
The Pennsylvania State University

The Graduate School

ANALYSIS OF INTER-COMPONENT COMMUNICATION IN MOBILE

APPLICATIONS THROUGH RETARGETING

A Dissertation in

Computer Science and Engineering

by

Damien Octeau

c© 2014 Damien Octeau

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2014

The dissertation of Damien Octeau was reviewed and approved∗ by the following:

Patrick D. McDaniel

Professor of Computer Science and Engineering

Dissertation Advisor, Chair of Committee

Trent R. Jaeger

Professor of Computer Science and Engineering

John Hannan

Associate Professor of Computer Science and Engineering

Stephen G. Simpson

Professor of Mathematics

Somesh Jha

Professor of Computer Sciences, University of Wisconsin

Special Member

Raj Acharya

Professor of Computer Science and Engineering

Head of the Department of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

Abstract

Smart phones and tablets are becoming ubiquitous. The functionality of these smart
devices can be extended through the use of third-party applications. These applications
rely on sophisticated communication mechanisms to share functionality and data. This
information sharing gives rise to emerging threats. Unfortunately, the distribution model
of mobile applications offers little to no security guarantees. Security decisions are dele-
gated to the end user, who often has insufficient information to make informed choices.
In particular, users have no visibility over inter-application communication, which forces
them to blindly trust the applications they use not to misbehave.

In this work, we review our first steps in analyzing Inter-Component Communication
(ICC) in mobile applications. Our method consists in first converting applications to a
well-known representation to enable subsequent analysis. The result of that effort is a
retargeting tool called Dare that can perform this conversion with very high accuracy
and performance. The second part of our work consists in a formal model of ICC. We
reduce the study of ICC to an instance of an Interprocedural Distributive Environment
problem. After doing so, we are able to find a solution to the ICC problem using well-
studied algorithms. We subsequently revise this ICC model by generalizing the inference
of ICC specifications to a novel type of constant propagation for complex objects. Such
constant propagation problems are specified using a propagation language. Using this
approach, we are able to model all of ICC in the Android platform. We end this work
by showing a first visualization-based study of inter-component communication. This
methodology to determine and represent ICC links enables all kinds of analyses that
need to consider multiple application components or multiple applications.

iii

Table of Contents

List of Figures vii

List of Tables ix

Acknowledgments x

Chapter 1 Introduction 1
1.1 Thesis Statement . 3
1.2 Contributions . 4
1.3 Dissertation Outline . 5

Chapter 2 Preliminary Concepts 7
2.1 Android Inter-Component Communication 7
2.2 The IDE Framework . 10

2.2.1 Supergraphs . 10
2.2.2 Environment transformers . 13

Chapter 3 Related Work 15
3.1 Techniques for Application Retargeting 15
3.2 Interprocedural Constant Propagation 17
3.3 Mobile Application Security . 17

3.3.1 Permissions . 17
3.3.2 Inter-Component Communication 19
3.3.3 Information Flow Analysis and Monitoring 22

Chapter 4 Retargeting Android Applications to Java Bytecode 26
4.1 Retargeting Challenges . 28
4.2 The ded Decompiler . 30

4.2.1 Application Retargeting . 30
4.2.2 Optimization and Decompilation 35

iv

4.2.3 Source Code Recovery Validation 35
4.2.4 Discussion . 37

4.3 A Formal Retargeting Process for Verifiable Dalvik Bytecode 38
4.4 The Tyde Intermediate Representation 39

4.4.1 Specification . 41
4.5 Transforming Dalvik Bytecode to Tyde 45

4.5.1 Building a Control Flow Graph 46
4.5.1.1 Removing Unfeasible Exceptional Control Flow Graph

Edges . 46
4.5.2 Type Inference . 47

4.5.2.1 Constraint Generation 48
4.5.2.2 Constraint Solution . 48

4.6 Generating Java Bytecode . 49
4.6.1 First Step (Pre-Processing) . 49
4.6.2 Second Step (Translating Instructions) 50

4.7 Unverifiable Dalvik Bytecode . 56
4.7.1 Observed Errors . 56
4.7.2 Handling Unverifiable Dalvik Bytecode 57

4.8 Evaluation . 58
4.8.1 Dalvik Bytecode Verification . 58
4.8.2 Retargeting . 59

Chapter 5 Analysis of Inter-Component Communication in Android
with Epicc 65

5.1 Problem Formulation . 66
5.1.1 Applications . 67
5.1.2 Examples . 68

5.2 Connecting Application Components: Overview 69
5.3 Reducing Intent ICC to an IDE problem 73

5.3.1 ComponentName Model . 75
5.3.2 Bundle Model . 77

5.3.2.1 Analysis I . 78
5.3.2.2 Analysis II . 81

5.3.3 Intent and IntentFilter Models 82
5.3.4 Casting as an IDE Problem . 83

5.4 Evaluation . 85
5.4.1 Complete Recovery of ICC Specifications 86
5.4.2 Computational Costs . 88
5.4.3 Entry and Exit Point Analysis 90
5.4.4 ICC Vulnerability Study . 91

v

Chapter 6 Inter-Component Communication Analysis with the COAL
Constant Propagation Language 95

6.1 Overview . 97
6.2 The Coal Language . 102
6.3 An IDE Model for MVMF Constant Propagation 104

6.3.1 The Pointwise Representation of Environment Transformers . . . 105
6.3.2 The L Lattice of Values . 106
6.3.3 Transformers on L . 107
6.3.4 Fixed Point Iteration . 111

6.4 Evaluation . 111

Chapter 7 Visualizing Inter-Component Communication 117
7.1 A Set-Constraint Approach to Intent Resolution 118
7.2 Efficient Solution of Set Constraints with Regular Expressions 123
7.3 Approaches to Visualize ICC Links . 127

7.3.1 Intent and Filter Links . 128
7.3.2 Component Links . 131
7.3.3 Application Links . 134

Chapter 8 Directions for Inter-Component Communication Analysis 138
8.1 Program Retargeting . 139
8.2 Inter-Component Communication Analysis 139
8.3 Future Work . 140

8.3.1 Improving ICC Analysis Precision 140
8.3.2 Improving ICC Visualization . 141

8.4 Hybrid Enforcement of ICC Policies . 143
8.5 Concluding Remarks . 145

Appendix Opcode Map fuo 147

Bibliography 151

vi

List of Figures

2.1 Representation of an Android application with components, Intents and
Intent Filters. 8

2.2 Implicit Intent ICC. 8
2.3 Example Intent and Intent Filter used for rendering a map. 9
2.4 Example interprocedural Intent creation. 11
2.5 Supergraph G∗ for the program from Figure 2.4. 12
2.6 Pointwise environment transformers for common Bundle operations. . . 13

4.1 Dalvik type lattice. 29
4.2 Dalvik bytecode retargeting. 31
4.3 Java constant pool entry defining “class name,” “method name,” and

“descriptor” for a method reference. 33
4.4 Dalvik constant pool entry defining “class name,” “method name,” and

“descriptor” for a method reference. 33
4.5 Verifiable Dalvik bytecode retargeting overview. 38
4.6 Stages of retargeting for method m2. 40
4.7 Method m3. 42
4.8 Tyde type lattice. 43
4.9 Tyde typed registers and values. 44
4.10 Tyde intermediate representation construction overview. 45

5.1 Example of implicit Intent communication. 67
5.2 Intent communication: running example. 69
5.3 Connecting application components. 71
5.4 ICC objects example. 74
5.5 CDF of computation time. 89

6.1 Simplified Intent class (unused methods omitted for conciseness). 98
6.2 Message-passing code. We assume that the extras field of the argument

Intent src contains either a single value EXT 1, or a single value EXT 3.
We also assume that the action field of src has value ACT 1. 99

vii

6.3 COAL model for the constant propagation problem. Each sink specifica-
tion describes the influence of a method call on the fields of an Intent.
The source specification describes how values flow out of modeled objects.
The single hotspot is used to query the value of the Intent at the call to
startActivity(). 100

6.4 Overview of our analysis process. 101
6.5 COAL language for the specification of MVMF constant propagation

problems. 103
6.6 Transformers for statements from Figure 6.2. 109
6.7 CDF of incoming and outgoing ICC links. 116

7.1 Running example. 119
7.2 Representation of Intents and Intent Filters used for the linking process. 120
7.3 Links between Intents and Filters. 129
7.4 Links between Intents and Intent Filters without low-confidence links. . 130
7.5 Links between components. 131
7.6 Links between components without low-confidence links. 132
7.7 Condensed links between components without low-confidence links. . . . 133
7.8 Links between applications without low-confidence links. 135
7.9 Links between applications without low-confidence links and empty Intents. 136

8.1 An example with string array field operations. 141
8.2 Visualization of application collusion. 142
8.3 Hybrid Inter-Component Communication policy enforcement. 144

viii

List of Tables

4.1 Studied Applications (from Android Market). 36
4.2 Simplified syntax of Tyde Instructions. 43
4.3 Opcode map fds for typed values. 50
4.4 Opcode map fuo for set Ouo (partial definition). 51
4.5 Opcode map fao for set Oao. 52
4.6 Opcode map fub for set Oub. 52
4.7 Opcode map fab for set Oab. 53
4.8 Tyde maps. 54
4.9 Map fxastore. 55
4.10 Verification results for partially verifiable classes. 60
4.11 Dare retargeting success rates. 62
4.12 dex2jar retargeting success rates. 63

5.1 Precision metrics . 87
5.2 ICC vulnerability study results for the random sample (R) and the pop-

ular applications (P). 92

6.1 Possible values of the fields of intent at the startActivity() method call
in Figure 6.2. The first two values correspond to the first branch after the
if statement (Lines 5 and 6 in (b)). Value 1 represents the case where
the extras field in src has a value EXT 1, whereas Value 2 is for the case
where the field value is EXT 3. Values 3 and 4 are similar, except that
they account for the fall-through branch (Lines 8 and 9) of the if statement. 101

6.2 ICC specification precision results. 113

7.1 Component statistics. 127

A.1 Opcode map fuo for set Ouo (part 1). 148
A.2 Opcode map fuo for set Ouo (part 2). 149
A.3 Opcode map fuo for set Ouo (part 3). 150

ix

Acknowledgments

I would like to thank all those without whom I could not have completed this dissertation.
First, I wish to express my deepest gratitude towards my advisor Dr. Patrick McDaniel.
He has always given me the right amount of guidance and freedom that I needed to
perform my research. When I first arrived and needed time to learn basic skills he let me
get up to speed without pressuring me. He also taught me to write research papers and
even had the patience to rewrite parts of my first papers. In the later year of graduate
school he gave me the freedom to implement my ideas without asking for immediate
results. I cannot think of a way that would have stimulated my creativity more. He was
always supportive when I needed it, including for simple things like reassuring me before
my first conference talks.

The work I present in this thesis would not have been possible without Dr. Somesh
Jha. He has provided me with very precious insight on issues related to program analysis.
He has invited me to the University of Wisconsin twice and every time I have felt like I
learned something new and that we made significant progress in our project. Our long
email conversations also made my understanding of basic principles of program analysis
deeper.

I would also like to thank the members of the SIIS Lab. When I started as a Master’s
student, Will Enck provided me with very valuable advice on technical aspects of my
research. I received assistance from Tom Moyer when I had workstation or administrative
issues. Stephen McLaughlin provided me with very useful feedback on paper drafts. I
learned a lot about dedication and hard work from Steve, Hayawardh Vijayakumar and
Sandra Rueda since they were consistently in the office late when I also happened to
be there. They also were always there for interesting conversations, jokes or other bon
mots. I also thank Matt Dering for his help in implementing parts of the last project
described in this dissertation.

I thank Somesh’s group for their very warm welcome both times I visited Somesh.
In particular I thank Drew Davidson, Matt Fredrikson and Bill Harris for their con-
structive reviews of paper drafts. I am also thankful to Daniel Luchaup for his technical
contributions to my research.

I am very grateful for the support I have received from my friends and family in
France and in the United States. Despite my long stay abroad, they still make me feel

x

like I never left whenever I come back. I wish to thank my brother Vivien for inspiring me
to find a path in the sciences. I am also deeply grateful to have parents who consistently
told me that anything is possible if I persevere enough. Finally, I have spent the second
half of my graduate studies in the company of my girlfriend Başak. I am very fortunate
to have been able to count on her love and support in the good times and the bad times
during this journey.

xi

Dedication

To my parents, for their unwavering support.

xii

Chapter 1
Introduction

The rise of mobile computing is indisputable. Smart phones are now outselling feature

phones [1] and tablets sales are on the verge of overtaking desktop and laptop computer

sales [2]. Beyond portability, these devices offer many advantages to their users. Chiefly,

the functionality of these devices can be seamlessly extended through the installation

of applications, making mobile devices limited only by their hardware capabilities. The

hardware limitations are constantly being pushed through the miniaturization and con-

tinuous improvement of components such as microprocessors, GPS receivers, accelerom-

eters and cameras. This in turn encourages the development of even more innovative

applications, rendering mobile devices indispensable to their users.

Millions of applications are now available to mobile users. The barrier of entry to

distribute an application on a market is very low, usually only requiring at most a small

fee. These applications are developed by a wide variety of organizations and individuals.

Some are experienced developers who understand how to program for mobile devices,

but others do not fully grasp the development model in their platform of choice. This

can lead to vulnerabilities when the application programming interfaces (APIs) are not

used properly. Developers’ intentions are also very opaque: some may have the users’

best interests at heart, while others steal data or money from their users. Unlike the

desktop computing world, users have little to no visibility into this. They used to buy

software from a relatively small number of companies whose reputation could easily be

verified. Now they have to select applications mostly based on their description, from a

very high number of developers.

To complicate the situation, there is often not a clear line between the harmless

applications and the malicious ones. Markets offer a vast selection of “grayware”, which

2

may not be outright malicious while still misusing users’ personal data. It is often

impossible for users to detect and avoid misuse of their personal data, as it is routinely

collected by applications for legitimate purposes.

The dominant mobile operating system is Android. Unlike iOS, its main competitor,

it can be used by any phone or tablet manufacturer. In fact, anyone can download the

source code of Android, modify it, compile it and install the resulting system image to

their device. Unsurprisingly, countless mobile terminals are thus using Android as their

operating system.

Android applications are developed in components, which can communicate with

each other using sophisticated platform-specific mechanisms. Inter-Component Com-

munication (ICC) enables functionality reuse and data sharing between components.

Components can communicate both within single applications and across applications.

Unfortunately, properly using ICC in Android is all but simple. Users and develop-

ers alike can fall victim to its intricacies and ambiguities. Therefore, in practice, ICC

increases the attack surface of applications in subtle ways [3, 4].

Inter-Component Communication is the source of many types of vulnerabilities. Data

can be stolen by intercepting ICC messages containing private data. Additionally, priv-

ileged applications can be exploited when they do not appropriately protect their inter-

faces. One of the main facets of the Android security model is the notion that permissions

protect access to sensitive resources such as the camera or the GPS receiver. Applica-

tions that are granted permissions can leak their privileges through the misuse of ICC [5].

Developers commonly misuse the communication primitives, rendering their own appli-

cations vulnerable. Finally, ICC itself can be the vehicle of attacks such as collusion

attacks [6, 7], where different applications collaborate to achieve their malicious goals

through ICC. Users have no visibility over which applications are interacting with each

other and cannot make informed decisions to protect themselves.

It is worth asking which of the numerous mobile ecosystem stakeholders should be in

charge of providing users with security guarantees. Cellular operators are not suited for

this task. They provide network service and have no direct control over the platform or

the applications. They only provide slight customizations to subsidized handsets. Phone

and tablet manufacturers have some control over the platform, since they usually ship

customized versions of Android with their phones, so they seem like a good candidate.

However, they have difficulties providing security updates from the main distribution

of Android to their customized versions [8]. Therefore, one cannot expect them to

develop any significant additional security-related features. The Android developers

3

have influence over the security of the Android platform. However, modifications to the

platform’s security model are a considerable challenge, as compatibility with the current

applications has to be maintained.

Application markets have incentives to provide secure applications. They want users

to be comfortable downloading and installing applications, since they earn a percentage

of application sales. However, they would face significant logistical hurdles if they tried

to provide strong guarantees for all the applications they serve [9]. A more fundamental

issue is that security is highly contextual. A given user may find an application secure,

while another user may consider that it unacceptably violates her privacy. Thus, markets

cannot provide meaningful guarantees when it comes to Inter-Component Communica-

tion.

In the end, two stakeholders have a strong influence over the security of a mobile de-

vice as it relates to Inter-Component Communication: developers and users. Developers

have control over the interfaces that their applications are exposing. For example, they

can ensure that a component remains private to the application in which it is declared.

They can also limit the applications with which a public component is allowed to interact.

Users can choose which applications they install. They can potentially avoid vulnerable

applications or problematic application combinations. However, when it comes to ICC

they cannot make informed choices. In other words, security- and privacy-conscious

users do not have the means to enforce the security policies that they deem reasonable.

Before they can take steps to select applications based on how they interact with their

environment, it is necessary to be able to analyze application ICC. That would enable

users to make informed choices before installing applications.

1.1 Thesis Statement

The focus of this work is on statically inferring the late binding between ICC message

sources and targets. The binding of ICC messages with their targets normally occurs at

runtime. This hinders static analysis, since the potential control or data flows between

components are not known. We attempt to accurately describe the specifications of ICC

objects so that potential runtime links between application components can be found

statically. This applies to communication within single applications and across different

applications.

We first note that, while Android applications are developed in Java, they are com-

piled to a platform-specific format that cannot readily be analyzed by Java tools. In

4

order to be able to leverage the work that has been done for analyzing Java applica-

tions for almost two decades, we need to be able to convert Android applications to a

Java representation. For many reasons, this retargeting process is challenging. However,

we found that after transforming code to an intermediate representation that is typed

according to Java rules, we can perform retargeting by using only a small number of

generic code rewriting rules.

After we establish reliable retargeting techniques, we formulate a data flow model

for Inter-Component Communication. Our model allows us to infer the values of ICC

messages that we use to form links between components. The inter-component links that

we infer represent potential control or data flows between application components. Our

techniques are all evaluated using large-scale experiments. We show aggregate data and

we prove that the processes we develop can scale to the large numbers of applications

present on individual devices or even on application markets. We now formulate our

thesis statement.

Program retargeting can be used to bridge the gap between new application

formats and existing analysis tools to enable the analysis of applications from

emerging platforms. Given a retargeted program and a specification of the data

flows affecting inter-component messages, we can build a data flow model that

is sufficient to infer inter-component communication.

This thesis has two fundamental parts. In our work, application retargeting is an es-

sential prerequisite to any other analysis. Therefore, we first develop reliable techniques

to retarget Android applications to Java bytecode, which can already be analyzed using

multiple existing analysis tools. The second thrust of this work consists in developing

Java bytecode analyses to infer the potential runtime links between application compo-

nents.

1.2 Contributions

In this dissertation, we make the following contributions:

• We develop techniques to accurately retarget Android applications to Java bytecode.

The ded system serves to identify the challenges involved with retargeting. It

also provides insight on how to tackle these challenges. The Dare method [10]

subsequently formalizes the retargeting process and the measurement of its success.

It is based on a translation to an intermediate representation that is optimized for

the retargeting problem. In particular, the intermediate representation provides

5

adequate typing for local variables where needed. Dare handles malformed input

bytecode and rewrites it in order to make the output bytecode valid. The rewriting

process preserves the runtime semantics of the program. We evaluate Dare on 1100

applications and find that it is successful in 99.99% of cases.

• We introduce a static analysis to infer the values of ICC objects. The Epicc tool [11]

performs static data flow analysis of retargeted Android applications. It is based on

a reduction to an Interprocedural Distributive Environment (IDE) problem. This

class of problems can be solved using existing approaches in an efficient manner.

We evaluate Epicc on 1200 applications and compare it to an existing research tool

for finding potential ICC vulnerabilities. Results indicate that Epicc generates

fewer false positives than the other tool.

• We introduce a generic IDE model for finding the value of complex Java objects and

we apply this model to ICC object inference. In order to enable complete coverage

of ICC methods, we develop the COAL language to express constant propagation

problems in a textual manner. This results in simpler specification of problems

such as the one solved by Epicc. The COAL solver uses a generic IDE model

and a textual COAL specification to solve ICC problems. Using COAL, we build

the IC3 tool for inferring ICC objects in a more precise manner than Epicc. We

evaluate IC3 on 350 applications and find that its precision is significantly higher

than Epicc.

• We develop a formal process for statically computing links between application com-

ponents using ICC specifications. We develop an efficient algorithm for finding all

potential links between a set of components. We identify challenges in visualizing

these inter-component links and we propose some solutions for them. In particular,

we attempt to distinguish between artifacts of the IC3 inference process and the

actual structure of inter-component links.

1.3 Dissertation Outline

In Chapter 2, we present some concepts that are used throughout. We begin by pre-

senting the mechanisms of Android inter-component communication. We then show an

overview of the Interprocedural Distributive Environment (IDE) framework, which is

used to solve interprocedural data flow problems. These preliminary concepts are fol-

lowed by a description of the related work in Chapter 2. We survey existing work related

6

to program retargeting, interprocedural constant propagation and Android application

security.

Chapter 4 addresses the problem of retargeting Android applications to Java byte-

code. It describes the challenges involved in retargeting and the first solutions provided

by the ded tool. We then identify limitations of this first approach and introduce a for-

malization of the retargeting process used by the Dare tool. We also describe principled

techniques to retarget invalid input bytecode to generate valid Java bytecode.

In Chapter 5, we develop an IDE model for ICC that allows us to determine spec-

ifications of ICC objects. This results in Epicc, our first ICC analysis tool. The IDE

problem is solved using existing algorithms, resulting in a precise and efficient analysis.

In Chapter 6, we generalize the ideas first introduced in the Epicc system. We

introduce a new type of constant propagation problem. We propose the COAL language

to specify such problems in a descriptive, textual manner. These problems are solved

using the COAL solver, which is based on a generic reduction to an IDE problem. Using

COAL, we build the IC3 tool to find the values of ICC objects. Unlike Epicc, IC3 handles

all ICC functions and it is therefore more precise.

In Chapter 7, we use ICC specifications to generate and visualize inter-component

links. We formalize the matching of components sending ICC messages with potential

target components. We develop efficient algorithms to perform this linking process. We

find that the visualization process is made difficult by some artifacts of the static analysis

that determines ICC specifications and we provide solutions to isolate the artifacts from

the links that describe the structure of inter-component communication.

Finally, Chapter 8 concludes this dissertation and offers directions for future work.

Chapter 2
Preliminary Concepts

2.1 Android Inter-Component Communication

Figure 2.1 shows a conceptual representation of an Android application. Android appli-

cations are built in components, which perform specific tasks. In practice, implementing

a component is done by subclassing one of four classes from the Android framework.

Activities are the most common component. They represent a user screen. Services

perform long-running background processing. Broadcast Receivers receive system-wide

notifications, such as the one that is sent by the operating system when a text message

is received. Another notable example is the notification that the system has just fin-

ished starting, which is received by applications that request to start when the phone

boots. Finally, Content Providers provide a way of sharing structured data between

applications.

Almost all components are declared in the manifest file that is part of all application

packages. The only exception is that Broadcast Receivers can be created and registered

dynamically in the application code at runtime. Application components can communi-

cate with one another using two mechanisms, Uniform Resource Identifiers (URIs) and

Intents. URIs are used to address Content Providers. Intents, on the other hand, are

messages that are sent between the three other component types.

An Intent can be explicit, which means that its target is explicitly named. In other

words, the Intent specifies the application and the class name for its target. Intents can

also be implicit, in which case they only specify the functionality that they desire for

their target. In this case, the desired functionality is described using three items:

• An action string specifies the action to be performed with the Intent. For example,

8

Application Name
Uses Permissions

Application Component Name
Permission
Exported
Type

Component

*1

*1

Actions
Categories
Data

Intent Filter

Target Application
Target Component
Action
Categories
Data
Permission
Type

Intent

*
1

Figure 2.1. Representation of an Android application with components, Intents and Intent
Filters.

Intent
 - Action
 - Categories
 - Data

Component A Component B
Intent Filter

 - Actions
 - Categories
 - Data

Figure 2.2. Implicit Intent ICC.

a very common action is the ACTION VIEW action, which is utilized when some data

needs to be displayed (e.g., web page).

• A set of category strings describes additional information about what should be

done with the Intent. For example, CATEGORY BROWSABLE indicates that the target

can be safely invoked from a browser.

• A set of data fields specifies data to be acted upon. This can for instance be a web

address or a phone number.

Data is described in several ways. A URI can encode multiple types of data, such as file

paths or web addresses. A MIME type can also be specified to describe the data to be

acted upon. For ease of exposition, in the remainder of this chapter we do not describe

all data fields separately. The ideas we introduce are applicable to all individual data

fields.

In order for a component to be able to receive implicit Intents, Intent Filters have

to be specified for it in the application’s manifest file. Illustrated in Figure 2.2, Intent

9

1 public void map(float latitude , float longitude) {

2 Intent intent = new Intent ();

3 intent.setAction("android.intent.action.VIEW");

4 Uri geoUri = Uri.parse("geo:" + latitude + "," +

longitude);

5 intent.setData(geoUri);

6 startActivity(intent); }

(a) Intent targeted at components that can render a map.

1 <activity android:name="MapRenderingActivity">

2 <intent -filter >

3 <action android:name="android.intent.action.VIEW"/>

4 <data android:scheme="geo"/>

5 <category

android:name="android.intent.category.DEFAULT"/>

6 </intent -filter >

7 </activity >

(b) Example Intent Filter declaration to receive the Intent in (a).

Figure 2.3. Example Intent and Intent Filter used for rendering a map.

Filters describe the action, category or data fields of the Intents that should be delivered

by the operating system to a given application component. Components have an exported

attribute, which when set to true makes the components accessible to other applications

through ICC. Components that are not exported are only accessible to other components

in the same application. Component access can also be protected by a permission. When

a component declares a permission, applications need to request the permission at install

time in order to be able to send Intents to the component. This is done using the uses-

permissions attribute in the manifest file. Intents that target Broadcast Receivers can

also be protected by a permission, in which case the application containing the target

component needs to request the permission.

Matching Intents with their target is done by the operating system during an Intent

resolution process. For implicit Intents, it involves matching the action, category and

data fields with compatible Intent Filters. In this paper, we statically perform this

matching process in order to visualize ICC. Note that in Figure 2.1 some fields can be

undefined. For example in an explicit Intent the action, categories and data fields are

usually null.

Figure 2.3 shows a representative example of Android ICC. Figure 2.3(a) shows a

10

method that sends an Intent in order to render a map centered at given coordinates.

An Intent intent is created. Its action is set to android.intent.action.VIEW, which is

a generic action used to display many kinds of data. The data of the Intent is defined

to be a URI with the geo scheme followed by coordinates. When the startActivity()

method is called, the operating system resolves potential target components, prompting

the user to choose a recipient if several components match.

Figure 2.3(b) is a component declaration as it can be found in an application mani-

fest. The activity element (Line 1) declares that the application contains an Activity

component with name MapRenderingActivity. It includes an Intent Filter with several

attributes. The action line specifies that the action field of Intents received by the

component should have value android.intent.action.VIEW. The data declaration at

Line 4 specifies that any received Intent should carry data in the form of a URI with

a geo scheme. Finally, the category line declares that received Intents should also

carry the android.intent.category.DEFAULT category. This category is added by the

OS to implicit Intents targeting activities, such as the one on Line 6 of Figure 2.3(a).

Therefore, the component declared in Figure 2.3(b) could receive the Intent created in

Figure 2.3(a).

Intents can carry extra data in the form of key-value mappings. This data is contained

in a Bundle object associated with the Intent. Intents can also carry data in the form of

URIs with context-specific references to external resources or data.

2.2 The IDE Framework

The main part of our Inter-Component Communication analysis as presented in Chap-

ters 5 and 6 is based on the IDE framework [12]. In this section, we summarize the

main ideas and notations of the IDE framework. A complete description is available in

[12]. The IDE framework solves a class of interprocedural data flow analysis problems.

In these problems, an environment contains information at each program point. For

each program idiom, environment transformers are defined and modify the environment

according to semantics. The solution to this class of problems can be found efficiently.

2.2.1 Supergraphs

A program is represented using a supergraph G∗. G∗ is composed of the control flow

graphs of the procedures in the program. Each procedure call site is represented by

two nodes, one call node representing control right before the callee is entered and one

11

1 public void onClick(View v) {

2 Intent i = new Intent ();

3 i.putExtra("Balance", this.mBalance);

4 if (this.mCondition) {

5 i.setClassName("a.b", "a.b.MyClass");

6 } else {

7 i.setAction("a.b.ACTION");

8 i.addCategory("a.b.CATEGORY");

9 i = modifyIntent(i);

10 }

11 startActivity(i);

12 }

13 public Intent modifyIntent(Intent in) {

14 Intent intent = new Intent(in);

15 intent.setAction("a.b.NEW_ACTION");

16 intent.addCategory("a.b.NEW_CATEGORY");

17 return intent;

18 }

Figure 2.4. Example interprocedural Intent creation.

return-site node to which control flows right after exiting the callee. Figure 2.5 shows

the supergraph of the program in Figure 2.4.

The nodes of a supergraph are program statements. There are four kinds of edges

between these nodes. Given a call to procedure (p) with call node (c) and return-site

(r), three kinds of edges are used to model the effects of the procedure call on the

environment:

• A call edge between (c) and the first statement of (p).

• A return edge between the last statement of (p) and (r).

• A call-to-return edge between (c) and (r).

All other edges in the supergraph are normal intraprocedural flow edges. Informally, the

call edge transfers symbols and associated values from the calling method to the callee

when a symbol of interest is a procedure argument. The return edge transfers information

from the return value of the callee to the environment in the calling procedure. Finally,

the call-to-return edge propagates data flow information that is not affected by the callee,

“in parallel” to the procedure call (e.g., local variables).

12

if
(this.mCondition)

i.setClassName("a.
b", "a.b.MyClass");

i.setAction("a.b.
ACTION");

i.addCategory("a.
b.CATEGORY");

i = modifyIntent(i);
(CALL)

intent = new Intent(in);

i = modifyIntent(i);
(RETURN)

intent.setAction("a.b.
NEW_ACTION");

intent.addCategory("a.
b.NEW_CATEGORY");

return intent;

startActivity(i);

START

END

Normal flow edge
Call edge
Return edge
Call-to-return edge

i.putExtra("Balance",
this.mBalance);

i = new Intent();

onClick(View v)

modifyIntent(Intent in)

(r)

(c)

(p)

Figure 2.5. Supergraph G∗ for the program from Figure 2.4.

13

Clearing extra data keys
d.clear()

Constructor
b = new Bundle()

Adding int key-value pair
b.putInt("MyInt", mInt)

Copy constructor
b = new Bundle(d)

b

b

b

b

b

b

b

d

d

d

d

d

d

d

⇤

⇤

⇤

⇤ ⇤

⇤

⇤

�B.B�B.B �B.B

�B.B �B.B �B.B�B.B �B.B

�B.B

�e.e[b 7! ?]

�e.e[b 7! e(d)]

⇤ b d

�B.? �B.�b
({MyInt},?,0,())(B)

�e.e
h
b 7! �b

({MyInt},?,0,())(e(b))
i

�e.e
h
d 7! �b

(?,?,1,())(e(d))
i

�B.�b
(?,?,1,())(B)

Figure 2.6. Pointwise environment transformers for common Bundle operations.

2.2.2 Environment transformers

Let D be a finite set of symbols (e.g., program variables). D contains at least a symbol

Λ that represents the absence of a data flow fact. Let L = (V,t) be a join semilattice

with bottom element ⊥, where V is a set of values1. An environment e is a function

from D to L. The set of environments from D to L is denoted by Env(D,L).

Operator t is defined over Env(D,L) as a natural extension of t in semilattice L:

for e1, e2 ∈ Env(D,L), e1 t e2 is such that, for all d ∈ D, (e1 t e2)(d) = e1(d) t e2(d).

An environment transformer is a function from Env(D,L) to Env(D,L). The algo-

rithms from [12] require that the environment transformers be distributive. An environ-

ment transformer t is said to be distributive if for all e1, e2, . . . ∈ Env(D,L), and d ∈ D,

(t(tiei))(d) = (tit(ei))(d). It is denoted by t : Env(D,L) −→d Env(D,L). Environ-

1A join semilattice is a partially ordered set in which any two elements have a least upper bound.

14

ment transformers have a pointwise representation. We show an example on Figure 2.6.

Given environment e ∈ Env(D,L), transformer λe.e is the identity, which preserves the

value of e. Given symbol b ∈ D and value B ∈ L, λe.e[b 7→ B] transforms e to an

environment where all values are the same as in e, except that symbol b is associated

with value B. The functions from L to L (represented next to each arrow in Figure 2.6)

are called micro-functions.

The environment transformer for the copy constructor call b = new Bundle(d) is

λe.e[b 7→ e(d)]. It means that the value associated with b after the instruction is the same

as d’s value before the instruction. In the pointwise representation, this is symbolized

by an arrow between d and b with an identity function next to it.

We are trying to determine the value associated with each symbol at program points

of interest, which is done by solving an Interprocedural Distributive Environment (IDE)

problem. An instance IDE problem is defined as a tuple (G∗, D, L,M), where:

• G∗ = (N∗, E∗) is the supergraph of the application being studied.

• D is the set of symbols of interest.

• L is a join semilattice (V,t) with least element ⊥.

• M assigns distributive environment transformers to the edges of supergraph G∗,

i.e., M : E∗ −→ (Env(D,L) −→d Env(D,L)).

Under certain conditions on the representation of micro-functions, an IDE problem

can be solved in time O(ED3) [12]. For example, micro-functions should be applied in

constant time. In the model we present in Section 5.3, we relax some of these constraints

but find that the problem can still be solved efficiently in the average case. When the

problem is solved, we know the value associated with each symbol at important program

points.

Chapter 3
Related Work

This dissertation introduces methods to study inter-component communication in smart

phone applications after retargeting them to Java bytecode. In this chapter, we start

by presenting some approaches that have been used for purposes related to retarget-

ing. We then show existing approaches for constant propagation since we later reduce

inter-component communication to a constant propagation problem. Finally, since the

most compelling application of our work is in security, we survey the security challenges

addressed in the literature as well as methods to address them.

3.1 Techniques for Application Retargeting

Retargeting refers to the transformation of a program from one binary format to another.

It is closely related to decompilation, which aims to recover source code from binary

code. Java decompilers have been around for almost as long as the language itself.

Krakatoa [13] was introduced in 1997 and Mocha [14] shortly thereafter. These earlier

tools could not process a number of common bytecode structures. Dava [15, 16, 17]

significantly improved the state of the art in Java decompilation in 2001. There are

two types of Java decompilers. The first type targets code generated by specific Java

compilers. Such tools generate control flow structures such as loops by recognizing known

bytecode structures. These tools may not perform well with code that is generated by

other compilers that generate unexpected bytecode control flow patterns. The other type

of decompilers can handle bytecode generated by any type of compiler. Since control flow

structures such as loops and if statements can be hard to interpret from the bytecode,

these decompilers sometimes produce code that is not easily readable. Dava belongs to

16

the second category of decompilers. It addresses the issue of code readability through

manipulations of the Abstract Syntax Tree (AST) that represents the program. Dava

is built upon the Soot framework [18]. Other tools such as Jad [19] and JD [20] are

available but their algorithms are not published. Decompilation of other languages such

as C/C++ [21, 22, 23, 24, 25] differs vastly from the challenges that we describe in

Chapter 4, in that the residual information in the executable code is substantially lower

than Android or Java bytecode.

Program retargeting and decompilation often requires some type inference. Type

inference in Java has been widely studied [26, 27, 28]. Conceptually, these systems

generate and solve constraints on types. A solution for the constraints is found us-

ing a variety of algorithms: graph heuristics [27], solving assignment constraints before

use constraints [26] or introducing new types [28]. These approaches achieve different

guarantees, e.g., optimal typing [26] or polynomial time solution [27]. The constraint-

solving algorithm we use in Section 4.5.2 for type inference has been used by other

authors [29, 30].

Retargeting Dalvik bytecode as presented in Chapter 4 is closely related to the Java

decompilation problem. In both cases variable types need to be inferred from bytecode

and the instructions interpreted and translated into the targeted language (in our case

Java bytecode). A major difference is that decompiling Java bytecode requires recovering

control flow statements from bytecode. In the case of Dava, this is done by making

transformations to the AST of individual methods. An alternate approach recognizes

bytecode patterns generated by known compilers. However, for retargeting Dalvik to

Java bytecode, we can avoid these complexities by mirroring the original Dalvik control

flow statements directly.

The idea of having a rich intermediate language (with types or semantics) has been

used by several authors. For example, Lim and Reps [31] developed a language called

TSL for describing the semantics of an instruction set, along with a run-time system to

support the static analysis of executables written in that instruction set. A language

similar to TSL called λ-RTL was developed by Ramsey and Davidson [32]. Typed

Assembly Language (TAL) extends traditional untyped assembly languages with typing

annotations, memory management primitives, and a sound set of typing rules. These

typing rules guarantee the memory safety, control flow safety, and type safety of TAL

programs [33].

17

3.2 Interprocedural Constant Propagation

Constant propagation traditionally attempts to determine when variables always have

the same value at a particular program point. Initial work on constant propagation [34,

35] performs intra-procedural analyses, which means that they do not cross the bound-

aries of functions. In this case, analyses have to assume that function arguments and

return values can take on any value, which is often imprecise. Later work has addressed

interprocedural constant propagation [36, 37, 38, 39, 40], initially using techniques such

as procedure inlining [36].

In the IDE framework [12], a dynamic programming version of the functional ap-

proach [41] to interprocedural analysis is used. The functional approach summarizes the

influence of procedures on program symbols using a summary function. The summary

function can simply be applied to determine the influence of a procedure call on the

variables of a program. The first example that is presented using the IDE framework is

a constant propagation problem. A more detailed presentation of the IDE framework is

included in Section 2.2.

For each constant, all these works seek to find a single value that is common to all

interprocedural paths. In Chapters 5 and 6, we use multi-valued constant propagation,

where we determine all possible values of a constant at each program path of interest.

Multi-valued constant propagation [42] has received less attention.

3.3 Mobile Application Security

Mobile application security has been addressed in several ways [43]. In this section, we

describe the research that has been performed on permissions, inter-component commu-

nication and information flow analysis.

3.3.1 Permissions

Permissions are an essential part of the security model of mobile platforms [44]. They

protect access to sensitive resources such as GPS and accelerometer data. In Android,

they are requested and granted when an application is installed and enforced at runtime

by the operating system.

Permission analysis tries to infer properties about applications based on the per-

missions requested at install time. Various approaches have been used to perform per-

mission analysis. Requirements engineering [45], machine learning [46, 47, 48], static

18

analysis [49, 50] and testing [51] are among the techniques that have been used. In early

permission analysis work, the Kirin system [45] uses permissions to flag applications

with potential dangerous functionality, as indicated by the requested permissions. It

extends the Android application installation process to prevent installation of flagged

applications. [52] also use permission analysis as the basis of a system to detect An-

droid malware. Additional heuristics are used to filter out applications and reduce false

positives.

Other work has attempted to detect applications that request too many permissions

for the functions that they are using, thereby breaking the principle of least privilege [53].

The challenging part of this work consists in mapping protected API methods to the

permissions that protect them. Due to the evolving nature of the platform [54, 55],

the Android developer documentation does not accurately describe this mapping. Thus,

approaches that are based on parsing developer documentation [56] cannot get accurate

mappings. Finding permission maps is done using testing [51] or static analysis [49, 50,

57]. Once the mapping is done, a simple reachability analysis can detect which API calls

are made by a given application. The permission map is then used to compute the list

of permissions that are actually needed by the application, which is compared to the

permissions requested by the application.

There have been several attempts to remedy the limitations of the permission model

in smart phone platforms. A first limitation is that individual permissions are coarse-

grained. For example, the Internet permission gives access to all Internet domains. It has

been suggested that this model could be improved if applications were able to request

finer-grained permissions [46]. For example, an application could be given access to

specific Internet domains only. To address this issue, [58] proposes an approach where

permission usage is inferred in order to allow repackaging of applications to use finer-

grained permission. This approach also gives some insight to address another limitation

of the permission model. When users decide to grant permissions to an application,

they often cannot know what the permissions are used for. The capabilities granted by

permissions can be used for benign as well as malicious purposes and it is not possible

for users to distinguish these uses a priori. The WHYPER system [59] uses natural

language processing to infer permission usage patterns from application descriptions.

While the system is helpful in informing users about how sensitive resources are used, it

cannot prevent malicious permission usage, since such usage is presumably not explicitly

described in application descriptions.

Saint [60] modifies the Android framework to enable more expressive policies for

19

permissions and application interaction. It allows application developers to specify how

their custom permissions can be granted. It also regulates application interaction so that

ICC interfaces can only be used in ways that are compliant with a policy.

Apex [61] extends the permission-granting process to allow users to only select the

permissions that they are willing to grant at install-time. Policies can also be specified

to restrict the usage of protected resources, for example to limit the number of text

messages sent by an application. This finer-grained policy is then enforced at runtime.

Similarly, CRePE [62] enables applications to be granted in a fine-grained way, depending

on context such as physical location. Aurasium [63] repackages Android application into

its own sandbox that intercepts the system calls made by the application. Higher-level

semantics are reconstructed from the system calls in order to enforce security policies.

For example, Aurasium can infer when an application is attempting to access a device

identifier and it can prevent it. A variety of policies beyond permission control can be

enforced by using the approach introduced by Aurasium.

Usability is an important aspect of permission-based access control, since the decision

to grant permissions is made by the users of mobile platforms. It has been found that

users often click through security prompts without thoroughly understanding them [64],

including in the context of smart phone permissions [65, 66, 67]. Several approaches

have been proposed to improve the placement of permission prompts. A graph-based

analysis [68] enables placing permission prompts such that sensitive resource accesses are

protected but users are faced with a minimal number of prompts. In order to cope with

the fact that Android permissions are not effective since users tend to forget that they

granted them during application installation, it has also been suggested that permissions

should be granted in heterogeneous ways [69]. For example, some resources should

be protected by install-time permissions while others should be protected by runtime

prompts. Other methods for controlling access to sensitive resources include capturing

user intent [63] and using crowdsourcing to bridge the gap between user expectations

and application behavior [70, 71].

3.3.2 Inter-Component Communication

Android applications can reuse functionality by using Inter-Component Communication

(ICC). For example, it is possible to open a web page from an application by sending

a message (or Intent) that is forwarded as appropriate to a web browser application.

iOS provides similar facilities where applications can register their handling of specific

URL types. Other applications can then use the registered functionality. This method

20

of performing IPC is powerful and relatively easy to use for developers. Instead of ex-

pressing the target of IPC through component names, it can be expressed by desired

functionality. Unfortunately, this mechanism also increases the attack surface of appli-

cations. ICC messages can be intercepted by unexpected or even malicious applications.

This can lead to the theft of sensitive data. Component functionality can also be hi-

jacked by malicious messages. This is a particularly serious issue when the vulnerable

component has elevated privileges, as it can result in confused deputy [72] issues. Other

vulnerabilities can be exploited in target applications [73]. Finally, an attack vector for

Android is application collusion [6, 7], where two or more applications communicate to

perform malicious functions. Each individual application may only have an innocuous

set of permissions, but malicious behavior is achieved through information and privilege

sharing.

In early ICC work, SCanDroid [74] provides a static data flow analysis. To resolve

the string arguments of ICC objects, a pointer analysis is used to generate a flow graph

for string operations. Methods that modify the strings are partially evaluated to obtain

approximations of the prefix of the actual values. An interprocedural taint analysis based

on the IFDS framework [75] is used. Given the flows from different applications and inter-

component flows, a constraint-based approach was used to check for data leaks. Results

were reported on a few examples but no testing was done on real-world applications.

The ComDroid tool [4] is used to find ICC vulnerabilities in Android applications. It

looks for exposed components using the manifest file of each application. It additionally

infers a limited number of properties of Intents using a flow-sensitive intraprocedural

analysis with a limited interprocedural analysis. ComDroid has a high false positive

rate. This is due to the fact that, while a component may be exposed, there is no

vulnerability if the component does not have elevated privileges or if there is no path

between the entry point of the component and the sensitive API calls. Other work has

attempted to find ICC vulnerabilities with better precision [5]. [5] builds call graphs of

exposed application components to find paths between entry points and sensitive API

calls. It is able to find vulnerabilities in five system applications. To mitigate these

attacks, it proposes IPC Inspection, which restricts permissions in the case of inter-

application ICC. When such ICC is used, it drop privileges to the permissions that are

common to both applications. The path-finding procedure of [5] is limited in that the

call graph it uses does not take application lifecycle or object-oriented primitives (e.g.,

inheritance) into account. It may miss problematic paths and thus false negatives are

possible.

21

The CHEX tool [76] addresses some of the limitations of the early work on static

component hijacking detection. It models applications as a set of splits. A split is a

piece of code that can execute independently of other splits. This representation models

the fact that application components are relatively independent and can be called in an

arbitrary order. Splits additionally model event-driven programming in Android, where

event handlers can also be called in arbitrary orders in response to user interactions.

For each split, a split data-flow summary is generated using a data dependence graph

(DDG). The hijacking detection is done on a permutation of the splits and consists in

a basic reachability analysis. Out of 5486 applications, CHEX finds 254 as potentially

vulnerable. Manual analysis estimates the accuracy of the 254 flags to be 81%.

The Woodpecker [77] and DroidChecker [78] tools also apply static analysis to find

component hijacking vulnerabilities. They also use reachability analysis to find paths

between entry points and sensitive method calls. Woodpecker is applied to applications

pre-installed on a variety on Android phones. Out of 13 permissions examined by Wood-

pecker, 11 are found to be leaked by at least one the eight smart phones under test.

DroidChecker is tested on 711 applications that request dangerous permissions and has

a precision of 26%. The SEFA vulnerability detection tool [79] also aims to detect the

impact of vendor customizations on the security of Android phones. It leverages exist-

ing permission mapping work [50] to detect over privilege. It also detects component

hijacking using a traditional reachability analysis. Unlike Woodpecker, it adds support

for ICC and it is able to detect inter-component flows that lead to component hijacking.

However, no details are given as to how Intent values are resolved.

ContentScope [80] looks for cases where Content Providers are not protected by

permissions and may either leak data or be vulnerable to unexpected database modifi-

cations. Out of 62519 applications, 3018 are found to be unprotected by permissions. A

reachability analysis is used to isolate 1279 applications vulnerable to content leaks and

871 vulnerable to unexpected modifications.

Several approaches mitigate ICC vulnerabilities using dynamic monitoring. The

TrustDroid tool [81] assigns three trust levels to each application running on a phone:

system applications, trusted third-party and untrusted third-party applications. It pre-

vents ICC between applications from different trust levels. It also prevents the sharing of

Content Provider data between applications with different trust levels. It further provides

file system isolation, since Android external storage is shared between all applications

that have the READ EXTERNAL STORAGE or WRITE EXTERNAL STORAGE permissions. It

uses both middleware modifications and customizations to the TOMOYO Linux ker-

22

nel security module to enforce the mandatory access control (MAC) policies. The ICC

enforcement mechanism is derived from the XManDroid tool [82].

The Quire [83] provenance system annotates ICC messages with the full ICC call

chain to allow applications to make informed security decisions before making privileged

operations. It is implemented using Binder and Java library extensions.

SEAndroid [84] provides a MAC framework for Android. It provides both kernel

extensions derived from SELinux [85] and middleware modifications. Building on SE-

Android, FlaskDroid [86] provides MAC for all resources on Android. This includes

permission-related policies as in Saint [60] and mediation of inter-component communi-

cation.

3.3.3 Information Flow Analysis and Monitoring

Android users cannot know what happens to their data once an application is granted

permission to use it. It has been shown that collecting personal information is a com-

mon behavior in both malware [87, 88] and popular applications [89]. Information flow

analysis has been proposed as a solution to this limitation. In early Android informa-

tion flow analysis work, TaintDroid [89] performs dynamic taint tracking on Android.

It tracks both intra-component and inter-component flows. It can also taint files, which

can potentially be used to share data between applications. It has found widespread

leakage of personal data to third parties. An extension to TaintDroid handles implicit

flows [90] by monitoring and recording control flow information. TaintDroid is also used

in the AppFence system [91], which actively prevents sensitive data exfiltration from

mobile devices. It replaces users’ private data with fake data to preserve privacy. It

also prevents exfiltration of private data to the network when data has been restricted

to be used on the phone only. Similarly, TISSA [92] allows users to specify whether an

application should be granted access to specific resources. For each resource, users can

choose to provide real, anonymized, fake or no data. MockDroid [93] similarly enables

fake data to be provided to applications to protect sensitive features such as location

data and Internet access.

Dynamic analyses such as TaintDroid are limited by the way they interact with the

User Interface (UI). SmartDroid [94] tackles this issue by combining static and dynamic

analyses. It is able to simulate the UI to expose hidden behavior for seven malware

families. The static analysis performs some ICC analysis to resolve a subset of the fields

of Intents.

Static taint analysis has been used in several tools to find leaks of sensitive data.

23

AndroidLeaks [95] uses a System Dependence Graph (SDG), which incorporates both

control and data flows between program statements. The SDG is used to compute

program slices [96] starting at sensitive sources. Leaks are found by looking for sinks

on each slice. Both sources and sinks are defined to be methods that are protected by

permissions. Evaluation of AndroidLeaks is performed using 25976 applications from 13

Android markets. 7414 applications are found to potentially leak data, most of which

occurs in code that belongs to ad libraries. The verification of 60 leaks in ad library code

shows 21 false positives, that is, a precision of 65%. LeakMiner [97] adopts a similar

approach using slicing, also using sources and sinks that are method calls protected by

permissions.

Ad libraries have in some cases threatened the privacy of mobile users [89]. It has

been found that these libraries request many permissions and that they are requesting

more and more privileges [98]. In order to study the dangers caused by ad libraries,

the AdRisk system is used to perform a study of 100 ad libraries found in a sample of

100,000 applications [99]. From disassembled Dalvik bytecode, the authors build a call

graph and try to find paths from dangerous API calls to network sinks. However, the call

graph they generate has discontinuities and their analysis involves some manual effort.

PiOS [100] performs static information flow analysis on iOS applications. Applica-

tions that run on iOS are compiled from Objective-C, an object-oriented language. An-

alyzing binaries compiled from Objective-C requires solving several challenges. The con-

trol flow graph of such binaries is hard to recover, since Objective-C uses indirect virtual

dispatch of instance methods. All virtual calls are made by sending a message through

the objc msgSend method. Recovering the possible dynamic targets of such calls is done

by PiOS using backward slicing to determine the arguments to objc msgSend function

calls. Then paths between sources and sinks are found using reachability analysis on the

control flow graph. Finally, a data flow analysis uses these paths to confirms whether

data can actually flow between sources and sinks. Experiments on 1407 applications

reveal that the leaking of device identifiers is pervasive. A minority of applications leak

other sensitive data such as location or contact data.

ScanDal [101] converts Dalvik bytecode to Dalvik Core, a formally defined interme-

diate language for Android application analysis. Potentially harmful flows are detected

using abstract interpretation. Its analysis is path-insensitive and has context-sensitivity

limited to a depth of one. It is able to find some actual privacy leaks, but is limited by a

high number of false positives and flows that are impossible to confirm. In particular, its

handling of Android libraries is problematic – modeling the interaction of applications

24

with Android libraries is, in itself, a difficult challenge.

In contrast to the approaches that are based on program slicing, FlowDroid [102] uses

a reduction to the IFDS framework [103] by Reps et al.. Unlike previous approaches,

it is context, flow, field and object-sensitive. It models component lifecycles and takes

event handler registration into account when building call graphs. In order to facili-

tate comparison with other taint analysis approaches, [102] introduces the DroidBench

benchmark suite. FlowDroid achieves 93% recall and 86% precision on DroidBench.

AppSealer [104] combines static analysis with dynamic enforcement to protect users’

privacy. Using static analysis, a slice is generated between sensitive sources and sinks.

The slices are used to instrument application code to keep track of the taint status

of the program variables. The instrumentation is performed using bytecode rewriting

with Soot. At runtime, before tainted data flows to a sink, the user is prompted for

confirmation. This approach is also useful for preventing the component hijacking issue.

For this case, Intents coming from outside an application are defined to be sensitive

sources for the taint propagation. In order to detect whether an Intent is external

to an application, all Intents are instrumented with a field that keeps track of their

provenance. Applying this patching process on 16 applications that are vulnerable to

component hijacking successfully prevents exploits, while keeping runtime overhead to

2% on average.

When performing taint analysis, it is difficult to select sources and sinks when the

framework is as large as the Android software stack. There are many sensitive resources,

many of which are accessible using several different API methods. In an attempt to

provide a systematic way of identifying sources and sinks, SuSi [105] uses a machine

learning approach for automated classification. It uses support vector-machines [106]

with a set of 144 features. The features considered range from method metadata (e.g.,

name, required permission), to method code (e.g., local data flow to return statement).

The sources and sinks are classified into 12 and 15 semantic categories (e.g., account,

bluetooth). SuSi achieves 93% recall and precision. It finds many sources and sinks not

considered by TaintDroid, SCanDroid and the decompilation-based method presented

in [107]. It also finds cases where TaintDroid tracks the results of methods that are not

sources.

In order to cope with the fact that advertisement libraries use users’ private data,

several approaches have been proposed. AdSplit [108] extends the Android platform to

enable applications to run separately from their ad libraries. This allows applications

to request only the permissions they need to implement their features. Using AdSplit,

25

the application and the library can share the screen so that the library can be displayed

while the application is running. Using Quire [83], mechanisms that prevent click fraud

are implemented. On the other hand, AdDroid [109] introduces an advertisement API

associated with specific permissions. The goal is to distinguish permissions that are

used for advertisement purposes from the ones that are used to implement the main

application features.

Before the advent of Android, there were already techniques for information flow

analysis of Java code. [110] presents an analysis of Java programs based on an encoding of

flows using boolean functions. This analysis considers all fields to be static and therefore

does not distinguish between flows through fields of different instances of the same type.

[111] proposes a sound analysis of Java programs based on a points-to analysis. Their

relatively scalable context-sensitive analysis allows them to find previously unknown

vulnerabilities in existing Java source code. [112] describes a type-based system for

secure information flow in Java bytecode. Java bytecode is transformed to introduce

new types and the subsequent verification of secure flow only relies on the standard

JVM verifier. It differs from approaches such as [30] in that it does not require the

programmer to specify type annotations before compilation. [113] and [114] propose a

framework that can be used for static information flow analysis of Java programs. The

analysis is context-sensitive and works on program fragments. It is based on a points-to

analysis, which is used both to generate a call graph and to distinguish between fields of

different instances of the same class. This allows the analysis to accurately track flows

through object fields. Their framework was later extended to handle implicit flows [115],

which represent data transmitted by control flow.

Chapter 4
Retargeting Android Applications to

Java Bytecode

At the time of registration, Android developers submit an “application package” contain-

ing the program bytecode, resources and an XML manifest to the market. The submitted

applications are initially developed in Java, but compiled by the developer into Dalvik

bytecode [116]. Android runs each application on the phone in its own instance of the

Dalvik Virtual Machine (DVM). The DVM has some major differences with traditional

JVM. For example, the DVM is a register-based architecture and has ambiguous regis-

ter typing (see Section 4.1). These different bytecode and program structures make it

impossible to leverage existing Java tools such as Soot [18] or WALA [117] for program

analysis of Android applications. Thus, in the absence of usable analysis tools, markets

can do little to vet applications.

In this chapter, we develop and evaluate algorithms for retargetting Dalvik to Java

bytecode. We present the two retargeting tools we developed. The first one is called

ded, for “DEx Decompiler”. It was used to perform a first study of security properties of

Android applications [107]. The output of that retargeting tool was input to Dava [15] –

a Java decompiler integrated with the Soot toolkit [18] – and the resulting source code

analyzed using Fortify SCA [118]. We found that the ad hoc methods used for retargeting

in ded were often unreliable or failed outright. These failures limited the visibility of

the code (and thus the coverage of the analysis), and prevented conclusive results. More

specifically, while we were often able to retarget and eventually decompile portions of the

application code, about half the applications had classes which were unrecoverable, which

made program analysis of complete applications impossible. Further, ded was targeting

27

decompilers and its success rate was measured in terms of decompilation success.

The second tool is called Dare, which stands for DAlvik REtargeting1. For Dare, we

do not target a specific tool but instead seek to produce verifiable Java bytecode, which

ensures that it is accepted by analysis tools. The limitations of ded largely motivated

and guided the making of our second retargeting tool, which is why we are presenting

both in this chapter.

By providing the Java bytecode of Android applications via Dare, we provide a path

for users, developers, application market providers (such as Amazon) to perform analysis

on Android applications. The following sections detail the structure of Dare. Principally,

we focus on solutions that address the key challenges of retargeting Dalvik bytecode. This

chapter makes the following contributions:

• We present the ded decompiler and discuss its limitations.

• We introduce the Tyde intermediate representation for structured semantic map-

ping between the VMs. All 257 Dalvik instructions are translated using only 9

translation rules.

• Because sound bytecode typing is necessary for verifiability, we use a strong constraint-

based type inference algorithm.

• We introduce code transformations to fix unverifiable input bytecode. In addition

to making the code verifiable, these transformations accurately mirror VM runtime

behavior.

• We evaluate our algorithms on a sample of 1,100 applications. We successfully

retarget 99.99% of the 262,110 classes. Further, while previous tools were able to

completely recover less than 60% of the applications in the corpus, we recover over

99%. Retargeting is efficient, taking less than 20 minutes for the entire sample.

Finally, our experiments reveal that over 20% of applications in the sample have

unverifiable Dalvik bytecode in at least one class.

The remainder of this paper explores the algorithms and structure of ded and Dare.

Section 4.1 introduces the challenges of retargeting Dalvik applications. Next, Section 4.2

presents the initial ded decompiler and discusses its limitations. Then, Section 4.3 out-

lines the Dare retargeting process. Next, we describe how DVM bytecode is translated

into the Tyde intermediate representation (Sections 4.4 and 4.5) and then converted to

1Source code and documentation for Dare are available at http://siis.cse.psu.edu/dare/.

http://siis.cse.psu.edu/dare/

28

Java bytecode (Section 4.6). Then we show the causes of unverifiability in Dalvik byte-

code and how to reliably retarget unverifiable bytecode (Section 4.7). We finally present

the empirical study of Dare in Section 4.8.

4.1 Retargeting Challenges

Instruction Set – Dalvik instructions are vastly different from Java instructions. DVM

bytecode has 257 different instructions and 3 pseudo-instructions. Dalvik instructions

are two to ten bytes long, and pseudo-instructions have a variable length. The DVM has

substantially more instruction formats (over 20) than the JVM.

Pseudo-instructions are used to store extra information related to other instructions

(and thus are never executed). Specifically, the Dalvik switch instructions (packed-switch

and sparse-switch) store an offset to a pseudo-instruction. The data describing the

switch statement (case values and targets) is stored in a pseudo-instruction placed at the

end of the bytecode block. The fill-array-data instruction fills an array of primitive

elements with values stored in a pseudo-instruction.

The DVM is register-based, whereas the JVM is stack-based. Thus, the DVM uses

registers to manage local variables rather than pushing them onto a stack. For example,

in Dalvik, add-int v1, v2, v3 adds the contents of registers v2 and v3 and stores the result

to v1. In contrast, Java bytecode would first push the integer variables onto the stack

with iload 2 and iload 3, perform the addition with iadd and store the result using

istore 1.

Exceptions – There is a significant difference in the type inference algorithm used

by the verifiers, related to how they handle exceptions. During the path-sensitive type

verification process, the Java verifier considers that any instruction in a try block may

throw an exception. In reality, not all instructions in each try block are able to throw

exceptions. Therefore, the Java verifier considers some unfeasible execution paths. On

the other hand, the Dalvik verifier does not consider these unfeasible paths. Occasionally,

an unfeasible path leads from a register assignment to a register use with an incompatible

type (e.g., an int register assignment reaches a use with float type). It is not an issue in

the DVM, since the spurious execution path is not considered by the verifier. However,

since the Java verifier follows the unfeasible path during type inference, it leads to

unverifiable Java bytecode if nothing is done to remove it.

Bytecode Type System – DVM typing is very different than that of JVM bytecode.

The primary differences include:

29

⊤

⊥

zero

float

doublelong

Object

booleanarrays
other

refs

32-bit

64-bitbyte

short

int

char

Figure 4.1. Dalvik type lattice.

• Primitive Assignments – Dalvik primitive constant assignments specify only the

width of the constant (32 or 64 bits). Thus, no distinction is made between int

and float or between long and double. In contrast, primitive constants in Java are

fully typed.

• Array Load/Store Instructions – The DVM has common array-specific load and

store instructions for int and float arrays (aget and aput) and for long and double

arrays (aget-wide and aput-wide). Here again, this introduces type ambiguity.

• Object References – Java bytecode uses the null reference type to track and de-

tect undefined object references. Conversely, Dalvik uses an integer constant with

value 0 to represent both the number zero and the null reference. Adding to

this ambiguity, a comparison between two integers uses the same instructions as a

comparison between object references.

Figure 4.1 shows the lattice of types in the Dalvik architecture. It depicts subtyping

relations between types. We have collapsed array and other reference types. The zero,

32-bit and 64-bit types are not valid Java types.

Unverifiable Dalvik Bytecode – Occasionally, part of the Dalvik bytecode of appli-

30

cations found in the markets is unverifiable. As the DVM and JVM verification processes

are similar, retargeting unverifiable Dalvik bytecode usually leads to unverifiable Java

bytecode. Our goal is to generate verifiable bytecode on any input, therefore properly

dealing with unverifiable input code is an important challenge.

4.2 The ded Decompiler

Building a decompiler from DEX to Java for the study proved to be surprisingly chal-

lenging. On the one hand, Java decompilation has been studied since the 1990s — tools

such as Mocha [14] date back over a decade, with many other techniques being devel-

oped [19, 20, 15, 16, 13]. Unfortunately, prior to our work, there existed no functional

tool for the Dalvik bytecode.2 Because of the vast differences between JVM and DVM,

simple modification of existing decompilers was not possible.

This choice to decompile the Java source rather than operate on the DEX opcodes

directly was grounded in two reasons. First, we wanted to leverage existing tools for code

analysis. Second, we required access to source code to identify false-positives resulting

from automated code analysis, e.g., perform manual confirmation.

ded extraction occurs in three stages: a) retargeting, b) optimization, and c) decom-

pilation. This section presents the challenges and process of ded, and concludes with a

brief discussion of its validation.

4.2.1 Application Retargeting

The initial stage of decompilation retargets the application .dex file to Java classes.

Figure 4.2 overviews this process: (1) recovering typing information, (2) translating the

constant pool, and (3) retargeting the bytecode.

Type Inference – The first step in retargeting is to identify class and method constants

and variables. However, the Dalvik bytecode does not always provide enough information

to determine the type of a variable or constant from its register declaration. There are

two generalized cases where variable types are ambiguous: 1) constant and variable

declaration only specifies the variable width (e.g., 32 or 64 bits), but not whether it is a

float, integer, or null reference; and 2) comparison operators do not distinguish between

integer and object reference comparison (i.e., null reference checks).

2The undx and dex2jar tools attempt to decompile .dex files, but were non-functional when ded was
first developed.

31

(1) DEX Parsing

(2) Java .class
Conversion

(3) Java .class
Optimization

Missing Type
Inference

Constant Pool
Conversion

Method Code
Retargeting

CFG
Construction

Type Inference
Processing

Constant
 Identification

Constant Pool
Translation

Bytecode
Reorganization

Instruction Set
Translation

Figure 4.2. Dalvik bytecode retargeting.

Type inference has been widely studied [119]. The seminal Hindley-Milner [120] al-

gorithm provides the basis for type inference algorithms used by many languages such

as Haskell and ML. These approaches determine unknown types by observing how vari-

ables are used in operations with known type operands. Similar techniques are used by

languages with strong type inference, e.g., OCAML, as well as weaker inference, e.g.,

Perl.

ded adopts the accepted approach: it infers register types by observing how they

are used in subsequent operations with known type operands. Dalvik registers loosely

correspond to Java variables. Because Dalvik bytecode reuses registers whose variables

are no longer in scope, we must evaluate the register type within its context of the

method control flow, i.e., inference must be path-sensitive. Note further that ded type

inference is also method-local. Because the types of passed parameters and return values

are identified by method signatures, there is no need to search outside the method.

There are three ways ded infers a register’s type. First, any comparison of a variable

or constant with a known type exposes the type. Comparison of dissimilar types requires

type coercion in Java, which is propagated to the Dalvik bytecode. Hence legal Dalvik

32

comparisons always involve registers of the same type. Second, instructions such as

add-int only operate on specific types, manifestly exposing typing information. Third,

instructions that pass registers to methods or use a return value expose the type via the

method signature.

The ded type inference algorithm proceeds as follows. After reconstructing the con-

trol flow graph, ded identifies any ambiguous register declaration. For each such register,

ded walks the instructions in the control flow graph starting from its declaration. Each

branch of the control flow encountered is pushed onto an inference stack, e.g., ded per-

forms a depth-first search of the control flow graph looking for type-exposing instructions.

If a type-exposing instruction is encountered, the variable is labeled and the process is

complete for that variable.3 There are three events that cause a branch search to ter-

minate: a) when the register is reassigned to another variable (e.g., a new declaration

is encountered), b) when a return function is encountered, and c) when an exception

is thrown. After a branch is abandoned, the next branch is popped off the stack and

the search continues. Lastly, type information is forward propagated, modulo register

reassignment, through the control flow graph from each register declaration to all sub-

sequent ambiguous uses. This algorithm resolves all ambiguous primitive types, except

for one isolated case when all paths leading to a type ambiguous instruction originate

with ambiguous constant instructions (e.g., all paths leading to an integer comparison

originate with registers assigned a constant zero). In this case, the type does not impact

decompilation, and a default type (e.g., integer) can be assigned.

Constant Pool Conversion – The .dex and .class file constant pools differ in that:

a) Dalvik maintains a single constant pool for the application and Java maintains one

for each class, and b) Dalvik bytecode places primitive type constants directly in the

bytecode, whereas Java bytecode uses the constant pool for most references. We convert

constant pool information in two steps.

The first step is to identify which constants are needed for a .class file. Constants

include references to classes, methods, and instance variables. ded traverses the byte-

code for each method in a class, noting such references. ded also identifies all constant

primitives.

Once ded identifies the constants required by a class, it adds them to the target

.class file. For primitive type constants, new entries are created. For class, method,

3Note that it is sufficient to find any type-exposing instruction for a register assignment. Any code
that could result in different types for the same register would be illegal. If this were to occur, the
primitive type would be dependent on the path taken at run time, a clear violation of Java’s type
system.

33

tag = 10
class_index
name_and_type_index

CONSTANT_Methodref_info tag = 7
name_index

CONSTANT_Class_info

tag = 11
name_index
descriptor_index

CONSTANT_NameAndType_info
tag = 1
length
bytes

CONSTANT_Utf8_info

tag = 1
length
bytes

CONSTANT_Utf8_info

tag = 1
length
bytes

CONSTANT_Utf8_info

Figure 4.3. Java constant pool entry defining “class name,” “method name,” and “descriptor”
for a method reference.

class_idx
proto_idx
name_idx

method_id_item
descriptor_idx
type_id_item

string_data_off
string_id_item

utf16_size
data

string_data_item

shorty_idx
return_type_idx
paramaters_off

proto_id_item

size
list

type_list type_idx
type_item

string_data_off
string_id_item

string_data_off
string_id_item

descriptor_idx
type_id_item

utf16_size
data

string_data_item

utf16_size
data

string_data_item

string_data_off
string_id_item

descriptor_idx
type_id_item

utf16_size
data

string_data_item

string_data_off
string_id_item

utf16_size
data

string_data_item

Figure 4.4. Dalvik constant pool entry defining “class name,” “method name,” and “descriptor”
for a method reference.

34

and instance variable references, the created Java constant pool entries are based on the

Dalvik constant pool entries. The constant pool formats differ in complexity. Specifically,

Dalvik constant pool entries use significantly more references to reduce memory overhead.

Figures 4.3 and 4.4 depict the method entry constant in both Java and Dalvik for-

mats. Other constant pool entry types have similar structures. Each box is a data

structure. Index entries (denoted as “idx” for the Dalvik format) are pointers to a data

structure. The Java method constant pool entry, Both figures provide three strings: 1)

the class name, 2) the method name, and 3) a descriptor string representing the argument

and return types, but vary in complexity.

Method Code Retargeting – The final stage of the retargeting process is the trans-

lation of the method code. First, we preprocess the bytecode to reorganize structures

that cannot be directly retargeted. Second, we linearly traverse the DVM bytecode and

translate to the JVM.

The preprocessing phase addresses multidimensional arrays. Both Dalvik and Java

use blocks of bytecode instructions to create multidimensional arrays; however, the in-

structions have different semantics and layout. ded reorders and annotates the bytecode

with array size and type information for translation.

The bytecode translation linearly processes each Dalvik instruction. First, ded maps

each referenced register to a Java local variable table index. Second, ded performs an

instruction translation for each encountered Dalvik instruction. As Dalvik bytecode is

more compact and takes more arguments, one Dalvik instruction frequently expands

to multiple Java instructions. Third, ded patches the relative offsets used for branches

based on preprocessing annotations. Finally, ded defines exception tables that describe

try/catch/finally blocks. The resulting translated code is combined with the constant

pool to create a legal Java .class file.

The following is an example translation for add-int:

Dalvik Java

add-int d0, s0, s1 iload s′0

iload s′1

iadd

istore d′0

where ded creates a Java local variable for each register, i.e., d0 → d′0, s0 → s′0, etc. The

translation creates four Java instructions: two to push the variables onto the stack, one

to add, and one to pop the result.

35

4.2.2 Optimization and Decompilation

At this stage, the retargeted .class files can be decompiled using existing tools, e.g.,

Soot [18]. However, ded’s bytecode translation process yields unoptimized Java code.

For example, Java tools often optimize out unnecessary assignments to the local variable

table, e.g., unneeded return values. Without optimization, decompiled code is complex

and frustrates analysis. Furthermore, artifacts of the retargeting process can lead to

decompilation errors in some decompilers. The need for bytecode optimization is easily

demonstrated by considering decompiled loops. Most decompilers convert for loops into

infinite loops with break instructions. While the resulting source code is functionally

equivalent to the original, it is significantly more difficult to understand and analyze,

especially for nested loops. Thus, we use Soot as a post-retargeting optimizer. While

Soot is centrally an optimization tool with the ability to recover source code in most cases,

it does not process certain legal program idioms (bytecode structures) generated by ded.

In particular, we encountered two central problems involving, 1) interactions between

synchronized blocks and exception handling, and 2) complex control flows caused by

break statements. While the Java bytecode generated by ded is legal, the source code

failure rate reported in the following section is almost entirely due to Soot’s inability to

extract source code from these two cases. We will consider other decompilers in future

work, e.g., Jad [20] and JD [19].

4.2.3 Source Code Recovery Validation

We have performed extensive validation testing of ded [121]. The included tests recovered

the source code for small, medium and large open source applications and found no errors

in recovery. In most cases the recovered code was almost identical to the original source,

except for comments and method local-variable names, which are not included in the

bytecode.

We also used ded to recover the source code for the top 50 free applications (as

listed by the Android Market) from each of the 22 application categories—1,100 in total.

The application images were obtained from the market using a custom retrieval tool on

September 1, 2010. Table 4.2.3 lists decompilation statistics. The decompilation of all

1,100 applications took 497.7 hours (about 20.7 days) of compute time. Soot dominated

the processing time: 99.97% of the total time was devoted to Soot optimization and

decompilation. The decompilation process was able to recover over 247 thousand classes

spread over 21.7 million lines of code. This represents about 94% of the total classes in

36

Total Retargeted Decompiled

Category Classes Classes Classes LOC

Comics 5627 99.54% 94.72% 415625

Communication 23000 99.12% 92.32% 1832514

Demo 8012 99.90% 94.75% 830471

Entertainment 10300 99.64% 95.39% 709915

Finance 18375 99.34% 94.29% 1556392

Games (Arcade) 8508 99.27% 93.16% 766045

Games (Puzzle) 9809 99.38% 94.58% 727642

Games (Casino) 10754 99.39% 93.38% 985423

Games (Casual) 8047 99.33% 93.69% 681429

Health 11438 99.55% 94.69% 847511

Lifestyle 9548 99.69% 95.30% 778446

Multimedia 15539 99.20% 93.46% 1323805

News/Weather 14297 99.41% 94.52% 1123674

Productivity 14751 99.25% 94.87% 1443600

Reference 10596 99.69% 94.87% 887794

Shopping 15771 99.64% 96.25% 1371351

Social 23188 99.57% 95.23% 2048177

Libraries 2748 99.45% 94.18% 182655

Sports 8509 99.49% 94.44% 651881

Themes 4806 99.04% 93.30% 310203

Tools 9696 99.28% 95.29% 839866

Travel 18791 99.30% 94.47% 1419783

Total 262110 99.41% 94.41% 21734202

Table 4.1. Studied Applications (from Android Market).

37

the applications. All decompilation errors are manifest during/after decompilation, and

thus are ignored for the study reported in the latter sections. There are two categories

of failures:

Retargeting Failures – 0.59% of classes were not retargeted. These errors fall into three

classes: a) unresolved references which prevent optimization by Soot, b) type violations

caused by Android’s dex compiler and c) extremely rare cases in which ded produces

illegal bytecode. In Sections 4.3 through 4.8, we introduce a significantly more reliable

retargeting approach.

Decompilation Failures – 5% of the classes were successfully retargeted, but Soot

failed to recover the source code. Here we are limited by the state of the art in de-

compilation. In order to understand the impact of decompiling ded retargeted classes

verses ordinary Java .class files, we performed a parallel study to evaluate Soot on Java

applications generated with traditional Java compilers. Of 31,553 classes from a variety

of packages, Soot was able to decompile 94.59%, indicating we cannot do better while

using Soot for decompilation.

4.2.4 Discussion

The limitations of ded largely guided the work presented in the next chapters of this

thesis. The main insights we took away from ded were the following:

• In order to improve code coverage, a retargeting tool should target any analysis

tool, instead of only aiming to be used as pre-processing before decompilation.

The decompilation step itself is a source of incomplete code coverage, therefore we

should try not to be dependent on it. That is why the Dare retargeting process

presented in the remainder of this chapter targets any analysis tool and not just

decompilers. That is also why the analyses presented in Chapters 5 and 6 are

performed on Java bytecode instead of Java source code.

• Formal retargeting methods should be used. While the ad hoc methods described

in this section work in a large majority of cases, it is important to handle more

complex cases. Indeed, the goal is to be able to analyze all the cases in an ap-

plication after the retargeting process. The use of formal methods for retargeting

enables us to elegantly handle these pathological cases. We show the use of formal

methods in the Dare retargeting process in Sections 4.4, 4.5 and 4.6.

38

Tyde IR
Generation

Bytecode
Generation

.dex Parsing

CFG Construction

Type Inference

Tyde to Jasmin Translation

Java Bytecode Generation

Pre-Processing

.class
files

.dex file
(Android

App)

Figure 4.5. Verifiable Dalvik bytecode retargeting overview.

• Invalid input Dalvik bytecode should be handled. Invalid bytecode is common in

real-world applications. Note that an application may have invalid bytecode but

still function properly, as long as the invalid bytecode is never executed. However,

these issues cause some analysis difficulties. It can cause, among other problems,

the unresolved references observed in Soot and mentioned above. We address the

problem of malformed Dalvik bytecode using Dare in Section 4.7.

4.3 A Formal Retargeting Process for Verifiable Dalvik

Bytecode

Figure 4.5 describes the Dare retargeting process for verifiable Dalvik bytecode. We

address the issue of unverifiable Dalvik bytecode in Section 4.7. The application bytecode

is initially translated into the Tyde intermediate representation (IR) in three steps: a)

the .dex file is parsed and code structures, methods and the global constant pool are

interpreted and annotated, b) a control flow graph is generated and c) register types

used in ambiguous instructions are inferred. The Java bytecode is thereafter generated

from this IR in three phases: d) a pre-processing step generates labels and maps registers

39

to local variables, e) the IR is translated to Jasmin [122] code, and f) the Jasmin tool

generates the final .class files.

To illustrate, Figure 4.6(a) shows the source code for a hypothetical method m2

and Figure 4.6(b) shows Java bytecode generated by the Java compiler. The iload 1

instruction loads local variable 1 (variable a in the source) onto the stack. The next

instruction compares its value to 0. If it is not 0, then dconst 1 loads double value 1.0

onto the stack and dreturn returns it. Otherwise, ifeq branches to offset 6. ldc2 w

loads a constant with value 2.5 from the constant pool; the constant is then returned

with dreturn.

Figure 4.6(c) shows the Dalvik bytecode for m2. if-eqz compares the value of

register v3 to 0. If it is not 0, then a 64-bit constant is assigned to register v0 with

const-wide/high16 and returned with return-wide. If v3 is 0, then the instruction at

offset 5 is executed and assigns a different 64-bit constant to v0. Next, goto transfers

control to offset 4. The 64-bit constants are detected as long by default by the disas-

sembler we used (dexdump), which is why they appear as long (instead of double) in

Figure 4.6(c).

Figures 4.6(d), 4.6(e) and 4.6(f) show the stages of retargeting. The Tyde represen-

tation of m2 is generated by mapping the Dalvik structures and generated control flow

graph into the IR and performing type inference on the ambiguous register references.

Once in Tyde, all registers are fully typed in accordance with the Java type system.

Figure 4.6(f) shows the retargeted Java bytecode after remapping and Jasmin assembly.

This bytecode is functionally equivalent to the one in Figure 4.6(b), albeit longer. That

is mostly due to the presence of spurious store/load instructions. However, we are not

concerned with optimality but only with semantic equivalence. Tools such as Soot [18]

can optimize the resulting bytecode if necessary.

4.4 The Tyde Intermediate Representation

The DVM recognizes 257 different instructions. A näıve approach to converting Dalvik

bytecode to Java bytecode would be to have 257 translation rules, which is very cum-

bersome. Moreover, analyzing the equivalence of the semantics of the translation rules

would be very time consuming. The näıve approach would also make the implementation

error-prone and hard to maintain.

In this section we describe a typed Intermediate Representation (IR) called Tyde (for

Typed dex) whose main purpose is to enable easy translation of Dalvik bytecode to Java

40

1 public double m2(int a) {

2 if (a != 0) {

3 return 1.0;

4 } else {

5 return 2.5;

6 }

7 }

(a) Source code.

public double m2(int);

0: iload_1

1: ifeq 6

4: dconst_1

5: dreturn

6: ldc2_w #double 2.5d

9: dreturn

(b) Original Java bytecode.

public double m2(int);

0: if-eqz v3, 5 // +5

2: const-wide/high16 v0, #long 4607182...

4: return-wide v0

5: const-wide/high16 v0, #long 4612811...

7: goto 4 // -3

(c) Dalvik bytecode.

START

END

0 if-eqz
2 const-wide/

high16

5 const-wide/
high16 7 goto

4 return-widefalse

true

(d) Control flow graph.

public double m2(int);

0: if-eqz (3, int, δs), 5

2: const-wide/high16 (0, double, δd) #double 1.0

4: return-wide (0, double, δs)
5: const-wide/high16 (0, double, δd) #double 2.5

7: goto 4

(e) Tyde representation – δs (resp. δd) indicates a source (resp. destination) register.

public double m2(int); 8: dload_2

0: iload_1 9: dreturn

1: ifeq 10 10: ldc2_w #double 2.5d

4: ldc2_w #double 1.0d 13: dstore_2

7: dstore_2 14: goto 8

(f) Retargeted Java bytecode.

Figure 4.6. Stages of retargeting for method m2.

41

bytecode. As described in Section 4.6, translating the Tyde IR to Java bytecode is done

with only 9 translation rules for all 257 Dalvik opcodes. The corresponding semantic

mapping is much easier to analyze than 257 translation rules. Moreover, this approach

also leads to a cleaner and maintainable implementation.

The insight behind Tyde is that, by typing all instruction arguments, load/store

operations can be translated independently of opcodes. For instance, let us consider

instructions add-int v0, v1, v2 (integer addition) and add-float v3, v4, v5 (float addi-

tion). By typing all registers and specifying if they are source or destination, we can use

a single translation rule for both instructions: first translate all source register loads,

then translate the opcode and finally translate the destination register store. If we did

not determine the type information about the registers, retargeting those instructions

would require two different translation rules.

Another advantage of the Tyde representation is that Dalvik pseudo-instructions

(such as packed-switch-payload) are not used, which leads to a more compact represen-

tation. Let us consider method m3, whose source code is presented in Figure 4.7(a). Fig-

ure 4.7(b) shows the corresponding Dalvik bytecode. It uses a packed-switch-payload

pseudo-instruction which contains data about the switch statement at offset 0 (note that

the default case is implicit). Moreover, in the Dalvik bytecode the registers used as

arguments are not typed. Figure 4.7(c) shows the Tyde IR for m3. In the Tyde repre-

sentation, the packed-switch instruction has all the necessary data (with an explicit

default case) and no pseudo-instruction is used.

4.4.1 Specification

Figure 4.8 presents the type lattice used by the Tyde IR. All types on this lattice are valid

Java types. In Tyde, we introduce the notion of typed registers. It adds two elements

to Dalvik registers: a type τ and information about whether the register is a source or

destination register (represented by terminals δs and δd).

The notion of typed value is used for all source or destination operands. Typed

source values can either be typed source registers or integer literals. Typed destination

values are defined as typed destination registers, ρp or ρ2p. ρp (resp. ρ2p) represents

the case where a single-word (resp. double-word) return value is ignored after a method

invocation. This is summarized in Figure 4.9, in which τ is any type from the lattice in

Figure 4.8.

Tyde only defines proper instructions, i.e., no pseudo-instructions are used. Also,

instead of constant pool indices and most inline numeric literals, Tyde directly uses Java

42

1 public double m3(int a) {

2 switch (a) {

3 case 0:

4 return 1.0;

5 case 1:

6 return 2.5;

7 default:

8 return 4.0;

9 }

10 }

(a) Source code.

public double m3(int);

0: packed-switch v3, 12 // +12

3: const-wide/high16 v0, #long 4616189...

5: return-wide v0

6: const-wide/high16 v0, #long 4607182...

8: goto 5 // -3

9: const-wide/high16 v0, #long 4612811...

11: goto 5 // -6

12: packed-switch-payload

entries: 2

first key: 0

targets: 6, 9

(b) Dalvik bytecode.

public double m3(int);

0: packed-switch (3, int, δs)
first key: 0 - targets: 6, 9 - default: 3

3: const-wide/high16 (0, double, δd), #double 4.0

5: return-wide (0, double, δs)
6: const-wide/high16 (0, double, δd), #double 1.0

8: goto 5 // -3

9: const-wide/high16 (0, double, δd), #double 2.5

11: goto 5 // -6

(c) Tyde representation.

Figure 4.7. Method m3.

constants. Note that while several constant types are used, we use a generic constant C

for ease of exposition. Finally, Tyde does not use offsets to refer to other instructions

to represent branches. Instead, Tyde instructions use pointers to other instructions,

represented as ptrT .

Table 4.2 shows the syntax of Tyde instructions. There are 9 formats, each of which

is later translated to Java using a single rule (see Section 4.6). {A}ba indicates that

symbol A is repeated between a and b times. We note {A}a = {A}aa and [A] = {A}10.

Finally, {A} indicates that A is repeated zero or more times.

Tuo represents instructions which have zero or one typed destination value vd, zero

or more source values vs, and zero or one Java constant C. Finally, their opcode has

an unambiguous semantic equivalent in the JVM. Examples include a vast majority of

unary and binary operators and method invocations. Tao is almost the same format:

the only difference is that the corresponding Java opcode is ambiguous. For example,

return-wide is included in that format because it can be used to return a long (lreturn

43

⊤

⊥

null

float doublelong

Object

boolean

arrays
other

refs
byte

short

int

char

Figure 4.8. Tyde type lattice.

Name Syntax Dalvik Instructions

Tuo Ouo, [vd], {vs}, [C] 222

Tao Oao, [vd], {vs}, [C] 12

Tub Oub, {ρs}20, ptrT 11

Tab Oab, {ρs}21, ptrT 4

Tfna Ofna, ρd, {ρs}, τ 3

Tno Ono, ρd, ρs 2

Tfad fill-array-data, ρs, {C} 1

Tps packed-switch, ρs, l, ptrT , {ptrT } 1

Tss sparse-switch, ρs, {l}m, ptrT , {ptrT }m 1

Table 4.2. Simplified syntax of Tyde Instructions.

44

Register Indices r ::= 0 | 1 | 2 | . . .

Typed Source Registers ρs ::= (r, τ, δs)

Typed Dest. Registers ρd ::= (r, τ, δd)

Typed Registers ρ ::= ρs | ρd
Integer Literals li ::= 0 | 1 | 2 | . . . | -1 | -2 | . . .

Typed Source Values vs ::= ρs | li
Typed Destination Values vd ::= ρd | ρp | ρ2p

Figure 4.9. Tyde typed registers and values.

in Java) or a double (dreturn in Java). Opcode set Ouo is partially shown in the first

column of Table 4.4; the complete list for Ouo is available in Appendix 8.5. Set Oao is

shown in Table 4.5 (first column).

Tub represents branching instructions whose opcode have an unambiguous semanti-

cally equivalent Java opcode. In addition to an opcode, they are composed of zero, one

or two typed source registers ρs and a pointer to a target Tyde instruction ptrT . Tab
is similar: the two differences are the number of source registers and the fact that the

corresponding Java opcode is ambiguous. Sets Oub and Oab are shown in Tables 4.6

and 4.7 (first column).

Tfna instructions are the filled-new-array instructions. They are used to cre-

ate a new array and fill it with the contents of registers. In addition to their opcode,

they are composed of a destination register ρd, an arbitrary number of sources regis-

ters ρs and a type τ . Set Ofna is { filled-new-array, filled-new-array/range,

filled-new-array/jumbo }. Tfad instructions are fill-array-data instructions (pre-

sented in Section 4.1). In addition to their opcode and a typed source register ρs, they

have an arbitrary number of Java constants.

Tno represents the not-int and not-long unary operators defined in the DVM, which

do not have a trivial semantically equivalent opcode in the JVM. Set Ono is { not-int,

not-long }.
Tps are the packed-switch instructions. They are composed of a packed-switch

opcode, a typed source register ρs, an integer literal li (switch lowest case value) and a

strictly positive number of pointers to Tyde instructions ptrT (switch targets, including

the default case handler). Tss are the sparse-switch instructions. They are composed

of a sparse-switch opcode, a typed source register ρs, m integer literals li (switch

case values) and m+ 1 pointers to Tyde instructions ptrT (switch targets, including the

default case handler), for some integer m.

45

(1) .dex Parsing

(2) CFG
Construction

Instruction Parsing

(3) Type
Inference

Pseudo-Instruction Inlining

Basic CFG Construction

Exceptional Edges Removal

Type Constraint Generation

Type Constraint Solution

Figure 4.10. Tyde intermediate representation construction overview.

Note that with this representation, not all instructions correspond to valid instruc-

tions. For example, with an add-int instruction in Tuo, there would only be two source

values, even though the format accepts an arbitrary number of source values. The third

column of Table 4.2 indicates how many types of Dalvik instructions are mapped to each

Tyde instruction format.

4.5 Transforming Dalvik Bytecode to Tyde

As depicted in Figure 4.10, Tyde IR is generated in three steps. The first step consists

of parsing the .dex file, which involves parsing data related to classes and methods (e.g.,

access flags and names), as well as fields and method instructions. In the next step, a

Control Flow Graph (CFG) is constructed. In the final step, a type inferencing algorithm

infers types of registers that are ambiguous.

Parsing – Since parsing class and method data and fields is straightforward, we focus

our description on instruction parsing. While parsing instructions, type information for

registers is determined. For example, the types of several unary and binary operators

can be known from their opcode, e.g., an add-long instruction takes two long integers

as sources and a long integer as destination. Also, during this parsing step, for every

instruction which uses a constant pool reference, a new Java constant is generated on

the fly. The only exception is when the instruction is an ambiguous numeric constant

assignment. In that case, type information is needed before the constant can be created.

46

The parsing step also removes pseudo-instructions. As mentioned before, Dalvik byte-

code uses pseudo-instructions to store complementary data about a proper instruction.

In the parsing step, we simply store the contents of each pseudo-instruction in the proper

instruction which refers to it and eliminate the pseudo-instruction.

4.5.1 Building a Control Flow Graph

In the second step, we build a CFG from the Dalvik bytecode. Techniques used for con-

structing CFGs are quite standard, so we focus on details that are specific to our system.

As required by the Tyde IR, relative offsets in branching instructions are converted to

pointers. Also, exception tables are used to generate CFG edges. When an instruction

I is protected by a try block, we add a CFG edge from its predecessors to the appropri-

ate exception handlers. Standard CFG construction often also includes edges from I to

exception handlers if I has side effects. This is done in order to account for the case in

which the side effects are committed before the exception is thrown. For our purposes,

we do not include these edges. They are not included by the Dalvik or Java verifiers:

even though I might commit side effects before throwing an exception, the type state

will not be changed. This entire process is quite straightforward, since all relative offsets

are statically known.

4.5.1.1 Removing Unfeasible Exceptional Control Flow Graph Edges

As we previously described, DVM and JVM verifiers differ in the way they handle CFG

edges related to exceptions: while the Java verifier considers that all instructions inside

a try block may throw an exception, the Dalvik verifier only considers edges for instruc-

tions which might actually throw an exception. For our CFG construction, we adopt the

Dalvik approach. In order to generate verifiable Java bytecode, we also modify the ex-

ception tables (which describe try/catch/finally blocks) to only include instructions

which might throw an exception in try blocks. We now explain why these modifications

do not modify the semantics of the program.

The Java platform has two types of exceptions [123, §2.16]. Synchronous exceptions

occur as a result of the execution of a particular instruction. For example, if an integer

division instruction has a divisor with value 0, it will throw an ArithmeticException

when it is executed. On the other hand, asynchronous exceptions can happen at any point

in the execution of a method. Asynchronous exceptions only have two possible causes.

First, an asynchronous exception can be thrown when the deprecated Thread.stop()

47

method is called (the thread on which it is called will immediately throw an exception).

The only other case where an asynchronous exception can be thrown is when an internal

error in the virtual machine implementation occurs.

Removing CFG edges for instructions which cannot throw synchronous exceptions

does not violate synchronous exception handling semantics; as we know which instruc-

tions can throw synchronous exceptions, we just have to make sure to leave them in their

try blocks. Asynchronous exceptions may seem less trivial, since they might in theory

be thrown by any instruction. However, exceptions cannot be thrown asynchronously in

the DVM (in particular, Thread.stop() is not supported). That is the reason why the

Dalvik verifier only considers synchronous exceptions in its CFG construction. There-

fore, removing CFG edges corresponding to asynchronous exception handling does not

modify the semantics of the program.

4.5.2 Type Inference

The problem we are trying to solve is the following: given a method with typing following

the lattice on Figure 4.1, find a typing which is valid with respect to the lattice on

Figure 4.8.

We defer formal proofs to future work, but the type inference algorithm we present

below was able to find a valid Java typing for all 1.6 million retargeted methods from

our sample. There are several reasons why our algorithm works well in practice. The

type system enforced by the Dalvik verifier is quite similar to the type system enforced

by the Java verifier. For example, consider a register assignment which might be for

a float or an int. If it is used as a float, it cannot be subsequently used as an int on

the same branch. However, the Dalvik verifier does not back-propagate unambiguous

use type information to ambiguous assignments. Therefore, if an ambiguous assignment

(e.g., 32-bit constant) reaches two uses with incompatible types through two different

branches (e.g., int on one branch and float on another branch), the code could still be

Dalvik-verifiable even though it does not have a valid Java typing. However, we did

not find any occurrence of this, most likely because Dalvik code is compiled from Java

code and the analysis required to merge registers with different types but identical bit

patterns would be costly and provide very minimal gain.

Type inference for Dalvik bytecode uses the following approach: First we generate

constraints on types based on definitions and uses. These constraints are then solved

to infer unknown types. Note that our goal is not to determine types for all variables,

unlike previous work [26]. In particular, with the exception of array types we do not

48

need to know precise types for references.

In this section, τc(vi, Ij) and τv(vi, Ij) denotes the type of register vi at instruction

Ij . We use τc to denote a type constant and τv to denote a type variable.

4.5.2.1 Constraint Generation

Constraints are generated by traversing the CFG starting at ambiguous register defini-

tions (respectively uses), looking for uses (respectively assignments) of the same register.

For example, let us consider method m2, defined in Figure 4.6. Its CFG is shown in Fig-

ure 4.6(d). Method m2 generates the following constraints:

τv(v0, I2) ≤ double

τv(v0, I5) ≤ double

int ≤ τv(v3, I0)

It has two ambiguous definitions (the two const-wide/high16 instructions) and one

ambiguous use (the if-eqz instruction). The first two constraints are generated be-

cause ambiguous definitions reach instruction return-wide, whose type is known from

the method signature. The last constraint (on instruction I0) is given by the method

signature, according to which register v3 is assigned an integer argument before method

execution starts.

The constraints related to variable definitions and uses induce inequality constraints.

Instructions dealing with arrays introduce another kind of constraint on their operands.

For example, consider instruction aget v0, v1, v2, which loads element at index v2 from

the array referenced by v1 into v0. If it is determined that the array referenced by v1 is an

array of integers, then v0 is an integer. Eventually, we obtain four types of constraints:

type (1) τc ≤ τv, type (2) τv ≤ τc, type (3) τv1 ≤ τv2 and type (4) τv1 = [τv2 (where [τv2

means “array of τv2”).

4.5.2.2 Constraint Solution

Solving these constraints is performed in three phases. Throughout these three phases,

whenever a type variable involved in a type (4) constraint is determined, the other side

of the type (4) equality is also determined (or checked if it is already known).

Phase 1 – First, we use Algorithm D by Rehof and Mogensen [124] to find the least

solution to type (1) and (3) constraints. The Rehof-Mogensen (RM) algorithm finds

the least solution τ . The RM-algorithm also checks that the solution τ satisfies type (2)

49

constraints. For the constraint system shown earlier, the RM-algorithm finds the solution

τv(v3, I0) = int. However, we still need to find values for τv(v0, I2) and τv(v0, I5), which

is handled in phase 2.

Phase 2 – After finishing phase 1, there are variables whose type is ⊥ (unknown).

We need to infer the types of these variables. In our example, after phase 1 τv(v0, I2)

and τv(v0, I5) are ⊥. Phase 2 finds the types of these variables. Assume that type

variable τv has value ⊥ after phase 1, but has the following constraints of type (2):

τv ≤ τc1 , τv ≤ τc2 , · · · , τv ≤ τck . Then we set τv = τc1 ∧τc2 ∧· · ·∧τck (that is, the greatest

common subtype of τc1 , τc2 , · · · , τck). This ensures that all type (2) inequalities involving

τv are satisfied. For our example, this yields the following types: τv(v0, I2) = double and

τv(v0, I5) = double. In general, this process may determine the type of the left-hand side

of some type (3) inequalities. In order to solve these constraints properly, we run the

algorithm by Rehof and Mogensen again.

Phase 3 – After phase 1 and 2 there are some types that are still undetermined (e.g.,

ambiguous assignment reaching only an ambiguous use, which is not itself reached by

any unambiguous assignment). In that case, we set these types to safe default types. In

Section 4.1, we explained that all instructions with ambiguous typing have a limited set

of types that they can possibly take. For example, a const-wide instruction can only

take types long or double. After this, all variable types are safe Java types.

4.6 Generating Java Bytecode

A Dalvik code in Tyde IR is translated into Java bytecode in three steps. In the first

step, registers are mapped to Java local variables and labels are generated to support

control-flow instructions. In the second step, instructions in Tyde IR are converted to

Jasmin instructions (Jasmin is a Java bytecode assembler). The third step is to use

Jasmin to generate Java .class bytecode. We will provide a brief description of the first

two steps.

4.6.1 First Step (Pre-Processing)

Register Mapping – Tyde is a register-based representation, therefore we need to

map every register to a Java local variable. A register map m is a function that maps a

Tyde IR register to a Java local variable. In the JVM, the first local variable indices are

reserved for the this reference (for non-static methods) and the method arguments [123,

50

Typed Value Java Instruction

li sipush li

(r, τi, δs) iload m(r)

(r, float, δs) fload m(r)

(r, long, δs) lload m(r)

(r, double, δs) dload m(r)

(r, τr, δs) aload m(r)

ρp pop

ρ2p pop2

(r, τi, δd) istore m(r)

(r, float, δd) fstore m(r)

(r, long, δd) lstore m(r)

(r, double, δd) dstore m(r)

(r, τr, δd) astore m(r)

Table 4.3. Opcode map fds for typed values.

§3.6.1]. In the DVM, these variables use the last register indices, so our register map has

to respect this constraint.

Label Generation – In Java bytecode, branching instructions include relative offsets

to their targets. Also, exceptions tables describe the boundaries of try/catch/finally

blocks using absolute offsets. However, Jasmin uses labels for these, which is why we need

to generate labels before we can generate Jasmin code. We define b such that, for any

pointer ptrT to a Tyde instruction, b(ptrT) is the label of the instruction corresponding

to ptrT .

4.6.2 Second Step (Translating Instructions)

In order to map a Tyde method to a Java method, we introduce helper functions. The

general idea is that each Tyde instruction format is mapped to Java instructions using

a single pattern. In this section, we use the symbol Jε to represent the “null” Java

instruction (which in case of Jasmin is the empty string).

Typed Values – In Table 4.3, we define a function fds which maps typed values to Java

instructions. For this definition, we use the register map m. τi is any single-word integer

type (boolean, char, byte, short or int) and τr is any reference (array or non-array)

51

Tyde Opcode Java Opcode

nop nop

move Jε
const-wide/16 ldc2 w

monitor-exit monitorexit

Table 4.4. Opcode map fuo for set Ouo (partial definition).

type. Essentially fds(v) corresponds to the Java instruction to load or store the Tyde

typed value v. These Java instructions can be divided into two categories: a) pushing

values onto the operand stack before an operation is applied to them (load instructions),

and b) popping values resulting from an operation from the stack, either to store them

in a local variable (store instructions) or to balance the stack if a method’s return

value is discarded (pop instructions). Since these values are typed and their register use

(source or destination) is known, they can be translated independently from other parts

of the Tyde instruction, i.e., knowing the Dalvik opcode is not necessary. One of the

advantages of having types on sources and destinations in Tyde is that Java instructions

to load/store/pop typed values can be generated independently of the instruction opcode.

Constants – We use fC to represent the translation of a constant pool reference. If

we were generating binary bytecode, it would simply be the index of the constant in

the constant pool. Since we generate instructions for Jasmin, it is a textual description

of the constant (e.g., value for an integer constant). If there is no constant, fC simply

returns an empty string.

Opcodes – In general, unambiguous opcodes in Tyde IR have a corresponding opcode

in Jasmin. For ambiguous opcodes, the types of the operands in Tyde IR are used to

determine the corresponding opcode in Jasmin. In Table 4.4, we define a function fuo

which maps unambiguous Tyde operators to semantically equivalent Java opcodes. A

vast majority of Dalvik opcodes (222 out of 257) are in this class Ouo. Their semantic

mapping to a Java opcode is trivial and the equivalent Java opcode can be known by

only knowing the Dalvik opcode. Table 4.4 only shows a subset of the mappings. The

complete definition is available in Appendix 8.5. In Table 4.5, we define a function fao

which maps ambiguous opcodes and Tyde types to Java opcodes. τp is any primitive

type, i.e. τi, float, long or double. In these cases, one Dalvik opcode maps to several

Java opcodes and thus an argument type is needed to disambiguate the mapping.

In Table 4.6, we define a function fub which maps unambiguous branching opcodes

52

Tyde Java

Opcode Type Opcode

return τi ireturn

float freturn

return-wide long lreturn

double dreturn

const/4, const/16, const, const/high16 τi, float ldc

τr aconst null

aget int iaload

float faload

aget-wide long laload

double daload

aput int iastore

float fastore

aput-wide long lastore

double dastore

new-array, new-array/jumbo τp newarray

τr anewarray

Table 4.5. Opcode map fao for set Oao.

Tyde Opcode Java Opcode

goto, goto/16, goto/32 goto

if-lt if-icmplt

if-ge if-icmpge

if-gt if-icmpgt

if-le if-icmple

if-ltz iflt

if-gez ifge

if-gtz ifgt

if-lez ifle

Table 4.6. Opcode map fub for set Oub.

53

Tyde Java

Opcode Type Opcode

if-eq τi if icmpeq

τr if acmpeq

if-ne τi if icmpne

τr if acmpne

if-eqz τi ifeq

τr ifnull

if-nez τi if-icmpnez

τr ifnonnull

Table 4.7. Opcode map fab for set Oab.

to semantically equivalent Java opcodes. As with fuo, this mapping is trivial and the

equivalent Java opcode is completely determined by the Dalvik opcode. Table 4.7 defines

a function fab which maps ambiguous branching opcodes and Tyde types to Java opcodes.

As with Oao, one Dalvik opcode maps to several Java opcodes and an argument type is

needed to disambiguate the mapping.

Instructions – Using the register map m and the various functions defined earlier,

we can describe the translation for each of the Tyde instruction classes shown earlier.

This translation is shown in Table 4.8. In addition to the functions defined earlier, our

translation also uses function fxastore for mapping store instructions defined in Table 4.9.

We now describe translation rules for a few interesting Tyde instructions.

not Instructions Tno – The Dalvik and Tyde instruction sets include not instructions

for integers. While there is no trivial semantic equivalent in the Java instruction set,

we can use a combination of Java instructions and take advantage of the equivalence of

bitwise binary operators. Given an integer i, we define 1|i| the integer whose bit pattern

is all ones with the same width as i (32 or 64 bits). If the NOT (resp. XOR) bitwise

operator is represented as ¬ (resp. ⊕), then we have ¬i = 1|i|⊕ i. Therefore, a valid Java

instruction pattern consists in pushing constant 1|i| onto the stack (with ldc or ldc2 w

depending on integer width). After pushing i onto the stack, the ixor (or lxor) opcode

should be applied. Finally, the result should be popped from the stack. This pattern

defines map jno in Table 4.8. For this function, we use function fno defined over Ono
such that fno(not-int) = ixor and fno(not-long) = lxor. We also define |ono| = 32 if

54

T
y
d

e
T

y
d

e
E

q
u

iv
a
le

n
t

J
a
v
a

In
st

ru
c
ti

o
n

S
e
t

In
st

ru
c
ti

o
n

In
st

ru
c
ti

o
n

s

T u
o

t u
o

=
(o
u
o
,v
d
,v

0 s
,v

1 s
,·
··
,v
k s
,C

)
j u
o
(t
u
o
)

=
f d
s
(v

0 s
)||
f d
s
(v

1 s
)||
··
·||
f d
s
(v
k s
)||

(f
u
o
(o
u
o
),
f C

(C
))
||f

d
s
(v
d
)

T a
o

t a
o

=
(o
a
o
,v
d
,v

0 s
,v

1 s
,·
··
,v
k s
,C

)
j a
o
(t
a
o
)

=
f d
s
(v

0 s
)||
f d
s
(v

1 s
)||
··
·||
f d
s
(v
k s
)||

(f
a
o
(o
a
o
,τ

),
f C

(C
))
||f

d
s
(v
d
)

T u
b

t u
b

=
(o
u
b
,ρ

0 s
,ρ

1 s
,p
tr
T

)
j u
b
(t
u
b
)

=
f d
s
(ρ

0 s
)||
f d
s
(ρ

1 s
)||

(f
u
b
(o
u
b
),
b(
p
tr
T

))

T a
b

t a
b

=
(o
a
b
,ρ

0 s
,ρ

1 s
,p
tr
T

)
j a
b
(t
a
b
)

=
f d
s
(ρ

0 s
)||
f d
s
(ρ

1 s
)||

(f
a
b
(o
a
b
,τ

),
b(
p
tr
T

))

T n
o

t n
o

=
(o
n
o
,ρ
d
,ρ
s
)

j n
o
(t
n
o
)

=
(l

d
c/

ld
c2

w
,f
C(

1 |
o
n
o
|)

)||
f d
s
(ρ
s
)||
f n
o
(o
n
o
)||
f d
s
(ρ
d
)

T f
n
a

t f
n
a

=
(o
f
n
a
,ρ
d
,ρ

0 s
,ρ

1 s
,·
··
,,
ρ
k s
,τ

)
j f
n
a
(t
f
n
a
)

=
(f
f
n
a
(τ

),
τ
)||

d
u

p
||f

d
s
(0

)||
f d
s
(ρ

0 s
)||
f x
a
st
o
r
e
(τ

)||
d

u
p
||f

d
s
(1

)
||f

d
s
(ρ

1 s
)||
f x
a
st
o
r
e
(τ

)||
··
·||

d
u

p
||f

d
s
(k

)||
f d
s
(ρ
k s
)||
f x
a
st
o
r
e
(τ

)||
f d
s
(ρ
d
)

T f
a
d

t f
a
d

=
(fi

ll
-a

rr
ay

-d
a
ta
,ρ
s
,C

0
,C

1
,

··
·,
C
k
)

j f
a
d
(t
f
a
d
)

=
f d
s
(ρ
s
)||
f d
s
(0

)||
(l

d
c/

ld
c2

w
,f
C(
C

0
))
||f

x
a
st
o
r
e
(τ

(ρ
s
))
||f

d
s
(ρ
s
)

||f
d
s
(1

)||
(l

d
c/

ld
c2

w
,f
C(
C

1
))
||f

x
a
st
o
r
e
(τ

(ρ
s
))
||·
··
||f

d
s
(ρ
s
)||
f d
s
(k

)
||(

ld
c/

ld
c2

w
,f
C(
C
k
))
||f

x
a
st
o
r
e
(τ

(ρ
s
))

T p
s

t p
s

=
(p

a
ck

ed
-s

w
it

ch
,ρ
s
,l
,

p
tr
d
ef
a
u
lt

T
,p
tr

0 T
,p
tr

1 T
,·
··
,p
tr
k T

)

j p
s
(t
p
s
)

=
f d
s
(ρ
s
)||

(t
ab

le
sw

it
ch
,l
,b

(p
tr
d
ef
a
u
lt

T
),
b(
p
tr

0 T
),
b(
p
tr

1 T
),
··
·,

b(
p
tr
k T

))

T s
s

t s
s

=
(s

p
a
rs

e-
sw

it
ch
,ρ
s
,l

1
,l

2
,·
··
,

l k
,p
tr
d
ef
a
u
lt

T
,p
tr

1 T
,p
tr

2 T
,·
··
,p
tr
k T

)

j s
s
(t
ss

)
=
f d
s
(ρ
s
)||

(l
o
ok

u
p

sw
it

ch
,b

(p
tr
d
ef
a
u
lt

T
),
l 1
,b

(p
tr

1 T
),
l 2
,b

(p
tr

2 T
),
··
·,

l k
,b

(p
tr
k T

))

T
a
b

le
4
.8

.
T

y
d

e
m

a
p

s.

55

Tyde Type Java Opcode

[boolean, [byte bastore

[char castore

[short sastore

[int iastore

[float fastore

[τr aastore

Table 4.9. Map fxastore.

ono = not-int and |ono| = 64 if ono = not-long.

filled-new-array Instructions Tfna – Dalvik and Tyde bytecode have instructions

which create a new array and fill it with the contents of registers given as arguments.

While Java does not have a direct equivalent, a semantically equivalent sequence of Java

instructions is as follows. First, a newarray (primitive type) or anewarray (reference

type) instruction will create a new array with the appropriate type and return a reference

to the array on the stack. To fill the array with the proper values, we use a sequence of the

following pattern: i) a dup instruction duplicates the array reference on the stack, then ii)

the proper array index l ∈ Li is pushed onto the stack, next iii) the array element value

is pushed onto the stack, then d) an appropriate xastore instruction pops the duplicated

reference, the index and the element and performs the array storage. Finally, an astore

instruction stores the array reference to a local variable. This patterns defines map jfna

in Table 4.8. For this function, we use function ffna such that ffna(τp) = newarray and

ffna(τr) = anewarray.

packed-switch Instructions Tps – The semantic equivalent of a Tyde packed-switch

instruction is a Jasmin tableswitch instruction. The arguments of a packed-switch

are a typed source register (integer used to switch), a literal corresponding to the lowest

case value, a pointer to the default case handler and a set of pointers to case handlers.

The corresponding Jasmin instruction is similar, except that it uses labels instead of

pointers.

Example – Let us consider method m2 introduced in Figure 4.6(a). Figure 4.6(e)

shows its Tyde representation. For ease of exposition, we assume that the label of

each instruction is simply its original offset and the register mapping m is such that

m(0) = 2, m(1) = 3, m(2) = 0 and m(3) = 1. The first Tyde instruction has format Tab

56

(see Table 4.8). Using the notation from Table 4.8, oab is if-eqz, ρ0
s = (3, int, δs), ρ

1
s

is empty and ptrT is a pointer to instruction at offset 5. fds(3, int, δs) = iload m(3) =

iload 1 is the first Java instruction. Then we have fds(ρ
1
s) = Jε, fab(oab, int) = ifeq

and b(ptrT) = 5 (note that the 5 value is just a label and not the offset in the final Java

bytecode). The second Java instruction is ifeq, label 5. The remaining Tyde instructions

are translated in a similar manner to obtain the bytecode shown on Figure 4.6(f).

4.7 Unverifiable Dalvik Bytecode

In the previous sections, we have described how to generate verifiable Java bytecode

from verifiable Dalvik bytecode. As we explore below, some bytecode from real-world

applications is not Dalvik-verifiable. In this section, we show the errors we encountered

with real bytecode. We also show how we modified our retargeting process to handle

bytecode that is not Dalvik-verifiable in order to generate verifiable Java bytecode.

4.7.1 Observed Errors

Improper references – The main source of unverifiable bytecode is the presence of

bad method, field, interface or class references. Two different cases were encountered:

• References to classes which are not available within the application or in the core

Android classes. A special case is when the superclass of a class is missing; then

the class is trivially unverifiable and is not even linked by the DVM.

• References to methods or fields which are non-existent or not accessible (e.g., pri-

vate member).

There are two reasons for these missing references. The first reason is that applica-

tions commonly use private Android APIs. The Android platform includes public APIs

which are documented and always backward compatible. In other words, an application

using only public APIs will still work after an Operating System (OS) update. Android

also includes private APIs which are meant for internal use by OS components. Unlike

public APIs, private ones are not officially documented and backward compatibility is

not guaranteed. Using them is strongly discouraged, as a simple OS update may break

an application making calls to private APIs. In our experiments, we checked verifiability

using recent Android core classes whereas the application sample was about a year older.

Doing so allowed us to point out potential problems applications could have after an OS

update.

57

The second reason is that, as we pointed out in previous work [107], developers often

include entire libraries to be able to use some classes from these libraries. Parts of

the included libraries sometimes make calls to other libraries, which are not themselves

included with the Android application. In practice, it is not an issue, as long as these

parts of the included library are not used anywhere in the application. However, the

unused part of the library code making these calls will not be verifiable.

Typing and other issues – The second source of unverifiability for Dalvik bytecode is

the presence of invalid typing. Other issues are a marginal cause of verification problems.

These can have a very wide variety of causes (e.g., malformed class or member identifier,

illegal access flag, etc.). More analysis is needed to understand how these problems can

make their way to released Dalvik bytecode.

4.7.2 Handling Unverifiable Dalvik Bytecode

In this section, we describe our approach to handle unverifiable Dalvik bytecode in an

application using Dalvik pre-verification. First, we verify the application using the Dalvik

verifier which is part of the Android OS. We modified it in order to make it generate a

detailed report describing all verifiability issues with the application. For each problem

in the application, the report describes the class name, the method name and signature,

the problematic code offset and the type of verification error.

Then, the report is input into Dare with the application package. The Dare parsing

step (see Section 4.5) is modified as follows:

1. If the entire class could not be linked by the verifier (e.g., because its superclass is

missing), then skip the entire class. None of the code of the class will be retargeted.

At runtime, the class would also be missing, so not retargeting it does not change

the semantics of the program.

2. If a method is entirely unverifiable because of a serious issue (e.g., typing issue),

then the parsing step replaces the method with code that throws a VerifyError.

All other verifiable methods in the class will be retargeted without modification.

3. If a method is unverifiable because of a less serious issue (e.g., missing class refer-

ence), then only replace the faulty code location with code that throws an appro-

priate error (for example, NoClassDefFoundError). That is exactly the behavior

of the Dalvik VM at runtime: the faulty code locations are also rewritten during

the verification process. An interesting case is when we encounter a reference to a

58

class that was ignored in Step 1. The reference is then replaced with code throwing

a NoClassDefFoundError, which is the runtime behavior.

These code transformations serve two important purposes:

• They mirror the runtime behavior of the program and therefore do not cause any

loss of semantics.

• They make the entire program Dalvik-verifiable.

In order to account for some subtle differences between the Java and Dalvik verifiers,

we also had to consider two cases where a method was Dalvik-verifiable but it was not

Java-verifiable after retargeting. The first difference involves aget-object instructions,

which are used to access a component in an array of references. If it is used with an

array reference which is known to always be null at verification time, then the verifier

sets the array component to be null as well. But as we described above, in Dalvik, null

and int/float with value 0 are the same type. Thus, if the register is subsequently used

as an int or a float, the code will be Dalvik-verifiable, but no valid Java typing will exist

for it. In order to fix this, we replace the aget-object instruction with code throwing

a NullPointerException. This mirrors the runtime behavior of the program and also

allows us to find a Java typing (since the null register will no longer be used as an int or

a float).

Second, when a field with reference type is accessed in the Dalvik architecture, the

method accessing it can still be verifiable even if the field type cannot be resolved (the

type of the register storing the field is set to java.lang.Object). The method is ver-

ifiable only if the register is subsequently used in trivial ways. On the other hand, the

Java verifier will reject a method if a field reference type cannot be resolved. In order to

make the retargeted code verifiable, we had Dare automatically generate class stubs for

the unresolvable field types. Since those fields are only used in trivial ways, these stub

classes do not need to contain any field or method.

4.8 Evaluation

4.8.1 Dalvik Bytecode Verification

In this section, we describe the Dalvik verification issues we found in a sample of 1,100

applications. We use the 50 most popular applications in the 22 application categories

59

as of September 1, 20104. The 1,100 applications contained 262,110 classes. We used the

Dalvik verifier and the core Android classes included in Android version 4.0.3.0.2.0.1.0.

A surprising result of our Dalvik verification experiments is that 247 applications

contained unverifiable code. 181 applications contained at least one class which could not

be linked by the Dalvik VM (e.g., because of a missing superclass), totalling 905 trivially

unverifiable classes. 214 applications had at least one unverifiable code location in non-

trivially unverifiable classes. Table 4.10 presents the results of the Dalvik verification

process for the classes which were not completely Dalvik-unverifiable. For each issue, we

show the number of faulty code locations and the number of applications with at least

one bad location. Occasionally, several locations in a single method can be unverifiable.

The first column shows the number of bad references, i.e. references to an inaccessible

(e.g., private) or nonexistent class member. It is unlikely for an application to make a

bad reference to its own code, so these are most likely references to private Android APIs

which were modified after the application was developed. The second column shows the

number of references to a missing class. These are caused by unlinkable application

classes and by (supposedly unused) code in included libraries making references to other

libraries which are not included with the application. Finally, we show the number of

typing and other issues, which account for 6.46% of all unverifiable code.

4.8.2 Retargeting

The empirical evaluation described in this section attempts to answer two central ques-

tions: 1) are the computational costs of retargeting feasible in practice? and 2) can

Dare successfully retarget market applications? The answers to these questions will de-

termine the degree to which this is a useful tool for extracting code for further analysis.

Highlights of the study include:

• After some additional code optimizations in some isolated cases, the output of Dare

is verifiable for all methods for 99.64% of the applications in the corpus, and over

99.999% of methods overall. This is a substantial increase over existing tools.

• Dare can, on average, retarget each class in 4.20 msec, and was able to retarget

the entire corpus of 1,100 applications containing over 260,000 classes in less than

20 min.

• The complete processing of all applications including Dalvik pre-verification (mod-

ified Dalvik verifier), retargeting (Dare) and assembly (Jasmin) took less than 70

4Experiments run on a smaller sample from March 2012 show near-identical results.

60

B
a
d

R
e
fe

re
n

c
e
s

M
is

si
n

g
R

e
fe

re
n

c
e
s

T
y
p

in
g

Is
su

e
O

th
e
r

A
p

p
li
c
a
ti

o
n

s
93

16
8

73
1
3

C
o
d

e
L

o
c
a
ti

o
n

s
1,

33
5

6,
41

3
48

8
54

T
a
b

le
4
.1

0
.

V
er

ifi
ca

ti
o
n

re
su

lt
s

fo
r

p
a
rt

ia
ll
y

ve
ri

fi
a
b

le
cl

a
ss

es
.

61

compute-minutes.

We compare Dare against dex2jar [125], the most popular tool for retargeting Dalvik

bytecode to Java. We do not report bytecode verification results for our previous tool:

ded [121, 126] was built for the purpose of decompilation and did not include all infor-

mation that is required for a verifiable class file, for example the maximum stack size for

each method (which was set to a default value of 0). As a consequence, while the output

of ded can typically be processed by decompilers and accurately captures the semantics

of the original program, it is generally trivially unverifiable.

We evaluate Dare on two key metrics: performance and retargeting success rate. We

retargeted the entire corpus of applications described in the previous section. We used

Jasmin version 2.4.0 for Java bytecode assembly.

Performance – The total processing time was 4,198 seconds, with Dalvik pre-verification

consuming 229 seconds (5.45%), Dare 1,101 seconds (26.23%) and Jasmin 2,868 seconds

(68.32%). Dare processing was dominated by the file output operations. They are per-

formed at the same time as the translation of Tyde to Jasmin. Together they take 85% of

the total processing time. The type inference algorithm accounts for 5% of the total pro-

cessing time. Other parts of the retargeting process take less than 5% each. Retargeting

is efficient and can be a fast first step before application analysis.

Retargeting – The success metrics reported below measure the ability of Dare to gener-

ate valid bytecode. A method is said to be successfully retargeted when Dare generates

bytecode that is verifiable (and thereafter is ready for inspection and analysis by exist-

ing tools). A class is said to be successfully retargeted if all the methods it contains

are successfully retargeted. Finally, an application is said to be successfully retargeted

if all classes within the application are retargeted. For the Java bytecode verification

experiments, we used the Oracle Labs Maxine VM verifier [127].

Table 4.11 shows the results of the Dare retargeting. The first column shows the total

number of classes and non-abstract methods in our sample. The second column shows

how many classes were safely removed using the Dalvik verification reports as described

in Section 4.7 (the application count is the number of applications in which at least one

class was removed). The next column presents the number of classes and methods which

were modified following the Dalvik verification reports. The next column shows the

number of retargeted classes which were completely unverifiable (the application count

is the number of applications in which at least one class was completely unverifiable).

For each of these classes, the issue was caused by a single method which had a code size

62

R
e
m

o
v
e
d

M
o
d

ifi
e
d

U
n
v
e
ri

fi
a
b

le
U

n
v
e
ri

fi
a
b

le
V

e
ri

fi
a
b

le

T
o
ta

l
C

o
d

e
C

o
d

e
C

la
ss

e
s

C
o
d

e
C

o
d

e
(%

)

A
p

p
li
c
a
ti

o
n

s
1
,1

0
0

18
1

21
4

7
3

99
.0

9
%

C
la

ss
e
s

26
2
,1

1
0

90
5

3,
35

4
14

4
9
9.

9
9%

M
e
th

o
d

s
1,

62
0
,8

13
9,

65
8

6,
85

8
10

0
4

99
.9

9
%

T
a
b

le
4
.1

1
.

D
a
re

re
ta

rg
et

in
g

su
cc

es
s

ra
te

s.

63

Completely Unverifiable Verifiable

Total Unverifiable Classes Code Code (%)

Applications 1,100 422 206 59.64%

Classes 262,110 1,405 776 99.17%

Methods 1,620,813 25,972 1272 98.32%

Table 4.12. dex2jar retargeting success rates.

over the maximum allowed size of 65536 bytes. We were able to fix 13 of these 14 issues

by running the Soot optimizations on these classes. Only one of these 14 failures could

not be fixed: the bytecode optimizations did not sufficiently reduce the code size. After

optimization, only one of the 100 methods was not verifiable.

The next column shows the number of methods which had an issue that did not cause

Maxine to reject the entire class but only a single method. One of these failures was

caused by a reference to one of the classes which was not verifiable because of code size,

as described above. It was fixed after the code optimizations reduced the code size and

made the referenced class verifiable. The other 3 failures were related to a pathological

difference between the Dalvik and Java verifiers. In the case of Java, when a method in

a class C tries to access a protected method from a superclass D which is in a different

package, it can only do so if the instance on which the method invocation occurs is

an instance of a subclass of C. The Dalvik verifier, however, does not enforce this rule

and only checks that C is a subclass of D. As a consequence, the Dalvik verification

step accepted the 3 methods, which were subsequently rejected by the Java verifier after

retargeting. Since a Java compiler would not generate code with this issue, the issue is

most likely due to a private API method which was public when the applications were

created and was later changed to be protected (all 3 failures occurred in a wrapper for

the same Android API class and involve a call to the same protected method).

The final column shows the overall success rates as a percentage of the retargeted

code. While we do not implement a solution for the 4 failures which did not have a trivial

fix, we do not consider them to be significant. They only represent less than 0.00025%

of the methods in our sample. Moreover, we were able to check that the issues with

the code in these 4 methods do not necessarily prevent them from being processed by

analysis tools: all 4 were successfully optimized by Soot. Typing problems, on the other

hand, would prevent any serious analysis. No type issue was found by the Java verifier,

which strongly validates our type inference algorithm.

64

Table 4.12 shows the retargeting results using the latest version of dex2jar (0.0.9.8),

currently the most widely used retargeting tool. There are two main reasons why

dex2jar performs less well at the retargeting experiments than Dare. First, it does

not handle unverifiable Dalvik bytecode: the result of retargeting unverifiable Dalvik

bytecode is unverifiable Java bytecode. The second reason is that, similarly to ded,

dex2jar aims to be used for decompilation and typically decompilers can decompile un-

verifiable code if the cause for unverifiability is not too serious. Verifiability is a stronger

criterion for success and ensures that the application is processed by analysis tools (and

not only decompilers). In the case of dex2jar, a number of classes are completely unver-

ifiable for trivial reasons (e.g., illegal member access flags). In addition, several methods

are unverifiable for various reasons ranging from bad references to illegal typing. As a

result, even though the class and method retargeting success rates are high (respectively

over 99% and over 98%), less than 60% of applications are completely verifiable. It is a

serious obstacle to whole-program analysis.

Chapter 5
Analysis of Inter-Component

Communication in Android with

Epicc

Past analyses of Android applications [107, 3, 51, 5, 77, 52] have largely focused on

analyzing application components in isolation. Recent works have attempted to expose

and analyze the interfaces provided by components to interact [4, 107], but have done

so in ad hoc and imprecise ways.

Conversely, this chapter attempts to formally recast Inter-Component Communica-

tion (ICC) analysis to infer the locations and substance of all inter- and intra-application

communication available for a target environment. This approach provides a high-fidelity

means to study how components interact, which is a necessary step for a comprehensive

security analysis. For example, our analysis can also be used to perform information

flow analysis between application components and to identify new types of attacks, such

as application collusion [128, 129], where two applications work together to compromise

the privacy of the user. In general, most vulnerability analysis techniques for Android

need to analyze ICC, and thus can benefit from our analysis.

Android application components interact through ICC objects – mainly Intents.

Components can also communicate across applications, allowing developers to reuse

functionality. The proposed approach identifies a specification for every ICC source and

sink. This includes the location of the ICC entry point or exit point, the ICC Intent

action, data type and category, as well as the ICC Intent key/value types and the target

component name. Note that where ICC values are not fixed we infer all possible ICC

66

values, thereby building a complete specification of the possible ways ICC can be used.

The specifications are recorded in a database in flows detected by matching compatible

specifications. The structure of the specifications ensures that ICC matching is efficient.

We make the following contributions in this chapter:

• We show how to reduce the analysis of Intent ICC to an Interprocedural Distribu-

tive Environment (IDE) problem. Such a problem can be solved efficiently using

existing algorithms [12].

• We develop Epicc, a working analysis tool built on top of an existing IDE frame-

work [130] within the Soot [131] suite, which we have made available at http:

//siis.cse.psu.edu/epicc/.

• We perform a study of ICC vulnerabilities and compare it to ComDroid [4], the

current state-of-the-art. Our ICC vulnerability detection shows significantly in-

creased precision, with ComDroid flagging 32% more code locations. While we use

our tool to perform a study of some ICC vulnerabilities, our analysis can be used

to address a wider variety of ICC-related vulnerabilities.

• We perform a study of ICC in 1,200 representative applications from the free

section of the Google Play Store. We found that the majority of specifications were

relatively narrow, most ICC objects having a single possible type. Also, key/value

pairs are widely used to communicate data over ICC. Lastly, our analysis scales

well, with an average analysis time of 113 seconds per application.

This chapter is organized as follows. In the next section, we formulate the ICC

problem and motivate it with examples of analyses. Then, in Section 5.2 we present our

methodology. Next, we present our formal model for ICC in Section 5.3. Finally, we

evaluate our approach in Section 5.4.

5.1 Problem Formulation

As highlighted above, the goal of the analysis presented in this chapter is to infer speci-

fications for each ICC source and sink in the targeted applications. These specifications

detail the type, form, and data associated with the communication. We consider com-

munication with Content Providers to be out of scope. Our analysis has the following

goals:

http://siis.cse.psu.edu/epicc/
http://siis.cse.psu.edu/epicc/

67

1 private OnClickListener mMyListener = new OnClickListener ()

{

2 public void onClick(View v) {

3 Intent intent = new Intent ();

4 intent.setAction("a.b.ACTION");

5 intent.addCategory("a.b.CATEGORY");

6 startActivity(intent);

7 }

8 };

Figure 5.1. Example of implicit Intent communication.

Soundness – The analysis should generate all specifications for ICC that may appear

at runtime. Informally, we want to guarantee that no ICC will go undetected. Our

analysis was designed to be sound under the assumption that the applications use no

reflection or native calls, and that the components’ life cycle is modeled completely.

Precision – The previous goal implies that some generated ICC specifications may

not happen at runtime (“false positives”). Precision means that we want to limit the

number of cases where two components are detected as connected, even though they

are not in practice. Our analysis currently does not handle URIs1. Since the data

contained in Intents in the form of URIs is used to match Intents to target components,

not using URIs as a matching criterion potentially implies more false positives. Other

possible sources of imprecision include the points-to and string analyses. We empirically

demonstrate analysis precision in Section 5.4.1.

5.1.1 Applications

Although Android applications are developed in Java, existing Java analyses cannot

handle the Android-specific ICC mechanisms. The analysis presented in this chapter

deals with ICC and can be used as the basis for numerous important analyses, for

example:

Finding ICC vulnerabilities – Android ICC APIs are complex to use, which causes

developers to commonly leave their applications vulnerable [4, 107]. Examples of ICC

vulnerabilities include sending an Intent that may be intercepted by a malicious compo-

nent, or exposing components to be launched by a malicious Intent. The first application

of our work is in finding these vulnerabilities. We present a study of ICC vulnerabilities

1Extending the analysis to include URIs is a straightforward exercise using the same approaches
defined in the following sections. We have a working prototype and defer reporting on it to future work.

68

in Section 5.4.4.

Finding attacks on ICC vulnerabilities – Our analysis can go beyond ICC vul-

nerability detection and can be used for a holistic attack detection process. For each

application we compute entry points and exit points and systematically match them with

entry and exit points of previously processed applications. Therefore, our analysis can

detect applications that may exploit a given vulnerability.

Inter-component information flow analysis – We compute which data sent at

an exit point can potentially be used at a receiving entry point. An information flow

analysis using our ICC analysis could find flows between a source in a component and a

sink in a different component (possibly in a different application).

In the case where the source and sink components belong to different applications, we

can detect cases of application collusion [128, 129]. The unique communication primitives

in Android allow for a new attack model for malicious or privacy-violating application

developers. Two or more applications can work together to leak private information and

go undetected. For example, application A can request access to GPS location informa-

tion, while application B requests access to the network. Permissions requested by each

application do not seem suspicious, therefore a user might download both applications.

However, in practice it is possible for A and B to work together to leak GPS location

data to the network. It is almost impossible for users to anticipate this kind of breach

of privacy. However, statically detecting this attack is a simple application of our ICC

analysis, whereas the current state-of-the-art requires dynamic analysis and modification

of the Android platform [129].

5.1.2 Examples

Figure 5.1 shows a representative example of ICC programming. It defines a field that is

a click listener. When activated by a click on an element, it creates Intent intent and sets

its action and category. Finally, the startActivity() call takes intent as an argument. It

causes the OS to find an activity that accepts Intents with the given action and category.

When such an activity is found, it is started by the OS. If several activities meeting the

action and category requirements are found, the user is asked which activity should be

started.

This first example is trivial. Let us now consider the more complex example from

Figure 5.2, which was first presented in Figure 2.4 and will be used throughout this

chapter. Let us assume that this piece of code is in a banking application. First, Intent

69

1 public void onClick(View v) {

2 Intent i = new Intent ();

3 i.putExtra("Balance", this.mBalance);

4 if (this.mCondition) {

5 i.setClassName("a.b", "a.b.MyClass");

6 } else {

7 i.setAction("a.b.ACTION");

8 i.addCategory("a.b.CATEGORY");

9 i = modifyIntent(i);

10 }

11 startActivity(i);

12 }

13
14 public Intent modifyIntent(Intent in) {

15 Intent intent = new Intent(in);

16 intent.setAction("a.b.NEW_ACTION");

17 intent.addCategory("a.b.NEW_CATEGORY");

18 return intent;

19 }

Figure 5.2. Intent communication: running example.

intent containing private data is created. Then, if condition this.mCondition is true,

intent is made explicit by targeting a specific class. Otherwise, it is made implicit. Next,

an activity is started using startActivity(). Note that we have made the implicit Intent

branch contrived to demonstrate how function calls are handled. In this example, the

safe branch is the one in which intent targets a specific component. The other one may

leak data, since it might be intercepted by a malicious Activity. We want to be able to

detect that possible information leak. In other words, we want to infer the two possible

Intent values at startActivity(). In particular, knowing the implicit value would allow

us to find which applications can intercept it and to detect possible eavesdropping.

5.2 Connecting Application Components: Overview

Our analysis aims at connecting components, both within single applications and between

different applications. For each input application A, it outputs the following:

1. A list of entry points for A that may be called by components in A or in other

applications.

2. A list of exit points for A where A may send an Intent to another component.

That component can be in A or in a different application. The value of Intents at

70

each exit point is precisely determined, which allows us to accurately determine

possible targets.

3. A list of links between A’s own components and between A’s components and other

applications’ components. These links are computed using 1. and 2. as well as all

the previously analyzed applications.

Let us consider the example in Figure 5.2, which is part of our example banking

application. The startActivity(i) instruction is an exit point for the application.

Our analysis outputs the value of i at this instruction as well as all the possible targets.

These targets can be components of our banking application itself or components of

previously analyzed applications.

Figure 5.3 shows an overview of our component matching process. It can be divided

into three main functions:

• Finding target components that can be started by other components (i.e., “entry

points”) and identifying criteria for a target to be activated.

• Finding characteristics of exit points, i.e., what kind of targets can be activated at

these program points.

• Matching exit points with possible targets.

Given an application, we start by parsing its manifest file to extract package informa-

tion, permissions used and a list of components2 and associated intent filters (1). These

components are the potential targets of ICC. We match these possible entry points with

the pool of already computed exit points (2). We then add the newly computed entry

points to our database of entry points (3). This database and the exit points database

grow as we analyze more applications. Then we proceed with the string analysis, which

identifies key API method arguments such as action strings or component names (4).

Next, the main Interprocedural Distributive Environment (IDE) analysis precisely com-

putes the values of Intent used at ICC API calls (5). It also computes the values of Intent

Filters that select Intents received by dynamically registered Broadcast Receivers. These

exit points are matched with entry points from the existing pool of entry points (6). The

newly computed exit points are stored in the exit point database to allow for later match-

ing (7). The values associated with dynamically registered Broadcast Receivers are used

2Broadcast Receivers can be registered either statically in the manifest file or dynamically using the
registerReceiver() methods.

71

Ke
y

st
rin

g
va

lu
es

En
try

po

in
ts

Ex
it

po
in

ts

M
an

ife
st

C
la

ss

fil
es

In
te

nt

va
lu

es

C
om

po
ne

nt
s,

 In
te

nt

Fi
lte

rs
 &

 p
er

m
is

si
on

s
(1

) P
ar

si
ng

(2
) M

at
ch

in
g

(4
) S

tri
ng

an

al
ys

is

(5
) I

D
E

an
al

ys
is

(6
) M

at
ch

in
g

(3
) P

op
ul

at
in

g
da

ta
ba

se

(7
) P

op
ul

at
in

g
da

ta
ba

se

IC
C

lin

ks
IC

C

lin
ks

(9
) P

op
ul

at
in

g
da

ta
ba

se
D

yn
am

ic
 re

ce
iv

er
s

(In
te

nt

Fi
lte

rs
 &

 p
er

m
is

si
on

s)

(8
) M

at
ch

in
g

IC
C

lin

ks

F
ig

u
re

5
.3

.
C

o
n

n
ec

ti
n

g
a
p

p
li

ca
ti

o
n

co
m

p
o
n

en
ts

.

72

for matching with exit points in the database (8). Finally, these values are stored in the

entry point database (9).

One of the inputs to our analysis is a set of class files. These classes are in Java

bytecode format, since our analysis is built on top of Soot [131], an existing Java anal-

ysis framework. Android application code is distributed in a platform-specific Dalvik

bytecode format that is optimized for resource-constrained devices, such as smartphones

and tablets. Therefore, we use Dare [10], an existing tool that efficiently and accurately

retarget Dalvik bytecode to Java bytecode. While other tools such as dex2jar3 and

ded [121] are available, Dare is currently the only formally defined one and other tools’

outputs are sometimes not reliable.

The manifest parsing step is trivial and we use a simple string analysis (see Sec-

tion 4.8). Also, the matching process matches exit points with entry points. It can be

made efficient if properly organized in a database. Thus, we focus our description on the

main IDE analysis.

It is important to distinguish between what is computed by the string analysis and by

the IDE analysis. In the example from Figure 5.1, the string analysis computes the values

of the arguments to the API calls setAction() and addCategory(). The IDE analysis,

on the other hand, uses the results from the string analysis along with a model of the

Android ICC API to determine the value of the Intent. In particular, in Figure 5.1, it

determines that, at the call to startActivity(), Intent intent has action a.b.ACTION and

category a.b.CATEGORY. In Figure 5.2, the IDE analysis tells us that i has two possibles

values at the call to startActivity() and determines exactly what the two possible values

are.

Reducing the Intent ICC problem to an IDE problem [12] has important advantages.

Our analysis is scalable (see Section 4.8). Further, it is a precise analysis, in the sense

that it generates few false positives (links between two components which may not com-

municate in reality). Thus, security analyses using our ICC analysis will not be plagued

by ICC-related false positives. This precision is due to the fact that the IDE framework

is flow-sensitive, inter-procedural and context-sensitive.

The flow-sensitivity means that we can distinguish Intent values between different

program points. In the example from Figure 5.2, if Intent i was used for ICC right before

the call to modifyIntent(), we would accurately capture that this value is different from

the one at startActivity(). The context-sensitivity means that the analysis of the call

to modifyIntent() is sensitive to the method’s calling context. If modifyIntent() is

3Available at http://code.google.com/p/dex2jar/.

http://code.google.com/p/dex2jar/

73

called at another location with a different argument i2, the analysis will precisely distin-

guish between the values returned by the two calls. Otherwise, in a context-insensitive

analysis, the return value would summarize all possible values given all contexts in

which modifyIntent() is called in the program. The value of i computed by a context-

insensitive analysis would be influenced by the value of i2, which is not the case in reality.

That would be significantly less precise, resulting in more false positives.

5.3 Reducing Intent ICC to an IDE problem

To solve the Intent ICC problem, we need to model four different kinds of objects. First,

ComponentName objects contain a package name and a class name. They can be used

by explicit Intents. For example, in method makeComponentName() of Figure 5.4,

a ComponentName object can take two different values depending on which branch is

executed. In the first branch, it refers to class a.b.MyClass from application package

c.d. In the second one, it refers to class a.b.MySecondClass. We want to know the

possible return values of makeComponentName().

Second, Bundle objects store data as key-value mappings. Method makeBundle() of

Figure 5.4 creates a Bundle and modifies its value. We need to find the possible return

values of makeBundle().

Third, Intent objects are the main ICC communication objects. They contain all

the data that is used to start other components. In method onClick() of Figure 5.4,

the target class of intent is set using the return value of makeComponentName().

Its extra data is set to the return value of makeBundle(). Finally, a new Activity is

started using the newly created Intent. We need to determine the value of intent at the

startActivity(intent) instruction.

Fourth, IntentFilter objects are used for dynamic Broadcast Receivers. For example,

in the registerMyReceiver() method on Figure 5.4, an action and a category are added

to IntentFilter f . Then a Broadcast Receiver of type MyReceiver (which we assume

to be defined) is registered using method registerReceiver(). It receives Intents that

have action a.b.ACTION and category a.b.CATEGORY and that originate from applica-

tions with permission a.b.PERMISSION. We want to determine the arguments to the

registerReceiver() call. That is, we want to know that f contains action a.b.ACTION

and category a.b.CATEGORY. We also want to know that the type of the Broadcast

Receiver is MyReceiver.

In this section, we use the notations from Sagiv et al. [12] summarized in Section 2.2.

74

1 public ComponentName makeComponentName () {

2 ComponentName c;

3 if (this.mCondition) {

4 c = new ComponentName("c.d", "a.b.MyClass");

5 } else {

6 c = new ComponentName("c.d", "a.b.MySecondClass");

7 }

8 return c;

9 }

10
11 public Bundle makeBundle(Bundle b) {

12 Bundle bundle = new Bundle ();

13 bundle.putString("FirstName", this.mFirstName);

14 bundle.putAll(b);

15 bundle.remove("Surname");

16 return bundle;

17 }

18
19 public void onClick(View v) {

20 Intent intent = new Intent ();

21 intent.setCompontent(makeComponentName ());

22 Bundle b = new Bundle ();

23 b.putString("Surname", this.mSurname);

24 intent.putExtras(makeBundle(b));

25 registerMyReceiver ();

26 startActivity(intent);

27 }

28
29 public void registerMyReceiver () {

30 IntentFilter f = new IntentFilter ();

31 f.addAction("a.b.ACTION");

32 f.addCategory("a.b.CATEGORY");

33 registerReceiver(new MyReceiver (), f, "a.b.PERMISSION",

null);

34 }

Figure 5.4. ICC objects example.

75

We assume that string method arguments are available. We describe the string analysis

used in our implementation in Section 4.8.

5.3.1 ComponentName Model

In this section, we introduce the model we use for ComponentName objects. We in-

troduce the notion of a branch ComponentName value. It represents the value that a

ComponentName object can take on a single branch, given a single possible string ar-

gument value for each method setting the ComponentName’s package and class names,

and in the absence of aliasing.

Definition 1. A branch ComponentName value is a tuple c = (p, k), where p is a

package name and k is a class name.

In method makeComponentName() of Figure 5.4, two branch ComponentName val-

ues are constructed:

(c.d, a.b.MyClass) (5.1)

and

(c.d, a.b.MySecondClass). (5.2)

The next definition introduces ComponentName values, which represent the possibly

multiple values that a ComponentName can have at a program point. A Component-

Name can take several values in different cases:

• After traversing different branches, as in method makeComponentName() of Fig-

ure 5.4.

• When a string argument can have several values at a method call.

• When an object reference is a possible alias of another local reference or an object

field.

• When an object reference is a possible array element.

In the last two cases, in order to account for the possibility of a false positive in the

alias analysis, we keep track of two branch ComponentName values. One considers the

influence of the call on the possible alias and the other one does not.

76

Definition 2. A ComponentName value C is a set of branch ComponentName values:

C = {c1, c2, · · · , cm}. The set of ComponentName values is denoted as Vc. We define

⊥ = ∅ and > as the ComponentName value that is the set of all possible branch Compo-

nentName values in the program. The operators ∪ and ⊆ are defined as traditional set

union and comparison operators: for C1, C2 ∈ Vc, C1 ⊆ C2 iff C1∪C2 = C2. Lc = (Vc,∪)

is a join semilattice.

Note that given the definitions of ⊥ and > as specific sets, ∪ and ⊆ naturally apply

to them. For example, for all C ∈ Vc, > ∪ C = >.

In method makeComponentName() from Figure 5.4, the value of c at the return

statement is

{(c.d, a.b.MyClass) , (c.d, a.b.MySecondClass)} . (5.3)

It simply combines the values of c created in the two branches, given by Equations (5.1)

and (5.2).

We define transformers from Vc to Vc that represent the influence of a statement

or a sequence of statements on a ComponentName value. A pointwise branch Compo-

nentName transformer represents the influence of a single branch, whereas a pointwise

ComponentName transformer represents the influence of possibly multiple branches.

Definition 3. A pointwise branch ComponentName transformer is a function

δc(π,χ) : Vc → Vc,

where π is a package name and χ is a class name. It is such that, for each C ∈ Vc,

δc(π,χ)(C) = {(π, χ)}.

Note that δc(π,χ)(C) is independent of C, because API methods for ComponentName

objects systematically replace existing values for package and class names. In the exam-

ple from Figure 5.4, the pointwise branch ComponentName transformer corresponding

to the first branch is

δc(c.d,a.b.MyClass), (5.4)

77

and the one for the second branch is

δc(c.d,a.b.MySecondClass). (5.5)

Definition 4. A pointwise ComponentName transformer is a function

δc{(π1,χ1),··· ,(πn,χn)} : Vc → Vc

such that, for each C ∈ Vc,

δc{(π1,χ1),··· ,(πn,χn)}(C) = {(π1, χ1), · · · , (πn, χn)}.

A pointwise ComponentName transformer summarizes the effect of multiple branches

(or a single branch with multiple possible string arguments, or with possible aliasing) on

a ComponentName value. That is, given the value C of a ComponentName right after

statement si and given transformer δc{(π1,χ1),··· ,(πn,χn)} that summarizes the influence of

statements si+1, · · · , sk on C, δc{(π1,χ1),··· ,(πn,χn)}(C) represents all the possible values

of C right after sk. In method makeComponentName() of Figure 5.4, the pointwise

ComponentName transformer that models the two branches is

δc{(c.d,a.b.MyClass),(c.d,a.b.MySecondClass)}. (5.6)

It combines the transformers given by Equations (5.4) and (5.5). In order to un-

derstand how this transformer is applied in practice, we should mention that the al-

gorithm to solve IDE problems initially sets values to ⊥ [12]. Therefore, in method

makeComponentName(), the value associated with c is initially ⊥ = ∅. Using Defini-

tion 4, we can easily see that if we apply the transformer given by Equation (5.6), we

get the value given by Equation (5.3). This confirms that the transformer models the

influence of the two branches:

δc{(c.d,a.b.MyClass),(c.d,a.b.MySecondClass)}(⊥) = { (c.d, a.b.MyClass) ,

(c.d, a.b.MySecondClass)}.

5.3.2 Bundle Model

The model of Bundle objects is defined similarly to the model of ComponentName ob-

jects. An additional difficulty is introduced. The data in a Bundle can be modified by

78

adding the data in another Bundle to it, as shown in method makeBundle() of Fig-

ure 5.4. In this example, the data in Bundle b is added to the data in Bundle bundle.

Bundle bundle is later modified by removing the key-value pair with key Surname. The

issue is that when the data flow problem is being tackled, the value of b is not known.

Therefore, the influence of the call to remove("Surname") is not known: if a key-value

pair with key Surname is part of b, then the call removes it from bundle. Otherwise, it

has no influence.

Our approach to deal with this object composition problem is to perform two suc-

cessive analyses. In Analysis I, we use placeholders for Bundles such as b in instruction

bundle.putAll(b). We also record all subsequent method calls affecting bundle. After

the problem is solved, b’s key-value pairs at the putAll(b) method call are known, as

well as the subsequent method calls. We then perform Analysis II, in which b’s key-value

pairs are added to bundle’s. The influence of the subsequent method call is precisely

evaluated and finally the value of bundle at the return statement can be known.

5.3.2.1 Analysis I

In the first analysis, we consider intermediate values that contain “placeholders” for

Bundle values that are not known when the problem is being solved.

Definition 5. An intermediate branch Bundle value is a tuple bi = (E,O), where:

• E is a set of keys describing extra data.

• O is a tuple of two types of elements. O contains references to particular Bundle

symbols at instructions where putAll() calls occur. O also contains functions from

V i
b to V i

b , where V i
b is the set of intermediate Bundle values defined below. These

functions represent a sequence of method calls affecting a Bundle.

The difference with previous definitions is the introduction of O, which models calls to

putAll() as well as subsequent calls affecting the same Bundle. In method makeBundle()

of Figure 5.4, at the return statement, the intermediate branch Bundle value associated

with bundle is (E,O), where

E ={FirstName}, (5.7)

O =
(

(b, bundle.putAll(b)), βb(∅,{Surname},0,())

)
. (5.8)

InO, (b, bundle.putAll(b)) is a reference to variable b at instruction bundle.putAll(b).

βb(∅,Surname,0,()) models the remove() method call. It is defined below.

79

We just defined intermediate branch Bundle values. As we did before, we need to

consider multiple branches and related issues (e.g., several possible string values):

Definition 6. An intermediate Bundle value Bi is a set of intermediate branch Bundle

values: Bi = {bi1 , · · · , bim}. The set of intermediate Bundle values is V i
b . We define

⊥ = ∅ and > as the intermediate Bundle value that is the set of all possible intermediate

branch Bundle values in the program. We define ⊆ and ∪ as natural set comparison and

union operators. They are such that, for Bi1 , Bi2 ∈ V i
b , Bi1 ⊆ Bi2 iff Bi1 ∪ Bi2 = Bi2.

Lib = (V i
b ,∪) is a join semilattice.

In method makeBundle() from Figure 5.4, since there is only a single branch, the

intermediate Bundle value associated with bundle at the return statement is {(E,O)},
where E and O are given by Equations (5.7) and (5.8).

Pointwise transformers are defined from V i
b to V i

b . Similarly to the ComponentName

model, we first introduce pointwise branch Bundle transformers before defining pointwise

Bundle transformers. In the definitions below, we use the \ notation for set difference,

and ∪ is naturally extended to tuples such that

(a1, · · · , ak) ∪ (ak+1, · · · , al) = (a1, · · · , ak, ak+1, · · · , al).

Definition 7. A pointwise branch Bundle transformer is a function

βb(η+,η−,cl,Θ) : V i
b → V i

b ,

where:

• η+ is a set of string keys describing extra data. It models calls to putExtra()

methods.

• η− is a set of string keys describing removed extra data. It represents the influence

of calls to the removeExtra() method.

• cl takes value 1 if the Bundle data has been cleared with the clear() method and 0

otherwise.

• Θ is a tuple of two types of elements. It contains references to particular Bundle

symbols at instructions where putAll() calls occur. It also contains functions from

V i
b to V i

b . These functions represent a sequence of method calls affecting a Bundle.

80

It is such that

βb(η+,η−,cl,Θ)(⊥) =
{(
η+\η−,Θ

)}

and, for Bi = {(E1, O1), · · · , (Em, Om)} (Bi 6= ⊥),

βb(η+,η−,cl,Θ)(Bi) = {(E′1, O′1), · · · , (E′m, O′m)}

where, for each j from 1 to m:

E′j =





η+\η− if cl = 1

(Ej ∪ η+)\η− if cl = 0 and Oj = ∅

Ej otherwise

O′j =





Θ if cl = 1 or Oj = ∅

Oj ∪
(
βb(η+,η−,0,Θ)

)
otherwise

The definition of E′j accounts for several possible cases:

• If the Bundle data has been cleared (i.e., cl = 1), then we discard any data con-

tained in Ej . This leads to value η+\η− for E′j : we only keep the values η+ that

were added to the Bundle data and remove the values η− that were removed from

it.

• If the Bundle has not been cleared, then there are two possible cases: either no

reference to another Bundle has been previously recorded (i.e., Oj = ∅), or such a

reference has been recorded to model a call to putAll(). In the first case, we simply

take the union of the original set Ej and the set η+ of added values, and subtract

the set η− of removed values. This explains the (Ej ∪ η+)\η− value. In the second

case, a call to putAll() has been detected, which means that any further method

call adding or removing data has to be added to set Oj instead of Ej . Therefore

in this case E′j = Ej .

The definition of O′j considers several cases:

• If the Bundle data has been cleared, then the previous value of Oj is irrelevant and

we set O′j = Θ. Also, if Oj is empty, then we can also just set O′j to Θ (which may

or may not be empty).

81

• Otherwise, the Bundle data has not been cleared (cl = 0) and a call to putAll()

has been detected (Oj 6= ∅). Then it means that the current function models

method calls that happened after a call to putAll(). Therefore we need to record

βb(η+,η−,0,Θ) in O′j , which explains the definition O′j = Oj ∪ (βb(η+,η−,0,Θ)).

For example, the pointwise branch Bundle transformer that models the influence of

the method makeBundle() from Figure 5.4 is βb(η+,∅,0,Θ), where

η+ ={FirstName}, (5.9)

Θ =
(
βb(∅,{Surname},0,())(b, bundle.putAll(b)), βb(∅,{Surname},0,())

)
. (5.10)

Pointwise branch Bundle transformers model the influence of a single branch. In

order to account for multiple branches or issues such as possible aliasing false positive,

we define pointwise Bundle transformers.

Definition 8. A pointwise Bundle transformer is a function

βb{(η+1 +,η−1 ,cl1,Θ1),··· ,(η+n ,η−n ,cln,Θn)} : V i
b → V i

b

such that, for each Bi ∈ V i
b ,

βb{(η+1 ,η
−
1 ,cl1,Θ1),··· ,(η+n ,η−n ,cln,Θn)}(Bi) = βb

(η+1 ,η
−
1 ,cl1,Θ1)

(Bi) ∪ · · · ∪ βb(η+n ,η−n ,cln,Θn)
(Bi).

For example, method makeBundle() from Figure 5.4 only has a single branch, thus

the pointwise Bundle transformer that models it is simply βb{(η+,∅,0,Θ)}, where η+ and

Θ are given in Equations (5.9) and (5.10). As we did for the ComponentName value

example, we can confirm using Definitions 7 and 8 that βb{(η+,∅,0,Θ)}(⊥) = {(E,O)},
where E and O are given by Equations (5.7) and (5.8).

5.3.2.2 Analysis II

After Analysis I has been performed, the values of the Bundles used in placeholders in

intermediate Bundle values are known. Ultimately, we want to obtain branch Bundle

values and finally Bundle values:

Definition 9. A branch Bundle value b is a set E of string keys describing extra data.

Definition 10. A Bundle value B is a set of branch Bundle values: B = {b1, · · · , bm}.

82

Since the values of the referenced Bundles are known, we can integrate them into the

Bundle values referring to them. Then the influence of the subsequent method calls that

have been recorded can precisely be known.

Let us consider the example of makeBundle() from Figure 5.4. After Analysis I has

been performed, we know that the intermediate value of bundle at the return statement

is {(E,O)}, where

E ={FirstName},

O =
(

(b, bundle.putAll(b)), βb(∅,{Surname},0,())

)
.

We consider all elements of O in order. The first element of O is (b, bundle.putAll(b)),

therefore we integrate b’s value into bundle. From Analysis I, we know that the value of

b at instruction bundle.putAll(b) is {{Surname} ,∅}. Thus, E becomes {FirstName,

Surname}. The next element of O is βb(∅,{Surname},0,()). This means that we have to remove

key Surname from E. The final value of E is therefore {FirstName}. Thus, the Bundle

value associated with bundle at the return statement is {{FirstName}}.
Note that the referenced Bundle can also make references to other Bundles. In that

case, we perform the resolution for the referenced Bundles first. There can be an arbitrary

number of levels of indirection. Analysis II is iterated until a fix-point is reached.

5.3.3 Intent and IntentFilter Models

The Intent model is defined similarly to the Bundle model, which includes object com-

position. In method onClick() of Figure 5.4, the target of Intent intent is set using a

ComponentName object and its extra data is set with a Bundle. Because of this object

composition, finding the Intent value also involves two analyses similar to the ones per-

formed for Bundles. First, intermediate Intent values with placeholders for referenced

ComponentName and Bundle objects are found. Second, the referenced objects’ values

are integrated into intent’s value.

Similarly to the Bundle model, we define intermediate branch Intent values and inter-

mediate Intent values. The set of intermediate Intent values is V i
i and we define a lattice

Lii = (V i
i ,∪) as we did for Lib. We also define pointwise branch Intent transformers and

pointwise Intent transformers. For example, in method onClick() of Figure 5.4, the final

intermediate value for intent simply has placeholders for a ComponentName and a Bun-

dle value. Other fields, such as action and categories, are empty. The ComponentName

and Bundle values are computed using the models presented in Sections 5.3.1 and 5.3.2.

83

Finally, we define branch Intent values and Intent values, which are output by the sec-

ond analysis. The final value for intent after the second analysis precisely contains the

two possible targets (a.b.MyClass and a.b.MySecondClass in package c.d) and extra

data key FirstName. For conciseness, and given the strong similarities with the Bundle

model, we do not include a full description of the Intent model here.

In order to analyze dynamic Broadcast Receivers, we model IntentFilter objects.

Modeling IntentFilters is similar to modeling Intents, except that IntentFilters do not

involve object composition. That is because IntentFilters do not have methods taking

other IntentFilters as argument, except for a copy constructor. Thus, their analysis

is simpler and involves a single step. Similarly to what we did for other ICC models,

we define branch IntentFilter values, IntentFilter values, pointwise branch IntentFilter

transformers and pointwise IntentFilter transformers. In particular, we define lattice

Lf = (Vf ,∪), where Vf is the set of IntentFilter values. In method onClick() from

Figure 5.4, the final value of f contains action a.b.ACTION and category a.b.CATEGORY.

Given the similarity of the IntentFilter model with previous models, we do not include

a complete description.

5.3.4 Casting as an IDE Problem

These definitions allow us to define environment transformers for our problem. Given

environment e ∈ Env(D,L), environment transformer λe.e is the identity, which does

not change the value of e. Given Intent i and Intent value I, λe.e[i 7→ I] transforms e to

an environment where all values are the same as in e, except that Intent i is associated

with value I.

We define an environment transformer for each API method call. Each of these

environment transformers uses the pointwise environment transformers defined in Sec-

tions 5.3.1, 5.3.2 and 5.3.3. It precisely describes the influence of a method call on the

value associated with each of the symbols in D.

Figure 2.6 shows some environment transformers and their pointwise representation.

The first one is a constructor invocation, which sets the value corresponding to b to ⊥.

The second one adds an integer to the key-value pairs in Bundle b’s extra data, which is

represented by environment transformer

λe.e
[
b 7→ βb({MyInt},∅,0,()) (e(b))

]
.

It means that the environment stays the same, except that the value associated with b

84

becomes

βb({MyInt},∅,0,()) (e(b)) ,

with e(b) being the value previously associated with b in environment e. The pointwise

transformer for b is

βb({MyInt},∅,0,()),

which we denote by

λB.βb({MyInt},∅,0,())(B)

on Figure 2.6 for consistency with the other pointwise transformers. It simply adds key

MyInt to the set of data keys. The next transformer is for a copy constructor, where the

value associated with d is assigned to the value associated with b. The last transformer

clears the data keys associated with d.

Trivially, these environment transformers are distributive. Therefore, the following

proposition holds.

Proposition 1. Let G∗ be the supergraph of an Android application. Let Dc, Db Di and

Df be the sets of ComponentName, Bundle and Intent variables, respectively, to which

we add the special symbol Λ4. Let Lc, L
i
b, L

i
i and Lf be the lattices defined above. Let

Mc, Mb, Mi and Mf be the corresponding assignments of distributive environment trans-

formers. Then (G∗, Dc, Lc,Mc),
(
G∗, Db, L

i
b,M

i
b

)
,
(
G∗, Db, L

i
i,M

i
i

)
and (G∗, Di, Lf ,Mf)

are IDE problems.

It follows from this proposition that we can use the algorithm from [12] to solve the

Intent ICC problem.

The original IDE framework [12] requires that the micro-function be represented

efficiently in order to achieve the time complexity of O(ED3). Our model does not

meet these requirements: in particular, applying, composing, joining micro-function or

testing for equality of micro-functions cannot be done in constant time. Indeed, the

size of micro-functions grows with the number of branches, aliases and possible string

arguments (see Equation 5.6 for an example with two branches). However, in practice

we can find solutions to our IDE problem instances in reasonable time, as we show in

Section 4.8.

4Recall from Section 2.2.2 that Λ symbolizes the absence of a data flow fact.

85

5.4 Evaluation

This section describes an evaluation of the approach presented in the preceding sections,

and briefly characterizes the use of ICC in Android applications. We also present a

study of potential ICC vulnerabilities. Our implementation is called Epicc (Efficient

and Precise ICC) and is available at http://siis.cse.psu.edu/epicc/. It is built on

Heros [130], an IDE framework within Soot [131]. We also provide the version of Soot

that we modified to handle pathological cases encountered with retargeted code.

In order to compute string arguments, we use a simple analysis traversing the in-

terprocedural control flow graph of the application. The traversal starts at the call site

and looks for constant assignments to the call arguments. If a string argument cannot

be determined, we conservatively assume that the argument can be any string. As we

show in Section 5.4.1, in many cases we are able to find precise string arguments. More

complex analyses can be used if more precision is desired [132].

For points-to analysis and call graph construction, we use Spark [133], which is part of

Soot. It performs a flow-sensitive, context-insensitive analysis. We approximate the call

graph in components with multiple entry points. In order to generate a call graph of an

Android application, we currently use a “wrapper” as an entry point. This wrapper calls

each class entry point once, which may under-approximate what happens at runtime.

This impacts a specification only if an ICC field (e.g., Intent) is modified in a way that

depends on the runtime execution order of class entry points. Generally, if we assume

that our model of components’ life cycle is complete and if the application does not use

native calls or reflection, then our results are sound.

The analysis presented in this section is performed on two datasets. The first ran-

dom sample dataset contains 350 applications, 348 of which were successfully analyzed

after retargeting. They were extracted from the Google Play store5 between September

2012 and January 2013. The applications were selected at random from over 200,000

applications in our corpus. The second popular application dataset contains the top 25

most popular free applications from each of the 34 application categories in the Play

store. The 850 selected applications were downloaded from that application store on

January 30, 2013. Of those 850 applications, 838 could be retargeted and processed and

were used in the experiments below. The 14 applications which were not analyzed were

pathological cases where retargeting yielded code which could not be analyzed (e.g., in

some cases the Dare tool generated offsets with integer overflow errors due to excessive

5Available at https://play.google.com/store/apps.

http://siis.cse.psu.edu/epicc/
https://play.google.com/store/apps

86

method sizes), or where applications could not be processed by Soot (e.g., character

encoding problems).

5.4.1 Complete Recovery of ICC Specifications

The first set of tests evaluates the technique’s precision with our datasets. We define the

precision metric to be the percentage of source and sink locations for which a specification

is identified without ambiguity. Ambiguity occurs when an ICC API method argument

cannot be determined. These arguments are mainly strings of characters, which may be

generated at runtime. In some cases, runtime context determines string values, which

implies that our analysis cannot statically find them.

Recall the various forms of ICC. Explicit ICC identifies the communication sink by

specifying the target’s package and class name. Conversely, implicit ICC identifies the

sink through action, category, and/or data fields. Further, a mixed ICC occurs when

a source or sink can take on explicit or implicit ICC values depending on the runtime

context. Finally, the dynamic receiver ICC occurs when a sink binds to an ICC type

through runtime context (e.g., Broadcast Receivers which identify the Intent Filter types

when being registered). We seek to determine precise ICC specifications, where all fields

of Intents or Intent Filters are known without ambiguity.

As shown in Table 5.1, with respect to the random sample corpus, we were able to

provide unambiguous specifications for over 91% of the 7,835 ICC locations in the 348

applications. Explicit ICC was precisely analyzed more frequently (≈98%) than implicit

ICC (≈ 88%). The remaining 7% of ICC containing mixed and dynamic receivers proved

to be more difficult, where the precision rates are much lower than others. This is likely

due to the fact that dynamic receivers involve finding more data than Intents: Intent

Filters limiting access to dynamic receivers can define several actions, and receivers can

be protected by a permission (which we attempt to recover).

In the popular applications, we obtain a precise specification in over 94% of the 58,989

ICC locations in the 838 applications. Explicit ICC was slightly more precisely analyzed

than implicit ICC. Mixed ICC is again hard to recover. This is not surprising, as mixed

ICC involves different Intent values on two or more branches, which is indicative of a

method more complex than most others.

A facet of the analysis not shown in the table is the number of applications for which

we could identify unambiguous specifications for all ICC – called 100% precision. In the

random sample, 56% of the applications could be analyzed with 100% precision, 80%

of the applications with 90% precision, and 91% of the applications with 80% precision.

87

Random Sample

Precise % Imprecise % Total

Explicit 3,571 97.65% 86 2.35% 3,657

Implicit 3,225 88.45% 421 11.55% 3,646

Mixed 28 59.57% 19 40.43% 47

Dyn. Rec. 357 73.61% 128 26.39% 485

Total 7,181 91.65% 654 8.35% 7,835

Popular

Precise % Imprecise % Total

Explicit 27,753 94.43% 1,637 5.57% 29,390

Implicit 23,133 93.82% 1,525 6.18% 24,658

Mixed 509 85.12% 89 14.88% 598

Dyn. Rec. 4,161 95.81% 182 4.19% 4,343

Total 55,556 94.18% 3,433 5.82% 58,989

Table 5.1. Precision metrics

88

In the popular applications, 23% could be analyzed with 100% precision, 82% could be

analyzed with 90% precision and 94% with 80% precision. Note that a less-than-100%

precision does not mean that the analysis failed. Rather, these are cases where runtime

context determines string arguments, and thus any static analysis technique would fail.

5.4.2 Computational Costs

A second set of tests sought to ascertain the computational costs of performing the

IDE analysis using Epicc. For this task we collected measurements at each stage of

the analysis and computed simple statistics characterizing the costs of each task on the

random sample and the popular applications.

Experiment results show that ICC analysis in this model is feasible for applications

in the Google Play store. We were able to perform analysis of all 348 applications in

the random sample in about 3.69 hours of compute time. On average, it took just over

38 seconds to perform analysis for a single application, with a standard deviation of 99

seconds. There was high variance in the analysis run times. A CDF (cumulative distri-

bution function) of the analysis computation time for all 348 applications is presented

in Figure 5.5(a). It is clear from the figure that costs were dominated by a handful of

applications; the top application consumed over 11% of the time, the top 5 consumed

over 25% of the total time, and the top 29 consumed over 50% of the total time. These

applications are large with a high number of entry points.

Analyzing the 838 popular applications took 33.58 hours, that is, 144 seconds per

application. The standard deviation was 277 seconds. The average processing time is

significantly higher than for the random sample. However, this is expected, as the average

application size is almost 1,500 classes, which is significantly higher than the random

sample (less than 400 classes per application). This is likely related to the popularity

bias: one can expect frequently downloaded applications to have fully developed features

as well as more complex/numerous features, which implies a larger code base. A CDF of

the computation time for all 838 applications is presented in Figure 5.5(b). Once again,

analysis time is dominated by a few applications. The top 5 consumed over 11% of the

analysis time and the top 83 (less than 10% of the sample) consumed over 50% of the

analysis time.

Processing was dominated by the standard Soot processing (e.g., translating classes to

an intermediate representation, performing type inference and points-to analysis, build-

ing a call graph). It consumed 75% of the processing time in the random sample and 86%

in the popular applications. It was itself dominated by the translation to Soot’s internal

89

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

C
D

F
(C

om
pu

ta
tio

n
Ti

m
e)

Applications (logscale)

(a) Random sample.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

C
D

F
(C

om
pu

ta
tio

n
Ti

m
e)

Applications (logscale)

(b) Popular applications.

Figure 5.5. CDF of computation time.

90

representation and by the call graph construction. The second most time-consuming task

was the IDE analysis (which also includes the string analysis in our implementation).

It took 15% of the processing time with the random sample and 7% with the popular

one. Finally, I/O operations accounted for most of the remainder of the processing time.

Loading classes took 7% of the time in the random sample and 3% in the popular one.

Database operations accounted for 2% of processing for the random sample and 3% for

the popular applications. Other operations (e.g., parsing manifest files) took less than

1% of processing time.

5.4.3 Entry and Exit Point Analysis

This section briefly characterizes the exit (source) and entry (sink) points of Android

applications in our data sets. Note that this analysis is preliminary and will be extended

in future work.

An exit point is a location that serves as a source for ICC; i.e., the sending of an Intent.

In the random sample, our analysis found 7,350 exit points which can transmit 10,035

unique Intent values. About 92% of these exit points had a single Intent specification,

with the remaining exit points being able to take on 2 or more values. In two pathological

cases, we noted an exit point that could have 640 different Intent values (most likely the

result of contrived control flow or multiple aliasing for an Intent value). The popular

applications had 48,756 exit points, associated with 316,419 Intent values. Single Intent

specifications were found in 90% of exit points. We found 10 pathological cases where an

exit point was associated with 512 Intent values or more. The use of key value data was

more prevalent than we initially expected, in about 36% of exit points in the random

sample. Key-value data was present in Intents in 46% of exit points in the popular

applications.

Our study of entry points focused on the sinks of ICC that were either dynamically

registered broadcast receivers or component interfaces (exported or not) identified in the

application manifest. In the random sample, we were able to identify 3,863 such entry

points associated with 1,222 unique intent filters. The popular applications comprised

25,291 entry points with 11,375 Intent Filters. 1,174 components were exported (and thus

available to other applications) in the random sample, 7,392 in the popular applications.

Of those, only 6% (67) of the exported components were protected by a permission in

the random sample and 5% (382) were protected in the popular applications. This is

concerning, since the presence of unprotected components in privileged applications can

lead to confused deputy [72] attacks [5].

91

Oddly, we also found 23 components that were exported without any Intent Filter in

the random sample and 220 in the popular sample. Conversely, we found 32 cases where

a component had an Intent Filter but was not exported in the random sample and 412

in the popular one. The latter indicates that developers sometimes use implicit Intents

to address components within an application, which is a potential security concern, since

these Intents may also be intercepted by other components. Lastly, application entry

points were relatively narrow (with respect to intent types). Over 97% of the entry

points received one Intent type in the random sample. Single Intent Filters were found

in 94% of components protected by Intent Filters in the popular applications.

5.4.4 ICC Vulnerability Study

In this section, we perform a study of ICC vulnerabilities in our samples using Epicc and

compare our results with ComDroid [4]. We look for the same seven vulnerabilities as

in [4]. Activity and Service hijacking can occur when an Intent is sent to start an Activity

or a Service without a specific target. Broadcast thefts can happen when an Intent is

Broadcast without being protected by a signature or signatureOrSystem permission6.

In all three cases, the Intent may be received by a malicious component, along with its

potentially sensitive data.

Malicious Activity or Service launch and Broadcast injection are Intent spoofing

vulnerabilities. They indicate that a public component is not protected with a signature

or signatureOrSystem permission. It may be started by malicious components. These

vulnerabilities can lead to permission leakage [5, 76, 77].

Finally, some Intent Broadcasts can only be sent by the operating system, as indicated

by their action field. Broadcast Receivers can register to receive them by specifying

Intent Filters with the appropriate action. However, these public components can still

be addressed directly by explicit Intents. That is why the target Receivers should check

the action field of the received Intent to make sure that it was sent by the system.

Table 5.2 shows the results of the study for the random and the popular samples.

The first line shows the number of vulnerabilities identically detected by both analy-

ses, the second line shows vulnerabilities detected by ComDroid only and the third line

shows vulnerabilities detected by Epicc only. The last two lines show the total number

of vulnerabilities found by each tool. For the three unauthorized Intent receipt vul-

nerabilities (first three columns), both ComDroid and Epicc indicate whether the sent

6The signature permission protection level only allows access to a component from an application
signed by the same developer. The signatureOrSystem protection level additionally allows the operating
system to start the component.

92

A
ct

iv
it

y
S

er
v
ic

e
B

ro
a
d

ca
st

A
ct

iv
it

y
S

er
v
ic

e
B

ro
a
d

ca
st

S
y
st

em
B

ro
a
d

ca
st

T
o
ta

l

V
u

ln
e
ra

b
il

it
y

H
ij

ac
k
in

g
H

ij
ac

k
in

g
T

h
ef

t
L

a
u

n
ch

L
a
u

n
ch

In
je

ct
io

n
w

/
o

a
ct

io
n

ch
ec

k
v
u

ln
er

a
b

il
it

ie
s

S
a
m

p
le

R
P

R
P

R
P

R
P

R
P

R
P

R
P

R
P

Id
e
n
ti

c
a
l

2,
59

1
15

,2
14

78
1,

20
0

5
0
3

4
,8

2
5

1
7
9

1
,7

3
1

2
3

2
6
3

2
7
3

3
,5

0
3

3
0

1
2
6

3
,6

7
7

2
6
,8

6
2

C
o
m

D
ro

id
o
n

ly
91

6
7,

71
7

78
53

5
2
1
8

2
,8

5
4

1
2

1
6
9

2
1
8

1
0
4

1
,6

8
4

3
2
0

1
,3

3
3

1
2
,9

9
7

E
p

ic
c

o
n

ly
18

1
2,

07
9

3
15

1
2
3

2
9
7

4
2
0

0
1

4
4
3

7
7

5
8
0

2
9
2

3
,1

7
1

T
o
ta

l
C

o
m

D
ro

id
3,

50
7

22
,9

31
15

6
1,

73
5

7
2
1

7
,6

7
9

1
9
1

1
,9

0
0

2
5

2
8
1

3
7
7

5
,1

8
7

3
3

1
4
6

5
,0

1
0

3
9
,8

5
9

T
o
ta

l
E

p
ic

c
2,

77
2

17
,2

93
81

1,
35

1
5
2
6

5
,1

2
2

1
8
3

1
,7

5
1

2
3

2
6
4

2
7
7

3
,5

4
6

1
0
7

7
0
6

3
,9

6
9

3
0
,0

3
3

T
a
b

le
5
.2

.
IC

C
v
u

ln
er

ab
il

it
y

st
u

d
y

re
su

lt
s

fo
r

th
e

ra
n

d
o
m

sa
m

p
le

(R
)

a
n

d
th

e
p

o
p

u
la

r
a
p
p

li
ca

ti
o
n

s
(P

).

93

Intent has extra data in the form of key-value pairs, and whether the Intent has the

FLAG GRANT READ URI PERMISSION or FLAG GRANT WRITE URI PERMISSION flags.

These flags are used in Intents that refer to Content Provider data and may allow the

recipient to read or write the data [4].

For the presence of flags and the detection of extra data, Epicc can precisely indicate

when the value of an Intent depends on the execution path. On the other hand, a

ComDroid specification does not make this distinction. When Epicc and ComDroid

differ for a code location, we include flags in both the “ComDroid only” and “Epicc

only” rows of Table 5.2.

The Activity hijacking vulnerabilities found by both ComDroid and Epicc are un-

surprisingly common: they represent all cases where implicit Intents are used to start

Activities. Service hijacking vulnerabilities are much less prevalent, which is correlated

with the fact that Services are used less often than Activities. Broadcast theft vulnera-

bilities are quite common as well. As previously described in Section 5.4.3, few exported

components are protected by permissions. Therefore, the high number of malicious Ac-

tivity or Service launch as well as Broadcast injection vulnerabilities is not surprising.

Note the discrepancy between the number of components without permissions and the

total number of these vulnerabilities. A large portion of the components not protected

by permissions are Activities with the android.intent.action.MAIN action and the

android.intent.category.LAUNCHER category, which indicate that these components

cannot be started without direct user intervention. They are therefore not counted as

potential vulnerabilities.

If we consider the first three vulnerabilities (unauthorized Intent receipt), we can see

that ComDroid flags a high number of locations where Epicc differs. A manual exam-

ination of a random subset of applications shows that these differences are either false

positives detected by ComDroid or cases where Epicc gives a more precise vulnerability

specification. We observed that a number of code locations are detected as vulnerable

by ComDroid, whereas Soot does not find them to be reachable. Epicc takes advantage

from the sound and precise Soot call graph construction to output fewer false positives.

Additionally, the IDE model used by Epicc can accurately keep track of differences be-

tween branches (e.g., explicit/implicit Intent or URI flags), whereas ComDroid cannot.

Note that when an Intent is implicit on one branch and explicit on another, ComDroid

detects it as explicit, which is a false negative. On the other hand, the IDE model

correctly keeps track of the possibilities.

With a few exceptions, the ComDroid and Epicc analyses detect the same possible

94

malicious Activity and Service launches. That is expected, since both are detected by

simply parsing the manifest file. The few differences can be explained by minor imple-

mentation differences or bugs in pathological cases. The Broadcast injection vulnerability

shows stronger differences, with ComDroid detecting 377 cases for the random sample

and 5,187 for the popular one, whereas Epicc only finds 277 and 3,546, respectively.

Some of the Broadcast injections detected by ComDroid involved dynamically registered

Broadcast Receivers found in unreachable code. Once again, the call graph used by Epicc

proves to be an advantage. Many other cases involve Receivers listening to protected

system Broadcasts (i.e., they are protected by Intent Filters that only receive Intents

sent by the system). The list of protected Broadcasts used by ComDroid is outdated,

hence the false positives.

Finally, there is a significant difference in the detection of the system Broadcasts

without action check, with Epicc detecting 107 vulnerabilities in the random sam-

ple and 706 in the popular one, whereas ComDroid only detects 33 and 146, respec-

tively. The first reason for that difference is that the ComDroid list of protected

Broadcasts is outdated. Another reason is an edge case, where the Soot type infer-

ence determines Receivers registered using a registerReceiver() method as having type

android.content.BroadcastReceiver (i.e., the abstract superclass of all Receivers). It

occurs when several types of Receivers can reach the call to registerReceiver(). Since no

Receiver code can be inspected, even though there may be a vulnerability, our analysis

conservatively flags it as a vulnerability.

Overall, Epicc detects 34,002 potential vulnerabilities. On the other hand, ComDroid

detects 44,869 potential security issues, that is, 32% more than Epicc. As detailed above,

the extra flags found by ComDroid that we checked were all false positives. Further, the

potential causes of unsoundness in Epicc (i.e., Java Native Interface, reflection and entry

point handling) are also handled unsoundly in ComDroid. Thus, we do not expect the

locations flagged by ComDroid but not by Epicc to be false negatives. The precision gain

over ComDroid is significant and will help further analyses. Note that it is possible that

both tools have false negatives in the presence of Java Native Interface, reflection, or

when the life cycle is not properly approximated. In particular, we found that 776 out of

the 838 popular applications and 237 out of 348 applications in the random sample make

reflective calls. Future work will seek to quantify how often these cause false negatives

in practice. We will also attempt to determine if the locations flagged by Epicc are true

positives.

Chapter 6
Inter-Component Communication

Analysis with the COAL Constant

Propagation Language

Chapter 5 has presented an approach to infer the values of the main ICC objects. Un-

fortunately, it only handles a subset of ICC messages. It only addresses Intent messages

for which all fields are simple constant values. Adding support for URIs – the other

large class of ICC messages – using the same approach as for Intent would result in a

significant increase in the complexity of the formulation and implementation of the cor-

responding data flow functions. Thus, while the approach used for Epicc can in theory

be used for other messages as well, it is not feasible in practice. Further, Epicc relies on

a very limited analysis to determine the values of arguments to calls to the ICC API.

Almost all arguments to ICC methods are strings of characters. Unfortunately, Epicc

fails at resolving any argument that is not a constant. For example, operations such as

string concatenation cause Epicc to assume that an argument can be any possible string,

resulting in a significant loss of precision.

In this chapter, we generalize the analysis introduced in Chapter 5 to a large class

of interprocedural constant propagation analyses. Unlike most constant propagation

analyses, we attempt to find all possible values of ICC objects at important program

points, making our analysis multi-valued. Our analysis targets multi-field constants,

i.e., we determine the values of complex objects that may have multiple fields. We

express data flow functions in terms of simple field transformers, which express how

fields are changed by program statements. Taking advantage of the ease of specifying

96

field transformers, we design the COAL language for specifying multi-valued, multi-field

(MVMF) constant propagation problems. In this language, we model all ICC messages

with only about 750 lines of COAL specification. The model used by Epicc, on the other

hand, requires about 5000 lines of code, for a much more limited coverage of ICC. Since

Android ICC messages heavily rely on strings of characters, we additionally develop

and implement a string analysis that is both efficient and precise. We compute ICC

specifications in 350 applications from the official Play store. We are able to obtain

precise ICC specifications in 86% of cases. Epicc, on the other hand, can only infer 64%

precisely. The remaining 14% of values cannot be determined because of constructs not

yet handled by our string analysis, cases where the values cannot be known statically

and other pathological cases. Computing ICC values is efficient, taking only less than a

minute per application on average. The extra precision in inferring ICC values directly

translates to a significant increase in precision when matching components that send

messages with potential receivers. In our experiments, such a matching yields 281361

links with Epicc specifications, whereas values computed with our new tool produce

127204 potential links. We make the following contributions in this chapter:

• We introduce COAL, a novel declarative language to specify MVMF constant prop-

agation problems and query their solution.

• We formally define an approach to solve MVMF constant propagation problems.

We implement a COAL solver based on this formalism and make its source code

available at http://siis.cse.psu.edu/coal/.

• We develop the IC3 tool for finding the values of ICC objects in Android. It is

based on a COAL specification and uses our new string analysis. We make its

source code available at http://siis.cse.psu.edu/ic3/.

• Using the ICC values we find, we perform a preliminary study of component con-

nectivity. We find that ICC is concentrated to a small set of components. 28.65%

of components are completely isolated and only 2.69% (resp. 9.33%) of components

account for 50% of all potential outgoing (resp. incoming) links.

This chapter is organized as follows. Section 6.1 shows an overview of the problem we

are trying to solve. Section 6.3 presents our IDE model for MVMF constant propagation

problems. Section 6.2 describes the COAL language for specifying constant propagation

problems. In Section 4.8, we evaluate our implementation of ICC analysis using COAL.

http://siis.cse.psu.edu/coal/
http://siis.cse.psu.edu/ic3/

97

6.1 Overview

The Multi-Valued Multi-Field constant propagation problem: Consider OBJ an

object of type class Pair{int X; int Y;}. Assume that at some program location OBJ

can be either (X, Y) = (1,10) or (2,20). We would like an analysis that can determine

this fact. Classical constant analysis applied for each field fails at determining a useful

value because none of the fields is the same constant across all paths. Multi-Valued

constant analysis could determine that OBJ.X ∈ {1, 2} and OBJ.Y ∈ {10, 20}. These

constraints accurately describe the individual fields, but they allow for imprecision in the

object, because they allow the possibility that OBJ= (1,20). We define the Multi-Valued

Multi-Field (MVMF) constant propagation problem to be the problem of determining

the set of values that an object viewed as a tuple (such as (X, Y)) can have. Note

that the above Multi-Valued constant analysis applied to individual fields is a possible

solution for MVMF, it may just not be precise enough for certain analyses. In the context

of Android we often need more accurate solutions. We will show how to efficiently find

such solutions.

We now introduce a running example that will be used throughout. Figure 6.1 shows

code for a simple Intent class that contains data used for passing messages between

application components. Note that this is a very simplified version of the actual Intent

class used for Android ICC that we presented in Section 2.1. In particular, we omit

the data field, as we deal with the extras fields in a similar manner. The values of the

fields in an Intent object determine the target of the message and may also carry data

between components. Figure 6.2 defines method sendMessage(), which we assume to

be called as part of an Android application. This method creates an Intent object and

adds a value to the categories field of the Intent at Line 4. Then, depending on the value

of a boolean, one of two things can happen. In both branches, a value is added to the

categories field. In the first branch after the if statement, the action field of intent is

replaced with the value of the action field of src (Line 6). In the fall-through branch,

the action of the intent is set to a constant value (Line 9). Next, the values in the extras

field of the src Intent argument are added to the extras of the newly created Intent using

putExtras(). Next, value EXT 1 is removed from the extras field of intent. Finally, the

Intent object is sent to another component using the startActivity() method.

The data flow problem we are solving is to determine all the possible values of the

fields of intent at the call to the startActivity() method. In our constant propaga-

tion framework defined below, the problem can be specified using COAL, a declarative

language we designed for this purpose. The function of COAL (COnstant propAgation

98

1 package android.content;

2 public class Intent {

3 private String action;

4 private Set <String > categories = new HashSet <String >();

5 private Set <String > extras = new HashSet <String >();

6
7 public void setAction(String value) {

8 this.action = value;

9 }

10 public void addCategory(String value) {

11 this.categories.add(value);

12 }

13 public void putExtras(Intent src) {

14 // Add all values from the extras field of src

15 // into this.extras.

16 this.extras.addAll(src.extras);

17 }

18 public void removeExtra(String name) {

19 this.extras.remove(name);

20 }

21 public String getAction () {

22 return this.action;

23 }

24 }

Figure 6.1. Simplified Intent class (unused methods omitted for conciseness).

Language) is to specify Multi-Valued, Multi-Field (MVMF) constant propagation prob-

lems. It specifies the types of variables for which values should be inferred and how these

values are modified by program statements. It enables abstract reasoning on the seman-

tics of API methods. The COAL language is recognized by our COAL solver, which

outputs solutions for many propagation problems solely from their COAL specification.

Figure 6.3 shows how to specify the problem with our framework using COAL in

order to get the desired solution. It is composed of field declarations, sinks, a source

and a hotspot. The field declarations specify the field that are being tracked, as well

as their type. Note that, for each field, we keep track of sets of values, even though

the field declaration only specifies the type of each individual field value. The first

sink indicates how the setAction() method influences the modeled value of an Intent

object. A sink specification starts with the signature of the method modeled by the

sink. Each line in a sink declaration is an argument whose value is used to modify the

Intent value. Each argument declaration is composed of several attributes. The integer

99

1 public void sendMessage(Context context , boolean test ,

Intent src) {

2 Intent intent = new Intent ();

3 intent.addCategory("CAT_1");

4 if (test) {

5 intent.addCategory("CAT_2");

6 intent.setAction(src.getAction ());

7 } else {

8 intent.addCategory("CAT_3");

9 intent.setAction("ACT_3");

10 }

11 intent.putExtras(src);

12 intent.removeExtra("EXT_1");

13 context.startActivity(intent);

14 }

Figure 6.2. Message-passing code. We assume that the extras field of the argument Intent src
contains either a single value EXT 1, or a single value EXT 3. We also assume that the action
field of src has value ACT 1.

declares the position of the argument in the array of arguments to the method, with

indices starting at 0. After the argument index, an operation and a field are declared.

They describe both the field that is modified by the method and how it is modified. For

example, in the setAction() sink, 0: replace action means that the action field is

replaced with the value of the first argument to setAction(). Other sinks are declared

in a similar manner, except when the type of an argument is a class that is modeled

with COAL. In that case, a type attribute is used in order to specify which field of the

argument object is used. For example, in the putExtras() sink, the 0: add extras,

type android.content.Intent:extras argument means that the extras field of the

Intent argument is being used. The contents of that field are added to the extras field of

the Intent being modified.

The source element indicates that the getAction() method returns the value of the

action field of the modeled value. The unique hotspot indicates that we are querying the

solution at all calls to the startActivity() method. Similarly to the sink declaration, we

specify a list of arguments. They describe the arguments whose value we would like to

query. In this case, it is the first argument (as described by the 0 attribute), which is an

Intent object, as declared by the type android.content.Intent attribute. The COAL

language that we define to specify models is described in Section 6.2. The COAL solver

that we use to solve MVMF constant propagation problems is described in Section 6.3.

Table 6.1 shows the expected result of our analysis. We want our analysis to recover

100

1
c
l
a
s
s

a
n
d
r
o
i
d
.
c
o
n
t
e
n
t
.
I
n
t
e
n
t

{

2
S
t
r
i
n
g

a
c
t
i
o
n
;

3
S
t
r
i
n
g

c
a
t
e
g
o
r
i
e
s
;

4
S
t
r
i
n
g

e
x
t
r
a
s
;

5 6
s
i
n
k

<
a
n
d
r
o
i
d
.
c
o
n
t
e
n
t
.
I
n
t
e
n
t
:

v
o
i
d

s
e
t
A
c
t
i
o
n
(
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
)
>

{

7
0
:

r
e
p
l
a
c
e

a
c
t
i
o
n
;

8
}

9
s
i
n
k

<
a
n
d
r
o
i
d
.
c
o
n
t
e
n
t
.
I
n
t
e
n
t
:

v
o
i
d

a
d
d
C
a
t
e
g
o
r
y
(
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
)
>

{

10
0
:

a
d
d

c
a
t
e
g
o
r
i
e
s
;

11
}

12
s
i
n
k

<
a
n
d
r
o
i
d
.
c
o
n
t
e
n
t
.
I
n
t
e
n
t
:

v
o
i
d

r
e
m
o
v
e
E
x
t
r
a
(
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
)
>

{

13
0
:

r
e
m
o
v
e

e
x
t
r
a
s
;

14
}

15
s
i
n
k

<
a
n
d
r
o
i
d
.
c
o
n
t
e
n
t
.
I
n
t
e
n
t
:

v
o
i
d

p
u
t
E
x
t
r
a
s
(
a
n
d
r
o
i
d
.
c
o
n
t
e
n
t
.
I
n
t
e
n
t
)
>

{

16
0
:

a
d
d

e
x
t
r
a
s
,

t
y
p
e

a
n
d
r
o
i
d
.
c
o
n
t
e
n
t
.
I
n
t
e
n
t
:
e
x
t
r
a
s
;

17
}

18
s
o
u
r
c
e

<
a
n
d
r
o
i
d
.
c
o
n
t
e
n
t
.
I
n
t
e
n
t
:

j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g

g
e
t
A
c
t
i
o
n
(
)
>

{

19
a
c
t
i
o
n
;

20
}

21
h
o
t
s
p
o
t

<
a
n
d
r
o
i
d
.
c
o
n
t
e
n
t
.
C
o
n
t
e
x
t
:

v
o
i
d

s
t
a
r
t
A
c
t
i
v
i
t
y
(
a
n
d
r
o
i
d
.
c
o
n
t
e
n
t
.
I
n
t
e
n
t
)
>

{

22
0
:

t
y
p
e

a
n
d
r
o
i
d
.
c
o
n
t
e
n
t
.
I
n
t
e
n
t
;

23
}

24
}

F
ig

u
re

6
.3

.
C

O
A

L
m

o
d

el
fo

r
th

e
co

n
st

an
t

p
ro

p
a
g
a
ti

o
n

p
ro

b
le

m
.

E
a
ch

si
n

k
sp

ec
ifi

ca
ti

o
n

d
es

cr
ib

es
th

e
in

fl
u

en
ce

o
f

a
m

et
h

o
d

ca
ll

o
n

th
e

fi
el

d
s

of
an

In
te

n
t.

T
h

e
so

u
rc

e
sp

ec
ifi

ca
ti

on
d
es

cr
ib

es
h

ow
va

lu
es

fl
ow

o
u

t
o
f

m
o
d

el
ed

o
b

je
ct

s.
T

h
e

si
n

g
le

h
o
ts

p
o
t

is
u

se
d

to
q
u

er
y

th
e

va
lu

e
o
f

th
e

In
te

n
t

at
th

e
ca

ll
to
st
a
rt
A
ct
iv
it
y
()

.

101

action categories extras

Value 1 ACT 1 {CAT 1, CAT 2} ∅
Value 2 ACT 1 {CAT 1, CAT 2} {EXT 3}
Value 3 ACT 3 {CAT 1, CAT 3} ∅
Value 4 ACT 3 {CAT 1, CAT 3} {EXT 3}

Table 6.1. Possible values of the fields of intent at the startActivity() method call in Figure 6.2.
The first two values correspond to the first branch after the if statement (Lines 5 and 6 in (b)).
Value 1 represents the case where the extras field in src has a value EXT 1, whereas Value 2 is
for the case where the field value is EXT 3. Values 3 and 4 are similar, except that they account
for the fall-through branch (Lines 8 and 9) of the if statement.

COAL IDE solver

Lattice Data flow
functions

Analysis
resultsModel

Front-end Back-end

Argument
analysesProgram ICFG

Figure 6.4. Overview of our analysis process.

the four possible values of Intent intent. These values correspond to all possible execution

paths of the program from Figure 6.2. We wish to recover exactly these possible values,

and we do not want all the possible combinations of fields. For example, it is not

possible in our problem to have an Intent value with action ACT 1 and categories {CAT 1,

CAT 3}. As a result, our analysis does not simply track fields individually as separate

variables, which is why we say that our analysis is multi-field.

Figure 6.4 shows the overview of our analysis process. It is designed to allow constant

propagation analyses to be specified easily. The user simply inputs a model for the

problem being solved and the program for which the data flow problem should be solved.

The model can be specified through the use of the COAL language. The language allows

the specification of the fields of classes being modeled, functions modifying the fields,

and program locations where constants should be determined.

The back end converts the input program into an Interprocedural Control Flow Graph

(ICFG). An ICFG is a collection of CFGs of all the procedures in the program connected

102

with each other as appropriate at procedure call sites. The back end integrates a generic

lattice of values that is appropriate for MVMF constant propagation problems. It also

uses generic data flow functions that can be used for many propagation problems. For

each problem being solved, the model input by the user is used to instantiate the proper

lattice and functions. These are input with the ICFG into a solver for Interprocedu-

ral Distributive Environment (IDE) problems. We present the generic IDE model for

constant propagation in Section 6.3.

Finally, since the values of arguments to functions have to be known in order to

determine MVMF constants, the IDE solver also uses argument value analyses. In

particular, we introduce a string analysis that is finely tuned for Android ICC [134].

It is sound, precise and efficient.

The back end outputs the analysis results. The COAL language allows specification

of program points of interest (hotspots) where the MVMF constant values should be

computed. This is useful when the solution should be computed for specific program

points only. It is appropriate in Android, where the program points of interest (sending

or receiving ICC messages) are known in advance. The results can then be output in a

simple text format or accessed using a programmatic interface (API). We expect that for

most problems the language will allow results to be collected at appropriate locations.

However, for problems where this is not sufficient, we also allow lower-level queries to

the IDE solver as part of the COAL solver API.

6.2 The Coal Language

We introduce the COAL language to specify and query a wide variety of MVMF constant

propagation problems. COAL specifications are used by our constant propagation solver

to automatically instantiate the lattice of values and the appropriate data flow functions,

as we describe in Section 6.3. A simplified grammar for this language is presented on

Figure 6.5. The {} characters symbolize repetition, while [] characters surround optional

parts of a production.

The model for a given object is composed of field declarations, sinks, hotspots, con-

stants and sources.

Field declarations – A field declaration specifies a field that is part of the modeled

class. It describes a data type and a name for the field. In Figure 6.5, we use non-

terminals 〈java type〉 and 〈field name〉 to represent valid Java types and field names.

Sinks – Sinks represent method calls where constant values flow to the modeled object.

103

〈model〉 ::= ‘class’ 〈java type〉 ‘{’ { 〈field〉 | 〈sink〉 | 〈hotspot〉 | 〈constant〉 | 〈source〉 }
‘}’

〈field〉 ::= 〈java type〉 〈field name〉 ‘;’

〈sink〉 ::= ‘sink’ 〈method sig〉 ‘{’ { 〈sink arg〉 } ‘}’

〈hotspot〉 ::= ‘hotspot’ 〈method sig〉 ‘{’ { 〈hotspot arg〉 } ‘}’

〈constant〉 ::= ‘constant’ 〈field sig〉 ‘{’ { 〈field name〉 ‘=’ 〈inline value〉 ‘;’ } ‘}’

〈source〉 ::= ‘source’ 〈method sig〉 ‘{’ 〈field name〉 ‘;’ ‘}’

〈sink arg〉 ::= [〈arg number〉 ‘:’] 〈operations〉 〈field〉 [‘,’ 〈arg type〉 ‘:’ 〈field name〉]

〈hotspot arg〉 ::= 〈arg number〉 ‘:’ 〈arg type〉

〈arg number〉 ::= 〈integer〉 | ‘(’ 〈integer〉 {‘,’ 〈integer〉 } ‘)’

〈arg type〉 ::= ‘type’ 〈java type〉

〈field sig〉 ::= ‘<’ 〈java type〉 ‘:’ 〈java type〉 〈java field〉 ‘>’

Figure 6.5. COAL language for the specification of MVMF constant propagation problems.

The specification of the sinks comprises a method signature (non-terminal 〈method sig〉)
that identifies the method of interest. It also includes a set of arguments that describe

how the arguments of the method are used to modify the fields of the modeled object.

A sink argument has several attributes. An argument number identifies the method

argument of interest. In some cases, several arguments contribute to the value of a

single field. That is why the language supports sets of argument numbers. A field

operation to be performed is also specified. This allows the solver to create appropriate

data flow functions. Natively supported field operations are add (add argument value

to the field), remove (remove argument value from field), replace (replace field with

argument value) and clear (clear field value). A sink specification also includes a field

name that identifies the field being modified. In the case where an argument is a class

modeled with COAL, an argument type and field name are specified. This indicates to

the solver that the value of a field of a modeled class flows to the object being modified.

Hotspots – Hotspots represent statements of interest where modeled values should be

determined. At the moment COAL only expresses hotspots that are method invocations,

which is sufficient for Android ICC.

104

Constants – Java allows specification of constants in the form of static final fields.

The constants of a class are initialized in the class initializer the first time the class

is referenced. A näıve way to deal with constants would consist in tracking the con-

stant creation and initialization the same way it is done for all modeled objects. We

would then propagate them throughout the entire program, which would dramatically

harm performance. For example, in Android ICC, there are 128 URI constants declared

by the Android framework that are used to address specific resources. For instance,

the BOOKMARKS URI value declared in the android.provider.Browser class allows de-

velopers to address a database table containing browser bookmarks and history. As a

performance optimization, we allow constant modeled objects to be specified in COAL.

Where these values are used, the COAL solver uses the specified value. This allows us to

avoid propagation of constants in the entire program, thereby improving performance.

Sources – Sources model the case where a modeled field value flows to an argu-

ment value. This occurs for example at Line 6 in Figure 6.2 with statement in-

tent.setAction(src.getAction()). Declaring getAction() as a source for the action

field allows the COAL solver to use the fact that the value of the action field of src flows

to the action field of intent.

Using this language, we can solve MVMF constant propagation problems such as

the one from Figure 6.2 by simply using the specification from Figure 6.3. This is

considerably simpler than writing a new model with a lattice of values and environment

transformers. That is the reason why we are able to model all Android ICC objects

(see Section 2.1). A limitation of Epicc is that some objects are not properly modeled,

due to the complexity of adding new models, especially when a sink argument uses the

value of another modeled object. The next two sections describe how MVMF constant

propagation problems are solved, given a COAL specification.

6.3 An IDE Model for MVMF Constant Propagation

In this section, we introduce a model that is used in our COAL solver for MVMF constant

propagation problems.

For any set X, we denote the power set of X by P(X).

105

6.3.1 The Pointwise Representation of Environment Transformers

We denote the set of functions from L to L by LL. It can be shown that any environment

transformer t can be written in terms of a pointwise representation Rt1, which is a func-

tion from (D∪{Λ})×(D∪{Λ}) to LL. Here Λ is a special symbol to indicate a null data

flow fact. The pointwise representation is useful because it allows for easy specification

of transformers. The pointwise representation answers the following question: given two

symbols d′ and d, how does the value associated with d′ contribute to the value of d?

More specifically, for any environment transformer t, for all e ∈ Env(D,L) and d ∈ D,

we have

t(e)(d) = Rt (Λ, d) (⊥) t
(⊔

d′∈D
Rt
(
d′, d

) (
e
(
d′
))
)
. (6.1)

In Section 6.3.3, we will use the pointwise representation, and more specifically we will

define the functions in LL that model the MVMF constant propagation problem. Please

refer to Section 6.3.3 for examples of pointwise representations of transformers.

The remainder of this section states a result that links the distributivity of the func-

tions in LL to the distributivity of environment transformers.

Definition 11. We say that a function Rt : (D∪{Λ})×(D∪{Λ})→ LL is codistributive

if all elements of its range are distributive functions from L to L.

Proposition 2. If Rt : (D ∪ {Λ})× (D ∪ {Λ})→ LL is codistributive, then t defined as

in Equation (6.1) is a distributive environment transformer.

Proof. Let e1, e2, · · · ∈ Env(D,L) and Rt : (D ∪ {Λ})× (D ∪ {Λ})→ LL codistributive.

Using Equation (6.1):

t

(⊔

i

ei

)
(d) = Rt (Λ, d) (⊥) t

(⊔

d′∈D
Rt
(
d′, d

)
((⊔

i

ei

)
(
d′
)
))

= Rt (Λ, d) (⊥) t
(⊔

d′∈D
Rt
(
d′, d

)
(⊔

i

(
ei
(
d′
))
))

by definition of

(⊔

i

ei

)
(
d′
)
. Since Rt is distributive, we have:

t

(⊔

i

ei

)
(d) = Rt (Λ, d) (⊥) t

(⊔

d′∈D

(⊔

i

Rt
(
d′, d

) (
ei
(
d′
))
))

.

1The exact expression of Rt is not needed for this section. Interested readers are referred to [12].

106

Using the commutativity of the t operator, we get:

t

(⊔

i

ei

)
(d) = Rt (Λ, d) (⊥) t

(⊔

i

(⊔

d′∈D
Rt
(
d′, d

) (
ei
(
d′
))
))

=
⊔

i

(
Rt (Λ, d) (⊥) t

(⊔

d′∈D
Rt
(
d′, d

) (
ei
(
d′
))
))

=
⊔

i

t(ei)(d)

by using the idempotence and the commutativity of t and Equation (6.1).

In the next sections we will define distributive functions from L to L. This result

guarantees that the environment transformers defined using these pointwise representa-

tions are distributive.

6.3.2 The L Lattice of Values

We are trying to determine the value of an object with n fields. Let V1, . . . , Vn be finite

sets. For i ∈ {1, . . . , n}, let Pi = P(Vi)∪{ω}, where ω represents an undefined value. Let

B = P1 × · · · × Pn. We define L = (P(B),⊆) a join-semilattice with a bottom element

⊥ = ∅. The join operation on L is the set union ∪. The top element of L is the set of

all elements in B.

Sets V1, V2, . . . , Vn are the domains of the values we are trying to determine. For

example, V1 could be the set of constant strings of characters in the program, and V2

could be the set of integer constants in the program. A value in B represents a value as

it is seen on a single path. Finally, values in L represent values of objects taking into

account several paths of a program.

Let us consider the example shown on Figure 6.1. We are interested in three fields:

action, categories and extras. Let S be the set of string constants in the program. In

this case, we consider P1 = P2 = P3 = P(S). In other words, we consider all three fields

to take values in the power set of S. We have B = P1 × P2 × P3 and L = (P(B),⊆).

In method sendMessage(), the value associated with the intent variable is initially

⊥ before Line 2. Line 2 transforms this value to {(∅,∅,∅)}. Right after Line 3, the

value is

{(∅, {CAT 1},∅)}. (6.2)

In the first branch of the if statement, the value associated with intent is transformed

107

to

{({ACT 1}, {CAT 1, CAT 2},∅)}, (6.3)

where the ACT 1 value comes from the action field of src. In the fall-through branch of

the if statement, this value becomes

{({ACT 3}, {CAT 1, CAT 3},∅)}. (6.4)

When the two branches merge, at Line 10, the value becomes

{({ACT 1}, {CAT 1, CAT 2},∅), ({ACT 3}, {CAT 1, CAT 3},∅)}, (6.5)

which is the set union of the values given by Equations (6.3) and (6.4).

After Line 11, the value of intent becomes:

{({ACT 1}, {CAT 1, CAT 2}, {EXT 1}),
({ACT 1}, {CAT 1, CAT 2}, {EXT 3}),
({ACT 3}, {CAT 1, CAT 3}, {EXT 1}),
({ACT 3}, {CAT 1, CAT 3}, {EXT 3})}.

We have used the fact that the extras field of src contains either value EXT 1 or

EXT 3. Finally, after Line 12, this value becomes:

{({ACT 1}, {CAT 1, CAT 2},∅),

({ACT 1}, {CAT 1, CAT 2}, {EXT 3}),
({ACT 3}, {CAT 1, CAT 3},∅),

({ACT 3}, {CAT 1, CAT 3}, {EXT 3})}.

(6.6)

6.3.3 Transformers on L

The intuition behind the COAL language is that each argument in a COAL sink repre-

sents the influence of a method call on a field. Accordingly, we introduce transformers

that are defined at the granularity of fields. In this section, when we construct trans-

formers we assume that the value of src is available where necessary. We revisit this

assumption in Section 6.3.4.

Definition 12. For i ∈ {1, . . . , n}, we define Fi = {φi : Pi → Pi}, the set of functions

from Pi to Pi. Each φi is called a field transformer. We say that φi is a linear field

108

transformer if φi(ω) = ω and φi can be written as either:

• For all X 6= ω, φ(X) = (X ∪Ai)\Ri, for some constant sets Ai and Ri in Pi. Such

a function will also be denoted as φi = φRi
Ai

.

• For all X 6= ω, φ(X) = Ai, for some Ai ∈ Pi. This case is also denoted by

φi = φAi.

Let Li ⊂ Fi be the set of linear field transformers from Pi to Pi.

Let us denote the identity field transformer by id. We have id = φ∅∅ ∈ Li. The

important idea is that each sink argument in COAL is mapped to a single field trans-

former. For example, let us consider the statement in Line 3 in Figure 6.2. It is modeled

by the sink at Line 8 of Figure 6.3. The COAL solver interprets that sink in two steps.

First, using the fact that the categories are strings of characters (as declared in Line 3

of Figure 6.3), it triggers a string analysis [134]. The string analysis determines that

argument 0 of the addCategory() method has value CAT 1. In a second step, it uses

the fact that the sink argument performs an add operation to generate field transformer

φ∅{CAT 1}.

We now show how we use field transformers as basic building blocks for data flow

functions. We first gather field transformers for each field, building functions that rep-

resent the execution of a single path for all fields. We define the set L of functions from

B to B such that for any l ∈ L, there exists (φ1, . . . , φn) ∈ L1 × · · · × Ln such that,

for any b = (β1, . . . , βn) ∈ B, l(b) = (φ1(β1), . . . , φn(βn)). We note l = φ1 × · · · × φn.

Recall that the influence of the statement at Line 3 of Figure 6.2 on field categories

is modeled by field transformer φ∅{CAT 1}. Since the corresponding COAL sink has no

additional argument, the COAL solver models the influence of the statement on all fields

with id× φ∅{CAT 1} × id ∈ L.

Functions in L model the influence of a single execution path. We now define a set

F of functions from L to L using functions in L. Functions in F model the influence of

several execution paths on all fields of an object. More specifically, any f ∈ F is written

f = {l1, . . . , lm}, with l1, . . . , lm ∈ L, such that:

• for any b ∈ B, f ({b}) = l1(b) ∪ · · · ∪ lm(b),

• for any v = {b1, . . . , bk} ∈ L, f(b) = f({b1}) ∪ · · · ∪ f({bk}),

• f is the identity over L, denoted by idL,

109

intent = new Intent() intent.setAction("ACT_3")

⇤

⇤ ⇤

⇤ intent

intent

idL idL idL

intent

intent

idLinit(?,?,?)

src

src

src

src

�
�{ACT 3} ⇥ id ⇥ id

Figure 6.6. Transformers for statements from Figure 6.2.

• for all v ∈ L, f(v) = ⊥. This function is denoted by f = Ω. Informally, the Ω

function is used to “kill” data flow facts.

• f(⊥) = {b}, with b ∈ B. This special function is denoted by f = initb. Informally,

init functions generate data flow facts and associate them with an initial value.

Let us now consider the if statement in Figure 6.2. The influence of the first branch

can be summarized by function φ{ACT 1} × φ∅{CAT 2} × id ∈ L, using the fact that the

action field of src has value ACT 1. The second branch can be summarized by φ{ACT 3}×
φ∅{CAT 3} × id ∈ L. The influence of the two branches is summarized by

{
φ{ACT 1} × φ∅{CAT 2} × id, φ{ACT 3} × φ∅{CAT 3} × id

}
∈ F.

We can verify that applying this function to the value given by Equation (6.2) yields the

value given by Equation (6.5).

We define environment transformers by their pointwise representation Rt using func-

tions in F . Examples of environment transformers with their representation are shown

in Figure 6.6. For example, for statement intent = new Intent(), the representation

Rt for the corresponding transformer is defined as:

Rt(d′, d) =





idL if (d′, d) = (Λ,Λ) or (d′, d) = (src, src)

init(∅,∅,∅) if (d′, d) = (intent,Λ)

Ω otherwise

This function describes the relationships between symbols before the statement (d) with

symbols after the statement (d′). The first case (idL) means that we are propagating

the values of Λ (the empty data flow fact) and src without any changes. The second

case means that we are creating a new data flow fact intent, as indicated by the edge

between Λ and intent. We are associating function init(∅,∅,∅) with that edge. Since the

110

value associated with Λ is ⊥, this informally means that the contribution of Λ to the

final value of intent is init(∅,∅,∅)(⊥) = {(∅,∅,∅)} (see Equation (6.1) in Section 6.3.1).

The final case (Ω) means that there exists no relationship between any other symbol.

For statement intent.setAction("ACT 3"), the pointwise representation Rt for

the corresponding transformer is defined as:

Rt(d′, d) =





idL if (d′, d) = (Λ,Λ)

or (d′, d) = (src, src)

{φ{ACT 3} × id× id} if d′ = d = intent

Ω otherwise

This is very similar to the previous case, except for intent. If we assume the value of

intent to be v before the statement, then the value of intent after the statement is given

by {φ{ACT 3} × id× id}(v).

Transformers are defined that way for all statements of interest in the program.

Proposition 3. All elements of F are distributive functions.

The proof of this proposition is trivial, given the definition of the functions in F . Since

all elements in F are distributive, according to Proposition 2, the resulting environment

transformers are distributive. It follows that the data flow problem can be solved using

existing algorithms from [12].

It is worthwhile to compare the model we have just presented to an alternative model

where each field of each object is a separate symbol in D. Such a model is conceptually

simpler and also simpler to implement. However, our model is more precise, since it

keeps track of the correlation across fields. Let us take the example of a program with

two branches, where we are modeling an object with two fields. Let us assume that on

one branch, the value of the object is (A,B) and on the other branch it is (A′, B′). Our

algorithm can determine that these are the only possible values. On the other hand, the

simpler model would just determine that the two possible values are A and A′ for the

first field, and B and B′ for the second field. Thus this model would consider values

(A,B′) and (A′, B) to be feasible, whereas in reality they are not. Our model is therefore

more precise. Returning to our example from Figure 6.2, the alternative model would

111

compute that the final value is:

{({ACT 1}, {CAT 1, CAT 2},∅),

({ACT 1}, {CAT 1, CAT 2}, {EXT 3}),
({ACT 3}, {CAT 1, CAT 3},∅),

({ACT 3}, {CAT 1, CAT 3}, {EXT 3}),
({ACT 3}, {CAT 1, CAT 2},∅),

({ACT 3}, {CAT 1, CAT 2}, {EXT 3}),
({ACT 1}, {CAT 1, CAT 3},∅),

({ACT 1}, {CAT 1, CAT 3}, {EXT 3})}.

The last four of these values are not feasible. This is clearly less precise than the value

computed by our analysis, which is given by Equation (6.6).

6.3.4 Fixed Point Iteration

Let us consider method sendMessage() from Figure 6.2. In Section 6.3.3, we have as-

sumed that the value of the Intent src is available when we generate field transformers

for intent. In reality, it is not initially available, because when we solve the prob-

lem for the first time, values for intent and src are computed in the same iteration.

Thus, in order to fully resolve all values, we run several iterations of the COAL solver.

For example, in the first iteration, the transformer that is generated for statement in-

tent.setAction(src.getAction()) is

{φintent,1 × φintent,2 × φintent,3} =
{
φsrc,1 × φ∅{CAT 2} × id

}
,

where φsrc,1 is a transformer that indicates that the value of the first (action) field of

intent refers to first field of the Intent src. We initially start with φintent,i and φsrc,i

mapping to ω, for 1 ≤ i ≤ 3. We then iterate until a fixed point is reached for φintent,i

and φsrc,i. The fixed point iteration similarly resolves the value of intent in the case

where intent references the value of the extras field of src (Line 11 in Figure 6.2).

6.4 Evaluation

In this section we evaluate our analysis tool IC3 (Inter-Component Communication anal-

ysis with COAL), which implements the techniques presented in this chapter. The eval-

112

uation of our approach was aimed at answering three central questions:

Q1: Can IC3 precisely infer specifications for ICC objects?

Q2: Are the computational costs of IC3 feasible in practice?

Q3: As an application of our analysis, which properties of component connectivity can

be inferred?

The answer to these questions determines how effectively our analysis can be used as the

basis of inter-component analyses. Highlights of our evaluation are:

• IC3 infers precise specifications for 85.53% of ICC values. The next best tool can

only infer 63.96%. This is a significant increase in precision.

• On average, our analysis takes less than one minute per application. This makes it

feasible in practice to use our analysis as the first step of inter-component analyses.

• When matching components that may communicate with one another, specifica-

tions from IC3 lead to 54.79% fewer component links than the current state-of-the-

art. Most components are not highly connected to other components, with most

potential links concentrated on a small subset of the components in our data set.

The constant propagation solver and the string analysis are implemented on top of

the Soot framework [131]. We additionally use the Heros [130] IDE solver. We use Soot

for several analyses that are necessary for our tool (e.g., Spark [133] pointer analysis and

call-graph construction). Since Android applications have no single entry point (e.g.,

main() method), we leverage the approach presented in [102] that creates an entry point

from the components of an Android application. The Spark pointer analysis is also used

for aliasing. We handle aliasing as follows. When an ICC method modifies an Intent i1

that is a possible alias for another Intent i2, we keep track of two values for i2. One that

takes the call into account and the other one does not. The one that does not account

for the case where the alias analysis results in a false positive (i.e., detecting that a value

may point to a certain heap location even though it does not). IC3 used Java bytecode

that was retargeted from Dalvik bytecode using the Dare tool [10].

For performance reasons, we generally do not allow the constant propagation to

analyze the Android framework code. The only exception is when a framework class may

create or modify ICC objects, which only occurs in a small fraction of the framework

code. In the few cases where ICC method arguments are not strings of characters (e.g.,

113

S
p

ec
ifi

ca
ti

on
P

re
ci

se
Im

p
re

ci
se

M
is

si
n

g

co
u

n
t

E
p

ic
c

IC
3

E
p

ic
c

IC
3

E
p

ic
c

IC
3

In
te

n
ts

&
F

il
te

rs
47

4
2

31
9
5

(6
7
.3

8%
)

40
72

(8
5.

87
%

)
14

62
(3

0.
83

%
)

58
9

(1
2.

4
2%

)
85

(1
.7

9%
)

8
1

(1
.7

1%
)

U
R

Is
2
88

2
2

(7
.5

9%
)

23
0

(7
9.

86
%

)
20

(6
.9

4%
)

11
(3

.8
2%

)
24

6
(8

5
.4

2
%

)
4
7

(1
6
.3

2
%

)

T
o
ta

l
5
0
3
0

3
2
1
7

(6
3
.9

6
%

)
4
3
0
2

(8
5
.5

3
%

)
1
4
8
2

(2
9
.4

6
%

)
6
0
0

(1
1
.9

3
%

)
3
3
1

(6
.5

8
%

)
1
2
8

(2
.5

4
%

)

T
a
b

le
6
.2

.
IC

C
sp

ec
ifi

ca
ti

o
n

p
re

ci
si

o
n

re
su

lt
s.

114

integer arguments), we use a simple analysis that looks for definitions of constant values

for that argument. It simply traverses the interprocedural control flow graph starting at

the method call, keeping track of all possible values. When a constant value cannot be

found, a special ω value is conservatively returned.

We performed our experiments on a corpus of 350 applications previously used in [11].

These applications were randomly selected from a set of over 200,000 applications down-

loaded from the Google Play store between September 2012 and January 2013. 6 appli-

cations could not be processed for various reasons (e.g., insufficient memory errors), so

we report numbers for 344 applications.

Specification precision – We first measured the precision of the ICC values inferred

by our tool. We considered the ICC values that were inferred by our tool at program

points of interest (i.e., sending a message, or programmatically registering a component

with an Intent Filter). We considered an ICC specification to be imprecise if any field

value of any of its possible values was completely unknown (e.g., it was a (.*) string

value). Otherwise, we said that a specification was precise. We counted how often our

tool inferred precise specifications and we compared it to Epicc [11]. We modified Epicc

such that it used the same entry point construction procedure from [102]. The precision

results are presented in Table 6.2. The third line shows the results for Intents and Intent

Filters, whereas the fourth line shows statistics for URIs. The specification count column

shows the total number of ICC objects that were detected. The precise columns present

the number of precise ICC values discovered by Epicc and by IC3. The imprecise columns

show the number of imprecise values detected by each tool. Finally, the missing columns

show the number of locations where an ICC value was missed by both tools.

We observe that the precision of the values inferred by IC3 for Intents, Intent Filters

and URIs was high, with 85.53% of values being detected accurately by our tool. Epicc,

on the other hand, could only precisely detect 63.96%. Of the 877 Intent and Filter

values that IC3 detected precisely but Epicc did not, 476 were due to the presence of

URI data in Intent values (which is not handled by Epicc). In 4 cases, Epicc missed a

value that IC3 did not. The remaining 397 cases that were precisely detected by IC3

and not by Epicc were due to the more powerful string analysis. There was also a clear

difference in the case of URIs, with our tool precisely determining 230 values, compared

to 22 for Epicc. That is because Epicc does not include a thorough model for URIs. In

particular, a number of methods refer to other modeled objects. Since this is handled in

an ad hoc manner in Epicc, good coverage of these methods cannot be achieved, resulting

in a lot of missed values. On the other hand, using COAL specifications, IC3 can achieve

115

much better coverage of URI methods. In particular, references to modeled values are

handled in a principled and generic manner. Finally, IC3 detected 9 fewer URI values

imprecisely than Epicc, thanks to our new string analysis.

There are several reasons why IC3 missed 128 ICC values. First, some API callback

methods have Intent or URI arguments that cannot be known statically. For example,

method onReceive() is a Broadcast Receiver callback that is called when the Receiver

receives an Intent. The received Intent is passed as an argument to that method by

the framework upon activation of the Receiver. The value of that Intent is in general

impossible to determine statically. We found 36 such cases. Another related case was

when URIs were extracted from Intents that were callback arguments with the getData()

method, before being used to address Content Providers. Another cause for missed ICC

values was when Intents were extracted from containers such as sets or lists. We will

investigate handling these by tracking the values of these containers. Finally, we found

a few pathological cases where a call to an interface or abstract method returning an

Intent was not resolved to the proper possible subtypes by the call graph construction

procedure.

In the 600 cases where imprecise values were inferred, the arguments to ICC API

methods could not be determined. Some cases are not yet handled by our argument

analyses (e.g., integer fields and string array fields), while other cases cannot be de-

termined statically (e.g., sequences of complex string operations). We will continue

investigating the cases that can be resolved while keeping good performance.

Performance – Processing all the applications took 20538 seconds using our tool, or

slightly less than 6 hours of compute time. That is less than 60 seconds per application

on average. The processing time was dominated by the entry point building procedure

of [102], taking 53.27% of the time overall. The second most time-consuming functions

were the IDE problem solver and the string solver, taking 33.45% of the total time. Soot

analyses (class loading, type inference, final call graph construction, etc.) took 7.46%

of the time. Other parts of the analysis (e.g., COAL model parsing, result generation)

took 5.38% of the total time.

Component matching – As an application of inferring ICC specifications, we matched

the components that send the computed Intents and URIs with receiving components

for the 344 applications. We implemented a matching process that was modeled after

the Android Intent and URI resolution process. We performed the matching using both

the specifications computed by IC3 and those calculated by Epicc.

116

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000

C
D

F

Number of components (logscale)

Outgoing links

Incoming links

Figure 6.7. CDF of incoming and outgoing ICC links.

Matching components with one another using specifications output by IC3 produced

127204 links. In contrast, the matching that used Epicc specifications yielded 281361

links. Component matching can be used as a metric for precision. When performing

inter-component analysis, fewer potential links imply fewer false positives (since the ICC

value computation and matching are conservative). Using that metric, IC3 is over twice

as precise as Epicc. The reason why a 21.5% gain in value precision resulted in a 50%

gain in matching precision is that imprecise ICC values often cause an explosion of the

number of potential links. For example, when the action of an Intent is not known, the

matching process conservatively matches it with all Intent Filter action values.

We performed a preliminary study of component connectivity using the IC3 ICC val-

ues. We found that many components did not receive ICC messages. Out of 3794 com-

ponents in our sample, 1087 components were completely isolated. Only 1997 (52.64%)

had a potential incoming link with other components. The average in-degree of all com-

ponents that were not isolated was 63.70. The average out-degree was 68.21 and most

components did not send ICC messages. Only 1732 (46.65%) potentially sent data to

other components. Figure 6.7 shows the CDF of the number of potential incoming and

outgoing ICC links for the components in our sample. We found that ICC was concen-

trated in a few components, with 102 components accounting for half of the outgoing

links. Additionally, only 354 components accounted for 50% of all the potential incoming

links. Future studies will seek to determine structures of interest in the graph of ICC

(e.g., strongly connected components). In particular, we will determine whether such

structures are related to security issues (e.g., components leaking data).

Chapter 7
Visualizing Inter-Component

Communication

Chapters 5 and 6 have presented techniques to infer properties of inter-component mes-

sages. This has opened the door to a wide range of inter-component analyses, including

inter-component taint tracking [135], which extends intra-component information flow

techniques [102]. However, no work has tried to visualize inter-component link to infer

properties of ICC. We believe that the use of such techniques can help in finding potential

security concerns. In the past, techniques for visualizing routing data have been used

to find security issues [136]. In our context, it may be possible to look for correlations

between high fan-in and privilege escalation vulnerabilities. On the other hand, a high

fan-out might be indicative of a high chance of private data leaks.

In this chapter, we introduce visualization techniques for Android ICC. Links between

application modules and between classes have long been used as metrics of software

engineering, with fan-in and fan-out being of particular interest [137]. Fan-in and fan-

out express the number of flows into or out of a module. For example, the probability of

defects has been shown to be correlated to fan-out [137, 138]. In the same line of research,

we are interested in finding components with potential security concerns. We introduce

a formalism for statically inferring links between components using set constraints. We

also present the first visualizations of ICC using a corpus of 350 applications from the

official Play store. We identify challenges related both to the precision of the analysis

that generates ICC values and to the structure of ICC. We propose some solutions to

these challenges and offer insight on ICC structures that we observe. We expect that

these techniques can be used by market providers or developers to verify that applications

118

are not communicating in unexpected ways. Finally, a user may want to verify how all

the applications on her phone are communicating with each other in order to exclude

unexpected communication patterns.

We provide the following contributions:

• We formalize the ICC component linking process using set constraints. We provide

an efficient algorithm that, given a set of ICC messages and potential receivers,

efficiently computes all possible ICC links.

• We visualize ICC links between the components of 350 applications, including inter-

application links. We identify the challenges involved in the visualization process

and propose a link confidence metric to exclude imprecise links.

• We propose a technique to merge components that have semantically equivalent

interfaces to reduce clutter in the representation.

This chapter is organized as follows. In Section 7.1, we introduce a formulation of

the problem of matching Intents with Intent Filters using set constraints. In Section 7.2,

we describe an efficient algorithm for verifying set constraints for our problem. Finally,

in Section 7.3, we offer solutions for the actual visualization of ICC.

7.1 A Set-Constraint Approach to Intent Resolution

Let us assume that we are given a set of Intents I and a set of Intent Filters F . We would

like to find all tuples (i, f) ∈ I × F such that there is a potential ICC link between i

and f . We start by formalizing the Intent and URI resolution process as set constraints.

In other words, what are the conditions under which there exists an ICC link between

Intent i and Filter f . For ease of exposition, we only show the Intent resolution process.

The process of resolving URIs to Content Providers uses the same ideas.

Figure 7.1 shows a running example for this chapter. Figure 7.1(a) is an example of

Intents. The first method creates an explicit Intent targeted at the component named

my.target.component in application my.target.app. The startActivity() call causes

the Intent to be sent to the recipient. The second method creates an implicit Intent

and sets its action to ACTION DIAL. It then sets a phone number as the Intent data.

The startActivity() method call causes the Intent resolution process to find a dialer

component from which the user can call the phone number. Figure 7.1(b) presents an

example component declaration for a dialer Activity. Its Intent Filter declares handling

the ACTION DIAL and ACTION VIEW actions and data with a tel scheme. The default

119

1 public void sendExplicitIntent () {

2 Intent intent = new Intent ();

3 intent.setComponentName("my.target.app",

"my.target.component");

4 startActivity(intent);

5 }

6
7 public void sendImplicitIntent () {

8 Intent intent = new Intent ();

9 intent.setAction(Intent.ACTION_DIAL);

10 Uri phoneNumber = Uri.parse("tel :1234567890");

11 intent.setData(phoneNumber);

12 startActivity(intent);

13 }

(a) Explicit and implicit Intents.

1 <activity android:name="DialerActivity"

android:exported="true">

2 <intent -filter >

3 <action android:name="android.intent.action.DIAL"/>

4 <action android:name="android.intent.action.VIEW"/>

5 <data android:scheme="tel"/>

6 <category

android:name="android.intent.category.DEFAULT"/>

7 </intent -filter >

8 </activity >

(b) Intent Filter for a dialer component.

Figure 7.1. Running example.

category declaration at Line 5 is required, since this category string is automatically

added to all Intents targeted at activities. This Intent Filter enables the component to

receive the Intent declared in method sendImplicitIntent() of Figure 5.4(a).

Set constraints have been used to express many different program analysis prob-

lems [139]. In order to make the resolution process as generic as possible, we assume

that each Intent and each Intent Filter contains all attributes necessary for the link-

ing process. For example, in addition to the attributes that are set in the code by an

application developer (e.g., action, categories), an Intent is assumed to contain:

• The name of the application containing the Intent

• The permissions that the containing application requests at install time (“uses

permissions”)

120

Application Name
Target Application
Target Component
Uses Permissions
Permission
Type
Action
Categories
Data

Intent
Application Name
Component Name
Permission
Uses Permissions
Exported
Type
Actions
Categories
Data

Intent Filter

Figure 7.2. Representation of Intents and Intent Filters used for the linking process.

Figure 7.2 shows a description of Intents and Intent Filters used for matching. Note

that such a representation is easy to obtain from the application representation shown in

Figure 2.1 by simply adding the proper attributes from the Component and Application

items. In order to handle explicit Intents in a generic way, we introduce Intent Filters

for all components. Every component has at least one Filter with an Application Name

and a Component Name attribute. The alternative would consist in using a resolution

process between Intents and components for explicit Intents. Instead, we use a single

Intent-to-Filter matching process for all Intents.

We represent each attribute of Intents and Intent Filters as a set. For example, an

Intent may have no action or a single action. We represent the case with no action with

an empty set ∅. In the case of a single action string a, we use set {a}. In the case

of a boolean attribute such as the Exported flag, we use sets {true} or {false}. This

uniform representation allows us to represent the entire resolution process as a system

of set constraints.

Traditional constraint systems translate set equality to inequalities using the fact

that for sets A and B, A = B is equivalent to A ⊆ B ∧B ⊆ A. We additionally use the

fact that A = B is equivalent to A ⊆ B ∧ |A| = |B|, since several constraints involve sets

that we know to be of the same size. For example, one constraint is that the component

type targeted by an Intent type(i) is the same as the type of component associated with

a Filter type(f). Since there is only a single type associated with each Intent and each

Filter, we use constraint type(i) ⊆ type(f). This allows us to use the generic constraint

solving process from Section 7.2 to solve set equality constraints.

In this section, we denote the action of Intent i by action(i). We use similar notations

for other Intent and Intent Filter fields. Given an Intent i and an Intent Filter fi, we

say that i matches f if match(i, f) is satisfied, where match(i, f) is true if the following

121

boolean expression evaluates to true:

match(i, f) = type(i, f) ∧ visibility(i, f) ∧ permission(i, f) (7.1)

∧ (explicit(i, f) ∨ implicit(i, f)).

In this expression, type(i, f) = type(i) ⊆ type(f) as mentioned above. Also, visibility(i, f)

evaluates to true if Filter f is visible from Intent i. The permission(i, f) predicate is

true if Intent i has permission to access Filter f and f is allowed to receive i. Finally,

explicit(i, f) or implicit(i, f) are true if i matches f as an explicit (respectively implicit)

Intent.

The visibility criterion states that i can access f if i and f are in the same application

or f is exported. This is expressed as:

visibility(i, f) = app name(i) ⊆ app name(f) ∨ exported(f) ⊆ {true}

The permission condition stipulates that if a Filter is protected by a permission, then

the application sending an Intent to it needs to request that permission at install time.

Also, if the Intent is protected by a permission, then the receiving Filter must belong to

an application that declares the permission. This is expressed as:

permission(i, f) = perm(i) ⊆ uses perm(f) ∧ perm(f) ⊆ uses perm(i)

An Intent explicitly matches a Filter if explicit(i, f) is verified:

explicit(i, f) = target comp(i) 6= ∅

∧ target comp(i) ⊆ comp name(f)

∧ target app(i) ⊆ app name(f)

On the other hand, the expression is more complex in the case of implicit Intents:

implicit(i, f) = target comp(i) == ∅

∧ action(i) ⊆ actions(f)

∧ category(i) ⊆ categories(f)

∧ data(i, f),

where data(i, f) represents the data test for Intent i and Filter f . We do not give its

122

expression for ease of exposition but it is also expressed using the same kinds of set

constraints.

For example, let us assume that the two methods of Figure 7.1(a) are part of an

application my.app that does not request any permissions. Then the explicit Intent ie is

such that:

app name(ie) = {my.app}
target app(ie) = {my.target.app}

target comp(ie) = {my.target.component}
uses perm(ie) = perm(ie) = ∅

type(ie) = {activity}
action(ie) = categories(ie) = data(ie) = ∅

The implicit Intent ii is such that1:

app name(ii) = {my.app}
target app(ii) = target comp(ii) = ∅

uses perm(ii) = perm(ii) = ∅

type(ii) = {activity}
action(ii) = {android.intent.action.DIAL}

categories(ii) = {android.intent.category.DEFAULT}
data(ii) = {tel}

For simplification, we have reduced the data field to a URI scheme. As we mentioned

above, in reality data is described by several fields.

Let us assume that the Intent Filter f from Figure 7.1(b) is part of an application

1The android.intent.category.DEFAULT category is added by the operating system to all Intents
targeting Activities.

123

my.second.app. It is modeled by:

app name(f) = {my.second.app}
comp name(f) = {DialerActivity}
uses perm(f) = perm(f) = ∅

type(f) = {activity}
action(f) = {android.intent.action.DIAL, android.intent.action.VIEW}

categories(f) = {android.intent.category.DEFAULT}
data(f) = {tel}

It is possible to verify that match(ii, f) holds true using the above description.

7.2 Efficient Solution of Set Constraints with Regular Ex-

pressions

We have presented a model to determine if an Intent and a Filter are connected. The

remainder of this paper is concerned with finding aggregate communication patterns. In

other words, given a set of Intents I and a set of Filters F , we would like to find all

tuples (i, f) ∈ I × F such that there is a potential ICC link between i and f . Finding

all links between Intents in I and Filters in F can be done by simply iterating through

all elements of I and F and verifying if the match(i, f) expression is satisfied, for all

tuples (i, f) in I × F . This process has worst-case and average time complexity that is

O(c|I||F |), where c is the number of clauses that need to be checked. In this section,

we present an algorithm that has the same worst-case complexity, but that has much

better performance on average. Having an efficient matching algorithm is important as

an efficient algorithm is more likely to be utilized by developers and markets to verify

that applications cannot communicate with unexpected applications.

An additional challenge that needs to be handled by the component linking process is

that some of the strings for Intent or Filter attributes that are matched are expressed as

regular expressions, such as EXAMPLE .*. This can happen when the IC3 tool can only

determine part of a string of characters. Note that when IC3 fails in resolving a string

at all, it returns a .* regular expression, which can match any string. For a regular

expression α, we denote the formal language described by α using L(α). Thus, in order

for an Intent attribute a(i) to match a Filter attribute a(f), several cases are possible:

124

Algorithm 1 Procedure to efficiently find all Filters that include a given set of attributes.

Input:

• attrs: set of Intent attributes to match to Filters

• simple map: map between Filter attributes that are simple constants and the
Filters that contain them

• regex map: map between Filter attributes that are regular expressions and the
Filters that contain them

• filters: set of all Filters being considered

1: procedure FindFiltersWithAttributes(attrs, simple map, regex map,
filters)

2: result := filters
3: for all attributes attr in attrs do
4: found := FindFiltersWithAttribute(attr, simple map, regex map)
5: result := result ∩ found
6: end for
7: return result
8: end procedure

• a(i) and a(f) are simple constants and a(i) = a(f).

• a(i) is a simple constant and a(f) is a regular expression and a(i) ∈ L(a(f)).

• a(f) is a simple constant and a(i) is a regular expression and a(f) ∈ L(a(i)).

• a(i) and a(f) are regular expressions and L(a(i)) ∩ L(a(f)) 6= ∅. This indicates

that there is at least one string common to both regular expressions. Thus for a

conservative linking process we need to consider it to be a possible match.

Note that we can consider a simple string constant s to be a regular expression and

in that case L(s) = {s}. Therefore, in general, in order for an Intent attribute a(i) to

match a Filter attribute a(f), we simply require that L(a(i))∩L(a(f)) 6= ∅. In order to

account for the possible presence of regular expressions, we define set inclusion A ⊆ B

to mean the following. We say that A ⊆ B if for each element a ∈ A, there is an element

b ∈ B such that L(a) ∩ L(b) 6= ∅.

In order to simplify the complexity analysis, we consider the process of deciding

whether L(a) ∩ L(b) 6= ∅ to be bounded by a constant. In general this is not true [140],

but in our problem all strings have length bounded by a constant (for database storage

reasons).

125

Algorithm 2 Procedure to find all Filters that have a given attribute.

Input:

• attr: Intent attribute to match to Filters

• simple map: map between Filter attributes that are simple constants and the
Filters that contain them

• regex map: map between Filter attributes that are regular expressions and the
Filters that contain them

1: procedure FindFiltersWithAttribute(attr, simple map, regex map)
2: result := empty set
3: if attr is a simple constant then
4: Add simple map[attr] to result
5: else
6: for all pairs (attribute, filters) in simple map do
7: if L(attr) ∩ L(attribute) 6= ∅ then
8: Add filters to result
9: end if

10: end for
11: end if
12: for all pairs (attribute, filters) in regex map do
13: if L(attr) ∩ L(attribute) 6= ∅ then
14: Add filters to result
15: end if
16: end for
17: return result
18: end procedure

As we have seen in Section 7.1, in order to find all possible targets for an Intent, we

need to be able to find Filters that verify three types of set constraints. Given sets A

and B, we need to be able to verify:

(1) A ⊆ B

(2) A = ∅

(3) A 6= ∅

The general algorithm consists in going through all clauses and finding all the Filters that

verify each of them. When a clause is a disjunction, we then take the union of the Filters

that verify the parts of the disjunction. When a clause is a conjunction, we take the

intersection of the Filters that verify the parts of the conjunction. We start by presenting

how to proceed with set inclusion constraints (type (1) above). Algorithm 1 shows the

126

FindFiltersWithAttributes procedure for finding all Filters with a set of attributes. In

other words, it solves the constraints of type (1) in the list above. For each attribute

type (e.g., action and category), we maintain a map between each attribute and the

set of Filters that declare the attribute. For example, we maintain a map of actions,

where keys are action strings and values are the Filters that declare the action key. Since

attributes may be regular expressions, FindFiltersWithAttributes takes as input both a

map between string constants and Filters and another map between regular expressions

and Filters. Finally, it takes as input the set of Filters currently being considered. This

procedure simply takes the intersection of all Filters that have each one of the input

attributes. It uses procedure FindFiltersWithAttribute from Algorithm 2, which finds

all Filters that have a given attribute, taking into account regular expressions.

In procedure FindFiltersWithAttribute, if the input attribute is a string constant,

then we start by adding all Filters that declare the attribute to the set of Filters to

be returned (Line 4). If the input attribute is not a constant, then we need to match

it with all constant Filter attributes by iterating through the map of constant Filter

attributes (Lines 6-10). For example, if the input attribute is .*, then all Filters with a

constant attribute will match. Then, we proceed to match the constant with all Filters

that declare regular expressions. For example, if a Filter is found to declare .* by IC3,

then all input attributes will match it.

The constraints of types (2) and (3) are solved by maintaining sets of Filters that

have no attribute of a given type (constraint (2)) or that have at least one attribute of

the given type (constraint (3)). The only constraint that requires different treatment is

the permission condition. We have:

permission(i, f) = perm(i) ⊆ uses perm(f) ∧ perm(f) ⊆ uses perm(i).

The first clause is solved easily by using the method above. The second clause needs

special treatment since the Intent attribute set is on the right-hand side of the set

inequality and the method above is designed to solve constraints with the Filter attribute

on the right-hand side. We verify the second clause after all other clauses have been

verified by iterating through all candidate Filters as they are added to the final result

set. Note that this does not impact performance, since the final set of candidate Filters is

typically small. Further, this final iteration happens in any case due to the need to store

the resulting links between the Intent being considered and the possible target Filters.

The reason why this optimized algorithm performs better than systematically iter-

ating though all Filters is that most Filter attributes are precisely known. That is be-

127

Component Component Exported

Type Count (% unprotected) Permission

Activity 2823 620 (100%) 0

Broadcast Receiver 671 594 (91%) 52

Service 185 40 (58%) 17

Content Provider 19 19 (95%) 1

Total 3698 1254 (94%) 69

Table 7.1. Component statistics.

cause almost all Filters are known through a straightforward parsing of the application

manifest file. Thus, finding all Filters with a given attribute in procedure FindFilter-

sWithAttribute is a fast process. The Filter attribute maps can be implemented with a

hash table, allowing constant time access to all Filters with a given attribute at Line 4.

Since most Intent attributes are also simple constants, the iteration at Lines 6-10 is not

often performed. We will show performance comparisons between the näıve algorithm

and the algorithm presented above in Section 7.3.

7.3 Approaches to Visualize ICC Links

We perform ICC linking experiments using a corpus of 350 applications already studied

in [11]. They were selected at random among a set of 200000 applications downloaded

from the official Play store between September 2012 and January 2013. We retarget them

to Java bytecode using Dare [10] before running IC3 [134] to infer Intent and Intent Filter

values. 8 applications could not be processed (e.g., due to insufficient memory errors),

so we report experiments for 342 applications.

Computing all links took 29 seconds using the algorithm described in Section 7.2.

On the other hand, the näıve approach that consists in iterating over all Intents and

Intent Filters took 696 seconds. Looking more closely at our data set, we notice that

as we expected in most cases Intent and Filter attributes are simple constants, which

means that we are able to verify individual constraints in constant time. Taking the

intersection of the sets that verify different constraints (to account for the conjunction

of several set constraints) takes time that is bounded by the size of the smallest set.

Therefore, since several constraints are usually very restrictive (e.g., the data constraint)

taking the intersection of sets is also a fast operation.

128

Table 7.1 shows a breakdown of the components by type. The exported column shows

how many components are accessible to all applications. It also indicates the percentage

of exported components that are not protected by permissions. The permission column

gives the number of components protected by a permission. As previously reported [11],

a large proportion of public components are not protected by a permission. Thus, a

method to infer how components may communicate with one another is very important.

The data set comprises 342 applications, with a total of 3698 components. Activities are

the most common type of component, with 2823 instances found in our corpus.

7.3.1 Intent and Filter Links

We start by introducing a confidence metric for Intent links. The idea is that some Intents

have very imprecise attributes, in the form of .* regular expressions. These match Filter

attributes with any value, leading to many unfeasible links (i.e., false positives). Given

a link between an Intent and an Intent Filter, let us denote the number of attributes

that have value .* by wc. The total number of non-empty attributes is denoted by na.

Then we define the confidence of the link to be

confidence =





1− wc

na
if na 6= 0

1 otherwise

Thus, a confidence of 1 implies a link where all attributes that account for the link are

precise, resulting in a precise link. On the other hand, a confidence of 0 means a link

where no attribute is known precisely. This implies a very likely false positive. Note

that we do not count attributes that are always known precisely, such as the exported

and type attributes.

Figure 7.3 shows links between Intents and Intent Filters. Intents and Filters that are

not connected are not represented. This graph includes 2409 nodes and 8354 edges. Blue

nodes represent Intent and red nodes are Intent Filters. Intents with the same attributes

are connected to the same destinations, thus we merge similar Intents to a single node.

On the graph in Figure 7.3, the size of Intent nodes is proportional to the number of

Intents they represent. We do the same for Intent Filters. Note that this representation is

more expressive and less cluttered than plotting all Intents and Intent Filters separately.

Plotting all Intents separately would result in many more nodes. On the other hand,

in our representation we have fewer nodes and the redundancy information is explicitly

represented. Blue edges represent links with high confidence, whereas purple edges are

129

Figure 7.3. Links between Intents and Filters.

low-confidence links. Notice the large cluster with some Intents at the center connected

to a large number of Intent Filters through purple, low-confidence edges. This confirms

the intuition that Intents and Filters with imprecise .* attributes entail many false

positives.

Figure 7.4 shows the links between Intents and Intent Filters after excluding links

with a confidence of 0. Green edges represent explicit Intent links whereas red edges

represent implicit Intent links. After excluding low-confidence links, only 4520 edges

remain. Interestingly, implicit links form large clusters whereas explicit Intents are found

in small graph components. That is because implicit Intents do not have a set target and

130

Figure 7.4. Links between Intents and Intent Filters without low-confidence links.

many Filters can potentially receive them. Looking more closely at the largest clusters,

we observe that they are caused by a large number of Intents and Intent Filters that

have similar attributes. These attributes are not all exactly the same, so the Intents

and Filters do not get merged to a single node. The Intent Filters in these clusters have

broad specifications, which makes them a target for many Intents. On the other hand,

explicit Intents have a single target. In Figure 7.4, a few explicit Intents are connected

to several Filters. That is because one of their attributes is not known precisely.

131

Figure 7.5. Links between components.

7.3.2 Component Links

Using the link between Intents, we can infer potential communication between compo-

nents. Since a single component may send more than a single Intent, it is possible that

several Intents account for the link between two components. On the other hand, a single

Intent can originate from different components. That is because different components

can call methods in the same class (e.g., utility functions). When two components are

connected by n Intent links with confidence conf1, conf2, . . . , confn, we define the confi-

dence of the inter-component link to be max{conf1, conf2, . . . , confn}. The idea is that

if there exists a high-confidence Intent link between two components, then with high

132

Figure 7.6. Links between components without low-confidence links.

likelihood there is an inter-component link. Figure 7.5 shows links between components,

where blue edges represent high confidence whereas purple edges imply low confidence.

Components without ICC links are not represented. There are 1920 components con-

nected through ICC, with 22470 potential inter-component links.

As expected from Figure 7.3, there is a high number of low-confidence links. That

is why we also present the inter-component links without low-confidence links in Fig-

ure 7.6. In this graph, there are only 1387 nodes connected through ICC and 14857

inter-component edges. On this graph, red edges represent explicit Intent links whereas

green edges are implicit Intent links. Similarly to what we observe for Intent links, im-

133

Figure 7.7. Condensed links between components without low-confidence links.

plicit links cause the formation of large clusters, whereas explicit links are observed in

small graph components of a few nodes.

Many Intents and Intent Filters have similar values. As a result, we introduce a new

representation for component links that is similar to Figure 7.4. The resulting graph

is presented in Figure 7.7. In this graph, blue nodes represent source components and

red nodes are destination components. This implies that a given component may be

represented twice. Additionally, many components send or receive Intents with the same

attributes. Therefore, when components send Intents with exactly the same attributes,

we merge them to a single blue node. When components have the same Intent Filters,

134

we also merge them to a single red node. The intuition is that we merge components

with semantically equivalent ICC interfaces. The code that constitutes the components

themselves may be different, we are only merging based on ICC interface semantics.

The size of each node is proportional to the number of components it represents. This

representation is more informative than the one without merging, since it explicitly

informs us about the presence of redundant information. The graph on Figure 7.7 does

not include low-confidence links. It only comprises 575 nodes and 1607 edges. Thus this

representation is very effective for condensing ICC information.

Green edges are explicit links and red edges are implicit links. We can observe a

cluster where many explicit inter-component links point to a single node. That single

node represents all the Activity components that are not exported and not protected by

a permission. They also do not have any Intent Filter. The components that point to

this single node are all the components that send an explicit Intent to transition the user

interface from one screen to another one. This cluster confirms the intuition that this is

a very common process in Android applications.

7.3.3 Application Links

We also visualize inter-application links in Figure 7.8 without low-confidence links. Red

edges represent implicit links whereas green edges are explicit links. As with Intent

and component links, a large cluster is caused by implicit links. The other nodes that

are not connected all have self-loops, which represent intra-application inter-component

communication.

Looking more closely at the cluster of implicit links, we notice that many links

originate from a single application. More specifically, they originate from an Intent

for which all attributes are empty. In order to show a clearer picture of inter-application

communication, we show another graph that does not take into account empty Intents

in Figure 7.9. Most of the edges are self-loops with explicit links, which shows that

ICC is most often intra-application. This is expected, since as we showed in Figure 7.7

developers very often use explicit Intents to start an Activity within the same application

to transition to a new screen.

Since Figure 7.9 includes some potential inter-application links, we have manually

determined their cause. The single inter-application link that is due to an explicit In-

tent (represented by a green edge between two nodes) is caused by an Intent that is

not precise. However, since its confidence is not 0, it is not excluded from the figure.

The inter-application links that are related to implicit Intents (represented by red edges

135

Figure 7.8. Links between applications without low-confidence links.

between nodes) have several causes. In one case, an application is sending an Intent with

action android.appwidget.action.APPWIDGET UPDATE, which is usually done to force

an update of an application widget. However, in that particular application, the devel-

oper has omitted to restrict the Intent to their own application, which means that this

Intent causes widgets from other applications to be updated. Two clusters of nodes are

related to legitimate, intended inter-application communication. In this case, developers

take advantage of some functionality that is provided by another application.

Two other clusters are due to string analysis imprecision for broadcast Intent at-

tributes. We have noticed a common pattern in some advertisement libraries, where

136

Figure 7.9. Links between applications without low-confidence links and empty Intents.

Intent broadcasts are targeted at internal dynamically-registered Broadcast Receivers.

In order to ensure that the broadcast Intent is not caught by other applications, the

Intent action strings are set to be a constant string concatenated with an application

identifier. In some instances, the string analysis in IC3 cannot determine the part of the

action string that corresponds to the application identifier. In these cases, some Intents

may be matched with dynamically registered Intent Filters in other applications that

use the same advertisement libraries, even though these flows are not feasible in practice

(assuming that the application identifier is not reused by another application). Note that

malicious applications may intercept these messages, since the application identifier is

137

fixed for a given application. The Android platform provides a local Broadcast manager,

which guarantees that Intent broadcasts are only sent within the same application. It

also ensures that dynamically-registered Receivers only receive Intents from the same

application.

Chapter 8
Directions for Inter-Component

Communication Analysis

The growth of mobile application markets has accompanied the explosion of smart phones

and tablets. Millions of users now rely on these applications to assist them in their daily

life. The mobile application distribution model is very different from the desktop appli-

cation model. In desktop applications, software was distributed by few companies and

it was relatively easier for users to choose a trusted developer. On the other hand, in

the mobile ecosystem applications are developed by many entities, from large software

corporations to amateur developers to malicious programmers. The identity of the ap-

plication developer is no longer an important factor when deciding which application to

install.

The mobile ecosystem relies on communication between application components and

between applications to share and reuse functionality. This participates in the explosive

growth of application markets. Developers can focus on the features that provide added

value to their applications instead of concerning themselves with providing the full chain

of features that are needed to the user. Through the use of inter-component messages,

they can rely on the operating system to find the missing links that provide the required

functionality. Unfortunately, there are many ways that the missing links can be filled

with malicious or vulnerable applications.

In this dissertation, we have provided effective means to infer the possible inter-

component interactions in Android applications. In this chapter, we highlight some

important aspects of this work and the implications of this work for the future of inter-

component analysis.

139

8.1 Program Retargeting

Retargeting Android applications to Java bytecode is a prerequisite to our ICC analysis.

Thus, it is important to reflect on why our program retargeting process is very reliable.

This is particularly important, as the platform is evolving and the Dalvik runtime may

eventually disappear [141]. The new Android Runtime (ART) works by translating

Dalvik bytecode to machine code during a compilation process that occurs once on

the phone or tablet. It is reasonable to expect that, after the Dalvik virtual machine

disappears, applications will be distributed in a bytecode format that is optimized for

translation to ART. This would be another intermediate representation between Java

bytecode and machine code. If such a format is indeed used instead of Dalvik bytecode,

we will need to make the retargeting process evolve to handle the new format.

As evidenced by the Dare system described in Chapter 4, program retargeting is

possible when the target representation shares some fundamental characteristics with

the original program. First, the type system is similar in Dalvik and Java bytecode.

While some constants in Dalvik are more weakly typed, the fact that the Dalvik virtual

machine enforces strong typing is key to our ability to map Dalvik typing to Java. For

example, after an ambiguously-typed variable is used as an integer, it cannot be used as

a floating-point variable. As a result, when we build a type constraint system for a given

method, we obtain a system that can be solved, where constraints do not contradict one

another.

It is also important that the target language share instruction semantics with the

original one. This enables us to find mappings for instructions from Dalvik to Java. A

few Dalvik instructions do not have trivial equivalents in Java, but Java bytecode can

express the same semantics using a combination of instructions.

Finally, the way that we address the issue of unverifiable Dalvik bytecode is strong

evidence of the similarities between the two platforms. We modify unverifiable Dalvik

applications to make them Dalvik-verifiable and obtain Java-verifiable applications in

almost all cases. The few cases where this is not true are related to very isolated corner

cases where the Dalvik and Java verifiers differ. This indicates that the two platforms

enforce very similar constraints on their respective bytecode formats.

8.2 Inter-Component Communication Analysis

We have developed the IC3 tool to determine the value of ICC objects. It relies on a

generic IDE model that is instantiated as necessary using a textual description of the ICC

140

API. The simple fact that we generalized the ad hoc Epicc process described in Chapter 5

to a constant propagation problem in Chapter 6 informs us as to the reason why ICC

analysis can be carried out in practice. In many cases, ICC objects are constants that

can be computed statically. Admittedly, they are complex constants that require us to

introduce the multi-valued, multi-field constant propagation problem.

For example, a common ICC use case is when developers transition the user interface

between screens. In this case, a simple explicit intent is sent to the Activity that rep-

resents the new screen. In this case and many others, the target of the intent is known

at compile time. In fact, one could imagine declaring most intents in an XML resource

file in the same way that intent filters are described. The precompiled intent would then

be loaded when needed. Dynamic intent creation is not needed in most cases, so this

would be very commonly used to simplify both the development process and future ICC

analyses.

8.3 Future Work

This dissertation has discussed the static ICC analysis of mobile applications. The

purpose of these analyses is to improve the security of inter-component interactions.

Since the approaches presented have several limitations, in this section we provide several

directions to improve these static analyses. Since not all properties of applications can

be decided statically, we also propose a hybrid approach to enforce security policies

using both static analysis and runtime enforcement. This can achieve the end goal of

improving inter-component security despite the theoretical and practical limitations of

static analysis.

8.3.1 Improving ICC Analysis Precision

The static analysis of ICC described in Chapter 6 cannot infer precise ICC values in

14% of cases. We have found that the precision limitations are both due to cases that

cannot be known statically, but also to constructs that are not currently handled by the

string analysis or the main IDE analysis. These constructs can be handled by extending

the current analyses. For example, this includes flows through Java collections such as

lists or sets. Unfortunately, modeling these additional flows can be costly in terms of

performance.

In particular, the string analysis used in IC3 works by generating a flow graph of

string operations. The value of a string can be obtained by simply traversing the graph

141

1 public class MyStringClass {

2 private String [] mySuffixes;

3
4 public MyStringClass(String [] suffixes) {

5 mySuffixes = suffixes;

6 }

7
8 public String createAString(int index) {

9 return "MY_STRING_" + mySuffixes[index];

10 }

11 }

Figure 8.1. An example with string array field operations.

and evaluating the string operations that generate the final string. Generating the graph

can be costly in time and in memory. Therefore, we propose to modify the analysis to

allow for variable precision. For example, it might make sense in some case to precisely

take flows through containers into account. In other cases (e.g., when many string array

operations are used in the program), we may want the analysis to infer less precise but

also less costly values. A challenge here is how to determine the appropriate amount

of precision for each case. We expect that heuristics can be useful but we plan on

considering other options as well. Possible heuristics include considering the number of

flows to a list that need to be modeled or calculating the diameter of the flow graph.

For example, let us consider class MyStringClass from Figure 8.1. It contains a field

that is an array of strings, which is set by the constructor. Method createAString

creates and returns a string that is the concatenation of a constant string and one of the

elements of the string array field. If we would like to determine the value that is returned

by this method, a first solution is to do a coarse over-approximation of the second part

of the string and to infer value MY STRING .*. If more precision is needed and deemed

reasonable, then we can determine the possible values that the mySuffixes field can

contain. To be more precise (for example, if the application being analyzed is small),

the analysis could also model which string is associated with a given array index.

8.3.2 Improving ICC Visualization

We propose several ideas to improve the visualization presented in Chapter 7. First,

we suggest to include system applications when computing component links. This is

because system applications are often solicited by third-party applications through ICC.

This includes messages sent to browse a web page or to display a map centered at

142

my.location.app

my.internet.app

my.random.app

my.isolated.app

internet

location

device
ID

logs

Figure 8.2. Visualization of application collusion.

particular coordinates. Further, system applications have been shown to be vulnerable

to ICC attacks. This has been observed both in applications included in the default

Android distribution [5] and in applications added by smart phone manufacturers [79].

We expect that this will provide us with a more comprehensive view of inter-component

communication in the application ecosystem of a phone or a market.

Second, we would like to include information about data flows in the visualization

of inter-component links. Some tools can already perform inter-component taint track-

ing using the ICC analyses described in this paper [135]. We propose to allow the

filtering of edges to include only inter-component flows of sensitive data. Nodes repre-

senting sensitive data sources and sinks could be added to the representation. This could

quickly inform users and developers that a potentially dangerous flow has been found.

In particular, cases of application collusion could be found using this representation.

Figure 8.2 illustrates this idea. On the left side of the graph we represent sensitive data

sources. On the right side we have sensitive data sinks. The other nodes are applica-

tions and the edges show data-carrying inter-application flows. Data from the location

source flows to my.location.app, which then sends the data to the my.internet.app

and my.random.app application. The my.internet.app application subsequently leaks

the location data to the internet sink. This is a case of application collusion. The

my.random.app application receives sensitive data flows but does not leak the data to

sensitive sinks, thus it is not a colluding application.

Finally, beyond modifications of the information that we represent, we would also like

to improve the visualization itself. This includes both exploring alternative visualizations

and enabling interactions with the current one. A common way to visualize software is by

143

using the software city metaphor, where a district represents a package and each building

represents a class [142, 143, 144, 145]. The size and color of the buildings can be used to

represent information (e.g., code size). We could imagine representing each component

as a building and each application as a district. Using approaches such as [145], it is

then possible to connect buildings using edges.

Another important aspect that should be improved to facilitate using visualization for

security is the possible interactions with the representation. In particular, filtering links

based on action, URI or any other attribute would allow developers to spot potential

issues when using specific attributes. Also, filtering edges based on the presence of

sensitive data could be to spot data leaks. Focusing the visualization on links to or from

a single application is another desirable feature of a useful visualization tool.

8.4 Hybrid Enforcement of ICC Policies

We propose a hybrid process for enforcement of ICC policies. We suggest to allow

the user to define policies related to inter-application communication. For example, a

user may wish for an application with access to location data not to communicate with

applications with Internet access. We propose the design of a system that will mediate

application interaction. Several approaches perform similar or related functionality:

• Installation policy enforcement: The Kirin system [45] extends the installation

process to disallow installation of applications with dangerous permission combi-

nations, as expressed by a policy. The Kirin system is limited to combinations of

permissions in single applications and does not provide guarantees for permission

combinations resulting from sets of applications communicating with one another.

• Application-centric policy enforcement: The Saint system [60] provides applications

with a fine-grained way to define policies for their ICC interfaces. This allows

applications to protect themselves, but it relies on application developers to specify

how their applications interact with other applications. This does not provide any

guarantees to the user. On the other hand, we seek to allow the user to specify

ICC policies.

• Runtime enforcement: The XManDroid system [82] provides guarantees using run-

time enforcement, however the authors of that system observe that the performance

overhead is noticeable. We seek to alleviate the performance limitation by limit-

ing the number of runtime enforcement decisions. That is achieved by statically

144

Policy

(1) Static ICC
analysis

(2) Pre-install
hook placement

(3) Installation

(4) Runtime
policy

enforcement

New application

Figure 8.3. Hybrid Inter-Component Communication policy enforcement.

computing the information that can be known before installation.

In order to enforce such a policy, we propose a hybrid approach. The goal is to

place enforcement hooks at entry points and exit points of applications. We assume that

we have a set of applications that have a safe hook placement and are installed on a

single phone. We assume that we also know the ICC interfaces for all these applications.

Given a new application that gets installed on the phone, we are trying to determine a

set of hooks that will allow enforcement of the policy at runtime. In order to limit the

impact on performance, we want to limit the number of hooks that are inserted. For

that purpose, we propose to use static analysis to determine the entry points and exit

points that are known to be safe. Since static analysis yields an over-approximation of

the program behavior, if no unsafe link is detected, then we can say that no unsafe link

exists.

145

Figure 8.3 shows an overview of the proposed approach. In step (1), we compute the

specifications of ICC objects for the new application. Step (2) inserts hooks using the

information from the ICC analysis. Using the newly computed ICC information as well

as the information from other applications, this step can estimate which ICC links are

sure to be safe with respect to the specified policy. Hook placement only happens at

locations that may be unsafe. This way, we are hoping to significantly limit the number

of hooks that will be called at runtime. Next, the application is installed on the target

system in step (3). Finally, using the inserted hooks, the policy is enforced at runtime

in step (4). Steps (1) and (2) are computationally intensive and are therefore performed

by an entity external to the phone. A good candidate would be the application market.

We expect to have to tackle a number of issues:

• Hooks: We will need to answer several questions related to the hooks. For example,

we need to determine what actions they should perform. We also need to determine

what the best placement strategy is, i.e., should they be placed at entry points or

at exit points?

• Policies: We need to determine what policies can be enforced by our system. We

envision limiting the union of permissions of different applications, but we may

add provisions to only limit links that carry data between applications if we deem

it reasonable. We will determine an appropriate language for policy specification.

• Evaluation: Evaluation may be challenging, due to the dynamic nature of the en-

forcement. We will consider a combination of automated [146] and manual testing.

We intend on measuring the performance impact of our hooks, comparing it with

an approach with complete runtime enforcement as well as no enforcement at all.

We will measure the number of blocked inter-application communications.

8.5 Concluding Remarks

The popularity of smart phone and tablet platforms is closely related to the abundance

of third-party applications that implement a wide variety of features. These applications

often implement a small number of features and reuse functionality implemented in dif-

ferent applications. The inter-component interfaces of an application determine both the

ways in which other applications activate it and which applications its inter-component

messages can target. Understanding inter-component communication is therefore indis-

pensable as a basis for the analysis of the security of mobile applications.

146

We found that developers use relatively straightforward inter-component messages

in most cases. This makes it possible to analyze ICC by reducing it to a novel kind of

constant propagation problem. Solving these constant propagation problems is done in

a completely generic manner, which allows for easy extension as the ICC API evolves.

We were able to perform static ICC analysis using existing program analysis techniques

because the new mobile application formats are not fundamentally different from ex-

isting ones. Therefore we found that program retargeting is a reliable prerequisite to

mobile application analysis. The techniques presented in this dissertation can be reused

as new application runtime environments and novel inter-component communication

mechanisms are developed.

Appendix

Opcode Map fuo

For completeness, we present the complete definition of opcode map fuo for Ouo,
which was partially defined in Section 4.6. It is presented in Tables A.1, A.2 and A.3.

148

Tyde Opcode Java Opcode

nop nop

move, move/from16, move/16, move-wide, move-wide/from16, move-
wide/16, move-object, move-object/from16, move-object/16, move-
result, move-result-wide, move-result-object, move-exception

Jε

return-object areturn

const-wide/16, const-wide/32, const-wide, const-wide/high16 ldc2 w

const-string, const-string/jumbo, const-class, const-class/jumbo ldc

monitor-enter monitorenter

monitor-exit monitorexit

check-cast, check-cast/jumbo checkcast

instance-of, instance-of/jumbo instanceof

array-length arraylength

new-instance new

throw athrow

cmpl-float fcmpl

cmpg-float fcmpg

cmpl-double dcmpl

cmpg-double dcmpg

cmp-long lcmp

aget-object aaload

aget-boolean, aget-byte baload

aget-char caload

aget-short saload

aput-object aastore

aput-boolean, aput-byte bastore

aput-char castore

aput-short satore

iget, iget/jumbo, iget-wide, iget-wide/jumbo, iget-object, iget-
object/jumbo, iget-boolean, iget-boolean/jumbo, iget-byte, iget-
byte/jumbo, iget-char, iget-char/jumbo, iget-short, iget-short/jumbo

getfield

iput, iput/jumbo, iput-wide, iput-wide/jumbo, iput-object, iput-
object/jumbo, iput-boolean, iput-boolean/jumbo, iput-byte, iput-
byte/jumbo, iput-char, iput-char/jumbo, iput-short, iput-short/jumbo

putfield

Table A.1. Opcode map fuo for set Ouo (part 1).

149

Tyde Opcode Java Opcode

sget, sget/jumbo, sget-wide, sget-wide/jumbo, sget-object, sget-
object/jumbo, sget-boolean, sget-boolean/jumbo, sget-byte, sget-
byte/jumbo, sget-char, sget-char/jumbo, sget-short, sget-short/jumbo

getstatic

sput, sput/jumbo, sput-wide, sput-wide/jumbo, sput-object, sput-
object/jumbo, sput-boolean, sput-boolean/jumbo, sput-byte,
sput-byte/jumbo, sput-char, sput-char/jumbo, sput-short, sput-
short/jumbo

putstatic

invoke-virtual, invoke-virtual/range, invoke-virtual/jumbo invokevirtual

invoke-super, invoke-super/range, invoke-super/jumbo, invoke-direct,
invoke-direct/range, invoke-direct/jumbo

invokespecial

invoke-static, invoke-static/range, invoke-static/jumbo invokestatic

invoke-interface, invoke-interface/range, invoke-interface/jumbo invokeinterface

neg-int ineg

neg-long lneg

neg-float fneg

neg-double dneg

int-to-long i2l

int-to-float i2f

int-to-double i2d

long-to-int l2i

long-to-float l2f

long-to-double l2d

float-to-int f2i

float-to-long f2l

float-to-double f2d

double-to-int d2i

double-to-long d2l

double-to-float d2f

int-to-byte i2b

int-to-char i2c

int-to-short i2s

Table A.2. Opcode map fuo for set Ouo (part 2).

150

Tyde Opcode Java Opcode

add-int, add-int/2addr, add-int/lit16, add-int/lit8 iadd

sub-int, sub-int/2addr, rsub-int, rsub-int/lit8 isub

mul-int, mul-int/2addr, mul-int/lit16, mul-int/lit8 imul

div-int, div-int/2addr, div-int/lit16, div-int/lit8 idiv

rem-int, rem-int/2addr, rem-int/lit16, rem-int/lit8 irem

and-int, and-int/2addr, and-int/lit16, and-int/lit8 iand

or-int, or-int/2addr, or-int/lit16, or-int/lit8 ior

xor-int, xor-int/2addr, xor-int/lit16, xor-int/lit8 ixor

shl-int, shl-int/2addr, shl-int/lit8 ishl

shr-int, shr-int/2addr, shr-int/lit8 ishr

ushr-int, ushr-int/2addr, ushr-int/lit8 iushr

add-long, add-long/2addr ladd

sub-long, sub-long/2addr lsub

mul-long, mul-long/2addr lmul

div-long, div-long/2addr ldiv

and-long, and-long/2addr land

or-long, or-long/2addr lor

xor-long, xor-long/2addr lxor

shl-long, shl-long/2addr lshl

shr-long, shr-long/2addr lshr

ushr-long, ushr-long/2addr lushr

add-float, add-float/2addr fadd

sub-float, sub-float/2addr fsub

mul-float, mul-float/2addr fmul

div-float, div-float/2addr fdiv

rem-float, rem-float/2addr frem

add-double, add-double/2addr dadd

sub-double, sub-double/2addr dsub

mul-double, mul-double/2addr dmul

div-double, div-double/2addr ddiv

Table A.3. Opcode map fuo for set Ouo (part 3).

Bibliography

[1] Arthur, C. (2012), “Feature phones dwindle as Android powers ahead in third
quarter,” The Guardian, available at http://www.guardian.co.uk/technology/
2012/nov/15/smartphones-market-android-feature-phones.

[2] IDC, “Smart Connected Device Market by Product Category, Shipments, Market
Share,” Available from http://images.techhive.com/images/article/2013/

03/idc-smart-devices-100030871-orig.png.

[3] Enck, W., M. Ongtang, and P. McDaniel (2009) “Understanding Android
Security,” IEEE Security & Privacy Magazine, 7(1), pp. 50–57.

[4] Chin, E., A. P. Felt, K. Greenwood, and D. Wagner (2011) “Analyzing
Inter-Application Communication in Android,” in Proceedings of the 9th Annual
International Conference on Mobile Systems, Applications, and Services (Mo-
biSys).

[5] Felt, A. P., H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin (2011) “Per-
mission Re-delegation: Attacks and Defenses,” in Proceedings of the 20th USENIX
Conference on Security, SEC ’11, USENIX Association, Berkeley, CA, USA.

[6] Schlegel, R., K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang
(2011) “Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smart-
phones,” in Proceedings of the 18th Annual Network and Distributed System Secu-
rity Symposium (NDSS).

[7] Marforio, C., H. Ritzdorf, A. Francillon, and S. Capkun (2012) “Analysis
of the communication between colluding applications on modern smartphones,”
in Proceedings of the 28th Annual Computer Security Applications Conference,
ACSAC ’12, ACM, New York, NY, USA, pp. 51–60.

[8] ZDNET, “Android OEMs slow to roll out Bluebox Se-
curity patch,” Available from http://www.zdnet.com/

android-oems-slow-to-roll-out-bluebox-security-patch-7000018012/.

http://www.guardian.co.uk/technology/2012/nov/15/smartphones-market-android-feature-phones
http://www.guardian.co.uk/technology/2012/nov/15/smartphones-market-android-feature-phones
http://images.techhive.com/images/article/2013/03/idc-smart-devices-100030871-orig.png
http://images.techhive.com/images/article/2013/03/idc-smart-devices-100030871-orig.png
http://www.zdnet.com/android-oems-slow-to-roll-out-bluebox-security-patch-7000018012/
http://www.zdnet.com/android-oems-slow-to-roll-out-bluebox-security-patch-7000018012/

152

[9] McDaniel, P. and W. Enck (2010) “Not So Great Expectations: Why Applica-
tion Markets Haven’t Failed Security,” IEEE Security & Privacy Magazine, 8(5),
pp. 76–78.

[10] Octeau, D., S. Jha, and P. McDaniel (2012) “Retargeting Android Applica-
tions to Java Bytecode,” in Proceedings of the 20th ACM SIGSOFT International
Symposium on the Foundations of Software Engineering, FSE ’12, ACM, New York,
NY, USA, pp. 6:1–6:11.

[11] Octeau, D., P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and
Y. Le Traon (2013) “Effective Inter-component Communication Mapping in An-
droid with Epicc: An Essential Step Towards Holistic Security Analysis,” in Pro-
ceedings of the 22nd USENIX Conference on Security, SEC’13, USENIX Associa-
tion, Berkeley, CA, USA, pp. 543–558.

[12] Sagiv, M., T. Reps, and S. Horwitz (1996) “Precise interprocedural dataflow
analysis with applications to constant propagation,” Theoretical Computer Science,
167(1-2), pp. 131–170.

[13] Proebsting, T. A. and S. A. Watterson (1997) “Krakatoa: Decompilation in
Java (Dose Bytecode Reveal Source?),” in Proceedings of the 3rd USENIX Confer-
ence on Object-Oriented Technologies (COOTS) - Volume 3, COOTS ’97, USENIX
Association, Berkeley, CA, USA.

[14] van Vliet, H. (2001), “Mocha, the Java Decompiler,” http://www.brouhaha.

com/~eric/software/mocha/.

[15] Miecznikowski, J. and L. Hendren (2001) “Decompiling Java using staged
encapsulation,” in WCRE ’01: Proceedings of the 8th Working Conference on
Reverse Engineering, IEEE Computer Society.

[16] Miecznikowski, J. and L. J. Hendren (2002) “Decompiling Java Bytecode:
Problems, Traps and Pitfalls,” in CC ’02: Proceedings of the 11th International
Conference on Compiler Construction, Springer-Verlag, London, UK, pp. 111–127.

[17] Naeem, N. A. and L. Hendren (2006) “Programmer-friendly Decompiled Java,”
in ICPC ’06: Proceedings of the 14th IEEE International Conference on Program
Comprehension, IEEE Computer Society, pp. 327–336.

[18] Vallee-Rai, R., E. Gagnon, L. Hendren, P. Lam, P. Pominville, and
V. Sundaresan (2000) “Optimizing Java Bytecode using the Soot Framework: Is
it Feasible?” in International Conference on Compiler Construction, LNCS 1781,
pp. 18–34.

[19] “JAD Java Decompiler Download Mirror,” http://http://www.varaneckas.

com/jad.

[20] Dupuy, E., “JD Java Decompiler,” http://java.decompiler.free.fr/.

http://www.brouhaha.com/~eric/software/mocha/
http://www.brouhaha.com/~eric/software/mocha/
http://http://www.varaneckas.com/jad
http://http://www.varaneckas.com/jad
http://java.decompiler.free.fr/

153

[21] Cifuentes, C. (1994) Reverse Compilation Techniques, Ph.D. thesis, Queensland
University of Technology.

[22] Cifuentes, C. and K. J. Gough (1995) “Decompilation of Binary Programs,”
Software – Practice and Experience, 25(7), pp. 811–829.

[23] Cifuentes, C. (1996) “Interprocedural Data Flow Decompilation,” Journal of
Programming Languages, 4, pp. 77–99.

[24] Cifuentes, C., D. Simon, and A. Fraboulet (1998) “Assembly to High-Level
Language Translation,” in Proceedings of the International Conference on Software
Maintenance, ICSM ’98, IEEE Computer Society, Washington, DC, USA, pp. 228–.

[25] Schwartz, E. J., J. Lee, M. Woo, and D. Brumley (2013) “Native x86 De-
compilation Using Semantics-Preserving Structural Analysis and Iterative Control-
Flow Structuring,” in Proceedings of the 22nd USENIX Security Symposium
(USENIX Security 13), USENIX, Washington, D.C., pp. 353–368.

[26] Bellamy, B., P. Avgustinov, O. de Moor, and D. Sereni (2008) “Efficient
Local Type Inference,” in Proceedings of the 23rd ACM SIGPLAN Conference on
Object-oriented Programming Systems Languages and Applications, OOPSLA ’08,
ACM, New York, NY, USA, pp. 475–492.

[27] Gagnon, E., L. J. Hendren, and G. Marceau (2000) “Efficient Inference of
Static Types for Java Bytecode.” in SAS’00, pp. 199–219.

[28] Knoblock, T. B. and J. Rehof (2001) “Type elaboration and subtype com-
pletion for Java bytecode,” ACM Transactions on Programming Languages and
Systems, 23, pp. 243–272.

[29] Johnson, R. T. (2007) Verifying Security Properties using Type-Qualifier Infer-
ence, Ph.D. thesis, EECS Department, University of California, Berkeley.

[30] Myers, A. C. (1999) “JFlow: Practical Mostly-static Information Flow Control,”
in Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’99, ACM, New York, NY, USA, pp. 228–241.

[31] Lim, J. and T. Reps (2008) “A System for Generating Static Analyzers for Ma-
chine Instructions,” in Proceedings of the Joint European Conferences on Theory
and Practice of Software 17th International Conference on Compiler Construction,
CC’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg, pp. 36–52.

[32] Ramsey, N. and J. Davidson (1999) “Specifying instruction semantics using
λ–RTL,” Unpublished manuscript.

[33] Morrisett, G., D. Walker, K. Crary, and N. Glew (1998) “From System
F to Typed Assembly Language,” in The Twenty-Fifth ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages.

154

[34] Kildall, G. A. (1973) “A Unified Approach to Global Program Optimization,” in
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, POPL ’73, ACM, New York, NY, USA, pp. 194–206.

[35] Kennedy, K. (1981) “A survey of data flow analysis techniques,” Program Flow
Analysis: Theory and Applications, pp. 5–54.

[36] Wegman, M. N. and F. K. Zadeck (1985) “Constant Propagation with Condi-
tional Branches,” in Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’85, ACM, New York, NY, USA,
pp. 291–299.

[37] Callahan, D., K. D. Cooper, K. Kennedy, and L. Torczon (1986) “Inter-
procedural Constant Propagation,” in Proceedings of the 1986 SIGPLAN Sympo-
sium on Compiler Construction, SIGPLAN ’86, ACM, New York, NY, USA, pp.
152–161.

[38] Wegman, M. N. and F. K. Zadeck (1991) “Constant Propagation with Con-
ditional Branches,” ACM Transactions on Programming Languages and Systems,
13(2), pp. 181–210.

[39] Metzger, R. and S. Stroud (1993) “Interprocedural constant propagation: an
empirical study,” ACM Letters on Programming Languages and Systems, 2(1-4),
pp. 213–232.

[40] Grove, D. and L. Torczon (1993) “Interprocedural Constant Propagation: A
Study of Jump Function Implementation,” in Proceedings of the ACM SIGPLAN
1993 Conference on Programming Language Design and Implementation, PLDI
’93, ACM, New York, NY, USA, pp. 90–99.

[41] Sharir, M. and A. Pnueli (1981) “Two approaches to interprocedural data flow
analysis,” Program flow analysis: theory and applications, pp. 189–234.

[42] Merlo, E., J.-F. Girard, L. J. Hendren, and R. d. Mori (1993) “Multi-
Valued Constant Propagation for the Reengineering of User Interfaces,” in Pro-
ceedings of the 1993 International Conference on Software Maintenance (ICSM
’93), IEEE Computer Society.

[43] Enck, W. (2011) “Defending Users Against Smartphone Apps: Techniques and
Future Directions,” in Proceedings of the 7th International Conference on Informa-
tion Systems Security, ICISS ’11, Springer-Verlag, Berlin, Heidelberg, pp. 49–70.

[44] Au, K. W. Y., Y. F. Zhou, Z. Huang, P. Gill, and D. Lie (2011) “Short
Paper: A Look at Smartphone Permission Models,” in Proceedings of the 1st ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM ’11,
ACM, New York, NY, USA, pp. 63–68.

[45] Enck, W., M. Ongtang, and P. McDaniel (2009) “On Lightweight Mobile
Phone Application Certification,” in Proceedings of the 16th ACM Conference on

155

Computer and Communications Security, CCS ’09, ACM, New York, NY, USA,
pp. 235–245.

[46] Barrera, D., H. G. Kayacik, P. C. van Oorschot, and A. Somayaji (2010)
“A Methodology for Empirical Analysis of Permission-based Security Models and
Its Application to Android,” in Proceedings of the 17th ACM Conference on Com-
puter and Communications Security, CCS ’10, ACM, New York, NY, USA, pp.
73–84.

[47] Peng, H., C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-
Rotaru, and I. Molloy (2012) “Using Probabilistic Generative Models for Rank-
ing Risks of Android Apps,” in Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security, CCS ’12, ACM, New York, NY, USA, pp.
241–252.

[48] Sarma, B. P., N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Mol-
loy (2012) “Android Permissions: A Perspective Combining Risks and Benefits,”
in Proceedings of the 17th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT ’12, ACM, New York, NY, USA, pp. 13–22.

[49] Bartel, A., J. Klein, Y. Le Traon, and M. Monperrus (2012) “Automat-
ically Securing Permission-based Software by Reducing the Attack Surface: An
Application to Android,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012, ACM, New York, NY,
USA, pp. 274–277.

[50] Au, K. W. Y., Y. F. Zhou, Z. Huang, and D. Lie (2012) “PScout: Analyzing
the Android Permission Specification,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12, ACM, New York, NY, USA,
pp. 217–228.

[51] Felt, A. P., E. Chin, S. Hanna, D. Song, and D. Wagner (2011) “Android
Permissions Demystified,” in Proceedings of the 18th ACM Conference on Com-
puter and Communications Security, CCS ’11, ACM, New York, NY, USA, pp.
627–638.

[52] Zhou, Y., Z. Wang, W. Zhou, and X. Jiang (2012) “Hey, You, Get off of My
Market: Detecting Malicious Apps in Official and Alternative Android Markets,”
in Proceedings of the Network and Distributed System Security Symposium.

[53] Saltzer, J. H. and M. D. Schroeder (1975) “The protection of information in
computer systems,” Proceedings of the IEEE, 63(9), pp. 1278–1308.

[54] Wei, X., L. Gomez, I. Neamtiu, and M. Faloutsos (2012) “Permission Evo-
lution in the Android Ecosystem,” in Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC ’12, ACM, New York, NY, USA, pp.
31–40.

156

[55] Sellwood, J. and J. Crampton (2013) “Sleeping Android: The Danger of Dor-
mant Permissions,” in Proceedings of the Third ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM ’13, ACM, New York, NY,
USA, pp. 55–66.

[56] Vidas, T., N. Cristin, and L. F. Cranor (2011) “Curbing Android Permission
Creep,” in Proceedings of the Workshop on Web 2.0 Security and Privacy (W2SP).

[57] Sbirlea, D., M. Burke, S. Guarnieri, M. Pistoia, and V. Sarkar (2013)
“Automatic detection of inter-application permission leaks in Android applica-
tions,” IBM Journal of Research and Development, 57(6), pp. 10:1–10:12.

[58] Jeon, J., K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein (2012) “Dr. android and mr. hide: fine-grained permissions in
android applications,” in Proceedings of the second ACM workshop on Security and
privacy in smartphones and mobile devices, ACM, pp. 3–14.

[59] Pandita, R., X. Xiao, W. Yang, W. Enck, and T. Xie (2013) “WHYPER:
Towards Automating Risk Assessment of Mobile Applications,” in 22nd USENIX
Security Symposium (USENIX Security ’13), USENIX, Washington, D.C., pp. 527–
542.

[60] Ongtang, M., S. McLaughlin, W. Enck, and P. McDaniel (2009) “Seman-
tically Rich Application-Centric Security in Android,” in Proceedings of the 2009
Annual Computer Security Applications Conference, ACSAC ’09, IEEE Computer
Society, Washington, DC, USA, pp. 340–349.

[61] Nauman, M., S. Khan, and X. Zhang (2010) “Apex: Extending Android Per-
mission Model and Enforcement with User-defined Runtime Constraints,” in Pro-
ceedings of the 5th ACM Symposium on Information, Computer and Communica-
tions Security, ASIACCS ’10, ACM, New York, NY, USA, pp. 328–332.

[62] Conti, M., V. T. N. Nguyen, and B. Crispo (2011) “CRePE: Context-related
Policy Enforcement for Android,” in Proceedings of the 13th International Con-
ference on Information Security, ISC’10, Springer-Verlag, Berlin, Heidelberg, pp.
331–345.

[63] Xu, R., H. Säıdi, and R. Anderson (2012) “Aurasium: Practical Policy Enforce-
ment for Android Applications,” in Proceedings of the 21st USENIX Conference
on Security Symposium, Security ’12, USENIX Association, Berkeley, CA, USA,
pp. 27–27.

[64] Sunshine, J., S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor (2009)
“Crying Wolf: An Empirical Study of SSL Warning Effectiveness,” in Proceedings
of the 18th Conference on USENIX Security Symposium, SSYM ’09, USENIX
Association, Berkeley, CA, USA, pp. 399–416.

157

[65] Felt, A. P., E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner (2012)
“Android Permissions: User Attention, Comprehension, and Behavior,” in Pro-
ceedings of the Eighth Symposium on Usable Privacy and Security, SOUPS ’12,
ACM, New York, NY, USA, pp. 3:1–3:14.

[66] Jung, J., S. Han, and D. Wetherall (2012) “Short Paper: Enhancing Mobile
Application Permissions with Runtime Feedback and Constraints,” in Proceedings
of the Second ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices, SPSM ’12, ACM, New York, NY, USA, pp. 45–50.

[67] Kelley, P. G., S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and
D. Wetherall (2012) “A Conundrum of Permissions: Installing Applications
on an Android Smartphone,” in Proceedings of the 16th International Conference
on Financial Cryptography and Data Security, FC ’12, Springer-Verlag, Berlin,
Heidelberg, pp. 68–79.

[68] Livshits, B. and J. Jung (2013) “Automatic Mediation of Privacy-Sensitive Re-
source Access in Smartphone Applications,” in Proceedings of the 22nd USENIX
Security Symposium (USENIX Security ’13), USENIX, Washington, D.C., pp. 113–
130.

[69] Felt, A. P., S. Egelman, M. Finifter, D. Akhawe, and D. Wagner (2012)
“How to Ask for Permission,” in Proceedings of the 7th USENIX Conference on
Hot Topics in Security, HotSec’12, USENIX Association, Berkeley, CA, USA.

[70] Lin, J., S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang (2012)
“Expectation and Purpose: Understanding Users’ Mental Models of Mobile App
Privacy Through Crowdsourcing,” in Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, UbiComp ’12, ACM, New York, NY, USA, pp. 501–510.

[71] Yang, L., N. Boushehrinejadmoradi, P. Roy, V. Ganapathy, and
L. Iftode (2012) “Short Paper: Enhancing Users’ Comprehension of Android
Permissions,” in Proceedings of the Second ACM Workshop on Security and Pri-
vacy in Smartphones and Mobile Devices, SPSM ’12, ACM, New York, NY, USA,
pp. 21–26.

[72] Hardy, N. (1988) “The Confused Deputy: (or why capabilities might have been
invented),” SIGOPS Operating Systems Review, 22(4).

[73] Wang, T., K. Lu, L. Lu, S. Chung, and W. Lee (2013) “Jekyll on iOS: When
Benign Apps Become Evil,” in Proceedings of the 22nd USENIX Security Sympo-
sium (USENIX Security ’13), USENIX, Washington, D.C., pp. 559–572.

[74] Fuchs, A., A. Chaudhuri, and J. Foster (2009) “SCanDroid: Automated
Security Certification of Android Applications,” Unpublished manuscript.

[75] Reps, T., S. Horwitz, and M. Sagiv (1995) “Precise Interprocedural Dataflow
Analysis via Graph Reachability,” in Proceedings of the 22Nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’95, ACM,
New York, NY, USA, pp. 49–61.

158

[76] Lu, L., Z. Li, Z. Wu, W. Lee, and G. Jiang (2012) “CHEX: Statically Vetting
Android Apps for Component Hijacking Vulnerabilities,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security, CCS ’12, ACM,
New York, NY, USA, pp. 229–240.

[77] Grace, M., Y. Zhou, Z. Wang, and X. Jiang (2012) “Systematic Detection
of Capability Leaks in Stock Android Smartphones,” in Proceedings of the 19th
Annual Network and Distributed System Security Symposium (NDSS ’12).

[78] Chan, P. P., L. C. Hui, and S. M. Yiu (2012) “DroidChecker: Analyzing An-
droid Applications for Capability Leak,” in Proceedings of the Fifth ACM Confer-
ence on Security and Privacy in Wireless and Mobile Networks, WISEC ’12, ACM,
New York, NY, USA, pp. 125–136.

[79] Wu, L., M. Grace, Y. Zhou, C. Wu, and X. Jiang (2013) “The Impact of
Vendor Customizations on Android Security,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’13, ACM,
New York, NY, USA, pp. 623–634.

[80] Zhou, Y. and X. Jiang (2013) “Detecting passive content leaks and pollution in
android applications,” in Proceedings of the 20th Annual Symposium on Network
and Distributed System Security (NDSS ’13).

[81] Bugiel, S., L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and
B. Shastry (2011) “Practical and Lightweight Domain Isolation on Android,”
in Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices, SPSM ’11, ACM, New York, NY, USA, pp. 51–62.

[82] Bugiel, S., L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi (2011)
XManDroid: A New Android Evolution to Mitigate Privilege Escalation Attacks,
Tech. Rep. TR-2011-04, Technische Universitat Darmstadt, Germany.

[83] Dietz, M., S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach (2011)
“Quire: Lightweight Provenance for Smart Phone Operating Systems,” in 20th
USENIX Security Symposium.

[84] Smalley, S. and R. Craig (2013) “Security Enhanced (SE) Android: Bring-
ing Flexible MAC to Android,” in 20th Annual Network and Distributed System
Security Symposium (NDSS’13).

[85] Loscocco, P. and S. Smalley (2001) “Integrating Flexible Support for Security
Policies into the Linux Operating System,” in Proceedings of the FREENIX Track:
2001 USENIX Annual Technical Conference, USENIX Association, Berkeley, CA,
USA, pp. 29–42.

[86] Bugiel, S., S. Heuser, and A.-R. Sadeghi (2013) “Flexible and Fine-grained
Mandatory Access Control on Android for Diverse Security and Privacy Policies,”
in Proceedings of the 22Nd USENIX Conference on Security, SEC ’13, USENIX
Association, Berkeley, CA, USA, pp. 131–146.

159

[87] Felt, A. P., M. Finifter, E. Chin, S. Hanna, and D. Wagner (2011) “A
Survey of Mobile Malware in the Wild,” in Proceedings of the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, SPSM ’11, ACM,
New York, NY, USA, pp. 3–14.

[88] Zhou, Y. and X. Jiang (2012) “Dissecting Android Malware: Characterization
and Evolution,” in Proceedings of the 2012 IEEE Symposium on Security and
Privacy, SP ’12, IEEE Computer Society, Washington, DC, USA, pp. 95–109.

[89] Enck, W., P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth (2010) “TaintDroid: An Information-flow Tracking System for
Realtime Privacy Monitoring on Smartphones,” in Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, OSDI’ 10, USENIX
Association, Berkeley, CA, USA.

[90] Gilbert, P., B.-G. Chun, L. P. Cox, and J. Jung (2011) “Vision: Automated
Security Validation of Mobile Apps at App Markets,” in Proceedings of the Second
International Workshop on Mobile Cloud Computing and Services, MCS ’11, ACM,
New York, NY, USA, pp. 21–26.

[91] Hornyack, P., S. Han, J. Jung, S. Schechter, and D. Wetherall (2011)
“These Aren’t the Droids You’re Looking for: Retrofitting Android to Protect
Data from Imperious Applications,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, ACM, New York, NY, USA,
pp. 639–652.

[92] Zhou, Y., X. Zhang, X. Jiang, and V. W. Freeh (2011) “Taming Information-
stealing Smartphone Applications (on Android),” in Proceedings of the 4th Inter-
national Conference on Trust and Trustworthy Computing, TRUST ’11, Springer-
Verlag, Berlin, Heidelberg, pp. 93–107.

[93] Beresford, A. R., A. Rice, N. Skehin, and R. Sohan (2011) “MockDroid:
Trading Privacy for Application Functionality on Smartphones,” in Proceedings
of the 12th Workshop on Mobile Computing Systems and Applications, HotMobile
’11, ACM, New York, NY, USA, pp. 49–54.

[94] Zheng, C., S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou (2012)
“SmartDroid: An Automatic System for Revealing UI-based Trigger Conditions in
Android Applications,” in Proceedings of the Second ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices, SPSM ’12, ACM, New York, NY,
USA, pp. 93–104.

[95] Gibler, C., J. Crussell, J. Erickson, and H. Chen (2012) “AndroidLeaks:
Automatically Detecting Potential Privacy Leaks in Android Applications on a
Large Scale,” in Proceedings of the 5th International Conference on Trust and
Trustworthy Computing, TRUST’12, Springer-Verlag, Berlin, Heidelberg, pp. 291–
307.

160

[96] Weiser, M. (1981) “Program Slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ICSE ’81, IEEE Press, Piscataway, NJ, USA,
pp. 439–449.

[97] Yang, Z. and M. Yang (2012) “LeakMiner: Detect Information Leakage on An-
droid with Static Taint Analysis,” in Proceedings of the 2012 Third World Congress
on Software Engineering, WCSE ’12, IEEE Computer Society, Washington, DC,
USA, pp. 101–104.

[98] Book, T., A. Pridgen, and D. Wallach (2013) “Longitudinal Analysis of An-
droid Ad Library Permissions,” in Proceedings of the 2013 Mobile Security Tech-
nologies (MoST) Workshop.

[99] Grace, M. C., W. Zhou, X. Jiang, and A.-R. Sadeghi (2012) “Unsafe Expo-
sure Analysis of Mobile In-app Advertisements,” in Proceedings of the Fifth ACM
Conference on Security and Privacy in Wireless and Mobile Networks, WISEC ’12,
ACM, New York, NY, USA, pp. 101–112.

[100] Egele, M., C. Kruegel, E. Kirda, and G. Vigna (2011) “PiOS: Detecting
Privacy Leaks in iOS Applications,” in Proceedings of the ISOC Network and Dis-
tributed System Security Symposium (NDSS).

[101] Kim, J., Y. Yoon, and K. Yi (2012) “ScanDal: Static Analyzer for Detecting
Privacy Leaks in Android Applications,” in MoST 2012: Workshop on Mobile
Security Technologies 2012.

[102] Arzt, S., S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel (2014) “FlowDroid: Precise Con-
text, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android
Apps,” in Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, ACM, New York, NY, USA, pp.
259–269.

[103] Reps, T., S. Horwitz, and M. Sagiv (1995) “Precise interprocedural dataflow
analysis via graph reachability,” in Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’95, ACM,
New York, NY, USA, pp. 49–61.

[104] Zhang, M. and H. Yin (2014) “AppSealer: Automatic Generation of
Vulnerability-Specific Patches for Preventing Component Hijacking Attacks in An-
droid Applications,” in Proceedings of the 21st Network and Distributed System
Security Symposium (NDSS ’14).

[105] Rasthofer, S., S. Arzt, and E. Bodden (2014) “A Machine-learning Approach
for Classifying and Categorizing Android Sources and Sinks,” in Proceedings of the
21st Network and Distributed System Security (NDSS) Symposium.

[106] Cortes, C. and V. Vapnik (1995) “Support-vector networks,” Machine Learning,
20(3), pp. 273–297.

161

[107] Enck, W., D. Octeau, P. McDaniel, and S. Chaudhuri (2011) “A Study of
Android Application Security,” in Proceedings of the 20th USENIX Conference on
Security, SEC ’11, USENIX Association, Berkeley, CA, USA, pp. 21–21.

[108] Shekhar, S., M. Dietz, and D. S. Wallach (2012) “AdSplit: Separating Smart-
phone Advertising from Applications,” in Proceedings of the 21st USENIX Security
Symposium (USENIX Security ’12), USENIX, Bellevue, WA, pp. 553–567.

[109] Pearce, P., A. P. Felt, G. Nunez, and D. Wagner (2012) “AdDroid: Privilege
Separation for Applications and Advertisers in Android,” in Proceedings of the
7th ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’12, ACM, New York, NY, USA, pp. 71–72.

[110] Genaim, S. and F. Spoto (2005) “Information Flow Analysis for Java Bytecode,”
in Verification, Model Checking, and Abstract Interpretation (R. Cousot, ed.), vol.
3385 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp.
346–362.

[111] Livshits, V. B. and M. S. Lam (2005) “Finding security vulnerabilities in java
applications with static analysis,” in Proceedings of the 14th USENIX Security
Symposium - Volume 14, SSYM ’05, USENIX Association, Berkeley, CA, USA.

[112] Bernardeschi, C., N. De Francesco, G. Lettieri, and L. Martini (2004)
“Checking secure information flow in java bytecode by code transformation and
standard bytecode verification,” Software – Practice and Experience, 34(13), pp.
1225–1255.

[113] Liu, Y. and A. Milanova (2008) “Static analysis for inference of explicit infor-
mation flow,” in Proceedings of the 8th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, PASTE ’08, ACM, New York,
NY, USA, pp. 50–56.

[114] Liu, Y. and A. Milanova (2009) “Practical static analysis for inference of
security-related program properties,” in Proceedings of the 17th IEEE Interna-
tional Conference on Program Comprehension (ICPC ’09), pp. 50–59.

[115] Liu, Y. and A. Milanova (2010) “Static Information Flow Analysis with Han-
dling of Implicit Flows and a Study on Effects of Implicit Flows vs Explicit Flows,”
in Proceedings of the 14th European Conference on Software Maintenance and
Reengineering, CSMR ’10, IEEE Computer Society, Washington, DC, USA, pp.
146–155.

[116] Google, “Dalvik VM: Code and documentation,” http://code.google.com/p/

dalvik/.

[117] WALA, “T.J. Watson Libraries for Analysis,” http://wala.sourceforge.net.

[118] HP-Fortify, “Source Code Analyzer (SCA),” https://www.fortify.com/

products/hpfssc/source-code-analyzer.html.

http://code.google.com/p/dalvik/
http://code.google.com/p/dalvik/
http://wala.sourceforge.net
https://www.fortify.com/products/hpfssc/source-code-analyzer.html
https://www.fortify.com/products/hpfssc/source-code-analyzer.html

162

[119] Tiuryn, J. (1990) “Type Inference Problems: A Survey,” in MFCS ’90: Proceed-
ings of the Mathematical Foundations of Computer Science 1990, Springer-Verlag,
pp. 105–120.

[120] Milner, R. (1978) “A theory of type polymorphism in programming,” Journal of
Computer and System Sciences, 17, pp. 348–375.

[121] Octeau, D., W. Enck, and P. McDaniel (2010) The ded Decompiler, Tech.
Rep. NAS-TR-0140-2010, Network and Security Research Center, Pennsylvania
State University, USA.

[122] Meyer, J., D. Reynaud, and I. Kharon (2004), “Jasmin Home Page,” http:

//jasmin.sourceforge.net/.

[123] Lindholm, T. and F. Yellin (1999) Java Virtual Machine Specification, 2nd ed.,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[124] Rehof, J. and T. A. Mogensen (1996) “Tractable Constraints in Finite Semi-
lattices,” in Science of Computer Programming, Springer-Verlag, pp. 285–300.

[125] “dex2jar - Tools to work with android .dex and java .class files,” Available at
http://code.google.com/p/dex2jar/.

[126] Octeau, D., P. McDaniel, and W. Enck (2011), “ded: Decompiling Android
Applications,” http://siis.cse.psu.edu/ded/.

[127] Oracle (2004), “Maxine VM,” https://wikis.oracle.com/display/

MaxineVM/Home.

[128] Davi, L., A. Dmitrienko, A.-R. Sadeghi, and M. Winandy (2011) “Privilege
Escalation Attacks on Android,” in Proceedings of the 13th International Confer-
ence on Information Security, ISC ’10, Springer-Verlag, Berlin, Heidelberg, pp.
346–360.

[129] Bugiel, S., L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry (2012) “Towards Taming Privilege-Escalation Attacks on Android,”
in Proceedings of the 19th Annual Network & Distributed System Security Sympo-
sium (NDSS ’12).

[130] Bodden, E. (2012) “Inter-procedural Data-flow Analysis with IFDS/IDE and
Soot,” in Proceedings of the ACM SIGPLAN International Workshop on State of
the Art in Java Program Analysis, SOAP ’12, ACM, New York, NY, USA, pp. 3–8.

[131] Vallée-Rai, R., E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and
V. Sundaresan (2000) “Optimizing Java Bytecode Using the Soot Framework:
Is It Feasible?” in Proceedings of the 9th International Conference on Compiler
Construction, CC ’00, Springer-Verlag, London, UK, UK, pp. 18–34.

[132] Christensen, A. S., A. Møller, and M. I. Schwartzbach (2003) “Precise
Analysis of String Expressions,” in Proceedings of the 10th International Confer-
ence on Static Analysis, SAS ’03, Springer-Verlag, Berlin, Heidelberg, pp. 1–18.

http://jasmin.sourceforge.net/
http://jasmin.sourceforge.net/
http://code.google.com/p/dex2jar/
http://siis.cse.psu.edu/ded/
https://wikis.oracle.com/display/MaxineVM/Home
https://wikis.oracle.com/display/MaxineVM/Home

163

[133] Lhoták, O. and L. Hendren (2003) “Scaling Java points-to analysis using
SPARK,” in Proceedings of the 12th international conference on Compiler con-
struction, CC’03, Springer-Verlag.

[134] Octeau, D., D. Luchaup, M. Dering, S. Jha, and P. McDaniel (2013) An-
droid Inter-Component Communication Analysis with the COAL Constant Prop-
agation Language, Tech. Rep. NAS-TR-0170-2014, Institute for Network and Se-
curity Research, Department of Computer Science and Engineering, Pennsylvania
State University, University Park, PA, USA.

[135] Li, L., A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer, E. Bod-
den, D. Octeau, and P. McDaniel (2014) “I know what leaked in your pocket:
uncovering privacy leaks on Android Apps with Static Taint Analysis,” CoRR,
abs/1404.7431.

[136] Lad, M., D. Massey, and L. Zhang (2006) “Visualizing Internet Routing
Changes,” IEEE Transactions on Visualization and Computer Graphics, 12(6),
pp. 1450–1460.

[137] Henry, S. and D. Kafura (1981) “Software Structure Metrics Based on Informa-
tion Flow,” IEEE Transactions on Software Engineering, SE-7(5), pp. 510–518.

[138] Grady, R. (1994) “Successfully applying software metrics,” Computer, 27(9), pp.
18–25.

[139] Aiken, A. (1999) “Introduction to Set Constraint-based Program Analysis,” Sci-
ence of Computer Programming, 35(2-3), pp. 79–111.

[140] Gelade, W. and F. Neven (2012) “Succinctness of the Complement and Inter-
section of Regular Expressions,” ACM Transactions on Computer Logic, 13(1).

[141] Android Police, “Meet ART, Part 1: The New Super-Fast Android Runtime
Google Has Been Working On In Secret For Over 2 Years Debuts In KitKat,”
http://www.androidpolice.com/2013/11/06/meet-art-part-1-the-new-

super-fast-android-runtime-google-has-been-working-on-in-secret-for-

over-2-years-debuts-in-kitkat/.

[142] Wettel, R. and M. Lanza (2007) “Visualizing software systems as cities,” in
4th IEEE International Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT 2007), IEEE, pp. 92–99.

[143] Steinbrückner, F. and C. Lewerentz (2010) “Representing Development His-
tory in Software Cities,” in Proceedings of the 5th International Symposium on
Software Visualization, SOFTVIS ’10, ACM, New York, NY, USA, pp. 193–202.

[144] Wettel, R., M. Lanza, and R. Robbes (2011) “Software Systems As Cities: A
Controlled Experiment,” in Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, ACM, New York, NY, USA, pp. 551–560.

164

[145] Caserta, P., O. Zendra, and D. Bodénes (2011) “3D hierarchical edge bundles
to visualize relations in a software city metaphor,” in 6th IEEE International Work-
shop on Visualizing Software for Understanding and Analysis (VISSOFT 2011),
IEEE, pp. 1–8.

[146] Google Android Developers, “UI/Application Exerciser Monkey,” Available
from http://developer.android.com/tools/help/monkey.html.

http://developer.android.com/tools/help/monkey.html

Vita

Damien Octeau

EDUCATION

Pennsylvania State University, University Park, PA 2014
Ph.D. in Computer Science and Engineering
Advisor: Dr. Patrick McDaniel

Pennsylvania State University, University Park, PA 2010
M.S. in Computer Science and Engineering
Advisor: Dr. Patrick McDaniel

Ecole Centrale de Lyon, Ecully, France 2010
Diplôme d’ingénieur (Master’s degree in Engineering)

Ecole Centrale de Lyon, Ecully, France 2007
B.S. in Engineering

HONORS AND AWARDS

AT&T Graduate Fellowship, 2013

Best Research Artifact Award, 20th International Symposium on the
Foundations of Software Engineering (FSE), 2012

USENIX Security Symposium Travel Grant, 2009, 2011, 2013

EXPERIENCE

Research Assistant 2009 - 2014
Pennsylvania State University University Park, PA
Performed research in mobile application analysis and security.

Intern Summer 2013
Google Inc. (Security Team) Mountain View, CA
Designed and implemented a system to analyze Linux binaries in a virtualized envi-
ronment.

Intern Summer 2011
Google Inc. (Mobile Apps Lab Team) Mountain View, CA
Designed and implemented tools to analyze and visualize experimental data about
user proximity.

Teaching Assistant Fall 2010
Pennsylvania State University University Park, PA
Assisted students in labs and office hours for CMPSC 122, the course in intermediate
programming in C++. Performed grading of homework assignments and exams.

Intern Summer 2008
Osiatis France Mérignac, France
Designed and implemented a collaborative php/MySQL application to manage the
follow up on all IT issues for a major client. Trained the local team to use and modify
it.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Thesis Statement
	Contributions
	Dissertation Outline

	Preliminary Concepts
	Android Inter-Component Communication
	The IDE Framework
	Supergraphs
	Environment transformers

	Related Work
	Techniques for Application Retargeting
	Interprocedural Constant Propagation
	Mobile Application Security
	Permissions
	Inter-Component Communication
	Information Flow Analysis and Monitoring

	Retargeting Android Applications to Java Bytecode
	Retargeting Challenges
	The ded Decompiler
	Application Retargeting
	Optimization and Decompilation
	Source Code Recovery Validation
	Discussion

	A Formal Retargeting Process for Verifiable Dalvik Bytecode
	The Tyde Intermediate Representation
	Specification

	Transforming Dalvik Bytecode to Tyde
	Building a Control Flow Graph
	Removing Unfeasible Exceptional Control Flow Graph Edges

	Type Inference
	Constraint Generation
	Constraint Solution

	Generating Java Bytecode
	First Step (Pre-Processing)
	Second Step (Translating Instructions)

	Unverifiable Dalvik Bytecode
	Observed Errors
	Handling Unverifiable Dalvik Bytecode

	Evaluation
	Dalvik Bytecode Verification
	Retargeting

	Analysis of Inter-Component Communication in Android with Epicc
	Problem Formulation
	Applications
	Examples

	Connecting Application Components: Overview
	Reducing Intent ICC to an IDE problem
	ComponentName Model
	Bundle Model
	Analysis I
	Analysis II

	Intent and IntentFilter Models
	Casting as an IDE Problem

	Evaluation
	Complete Recovery of ICC Specifications
	Computational Costs
	Entry and Exit Point Analysis
	ICC Vulnerability Study

	Inter-Component Communication Analysis with the COAL Constant Propagation Language
	Overview
	The Coal Language
	An IDE Model for MVMF Constant Propagation
	The Pointwise Representation of Environment Transformers
	The L Lattice of Values
	Transformers on L
	Fixed Point Iteration

	Evaluation

	Visualizing Inter-Component Communication
	A Set-Constraint Approach to Intent Resolution
	Efficient Solution of Set Constraints with Regular Expressions
	Approaches to Visualize ICC Links
	Intent and Filter Links
	Component Links
	Application Links

	Directions for Inter-Component Communication Analysis
	Program Retargeting
	Inter-Component Communication Analysis
	Future Work
	Improving ICC Analysis Precision
	Improving ICC Visualization

	Hybrid Enforcement of ICC Policies
	Concluding Remarks

	 Opcode Map fuo
	Bibliography

