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ABSTRACT 

Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that 

have been depleted by natural drive mechanism. Descriptive screening criteria for IOR 

methods are used to select the appropriate recovery technique according to the fluid and 

rock properties. The existing screening guidelines neither provide information about the 

expected reservoir performance nor suggest a set of project design parameters that can be 

used towards the optimization of the process.  

In this study, artificial neural networks are used to build two neuro-simulation 

tools for screening and designing miscible injection, waterflooding and steam injection 

processes. The tools are intended to narrow the ranges of possible scenarios to be 

modeled using conventional simulation, reducing the potentially extensive time and 

energy spent in modeling studies and analysis. 

A commercial reservoir simulator is used to generate the data supplied to train 

and validate the artificial neural networks. The proxy models are built considering four 

different well patterns with different well operating conditions as the design parameters. 

Different expert systems are developed for each well pattern. The screening networks, or 

forward application, predict oil production rate and cumulative oil production profiles for 

a given set of rock and fluid properties, and design parameters. The inverse application 

provides the necessary design parameters for a given set of reservoir characteristics and 

for the specified (desired) process performance indicators. 

The results of this study show that the networks are able to recognize the strong 

correlation between the displacement mechanism and the reservoir characteristics as they 
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effectively forecast hydrocarbon performance for different reservoir types undergoing 

diverse recovery processes. The inverse proxy models are able to predict the operation 

conditions at the same time that accurately provide the complete oil production profiles. 

Both neuro-simulation applications are built within a graphical user interface to facilitate 

the display of the results.  

The project design tool-box helps in the quantitative project assessment if proper 

combinations of expected project abandonment time and total oil recovery are provided 

for the same reservoir. Its use, when combined with the screening network application, 

becomes a powerful tool that facilitates the evaluation and validation of the proposed 

production scenarios. 

The tools proposed in this study have the potential of providing a new means to 

design a variety of efficient and feasible IOR processes by using artificial intelligence. 

Appropriate guidelines are provided to the reservoir engineer, which decrease the number 

of possible scenarios to be studied and reduce the time spent with conventional reservoir 

simulation methodology. 
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Chapter 1 
 

INTRODUCTION 

The first stage of production of any oil reservoir involves oil displacement by 

natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. 

Traditionally, recovery methods are applied to oil reservoirs to enhance the ultimate 

production after reservoirs have been depleted naturally. These methods, in general, 

involve the injection of a recovery agent with the aim of improving the oil displacement 

process by reducing the interfacial tension or improving the mobility ratio. Some other 

methods involve the in situ generation of heat to improve oil displacement by reducing 

the oil viscosity. In more recent years, to optimize the process, improved oil recovery 

techniques are applied to reservoirs even before their natural energy drive is exhausted by 

primary depletion. Then, once again, the study of these methods has become of more 

special interest in petroleum engineering. 

Assessing the most suitable recovery process is an important and critical analysis 

that establishes the economic success of a field deployment of the process. Recovery 

methods are expensive techniques that are applied according to the nature of the 

hydrocarbon fluid and rock properties. Usually, reservoir engineers refer to descriptive 

screening criteria for improved oil recovery methods for field appraisal purposes. These 

guidelines are developed from real field data and they allow the engineer to identify the 

appropriate recovery technique for a candidate reservoir. 
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Published screening criteria are of useful general reference, but they fail to 

provide the expected quantification for the reservoir performance. In appraisal stage, the 

anticipated oil production can be ascertained from laboratory data or from computational 

modeling. Reservoir simulation is, without a doubt, a preferred evaluation method since it 

provides flexibility to analyze different production schemes. However, assessment of all 

possible deployment plans for a specific reservoir is an extremely time-demanding task 

and also requires high technical expertise. In practice, only few implementation schemes 

for production plans are effectively evaluated due to time and manpower constraints.   

In this study, a neuro-simulation application is developed to provide general 

screening criteria for the more common hydrocarbon recovery techniques at the same 

time that introduces some quantification of the anticipated oil production. The estimation 

of reservoir recovery provides an additional criterion to facilitate the selection of the 

appropriate recovery technique and provides the basis to assess the economic feasibility 

of the project. 

Screening criteria for oil recovery methods should not be considered as explicit 

guidelines for every single reservoir prospect and further evaluations are still necessary to 

complete the appraisal of reservoir deployments of these techniques. Therefore, an 

inverse application of the expert system is structured to provide recommended field 

development and design guidelines for a given recovery technique as applied to a 

reservoir of certain characteristics. This inverse tool aids considerably to reduce the time 

invested in further reservoir analyses by narrowing down the possible production 

schemes to be evaluated by hard computing (reservoir simulation). 
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The proposed tools provide some new avenues to design efficient and feasible 

recovery projects based on the characteristics of a candidate reservoir by using artificial 

intelligence. The proxy models are developed using artificial neural networks, a 

technique that has been expanding rapidly in petroleum engineering applications.  

 



 

 

Chapter 2 
 

LITERATURE REVIEW 

2.1 Improved Oil Recovery 

Oil recovery processes are traditionally divided into three categories: primary, 

secondary and tertiary. Primary recovery refers to the first stage of oil production where 

oil is displaced by natural drive mechanisms such as solution gas drive, water influx or 

gravity drainage. Secondary recovery is usually implemented after primary production 

starts declining. In general, the aim of this second stage of operations is to maintain 

pressure by applying techniques such as waterflooding or gas injection. Tertiary recovery 

is implemented when secondary methods are economically unfeasible. Mechanisms as 

injection of miscible gases, chemicals or thermal energy are usually applied in this third 

stage of production [Lake, 1989; Green & Willhite, 2003].  

In general, tertiary recovery processes can be classified into three categories: 

thermal, chemical and solvent methods. Thermal processes consist of injection of thermal 

energy or generation of heat in-situ in order to improve oil displacement by reducing its 

viscosity. Injection of steam is the most widely used thermal method nowadays. 

Chemical processes involve the injection of surfactants or alkaline agents to reduce the 

inter-facial tension and improve the displacing efficiency. Solvent methods consist of 

injecting a displacement fluid that improves the mobility ratio, and therefore, the 

macroscopic displacement. Solvent methods include miscible and immiscible 
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displacement processes. Typical injection fluids are carbon dioxide and nitrogen [Lake, 

1989]. Figure 2-1 shows a schematic classification of the oil recovery methods.  

Improved oil recovery (IOR) processes are techniques which are designed to 

increase oil production. Tertiary recovery processes are commonly known as IOR 

techniques. However, IOR also comprises other practical endeavors such as reservoir 

management, reservoir characterization and infill drilling [Green & Willhite, 2003]. 

 

 

 
Figure 2-1: Hydrocarbon Recovery Methods (Adapted from Ertekin et al., 2001) 
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2.1.1 Miscible Displacement Processes 

Miscible displacement processes are those where the injection fluid is mixed with 

the oil in place and the resulting mixture is a single phase [Stalkup, 1983]. Miscible 

displacement processes are classified as first contact miscibility (FCM) and multiple-

contact miscibility (MCM), depending upon how miscibility conditions are developed. 

FCM mechanism occurs entirely in one hydrocarbon phase. One example of FCM is a 

mixture of ethanol and water. Despite of the proportion in which they are mixed, only 

one phase is formed with no visible interface. Figure 2-2 shows a typical ternary diagram 

with displacement of a crude oil by a light component solvent. Mixtures of light 

component and heavy hydrocarbons that are within the two-phase region are not 

miscible. In addition, any mixture that yields to compositions in the two-phase region is 

an immiscible mixture. However, any mixture of light components and intermediate 

hydrocarbons and mixtures of heavy and intermediate hydrocarbons are miscible since 

they are within the single-phase region. First-contact miscibility is achieved if the straight 

line that represents the dilution path between the solvent and the reservoir oil does not 

cross the two-phase region [Lake, 1989; Green & Willhite, 2003].  
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Multi-contact miscibility processes take place when two fluids are not miscible at 

first contact but they require several contacts in order to reach miscibility. The multiple-

contact processes are classified as vaporizing gas drive, condensing gas drive and CO2 

displacements.  

2.1.1.1 Vaporizing Gas Drive 

In vaporizing gas drive, the injected solvent is usually a lean gas whose 

composition enriches since intermediate components are vaporized from the crude into 

the injected fluid. The solvent becomes miscible with the original crude as it displaces 

throughout the reservoir. This process can be easily described using a ternary diagram as 
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Figure 2-2: First-Contact Miscibility Process (adapted from Lake, 1989) 
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shown in Figure 2-3. In this example, the solvent consists of 100% light component while 

the crude composition is a mixture of mainly intermediate components whose 

composition lies on the right hand side of the limiting tie line. The straight line describing 

the dilution path crosses the two-phase region. Therefore, the two fluids are not initially 

miscible and oil is partially displaced immiscibly away from the wellbore while some oil 

remains undisplaced behind the solvent. The undisplaced oil in contact with the solvent 

leads to an overall composition M1. The tie line crossing over M1 provides the gas G1 and 

liquid L1 compositions in equilibrium. More solvent injection pushes equilibrium gas G1 

into the reservoir where it becomes in contact with fresh oil. Equilibrium liquid L1 

remains behind as residual saturation. In this second contact, a second overall 

composition M2 is formed with gas G2 and liquid L2 in equilibrium. Additional injection 

of solvent will push equilibrium gas G2 toward fresh oil and a mixture M3 will be 

reached. As the injection continues, the composition of the equilibrium gas will enrich 

moving along the dew point curve until it reaches the plait point composition. At this 

point the displacement becomes miscible since all compositions will be on a straight 

dilution path with the oil reservoir. Even though the vaporizing gas drive has been 

described as a batch operation, this process is a continuous operation in actual reservoirs. 

Then, miscible transition zones are generated between reservoir oil and injected solvent 

[Stalkup, 1983]. 
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It should be noted that the limiting tie line determines whether the process is 

miscible or not. Miscibility develops provided that the reservoir oil and the injected 

solvent compositions lie on opposite sides of the limiting tie line. Miscibility can be 

achieved by the vaporizing gas drive process as long as the reservoir composition is on 

the right of the limiting tie line and the solvent composition is on the left. If both, oil and 

solvent compositions, lie on the left of the limiting tie line, gas enrichment will occur up 

to the composition of the equilibrium gas that falls on the extended tie line that passes 

through the reservoir oil composition as shown in Figure 2-4 [Stalkup, 1983]. 
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Figure 2-3: Vaporizing Gas Drive Process (adapted from Lake, 1989) 
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Reservoir pressure and gas composition are parameters that define whether 

miscibility conditions will be achieved in a vaporizing gas drive process. For a given 

injection gas composition, there is a minimum pressure above which dynamic miscibility 

is achieved. This pressure is called minimum miscibility pressure (MMP). As reservoir 

pressure increases, the size of the two-phase region reduces. Therefore, a lower 

concentration of intermediate hydrocarbons in the injection gas will achieve miscibility 

as pressure increases [Stalkup, 1983]. For a vaporizing gas drive displacement process 

the MMP is the minimum pressure at which the limiting tie line passes through the 

reservoir oil composition on a ternary diagram [Green & Willhite, 2003]. 
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Figure 2-4: Representation of Immiscible Process (adapted from Lake, 1989) 
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2.1.1.2 Condensing Gas Drive 

In a condensing gas drive, or enriched-gas process, the injected solvent usually 

contains significant amount of intermediate molecular weight hydrocarbons. The 

reservoir oil is enriched by components condensing from the injected solvent. Reservoir 

oil becomes miscible due to changes in its composition. Condensing gas drive processes 

normally occur at lower pressures than vaporizing processes [Green & Willhite, 2003]. 

The minimum solvent composition for miscibility lies on the intersection of 

limiting tie line and the zero-heavy hydrocarbon composition side of the ternary diagram 

as shown in Figure 2-5.  
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Figure 2-5: Condensing Gas Drive Process (adapted from Lake, 1989) 
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It is noted that the minimum solvent composition and the reservoir oil are 

immiscible at first contact. Mixture M1 is formed as a result of this first contact. The tie 

line passing through mixture M1 gives the composition of the corresponding gas G1 and 

liquid L1 in equilibrium. Additional injection of solvent pushes the equilibrium gas G1 

into the reservoir leaving behind the equilibrium liquid L1, which is immobile. Then 

liquid L1 mixes with the solvent generating mixture M2. Equilibrium gas G2 and liquid L2 

result from this second contact. By further injection of solvent, the composition of the 

liquid is enriched and moves along the bubble point curve until it reaches the plait point. 

At this stage, the two fluids are completely miscible since the dilution path between then 

lies on the single-phase region. 

If injected solvent contains less intermediate components than the minimum 

solvent composition, the oil will not be enriched to the point of miscibility. For example, 

if the solvent composition is given by the intersection of extension of the tie line G2-L2 

with the right side of the ternary diagram in Figure 2-5, the reservoir oil will enrich up to 

L2 since further injection will always lead to equilibrium gas and liquid G2 and L2. 

Miscibility is achieved by condensing-gas drive processes when the reservoir oil 

composition is at the left of the limiting tie line and the solvent composition is on the 

opposite side, on the right [Stalkup, 1983].  

For a given solvent injection and oil reservoir compositions, the MMP in a 

condensing gas drive process is the minimum pressure at which the limiting time line 

passes through the solvent fluid composition on a ternary diagram [Green & Willhite, 

2003].  
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2.1.1.3 CO2 and N2 Miscible Displacement Process 

Carbon dioxide is not miscible at first contact with oil at typical reservoir 

pressures. However, miscibility can be achieved by multiple contacts within the reservoir 

where mass transfer between the CO2 and the hydrocarbon components occurs as 

miscibility is approached.  Then, oil and CO2 flow together since the oil-enriched CO2 

phase cannot be distinguished from the CO2-enriched oil phase and there is no interfacial 

tension between these fluids. Miscibility development between CO2 and hydrocarbons is 

a function of pressure and temperature. However, for an isothermal reservoir, pressure is 

the main parameter to consider in the design of CO2 displacement.  

At high pressures, CO2 develops a phase whose density is close to that of a liquid 

while its viscosity remains low. The denser CO2 phase has the capacity to extract more 

hydrocarbon components from oil than when it is in gas phase at lower pressures. Even 

though the low viscosity of gas with respect to oil is unfavorable for sweep efficiency, 

CO2 can reduce the oil viscosity which improves recovery.  

The pressure necessary to reach miscibility with CO2 is, in general, considerably 

lower than that to achieve miscibility with a mechanism of displacement that involves 

natural gas, flue gas or nitrogen [Jarrel et al., 2002].  

Nitrogen is widely used in miscible displacement projects because of its easy 

allocation. Typically, air separation plants are used as sources of nitrogen. However, 

nitrogen injection projects may be limited to deep reservoirs in order to lead to miscible 

displacement [Stalkup, 1983]. Firoozabadi and Aziz (1986) found that nitrogen 

miscibility is mainly a function of the hydrocarbon composition and the reservoir 
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temperature. Nitrogen MMP decreases at higher temperatures because the solubility of 

nitrogen increases at temperatures above 100oF [Stalkup, 1983].  

2.1.2 Prediction of MMP 

The condition necessary for a gas to achieve miscibility with oil, FCM or MMP, 

are usually determined with experimental data in the laboratory using a slim tube test. 

However, slim tube tests are expensive and time consuming [Jarrel et al, 1996]. When 

slim tube data are not available, there are two alternatives to determine MMP: phase 

behavior mathematical models and empirical correlations. 

When experimental data are available, MMP is usually predicted from empirical 

correlations. Empirical correlations are simple to apply but they are limited to the 

conditions used in their generation. Therefore, predicted values may involve significant 

errors if the correlation is applied outside of its applicable limits. Empirical correlations 

are commonly used to determine initial estimates or as a screening tool. On the other 

hand, mathematical models provide more reliable results but their accuracy depends on 

the calibration of the EOS using experimental PVT data. 

2.1.2.1 EOS Phase Behavior Calculation for MMP 

Mathematical models can determine the MMP by vapor-liquid flash equilibrium 

calculation using an EOS. However, the EOS must be tuned uisng regression. Critical 

properties of the plus fraction, the binary parameters and the volume shift parameters are 
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modified in order to match the experimental data. One common approach to determine 

the miscibility conditions consists of finding the critical tie line, which is a line tangent to 

the critical locus. Johns and Orr (1996) developed a general analytical approach for 

calculating the MMP for multicomponent oils. In their work, MMP is determined using a 

tie line intersection method to determine the critical tie line. Tie lines passing through the 

gas and oil compositions are extended and intersected with the crossover tie line. When 

any of these tie lines becomes the critical one, the MMP is found. However, their work 

concentrated on displacement by a single gas component. Afterward, Wang and Orr 

(1998) expanded this approach by developing a model applicable to systems with 

multicomponent injection gas. Further study was presented by Jessen et al. (1998). The 

algorithm to calculate the tie line intersection point was modified to improve predictions 

close to the critical region. Yuan and Johns (2005) have presented a more recent study in 

which the solution is accelerated by reducing the number of equations and unknown 

parameters. The methodology of intersecting tie lines for MMP calculation is commonly 

applied in phase behavior commercial software; where the displacement processes are 

studied using ternary diagrams and pressure-composition diagrams generated using an 

EOS. 

Another common method to mathematically determine the MMP is to use a 

compositional reservoir simulator. Slim tube experiments can be reproduced using a 1-D 

model. Recovery is recorded at 1.2 pore volumes of solvent injection at different 

pressures as shown in Figure 2-6. The sharp change in the curve denotes the change in 

the mechanism of displacement, from immiscible to miscible as pressure increases 

[Stalkup, 1983]. 
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In the present study, WinProp 1 phase behavior software is used to determine the 

thermodynamic MMP, while miscible displacement process is modeled using GEM2 

compositional reservoir simulator. The EOS selected to perform all phase equilibrium 

calculations is Peng Robinson (PR), the same equation used by Johns and Orr (1996), 

Wang and Orr (1998) and Jessen et al. (1998) in their developments. The equation of 

state as well as the viscosity correlations used in the simulations throughout this study 

can be found in Appendix 1.  

                                                 

1 WinProp is a phase behavior commercial software developed by CMG, Calgary, Canada. 
2 GEM is commercial compositional reservoir simulator developed by CMG, Calgary, Canada. 
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Figure 2-6: MMP Estimation using a Compositional Reservoir Model 
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2.1.2.2 Empirical Correlations for MMP Prediction 

Several empirical correlations have been developed to determine the 

thermodynamic MMP for different solvents such as CO2 and N2. However, the accuracy 

of these correlations depends upon the limits of their applicability. As a general practice, 

correlations are used in the absence of a slim tube test data or phase equilibrium data.  

Yelling and Metcalfe (1980) developed a mathematical correlation to estimate the 

MMP for pure CO2 injection based on experimental results from a slim tube using light 

West Texas oil. Their correlation is developed for hydrocarbons whose C5
+ average 

molecular weight is less than 180. The composition of oil is not given as an input. The 

thermodynamic MMP is adjusted to the bubble point if the calculated MMP is less than 

the bubble point pressure. Holm and Josendal (1982) also developed a correlation to 

predict the MMP for CO2 injection where the molecular weight is given as an input, as 

well as reservoir pressure and temperature.  

On the other hand, different correlations for N2-MMP calculation have been 

published. Firoozababadi and Aziz (1986) developed a correlation for N2 based on 

temperature, concentration of intermediates components and volatility. Volatility is 

represented by the molecular weight of C7
+ fraction. A further correlation presented by 

Hudgins et al. (1990) included also the dependency of the MMP on CH4 contain.  
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2.1.3 Mobility Effects on Miscible Displacement 

The basic mechanics of flow in porous media are described by Darcy’s law, 

where the fluid velocity is proportional to the pressure gradient in the direction of flow as 

seen in Equation 2.1: 

where ν is the fluid velocity, k is the absolute permeability of the rock, kr is the relative 

permeability of the fluid, μ is the fluid viscosity  and dp/dx is the pressure gradient in the 

x-direction. The group k*kr/μ is called the mobility group. 

In displacement processes, the relationship between the mobility of the displacing 

fluid to the displaced fluid is called the mobility ratio, M, and is calculated using Eq. 2.2: 

where the subscript D denotes the displacing phase and subscript d the displaced phase. 

The mobility ratio is an important parameter in displacement processes as it affects the 

volumetric sweep. A value of M greater than 1 leads to unfavorable displacement since 

the displacing solvent has a preference to move in the reservoir. On the other hand, a 

value of M less than 1 is indicative of a stable displacement process.  

Typically, viscosities of most solvents are less than in-situ oil viscosities. This 

difference produces a mobility ratio greater than 1 and may reduce significantly the 

sweep efficiency. Also, effects such as fingering and channeling in high-permeable zones 

are commonly observed in miscible displacement processes [Willhite, 2003].  

 

dx
dpkk r

μ
ν *

−=  2.1

( )
( )dd

DD

k
kM

μ
μ

=  2.2



19 

 

2.1.4 Steam Injection Processes 

Steam injection is the most commonly used thermal recovery method. The 

simplest well configuration for a steam drive requires two wells; one steam injector and 

one oil producer, as shown in Figure 2-7. At the beginning of the steam injection process, 

a steam zone is formed around the injection well, where the reservoir is heated to the 

steam temperature. Ahead of the steam zone, the light oil components are vaporized in 

the distillation zone. As we move away from the injector, the temperature profile drops to 

the initial reservoir temperature.  As steam injection continues, the steam zone moves 

towards the producer displacing most of the oil. Typically, oil recovery increases rapidly 

until steam breakthrough is achieved.  

 

 

In general, steam injection processes are limited to certain reservoir conditions. 

The main criteria for steam operations are depth, permeability and reservoir pressure. 
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Figure 2-7: Temperature and Saturation Distribution in a Steam Drive (adapted from
Lake, 1989) 
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Steam injection may become economically impractical in reservoirs deeper than 3,000 ft 

due to wellbore heat losses. Large rock permeabilities are desirable so that steam 

injection rates are sufficient to allow the heat front to move a substantial distance. Then, 

the steam injection rates can compensate for the heat losses to the underburden and 

overburden. In addition, the maximum injection pressure is normally limited to the 

critical pressure of steam, 3206.2 psia. However, most steam projects are performed at 

considerable lower injection pressures. High steam injection pressure implies high 

injection temperatures and densities, resulting in small steam volumes and low oil 

recovery [Green & Willhite, 2003]. 

2.1.4.1 Steam-Drive Displacement Mechanisms 

Steam injection operations involve several displacement mechanisms. Wilman et 

al. (1961) studied these mechanisms by injecting steam into different cores saturated with 

different oil samples. Observations from their results indicate that three main 

displacement mechanisms take place in a steam drive: oil viscosity reduction, thermal 

expansion of the oil and steam distillation. Oil viscosity reduction improves the mobility 

of the oil, while the thermal expansion favors the oil displacement through the reservoir. 

These two mechanisms are also found in hot water injection operations. Note that steam 

distillation is the more important displacement mechanism in steam injection operations. 

In general, hot water drives are not as efficient as steam drives since steam distillation is 

not present in hot water drive processes.  
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Steam distillation displaces a large amount of oil by vaporizing the oil that 

remains behind the cold zone. Volek and Pryor (1972) studied in more detail the steam 

distillation mechanism in light oil displacement. Their observed that hydrocarbons 

vaporize because of the reduction in their partial pressure in the presence of steam.  The 

light oil components are distilled from the residual oil and carried beyond the steam front, 

where they condensate and mix with the oil bank ahead.  The entire process leads to 

higher oil recoveries as the steam zone advances towards the producer. 

2.1.4.2 Heat Losses 

The steam front condensates as it moves through the reservoir due to heat losses. 

There are different sources of heat loss in steam injection operations.  Heat losses to 

fluids and reservoir rock are the most significant sources of heat loss in thermal recovery 

processes. In addition, heat is also lost from surface equipment and wellbores. However, 

heat losses from surface equipment are minimized by appropriate insulation, while heat 

losses from wellbores only become significant with large depths, even if insulation is 

included in the well completion.  

Numerical simulation of thermal recovery methods takes into account the diverse 

sources of heat gain/loss using the energy balance equation. Heat losses to overburden 

and underburden are usually determined using semi-analytical models. Temperature is 

assumed to change as a function of time and vertical distance from the reservoir 

boundaries. The heat loss rate and its derivative with respect to temperature are calculated 

and incorporated directly in the energy conservation derivatives.  The energy lost is 
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included explicitly in the energy balance equation. These calculations are performed in 

each grid block facing the upper and lower reservoir boundaries. The only properties 

necessary to determine heat losses to rock are the thermal conductivity and heat capacity 

of the adjacent base and cap rock [Vinsome & Westerveld, 1980].  

Heat losses to fluids take place by diffusion of energy from a region of high 

temperature to a region of low temperature. The energy flow in reservoirs occurs mainly 

by convection. Although conduction may be also present in the reservoir, convection 

dominates conduction in the main direction of fluid flow. The diffusion of heat is 

calculated using the thermal conductivity of the fluids and the existing temperature 

gradients. 

2.1.5 Water Injection Processes 

Secondary EOR methods include waterflooding, water injection and gas injection. 

However, secondary EOR processes are usually referred as waterflooding processes 

[Green & Willhite, 2003]. The displacement mechanism involved in both waterflooding 

and water injection operations are mostly the same. Accordingly, it is rather difficult to 

define a boundary that separates both processes. Typically, waterflooding is performed 

when water injection starts after the economic productive limit of the reservoir is 

achieved, while pressure maintenance by water injection starts before this limit is 

achieved [Frick & Taylor, 1962]. 

The design of a water injection operation includes the evaluation of the rock 

properties such as permeability, porosity, pore distribution, areal coverage and thickness. 
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In addition, it is necessary to evaluate the rock-fluid properties as capillary pressure and 

relative permeability.  The results of this evaluation should lead the reservoir engineer to 

establish the appropriate design of the water injection operation. The design includes the 

injection pattern, injection rates and pressures, and identification of water sources [Craig, 

1993]. 

2.1.5.1 Displacement of Immiscible Phases 

Water and oil are immiscible at most reservoir pressures and temperatures, and 

also, at surface conditions due to the small solubility between these phases. When 

immiscible phases are present in a porous medium, the interfacial tension (IFT) between 

fluids governs the saturation distribution and phase displacement. The IFT is an indicator 

of miscibility. The lower the IFT, the two phases are more likely to achieve miscibility 

conditions [Willhite, 1986]. 

Fluid distribution is not only governed by the forces at fluid-fluid surfaces, but 

also, by the forces at the fluid-solid interface. When two immiscible fluids are in direct 

contact with a solid surface, one of the fluids is more strongly attracted to the solid 

surface than the other fluid. The fluid adhered to the solid is referred as the wetting phase 

while the other is referred as the non-wetting phase. The rock wettability is determined 

by the contact angle between the water and the rock surface “θ”. If θ<90o, as shown in 

Figure 2-8, the system is considered water-wet. On the contrary, if If θ>90o, the system is 

considered oil-wet. An angle close to 0o suggests a strongly water-wet system, and angle 
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close to 180o suggests a strongly oil-wet system. An angle close to 90o indicates 

intermediate wettability [Green & Willhite, 2003]. 

 

 

Due to the interfacial tension between the fluids, a pressure difference is found 

across the interface. This difference in pressure is called capillary pressure, “Pc”. It is 

determined as the pressure of non-wetting phase “Pnw” minus the pressure of the wetting 

phase “Pw”, as shown in Eq. 2.3: 

Capillary pressure can be positive or negative depending on the wettability of the 

system. The fluid that exhibits the lower pressure is the wetting phase. Correlations of 

pressure difference between two phases at different saturations are provided by capillary 

pressure curves.      

The wettability of the rock also affects the relative permeability of the reservoir. 

This is clearly demonstrated on the asymmetry of the curves. Typical relative 

permeability curves for a water-wet rock and oil-wet rock are shown in Figure 2-9. The 

saturation where the relative permeability of both phases is the same is greater than 50% 
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Figure 2-8: Wettability of Oil-Water-Rock System (Adapted from Willhite, 1986) 
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in water wet systems.  On the contrary, in an oil-wet rock, the saturation where both 

relative permeabilities are equal is less than 50%.  

 

 

The trapping mechanism of the fluids in a reservoir rock depends on the pore 

structure of the porous medium, fluid-rock interactions and fluid-fluid interactions. 

Usually, when the non-wetting fluid is displaced by a wetting fluid, the non-wetting 

phase is trapped as isolated drops. The capillary effects holding the drops cannot 

overcome the relative small viscous forces. Then, the non-wetting phase is usually 

resided in the large porous of the rock [Green & Willhite, 2003].  

2.2 Hard Computing-Reservoir Simulation 

At the present time deterministic and stochastic tools in reservoir simulation are 

widely used techniques. These hard computing reservoirs simulation protocols combine 
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the physics of flow in porous media with computer programming to study reservoir 

performance under different scenarios [Ertekin et al., 2001]. In general, reservoir 

modeling can be classified under two main categories: black-oil simulation and 

compositional simulation. In black oil modeling, fluid behavior depends exclusively on 

the reservoir pressure and the recovery mechanism is not affected by changes in 

composition. The fluid is represented using there phases of constant composition. The 

phases are gas, oil and water. Gas can be dissolved in the oil phase and oil can be 

vaporized into the gas phase. Fluid phase behavior is represented by the formation 

volume factors (Bg, Bo, Bw) and the solution gas-oil ratios (Rs). Typical applications of 

black oil simulation involve modeling of primary recovery mechanisms, waterflooding 

and chemical-flooding processes. 

Compositional simulators are applied when the composition of the phases is 

changing throughout the simulation time, and the recovery mechanism is strongly 

affected by those changes. The compositional changes are described by a cubic equation 

of state. Compositional simulation involves longer computational time since vapor-liquid 

flash calculation is performed at each grid block to determine the phase equilibrium. 

Some common applications of compositional simulation are multi-contact miscible 

displacement processes and pressure maintenance operations in volatile and gas 

condensate reservoirs. 

One of the modern applications of reservoir simulation is the modeling of thermal 

recovery processes such as steam injection and in-situ combustion. Thermal simulators 

use the compositional approach, where the energy-balance equation and the mass-balance 

equation are applied simultaneously. 
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2.3 Overview of Artificial Neural Networks (ANN) 

Artificial neural network is an information processing technique that mimics the 

performance of the biological neural networks using a mathematical model [Fausett, 

1994]. The earliest development of an artificial neural network dates from 1943 with the 

work of Warren McCulloch and Walter Pitts. However, it was until 1980’s when ANN 

started to become popular due to the development of powerful computing systems 

[Hagan et al., 1996]. 

 

A biological neuron consists of three main components: dendrites, soma or cell 

body and axon as shown in Figure 2-10. Neurons exchange information in the form of 

electrical signals through the dendrites. The soma sums and thresholds all received 

signals, and then, releases an electrical impulse through the axon to other neurons. The 

points where the axon and the dendrites are in contact are called synapses.  

Artificial neural networks do not simulate complex biological neural systems, but 

they present fundamental similarities in their structure to their biological counterpart. A 

 

 
 

Figure 2-10: Schematic of Biological Neurons (adapted from Hagan et al., 1996) 
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schematic of a multiple input neuron is shown in Figure 2-11. Each input P is multiplied 

by a weight w. The weight corresponds to the strength of the synapses. The body of the 

neuron is represented by the summation of all w*P products and its modification by a 

transfer function. The neuron’s output “a” represents the electrical impulse carried 

through the axon [Hagan et al., 1996]. 

 

2.3.1 Artificial Neural Network Architecture 

In most of artificial neural network applications it is common to find neurons 

arranged in layers. Neurons belonging to the same layer usually perform in similar way 

although their behavior is mainly conditioned to their activation or transfer function and 

the connections (weights) with other neurons. The arrangement into layers and the 

connections between neurons is what defines the network architecture. In general, 

networks are classified into single layer or multilayer. Figure 2-12 shows typical 

architectures for single layer and multilayer networks. In a single layer arrangement there 
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are only one input layer and one output layer connected with one layer of connection 

weights. In general, the input layer is not counted as a layer since it only provides the 

input data and no calculations are performed on the input layer.  

 

 

The multilayer structure includes internal layers connecting the input and output 

layers. The internal layers are called hidden layers since they do not interact directly with 

the external surroundings of the net.  The multilayer network shown in Figure 2-12 

consists of three layers; two hidden layers and one output layer connected by three layers 

of weights. Multilayer networks are typically used to solve very complex problems than 

those solved by single ones. However, the selection of single or multilayer architectures 

must be done carefully since multilayer networks involve a challenging training process 

[Fausett, 1994]. 

 

 
             A) Single Layer Network             B) Multilayer Network 
Figure 2-12: Classification of Network Architectures 
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2.3.1.1 Weights and Network Training 

The weights are the neural synapse parameters that quantify the influence that an 

input stimulus has on one neuron. A positive weight represents an excitatory stimulus 

while a negative weight corresponds to an inhibitory stimulus. A zero weight value 

indicates no connection or stimulus. The weight connections between layers of neurons 

are denoted as weight matrices “W”. Typically, the matrix element wij, is used to denote 

the weight connecting the output of neuron i to the input of neuron j [Patterson, 1996].  

Weights are determined during an iterative training process. In general, the 

training processes can be classified as supervised and unsupervised. In supervised 

training an input vector or pattern is provided with its associated target or output vector. 

The weights are initially set to zero or to a small random number. Then, the weights are 

tuned iteratively according to a learning algorithm until the calculated output target is 

similar to the given target within some fixed error.  In unsupervised training only an input 

vector pattern is provided. The weights are modified so that similar input patterns are 

assigned to the same target [Fausett, 1994]. In general, most neural networks are trained 

using a supervised process.  

Besides the training method, another main factor to consider while training a 

network is the data itself. It is desirable to have extensive training data that cover most of 

the possible scenarios under study.  However, it is common practice to normalize the 

inputs and outputs in the interval between -1 and 1 to regulate the influence of the data 

sets. 
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In the present study all data sets will be normalized between -1 and 1. Also, sets 

of input pattern – output target are generated using a commercial reservoir simulator in 

order to train all the networks using a supervised process.   

2.3.1.2 Transfer Functions 

The transfer function scales the response of an artificial neuron to an external 

stimulus, and generates the neuron activation [Maren et al., 1990]. Usually, the same 

activation function is applied to all neurons in one given layer but custom networks may 

assign different functions in one layer. Networks are typically designed using nonlinear 

activation functions, especially in multilayer networks since the result of providing a 

signal through two or more layers with linear elements can be also achieved with only 

one layer of linear elements [Fausett, 1994 and Maren et al., 1990]. 

The basic output of a neuron “a” using a linear transfer function is equal to its 

input “n” as given in Eq. 2.4:  

Sometimes, a threshold or bias is also included in the transfer function. The bias 

“b” is treated as another weight, which adds a constant value to the input of the neuron, 

scaling it to a practical range [Fausett, 1994]. The basic or pure linear transfer function is 

shown on the left of Figure 2-13, while the linear function with bias is shown on the right 

of the same figure. Frequently, linear functions are applied to the output layer since it 

allows the network to produce its output within the desired limits without having to 

denormalize them.  

a=n 2.4
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Sigmoid functions are powerful continuous, nonlinear transfer functions. The log-

sigmoid and the hyperbolic tangent sigmoid function are the most common ones in neural 

network applications using back propagation training algorithm because they are 

differentiable, which reduces the computational requirements during training.  

The log-sigmoid function, given in Eq. 2.5, takes the input signal, which can be 

anywhere between minus and plus infinity, activates the neuron and scales its output in 

the interval between 0 and 1. Figure 2-14 shows the log-sigmoid function with and 

without bias. 

 

 

 
Figure 2-13: Linear Transfer Function (reproduced from Hagan et al., 1996) 
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The hyperbolic tangent sigmoid, see Eq. 2.6, scales the neuron output in the 

interval between -1 and 1. Figure 2-15 shows the hyperbolic tangent sigmoid. 

 

Some other widely used transfer functions are the threshold logic and hard limit 

functions. Table 2-1 shows a list of these other common functions. However, in the 

present work multilayer networks with sigmoid functions are proved to be more 

appropriate for our problem. Previous works, as the one presented by Gorucu (2005), 

 

 
Figure 2-14: Log-Sigmoid Transfer Function (reproduced from Hagan et al., 1996) 
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Figure 2-15: Hyperbolic Tangent Sigmoid Transfer Function (reproduced from Demuth 
et al., 2007) 



34 

 

have also shown that these types of architectures are more suitable for applications on 

similar reservoir engineering problems.  

 

2.3.2 Multilayer Feedforward Networks with Back Propagation 

Multilayer feedforward network with back propagation learning process is the 

most widely used network architecture [Maren et al., 1990 and Patterson, 1995]. The 

main feature in feedforward nets is their layered structure with forward connections 

between the neurons. Back propagation is a supervised learning process that can be 

applied to any multilayer network that undergo supervised learning process with 

Table 2-1: Transfer Functions (reproduced from Hagan et al., 1996) 
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differentiable transfer functions. In general, back propagation networks are commonly 

applied in pattern classification, signal filtering and mapping problems [Fausett, 1994 and 

Maren et al., 1990]. 

The back propagation algorithm consists of three main steps: the feedforward of 

the input patterns layer by layer throughout the network, back propagation of the 

calculated error and appropriate adjustments of the connection weights.  

The learning rule of the back propagation process is the Generalized Delta Rule, 

which is a generalized form of the Least Mean Squared (LMS) rule. The Generalized 

Delta Rule allows the modification of the weights and biases of all layers by using the 

chain rule, with the aim of reducing the difference between the network output (a) and 

the desired target (t). This difference is calculated using the LMS error, as shown in 

Eq. 2.7: 

where N is the number of inputs. 

The adjustment of the connection weights is performed using the steepest descent 

rule where the errors are related to the weights using the function delta as given in 

Eq. 2.8: 

where wi,j denotes the old and new values of the weight connecting neuron i and j. α is a 

constant, called learning rate, that governs how the weights are affected by the delta. The 
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general, the delta function is calculated as the negative value of the derivative of the error 

with respect to its corresponding weight as shown in Eq. 2.9 [Maren et al., 1990]: 

The back propagation learning rule requires a bounded activation function that is 

continuous, differentiable and monotonically non-decreasing. Sigmoid functions are the 

preferred option since they comply with all these requirements.  They are bounded since 

for the large positive inputs, they become asymptotic to a value of 1 and for large 

negative inputs, asymptotic to a value of either 0 or -1. The main advantage of bounded 

functions is that the activated output can be classified basically as high and low, which 

are considered stable states.  

According to Maren (1990), differentiation is important when selecting the 

transfer function since the adjustments performed to the connection weights are 

proportional to the derivative of the activation function. Notice that both log-sigmoid and 

hyperbolic tangent sigmoid functions are positive as shown in Figure 2-16. For either 

large positive or large negative values, the derivative of both functions is close to zero, 

meaning that the weight adjustment will be small. When the activated output is in the 

middle range, a large adjustment is desired since the output is not close to neither stable 

state, but the largest derivative is achieved at the middle value, leading to a large change 

in weight. Notice that the activation of log sigmoid function is not symmetric about zero, 

which may affect the performance of the network. When it is not possible to rescale the 

log sigmoid activation, the hyperbolic tangent sigmoid function is highly recommended 

because of its symmetry about zero.  
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2.3.3 Convergence and Training Efficiency 

Convergence problem arises when the network calculates a lower total error than 

the one in the previous iteration, but it does not lead to a global minimum error. In this 

case, the network has memorized the training data sets and cannot predict accurately 

other general cases.  A common technique to avoid memorization is early stopping. In 

this method an extra set of data, called validation, is also fed to the network together with 

the training data set. The network is trained exclusively with the training data set while 

the error of the validation set is monitored. Usually both validation and training errors 

start deceasing during the early stages of training. When the network starts overtraining, 

the validation error starts increasing while the training error continues decreasing. At this 
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Figure 2-16: Sigmoid Transfer Functions and their Derivatives 
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point, the training process is stopped and the values of connection weights and bias are 

taken when the validation error is minimum [Demuth et al., 2007 and Maren et al., 1990]. 

Network convergence can be time consuming if the majority of the output targets 

are close to either stable state, that is, the asymptotic values of the sigmoid functions. One 

common approach to improve convergence is to modify the number of neurons in the 

hidden layers. Also, training may be improved by applying a transformation or functional 

link to the input patterns such as logarithm, square root or Fourier transform. A functional 

link, if selected appropriately, may help to regulate the influence of weak and strong 

inputs.  

The learning rate can also be used to enhance the training speed and efficiency. 

Large learning rates lead to faster training but introduce some degree of fluctuation while 

small learning rates provide more stabilization but delay the learning process, which may 

direct convergence to local minimum.  

Another way to improve the training process is to introduce momentum to the 

steepest descent rule. Momentum acts as a filter that smoothes the oscillation in the 

descent path due to several local minima since the network moves in the direction of a 

combination of the current gradient and the previous direction of the weight change 

[Fausett, 1994]. Eq. 2.10 shows how the back propagation rule is modified when 

momentum coefficient, γ, is added:  

The values of momentum coefficient are between 0 and less than 1. 
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2.3.4 Application of Neuro-Simulation 

Neuron-simulation is a technique that couples soft-computing (artificial neural 

networks) and hard-computing techniques. In the present study, reservoir simulation 

modeling is employed to generate the network training data. For instance, reservoir 

characteristics, recovery mechanism and operating performance can be used to create sets 

of patterns/targets in the network. During the learning process, the network creates an 

internal mapping that captures the relationship between the inputs and outputs. After 

training, the net can be used to forecast the reservoir response to conditions different 

from those used in training. This methodology reduces the computational time necessary 

to simulate and evaluate a large universe of reservoir conditions.  

Neuro-simulation has been widely used in diverse petroleum applications. Some 

of the recent work includes the proxy model developed by Ayala et al. (2004) for gas-

condensate reservoir exploitation. Odusote et al. (2004) presented a screening tool-box 

for recovery of coalbed methane by CO2 injection, and Gorucu et al. (2005) characterized 

carbon dioxide sequestration and coalbed methane projects. 

In the present study, neuro-simulation will be used to generate a tool-box for 

prediction of reservoir behavior undergoing different oil recovery mechanisms. Hard-

computing will be used to generate study cases necessary for training and further testing 

of the network’s predictive capabilities. The inverse problem, where the reservoir 

performance is known, will be implemented to design recommended operating well 

conditions. 

 



 

 

Chapter 3 
 

STATEMENT OF THE PROBLEM 

The proper implementation of a set of screening criteria for improved oil recovery 

methods is essential in assessing the field development plan and the economic evaluation 

of green and mature oil reservoirs as well. Previous studies have presented descriptive 

screening guidelines for IOR methods based on fluid and rock properties. However, the 

existing screening criteria fail to provide information about the expected reservoir 

performance. Moreover, the published criteria are not strict guidelines applicable to a 

particular reservoir candidate. Further assessments of sets of field deployment design 

parameters are crucial to complete the appraisal of reservoir implementations. 

In order to combine recommended guidelines for IOR methods along with the 

expected reservoir performance, the main objective of this study is to create a tool-box 

for IOR screening criteria that also provides the expected oil production profile for a 

reservoir of known characteristics. The screening is performed based on the reservoir 

description parameters such as rock properties, fluid properties and exploitation plan. The 

tool-box is developed using an artificial neural network algorithm due to its ability to 

provide immediate results within an acceptable error margin if properly trained.  

The proposed screening network includes three of the most common IOR 

techniques currently applied worldwide: miscible carbon dioxide injection, nitrogen 

injection and steam injection. In addition, waterflooding processes are also included in 
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the tool-box as it is a common technique extensively applied for pressure maintenance to 

speed up the recovery performance.  

Typically, screening IOR processes is the first step in the evaluation of the 

economic feasibility of a reservoir project. In general, available screening guidelines are 

generated from field data but most of the time they lack details about the production 

schemes implemented in these projects. Reservoir engineers typically evaluate different 

field exploitation plans after a recovery technique has been proposed in order to verify if 

the selection was appropriate, and also, to optimize the hydrocarbon recovery. Evaluation 

and optimization protocols are usually performed using commercial reservoir simulators. 

This stage of the reservoir assessment approach requires significant investment of time 

and skillful professionals. In real projects, time is not always available and not all 

possible production schemes are tested due to the high computational requirements and 

time involved.   

This study also seeks to overcome the time limitations involved in the 

optimization stage. Therefore, an inverse use of the screening tool-box is proposed to 

provide the design parameters for IOR processes. The proposed expert system will 

provide some guidelines on the appropriate reservoir development plan, which helps to 

narrow down the possible production scenarios to be evaluated by typical reservoir 

simulation methodology.  

The use of the proposed neuro-simulation application, together with conventional 

simulation, should become a more efficient designing protocol for oil reservoir 

operations. 



 

 

Chapter 4 
 

RESERVOIR MODEL 

Reservoir simulation is a tool widely used by petroleum engineers to forecast the 

performance of hydrocarbon reservoirs under various operating conditions. Simulation 

plays an important role in assessing the appropriate production development plan for 

green fields and also optimizing current production schemes for mature fields already 

under development. In addition, reservoir simulation is a key factor used in assessing the 

economic deployment of any reservoir project.  

The fundamental properties needed to build a reservoir model include the rock 

properties, fluid properties and formation architecture. These variables are defined by 

mother-nature and are unique to each reservoir. In addition, it is necessary to define the 

design parameters, which are under control of the reservoir engineer. The design 

parameters include drilling and completion techniques, well pattern, well spacing and the 

recovery mechanism to be implemented to maximize oil recovery. 

In order to build an ANN screening tool-box for reservoir applications, it is 

necessary to have reservoir data for training and validation purposes. Therefore, diverse 

reservoir models were built and run using CMG©3 commercial simulator. These models 

were built according to the process to be incorporated within the artificial intelligent 

simulator. 

                                                 

3 CMG is a commercial reservoir simulator developed by Computer Modeling Group Ltd. Calgary, Canada. 
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4.1 Fluid Properties 

4.1.1 PVT Data and Initial Reservoir Conditions 

Some of the suggested screening criteria for IOR methods include oil gravity, 

viscosity and composition [Taber, 1997]. In order to compile a good range of oil 

properties for current IOR methods, four different hydrocarbons compositions are 

considered throughout the development of this research study: two black oil fluids, one 

volatile oil fluid and one heavy oil fluid. Table 4-1 shows these four fluids compositions. 

The first three PVT compositions were taken from the literature. However, PVT#4 

corresponds to a sample taken from a real heavy oil field located in Middle East that is 

currently producing under steam injection. 

 

 

Table 4-1: Molar Composition of PVT Data 

 PVT 1 
Black Oil  

[Mc Cain, 1990] 

PVT 2  
Volatile Oil  

[Papp et al, 1998]

PVT 3 
Black Oil  

[Rathmell, 1971] 

PVT 4 
Black Oil  

(Real Sample) 
CO2 0.91 0.51 3.2 0.11 
N2 0.16 1.8 0.03 0.69 
C1 36.47 46.8 27.81 10.78 
C2 9.67 8.09 8.21 0.12 
C3 6.95 10.91 5.99 0.42 
iC4 1.44 4.26 0.31 0.30 
nC4 3.93 6.86 4.1 0.32 
iC5 1.44 3.71 1.3 0.29 
nC5 1.41 3.81 2.3 0.26 
C6 4.33 4.73 4.62 0.64 

C7+ 33.29 8.52 42.13 86.09 
MW 218 156 223 532 
s.g 0.8515 0.782 875 0.925  
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Figure 4-1 shows four two-phase Envelopes generated by WinProp©4  using 

Peng-Robinson equation of state. The PVT#1 and PVT#3 exhibit the characteristics of a 

black-oil reservoir fluid. The quality lines are distributed uniformly within the two-phase 

region.  Also, the critical temperature is higher than typical reservoir temperatures (100-

250 oF). The P-T diagram generated for PVT#2 is typical of volatile oils. The temperature 

range covered by the two-phase region is smaller. The critical temperature is closer to 

usual reservoir temperatures and the quality lines are displaced upwards towards the 

bubble point curve.  

                                                 

4 WinProp is a commercial software for phase behavior developed by CMG, Calgary, Canada 
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PVT#2 - Volatile Fluid
P-T Diagram
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PVT#3 Black Oil Fluid
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PVT#4 - Heavy Oil Fluid
P-T Diagram
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Figure 4-1: PVT Phase Envelopes 
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Laboratory data obtained from a differential liberation experiment were used in 

the construction of the phase envelope for PVT#4. Different parameters were modified in 

the regression to match the EOS with the experimental data. The bubble point locus curve 

for PVT#4 in Figure 4-1 shows that this fluid is in liquid phase for pressures above 430 

psia. Low bubble point pressures are characteristic of heavy oil compositions.  

The initial conditions are very important parameters in the design of the reservoir 

model. These conditions should be specified within the typical ranges used in the 

majority of current IOR projects. Taber and Martin (1983) and Taber et al. (1997) 

indicate that temperature is not a critical factor in the screening of the IOR mechanisms 

considered in this study. However, miscible displacement projects may require deep 

reservoirs in order to maintain pressures above the MMP, and deep reservoirs are 

commonly associated with high temperatures. Then, it would be recommended to set an 

initial temperature closer to the higher limit of its typical range. Teletzke et al. (2005) 

published a list of fields that are good candidates for miscible injection in the Malay 

Basin. The temperatures of the reservoirs in the Malay Basin range from 170oF to 252oF.  

Figure 4-2 shows the frequency of reservoir temperatures in the Malay Basin. The 

normal temperature is around 220oF. Therefore, the reservoir temperature for all reservoir 

models in the present study is set at 220oF since it falls in the typical range for the IOR 

process and it can be related to deep reservoirs. 
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The initial pressure should facilitate the development of miscible conditions. 

Then, the MMP is used as a criterion to define that initial condition. The CO2- and N2-

MMP values were calculated for PVT compositions 1, 2 and 3 at different gas/oil 

equilibrium fractions. Figure 4-3 shows the calculated MMP using WinProp. The 

miscibility pressures for PVT#1 are higher than those for PVT#2 and PVT#3. In addition, 

the calculated MMP is higher for nitrogen injection, as expected.  

It is desirable to set the same initial pressure in the reservoirs undergoing CO2 and 

N2 injection in order to generate comparable cases. Then, for PVT#1 the initial pressure 

is established at 5000 psia, a value below the maximum CO2- and N2-MMP values. 

Miscibility will be achieved in both cases since injection pressures must be above the 

MMP. For PVT#2 and PVT#3, the initial pressure is fixed at 3000 psia, which is close to 

the calculated MMP. The initial pressure of PVT#4 was established as 1000 psia since 

that is the reported initial pressure of the Middle East field. 
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Figure 4-2: Reservoir Temperatures in the Malay Basin (from Teletzke, et al., 2005) 
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4.2 Well Patterns and Grid Orientation Effects 

In general, IOR screening criteria include the reservoir properties. Since the 

properties are unique characteristics of each reservoir, the screening criteria are based on 

average properties. Average properties can be represented with a homogeneous and 

isotropic reservoir model, which simplifies the problem under study without reducing the 

accuracy of the model representation. Therefore, the reservoir models considered in the 

present study were built using a homogeneous isotropic grid system.  

Four different study cases of well patterns were used in the numerical simulation 

model. These are normal 4-spot, normal 5-spot, normal 7-spot and normal 9-spot patterns 

as shown in Figure 4-4. In order to minimize the computational time, each pattern is 

modeled using a typical element of symmetry.  An element of symmetry is a section of 
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the reservoir that can be used to generate the entire reservoir development scheme. In a 

simulation model there should be symmetry with respect to the number of grid blocks 

(Nx, Ny Nz), grid block dimensions (dx, dy, dz), reservoir rock properties such as 

permeability (kx, ky, kz) and porosity (φ), number of wells, well location, well type 

(producer, injector), well operating conditions, reservoir structure (boundaries and depth), 

initial pressure and initial fluid saturations [Abou-Kassem et al., 2006]. 

 

 

Figure 4-4 also shows the element of symmetry used in each of the well patterns. 

Notice that the minimum element of symmetry was selected for the 4-spot (1/6 of the 

pattern area) and 7-spot (1/12 of the pattern). For the 5-spot and 9-spot cases, 1/4 of the 

pattern area was used instead of the minimum element, which is 1/8 of the pattern area. 

This grid element offers the advantage of having a rectangular model without pinch outs, 

corner point geometry or an irregular boundary. Nevertheless, a different grid orientation 

can be also used for the 5-spot pattern, which generates a direct line drive path between 

the injectors and the producers as shown in Figure 4-5. Since the breakthrough time will 

 

Figure 4-4: Well Patterns and Element of Symmetry 
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be different depending on the grid orientation, both grid systems, normal and direct line 

drive 5-spot, are modeled and the average of production, injection, breakthrough time and 

abandonment time are calculated to account for the grid orientation effects. A similar 

approach is not applied to the other well patterns. Different orientation of the grid 

generates two irregular boundaries in the 4 and 7-spot cases and four irregular boundaries 

in the 9-spot. Irregular boundaries do not help to provide a better model representation 

but they tend to increase the numerical dispersion in the simulator results. 

 

4.3 Sensitivity of the Numerical Model to the Grid Dimensions 

Sensitivity of the numerical model on grid block size was performed in order to 

minimize the grid effects on the simulation results. A three-dimensional (3D) simulation 

base case was built using the PVT #1 undergoing CO2 injection. This base case was built 

 

 
Figure 4-5: Different 5-Spot Well Arrangements 
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using 4 horizontal layers of same thickness. No aquifer was incorporated in the model. 

The wells were completed in all four layers. Different numbers of blocks were tested 

using pattern areas of 10, 60 and 100 acres. The same number of blocks is specified in the 

x and y-directions to preserve symmetry in the 5-spot and 9-spot well patterns, which 

generates square grid blocks. The same criterion is applied to 4-spot and 7-spot patterns, 

which creates rectangular grid blocks. All patterns conserved homogeneous and isotropic 

property distributions. The number of blocks tested was 10, 15, 20, 25, 30, 40 and 50. 

The properties used to generate these models are presented in Table 4-2. 

 

 

Figure 4-6 shows the oil production rate and CO2 mole fraction in the production 

stream in a 4-spot arrangement. It is noted that results are slightly sensitive to the number 

of blocks since oil production and CO2 fraction curves exhibit similar behavior for all the 

cases studied. The curves seem to converge when large block numbers are used. Since a 

considerable number of data sets must be generated to train the ANN tool-box, the grid 

Table 4-2: Simulation Properties for Grid Size Sensitivity Analysis  

Parameter Value 
Injection BHP 6000 psia 

Production BHP 3000 psia 
Initial Pressure 5000 psia 

Initial Temperature 220oF 
Initial Water Saturation 20 % 
Horizontal Permeability 100 md 

Vertical Permeability 10 md 
Thickness 50 ft 
Porosity 25 %  
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dimensions were selected according to the number of runs needed in order to optimize the 

computational time needed.  However, 10x10 grids provide an evident deviation at early 

times in production. Then, this grid configuration was avoided.  

Sensitivities performed for the other well patterns are shown in Appendix 2. 
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Figure 4-6: Sensitivity Analysis on Grid Size – Normal 4-Spot Well Pattern 
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4.4 Reservoir Layering and Well Completion 

In the present study, all reservoir simulation models are built using 3D grids to 

effectively model the gravitational effects. In miscible injection processes, the solvent is 

injected into the reservoir hydrocarbon zones to achieve miscibility between fluids. By 

the same token, steam is injected only into the reservoir hydrocarbons zones to minimize 

heat losses to the adjacent rock. Therefore, the grid models undergoing CO2, N2 and 

steam injection do not include aquifers. The models are built using four layers that 

represent only the oil zone. Gas zone is not included since the reservoirs are initially 

saturated. Also, initial water saturation is set as the connate water saturation. For these 

three processes, the wells are completed in all four layers. Figure 4-7 A shows a 3D grid 

model of 4-spot well configuration using PVT#1 fluid undergoing CO2 injection. The 

same layering is also used in N2 and steam injection processes. 

In waterflooding processes, water is injected underneath the oil zone to maintain 

pressure. Therefore, the models representing waterflooding processes are built using five 

layers. The first four layers correspond to the oil zone while the bottom layer corresponds 

to the water zone. No gas zone is incorporated into the model since the reservoirs are also 

initially saturated. The water injector is completed below the oil-water contact, or fifth 

layer. Figure 4-7 B shows a 3D grid model of 4-spot well configuration using PVT#1 

fluid undergoing water injection. 
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A sensitivity analysis was performed to determine the appropriate completion for 

the producers. A 4-spot model was built using an area of 60 acres with 15x15x5 blocks. 

The reservoir properties used are the same as those used in the grid size sensitivity 

analysis, which are found in Table 4-2. For all waterflooding cases, the given thickness 

corresponds only to the entire oil zone. The water zone thickness is set as ¼ of the oil 

zone thickness. 

Four different completion schemes were evaluated as shown in Table 4-3. From 

the results, the maximum recovery is achieved when the producer is completed in the 

three upper layers. Therefore, all waterflooding models are built using this completion 

scheme.  

 

 

 
Figure 4-7: Layering in Reservoir Models (4-SPOT) 

Table 4-3: Sensitivity Analysis on Well Completion for Waterflooding Models 

Completion of 
Producer  

Completion of 
Injector 

Cumulative Oil 
Production (STB) 

Abandonment Time 
(days) 

Layer 1  Layer 5 494,493 692 
Layer 1 & 2 Layer 5 495,691 520 

Layer 1, 2 & 3 Layer 5 496,858 463 
Layer 1, 2, 3 & 4 Layer 5 493,154 409  
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4.5 Relative Permeability and Capillary Pressure 

Typically, separate screening criteria are created for sandstone or carbonates 

formation types [Taber and Martin, 1983, and Taber et al., 1997]. The relative 

permeability curves used in the present work are characteristic of sandstone rocks. The 

three-phase relative permeability curves are generated using Corey’s correlations [Corey, 

1954].  

In miscible displacement processes, viscous forces and gravitational effects are 

more important than capillary effects. Therefore, capillary pressure is set to zero for these 

two processes. Also, one set of relative permeability curves is used for all cases 

undergoing CO2 and N2 miscible displacement processes. These curves are shown in 

Figure 4-8. The initial water saturation of the models is set to the connate water 

saturation, and the reservoir is considered to be saturated (no free gas).  
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Figure 4-8: Three-Phase Relative Permeability Curves 
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On the contrary, the effects of capillary pressure are among the most significant 

forces in immiscible displacement processes. Therefore, a good representation of the 

fluid flow in waterflooding models should take into account the influence of the capillary 

pressure. Capillary pressure, pc, is incorporated into the waterflooding models using 

Corey’s correlation (1954): 

where Swirr is the irreducible water saturation (fraction), Sor is the residual water 

saturation in the presence of water (fraction) and C is a constant. The constant C is 

usually determined experimentally for a given system. It defines the capillary pressure at 

the residual oil saturation. Different values of C are specified accordingly for the water-

oil and gas-oil systems. 

Water saturation changes drastically during waterflooding processes. Then, 

different values of irreducible water saturation and residual oil saturation are specified in 

the waterflooding models. The reservoirs are oil saturated at initial conditions.  The 

relative permeability curves are functions of these saturations. As a result, each 

waterflooding model also incorporates a different set of relative permeability curves 

calculated with Corey’s correlations [Corey, 1954]. In steam injection processes, water 

condensates in the reservoir due to heat losses encountered. Accordingly, capillary 

pressure is also incorporated into these models. Also different values of oil and water 

saturations are implemented in this process as they affect the relative permeability curves.  
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4.6 Operational and Abandonment Conditions 

The operational conditions consist of the method applied to control the production 

or injection in the wells. In general, a well can be operated by controlling either its 

pressure or its flow rate. It is convenient to operate the wells using pressure control if the 

reservoir is subject to a miscible displacement process. In this way, it is possible to assure 

observation of miscibility. By the same token, proper control of the steam quality is 

fundamental in steam injection applications. This can be only achieved by controlling the 

injector by pressure. In the present study the wells are operated by bottom hole pressure 

(BHP) control. Pressure could be also controlled at the head of the well but that requires a 

completion design that is not included in the reservoir model.  

4.6.1 Miscible Displacement Processes 

For the miscible displacement processes, it would be desirable to set up the same 

pressure ranges of solvent injection in order to generate comparable cases. Nonetheless, 

Figure 4-3 showed that different combinations of fluid compositions and solvents lead to 

different MMP. For fluid #1, the highest calculated N2-MMP value is about 7000 psia, 

while the highest calculated CO2-MMP value is 5200 psia. Then, different ranges of 

injection pressure should be considered for each solvent when using fluid #1. On the 

other hand, N2-and CO2-MMP values for fluid #2 and #3 present similar calculated 

values (around 2700 psia). Therefore, the ranges of injection pressures can be set the 

same when using fluid #2 and fluid #3.  
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The production pressures must be set below the initial pressure to generate 

sufficient drawdown. It is obvious that these pressures will be below the MMP, but 

reservoir pressure is maintained above the MMP throughout most of the reservoir. 

Miscibility is expected to develop through a multi-contact process. A transition single-

phase between the solvent and the oil is formed initially around the injector. The 

transition will move towards the producers as injection/production takes place, sweeping 

the oil on its path. By the time the solvent breaks through, most of the oil has been 

already produced. So the immiscibility around the producer will have a slight effect on 

the ultimate recovery. 

The ranges of production pressure are set the same for both miscible displacement 

processes, but the range varies depending upon the fluid type under study. Since the CO2- 

and N2-MMP values for fluid #1 are higher than that of fluids #2 and #3, the production 

pressure limits when using fluid #1 are higher.  

The highest injection pressures for PVT#1 undergoing nitrogen and carbon 

dioxide injection were set at 8000 psia. This value seems to be impractical as high 

pressure implies high operational cost associated to gas compression. However, a 

comprehensive evaluation of possible field development scenarios requires the study of 

different injection pressures. If the minimum injection pressure in miscible displacement 

projects is the MMP, the effects of pressure can be only analyzed by increasing injection 

BHP above the MMP. Hence, an analysis of whether the calculated MMP is practical or 

not should be performed. Yuan et al. (2005) reported experimental CO2-MMP values 

varying from 1100 to 5000 psia for various types of oils. Similarly, Sebastian and 

Lawrence (1992) published experimental N2-MMP values for different oils. They 
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reported values varied from 3600 to 9400 psia. Therefore, the calculated MMP for our 

hydrocarbon compositions can be considered reasonable. The selected injection pressure 

ranges allow the artificial neural networks to be fed with wide variety of scenarios, but 

some input combinations may not lead to a profitable process. It is up to the reservoir 

engineer to evaluate if these scenarios are economically feasible. 

In practice, oil reservoirs are abandoned when the field is not considered to be 

economically feasible. The abandonment condition fixed for the miscible displacement 

model was set at 90% of molecular solvent fraction in the production stream. This 

condition is set considering that high concentration of solvent usually involves expensive 

separation procedures in the down stream direction of the process.  

4.6.2 Waterflooding Processes 

The operational pressure conditions for the models undergoing waterflooding 

were set the same as those used in the miscible displacement. The abandonment condition 

for the models undergoing water injection was set at 90% of water cut. This abandonment 

condition may seem too conservative since current technology may allow an efficient 

water/oil separation for higher water cut values. However, the waterflooding processes 

were built mainly for comparison purposes and most of the oil recovery is expected at 

early production time, before water breakthrough.  
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4.6.3 Steam Injection Processes 

The operational production conditions in the models undergoing steam injection 

were set using a similar criterion as in the miscible displacement processes; production 

pressure below the initial reservoir pressure. However, the injection pressure ranges were 

selected using different criteria. The injection pressures were set above the initial 

reservoir pressure but at the same time they allowed the injected fluid to reach the bottom 

of the well with a steam quality of 1 (100% vapor). In addition, the injection pressure 

ranges were limited by the water critical conditions. In practice, steam is not injected 

above its critical pressure (3208.2 psia) due to operational cost.   

The abandonment condition for the steam injection processes was set to a water-

oil ratio (WOR) of 1000:1. This is the abandonment condition used by Willman et. al. 

(1961) in their steam models when they compared the recovery obtained by different 

scaled-laboratory studies undergoing water, hot water and steam injection. Even though a 

value of WOR of 1000 may seem high, it allows the recovery of a considerable amount 

of oil.  

Figure 4-9 shows the WOR and recovery of a heavy oil reservoir model under 

steam injection. After steam breakthrough, WOR increases sharply but the oil recovery 

continues increasing rapidly until the steam quality observed at the producer stabilizes. 

Notice that little significant recovery is obtained at WOR higher than 1000. 



60 

 

 

 

 

0

500

1000

1500

2000

0 500 1000 1500 2000 2500

Production Time (days)

W
at

er
-O

il 
R

at
io

0

0.2

0.4

0.6

0.8

1

St
ea

m
 Q

ua
lit

y 
&

 
O

il 
R

ec
ov

er
y 

(f
ra

ct
io

n)

WOR Steam Quality Oil recovery
 

Figure 4-9: WOR versus Time in Steam Injection IOR Process 



61 

 

Chapter 5 
 

DEVELOPMENT OF THE ANN PREDICTION TOOL 

Typically, screening criteria for IOR methods include no more than fluid and rock 

properties. More complete criteria are used to build the ANN model, where the reservoir 

performance and details of the field development plan are also taken into consideration. 

In this study, artificial neural networks are used to create two separate tools. While the 

first network provides comprehensive screening guidelines for oil reservoirs undergoing 

diverse IOR processes, a second network suggests recommended design parameters for 

those processes under consideration.  

5.1 Networks for the Screening Tool-box 

It is known that the higher the number of inputs/outputs in a network, the more 

the computational requirements. For convenience, the screening tool-box is structured 

using a series of different ANNs to reduce the complexity of the problem. Separate 

networks are created for each combination of problem parameters such as fluid 

composition, IOR process and well pattern. Note that the fluid composition implicitly 

brings in the effects of the hydrocarbon viscosity and specific gravity into the analysis. 

The screening tool-box can be considered with an architecture that contains several 

networks as shown Figure 5-1. The selection of an appropriate individual expert system 

inside the tool-box will be done automatically by the program via a user-interface.  
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As indicated earlier in Chapter 4, a diverse range of fluid properties is built into 

the network by using different hydrocarbon compositions. In the existing structure, each 

fluid undergoes four IOR methods: miscible carbon dioxide injection, nitrogen injection, 

waterflooding and steam injection. Furthermore, each IOR process is modeled using four 

well patterns. In consequence, a total of 64 individual artificial neural networks are 

needed to build the screening tool-box. The networks are built using Matlab®5. 

                                                 

5 MATLAB® is a high-performance language for technical computing developed by The MathWorks, Inc., 
1994-2005. 
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5.1.1 Inputs and Outputs 

Reservoir performance is the key factor to screen IOR methods. As a result, the 

output of the developed networks should provide the performance of a given reservoir 

under certain conditions. Since ANN is capable of finding non-linear relationships that 

characterize the physical phenomena between inputs and outputs, the network inputs 

should be the reservoir description. In this way, an effective connection between the 

reservoir characteristics and expected production is determined by the network. 

The reservoir performance is a function of the natural reservoir characteristics 

such as fluid properties and rock properties. Furthermore, the reservoir performance is 

controlled by the design parameters, including the recovery technique, well pattern, well 

spacing and well operational conditions. Each network is developed for a given fluid 

composition/IOR method/well pattern. Then, rock properties, well spacing and 

operational conditions are the characteristics missing to complete the process description, 

which are given as inputs to the networks. The rock property inputs are permeability, 

porosity and thickness. Well spacing is given in the horizontal reservoir domain. The 

operational conditions are the production and injection pressures.  These inputs are used 

to build the reservoir models described in Chapter 4. The corresponding network outputs 

are obtained from the simulation of each reservoir model. 

The reservoir performance can be described by the oil production curves. Each 

simulation model provides cumulative oil production and oil production rate as functions 

of production time. One important observation is that the reservoir models produce oil for 

different periods of time, which provides production data within different timeframes. 
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Since the networks require data sets with the same length, it is not feasible to reproduce 

the entire curves exactly as calculated by the reservoir simulator. Instead, the reservoir 

performance is reproduced within fixed timeframe. The duration of a process time cannot 

be selected arbitrarily as it is controlled by the undergoing IOR process.  

5.1.1.1 CO2 and N2 Miscible Displacement  

Perhaps the most important event during the CO2 and N2 injection processes is the 

solvent breakthrough time (BT). This time is characteristic of each reservoir case and is a 

strong function of the recovery mechanism and the reservoir properties. On the other 

hand, the time to abandon the project is also characteristic of each model. As seen in 

Chapter 4, the abandonment time (AT) was set as a function of solvent molar fraction at 

the production stream.  Therefore, the breakthrough time and abandonment time are used 

as outputs, as well as the corresponding oil production rate and cumulative oil 

production.  

The BT is estimated from the solvent mole fraction curve. Figure 5-2 shows a 

typical S-shape of the CO2 mole fraction data for a CO2 injection process. Two straight 

trend lines are drawn at early time and at the sharp bend. The breakthrough time is read at 

the time where these two trends intersect. 
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Figure 5-2 also shows the oil production profiles for the same CO2 injection 

process. The oil production rate curve exhibits the three typical stages of a hydrocarbon 

recovery process: ramp-up, plateau and decline. The ramp-up period is observed at the 

early production time when the production rate increases rapidly. The plateau slope is 

observed during the stable production period. The decline period is observed when the 

production rate decreases as production continues until the project is abandoned. It is 

obvious that the distinctive features of the production rate curve cannot be predicted 

using only BT and AT. Therefore, more pairs of time/production data should be included 

as outputs. Five evenly distributed times between BT and AT are also taken as network 

 

 
Figure 5-2: Reservoir Performance for a Typical CO2 Injection Process 
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outputs with their respective oil productions. It is noted that the recovery curves very 

stable before breakthrough. Then, the reservoir performance before BT is just represented 

by one point selected at early time (ET). Only production at that ET is fed to the networks 

since the early time is the same for all cases. Early time is fixed as 1, 2 or 5 days, 

depending on the network application that is modeled. In summary, the outputs of the 

miscible injection networks comprise 23 different variables.  

5.1.1.2 Water Injection 

Water breakthrough time is an important parameter in waterflooding processes 

since most of the oil recovery is expected to be achieved by the BT. The models 

undergoing water injection have initial water in place. Unfortunately, we cannot 

distinguish the in-place water from the injected water in the production stream in some 

models. Figure 5-3 shows the production profile and water cut for one case undergoing 

water injection. It can be seen that water is produced since the beginning of production. 

In addition, the water breakthrough time corresponding to the injected water cannot be 

obtained from this curve because of the lack of a defined inflection point. Therefore, BT 

was not used as an ANN output to build the oil profiles.  
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Furthermore, it is noted that the oil production curve does not show the ramp-up 

period typically observed in miscible displacement. Instead, a sharp depletion behavior is 

observed due to the large drawdown experienced when the well is put on production.  

Production stabilizes but decreases continuously until the abandonment condition. 

Therefore, the oil production profile can be reproduced using five evenly separated times 

between 0 and AT. In addition, an early time production is used to reproduce the early 

depletion period. In summary, the outputs of the waterflooding networks comprise 20 

different variables.  

 

 
Figure 5-3: Reservoir Performance for a Typical Waterflooding Process 
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5.1.1.3 Steam Injection 

The oil production profiles in steam injection processes present the most complex 

features. Willman et. al. (1961) were the first to identify these complex features. When 

steam is injected in a heavy oil reservoir, water and steam breakthrough (SBT) are 

observed. Therefore, the proper representation of the oil production curve requires these 

two times and their corresponding oil productions. Figure 5-4 shows a typical profile of 

steam injection into a heavy oil reservoir. A ramp-up period is easily identified where the 

oil production rate increases until water breakthrough is reached. After this, a plateau 

period is observed. The end of the plateau is identified by the steam breakthrough, which 

is defined by a kick. This kick also identifies the start of the decline period. We observed 

three additional picks during the decline period. These kicks are the result of gridding 

effects since they were only in existence in the models with thicknesses larger than 100 

ft. The steam front moves in the actual reservoir as a continuous smooth s-shape phase. 

However, the numerical models with large thickness lead to four large vertical blocks. 

Therefore, the steam front advances through the grid model as a stair-shape phase. The 

three observed picks correspond to the steam front reaching the three lower blocks 

hosting the producer. These additional picks were ignored. For the suitable representation 

of the oil profile, two evenly distributed times/production values were selected between 

BT and SBT.  In addition, an early time production and a mid value between SBT and AT 

were used to build the profiles. The early time was defined at the minimum oil rate before 

water breakthrough. In total, the networks’ outputs of the steam injection into heavy oil 

reservoir include 21 different variables. 
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The oil profiles when steam was injected into a black oil reservoir were built 

using a different approach since they did not resemble the ones for heavy oil. The largest 

well pattern area used for heavy oil was 15 acres. However, it was not possible to use 

such a small well spacing with the black oil and volatile oil fluid systems since the 

abandonment condition would be reached immediately. When a large well spacing is 

used with steam injection, heat losses are found to be large. Therefore, the steam 

breakthrough cannot be observable. Even though steam is injected at the bottom of the 

well, the actual thermal mechanism is reduced to hot water drive. Furthermore, many of 

 

 
Figure 5-4: Heavy Oil Reservoir Performance for a Typical Steam Injection Process 
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the oil profiles obtained from the commercial simulator presented some numerical 

artifacts. Figure 5-5 shows the water cut and WOR for steam injection into a black oil 

reservoir. Steam never reaches the producer and water cut presents unexpected 

fluctuations after water breakthrough. Unfortunately, tuning the numerical simulator did 

not eliminate these fluctuations. In order to remove the noise, the abandonment condition 

for steam injection projects into black oil and volatile oil reservoirs was changed to a 

water cut value of 60%.  

 

 

Figure 5-6 shows the oil profile using 60% water cut as abandonment condition. 

In order to build proper oil profiles three evenly distributed times between 0 and BT were 

used. A mid value between BT and AT was also used, as well as oil production at 0.1 days 

of production. The early depletion period was reproduced by selecting a production value 
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Figure 5-5: Black Oil Reservoir Performance under Steam Injection 
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at 1/3 of time t1. In summary, the networks’ outputs of steam injection into non-heavy oil 

reservoirs comprise 23 different variables. 

 

5.1.2  Network for Miscible CO2 Flooding Processes 

The CO2 miscible flooding network is the first network developed for the 

screening tool-box. The construction of this first proxy model was made in two stages in 

order to simplify the designing process. In the first stage, a reduced number of inputs and 

small data sets are used. This network architecture provides the basis to construct a more 

complex network in the second stage. In both stages, the networks predict the expected 

 

 
Figure 5-6: Oil Profile for a Black Oil Reservoir under Steam Injection 
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oil production curves. The networks constructed in the second stage are the ones finally 

integrated into the tool-box.  

5.1.2.1 Stage-One: Design Parameters as Inputs 

A simple problem is studied in the first stage of the network design. A reservoir 

containing PVT#1 hydrocarbon composition is subjected to a CO2 miscible injection 

process. The rock properties are maintained unchanged while the well spacing and 

operational conditions are modified in the reservoir models. Table 5-1 shows the 

reservoir properties specified in the reservoir model. 

 

 

The ranges of input parameters used in this first stage network are given in   

Table 5-2. The selection of the bottom hole pressure (BHP) limits are defined according 

to the CO2-MMP value calculated for PVT#1 composition.  

 

Table 5-1: Reservoir Properties for Stage One Network 

Parameter Value 
Initial Pressure 5000 psia 

Initial Temperature 220oF 
Initial Water Saturation 10 % 
Horizontal Permeability 100 md 

Vertical Permeability 10 md 
Porosity 25 % 

Thickness 50 ft  
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In order to train an ANN successfully, it is essential to feed the network with 

quality data that cover most of the possible scenarios under study. However, generation 

of data with these characteristics is impractical due to the computational time required. In 

real reservoir applications, a small number of production scenarios are evaluated. Similar 

approach was applied in this study but the scenarios are not selected randomly. Design of 

experiments is used to determine the minimum number of sensitive study cases that can 

cover the most characteristic possible combinations. This number of cases was calculated 

using a full factorial with a three-level design. With a 3-level design it is possible to 

capture the non-linearity effects of the inputs on the outputs as minimum, middle and 

maximum input values are combined. A 2-level design implies combination of minimum 

and maximums only. For three inputs in Stage-1 network, the 3-level full factorial design 

is 33, which means 27 sensitive cases are needed. In addition, 313 random combinations 

of inputs are generated, so 340 cases are simulated for each well pattern. That is, a total 

of 1360 simulation models for 4 patterns with fluid#1 undergoing CO2 injection. The 

random cases are created using the increments specified in Table 5-2. Input data-sets are 

checked to avoid repetition of cases. Since the total number of simulations is reasonably 

small, the models were generated using grid configurations of 40x40. 

Table 5-2: Data Ranges for ANN State One, CO2 Injection, PVT #1 

Design Parameter Minimum Middle Maximum Increment
Area (acres) 20 60 100 10 

BHP Producer (psia) 3000 3500 4000 100 
BHP Injector (psia) 6000 7000 8000 200  
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In this stage, one network is built per each well pattern. The networks forecast the 

expected oil production profile. Then, the specified outputs are the 23 time/production 

values necessary to reproduce the production curves. It is obvious that a poor network 

would be obtained if only three inputs are used to predict 23 targets. Therefore, five 

functional links are added as inputs. The functional links are the pressure gradient 

between the injector and the producer, the distance between injectors and producers, the 

distance between injectors, the geometric average of the bottom hole pressures of the 

producer and the injector, and the product of the area and production pressure. Bearing in 

mind that this problem requires 23 outputs, eight inputs may seem too few to effectively 

train this network. However, the outputs maintain close relationships between them, and 

the net should be able to capture the physical connection between production and time.  

Different network architectures were tested in this stage in order to find the most 

appropriate architecture for the CO2 miscible displacement process. The feedforward 

algorithm (newff) is widely used in neuro-simulation applications. Although this one 

provided good initial estimates, a modification of the newff was implemented with better 

results, which is the multilayer cascade feedforward back propagation (newcf). In the 

newcf algorithm the first hidden layer has weights coming from the input layer, and each 

following layer has connecting weights coming from all previous layers. The network 

design also included the Levenberg-Marquardt training function (trainlm) and the 

gradient descent with momentum weight and bias learning function (learngdm). 

The complexity of this problem required two hidden layers for all four well 

patterns. Figure 5-7 shows the general network architecture used in the four networks. 

The transfer function used in the hidden layers is tansig, while the purelin transfer 
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function was used in the output layer. Each well pattern required different number of 

neurons in each layer. The number of neurons used for each well pattern is shown in 

Table 5-3. 

 

 

Table 5-3: Stage One Hidden Layers for Each Well Pattern 

 4-Spot 5-Spot 7-Spot 9-Spot 
Neurons in 

Hidden Layer 1 40 60 50 50 

Neurons in 
Hidden Layer 2 30 30 30 30 

 
 

 

 
Figure 5-7: Network Architecture for Stage-One Networks 
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The generated data were divided into three groups for training, validation and 

testing purposes. A total of 340 cases is divided in the following form: 290 cases are used 

for training, 50 for testing and 10 for validation. The 27 cases generated using design of 

experiments are included in the training set. The training and validation sets are given to 

the network during the training protocol. The network is trained exclusively with the 

training set but the LMS error is also calculated for the validation set. If the validation 

error is constant or increases after a certain amount of epochs, the training process is 

stopped to avoid overtraining. The values of weights and biases are taken when the error 

for the validation set was minimum. Figure 5-8 exhibits the performance of the network 

built of the CO2 injection process with PVT#1 using a 4-spot well pattern. This network 

did not achieve the desired goal, 10-5 and the training process was stopped because the 

validation error increased in 5 consecutive epochs. The overall performance, or LMS 

error, was 0.00026. 
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The performance of the network is then analyzed by comparing the desired 

outputs to the predicted ones. The results of the training and testing data sets are shown in 

Figure 5-9, Figure 5-10 and Figure 5-11. These figures show the times, cumulative oil 

production and oil production rates, respectively. The absolute error was calculated for 

each set of tested parameter, which is shown on the figures as well. The predicted oil 

production rate at breakthrough presented the minimum error (0.22%), while the oil 

production rate at t1 presented the highest (4 %).  
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Figure 5-8: Stage One Network Performance: CO2 Injection – PVT#1 – 4-Spot  



78 

 

 

 

0 50 100 150 200 250 300
0

100

200
BT

 (d
ay

s)
TRAINING

0 10 20 30 40 50
0

100

200 Error: 1.3446%

BT
 (d

ay
s)

TESTING

0 50 100 150 200 250 300
0

100

200

t1
 (d

ay
s)

0 10 20 30 40 50
0

100

200 Error: 1.2046%

t1
 (d

ay
s)

0 50 100 150 200 250 300
0

100

200

t2
 (d

ay
s)

0 10 20 30 40 50
0

100

200 Error: 1.1042%

t2
 (d

ay
s)

0 50 100 150 200 250 300
0

200

400

t3
 (d

ay
s)

0 10 20 30 40 50
0

100

200 Error: 0.99507%

t3
 (d

ay
s)

0 50 100 150 200 250 300
0

200

400

t4
 (d

ay
s)

0 10 20 30 40 50
0

200

400 Error: 0.89384%

t4
 (d

ay
s)

0 50 100 150 200 250 300
0

200

400

t5
 (d

ay
s)

0 10 20 30 40 50
0

200

400 Error: 0.92526%

t5
 (d

ay
s)

0 50 100 150 200 250 300
0

200

400

Data-Set Number

AT
 (d

ay
s)

0 10 20 30 40 50
0

200

400 Error: 1.0376%

Data-Set Number

AT
 (d

ay
s)

 

 

ANN
Data

Figure 5-9: Stage-1 Network Performance: Times (CO2 Injection, PVT#1, 4-Spot) 
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Figure 5-10: Stage-1 Network Performance: Cumulative Oil Production (CO2 Injection, 
PVT#1, 4-Spot) 



80 

 

 

0 100 200 300
0

10

20
qo

5d
ay

(M
S

TB
/D

)
TRAINING

0 20 40 60
0

5

10

Error: 0.3486%

qo
5d

ay

(M
S

TB
/D

)

TESTING

0 100 200 300
0

10

20

qo
B

T

(M
S

TB
/D

)

0 20 40 60
0

10

20 Error: 0.22441%

qo
B

T

(M
S

TB
/D

)

0 100 200 300
0

10

20

qo
t1

(M
S

TB
/D

)

0 20 40 60
0

10

20 Error: 4.0842%

qo
t1

(M
S

TB
/D

)

0 100 200 300
0

5

qo
t2

(M
S

TB
/D

)

0 20 40 60
0

5

Error: 3.7093%
qo

t2

(M
S

TB
/D

)

0 100 200 300
0

2

4

qo
t3

(M
S

TB
/D

)

0 20 40 60
1

2

3

Error: 1.4561%

qo
t3

(M
S

TB
/D

)

0 100 200 300
0

2

4

qo
t4

(M
S

TB
/D

)

0 20 40 60
0

2

4 Error: 1.1815%

qo
t4

(M
S

TB
/D

)

0 100 200 300
0

2

4

qo
t5

(M
S

TB
/D

)

0 20 40 60
0

2

4 Error: 1.2452%

qo
t5

(M
S

TB
/D

)

0 100 200 300
0

2

4

qo
AT

(M
S

TB
/D

)

0 10 20 30 40 50
0

2

4 Error: 2.809%

qo
AT

(M
S

TB
/D

)

 

 

ANN

Data

Figure 5-11: Stage-1 Network Performance: Oil Production Rate (CO2 Injection, PVT#1, 
4-Spot) 
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The overall performance and the reported absolute error indicate that this network 

was successfully trained. However, absolute errors should not be the only set of criteria to 

evaluate the ANN since they sometimes lead to wrong conclusions. For example, values 

of permeability could vary between 2-1000 md. If the network predicts a value of 4 for 

the lower range limit, that represents 100% absolute error, which is interpreted as a poor 

network performance. On the other hand, if the network predicts a value of 950 for the 

highest limit, the absolute error would be 5%, which is interpreted as a good 

performance. However, the difference between 2 and 4 md is only 2 while the difference 

between 950 and 1000 md is 50, implying that the prediction of the lower limit of 

permeability is actually better than that of the upper limit.  

Correlations between the predicted and desired outputs are also included in this 

analysis. For convenience, correlations are only shown for the best and the worst 

predicted outputs, as seen in Figure 5-12. It is observed that the worst parameter’s 

correlation is scattered but, in general, it shows that the network is able to predict the oil 

production rate at t1 within an acceptable margin of error. 

The results obtained by the network have been presented in a convenient form to 

assess the performance of the network so far. However, it is necessary to translate the 

results into a more suitable reservoir engineering approach. Each of the 23 outputs 

obtained from the network are used to construct the oil production profiles. The curves 

were constructed for all of the testing cases, but here only the best and worst curves are 

presented. The analysis of these two cases can implicitly reflect the overall performance 

of the other profiles. 
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Figure 5-12: Best and Worst Predicted Parameters, Stage-1 Network: CO2 Injection, 
PVT#1, 4-Spot. 
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Figure 5-13 shows the best and worst fitted oil production profiles for the Stage-1 

network built for CO2 injection, PVT#1 and 4-spot well pattern. The fitting classification 

is based on the LMS error calculated for the 23 parameters used to construct the 

production curves for a given reservoir in the data set used in testing. The worst predicted 

curves have an LMS error of 3%, indicating that all other tested cases have errors that are 

even lower. Values of oil production rate at t1 and t2 are the ones with the highest 

deviation in the worst case. These two parameters describe the drastic oil rate drop as 

CO2 breakthrough is achieved. This particular feature of the oil rate curve is difficult to 

reproduce since the data have a drastic change.   

 

 

In general, similar results were obtained for the Stage-1 networks that predict the 

reservoir oil production using 5-spot, 7-spot and 9-spot well patterns. Table 5-4 shows 
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Figure 5-13: Best and Worst Production Profiles Built using Stage-1 Network: CO2
Injection, PVT#1, 4-Spot.  
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the absolute errors of each predicted parameter for all four well patterns simulated with 

Stage-1 networks. In general, the cumulative oil productions have the lower errors. This 

is because the cumulative curve is smooth. On the other hand, the oil production rates 

present the highest errors. This is because of the sharp changes of these curves. The 

general performance or LSM error of the 5-spot network is 0.0002, the 7-spot network is 

0.0004 and the 9-spot is 0.012.  

 

Table 5-4: Absolute Errors Calculated Per Predicted Parameter from Stage-1 Networks 

Absolute Error (%) Parameter 4-SPOT 5-SPOT 7-SPOT 9-SPOT 
BT 1.34 1.98 1.46 1.58 
t1 1.20 1.25 1.00 1.45 
t2 1.10 1.89 1.14 1.27 
t3 1.00 1.70 1.02 1.58 
t4 0.89 1.27 1.07 1.66 
t5 0.93 1.70 0.92 1.65 

AT 1.04 1.78 1.27 1.70 
qt@5days 0.28 0.37 0.23 0.24* 

qtBT  1.17 1.40 0.99 1.54 
qtt1 0.78 0.64 0.80 1.05 
qtt2 0.66 1.09 0.69 0.80 
qtt3 0.54 0.81 0.61 0.53 
qtt4 0.46 0.74 0.55 0.56 
qtt5 0.46 0.99 0.53 0.66 
qtAT 0.49 1.21 0.55 0.47 

qo@5days 0.35 0.72 0.26 0.26 
qoBT  0.22* 0.22* 0.20* 0.25 
qot1 4.08** 1.70 3.18** 3.61** 
qot2 3.71 2.88 2.89 2.32 
qot3 1.46 3.05 1.51 1.97 
qot4 1.18 4.76** 1.17 1.29 
qot5 1.25 3.09 1.35 1.93 
qoAT 2.81 2.71 1.85 2.05 

*:  Best Parameter 
**: Worst Parameter 
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Figure 5-14, Figure 5-15 and Figure 5-16 show the best and worst fitted oil 

production curves obtained with the Stage-1 networks for 5-spot, 7-spot and 9-spot well 

patterns. For all networks, the maximum LMS error of the curves did not exceed 4%, 

meaning that the networks were successfully trained. From the results obtained in this 

stage, it is evident that the network is able to find the relationship between the flow rates, 

the cumulative production and production times since all 23 outputs are accurately 

predicted using just 8 inputs. 

Also, it is a particularly significant observation that all four well patterns 

produced networks with similar architectures. They only differ on the number of neurons 

in their hidden layers. This suggests that ANN architecture was able to effectively capture 

the thermodynamical and physical mechanisms of the CO2 injection process taking place 

in a particular reservoir.  
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Figure 5-14: Best and Worst Production Profiles Built using Stage-1 Network: CO2
Injection, PVT#1, 5-Spot. 
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Figure 5-15: Best and Worst Production Profiles Built using Stage-1 Network: CO2
Injection, PVT#1, 7-Spot. 
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Figure 5-16: Best and Worst Production Profiles Built using Stage-1 Network: CO2
Injection, PVT#1, 9-Spot. 



87 

 

5.1.2.2 Stage-Two: Design Parameters and Rock Properties as Inputs 

In the second stage, the complexity of the network is increased by feeding the 

proxy model with the reservoir rock properties such as permeability, porosity and 

thickness. As before, the well spacing, production pressure and injection pressure are the 

design parameters fed to the network.  The outputs are the 23 targets used to reproduce 

the oil production curves. Once more, input functional links are used in order to help the 

learning process. This time, four functional links were introduced: pressure gradient 

between the injector and the producer, the distance between injectors and producers, the 

distance between injectors and the kh product. However, 9-spot networks were trained 

with five functional links since there are two different pressure gradients between the 

producer and the two injectors.  

The simulation models for this stage were generated taking into account how the 

rock properties are found in real reservoirs.  Typically, formations with low permeability 

also have low porosity. The proper field development for this kind of reservoirs implies a 

smaller well spacing.  Therefore, the simulation data were generated in two groups or 

batches. In the first one, small reservoir areas are combined with low permeabilities and 

low porosities. In the second one, large areas are associated with high porosity and 

permeability. Table 5-5 shows the ranges of data considered in the batches. 

Design of experiment with full factorial design was also used to generate a 

minimum number of sensitive models. Since the batches are separated by areas, 2-level 

design is applied to this parameter, while 3-level design is applied to the other five 

independent inputs. The non-linearity introduced by the areas are considered implicitly. 
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Between the two batches of data, four areas are provided. The 3-level full factorial design 

for five inputs gives 35=243 cases. Incorporating the 2-level design for the area, the 

number of minimum cases in one group is 243*2=486. Additionally, 514 random cases 

were also generated for each batch. That is, a 1000 different reservoir models per batch or 

2000 cases per network. 

The networks generated in this Stage-2 are the ones incorporated into the 

screening tool-box. As seen in Figure 5-1, the tool-box consists of 64 networks. If each 

network requires 2000 models, it is necessary to generate 128,000 simulation cases for 

the entire tool-box. Considering the computational work involved in the generation of 

such a number of models, grid configurations of 15x15 blocks were used in this stage in 

order to have a controllable limit to simulation computing time.  

 

 

Table 5-5: Data Limits for ANN State 2 – CO2 Injection Process 

Batch 1, Area<=100 acres Batch 2, Area> 100 acres Input 
min mid max min mid max 

Area (acres) 60 - 100 150 - 300 
Kx=Ky (md) 10 50 100 200 350 500 

h (ft) 10 50 200 10 100 200 
Porosity (%) 15 25 40 20 30 40 

PProd (psia) 3000 3500 4000 3000 3500 4000 PVT#1 
(Pi=5000 

psia) PInj (psia) 6000 7000 8000 6000 7000 8000 
PProd (psia) 1000 1500 2000 1000 1500 2000 PVT#2 & 3 

(Pi=3000 
psia) PInj (psia) 4000 5000 6000 4000 5000 6000  
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The 2000 data sets were divided into three groups, 1600 cases were used for 

training, 200 for validation and 200 for testing. The 972 models created using design of 

experiments were included in the training data set. The network architecture used in this 

stage is similar to that in Stage-1. The algorithm uses a multilayer cascade feedforward 

back propagation network (newcf) with trainlm and learngdm functions. The net structure 

connects 10 inputs (3 design parameters, 3 rock properties and 4 functional links) with 23 

outputs. The hidden layers use tansig transfer function while purelin is used in the output 

layer. Figure 5-17 shows the architecture of the Stage-2 networks. 

 

 

 
Figure 5-17: Network Architecture for Stage-Two Networks 
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The first well pattern modeled in the Stage-2 network was the 4-spot. The 

network was efficiently trained with 60 neurons in the first hidden layer and 30 neurons 

in the second hidden layer. Figure 5-18 shows the best and worst parameters obtained 

after training. The worst parameter was the oil production rate at t3, with an absolute error 

of 36%. The correlation between the predicted oil production and the actual value is a 

somewhat scattered. In order to assess whether the ANN was successfully trained, the oil 

production curves were constructed. Figure 5-19 shows the best and worst oil production 

profiles for the Stage-2 Network with 4-Spot, PVT#1, CO2 injection. The worst curves 

presented an LMS error of 82%. Although most of the oil curves presented errors of 

approximately 10%, indicating that this network can be improved.  

The cascade feedforward network algorithm proved to be the more adequate for 

the displacement process under study so far. Different combinations of number of 

neurons, number of layers, transfer functions and functional links were tested 

unsuccessfully suggesting that the problem could be attributed to the generation of the 

reservoir data and not the network itself. 

The first 486 training values plotted shown in Figure 5-18 correspond to the first 

batch of data, while the following 486 are the second batch. The last 628 data sets are the 

models randomly created. It is noted that oil rates obtained from batch 2 have a wider 

range than oil rates from batch 1. It seems that the network had difficulties in correlating 

oil rates within different ranges. A way to work around this issue was to train two 

separate networks with each batch of input data. This procedure was first tested on the 4-

spot well pattern. 
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Figure 5-18: Best and Worst Predicted Parameters, Stage-2 Network: CO2 Injection, 
PVT#1, 4-Spot, Batch 1 and 2 combined. 
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The two networks are designed with the same architecture shown in Figure 5-17. 

Each data batch is divided into three groups: 800 cases for training, 100 for validation 

and 100 for testing. The 486 cases created using design of experiments are intentionally 

included in the training set. Figure 5-20 shows the best and worst parameters obtained 

after training a Stage-2 networks for 4-spot using CO2 injection, PVT#1, Batch 1. The 

worst parameter in this case was oil production rate at t2 with an error of 33%, which is 

lower than the ones in the case with both batches together. The correlation between 

predicted and actual values is more scattered than before. Nonetheless, it is necessary to 

analyze the oil production curves.  
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Figure 5-19: Best and Worst Production Profiles Built using Stage-2 Network: CO2
Injection, PVT#1, 4-Spot. 
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Figure 5-20: Best and Worst Predicted Parameters, Stage-2 Network: CO2 Injection, 
PVT#1, 4-Spot. Batch 1 (Small Areas) 
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Figure 5-21 shows the best and worst production curves. The highest LMS error 

was reduced to 36% and, in overall, the curves presented an average error of 7%. Since 

the efficiency of the network has been evidently improved, separate networks are 

constructed for each data batch. It is important to consider that each blue box shown in 

Figure 5-1 representing a well pattern will now contain two networks, one for the small 

area data sets (batch 1) and one for the large areas (batch 2). Thus, the total number of 

individual ANNs constituting the tool-box is doubled to 128. 

 

 

A further modification is done to the net by applying the logarithm function to the 

actual outputs. As the logarithm function scales the data into a smaller range, the effects 

of wide output ranges should be minimized. Figure 5-22 shows the worst parameter 

obtained after training the same network with log-output. It is observed that the 
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Figure 5-21: Best and Worst Production Profiles Built using Stage-2 Network: CO2
Injection, PVT#1, 4-Spot. Batch 1 (Small Areas) 
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correlation between actual and predicted log-output is less scattered, indicating a better 

network performance. Also, the same figure shows the correlation between outputs after 

the logarithm function was removed. Obviously, the data are still scattered. Figure 5-23 

exhibits the best and worst parameters obtained from this network. The results are 

displayed after the log function is removed. The worst parameter was the oil production 

rate at t2 with an error of 21%. 
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Figure 5-22: Comparison between Log(qot2) and Actual Output (qot2)  
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Figure 5-23: Best and Worst Production Profiles Built using Stage-2 Network: CO2
Injection, PVT#1, 4-Spot. Batch 1 (Small Areas). Results after Removing Functional Link
log(output). 



97 

 

 

The best and worst predictions for oil curves by this network are presented in 

Figure 5-24. The maximum error was reduced to 23%, and the average error for all 

curves is around 4.5%.  

Since the logarithm functional link applied to the outputs successfully improved 

the overall network performance, we tested the network applying this functional link to 

both inputs and outputs. In addition, the ultimate oil recovery was also introduced as an 

additional output. Therefore, a new network was built with 24 outputs. Figure 5-25 shows 

the best and worst parameters obtained by this network. 
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Figure 5-24: Best and Worst Production Profiles Built using Stage-2 Network: CO2
Injection, PVT#1, 4-Spot. Batch 1 (Small Areas), Using Logarithm in Outputs. 
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The worst parameter, oil rate at t2, presented an error of 14%, which is even lower 

than before. The parameter that showed the lowest error was the total oil recovery, which 
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Figure 5-25: Best and Worst Production Profiles Built using Stage-2 Network: CO2
Injection, PVT#1, 4-Spot. Batch 1 (Small Areas). Functional Link log(input) & 
log(output). 
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was less than 1%. This was expected since oil recovery fraction is bounded between 0 

and 1.  

Figure 5-26 shows the best and worst oil production profiles. It is evident that the 

log function helped to improve the performance of the network. In all further networks 

developed in this study, the log function is applied to all inputs and outputs. The 

functional link is removed from the outputs before the oil production curves are 

constructed, and errors are calculated on the actual outputs, after removing the log 

function. 

 

 

Similar networks were developed for 5-spot, 7-spot and 9-spot well patterns for 

large and small area data sets with PVT#1 undergoing CO2 injection, and all well patterns 

with PVT#2 and PVT#3. Diverse reservoir models were generated with PVT#4 
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Figure 5-26: Best and Worst Production Profiles Built using Stage-2 Network: CO2
Injection, PVT#1, 4-Spot. Batch 1 (Small Areas), Using Logarithm in Inputs & Outputs. 
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undergoing CO2 injection. However, no measurable oil production was observed in these 

models as the abandonment condition, 90% of CO2 in the production stream, was 

achieved almost immediately after the wells are brought to operation. Therefore, it was 

not possible to build the networks that combine this IOR process with a heavy oil 

hydrocarbon composition.   

Table 5-6, Table 5-7 and Table 5-8 show the absolute errors per parameter 

predicted for PVT#1, PVT#2 and PVT#3 respectively. In general, the cumulative oil 

productions are the best predicted outputs while the oil production values are the hardest 

variables to forecast. Cumulative oil production and time are monotonically increasing 

variables, while the oil production rate is not. The sharp change in oil production rate 

after breakthrough generates non-linearity effects in the network.  

Each of these networks was initially setup with the same architecture 

implemented in Stage-2, 4-Spot, PVT#1 case. In all cases, the initial response of the 

network was adequate. However, this was the starting point in tuning each net. Some of 

the modifications included the evaluation of transfer functions, number of layers, number 

of neurons, functional links, training protocols, etc. The modifications were first applied 

one by one to determine the most sensitive ones. Combinations of them were evaluated 

afterwards. 

A preliminary evaluation of the diverse architectures was performed on a network 

that has only two outputs: the oil production rate at t1 and breakthrough time. This 

approach reduces the training time while one of the hardest parameter to train is under 

observation. If a change makes a positive impact in the performance, the full network 

with 24 outputs would be trained with that change. However, none of the evaluated 
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architectures provided any major improvement. All Stage-2 networks generated so far in 

the present study have the same architecture.  

 

 

Table 5-6: Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#1, CO2
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
BT 2.98 1.78 0.88 0.78 1.93 1.84 3.62 12.51 
t1 2.11 1.38 1.08 0.96 1.95 1.62 4.62 8.10 
t2 1.67 0.97 1.15 1.33 2.46 1.90 6.22 7.10 
t3 1.16 1.04 1.65 1.59 2.76 2.12 7.40 5.89 
t4 0.92 0.94 1.80 1.79 3.18 2.51 7.62 5.07 
t5 0.74 1.09 2.08 2.08 3.43 2.76 7.20 8.29 

AT 0.78 1.13 2.37 2.16 3.71 2.83 7.68 7.84 
qt@ET 0.86 1.12 1.36 1.22 1.37 1.79 5.21 6.34 
qtBT  3.25 1.83 0.71 0.82 2.33 2.04 4.46 4.18 
qtt1 2.44 1.35 0.82 1.02 2.33 1.84 5.02 4.50 
qtt2 1.40 1.00 1.13 0.98 1.69 1.48 3.35 6.75 
qtt3 0.52 0.75 0.79 0.87 1.04 0.99 3.04 5.90 
qtt4 0.43 0.67 0.84 0.67 0.96 0.99 2.08 2.87* 
qtt5 0.39 1.00 0.80 0.71 1.04 0.93 2.43 5.63 
qtAT 0.38 0.52 0.86 0.74 1.13 1.01 1.56* 3.88 

qo@ET 1.06 1.60 1.55 1.36 1.72 2.28 5.10 9.13 
qoBT  0.49 0.63 0.80 0.80 0.61* 0.71* 3.00 7.21 
qot1 1.67 1.44 1.40 1.47 1.92 1.16 7.83 6.80 
qot2 14.02** 8.34** 6.03 5.98 12.12** 13.02** 17.98** 14.61 
qot3 6.34 6.19 6.78 7.44** 8.19 7.52 15.78 19.92** 
qot4 3.73 3.88 7.01** 6.20 5.46 5.55 14.77 13.41 
qot5 2.19 3.07 5.20 6.17 4.51 4.95 11.63 12.52 
qoAT 2.27 3.51 5.04 5.49 4.72 5.48 9.63 13.28 

Oil Rec. 0.22* 0.26* 0.48* 0.59* 0.91 0.75 12.43 15.43 
*:   Best Parameter 
**: Worst Parameter 
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Table 5-7: Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#2, CO2
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
BT 1.42 2.52 2.04 1.61 2.57 4.44 1.38 1.53 
t1 1.14 1.87 1.78 2.06 1.92 2.70 0.86 0.76 
t2 0.95 1.68 2.76 1.74 1.79 2.46 0.84 0.79 
t3 1.01 1.90 1.62 1.88 2.17 2.85 0.88 1.03 
t4 1.14 2.13 1.49 2.11 2.47 3.15 0.93 0.92 
t5 1.10 2.10 2.30 2.31 2.26 3.46 1.00 0.90 

AT 1.17 2.32 1.44 2.10 2.30 3.83 0.95 1.16 
qt@ET 1.75 2.39 3.43 2.05 2.17 1.86 0.68 1.27 
qtBT  1.40 2.50 1.60 2.38 3.15 4.83 1.45 1.51 
qtt1 0.83 1.69 1.29 1.40 1.41 2.79 0.95 0.82 
qtt2 0.64 1.84 1.65 1.74 1.62 1.91 0.64 0.64 
qtt3 0.66 1.31 1.49 1.34 1.28 1.91 0.57 0.69 
qtt4 0.48 1.33 1.14 1.39 1.05 1.34 0.46 0.62 
qtt5 0.47 1.21 1.77 2.79 0.93 1.12 0.44 0.53 
qtAT 0.39 0.78 0.83 1.22 1.03 1.13 0.37 0.39 

qo@ET 2.69 2.17 3.72 1.77 2.50 1.65 1.27 1.30 
qoBT  1.23 1.62 2.07 1.55 1.95 1.54 0.72 0.25 
qot1 1.75 1.95 2.61 1.86 2.02 2.02 1.62 1.10 
qot2 4.74 4.31 3.16 2.79 4.32 3.62 2.57** 3.71** 
qot3 2.72 4.99 3.52 4.62 4.53 6.52 2.18 2.90 
qot4 3.56 6.68 3.77 5.24 6.12 10.41 1.98 2.13 
qot5 5.14** 9.22 4.31 6.67 9.37 14.32 1.61 1.65 
qoAT 4.87 10.58** 4.37** 7.95** 10.45** 17.80** 0.65 1.21 

Oil Rec. 0.15* 0.32* 0.24* 0.41* 0.30* 0.37* 0.06* 0.06* 
*:   Best Parameter 
**: Worst Parameter 
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An important observation is that the same architecture was able to reproduce the 

behavior of the reservoirs holding different hydrocarbon compositions. This implies that 

the network is able to effectively describe the displacement mechanism under different 

miscibility conditions. Oil production curves were generated using the Stage-2 networks. 

Some characteristic examples are included in Appendix C.  

Table 5-8:  Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#3, CO2
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
BT 0.81 0.53 0.34 0.72 0.90 0.76 0.73 0.73 
t1 0.46 0.55 0.33 0.42 0.65 0.76 0.71 0.73 
t2 0.50 0.72 0.29 0.39 0.71 0.71 0.82 0.60 
t3 0.66 0.88 0.27 0.61 0.84 0.74 0.97 0.64 
t4 0.39 0.43 0.23 0.57 0.72 0.60 1.00 0.66 
t5 0.43 0.55 0.35 0.42 0.75 0.51 0.94 0.73 

AT 0.43 0.50 0.32 0.59 0.64 0.56 1.04 0.65 
qt@ET 0.91 0.95 0.65 0.86 1.96 1.25 2.12 0.74 
qtBT  0.57 0.65 0.39 0.65 1.07 1.04 0.71 0.77 
qtt1 0.50 0.75 0.35 0.58 0.82 1.08 0.86 0.86 
qtt2 0.32 0.84 0.28 0.59 0.91 0.84 0.77 0.67 
qtt3 0.39 0.48 0.24 0.60 0.77 0.77 0.63 0.61 
qtt4 0.49 0.77 0.28 0.53 0.63 1.00 0.63 0.61 
qtt5 0.35 0.42 0.27 0.49 0.72 0.93 0.51 0.46 
qtAT 0.61 0.32 0.19 0.43 0.74 0.63 0.35 0.30 

qo@ET 1.28 0.95 0.74 1.80 2.49 1.01 2.37 0.90 
qoBT  0.47 0.63 0.34 0.26 0.98 0.66 0.41 0.40 
qot1 0.48 1.05 0.32 0.24 0.72 0.71 0.31 0.28 
qot2 0.65 0.79 0.30 0.75 0.81 0.93 0.88 0.58 
qot3 0.85 0.86 0.58 0.86 1.16 1.00 1.38 0.76 
qot4 1.35 2.23 1.20 1.31 1.74 2.30 1.78 1.00 
qot5 2.05** 2.66** 1.49** 2.04** 2.79** 3.12 3.41 2.11 
qoAT 1.81 2.33 1.06 1.48 1.94 3.27** 5.62** 3.47** 

Oil Rec. 0.05* 0.07* 0.05* 0.08* 0.07* 0.16* 0.10* 0.15* 
*:   Best Parameter 
**: Worst Parameter 
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5.1.3 Network for Miscible N2 Flooding Processes 

Miscible nitrogen displacement is also simulated in this study. The models were 

generated following the same procedure as in miscible carbon dioxide displacement. A 

set of networks were designed for a given combination of specific fluid/well pattern/area 

range. However, the networks were built in one stage. Provided that the physics involved 

in a CO2 displacement mechanism are similar to that in a N2 process, no major changes in 

the network architecture were expected.  

The inputs and outputs for N2 injection are similar to the ones used in for CO2 

injection. The reservoir description and field development associated parameters are fed 

to the network. These inputs are extended by implementing functional links. The 

networks predict the reservoir behavior, and oil production curves are constructed from 

the predicted targets. In general, the reservoir models simulating nitrogen displacement 

are built using the same properties used in CO2 injection, but the pressure injection range 

is different for PVT#1 hydrocarbon composition due to higher N2-MMP value. Table 5-9 

shows the data limits used in the reservoir models undergoing nitrogen injection. 
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A total of 1000 reservoir simulation cases were generated for each area data 

batch. As before, the design of experiment protocol was applied to generate 486 

characteristic cases and the rest were generated randomly. The design of each network 

started with the same architecture as used for CO2 displacement. Although some 

combinations of functions, neurons and layers were evaluated, the CO2 network 

architecture prevailed as the best approach to our problem. 

The cumulative oil production parameters are the best fitted outputs of the proxy 

model. They have the lowest error while the oil production rates have the highest. The 

behavior of the oil reservoir undergoing N2 injection is very similar as in CO2 injection. 

Figure 5-27 shows the oil production profiles for 4-Spot, PVT#1, small areas (batch1). It 

is clear that a reservoir undergoing CO2 or N2 injection behaves in a similar fashion. The 

cumulative oil production is smooth while the oil rate severely changes as nitrogen 

reaches the injector. This explains why the same network architecture developed for CO2 

Table 5-9: Data Limits for ANN – N2 Injection Process 

Batch 1, Area<=100 acres Batch 2, Area> 100 acres Input 
min mid max min mid Max 

Area (acres) 60 - 100 150 - 300 
Kx=Ky (md) 10 50 100 200 350 500 

h (ft) 10 50 200 10 100 200 
Porosity (%) 15 25 40 20 30 40 

PProd (psia) 3000 3500 4000 3000 3500 4000 PVT#1 
(Pi=5000 

psia) PInj (psia) 7000 7500 8000 7000 7500 8000 
PProd (psia) 1000 1500 2000 1000 1500 2000 PVT#2 & 3 

(Pi=3000 
psia) PInj (psia) 4000 5000 6000 4000 5000 6000  
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applications was easily applied to N2 injection. Oil production curves developed for other 

well patterns and fluid types are included in Appendix C. 

 

 

Table 5-10, Table 5-11 and Table 5-12 summarize the performance of the trained 

networks for the PVT#1, PVT#2 and PVT#3 under nitrogen injection. No significant oil 

production was observed in the reservoir models holding a heavy oil hydrocarbon 

composition undergoing nitrogen injection as the abandonment condition was achieved 

almost immediately after the wells became operational. Then, networks that combine 

nitrogen injection with PVT#4 were not built.  
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Figure 5-27: Best and Worst Production Profiles Built using Stage-2 Network: N2
Injection, PVT#1, 4-Spot. Batch 1 (Small Areas) 
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Table 5-10: Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#1, N2
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
BT 2.03 2.02 0.55 0.82 1.17 1.35 0.49 0.66 
t1 1.37 1.36 0.45 0.85 0.98 1.37 0.47 0.92 
t2 1.01 1.14 0.61 1.08 1.08 1.78 0.59 0.97 
t3 0.91 1.15 0.68 1.21 1.20 2.37 0.63 1.11 
t4 0.89 1.24 0.77 1.26 1.26 2.68 0.68 1.17 
t5 0.85 1.37 0.83 1.43 1.51 2.81 0.80 1.28 

AT 0.81 1.47 0.86 1.45 1.54 3.04 0.78 1.27 
qt@ET 0.79 0.63 0.62 0.49 0.74 1.51 0.50 0.51 
qtBT  2.38 2.58 0.59 1.01 1.35 1.74 0.53 0.72 
qtt1 1.05 1.40 0.47 0.81 0.75 1.31 0.24 0.49 
qtt2 0.56 1.01 0.39 0.66 0.60 0.95 0.29 0.72 
qtt3 0.52 0.84 0.34 0.66 0.50 0.81 0.41 0.66 
qtt4 0.44 0.69 0.30 0.57 0.56 1.10 0.29 0.46 
qtt5 0.49 0.75 0.31 0.57 0.43 1.48 0.22 0.56 
qtAT 0.41 0.69 0.27 0.53 0.43 0.97 0.20 0.29 

qo@ET 0.79 0.56 0.69 0.47 0.84 1.80 0.72 0.56 
qoBT  1.12 1.21 0.53 0.78 0.67 1.00 0.35 0.46 
qot1 9.09** 5.44** 1.80 2.32 5.74** 7.88 0.53 0.84 
qot2 5.54 5.29 1.31 2.61 5.54 8.60 0.31 0.55 
qot3 3.44 4.91 1.50 2.87 4.94 9.22 0.48 0.92 
qot4 2.78 4.70 1.90 3.19 4.70 9.47 3.79 5.30 
qot5 2.48 4.65 2.16 3.56 4.79 10.58** 4.17** 6.84** 
qoAT 2.51 4.51 2.45** 3.95** 5.20 10.22 2.90 4.84 

Oil Rec. 0.25* 0.45** 0.19* 0.34* 0.28* 0.36* 0.08* 0.12* 
*:   Best Parameter 
**: Worst Parameter 
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Table 5-11: Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#2, N2
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
BT 1.49 1.44 2.02 2.35 1.36 1.25 18.28 12.91 
t1 1.13 1.29 1.10 1.51 1.17 2.05 3.78 3.28 
t2 0.97 1.39 0.93 1.28 1.43 2.86 2.33 1.83 
t3 0.95 1.50 0.92 1.31 1.71 3.52 1.58 1.19 
t4 0.98 1.65 0.93 1.41 1.91 3.97 1.32 1.01 
t5 1.00 1.74 0.94 1.49 2.02 4.27 1.31 0.93 

AT 1.05 1.86 1.04 1.54 2.11 4.52 1.12 1.07 
qt@ET 1.62 2.24 1.32 0.92 1.68 1.24 2.50 1.68 
qtBT  1.72 1.36 2.09 2.50 1.68 1.28 20.43** 15.9** 
qtt1 0.82 0.90 0.72 0.72 0.87 0.78 2.26 1.74 
qtt2 0.70 0.72 0.69 0.61 0.72 0.71 1.79 1.18 
qtt3 0.63 0.67 0.54 0.57 0.75 0.61 1.55 1.09 
qtt4 0.68 0.70 0.54 0.59 0.73 0.54 1.99 0.91 
qtt5 0.61* 0.65 0.55 0.58 0.57 0.54 1.74 1.40 
qtAT 0.62 0.72 0.55 0.49* 0.56* 0.55 1.50 1.53 

qo@ET 2.91 1.95 2.39 1.16 1.99 1.58 2.53 1.74 
qoBT  4.33 4.49 2.88 2.69 3.69 3.52 2.98 2.70 
qot1 5.99 6.08 4.10** 5.42** 6.24 9.96 7.17 5.64 
qot2 7.30** 7.91** 3.64 4.43 7.21** 12.35** 3.51 2.45 
qot3 4.32 4.70 3.73 4.07 4.43 7.32 2.10 2.36 
qot4 1.48 2.23 2.32 2.58 2.73 4.63 4.79 4.18 
qot5 0.84 1.36 0.95 1.28 1.71 3.21 2.19 1.93 
qoAT 0.65 1.05 0.79 0.98 1.07 2.09 1.80 1.12 

Oil Rec. 0.66 0.58* 0.53* 0.52 0.60* 0.54* 0.47* 0.54* 
*:   Best Parameter 
**: Worst Parameter 
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Table 5-12:  Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#3, N2
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
BT 0.72 1.37 0.70 1.03 0.82 1.16 1.29 1.48 
t1 0.51 0.98 0.53 0.75 0.72 1.03 0.73 0.96 
t2 0.40 0.72 0.44 0.63 0.55 0.74 0.49 0.62 
t3 0.31 0.57 0.42 0.59 0.49 0.62 0.51 0.58 
t4 0.30 0.44 0.40 0.55 0.39 0.56 0.56 0.55 
t5 0.28 0.49 0.39 0.61 0.39 0.51 0.58 0.52 

AT 0.31 0.48 0.40 0.61 0.36 0.41 0.58 0.53 
qt@ET 0.76 1.08 0.37 0.40 0.98 0.92 0.78 0.34 
qtBT  0.79 1.55 0.80 1.10 0.88 1.25 1.40 1.62 
qtt1 0.57 1.10 0.64 0.85 0.78 1.26 0.79 1.06 
qtt2 0.48 0.85 0.45 0.65 0.62 0.85 0.36 0.49 
qtt3 0.36 0.68 0.31 0.42 0.52 0.60 0.33 0.37 
qtt4 0.33 0.54 0.23 0.30 0.50 0.53 0.33 0.36 
qtt5 0.30 0.47 0.24 0.29 0.52 0.32 0.34 0.29 
qtAT 0.33 0.44 0.21 0.26 0.50 0.39 0.36 0.24 

qo@ET 0.73 1.09 0.55 0.41 1.22 0.90 0.91 0.66 
qoBT  0.65 0.68 0.34 0.39 0.48 0.49 0.26* 0.28 
qot1 0.97 0.94 0.78 0.75 0.95 1.13 1.58 1.83** 
qot2 1.94 3.39 1.32 1.43 2.84 2.70 1.19 1.19 
qot3 3.37** 5.08** 1.85** 2.40** 3.68** 3.61 0.81 0.90 
qot4 2.25 4.24 1.24 1.70 3.14 3.89** 1.01 0.96 
qot5 1.61 3.16 0.89 1.43 2.15 3.11 2.10** 1.39 
qoAT 1.40 1.70 0.85 0.97 1.53 2.43 1.35 1.23 

Oil Rec. 0.27* 0.43* 0.19* 0.21* 0.43* 0.26* 0.30 0.22* 
*:   Best Parameter 
**: Worst Parameter 
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5.1.4 Network for Waterflooding Processes 

A specific network was developed per well pattern/fluid type combination. 

Nevertheless, data generation of the networks for water injection followed a different 

procedure. Each waterflooding model was built using different sets of relative 

permeability curves and capillary pressure. Then, the variables used to generate these 

curves were included as part of the inputs, together, with the design parameters and rock 

properties. The data were generated in two batches as it was done for the miscible 

displacement networks. Table 5-13 shows the data ranges considered for the 

waterflooding cases.  

 

 

Table 5-13:  Data Limits for ANN – Waterflooding Process 

Batch 1, Area<=100 acres Batch 2, Area> 100 acres Input 
min mid max min mid max 

Area (acres) 60 - 100 150 - 300 
Kx=Ky (md) 10 - 100 200 - 500 

h (ft) 50 - 200 50 - 200 
Porosity (%) 15 - 40 20 - 40 

Swirr (fraction) 0.15 - 0.3 0.15 - 0.3 
Sor (fraction) 0.15 - 0.4 0.15 - 0.4 

Coil (dimensionless) 0.5 - 4 0.5 - 4 
Cgas (dimensionless) 0.1 - 0.3 0.1 - 0.3 

PProd (psia) 2000 3000 4000 3000 3000 4000 PVT#1 
(Pi=5000 

psia) PInj (psia) 6000 6500 7000 6000 7000 8000 
PProd (psia) 1000 1500 2000 1000 1500 2000 PVT#2 & 3 

(Pi=3000 
psia) PInj (psia) 4000 5000 6000 4000 5000 6000  
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Design of experiment with full factorial was also applied to generate a minimum 

amount of characteristic cases. It should be noted that this network has 10 independent 

parameters. A 3-level design applied to these variables would require the generation of 

310=59049 cases, which is unfeasible. In order to reduce the amount of minimum cases to 

a practical number, different design levels were used. The 3-level design was only 

applied to the most significant parameters, which are the injection and production 

pressures. A 2-level design was applied to the rest of the variables. However, this design 

would require the generation of 28*32=2304 cases. Considering that some random cases 

are also necessary to train the network properly, the memory requirements to develop a 

network with this amount of data sets are again considered to be too large. Then, it was 

necessary to reduce the number of independent inputs. The capillary pressure constant for 

gas, Cgas, was tied to its oil counterpart Coil. That is, when the minimum limit of Coil is 

used, the minimum value of Cgas is also used. Likewise, if the maximum value of Coil is 

used, the maximum limit of Cgas is also used. This approach was implemented since the 

initial gas saturation was set to zero in all models, and free gas is not expected to develop 

as the reservoir pressure remains above the saturation value. With 9 independent 

parameters, the minimum number of cases is reduced to 27*32=1152 cases. Additionally, 

848 random cases were generated for each batch. That is, 2000 different reservoir models 

per batch or 4000 per well pattern.  

Since the physics of waterflooding projects are, to some extent, simpler than those 

in miscible displacement, the networks were generated in only one stage. These networks 

are incorporated into the screening tool-box. The architecture of the network is very 

similar to the ones developed for miscible displacement processes, as it can be seen in 
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Figure 5-28. The network has 13 inputs, including the same functional links used in the 

previous networks. The outputs consist of the 20 values of time/oil production parameters 

to build the production profiles as shown before in Figure 5-3. The ultimate recovery 

fraction is also predicted by this network. The logarithm functional link is applied to all 

inputs and outputs to help the performance of the network.  

 

 

While a different number of neurons, layers, transfer functions, training functions 

and functional link combinations were tested, the architecture shown in Figure 5-28 was 

 

 
Figure 5-28: Network Architecture for Waterflooding Projects 
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the one that provided the best results. This was used in both batches, in 4-spot, 5-spot, 7-

spot and 9-spot with PVT#1, PVT#2 and PVT#3. All networks were built using 60 

neurons in the first hidden layer and 30 in the second one, with “trainlm” and “learngdm” 

functions. It was not possible to build networks for PVT#4 undergoing water injection 

since no significant oil was produced from these reservoir models. The injected water did 

not sweep the oil thus the abandonment condition (90% of water cut) was achieved 

almost immediately after the wells became operational.  

Figure 5-29 shows the oil production profile for the best and worst testing cases 

using the network for 4-Spot, PVT#1, Batch 1. The worst profile has an error of 5%, 

while the average error for the oil production profiles generated using this network is 1%. 

The other characteristic oil profiles generated using the waterflooding networks can be 

found in Appendix C. In general, they are very similar to the one presented in        

Figure 5-29. 
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Figure 5-29: Best and Worst Production Profiles Built using Water Injection Network,
PVT#1, 4-Spot. Batch 1 (Small Areas) 
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Table 5-14, Table 5-15 and Table 5-16 show the absolute errors per parameter 

predicted for PVT#1, PVT#2 and PVT#3, respectively. In general, the errors are very 

low. The oil production rate is the parameter that usually presented the highest deviation, 

as it was observed in the miscible displacement networks. It is noted that oil rate at t4 

seems to be the parameter with the highest error in most cases. This is not unexpected as 

the oil production rate has a change in its slope, which occurs when the injected water 

breaksthrough.  

 

Table 5-14:  Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#1, Water 
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
t1 1.05 1.47 1.73 1.40 1.45 1.27 1.92 1.83 
t2 1.04 1.46 1.79 1.38 1.48 1.34 1.94 1.95 
t3 1.04 1.42 1.92 1.37 1.45 1.29 1.79 1.95 
t4 1.07 1.47 1.83 1.37 1.41 1.32 1.87 1.86 
t5 1.04 1.42 1.66 1.38 1.43 1.32 1.80 2.00 

AT 1.05 1.43 1.68 1.36 1.54 1.32 1.88 1.94 
qt@ET 1.10 1.42 2.38 0.99 2.21 1.65 2.16 1.18 
qtt1 1.16 1.49 1.95 1.40 1.45 1.45 2.28** 2.14** 
qtt2 1.04 1.45 1.56 1.38 1.27 1.39 2.21 2.12 
qtt3 0.92 1.37 1.71 1.26 1.27 1.21 2.07 2.01 
qtt4 0.77 1.12 1.72 1.14 1.33 1.13 2.00 1.92 
qtt5 0.69 1.07 1.66 1.20 1.19 1.05 2.02 1.90 
qtAT 0.65 0.94 1.74 1.10 1.04 1.00 1.95 1.73 

qo@ET 1.24 1.51 2.99** 1.21 3.06 1.65 2.08 1.27 
qot1 0.62 0.79 1.44 0.93 1.18 0.91 1.79 0.75* 
qot2 0.59 0.71 1.75 0.68 2.10 1.14 1.52 0.88 
qot3 1.14 1.45 2.32 1.14 2.45 1.24 1.71 0.95 
qot4 2.57** 2.55** 2.67 1.63** 3.21** 2.25** 1.42 0.94 
qot5 1.85 2.29 1.76 1.60 2.65 1.72 1.54 1.28 
qoAT 0.31* 0.42* 0.74* 0.65* 0.46 0.48* 0.74* 0.50 

Oil Rec. 0.67 0.89 1.15 0.94 1.03* 0.85 1.48 1.68 
*:   Best Parameter 
**: Worst Parameter 
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Table 5-15:  Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#2, Water 
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
t1 2.51 4.70 2.46 2.17 3.04 4.38 1.41 1.45 
t2 2.51 4.73 2.46 2.20 2.93 4.24 1.35 1.09 
t3 2.52 4.84 2.48 2.21 2.98 4.24 1.35 0.99 
t4 2.49 4.85 2.53 2.27 3.01 4.10 1.39 0.95 
t5 2.58 4.73 2.44 2.25 2.95 4.25 1.37 0.97 

AT 2.50 4.79 2.42 2.19 2.97 4.21 1.38 0.94 
qt@ET 2.33 3.86 2.85 2.34 2.23 3.21 2.31 1.92 
qtt1 1.99 3.90 2.91 1.89 2.67 4.05 1.99 1.84 
qtt2 2.15 3.71 2.99 1.69 2.41 3.75 1.55 1.18 
qtt3 2.25 3.49 2.72 1.62 2.28 3.42 1.44 0.96 
qtt4 2.26 3.05 2.48 1.43 2.08 3.06 1.37 0.85 
qtt5 2.03 2.81 2.29 1.34 1.95 3.01 1.29 0.85 
qtAT 1.99 2.94 2.23 1.50 2.08 2.91 1.24 0.77 

qo@ET 3.13 4.47 3.64 3.85 3.12 4.15 2.88** 2.46 
qot1 2.73 4.96 3.35 3.04 2.95 3.45 2.55 2.55** 
qot2 3.25 4.55 2.99 2.45 3.86 3.77 1.53 1.26 
qot3 4.16 6.36 3.92 3.47 5.34 5.44 1.69 1.42 
qot4 7.89** 11.79** 6.94** 5.99** 9.49** 12.26** 1.96 1.63 
qot5 5.06 6.67 6.84 5.29 6.56 5.77 3.25 2.47 
qoAT 5.54 9.19 4.40 3.89 8.78 7.97 1.47 1.41 

Oil Rec. 1.66* 2.56* 1.72* 1.14* 1.80* 2.44* 0.91* 0.64* 
*:   Best Parameter 
**: Worst Parameter 
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Table 5-16:  Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#3, Water 
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
t1 0.77 1.47 1.22 1.11 1.07 1.51 2.22 1.74 
t2 0.76 1.39 1.17 1.10 1.08 1.57 2.20 1.48 
t3 0.79 1.36 1.18 1.08 1.07 1.47 2.19 1.48 
t4 0.77 1.36 1.21 1.05 1.10 1.51 2.21 1.51 
t5 0.80 1.36 1.18 1.11 1.10 1.49 2.19 1.48 

AT 0.79 1.37 1.19 1.08 1.11 1.49 2.18 1.55 
qt@ET 0.94 1.55 1.47 1.50 1.06 1.50 1.92 1.74 
qtt1 1.01 1.56 1.51 1.41 1.15 1.48 2.26** 2.37** 
qtt2 0.77 1.47 1.19 1.18 0.92 1.26 2.19 1.71 
qtt3 0.67 1.29 1.07 1.08 0.74 1.16 2.08 1.55 
qtt4 0.61 1.28 0.86 0.86 0.59 0.92 2.08 1.44 
qtt5 0.60 1.26 0.88 0.86 0.51 0.82 2.06 1.32 
qtAT 0.57* 1.22 0.84 0.80* 0.49 0.86 2.03 1.32 

qo@ET 0.97 1.89** 1.77 1.72 1.50 1.67 2.00 2.15 
qot1 0.86 1.07 1.41 1.45 0.87 1.22 1.67 1.27 
qot2 0.94 1.16 1.14 1.46 0.94 1.20 1.62 1.15 
qot3 1.25 1.76 1.57 1.37 1.57 1.69 1.75 0.91 
qot4 1.86** 1.73 1.88** 1.43 3.57** 2.34 1.40 1.05 
qot5 1.49 1.46 1.57 1.80** 2.10 2.53** 1.68 1.40 
qoAT 0.61 0.72* 0.75* 0.91 1.00 0.74 0.84* 0.71* 

Oil Rec. 0.46 1.12 0.78 0.86 0.47* 0.66* 1.50 1.16 
*:   Best Parameter 
**: Worst Parameter 
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5.1.5 Network for Steam Injection Processes 

Steam injection projects are the most complex IOR methods covered in the 

present study. Hence, the artificial neural networks developed for this recovery process 

are also the most challenging proxy models. In addition to the input parameters used in 

waterflooding, this network also incorporates the injection temperature as one of the 

design parameters. Pressure and temperature injection are the most crucial independent 

variables for the proper reservoir modeling Together, they control the steam quality. 

Therefore, this independent variable is included as one of the network’s inputs.  

In a real field application, steam is not injected above its critical pressure due to 

economical constraints, as compression of steam above its critical pressure becomes too 

expensive. A given hydrocarbon fluid similar to PVT#1 won’t be a possible candidate for 

steam injection since its initial pressure, 5000 psia, is way above the critical water 

pressure, 3208.2 psia. Then, a reservoir model for PVT#1 undergoing steam injection is 

not built. The initial pressure of reservoirs holding PVT#2 and PVT#3, 3000 psia, is very 

close to the water critical pressure. Although that leads to a narrow range of injection 

pressures, steam injection was still applied to these fluids for comparison purposes 

against miscible displacement and waterflooding methods.  

Table 5-17 shows the data limits used in the development of the networks for 

PVT#2 and PVT#3. It is noted that this IOR recovery method involves 11 independent 

variables. It is not feasible to apply a 3-level design to all parameters as it would require 

311=177147 minimum number of characteristic cases. In order to use the design of 

experiment protocol with full factorial, different design levels were implemented. The 3-
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level design was applied only to the injection temperature and pressure as they are the 

most critical parameters. A 2-level design was applied to the other independent variables. 

As in waterflooding, the constant Coil was tied to Cgas to reduce the number of 

independent variables. Moreover, Swirr was tied to So to reduce even further the number 

independent variables to 9. With this approach, the minimum number of required cases is 

27*32=1152 cases. In addition, 848 random cases were modeled for each batch. In total, 

2000 cases were modeled for each steam injection network. The proxy models were 

trained with 1800 data sets, 100 cases were used for validation and 100 cases were used 

for testing. 

 

 

The same network architecture used in the previous recovery methods was used 

for steam. Initially, the same inputs as in waterflooding were used together with injection 

temperature. However, the network performance was poor. The previous input networks 

Table 5-17:  Data Limits for ANN – PVT#2 & PVT#3 under Steam Injection Process 

Batch 1, Area<=100 acres Batch 2, Area> 100 acres Input 
min mid max min mid max 

Area (acres) 60 - 100 150 - 300 
Kx=Ky (md) 10 - 100 200 - 500 

h (ft) 50 - 200 50 - 200 
Porosity (%) 15 - 40 20 - 40 

Swirr (fraction) 0.15 - 0.3 0.15 - 0.3 
Sor (fraction) 0.15 - 0.4 0.15 - 0.4 

Coil (dimensionless) 0.5 - 4 0.5 - 4 
Cgas (dimensionless) 0.1 - 0.3 0.1 - 0.3 

ΔTemp (F) 30 45 60 30 45 60 
PProd (psia) 2000 - 2500 2000 - 2500 PVT#2 & 3 

(Pi=3000 
psia) PInj (psia) 3100 3150 3200 3100 3150 3200  
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provided an excellent description of the flow in porous media transport, but they did not 

account for the heat transport phenomena. More inputs were required due to the 

complexity of the IOR method under study. Figure 5-30 shows a schematic of the 

developed structure.  

 

 

The design parameters now include injection temperature, saturation temperature, 

and the temperature difference between these two values (ΔTemp). Additionally, enthalpy 

values of vapor, liquid and injection conditions are provided (Hvapor, Hliquid, H@Tinj). New 

functional links were incorporated. Those are temperature gradient between the injector 

 

 
Figure 5-30: Network Architecture for Steam Injection Projects 
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and producer, the product of injection temperature and injection pressure, and two 

functions derived from the independent inputs.  Function 1, shown in Eq. 5.1, resembles 

Darcy’s Law but uses temperature difference instead of pressure. 

The second function, shown in Eq. 5.2, resembles an equation of state where the 

reservoir volume is used instead of fluid volume.  

 

 

Figure 5-31 shows the best and worst predicted oil production curves while 

testing the network 4-spot, PVT#2 under steam injection. The worst profile showed an 

error of 4 % while the average oil profile curve’s error was 2 %. The characteristic 
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Figure 5-31: Best and Worst Production Profiles Built using Stage-2 Network: Steam 
Injection, PVT#2, 4-Spot. Batch 1 (Small Areas) 
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profiles generated while testing the rest of the steam injection networks for PVT#2 and 

PVT#3 are shown in Appendix C. 

Table 5-18 and Table 5-19 shows the absolute error of the predicted parameters 

using for PVT#2 and PVT#3. In general, among the predicted parameters the highest 

deviation was displayed by oil production rate. 

 

 

Table 5-18: Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#2, Steam 
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
t1/3 1.13 0.77 1.19 0.98 1.70 1.11 1.74 1.78 
t1 1.05 0.74 1.21 0.80 1.44 1.03 1.72 1.71 
t2 1.01 0.76 1.33 0.87 1.59 1.04 1.68 1.67 
t3 1.06 0.70 1.24 1.11 1.72 1.06 1.70 1.77 
BT 1.08 0.78 1.35 1.01 1.62 1.08 1.90 1.72 
AT 1.05 0.81 1.33 1.00 1.45 0.84 1.54 2.61 

qt@ET 0.52* 0.31* 0.73* 0.50* 0.73* 0.47* 0.75* 0.58* 
qtt1/3 1.36 1.02 1.81 1.28 1.93 1.45 1.95 1.80 
qtt1 1.11 0.97 1.59 1.09 2.10 1.19 2.68 2.65 
qtt2 0.96 0.67 1.23 0.85 1.50 1.07 1.94 1.82 
qtt3 0.81 0.64 1.33 0.77 1.31 0.94 1.42 1.46 
qtBT 0.63 0.58 0.91 0.68 1.11 0.70 0.83 0.73 
qtAT 0.77 0.48 1.06 0.68 1.27 0.83 1.03 0.85 

qo@ET 0.49 0.28 0.70 0.41 0.91 0.54 0.62 0.60 
qot1/3 3.63 2.76 4.41 3.61 4.78 3.47 5.89 4.67 
qot1 2.55 1.55 1.95 1.41 3.17 2.06 3.54 2.73 
qot2 1.72 1.20 1.79 1.37 2.31 1.52 2.16 1.79 
qot3 2.44 1.62 2.27 2.01 2.88 1.66 4.97 3.53 
qoBT 9.84** 5.38** 17.24** 7.67** 14.31** 10.34** 18.15** 15.09** 
qoAT 4.75 3.61 7.85 5.06 6.61 3.83 4.21 3.13 

*:   Best Parameter 
**: Worst Parameter 
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The network architecture for PVT#4 is very similar to the architecture developed 

for PVT#2 and PVT#3. The only difference is that an additional functional link was 

incorporated into the input layer. The third functional link is given by Eq. 5.3: 

 

Table 5-19: Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#3, Steam 
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
t1/3 1.13 0.77 1.19 0.98 1.70 1.11 1.74 1.78 
t1 1.05 0.74 1.21 0.80 1.44 1.03 1.72 1.71 
t2 1.01 0.76 1.33 0.87 1.59 1.04 1.68 1.67 
t3 1.06 0.70 1.24 1.11 1.72 1.06 1.70 1.77 
BT 1.08 0.78 1.35 1.01 1.62 1.08 1.90 1.72 
AT 1.05 0.81 1.33 1.00 1.45 0.84 1.54 2.61 

qt@ET 0.52 0.31 0.73 0.50 0.73* 0.47* 0.75 0.58 
qtt1/3 1.36 1.02 1.81 1.28 1.93 1.45 1.95 1.80 
qtt1 1.11 0.97 1.59 1.09 2.10 1.19 2.68 2.65 
qtt2 0.96 0.67 1.23 0.85 1.50 1.07 1.94 1.82 
qtt3 0.81 0.64 1.33 0.77 1.31 0.94 1.42 1.46 
qtBT 0.63 0.58 0.91 0.68 1.11 0.70 0.83 0.73 
qtAT 0.77 0.48 1.06 0.68 1.27 0.83 1.03 0.85 

qo@ET 0.49* 0.28* 0.70* 0.41* 0.91 0.54 0.62* 0.60* 
qot1/3 3.63 2.76 4.41 3.61 4.78 3.47 5.89 4.67 
qot1 2.55 1.55 1.95 1.41 3.17 2.06 3.54 2.73 
qot2 1.72 1.20 1.79 1.37 2.31 1.52 2.16 1.79 
qot3 2.44 1.62 2.27 2.01 2.88 1.66 4.97 3.53 
qoBT 9.84** 5.38** 17.24** 7.67** 14.31** 10.34** 18.15** 15.09** 
qoAT 4.75 3.61 7.85 5.06 6.61 3.83 4.21 3.13 

*:   Best Parameter 
**: Worst Parameter 
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Table 5-20 shows the data limits used in the generation of the data sets. The 

maximum injection pressure was set as 1400 psia. A higher limit could have been used 

but that would lead to too high injection temperatures, which are not feasible. 

 

 

Figure 5-32 shows the best and worst oil profile obtained while testing the 

network. The worst profile presented an error of 8%, while the average error for all oil 

production prediction was 3.6%. 

Table 5-20: Data Limits for ANN – PVT#4 under Steam Injection Process 

Batch 1, Area<=100 acres Batch 2, Area> 100 acres Input 
min mid max min mid max 

Area (acres) 1 - 5 1 - 15 
Kx=Ky (md) 500 - 2500 5000 - 15000 

h (ft) 20 - 200 20 - 200 
Porosity (%) 20 - 40 20 - 40 

Swirr (fraction) 0.15 - 0.35 0.15 - 0.35 
Sor (fraction) 0.2 - 0.4 0.2 - 0.4 

Coil (dimensionless) 0.5 - 4 0.5 - 4 
Cgas (dimensionless) 0.1 - 0.3 0.1 - 0.3 

dTemp (F) 30 45 60 30 45 60 
PProd (psia) 600 - 900 600 - 900 PVT#4 

(Pi=1000 
psia) PInj (psia) 1100 1250 1400 1100 1250 1400  
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Table 5-21 summarizes the absolute errors per parameter obtained while testing 

the network with PVT#4 undergoing steam injection. In general, the early time (ET) is 

the parameter that presented the highest deviation. This is because ET was extracted from 

the numerical simulator at the minimum oil production rate after the well is put on 

production. There was no other simulator output that helped to validate this value.  
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Figure 5-32: Best and Worst Production Profiles Built using Steam Injection Network,
PVT#4, 4-Spot. Batch 1 (Small Areas) 
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Table 5-21: Absolute Error Per Predicted Parameter. Stage-2 Network, PVT#4, Steam 
Injection 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
ET 13.96** 10.12** 9.27** 8.75** 11.69** 12.90** 19.50 16.47** 
BT 2.89 3.47 4.10 4.27 3.22 7.56 5.27 4.06 
t1 1.99 2.31 2.24 4.25 2.54 5.74 3.56 3.22 
t2 2.01 2.29 2.24 3.56 3.49 6.25 3.77 3.06 

SBT 1.76 2.33 1.97 4.91 2.95 7.19 4.13 3.32 
t3 2.37 1.99 1.50 3.69 2.68 4.70 3.31 2.25 

AT 2.89 2.20 1.38 3.79 2.80 4.94 3.28 2.04 
qt@ET 10.59 8.37 7.75 8.51 10.44 12.20 19.99** 15.52 
qtBT  4.58 4.32 5.26 6.13 5.22 7.17 5.82 3.35 
qtt1 2.01 2.25 1.70 3.40 2.07 6.28 3.16 2.35 
qtt2 2.21 1.85 1.42 3.67 3.30 7.35 3.68 3.15 

qtSBT 2.11 2.27 1.74 3.61 1.98 6.48 3.99 2.92 
qtt3 1.64 1.22 1.00 2.60 1.91 3.43 2.04 1.69 
qtAT 1.25* 1.22* 0.97* 2.29 1.56 3.19 1.45* 2.53 

qo@ET 3.10 3.35 2.47 4.32 3.81 5.38 3.02 2.94 
qoBT  1.36 1.28 1.28 1.57* 1.53* 3.19* 3.37 1.27* 
qot1 2.35 2.21 1.77 2.72 2.04 4.78 2.40 2.07 
qot2 2.32 2.55 2.21 2.34 2.56 4.22 2.30 2.15 
qoBT 3.87 4.14 4.15 4.04 3.13 5.57 4.18 4.41 
qot3 4.22 5.12 2.35 5.83 3.31 6.43 6.63 4.63 
qoAT 7.07 2.78 2.26 3.94 3.75 6.14 2.29 3.39 

*:   Best Parameter 
**: Worst Parameter 
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5.1.6 Relevancy of Inputs to the Developed Networks for the Screening Tool-Box 

Different inputs have been used in the development of the networks for the 

screening tool-box. It is always desirable to determine which inputs parameters have the 

highest impact on the network performance, especially when few data is available or the 

available reservoir model presents some uncertainties. 

The relevancy of the input parameters to the different networks is obtained 

directly from the weight values of the input layer. The larger the input layer weight, the 

higher the connection between the inputs and the network. This connection can be 

observed graphically by using the Hinton plot, as shown in Figure 5-33. 

 

 

On the white background, each square's area represents a weight's magnitude. 

Each column represents the weights connecting each input with the neurons in the first 

layer. Usually, the neurons in each column have similar connecting weights as it can be 
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Figure 5-33: Hinton Graphs for Screening Tool-Box’s Networks 
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seen in Figure 5-33. The biases are shown in the first column with blue background. Each 

red square represents a negative value while the green color denotes a positive value.  

The relevancy of the inputs can be determined by adding the absolute values of 

the weights corresponding to that input. That is, the values of the weights per column. 

The input with the highest summed weight value is the one that has the highest impact on 

the network, while the input with the lowest summed value has the lowest impact. 

The weights of all networks were ranked in a descending order so that the value 

of 1 corresponds to the input with the highest impact. Table 5-22 shows the sorting of the 

weights per input parameter for each CO2 injection network as well as the average sorting 

of all CO2 injection networks. In general, the product kh has the lowest relevancy while 

the pressure gradient between the injector and the producer has the highest relevancy. 

Although the functional links helped to improve the performance of the networks, it is 

more useful for the reservoir engineer to sort only the rock and fluid properties since 

these are the parameters that are input into the tool-box. The reservoir properties sorted in 

descending order of relevancy for CO2 injection process are injection pressure, 

production pressure, permeability, area, porosity and thickness. 
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Table 5-23 shows the sorting of the weights per input parameter for each N2 

injection network as well as the average sorting of all N2 injection networks. The most 

and least relevant inputs are the same as in the CO2 injection networks: injection pressure 

and the kh product. The reservoir properties organized in descending order of relevancy 

for N2 injection process are injection pressure, production pressure, permeability, 

thickness, area and porosity. 

 

Table 5-22: Sorting of Weights for CO2 Injection Networks  
Input Parameter PVT Spot Size Area Pprod Pinj K h poro di-i di-p Pgrad Pgrad2 K*h 

Large 8 3 2 4 6 10 7 9 1 - 5 4 Small 7 3 2 4 6 5 9 8 1 - 10 
Large 7 3 2 6 4 10 8 9 1 - 5 5 Small 5 3 2 4 10 8 6 7 1 - 9 
Large 9 2 3 6 4 7 8 - 1 - 5 7 Small 5 2 3 8 6 9 4 - 1 - 7 
Large 7 4 3 11 9 5 8 6 1 2 10 

#1 

9 Small 10 4 1 5 6 11 8 9 2 3 7 
Large 6 3 2 5 9 4 8 7 1 - 10 4 Small 7 4 2 3 9 10 8 6 1 - 5 
Large 7 3 2 5 9 4 8 6 1 - 10 5 Small 9 3 2 4 10 5 7 8 1 - 6 
Large 5 3 2 7 8 6 4 - 1 - 9 7 Small 6 4 3 5 8 2 7 - 1 - 9 
Large 8 4 3 5 10 6 9 7 2 1 11 

#2 

9 Small 9 4 1 10 5 11 8 7 2 3 6 
Large 6 2 3 4 8 9 5 7 1 - 10 4 Small 6 2 3 4 10 5 8 7 1 - 9 
Large 4 3 2 7 10 8 5 6 1 - 9 5 Small 7 5 3 2 10 4 6 8 1 - 9 
Large 4 3 2 6 8 7 5 - 1 - 9 7 Small 6 3 2 4 9 7 5 - 1 - 8 
Large 7 4 1 11 6 5 8 9 2 3 10 

#3 

9 Small 7 4 1 6 10 5 8 9 2 3 11 
Average Sorting 6 4 2 5 10 7 8 9 1 3 11  
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Table 5-24 shows the sorting of the weights per input parameter for each 

waterflooding network as well as the average sorting of all waterflooding injection 

networks. The most relevant inputs are the Coil coefficient for the capillary pressure 

curves and the pressure gradient between the injector and the producer. The parameters 

with the lowest impact on the network are the porosity and the distances between the 

wells. The reservoir properties arranged in descending order of relevancy for water 

injection process are Coil coefficient, production pressure, thickness, residual oil, 

Table 5-23: Sorting of Weights for N2 Injection Networks 
Input Parameter PVT Spot Size Area Pprod Pinj K h poro di-i di-p Pgrad Pgrad2 K*h 

Large 6 2 3 8 4 10 7 5 1 - 9 4 Small 6 2 3 4 8 9 7 5 1 - 10 
Large 9 2 3 5 4 6 8 10 1 - 7 5 Small 8 6 2 5 3 4 9 10 1 - 7 
Large 4 6 2 9 3 7 5 - 1 - 8 7 Small 5 4 3 2 7 9 6 - 1 - 8 
Large 8 4 3 6 5 10 9 7 2 1 11 

#1 

9 Small 11 6 5 4 3 7 9 10 2 1 8 
Large 6 3 2 7 9 8 5 4 1 - 10 4 Small 6 3 2 4 10 5 7 8 1 - 9 
Large 8 3 1 5 6 4 9 7 2 - 10 5 Small 8 3 1 4 6 5 10 9 2 - 7 
Large 5 3 2 4 7 9 6 - 1 - 8 7 Small 6 4 2 3 9 7 5 - 1 - 8 
Large 6 4 3 8 9 10 7 5 1 2 11 

#2 

9 Small 6 2 9 3 10 1 7 8 4 5 11 
Large 6 3 1 9 8 4 7 5 2 - 10 4 Small 8 3 1 4 6 7 10 9 2 - 5 
Large 8 3 1 5 4 10 9 7 2 - 6 5 Small 8 3 1 4 6 10 7 9 2 - 5 
Large 4 3 1 6 7 8 5 - 2 - 9 7 Small 7 3 1 4 9 5 6 - 2 - 8 
Large 5 4 1 8 9 10 6 7 3 2 11 

#3 

9 Small 6 4 1 10 5 11 7 8 3 2 9 
Average Sorting 7 4 3 5 6 9 8 10 1 2 11  
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saturation, injection pressure, permeability, area, irreducible water saturation and 

porosity. 

 

 

Table 5-25 shows the sorting of the weights per input parameter for each steam 

injection network. Since the sorting of the weights for the heavy oil networks was 

significantly different from PVT2 and PVT3 networks, two values of average sorting 

were calculated, one comprising all heavy oil networks (PVT4) and one for all black oil 

and light oil networks (PVT2 and PVT3). It was expected that the inputs in the heavy oil 

Table 5-24: Sorting of Weights for H2O Injection Networks 
Input Parameter 

PVT Spot Size 
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Large 8 4 13 11 1 12 7 6 2 10 9 5 - 3 4 Small 12 2 10 6 5 9 7 4 1 13 11 3 - 8 
Large 7 5 13 9 2 11 12 10 1 8 6 4 - 3 5 Small 10 2 9 4 13 5 6 3 1 12 11 8 - 7 
Large 9 5 11 10 2 7 12 6 1 8 - 4 - 3 7 Small 10 4 11 7 2 12 8 6 1 9 - 3 - 5 
Large 12 4 13 8 1 14 9 7 2 10 11 6 5 3 

1 

9 Small 10 2 13 7 8 5 9 6 1 12 11 3 4 14 
Large 8 4 2 12 5 13 11 10 3 7 9 1 - 6 4 Small 9 3 2 11 5 13 12 6 4 10 8 1 - 7 
Large 9 4 2 8 5 13 12 7 3 11 10 1 - 6 5 Small 11 2 4 6 13 7 8 5 3 10 12 1 - 9 
Large 8 5 3 11 4 12 10 9 1 7 - 2 - 6 7 Small 7 3 2 10 5 12 11 6 4 8 - 1 - 9 
Large 9 5 7 12 2 14 13 8 1 10 11 3 4 6 

2 

9 Small 14 4 2 9 11 7 8 3 1 12 13 6 5 10 
Large 7 3 13 9 4 10 12 11 1 6 8 2 - 5 4 Small 12 4 6 7 3 10 9 5 1 13 11 2 - 8 
Large 7 9 11 12 2 13 10 8 1 6 5 3 - 4 5 Small 12 4 9 2 8 7 10 6 1 11 13 3 - 5 
Large 9 2 5 11 3 12 8 7 1 10 - 4 - 6 7 Small 10 5 4 9 2 12 8 6 1 11 - 3 - 7 
Large 10 5 14 8 2 13 12 3 1 9 11 6 7 4 

3 

9 Small 11 9 4 3 14 5 8 2 1 13 12 6 7 10 
Average Sorting 10 3 8 9 4 14 11 6 1 12 13 2 5 7  
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networks have different relevancies than the black oil and light oil networks undergoing 

steam injection since steam breakthrough was not observed in the black oil or volatile oil 

systems. 

 

 

The reservoir properties listed in descending order of relevancy for the light and 

black oil networks are thickness, injection pressure, production pressure, area, porosity, 

Table 5-25: Sorting of Weights for Steam Injection Networks 
Input Parameter 
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S 14 8 10 19 4 13 17 16 21 18 12 9 5 6 7 3 15 2 11 20 1 - 4 L 8 13 11 17 5 15 20 16 21 18 12 10 4 6 7 2 9 3 14 19 1 - 
S 10 4 14 20 5 13 18 16 21 17 11 9 6 7 8 3 12 2 15 19 1 - 5 L 10 9 13 20 6 16 19 18 21 14 12 5 7 8 4 3 11 2 17 15 1 - 
S 15 5 9 20 4 14 16 17 21 18 11 10 7 6 8 2 13 3 12 19 1 - 7 L 13 4 11 19 9 17 18 15 21 12 7 10 6 8 5 3 16 2 20 14 1 - 
S 14 12 7 20 5 11 18 15 21 17 8 6 10 9 3 4 16 2 13 19 1 - 

2 

9 L 9 12 13 19 11 14 20 17 21 15 7 6 5 8 4 3 10 2 18 16 1 - 
S 10 13 5 20 3 11 17 19 21 16 6 14 7 9 8 4 15 2 12 18 1 - 4 L 9 13 11 19 7 14 18 20 21 16 10 8 5 4 6 3 12 2 15 17 1 - 
S 16 11 8 20 5 14 19 18 21 12 10 4 7 6 9 3 17 2 13 15 1 - 5 L 12 17 8 20 4 19 18 15 21 11 10 7 6 9 5 3 13 2 16 14 1 - 
S 19 8 10 20 5 17 14 18 21 11 12 6 7 9 4 3 13 1 16 15 2 - 7 L 14 16 10 20 4 19 18 17 21 11 9 6 5 7 8 3 12 2 15 13 1 - 
S 15 13 8 19 4 11 16 18 21 12 10 5 7 9 6 3 20 2 14 17 1 - 

3 

9 L 9 16 10 18 7 15 14 13 21 19 8 12 5 3 6 4 11 2 17 20 1 - 
Average 12 11 10 20 4 14 19 17 21 15 9 8 6 7 5 3 13 2 16 18 1 12 

 
S 12 8 18 11 13 10 2 1 14 6 15 17 4 3 7 5 16 22 20 19 21 9 4 L 17 8 15 16 19 10 2 1 9 7 14 11 3 5 6 4 18 20 21 12 22 13
S 10 8 16 12 13 11 2 1 9 6 18 14 5 4 7 3 15 20 21 17 22 195 L 15 9 10 13 20 18 2 1 11 4 16 12 7 6 5 3 8 19 21 14 22 17
S 14 8 17 10 12 9 3 2 11 7 18 15 4 1 5 6 19 21 20 16 22 137 L 18 8 9 15 14 12 2 1 17 3 13 10 5 7 4 6 22 19 21 11 20 16
S 12 8 14 11 17 15 1 2 9 7 13 16 6 3 4 5 19 21 20 18 22 10

4 

9 L 16 5 14 13 15 9 1 2 10 8 18 12 7 6 3 4 19 21 20 17 22 11
Average 15 8 14 11 16 10 2 1 9 7 18 12 5 3 6 4 19 20 21 17 22 13 

*Size: S=small, L=large 
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injection temperature, residual oil saturation, irreducible water saturation, permeability 

and Coil coefficient. The reservoir properties sorted in descending order of relevancy for 

the heavy oil models undergoing steam injection are residual oil saturation, irreducible 

water saturation, injection temperature, production pressure, Coil coefficient, porosity, 

thickness, injection pressure, area and thickness. 

5.1.7 User Interface Screening Tool-box 

A total of 96 artificial neural networks were developed in order to forecast the 

performance of various hydrocarbon reservoirs under diverse operating conditions. These 

networks were trained and tested with data not exposed to the ANNs beforehand. In order 

to access easily all developed networks, it is necessary to provide a user-network 

interface. When all networks are integrated into a single application, we create a powerful 

screening tool-box for diverse IOR recovery methods. 

 

 

Figure 5-34: User Interface for Screening Tool-box 
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Figure 5-34 shows the principal panel of the developed screening tool-box. The 

interface organizes conveniently the networks and provides a flexible way to forecast oil 

production for new reservoirs, as long as the input parameters are within the data ranges 

used to train the networks. The panel shows graphically the selected well pattern and 

fluid phase envelope. However, more details of the fluid composition are provided in the 

PVT tab.  Figure 5-35 shows the details for fluid #3. 

 

 

Relative permeability and capillary pressure panel becomes available only if 

either waterflooding or steam injection methods is selected. If the steam injection option 

is selected, the interface determines the saturation temperature for the given injection 

pressure. The injection temperature is then entered by the user as a gradient above the 

saturation value.  When the user enters an out-of-range value, the corresponding box is 

colored in yellow, as shown in Figure 5-34. If the user clicks on the calculate bottom 

 

 
Figure 5-35:  Fluid Details in the Screening Tool-box 
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while one or more variables are out of range, the interface pops up an error message as 

shown in Figure 5-36. 

 

 

Similarly, a message pops up if the selected combination of PVT/IOR method 

corresponds to a network that was not built-in the tool-box. Figure 5-37 shows the 

message for a 4-spot, PVT#4 and CO2 injection.  

 

 

 

 
Figure 5-36: Error Message for Out-of-Range Inputs 

 

 
Figure 5-37:  Error Message for Non-Existing Networks 
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If all inputs are in-range, the tool-box predicts the expected oil production. The 

predicted profiles are plotted using the forecast parameters. In addition, these parameters 

are shown in a table that can easily copy into the clipboard.  Figure 5-38 shows an 

example of the graphical output. 

 

 

 

 

 

 

 

 

 

 
Figure 5-38: Screening Tool-box Graphical Output  
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5.2 Networks for the IOR Project Design Tool-box 

In this section, an artificial neural network tool-box is constructed to provide the 

reservoir engineer with guidelines for possible project design parameters. This tool-box is 

based on the inverse of the problem studied in the screening tool-box, where the 

appropriate field development plan is predicted on the basis of the desired oil recovery 

and natural reservoir characteristics of a given field.  

The tool-box is a user interface that calls the appropriate ANN to predict the 

development plan from the characteristics of the reservoir. The diverse networks inside 

the tool were designed for a given fluid type, IOR process and well pattern (similar to the 

screening tool-box’s networks). This second application of neuro-simulation uses the 

same data sets generated for the screening tool-box. At the end, 96 individual networks 

are trained, one for each batch of input data generated for the forward application.  

Figure 5-39 shows a schematic of how the inverse tool works. The inputs are the 

expected total recovery, abandonment time and reservoir natural characteristics, which 

are the permeability, porosity, thickness and fluid type. The parameters for the relative 

permeability curves and capillary pressure are also requested for predictions using water 

and steam injection methods. The outputs are the field development plan, which consists 

of the design parameters that are under control of the reservoir engineer. These 

parameters comprise the operation pressures at the wells, well spacing and well pattern. 

Given that the networks are trained per fluid type/IOR process/well pattern combination, 

the recovery method must be provided as an input to the tool-box. Different areas are 

evaluated internally in the ANN tool. The bottom hole pressures are calculated for all 
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possible combinations of user inputs, areas and well patterns. The optimum case per well 

pattern is selected by the tool-box, which is the case that requires the lower injection 

pressure. When the selected IOR method is steam injection, different temperatures and 

areas are evaluated internally and the outputs include the injection temperature associated 

to the optimum predicted case. 

 

 

 

Figure 5-39: ANN Tool-box for IOR Project Design 
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The inputs and outputs of the networks are not the same as those of the tool-box. 

Since an evaluation of different areas is performed by the interface, area must be an input 

to the network as part of the reservoir properties and ultimate recovery. On the other 

hand, the network outputs are only required to provide the injection and production 

pressure. The interface provides not only pressures but area for each well pattern. 

5.2.1 Miscible Displacement Networks 

A simple network was initially developed for CO2 injection processes. The 

architecture, shown in Figure 5-40, is simpler than the one used in the forward 

application. The network consists of 7 inputs: the desired oil recovery, the life time of the 

project or abandonment time, permeability, porosity, thickness and area. Also, the kh 

product was fed to the network as a functional link. The logarithmic functional link was 

applied to all inputs and outputs since it helped to improve the network’s performance in 

the forward application. 

 The network was designed using a multilayer cascade feedforward back 

propagation (newcf) with Levenberg-Marquardt training function (trainlm) and gradient 

descent with momentum weight and bias learning function (learngdm). The first hidden 

layer required 20 neurons and the second 10 neurons. 

Similar as in the IOR screening tool-box, each network is trained with 1000 input 

data-set. They are divided into three groups: 800 for training, 100 for testing and 100 for 

validation. 
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Figure 5-41 shows the results of training and testing of the networks for a 4-spot 

pattern using small areas (batch 1) for PVT#1 undergoing CO2 injection. The areas 

evaluated for this batch goes from 60 to 100 acres, with increments of 10. The 

correlations between the actual and predicted pressures were colored according to the 

area values. This particular network predicted pressure with low errors and the 

correlation between predicted and actual pressures is slightly scattered.  

Similar networks were constructed for 5-spot, 7-spot and 9-spot, PVT#1, 

undergoing CO2 and N2 injection. Figure 5-42 shows the correlation between actual and 

predicted pressures in the testing phase, and it is clear that some predictions present high 

dispersion. For example, the correlation for production pressure in the network of 9-spot 

 

 
Figure 5-40: First Network Architecture for Field Development Plan  
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with CO2 injection is highly scattered.  The analysis of the correlations suggests that 

some networks have a poor performance. 
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Figure 5-41: Inverse Network. 4-Spot, CO2 Injection, PVT#1. Batch 1 (Small Areas) 
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Although the networks for the inverse application seemed simpler than the 

developed in the screening tool-box since they predict only two outputs, in reality, they 

are more complex. The forward networks proved that it is possible to capture the 

relationship between the entire oil production profile data and the rock properties, fluid 
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Figure 5-42: Correlation Between Actual and Predicted Pressures. CO2 and N2 Injection, 
PVT#1, Batch 1 (Small Areas) 
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properties and design parameters. In the inverse network, it was not possible to predict 

the operation pressures when only part of the reservoir performance obtained from the 

numerical simulator is given as inputs.  

 

 

In order to evaluate the influence of the entire oil production curves on the 

prediction of pressures, a new network was built providing the values of time, cumulative 

production and production rate as additional inputs. Figure 5-43 shows the architecture of 

 

 
Figure 5-43:  Second Network Architecture for Field Development Plan 
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this second network. Distances between wells were given as functional links. Also, the 

logarithm function is applied to all inputs and outputs.  
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Figure 5-44: Correlation Between Actual and Predicted Pressures (Testing). Miscible
Displacement, PVT#1, Batch 1 (Small Areas), Second Network. 
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Figure 5-44 shows the pressure correlations obtained with the testing data sets for 

PVT#1 undergoing N2 and CO2 injection. It is obvious that the networks can predict 

accurately the production and injection pressures when the entire oil profile is given as an 

input. In order to establish which inputs have the highest impact on the performance of 

the network, a Hinton graph of weight matrix and bias vector was created. The Hinton 

graphs for PVT#1, batch 1, undergoing CO2 and N2 injection are shown in Figure 5-45.  

 

 

In the Hinton graphs, the inputs with the highest impact correspond to the oil 

production curves. For CO2 injection, inputs 16 to 26 have higher weights, which 

correspond to the cumulative oil production and oil rate values. For N2 injection, the 

inputs with the highest weights are 9 to 31, which correspond to the entire oil production 

parameters as seen in Figure 5-43.  

The observations from the Hinton graphs indicate that oil recovery and 

abandonment time are not sufficient to provide accurate predictions. The complete oil 
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Figure 5-45: Hinton Graphs for Second Inverse Network, batch 1, PVT#1, CO2 and N2
Injection. 
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profile is necessary to incorporate the drive mechanisms involved in the miscible 

displacement processes into the network.  

The objective of designing the inverse tool-box is to recommend diverse field 

development scenarios to the petroleum engineer before the reservoir is produced. Thus, 

the engineer can predict the reservoir performance using the suggested design parameters. 

Nevertheless, it is impossible to have the oil performance as part of the inputs in the 

inverse tool-box. 

A workaround for this problem was to create a series of two networks, where the 

first network predicts the complete oil production profile from the reservoir 

characteristics and the oil recovery, and the second one incorporates the oil profile to 

finally forecast the operation pressures as shown in Figure 5-46. 

 

 

Generating two networks in series duplicates the number of required networks 

from 96 to 192, which may seem as laborious. In reality, building two networks in series 

 

 
Figure 5-46: Schematic of Inverse Network Steps 
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is convenient as it generates the complete oil profiles in a mid stage without the use of the 

forward networks. 

The network architecture of Step 1 is shown in Figure 5-47 while the network 

architecture for Step 2 is the one shown previously in Figure 5-43. 

 

 

Figure 5-48 shows the best and worst predicted parameters obtained from the 

Step-1 network for 4-Spot, PVT#1 with CO2 injection. The error of the worst parameters 

was about 9%, while the average error was about 2%. These results indicate that the 

developed step-1 network effectively provides the complete oil production profile. 

 

 

 
Figure 5-47:  Network Architecture for Field Development Plan – Step 1 

Area 
Production  
Times (6) 

Oil Production 
Rate Values (8)

. 

. 

R
es

er
vo

ir
 

Pr
op

er
tie

s 

k 
h 

AT 

Pr
od

uc
tio

n 
Pr

of
ile

 

1st Hidden Layer:  
20 Neurons 

2nd Hidden Layer:  
10 Neurons 

Output Layer:  
22 Neurons 

Input Layer:  
9 Neurons 

φ 

Dist. inj-prod 
Dist. inj-inj 

k*h 

Oil Rec. 

Fu
nc

tio
na

l 
L

in
ks

 

tansig tansig purelin 

Cumulative Oil 
Production 
Values (8) 



147 

 

 

An important observation is that the most significant inputs in forward networks 

were the pressures. Figure 5-49 shows the Hinton graphs for the forward and inverse 

networks using 4-Spot, PVT#1, Batch 1, CO2 injection. In the forward case, the weights 

with the highest impact on this network are inputs 2, 3 and 9, which correspond to 
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Figure 5-48: Best and Worst Predicted Parameters using Inverse Network, Step-1, Batch 
1, 4-Spot, PVT#1, CO2 Injection. 
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production pressure, injection pressure and pressure gradient between wells. In the 

inverse case, the most influential inputs are 8 and 9, which are the oil recovery and 

abandonment time. This comparison implies that the influence of the pressures is 

overcome by the oil recovery and AT. Furthermore, it is clear that the relationship 

between the oil profile and the oil recovery and AT is stronger than the relationship 

between the operation pressures and the profiles since the inverse network provides 

comparable results with a less number of neurons per layer. Thus, the artificial neural 

networks are able to capture the connection between the diverse oil profile variables 

extracted from the numerical simulator. 

 

 

Table 5-26 summarizes the absolute errors for the 22 predicted parameters for 

PVT#1 under CO2 injection. The response of the network is very similar to the response 

observed in the forward application networks, where the oil production rate values were 

the most difficult variables to predict. 
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Figure 5-49: Comparison of Hinton Graphs in Forward and Inverse Networks: Batch 1, 4-
Spot, PVT#1, CO2 Injection, (small areas). 
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Table 5-27 and Table 5-28 shows the error summary of the predicted pressure 

from the inverse networks developed for CO2 and N2, respectively.  

 

Table 5-26: Absolute Error per Predicted Parameter. Inverse Network – Step-1. PVT#1, 
CO2 Injection. 

Absolute Error (%) 
4-Spot 5-Spot 7-Spot 9-Spot Parameter 

A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 A≤ 100 A> 100 
BT 1.61 1.33 4.09 4.07 4.01 3.95 5.05 6.03 
t1 1.22 0.84 2.75 2.75 2.67 2.73 2.44 2.88 
t2 0.92 0.72 1.92 1.85 1.80 1.80 1.41 1.65 
t3 0.61 0.48 1.21 1.25 1.16 1.16 0.81 1.00 
t4 0.38 0.34 0.82 0.73 0.68 0.74 0.57 0.64 
t5 0.22 0.29 0.36 0.35 0.35* 0.35* 0.28* 0.41* 

qt@ET 2.29 2.76 10.72 8.63 6.00 4.34 6.48 10.51 
qtBT  1.81 1.12 0.71 0.80 1.82 1.94 3.20 3.64 
qtt1 1.31 0.91 1.33 1.44 1.35 1.34 1.89 3.33 
qtt2 0.76 0.58 1.62 1.56 0.75 0.72 2.34 2.63 
qtt3 0.35 0.29* 0.84 0.88 0.44 0.45 1.99 1.84 
qtt4 0.21 0.30 0.59 0.47 0.41 0.48 1.64 1.37 
qtt5 0.27 0.39 0.25 0.40 0.37 0.41 1.29 1.18 
qtAT 0.18* 0.29 0.24* 0.31* 0.38 0.49 1.23 1.24 

qo@ET 2.13 2.61 8.95 6.18 5.42 3.79 4.85 8.68 
qoBT  0.64 0.93 3.86 4.14 2.97 2.76 3.57 5.17 
qot1 1.35 1.61 3.97 4.38 2.19 2.65 10.21** 12.49** 
qot2 9.18** 10.46** 8.21 9.77 9.96** 11.10** 8.64 9.91 
qot3 4.85 4.82 11.54** 10.47** 4.68 5.23 4.83 4.92 
qot4 3.20 2.61 8.99 8.42 3.32 3.61 4.12 4.64 
qot5 2.12 2.34 6.85 5.84 2.68 3.94 5.52 5.20 
qoAT 2.43 3.36 5.07 4.88 3.28 4.00 9.64 7.92 

*:   Best Parameter 
**: Worst Parameter 
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Table 5-27: Summary of Predicted Pressures in Inverse Network Step-2, CO2 injection 
Processes 

Production Pressure Injection Pressure 
Fluid 
Type 

Well 
Pattern 

Area 
(acres) 

Min. 
Error 
(%) 

Ave. 
Error 
(%) 

S. D. 
Error 
(%) 

Max. 
Error 
(%) 

Min. 
Error 
(%) 

Ave. 
Error 
(%) 

S. D. 
Error 
(%) 

Max. 
Error 
(%) 

≤ 100 0.002 0.07 0.13 1.24 0.0001 0.08 0.10 0.89 4-Spot > 100 0.002 0.26 0.39 2.50 0.002 0.21 0.24 1.52 
≤ 100 0.002 0.07 0.13 1.24 0.0001 0.08 0.10 0.89 5-Spot > 100 0.0002 0.45 0.49 2.83 0.001 0.31 0.34 1.70 
≤ 100 0.0001 0.43 0.39 2.15 0.007 0.33 0.27 1.54 7-Spot > 100 0.020 0.69 0.62 3.51 0.009 0.48 0.38 1.87 
≤ 100 0.030 2.23 1.88 9.19 0.001 1.39 1.15 5.29 

PVT 
#1 

9-Spot > 100 0.009 1.11 1.06 4.79 0.010 0.85 0.73 4.08 
≤ 100 0.038 1.60 1.28 7.62 0.006 0.53 0.45 2.35 4-Spot > 100 0.002 1.09 0.97 4.97 0.000 0.61 0.46 2.45 
≤ 100 0.040 1.06 0.90 5.03 0.002 0.51 0.44 2.44 5-Spot > 100 0.013 0.98 1.41 12.03 0.002 0.59 0.87 7.60 
≤ 100 0.014 1.74 1.55 8.55 0.011 0.63 0.58 2.89 7-Spot > 100 0.014 2.12 1.52 7.00 0.004 0.66 0.55 2.21 
≤ 100 0.003 2.24 1.72 8.05 0.006 0.67 0.77 4.99 

PVT 
#2 

9-Spot > 100 0.011 0.45 0.33 1.36 0.002 0.19 0.13 0.58 
≤ 100 0.006 0.41 0.38 2.21 0.001 0.14 0.14 0.95 4-Spot > 100 0.001 0.20 0.20 1.32 0.002 0.08 0.07 0.44 
≤ 100 0.001 0.21 0.20 1.22 0.000 0.07 0.07 0.40 5-Spot > 100 0.005 0.21 0.24 1.99 0.0004 0.09 0.11 0.91 
≤ 100 0.002 0.48 0.44 2.17 0.002 0.19 0.17 0.88 7-Spot > 100 0.001 0.31 0.30 2.17 0.001 0.09 0.10 0.70 
≤ 100 0.003 0.53 1.01 7.50 0.0003 0.20 0.36 2.42 

PVT 
#3 

9-Spot > 100 0.016 0.73 1.38 10.21 0.002 0.26 0.42 3.33  
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One important observation is that the injection pressure prediction is always better 

than the production pressure prediction. This was also consistently observed in the results 

from the first inverse network. The displacement mechanisms under consideration in this 

study depend on the minimum miscible pressure. The injection pressure is the only 

variable that can control whether the miscibility conditions will be achieved or not. 

Therefore, a limited range of pressure is suitable for miscible displacement applications. 

On the other hand, production pressure has an effect on the final recovery of the field. 

Table 5-28:  Summary of Predicted Pressures in Inverse Network Step-2, N2 injection 
Processes 

Production Pressure Injection Pressure 
Fluid 
Type 

Well 
Pattern 

Area 
(acres) 

Min. 
Error 
(%) 

Ave. 
Error 
(%) 

S. D. 
Error 
(%) 

Max. 
Error 
(%) 

Min. 
Error 
(%) 

Ave. 
Error 
(%) 

S. D. 
Error 
(%) 

Max. 
Error 
(%) 

≤ 100 0.0003 0.05 0.05 0.34 0.0002 0.05 0.05 0.21 4-Spot > 100 0.004 0.23 0.31 2.52 0.006 0.17 0.18 1.25 
≤ 100 0.0002 0.04 0.03 0.18 0.0003 0.03 0.03 0.15 5-Spot > 100 0.003 0.08 0.08 0.34 0.001 0.08 0.06 0.28 
≤ 100 0.001 0.05 0.08 0.78 0.001 0.04 0.06 0.52 7-Spot > 100 0.009 0.29 0.26 1.35 0.002 0.18 0.17 0.91 
≤ 100 0.002 0.20 0.17 0.85 0.004 0.11 0.09 0.41 

PVT 
#1 

9-Spot > 100 0.003 0.27 0.26 1.79 0.0003 0.14 0.14 0.95 
≤ 100 0.002 0.97 0.78 3.79 0.000 0.12 0.10 0.58 4-Spot > 100 0.0004 1.19 1.27 8.34 0.000 0.15 0.11 0.49 
≤ 100 0.0001 0.55 0.53 2.28 0.002 0.15 0.12 0.61 5-Spot > 100 0.004 0.64 0.58 3.08 0.001 0.11 0.11 0.61 
≤ 100 0.031 1.20 0.99 5.69 0.004 0.18 0.12 0.57 7-Spot > 100 0.100 1.67 1.27 5.46 0.009 0.19 0.16 1.04 
≤ 100 0.012 1.01 1.86 11.51 0.003 0.12 0.15 0.91 

PVT 
#2 

9-Spot > 100 0.015 0.63 0.50 2.03 0.000 0.10 0.07 0.29 
≤ 100 0.013 0.43 0.57 3.16 0.0002 0.14 0.18 1.09 4-Spot > 100 0.003 0.81 0.77 2.93 0.001 0.33 0.28 1.29 
≤ 100 0.004 0.36 0.33 1.60 0.002 0.13 0.10 0.48 5-Spot > 100 0.007 1.60 1.49 6.54 0.017 0.52 0.38 2.19 
≤ 100 0.003 0.82 0.84 4.56 0.003 0.31 0.29 1.48 7-Spot > 100 0.010 0.87 0.67 3.15 0.001 0.29 0.22 0.86 
≤ 100 0.001 1.26 1.08 5.72 0.018 0.44 0.37 2.07 

PVT 
#3 

9-Spot > 100 0.034 1.45 1.00 4.78 0.002 0.47 0.35 1.62  
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The lower the bottom hole pressure, the higher the oil production. However, there is more 

flexibility in the range of production pressures, as long as there is enough pressure 

drawdown around the producer. Then, it is clear that the network is able to find a better 

connection between the reservoir performance and the injection pressure.  

Correlations between actual and predicted pressures were calculated for all 

miscible displacement cases under study. These correlations are included in Appendix C. 

5.2.2 Waterflooding Networks 

The inverse networks for waterflooding recovery mechanism were also developed 

in two steps. The oil production profile parameters are calculated in the Step 1, while the 

operation pressures are calculated in Step 2. The architecture for Step 1 waterflooding 

network is shown in Figure 5-50, whereas Figure 5-51 shows the architecture for Step 2 

waterflooding network. The logarithm function is applied to all inputs and outputs. 

Figure 5-52 shows the pressure correlations obtained from the inverse network 

Step 2 for PVT#2. A higher dispersion is observed compared to the results obtained in the 

miscible displacement case. In water injection, both pressures play an important role. The 

injection pressure maintains pressure while the production pressure controls the amount 

of produced fluid, including water. To some extend, the producer governs the 

abandonment condition imposed as a water cut constraint. Accordingly, it is concluded 

that the network is finding more challenging to relate both pressures to the drive 

mechanism involved in waterflooding.  
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Figure 5-50: Inverse Network Architecture for Water Injection – Step 1 

 

 
Figure 5-51:  Inverse Network Architecture for Water Injection – Step 2 
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Table 5-29 summarizes the calculated errors for all water injection cases under 

study. Although the maximum error for production pressure seems very large, these 

values do not represent the network performance as they may be the result of a particular 
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Figure 5-52: Correlation Between Actual and Predicted Pressures (Testing). 
Waterflooding, PVT#1, Step-2 Inverse Network. 



155 

 

case with high deviation. The average error and standard deviation show that the 

networks provide prediction within acceptable margin of deviation.  Also, they show that 

predicted injection pressures are slightly better than the predicted production pressures. 

 

 

 

Table 5-29: Summary of Predicted Pressures in Inverse Network Step-2, H2O Injection 
Processes 

Production Pressure Injection Pressure 
Fluid 
Type 

Well 
Pattern 

Area 
(acres) 

Min. 
Error 
(%) 

Ave. 
Error 
(%) 

S. D. 
Error 
(%) 

Max. 
Error 
(%) 

Min. 
Error 
(%) 

Ave. 
Error 
(%) 

S. D. 
Error 
(%) 

Max. 
Error 
(%) 

≤ 100 0.016 1.02 0.94 4.22 0.001 0.43 0.34 1.49 4-Spot > 100 0.000 1.42 1.26 5.76 0.006 0.53 0.49 2.95 
≤ 100 0.045 2.25 1.65 7.51 0.015 0.98 0.70 2.76 5-Spot > 100 0.000 0.66 0.66 4.30 0.008 0.30 0.26 1.24 
≤ 100 0.002 1.64 1.24 5.33 0.004 0.62 0.51 2.81 7-Spot > 100 0.016 1.54 1.26 6.24 0.002 0.53 0.41 2.08 
≤ 100 0.013 1.63 1.42 7.55 0.004 0.67 0.67 3.14 

PVT 
#1 

9-Spot > 100 0.058 1.22 1.07 5.87 0.021 0.48 0.42 2.39 
≤ 100 0.016 1.54 1.26 6.24 0.002 0.53 0.41 2.08 4-Spot > 100 0.040 4.12 4.81 29.88 0.054 0.93 0.70 3.16 
≤ 100 0.008 2.70 2.76 14.53 0.031 0.81 0.81 4.85 5-Spot > 100 0.015 4.38 4.76 33.74 0.039 0.89 0.76 4.25 
≤ 100 0.016 3.19 2.66 13.49 0.000 0.69 0.64 4.52 7-Spot > 100 0.016 3.74 3.74 23.69 0.016 1.02 0.86 3.73 
≤ 100 0.078 4.96 4.09 21.08 0.007 1.15 1.08 4.70 

PVT 
#2 

9-Spot > 100 0.095 3.93 3.85 19.28 0.001 0.88 0.73 3.15 
≤ 100 0.275 4.86 4.41 23.20 0.014 1.39 1.11 5.94 4-Spot > 100 0.075 4.60 4.34 18.39 0.001 1.37 1.14 5.43 
≤ 100 0.048 3.91 3.08 13.95 0.002 1.08 0.91 5.16 5-Spot > 100 0.018 3.25 2.49 9.51 0.008 1.14 0.89 4.62 
≤ 100 0.028 6.40 6.10 30.73 0.000 1.74 1.39 6.96 7-Spot > 100 0.021 5.58 5.02 24.35 0.026 1.55 1.34 6.53 
≤ 100 0.008 3.15 3.62 31.65 0.001 1.15 0.87 4.10 

PVT 
#3 

9-Spot > 100 0.064 2.21 2.07 8.16 0.012 0.87 0.60 2.48  
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5.2.3 Steam Injection Networks 

The steam injection networks were also developed in two steps. The structure of 

the first step is similar to the waterflooding, which was shown in Figure 5-50. They only 

differ in the number of neurons in the output layer. In steam injection network, the oil 

profile consists of 5 values of production time, 7 values of cumulative oil production and 

7 values of oil production rate, for a total of 19 neurons in the output layer. 

The design parameters for a steam injection project besides the operation 

pressures should include the injection temperature. The appropriate combination of 

temperature and pressure at the injector defines the difference between hot water 

injection from steam injection. Thus, temperature was initially set as one of the outputs 

from the Step 2 inverse network. The architecture of the Step 2 network is similar to the 

one shown in Figure 5-51, with the difference that the output layer includes the injection 

temperature. 

Figure 5-53 shows the results obtained from one network that predicted the 

operation conditions at the wells from the reservoir properties and the complete oil 

production profile. It is evident that the network cannot predict the temperature 

accurately. The predicted pressures, though present a high deviation, are not as deviated 

as temperature.  

Different training protocols were tried in order to design a network that predicts 

accurately the operation temperature. However, none of the designs provided acceptable 

results. 
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The idea of predicting temperature was to include it as part of the design 

parameters that the tool-box provides to the user. Then, a workaround for this problem 

was to use the tool-box itself to evaluate values of temperature as it is done for the areas. 

The temperature is specified as an input of the inverse networks. For each predicted set of 

operation pressures, there is a corresponding value of temperature. The tool-box 

evaluates diverse scenarios, and provides the optimum case based on minimum injection 

pressure criterion. Selecting the minimum injection pressure also leads to an optimum 

injection temperature. The lower the pressure, the lower is the required temperature to 

form steam with quality of one. 

Figure 5-54 and Figure 5-55 shows the architectures of the Step 1 and Step 2 

inverse networks for steam injection, respectively. Notice that the temperature is given to 

the networks as the gradient above the saturation temperature. The saturation temperature 

is calculated from the injection pressure in the tool-box, and the injection temperature is 

calculated by adding these two values. In addition, function 2 given earlier in Eq. 5.2 is 

used as a functional link. 
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Figure 5-53: Prediction of Operation Pressure and Temperature. 
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Figure 5-54: Inverse Network Architecture for Steam Injection – Step 1 

 

 
Figure 5-55: Inverse Network Architecture for Steam Injection – Step 2 
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Figure 5-56 shows the predicted pressures when steam is injected into a reservoir 

holding fluid PVT#2. It seems that the injection pressure presents a higher deviation. 

However, that is a visual artifact of the scales used. Table 5-30 shows a summary of the 

calculated errors. The results show that the deviation among these operation conditions is 

analogous. In general, these predictions imply an efficient network performance. 
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Figure 5-56: Correlation Between Actual and Predicted Pressures (Testing). Steam
Injection, PVT#1, Batch 1&2, Step-2 Inverse Network. 
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Figure 5-57 shows the predicted pressures using PVT#4.  These results show that 

the chosen architecture for steam injection was adequate as the pressures are predicted 

within acceptable deviation. Moreover, production pressures show a slightly higher 

deviation, as it can be seen in Table 5-30. This was not observed in either PVT#2 or 
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Steam Injection, PVT4, 4-Spot, Areas<=100 acres
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Steam Injection, PVT4, 5-Spot, Areas<=100 acres
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Steam Injection, PVT4, 7-Spot, Areas<=100 acres
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A=1
A=2
A=5
A=10
A=15

1100 1200 1300 1400
1100

1150

1200

1250

1300

1350

1400

Actual PInj

P
re

di
ct

ed
 P

In
j

 

 

A=1
A=2
A=5
A=10
A=15

600 700 800
600

650

700

750

800

850

Actual PProd

P
re

di
ct

ed
 P

P
ro

d

R2= 0.98876

 

 
Steam Injection, PVT4, 9-Spot, Areas<=100 acres
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Steam Injection, PVT4, 9-Spot, Areas<=100 acres
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Figure 5-57: Correlation Between Actual and Predicted Pressures (Testing). Steam
Injection, PVT#4, Step-2 Inverse Network. 
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PVT#3. This outcome could be a consequence of the heat front never reaching the 

producer in the modeled cases with PVT#2 and PVT#3. Evidently, it is more complex for 

the network to capture the thermal effects around the producer. 

 

 

 

Table 5-30:  Summary of Predicted Pressures in Inverse Network Step-2, Steam Injection 
Processes 

Production Pressure Injection Pressure 
Fluid 
Type 

Well 
Pattern 

Area 
(acres) 

Min. 
Error 
(%) 

Ave. 
Error 
(%) 

S. D. 
Error 
(%) 

Max. 
Error 
(%) 

Min. 
Error 
(%) 

Ave. 
Error 
(%) 

S. D. 
Error 
(%) 

Max. 
Error 
(%) 

≤ 100 0.000 0.08 0.07 0.45 0.000 0.12 0.11 0.54 4-Spot > 100 0.001 0.10 0.07 0.32 0.006 0.11 0.08 0.41 
≤ 100 0.001 0.16 0.11 0.50 0.003 0.10 0.09 0.41 5-Spot > 100 0.001 0.06 0.04 0.19 0.001 0.09 0.09 0.56 
≤ 100 0.002 0.11 0.09 0.45 0.001 0.12 0.09 0.42 7-Spot > 100 0.004 0.09 0.07 0.29 0.004 0.10 0.09 0.54 
≤ 100 0.000 0.07 0.06 0.28 0.003 0.10 0.11 0.65 

PVT 
#2 

9-Spot > 100 0.001 0.05 0.04 0.27 0.001 0.08 0.08 0.38 
≤ 100 0.001 0.04 0.03 0.14 0.001 0.05 0.05 0.19 4-Spot > 100 0.000 0.03 0.03 0.13 0.002 0.05 0.05 0.28 
≤ 100 0.003 0.11 0.10 0.63 0.002 0.08 0.07 0.41 5-Spot > 100 0.0001 0.06 0.05 0.22 0.0001 0.09 0.11 0.91 
≤ 100 0.001 0.07 0.05 0.20 0.0001 0.06 0.06 0.36 7-Spot > 100 0.0004 0.06 0.05 0.20 0.0001 0.07 0.05 0.21 
≤ 100 0.001 0.07 0.06 0.27 0.0001 0.08 0.07 0.33 

PVT 
#3 

9-Spot > 100 0.0003 0.04 0.03 0.16 0.002 0.08 0.10 0.88 
≤ 100 0.006 1.98 1.66 6.92 0.028 1.18 0.96 3.82 4-Spot > 100 0.008 1.13 0.93 4.53 0.001 0.62 0.50 2.66 
≤ 100 0.002 1.58 1.20 5.14 0.002 0.81 0.63 2.52 5-Spot > 100 0.003 1.52 1.18 5.79 0.001 0.91 0.67 3.06 
≤ 100 0.014 1.35 1.29 8.70 0.008 0.81 0.75 4.70 7-Spot > 100 0.047 1.43 1.06 4.94 0.018 0.82 0.57 2.48 
≤ 100 0.032 1.72 1.40 7.83 0.007 0.91 0.69 3.46 

PVT 
#4 

9-Spot > 100 0.004 1.61 1.25 6.48 0.024 0.91 0.69 3.34  
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5.2.4 Relevancy of Inputs to Developed Networks for the Project Design Tool-Box 

The relevancy of the inputs to the networks developed for the project design 

toolbox was also determined. The sorting of the properties indicates what reservoir 

properties should be entered into the tool-box carefully. Table 5-31 shows the sorting of 

the weights per input parameter for each CO2 injection network as well as the average 

sorting of all CO2 injection networks. The reservoir properties sorted in descending order 

of relevancy for these networks are abandonment time, oil recovery, permeability, 

porosity, area and thickness. 
 

Table 5-31: Sorting of Weights for CO2 Injection Project Design Networks 
Input Parameters 

PVT Spot Size Area K h poro dinj-inj 
dinj-

prod kh Oil 
Rec AT 

Small 8 3 4 9 6 7 5 1 2 4 Large 9 3 4 5 8 7 6 2 1 
Small 8 2 5 6 7 9 4 3 1 5 Large 8 3 4 6 7 9 5 2 1 
Small 5 8 3 2 - 4 7 1 6 7 Large 3 2 6 8 - 4 7 5 1 
Small 5 6 9 7 4 3 8 2 1 

1 

9 Large 4 3 9 8 5 6 7 2 1 
Small 7 3 8 4 5 6 9 2 1 4 Large 7 3 6 4 9 8 5 2 1 
Small 7 4 8 3 6 5 9 2 1 5 Large 7 3 9 4 6 8 5 2 1 
Small 5 3 8 4 - 6 7 2 1 7 Large 7 2 6 4 - 8 5 3 1 
Small 8 2 9 3 7 6 5 4 1 

2 

9 Large 5 3 9 8 6 7 4 2 1 
Small 7 3 6 4 8 9 5 2 1 4 Large 6 3 4 8 5 7 9 2 1 
Small 5 3 9 4 6 7 8 1 2 5 Large 8 3 6 4 9 7 5 1 2 
Small 6 4 7 3 - 5 8 1 2 7 Large 5 3 8 6 - 4 7 2 1 
Small 7 5 3 6 8 9 4 2 1 

3 

9 Large 7 3 4 6 8 9 5 1 2 
Average Sorting 6 3 7 4 8 9 5 2 1  
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Table 5-32 shows the sorting of the weights per input parameter for each N2 

injection network as well as the average sorting of all N2 injection networks. The 

reservoir properties listed in descending order of relevancy for these networks are 

abandonment time, oil recovery, permeability, porosity and thickness. 

 

 

Table 5-33 shows the sorting of the weights per input parameter for each 

waterflooding network as well as the average sorting of all water injection networks. The 

reservoir properties listed in descending order of relevancy for these networks are oil 

Table 5-32: Sorting of Weights for N2 Injection Project Design Networks 
Input Parameters 

PVT Spot Size Area K h poro dinj-inj 
dinj-

prod kh Oil 
Rec AT 

Small 7 5 3 6 8 9 4 2 1 4 Large 9 3 4 6 8 7 5 2 1 
Small 8 3 5 4 9 7 6 2 1 5 Large 7 3 6 4 9 8 5 2 1 
Small 7 5 3 8 - 6 4 2 1 7 Large 8 2 4 5 - 7 6 3 1 
Small 9 4 3 6 7 8 5 2 1 

1 

9 Large 7 3 5 4 9 8 6 2 1 
Small 4 7 8 3 5 6 9 1 2 4 Large 8 3 6 4 7 9 5 2 1 
Small 8 3 9 4 7 6 5 2 1 5 Large 9 3 6 4 8 7 5 1 2 
Small 5 4 7 3 - 6 8 2 1 7 Large 3 5 8 7 - 4 6 2 1 
Small 5 8 6 9 3 4 7 2 1 

2 

9 Large 7 2 3 9 6 5 4 8 1 
Small 8 3 5 4 9 7 6 1 2 4 Large 7 3 5 4 9 8 6 1 2 
Small 9 4 3 6 8 7 5 1 2 5 Large 9 3 6 5 8 7 4 1 2 
Small 8 3 5 4 - 7 6 1 2 7 Large 8 3 6 4 - 7 5 2 1 
Small 7 5 3 6 8 9 4 2 1 

3 

9 Large 9 2 6 4 7 8 5 3 1 
Average Sorting 8 3 5 4 9 7 6 2 1  
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recovery, abandonment time, thickness, Coil coefficient, residual oil saturation, 

permeability, irreducible water saturation and porosity. 

 

 

Table 5-34 shows the sorting of the weights per input parameter for each 

waterflooding network. Similar to the screening networks, the responses of the steam 

networks with heavy oil were different from those with light and black oil networks. 

Therefore, the average sorting of all networks with heavy oil is reported separately from 

the light and black oils. The reservoir properties organized in descending order of impact 

Table 5-33: Sorting of Weights for H2O Injection Project Design Networks 
Input Parameter 

PVT Spot Size 
A

re
a 

K
 

h 

po
ro

 

S w
ir

r 

S o
r 

C
oi

l 

d i
nj

-in
j 

d i
nj

-p
ro

d 

kh
 

O
il 

R
ec

 

A
T

 

Small 10 8 4 9 6 3 5 12 11 7 1 2 4 Large 10 6 4 9 8 5 1 12 11 7 3 2 
Small 10 8 4 9 7 5 3 12 11 6 1 2 5 Large 12 6 4 8 9 5 3 10 11 7 1 2 
Small 10 7 2 9 8 5 3 - 11 6 1 4 7 Large 11 6 4 9 8 5 3 - 10 7 1 2 
Small 12 7 3 8 9 6 2 11 10 5 1 4 

1 

9 Large 10 5 3 9 7 4 6 12 11 8 1 2 
Small 6 11 8 12 10 3 7 4 5 9 1 2 4 Large 11 5 3 7 12 4 6 9 10 8 1 2 
Small 6 9 8 10 11 3 4 5 7 12 1 2 5 Large 10 7 4 12 6 2 5 9 11 8 1 3 
Small 10 7 5 8 9 3 4 - 11 6 1 2 7 Large 10 7 3 8 9 5 4 - 11 6 2 1 
Small 8 10 2 12 11 4 5 9 7 6 1 3 

2 

9 Large 9 8 2 12 7 3 4 10 11 6 1 5 
Small 12 7 3 8 9 5 4 11 10 6 2 1 4 Large 9 5 1 8 12 7 3 10 11 6 4 2 
Small 11 7 4 9 8 5 2 10 12 6 1 3 5 Large 11 6 3 8 9 7 4 10 12 5 1 2 
Small 10 8 5 9 7 3 2 - 11 6 1 4 7 Large 11 5 3 8 9 4 7 - 10 6 2 1 
Small 11 8 4 9 7 5 2 12 10 6 1 3 

3 

9 Large 12 6 2 9 8 5 4 11 10 7 1 3 
Average Soting 11 7 3 9 8 5 4 10 12 6 1 2  
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for the light and black oil networks are abandonment time, area, thickness, permeability, 

residual oil saturation, porosity, irreducible water saturation, Coil coefficient and ΔT. For 

the heavy oil networks, the properties listed in descending order are residual oil 

saturation, irreducible water saturation, abandonment time, oil recovery, area, thickness, 

permeability, porosity, Coil coefficient and ΔT.  

 

Table 5-34: Sorting of Weights for Steam Injection Project Design Networks 
Input Parameter 

PV
T

 

Sp
ot

 

Si
ze

*  

A
re

a 

K
 

h 

po
ro

 

S w
ir

r 

S o
r 

C
oi

l 

Δ
T

 

FL
1**

 

kh
 

O
il 

R
ec

 

A
T

 

S 5 6 4 8 10 9 11 12 1 7 2 3 4 L 4 6 5 10 9 7 12 11 2 8 1 3 
S 7 4 5 8 9 6 11 12 2 10 1 3 5 L 3 5 7 9 10 6 12 11 2 8 1 4 
S 5 4 7 9 8 6 11 12 2 10 1 3 7 L 3 5 8 9 7 6 11 12 4 10 1 2 
S 5 7 4 9 10 6 11 12 1 8 2 3 

2 

9 L 4 7 6 9 8 5 12 11 2 10 1 3 
S 5 6 4 8 10 9 11 12 1 7 2 3 4 L 4 5 9 8 7 6 12 11 2 10 1 3 
S 5 6 4 7 9 8 11 12 2 10 1 3 5 L 4 6 5 9 10 7 12 11 1 8 2 3 
S 5 8 3 7 10 9 11 12 1 6 2 4 7 L 4 6 7 9 8 5 12 11 2 10 1 3 
S 5 10 4 7 8 6 11 12 1 9 2 3 

3 

9 L 4 9 5 8 7 6 11 12 1 10 2 3 
Average 
Sorting 4 6 5 8 9 7 11 12 2 10 1 3 

 
S 6 9 7 10 2 1 12 11 5 8 4 3 4 L 7 10 6 8 2 1 11 12 4 9 5 3 
S 6 8 7 10 2 1 11 12 5 9 3 4 5 L 6 8 7 9 2 1 11 12 3 10 5 4 
S 6 10 7 9 2 1 11 12 3 8 4 5 7 L 6 10 7 8 2 1 12 11 4 9 5 3 
S 6 10 7 8 2 1 11 12 3 9 4 5 

4 

9 L 6 7 9 11 2 1 10 12 5 8 4 3 
Average 
Sorting 6 9 7 10 2 1 11 12 4 8 5 3 

Size*: S=small, L=large 
FL1**: Functional Link 1 
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5.2.5 User Interface for IOR Project Design Tool-box 

A total of 196 inverse networks were developed in order to determine the 

development plan parameters for particular reservoirs. These networks were incorporated 

into a tool-box that evaluates diverse production schemes with the aim to suggest 

optimum scenarios. The tool-box consists of a graphical user interface (GUI) where the 

reservoir characteristics and field development parameters are evaluated by accessing the 

built inverse networks, selection of optimum scenarios is performed and results are 

provided graphically. 

The networks incorporated in the project design tool-box were built with the data 

sets generated for the screening tool-box. Design of experiments was applied to the 

network inputs to ensure an efficient network performance in a wide range of inputs 

limits. The inputs to the forward networks were the same input variables to the numerical 

reservoir simulation, so that the forward networks were designed under a strict control. In 

the inverse application, some network inputs are values calculated by the simulator. 

Therefore, it is not possible to control theirs limits. That is the case of abandonment time 

and total oil recovery, whose limits are controlled by many factors such as the recovery 

mechanism, thermodynamics, Darcy’s Law, continuity equation, energy balance, etc. 

Then, it is not possible to generate extensive input data sets for the inverse application 

using design of experiments.  

The limits for AT and oil recovery used in the project design tool-box were 

defined by the highest and lowest values calculated by the numerical reservoir, while the 

reservoir characteristics were limited as in the forward tool. Some combinations of 
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network inputs may be within the allowable input data ranges. However, they may lead to 

wrong results as the inverse networks may predict operation conditions that are not 

within the specified ranges used in the design of experiments. The tool-box was designed 

considering this problem. 

Inside the tool-box, five values of areas are evaluated to provide an optimum 

production scheme per well pattern. The selection of these areas was not arbitrary as they 

match the area values specified when generating the data sets using the design of 

experiments. Then, five sets of field development plan are forecasted. The tool identifies 

the production scheme with the minimum injection pressure, and verifies if the predicted 

injection and production pressures are within the pressure limits given to the numerical 

simulator. For example, the water was injected between 4000 and 6000 psia for the cases 

with PVT#2 and PVT#3, while oil was produced within 1000 and 2000 psia.  If the 

optimum case leads to pressures that are out of these ranges, the tool-box eliminates the 

case and selects the second minimum pressure. If all five scenarios lead to operation 

pressures out of range, the tool will indicate that some illogical results were obtained with 

the entered inputs. The minimum injection pressure selection also removes the issue of 

uniqueness encountered when two different reservoir cases may produce the same oil 

recovery. Since the networks involve some numerical errors, the pressure limits were 

expanded by 15%. That is, if the maximum injection pressure is 4000 psia, the tool-box 

will account 4600 psia as a permissible result. 

Table 5-35 and Table 5-36 summarize the AT and oil recovery limits obtained 

from the reservoir simulator for all cases under study. It is clear that AT and oil recovery 

are within different limits depending upon the recovery method, fluid and well pattern. 



168 

 

This incorporates a major constrain in the design of the tool-box as it was not possible to 

evaluate and compare different IOR methods at the same time. Comparison between IOR 

methods must be done manually by the user who should provide adequate inputs that 

works for all IOR methods. Comparisons of different well patterns were performed by 

taking common limits of AT and recovery for all well patterns. The limits were defined 

by the highest and lowest values among the patterns. Unfortunately, this increases the 

probability of ending with illogical results. 

 

 

Table 5-35: Abandonment Time and Oil Recovery Limits for PVT#1 Inverse Networks 
4 Spot 5 Spot 7 Spot 9 Spot Fluid IOR Area AT %Rec AT %Rec AT %Rec AT %Rec 
30 69 30 70 14 69 25 42 Large 669 86 815 80 365 86 873 82 
43 69 43 67 21 69 40 44 CO2 

Small 
4169 86 4971 80 2467 86 5443 81 

23 38 24 37 13 39 24 39 Large 349 44 382 42 171 42 395 43 
31 38 37 34 18 39 35 39 N2 

Small 2138 44 2410 41 1038 43 2430 42 
25 4 29 4 12 4 9 4 Large 

3115 65 3729 65 1475 65 2443 65 
87 4 36 3 83 4 11 2 

PVT1 

H2O 
Small 

66254 63 21291 63 61167 63 14573 60  
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Table 5-36: Abandonment Time and Oil Recovery Limits for PVT#2, PVT#3 & 4 Inverse 
Networks 

4 Spot 5 Spot 7 Spot 9 Spot Fluid IOR Area AT %Rec AT %Rec AT %Rec AT %Rec 
16 89 18 86 7 89 20 87 Large 290 93 326 90 146 93 546 89 
85 92 24 86 11 89 29 87 CO2 

Small 
133 93 1986 90 870 93 3487 89 
13 59 7 53 7 53 16 54 Large 313 71 154 69 154 69 379 63 
20 58 23 50 9 52 22 54 N2 

Small 1942 72 2380 64 923 70 2355 64 
20 16 23 15 10 15 9 9 Large 

2265 72 2578 72 1127 72 893 69 
28 15 30 14 14 15 12 9 H2O 

Small 14777 72 15637 70 7577 72 5816 68 
39 17 33 16 20 17 17 15 Large 5308 37 4690 35 2531 35 2939 34 
14 16 19 15 12 16 10 14 

PVT2 

Steam 
Small 

1946 35 10581 33 9106 35 8449 31 
22 91 22 80 11 91 22 85 Large 540 92 539 82 261 92 526 87 
32 91 31 79 16 91 31 85 CO2 

Small 3388 92 3346 81 1635 92 3285 87 
21 66 22 66 10 66 21 71 Large 

503 92 563 81 244 93 534 88 
29 66 30 66 14 66 30 71 N2 

Small 
3138 92 3527 80 1518 92 3365 88 

26 5 27 4 2 5 10 2 Large 3098 64 4059 64 259 63 2701 62 
35 5 37 4 17 5 12 2 H2O 

Small 18520 62 22552 62 9715 62 15663 60 
81 19 73 17 37 19 77 15 Large 

7036 43 10832 41 5670 43 10767 35 
81 19 42 17 22 19 45 15 

PVT3 

Steam 
Small 10781 43 10842 40 10816 43 10897 35 

20 29 20 32 12 34 19 32 Large 10815 58 10909 54 10065 58 10837 53 
110 28 121 29 55 27 111 32 PVT4 Steam 

Small 
10948 58 10880 54 10927 58 10905 54  
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Figure 5-58 shows the main panel of the project design tool-box. As in the 

screening tool-box, the user can select within four hydrocarbon compositions, four well 

patterns and four different IOR methods. If the user enters an input out of range, the 

corresponding box turns yellow for warning. If the user clicks on the calculate button 

with an out of range input, an error message is displayed, as shown in Figure 5-36. 

 

 

If a combination of PVT#1 and steam injection method is selected, the tool-box 

shows a warning indication that the process is not feasible, as shown in Figure 5-59. 

 

 

 
Figure 5-58: User Interface for IOR Project Design Tool-box 
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Likewise, if the user selects PVT#4 and any method aside from steam injection, 

the tool-box pops the warning message shown in Figure 5-60. 

 

 

If the user clicks on the plot button when any of the parameters combinations lead 

to a non-exiting network, an “unable to plot” message pops up. Similarly, if the 

combination of parameters leads to an exiting network but the design parameters were 

not calculated, an error message is also displayed. Examples of these messages are shown 

in Figure 5-61. 

 

 

 
Figure 5-59: Warning for PVT#1 and Steam Injection Input Selection 

 

 
Figure 5-60:  Warning for PVT#4 and IOR Method Selection 
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When a set of inputs provides results within the permissible pressure limits, the 

main panel provides the design parameters in a table as shown in Figure 5-62. For steam 

injection evaluations, temperature is also returned in the table. This table is only 

generated if logical results are found for at least one well pattern. Otherwise, an error 

message appears as shown in Figure 5-63. 

 

 

 

  
Figure 5-61: Plotting Error Messages 

 

 
Figure 5-62: Tabular Outputs from IOR Project Design Tool-box 
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Once the design parameters are determined, the user can visualize the oil 

production profiles by plotting the desired well pattern, as shown in Figure 5-64. Also, 

the oil profiles parameters are summarized in a table and they can be easily copied into 

the clipboard.  

 

 

 

 
Figure 5-63: Error Message for Illogical Results 

 

 
Figure 5-64: Predicted Oil Production Profile using the Project Design Tool-box 
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5.3 Performance of the Tool-Boxes 

Each of the built networks has been exhaustively tested to ensure and demonstrate 

the capabilities of the tool-boxes. The screening capabilities of the tool-box can be 

deduced directly from the results when the networks are tested. This tool operates as an 

interactive graphics interface for easy access of the ANNs. On the other hand, the project 

design tool-box operation is more complex as diverse comparisons are executed 

internally within the interface. The tests performed on each network allow the tool to 

have a series of well trained expert systems working in a concatenated mode, but they do 

not show how the inverse application works. Accordingly, it is necessary to evaluate 

some case studies in order to assess the performance of the project design tool-box. 

Table 5-37 shows the input parameters used to generate the study cases, which are new 

data sets not used in training or testing before.  

The project design tool-box was used to evaluate and provide appropriate field 

development plans. The proposed operation schemes were verified against the 

commercial simulator. Since the predicted operation pressures had a wide range of 

values, the case studies were also evaluated using the screening tool-box. In this way, the 

performance of the forward application tool is also under examination and results 

between both tools boxes are compared against the simulator output. In some cases, the 

project design tool-box provided scenarios that resulted in pressures outside of the 

existing operable ranges. Still, the response was analyzed and compared with the help of 

the commercial simulator assuming that the pressures were reasonable.  
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Table 5-38 shows the field development plans proposed by the project design 

network for a reservoir containing a hydrocarbon of PVT#1 composition. Each 

production scheme, when feasible, was verified by running the corresponding model with 

the reservoir simulator. The deviation between the predicted cases and the simulator were 

calculated and are also reported in Table 5-38. It is observed that some of the operational 

pressures were predicted within 15% of the out of range values. In some cases, the 

predicted pressures were not physically possible; such as the case when water is injected 

in a small 7-spot well configuration as the suggested production pressure is above the 

initial reservoir pressure. 

 

 

Table 5-37: Input Parameters in Study Cases 

Fluid IOR Area k 
(md)

h 
(ft) 

φ 
(%) Swirr Sor Co Cg Oil Rec 

(%) 
AT 

(days)
Large 400 50 25 - - - - 79.17 104 CO2 Small 50 200 35 - - - - 83.44 274 
Large 400 50 25 - - - - 39.86 66.4 N2 Small 50 200 35 - - - - 40.16 185.4 
Large 200 50 30 0.25 0.15 0.5 0.1 60 282 

PVT1 

H2O Small 50 200 35 0.25 0.15 4 0.3 51.09 1264.5 
Large 200 100 30 - - - - 87 116 CO2 Small 50 200 35 - - - - 91.80 125 
Large 200 100 30 - - - - 58 116 N2 Small 50 200 35 - - - - 59 116 
Large 400 50 35 0.15 0.25 4 0.1 45 276 H2O 
Small 50 200 35 0.25 0.15 4 0.3 51 1264 
Large 400 50 35 0.15 0.25 4 0.1 24.75 435 

PVT2 

Steam Small 10 50 40 0.25 0.2 4 0.3 29.40 4182 
Large 400 50 35 0.15 0.25 4 0.1 45 276 

PVT4 Steam Small 2500 20 35 0.3 0.35 4 0.1 41 1352  
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Part of the idea of extending the pressure limits by 15% was to evaluate the tool-

boxes’ performance with inputs beyond their designed original conditions. When either 

injection or production pressure is not close to the actual pressure limits, the toolboxes 

can still forecast oil production profiles and provide an adequate production plan. In some 

cases, if both predicted operation pressures were above or below the pressures limits, it 

was more difficult for the networks to reproduce the reservoir response. 

 

Table 5-38: Field Development Plans Determined by Project Design Network for PVT1 

IOR Small/ 
Large Pattern Area 

(acres) 
Pprod 
(psia) 

Pinj 
(psia) 

Inverse 
Error (%) 

Forward 
Error (%) 

4 Spot 60 3770 7145 4.9 4.1 
5 Spot 60 3037 7381 9.8 3.1 
7 Spot 100 4294* 5733* 59.9 11.8 S 

9 Spot 60 3752* 7829 16.7 12.1 
4 Spot 150 4047* 6028 5.3 3.1 
5 Spot 150 4130* 6580* 4.8 3.2 
7 Spot 220 4050 5328 22.3 18.5 

CO2 

L 

9 Spot 150 3975 6581 11.2 25.9 
4 Spot 60 3772 7453 10.3 7.7 
5 Spot 100 3276 8459* 23.5 1.7 
7 Spot 60 4849** 5964 36.3 NA S 

9 Spot 60 3653 7822 10.1 9.5 
4 Spot 150 4033* 6292* 18.6 16.9 
5 Spot 150 4948** 7668 4.3 NA 
7 Spot 250 4163* 6134* 12.3 8.6 

N2 

L 

9 Spot 150 3985 6700* 28.6 27.6 
4 Spot 60 3941 6518 0.8 1.0 
5 Spot 60 2331 5303* 2.3 9.2 
7 Spot 60 5139** 5548 NA NA S 

9 Spot 70 2763 5337* 9.0 4.3 
4 Spot 150 1777* 7382* 6.7 1.7 
5 Spot 150 2400 5398* 52.5 8.9 
7 Spot NA NA NA NA NA 

H2O 

L 

9 Spot NA NA NA NA NA 
*: Pressure within 15% out of range 
**: Pressure is more than 15% out of range 
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Figure 5-65: Comparison of Results for PVT1 Undergoing CO2 Injection (Small Areas) 
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Figure 5-65 shows the oil production profiles predicted by the toolboxes and the 

corresponding profile generated by the reservoir simulator. It is clear that the forward 

application provides accurate results, even when the input pressures were outside the 

limits. The oil profile obtained for 7-spot configuration reveals the limitations of the 

inverse application. While both suggested pressures are within the permitted 15% range, 

the forward tool is capable of reproducing the profile, but the inverse tool is not able to 

perform similarly. Furthermore, it is noted that the cumulative oil production values are 

better predicted than the oil production rates, as the monotonic behavior of the 

cumulative curves facilitates the performance of the networks. 

Table 5-39 shows the development plans obtained for diverse reservoirs 

containing a hydrocarbon of PVT#2 fluid composition. The results, in general, are 

comparable to the results obtained using PVT#1.  
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Figure 5-66 shows the oil production curves for PVT#2 undergoing N2 injection 

with large areas. The results show that the project design toolbox was able to suggest 

production scenarios within a low margin of error. Furthermore, the forward tool-box was 

also able to reproduce the response of the reservoir. On the other hand, Table 5-40 also 

shows that it was difficult to obtain adequate scenarios for most of the steam injection 

cases. The reason is that the initial pressure in reservoir containing PVT#2 is very close 

Table 5-39: Field Development Plans Determined by Project Design Network for PVT2 

IOR Small/ 
Large Pattern Area 

(acres) 
Pprod 
(psia) 

Pinj 
(psia) 

Tinj 
(oF) ΔT Inverse 

Error (%) 
Forward 

Error (%) 
4 Spot 60 1773 5187 - - 28.6 32.4 
5 Spot NA NA NA - - NA NA 
7 Spot 60 2218* 3779* - - 10.7 8.0 

S 

9 Spot NA NA NA - - NA NA 
4 Spot NA NA NA - - NA NA 
5 Spot 150 1023 3821 - - 13.4 2.9 
7 Spot NA NA NA - - NA NA 

CO2 

L 

9 Spot 150 2075 5392 - - 154.5 154.1 
4 Spot 60 566** 4662** - - 9.8 NA 
5 Spot 60 1121 5512* - - 2.7 1.5 
7 Spot 60 2206* 3852* - - 6.2 3.7 

S 

9 Spot 60 1014 5332 - - 4.4 3.6 
4 Spot 150 1253 3675* - - 9.5 3.4 
5 Spot 150 2070* 4537 - - 3.7 14.0 
7 Spot 150 4044** 3660* - - NA NA 

N2 

L 

9 Spot 150 1831 4422 - - 7.7 3.2 
4 Spot 25 2645* 3052* 758 60 9.9 6.9 
5 Spot NA NA NA NA NA NA NA 
7 Spot 75 2247 3053* 728 30 6.5 4.7 

S 

9 Spot NA NA NA NA NA NA NA 
4 Spot 300 2745* 3576* 733.2 30 20.1 8186.9 
5 Spot NA NA NA NA NA NA NA 
7 Spot 200 2843* 3313* 734.5 30 *** *** 

Steam 

L 

9 Spot NA NA NA NA NA NA NA 
*: Pressure within 15% out of range 
**: Pressure is more than 15% out of range  
***: Simulator did not reach a solution due to small time steps 
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to the critical pressure of steam (3000 psia). The injection pressure for steam injection in 

PVT#2 was set between 3100 to 3200 psia. Then, there is a high probability that the 

predicted scenario resulted in pressure ranges away from the permissible values. 

 

 

Figure 5-67 shows the cases of production profiles for PVT#2 undergoing steam 

injection. The profiles obtained for small areas indicate that the project design tool-box 

proposed adequate field development plans as their predicted injection pressures are very 

close to the lower permissible limit. However, the profiles obtained for the large area 
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Figure 5-66: Comparison of Results for PVT2 Undergoing N2 Injection (Large Areas) 
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cases display significantly high disparities. In fact, this response is anticipated as the 

forecasted injection pressures are above the critical pressure of steam.  

 

A further evaluation of the large areas was carried out by combining the same 

reservoir properties used for the PVT#2, steam injection and large areas with different 

values of estimated production. When using an abandonment time of 500 days with a 
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Figure 5-67: Comparison of Results for PVT2 Under Steam Injection 
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total recovery of 30 %, the project design provided schemes with pressures within the 

limits. Table 5-41 shows the results for the second case studies. For this new combination 

of AT and oil recovery, none of the operational pressures are away from the permissible 

15%. Also, it was possible to obtain a production scheme using a 9-spot well 

arrangement.  

 

 

Figure 5-68 shows the corresponding oil profiles for the second case studies. The 

predictions obtained from both tool-boxes for curves for 7-spot and 9-spot display 

accurate results. However, the forward tool provided a poor prediction of the 4-spot 

scheme. The predicted injection pressure for this specific case is within the existing limits 

while the predicted production pressure is at the upper 15% limit. This indicates that the 

permitted range of 15% is too wide for steam injection methods. The tool-box evaluation 

methodology demonstrates that different combination of the expected total recovery and 

project life time provide diverse field development strategies. This represents a 

significant advantage for reservoir appraisal as many scenarios can be under 

consideration at the same time.  

 

Table 5-41:  New Field Development Plans for PVT#2, Steam Injection, Large Areas 

Pattern Area 
(acres) 

Pprod
(psia) 

Pinj 
(psia) 

Tinj 
(oF) ΔT Inverse 

Error (%) 
Forward 

Error (%) 
4 Spot 100 2853* 3135 732 30 24.7 58.6 
5 Spot NA NA NA NA NA NA NA 
7 Spot 300 2681* 3140 732 30 13.9 5.9 
9 Spot 250 2495 3082* 729 30 8.1 2.4 

*: Pressure within 15% out of range 
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In general, the results from the case studies indicate that the field development 

plans obtained with the project design tool-box can be verified using the screening tool-

box within an acceptable margin of error. The combined use of the project design and 

screening tool-boxes provides a powerful application for hydrocarbon reservoir 

evaluations. This methodology should help the reservoir engineer to eliminate production 

scenarios that are not efficient from the beginning. 
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Figure 5-68:  Comparison of Results for PVT#2 Undergoing N2 Injection (Large Areas). 
Second Case Studies. 
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5.4 Recommended Implementation Protocol for Field Applications 

Reservoir engineers rely on conventional simulation and screening criteria in 

order to evaluate the most appropriate production scenario for green and mature 

reservoirs. The tools developed in this study can be used as the screening criteria in order 

to minimize the number of possible production scenarios to be simulated. 

In order to evaluate a given reservoir with the developed tool-boxes, the average 

properties of the reservoir under study should be entered into the project design tool-box. 

Each layer of the reservoir can be evaluated separately as long as the layer thickness is 

within the limits of the tool. If the layers are very thin, the reservoirs should be evaluated 

using the average properties of all layers.  

The user should select the hydrocarbon composition that is closer to the real 

reservoir fluid. Then, the different values of estimated recovery and project abandonment 

time can be evaluated for each recovery method. This procedure should provide different 

well pattern options if the combination of AT and oil recovery are physically possible. If 

these parameters lead to unpractical schemes, different pairs of AT and recovery should 

be evaluated. 

The oil production curves are generated for each of the recommended well 

patterns. Then, these curves can be exported and validated using the screening tool-box. 

The average reservoir properties, fluid type, recovery method and well pattern are entered 

into the screening tool. The oil production curves are generated for each case and they 

should be compared with the curves obtained before. A good match of the oil production 

curves indicates that the process under study is feasible. 
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A major advantage of following this protocol is that the rapid response of the tool-

boxes provides the user with the necessary information for further economic analysis in a 

matter of seconds. Calculations of the present value can be easily estimated from the oil 

production rate curve, which helps to decide which process and development plan are 

more appropriate for a given reservoir. 

5.5 Recommendations for Further Expansion of the Tool-Boxes 

Using different PVT’s instead of fluid properties as inputs in the tool-boxes 

provides an important advantage versus the published screening criteria by Taber and 

Martin (1983) and Taber et. al. (1997). Hydrocarbon compositions allow the artificial 

neural network applications to evaluate wider ranges of property combinations. 

The screening criteria and project design applications developed in this study 

were built using four specific hydrocarbons compositions. However, the tool-boxes are 

intended to be expanded in the future by incorporating new sets of PVT data.  

It is recommended to incorporate various PVT’s that varies from light oils to 

heavy oils with varying initial reservoir pressures. Even though some of the heavy oil 

reservoir models developed in this study did not provide significant production, the 

models simulated with some other heavy oil compositions and undergoing CO2, N2 and 

water injection should be evaluated with the help of a commercial simulator. Some of this 

recovery processes may lead to significant oil production when they are applied to heavy 

oils with characteristics that are different from the PVT#4.  

 



 

 

Chapter 6 
 

CONCLUSIONS 

The following achievements have been realized in the study presented in this 

thesis: 

• A multilayer cascade feedforward back propagation network algorithm 

was effectively implemented to simulate miscible displacement, waterflooding 

and steam injection recovery methods using artificial intelligent protocols. 

• The logarithmic function applied to the inputs and outputs proved to 

improve the network performance as it scales down the target ranges. 

• The constructed networks were able to describe the displacement 

mechanism under different miscibility conditions given that the same network 

architecture was efficient for different hydrocarbon compositions. Moreover, the 

same network also captured the similarities between carbon dioxide and nitrogen 

displacement mechanisms as the same network architecture was successfully 

applied in both CO2 and N2 injection.  

• The networks developed for waterflooding and steam injection 

applications were trained efficiently with an architecture similar to the miscible 

displacement applications. The expert systems also captured effectively the 

displacement mechanisms involved in these processes since two network 

structures were used in steam drive and water drive mechanisms, respectively. 
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• Artificial neural network was able to relate oil production rate, cumulative 

oil production and production time given that the proxy models predicted 

successfully the production curves using a considerably smaller number of input 

patterns.  

• Targets that exhibit a monotonically increasing behavior facilitate the 

network training process. Cumulative oil production and production time were 

accurately predicted while the oil production rate was the hardest variable to 

forecast due to its sharp drop as solvent breakthrough is achieved.  

• Two networks built in series helped to incorporate the complete oil 

profiles as a mid stage in the inverse expert systems as the oil recovery and 

abandonment time were not sufficient to provide accurate predictions.  

Nevertheless, the neuro-simulation application recognized stronger relationships 

between the oil profile and the oil recovery and abandonment time than the 

relationships between the operation pressures and the oil profiles since the inverse 

protocol provided comparable results with a simpler network architecture. 

• ANN was able to recognize the pronounced effects that injection pressure 

has in miscible displacement processes. Networks developed for the project 

design tool-box established a strong connection between oil recovery and 

injection pressure. The connection with the production pressure was not as strong 

as its prediction presented high levels of dispersion. 

• The inverse proxy models identified similar level of impact of the 

injection and production pressures on the water drive mechanism since both 

parameters presented similar deviations. 
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• Extension of the permissible operation condition limits in the project 

design application allowed more flexibility in the assessment of optimum 

development plans. However, better production scenarios are provided if the tool 

is used within the operating ranges as established with the design of experiment 

protocol. 

• The project design tool-box demonstrated to help in the quantitative 

project assessment if proper combinations of expected project time and oil 

recovery are provided for the same reservoir. Its use, when combined with the 

screening network application, facilitates the evaluation and validation of the 

proposed production scenarios. 
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Appendix A 
 

Peng Robinson Equation of State 

The general form of PR EOS is shown in Equation A.1: 

 

Where T is the absolute temperature, P is the absolute pressure, R is the universal 

gas constant and υ is the molar volume. The α term is a parameter calculated using 

Equation A.2 : 

and is a function of the acentric factor ω, which is calculated as:  

In Equation A.3, Pc is the critical pressure and Psat is the saturation pressure at 

the reduce temperature (Tr) of 0.7. Parameters a and b are calculated using Equation A.4 

and Equation A.5 respectively: 
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The PR cubic expression in Z, compressibility factor, is as presented in 

Equation A.6 : 

where parameters A and B are calculated as:  

The values of a and b for the hydrocarbon mixture are determined by: 

Cubic EOS provides a week prediction of the liquid phase. Peneloux et al. (1982) 

molar volume correction is also applied in order to improve the prediction of the liquid 

densities. This correction, usually referred to as volume shift, is shown in Equation A.11, 

which adds a third parameter to the EOS. 

The compressibility factor can be also corrected as follows:  

The molar volume υ* is the third term added to the EOS, which is a function of 

the shift volume parameter Vs, the critical pressure and critical temperature and the 

component composition (zi), as shown in Equation A.13: 

Z3 – (1 - B)Z2 +(A - 2B - 3B2)Z - (AB - B2 - B3)=0 A.6
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For low pressure conditions, the viscosity of each hydrocarbon component is 

calculated using the correlation developed by Yoon and Thodos (1970): 

where μp is the viscosity parameter, which is a function of the critical properties and the 

molecular weight (MW): 

Then, the viscosity of the mixture at low pressure is calculated using the mixing 

rule proposed by Herning and Zipperer (1936):  

The viscosity of the mixture at reservoir conditions is calculated from that one at 

low pressure using the correlation developed by Jossi, Stiel and Thodos (1962): 

where ρr is reduced density of the mixture.  
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Appendix B 
 

Sensitivity of the Numerical Model to the Grid Dimensions 

The sensitivity analysis on the coarseness/fineness of the grid to be used in the 

reservoir simulation was performed using 5-spot (normal and direct line drive), 7-spot 

and 9-spot well patterns. Figures B-1 to B-4 show the variation of oil flow rates and CO2 

mol fractions in the producer using different block numbers for each well pattern. These 

figures illustrate that the simulation models are, at some extend, sensitive to the grid 

block number. However, the differences in the results are not that significant since the 

curves have similar trends for all studied cases. As it was noted in Chapter 4, the only 

exception to this observation is the grid made up of 10x10 blocks. At early production 

time, oil rate shows a notable deviation from the rest of the curves. Thus, 10x10 grid 

systems were not used in any of the simulation runs. 
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Figure B-1: Sensitivity Analysis on Grid Size – Normal 5-Spot Well Pattern 
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Figure B-2: Sensitivity Analysis on Grid Size – Direct Line Drive 5-Spot Well Pattern 
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Figure B-3: Sensitivity Analysis on Grid Size – Normal 7-Spot Well Pattern 
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Figure B-4: Sensitivity Analysis on Grid Size – Normal 9-Spot Well Pattern  



 

 

Appendix C 
 

Oil Production Profiles and Operation Pressure Predictions 

The present study involved extensive generation of networks to be included in the 

tool-boxes. Since results are in most cases very similar within one well pattern and IOR 

process, this appendix contains the most characteristic results obtained from the 

networks. 

C.1 Networks in the Screening Tool-box  

C.1.1 CO2 Injection  
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Figure C-1: Best and Worst Production Profile Built using Stage-2 Network: CO2 Injection, PVT#1, 4-
Spot. Batch 1 (Small Areas) 
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Figure C-2:  Best and Worst Production Profile Built using Stage-2 Network: CO2 Injection, PVT#1, 5-
Spot. Batch 1 (Small Areas) 
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Figure C-3:  Best and Worst Production Profile Built using Stage-2 Network: CO2 Injection, PVT#1, 7-
Spot. Batch 1 (Small Areas) 
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Figure C-4:  Best and Worst Production Profile Built using Stage-2 Network: CO2 Injection, PVT#1, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-5:  Best and Worst Production Profile Built using Stage-2 Network: CO2 Injection, PVT#1, 4-
Spot. Batch 2 (Large Areas) 
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Figure C-6:  Best and Worst Production Profile Built using Stage-2 Network: CO2 Injection, PVT#1, 5-
Spot. Batch 2 (Large Areas) 

 

0 20 40 60 80
0

50

100

time (days)

O
il 

R
at

e 
(M

S
TB

/D
)

BEST OIL PRODUCTION CURVES
Case: 816. Error: 0.85 %

 

 
ANN Prediction

Actual DATA

0 20 40 60 80
0

2

4

time (days)C
um

. O
il 

Pr
od

 (
M

M
S

TB
)

 

 

ANN Prediction

Actual DATA

0 10 20 30 40 50
0

50

100

150

time (days)

O
il 

R
at

e 
(M

S
TB

/D
)

WORST OIL PRODUCTION CURVES
Case: 818. Error: 9.39 %

 

 
ANN Prediction

Actual DATA

0 10 20 30 40 50
0

1

2

3

time (days)C
um

. O
il 

Pr
od

 (
M

M
S

TB
)

 

 

ANN Prediction

Actual DATA

 
Figure C-7:  Best and Worst Production Profile Built using Stage-2 Network: CO2 Injection, PVT#1, 7-
Spot. Batch 2 (Large Areas) 
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Figure C-8:  Best and Worst Production Profile Built using Stage-2 Network: CO2 Injection, PVT#1, 9-
Spot. Batch 2 (Large Areas) 
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Figure C-9: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#2, 4-
Spot. Batch 1 (Small Areas) 
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Figure C-10: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#2, 5-
Spot. Batch 1 (Small Areas) 
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Figure C-11: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#2, 7-
Spot. Batch 1 (Small Areas) 
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Figure C-12: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#2, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-13: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#2, 4-
Spot. Batch 2 (Large Areas) 
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Figure C-14: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#2, 5-
Spot. Batch 2 (Large Areas) 
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Figure C-15: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#2, 7-
Spot. Batch 2 (Large Areas) 
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Figure C-16: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#2, 9-
Spot. Batch 2 (Large Areas) 
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Figure C-17: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#3, 4-
Spot. Batch 1 (Small Areas) 
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Figure C-18: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#3, 5-
Spot. Batch 1 (Small Areas) 
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Figure C-19: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#3, 7-
Spot. Batch 1 (Small Areas) 
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Figure C-20: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#3, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-21: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#3, 4-
Spot. Batch 2 (Large Areas) 
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Figure C-22: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#3, 5-
Spot.  Batch 2 (Large Areas) 
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Figure C-23: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#3, 7-
Spot. Batch 2 (Large Areas) 
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Figure C-24: Best and Worst Production Profiles Built using Stage-2 Network: CO2 Injection, PVT#3, 9-
Spot. Batch 2 (Large Areas) 
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C.1.2 N2 Miscible Injection  
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Figure C-25: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#1, 4-
Spot. Batch 1 (Small Areas) 
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Figure C-26:  Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#1, 5-
Spot. Batch 1 (Small Areas) 
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Figure C-27:  Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#1, 7-
Spot. Batch 1 (Small Areas) 
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Figure C-28:  Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#1, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-29: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#1, 4-
Spot. Batch 2 (Large Areas) 
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Figure C-30: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#1, 5-
Spot. Batch 2 (Large Areas) 
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Figure C-31: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#1, 7-
Spot. Batch 2 (Large Areas) 
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Figure C-32: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#1, 9-
Spot. Batch 2 (Large Areas) 
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Figure C-33: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#2, 4-
Spot.  Batch 1 (Small Areas) 
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Figure C-34: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#2, 5-
Spot.  Batch 1 (Small Areas) 
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Figure C-35: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#2, 7-
Spot.  Batch 1 (Small Areas) 



214 

 

 

 

 

 

0 20 40 60 80 100
0

10

20

30

time (days)
O

il 
R

at
e 

(M
S

TB
/D

)

BEST OIL PRODUCTION CURVES
Case: 832. Error: 1 %

 

 
ANN Prediction

Actual DATA

0 20 40 60 80 100
0

0.5

1

time (days)C
um

. O
il 

Pr
od

 (
M

M
S

TB
)

 

 
ANN Prediction

Actual DATA

0 50 100 150 200
0

5

10

15

time (days)

O
il 

R
at

e 
(M

S
TB

/D
)

WORST OIL PRODUCTION CURVES
Case: 868. Error: 792.27 %

 

 
ANN Prediction

Actual DATA

0 50 100 150 200
0

0.5

1

time (days)C
um

. O
il 

Pr
od

 (
M

M
S

TB
)

 

 
ANN Prediction

Actual DATA

 
Figure C-36: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#1, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-37: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#2, 4-
Spot.  Batch 2 (Large Areas) 
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Figure C-38: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#2, 5-
Spot.  Batch 2 (Large Areas) 
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Figure C-39: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#2, 7-
Spot.  Batch 2 (Large Areas) 
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Figure C-40: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#2, 9-
Spot.  Batch 2 (Large Areas) 
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Figure C-41: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#3, 4-
Spot. Batch 1 (Small Areas) 
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Figure C-42: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#3, 5-
Spot. Batch 1 (Small Areas) 
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Figure C-43: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#3, 7-
Spot. Batch 1 (Small Areas) 
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Figure C-44: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#3, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-45: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#3, 4-
Spot. Batch 2 (Large Areas) 
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Figure C-46: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#3, 5-
Spot. Batch 2 (Large Areas) 
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Figure C-47: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#3, 7-
Spot. Batch 2 (Large Areas) 
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Figure C-48: Best and Worst Production Profiles Built using Stage-2 Network: N2 Injection, PVT#3, 9-
Spot. Batch 2 (Large Areas) 
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Figure C-49: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#1, 4-
Spot. Batch 1 (Small Areas) 
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Figure C-50: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#1, 5-
Spot. Batch 1 (Small Areas) 
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Figure C-51: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#1, 7-
Spot. Batch 1 (Small Areas) 
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Figure C-52: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#1, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-53: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#1, 4-
Spot. Batch 2 (Large Areas) 
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Figure C-54: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#1, 5-
Spot. Batch 2 (Large Areas) 
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Figure C-55: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#1, 7-
Spot. Batch 2 (Large Areas) 
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Figure C-56: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#1, 9-
Spot. Batch 2 (Large Areas) 
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Figure C-57: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#2, 4-
Spot. Batch 1 (Small Areas) 
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Figure C-58: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#2, 5-
Spot. Batch 1 (Small Areas) 
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Figure C-59: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#2, 7-
Spot. Batch 1 (Small Areas) 
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Figure C-60: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#2, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-61: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#2, 4-
Spot. Batch 2 (Large Areas) 
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Figure C-62: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#2, 5-
Spot. Batch 2 (Large Areas) 
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Figure C-63: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#2, 7-
Spot. Batch 2 (Large Areas) 
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Figure C-64: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#2, 9-
Spot. Batch 2 (Large Areas) 
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Figure C-65: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#3, 4-
Spot. Batch 1 (Small Areas) 
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Figure C-66: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#3, 5-
Spot. Batch 1 (Small Areas) 
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Figure C-67: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#3, 7-
Spot. Batch 1 (Small Areas) 
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Figure C-68: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#3, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-69: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#3, 4-
Spot. Batch 2 (Large Areas) 
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Figure C-70: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#3, 5-
Spot. Batch 2 (Large Areas) 
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Figure C-71: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#3, 7-
Spot. Batch 2 (Large Areas) 
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Figure C-72: Best and Worst Production Profiles Built using Stage-2 Network: Water Injection, PVT#3, 9-
Spot. Batch 2 (Large Areas) 
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C.1.4 Steam Injection 
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Figure C-73: Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#2, 4-
Spot. Batch 1 (Small Areas) 
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Figure C-74:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#2, 5-
Spot. Batch 1 (Small Areas) 



228 

 

 

 

 

0 200 400 600 800 1000
0

2000

4000

6000

time (days)
O

il 
R

at
e 

(S
TB

/D
)

BEST OIL PRODUCTION CURVES
Case: 1899. Error: 1.32 %

 

 
ANN Prediction

Actual DATA

0 200 400 600 800 1000
0

2

4

6
x 10

5

time (days)

C
um

. O
il 

Pr
od

 (
S

TB
)

 

 

ANN Prediction

Actual DATA

0 10 20 30 40 50
0

5000

10000

time (days)

O
il 

R
at

e 
(S

TB
/D

)

WORST OIL PRODUCTION CURVES
Case: 1847. Error: 12.61 %

 

 
ANN Prediction

Actual DATA

0 10 20 30 40 50
0

2

4

6
x 10

4

time (days)

C
um

. O
il 

Pr
od

 (
S

TB
)

 

 

ANN Prediction

Actual DATA

 
Figure C-75:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#2, 7-
Spot. Batch 1 (Small Areas) 
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Figure C-76:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#2, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-77:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#2, 4-
Spot. Batch 2 (Large Areas) 
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Figure C-78:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#2, 5-
Spot. Batch 2 (Large Areas) 
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Figure C-79:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#2, 7-
Spot. Batch 2 (Large Areas) 
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Figure C-80:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#2, 9-
Spot. Batch 2 (Large Areas) 
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Figure C-81:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#3, 4-
Spot. Batch 1 (Small Areas) 
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Figure C-82:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#3, 5-
Spot. Batch 1 (Small Areas) 
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Figure C-83:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#3, 7-
Spot. Batch 1 (Small Areas) 
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Figure C-84:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#3, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-85:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#3, 4-
Spot. Batch 2 (Large Areas) 
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Figure C-86:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#3, 5-
Spot. Batch 2 (Large Areas) 
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Figure C-87:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#3, 7-
Spot. Batch 2 (Large Areas) 
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Figure C-88:  Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#3, 9-
Spot. Batch 2 (Large Areas) 
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Figure C-89: Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#4, 4-
Spot. Batch 1 (Small Areas) 
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Figure C-90: Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#4, 5-
Spot. Batch 1 (Small Areas) 
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Figure C-91: Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#4, 7-
Spot. Batch 1 (Small Areas) 
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Figure C-92: Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#4, 9-
Spot. Batch 1 (Small Areas) 
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Figure C-93: Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#4, 4-
Spot. Batch 2 (Large Areas) 
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Figure C-94: Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#4, 5-
Spot. Batch 2 (Large Areas) 
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Figure C-95: Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#4, 7-
Spot. Batch 2 (Large Areas) 
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C.2 Networks in the IOR Project Design Tool-box 

C.2.1 CO2 Miscible Injection 
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Figure C-96: Best and Worst Production Profiles Built using Stage-2 Network: Steam Injection, PVT#4, 9-
Spot. Batch 2 (Large Areas) 
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Figure C-97: Correlation Between Actual and Predicted Pressures. CO2 Injection, PVT#1, Step-2 Network 
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Figure C-98: Correlation Between Actual and Predicted Pressures. CO2 Injection, PVT#2, Step-2 Network 



237 

 

 

 

 

 

1000 1500 2000

1000

1200

1400

1600

1800

2000

Actual PProd

P
re

di
ct

ed
 P

P
ro

d
R2= 0.9996

 

 
CO2 Injection, PVT3,4-spot, Areas<=100 acres

A=60
A=70
A=80
A=90
A=100

4000 4500 5000 5500 6000
4000

4500

5000

5500

6000

Actual PInj

P
re

di
ct

ed
 P

In
j

R2= 0.99987

 

 

A=60
A=70
A=80
A=90
A=100

1000 1500 2000

1000

1200

1400

1600

1800

2000

Actual PProd

P
re

di
ct

ed
 P

P
ro

d

R2= 0.99991

 

 
CO2 Injection, PVT3,4-spot, Areas>100 acres

A=150
A=200
A=220
A=250
A=300

4000 4500 5000 5500 6000
4000

4500

5000

5500

6000

Actual PInj

P
re

di
ct

ed
 P

In
j

R2= 0.99996

 

 

A=150
A=200
A=220
A=250
A=300

 

1000 1500 2000

1000

1200

1400

1600

1800

2000

Actual PProd

P
re

di
ct

ed
 P

P
ro

d

R2= 0.9999

 

 
CO2 Injection, PVT3,5-spot, Areas<=100 acres

A=60
A=70
A=80
A=90
A=100

4000 4500 5000 5500 6000
4000

4500

5000

5500

6000

Actual PInj

P
re

di
ct

ed
 P

In
j

R2= 0.99996

 

 

A=60
A=70
A=80
A=90
A=100

1000 1500 2000

1000

1200

1400

1600

1800

2000

Actual PProd

P
re

di
ct

ed
 P

P
ro

d

R2= 0.9999

 

 
CO2 Injection, PVT3,5-spot, Areas>100 acres

A=150
A=200
A=220
A=250
A=300

4000 4500 5000 5500 6000
4000

4500

5000

5500

6000

Actual PInj

P
re

di
ct

ed
 P

In
j

R2= 0.99991

 

 

A=150
A=200
A=220
A=250
A=300

 

1000 1500 2000

1000

1200

1400

1600

1800

2000

Actual PProd

P
re

di
ct

ed
 P

P
ro

d

R2= 0.99944

 

 
CO2 Injection, PVT3,7-spot, Areas<=100 acres

A=60
A=70
A=80
A=90
A=100

4000 4500 5000 5500 6000
4000

4500

5000

5500

6000

Actual PInj

P
re

di
ct

ed
 P

In
j

R2= 0.99976

 

 

A=60
A=70
A=80
A=90
A=100

1000 1500 2000

1000

1200

1400

1600

1800

2000

Actual PProd

P
re

di
ct

ed
 P

P
ro

d

R2= 0.9998

 

 
CO2 Injection, PVT3,7-spot, Areas>100 acres

A=150
A=200
A=220
A=250
A=300

4000 4500 5000 5500 6000
4000

4500

5000

5500

6000

Actual PInj

P
re

di
ct

ed
 P

In
j

R2= 0.99992

 

 

A=150
A=200
A=220
A=250
A=300

 

1000 1500 2000

1000

1200

1400

1600

1800

2000

Actual PProd

P
re

di
ct

ed
 P

P
ro

d

R2= 0.99856

 

 
CO2 Injection, PVT3,9-spot, Areas<=100 acres

A=60
A=70
A=80
A=90
A=100

4000 4500 5000 5500 6000
4000

4500

5000

5500

6000

Actual PInj

P
re

di
ct

ed
 P

In
j

R2= 0.99951

 

 

A=60
A=70
A=80
A=90
A=100

1000 1500 2000

1000

1200

1400

1600

1800

2000

Actual PProd

P
re

di
ct

ed
 P

P
ro

d

R2= 0.99779

 

 
CO2 Injection, PVT3,9-spot, Areas>100 acres

A=150
A=200
A=220
A=250
A=300

4000 4500 5000 5500 6000
4000

4500

5000

5500

6000

Actual PInj

P
re

di
ct

ed
 P

In
j

R2= 0.99901

 

 

A=150
A=200
A=220
A=250
A=300

Figure C-99: Correlation Between Actual and Predicted Pressures. CO2 Injection, PVT#3,  Step-2 Network
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C.2.2 N2 Miscible Injection 
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Figure C-100: Correlation Between Actual and Predicted Pressures. N2 Injection, PVT#1,  Step-2 Network
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Figure C-101: Correlation Between Actual and Predicted Pressures. N2 Injection, PVT#2,  Step-2 Network
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Figure C-102: Correlation Between Actual and Predicted Pressures. N2 Injection, PVT#2,  Step-2 Network



241 

 

C.2.3 Water Injection 
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Figure C-103: Correlation Between Actual and Predicted Pressures (Testing). Waterflooding, PVT#2,
Batch 1&2, Step-2 Network. 
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Figure C-104: Correlation Between Actual and Predicted Pressures (Testing). Waterflooding, PVT#3,
Batch 1&2,  Step-2 Network . 
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C.2.4 Steam Injection 
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Figure C-105: Correlation Between Actual and Predicted Pressures (Testing). Steam Injection, PVT#3, 
Batch 1&2,  Step-2 Network . 



 

 

Appendix D 
 

Matlab Code for Screening Network 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Screening IOR Criteria Network 
%% 4-Spot, PVT2, CO2 Injection, Small Areas 
%% Developed by C. Parada 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
format compact 
clear  
clc 
close all 
%set random to zero for initialization purposes 
rand('state', 0); 
  
%INPUT DATA SET FOR TRAINING 
load 'CO2_PVT2_KHP_1000_100.txt' 
  
%INPUT TARGETS FOR TRAINING 
load 'CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100.txt' 
  
P(1,:)=CO2_PVT2_KHP_1000_100(:,1)'; %AREA 
P(2,:)=CO2_PVT2_KHP_1000_100(:,2)'; %Pprod  
P(3,:)=CO2_PVT2_KHP_1000_100(:,3)'; %Pinj 
P(4,:)=CO2_PVT2_KHP_1000_100(:,4)'; %K 
P(5,:)=CO2_PVT2_KHP_1000_100(:,5)'; %h  
P(6,:)=CO2_PVT2_KHP_1000_100(:,6)'; %poro 
%Pressure gradient calculation 
P(7,:)= (2*sqrt(CO2_PVT2_KHP_1000_100(:,1).*43560./sqrt(3)))'; 
%distance btw injectors, "l" 
P(8,:)=((2*sqrt(CO2_PVT2_KHP_1000_100(:,1).*43560./sqrt(3)))./sqrt(3))'
; %distance btw inj and prod 
P(9,:)=((CO2_PVT2_KHP_1000_100(:,3)-CO2_PVT2_KHP_1000_100(:,2))./... 
    (2*sqrt(CO2_PVT2_KHP_1000_100(:,1).*43560./sqrt(3)))./sqrt(3))'; 
%Pgrad 
P(10,:)=(CO2_PVT2_KHP_1000_100(:,4).*CO2_PVT2_KHP_1000_100(:,5))'; %K*h 
 
t(1,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,1))'; %BT  
t(2,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,2))'; %t1 
t(3,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,3))'; %t2 
t(4,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,4))'; %t3  
t(5,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,5))'; %t4 
t(6,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,6))'; %t5 
t(7,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,7))'; %AT  
t(8,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,8))'; %q_2day  cum 
t(9,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,9))'; %q BT  cum 
t(10,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,10))'; %q_1 cum  
t(11,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,11))'; %q_2 cum 
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t(12,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,12))'; %q_3 cum 
t(13,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,13))'; %q_4 cum 
t(14,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,14))'; %q_5 cum 
t(15,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,15))'; %q_AT cum 
t(16,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,16))'; %q_2day rate 
t(17,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,17))'; %q BT rate 
t(18,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,18))'; %q_1 rate 
t(19,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,19))'; %q_2 rate 
t(20,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,20))'; %q_3 rate 
t(21,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,21))'; %q_4 rate 
t(22,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,22))'; %q_5 rate 
t(23,:)=(CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100(:,23))'; %q_AT rate 
  
t=log(t); %functional link 
[NPLin,NP] = size(P); %size of input 
[NPLout,Nt] = size(t); %size of output layer 
%NORMALIZATION OF DATA 
[Pn,minp,maxp]=premnmx(P);  % normalization btw [-1 1] 
[tn,mint,maxt] = premnmx(t); % normalization btw [-1 1] 
%SEPARATE TRAINING, TESTING AND VALIDATION 
[nxP,nyP]=size(Pn); 
val_num=100; 
test_num=100; 
%TRAINING SETS 
for i=1:nyP-val_num-test_num; 
    Pn_train(:,i)=Pn(:,i); 
    tn_train(:,i)=tn(:,i); 
    t_train(:,i)=t(:,i);  
end 
%VALIDATION 
for i=1:val_num; 
    Pn_val(:,i)=Pn(:,i+nyP-val_num); 
    tn_val(:,i)=tn(:,i+nyP-val_num);  
    t_val(:,i)=t(:,i+nyP-val_num);   
end 
  
%TESTING SETS 
for i=1:test_num; 
    Pn_test(:,i)=Pn(:,i+nyP-test_num-val_num); 
    tn_test(:,i)=tn(:,i+nyP-test_num-val_num);  
    t_test(:,i)=t(:,i+nyP-test_num-val_num); 
end 
  
clear CO2_PVT2_KHP_1000_100 
clear CO2_PVT2_KHP_OUTPUT_ANN_4SPOT_1000_100 
clear P t 
  
val.T=tn_val; 
val.P=Pn_val; 
test.T=tn_test; 
test.P=Pn_test; 
 
NPL1=60; %60 
NPL2=30; %30 
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NPL3=NPLout; 
  
%BACKPROPAGATION ALGORITHM - CREATING THE NETWORK 
net = newcf(minmax(Pn_train), [NPL1,NPL2,NPL3],... 
    {'tansig','tansig','purelin'}, 'trainlm','learngdm','mse'); 
  
%INITIALIZATION OF WEIGHTS AND BIAS 
w1=zeros(NPL1,NPLin); 
w2=zeros(NPL2,NPL1); 
w3=zeros(NPL3,NPL2); 
w1(:,:)=0.1; 
w2(:,:)=0.1; 
w3(:,:)=0.1; 
net.IW{1,1}=w1; 
net.LW{2,1}=w2; 
net.LW{3,2}=w3; 
net.b{1}=zeros(NPL1,1); 
net.b{2}=zeros(NPL2,1); 
net.b{3}=zeros(NPL3,1); 
  
%ADJUST TRAINING PARAMETERS  
net.trainParam.goal=1e-5; %1e-5; 
net.trainParam.max_fail=5; %20 
net.trainParam.epochs = 100000; %200000; 
net.trainParam.min_grad = 10e-15; 
net.trainParam.mem_reduc=80; %to reduce memory requirements 
net.trainParam.mu=0.001; %0.001 Initial Mu  
net.trainParam.mu_dec=0.1; %0.1 Mu decrease factor  
net.trainParam.mu_inc=5; %10 Mu increase factor  
net.trainParam.mu_max=100; %1e10 Maximum Mu 
net.trainParam.show = 1; %20; 
  
%TRAINING THE NETWORK 
[net,tr_AT,Y_AT,E_AT] = train(net,Pn_train,tn_train,[],[],val,test); 
%Weights and Bias 
net_b1= net.b{1};  
net_w1= net.IW{1,1}; 
net_b2= net.b{2};  
net_w2= net.LW{2,1}; 
net_b3= net.b{3};  
net_w3= net.LW{3,2}; 
  
%SIMULATION OF THE NETWORK WITH THE TRAINING DATA 
tn_train_ann = sim(net,Pn_train); 
%SIMULATION OF THE NETWORK WITH THE VALIDATION DATA 
% tn_val_ann = sim(net,Pn_val); 
%PREDICTIONS-NEW DATA-SETS THE NETWORK HAS NOT SEEN BEFORE  
tn_test_ann = sim(net, Pn_test); 
%DENORMALIZATION OF THE SIMULATION 
t_train_ann = postmnmx(tn_train_ann, mint, maxt); 
t_test_ann = postmnmx(tn_test_ann, mint, maxt); 
%UNDO FUNCTIONAL LINK 
t_train_ann = exp(t_train_ann); %tBT 
t_test_ann = exp(t_test_ann); %tBT 



247 

 

t_train = exp(t_train); %tbt 
t_test = exp(t_test); %tBT 
  
%ERROR TRAINING-STAGE (%) 
[Nt_train,Nd_train]=size(t_train); %Nt = number of target per data-set, 
Nd = number of data-set 
NP_train = 1:Nd_train; 
error_train = ((t_train-t_train_ann)./t_train).*100; 
error_train_std=std(error_train'); 
error_train_mean=mean(error_train'); 
error_train_ave=sum(abs(error_train'))/Nd_train; 
  
%ERROR PREDICTION-STAGE (%) 
[Nt_test,Nd_test]=size(t_test); 
NP_test = 1:Nd_test; 
error_test = ((t_test-t_test_ann)./t_test).*100; 
error_test_std=std(error_test'); 
error_test_mean=mean(error_test'); 
error_test_ave=sum(abs(error_test'))/Nd_test; 
  
%%---------------------------------------------------------------- 
%%                             PLOTS 
%%---------------------------------------------------------------- 
  
saveas(gcf,'CO2_CO2_PVT24S_train_100.fig'); 
figure; hintonwb(net_w1,net_b1); 
  
for i=1:NPLout 
  
    if i==1;  name='BT Time'; end 
    if i==2;  name='Time1'; end 
    if i==3;  name='Time2'; end 
    if i==4;  name='Time3'; end 
    if i==5;  name='Time4'; end 
    if i==6;  name='Time5'; end 
    if i==7;  name='Abdon Time'; end 
    if i==8;  name='Cum Oil 2days'; end 
    if i==9;  name='Cum Oil BT'; end 
    if i==10; name='Cum Oil t1'; end 
    if i==11; name='Cum Oil t2'; end 
    if i==12; name='Cum Oil t3'; end 
    if i==13; name='Cum Oil t4'; end 
    if i==14; name='Cum Oil t5'; end 
    if i==15; name='Cum Oil AT'; end 
    if i==16; name='Oil Rate 2days'; end 
    if i==17; name='Oil Rate BT'; end 
    if i==18; name='Oil Rate t1'; end 
    if i==19; name='Oil Rate t2'; end 
    if i==20; name='Oil Rate t3'; end 
    if i==21; name='Oil Rate t4'; end 
    if i==22; name='Oil Rate t5'; end 
    if i==23; name='Oil Rate AT'; end 
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%TRAINING 
figure ('Position',[10 40 1000 600]); 
subplot(2,3,1),plot(NP_train,t_train_ann(i,:),'b*-
',NP_train,t_train(i,:),'ro--'); 
xlabel('Data-Set Number') 
ylabel('Training Target') 
h = legend('ANN','Data',2); 
  
subplot(2,3,2),plot(NP_train,error_train(i,:),'b*-'); 
xlabel('Data-Set Number') 
ylabel('Training error') 
title([name,' - Training']) 
  
subplot(2,3,3) 
[m,b,r] = postreg(t_train_ann(i,:),t_train(i,:)); 
axis square 
xlabel('Prediction Values') 
ylabel('Input Values') 
title(['Training, R^2= ', num2str(r)]) 
legend('off'); 
  
%PREDICTION 
subplot(2,3,4),plot(NP_test,t_test_ann(i,:),'b*-
',NP_test,t_test(i,:),'ro--'); 
xlabel('Data-Set Number') 
ylabel('Testing Target') 
h = legend('ANN','Data',2); 
  
subplot(2,3,5),plot(NP_test,error_test(i,:),'b*-'); 
xlabel('Data-Set Number') 
ylabel('Testing Error') 
title([name,' - Testing']) 
grid on; 
  
subplot(2,3,6) 
[m,b,r] = postreg(t_test_ann(i,:),t_test(i,:)); 
axis square 
xlabel('Prediction Values') 
ylabel('Input Values') 
title(['Testing, R^2= ', num2str(r)]) 
legend('off'); 
  
end 
%% save workspace 
save CO2_PVT2_ANN_4SPOT_1000_100.mat 
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