a male and female

gamete can find each other and complete fertilization within the mosquito gut
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(reviewed in Bousema & Drakeley, 2011). When gametocytes are rare, a blood

meal is unlikely to contain both a male and female gametocyte (mate-finding Allee

effect in ecological parlance, Courchamp et al., 2008). Modest increases in game-

tocyte numbers should then lead to disproportionate gains in transmission success,

a pattern seen in human and rodent malarias (Huijben et al., 2010a; Bell et al.,

2012, respectively). In contrast, when large numbers of gametocytes are present,

the probability of infecting mosquitoes saturates, presumably because nearly all

blood meals contain a sufficient number of gametocytes (Paul et al., 2007; Huijben

et al., 2010a; Bell et al., 2012). Thus increasing reproductive investment when

few gametocytes are present may substantially increase the probability of onward

transmission (and hence parasite fitness), while increasing investment when game-

tocytes are abundant yields diminishing returns.

Reproductive investment is possible throughout the lifespan of an infection,

meaning that gametocytes can be produced and transmitted during the initial

(acute) phase (Bell et al., 2012) as well as from chronic infections with nearly-

undetectable densities of parasites (Schneider et al., 2007). Theory has been devel-

oped to understand optimal investment from chronic infections when reproductive

effort trades off with survival (Pollitt et al., 2011a), but further theory is needed to

identify optimal strategies for early infection, when reproductive investment comes

at the expense of in-host replication. The first peak in parasite numbers tends to

be the largest (e.g., Miller et al., 1994) and corresponds to the steepest drop in

red blood cell numbers and host biomass (Huijben et al., 2010a). Gametocytes

produced during the acute phase can infect a large fraction of mosquitoes (Bell

et al., 2012), and the ability of parasites to survive long enough to cause chronic

infections depends in part on the reproductive investment decisions made early in

infection. Modifying reproductive investment during acute infection may therefore

be expected to have a disproportionate impact on parasite fitness and host health.

Malaria parasites’ strategies can evolve, because the selection imposed by cul-

turing parasites can reduce or eliminate gametocyte production (reviewed in Bousema

& Drakeley, 2011). The challenge is to determine how parasites should respond

to conflicting selection pressures, and we model acute malaria infection to ex-

amine the factors that promote versus restrain transmission investment. Using

a simulation-based approach, we compare optimal fixed and time-varying strate-
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gies for reproductive investment. We consider the impact of infections of different

length, immune defenses, and a competing malaria strain. Simulations suggest

that parasites should often be able to enhance their overall transmission by de-

laying reproductive investment and by investing more heavily late in an infection.

To explore the evolutionary response to competition, we compete flexible time-

varying investment strategies against each other in simulated coinfections, showing

that natural selection may converge on a single optimal strategy rather than diverse

strategies conditioned on the competing strategy. While we focus on malaria infec-

tions, our approach could be extended to other parasite systems to identify optimal

allocation strategies when selection acts on within-host success and between-host

transmission (e.g., Gilchrist & Coombs, 2006) or within-population growth under-

mines metapopulation persistence (King et al., 2009). More broadly, the approach

could be used to identify the best plastic responses when life-history tradeoffs are

expected to vary through time or space.

4.3 Model

We modify an existing model of infections by the rodent malaria Plasmodium

chabaudi, allowing reproductive investment to remain constant or vary through

time. The model framework was previously used to assess the fitness consequences

of synchronous cycles of asexual growth in malaria parasites and so describes the

sexual and asexual portions of the parasite life cycle as fixed time delays (Greischar

et al., 2014). In the context of reproductive investment, the model allows for

realistic time lags between the decision to invest in gametocyte production, and

the point at which mature gametocytes can contribute to transmission success.

Parasites are implicitly assumed to have access to perfect information on when the

infection will be terminated. Once optimal strategies are identified, we examine

how optimal level of investment covaries with other state variables to determine

what cues could serve as the best proxies for perfect information.
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4.3.1 Single infections

In experimental infections, mice are typically inoculated with infected red blood

cells (e.g., Reece et al., 2008), which burst to release red blood cell-invasive forms

called merozoites. The host replaces red blood cells lost to parasitism, but it may

take a week or more for red blood cell abundance to return to initial values (e.g.,

Huijben et al., 2010a). Merozoites are unlikely to persist very long outside of red

blood cells, based on in vitro studies with P. falciparum (Boyle et al., 2010). Fol-

lowing successful invasion, parasites may either replicate and burst open 24 hours

later to release merozoites (O’Donnell et al., 2011), or mature into gametocytes

following a 48 hour developmental period (Gautret et al., 1996). Infectious ga-

metocytes usually persist less than a day for P. chabaudi (Gautret et al., 1996;

Reece et al., 2003), and the probability of infecting mosquitoes is a sigmoidal func-

tion of gametocyte abundance according to an experimentally-derived curve for P.

chabaudi (drug-sensitive clone, Bell et al., 2012):

τ(t) =
exp[−12.69 + 3.6 log10G(t)]

1 + exp[−12.69 + 3.6 log10G(t)]
(4.1)

where G(t) is the abundance of mature gametocytes. The mate-finding difficulties

thought to be experienced by small numbers of gametocytes are implicit in the

way τ accelerates when G increases from scarcity. The cumulative transmission

potential at time ε would then be

f(ε) =

∫ ε

0

τ(t)dt (4.2)

The gametocyte numbers depend on the dynamics of red blood cells, asexual

growth and reproductive investment, and survival through developmental peri-

ods. In the absence of infection and background mortality (µ), red blood cells

(R) maintain stable numbers at a homeostatic equilibrium (K). When depleted,

red blood cells are replenished in a logistic fashion, with realized replenishment

rate approaching the maximum (λ) as red blood cell numbers move further from

equilibrium:
dR

dt
= λ

(
1− R(t)

K

)
− µR(t)− pR(t)M(t) (4.3)
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where p is the rate at which merozoites (M) invade uninfected red blood cells given

contact. At the point of invasion, infected red blood cells are either committed to

developing into transmissible gametocytes or asexual merozoites. The proportion

c(t) recruited to sexual differentiation is the reproductive investment—by conven-

tion referred to as the “conversion rate” (Bruce et al., 1990)—which is either left

as a constant or defined as time-varying free spline (details of simulation and op-

timization in supplement). A proportion 1 − c(t) commit to asexual growth as

infected red blood cells (I),

dI

dt
= (1− c(t))pR(t)M(t)− µI(t)− a

b+ I(t)
I(t) (4.4)

−(1− c(t− α))pR(t− α)M(t− α)S

with infected red blood cells removed by saturating immunity at a maximum rate

of a and a half-saturation constant of b. The delay between invasion and bursting

is given by α (24 hours for P. chabaudi, Landau & Boulard, 1978), and survival

through this period S is described by

S = exp

(
−
∫ t

t−α
µ+

a

b+ I(ω)
dω

)
(4.5)

The infected red blood cells that persist through the developmental period, α,

will each burst to release β merozoites. Thus the overall change in the merozoite

population is:

dM

dt
= β(1− c(t− α))pR(t− α)M(t− α)S − µzM(t)− pR(t)M(t) (4.6)

A proportion of invaded red blood cells, c(t), instead commit to sexual devel-

opment in the IG class of infected red blood cells:

dIG
dt

= c(t)pR(t)M(t)− µIG(t)− (1− c(t− αG))pR(t− αG)M(t− αG)SG (4.7)

where αG represents the delay from invasion to maturation for developing game-
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tocytes. Survival through this period is given by:

SG = e−µαG (4.8)

Infected red blood cells that persist through the developmental period become

mature gametocytes:

dG

dt
= (1− c(t− αG))pR(t− αG)M(t− αG)SG − µGG(t) (4.9)

where µG describes the background mortality rate of gametocytes. We assume

that gametocytes are not cleared by immunity, because gametocytes do not elicit

a strong immune response (reviewed in Riley & Stewart, 2013). Thus, Eqn. 4.9

gives the abundance of mature gametocytes that can contribute to transmission

potential as defined in Eqns. 4.1 and 4.2.

Note that Eqns. 4.5-4.6 are defined for t > α, and Eqns. 4.7-4.9 for t > αG, and

we must now describe the fate of initially inoculated parasites. We assume that

no reproductive investment occurs until the simulation begins, or in other words,

that all of the infected red blood cells inoculated at the beginning are asexual.

Therefore, when t ≤ α:

dI

dt
= (1− c(t))pR(t)M(t)− µI(t)− a

b+ I(t)
I(t)− I0Beta(sP , sP )(t)S0(t) (4.10)

where I0 is the number of parasites inoculated. The initial age structure of the pop-

ulation is given by a Beta distribution with shape parameter sP ; unless otherwise

noted, we simulated asynchronous infections, which are initiated with parasites

uniformly distributed throughout the asexual blood stages (sP = 1). Survival

until bursting is described by

S0(t) = exp

(
−
∫ t

0

µ+
a

b+ I(ω)
dω

)
(4.11)

so that the change in merozoite numbers follows

dM

dt
= βI0Beta(sP , sP )(t)S0(t)− µzM(t)− pR(t)M(t) (4.12)
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Invaded red blood cells can be committed to sexual differentiation as soon as the

simulation begins:
dIG
dt

= c(t)pR(t)M(t)− µIG(t) (4.13)

but since no developing gametocytes are inoculated, no mature gametocytes can

be produced or transmission potential accrued while t ≤ αG.

We simulate infection dynamics using the parameter values given in Table 3.1

and approximate the cumulative transmission potential (Eqn. 4.2) by summing τ(t)

at each simulated time point and keeping the step size very small (0.01 days). To

examine the effects of varying the duration of infection, we estimate the cumulative

transmission potential for infections lasting 20, 30, 40, 45, and 50 days for a range of

fixed conversion rates (i.e., constant reproductive investment). For comparison, the

acute portion of infection is thought to last approximately two weeks in P. chabaudi

(Bell et al., 2006). We also examine the optimal plastic reproductive investment for

20-, 30- and 50-day infections. By comparing fixed with time-varying investment,

we see when selection favors restrained versus increased reproductive investment.

Singling out 20 day infections, we compare optimal reproductive investment (fixed

and variable) in the face of saturating immune measures acting against infected

red blood cells (a = 150, b = 100).

4.3.2 Coinfections

Coinfecting malaria strains are thought to interact via resource competition (Mideo

& Day, 2008; Pollitt et al., 2011b) but also have the potential to interact as mates,

as suggested by recombination rates (e.g., Su et al. 1999; Mu et al. 2010, reviewed in

McKenzie et al. 2008). Describing fitness in coinfections is therefore more complex.

The probability of transmitting to a mosquito is given by Eqn. 4.1, with G(t) =

G1(t)+G2(t) where G1 and G2 represent the gametocyte abundance of each strain.

The strain-specific fitness (f) is then defined as the probability of transmission

weighted by its representation in the gametocyte pool, with f(t) again summed at

each time point over the course of the simulated infection:

f1(t) = τ(t)
G1(t)

G1(t) +G2(t)
(4.14)
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f2(t) = τ(t)
G2(t)

G1(t) +G2(t)
(4.15)

These fitness functions epitomize the tension between selective forces: Each strain

attempts to maximize its representation in the gametocyte pool even while benefit-

ting from its competitor’s reproductive investment in terms of overall infectivity to

mosquitoes. In other words, when one strain increases its reproductive investment,

the competing strain is free to reduce its investment without suffering from a lack

of mates, thus reaping the benefits of ‘piggy-backing’ in a mate-limited world (the

mosquito gut) and the benefits of enhancing competitive dominance by allocating

to in-host replication. Nevertheless, the strain that has increased its gametocyte

production improves its current representation in the mosquito vector, at the ex-

pense of the competing strain. The relative importance of these two fitness terms

varies dynamically over the course of the infection.

We consider the simplest coinfection scenario: both strains infect the host si-

multaneously and with the same starting inoculum and both have identical charac-

teristics, save for their reproductive investment. Both strains are therefore equally

capable of infecting red blood cells and equally vulnerable to immune clearance.

While this is an oversimplification, it allows us to examine the impact of differing

levels of reproductive investment in the absence of any other differences. We simu-

late coinfections for 412 pairs of fixed conversion rates to identify the evolutionarily

stable strategy (ESS) for this simple game—that is, the level of reproductive in-

vestment at which neither strain can increase their relative fitness by changing

their fixed strategy.

Taking this ESS fixed strategy as a given, we find the optimal time-varying

strategy in response. We then set the competitor’s response to the best time-

varying strategy and repeat the process. This approach is similar to a best response

dynamics in that we take the competitor’s strategy as a given (whether fixed or

time-varying) for each optimization (Matsui, 1992), but with important differences:

We find the optimal strategy assuming that the competing strategies begin at equal

frequency, rather than finding the best response strategy for a small cluster of

mutants within the population (Gilboa & Matsui, 1991). Though the competitor’s

strategy is set, the course of infection represents a dynamic interplay between
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competing strategies, with both competitive and cooperative dynamics potentially

favored by the payoff function (Eqn. 4.1).

We model coinfection dynamics by splitting the infected red blood cell, mero-

zoite and gametocyte classes in two and setting the starting inoculum to I0/2 for

each strain. Thus Eqn. 4.5 becomes:

dI1
dt

= (1− c1(t))pR(t)M1(t)− µI1(t)−
a

b+ I1(t) + I2(t)
I1(t) (4.16)

(1− c1(t− α))pR(t− α)M1(t− α)S

dI2
dt

= (1− c2(t))pR(t)M2(t)− µI2(t)−
a

b+ I1(t) + I2(t)
I2(t) (4.17)

(1− c2(t− α))pR(t− α)M2(t− α)S

As before, a red blood cell may only be invaded once. The strength of immune

clearance scales inversely with the total number of infected red blood cells, such

that if one strain becomes abundant, both strains benefit from a reduced rate

of immune removal. These dynamics are reflected in the survival through the

developmental period α:

S = exp

(
−
∫ t

t−α
µ+

a

b+ I1(ω) + I2(ω)
dω

)
. (4.18)

Each strain likewise has its own merozoite class,

dM1

dt
= β(1− c1(t− α))pR(t− α)M1(t− α)S − µzM1(t) (4.19)

−pR(t)M1(t)

dM2

dt
= β(1− c2(t− α))pR(t− α)M2(t− α)S − µzM2(t) (4.20)

−pR(t)M2(t)

and each a separate class for infected red blood cells committed to developing into

gametocytes,

dIG1

dt
= c1(t)pR(t)M1(t)− µIG1(t) (4.21)
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−c1(t− αG)pR(t− αG)M1(t− αG)SG
dIG2

dt
= c2(t)pR(t)M2(t)− µIG2(t) (4.22)

−c2(t− αG)pR(t− αG)M2(t− αG)SG

and SG as in Eqn. 4.8. The gametocyte abundance for each strain is defined by

dG1

dt
= c1(t− αG)pR(t− αG)M1(t− αG)SG − µGG1(t) (4.23)

dG2

dt
= c2(t− αG)pR(t− αG)M2(t− αG)SG − µGG2(t) (4.24)

As before, a separate set of equations describes the stage transitions for the

initially-inoculated parasites. When t ≤ α,

dI1
dt

= (1− c1(t))pR(t)M1(t)− µI1(t)−
a

b+ I1(t) + I2(t)
I1(t) (4.25)

−(I0/2)Beta(sP , sP )(t)S

dI2
dt

= (1− c2(t))pR(t)M2(t)− µI2(t)−
a

b+ I1(t) + I2(t)
I2(t) (4.26)

−(I0/2)Beta(sP , sP )(t)S

with

S = exp

(
−
∫ t

0

µ+
a

b+ I1(ω) + I2(ω)
dω

)
. (4.27)

Merozoite classes are therefore

dM1

dt
= β(I0/2)Beta(sP , sP )(t)S − µzM1(t)− pR(t)M1(t) (4.28)

dM2

dt
= β(I0/2)Beta(sP , sP )(t)S − µzM2(t)− pR(t)M2(t) (4.29)
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and developing gametocytes follow

dIG1

dt
= c1(t)pR(t)M1(t)− µIG1(t) (4.30)

dIG2

dt
= c2(t)pR(t)M2(t)− µIG2(t) (4.31)

Again, no mature gametocytes can be produced while t ≤ αG.

4.4 Results

4.4.1 Gametocyte investment delays infectivity

When the reproductive investment is fixed through time, increasing the level of

investment delays the growth of infection and subsequent infectivity to mosquitoes

(Fig. 4.1). In single infections, cumulative transmission investment is maximized

when approximately 42% of infected red blood cells commit to sexual differenti-

ation. Simulating across a range of conversion rates (i.e., levels of reproductive

investment) shows that greater transmission investment delays the peak of infec-

tion and subsequent surge in gametocyte numbers (Fig. 4.1B). Because infectivity

to mosquitoes is a sigmoidal function of gametocyte numbers (Bell et al., 2012),

maximizing gametocyte production does not necessarily maximize the cumulative

transmission potential. The timing of gametocyte production is key: sub-optimal

investment leads to an early peak in asexual and gametocyte abundance at the ex-

pense of gametocyte production, while super-optimal investment delays infectivity

(Fig. 4.1B).

If the conversion rate is allowed to vary with time, the optimal strategy is to

invest heavily in asexual growth early in infection and increase gametocyte in-

vestment later in infection (gray and black curves, Fig. 4.2A). Counterintuitively,

shorter infections (20 versus 30 days) select for a longer period of purely asexual

growth at the beginning, to increase parasite biomass prior to gametocyte invest-

ment. When the duration of infection is extended to 50 days, parasites benefit

from investing in transmission throughout the infection, though conversion rates

are still lower initially. Longer infections also select for lower variability in con-
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Figure 4.1. Reproductive investment limits asexual growth (A) and delays gametocyte
production (B) and infectivity to mosquitoes (C). Infection was simulated assuming a
fixed conversion rate and no immunity. Optimal investment (42.1%) gives the highest
cumulative transmission potential (1078), while sub-optimal (35.1%) and super-optimal
(48.1%) investment yield similar transmission potentials (1028).

version rates. Whereas the optimal 20-day strategy starts at zero conversion and

ends at close to 100% investment, the 30- and 50-day strategies do not approach

terminal investment.

The corresponding best fixed strategies for 20, 30 and 50 day infections are also

shown (red lines, Fig. 4.2A), each representing an intermediate value of reproduc-

tive investment from the time-varying strategies. We find that when infections last

longer than 20 days, there are two optimal levels of reproductive investment, one lo-

cal and one global (Fig. C.1A). These optima correspond to fast and slow growth

of the infection—low and high conversion rates, respectively—giving either two
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peaks in the probability of transmission or one wide peak (Fig. C.1B & C). When

infections last 30 days, it becomes possible to reduce reproductive investment and

fit in two peaks in transmission potential, but the greatest cumulative transmission

potential results from investing more into gametocytes, thereby generating a single

drawn-out peak in the probability of transmission. When infections last longer, the

fast growth/low reproductive investment strategy becomes favorable. As a result,

the fitness-maximizing level of reproductive investment is substantially higher for

30 day infection compared with 20- and 50- day infections.
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Figure 4.2. Optimal fixed (red) and free spline (gray/black) reproductive investment
strategies (A) balance growth and transmission to maximize cumulative transmission
potential over the course of the infection (B). The dark red and black lines ending
at 20 days indicate outcomes for 20 day infections, with lighter curves and lightest
curves showing the corresponding strategies and payoff for 30 and 50 days, respectively.
Infection was simulated in the absence of host immunity, and the parameters defining
each spline can be found in Table C.1.
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These fixed strategies represent an imperfect balance between growth and repro-

ductive investment, which incur a fitness cost compared with time-varying strate-

gies (Fig. 4.2B). Strikingly, plastic reproductive investment allows parasites to

begin accumulating transmission potential earlier than a fixed strategy, despite

investing little into gametocyte production initially. The best fixed strategies re-

quire investing in transmission early, but that investment slows the growth of the

infection. Thus early investment in gametocyte production is wasted, because

gametocytes cannot be produced in large numbers until some degree of in-host

replication has taken place.

Following an initial period of asexual growth, the time-varying investment

strategies all accumulate transmission potential at similar rates. The approxi-

mately constant rate of increase in transmission potential (Fig. 4.2B) suggests

that the plastic conversion rates can compensate for oscillations in parasite num-

bers (e.g., damped oscillations towards an equilibrium infection level as seen in

Fig. 4.1). When investment is fixed, transmission potential will oscillate, as can

be seen most clearly for the 50-day fixed strategy (Fig. 4.2B). The 20- and 30-day

fixed strategies show fewer oscillations because they encompass only the first peak

of infectivity.

4.4.2 Saturating immunity selects for reduced gametocyte

investment

The optimal level of fixed reproductive investment rate is nearly halved in the

presence of saturating immunity (Fig. 4.3, but the target of immune clearance

(infected red blood cells versus short-lived merozoites) does not make a qualitative

difference (Fig. C.2). In either case, immunity is most effective against the small

number of parasites initiating infection. Parasites must invest in asexual growth—

conversely dedicating less to transmission—to ensure that the infection grows fast

enough to optimize the timing of gametocyte production. Investing in asexual

growth reduces gametocyte production, so the cumulative transmission potential

is necessarily lower in the presence of immune defenses.
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Figure 4.3. Saturating immunity favors reduced reproductive investment (A) despite
the cost to cumulative transmission potential (B). If conversion rates are fixed (broken
lines), the optimum gametocyte investment drops from 42.1% to 22.1%. When repro-
ductive investment is allowed to vary through time (solid lines), immunity is predicted
to select for delayed gametocyte investment early in infection. The parameters for the
best spline strategies are in Table C.1.

4.4.3 Coinfection favors in-host replication

A competing malaria strain likewise benefits parasites that invest in replication.

The evolutionarily stable strategy—assuming fixed reproductive investment—falls

near 10% in the absence of immunity (Fig. 4.4A). Since we assume that strains

do not interfere with each other, the selection pressure for reduced conversion

must enter via direct competition for red blood cells. Apparent competition from

immunity, which saturates as the total number of infected red blood cells increases,

reduces the evolutionarily stable conversion rate even further (Fig. 4.4B).
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Figure 4.4. Coinfection reduces optimal reproductive investment. Relative fitness
(transmission potential of focal/competing strain) is shown as both strains modify their
conversion rates, either without immunity (A) or with saturating immunity removing
infected red blood cells (B; a = 150, b = 100, σ = 0). Red regions indicate where the
competing strain has higher relative fitness, while the gray area denotes where the focal
strain has higher relative fitness. White boxes indicate that both strains have the same
transmission potential (relative fitness of one). An open circle indicates the evolutionarily
stable conversion rate.

We take the best conversion rates from Fig. 4.4 as a starting point to find an

optimal time-varying strategy for a coinfecting strain. By iterating this process,

each time retaining the strategy predicted to be optimal and competing it against

a strain with plastic conversion rates subject to optimization, we can identify a

candidate ESS (Fig. 4.5). The relative fitness of the time-varying strategy is 2.42

when competing against the best fixed strategy (Fig. 4.5A). As a frame of reference,

the relative disadvantage of the best fixed strategy is comparable to the estimated
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cost of drug resistance in P. chabaudi parasites (that is, in the absence of drugs,

drug-sensitive parasites are predicted to infected 2-3 times as many mosquitoes as

drug-resistant parasites, Huijben et al., 2010a). The relative fitness of the best time

varying strategy tends to decrease through successive optimizations (decreasing to

1.02 in Fig. 4.5B, 1.006 in C, 1.03 in D, and 1.007 in E), as would be expected if

the competing strains were converging on an ESS. To further test whether diverse

reproductive investment strategies should converge to a similar ESS, we identified

the best free spline response to an investment strategy that decreases over time.

We find that the best time-varying response is very close to the flexible strategies

already identified (Fig. C.3), supporting the hypothesis that parasites should con-

verge on a single optimal strategy in coinfections, rather than the best response

varying with the competitor’s strategy. Taken together, the optimal time-varying

investment strategies suggest that parasites should leave transmission investment

until later and invest less overall than they would in single infections.

Intriguingly, the combined transmission potential from the infection tends to

increase as competing strains converge on similar strategies. While the best strat-

egy from Fig. 4.5B is outcompeted in Fig. 4.5C, its transmission potential still

increases from B to C (Fig. C.4), showing that a beneficial shift in strategy by

one strain has the potential to benefit both strains. We also note that cumula-

tive transmission potential is sensitive to the assumption that strains are capable

of outcrossing freely (Eq. 4.16). For example, if we instead assumed the opposite

extreme, that strains cannot outcross (as in Greischar et al., 2014), the losing strat-

egy in Fig. 4.5B (red) would have greater transmission potential than the winning

strategy (purple) in a coinfection.

4.4.4 Optimal cues: how can parasites tell time?

We assume parasites have perfect knowledge of the age of the infection to find the

ideal plastic conversion strategy, and identify cues that may serve as good proxies.

Asexual abundance is predicted to be a very poor cue in single and coinfections

(Fig. C.5, C.6, respectively) because different conversion rates correspond with the

same number of parasites for nearly the entire course of infection. Since coinfections

converge on a single optimal transmission strategy, competing strain abundance
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Figure 4.5. Dueling splines in successive optimizations: When two parasite strains
infect the same host and differ only in their allocation to transmission, they should
converge on an optimal strategy. In the first case (A), we assume the competitor uses
the evolutionarily stable constant conversion rate identified in Fig. 4.4A (black line) and
find the optimal free spline strategy. In B-E, we retain the optimal free spline strategy
from the previous simulation and find the best free spline response. In each case the
winning strategy is marked with an asterisk (fitness of each strategy in each iteration
shown in Fig. C.4). For simplicity, we assume infection lasts 20 days, and that host
immunity is absent. Spline parameters are given in Table C.1.

is an equally poor proxy for time. In contrast, red blood cell abundance could

serve as an effective cue early in single infections (Fig. C.7), with each conversion

rate corresponding to a single red blood cell abundance. In order for parasites to
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utilize red blood cell numbers as a cue, they would need to be exquisitely sensitive

to changes early in infection, when red blood cells are abundant, and insensitive

late in infection, when red blood cells are limiting. In coinfections, red blood

cell numbers might be an even easier cue to follow, at least until late in infection

(Fig. C.8).

Parasite growth in the last 24 hours (I(t)/I(t− α)) would be a poor cue early

in infection, with the same growth rate corresponding to drastically different con-

version rates (Fig. C.9). Late in single infections, asexual growth drops below

replacement, and this corresponds to an increase in the optimal conversion rate.

For coinfections, only very low growth rates (much lower than replacement) show

a one-to-one correspondence with the optimal conversion rate (Fig. C.10). While

no single cue appears to work for the entire duration of an infection, a good rule of

thumb could be to respond to red blood cell numbers until parasite growth drops

critically low.

4.4.5 Sensitivity to burst size, red blood cell replenish-

ment, and synchrony

The optimal level of reproductive investment is likely to be influenced by parasites’

maximum replication rate, by how quickly hosts can replenish resources, and by

the level of synchronization of the infection. We therefore recalculate the opti-

mal conversion rate when the burst size and maximum rate of erythropoiesis are

increased versus decreased. Finally, we reexamine the role of immunity in depress-

ing the conversion rates in synchronous infections. For simplicity, we examine the

effects of these parameters in single infections assuming fixed conversion rates.

Malaria parasites can replicate into multiple asexual merozoites within a red

blood cell or generate a single gametocyte. The cost of gametocyte investment

should therefore depend on how many merozoites parasites can make within each

infected red blood cell (the burst size). We find that the optimal fixed conversion

rate increases with the burst size (β) in single infections (Fig. C.11). Thus, the

relative cost of investing in gametocytes is much higher when burst size is lower,

while strains with high burst sizes should be able to maintain robust asexual growth

even while investing heavily in transmission.
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The cost of gametocyte investment should also depend on how quickly the host

can replenish red blood cells, or in other words, the cost of in-host replication should

depend on the rate of erythropoiesis. If red blood cell replenishment is sluggish,

investing too heavily in asexual growth may put parasites at risk of depleting

the host of resources and reduce survival. A low rate of erythropoiesis may benefit

strains that invest more in transmission. In contrast, if the host rapidly replaces red

blood cells, red blood cell depletion may be unlikely, and parasites may benefit from

investing more into growth and less into transmission. Accordingly, we find that

increasing the maximum rate of erythropoiesis (λ) reduces gametocyte investment

(Fig. C.12). We note that even dramatic changes in λ—in this case, 50% and

150% of the baseline λ—modify the optimal conversion rate by only a few percent,

a change dwarfed by the effects of adding saturating immunity (Fig. 4.3) or a

competing parasite strain (Fig. 4.4).

Synchronous development of gametocytes is predicted to help parasites over-

come mating finding difficulties early in infection (Greischar et al., 2014), so we

might expect synchrony to alter the optimal conversion rate. However, we find

a similar qualitative pattern for synchronous infections (Fig. C.13): the optimal

conversion rate is identical to that of asynchronous infections in the absence of im-

munity, and adding saturating host defenses reduces the optimal conversion rate.

We find that immunity targeting short-lived merozoites does not reduce the opti-

mal conversion rate to nearly the same degree as in asynchronous infections. When

the target of immunity is short-lived, synchronous bursting out of red blood cells

should rapidly overwhelm host defenses (Greischar et al., 2014), thereby mitigating

the impact of immunity on the optimal conversion rate.

4.5 Discussion

The optimal balance between growth and reproduction is a complex function of the

ecology of the system (e.g., Bell, 1980; Metcalf et al., 2008). Malaria parasites must

allocate to growth versus transmission in a rapidly changing environment. The

model suggests that, counterintuitively, increased transmission investment delays

infectivity by stunting the growth of the infection. We therefore predict that

parasites will benefit from delaying their investment into transmission, at least
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when infections are short, and that host defenses and coinfecting malaria strains

will impose intense selection for in-host replication early in infection.

Malaria parasites have long been thought to employ reproductive restraint, in-

vesting very little into producing transmissible gametocytes (reviewed in Taylor &

Read, 1997). Yet malaria parasites are highly successful at transmission, putting

almost half of the world’s population at risk of infection (Gething et al., 2011). We

use simulations to show that maximizing transmission potential requires restrained

reproductive investment, at least early in infection, in direct analogy to adaptive

delays in reproductive investment predicted for macroorganisms (e.g., Bell, 1980;

Koons et al., 2008). In chronic infections, fitness is predicted to be maximized

by a u-shaped strategy that first declines—as parasites switch to investing in sur-

vival rather than reproduction—and then increases with deteriorating conditions

within the host (Pollitt et al., 2011a), we can rule that out as an optimal strategy

in the acute phase of infection where growth trades off with transmission. In-

stead of producing gametocytes from the beginning, parasites would do better to

attain a robust population size and then invest into transmission, in line with a

general model of parasites with specialized transmission stages (Koella & Antia,

1995). Notably, the related intestinal parasite Eimeria tenella also delays pro-

duction of specialized transmission stages until a couple of generations of asexual

growth have taken place (Schmidt & Roberts, 1989). In keeping with this pattern,

experimental infections of mice (Koella & Antia, 1995) and humans (Plasmodium

falciparum, Taylor & Read, 1997; Collins & Jeffery, 2003) show increases in game-

tocyte abundance following periods of rapid asexual growth. Gametocyte numbers

are expected to lag behind asexual parasitemia because sexual differentiation is

a lengthy process, but gametocytes appear even later than expected given the

lengthy period required for sexual differentiation (seven to eight days for the hu-

man malaria parasite Plasmodium falciparum, two days for the murine parasite

P. chabaudi, Lensen et al., 1999; Gautret et al., 1996, respectively). Similarly, in

experimentally-infected volunteers, asexual parasites rise to detectable levels be-

fore markers for early gametocyte differentiation can be detected (Schneider et al.,

2004).

Longer infections should erode the advantages of reproductive restraint, with

shorter periods of purely asexual growth needed as parasites can count on more
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time to grow and transmit. Malaria parasites may experience considerable varia-

tion in the duration of infection, from days to weeks (Daubersies et al., 1996) up

to hundreds of days (Miller et al., 1994). Surprisingly, longer infections selected

for reduced conversion rates at the end of infection (Fig. 4.2). In each case, the

time-varying transmission investment strategies accrue transmission potential at

very similar rates after an initial period of growth, suggesting that increasing the

conversion rate to reach terminal levels would require an unacceptable decrease

in the growth rate. We cannot rule out a discontinuous shift to terminal invest-

ment (such as the optimal strategy proposed by Koella & Antia, 1995) because

the splines are constrained to be continuous, but evidence suggest that parasites

may resist investing so much that they to preclude any future growth. In vitro

assays did not detect terminal investment even when parasites were confronted

with conditions far more crowded than they would typically experience in vivo

(Bruce et al., 1990). Much greater transmission potential is possible from longer

infections (Fig. 4.2B), and that could shift the balance when parasites experience

infections of varying length. While we considered infections of fixed duration, it

makes sense that the transmission investment strategy should be weighted towards

allowing continued transmission from longer infections when that possibility exists,

especially given that parasites are unlikely to have perfect knowledge of when the

infection will end. Terminal investment is likely to be selected against whenever

there is a chance of a longer infection, potentially explaining why anti-malarial

drugs—while increasing rates of gametocyte production—have not been shown to

trigger conversion rates even close to terminal investment (Buckling et al., 1999).

While inducing terminal investment has been proposed as a possible means of treat-

ing malaria infections (Carter et al., 2013), variability in the length of infection

may impose strong counter-selection to keep parasites from investing everything

into transmission.

Reproductive restraint has harsh implications for human health, since a malaria

strain that invests more into transmission will tend to grow more slowly and to

smaller population sizes (as shown in Fig. 4.1). High parasite biomass is a shared

feature of severe malaria cases (reviewed in Cunnington et al., 2013), and as ga-

metocyte investment places limits on parasite replication, it has the potential to

reduce virulence. There has been considerable interest in identifying the factors
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that select for reduced conversion rates and, all else being equal, increased viru-

lence to the host. Immunity triggered by large numbers of gametocytes has been

suggested as a potential source of selection for reduced conversion rates (Taylor

& Read, 1997). Evidence for such immune measures is limited, and low levels of

gametocyte antibodies can actually enhance transmission (reviewed in Bousema

& Drakeley, 2011). Subsequent modeling showed that if immunity penalizes in-

creased gametocyte production, parasites could respond by altering either repli-

cation or conversion rates, so that immunity need not select on conversion rates

per se (Mideo & Day, 2008). The present model predicts that saturating immu-

nity against asexual stages will select for parasites that grow rapidly to greater

numbers at the expense of gametocyte production. Thus reproductive restraint

should be adaptive without the need to invoke intense immunity against game-

tocytes. Any immune measures that target asexual stages and lose efficacy with

increasing numbers of targets—including platelets or γδ T cells (McMorran et al.,

2009; Costa et al., 2011, respectively)—should select for reproductive restraint and

hence greater potential for host exploitation.

Previous models suggested that coinfecting parasite strains should select for

reduced reproductive investment, as both strains jockey for a greater share of host

resources (McKenzie & Bossert, 1998; Mideo & Day, 2008). The selection pressure

of a competing strain should be extremely common in human malaria infections

(e.g., Färnert et al., 1999, 2008; Mideo et al., 2013a). We confirm that coinfecting

parasites select for reduced reproductive investment, and expand on previous the-

ory to show that when transmission investment is allowed to vary through time,

coinfection selects for a longer period of purely asexual growth at the beginning of

infection. Critically, we predict that natural selection should converge on a single

optimum strategy, rather than the rock-paper-scissors reproductive strategies that

have evolved in other systems (Sinervo & Lively, 1996). The convergence to a

single strategy is likely related to the fact that a coinfecting strain represents a

source of potential mates. When mate-finding is a problem, reproductive success

may require matching the timing of reproductive effort to that of conspecifics (e.g.,

through masting, Kelly & Sork, 2002), and this timing issue is encoded into the fit-

ness function, with the probability of infecting a mosquito dependent on the total

number of gametocytes present (Eq. 4.16). The convergence on a single strategy
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is likely to be sensitive to the assumption that parasites are capable of outcrossing

and suffer no fitness disadvantage from recombination, but there are reasons to

expect that to be the case for malaria. Host immunity imposes negative-frequency

dependent selection for rare variants in key virulence genes (Bull et al., 1999) that

could benefit strains which outcross (i.e., the Red Queen Hypothesis, Bell, 1982).

Rodent malaria strains modify their sex ratios according to the diversity of the

coinfection and in a way that should facilitate outcrossing in coinfections (Reece

et al., 2008). It follows that parasites may modulate their reproductive investment

to match the timing of coinfecting strains and promote outcrossing, leading to

convergence on a single optimal strategy.

The potential for evolution towards the optimal strategy depends on how well

parasites can obtain reliable information from their environment. We find no single

perfect cue among the state variables in the model. Rather simulations suggest

that parasites should use red blood cell numbers to provision for transmission

investment, at least early in an infection. The appropriate response to red blood

cell numbers (and other environmental changes) may vary depending on how much

longer the infection can be expected to persist. Parasites are thought to reduce

reproductive investment to favor survival when host conditions deteriorate (Reece

et al., 2009; Pollitt et al., 2011a). If the environment declines so far that parasite

survival is unlikely, maximizing transmission may require dramatically increased

reproductive investment (Pollitt et al., 2011a), conceptually identical to the notion

of terminal investment in multicellular organisms (e.g., Clutton-Brock, 1984). In

line with these expectations, the present model shows that the optimal level of

gametocyte investment may alternately increase or decrease with red blood cell

numbers (Fig. C.7). Experimental rodent infections confirm that reproductive

investment changes with red blood cell numbers, but whether the relationship is

positive or negative remains controversial (Pollitt et al., 2011b; Cameron et al.,

2012, respectively).

Late in infection, red blood cell numbers become a problematic cue, and per

capita parasite growth could serve to indicate when parasites should switch to ter-

minal investment. These results coincide with predictions from a previous model

(Koella & Antia, 1995) suggesting that parasites should increase transmission in-

vestment when growth drops below replacement, analogous to the way macroor-
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ganisms may intensify their reproductive investment when survival is doubtful (Ve-

lando et al., 2006). Though increasing reproductive investment should maximize

fitness near the end of infection, the optimal time to increase investment depends

on the interplay between parasite growth rate, immune clearance, and virulence

to the host (Koella & Antia, 1995), as well as whether parasites can make use of

reliable cues in the rapidly changing environment of the host (reviewed in Carter

et al., 2013).

Identifying the optimal life-history allocation is a substantial challenge when

there are dynamic feedbacks with resource availability, the difficulty of finding

mates, and the allocation strategies of conspecifics. Here we present a means of

incorporating ecological detail into a model and locating optimal strategies. The

system need not be at any kind of equilibrium, and the fixed delay framework allows

realistic time lags between modulating allocation and the fitness consequences.

Such time lags are expected to determine when plastic strategies may be favored

(Padilla & Adolph, 1996). Using free splines allows great flexibility in the shape

of the candidate strategies, so that allocation can vary on whatever timescale or

in response to whatever environmental gradient is deemed most relevant for the

organism in question. The approach allows us to describe a dynamic tension in

the selective forces acting on malaria parasites, and identify the factors that may

select for replication—and host exploitation—over transmission investment.
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Chapter 5
Challenges in estimating

transmission investment in malaria

parasites

5.1 Abstract

Microparasites with specialized transmission stages face a tradeoff between repli-

cation within the host and spread between hosts, with malaria parasites serving

as a notable example. To cope with changing conditions within the host, we may

expect that parasites should employ plastic investment strategies, but testing that

expectation requires methods that can rule out the null hypothesis: that parasites’

transmission investment is fixed. Past experiments have focused on identifying how

malaria parasites modify their allocation to transmission and growth through the

course of infection. This transmission investment must typically be inferred rather

than directly observed, and researchers arrive at qualitatively different conclusions

depending on the inference method used. We test current methods against data

simulated from a previously described mechanistic model, showing that all meth-

ods fail to recover the null hypothesis when it is true. Current methods instead

generate spurious oscillations in transmission investment through time because the

gametocytes produced by multiple cohorts of parasites are counted together. Even

early markers of transmission investment can only overcome this problem under
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special conditions. We describe a new method for inferring transmission investment

for malaria parasites that works well on simulated data, whether the true trans-

mission investment is fixed or time-varying. Therefore existing data can likely be

used to better characterize transmission investment strategies in malaria parasites.

5.2 Quantifying transmission investment

Many parasites tradeoff between growth within a host and transmission to new

hosts, and the optimal level of transmission investment is predicted to vary through

the course of infection as parasites deplete resources and trigger immune defenses

(e.g., Koella & Antia, 1995; Pollitt et al., 2011a). Validating that theory—and

characterizing the variation in this critical parasite life history trait—requires ac-

curate assessment of transmission investment, a quantity that is often difficult to

measure directly in real infections. Transmission investment is not unique in this

regard; many important parasite traits must be inferred rather than measured,

and models provide an ideal way to test out our ability to reconstruct unobserved

processes. Simulated data was used to show that popular and intuitive methods

for characterizing interactions between coinfecting macroparasite species can yield

qualitatively wrong answers (Fenton et al., 2010), and the methods prescribed for

assessing transmission investment should be subject to the same scrutiny.

Malaria infections are a popular system in which to examine transmission in-

vestment, since mature sexual transmission stages (gametocytes) can be readily

distinguished from asexual forms by molecular methods (Drew & Reece, 2007).

Moreover, the tradeoff between within-host replication and transmission invest-

ment is obvious as an infecting parasite can develop into a single gametocyte or

several asexual forms that can continue replication within the host (e.g., Garnham,

1966). There is evidence of plastic transmission investment in tightly-controlled

in vitro experiments where it has been possible to measure investment directly

(Bruce et al., 1990). Previous experiments have provided curves to relate gameto-

cyte numbers to fitness in terms of infectivity to mosquitoes (Huijben et al., 2010a;

Bell et al., 2012), making it possible to infer the fitness consequences of varying

levels of transmission investment. While understanding plasticity in transmis-

sion investment is interesting in its own right, it may also carry applied benefits.
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The patterns found have the potential to improve malaria treatment strategies,

for example by calling attention to cues that could trick parasites into employing

suboptimal strategies (reviewed in Carter et al., 2013).

Two recent studies highlight that important methodological and challenges re-

main: Using different inferential methods, researchers analyzed the same data set

and came to opposing conclusions regarding how parasites’ transmission invest-

ment varies with resource availability (Pollitt et al., 2011b; Cameron et al., 2012).

Numerous methods are prescribed for inferring parasite reproductive investment

(by convention the “conversion rate”, Bruce et al., 1990), each using a different set

of simplifying assumptions about infection dynamics to back-calculate the propor-

tion of parasite biomass committed to transmission stage production some time

previously (Buckling et al., 1999; Reece et al., 2010; Carter et al., 2013). These

methods represent distinct but logical approaches to inferring plastic transmission

investment; whether the logic stands up to the complex and nonlinear dynamics

inherent to malaria infections is an open question.

The complexities of inferring conversion rates are most obvious in vivo, but it is

worth mentioning that the only direct observations of transmission investment were

obtained by fixing cells in a monolayer, making it possible to observe the causal

chain between a cohort of parasites and subsequent development of gametocytes

(Bruce et al., 1990). Whenever parasites are free to move around, transmission

investment must be inferred rather than observed, meaning that even in vitro

studies cannot be assumed to accurately characterize conversion rates. Differential

mortality rates between sexual and asexual forms are commonly thought to bias

inferred conversion rates (e.g., Buckling et al., 1999; Cameron et al., 2012), espe-

cially in vivo where the innate immune response may preferentially target asexual

stages (Riley & Stewart, 2013). The issue of differential mortality is less of a

problem in vitro when immune measures can be excluded, but reconstructing the

causal chain between a cohort of parasites and gametocytogenesis presupposes that

parasites can be separated into discrete cohorts, a process that requires repeated

artificial synchronization which can be lost rapidly (e.g., Trager & Jensen, 1976;

Reilly et al., 2007). A recent review concluded that transmission investment occurs

continuously throughout the course of infection in malaria parasites (Morahan &

Garcia-Bustos, 2014), in contrast to theory predicting that it would be optimal
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to delay investment in transmission stages (Koella & Antia, 1995). Continuous

transmission investment in malaria would make an interesting contrast to the life

history of related parasites Haemoproteus spp. (Valkiunas, 2005) and Eimeria

tenella (Schmidt & Roberts, 1989), both of which delay transmission investment

to allow for within-host growth.

Given the existing data and inference methods, are we premature in drawing

conclusions about transmission investment strategies in malaria parasites? We use

simulated data—where the true transmission investment strategy is known—to

characterize current methods for inferring conversion rates. To understand how

transmission investment varies through time and in response to which cues, we

must first be confident in our ability to rule out the null hypothesis: that parasites’

transmission investment is fixed through time. Otherwise, systematic biases could

undermine efforts to describe how parasites balance growth and transmission in a

rapidly changing environment.

5.3 Transmission investment in malaria

Malaria parasites (Plasmodium spp.) grow asexually within the red blood cells

of a vertebrate host, developing into mature stages called schizonts that burst to

release merozoites capable of invading other red blood cells (Garnham, 1966). In

vitro assays suggest that all of the merozoites emerging from a single schizont

will be committed either to sexual differentiation—invading a red blood cell and

developing into a sexual gametocyte that can be passed onto the vector in a blood

meal—or to asexual growth, invading a red blood cell and maturing into another

schizont (Bruce et al., 1990). Gametocytes are specialized for transmission to the

vector and cannot infect red blood cells (reviewed in Bousema & Drakeley, 2011),

so that transmission investment should come at the cost of reduced within-host

replication (Taylor & Read, 1997; Mideo & Day, 2008). Allocation to gametocyte

production is thought to be subject to selection pressures analogous to those acting

on reproductive effort in free-living species (Reece et al., 2009; Pollitt et al., 2011a).

Making use of experimental malaria infections of mice, researchers have examined

how the estimated transmission investment changes through time and in response

to resource availability (red blood cell abundance, Pollitt et al., 2011b; Cameron
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et al., 2012), to anti-malarial drugs reducing the odds of survival (Buckling et al.,

1999; Reece et al., 2010), and to competition from coinfecting malaria strains

(Pollitt et al., 2011b).

Transmission investment (i.e., reproductive effort) is defined as the fraction of

a given cohort of parasites that commit to differentiation into gametocytes (Reece

et al., 2009). By convention, this fraction is referred to as the “conversion rate”

(Bruce et al., 1990). Implicit in this definition is the idea that parasites can be

separated into identifiable cohorts. Many, but not all, malaria species exhibit

synchronous cycles of blood stage infection, with cohorts of schizonts bursting

in unison to release short-lived merozoites that will generate another cohort of

infected red blood cells (reviewed in Mideo et al., 2013b). Synchrony is helpful

to quantifying reproductive effort because all parasites will be equally capable of

committing to the sexual pathway. If commitment occurs in the schizont stage prior

to invasion and gametocyte development as in vitro assays suggest (Bruce et al.,

1990; Eksi et al., 2012), then younger parasites may not be capable of committing to

sexual differentiation. In poorly synchronized infections, parasites of all age classes

are present simultaneously, and estimating transmission investment is complicated

by the fact that only a subset of the population is capable of committing one way

or the other.

The rodent malaria species often used for experiments, P. chabaudi, appears to

be well-synchronized (O’Donnell et al., 2011), and PCR methods have been devel-

oped to quantify abundance for both asexual parasites and mature gametocytes

beginning early in infection (Drew & Reece, 2007). Since only mature gameto-

cytes can be differentiated from asexual forms, there is a time lag between when

parasites commit to sexual differentiation and when researchers can detect that

commitment. Early signals can be detected in the human malaria P. falciparum

(Schneider et al., 2004), including a marker expressed in mature schizonts and ga-

metocyte development in vitro (Eksi et al., 2012). However, both mature schizonts

and immature gametocytes may sequester out of circulation where they cannot be

easily sampled from the host (reviewed in Cunnington et al., 2013; Bousema &

Drakeley, 2011, respectively), so that even with early markers, there is likely to be

a time lag between when the transmission investment is adjust and when result

can be observed.
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A variety of techniques have been developed to deal with this time lag. A

recent study used linear mixed effects models to examine how transmission invest-

ment varied with resource use (Cameron et al., 2012), while other studies attempt

to estimate conversion rate explicitly, because direct estimates of transmission in-

vestment are conceptually appealing and easily incorporated into modeling efforts

(e.g., Greischar et al., 2014). Such direct estimates infer transmission investment

c (i.e., the conversion rate) from time series of gametocyte abundance and total

parasite numbers. The simplest method that accounts for the time lag between

conversion and gametocyte maturity would be

ct =
Gt+2

At
, (5.1)

where At is the total number of red blood cells invaded, by either sexually- or

asexually-committed merozoites. Thus ct is the fraction of invaded cells that de-

velop into mature gametocytes two days later (Gt+2), assuming no mortality during

that two day window of development. This method is similar to ones commonly

used in vitro (e.g., Reece et al., 2010), where early stage gametocytes can be iden-

tified and neglecting mortality is likely to be a good approximation.

In vivo, neglecting mortality is thought to be too unrealistic an assumption,

so methods attempt to correct the estimated conversion rate for mortality. A

commonly used method (Buckling et al., 1999) defines the conversion rate as

ct =

Gt+2

At√
At+2

At
+ Gt+2

At

(5.2)

making use of the fact that infected red blood cells take two days to develop into

mature gametocytes (Gautret et al., 1996). Buckling et al. derive this method

by considering the conversion rate as a function of burst sizes (i.e., the number

of merozoites emerging from a burst red blood cell) and mortality, both of which

can be solved for in terms of A and G, yielding the squared terms. A subsequent

review suggests that if asexual stages are counted on day one, and gametocytes

do not mature until two days later, the time lag should be three days, making the
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appropriate estimate

ct =

Gt+3

At

3

√
At+3

At
+ Gt+3

At

(Carter et al., 2013) (5.3)

All three methods require synchronous rounds of bursting and invasion, because

PCR counts developed for the rodent parasite P. chabaudi only yield reliable es-

timates of the number of infected red blood cells when parasite development is

synchronized and sampling occurs prior to DNA replication (i.e., the ring stage,

Cheesman et al., 2003). Methods for inferring conversion rates are expected to

be sensitive to the assumption of equal survival between gametocytes and asexual

stages, which may fall apart due to differential immune clearance (Buckling et al.,

1999; Carter et al., 2013), which is a concern since immunity predominately targets

asexual parasites (Riley & Stewart, 2013).

5.4 How well can we estimate transmission in-

vestment from simulated data?

Simulated data provides a way to test different methods of detecting transmission

investment by malaria parasites. Because the truth is known—that is, it is specified

in the model—we can determine what methods give the most accurate estimate of

transmission investment. We simulate dynamics in P. chabaudi -like infections of

mice using a previously described model (Greischar et al., 2014) that gives current

methods the best possible chance of working, because we incorporate the key as-

sumptions thought to yield reliable estimates of the conversion rate. Specifically,

we assume a highly synchronized infection and, at least in initial simulations, no im-

mune clearance. The model does, however, include a stylized version of homeostatic

regulation of red blood cell abundance, as well as the capability to incorporate im-

mune clearance of infected red blood cells. Critically, the model framework assumes

that the duration of parasite development (both sexual and asexual) is fixed with

no variation, so that a high degree of synchrony can be maintained through the

course of the simulation (Greischar et al., 2014). From high-resolution simulated

data, we sample daily counts of total parasite numbers and gametocyte abundance,
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assuming no sampling error, and initially assuming that sexually-committed but

immature parasites cannot be distinguished from asexual stage parasites.

We expected that the lifespan of gametocytes could be a critical factor in how

well Eqns. 5.1-5.3 perform, because as gametocytes die more quickly, fewer will be

present at sampling, and the inferred value should underestimate the true conver-

sion rate. Assuming that gametocytes die at a fixed rate (i.e., exponential distribu-

tion of survival times), model simulations confirm that short gametocyte lifespans

causes all three inference methods to underestimate the conversion rate. Unfor-

tunately, a longer lifespan causes a different problem. When gametocytes survive

longer, it becomes more likely that some will survive through multiple sampling

periods—in effect, blurring the synchronized waves of gametocyte production—

causing gametocytes from different cohorts to be counted together (Fig. 5.1).

The model suggests two major challenges in obtaining accurate estimates of

transmission investment: (1) sampling before substantial mortality has occurred,

so as to avoid underestimating the conversion rate; (2) identifying parasites in

a narrow morphological window, so that discrete cohorts can be distinguished.

Current methods for inferring transmission investment must tradeoff between ad-

dressing these two challenges. Sampling a long-lived life stage would ameliorate

the underestimation problem but worsen the chances of distinguishing between

gametocytes produced by discrete cohorts. Conversely, when gametocytes have

an unrealistically short lifespan (Fig. 5.1A, C), reproductive investment appears

relatively constant through time, but the conversion rate is consistently and dra-

matically underestimated because most gametocytes have died at sampling. We

suggest that systematic underestimation of conversion rates—while far from ideal—

is not as serious a problem as the spurious oscillations in the inferred conversion

rate seen in data simulated with realistic survival rates. The latter could seriously

undermine our understanding of parasite life history, making it appear that para-

sites are responding to the changing environment within the host, even if they are

not.

Identifying separate cohorts of gametocytes may be a greater challenge for

certain malaria species. While mature gametocytes persist less than a day on

average in P. chabaudi infections (Reece et al., 2003), the human malaria P. falci-

parum produces gametocytes that can circulate for more than six days (reviewed
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Figure 5.1. Longer gametocyte lifespan leads to spurious oscillations in the estimated
conversion rate. Dynamics of uninfected and infected red blood cells (dark blue and red,
respectively) and mature gametocytes (green) for short and long gametocyte lifespans
(A and B, respectively). Estimates of conversion rate are shown below (C, D), with
the actual conversion rate (5%) shown as a dashed line. We try an unrealistically short
gametocyte lifespan (about 3 hours, A & C), and a more realistic longer lifespan as found
by Reece et al. (2003) (half-life of 14 hours, equivalent to a mean lifespan of about 20
hours, B & D).

in Bousema & Drakeley, 2011), much longer than the two days required for the

asexual life cycle. The long lifespan of P. falciparum gametocytes means that even

in a highly-synchronized human infection, mature gametocytes from three cohorts

could be present simultaneously, and methods analogous to Eqns. 5.1-5.3 would

not yield reliable estimates of transmission investment.

Even if we can identify a narrow morphological window in gametocyte devel-

opment, our ability to separate parasites into cohorts will depend on how strictly

parasites maintain a synchronous rhythm through the course of the infection. The

propensity of parasites to maintain synchronous cycles of infections has been ob-

served to vary by parasite species (e.g., Kitchen, 1949; Garnham, 1966) and even
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across strains (Reilly et al., 2007). Synchrony may also change according to the

immune status of the host and the age of the infection (Kitchen, 1949). Record-

ing the age-structure of the observed parasite population may allow researchers to

assess their ability to infer transmission investment from a given infection. If the

synchrony of an infection declines (i.e., parasites spreading more evenly throughout

developmental stages), the problem of estimating conversion becomes more com-

plex, and the PCR counts themselves become unreliable (Cheesman et al., 2003).

The loss of synchrony is especially rapid in vitro (Trager & Jensen, 1976) and may

decay faster or slower depending on the strain (Reilly et al., 2007), meaning that

error in conversion rates could likewise vary with the strain. As synchrony is lost, it

may be necessary to correct conversion rates to account for the fact that a smaller

portion of the population may be capable of committing to sexual differentiation

at a given point in time.

5.5 Early markers for sexual differentiation

A great deal could happen in the time between commitment to gametocyte devel-

opment and the appearance of mature gametocytes, so early markers for sexual

differentiation should yield more reliable estimates of transmission investment. If

we assume that sexual differentiation can be detected as soon as a committed

merozoite invades a red blood cell, we see that early detection by itself does not

ensure accurate estimates of conversion rates (Fig. D.1). While early detection

avoids the problem of underestimating transmission investment, it lumps together

developing gametocytes from two cohorts giving substantial errors as infected red

blood cells and gametocytes fluctuate through the course of infection.

Therefore a marker of early gametocyte differentiation may yield spurious oscil-

lations in conversion rates if it continues to be expressed throughout development

during the course of multiple rounds of asexual growth, as would be the case for

the Pfdgv1 gene in P. falciparum (Eksi et al., 2012). An early marker could still be

very useful in conjunction with a marker for late sexual differentiation, so that sex-

ually differentiating parasites that emerged from previous rounds of bursting and

invasion can be excluded from calculations of conversion rates. We expand the

model—adding age structure to sexual differentiation—to identify an ideal expres-
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sion pattern from which accurate conversion rates can be obtained in P. chabaudi

(Section D.1). We assume that an early marker is expressed immediately upon

invasion and the beginning gametocyte development, and that other data (a later

marker or morphological differences) can be used to distinguish between parasites

undergoing the early versus later stages of sexual differentiation. Since sampling

is performed daily, this early marker means that sexual differentiation can be de-

tected the same day as the current cohort of infected red blood cells were invaded

by merozoites and no time lag needs to be taken into account.

When we consider parasites in the first 12 hours of sexual differentiation, we see

large daily oscillations in abundance due to the high degree of synchrony and the

brevity of the stage (Fig. 5.2A), whereas if the stage lasted longer, the synchronized

cycles would overlap, leading to less diurnal variation in abundance (Fig. 5.2C). If

the early marker is expressed for too brief a period (Fig. 5.2A, B), then sampling

at the same point in the life cycle becomes difficult following a very modest decline

in synchrony. While the model assumes that the developmental periods are fixed,

the lifespan of merozoites is exponentially-distributed rather than fixed, introduc-

ing variability in life cycle length (Greischar et al., 2014). Since merozoites are

extremely short-lived (on the order of minutes Boyle et al., 2010) compared to the

length of the period spent inside a red blood cell, the variation in life cycle length is

very small, leading to a small but noticeable change in dynamics over time. With

the added time spent as merozoites, the asexual cycle takes slightly longer than

24 hours, and the daily oscillations in abundance become slightly later during the

20 days simulated. This change can be seen in the abundance of parasites in the

first 12 hours of sexual differentiation (Fig. 5.2A), where abundance is measured

earlier and earlier in the cycle despite the fact that sampling occurs at the same

time each day. This pattern suggests that markers expressed for too brief a period

may be sensitive to very small changes in dynamics over the course of the infec-

tion, rendering them less than ideal for the purpose of estimating conversion. The

difficulty in recovering the correct answer using existing methods is disappointing

given that the simulations results represent an unrealistic extreme, because there

is likely to be variation the length the parasite life cycle.

Critically, simulations suggest that the best expression profile for sexual dif-

ferentiation would be one that mirrors the timing of asexual development exactly,
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Figure 5.2. Hypothetical early markers for sexual differentiation can improve conversion
rate estimates. The expression profile of the hypothetical marker is shown in red (A,
B), the corresponding dynamics of the total abundance of cells (asexual and early sexual
stage, gray) and early sexual parasites (red) is shown on a log scale with sampling given
as dots (C, D), and the resulting estimates for conversion rate in the bottom panels
(E, F). The actual conversion rate (5%) is shown as a dashed line, with conversion
rates estimated as the fraction of early sexual stages divided by the total number of
cells (asexual and early sexual). Mid- and late-stage sexual parasites, as well as mature
gametocytes, were excluded from the calculations. We assume daily samples were taken
six hours after peak-bursting and invasion.
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meaning that it matches the mean duration and variation in duration experienced

by parasites during asexual growth. If we assume that the first 24 hours of game-

tocyte development can be detected, and that that early developmental period is

fixed in length, the slight change in dynamics affects early sexual stages and asexual

stages in an identical manner, so that it does not generate errors in the conversion

rate calculations. In contrast, using mature gametocytes to estimate conversion

rates gives substantial errors (Fig. 5.1C, F), despite the fact that gametocytes

survive nearly the length of the asexual life cycle on average. This error can be at-

tributed to a difference in the variability in gametocyte lifespan, which is modeled

as experiencing a constant mortality rate. The resulting exponentially-distributed

lifespans are variable, with many gametocytes dying as soon as they mature and

others persisting long after the mean lifespan of 20 hours. The Dirac-Delta dis-

tribution represents the opposite extreme of no variation about the mean. Even

though the gametocytes and asexual stages have similar mean waiting times, the

fact that the variances differ leads to substantial error over the course of infection

(Fig. 5.1F).

To accurately recapitulate the conversion rate using existing methods, what

is needed is the ability to detect the period of early sexual differentiation for the

length of time required for the rest of the parasite cohort to develop through the

asexual blood stages. For the P. chabaudi example modeled here, that means being

able to detect the first 24 hours of sexual differentiation, while for P. falciparum it

would be sufficient to detect the first 48 hours of gametocyte development period

(Stage I gametocytes, Eksi et al., 2012). In vitro experiments suggest that there

is variability in the length of the asexual life cycle across and within P. falciparum

strains (Reilly et al., 2007; Reilly Ayala et al., 2010), and if the length of time

parasites spend as Stage I gametocytes varies in a different way, that could lead

to increasing errors in estimating the conversion rate as synchrony decays.

Though our simulations mimic rodent infections, the problems we have identi-

fied here could equally apply to estimating conversion rates in vitro, even though

mortality is minimal and all parasites are accessible to sampling. Since we are able

to detect gametocytes in early stages of development, and estimating conversion

from Stage II gametocyte abundance (i.e., Reece et al., 2010; Eksi et al., 2012)

would be expected to work well, since Stage II is expected to last 48 hours, the
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same as the length of the asexual life cycle in P. falciparum (Eksi et al., 2012). The

key problem in vitro is likely to be the rapid loss of synchrony, which may render

unreliable any conversion rates estimated too long after artificial synchronization

of the culture.

5.6 Interpreting plastic conversion rates in vivo

Current methods for calculating conversion rates can yield misleading results, even

in situations where they would be expected to perform well (i.e., minimal mortal-

ity, no sampling error). Given this uncertainty, what can we conclude from previ-

ous studies about how parasites modify their transmission investment in response

to their environment? We consider conflicting reports on how estimated conver-

sion rates correlate with red blood cell availability (Pollitt et al., 2011b; Cameron

et al., 2012), and the key finding that parasites should reduce their investment in

transmission in response to a competing parasite strain (Pollitt et al., 2011b), as

predicted by theory McKenzie & Bossert (1998); Mideo & Day (2008).

One of the major barriers to accurately estimating conversion rates is double-

counting gametocytes from different cohorts, which introduces time-varying errors

depending on the number of gametocytes produced in the previous cohort (or

cohorts, if gametocytes persist a long time). Therefore the errors in gametocyte

counts are not independent, but rather depend on past gametocyte production.

This dependence would be expected to introduce error even when researchers forgo

estimating conversion rate directly to look for correlations between gametocyte

production and other state variables (e.g., red blood cell numbers, Cameron et al.,

2012). Though we kept the conversion rate constant, gametocyte production—and

the error introduced into gametocyte counts in the subsequent cycle—increases as

asexual numbers increase, because there is a larger pool of parasites to differentiate

into sexual forms. As asexual numbers increase, red blood cell numbers decline,

and the inferred conversion rate appears to increase with decreasing numbers of red

blood cells (Fig. 5.1). In other words, we can use the model to give the appearance

that conversion rates are negatively correlated with red blood cell availability—the

same pattern observed in recent experiments (Cameron et al., 2012)—even when

the real conversion rate is fixed.
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Much harder to explain is a positive correlation between estimated conversion

rates and red blood cell numbers, as found in previous work using Eqn. 5.2 (Pollitt

et al., 2011b). If this is a spurious correlation, it is in the opposite direction

from what the model would predict, and tied to early infection dynamics since

Pollitt et al. examine dynamics in the 5-12 days after infection. Setting aside

the estimated conversion rate, the gametocytes themselves show strange dynamics

with two peaks: a small peak preceding the peak in asexual parasite numbers, and

the usual large peak in gametocyte abundance following peak infection (see Fig. 2

in Pollitt et al., 2011b). A similar pattern can be found in other experiments with

P. chabaudi (Buckling et al., 1999; Mackinnon & Read, 2003), suggesting a gap in

our understanding of transmission stage dynamics. Early immune defenses could

certainly skew the observed numbers of asexual stages and gametocytes, since host

defenses are directed mainly at asexual forms (Riley & Stewart, 2013).

Early immune clearance is thought to disproportionately remove small numbers

of parasites and saturate as parasite biomass increases (Metcalf et al., 2011), but

such density-dependent mortality would skew the estimated conversion rate in the

wrong direction (Fig. D.2), strengthening the appearance of a negative correlation

between red blood cell availability and the apparent transmission investment. At

least two other possibilities exist for explaining a positive correlation: (1) Immunity

is altering gametocyte numbers directly and in a more complicated manner than

simply saturating with large numbers of gametocytes. Saturating immunity would

be expected to merely delay the gametocyte peak, and more complicated immune

dynamics would be needed to give two peaks. (2) Parasites begin by investing too

much into gametocytes and then scale back their conversion rates. Transmission

investment is expected to increase as host conditions deteriorate (Pollitt et al.,

2011a), such as when red blood cell numbers are dropping precipitously (five to

ten days post-infection, Cameron et al., 2012). Thus a relatively high fraction of

parasites may be committed to sexual differentiation when they are removed from

donor mice five or ten days post-infection and inoculated into experimental mice

(Mackinnon & Read, 1999). High levels of transmission investment are thought

to be maladaptive early in infection (Koella & Antia, 1995), so parasites may

restrain their transmission investment with improved host conditions. These two

explanations are not mutually exclusive, and a combination of immunity and plastic



108

conversion rates may best explain gametocyte dynamics.

Despite conflicting results on how malaria parasites alter their transmission

investment with changing resource availability, theory consistently suggest that

transmission investment should be reduced when malaria strains coinfect the same

host (McKenzie & Bossert, 1998; Mideo & Day, 2008). That prediction was sub-

sequently confirmed in experimental P. chabaudi infections of mice (Pollitt et al.,

2011b). To test the strength of that finding, we simulate single infections with vary-

ing levels of transmission investment, finding that all three methods can detect a

wholesale reduction in conversion rate (Fig. D.3). Thus, while current methods

cannot necessarily describe how conversion rates vary through time, they may be

capable of detecting overall changes in the conversion rate across infections. The

finding that P. chabaudi strains reduce their transmission investment in coinfec-

tions may therefore be robust to errors in estimating conversion rates.

5.7 Alternative approach

We expand a recent statistical model of asexual growth in malaria parasites (Met-

calf et al., 2011) to attempt to correct for the problem of double-counting gameto-

cytes. Asexual growth can be approximated by using linear regression to estimate

the effective propagation number, Pe,t at a given time step:

It+1 = Pe,tItSt (5.4)

where It indicates the total number of infected red blood cells excluding any mature

gametocytes, and St is the number of uninfected red blood cells. Thus It represents

asexual parasites and immature sexual stages. Using linear regression as described

by Metcalf et al. (2011), the time-varying growth Pe,t can be estimated for each time

step. If no gametocytes carried over into the next generation, we could approximate

gametocyte dynamics as

Gt+3 = ctPe,tItSt (5.5)

where ct is again the conversion rate. Here the time lag is three days because

the effective propagation number Pe,t describes the invasion success of parasites

sampled at time t. Those parasites will give rise to another generation of infected
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red blood cells at time t+ 1, of which some fraction ct will have begun the process

of sexual differentiation that will be complete by time t+3. Since gametocytes are

likely to carry over, we can add those terms:

Gt+3 = ctPe,tItSt + εGt+2 (5.6)

with ε indicating the fraction of previously sampled gametocytes that persists to

the current time point. While the number of gametocytes that persist is likely to

vary through time, the fraction should be approximately constant. By analogy to

susceptible reconstruction in epidemiology (e.g., Bjørnstad et al., 2002) we may

recast Eqn. 5.6 as a cumulative recursion in terms of infected and susceptible cells,

as well as the gametocyte abundance at the time point when gametocytes could

first be observed:

Gt =

(
t∑

j=4

εt−jcj−3Pe,j−3Ij−3Sj−3

)
+ εt−3G3 (5.7)

In the simulated data, mature gametocytes are first observed at the third time

point G3, and this value would be used as a starting point for subsequent time

steps. However, there is likely to be some error in the measured G3 that could bias

the fits to subsequent time points, so we instead fit G3 as an additional parameter

in the model.

Rather than fitting each ct independently (which would be possible but ex-

tremely parameter-wasteful), we calculate the time-varying conversion rate as a

smooth curve. Specifically, we calculate the spline basis functions for the sampled

time points for five curves of increasing complexity, and then use AIC values to

determine how much complexity is justified by our simulated data. We consider

model fits assuming the conversion rate is (1) constant; (2) linear; (3) parabolic;

(4) cubic; (5) or a cubic spline with one interior knot. For time-varying conversion

rates, any polynomial up to a particular order can be described by a linear combi-

nation of the spline basis functions of the same order (e.g., de Boor, 2001). In R

(R Project for Statistical Computing, http://r-project.org/), we obtain these basis

functions using bs with the argument intercept=TRUE, which returns a matrix

of coefficients describing these basis functions with one column for each degree,
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one column for the intercept (and an additional column when an interior knot is

used). We then need only fit a small number of parameters: one for each column

of the basis matrix, the fraction of gametocytes persisting to the next sample, ε,

and the initial number of gametocytes observed, G3. For a given curve, the best

fit parameters can be estimated by minimizing the sum squared error. Given that

gametocyte abundance varies over several orders of magnitude, we calculate the

sum of the squared error from the logged observed and predicted gametocyte abun-

dance. We use the Nelder-Mead algorithm in the optim function, constraining G3

and ε to be positive by estimating them on a log scale and ct to vary between

zero and one using a complementary log-log scale. While ct of greater complexity

should always be expected to fit better, we calculate the AIC values to compare

across these models:

AIC = n ∗ ln
(sse
n

)
+ 2p (5.8)

where n is the number of observations used in the fitting, sse is the sum squared

error of the best fit parameters, and p is the number of parameters used in the

model. Code for the optimization can be found in the appendix.

Encouragingly, we find that this elaboration of the TSIR (Metcalf et al., 2011)

yields more reliable estimates of the time-varying conversion rate. When we sim-

ulate data assuming a fixed conversion rate, the spline method recapitulates the

fixed conversion rate with a relatively modest bias (Fig. 5.3). The spline method

consistently underestimates the true conversion rate because of the gametocytes

that have died by the time the infection is sampled. When we correct the game-

tocyte abundances for this mortality, the estimate conversion rate is much closer

to the true value (Fig. D.5). The estimated conversion rate tends to increase to-

wards the end of infection, because sampling occurs slightly earlier in the diurnal

cycle as the infection wears on due to the slightly-longer than 24 hour life cycle

(Fig. 5.1, 5.2). Since this greater number of gametocytes cannot be accounted for

in the effective propagation number, the spline method increases the estimated

conversion rate to achieve a good fit to observed gametocyte abundance. This

error is small and likely to be be negligible in reality, assuming that synchronized

dynamics continue over the sampling period.

The spline method can also be used to characterize time-varying conversion

rates. We apply the fitting algorithm to data simulated with a time-varying con-
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Figure 5.3. Conversion rates estimated from a spline fit to simulated data (purple
dots and black lines, respectively) using two parameters (a slope and an intercept). This
fitted conversion rate represents the best fit according to AIC values (AIC = −135), with
the exception of a more complicated estimated conversion rate that gave a similar AIC
value (AIC = −137). The other fitted conversion rates and AIC values can be found in
Fig. D.4.

version rate (taken from Greischar et al., manuscript) and find that the fitted

conversion rate exhibits key features of the real conversion rate (Fig. 5.4A), in-

cluding the time lag before transmission investment that has been predicted by

theory (Koella & Antia 1995, Greischar et al. manuscript). The spline approach

fails to capture the shape of the true conversion rate late in infection, mainly be-

cause conversion rates are so high that the effective propagation number is a poor

estimate of asexual growth. Methods to estimate effective propagation were de-

veloped under the assumption that most infected red blood cells were asexuals,

so that the error caused by those parasites developing into gametocytes would be

minimal (Metcalf et al., 2011). If we assume that developing sexual stages can be

distinguished from asexual forms—for example, through early markers of gameto-
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Figure 5.4. Conversion rates estimated from spline fits to simulated data (purple dots),
with the real conversion rate shown in black. The time-varying conversion rate used to
simulate the data was the predicted optimum strategy for single infections lasting 20 days
in the absence of immunity (from Greischar et al., manuscript). From those simulated
data, the conversion rate was either estimated assuming that developing gametocytes
cannot be distinguished from asexual parasites (A), or using a modified method assuming
that the effective propagation number could be estimated from the abundance of asexual
parasites only (B). Modified method replaces Eqn. 5.7 with details in appendix.

cyte differentiation—and the effective propagation number estimated accordingly,

we can used a modified version of Eqn. 5.7 to obtain a much clearer picture of the
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true conversion rate (Fig. 5.4B).

This alternative approach is subject to the same limitations that have always

applied to estimated conversion rates: the inferred transmission investment will

be biased whenever there is differential mortality of sexual and asexual stages.

However, the effective propagation number, Pe has been used to identify when

immunity is constraining asexual growth (Metcalf et al., 2011), and Pe must be

calculated to estimate the conversion rate via the spline method. Again making

use of simulated data, now with immunity, we find that this approach is better

able to cope with immune-mediated clearance of asexual parasites (Fig. D.6).

We use this approach on a published data set, with observations of mice in-

fected with a drug-resistant P. chabaudi strain and not given any anti-malarial

drugs (Huijben et al., 2010a,b). The spline method was able to rule out the null

hypothesis of fixed conversion rates in four out of six mice (Fig. 5.5). The lowest

AIC value was always associated with a plastic conversion rates, but in two of

the mice (A & B), the AIC values were not different enough to justify dismiss-

ing fixed conversion as a possibility (Sakamoto et al., 1986). Though the same

parasite strain was used for all six mice, we see a surprising amount of variation

across hosts. Consistent with conversion rates estimated using different methods

from another data set (Pollitt et al., 2011b), we see that the estimated conversion

tends to begin at a relatively high level before declining and then increasing after

the peak of infection. For comparison, we plot the abundance of red blood cells,

infected red blood cells, and gametocytes for all six mice (Fig. D.7).

5.8 Concluding remarks

Researchers are rarely able to measure transmission investment directly and then

only under tightly controlled conditions. By fixing infected and uninfected red

blood cells in a monolayer in vitro, Bruce et al. (1990) observed the fraction of

parasites committing to sexual differentiation from a cohort, which varied from less

than one percent to over 70%, depending on culture conditions. These experiments

suggest considerable scope for adaptive plasticity in transmission investment. If

that variability can be well-characterized, it may suggest means of manipulating

conversion rates to reduce the malaria disease burden. However, in more realistic
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Figure 5.5. Conversion rates estimated from spline fits to real data for six mice. Solid
lines indicate the fit giving the lowest AIC values. When other fits gave similar AIC
values (i.e., within two units of the lowest AIC), those are also shown as broken black or
gray lines.

settings—whether a living host or a flask of blood—transmission investment must

be inferred rather than directly measured. Surprisingly, we found that the caveats

often thought to hinder inference methods were only one part of the problem. While

differential mortality between asexual and transmission stages can lead to over-

or underestimation of conversion rates, the real problem is one of distinguishing

gametocytes produced from separate cycles of synchronous infection.

Our simulations suggest that at least some of the observed patterns of variation

in estimated conversion rates in vivo can be explained without needing to invoke

plastic transmission investment. While researchers often worry about error intro-

duced by unequal mortality of sexual and asexual forms (Cameron et al., 2012),

double-counting gametocytes can qualitatively alter results. Gametocytes may of-

ten survive longer than the length of the asexual cycle according to the mortality

rates reported by Reece et al. (2003), so that gametocytes from different cohorts
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of parasites may be counted as emerging from the same round of bursting and

invasion. Hence the model suggests that gametocytes from different cohorts will

tend to accumulate more as the number of asexual parasites increases (Fig. 5.1),

giving the false impression that conversion rates are increasing as red blood cell

number decline. Although in vitro work strongly suggests that conversion rates

are plastic (Bruce et al., 1990), current methods (Eqns. 5.1-5.3) cannot be relied

upon to detect constant transmission investment.

Early markers of sexual differentiation cannot solve these problems, except un-

der the special conditions. We propose an alternative statistical approach, building

on the time-series methods of Metcalf et al. (2011). This method appears capable of

distinguishing between fixed and time-varying investment with with relatively few

parameters to fit to data. Further, it suggests that we can leverage the rich body of

existing data to revisit the problem of how malaria parasites modify transmission

investment in response to the changing within-host environment.
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Chapter 6
Discussion

Malaria parasites display curious life history traits within the vertebrate host,

among them synchronous infection dynamics—which should enhance competition

for resources—and reproductive restraint, with parasites investing substantially

less into the production of transmission stages than the presumed optimum. These

traits should be costly, and the fact that they are frequently observed suggests a

gap in our understanding. The objectives of this dissertation are to trace the

transmission consequences of synchrony and reproductive restraint while assessing

our ability to make inferences about the underlying processes from time series data

of parasite dynamics.

The model shows that parasite fitness can be enhanced by synchrony (Chap-

ter 2), analogous to the ways in which diverse free-living organisms employ syn-

chronized reproduction to overwhelm natural enemies and overcome mate-finding

difficulties (Kelly & Sork, 2002). In line with intuition, synchrony is predicted

to exacerbate interference competition among merozoites, because the merozoites

emerge in unison, but surprisingly, this effect can in fact increase transmission

success if it damps extreme oscillations in parasite numbers. In Chapter 3, I ex-

amine intra-strain competition and the loss of synchrony in vitro. Invasion assays

suggest that merozoite invasion rates per se are not density-dependent but rather

merozoites are more likely to be wasted infecting already-invaded red blood cells

when conditions are crowded. Fitting a distributed-delay in vitro model to de-

tailed time series data, I find that the rate of viable new infections may vary with

merozoites and uninfected red blood cell abundance, a form of density-dependence
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that may often favor synchronous parasites. Since synchrony is also likely to be

favored when transmission investment is low, I also examine the factors that should

select for reproductive restraint by generalizing the fixed delay in vivo model from

Chapter 2 to allow for time-varying transmission investment. Using an optimiza-

tion algorithm, I identify strategies that should maximize the cumulative potential

transmission to mosquitoes (Chapter 4). These optimal strategies suggest that

reproductive restraint is beneficial early in infection and in the presence of satu-

rating immune measures or a competing strain. Finally, I test current methods for

inferring transmission investment on simulated data under conditions most likely

to yield accurate estimates (Chapter 5). The methods cannot cope with fact that

some gametocytes are likely to survive through multiple rounds of sampling and

therefore confound the estimated transmission investment from distinct cohorts of

parasites. I develop an alternative method that shows promise at identifying fixed

and time-varying strategies from simulated and real time series data.

Synchrony is predicted to be advantageous when gametocytes are rare and the

challenge of mate-finding would be expected to present a major barrier to infect-

ing mosquitoes. Interestingly, the optimum level of transmission investment did

not vary much depending on whether the infection was asynchronous or highly

synchronized. In order for synchrony to make a difference, investment would need

to vary on the same time scale as the oscillations in parasite abundance, that is,

over the length of the asexual life cycle (a 24 hour period for P. chabaudi, Lan-

dau & Boulard, 1978). More importantly, if parasite populations can expand to

large numbers and then invest in gametocyte production, we would expect gameto-

cytes to emerge in large numbers over a very short time window, side-stepping the

problem of mate-finding without the need to resort to synchrony. Therefore the

selection pressures other than the challenge mate-finding may be needed to under-

stand when synchrony should be favored, and competitive interactions are likely to

strongly influence the transmission consequences of different temporal dynamics.

The dynamics of host exploitation vary considerably depending on the form of

density-dependent competition. If interference takes a hyperbolic form (Eqn. 2.2),

it has the effect of damping extreme oscillations in parasite abundance, which would

otherwise be costly due to Jensen’s inequality (Chapter 2). Because synchrony

enhances the impact of interference competition, the damping is even more pro-
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nounced in synchronous infections, and the model predicts those dynamics should

favor synchrony over a large portion of the parameter space. This effect has no

clear analogy in the masting literature, but modeling of RNA viruses suggests

that pathogens can benefit from mutation rates so high they reduce the per capita

growth rate and thereby keep the host alive long enough to transmit for longer

periods (O’Fallon, 2011). While the present models do not consider the possibility

of host death, it is entirely possible for parasites to overexploit red blood cell pop-

ulations so that gametocyte production declines precipitously until erythropoiesis

replenishes the pool of resources (Fig. 2.4). Thus faster within-host growth is not

always favorable, even setting aside the cost of host mortality.

Subsequent analysis of parasite dynamics in vitro suggests that hyperbolic in-

terference is a plausible scenario for the form of interference competition (Fig. 3.4).

It is therefore possible that rather than suffering from competition, synchronous

parasites may actually benefit from interference. Invasion assays suggest that in-

terference does not change the rate of invasion, but instead occurs as two or more

parasites attempt to develop within the same red blood cell (Chapter 3). Inter-

estingly, multiple infections are far less common when cultures are shaken rather

than static (Allen & Kirk, 2010), suggesting that some care must be taken in

extrapolating the results of our static invasion assays to the relatively well-mixed

environment within the host. However, particularly in patients with severe malaria,

a large fraction of the parasite population may be sequestered out of circulation

and not well-mixed (reviewed in Cunnington et al., 2013). When a significant

portion of the parasite population is sequestered, superinfection of red blood cells

could be an important constraint on further population expansion.

Merozoite wastage—while far from ideal—could serve to prevent overexploita-

tion of host resources. An alternative means of avoiding overexploitation of host

resources would be adaptive modulation of burst sizes (N. Mideo, pers. comm.),

such that parasites produce fewer merozoites per schizont in crowded conditions.

Adaptive modulation of burst sizes would not have been possible in the invasion

assays conducted for Chapter 3, since parasites were reared to the schizont stage in

a stock culture prior to initiating the invasion assays. However, plastic burst sizes

would not be expected to be advantageous unless producing a smaller number of

merozoites would allow each one to be of higher quality, in terms of invasion ability
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or longevity. While burst sizes are known to vary even within a single strain of

P. falciparum (Reilly et al., 2007), this variability does not appear to be adaptive.

The fact that the P. falciparum strain Dd2 can make more merozoites faster, and

maintain a higher intrinsic growth rate compared with the HB3 strain (Reilly et al.,

2007) calls into question whether tradeoffs exist between quality versus quantity of

merozoites. When parasites have been reared at different parasitemias and fixed

in a monolayer to follow commitment to sexual versus asexual development, the

mean number of asexual parasites produced per schizont does not change in any

consistent manner with the parasitemia of origin (Bruce et al., 1990). While it

might enhance parasite fitness, there is no evidence that burst sizes can be plasti-

cally modified in the same way as transmission investment. Reinvasion of occupied

red blood cells does occur, though the frequency varies across parasite species and

hosts (Garnham, 1966; Simpson et al., 1999). Characterizing the dynamics of

merozoite wastage across species could highlight different strategies of modulating

host exploitation.

Regardless of the underlying mechanism, the advantages of restrained growth

disappear in the presence of an imprudent competing strain, whether slower growth

is due to synchrony (Fig. 2.6) or greater investment in gametocyte production

(Fig. 4.4). Infections with multiple malaria strains are extremely common (e.g.,

Färnert et al., 1997; Jafari-Guemouri et al., 2006), but the fitness impact on trans-

mission can be difficult to tease apart. A much-simplified version of the conflict

between different levels of selection is described in Eqn. 4.16, suggesting that par-

asites can benefit from the overall increase in gametocyte numbers that follows

having two strains investing in transmission simultaneously, but each strain is also

under selection to maximize its representation in a mosquito’s blood meal. The

reality is made much more complicated by interactions with the immune system.

Parasites likely pay a cost of coinfecting with other parasites; it appears that the

host limits the total parasite density (Bruce & Day, 2002), such that each clone

within a diverse infection cannot grow to densities as high as it would achieve in

a single infection. In addition to the costs within the vertebrate host, infections

with excessive numbers of gametocytes may compromise replication within the

mosquito vector and reduce vector survival (Pollitt et al., 2013), and coinfections

may produce larger numbers of gametocytes (Taylor et al., 1998).
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The costs of apparent or direct competition among parasite clones are likely

substantial, but there may be also be considerably greater opportunities for trans-

mission from mixed infections. Individuals infected with P. falciparum maintained

gametocytes three times as long if they had mixed versus single infections in an

area of seasonal malaria transmission (Nassir et al., 2005). The ability to persist

through the dry season is necessary for the long-term persistence of a parasite

lineage, and if coinfections give dramatically better odds for persistence, it could

select for parasites that are capable of coexisting in multi-strain assemblages and

place limits on the intensity of within-host competition. Nassir et al. (2005) also

observed that infections with gametocytes were cleared an higher rate overall than

infections where only asexual forms could be detecting, potentially pointing to

the cost of gametocyte production in terms of per capita growth within the host.

Yet the cost of gametocyte investment may be reduced by coinfection if strain

diversity hinders efficient immune clearance. Accordingly, experimental rodent in-

fections suggest a cost to the host of removing diverse parasites, since hosts with

mixed-strain infections experienced more severe weight loss and anemia that could

not be explained by differences in total parasite abundance (Taylor et al., 1998).

Aside from prolonging the infectious period, multi-strain infections may also

enhance infectiousness. The difficulty of clearing mixed infections may help ex-

plaining why more two coinfecting parasites strains would infect more mosquitoes

than could be explained by their performance in single strain infections (Taylor

et al., 1997b). Even if coinfection drives down the asexual densities of each clone,

the impact on transmission success far from obvious. Mosquitoes can reveal more

parasite diversity than can be detected in the humans who supplied the blood

meals, suggesting that rarity in the circulating parasite population need not be a

barrier to transmission (Nwakanma et al., 2008). The costs of competition could

be further reduced by relatedness, and multi-strain infections can show a surpris-

ing degree of relatedness (Nkhoma et al., 2012). In general, opposing selection

pressures would be expected to act on individual strains versus the community of

strains residing in a given host, but relatedness could align those selection pres-

sures allow the collection of strains to move closer to the optimum level of host

exploitation (reviewed in Chao et al., 2000). The coinfection model utilized in

Chapters 2 and 4 could be extended to determine whether the complex selection
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pressures will ultimately reduce or enhance the virulence to the host.

The models developed to dissect the interplay between selective forces can also

be useful for testing our ability to infer unobserved infection dynamics. Using these

mechanistic models to generate simulated data sets can help to identify shortcom-

ings in existing approaches. Analogously, simulated data of helminth coinfections

has been used to critique common statistical methods for detecting interference

versus facilitation among interacting species (Fenton et al., 2010). The present

model suggests that while a surprising amount of information can be gleaned from

time series data, intuition often serves as a poor guide in the face of the complex

and nonlinear processes. The distributed delay in vitro model shows that cycle

length can be over- or underestimated depending on both the intrinsic growth

rates and the developmental plasticity (Fig. 3.2). Similarly, simulated data on

asexual and gametocyte abundance show that popular inference methods fail be-

cause errors are likely to depend on gametocyte abundance measured previously.

It is perhaps not surprising that inference methods would fail in the complex and

rapidly changing environment within the host, but analyzing parasite traits in the

relatively simple environment of artificial blood culture also proves challenging. In

both cases, errors vary depending on the rate of expansion in the parasite pop-

ulation, whether because growth alters the distribution of parasite life stages or

because growth increases the number of gametocytes surviving through successive

samples and fouling estimates of conversion rates. Thus inference methods perform

better when they can account for the underlying growth or decline of the infection.

The malaria life cycle within the vertebrate host encapsulates tradeoffs con-

ceptually identical to those facing diverse parasitic and free-living organisms: how

to overcome natural enemies and find mates while minimizing the cost of com-

petition, and how to balance growth and reproduction. The present collection of

work uses mechanistic models of malaria infection to determine when synchrony

and reproductive restraint should be viable solutions to those tradeoffs, predictions

with broad relevance. The models also highlight the conceptual challenges asso-

ciated with testing those predictions, thereby serving as a basis for further work

examining the rich diversity in parasite life history.



Appendix A
Chapter 2 Supplemental Information

A.1 Description of Modeling Framework

A.1.1 Age-structured model

The age-structured model is identical to the single-strain model, except that the

infected cells committed to the asexual cycle are split into young and mature

classes (Iy and Im, respectively), both with fixed development times (αy and αm,

respectively). Saturating immunity targets only the mature infected red blood cells

(Im), so Eq. D.2 becomes

dIy(t)

dt
= (1− c)p(t)R(t)M(t)− µIy(t) (A.1)

−(1− c)p(t− αy)R(t− αy)M(t− αy) exp(−µαy)
dIm(t)

dt
= (1− c)p(t− αy)R(t− αy)M(t− αy)exp(−µαy)− µIm(t)

− a

b+ Im(t)
Im(t)− (1− c)p(t− α)R(t− α)M(t− α)Sm (A.2)

where the survivorship is the mortality rates integrated over the respective devel-

opmental periods

Sm = exp

(
−
∫ t−αm

t−αy−αm

µdω −
∫ t

t−αm

µ+
a

b+ Im(ω)
dω

)
(A.3)
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A.1.2 Two strain model

The coinfection model tracks infected red blood cells (sexual and asexual), mero-

zoites, and gametocytes for two strains in complete analogy to our single-strain

model.

dR(t)

dt
= λ

(
1− R(t)

Kstart

)
(A.4)

−µR(t)− p(t)R(t)M1(t)− p(t)R(t)M2(t)

where IA indicates asexual infected red blood cells of both strains (I1 + I2).

dI1(t)

dt
= (1− c)p(t)R(t)M1(t)− µI1(t)−

a

b+ IA(t)
I1(t) (A.5)

−(1− c)p(t− α)R(t− α)M1(t− α)SA(t)

dI2(t)

dt
= (1− c)p(t)R(t)M2(t)− µI2(t)−

a

b+ IA(t)
I2(t) (A.6)

−(1− c)p(t− α)R(t− α)M2(t− α)SA(t)

dM1(t)

dt
= β(1− c)p(t− α)R(t− α)M1(t− α)SA(t) (A.7)

−p(t)R(t)M1(t)− µZM1(t)

dM2(t)

dt
= β(1− c)p(t− α)R(t− α)M2(t− α)SA(t) (A.8)

−p(t)R(t)M2(t)− µZM2(t)

dIG1(t)

dt
= cp(t)R(t)M1(t)− µIG1(t) (A.9)

−cp(t− αG)R(t− αG)M1(t− αG) exp (−µαG)

dIG2(t)

dt
= cp(t)R(t)M2(t)− µIG2(t) (A.10)

−cp(t− αG)R(t− αG)M2(t− αG) exp (−µαG)

dG1(t)

dt
= cp(t− αG)R(t− αG)M1(t− αG) exp (−µαG)− µGG1(t) (A.11)

dG2(t)

dt
= cp(t− αG)R(t− αG)M2(t− αG) exp (−µαG)− µGG2(t) (A.12)

with

SA(t) = exp

(
−
[∫ t

t−α
µ+

a

b+ IA(ω)
dω

])
(A.13)
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A.1.3 Annotated code for basic fixed delay model

The following is the code to run the basic fixed delay model described in Chapter

2. First, the delayed differential equation solver package must be loaded:

> library(PBSddesolve) # dde solver

I create the following function to set up the starting conditions assuming a Beta

age distribution for the parasite inoculum:

> pulseBeta = function(initialI, shape, time){

+ res = rep(NA, length(time))

+ for (num in 1:length(time)){

+ res[num] = initialI*(dbeta(time[num], shape, shape))

+ }

+ return(res)

+ }

Note that the shape parameters are equal. I also define functions to allow

for immune clearance (satImm3 ) and interference competition among merozoites

(pinf ):

> # Immunity with type II or III functional response

+ #(determined by betaValue parameter)

> satImm3 = function(aValue, bValue, betaValue, numI){

+ # note that when betaValue = 1, this function reduces

+ # to the type II

+ # functional response

+ # betaValue was set to 1 for all simulations shown in this thesis

+ return(aValue*(numI^(betaValue-1))/((bValue)+(numI^betaValue)))

+ }

> pinf = function(pVal, qVal, mero, rbc){

+ return(pVal/(1+qVal*(mero/rbc)))

+ }

Now I can define the basic delay function, which tracks red blood cells (R), infected

red blood cells in asexual development (In), infected red blood cells developing
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into gametocytes (InG), merozoites (M), and infectious gametocytes (G). ‘Eta’

serves to integrate the mortality rates, which makes it easy to calculate survival

of different stages when mortality rates vary through time (e.g., with saturating

immune clearance). I have four other state variables that serve as useful checks

that the model is working but do not feed back into any equations, including

infected red blood cell recruitment (asexual only, ‘Irec’), merozoite recruitment

(‘Mrec’), the total number of infected red blood cells (‘Itot’), and the gametocyte

recruitment (‘Grec’).

After defining the parameters (including the initial conditions), and the state

variables, the pastvalue function is called to define the delays. The function is split

into three sets of code: (1) the model with delayed terms removed, so that the

appropriate delayed terms can be added later; (2) the delayed terms for when time

is greater than one full delay (α); (3) the delayed terms describing the transitions

of the initial inoculum, which is the most conceptually challenging portion.

> # basic model with ratio-dependent invasion function (pinf)

> sis.delay = function (t, y, parms){

+ ## parameters--all units should be in terms of days

+ # RBC dynamics

+ mu = parms[1] # mortality rate of RBC

+ lambda = parms[2] # maximum replenishment rate of RBCs

+ K = parms[3] # carrying capacity of RBC population

+ # without mortality

+ #infected RBC dynamics

+ p = parms[4] # rate of infection of RBC given contact

+ # between RBC and merozoite

+ q = parms[5] # exponent of merozoite numbers, to induce

+ # merozoite-competition when q<1

+ alpha = parms[6] # delay until infected RBC bursts

+ # (committed to asexual cycle)

+ alphaG = parms[7] # delay until infected RBC bursts

+ #(committed to sexual cycle)

+ a = parms[8] # limit in type II saturating immune

+ # function: removes infected RBCs
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+ b = parms[9] # days required to reach

+ # an immune-mediated removal

+ # rate of a/2 (half-saturation point)

+ betaI = parms[10]

+ # merozoites

+ beta = parms[11] # burst size of infected RBCs:

+ number of merozoites that emerge

+ muz = parms[12] # intrinsic mortality rate of

+ # free merozoites

+ # gametocytes

+ mug = parms[13] # intrinsic mortality rate of gametocytes

+ repro = parms[14] # proportion of infected RBCs committed

+ # to producing gametocytes

+ sigma = parms[15] # proportion of immune response acting

+ # against merozoites (modifies a)

+ ## Initial conditions

+ sP = parms[16] # shape parameter form beta distribution

+ # in starting values

+ R0 = parms[17] # initial number of uninfected RBCs

+ I0 = parms[18] # initial number of infected RBCs

+ IG0 = parms[19] # initial number of infected RBCs

+ # committed to making gametocytes

+ M0 = parms[20] # initial number of free merozoites

+ G0 = parms[21] # initial number of gametocytes

+

+ ## variables to keep track of (this is where R sets

+ # these equal to the initial values

+ # or updates them)

+ R = y[1] # red blood cells (RBCs)

+ In = y[2] # infected RBCs

+ InG = y[3] # infected RBCs committed to making gametocytes

+ M = y[4] # free merozoites (emerged from burst RBC)

+ G = y[5] # gametocytes (emerged from burst RBC)
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+ Eta = y[6] # mortality rate of infected RBCs

+ # the following state variables assist in analyzing the model,

+ # but do not feedback into the model

+ Irec = y[7] # recruitment into infected class

+ Mrec = y[8] # recruitment into merozoite class

+ Itot = y[9] # total asexual pRBCs

+ Grec = y[10] # gametocyte recruitment

+

+ ## pastvalues

+ # delay

+ if(t>alpha){lag1=pastvalue(t-alpha)}

+ if(t>alphaG){lag2=pastvalue(t-alphaG)}

+

+ # Model without delayed terms

+ dRdt = - mu*R - pinf(p,q,M,R)*R*M + lambda*(1-((R)/K))

+ # no delay in this first equation

+ dIndt = (1-repro)*pinf(p,q,M,R)*R*M - mu*In

+ - satImm3((1 - sigma)*a, b, betaI, In)*In

+ # plus delay

+ #(omitted in this portion of the code)

+ dInGdt = repro*pinf(p,q,M,R)*R*M - mu*InG # plus delay

+ dMdt = -pinf(p,q,M,R)*R*M - muz*M

+ - satImm3(sigma*a, b, betaI, M)*M

+ # plus delay (omitted in this portion of the code)

+ dGdt = - mug*G # plus delay

+ # (omitted in this portion of the code)

+

+ # Infected RBC survival through delay

+ S = exp(-Eta);if(t>alpha){S=exp(-Eta + lag1[6])}

+ SG = exp(-mu*t);if(t>alphaG){SG = exp(-mu*alphaG)}

+

+

+
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+ # Adding in delayed terms

+ if(t>alpha){dIndt=dIndt

+ - (1-repro)*pinf(p,q,lag1[4],lag1[1])*lag1[1]*lag1[4]*S}

+ if(t>alphaG){dInGdt = dInGdt

+ - repro*pinf(p,q,lag2[4],lag2[1])*lag2[1]*lag2[4]*SG}

+

+ if(t>alpha){dMdt=dMdt

+ + (1-repro)*beta*pinf(p,q,lag1[4],lag1[1])*lag1[1]*lag1[4]*S}

+ if(t>alphaG){dGdt=dGdt

+ + repro*pinf(p,q,lag2[4],lag2[1])*lag2[1]*lag2[4]*SG}

+

+ # Track cells in initial cohort of infection

+ # (before the simulator has gone through a full delay)

+ if(t<=alpha){dIndt=dIndt - pulseBeta(I0, sP, t)*S}

+ if(t<=alphaG){dInGdt=dInGdt - pulseBeta(IG0, sP, t-1)*SG}

+

+ if(t<=alpha){dMdt=dMdt + beta*pulseBeta(I0, sP, t)*S}

+

+ if(t<=alphaG){dGdt=dGdt + pulseBeta(IG0, sP, t-1)*SG}

+

+ dEta = mu + satImm3((1 - sigma)*a, b, betaI, In)

+ # an infected RBC can die

+ # from intrinsic factors (mu) or from immunity

+

+ dIrec = (1-repro)*pinf(p,q,M,R)*R*M # asexual recruitment only

+

+ if(t<=alpha){dMrec = beta*pulseBeta(I0, sP, t)*S}

+ # number recruited

+ # into merozoite class per infected RBC

+ # (R will return cumulative value)

+ if(t>alpha){dMrec =

+ (1-repro)*beta*pinf(p,q,lag1[4],lag1[1])*lag1[1]*lag1[4]*S}

+
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+ dItot = In

+ if(t<=alphaG){dGrec = pulseBeta(IG0, sP, t-1)*SG}

+ if(t>alphaG){dGrec =

+ + repro*pinf(p,q,lag2[4],lag2[1])*lag2[1]*lag2[4]*SG}

+

+ return(c(dRdt,dIndt,dInGdt,dMdt,dGdt,dEta,dIrec,

+ dMrec,dItot,dGrec))

+ } # end of SI function

The recruitment terms serve to allow me to back-calculate how many individuals

entered the class at a particular time point, which cannot be gleaned from the

abundance alone. The sis.delay function will return the cumulative recruitment

at every point in the simulation. If I bind the vector of time points to the vector

of cumulative recruitment and feed it to the function splinefun, it is straightfor-

ward to estimate the derivative of cumulative recruitment (i.e., the instantaneous

recruitment) at any point simulated.

The parameter values are set as follows:

> # parameter values (convert values from data into

> # per microliter values)

> # calculate total number of RBCs in a healthy mouse

> RBCpermL = 8.5e9 # from Savill et al. 2009

> RBCsperuL = (RBCpermL/10e-3)*10e-6

> maxNewRBCspermL = 0.37e9 # from Savill et al. 2009

> maxNewRBCsperuL = (maxNewRBCspermL/10e-3)*10e-6

> # calculate starting number of parasites injected into a mouse

> weight = 2.4e-3 #24 g = 24e-3kg, avg for female CSI mice given

+ # in Riches et al. 1973

> mLperkg = 95 # again according to Riches et al. 1973

> # for female CSI mice

> mLperMouse = mLperkg*weight

> uLperMouse = mLperMouse*(10e3)

> IperuL = (10e4)/uLperMouse # assume 10e4 infectious

> # dose for each mouse
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> cC = RBCsperuL # carrying capacity of RBCs

> # (with mortality, no infection)

> mu = 0.025 #(0.025/day cited in Miller et al. 2010 for mice)

> lambda = maxNewRBCsperuL # maximum number of new cells entering

+ # according to Savill et al. 2009 (see above)

> K = lambda*cC/(lambda-mu*cC) # carrying capacity of RBC population

+ # in the absence of mortality

> #infected RBC dynamics

> p = 4e-6 #2e-6 #2.5e-6 #3e-6 #plausible values based

+ # on Mideo et al. 2008:

+ # 1e-6 to 1.8e-5 (per day) given contact between

+ # RBC and merozoite

> alpha = 1 # delay until infected RBC bursts

> alphaG = 2 # delay until infected RBC committed

+ # to producing gametocytes bursts

> b = 100 #2000 #20 # speed of saturation (half-saturation point)

+ # in type II immune function

> betaI = 1 # when set to 1, immunity follows a type II response

> # merozoites

> beta = 10 # burst size of infected RBCs

+ # number of merozoites that emerge

> muz = 48 # intrinsic mortality rate of free merozoites

+ # (Gravenor et al. 1995

+ # estimate the mortality rate of free

+ # merozoites to be 72/day)

> # gametocytes

> mug = 4 # intrinsic mortality rate of gametocytes

+ # (=1/8, assumes they live 8 days)

> # Initial conditions

> R0 = cC # uninfected RBC carrying capacity

> I0 = IperuL # 30 # initial number of infected RBCs/microliter

+ # (effective inoculum dose

+ # estimated in Miller et al. 2010, p. 10)
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> IG0 = 0 # initial number of infected RBCs committed

+ # to making gametocytes

+ # (assume to be zero)

> M0 = 0 # initial number of free merozoites

> G0 = 0 # initial number of gametocytes

> # one run

> days = 20 # length of time simulations are run

> h = 0.01 # resolution at which simulations are run

> a = 0 # no immunity

> sigma = 0

> # no merozoite interference

> q = 0

> repro = 0.001

> sP = 1 # asynchronous infection with this shape parameter

> parms=c(mu, lambda, K, p, q, alpha, alphaG, a, b, betaI, beta,

+ muz, mug, repro,sigma, sP, R0, I0, IG0, M0, G0)

> y.out = dde(y=c(R0,I0,IG0, M0,G0,0,0,0,0,0), times=seq(0,days,h),

+ dt = 0.1, func=sis.delay, parms=parms, tol = 1e-10, hbsize=1e7)

> head(y.out)

time y1 y2 y3 y4 y5 y6

1 0.00 8500000 43.85965 0.0000000000 0.000000 0 0.00000

2 0.01 8499999 43.98710 0.0005774749 2.992560 0 0.00025

3 0.02 8499998 44.80801 0.0018488845 4.309830 0 0.00050

4 0.03 8499997 45.93395 0.0034254163 4.889250 0 0.00075

5 0.04 8499995 47.19387 0.0051358251 5.143697 0 0.00100

6 0.05 8499993 48.51240 0.0069046893 5.255016 0 0.00125

y7 y8 y9 y10

1 0.0000000 0.000000 0.0000000 0

2 0.5769486 4.385417 0.4383960 0

3 1.8473806 8.769737 0.8820028 0

4 3.4229904 13.152962 1.3355506 0

5 5.1327561 17.535091 1.8011186 0

6 6.9013543 21.916124 2.2796190 0
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A.2 Supplemental figures

Gametocyte abundance
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Figure A.1. Extremes in transmission biology: the probability of transmission is
shown as a function of gametocyte abundance for drug-sensitive P. chabaudi (red,
Eqn. 2.13), drug-resistant P. chabaudi (black, probability of transmission = exp(−6.37+
1.42 log10G(t))/(1 + exp(−6.37 + 1.42 log10G(t)))), and P. falciparum (blue, probability
of transmission = 1 × 10−5G(t)2/(1 + 1 × 10−5G(t)2)). Equations and parameter val-
ues from curves fit to data by Huijben et al. 2010a and Bell et al. 2012. Red and blue
dots represent the inflection points for P. chabaudi (drug-sensitive) and P. falciparum,
respectively, i.e., where the curve switches from accelerating to saturating. The drug-
sensitive P. chabaudi curve was used for all simulations in the main text. Its inflection
point falls below a 50% probability of infection—even though it is derived from a logistic
regression—because it is a function of the log10 abundance of gametocytes and the chain
rule applies. Note the absence of an inflection point on the drug-resistant P. chabaudi
curve. Despite its appearance on a log scale, the black curve is saturating over the entire
range.
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Figure A.2. Smoothed relative fitness of synchronous:asynchronous infections either
for no immunity (A, a = 0) or for immunity targeting infected red blood cells in the last
hour before bursting (B, a = 1800, b = 100). Younger infected red blood cells are not
subject to immune clearance. Panel A is identical to Fig. 2.5A, and is placed here for
comparison.
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Figure A.3. Smoothed relative fitness in single infections (ratio of cumulative transmis-
sion for synchronous:asynchronous strain) calculated using the drug-resistant P. chabaudi
transmission function (black curve in Fig. A.1). Otherwise, dynamics are identical to
Fig. 2.5. Since the transmission function is entirely saturating, the relative fitness does
not vary much with changes in gametocyte investment.
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Figure A.4. Smoothed relative fitness in single infections (ratio of cumulative trans-
mission for synchronous:asynchronous strain) calculated using the P. falciparum trans-
mission function (blue curve in Fig. A.1). Save for the calculation of relative fitness,
dynamics are identical to Fig. 2.5. Since the transmission function saturates earlier, a
smaller region of the parameter space is favorable to synchronous parasites in the absence
of immunity.
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Figure A.5. Smoothed relative fitness in single infections (ratio of mean transmission
for synchronous:asynchronous strain) using an alternate form of merozoite interference
(z(t), Eqn. 2.3). Parameters otherwise identical to Fig. 2.5 (i.e., relative fitness calculated
with Eqn. 2.13).
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Figure A.6. Red blood cell abundance (A), gametocyte abundance (B), and transmis-
sion potential (C, cumulative probability of transmission) simulated for parasitoid-like
merozoite interference (Eqn. 2.3), with m = 0.05 for orange curves. Synchronous dy-
namics are again shown in solid lines while asynchronous infections are denoted with
dashed lines. Gametocyte investment was set low (c = 0.002), and immunity was absent
(a = 0). Transmission potential was calculated using Eqn. 2.13. Synchronous strains can
benefit from merozoite competition (C, orange lines), while the asynchronous infection
would have transmitted better in the absence of competition (C, blue lines).
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Figure A.7. Smoothed relative fitness of synchronous:asynchronous infections as shown
in Fig. 2.5A, except that gametocytes have a mean infectious lifespan of approximately
20 hours (based on data in Reece et al. 2003) instead of six hours (from data in Gautret
et al. 1996).
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lines. Merozoite interference is absent (q = 0), and there is relatively high investment in
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strains an advantage, but increasing longevity still further—such that gametocytes out-
live asexual forms—sharply reduces transmission differences between synchronous and
asynchronous parasites.



Appendix B
Chapter 3 Supplemental Information

B.1 Annotated code for distributed delay model

This is the annotated code for the Gamma-distributed delay model, which repre-

sents a chain of ODEs. First we have to load the package to solve ODEs:

> # load required packages

> library(deSolve) # to solve ODEs

This model was run with a range of functional forms of interference, defined in

this function, pinfGeneral :

> pinfGeneral = function(p,q,m,mero,RBC,fx){

+ # null hypothesis: Holling Type II, occurs for fx=1,2,3 & m=0

+ # hyperbolic interference (fx=4) does not reduce to the null model

+ if(fx==1){return(p/(1+q*RBC+m*(mero-1)))} # Beddington-DeAngelis

+ if(fx==2){return(p/((1+q*RBC)*(1+m*(mero-1))))} # Crowley-Martin

+ if(fx==3){return(p/(q*RBC+(mero^m)))} # Hassell-Varley

+ if(fx==4){return(p/(1+q*mero/RBC+0*m))} # hyperbolic

+ if(fx==5){return(p*((mero+1)^-m)+0*q*RBC)} # parasitoid-like

+ } # end of general interference function

Now we can code gamma.ps, the function to run the model simulation, for the

equations given in Equations 3.4–3.9:
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> # Distributed-delay model function

> gamma.ps = function (t, y, parms){ # gamma chain model for petri dish

+ # in contrast to si.petri, this model fits data for two life stages:

+ # schizonts and pre-schizonts

+ ## parameters--all units should be in terms of days

+ n1=parms[1] #shape parameter determining the number of

+ # compartments for rings & trophozoites

+ n2=parms[2] #shape parameter determining the number of

+ # compartments for schizonts

+ #RBC dynamics

+ mu = parms[3] # mortality rate of RBC

+ #infected RBC dynamics

+ alpha1 = parms[4] # mean delay until infected

+ #RBC becomes a schizont

+ alpha2 = parms[5] # mean delay until schizont bursts

+ # merozoites

+ fxform = parms[6] # parameter specifying functional form

+ # of interference

+ # fxform must be 1,2,3,4

+ p = parms[7] # 1st competition coefficient--maximum invasion rate

+ q = parms[8] # 2nd competition coefficient, meaning depends on

+ # functional form of interference

+ m = parms[9] # 3rd competition coefficient, meaning depends on

+ # functional form of interference

+ beta = parms[10] # burst size of infected RBCs, depends on strain

+ muz = parms[11] # intrinsic mortality rate of free merozoites

+ # muz may or may not depend on the strain in question

+

+ ## variables to keep track of (this is where R sets these

+ # equal to the initial values or updates them)

+ R = y[1] # red blood cells (RBCs)

+ In = y[2:(n1+1)] # infected RBCs in the ring/trophozoite stages

+ S = y[(n1+2):(n1+n2+1)]
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+ M = y[n1+n2+2] # free merozoites (emerged from burst RBC)

+

+ dR = - mu*R - pinfGeneral(p,q,m,M,R,fxform)*R*M

+ dIn = rep(0, n1)

+ dIn[1] = pinfGeneral(p,q,m,M,R,fxform)*R*M - mu*In[1]

+ - (n1/alpha1)*In[1]

+ if(n1>1){

+ for(i in 2:n1){

+ dIn[i] = (n1/alpha1)*In[i-1] - mu*In[i]

+ - (n1/alpha1)*In[i]

+ }

+ }

+

+ dS = rep(0, n2)

+ dS[1] = (n1/alpha1)*In[n1] - mu*S[1] - (n2/alpha2)*S[1]

+ if(n2>1){

+ for(i in 2:n2){

+ dS[i] = (n2/alpha2)*S[i-1] - mu*S[i] - (n2/alpha2)*S[i]

+ }

+ }

+

+ dM = beta*(n2/alpha2)*S[n2]

+ - pinfGeneral(p,q,m,M,R,fxform)*R*M - muz*M

+

+ res=c(dR, dIn, dS, dM)

+ list(res)

+ } # end two class petri dish model

The complicated part is getting the indexing of the state variables correct, so

that the number of state variables varies with n1 and n2. R is flexible about

allowing the state variable ‘dIn’ to be a vector. The parameters were defined as

follows:
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> # parameter values (red blood cell count, merozoite mortality)

> # Gonzales-Alonso et al. 2006 report means of 4.84x10^6 RBCs/mL

> # and 4.64x10^6 RBCs/mL

> # for their controls, with 42.9% and 41.9%

> # hematocrit, respectively

> # assuming those hematocrits need to be diluted

> # down to 5% in 5mL total

> # H. Reilly reports using 5mL cultures for invasion

> # and cycle length assays

> # using c1v1=c2v2 yields (with c1=0.429, v1 = ?, c2 = 0.05, v2 = 5mL)

> # but both Nester & H. Reilly would have assumed that

> # the starting stock had 50% hematocrit

> rbc1=(0.05*5/0.5)*(4.84e6)

> rbc2=(0.05*5/0.5)*(4.64e6)

> cAmountHi = mean(c(rbc1,rbc2)) # rbcs/culture assuming 5% hematocrit

> startper = 0.005 # starting percentage schizonts for Nester's data

> cAmount = cAmountHi # assuming Nester's assays were run on 5mL

+ # cultures at 5% hematocrit

> initialpI0 = 0.2

> apers = 0.3

> n = 30

> alpha = 42/24

> fxform = 4

> q=10

> m=0

> n1 = round((1-apers)*n)

> n2 = round(apers*n)

> alpha1 = (1-apers)*alpha

> alpha2 = apers*alpha

> p = 2e-8

> beta = 16

> mu = 1/120 # according to Koury & Ponka 2004 the mean lifespan

> # of an RBC is 120 days
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>

> R0 = cAmount*(1-startper)

> I0 = cAmount*startper*initialpI0 # initial number of infected RBCs,

> # pre-schizont stage

> S0 = cAmount*startper*(1-initialpI0) # initial number of schizonts

> M0 = 0 # initial number of free merozoites, here I assume good

> # synchronization = no merozoites

> parms = c(n1, n2, mu, alpha1, alpha2, fxform, p, q, m, beta, muz)

> print(c(n,alpha,apers))

[1] 30.00 1.75 0.30

> syncI = rep(I0/n1, n1) # assume any rings are uniformly distributed

> # through different age compartments

> syncS = rep(S0/n2, n2) # assume schizonts are uniformly distributed

> # through the schizont stage

> start = c(R = R0, In = syncI, S = syncS, M = M0)

> days = 60/24

> h = 1/240

> y.new = as.data.frame(lsoda(start, times=seq(0/24,days,h),

+ func=gamma.ps, parms=parms))

> totalIn = apply(y.new[,3:(n1+2), drop = FALSE], 1, sum)

> totalS = apply(y.new[,(n1+3):(n+2), drop = FALSE], 1, sum)

> perS = totalS/(totalIn+totalS)

> perTotalS = totalS/(totalIn+totalS+y.new$R)

With the parameter values and initial conditions set, the model simulation is

run as ‘y.new’, which is a rather wide data frame, consisting of n + 3 columns,

including time. I then collate this large data frame into a single vector for the

immature stages (‘totalIn’) and the mature schizonts (‘totalS’).

> head(cbind(y.new$time,y.new$R,totalIn,totalS,y.new$M))

totalIn totalS

[1,] 0.000000000 2358150 2370.000 9480.000 0.000
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[2,] 0.004166667 2358068 2361.967 9412.496 1090.945

[3,] 0.008333333 2357986 2354.127 9344.997 1983.925

[4,] 0.012500000 2357903 2346.445 9277.503 2714.854

[5,] 0.016666667 2357821 2338.890 9210.013 3313.136

[6,] 0.020833333 2357738 2331.439 9142.528 3802.836

B.2 Image processing

Image J is freely available image processing software (Rasband, 2013). The code

for the macro is as follows:

dir = getDirectory("Choose Directory");

print(dir);

list = getFileList(dir);

newDir = dir + "ImageJOutput" + File.separator;

File.makeDirectory(newDir);

setBatchMode(true);

for(i=0; i<lengthOf(list); i++){

print(list[i]);

open(list[i]);

name = getTitle();

newTitle = substring(name, 0, lengthOf(name)-4)+"Count.jpg";

newPath = newDir + newTitle;

run("Options...", "iterations=1 count=1 black edm=Overwrite do=Nothing");

run("Make Binary");

run("Measure");

run("Fill Holes");

run("Watershed");

run("Analyze Particles...", "size=2000-Infinity circularity=0.20-1.00

show=Outlines display exclude summarize");

selectWindow(list[i]);

close();

selectWindow("Drawing of "+list[i]);

saveAs("jpeg", newPath);

close();

rIndex = i+1;

resPath = newDir + "Results" + rIndex + ".txt";

if(isOpen("Results")){

selectWindow("Results");
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saveAs("Results", resPath);

run("Close");

}

}

sumPath = newDir + "Summary.txt";

if(isOpen("Summary")){

selectWindow("Summary");

saveAs("Text", sumPath);

run("Close");

setBatchMode(false);

The code is saved as ”CountRBCs.txt”, and can be run by selecting Macros →
Run... from the Plugins menu. A dialog box will open up allowing the user to
select the appropriate code file, which then runs and allows the user to select the
folder with the images to be counted. In the code shown, the setBatchMode is set
so that the code will run faster (the user will not be able to view each image). The
algorithm used to process each image is shown in Fig. B.1.
Comparing manual and digital counts. The counting macro will not give precisely
the same number of red blood cells that would be counted by a person (nor would
a person necessarily give identical counts from day to day), but it allows quan-
tification of a much larger number of fields than would typically be feasible for a
researcher at a microscope. The manual and digital counts line up well (Fig. B.2)
though the algorithm may slightly overestimate red blood cell abundance at high
density, as more and more RBCs overlap. Dramatic undercounts were detected
and removed by excluding low counts (less than ten cells), which occurred when
dark artifacts were present leading the algorithm to count the artifact as the only
cell present. More subtle undercounts can occur when the algorithm cannot ade-
quately divide a clump of red blood cells, which can be detected by scanning the
meta-data in the ”Results” files for cells greater than 2× 104 pixels. Those images
were removed. In general, the HB3 fields were much more crowded (the slides
made subsequently for Dd2 were diluted further for that reason), and many more
images had to be removed (Fig. B.3).
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A B 

C D 

E F 

Figure B.1. Image processing. The original image (A) is converted to black and white
(B, Process → Binary → Make Binary). The background must be set to be black prior
to this step (with the dialog box in Process→ Binary→ Options...). The holes are filled
in (C, Process → Binary → Fill Holes. The watershed command (Process → Binary →
Watershed) subdivides shapes into individual red blood cells (or at least, ImageJ’s best
guess as to how many red blood cells comprise a clump of dots, D). ImageJ can now
be directed to count to number of particles of a particular size and circularity (Analyze
→ Analyze Particles, with the size range set from 2000 to ∞ and the circularity range
set from 0.2 to 1). ImageJ can be directed to show the outlines of the counted particles
by selecting ”Outlines” from the Show drop down menu in the Analyze Particles dialog
box (E). The Fill Holes and Watershed commands run into errors at the edges of images
(F), so ImageJ is directed omit particles touching the edges of the image by selecting the
”Exclude on edges” option in the Analyze Particles dialog box.

B.3 Supplementary figures and tables

These parameters (along with those reported in Table 3.1) were obtained by ini-
tializing the optimization at n = 200, α = 2, proportion of the life stage spent as
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Figure B.2. Manual versus digital counts for Dd2 and HB3. Dashed line indicates the
1-to-1 line.

a schizont equal to 0.3, p = 2× 10−6, q = 0.5 and m = 0.3.

Table B.1. Fit invasion parameters
Interference Strain Maximum invasion rate Interference coefficient

Hyperbolic Dd2 3.03× 10−5 0.770
Parasitoid-
like

Dd2 2.38× 10−4 0.0504

Hyperbolic HB3 3.37× 10−5 0.237
Parasitoid-
like

HB3 3.42× 10−5 1.36

Hyperbolic 3D7 2.56× 10−5 0.181
Parasitoid-
like

3D7 3.63× 10−5 66.9
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Figure B.3. Image J counts for HB3 as a function of area covered on the original image.
The red points refer images that were excluded either because the count was improbably
low, or because the maximum area of the particle detected was too high, indicating that
the algorithm could not separate a large clump of red blood cells.
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Figure B.4. Figure 3A from Reilly et al. (2007), reproduced here for illustrative pur-
poses. The caption reads “Magnetically purified schizonts are viewed by light microscopy
to determine the number of merozoites produced per schizont. Five replicates consisting
of a minimum of 50 schizonts are counted. Error bars represent the SEM. Unpaired
t-tests comparing merozoite numbers between Dd2 and HB3 give a P < 0.05 for 18, 20
and 22 merozoites per schizont.”
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Figure B.5. Model fits assuming hyperbolic interference (black solid curve, Eq. 3.2) or
parasitoid-like interference (black broken curve, Eq. 3.3), with data is shown in colored
lines. The black curves for each strain indicate a single best model fit to both the
proportion of sampled red blood cells in the immature parasite stages (A) and in the
schizont stage (B). Weighted least squares errors are 0.03995 for hyperbolic interference,
and 0.09685 for parasitoid-like interference.
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Figure B.6. Data collected by Nestor Agbayani (red) compared with data collected by
Heather Reilly (gray and black curves). Initial parasitemia was 0.5% for the red curve,
and 1% for the gray and black curves.
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Figure B.7. Data collected by Nestor Agbayani (blue curves) compared with data
collected by Heather Reilly (gray and black curves). Initial parasitemia was 0.5% for the
red curve, and 1% for the gray and black curves.
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Chapter 4 Supplemental Information

C.1 Supplemental methods: simulations and free

spline investment

All simulations were run using the PBSddesolve package (developed by A. Couture-
Beil, J. T. Schnute, and R. Haigh) in R versions 3.0.1 and 3.0.2 (R Project for
Statistical Computing, http://r-project.org/).

To investigate optimal plastic reproductive investment under the assumption
of perfect information, but with minimal assumptions, we formulate conversion
rates to be a spline, a continuous, C2 differentiable function of time (e.g., Härdle,
1990) that scales between zero and one. We code transmission investment as a
B-spline object using the splines package (developed by Douglas M. Bates and
William N. Venables). Specifying the investment strategy as a free spline allows
great flexibility in the functional form; here we retain the defaults in R so that the
spline is a cubic function with no interior knots:

c(t) = exp
(
− exp(jt3 + kt2 + lt+m)

)
(C.1)

By taking the complimentary log-log of the spline, c(t) is constrained to vary
between zero and one, and the parameters j, k, l, and m are varied so as to
optimize the cumulative transmission potential using the Nelder-Mead algorithm
within the optim function. We arbitrarily set j, k, l, and m to 0.5 to initialize the
optimization.

It is prohibitively computationally intensive for the algorithm to calculate c(t)
using the spline basis function at each time point within the delayed differential
equation solver, so we calculate c(t) for each thousandth of a day and fit a spline to
those values using splinefun. This extra step allows R to calculate c as a function
of time only, without regard to the basis function, which speeds up computation
considerably (from one hour down to one minute to simulate an infection) and
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makes the problem computationally tractable. Since c(t) is an approximation, it
occasionally becomes very slightly negative (most negative on the order of −1 ×
10−154).
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C.2 Supplemental figures
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Figure C.1. The adaptive landscape shifts as infections last longer, with a single opti-
mal conversion rate splitting into two optima (A). One optimum corresponds to relatively
low conversion, generating rapid growth of the infection and allowing two peaks in trans-
mission probability (green curves in B and C). The other optimum is a high conversion
rate (purple curves), resulting in slow growth of the infection, and one drawn-out peak
in the probability of transmission. The relative fitness of these two optima (i.e., which
one is local and which one is global), depends on the length of the infection. As in-
fections become longer, the fitness differences are less pronounced between intermediate
conversion rates.
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Figure C.2. In single, asynchronous infections, saturating immunity constrains the
optimal fixed conversion rate (solid points). In the absence of immunity (black), the
optimum transmission investment is 42.1% when infections last 20 days. With saturating
immunity acting against infected red blood cells (blue, a = 150, b = 100) or merozoites
(purple, a = 7200, b = 100), the optimal conversion rate is reduced to 22.1% and 24.4%,
respectively. Except for the difference in x-axis range, the black curve shown here is
identical to the black 20-day curve shown in Fig. C.1A.
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Figure C.3. Best free spline response to the gray strategy shown as the solid dark red
line. For comparison, the best free spline response to fixed reproductive investment is
shown as the red broken line (identical to the winning strategy shown in Fig. 4.5A).
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Figure C.4. Fitness of dueling splines in successive optimizations. X-axis labels cor-
respond to panel letters in Fig. 4.5, with the colors and line styles chosen to match the
dueling spline strategies in that figure.
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Figure C.5. Asexual abundance is a poor cue for the optimal conversion rate in single
infections, because the same number of parasites corresponds to diverse conversion rates
over nearly the entire range. The start of infection is indicated by a dot, and the end is
marked with an ‘x’.
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Figure C.6. Asexual abundance of the focal parasite strain is a poor cue for optimal
conversion in coinfections. The start and end of infection are indicated by a dot or an
‘x’, respectively.
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Figure C.7. Red blood cell abundance could help parasites determine when to begin
investing in transmission, but not when to increase investment towards the end of in-
fection. The start of infection is indicated by a dot, and the end is marked with an
‘x’.
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Figure C.8. Red blood cell abundance could serve as an effective cue in coinfections,
at least until infection draws to a close. The start of infection is indicated by a dot, and
the end is marked with an ‘x’.
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Figure C.9. In single infections, parasite growth in the last 24 hours is a poor indicator
of when to turn on transmission investment, but could help parasites decide to increase
investment towards the end of infection. The start of infection is indicated by a dot, and
the end is marked with an ‘x’.
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Figure C.10. In coinfections, growth of the focal strain in the last 24 hours is a poor
proxy for time. The start of infection is indicated by a dot, and the end is marked with
an ‘x’.
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Figure C.11. The optimal conversion rate increases with the burst size (β) in single
infections in the absence of immunity. Infections were simulated for 20 days for burst
sizes of 8 (dotted), 10 (solid), and 12 (dashed).
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Figure C.12. The optimal conversion rate decreases slightly with the maximum rate
of erythropoiesis (λ) in single infections in the absence of immunity. Infections were
simulated for 20 days for λ = 1.85×105 (dotted), λ = 3.7×105 (solid), and λ = 5.55×105

(dashed).
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Figure C.13. Synchronous infections: the optimal conversion rate for single infections
is still reduced in the presence of saturating immunity (blue), more so if immunity targets
long-lived infected red blood cells. If immunity targets short-lived merozoites (purple),
the optimal conversion rate is reduced to a lesser degree. In the absence of immunity,
the optimal conversion rate is identical to that of asynchronous infections (black).
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Table C.1. Parameters for optimal time-varying strategies

Spline Parameters

No immunity, single infection

20 days 6.290962 -15.38119 0.3123698 -11.37115

30 days 2.986467 -8.900943 0.09278162 -4.920522

50 days 0.6422217 -4.034063 0.6273944 -1.720979

Immunity against parasites in

I class, single infection

20 days 13.45771 -27.66144 -3.624199 -20.24271

No immunity, coinfection, 20 days

winner from Fig. 4.5A 11.91146 -28.05726 11.26698 -42.82205

winner from Fig. 4.5B 21.02123 -41.91842 -3.078478 -31.43425

winner from Fig. 4.5C 8.875516 -17.93721 0.2664415 -15.76727

winner from Fig. 4.5D 13.73466 -27.26571 -1.710064 -20.98166

loser from Fig. 4.5E 10.10987 -20.17194 -0.5457009 -16.53443

winner from Fig. C.3 11.95858 -28.40747 11.33155 -41.83195

loser from Fig. C.3 0.5 0.5 0.5 0.5



Appendix D
Chapter 5 Supplemental Information

D.1 Supplemental methods: Age-structured ga-

metocyte development

Red blood cell dynamics are as in Greischar et al. (2014), keeping the merozoite
invasion rate p constant:

dR(t)

dt
= λ

(
1− R(t)

Kstart

)
− µR(t)− pR(t)M(t) (D.1)

When red blood cells are depleted by infection or mortality (µ), they are replen-
ished in a logistic fashion, where λ is the maximum rate of erythropoiesis and
Kstart = λR∗/(λ − µR∗). Once invaded by merozoites, most infected red blood
cells can remain in the asexual part of the life cycle (I):

dI(t)

dt
= (1− c)p(t)R(t)M(t)− µI(t)− ζ(t) (D.2)

where c is the conversion rate, the proportion of invaded red blood cells undergoing
sexual differentiation. The null hypothesis would be a constant conversion rate,
unaffected by environmental factors, so we leave c as a constant. While infected
red blood cells are subject to background mortality, we assume no immune-killing.
Infected red blood cells that survive through the life cycle are given by ζ(t):

ζ(t) =

{
(1− c)pR(t− α)M(t− α) exp(−µα) if t > α
I0Beta(sP , sP )(t) exp(−µt) if t ≤ α

(D.3)
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A highly synchronized infection is simulated by setting sP = 100. Each infected
red blood cell that survives for α days bursts to release β merozoites:

dM(t)

dt
= βζ(t)− pR(t)M(t)− µZM(t) (D.4)

Merozoites die at a high rate, µZ .
The previous model assumed a single developmental compartment for sexual

differentiation IG, and we split that into three to understand the consequences of
detecting sexual differentiation early, mid-stage, or late. Early sexual differentia-
tion is given by

dIE(t)

dt
= cpR(t)M(t)− µIE(t)− ζE(t) (D.5)

where

ζE(t) =

{
cpR(t− αE)M(t− αE) exp(−µαE) if t > αE
0 if t ≤ αE

(D.6)

Mid-stage sexual differentiation is defined by

dIM(t)

dt
= ζE(t)− µIM(t)− ζM(t) (D.7)

Similarly,

ζM(t) =

{
cpR(t− αE − αM)M(t− αE − αM) exp(−µαEαM) if t > αE + αM
0 if t ≤ αE + αM

(D.8)
Progression through the final stages of gametocyte differentiation is described by

dIL(t)

dt
= ζM(t)− µIL(t)− ζL(t) (D.9)

Similarly,

ζL(t) =

{
cpR(t− αG)M(t− αG) exp(−µαG) if t > αG
0 if t ≤ αG

(D.10)

where αG = αE + αM + αL. After late-stage gametocyte differentiation, infected
red blood cells become mature gametocytes (G):

dG(t)

dt
= cp(t− α)G)R(t− αG)M(t− αG)SG − µGG(t) (D.11)
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D.2 Description of spline method

We import simulated data assuming no immune-mediated mortality, an average
gametocyte lifespan of 20 hours, and a fixed conversion rate of 5%, as plotted in
Fig. 5.1C. We subsample the simulated data to obtain daily samples for uninfected
red blood cell abundance (‘rbc’), total parasite numbers (asexuals and early sex-
uals, labeled ‘para’ below), and gametocyte abundance (‘gams’), assuming that
the samples were taken eight hours after the peak of bursting and re-invasion of
merozoites. We first estimate the effective propagation number (here denoted x)
using the methods described by Metcalf et al. (2011):

> Itplus1 = para[2:length(para)]

> It = para[1:(length(para)-1)]

> St = rbc[1:(length(rbc)-1)]

> x = rep(NA, length(samplingTimes)-1)

> for (i in c(1:(length(samplingTimes)-1))){

+ fitA = lm(log(Itplus1[i])~offset(log(It[i])+log(St[i])))

+ x[i] = exp(fitA$coef[[1]])

+ } # end asex loop

To estimate the time-varying conversion rate assuming 3 degrees of freedom,
we use the objective function gobs, which will be passed to optim. Aside from the
spline parameters (a coefficient for each degree of the polynomial, plus an inter-
cept), gobs also takes epsilon (the proportion of gametocytes surviving through
the following sample), and G3est, the starting number of gametocytes.

> gobs <- function(parms,data){

+ cparms = parms[1:(length(parms)-2)]

+ cVal = exp(-exp(sVals%*%cparms))

+ epsilon = exp(parms[(length(parms)-1)])

+ G3est = exp(parms[(length(parms))])

+ rbcVals = data[,1]

+ paraVals = data[,2]

+ gamVals = data[,3]

+ Stminus3 = rbcVals[1:(length(rbcVals)-3)]

+ Itminus3 = paraVals[1:(length(paraVals)-3)]

+ Gt = gamVals[3:length(gamVals)]

+ GtPred = rep(NA, length(Gt))

+ GtPred[1] = G3est

+ for (k in c(4:20)){

+ futuret = k-3

+ j = c(4:k)

+ GtPred[(futuret+1)] = sum((epsilon^(k-j))*(cVal[(j-3)])

+ *xt[(j-3)]*Itminus3[(j-3)]*Stminus3[(j-3)])

+ +(epsilon^(futuret))*G3est
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+ }

+ sse <- sum((log(GtPred)-log(Gt))^2)

+ } # end gobs fx

Note that all parameters are constrained to be positive, and the conversion rate
(cVal) is constrained to vary between zero and one. Since gametocyte abundance
varies over orders of magnitude, we log-transform the observed (Gt) and predicted
(GtPred) abundances so that optim will fit to the whole time series and not just the
peak. To fit the polynomial describing the conversion rate, we trim the time points
to tVals and the effective propagation numbers to xt. We define the expected
mortality rate of gametocytes to give a good guess for the starting parameters to
pass to optim. The algorithm will loop over the vector degrees to find the best
polynomial conversion rate with the corresponding degree. The matrix bestFit

will hold the best parameters for each degree, and the vectors sseVals and aicVals

will store the sum squared error and Akaike Information Criterion for the best fit
parameters. Finally, the data are bound together into simData.

> # sexual bit

> tvals = times[1:(length(times)-3)]

> xt = x[1:(length(x)-2)]

> mug = (log(2)/14)*24

> degrees = c(1,2,3,4)

> bestFit = matrix(NA, ncol = max(degrees)+3, nrow = length(degrees))

> sseVals = rep(NA, length(degrees))

> aicVals = rep(NA, length(degrees))

> simData = cbind(rbc,para,gams)

Before running the following code, the package splines needs to be loaded. The
fitting algorithm sometimes returns local rather than global optimal due to the
starting values given, so we try a number of random starting values (tries=10)
uniformly distributed between -10 and 10 and find the parameters that give the
lower sum squared error. Starting from many different points increases the chances
that the fitting algorithm will locate a global optimum. Higher degree ct functions
should always improve the fit (i.e., lead to lower sum squared error) over lower
degree functions, and checking that can provide one way of testing whether the
fitting algorithm has located a global optimum. If higher degree functions are not
yielding lower sum squared error, it is worth rerunning the algorithm with a larger
number of iterations if Nelder-Mead frequently fails to converge (specified using
the maxit argument to control within optim), or with a larger number of starting
parameter values. Each of the resulting best fit parameters will be recorded in the
bestFit matrix, along with the sum squared error, so that we can take the best
parameters located by the algorithm for a wide range of starting values.

> for (val in c(1:length(degrees))){

+ dg=degrees[val]
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+ print(dg)

+ sVals = bs(tvals,degree=dg,intercept=TRUE)

+

+ tries = 10

+ parms0 = c(rep(0.5,ncol(sVals)),-mug,log(gams[3]))

+ parmTries = matrix(NA, nrow = tries, ncol = length(parms0)+1)

+ for (take in c(1:tries)){

+ dummy=1

+ while(dummy!=0){

+ convFit <- optim(parms0, gobs, data=simData,

+ control=c(maxit=5000))

+ dummy=convFit$convergence

+ parms0 = c(runif(length(parms0),min=-10,max=10))

+ sseVal = gobs(convFit$par, data=simData)

+ } # end while loop to get convergence

+ parmTries[take,] = c(convFit$par,sseVal)

+ } # end loop to get multiple convergent tries

+

+ bestrow = parmTries[which.min(parmTries[,(length(parms0)+1)]),

+ 1:length(parms0)]

+ parms = bestrow

+ sse <- gobs(parms, data=simData)

+ bestFit[val,1:length(convFit$par)] = parms

+ sseVals[val] = sse

+ nobs = length(c(3:20))

+ aic <- 2*length(convFit$par)+nobs*log(sse/nobs)

+ aicVals[val] = aic

+

+ } # end degree loop

[1] 1

[1] 2

[1] 3

[1] 4

For this example the best fit parameters shown below, with their corresponding
sum squared errors and AIC values:

> print(bestFit)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.195420 1.142468 -1.198908 1.8034851 NA

[2,] 1.197015 1.164670 1.143554 -1.2013532 1.802941

[3,] 1.197493 1.174908 1.160085 1.1411749 -1.202107

[4,] 1.293598 0.803580 1.629363 0.8910278 1.150988

[,6] [,7]
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[1,] NA NA

[2,] NA NA

[3,] 1.803066 NA

[4,] -1.187292 2.033757

> print(sseVals)

[1] 0.0007056737 0.0005882090 0.0006777972 0.2457135256

> print(aicVals)

[1] -174.64113 -175.91840 -171.36661 -63.29129

In this example, we limit ourselves to ten tries for each degree dg, so that the
code can be run quickly. Ten tries was not sufficient for the algorithm to find
the global optima, since the sum squared error should be lower whenever more
parameters are used to fit the conversion rate. For Figures 5.3, D.6, and D.5, we
use 500 tries for each degree. For all cases when the true conversion rate was
fixed, the parameters in bestFit were well-within the bounds we placed on the
selection of starting parameters (−10,10). When the true conversion rate was time-
varying, the free spline parameters returned in bestFit parameters were outside
those bounds (up to approx. 28), so we re-ran the optimization after resetting the
random uniformly-distributed starting parameters to vary between −30 and 30,
increasing the tries to 1000 (Fig. 5.4A) or 5000 (Fig. 5.4B) to better cover the
increased parameter space. In each case, we increased the number of tries until
the fits for increasingly complex splines gave lower sum squared error.

For fits to experimental data, we ran the optimization algorithm for 10,000
starting values to ensure that more complex candidate conversion rates would
give lower sum squared errors. We constrained the starting guesses for the spline
coefficients to vary uniformly from -45 to 85, and the starting guesses for the
other parameters to vary uniformly between negative eight and −µG/2. While
zero gametocyte abundance was not an issue in the simulated data, in experiments
gametocytes are not always detected. To cope with the zero values we added one to
the observed and predicted gametocyte abundances before log-transforming them
and calculating the sum squared error.
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D.3 Description of modified spline method, as-

suming early markers for gametocyte differ-

entiation

If markers can be used to differentiate parasites in the early stages of gametocyte
differentiation from asexual forms, then the effective propagation number can be
estimated more exactly as:

It+1 = xtItSt (D.12)

where xt = (1− ct)Pe,t, and xt is the quantity estimated by the regression methods
described by Metcalf et al. (2011). Therefore,

Pe,t =
xt

1− ct
(D.13)

As before, if we assume that no gametocytes persist through more than one time
point, then combining Eqns. 5.5 and D.13 yields:

Gt+3 = ct
xt

1− ct
ItSt (D.14)

Eqn. 5.7 can then be rewritten as

Gt =

(
t∑

j=4

εt−jcj−3ct
xt

1− ct
Ij−3Sj−3

)
+ εt−3G3 (D.15)
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D.4 Supplementary figures
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Figure D.1. Early detection per se does not ensure that conversion rates will be cor-
rectly estimated. Here we assume that sexual differentiation can be detected as soon
as a red blood cell is invaded, and the resulting abundance of infected red blood cells
undergoing sexual differentiation (red) is compared with the total number of infected red
blood cells (gray, A). Sampled time points are indicated by dots. The inferred conversion
rate is shown below (B), taken as the fraction of the total number of infected red blood
cells that are undergoing sexual differentiation. The true conversion rate (5%) is shown
as a dashed black line.
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Figure D.2. Immune-mediated mortality of asexual parasites causes overestimation
of the conversion rate early in infection. Dynamics of infected red blood cells (red) and
mature gametocytes (green) assuming that immunity targets (and saturates as a function
of) red blood cells infected with asexual parasites (A, maximum per capita clearance,
a = 150, half-saturation constant, b = 100). The corresponding estimates of conversion
rate are shown below (B), again with the actual conversion rate (5%) shown as a dashed
line.
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Figure D.3. All three methods for inferring transmission investment are capable of
detecting a wholesale decrease in conversion rates. Here the proportion of parasites
differentiating into sexual forms was set at 5% (solid lines) or 1%, for single infections
assuming no immunity.
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Figure D.4. Conversion rates estimated from spline fits to simulated data (purple
dots), with the true conversion rate shown in black. The estimated conversion rate was
assumed to be a curve of increasing complexity, with each panel showing the AIC value
corresponding to the predicted versus observed gametocyte abundance, as well as the
number of parameters fit to obtain the spline. Note that even as the fitted conversion
rates assume more degrees of freedom, the predicted conversion rate stays approximately
fixed, close to the true conversion rate.
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Figure D.5. The estimated conversion rate is closer to the true value when we correct
for gametocyte mortality by dividing gametocyte abundance by exp(−µg∗0.3, where µg is
the mortality rate for gametocytes, and 0.3 represents the time lag between synchronous
bursting events and sampling. Conversion rates estimated from spline fits to simulated
data (purple dots), with the true conversion rate shown in black. We fit splines of
increasing complexity as in Figures 5.3 and D.4. Fitting a constant conversion (one
parameter) rate gave a less negative AIC and is not shown here.
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Figure D.6. Estimated conversion rate in the presence of immunity (purple dots),
with the true conversion rate shown in black. As before, conversion rates of increasing
complexity were fit to the data, with the number of parameters for the conversion rate
and the corresponding AIC shown in each panel. The fit with two parameters had the
largest AIC value (-120) and is not shown here. The “data” at each time point were
simulated assuming that asexual parasites infecting red blood cells were cleared more
efficiently at lower densities (a = 150, b = 100).
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Figure D.7. Abundance of red blood cells, infected red blood cells and gametocytes for
the six mice used to estimate conversion rates. Data from infections with drug-resistant
P. chabaudi parasites (Huijben et al., 2010a,b).
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