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Abstract

The Internet and Web 2.0 have achieved a rapid growth and became ubiquitous in
recent years. The advance in information technologies has also enabled users to
generate data, implicitly or explicitly, on an unprecedented scale. Consequently,
the need to discover and exploit new and useful knowledge from such data has also
increased considerably. In this thesis, in this regard, we investigate user-generated
data to discover interesting knowledge and enable better recommendation services.

First, we tackle the problem of the location type classification using individual
Twitter messages. We extend probabilistic text classification models to incorporate
temporal features and user history information as probabilistic priors, and show
that the proposed models can boost the classification accuracy effectively.

Second, we study the problem of quantifying the notion of political legitimacy
using collective Twitter messages for specific populaces. We design a framework
that aggregates a large number of tweets into the final legitimacy score of a
populace by leveraging probabilistic topic modeling and sentiment analysis technique.
Our empirical evaluation on eight sample countries using related public tweets
demonstrates that our proposed framework shows a strong correlation to results
reported in political science literature. We also apply this framework to a traditional
news media data set, and compare the results with Twitter data. Several interesting
differences are discovered between these two medias for this quantification task of
political legitimacy.

Third, we study the problem of mining implicit user feedback in recommendation
systems. In particular, we tackle the cold-start problem of video recommendation
using users’ co-view information. We propose a classification framework to incor-
porate co-view information based on previously seen video pairs, and learn the
weights of video attributes for ranking candidate videos to recommend, yielding
encouraging recommendation results.
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Finally, as a way to exploit social network for recommendation, we study the
problem of recommending the best team for a given set of roles or skillset considering
both individual and team characteristics. To quantitatively capture the team level
features, we take various social networks among people into consideration from
project history and many other online activities. Moreover, we learn the feature
weights from the training dataset based on the correlation between features and
project outcomes, and apply a combinatorial optimization algorithm to search the
approximate best team. We validate our approach experimentally in a real business
scenario and also compare our approach with other state-of-the-art methods using
public DBLP dataset. The results demonstrate the effectiveness of our approach.
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Chapter 1
Introduction

The Internet and Web 2.0 have achieved a rapid growth and became ubiquitous in

recent years. The advance in information technologies and emergence of a variety of

online services have also assisted users to generate data, implicitly or explicitly, on

unprecedented scale. Today people can publish and share various activities about

their daily life online. They can write extensively in blogs like Wordpress 1, post

pictures to Flickr 2, publish videos on Youtube 3, tweet through the microblogging

application Twitter 4, and interact with friends via social networking services like

Facebook 5. As a result, the Web has become a tremendously rich repository of

information with details about people’s behaviors and activities.

Many online service providers have started leveraging such user-generated data

a long time ago. Amazon6 is such an example. To illustrate, Figure 1.1 shows

an example product page of the camera Canon 5D Mark II on Amazon online

store, along with various user-generated data on the same page. Figure 1.1a shows

the product details of this camera, which are provided by the online service host.
1http://wordpress.com
2http://flickr.com
3http://youtube.com
4http://twitter.com
5http://facebook.com
6http://www.amazon.com
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Figure 1.1b shows some other accessories users commonly bought together with

the camera. Such patterns are usually extracted from users’ purchase history. On

the same page we can also see more detailed user ratings and reviews regarding

this camera as shown in Figure 1.1c. Potential buyers can obtain much knowledge

about the product details from such rating and review content. They can also get

good accessory recommendations from the co-purchase patterns.

(a) Product description on Amazon

(b) Co-purchase patterns from user purchase history

(c) User rating and review regarding the camera

Figure 1.1: A sample page of Amazon product with use of user-generated data
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The aforementioned user-generated data portrays a wealth of resources full of

individual, societal, and economical values. On the one hand, by analyzing this

user-generated data, we can obtain information or understanding about people’s

habits, lifestyle, and thoughts etc. On the other hand, researchers and scholars

can also rely on analysis over such data to gain in-depth understanding about the

society or groups of people, from the collective perspective. Moreover, businesses

value insights about users from such data so that for instance advertisements

can be delivered more precisely. Consequently, studies about understanding and

leveraging user-generated data have received extensive interests in recent years,

both in industry and academic research [64].

How can we effectively dig up and utilize the values inside such user-generated

data? Our answer is through data mining [33]. Generally speaking, data mining

means the process of discovering interesting and useful patterns, structures, and

other valuable information from large amounts of data. The process of data mining

is usually composed of five steps, as illustrated in Figure 1.2 [33]. After cleaning

and preprocessing of the collected raw data, we carry out data mining algorithms

over the transformed data to uncover the patterns and hidden structure. The

results can be applied in a myriad of ways. However, they can be grouped into two

general categories:

• Discovering Knowledge: Knowledge means interesting or useful informa-

tion. However, there is no popular view or standard about determining the

value of information. It must be user oriented or domain specific. With

techniques of validation or visualization, the mining results can be interpreted

by domain experts for their specific interests [28].

• Developing Applications: Applications like search engines and recom-

mendation system can benefit greatly from the data mining results. For

example, we can apply classification technique to detect spam emails, or we

3



can identify frequent purchased items from transaction history for product

recommendation.

Raw Data Transformed Data Pattern Knowledge 

Applications 

Cleaned Data 

Data Cleaning Preprocessing 
 e.g. normalization 

Data mining, 
 e.g. classification, 

topic modeling, 
regression 

Interpreting Results, 
e.g., validation 

Developing services, 
e.g., information retrieval, 
 recommendation, etc. 

Figure 1.2: A Process of Data Mining

Although data mining techniques have been studied for decades, mining user-

generated data is still quite interesting and challenging due to the following charac-

teristics [64]:

• Unstructured and noisy data. The quality of user-generated data is

not always guaranteed because they are mostly generated by amateur users

voluntarily. The data mining technologies developed for ideal settings may

not perform well when processing such user-generated data. For example,

the language people everyday use is quite informal. As a result, content

from social media is always full of spelling errors and grammatical mistakes.

Abbreviations, slangs, and emoticons are also quite common. If we simply

apply natural language processing technologies such as syntactic parsers that

are traditionally developed over text of well written news articles or academic

papers, the performance will be far from satisfactory. Instead, researchers

may need to develop new techniques specially for such data.

• Heterogeneous data. Besides various data formats, recent developments

of social networking systems introduce new social dimensions to the user-
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generated data. Studying interactions among users provides insights about

users’ interests. Incorporating social network influence with other information

may also provide great benefits. For instance, Twitter may study users’ habits

from their Tweet messages, and and also learn influence of friends from social

network, so that they can provide better personalized advertisements and

recommendations.

In this dissertation, we investigate the problem of how to utilize data mining to

improve understanding and leveraging user-generated data. We tackle the above

challenges in mining social media data for knowledge discovery and exploiting

user-generated data for recommendation services.

One typical and popular social media platform where users like to publicly

publish their statuses and opinions is Twitter. A number of researchers have

studied Twitter in order to obtain novel patterns or knowledge about users or the

society [16,26,67,69,70,74]. We add our pieces into these study efforts, and raise

the first research question:

RQ1: What knowledge can we obtain from social media, and

how do we achieve such knowledge?

In the first part of this dissertation, we investigate two cases of short text

mining over Twitter. We first tackle the problem of discovering location information

from individual Twitter messages. More specifically, we try to infer users’ location

type from individual tweet content. Such location context in social media plays an

important role because it is not only important in inferring social ties between people,

but also vital for applications such as user profiling and targeted advertising. We

utilize classification techniques to incorporate temporal and historical information

to boost accuracy.

Then we study the problem of quantifying the notion of political legitimacy

using collective Twitter messages for specific populaces. We design a framework

5



with the advantage of topic modeling and sentiment analysis technique to achieve

our goal.

Besides discovering knowledge to improve understanding, we are also interested

in applying and leveraging such data and knowledge. Therefore our next research

question is how to leverage user-generated data in applications and services. More

specifically, we study one of the most widely applied services: the recommender

systems. We study how such data can be used in practical recommendation

scenarios,

RQ2: How do we utilize implicit data and social networks to

improve real-world recommendation services?

In the second part of this dissertation, we first study the problem of mining

implicit user feedback in recommender systems. In particular, we tackle the

problem of video recommendation using users’ co-view information. We propose a

classification framework to incorporate co-view information based on previously

seen video pairs, and learn the weights of video attributes for ranking candidate

videos to recommend.

Finally, as a way to exploit social networks for recommendation, we study the

problem of recommending the best team for a given set of roles or skillset considering

both individual and team characteristics. We take various social networks among

people into consideration from project history and many other online activities.

We learn the feature weights from the training dataset based on the correlation

between features and project outcomes and apply a combinatorial optimization

algorithm to search the approximately best team.

1.1 Contributions

We summarize the key contributions of this dissertation as follows:

6



• First we study location type classification problem using individual Twitter

messages [54]. We extend probabilistic text classification models to incorporate

temporal features and user history information in terms of probabilistic priors.

The experiment results show that our extensions can increase classification

accuracy from about 47% to 49% for overall dataset. However, in some specific

daily time hours, the improvement is much more significant, e.g., from 37.7%

to 45.3% for tweets posted at around 0 o’clock. We also propose a personalized

location type classification model by incorporating users’ check-in history.

The experiment results demonstrate a boost in the accuracy from 47.1% to

57% for Maximum Entropy.

• Second, we then explore the problem of quantifying the notion of political

legitimacy using collective Twitter messages for specific populaces. We design

a framework that converts tweets into a number of topic dimensions using the

probabilistic topic modeling, and leverage sentiment to evaluate the polarity

of each tweet [53]. Our empirical evaluation on eight sample countries

demonstrates that the proposed framework shows a strong correlation to

results reported in political science literature [31], with the coefficient value

of 0.7997887 (P-value = 0.01717). We also apply the same framework to a

traditional news media data set, and compare the results with Twitter data.

Several interesting differences are discovered between the traditional news

media and social media for this quantification task of political legitimacy.

• Third, we investigate a problem of recommending new video lectures with

the help of implicit user feedback. We propose a classification framework

based on previously seen video pairs, and learn the weights of video attributes

for ranking candidate videos to recommend [52]. This framework leads to

encouraging recommendation results. This framework leads to a mean average

R-precision score of 25%, compared to the baseline of 21% without co-view

7



information.

• Finally, we exploit social networks to recommend the best team for a given set

of roles or skillset. To quantitatively capture the team level features, we take

various social networks among people into consideration from project history

and many other online activities. Moreover, we learn the feature weights from

the training dataset based on the correlation between features and project

outcomes. We apply a combinatorial optimization algorithm to search the

approximately best team. We validate our approach experimentally in a

real business scenario, and also compare our approach with other state-of-

the-art methods using public DBLP dataset. The results demonstrate the

effectiveness of our approach.

User generated data 

Other Data (Click data, social 
network, feedback, …) 

Social Media  
(Twitter, wiki, …) 

Feature Extraction 
(Text feature, temporal feature, similarity feature, …) 

Data Mining Process  
(NLP, SVM, topic modeling, Logit regression…) 

Application (Recommendation…) 

Knowledge 
Discovery 

(Legitimacy  
Status) 

2 

3 4 5 

Figure 1.3: Different chapters in this dissertation fit into the problem of mining
user-generated data with red circles indicating the chapter number.
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1.2 Structure of This Dissertation

The rest of this dissertation is organized as follows. The first part of this dissertation,

Chapter 2 and Chapter 3, focuses on mining social media data, more specifically

Twitter, to discover interesting knowledge. In Chapter 2 we explore our investigation

about location type detection using tweet content. Chapter 3 presents our studies

and discoveries about leveraging Twitter to quantify political legitimacy of countries.

The second part of this dissertation, Chapter 4 and Chapter 5, focuses on exploiting

user-generated data to improve recommendation services. In particular, Chapter 4

describes our work of mining implicit user feedback in a cold-start problem of video

recommendation. Chapter 5 presents our team recommendation framework by

exploiting social networks. Finally, Chapter 6 summarizes this dissertation and

discusses the future research directions.

We illustrate a general framework and workflow of leveraging user-generated

data, as shown in Figure 1.3. The overall structure of this dissertation is also shown

in the figure, with the red circles indicating the chapter numbers.
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Chapter 2
Classifying Location Type Using

Tweet Content

2.1 Introduction

Social media like Twitter has become a popular platform for people to share their

daily activities and statuses. People can use location-based services like Foursquare,

Google Latitude, Facebook Places, etc. to “check in” at venues and share them

in social media. Besides, noncheck-in tweets in Twitter can also implicitly reveal

their activity-level location context even if they do not explicitly publish it. On

the one hand, activity-level location can reveal users’ daily activities. We are

interested in finding from tweets whether the user is working in office, dining in a

restaurant, or exercising in a gym, etc. On the other hand, locations reveal further

information with regard to people’s behavior patterns and social interaction. For

example, Figure 2.1 shows two sample tweets both of which talk about having

dinner, however, their locations are different: the first one happens at home, the

second is at a restaurant or a public event Athletes Gala. Taking such location

context into consideration, we can infer that the first dinner is a pleasant gathering

with a family member, while the second one is a fun hangout with friends.
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Figure 2.1: Sample tweets that mention different activity locations

If we group users’ location context into a few predefined types according to the

characteristics of their activities, e.g., home is in the type Residences, and restaurants

are in the type Food or Nightlife Spots according to Foursquare category list 1, we

can obtain a clear understanding about involved user behaviors. Furthermore, if we

can predict such activity level location types from users’public social media posts,

we will not only arise users’ privacy concerns, but also allow potential business

service providers for targeted advertising.

In this chapter, we will study the problem of classifying location types based on

content of users’ check-in tweets. More formally, we define our research problem as:

Location Type Classification Given a stream of tweets d ∈ D, a fixed set of

location types C = {c1, c2, . . . , ck}, and a training set S of tweets labeled with types

of locations where they are posted < d, c >∈ D × C, we wish to learn a classifier γ

that maps tweets to their context location types: γ : D → C.

Many researchers have already studied the problem of revealing users’ locations

from tweets, and shown some promising progress [19]. Different from previous

work that try to reveal city-level location from tweets, we are interested in the

location context in a smaller scale, the activity level. This activity-level geographic

information can be essential in many applications. To illustrate:

• Service providers can utilize activity level location information to present

accurate targeted advertising.
1http://aboutfoursquare.com/foursquare-categories/
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• The location type can potentially infer social ties between people. The

presumption is that different social relationships have different interaction

context. For example, as illustrated in Figure 2.1, if a twitter user tweets

about activities regarding home, it is likely for her/him to interact with the

family; if we find that the tweet location is a restaurant or a party, it is

natural to infer that people will socialize with friends there.

• Location type revelation can also be used in user profiling. E.g., a user who

tweets about Yellowstone National Park probably enjoys traveling, while a

user who talks about beer in twitter is more likely to enjoy nightlife, or food.

• Studying location type detection can also arise people’s privacy awareness.

People who may not be willing to share their location information in non-

check-in posts should be potential location can be detected from their post

content.

Our goal is to filter out informative tweets the location type of each tweet using

content only. More specifically, we will classify each tweet into one of the nine

location categories listed by Foursquare. Our contributions in this paper include

the following:

• First, we present in this paper a study of location type classification through

a data set of informative location sharing tweets filtered from about 1 million

check-ins.

• Second, we propose a probabilistic model to incorporate temporal features to

improve classification accuracy. Accuracy by this model is improved slightly

from about 47% to 49% for overall dataset. However, in some specific daily

time hours, the improvement is much more significant, e.g., from 37.7% to

45.3% for tweets posted at around 0 o’clock.
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• Third, we propose a personalized location type classification model by incor-

porating users’ check-in history. The experiment results demonstrate a boost

in the accuracy from 47.1% to 57% for Maximum Entropy.

The rest of this chapter is organized as follows: Section 2.3 describes baseline

model and our proposed probabilistic models; Section 2.4 describes the process of

our data collection and presents an analysis of data distribution; Section 2.5 shows

our experiment results; we conclude this chapter in Section 2.6.

2.2 Related Work

Several researchers have investigated the problem of geo-location detection from

tweet content [16,19,21,34,49]. Cheng et al. [19] tackle this problem in the city level.

Purely based on the tweet content, the authors propose a probability language

model to automatically identify words in tweets with a local geo-scope. [16] further

improves user’s home location prediction quality with Gaussian Mixture Models.

They also employ an unsupervised measurements to rank the local words which

remove the noises effectively. The authors in [49] are instead interested in the place

of interest (POI) that a tweet refers to. The authors formalize the problem by

ranking a set of candidate POIs using language and time models. Temporal factors

need to be considered too because POIs are quite related to time. Because the

POI related tweets are so sparse that the authors have to leverage search engine to

enrich their language models. [21] addresses the geo-location detection problem in

tweets from a different perspective. The authors are interested in matching a tweet

to a specific restaurant. The question includes two parts: first, the authors need

to detect which words mean a restaurant entity; second, if multiple restaurants

have the same name, the authors need to detect which one is the exact match.

In [34], Hecht et. al. study user behavior based on the location field in their Twitter

profiles. They find that 34% of users do not provide real location information, but
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frequently list fake locations instead. Nevertheless, they also find user tweets can

help to infer the user’s location with decent accuracy. But none of these studies

are interested in the geo-location detection in activity scale like us.

Our research is directly related to the problem of location categorization. Two

recent papers address this categorization problem [18, 92]. Researchers try to

find out traffic patterns of venues from user generated check-in data, and take

a further step to cluster the semantically related locations from these patterns.

Traffic patterns can be defined as a vector of check-in frequency over a series of

time units. For example, we can define daily traffic pattern that contains 24 time

units, each of which represents an hour in a day; we can also define a weekly traffic

pattern that contains 70 time units in which the time unit represents one tenth of a

day [18]. [92] has a similar idea, in which the authors normalize the frequency into

a probability density function, and call it temporal band. [18] shows that many

categories indeed display quite similar daily temporal patterns, e.g., some coffee

shops have similar high traffic in morning, and restaurants are frequently checked

in at dinner time. [92] also demonstrates different geographic feature types have

different weekly temporal bands. With such observations, the authors try to study

further clustering and classification based on these similarities. But different from

these papers, we do not have abundant features regarding each venue, nor are we

interested in categorizing from venues’ features. We instead focus on detecting

location category from tweet content.

Our work is also related to short text classification. Several researchers tried

to tackle this problem from different perspectives [20, 45, 72, 80, 83, 84]. Sriram

et. al [80]study short text classification over tweets to help users better manage

information from Twitter. Phan et. al [72] try to boost the classification accuracy by

gaining external knowledge from Web search results. Notice that their classification

is carried out over search snippets. Sun [83] tackles the short text classification

task in an information retrieval framework. The predicted category is determined
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by majority vote of the top search results. Researchers also examined whether

general classification techniques can be carried out effectively over short text

[10, 37, 56, 63, 73, 93–96]. [63] studied the problem of feature weighting in short text

classification. In short text, each word or term occurs usually only once. In such

situations, traditional tf-idf weighting strategy is not appropriate. Instead the author

proposed a feature weighting approach called Fragment Length Weighted Category

Distribution, and compared with TF-IDF, Chi-Squared, Mutual Information, and

Information Gain. Liu et al. in [56] examined the feature selection strategy for short

text. Proposed a feature selection method based on part-of- speech and HowNet.

According to the composition of the text property, the authors choose the words

with larger amount of information, and then expand the semantic features of these

words based on HowNet, a knowledge base. Yuan et al. studied the smoothing

methods of Naive Bayes in short text classification [93]. [73] studies combining

latent semantic analysis (LSA) and independent component analysis (ICA) in short

text classification. While LSA can be used to analyze and make use of co-occurrence

of terms in text, ICA is good at classifying text with independent components of

text documents. Combining these two may produce good results without generality

in short text classification studies.

2.3 Location Type Classification

2.3.1 Baseline Methods

We aim to classify the check-in location types from tweet text content. Two

commonly used text classification methods are Naive Bayes [57] and Maximum

Entropy [66]. We first briefly introduce these baseline methods below.
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2.3.1.1 Naive Bayes

If we look at each check-in tweet as a document d composed of a bag of words

w1, w2, . . . , wn, we can compute the posterior probability that the check-in tweet

belongs to category c as

p(c|d) = p(c)p(d|c)
p(d)

= p(c)p(w1, w2, . . . , wn|c)
p(w1, w2, . . . , wn)

∝ p(c)
n∏
i=1

p(wi|c).

Note that p(c) is the prior probability of a specific category, defined as

p(c) = Nc

N
.

Nc is the number of check-in tweets in category c, and N is the total number of

check-in tweets in training data set. The word distribution p(wi|c) can be estimated

as

p(wi|c) = N(wi, c)∑
wj∈V

N(wj, c)

where N(wi, c) is number of occurrences of word wi from category c. The check-in

tweet is assigned to the best class determined by

arg max
c∈C

p(c)
∏

1≤k≤nd
p(wk|c).
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2.3.1.2 Maximum Entropy

Different from Naive Bayes, MaxEnt estimates the conditional probability directly

in an exponential form instead of joint probability:

p(c|d) = 1
Z(d)exp(

∑
i

λifi(d, c))

where each fi(d, c) is a feature, λi is a constraint parameter to be estimated, and

Z(d) is the normalizing factor. In text classification, features are usually initiated

as

fw,c′(d, c) =

 0 if c 6= c′

N(d,w)
N(d) otherwise,

where N(d, w) is the number of times word w occurs in tweet d, and N(D) is the

number words in tweet d [66].

2.3.2 Location Type Classification: Our Proposals

We propose and explore two ideas to improve the accuracy of location type classifi-

cation problem.

2.3.2.1 Temporal Model

In this subsection, we explore the impact of temporal features in the location type

classification. Our assumption is that people prefer different activities at different

time. For example, the location category of Nightlife Spot should be more frequently

checked in at night than other time. Similarly, we expect more Food check-ins at

meal times than early morning.

To leverage temporal impacts in our classification task, we divide all check-in

tweets into 24 subgroups according to the hour of their posted time, and assign

a new feature t ∈ {0, 1, . . . , 23} to every check-in. Now the classification problem
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becomes

arg max
c∈C

p(c|d, t)

which tries to maximize the conditional probability of a check-in tweet belonging

to a location category given its content and posted time.

Hourly Prior Probability: One way to use this temporal feature is to apply

hourly prior probability in text classifiers. Suppose the generative process of a user

checking in a venue at a specific time is as follows: she first decides what kind

of this check-in should be at current time, then she decides the content of that

check-in tweet. Conditional independence is presumed here. That is, the content of

the check-in tweet is determined only by the check-in category. More formally, in

Naive Bayes, the joint probability becomes

p(c, d, t) = p(t)p(c|t)p(d|c).

For a given tweet, its posted time is always already known, the conditional proba-

bility can be estimated as

p(c|d, t) ∝ p(c|t)p(d|c) ∝ p(c|t)
n∏
i=1

p(wi|c)

where p(c|t) can be estimated as

p(c|t) = Nct

Nt

while Nt is the number of check-in tweets in hour t, Nct is the number of check-in

tweets belonging to category c posted in hour t. p(c|t) is called the hourly prior

probability.

We also apply such hourly prior probability to Maximum Entropy classifier.

However, since MaxEnt estimates the conditional probability p(c|d) directly, as a
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result, the hourly prior can be applied as

p(c|d, t) ∝ p(c|t)p(d|c)

∝ p(c|t)p(c|d)p(d)
p(c)

∝ p(c|t)p(c|d)
p(c) .

2.3.2.2 Boosting with User Check-in History

Different users would apparently have different activity habits, therefore we would

expect different personal check-in patterns accordingly. It is quite intuitive to guess

that a student checks in more frequently at College & University than a white-collar

worker. Therefore, simply applying a same overall prior probability for all users in

tweet classification may not be fairly accurate for everyone. In this subsection, we

discuss our exploration of incorporating users personal check-in history to boost

classification performance .

Like hourly prior probability, we introduce a new user factor u in our model.

Assuming independence between word distribution among categories and users’

personal check-in habits, we can define the joint probability here as p(c, d, u) =

p(d|c)p(c|u)p(u), where p(c|u) can be estimated from user u’s personal check-in

distribution. If we can retrieve adequate history check-in tweets for u, we can

estimate

p(c|u) = Ncu

Nu

where Ncu is the number of history check-in from user u in category c, and Nu is

the total number of history check-ins from u. As we are interested in maximizing

conditional probability p(c|d, u), and u is already known, the classification problem

can formalized as

arg max
c∈C

p(c|d, u)
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and

p(c|d, u) ∝ p(d|c)p(c|u).

Here the probability p(c|d, u) includes two parts. While the first part p(d|c) is

a probability estimated from check-in tweet content, the second factor p(c|u) is

derived from user’s personal check-in history. By replacing the category prior

with personal check-in prior, we take both tweet content and personal habit into

consideration.

Like hourly prior, to incorporate user check-in history into MaxEnt, the formula

becomes

p(c|d, u) ∝ p(c|d)p(c|u)
p(c)

where p(c|d) can be estimated by MaxEnt, and p(c) is the prior probability of

category c in training data.

2.4 Experiment Setup

2.4.1 Data Collection

We adopt a data collection technique that relies on sampling Foursquare check-ins

posted via Twiter. Using Twitter API, we search tweets with the keyword “4sq”

because check-in tweets always contain URLs like “http://4sq.com/xxxxxx”. We

monitored Twitter’s public streaming API and search API for a week in May 2012,

and collected about 1 million tweets, among which there are more than 220,000

foursquare check-ins. Since our focus here is to classify context location types

from tweet content, we removed check-ins that only contain venue information

but no user-generated comments. We also filtered tweets with less than three

words. Non-English tweets were also removed from our data set. Such filtering

lead to a data set of about 120,000 check-ins. The foursquare URL embedded in

each check-in tweet is linked to either a “venue page” or a “check-in” page, from
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Figure 2.2: Temporal distribution of check-ins

which we can retrieve more information about corresponding venues, and brief user

profiles. Based on our best effort, we successfully tracked about 94,000 check-in

tweets.

Foursquare has a hierarchy list of categories applied to venues, we use the

top-level categories as ground truth to classify check-in tweets’ location types. The
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top-level categories are Arts & Entertainment, College & University, Food, Great

Outdoors, Nightlife Spot, Professional & Other Places, Residence, Shop & Service,

Travel & Transport. However, there are also some venues that are not assigned to

any category yet, and some venues are labeled with more than one top category.

We removed such data in our current experiments to simplify the setting. As a

result, our experiment data set contains 72,643 check-in tweets with user-generated

comments.

Table 2.1: Distribution of check-in tweet categories

Category Percentage # of check-ins
Arts& Entertainment 8% 5781
Travel & Transport 12% 8398

Professional & Other Places 14% 10006
College & University 4% 3206

Shop & Service 16% 11661
Nightlife Spot 7% 4916
Residence 7% 5089

Food 27% 19323
Great Outdoors 6% 4263

Table 2.1 shows the distribution of check-in tweet across categories in our data

set. Among the nine categories, Food is the most popular one (27%); Travel &

Transport (12%), Professional & Other Places (14%), and Shop & Service (16%)

are less popular; the other five categories have similar percentages (around 5%) in

our data.

2.4.2 Temporal Feature

To explore temporal feature’s impacts, we first need to retrieve temporal information

of all tweets. Because we crawled tweets from all around world, it is necessary

to convert check-ins’ standard UTC into local time. Such localization requires

timezone information from users. Although both Twitter and Foursquare provide

posted or check-in time, we find that Foursquare covers more users than Twitter,
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therefore we depend on Foursquare check-in API to extract tweets’ localized post

time.

Figure 2.2 shows the distribution of nine venue categories in our training data

in 24 hourly time units of a day. Figure 2.2a demonstrates overall hourly check-in

traffic pattern. Each point in this plot shows the number of check-in posted in

an hour in our data. It shows that people check-in most frequently at 18 or 19

o’clock during a day. Figure 2.2b further illustrates detail distribution for each

category. This shows us the check-in traffic changes along hours for every category.

For example, we can see that Food are more frequently checked in at around 12 and

19 o’clock than other time of a day, and 19 is the most frequently checked in hour

for Nightlife Spot venues. Figure 2.2c demonstrates category distribution in each

hour. We also append the overall category distribution to this plot. This helps us

understand not only the difference of distribution among hours, but also between

each hour and the overall percentage. Compared to hours from 13-20, the category

distributions in early hours like 0-8 are quite different from overall distribution.

This plot also shows us which categories are the most dominant in each hour. We

can see that although Table 2.1 shows that Food is the overall dominant category,

this is not always the case in individual hours. For example, at 5 AM Travel &

Transport venues are quite more frequently checked in than Food, also Professional

& Other Places venues are more popular than any other category at 9 AM.

2.4.3 User Check-in History

To evaluate the boosting impact of user check-in history in classification, we collected

another data set by crawling the latest up to 1,000 tweets from randomly selected

252 users. Each of them have at least 30 check-in tweets. The total number of

check-in from these users is 50,929. Distribution of the user check-in number is

shown in Figure 2.3.
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2.5 Experiment Results

The experiments are performed using Mallet toolkit [60]. Extensions are also

implemented over Mallet package. The performance of all classifiers is compared in

the measure of accuracy across all classes, calculated as

accuracy = number of true positives
number of test data set .

We use stringent five folds cross validation, and the final results are averaged over

the five folds.

Figure 2.4 reports the results of baseline methods of Naive Bayes and MaxEnt,

and also our extension of temporal model. Applying hourly prior improves overall

accuracy from 47.3% to 48.6% in Naive Bayes, and from 48.6% to 49.8% for MaxEnt.

We also report the details of classification performance for data in each hour in

Figure 2.5. It shows that HourlyPrior+NB and HourlyPrior+MaxEnt achieved

significant improvement in most of the hours, especially in the early hours of

0-10. This can be explained by the difference between category distribution in
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Table 2.2: Top Features of Each Venue Category in Location Classification in
MaxEnt

Category Top 15 Informative Feature Tokens
Arts & Entertainment aveng, battleship, mib, dictat, fantasm,

shadow, expect, movi, lampion, sox, preview,
museum, yanke, siff, globaltv

Travel & Transport bound, plane, layov, hotel, flight, tsa, air-
port, bali, termin, land, airplan, cancun, buse,
jakarta, runway

Professional & Other Places adjust, mri, mail, checkup, bibl, scholarship,
worship, permit, dentist, mass, marchayosoy,
choir, pastor, juri, patient

College & University lectur, campus, exam, class, assign, student,
workshop, account, studi, clase, semest, quiz,
ceremoni, lab, librari

Shop & Service haircut, pedicur, slurpe, yoga, ab, stock, pedi,
shop, gas, bicep, trim, treadmil, store, tricep,
cardio

Nightlife Spot pub, pint, cider, whiskey, adag, sproutup,
afterparti, trivia, beer, drink, karaok, dart,
deserv, patio, bar

Residence nighti, goodnight, apart, cuddl, homey, bed,
rest, sleep, throne, balconi, bath, bedtim,
shower, dormir, home

Food meal, latt, brunch, sushi, comer, caffein,
pho, dwolla, coffe, lunchi, margarita, burrito,
espresso

Great Outdoors hike, wharf, picnic, jog, golf, trail, kickbal,
basebal, beach, sail, bench, softbal, swim,
leagu, magnific

these hours and overall distribution as shown in Figure 2.2c. Because the early

hours’ distribution is more different from overall distribution than other hours, the

improvement is also accordingly higher by applying specific hourly prior in these

hours. We also note that during the hours like 11-15, all methods have similar

performance. The similar category distribution patterns during these hours with

overall category distribution could also explain such classification resemblance.

Results of incorporating user history check-in are demonstrated in Figure 2.6.
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Figure 2.4: Overall classification accuracy
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It shows that MaxEnt+UserHistory has the highest accuracy, 57.0% , compared to

original 47.1% in this data set. We notice that 41.5% accuracy can be achieved

using history distribution only. That is because many users are quite apt to specific

venue categories. Some users may simply repeat checking in exactly the same

venues. However, when they check in venues different from the history dominant

category, we have to rely on tweet content for prediction.
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2.6 Conclusions

In this chapter, we study the problem of classifying location types based on content

of users’ check-in tweets. We extend basic classification models by incorporating

temporal features and user behavior history. The experimental results show tempo-

ral features can achieve decent performance improvement, especially in hours when

the data distribution is quite different from overall daily distribution. Personal

check-in history also effectively boosts the classification performance significantly.

Our future work will focus on further improving classification accuracy. One

common problem in classifying short text like tweets is data sparseness. To

address such sparseness problem, we will study feature selection and augmentation

techniques with regard to location types. Another direction is to investigate social

factors. Since people interact with their friends and followers in various locations, it

will be interesting to integrate social network data in this location type classification

problem. We will crawl check-in data from users’ friends and followers, and study

the correlations between their check-in patterns. Strategies to integrate such social

data into our classification framework need to be carefully studied in future.
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Chapter 3
Quantifying Political Legitimacy

Using Tweets

3.1 Introduction

The term political legitimacy in political science refers to the acceptance of authority

by a law, government, or civil system, and has been the subject of extensive study

in the discipline. The concept is often viewed as “central to virtually all of

political science because it pertains to how power may be used in ways that citizens

consciously accept” [30]. As such, in political science, many proposals have been

made to quantify the legitimacy of a populace. Some recent works such as [30,31]

have been well received in the community. While useful, however, such existing

works are largely based on hand-picked small-size data from governments or UN

based on an ad hoc formula. Therefore, it is still challenging to renew or expand

the results from [30,31] to other regions if there exist no reliable base data.

To address this limitation, in this research, we ask a research question “if it

is possible to quantify political legitimacy of a populace from social media data”,

especially using Twitter data. As a wealth of large-scale public tweets are available

for virtually all populaces, if such a quantification is plausible, the application
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can be limitless. For instance, in the stochastic simulation environment such as

NOEM [77], a quantified legitimacy score forms one of important input parameters.

While there is currently no good way to synthetically generate a legitimacy score

of a populace, one may be able to estimate it from the tweets generated from or

closely related to the populace.

3.2 Related Work

3.2.1 Quantifying Political Legitimacy

Our idea is mainly inspired by Gilley’s work [30,31] from political science. Gilley

tries to measure political legitimacy of 72 countries around the world using collected

survey data such as World Value Survey, Global Barometer regional surveys etc.

The author defines legitimacy of a state as follows: “a state is more legitimate the

more that it is treated by its citizens as rightfully holding and exercising political

power”. Legitimacy quantify is used in terms of degrees as a continuous variable.

He also proposes to weight views of all citizens equally in measuring legitimacy.

In order to measure the latent state legitimacy meaningfully, Gilley tries to

quantify three constitutive sub-variables [30]:

• Views of legality refers to how legally citizens think the state has acquired

and exercises political power about laws, rules and customs.

• Views of justification means citizen responses to the moral reasons given

by the state for the way it holds and exercises power. It focuses on the

rightfulness.

• Acts of consent means positive actions that express a citizen’s recognition of

the state’s right to hold political authority and an acceptance to be bound to

obey the decisions that result.
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Moreover, Gilley examines available data sets throughly and selects several

quantitative indicators to measure the aforementioned variables. These indicators

can be found in the data for most interested countries, and thus can be measured

accordingly for most countries. For example, the attitude surveys about corruption,

views of police, judges and civil servants are used for the measurement of views

of legality; views of effectiveness of political institutions, popularity of embedded

polity are used to measure views of justification; election turnout, voter registration,

military recruitment are used to quantify acts of consent.

Furthermore, how to aggregate all these variables is the next question. The

author proposes several different ad-hoc weighting strategies that values various

aspects differently. One way is to take all indicators equally and use an unweighted

manner, another is to prioritize the views of justification more than the other two

variables. The final reports show quite close results for these two strategies.

We can see that the whole process is quite dependent on available data sets.

On the one hand, the author has to select data that are commonly available for

most countries. On the other hand, the data collection process per se is quite

time consuming, leading to a long time before a replicate of measurement can be

updated [31].

3.2.2 Mining Social Media

In recent years the exploitation of social media such as Twitter and Facebook to

predict latent patterns, trends, or parameters has been extensively investigated. For

instance, [81] computationally tried to classify tweets into a set of generic classes

such as news, events, or private messages. In addition, [27, 46, 69] attempted to

track and analyze the status of public health via social media data. Some even

tried to predict stock market from public mood states collected from Twitter [12].

Studies have also been carried out about the correlation between tweets’ political

sentiment and parties and politicians’ political positions [85,86]. The case study
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Figure 3.1: Tweets related to legitimacy.

about 2009 German federal election [85] reported a valid correspondence between

tweets’ sentiment and voters’ political preference. Such studies also verify that

the content of tweets plausibly reflects the political landscape of a state or region.

Another paper [68] also aggregates text sentiment from tweets to measure public

opinions.

While closely related, our method focuses on quantifying the political legitimacy,

that is related to not only politics and elections, but also other concepts such

as governments, laws, human rights, democracy, civil rights, justice systems, etc.

To our best knowledge, this is the first attempt to computationally quantify the

political legitimacy of a populace from a large amount of big social media data and

conduct a correlation analysis against the results in political science.

3.3 The Proposed Method

Our goal is to build and validate a model to accurately quantify the political

legitimacy score of a populace for a specified time period using tweet messages.

The underlying assumption is that some fraction of populace would occasionally

express their opinions on the status of political legitimacy. Two such examples are

shown in Figure 3.1. The first mentions about the democratic situation of Egypt,

while the second expresses the concern about the justice system in the US.

Let us use the term L-score to refer to the political legitimacy score of a
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Figure 1.  Overview of the Solution. 

Figure 3.2: Overview of the proposed method.

populace, scaled to a range of [0, 10]. Then, our overall method consists of three

steps: (1) identify and convert relevant tweets into computable feature space, (2)

compute L-score of each tweet, and (3) aggregate L-scores to form a time series

and compute final L-score of a populace. This overall workflow is illustrated in

Figure 3.2.

3.3.1 Step 1: Vectorizing Tweets

Each tweet can be up to 140 characters but often very terse. The challenge of this

step is to be able to accurately capture and extract critical features from short

tweets that can indicate the opinion of a writer toward the status of legitimacy.

Since there is no widely-accepted “computable" definition of legitimacy, we assume

that the notion of political legitimacy is related to k-dimensional topics such as

justice system, human rights, democracy, government, etc. While treating k as

a tunable parameter in experiments, then, we simply attempt to represent each
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Concept: Election 

Figure 3.3: Two prominent topics found from political science journal articles.

tweet as a k-dimensional vector, where the score in each dimension indicates the

relevance of the tweet to the corresponding topic. Further, we use a dictionary of k

dimension where each dimension (i.e., topic) contains a set of keywords belonging

to the topic. Finally, we run a probabilistic topic modeling technique such as Latent

Dirichlet Allocation (LDA) [9] over politically oriented corpus1 and build such a

k-dimensional dictionary.

Figure 3.3 illustrates two example topics found by LDA and prominent keywords

within each topic (the labels such as “war” and “election” are manually assigned).

Note that, although found automatically, such topics represent the main themes

of the corpus reasonably well and can be viewed as related to the legitimacy. In

addition, prominent keywords within each topic also make sense. Therefore, if a

tweet mentions many keywords found in either topic, then the tweet is used to

quantify the legitimacy.

Suppose k topics are first manually selected and corresponding keywords in

each topic are found using LDA. Imagine a k-dimensional dictionary such that a

membership of a keyword can be quickly checked. For instance, one can check if the

keyword “military” exists in the “war” dimension of the dictionary. Furthermore,

suppose each keyword, w, in the dictionary is assigned an importance score, I(w). In

practice, a tf-idf [91] style frequency-based score or LDA-computed probability score
1http://topics.cs.princeton.edu/polisci-review/
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can be used to measure the importance of keywords. For instance, an importance

of a word can be computed using the following frequency-based formula:

I(w) = freq(w)√
1 + (freq(w))2

.

Using this data structure of the k-dimensional dictionary, we can convert tweets

into vectors and then compute the L-score.

With such a topic dictionary, we can convert each tweet into a k-dimensional

vector by checking membership of words in each dimension. Assume that a tweet,

t, is pre-processed using conventional natural language processing (NLP) [40]

techniques such as stemming and represented as a bag-of-words, w, with n words:

t ⇒ w = {w1, w2, · · · , wn}. Then, the k-dimensional vector representation of a

tweet, vt, is:

vt ∈ Rk = [α1
∑
∀m1∈|w∩D1|

I(m1), · · · , αk
∑
∀mk∈|w∩Dk|

I(mk)]

such that ∑k
1 αi = 1, Di refers to the i-th dimension of the dictionary, and αi is

the weighting parameter for the relative importance of the i-th dimension.

3.3.2 Step 2: Computing L-scores of Tweets

The intuition to compute L-score of a tweet is that when a tweet either positively

or negatively mentions keywords related to k-dimensions of the legitimacy, their

“strength" can be interpreted as the legitimacy score. The L-score of the tweet,

L− score(t), is then defined as the magnitude (i.e., L2-norm) of vt, with the sign

guided by the sentiment of the tweet t–∆sent. Suppose vt = (x1, ..., xk). Then,

L− score(vt) = ∆sent‖vt‖ = ∆sent

√
x2

1 + · · ·+ x2
k,

34



Figure 3.4: Illustration of L-score in vector space.

where ∆sent indicates a [−1, 1] range of sentiment polarity score of the tweet. Note

that an alternative to this single ∆sent per tweet is to allow for different sentiment

polarity per dimension, ∆i , in each tweet. Therefore, the vector representation of

a tweet has the following formula, sightly different from the above one:

vt ∈ Rk = [∆1α1
∑
∀m1∈|w∩D1|

I(m1), · · · ,∆kαk
∑
∀mk∈|w∩Dk|

I(mk)]

such that ∑k
1 αi = 1.

While this alternative is a more general formula as it allows each dimension to

have a different sentiment (and thus polarity score of [-1, 1]), in our preliminary

study, as typical tweets are rather short and there are usually simply not enough

information to determine different polarity score per dimension, we maintain a

single sentiment score per tweet.

Figure 3.4 illustrates the process of the computation of the L-score, visually,

using 3 arbitrary concept dimensions (i.e., K=3, police, government, human rights).

We show the process with a tweet example in the following.

Example 1 L-Score Computation Consider the example tweet in Figure 3.5.

After the pre-processing, the tweet can be represented as the following bag-of-words:

t ={“corruption”, “administrator”, “more”, “disgusted”, “system”, “see”, “get”,
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Figure 3.5: Example tweet for L-score computation

“#cdnpse”, “#cfsfcee”, “#onpoli”,· · · }. Further, suppose we use K = 4{gov, justice,

police, human-rights} in the dictionary.

• gov: D1 = {government : 0.9, administrator : 0.8, . . . }

• justice: D2 = {system : 0.7, court : 0.9, corruption : 0.3, · · · }

• police: D3 = {police : 0.9, corruption : 0.5, · · · }

• human-rights: D4 = {brutality : 0.7, right : 0.5, · · · }

Then, the vector representation of the tweet can be as follows:

vt = [1/4(I(“administrator′′), 1/4(I(“system′′) + I(“corruption′′)),

1/4(I(“corruption′′)), 0]

= [0.2, 0.25, 0.125, 0].

Note that the word “corruption” is used twiceâĂŤonce in the “justice” and

second in the “police” dimension dictionary. Same word can belong to multiple

dimensions in the dictionary (along with different important scores).

3.3.3 Step 3: Aggregating L-scores of Tweets

Once the L-score has been computed for all tweets, we next need to aggregate all

the L-scores per some “group” and determine the representative L-score of the

group. One example grouping constraint can be a region (e.g., country such as

Egypt or city such as Detroit). Suppose we want to aggregate all L-scores of the day
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Figure 3.6: Example time series of L-scores.

d. Assuming the distribution of the daily L-scores follow the Gaussian Distribution,

then, we first compute the mean L-score of the day as,

l̂d =
∑
∀li∈Ld li
|Td|

.

Then, the Z-score normalization, similar to [11], can be applied using the mean

L-score as follows:

l̃d = l̂d − µpop
σpop

,

where µpop and σpop indicates the mean and standard deviation of entire population.

Since such statistics of the entire population is not available, instead, we use the

interval-based estimated Z-score normalization such as the following:

l̃d = l̂d − µd,±δ
σd,±δ

, with[d− δ, d+ δ],

where both mean and standard deviation are estimated from a specific time window,

instead of the whole population.

When daily representative L-scores are computed for a specific period, p :

[di, · · · , dj], we have a time series as follows:

l̃TS[di, dj] = [l̃di , l̃di+1 , · · · , l̃dj ].

Such a time series is illustrated in Figure 3.6.
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Table 3.1: L-scores published in [31].

Country Score Country Score Country Score
Norway 7.97 Japan 6.13 India 5.21
Bulgaria 3.21 Canada 7.26 Thailand 5.89
Vietnam 7.07 United States 5.83 Brazil 4.68
New Zealand 6.78 South Africa 5.45 Slovenia 4.33
Iran 2.04 France 5.03 Peru 3.44
Spain 6.64 China 5.36 Turkey 3.96

Once a time series is created for the specified group, we can employ standard

time series analysis techniques to either compute the overall representative score

of the entire time series, or predict future L-scores. For instance, in the current

implementation, we used both moving average (MA) [3] and auto-regressive MA

(ARMA) models [14].

3.4 Empirical Validation

3.4.1 Evaluation Metric

Since there is no ground truth to L-scores of populaces, as an alternative, we aim

to see “if our method yields L-scores of populaces similar to those reported in [31].”

For instance, Table 3.1 shows example L-scores reported in [31]. This, computed

from UN and WHO data, is widely accepted in political science community.

3.4.2 Tweet Data Collection

We chose eight countries with varying L-scores in [31]–i.e., Brazil, Iran, China,

Japan, Norway, Spain, Turkey, and USA. We prepared two sets of data: (1) Geo

dataset contains tweets generated within the bounding box of the geo-coordinates

of each country of interest, and (2) Keyword dataset contains tweets that mention

terms related to each country (e.g., a hash tag of “#USA”), regardless of their geo-

coordiates. Since the Geo-dataset are always from within the boundry of interested
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Figure 3.7: Examples of tweets about “#Brazil”

countires, we can guarantee the relevance of crawled tweets in this set. For the

Keyword-dataset, we have the hash tag of country name to indicate close relevance

to each country. Figure 3.7 shows two sample tweets having the “#Brazil” hash tag,

and quite related Brazil’s political legitimacy status. As a result, the Geo-dataset

can be deemed as internal attitude towards the political legitimacy of specified

countries, while the Keyword-dataset can be considered external perspective about

the political legitimacy of the countries.

From 9/28/2013 to 11/6/2013, we collected a total of 300,450 tweets using

Twitter streaming API2 that are written in English. The two data sets are monitored

and crawled using location and keyword constraint separately. Only relatively

meaningful tweets were retained in our experiments (e.g., terse tweets with less

than 4 words or location-based tweets having the form of “I’m at location" are

removed). Table 3.2 summarizes statistics of tweets that we used in the experiments.

The third column in the table (# Filtered Geo Tweets) refers to the tweets after

the aforementioned filtering process.

Figure 3.8, for instance, shows the geo-coordinates of tweets in the Geo dataset

for USA and China. We also overlay collected tweets from all eight countries based

on their geo-coordinates on top of one world map. The distribution illustrates

the coordinate constraints are quite accurate for each country. Interestingly, we

also observe that there are a few “hubs” that have more tweets than most other
2https://dev.twitter.com/docs/api/streaming
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(a) USA

(b) China

(c) All Countries

Figure 3.8: Geo-cordinates of tweets in Geo datasets.

areas in each country. For example, in the USA map, we see tweets from the

few metropolitan areas, such as New York City, Chicago, have larger red circles,

compared to the smaller green circles in many other areas. This is also in accordance
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with the population distribution in the country.

Table 3.2: Summary of crawled tweets.

# Keyword tweets # Geo tweets # Filtered Geo Tweets
Brazil 10,924 18,788 14,715
China 17,848 8,060 7,569
Iran 51,743 9,600 6,594
Japan 13,112 9,948 9,427
Norway 6,561 5,633 5,554
Spain 15,845 13,094 12,477
Turkey 13,281 38,187 14,634
USA 28,801 39,025 38,662

3.4.3 Sentiment Verification

One of the key factors in our framework is the sentiment analysis. In this subsec-

tion, we present our inspection about the sentiment analysis results. We use the

Pattern.en sentiment analysis engine to analyze sentiment over tweets 3. Pattern is

a web mining module for Python, and the Pattern.en module is its natural language

processing (NLP) toolkit [24]. It scores sentiment based on the English adjectives

used in the text of a sentence with the help of WordNet. The toolkit will output a

polarity value ranged between -1.0 and +1.0. We treat polarity value larger than 0

as positive, and less than 0 as negative.

To verify the sentiment toolkit’s effectiveness, we randomly selected 362 tweets

from our data set. The tweets are nearly equally selected from the eight countries

and two data sets, we removed tweets that are too short (less than five words).

We first manually scrutinized these tweets and assigned sentiment labels to these

tweets as ground truth. Then we run the sentiment analysis toolkit and compare

the results with manually assigned labels. In our experiments we only leveraged

positive and negative tweets. In this verification data set, 61.9% are positive, and

38.1% tweets are negative.
3http://www.clips.ua.ac.be/pages/pattern-en
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The overall accuracy of the toolkit over this verification data set is 77.1%.

This accuracy is actually quite high compared to many other sentiment analysis

experiments over social media in an automatic machine learning manner [5, 32, 76,

78,89]. It is reported that it is hard to achieve sentiment accuracies larger than 80%

for binary positive/negative classification for single sentences [78]. For the more

difficult multiclass case including a neutral class, accuracy is often less than 60%

for Twitter [89]. Our sentiment analysis results are on par with these reports. Some

other tool like Stanford sentiment tool [78] is reported to have higher accuracy, yet

our experiments over our sample data set actually do not achieve better results

(with accuracy of less than 60%). We have seen one work with extremely high

precision of 99% over Twitter messages [36]. However, that work is rule-based and

involves extensive human work to build rules. It is not easy to re-build same model

without long time manual labeling work.

Ideally, in order to achieve the accurate sentiment for tweets, we should recruit

human raters to check all instances of tweets (e.g., carried out on the platform

of Amazon Mechanical Turk). However, that would take much time and cost to

renew every experiment. Since our sentiment results are acceptable compared to

state-of-art studies, we would stick to that tool for our current L-Score experiments.

We would like to employee human efforts to improve the accuracy in our future

experiments, either by training a better analysis model or fully depend on human

efforts.

3.4.4 L-Score Results

In this subsection we present the aggregated mean L-score of crawled tweets during

the monitored period. Several factors are studied that may affect the final L-score.

First, the number of topics obtained from LDA may play an important role in

quantifying tweets’ score. We tried different number of topics from 4 to 20, and

the results are shown in Figure 3.9, where Dict4 means result from dictionary with
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4 topics. Note that the range of the L-scores are rescaled to [0, 10] to be compliant

with the results of [31]. We can see that different number of topics lead to slightly

different L-scores on both Geo and Keyword datasets.

It is worth to put a few more notes about the topic dictionary here. First,

LDA groups words according to their co-appearance frequency, therefore it does

not guarantee that every topic would be semantically meaningful according to our

political study needs. We notice that we may be able to identify some prominent

topics like 3.3, yet there are many other topics that cannot be easily assigned to

any pragmatic theme. For example, since the topic modeling is carried out over

political academic corpus, some words like “Tocqueville”, “Platos” are quite related

to political theory or history, which may not be so common in everyday conversation

in tweets. Second, while the first few topics vary substantially, there are also some

overlaps in some topics. For example, the word “political” almost appears in every

topic, and the word “government” appears in 9 out of 20 topics. This leads to the

idea that the first few topics may differentiate tweets more significantly than the

other topics. Third, since Twitter messages are usually quite short, many messages

are even less than 20 words. Therefore it may be more pragmatic to keep the

dictionary dimension small than to utilize the complete 20 topics. Table 3.3 shows

some words in the first eight topics.

Studies are also carried out to see the impact of granularity of sentiment analysis

in calculating L-scores. While previous results are calculated using sentiment

polarity scaled in range [−1, 1], we also tested with only extreme sentiment values

of {−1, 1}. However, the L-scores using this extreme sentiment values show little

difference.

As mentioned previously, we use the scores reported in [31] as a proxy to “ground

truth” in this experiment, and examine how correlated our result is to the score

in [31]. To see the overall correlation with [31], we computed the Pearson correlation

coefficient (PCC) [75] between the L-scores of all of our methods (using different
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Table 3.3: Words in the first eight topics.

political, social, economic, labor, power, politics, century, revolution,
union, movement, industrial, communist, struggle, unions, radical,
democracy, elite, revolutionary, tocqueville, regime, reform
social, politics, approach, empirical, behavior, power, rules, march,
rational, evidence, assumptions, issues, development, logical, role,
validity, rationality, events, context, freedom
war, international, military, soviet, crisis, security, domestic, nu-
clear, threat, attack, leaders, defense, peace, forces, threats, crises,
weapons, escalation, adversary, stability
vote, election, candidate, campaign, political, republican, demo-
cratic, congressional, senate, partisan, president, approval, reagan,
impact, republicans, campaigns, races
equilibrium, probability, utility, distribution, proposition, uncer-
tainty, payoff, risk, assumptions, strictly, proof, bias, assumed,
resources, informed, legislators, benefits, marginal
collective, individuals, members, rational, benefits, dilemma, protest,
incentives, prisoners, payoffs, economic, interest, payoff, participa-
tion, provision, repeated, institutions
political, moral, justice, freedom, aristotle, virtue, women, ethics,
marx, community, liberty, plato, individual, law, morality, ethical,
rational, activity, capacity, truth, equality, desire
income, economic, tax, government, social, population, labor, capi-
tal, trade, market, benefits, economy, federal, investment, distribu-
tion, employment, expenditures, governments, welfare, debt, capita,
redistribution, wage

number of topics or sentiment values) and [31]. As shown in Table 3.4, the best

performer is the Dict4 over Geo dataset. With the coefficient value of 0.7997887

(P-value = 0.01717), we can claim a better correlation between L-score computed

using Dict4 and Geo dataset and that reported in [31] than other configurations.

We also examined details of the tweet data set, and found some interesting

discoveries that merit brief comment here. First, the two data sets crawled in

different ways show quite different patterns. We saw people express their opinions

or comments regarding political issues in both data sets. For example, in Geo data

set, we could see that people would express their opinion about the government
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Figure 3.9: Aggregated mean L-scores.

or politician, like: “Sooo can just the ppl who voted for Obama take Obamacare?

I mean seriously.. If you were that dumb. cause you obviously don’t understand

it.” There are similar tweets in Keyword data set, like the following one with

hashtag of #Norway: “In #Norway there are more men that commit #suicide

than who dies in traffic and murder combined. Governments ignores the issue

#mensrights.” However, while Geo data set contains mostly people’s daily life
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Table 3.4: PCC values between L-scores of our proposed methods and [31].

Keyword Geo Keyword-
Extreme

Geo-Extreme

Dict4 0.2035 0.7998 0.2142 -0.4527
Dict8 0.4729 0.2334 0.4015 -0.5389
Dict16 -0.0634 0.3756 0.2709 -0.5943
Dict20 0.0705 0.3071 0.1880 -0.6310

activities or comments, a large proportion of Keyword data set contains links

that redirect to other online news media content. We can tell whether a tweet is

disseminating online news media content from that if it contains URL that directs

to other sources. The proportion of tweets with URLs in two data sets are quite

different. For example, 63.2% tweets from Keyword data set for Iran have URLs,

while only 26.5% in Geo data set contain URLs. This pattern indicates a close

relation between social media and other online news media.

Second, we also found that while Geo data set is quite scattered in daily topics,

Keyword data set has some prominent topics or issues that are frequently mentioned,

usually in the form of retweet which means people simply repost some messages

from other users. We examined some message details for Turkey and Brazil, and

found during the crawling time, the topics of “Syria”, “student protest”, “redhack”,

and “millionmaskmarch” appeared quite frequently in Turkey Keyword dataset.

About 10% of filtered tweets with non-zero sentiment using Dict4 were talking about

Syria issues with the hashtag of Turkey. About 67% of such tweets are detected

negative sentiment. 5% of tweets were about university student protest against

Turkey’s higher education. We noticed that around 11/06/2013, when our crawling

was being carried out, students of METU organized one protest with wide support

across the country, and also evoked some riots4. And about 4% were retweet of a

message of supporting “MillionMaskMarch” and “RedHack”, which Was initiated

by a group called “Anonymous” to protest around the world 5. For Brazil, one
4http://en.wikipedia.org/wiki/2013-14_protests_in_Turkey
5http://en.wikipedia.org/wiki/Anonymous_(group)
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frequent topic is world cup. About 5.7% in our filtered data set mentioned that

topic. Actually many tweets (almost 50%) were criticizing Brazil for holding the

event. One frequently retweeted message is: “What if the money invested in the

World Cup were spent on Brazilian education?”

We expect the political status of a region or country would stay relatively the

same for a short period, thus we represent the status of a country with one average

score. However, the above observation indicates that Twitter is actually quite

related to timely events, and therefore the L-score achieved from tweet messages

would also display frequent fluctuations. It would be also interesting to look at

time series of L-score on a daily basis. Such studies and results will be presented in

later section in this chapter.

There are also some pitfalls in our method of data collection. Using only

hashtags may not accurately target the interested countries. One tweet we found

in China’s keyword data set is: “#Zambia has issued arrest warrants for three

international players who missed the 2-0 friendly defeat by Brazil in #China”. This

message used a hashtag of China but here China simply works as the place where

the game was held, not the real involved subject of the interested issue. However,

the message was retweeted more than 200 times, almost 5% of the tweets regarding

China after filtering. We have to admit that such noise is somehow inevitable, but

still most of the data are still directly related to our study subject.

Figure 3.10 shows time-series of 4 countries using 4 LDA topics on Geo and

Keyword datasets. In most cases, L-scores estimated from Geo tweets match better

than those estimated from keyword tweets. Note that compared to L-score of [31],

our estimation of L-score matches well for some countries but poor for others (e.g.,

Norway).
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(a) Brazil (b) Japan

(c) Norway (d) USA

Figure 3.10: L-score time series of 4 countries with 4 LDA topics on Tweet dataset.

3.5 Further Experiments Using GDELT Data

In previous section, we report the comparison and correlation between legitimacy

scores calculated from tweets and the results from political academic report. In this

section, we further compare the legitimacy scores using two different media sources:

traditional news media and social media. Traditional news media usually covers

political events with many details, while social media express broad concerns from

a mass of common people. There may be common and also different characteristics

when leveraging them for the purpose of quantifying legitimacy. Therefore, we

carry out the comparison study and report our discoveries in this section.
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3.5.1 Data collection and experiment setup

We use the Global Database of Events, Language, and Tone (GDELT) database as

the representative of tradition news media 6. GDELT is a data set that tries to

brief global political events with coded geo-location and tone [48]. The data are

based on news reports from a variety of international news sources. We believe

that this data set contains information useful for legitimate status of the covered

countries.

We collected two data sets for the eight countries: Brazil, China, Iran, Japan,

Norway, Spain, Turkey, and USA, for a time period during 4/25/2014 and 5/15/2014.

One captures the traditional media from GDELT database, and the other does the

social media from Twitter. For GDELT data, the web site 7 maintains a database of

Global Knowledge Graph (GKG) that captures the persons, organizations, themes,

events, and tones that occur in global news. GKG provides global daily updates

since April 1, 2013 to present. Since GDELT data are mainly collected from

English news agents, they can be deemed as an external attitude towards the target

country’s legitimacy status. For the same purpose, we leverage Twitter stream API
8 with hash tags of all the eight countries (e.g., use “#usa” to crawl tweets related

to USA) to collect only English tweets as external attitude towards the countries

from social media. Table 3.5 summarizes the number of news records and tweets

we crawled for our experiments.

GDLET does not store source text of news. However, instead it automatically

detects and assigns to each news a list of themes. For example, a news article

“Ukraine protesters confront police anew after nation’s bloodies day” 9 is assigned

themes including “TERROR”, “PROTEST”, “KILL”, “LEGISLATION”, etc. The
6http://gdeltproject.org
7http://data.gdeltproject.org/gkg/index.html
8https://dev.twitter.com/docs/api/streaming
9https://my.news.yahoo.com/ukraine-police-charge-protesters-nation-39-bloodiest-day-

004816528.html
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Table 3.5: Summary of collected data.

# of news records # of tweets
Brazil 15,455 151,042
China 101,643 168,355
Iran 28,592 416,414
Japan 47,980 137,892
Norway 9,414 39,970
Spain 25,463 115,497
Turkey 26,121 155,271
USA 767,012 818,064

catalog of themes are predefined according to some coding rules. There is a

description of each theme in the catalog, e.g., the theme of “KILL” is described

as “Any mention of something dying”. We replace all themes with their according

description sentences, and apply our quantification framework over this description

text to detect the relatedness of each news record to the political legitimacy purpose.

On the other hand, GDELT also calculates the tone value of each news. More

specifically, it first calculates positive score as the percentage of words in the article

that were found to have a positive emotional connotation, and negative score as

the percentage of words with negative emotional connotation. The final tone value

is calculated as positive score minus negative score. We treat this tone as sentiment

value in our quantification framework. Due to the calculation method of the tone

value, potential range for tone value is [-100, 100]. However, a simple examination

tells us that most tone values lie in the range of [-10, 10]. Therefore, we divide the

range into seven sections and count the number of records whose tone value lies in

the corresponding bin: <-20, [-20, -10), [-10, -5), [-5, 5], (5, 10], (10, 20], >20. As

shown in Figure 3.11, about 80% of the records have tone value in the range of [-5,

5], and 98% of the records lie in [-10, 10]. To make the scenario simple, we curtail
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Figure 3.11: Distribution of Tone Values in GDELT Data

the tone value range to [-10, 10] by applying a segmentation function as follows:

tone =


−10 if tone < −10

tone if −10 ≤ tone ≤ 10

10 if tone > 10

For the experiments, since the different topics of dictionary lead to similar

results, we only report our results using 4 topics dictionary.

3.5.2 Verification of GDELT data

Since GDELT dataset collects political news from traditional media, we expect it

to be an effective indicator about political legitimacy around the world. To verify

its efficacy, we carry out a case study about the country Ukraine using data in

GDELT web site collected from 08/01/2013 to 05/15/2014. We calculate the daily

L-score based on our framework of Chapter 3 by leveraging the tone value and

event themes annotated in GDELT, apply smoothing average over a window of

seven days, and normalize the final score. The result is shown in Figure 3.12. As a

51



0"

1"

2"

3"

4"

5"

6"

7"

8"

9"
20
13
08
01
"

20
13
08
06
"

20
13
08
11
"

20
13
08
16
"

20
13
08
21
"

20
13
08
26
"

20
13
08
31
"

20
13
09
05
"

20
13
09
10
"

20
13
09
15
"

20
13
09
20
"

20
13
09
25
"

20
13
09
30
"

20
13
10
05
"

20
13
10
10
"

20
13
10
15
"

20
13
10
20
"

20
13
10
25
"

20
13
10
30
"

20
13
11
04
"

20
13
11
09
"

20
13
11
14
"

20
13
11
19
"

20
13
11
24
"

20
13
11
29
"

20
13
12
04
"

20
13
12
09
"

20
13
12
14
"

20
13
12
19
"

20
13
12
24
"

20
13
12
29
"

20
14
01
03
"

20
14
01
08
"

20
14
01
13
"

20
14
01
18
"

20
14
01
26
"

20
14
01
31
"

20
14
02
05
"

20
14
02
10
"

20
14
02
15
"

20
14
02
20
"

20
14
02
25
"

20
14
03
02
"

20
14
03
07
"

20
14
03
12
"

20
14
03
17
"

20
14
03
23
"

20
14
03
28
"

20
14
04
23
"

20
14
04
28
"

20
14
05
03
"

20
14
05
08
"

20
14
05
13
"

Time%Series%of%L,score%for%Ukraine%Using%GDELT%Data%

11 December 2013 police 
clash with protesters

Ukraine Revolution
18-23 February 2014

Riots in Ukraine
January 2014

Figure 3.12: Time Series of Daily L-score for Ukraine from 08/01/2013 to
05/15/2014

wave of demonstrations and public protests demanding closer European integration

happened in Ukraine in late 2013 (called Euromaiden 10), and a revolution took

place in February 2014 after a series of violent events (2014 Ukraine Revolution 11),

there was considerable civil unrest in Ukraine during that time. Accordingly, we

would expect dramatic drop of L-score during the end of 2013 and the beginning of

2014. We check the major events from the timeline on Wikipedia, and annotate

these events that happened at according dates in the time series of L-score in

Figure 3.12. The figure shows L-score has corresponding fluctuation for these major

events. This conforms to our aforementioned assumption.

3.5.3 Quantifying legitimacy for countries

We calculate daily average L-score for all countries, and obtain the smoothed average

using a range of four days. The results are plotted in Figure 3.13 for GDELT data

set and Figure 3.14 for Twitter data, respectively. The results demonstrate that

L-score derived from traditional media differs more greatly among countries than

social media data does. As shown in Figure 3.13, L-score derived from traditional
10http://en.wikipedia.org/wiki/Euromaidan
11http://en.wikipedia.org/wiki/2014_Ukrainian_revolution

52



0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

9	
  

10	
  

4/
23
/1
4	
  

4/
24
/1
4	
  

4/
25
/1
4	
  

4/
26
/1
4	
  

4/
27
/1
4	
  

4/
28
/1
4	
  

4/
29
/1
4	
  

4/
30
/1
4	
  

5/
1/
14
	
  

5/
2/
14
	
  

5/
3/
14
	
  

5/
4/
14
	
  

5/
5/
14
	
  

5/
6/
14
	
  

5/
7/
14
	
  

5/
8/
14
	
  

5/
9/
14
	
  

5/
10
/1
4	
  

5/
11
/1
4	
  

5/
12
/1
4	
  

5/
13
/1
4	
  

5/
14
/1
4	
  

5/
15
/1
4	
  

Daily	
  L-­‐score	
  of	
  countries	
  from	
  GDELT	
  Data	
  Using	
  Dict	
  4	
  

Brazil	
   China	
   Iran	
   Norway	
  
Turkey	
   Japan	
   Spain	
   USA	
  

Figure 3.13: Daily L-score of GDELT Dataset
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Figure 3.14: Daily L-score of Twitter Dataset

media for countries Iran and Turkey during this time period are mostly lower than

that derived from other countries. However, in Twitter data, while Iran is almost

always the lowest, Turkey does not show the same inferiority compared to other

countries.

Due to the normalization process we applied to the two data sets, although we

try to rescale the L-score of both data sets to the range of [0,10], it may still be
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Figure 3.15: Comparison of Daily L-score Distribution for Turkey

inappropriate to compare the values directly between them. Instead, we look at

the score fluctuation trend and relative ranking of the studied countries.

We study two cases for the country of Turkey and Brazil. As shown in Figure 3.15,

the L-score derived from both GDELT data set and Twitter data set for Turkey

show similar fluctuation during this time period. However, GDELT data set shows

a more dramatic drop of the score at around 5/14/2014 than Twitter data does.

As we scrutinize the data around the dates between 5/13/2014 and 5/15/2014, and

check the major events that happened during that time, we believe that the major

cause for this L-score drop is the happening of Soma mine disaster on May 13,

2014 12, which killed 301 people. Both traditional media and social media talked

a lot about this event, yet we find that the difference is mainly caused by the

coverage proportion. For example, on May 14, 2014, 1,900 out of 2,508 (75.8%)

news articles in the traditional media collected by GDELT were talking about the

killing. However, in social media of Twitter, 2,022 out of 8,399 (24.1%) politically

related tweets were directly pertinent to the Soma accident. From this observation,

we believe that social media sometimes are more diversified about the social or

political topics than the traditional media.
12http://en.wikipedia.org/wiki/Soma_mine_disaster
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Figure 3.16: Comparison of Daily L-score Distribution for Brazil

On the other hand, as shown in Figure 3.16, we also notice an obvious drop of

L-score for Brazil on May 12, 2014 in Twitter data set, while the GDELT data does

not show much change (notice that as we explained previously, the L-score difference

between two data sets may come from the normalization process). We find that on

May 12, 2014, there were 3,346 of retweets of the same message that talks about

“The Brasilian government is evicting people from poor areas to make room for

the world cup”. On that day, in addition, a total of 4,909 tweets were politically

related. This causes the dramatic drop of L-score using Twitter data on the day.

However, the message was originally published on May 1, 2014 actually, but have

an tremendous impact via retweeting on May 12, 2014. This may also explain why

we cannot find related news from traditional media in GDELT data set on the same

day. In this case, the social media may not work as a news media, but rather a tool

for a social movement. This functional difference from traditional media also leads

to different results in terms of people’s opinion towards the legitimacy status.
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3.6 Conclusions

In this chapter, we study the problem of quantifying political legitimacy of a

populace based on public Twitter data. We propose a solution that converts short

tweet text messages into a number of topic dimensions using probabilistic topic

modeling. Then we leverage sentiment analysis to evaluate polarity of each tweet,

and aggregate a large number of tweets into the final legitimacy score of a populace.

Our experiments over real tweets collected about eight countries reveal that some

configuration of our proposal shows a strong correlation to results reported in

political science community. We also carry out similar quantification framework

over traditional news media, and compare the results with Twitter keyword data

set. We discover several interesting differences between these two different media.

Despite the promising result, there are a set of limitations to our study:

1. In general, our framework points a good direction towards our legitimacy

quantification goal. However, there are still small drawbacks in our method

that needs further improvement. The sentiment results may be improved if we

can leverage human labler to examine carefully. We would also improve the

classification model by providing a large mannually labeled training twitter

data set. The dictionary can also be improved if we can consult domain

experts so that we can get tweets that are accurately related to political

issues.

2. To derive a more definite conclusion on the validity of our proposed method

in quantifying the legitimacy, a more comprehensive experiment is needed–

e.g., more number of countries, larger tweet datasets, or topics derived from

different corpus;

3. While [31] is a reasonable “beta” ground truth for our study, there is no

formal analysis why or how accurate it is. As such, more correlation analysis
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of our proposal using different methods to compute the legitimacy is needed;

4. Although we also carry out the comparison between the legitimacy scores

using news media like GDELT and social media of Twitter, the study needs

further verification. For example, we may need further information about the

news records to detect their more accurate relation to political legitimacy; we

may also need to crawl larger tweet datasets with longer time so that a more

comprehensive study can be carried out.
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Chapter 4
Exploiting Co-view Information for

Lecture Video Recommendation

4.1 Introduction

Recommender system is a typical research field that heavily exploits user generated

data, especially implicit user feedback. Given a set of users and a set of items, the

goal of a recommender system is to predict the items a particular user is most likely

to be interested in. Recommending products for users on a shopping website like

Amazon, predicting the ratings that a user is likely to assign to a movie, predicting

the citations a paper is likely to make are some common scenarios where automatic

recommender systems are desirable [6, 51, 82]. One of the most widely applied

techniques, collaborative filtering (CF) [1], usually leverages previous user-item

history to generate lists of recommendations. However, for new items which have

not been visited or rated by any users, we do not have sufficient information to

apply CF strategy. Such recommendation problem is called cold start problem:

given a set of users and new items, recommend a list of new items to the users they

may be interested in.

One typical way to tackle the cold start problem is content-based recommenda-
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tions. The user will be recommended items similar to the ones the user preferred

in the past. However, there are situations that we need to recommend new items

to new users. Suppose a user visits Amazon for the first time, she is browsing one

product, and the web site tries to suggest more products she may be interested

in. There is no personal history information about this user as she is new to the

web site, therefore it is difficult to apply collaborative filtering directly. The web

site may suggest other similar items because she may consider other alternative

products. The site may also suggest items that other users purchase together with

the product she is browsing, because such items may be complementary to the

product. They may also combine two strategies to make recommendations. More

difficultly, there may be new products that the web site wants to promote. In

such a situation, we cannot directly exploit co-purchase history to recommend

complementarily, but only look at the product similarity. Mamy aspects of products

can be used for similarity measure, e.g., products that are produced by the same

factory may also be interesting to users, or the products that have similar function

can be of interest.

How can we decide which aspect is more important in this new product recom-

mendation than others? In this chapter, we propose to learn the importance of

different aspects from the implicit user co-purchase history . By way of illustration,

if we find users purchase products from the same specific manufacturer frequently,

we can suggest new products from the same manufacturer too; if we find people

purchase products together for some function, we may recommend products for

similar functions. We think this way may work better than naively comparing two

products.

In this chapter, we study such a cold start problem exploiting implicit user

generated data. More specifically, we focus on cold-start recommendations for

lecture videos using co-view information based on previously seen lecture pairs.

Formally, we define our problem as follows:
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Problem 1 (Cold Start Lecture Recommendation Problem:) We are given a set of

training lectures Q, and a co-viewed pairs set P = {(l1, l2, f) | l1, l2 ∈ Q}, where f

is the frequency that l1, l2 were co-viewed together. The test set, T contains lectures

without any viewing history and we are required to recommend lectures, Rq ⊂ T for

each query lecture q ∈ Q′, Q′ ⊂ Q.

This problem simulates the scenario in which recommendations are to be made

for a new user or a new lecture where no co-viewed history information is available.

We adopt a content-based approach for the cold-start scenario where co-view

information is used to learn the feature weights for ranking lectures for the recom-

mendation task. We use the co-viewed lecture pairs to form training instances for

a supervised learning setup. Support Vector Machines were used where the learnt

feature weights indicate the importance of each lecture attribute for recommending

lectures in the cold-start scenario. Our solutions based on the above strategies

performed on par with the top-performing baselines.

The remainder of this chapter is organized as follows: Section 4.2 briefly

introduces related work in recommender system research field. Section 4.3 describes

the data attributes in our recommendation scenario. Section 4.4 present the

features we design and extract. Section 4.5 describes our solution design using SVM

classification framework. Section 4.6 shows our experimental results. Section 4.7

concludes the chapter.

4.2 Related Work

Various techniques for recommender systems have been proposed in the last few

years. In this section, we do not intend to cover every aspect and detail of

related work in the research area of recommender systems, but briefly introduce

common background and focus on literature review of research problems most

closely related to our work. We refer interested readers for further understanding
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to the introduction in the Encyclopedia of Machine Learning [62] and the excellent

survey [1].

Recommendation strategies can be broadly classified into collaborative filtering

and content-based strategies. We briefly describe the basic ideas behind these

approaches here.

Collaborative filtering (CF) methods use previous item-user history to generate

lists of recommendations. For example, in movie recommendations, CF strategies

use movie ratings previously submitted by other users to predict the rating a user

might assign to a movie based on user-similarity or movie-similarity [1]. CF can

be further divided into neighborhood-based and model-based approaches [62]. In

neighborhood-based CF, suppose a system tries to recommend a list of items to

user u, it would first find top-k most “similar” users to u, and estimate ratings

of items based on a weighted combination of those k neighbors’ ratings. Systems

usually computes similarity between users from their item rating history. On the

other hand, model-based CF generates recommendations by estimating parameters

of statistical models for user ratings. Matrix factorization (MF) is currently the

state-of-the-art method in this class of techniques [44]. MF assumes that similarity

between users and items is simultaneously induced by hidden lower-dimensional

vector of factors inferred from item rating patterns [43]. MF is popular because of

its good scalability and predictive accuracy in Netflix prize 1. However, there is no

theoretical proof that this model can be generally applied in other recommendation

scenarios.

Content-based methods are common in addressing the cold start problem

where ratings and preference information is unavailable or sparse. Many content-

based methods focus on recommending items with textual content. As such,

techniques in information retrieval (IR) can be applied conveniently [4]. Many

other approaches treat such a problem as a classification task, using techniques like
1http://www.netflixprize.com/
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naive Bayes classifier, k-nearest neighbor (kNN), decision tree, etc [71].

Recently, hybrid strategies are being used to leverage the benefits of both

collaborative filtering and content-based strategies. For example, to tackle the cold

start problem, Gantner, et al. [29] used collaborative information to compute

similarity between existing items or users using matrix factorization, and then

proposed mapping techniques like a linear combination of various attributes of new

items to fit content into same model.

To tackle cold-start problem, [82] and [25] uses feature weighting strategy

in recommender systems. [82] proposed a feature weighting method to combine

various movie attributes like release year, language, director, etc. This method uses

normalized number of users who are interested in two movies as a human judged

similarity between a movie pair. Then they solve regression equations constructed

between features and paired similarity to obtain weight values. [25] employed a

similar approach of combining multiple features in a weighted linear model for

citation recommendation of academic papers. In order to find weights of different

features between papers, e.g., text similarity and co-citation, the authors applied

a coordinate ascent method. As opposed to the regression framework adopted

by them, we formulate the attribute-weight learning problem in a classification

framework for cold-start recommendations.

4.3 Description of Lecture Attributes

We target recommendations for lecture videos from videolectures.net.

Videolectures.net is an open-access repository of educational lectures 2. Lectures

given by prominent researchers and scholars at conferences and other academic

events are made available on this website for educational purposes.

Figure 4.1 denotes a snapshot of the system at videolectures.net. It was
2http://videolectures.net/site/about/
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captured at August 2010 when our data set was collected. We indicate in this figure

some of the information available with lectures on this website. Most lectures on

this website contain information on the language in which the lecture was given,

content of the slides, the category (discipline-area) of the lecture, etc. Sometimes,

additional information such as the description of the event (such as conference,

workshop) in which the lecture was given and author affiliation is also available.

Along with the lecture, authors and event attribute information, the data also

includes user feedback as pairs of lectures that were frequently co-viewed in the

past.

The data set is collected and made available by [2]. In the following we briefly

summarize attributes information available with the data.

1. Author Attributes: We have authors’ full name, e-mail address, each

author’s homepage, gender of the author, and his/her organization. The

organization usually means affiliation where the author works.

2. Lecture Attributes: For each lecture, it contains the lecture’s title, and

published date. It also contains a description attribute, which is usually the

abstract of the lecture if it is paper presentation published in some conference

venue. Slide titles are also included in this data if available. Moreover, lecture

is manually grouped into a predefined set of event types, e.g., keynote, tutorial,

invited talk, thesis proposal, etc. Event information is also included here, e.g.,

a paper is published in SIGKDD 2013 Conference. Besides, there is another

manually predefined taxonomy attribute called category. More details will

be introduced in next item. Language information is also included here, by

default it is English. Finally, each lecture has a number of views since the

day it was published online to the day the data snapshot was taken.

3. Categories: Category attribute is used to represent the lecture’s subject or

research field information. The web site videolectures.net uses a scientific
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Figure 4.1: Lecture video attributes

taxonomy same as Wikipedia to represent lectures’ categories. The taxonomy

is represented as a direct acyclic graph where one category can have multiple

parent categories. Each category must have a parent category except the root

category. Each lecture can be assigned to several categories. For example,

a lecture may be assigned to “Computer Science” and more detailed “Data

Mining” categories.

4. Pairs: We have records of pairs of lectures viewed together. The pairs of

lectures are not necessarily viewed consecutively. They were detected with as
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least two distinct cookie-identified browsers. The frequency of each pair was

viewed together is also included.

4.4 Feature Description

The intuition behind this cold-start problem is that we want to recommend lectures

that are similar to the one being viewed. The pairs information available for this

recommendation problem indicates the frequency with which a given lecture pair

was co-viewed. This information is very significant in understanding the features

that a pair of lectures that tend to be co-viewed often share. More specifically,

our assumption is that the more frequently two lectures were co-viewed, the more

similar they are. For instance, it is reasonable to expect that a highly co-viewed pair

of lectures are in the same language and perhaps in the same category. Similarly, a

pair that is co-viewed frequently is likely to be on related topics such as two lectures

presented in the same conference or two parts of a tutorial on a topic. It is also

intuitive to expect the co-view frequencies of lectures belonging to diverse categories

such as Graph Theory and Ecology to be small. Based on the above intuitions,

we designed the set of following features to measure the similarity between two

lectures in terms of their attributes.

1. Co-author similarity This feature indicates whether two lectures have the

same author. It has a value 1 when two lectures share the same author and 0

otherwise.

2. Type similarity This feature has a value 1 when two lectures share the

same type and 0 otherwise. Example lecture types include lecture, keynote,

thesis proposal, tutorial etc.

3. Language similarity has a value 1 when the two lectures are in the same

language and 0 otherwise.
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4. Event similarity A value of 0 or 1 indicates whether the two lectures belong

to the same event such as conference, workshop series etc. In addition to using

the above boolean-valued feature, we used the description fields associated

with events to compute a similarity value using the cosine similarity function.

This score is meant to capture events that are similar though not the same.

For instance, the conferences ECML and ICML are related despite being

distinct venues since they are both machine learning conferences. Similarly,

lectures belonging to the same conference venue but presented in different

years are related.

5. Category similarity The category information pertains to the subject area

assigned to a lecture. Connections between categories are captured via a

directed graph can be used to compute similarity. For instance, if two lectures

are assigned the categories “Computer Science" and “Graph Theory", they

share some commonality since “Graph Theory" is a sub-category of “Computer

Science". To capture this aspect, we used four different binary indicators for

capturing category similarity between two lectures l1, l2:

• C1: 1 if l1.categories ∩ l2.categories 6= ∅ and 0 otherwise.

• C2: 1 if l1.categories ∩ l2.parent categories 6= ∅ and 0 otherwise.

• C3: 1 if l1.parent categories ∩ l2.categories 6= ∅ and 0 otherwise.

• C4: 1 if l1.parent categories∩ l2.parent categories 6= ∅ and 0 otherwise.

6. Text similarity The name, titles and description fields of a given lecture

have textual content. We represent these fields using TFIDF [58] vectors

and use the cosine similarity of the corresponding fields of two lectures to

compute these features.

7. Topic similarity We use LDA [9], a popular tool used for modeling doc-

uments as topic mixtures. The generative process in LDA expresses each
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document in terms of its topic proportions. We model the training set of

lectures (name+description+titles) using 1000 topics and obtained the topic

proportions for each lecture. Similarity between a pair of lectures can be

computed using the cosine similarity between the topic vectors or by mea-

suring the overlap among the top topics from each lecture. We used Jaccard

Coefficient [58] to compute the similarity score based on the overlap among

the top-10 topics of the two lectures.

8. Affiliation similarity The author affiliation information is also available

with lectures. We compute the affiliation similarity between two affiliations

with the Jaccard similarity measure on the set of words describing the affilia-

tion.

4.5 Learning attribute weights for pairwise pre-

diction

Support Vector Machines (SVM) is a discriminative supervised learning approach

widely used for classification and regression problems in several areas. For binary

classification where the set of class labels is restricted to +1 and -1, the SVM learns

a maximally separating hyperplane between the examples belonging to the two

classes based on the training data. During testing, the distance between a given

instance and this hyperplane is computed and used to assign a prediction label.

We formulate the recommendation task for the cold start scenario as a binary

classification problem. We treat the co-viewed lecture pairs available in the training

data as positive examples for the classification problem. Negative instances for

training the classifier are obtained by randomly selecting lecture pairs that were

never co-viewed (in the training data). The features described in Section 4.4 were

used to train a SVM classifier. The data includes query lecture (from say, the set Q)
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for which recommendations are to be predicted from the set of given test lectures

(say, set T ). We used each q ∈ Q to form a pair with each t ∈ T and score the pair

using the trained SVM classifier, namely the distance from this lecture pair instance

to the hyperplane. The final list of predictions for each query is obtained by sorting

the pairs based on these scores and choosing the test lectures corresponding to the

top pairs.

When trained with the linear kernel option, SVMs learn a set of weights that

satisfy the maximum number of constraints of the following form imposed by the

training data:

yi(~w.~xi − b) ≥ 1− εi, 1 ≤ i ≤ n

In the above formula, i is the index over the training examples, ~xi pertains to the

features of a given example, yi its label (+1 or -1) [15]. In our case, the feature

values refer to similarity values based on different attributes of a given lecture

pair. That is, as part of learning the classifier, we are in effect, learning a scoring

function for lecture pairs (li, lj) based on a linear combination of individual attribute

similarity values such that

score(li, lj) =
F∑
f=1

wf × simf (lfi, lfj)

where wf indicates the weight assigned to the similarity value based on a particular

attribute f of the given lecture pair.

4.6 Experiments

4.6.1 Data Description

For the experiment, we collected a data set published by ECML/PKDD 2011

conference [2]. The data set was captured in August 2010 from the video lecture
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web site 3. The data set consists of meta information about lectures and authors. It

also contains view statistics about lectures. There are a total of 8105 video lectures,

8094 authors, 366 categories, and 520 events in this data set.

Lectures are split into training and test subsets by publication date. Those

lectures published before July 01, 2009 are put into old lectures as training data

set, and lectures published after July 01, 2009 into new lectures as test set. This

leads to a split of about 85% for the training and 15% for the test data set. We

will try to recommend new lectures for a set of query lectures slected from training

set. Accordingly, co-viewed pairs from old lecutres are also provided in the training

data set. Statistics of this data set is shown in Table 4.1.

Table 4.1: Statistics of Data Set

Data Statistics Number
Total number of lectures in the data set 8,105
Number of lectures in training data set 6,983
Number of lectures in test data set 1,122
Number of co-view pairs in training set 363,880
Number of categories 366
Number of events 520

Figure 4.2 illustrates histogram of co-view pair frequency in training data set.

While Figure 4.2a shows histogram of values truncated to 50, Figure 4.2b illustrates

histogram of pair frequency larger than 50 which is truncated to 500. These figures

demonstrate that the distribution has obvious long tail shapes.

4.6.2 Evaluation Metric

Recommendation results are usually measured through user satisfaction surveys

and analysis. However, for our problem we need a quantitative measure that can

evaluate solutions meaningfully. We exploit the metric of mean average R-precision

score (MARP ) for evaluating recommendation performance. MARp is a mean
3http://videolectures.net
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(a) Co-view pairs frequency truncated to the level of 50

(b) [Co-view pairs frequency larger than 50, and truncated to the level 500

Figure 4.2: Histogram of co-view pairs frequency

value over all queries R defined as:

MARp = 1
|R|
∑
r∈R

AvgRp(r)

Here average R-precision for a single recommended ranked list is given by

AvgRp =
∑
z∈Z

Rp@z(r)
|Z|
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where

Rp@z(r) = |relevant ∩ retrieved|z
|relevant|z

the R-precision has some cut-off length z where z ∈ {5, 10, 15, 20, 25, 30}.

The R-precision metric is more apt to our cold start problem scenario, because

it adjusts to the size of the set of relevant documents. By averaging over a set of

different Rp@z, we can take into account ranking of relevant items and improve

the ability of differentiating between similar solutions. MARp metric is better than

MAP (mean average precision) measure, because MAP does not consider absolute

ranking positions of recommended items. Different permutations of relevant items

in the recommended list do not affect MAP score. Moreover, if ranking order

does not need to be strict for top-n item recommendations [87], the granularity of

ranking can also be adjusted. Here the granualiry of 5 was chosen according to the

ranking-recall influence on recommender system evaluation [2].

4.6.3 Experiment Results

4.6.3.1 Recommendation without Co-view Information

Cold-start problem is usually tackled with content-based recommendation methods.

In content-based methods, items are recommended that are “similar” to users or to

items that users have previously preferred. In this lecture recommendation scenario,

our goal is also to recommend lectures “similar” to the given query lecture. As we

design a framework to improve recommendations by utilizing implicit user generated

data like co-view information, in this subsection we demonstrate the results of

baseline methods that only exploit lecture content without co-view information.

The content-based recommendation method is closely related to information

retrieval (IR) [1,57]. We simply convert this lecture recommendation setting into an

IR problem and exploit IR techniques for recommendation purpose. More formally,

given a query lecture q from query set Q′, we try to retrieve a set of lectures Rq
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that are most relevant to q from the test lecture set T .

We concatenate lecture title, description, author names, author affiliation, event

information, category information, and available slide titles as a document for each

lecture. Then we explore several text retrieval models over these documents. Two

basic text retrieval models, vector space model and language model [57], and a few

variations are studied in our experiments. These models are briefly summarized in

Table 4.2. We elucidate more details in the following:

Vector Space Model

Vector space model is an algebraic model for representing a set of documents as

vectors in a common vector space [57]. It is widely used in information retrieval

operations ranging from scoring documents on a query, document classification and

document clustering. To compute similarity between two documents d and q, we

can leverage the standard cosine similarity of their vector representations ~vd and

~vq as follows:

sim(q, d) = ~vd · ~vq
|~vq||~vq|

.

We study three methods in vector space model in our problem setting: term

frequency-inverse document frequency (tf-idf), topic model from LDA [9], and a

combination of the two methods.

• tf-idf: In tf-idf, each document d is represented as a vector with one compo-

nent corresponding to each term in the predefined dictionary. The weight of

each component in the vector, or for the term t in document d, its weight is

assigned as:

tf-idft,d = tft,d × idft,

where tft,d is the number of occurrences of term t in document d, and idft =

log Ndft , N is the total number of documents and dft is the number of documents

that contain term t.
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• LDA: As described in Section 4.4, in LDA each document can be modeled

as topic mixtures, which are represented as vectors of topic distribution.

We directly leverage this topic vector as the document representation, and

compute cosine similarity based on the topic vectors.

• tf-idf + LDA: As each document can be potentially represented in two

vectors, for each pair of document d and q, we can also have two similarities.

By introducing a small smoothing factor λ < 1, we combine the two similarities

together:

sim(q, d) = λsimtf-idf(q, d) + (1− λ)simLDA(q, d).

Language Model

In information retrieval, the language modeling approach models the idea that

a query q is generated by a probabilistic model based on a document d [57, 97],

denoted as P (q|d). In order to rank documents, we are interested in estimating the

posterior probability P (d|q), which is derived based on Bayes’ formula from

P (d|q) ∝ P (q|d)P (d)

where P (d) is the prior probability for document d and is often treated as uniform

for all documents. Therefore ranking documents for a given query is also a problem

of ranking the probability of P (q|d). We consider unigram language model in

which the probability of each word appearing in a document only depends on itself.

Suppose a query q is composed of a set of words {w1, w2, · · · , wm}, then we have

P (q|d) =
m∏
i=1

P (wi|d),

where P (wi|d) is the probability of word wi in language model of document d.
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One way to approximate word probabilities is using maximum likelihood es-

timation (MLE) as P (wi|d) = tfwi,d/Ld, where tfwi,d is the frequency of word wi
in document d, and Ld is the number of tokens in document d. However, there

may be situations when some words have never appeared in some documents but

may be needed in a query. In such cases, if we estimate P (w|d) = 0, we will get a

probability of zero for the query too. Researchers have studied methods to ease

such problems and introduced many smoothing techniques. We will explore a few

of them for our experiments in this subsection.

• MLE: One common way of smoothing language model is to leverage word

probability from the perspective of the whole collection of documents, we

simply call such a method as MLE [97]. The probability is calculated as:

P (w|d) = λPML(w|d) + (1− λ)PML(w|Coll),

where PML(w|d) is the maximum likelihood estimate of word w in document

d, P (wML|Coll) is the maximum likelihood estimation of word w in the

document collection, and λ is a smoothing constant that has value less than

1.

• ClusterMLE: Researchers have also studied another smoothing technique

based on document clusters [55,61]. Instead of using word probability from

the whole document collection, researchers first carry out clustering over

documents, and introduce the word probability based on such clusters into

smoothing. More specifically, the word probability is calculated as:

P (w|d) = λPML(w|d) + (1− λ)[βPML(w|Cluster) + (1− β)PML(w|Coll),

where P (w|Cluster) is the maximum likelihood estimate of word w in the

cluster that document d belongs to, and β is another constant factor with value
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Table 4.2: Model specification in experiments

Model
tf-idf sim(q, d) = ~vd · ~vq, using TF-IDF vector of document
LDA sim(q, d) = ~vd ·~vq, using topic distribution vector of document
tf-idf + LDA sim(q, d) = λsimTF−IDF (q, d) + (1− λ)simLDA(q, d)
MLE P (w|D) = λPML(w|D) + (1− λ)PML(w|Coll)

ClusterMLE
P (w|D) = λPML(w|D) + (1− λ)P (w|Cluster)

= λPML(w|D)
+ (1− λ)[βPML(w|Cluster) + (1− β)PML(w|Coll)]

MLE + LDA
P (w|D) = λ(βPML(w|D) + (1− β)P (w|coll))

+ (1− λ)Plda(w|D)

less than 1 that we can adjust the weight of cluster based word probability.

• MLE + LDA: We also introduce LDA into language model and explore the

topic effects in smoothing. We calculate the probability of word w appearing

in document d under topic modeling, represented as PLDA(w|d), and combine

it with language model as:

P (w|d) = λ[βPML(w|d) + (1− β)PML(w|Coll)] + (1− λ)PLDA(w|d).

Text Retrieval Results

We filter out documents that have less than eight words, leading to 5,236 documents,

and 363,880 co-view paris. We randomly divide the documents into five folds, using

one fold as a test set, and remove all pairs between test and training set. Evaluation

is carried out using MARp for the cut-off length z ∈ {5, 10, 15, 20}. For LDA

and document clustering, we use Mallet tool kit [60]. We use 160 topics in LDA.

After tuning, We set 0.66 for λ in tf-idf + LDA, set λ = 0.11 for MLE model, set

λ = 0.1, β = 0.01, and set λ = 0.21, β = 0.11 for MLE+LDA model. The final

results after cross validation are shown in Figure 4.3.
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Figure 4.3: Results o fvarious models

We can see that tf-idf simply works almost the best. Leveraging LDA topic

vector directly is almost the worst. However, combining tf-idf and LDA can slightly

improve the results. MLE model is a little worse than tf-idf in our scenario.

Combining LDA with MLE does not work as well as tf-idf either. These results

demonstrate that tf-idf is still the most efficient method, and topic modeling can

be leveraged to slightly improve the recommendation results.

4.6.3.2 Recommendaiton Incorporating Co-view Information

We incorporate co-view information and formalize the recommendation problem

into a classification framework using SVM classifier. For training the SVM classifier,

from the training set P we filter out pairs that occurr with a frequency less than

5% (for either lecture in the pairs):

P ′ =
{

(l1, l2, f) | (l1, l2, f) ∈ P ,
f

S(l1) ≥ 0.05 ∨ f

S(l2) ≥ 0.05
}
,

where

S(l1) =
∑

(l1,li,f1i)∈P
f1i, (l2) =

∑
(lj ,l2,f2j)∈P

f2j.
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These are assigned the class label +1 as positive instances. For negative instances,

we randomly select lecture pairs of a comparable size to P ′ that do not appear in

the training pairs set P . In total we have a balanced data set with about 40, 000

pairs for training the classifier. We use the SVMLight [38] implementation provided

by Joachims. We set the margin-loss penalty parameter C to 10 after experimenting

with values between 0.1-100. The performance on a validation set is the best for

C values ranging between 5-20. To show the stability of feature weights we show

their mean and variance over five-folds of training runs in Table 4.3.

Table 4.3: Feature Weights Learnt By SVM

Feature Mean Variance
Co-author similarity 1.895 0.050
Type similarity -0.087 0.005
Language similarity 0.015 0.003
Event similarity (exact match) 0.779 0.110
Event description similarity 1.421 0.118
Category similarity C1 1.889 0.038
Category similarity C2 0.114 0.015
Category similarity C3 -0.058 0.019
Category similarity C4 0.268 0.195
Name TFIDF similarity 8.555 0.125
Description TFIDF similarity -1.412 0.094
Slide Content TFIDF similarity -0.360 0.100
All Text fields TFIDF 9.729 0.273
Jaccard similarity based on LDA Top 10 topics 0.329 0.016
Affiliation similarity 0.705 0.189

As shown in Table 4.3, the positive weights for some features such as co-author

similarity, event similarity and LDA topic overlap support our intuitions on what

attributes are common in lectures that are co-viewed frequently. The negative

weights for description and slide content similarity is surprising. We reason that

this is possibly due to the fact that a large number of lectures in the training

data have empty values for these fields. Similarity based on the concatenated field

combining the name, description and slide content fields and the name similarity

77



Table 4.4: Performance with different SVM settings

Model MAR_p
Classification 0.2517
Classification without feature selection 0.2403
Regression 0.1100
Ranking 0.1697

fields have high positive weight values that are not surprising. Videos belonging

to the same event such as lectures from a course series are likely to share a lot of

content similarity in their name fields and are also likely to be viewed together.

We discard features with negative weights and re-train the classifier based on the

remaining features. This leads to a slightly better final result shown in Table 4.4.

The classification setup treated all paired lectures uniformly as positive instances.

However, since it is likely that lectures with higher co-view frequencies are most

similar, we also try unequal weighing strategies based on co-view frequencies as a

ranking or regression problem using SVM. With similar features in classification,

rather than +1 or -1 as class label, we define different target values based on co-view

frequencies of pairs for regression and ranking setup. For regression setting [38], the

target similarity value of a pair instance (l1, l2, f) is defined as s = f
S(l1)+S(l2) and

normalized later. In ranking setting [39], for each query lecture video q, the target

value is defined as pairwise preference according to co-viewed frequency, namely, in

training set for each video p paired with q, the larger co-viewed frequency (p, q) has,

the higher ranking it stands. Table 4.4 shows that our preliminary experiments

where a regression and ranking formulation was adopted performed worse than

classification, but further experiments on understanding this aspect are required.

4.7 Conclusions

In this chapter, we study a cold-start problem in the context of video lecture

recommendation. We study closely the relative features, including various meta data
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like the author information, the categories videos belong to, and most importantly

the co-viewed feedback from users. Using such user feedback, we formalize this

recommendation problem into a classification framework. SVM is leveraged to

learn weights of all features in determining the new videos’ similarities to query

videos. We obtain a MARp score of 0.25456 in this problem, which is significantly

better than baseline method like TF-IDF.

We need further study to understand the performance difference between SVM

classification and regression or ranking formulation. Further, in our experiments,

we fit a single model over all lectures in the training data. It is possible that

the lectures can be somehow clustered so that a different model is learnt for each

cluster.
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Chapter 5
Exploiting Social Connections for

Team Recommendation

In the previous chapter, we describe our work to demonstrate how implicit user

feedback can benefit cold-start recommendation tasks. In this chapter, we will

study a different recommendation scenario, the team recommendation problem,

and present our solution framework with benefits from social relations among

users. Specifically, we investigate the team recommendation problem in IT strategic

outsourcing services, and study how we can leverage social connections to combine

both individual strength and team features together for recommending the optimal

team.

5.1 Introduction

A competent team is critical for the success of any activity that requires teamwork.

In sports, e.g., basketball, football, and volleyball games, players cannot win if they

do not collaborate well as a team. In military, missions cannot be accomplished

without highly specialized and coordinated teams. Similarly, teams are essential to

the business success of companies in industry, no matter whether they are startups
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or large international organizations. Team recommendation or formation using

a computational approach has recently drawn a lot of attention from operation

research [7, 17, 98] and data mining communities [23, 47]. In this chapter, we

study the team recommendation problem in the real business world, specifically, IT

strategic outsourcing services. To the best of our knowledge, this work is the first

of its kind in a realistic business scenario.

IT strategic outsourcing (SO) is the process of contracting IT related business

functions, for example, help desk services, cloud services, and network management,

to external service providers. Companies seeking to outsource typically issue a

request for proposal (RFP) to service suppliers. Interested providers can respond to

the RFP by submitting a detailed solution, typically in a very competitive bidding

process. The solution needs to address the potential client’s requirements by

detailing the bidder’s technical capabilities, price of services, estimated completion

time, etc. Design of IT service solutions, especially for large strategic outsourcing

deals with billions of dollars, is a very complex process. It requires a wealth of

knowledge and expertise not only in external aspects such as client’s business,

competitor’s strengths, and insights into successful win strategies, but also in

internal company aspects such as capabilities of available technical service offerings,

costing and pricing guidelines, etc. All of these factors need to go into designing a

winnable solution that can achieve the desired profitability.

The time window for submitting service solutions to clients can be very short.

Especially, in highly competitive markets, service providers have to make quick

responses to client’s RFP. Locating experts with right skills and forming a competent

team to act swiftly thus become very critical. In this work, we refer to such a team

of experts as a deal team, and the task of finishing a service solution as a project.

Experts take different job roles in a deal team, such as project leader, solution

architect, sales manager, development manager. Solution architects also have more

detailed job roles according to their specialized service components.
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Experts’ individual expertise and experience play an important role in accom-

plishing the project. It is also known that how effectively they communicate and

collaborate with one another can affect team performance. For example, Huckman

et al. [35] show that in an Indian software services firm, the level of team familiarity

(i.e., the average number of times that team members have worked with one another)

has a significant positive effect on team performance (i.e., the number of defects in

software). For IT strategic outsourcing services, in large international organizations,

experts may come from different business units or are physically located in different

offices. Understanding their work collaboration history and connection strength is

important to build a competent team.

Social connections can be quite beneficial in measuring and evaluating team

strength. Researchers propose the concept of communication cost to represent

the strength of teams [41, 47]. The smaller the cost, the better a team. They

first construct a weighted or unweighted social graph based on connections among

potential candidates, define the communication cost of potential teams based on

network characteristics. Various network characteristics can be leveraged for the

cost definition, e.g., the diameter of a subgraph composed of team members.

In this chapter, we propose a general team recommendation framework that

considers both individual strength and team features. We extract individual

strength from people’s work experience, and derive potential teams’ characteristics

from social networks built on various social activities, including their collaboration

history and other online interactive activities. Different from all the existing work,

we leverage the outcomes of historical projects (win or not win) to identify important

features in team recommendation using a machine learning approach. A team

quality metric is proposed by a linear weighted combination of these features. Our

contributions are summarized in the following:

• We propose a team recommendation framework which considers both individ-

ual and team level characteristics for team recommendation. Different from
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existing work which only use a single type of team feature, our framework

can easily incorporate multiple types of team information. The proposed

recommendation framework is general and can be applied to different domains.

• When historical projects along with their outcomes exist, a machine learning

approach is applied to learn the weight of each feature. A team strength score

is proposed using the weighted features.

• A heuristic search algorithm is applied to find the approximate optimal team.

• We apply our framework in a real business setting, i.e., IT strategic outsourcing

services. The results show that our framework works well in practice.

• To evaluate our recommendation algorithm, we apply it to public DBLP

data set for academic team recommendation. The results demonstrate the

effectiveness of our algorithm compared with existing approaches.

5.2 Related Work

A lot of research efforts have been recently devoted to the problem of team recom-

mendation or formation1, for example, forming teams in academic paper author-

ing [42,47], movie acting [42], and engineering [17,35].

In data mining community, Lappas et al. [47] were the first to study the problem

of finding a team of experts from a social network. A communication cost is defined

to measure how effectively team members can collaborate: the lower the cost, the

better the collaboration. The authors studied two types of communication cost for

team formation: the diameter cost, which is the largest shortest path between any

pair of nodes in the subgraph formed by a team, and the minimum spanning tree

among the team members. Two heuristic approximation algorithms were designed
1Since both team recommendation and team formation are about finding a team that can

cover a set of specified skills or job roles, we use these two terms interchangeably

83



specifically. Kargar et al. [41] studied two other different communication costs: the

sum of distances, which calculates the sum of shortest distance between pair of

experts, and the cost involving a leader role in the team. Kargar et al. [42] later

proposed a bi-objective team formation framework which considers both personnel

cost and communication cost among team members.

However, the above work only considers one single type of communication cost

(or collaboration) among a team. There are other social connections in work practice.

Team members in the same division may communicate better or more easily than

those from different divisions. Although people may have not worked together on a

project before, they can already be friends and know each other well. Such factors

can also be employed for team formation. Besides, existing work cannot handle

multiple team costs from different sources. This restricts their approaches from

expanding to other applications that require different cost functions. In this work,

we instead propose a general framework that can incorporate arbitrary types of

team costs or features.

Datta et al. [23] studied similar team recommendation problem by leveraging

academic knowledge networks. The authors consider team cohesion as an important

factor in ranking teams. Various types of social graph and clustering coefficients can

be used to calculate team cohesion. Researchers also studied several social factors

in team recommendation [13, 22, 88] They represent socio-semantic interactions

in three graphs: the competence network from a bipartite graph of users and

concepts, the social connections from interactions among users, and the team

network hyper-graph from joint appearance of users and concepts. However, the

empirical evaluation from such work is only carried out with regard to time factor,

e.g., how long it will take to compose a needed team. We cannot see any evaluation

metric about how teams can finish some specific tasks.

Our problem is also related to expert search. SmallBlue [50] demonstrates one

such study. SmallBlue is a social networking application in business intelligence. It
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leverages both public user profile information and private messages to analyze social

network within a company. The purpose of this system is to answer the questions of

“who knows what” and “who knows whom”. Its functions include mining expertise,

retrieval about experts, and visualization (via ExpertiseNet), it also provides social

network analysis for people’s collaboration and expert recommendation. However,

such a system does not have the function of team recommendation.

5.3 Team Recommendation

In this section, we first give the formal team recommendation definition and then

introduce a general team recommendation framework by combining individual

strength and team features. Two types of team features are considered. We apply

a machine learning approach to learn the weights of different features and propose

a team quality metric. We finally introduce Max-logit, an equilibrium selective

learning algorithm, to find teams in a combinatorial solution space.

5.3.1 Problem Definition

Let P = {p1, p2, · · · , pn} be a set of people and S = {s1, s2, · · · , sm} denote a set

of roles. Each person can work as a set of different roles, denoted as H(pi) ⊆ S. If

sj ∈ H(pi), we say that person pi can work as role sj. For each role sj, we denote

the set of people who can work in sj as C(sj) ⊆ P . Given a project that requires a

set of roles S ′ ⊆ S, we need to find a team T ⊆ P so that every role sj ∈ S ′ will be

covered by a person from T , that is, for each sj ∈ S ′, C(sj) ∩ T 6= φ.

The goal of team recommendation is to find the best team that can cover the

required role set. However, how to measure team competence varies a lot in different

applications. Multiple types of costs or features may co-exist and affect the team

performance together. For example, a person’s expertise and experience may play

an important role in determining her chance of joining a team. interaction and
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collaboration efficiency among team members need also be taken into consideration.

We therefore propose a general framework that can combine multiple types of

features in team recommendation.

Without loss of generality, we define the following three functions.

Definition 1 (Individual Feature Function) F : P → <K. Each person has K

predefined individual features, such as experience and expertise.

Definition 2 (Team Feature Function) G : P(P ) → <L . A team composed of

a subset of P has L team features, such as team closeness and social connection

strength.

Definition 3 (Team Strength Function) Given a team T of individuals for a project

S ′, its team strength defined as:

TeamStrength(T ) = 1
|T |
∑
pi∈T

−→
W1F (pi) +−→W2G(T ),

where |T | is the cardinality of team T or the size of the team, −→W1 is the weight

vector for individual features, and −→W2 is the weight vector for team features. All

the weights are constrained to be non-negative. That is, we assume these features

either have no effect or positive effect on team strength.

We define our team recommendation problem as follows.

Problem 2 (Team Recommendation Problem) Given a project S ′, the individual

features F for all people, team features G for all possible team formation, and

weights −→W1,
−→
W2 for all features, find a team T so that each role in S ′ will be covered

and only covered by one person, each person will cover at least one role, and

TeamStrength(T ) is maximized.

Note that we define team strength function instead of cost function. While

previous work tries to minimize team cost, our objective is to maximize the team

strength.
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5.3.2 Feature Description

The individual and team features used in this chapter are summarized in Table 5.1.

While most individual features are extracted from project history data, the team

features are from collaborations graph in project history data and various other

social connections.

Table 5.1: Feature List

Feature Description Source
Individual experi-
ence

Number of participated projects
in history

Project History

Individual win expe-
rience

Number of winning projects in
history

Project History

Individual win rate Winning rate in history Project History
Individual role expe-
rience

Number of participated projects
as specific role in history

Project History

Team closeness Closeness from work collabora-
tion graph

Project History

Social connection Various connections in the team Social graph con-
structed from work
practice

5.3.2.1 Individual Features From Project History

One approach to measure individual capability is to look at a person’s project history.

Intuitively, the more projects a person has worked on and achieved successful results,

the more capable she could be. Therefore we extract a few individual features from

people’s project experience:

• Experience: we count the number of projects each person participated. The

more projects a person worked on, the more experience she gained, and

therefore the more capability she could have. Feature values are normalized
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using Min-Max normalization and ranged in [0, 1]. That is,

Normalized(e) = e− Emin
Emax − Emin

,

where e is the value before normalization, Emax is the maximum of value for

this feature, and Emin is the minimum value.

• Win Experience: Only looking at the number of involved projects may not

suffice to prove a person’s expertise, so we further consider their project

outcomes, and count those projects with win outcomes. Feature values are

normalized using Min-Max normalization.

• Win Rate: We also calculate win rate from each person’s experience. It is

defined as:

Win Rate = Number of winning projects
Number of participated projects .

Note that if number of participated projects is 0, the win rate is also 0.

• Role Experience: People recommended for a specific role must have working

experience for that role before. It is defined as the number of projects a

person worked as that role. This leads to a feature set of a m × n matrix,

where m is the number of roles, and n is the number of all people. This value

is also normalized.

5.3.2.2 Team Features From Social Connections

Team features measure how well team members collaborate and communicate

with each other. We extract team features from multiple social graphs. First,

work collaboration graph is important in determining team’s closeness. People

who have worked together may collaborate better than people who do not have

collaboration experiences. Second, social connections among people may also reflect
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their acquaintance or familiarity between each other, e.g., employees of the same

division in a company, membership of the same communities, etc. These connections

can be depicted as social graphs where nodes are people of interest and edges are

their connection relationship.

We demonstrate two team features that are extracted from different social

graphs. The first team feature is defined as team closeness derived from work

collaboration graph. We define a graph G = (P,E) from historical project data,

where P = {p1, p2, · · · , pn} represents people, and E represents collaboration

relationships from the projects. An edge e = (pi, pj) ∈ E, where pi, pj ∈ P exists

iff pi and pj have worked together on the same project before. A closeness score for

a team T ⊂ P is defined as

Closeness = 2
|T | × (|T | − 1)

∑
pi,pj∈T

1
ShortestPath(pi, pj)

,

where |T | is the cardinality of team T . The shortest path between two nodes is

calculated from the complete work collaboration graph, and we define

ShortestPath(pi, pj) = |P |

if there is no path between pi and pj. This feature is adapted from the classical

social measure [90]. It characterizes how well an individual belongs to the rest of a

team. Note that the higher the score, the closer the teams. The maximum value

for a closeness score is 1 which means every person within this team has worked

with each other previously.

The second team feature is the connection strength from various social con-

nections. Besides work collaboration history, other connections may also affect

the cohesion of teams. In our system, we crawled various connection informa-

tion from the company intranet, including if same direct manager, internal wiki

co-edit relationship, internal instant messenger friendship, and communities co-
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membership, etc. We then build a general weighted graph from this connection

data, Gs = (P,Es), where P represents people of interest, and Es represents various

connections between people. An edge eij = (pi, pj) ∈ Es iff we find relationships

between pi and pj . Since there are multiple types of connections between people, we

define the weight of eij as the number of relationships we can find from the crawled

data, denoted as CountPath(pi, pj). A connection score for team T is calculated as

Connection = 2
|T | × (|T | − 1)

∑
pi,pj∈T

CountPath(pi, pj).

5.3.3 Feature Weight Learning

The ultimate goal for team recommendation is to achieve project success, e.g.,

winning games in sports, publishing papers in academia, winning deals in business,

etc. Besides team strength, there are other factors that may also affect project

outcomes in IT strategic outsourcing, e.g., service quality, expected client values,

competitor’s offerings, etc. However, excluding these factors that are not controlled

by a deal team, team strength itself has a significant effect on the project success.

Different features have different significance in affecting the project result. Therefore

it is important to assign feature weights in a reasonable way. In existing work,

feature weights are either not considered or manually assigned. In this work, the

feature weights are learned using a machine learning approach by leveraging project

outcomes (win and not win). We can also study the correlation between features

and the project outcomes during the learning process. We formalize the feature

weight learning problem as follows:

Problem 3 (Feature Weight Learning) Suppose we have a training set of his-

torical projects {S1, S2, · · · , St}, teams {T1, T2, · · · , Tt} which were formed to fin-

ish the projects, as well as their project outcomes Y = {y1, y2, · · · , yt}, where

yi ∈ {Win,NotWin}. Given the previously defined individual features F and team
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features G, we learn their corresponding weight vectors −→W1 and −→W2 so that for a

set of new projects and candidate teams, we can best predict these teams’ project

outcomes.

We leverage logistic regression [8] to solve the above weight learning problem.

Logistic regression measures correlation between these features and outcomes by

learning coefficients of the features, and calculating a probability score to predict

the outcome. These coefficients can be treated as weights to measure feature

significance. In our case, the project outcome is a binary categorical dependent

variable. All the individual and team features are defined as independent variables.

For a team T , the learned weight vectors −→W1 and −→W2 are then used to compute its

team strength score, i.e., TeamStrength(T ). Note that we assume all the weights

in TeamStrength(T ) to be non-negative. We therefore use non-negative logistic

regression method 2 to obtain all the weights.

5.3.4 Team Recommendation Algorithm

From the definition of Problem 2, our team recommendation is a combinatorial

optimization problem in nature. As pointed out in [47], it is an NP-hard problem.

Therefore we need some approximation algorithm to find a quasi optimal solution.

We use a variation of MaxLogit algorithm [79] for finding teams. MaxLogit is

an equilibrium selective learning algorithm studied in potential game theory and

networking communities. In a potential game that is composed of a set of players

and according action sets, every player tries to take the action that will increase

a single global utility – the potential function [59]. It is established that every

potential game possesses at least one Nash Equilibrium profile that maximizes the

potential function [65]. MaxLogit can converge to the best Nash equilibrium with

provably fastest convergence rate for the potential games.
2http://cran.r-project.org/web/packages/penalized/
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Our team recommendation problem can be fitted into a potential game too.

Consider for each required role, the action set is choosing expert from candidates

of that role. The potential function is the combined feature for a team. Our goal is

to find the optimal team composition that can maximize the potential function.

Therefore the equilibrium selective algorithm such as MaxLogit can be applied here.

The MaxLogit algorithm has two major steps: composing a new team solution, and

deciding whether to accept the new solution or stick to the old one. The pesudo

code of the team search algorithm is presented in Algorithm 1.

Algorithm 1 Max-Logit Algorithm for Finding the Best Team
Input: a project with required roles S ′ = {s1, s2, · · · , sq}, set C(si) of candidates
for each role si ∈ S ′, individual feature F for each person, team feature G for any
team, feature weights −→W1,

−→
W2, function Cost(T ) as the inverse of combined team

feature, number of iterations N , smoothing factor τ
Output: the best team Tbest and its cost Cost(Tbest)
1: Randomly select candidate for each role and generate a team T , set Tbest ← T
2: for i = 1 to N do
3: Calculate Cost(T )
4: Randomly select a role, and replace it with a randomly selected alternative

candidate, get a new team T ′

5: Calculate Cost(T ′)
6: prob← Probability(Cost(T ), Cost(T ′))
7: r ← random(0, 1)
8: if r ≤ prob then
9: T ← T ′

10: if Cost(T ) < Cost(Tbest) then
11: Tbest ← T
12: end if
13: end if
14: end for
15: return Tbest, Cost(Tbest)

16: function probability(Cost(T ), Cost(T ′))
17: vt = exp−Cost(T )/τ

18: vt′ = exp−Cost(T
′)/τ

19: prob = vt′
max(vt,vt′ )

20: return prob
21: end function
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Note that we calculate the team cost as the inverse of team strength, and τ is a

small positive constant of smoothing factor. This algorithm always searches team

formations that are in proximity of the current one, because we only change the

candidate for one role each time. The combined team feature affects the transition

probability. That is, when we find a team with higher combined team feature, we

will always adopt it. However, when the new team has lower feature value, we are

still likely to adopt it. The algorithm is then able to jump out of local optimum

and traverse the complete solution space and focus on the global maximizer instead.

5.3.5 System Workflow

We show our team recommendation workflow in Figure 5.1. Our system is composed

of the following major components:

• Feature Extractor: it extracts information from expert profile, historical

project data, and work connection records in the company intranet. The

extractor outputs individual features and team features.

• Feature Learner: it learns weights of individual and team features with

respect to project outcomes using logistic regression.

• Deal Team Recommender: given a set of required skills or job roles,

recommender uses the features extracted from historical data and feature

weights learned from feature learner to rank and search optimal teams. A

system UI from the recommender present the finalist to users.

5.4 Experiment Results

In this section we present our experimental results. We first demonstrate an

application of our team recommendation framework in a real business scenario.
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Figure 5.1: Workflow of Team Recommendation System

Then we evaluate the effectiveness of MaxLogit algorithm in team formation on

the public DBLP data set, and compare it with existing work.

5.4.1 Team Recommendation in IT Strategic Outsourcing

Services

We apply our proposed framework to the team recommendation problem in IT

strategic outsourcing services for a large IT service provider. In this subsection, we

present the experiment results.

5.4.1.1 Experiment Settings

We collect historical project data in IT strategic outsourcing services within a

certain time window. Incomplete records are removed from this data set according

to the following two rules. First, some essential roles must be present in each

project, e.g. the manager role. Second, each record must have project outcome for

our evaluation purpose. Only people who have complete name format are retained.

We conduct a few other data cleaning steps, including merging records that have

same people but with slightly different name formats. These complete names can

be used later for information retrieval from the company intranet, because each
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employee in the company has a unique name that can be used as identity. We also

only retain projects with kick-off date so that we can conveniently sort data records

in a temporal manner. This preprocessing leads to 3,022 project records and 2,142

people as candidates in our data set.

All the records are sorted according to the projects’ kick off date. The first

2,700 projects, about 90% of the data set, are used as history in the experiments.

We extract all individual features for every candidate from this history data. We

also build collaboration graph based on this history data. Then for the left 322

projects, we can retrieve all individual feature and team closeness values.

In addition, the company intranet provides many platforms for employees to

build acquaintance with each other. To name a few, there is friend relationship

on the instant message platform. The company also provides online community

service to employees. People can join diverse communities according to their own

personal interests. Such same community membership is also a social connection

we consider would improve team collaboration. Therefore we also crawl all such

social connection information among employees from the company intranet. In fact,

the company provides an API to efficiently access these assorted social connections

between any two employees. By submitting pairs of employee identity to the API,

we crawl all possible social connections for people in our data set. As a result, 1,413

candidates’ connection information is successfully retrieved. This data is used for

the team connection feature in our experiments.

5.4.1.2 Feature Validation

We first carry out validation study over the proposed features. We divide our data

set, namely the 322 projects data, into “Win” and “NotWin” groups, and examine

their feature difference by performing the statistical hypothesis two sample t-test.

The test examines whether the Win teams have higher feature means than NotWin

teams. The validation result is shown in Table 5.2. Note that all the feature values
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are normalized in the test.

We find that most features in winning teams have higher mean values than

non-winning teams, especially in individual features. The p-values of the individual

features in the test indicate that such differences are quite significant. Team

Closeness also shows obvious advantage in winning teams. However, the Connection

value do not show similar difference. Instead the Connection difference for team

features is quite slight between Win and NotWin teams.

Table 5.2: 2-Sample t-test of features

Mean of Win
Teams

Mean of
NotWin
Teams

P-value

Experience 0.4921 0.3805 0.00002
Win Experience 0.4351 0.3243 4.535e-05

Win Rate 0.8352 0.7176 1.966e-08
Role Experience 0.7467 0.5839 1.162e-06
Team Closeness 0.4111 0.3717 0.0317
Connection 0.1896 0.1924 0.4727

5.4.1.3 Feature Weight Learning

Feature weights are learned using Logistic Regression method. The learned feature

weights are shown in Table 5.3. This method gives us six non-negative coefficients,

excluding win experience feature. Notice that our purpose here is to use feature

weights for ultimate team strength calculation, not the classification results per se,

Table 5.3: Feature Weight Learning Results from Non-negative Logistic Regression

Feature Weight
Experience 0.1545
Win Rate 2.9949

Role Experience 1.9881
Team Closeness 0.4993
Connection 1.8699
Intercept -3.6404
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therefore the coefficients can also be adjusted as needed accordingly.

5.4.1.4 Team Search Algorithm Evaluation

To evaluate the algorithm effectiveness, we generate 50 random team requirements,

each of which requires 3 to 7 randomly selected roles. For comparison purpose,

we include two heuristic algorithms as baseline. The first is BestRole algorithm

which ignores team features and always chooses the best candidate for each role.

The second is TopK traversal algorithm which traverses all possible combinations

of the top k candidates and chooses the team with highest team score. Using

feature weights learned from previous step, we calculate team strength of solutions

generated by each algorithm. In our experiments we set k to 5 in TopK traversal

method. For MaxLogit, the smoothing constant τ is set to 0.05, and the iteration

number N is 1,000.

The results are illustrated in Figure 5.2 and Figure 5.3. From Figure 5.2 we can

see that almost in every case, MaxLogit algorithm can find teams with higher team

strength score than TopK and BestRole algorithms. BestRole strategy is almost

always the worst among these three methods. This confirms that team feature plays

an important role in determining team strength. Without considering the team

feature, simply choosing the best individual candidate for each role cannot guarantee

the best team. We also compare the average team strength for all generated teams.

As demonstrated in Figure 5.3, MaxLogit also achieves the highest average team

strength score among the three algorithms.

5.4.2 Experiments over DBLP Data Set

To demonstrate the expandability of our algorithm, we also apply it to the public

DBLP data set as the paper [47]. The authors in [47] designed two different

team cost functions, and came up with two different algorithms to search the best

team accordingly. We apply our algorithm to both scenarios and compare the
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performance with the two algorithms in this section.

To make a fair comparison, we use the same setting as [47]. The data set

is a snapshot of DBLP data taken on Nov 26, 2013 3. This data set contains a

collection of papers and their author names in computer science. We generated a

set of experts and their skills in the same way as the paper [47]. More specifically,

we only keep papers published in some specified major conferences in the areas

of Database (DB), Data Mining (DM), Artificial Intelligence (AI), and Theory

(T). A total of 19 venues are kept here: DB={SIGMOD, VLDB, ICDE, ICDT,

EDBT, PODS}, DM={KDD, WWW, SDM, PKDD, ICDM}, AI={ICML, ECML,

COLT, UAI}, and T={SODA, FOCS, STOC, STACS}. The expert set consists of
3http://dblp.uni-trier.de/xml/dblp.xml
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authors who have at least three papers in this dataset. The skills of each expert are

generated as the set of terms that appear in at least two publications the expert

co-authors. We generate a graph from the coauthor relationship where two experts

are connected only if they have written at least two papers together. The weight of

an edge connecting person i and j is calculated as 1-pi∩pj
pi∪pj where pi means the set

of papers i has published in this data set. This final graph consists of 8,685 nodes

and 13,974 edges.

5.4.2.1 Performance Evaluation

We generate a number of projects as follows. Each project is specified by a set

of skills. The number of skills varies from 2, 4, 6, ..., 20. For each configuration,

we randomly generate 100 projects and calculate the average result from each

algorithm.

We first compare the communication cost between MaxLogit algorithm and the

algorithm RarestFirst for the diameter communication cost problem. The diameter

is defined as the largest shortest path between any two members in a team. If the

solution produced by either algorithm is not a connected graph, we simply ignore it.

The original problem setting is to find the best connected team. For such a purpose,

the algorithm RarestFirst will also choose members who may not cover required

skills as a connection hub. Our algorithm always only considers candidates for each

required skill, and it will only output expert selection of each skill. However, in

the final team formation we can include all the people on the shortest path of each

pair from the skill covering experts. This will generate a solution with the same

diameter communication cost as the original output of our algorithm, and it also

meets the problem requirement as [47].

The diameter communication cost result is shown in figure 5.4. We can see

from Figure 5.4 that MaxLogit can always find teams that have less communication

cost than RarestFirst. However, MaxLogit only considers the cost but not the

99



connectivity, this leads to higher number of disconnected teams as shown in

Figure 5.5.
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Figure 5.4: Diameter Communication Cost
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Figure 5.5: # of Disconnected Teams for Diameter Communication Cost Problem

Experiments are also carried out with regard to the communication cost of

minimum spanning tree using the same team requirements. As shown in Figure 5.6

and Figure 5.7, we can see that MaxLogit can also work well in this setting. However,

the communication cost of teams found by MaxLogit is a bit higher than Enhanced

Steiner algorithm in [47]. The difference becomes large when it needs a large

number of required skills. This is because MaxLogit employs random exploration of

team formation. When the number of required skills for a team becomes large, the
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combination of possible teams also becomes large. While we simply fix the number

of iteration in the MaxLogit algorithm, the proportion of explored solution space

becomes relatively smaller. Although our algorithm cannot find as good teams as

Steiner Tree algorithm in this setting, we can see the results are still reasonably

close.

Figure 5.6: Minimum Spanning Tree cost

2	
  

7	
  

12	
  

17	
  

22	
  

27	
  

32	
  

37	
  

42	
  

47	
  

52	
  

2	
   4	
   6	
   8	
   10	
   12	
   14	
   16	
   18	
   20	
  

Co
m
m
un

ic
a)

on
	
  C
os
t	
  -­‐
	
  M

in
im

um
Sp
an

ni
ng
Tr
ee
	
  

#	
  of	
  required	
  skills	
  

EnhancedSteiner	
  
MaxlogitSteiner	
  

Figure 5.7: Number of Disconnected Teams of MST Cost Problem
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From the above experiment results, we can see that MaxLogit algorithm works

quite well in the two different settings. It can achieve comparable results with

the algorithms designed specifically for the two settings. Occasionally MaxLogit’s

solutions are even better. As we target a general team strength setting, our

algorithm demonstrates its expandability in the experiments.
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5.5 Conclusions

We study the problem of finding competent deal team for a given project in IT

strategic outsourcing services. We leverage the collaboration history and various so-

cial networks to measure and evaluate teams’ capacity by combining both individual

strength and team features. The proposed team recommendation framework is very

general and can be applied to other domains as well. Since our framework considers

both individual and team level characteristics, previous work that only consider one

single type of team communication cost can be easily fitted into our framework as a

special case. The feature weights are learned using a machine learning approach by

leveraging project outcomes. We score and rank teams by combining all the features

in a linear weighted way. We apply an equilibrium selective learning algorithm to

find the approximate best team. The proposed framework is applied to the team

recommendation problem in a real business scenario. Experimental results show

that our framework works well in practice. We also compare our recommendation

algorithm with other cost function oriented algorithm on DBLP dataset for team

formation in academic paper authoring. The experimental results demonstrate the

effectiveness of our algorithm.

In real practice, there are other factors that need to be considered in team

recommendation, for example, people’s availability. Some team members have

strong expertise and can collaborate well with other members, but they are not

available. Such availability constraint should be considered in the recommendation.

Also, some projects may come at the same time. It is interesting to study how to

recommend teams for a set of projects with different priorities. There are a rich set

of research topics in team recommendation which can be investigated in our future

work.
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Chapter 6
Conclusions and Future Work

6.1 Conclusions

In this thesis, we study several data mining problems over user-generated data on

the web and social networks. We exploit the results to boost knowledge discovery

and recommendation service.

First, we study mining social media data, more specifically Twitter, to discover

interesting knowledge. We first explore our investigation about location type

detection using individual tweet content. We extend probabilistic text classification

models to incorporate temporal features and user history information in terms of

probabilistic priors. The experimental results show that our extensions of temporal

feature can increase classification accuracy from about 47% to 49% for overall

dataset. However, in some specific daily time hours, the improvement is much more

significant, e.g., from 37.7% to 45.3% for tweets posted at around 0 o’clock. The

extension with users’ check-in history leads to a boost in the accuracy from 47.1%

to 57% for Maximum Entropy.

Then we study the problem of leveraging Twitter to quantify political legitimacy

for specific populaces. We design a framework that converts tweets into a number of

topic dimensions using the probabilistic topic modeling. We leverage the sentiment
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analysis technique to evaluate polarity of each tweet, and aggregate a large number

of tweets into the final legitimacy score of a populace. The empirical evaluation on

eight sample countries using related public tweets demonstrates that our proposed

framework shows a strong correlation to results reported in political science litera-

ture, with the coefficient value of 0.7997887 (P- value = 0.01717). We also apply

this framework to a data set collected from traditional news media, and compare it

with social media Twitter. The results reveal that social media may work differently

than traditional news media for such political legitimacy quantification task.

Moreover, we investigate how to exploit user generated data to improve rec-

ommendation services. In particular, we present our work of mining implicit user

feedback in a cold-start problem of video recommendation. We propose a classifica-

tion framework based on previously seen video pairs, and learn the weights of video

attributes for ranking candidate videos to recommend. This framework leads to a

mean average R-precision score of 25%, compared to the baseline of 21% without

co-view information.

Furthermore, social networks can also be exploited to improve recommendation

tasks. We demonstrate our work by studying the problem of team recommendation.

To quantitatively capture the team level features, we take various social networks

among people into consideration from project history and many other online

activities. Moreover, we learn the feature weights from the training dataset based

on the correlation between features and project outcomes. We apply a combinatorial

optimization algorithm to search the approximate best team. We validate our

approach experimentally in a real business scenario and also compare our approach

with other state-of-the-art methods using public DBLP dataset. The results

demonstrate the effectiveness of our approach.
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6.2 Future Work

Many directions are worth further pursuing in future. For the social media data, we

believe there are various ways to further improve understanding. For example, for

the task of classifying users’ location type using tweet, we can further investigate

recurrent patterns, and utilize such temporal advantage to improve classification

accuracy. Moreover, social media are always evolving, there will always be new

opportunities to discover interesting knowledge.

Another direction to improve leveraging user-generated data is to combine

multiple formats of data for recommendation service. In this thesis, we only consider

limited data formats like implicit feedback and social networks for recommendation

tasks. There may be social platforms that can harvest various formats of data,

including text, image, social network relationships, etc. By integrating techniques

of text mining and social network analysis, we can address many other challenges

and opportunities to improve the recommendation services.
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