
The Pennsylvania State University

The Graduate School

TOWARD OBFUSCATION-RESILIENT PLAGIARISM

DETECTION

A Dissertation in

Computer Science and Engineering

by

Fangfang Zhang

c© 2014 Fangfang Zhang

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2014

The dissertation of Fangfang Zhang was reviewed and approved∗ by the following:

Sencun Zhu

Associate Professor of Computer Science and Engineering

Dissertation Advisor, Chair of Committee

Peng Liu

Professor of Information Sciences and Technology

Guohong Cao

Professor of Computer Science and Engineering

David J. Miller

Professor of Electrical Engineering

Lee Coraor

Associate Professor of Computer Science and Engineering

Graduate Officer

∗Signatures are on file in the Graduate School.

Abstract

In the field of software development, plagiarism is an act of violating intellectual
property rights. Plagiarists either illegally copy others’ source/binary code (also
known as software plagiarism) or steal others’ algorithms and covertly implement
them (called algorithm plagiarism). Code obfuscation techniques are often applied
by plagiarists to evade detection. Plagiarism has become a serious concern for
honest software companies and the open source community. Besides, along with
the wide use of mobile devices such as smartphones and tablets and the rapid
growth of mobile application (app) markets, mobile app repackaging, as a new kind
of software plagiarism, has emerged. It not only harms the health of app markets
but also hurts the security of mobile users. As a result, computer-aided, automated
plagiarism detection is desired. There are two common requirements for a good
plagiarism detection scheme: (R1) Capability to work on suspicious executables
without the source code; (R2) Resiliency to code obfuscation techniques.

In this dissertation, we propose an obfuscation resilient plagiarism detection
architecture, which satisfies the above requirements. It contains three components:
LoPD, a program logic-based approach to software plagiarism detection, ValPD, a
dynamic value-based approach to algorithm plagiarism detection, and ViewDroid,
a user interface-based approach for Android application repackaging detection.

LoPD is a program logic-based software plagiarism detection method. Instead
of directly comparing the similarity between two programs, LoPD searches for
any dissimilarity between two programs by finding an input that will cause these
two programs to behave differently, either with different output states or with
semantically different execution paths. As long as we can find one dissimilarity,
the programs are semantically different; otherwise, it is likely a plagiarism case.
We leverage symbolic execution and weakest precondition reasoning to capture the
semantics of execution paths and to find path dissimilarities. LoPD is resilient to
current automatic obfuscation techniques. In addition, since LoPD is a formal
program semantics-based method, we can provide a formal guarantee of resilience
against most known obfuscation attacks. Our evaluation results indicate that

iii

LoPD is both effective and efficient in detecting software plagiarism.
In the ValPD component, we propose two dynamic value-based approaches,

namely N-version and annotation, for algorithm plagiarism detection. Our ap-
proaches are motivated by the observation that there exist some critical runtime
values which are irreplaceable and uneliminatable for all implementations of the
same algorithm. The N-version approach extracts such values by filtering out
non-core values. The annotation approach leverages auxiliary information to flag
important variables which contain core values. We also propose a value dependence
graph-based similarity metric to address the potential value reordering attack. A
prototype is implemented and evaluated. The results show that our approaches
to algorithm plagiarism detection are practical, effective and resilient to many
automatic obfuscation techniques.

Lastly, we propose ViewDroid, a user interface-based approach to smartphone
application repackaging detection. Android applications are user interaction inten-
sive and event dominated; the interactions between users and apps are performed
through user interface (i.e., views). This inspired the design of our new birthmark
for Android applications, namely, feature view graph, which captures user’s naviga-
tion behavior across application views. Our experimental results demonstrate that
this birthmark can characterize Android applications from a higher abstraction,
making it resilient to code obfuscation. It can detect repackaged apps in large-scale
scenarios both effectively and efficiently. Manual verification for the reported pairs
shows that the false positive rate and false negative rate of ViewDroid are very
low.

iv

Table of Contents

List of Figures viii

List of Tables ix

Acknowledgments x

Chapter 1
Introduction 1
1.1 Software Plagiarism Detection . 3
1.2 Algorithm Plagiarism Detection 4
1.3 Smartphone Application Plagiarism Detection 5
1.4 Contributions . 7

Chapter 2
Related Work 10
2.1 Software Plagiarism Detection . 10

2.1.1 Static birthmark-based plagiarism detection 10
2.1.2 Dynamic birthmark-based plagiarism detection 12

2.2 Smartphone Application Plagiarism Detection and Security 12
2.2.1 Smartphone App Plagiarism Detection 12
2.2.2 Smartphone App Security. 13

2.3 Clone Detection . 14
2.4 Software Watermarking . 14
2.5 Path Deviation Detection . 14
2.6 N-version programming . 15
2.7 Test input generation . 15

Chapter 3
LoPD: Logic-based Software Plagiarism Detection 17
3.1 Overview . 18

v

3.1.1 Problem Statement . 18
3.1.2 Basic Idea . 18

3.2 Design . 22
3.2.1 Architecture . 22
3.2.2 Input generator . 24
3.2.3 Path Deviation Detector 24
3.2.4 Path Equivalence Checker 28

3.3 Counterattack Analysis . 30
3.4 Implementation and Evaluation 31

3.4.1 Case Study I: the Same Programs 32
3.4.2 Case Study II: Different Programs 34

3.5 Discussion . 39
3.6 Summary . 40

Chapter 4
ValPD: Value-Based Algorithm Plagiarism Detection 42
4.1 Problem Statement . 42
4.2 Signature Selection . 43

4.2.1 Signature Candidates . 43
4.2.2 Core Values . 45

4.3 Our Approaches . 45
4.3.1 N-version Approach . 45
4.3.2 Annotation Approach . 48
4.3.3 Similarity Metric . 51

4.4 Address Reordering Problems . 51
4.4.1 VDG Comparison . 52
4.4.2 VDG Reduction . 53
4.4.3 VDG Similarity Metric . 53

4.5 Implementation and Experiment 54
4.5.1 Effectiveness of the N-version Approach 54
4.5.2 Effectiveness of the Annotation Approach 58

4.5.2.1 Manual Annotation Approach 58
4.5.2.2 Automatic Annotation Approach 58

4.5.3 VDG-Based Metric . 61
4.5.4 Resiliency to Automatic Obfuscation 62

4.6 Discussion . 62
4.6.1 Counterattacks . 62
4.6.2 Partial Plagiarism . 64
4.6.3 Limitations . 64

4.7 Summary . 65

vi

Chapter 5
ViewDroid: User Interface-based Android Application Repack-

aging Detection 66
5.1 Android Application Background 66
5.2 Problem Statement . 68

5.2.1 Attack model . 68
5.2.2 Design Goals . 70

5.3 Design . 70
5.3.1 Overview . 70
5.3.2 System Architecture . 73

5.4 Evaluation . 79
5.4.1 Real-world Large-scale Experiment 80

5.4.1.1 False Positive and Efficiency 80
5.4.1.2 False Negative 82
5.4.1.3 Malware . 83
5.4.1.4 Category-based Evaluation 84

5.4.2 Obfuscation Resilience . 85
5.4.2.1 Applying Single Obfuscation Algorithm 87
5.4.2.2 Serializing Multiple Obfuscation Algorithms . . . 90

5.5 Discussion . 91
5.5.1 Attack Analysis on ViewDroid 91
5.5.2 Limitations . 92

5.6 Summary . 93

Chapter 6
Conclusion 94

Bibliography 96

vii

List of Figures

1.1 The spectrum of program similarity 2

3.1 Path deviation example . 21
3.2 LoPD system design . 23
3.3 Path deviation detector . 25
3.4 Path equivalence checker . 28
3.5 The number of path deviations discovered within the first N itera-

tions. 36
3.6 Path deviation example of THTTPD vs. mini httpd. 37

4.1 The design of N-version approach 47
4.2 The design of annotation approach 48
4.3 Forward slicing and backward slicing annotation example 50
4.4 Reordering problem example . 52
4.5 The similarity scores and lengthes of common value sequences for

MD5 . 56
4.6 The similarity scores of the annotation approach 57
4.7 The similarity scores of automatic annotation with the LCS Metric 59
4.8 The similarity scores of automatic annotation with the VDG metric 61

5.1 An example of a Sudoku game view 71
5.2 An example of view navigation 72
5.3 The ViewDroid system architecture. 74
5.4 An example of view graph construction 78
5.5 The feature view graph of a repackaging app. 78
5.6 The feature view graph of an independent app. 79
5.7 The cumulative distribution function (CDF) of similarity scores. . 80
5.8 The cluster of sudoku apps based on the similarity scores. 85
5.9 The cluster of flashlight apps based on the similarity scores. . . . 86

viii

List of Tables

1.1 The code obfuscation resilience comparison of different detection
approaches . 3

2.1 Categories of plagiarism detection methods. Methods proposed in
this dissertation are in Bold . 11

3.1 The tabular representation of relations between the reality and the
detection results. 21

3.2 The tested programs and their running time per iteration for the
same program case (in seconds). 32

3.3 The tested programs and their running time per iteration for the
different programs case (in s). 35

4.1 The similarity scores in MD5 experiment with various inputs . . . 55
4.2 The similarity scores in AES experiment with various inputs . . . 55
4.3 The similarity scores in max flow experiment with various inputs . 55
4.4 The List of Applications and their algorithms 59

5.1 The repackaging apps detected by ViewDroid 82
5.2 The execution time of ViewDroid (in second) 82
5.3 The malware attacks detected by ViewDroid 84
5.4 Average Similarity Score by ViewDroid compared with AndroGuard

for each Obfuscator from Broadness Analysis 88

ix

Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Sencun Zhu. It is
his constant encouragement and insightful advice that inspired me and guided me
to finish this dissertation. His generosity, kindness and enthusiasm also influence
me a lot. It has been my great honor to work with him.

I also want to thank Dr. Peng Liu and Dr. Dinghao Wu for their inspired dis-
cussions and insightful suggestions. I am so grateful that they spent their valuable
time helping me revise my papers.

My gratitude also goes to my other committee members, Dr. Guohong Cao
and Dr. David Miller for attending my defense, reviewing my dissertation and
giving me critical comments to improve the dissertation.

Finally, I want to thank my parents and my husband. Without their uncondi-
tional love and support, I cannot finish this work.

x

Dedication

To my husband Wei and my son Ethan.

xi

Chapter 1

Introduction

In the field of software development, plagiarism is an act of violating intellectual

property rights. There are two ways to perform plagiarism. The first one is that

plagiarists copy and reuse others’ source/binary code and apply some obfuscation

techniques to evade detection, also known as software plagiarism. The second way

is to steal others’ algorithm and implement it, but claim it is their own product.

This is called algorithm plagiarism.

Along with the rapid growing of software industry and the burst of open source

projects (e.g., SourceForge.net has over 430, 000 registered open source projects

with 3.7 million developers and more than 4.8 million downloads a day, as of

March 2014 1), plagiarism has become a very serious concern for honest software

companies, developers and open source communities. There are some billion dollar

lawsuits dealing with the plagiarism cases. As an example, in the settlement of

an intellectual property lawsuit that Compuware filed against IBM in 2005, the

latter should pay the former “$140 million to license its software and $260 million

to purchase its services” [1], because it was discovered that some IBM products

copied code from Compuware. As a result, computer-aided, automated plagiarism

detection is desired for the purpose of intellectual property protection.

Meanwhile, along with the wide use of mobile devices (such as smartphones

and tablets) and the fast growing of mobile application (app) markets, a special

kind of software plagiarism, smartphone app repackaging, has emerged and drawn

researchers’ attention. Zhou et al. [2] found 5% to 13% of apps in third-party

1http://sourceforge.net/about

2

Programs with
Different Purposes

Programs with the
Same Purpose

Different Algorithms Same Algorithm

Different
Implementations

Semantic-preserving transforma-
tions on the same implementation

Purpose
Level

Algorithm
Level

Implementation
Level

Figure 1.1. The spectrum of program similarity

app markets repackaged apps from the official Android app market. Moreover, a

repackaged app can mimic a popular app but is used to propagate malware. In

order to maintain the health of app markets and the security of mobile users, app

repackaging detection is a critical issue to be addressed.

However, automated plagiarism detection is very challenging. For one reason,

source code of suspicious programs is usually not available to plaintiff. The analy-

sis of executables is much harder than the source code analysis. Besides having no

access to source code of suspicious programs, code obfuscation techniques are also a

huge obstacle to automated plagiarism detection. Code obfuscation is a technique

to transform a sequence of code into a different sequence that preserves the seman-

tics but is much more difficult to understand or analyze. Based on above two facts,

there are two common requirements for a good plagiarism detection scheme [3]:

(R1) Capability to work on suspicious executables without the source code; (R2)

Resiliency to code obfuscation techniques. Moreover, due to the large number of

apps on app markets, app repackaging detection has an addition requirement: (R3)

Efficiency and scalability to a large scale app set.

In this work, we are focusing on three problems: software plagiarism detec-

tion, algorithm plagiarism detection and smartphone app repackaging detection.

As shown in Figure 1.1, the similarity between programs can be reflected at differ-

ent abstraction levels, including purpose level, algorithm level and implementation

level. Both software plagiarism detection and smartphone app repackaging de-

tection are on the implementation level, while the algorithm plagiarism is on the

algorithm level.

3

Table 1.1. The code obfuscation resilience comparison of different detection approaches
C1 C2 C3 C4 C5 LoPD

Noise instruction X X X X
Statement reordering X X X X
Instruction splitting/aggregation X X X X
Value splitting/aggregation X X X
Opaque predicate X X X
Control flow flattening X X X
Loop unwinding X X X
API implementation embedding X X X

1.1 Software Plagiarism Detection

The detection of software plagiarism has been discussed in many literatures, which

can be divided into the following categories: (C1) static source code comparison

methods [4, 5, 6]; (C2) static executable code comparison methods [7, 8]; (C3)

dynamic control flow-based methods [9]; (C4) dynamic API-based methods [10, 11];

(C5) dynamic value-based approach [3, 12]. First, C1 does not meet R1 because

it has to access source code. Second, none of them satisfy requirement R2 because

they are vulnerable to some code obfuscation techniques as shown in Table 1.1.

In Chapter 3, we propose a novel software plagiarism detection approach, called

LoPD. LoPD does not need the source code of tested programs. In addition, it

is resilient to existing automatic code obfuscation techniques. Instead of directly

measuring the similarity between two programs, LoPD is based on an opposite

philosophy: searching for any dissimilarity between two programs. As long as we

can find one dissimilarity, the tested programs are semantically different; but if we

cannot find any dissimilarity, it is likely a plagiarism case.

Based on our design philosophy, LoPD tries to rule out dissimilar program pairs

by finding input that will cause these two programs to behave differently, either

with different output states or with different computation paths. The output

states can be directly compared, but the comparison of computation paths is not

such straightforward. Our idea is to find path deviation, i.e., given two different

inputs, one program will follow the same execution path, whereas the other one will

execute two different paths with these two inputs. In this case, at least one of these

two inputs makes the two programs have different computation paths and behave

4

differently. As long as we find a path deviation, we can claim the two programs in

consideration are not semantically the same. Detecting path deviation transforms

the comparison of different programs’ execution paths with the same input to the

comparison of the same program’s execution paths with different inputs. The latter

is much more straightforward and accurate. We leverage symbolic execution [13]

and weakest precondition [14, 15] to systemically find such path deviations.

1.2 Algorithm Plagiarism Detection

Detection of algorithm plagiarism is desired in many practical scenarios. For exam-

ple, when an algorithm is protected by patent right, the owners of this algorithm

need to defend their proprietary by examining the plagiarism of this algorithm in

other programs. Another scenario is that software companies often need to verify

that their software products do not plagiarize any patent protected algorithms be-

fore release, to avoid lawsuits. In addition to its commercial potential, algorithm

plagiarism detection can also provide important insight into the identification of

essential characteristics of an algorithm. However, to the best of our knowledge,

there has been little previous work focusing on this topic.

Although both algorithm plagiarism detection and software plagiarism detec-

tion rely on assessing the similarity between programs, they are fundamentally

different. If two software products are independently developed by two companies

using the same algorithm, there exists no software plagiarism because of the inde-

pendence. Any valid software plagiarism detection tool should indicate the same

conclusion. However, if the underlying algorithm belongs to one company and

is implemented stealthily by the other, there exists algorithm plagiarism, which

apparently cannot be detected by any software plagiarism detection tools. There-

fore, we cannot apply software plagiarism detection approach to detect software

plagiarism.

In fact, algorithm plagiarism detection is even more challenging than software

plagiarism detection. A major reason is that an algorithm can be independently

implemented in different ways by different programmers in different programming

languages. These implementation processes involve human intelligence, coding

style and creativity, which generate a lot of diversities in the resulted code. These

5

diversities are hard to be described formally and can cause two programs imple-

menting the same algorithm to appear dramatically different from each other. As a

result, how to “peel off” these diversities and how to capture the essential code-level

characteristics of an algorithm remain big challenges. In contrast, the diversities

caused by software plagiarism assisted by automatic code obfuscation tools can be

filtered out through birthmarks and structural features [3, 4, 16, 9, 10, 17, 18, 11].

In other words, the gap between essential characteristics of an algorithm and the

(static/dynamic) exhibition of the algorithm implementations is much larger than

the gap between the (static/dynamic) exhibition of a program and that of the

obfuscated versions of the program.

In Chapter 4, we develop a dynamic value-based methodology to effectively

detection algorithm plagiarism. We use core values, i.e., the critical runtime values

that are irreplaceable and uneliminatable for different implementations of the same

algorithm, as the signature of an algorithm. Then we propose two novel approaches

to extract core values from programs’ runtime values: the N-version approach and

the annotation approach. The N-version approach tries to find the common values

of different implementations of the same algorithm. The annotation approach

leverage auxiliary information to identify core values. After that, we propose two

metrics: the longest common subsequence (LCS) and the value dependence graph

(VDG) to assess the similarity between core values extracted from an algorithm’s

plaintiff implementation and its suspicious implementation.

1.3 Smartphone Application Plagiarism Detec-

tion

There were over 1, 100, 000 apps available on the Google Play Android app mar-

ket [19] on March 2014. Since popularity has become the core value among mobile

platforms, many popular Android apps have been “copied,” or repackaged, as re-

ported by Gibler et al. [20]. For example, when a famous smartphone game app

Flappy Bird was removed from Google Play app market by its developer early this

year, a lot of repackaged Flappy Bird apps appeared in third-part app markets for

users to download.

6

One of the major reasons behind the emerging of Android app repackaging is

that it is easy to reverse-engineer an Android app. When a user purchases and

downloads an Android app, the installation package (i.e., the .apk file) is down-

loaded and stored on the user’s mobile device. Given the openness of the Android

platform, it is very easy to obtain the installation package from the mobile device.

After that, reverse engineering can be performed based on readily available tools

such as apktool [21] and Baksmali/Smali [22], which can dissemble the compiled

Dalvik EXecutable (dex) from the .apk file into a human readable Dalvik bytecode

format (e.g., .smali files). At this point, the content of an app can be easily ma-

nipulated, modified, repackaged and signed into a re-publishable apk file. To make

things worse, the signing is not required to be bound with any official real ID of

the developer and there is no certificate authority to sign apps. Moreover, due to

the popularity of the Android platform, many unofficial app markets exist. Most

of them do not enforce sanity checks on the apps listed on their web pages. As a

result, the severity of app repackaging in the Android platform has been observed

higher than in any other mobile platforms.

Generally speaking, there are two types of smartphone app repackaging. The

purpose of the first type is to use other developers’ apps to earn pecuniary profits.

An attacker can easily repackage an app under his own name or embed different

advertisements to gain ad benefits. The second type is related to malware, where

attackers modify a popular app by inserting some malicious payload, e.g., sending

out users’ private information and purchasing apps without users’ awareness, into

the original program. They leverage the popularity of the original program to

accelerate the propagation of the malicious one. According to a recent study [2],

1083 (or 86.0%) of 1260 malware samples were repackaged versions of legitimate

apps with malicious payloads, indicating repackaging is a favorable vehicle for

mobile malware propagation.

Recently, several research works have discussed the detection of app repack-

aging, including Fuzzy Hashing-based detection [2], Program Dependence Graph

(PDG)-based detection [23, 24], Feature Hashing-based detection [25], module

decoupling-based detection [26], and Normal Compression Distance (NCD)-based

detection [27]. These approaches can identify the repackaging apps efficiently based

on certain “invariants” extracted from the app code. Such invariants are called

7

software birthmark as in the software engineering research. A software birthmark

is defined as a unique characteristic that a program or smartphone app inher-

ently possesses, and can be used to uniquely identify the program. All the above

approaches use code-level birthmarks to characterize an app.

In Chapter 5, we propose a novel app repackaging detection system called

ViewDroid, which leverages user interface-based birthmark to detect repackaged

app pairs on Android platform. ViewDroid is a nice alternative to code-level de-

tection approaches. It was motivated by two observations. First, smartphone apps

are user behavior intensive and Android event-driven. The interactions between

users and apps are performed through user interfaces (i.e., app views). Some

characters of views (e.g. the navigation between views) are unique for each inde-

pendently developed app. Second, in both types of repackaging, because attackers

want to leverage the popularity of the target app, they will keep the repackaged

apps’ look-and-feel similar to the original one in the user interface level. Specif-

ically, ViewDroid is built upon a robust birthmark called view graph, which is a

graph constructed from all views through static analysis and catches the navigation

relation among app views.

1.4 Contributions

This dissertation has the following contributions:

LoPD, logic-based software plagiarism detection.

• We present LoPD, a program logic-based software plagiarism detection

approach, which applies symbolic execution and weakest precondition

reasoning to find dissimilarities between programs.

• LoPD is resilient to most current code obfuscation techniques. In ad-

dition, LoPD can provide a formal assurance of resilience against many

types of obfuscation attacks.

• LoPD theoretically guarantees high detection accuracy.

ValPD, value-based algorithm plagiarism detection.

8

• To the best of our knowledge, this work is the first one on algorithm

level similarity assessment.

• We innovatively apply the idea of N-version programming in plagiarism

detection.

• We also propose a novel approach that leverages auxiliary information to

extract core values, namely the annotation approach. We can do both

manual annotation and automatic annotation. Manual annotation is

more accurate while automatic annotation is more efficient.

• Besides the LCS similarity metric, we propose to use VDG to measure

algorithm level similarity as well. VDG can effectively defend against

value reordering attacks.

• The evaluation results show that our approaches to algorithm plagia-

rism detection are practical, effective and resilient to many automatic

obfuscation techniques.

ViewDroid: user interface-based Android app repackaging detection.

• We propose view graph, a user interface-based birthmark for Android

apps. To the best of our knowledge, it is the first user interface level

birthmark for software plagiarism or app repackaging detection.

• We propose ViewDroid, an Android app repackaging detection system

based on view graph. ViewDroid is robust to many code obfuscation

techniques. It is efficient and scalable. ViewDroid is a nice complemen-

tary approach to current code-level repackaging detection methods.

• We evaluated the obfuscation resilience of ViewDroid by 39 obfuscators

from SandMarks [28] and KlassMaster [29], based on the evaluation

framework proposed by Huang et al. [30]. The experiment results also

show that ViewDroid outperforms Androguard [27] in terms of obfus-

cation resilience.

• We tested ViewDroid on 10, 311 real-world apps (573, 872 app pairs)

from the Android market. It is detected that about 4.7% apps are

repackaging cases. We also evaluated the false negative of ViewDroid.

9

The false negative rate is 1.3%. The large scale evaluation demonstrates

the efficiency and effectiveness of ViewDroid.

Chapter 2

Related Work

The plagiarism detection methods can be categorized as in Table 2.1. The methods

LoPD, ValPD and ViewDroid are proposed in this dissertation. The other methods

are discussed in the following sections.

2.1 Software Plagiarism Detection

We roughly group the existing software plagiarism detection methods into the

following two categories.

2.1.1 Static birthmark-based plagiarism detection

Liu et al. [4] proposed a program dependence graph (PDG)-based approach, which

extracts the data and control dependencies from source code. It is vulnerable to

some obfuscation techniques such as control flow flattening and opaque predicates.

Park et al. [8] developed a static API-based birthmark for Java applications. Lim

et al. [31] used stack pattern-based birthmark, which is only suitable for Java

applications. Tamada et al. [32] proposed four static birthmarks for Java pro-

grams: Constant Values in Field Variables (CVFV), Sequence of Method Calls

(SMC), Inheritance Structure (IS) and Used Classes (UC). These birthmarks can

be changed by some obfuscation techniques, such as method call reordering. Myles

et al. [7] statically analyzed executables to obtain instruction sequences of length

k. Then they used K-gram techniques to measure the similarity. This approach is

11

vulnerable to instruction reordering and junk instruction insertion.

Most above static analysis methods require the source code of the analyzed

programs. This limits their practicability since the source code of a suspicious

program is not always available. Some of them are platform specific. In addition,

they are easy to be bypassed by applying obfuscation techniques.

P
C

A
p
p
s

S
m

ar
tp

h
on

e
A

p
p
s

U
se

r
In

te
rf

ac
e

–
V

ie
w

D
ro

id

C
o
d
e

L
og

ic

S
ta

ti
c

so
u
rc

e
co

d
e-

b
as

ed
:

[3
2]

S
ta

ti
c

op
co

d
e-

b
as

ed
:

[7
]

W
h
ol

e
p
ro

gr
am

p
at

h
-b

as
ed

:
[9

]
O

p
co

d
e-

b
as

ed
:

D
ro

id
M

O
S
S

[2
],

P
D

G
-b

as
ed

:
[3

3]
,
G

P
L
A

G
[4

]
J
u
x
ta

p
p

[2
5]

A
P

I-
b
as

ed
:

[1
0,

34
,
8,

11
].

A
S
T

-b
as

ed
:

[3
5]

S
y
st

em
ca

ll
-b

as
ed

:
[1

8,
17

]
P

D
G

-b
as

ed
:

D
N

A
D

ro
id

[2
4]

C
lo

n
e

D
et

ec
ti

on
:

[3
6,

37
,
38

,
5,

39
],

et
c

P
ro

gr
am

S
em

an
ti

cs
V

aP
D

[3
],

L
o
P

D
–

A
lg

or
it

h
m

-l
ev

el
V

a
lP

D
–

T
ab

le
2.

1.
C

at
eg

or
ie

s
of

pl
ag

ia
ri

sm
de

te
ct

io
n

m
et

ho
ds

.
M

et
ho

ds
pr

op
os

ed
in

th
is

di
ss

er
ta

ti
on

ar
e

in

B
ol

d

12

2.1.2 Dynamic birthmark-based plagiarism detection

Jhi et al. [3] proposed to use core values as birthmark to detect software pla-

giarism. This approach is lack of formal guarantee, since core value is hard to

define. Lu et al. [16] presented a dynamic opcode n-gram birthmark, which is

vulnerable to instruction reordering and irrelevant instructions insertion. Myles

et al. [9] developed a whole program path (WPP) birthmark, which is robust to

some control flow obfuscations such as opaque prediction, but is still vulnerable

to many semantic-preserving transformations such as loop unwinding. Tamada et

al. [10] used dynamic API birthmark for windows applications. Their approach

relied on the sequence and the frequency of API invocations, both of which can

be easily changed by reordering APIs or embedding API implementations into the

program. Schuler et al. [11] proposed a dynamic API-based birthmark for Java.

Wang et al. [18, 17] introduced a system call-based birthmark. Their approach is

not suitable for programs that invoke few system calls.

2.2 Smartphone Application Plagiarism Detec-

tion and Security

2.2.1 Smartphone App Plagiarism Detection

The smartphone app repackaging problem has drawn great attention from the re-

search community. There are several relevant works on measuring the similarity

between Android apps on code level. DroidMOSS [2] leverages fuzzy hash to detect

app repackaging. A hash value is computed for each local unit of opcode sequence of

the classes.dex, instead of computing a hash over the entire program opcode set. It

can efficiently and effectively identify the opcode segments that were left untouched

by the lazy repackager and works well when the bytecode is only manipulated at

a few interesting points (e.g., the string names or hard-coded URLs). However,

some obfuscation, such as noise injection, can evade the detection. DNADroid [24]

proposed a program dependence graph (PDG)-based detection approach, which

considers the data dependency as the main characteristic of the apps for similarity

comparison. DNADroid compares the PDGs within a pre-computed cluster of An-

13

droid apps using graph isomorphism algorithms. The efficiency of the comparison

is further improved in AnDarwin [23] by building semantic vectors from PDG for

each method. In general, PDG is resilient against several control flow obfuscation

techniques and noisy code insertion attacks that do not modify the data depen-

dency. However, some specific data dependence obfuscations can be designed to

evade this approach. For example, PDG can be changed by inserting intermediate

variable assignment instructions into the code. Juxtapp [25] proposed a code-reuse

evaluation framework which leverages k-grams of opcode sequences to build fea-

ture for the feature hashing approach. Features are defined based on the k-grams

of various opcode sequence patterns within each basic block. A sliding window

will move within each basic block to map the features into bit vectors, which are

further combined into a feature metric to help birthmark each app. This detec-

tion scheme is able to effectively detect different code reuse situations, including

piracy and code repackaging, malware existence, vulnerable code. Special designed

code manipulation can potentially destruct the normal opcode pattern of Dalvik

bytecode in a very dense fashion. Chen et al. [40] propose a novel app birthmark,

which is the geometry-characteristic-based encoding of control flow graph. This

approach can effectively and efficiently detect Type 2 and Type 3 clones, where

cloned code is syntactically similar with the original code. However, it cannot deal

with app repackaging using code obfuscation techniques.

2.2.2 Smartphone App Security.

There are several publications in this category related to ViewDroid. Smart-

Droid [41] leverages user interfaces to find user interface interactions that will

trigger sensitive APIs. It combines the static analysis and dynamic analysis. Chen

et al. [42] developed a Permission Event Graph (PEG) to detect, or prove the

absence of malicious behavior that is not authorized by users. Zhou et al. [26]

proposed a module decoupling method to partition an app’s code into primary

and non-primary modules and thus to identify the malicious payloads reside in the

benign apps. They also develop an approach to extracting feature vectors from

those piggy backed apps to help improve the efficiency of the piggyback relation-

ship detection. Grace et al. [43] developed AdRisk to identify risks in ad libraries.

14

Anand et al. [44] applied concolic testing on Android platform to generate events

to trigger view navigation. Our approach pays more attention to the repackaging

detection from the primary functionalities of the Android apps and takes into ac-

count obfuscation resilience. We also identify certain features for the nodes and

edges during the view graph construction to improve the efficiency of our detection.

2.3 Clone Detection

Clone detection is a technique to find duplicate code. Besides being used to de-

crease code size and facilitate maintenance, clone detection can also be used to

detect software plagiarism. Existing source code clone detection techniques in-

clude String-based [36], Tree-based [45, 38], Token-based [37, 5, 39] and PDG-

based [46, 47, 33]. Sæbjørnsen et al. [48] proposed a tree-based clone detection in

binary code. Since most clone detection techniques do not take code obfuscation

into consideration, they are not robust to many obfuscation techniques. As a re-

sult, when being applied to detect software plagiarism detection, clone detection

approach can be easily evaded by attackers.

2.4 Software Watermarking

There exists a large volume of literatures on software watermarking (e.g. [49, 50,

51, 52, 53].). Software watermarking embeds secret information into a program

to protect intellectual property. The embedded information is added to program

during the implementation and can be extracted to identify the ownership of the

program. Software Watermarking is a prevention scheme against software plagia-

rism. However, most of the commercial and open source programs do not have

watermarking embedded. As a result, the detection scheme of plagiarism is neces-

sary.

2.5 Path Deviation Detection

Brumley et al. [54] first proposed the path deviation idea and used it to find

protocol errors in different implementations. We adopted their path deviation idea

15

and applied it to a new context of software plagiarism detection. [54] only compares

the output of executions. This is not sufficient for software plagiarism detection,

because independent software products may have the same functionality, i.e. the

same input-output pairs. As a result, in addition to output, we need to compare

the execution paths, which is more challenging. We propose new techniques such

as path equivalence detection to deal with automatic code obfuscation attacks and

eliminate false positives and false negatives. We have evaluated path deviation

and path equivalence detection in this new context with presence of automatic

obfuscation attacks and obtained promising results.

2.6 N-version programming

N-version programming [55, 56, 57, 58] is defined as independently developing mul-

tiple functionally equivalent programs following the same specification. It explores

the diverse characteristics of multiple independent implementations of the same

specification. In recent years, the N-version programming approach started to be

applied in security vulnerabilities detection area. Nagy et al. [59] used the concept

of N-version Programming to detect zero-day exploits in web applications. Cox et

al. [60] extended the idea of N-version programming to N-Variant Systems. They

automatically diversified the original program such that the client-observable be-

havior remained the same on normal inputs, but became different on abnormal

inputs corresponding to a particular class of attacks. The system was able to

detect attacks exploiting injected code and absolute memory addresses.

2.7 Test input generation

Both LoPD and ValPD relies on input. There are a number of choices on how to

generate an input. The first option is to generate a random input, ideally indepen-

dent, for each run using methods such as fuzz testing [61, 62]. The second option

is symbolic execution [13] and automatic test case generation using systematically

white-box exploration (also called, concolic testing, directed systematic path ex-

ploration, etc) [63, 64, 65, 66, 67]. Path constraints are collected and manipulated

to cover different paths, and a constraint solver [68, 69] is usually used to generate

16

the input that satisfies the corresponding path constraints. By doing this, each

run is guaranteed to hit a different path.

Chapter 3

LoPD: Logic-based Software

Plagiarism Detection

In this chapter, we propose a logic-based software plagiarism detection approach,

which satisfies all three requirements discussed in Chapter 1.

LoPD is based on the philosophy: search for any dissimilarity between two

programs and if not found, it is likely they are the same. We leverage symbolic

execution [13] and weakest precondition [14, 15] to systemically find such dissimi-

larity.

LoPD is resilient to most automatic obfuscation techniques, which change the

syntax of a program but preserve its semantics. Since the symbolic formula and

weakest precondition, applied by LoPD, can capture semantics and constraint of

an execution path of the tested program, as long as the semantics are not changed,

LoPD will detect the semantics equivalence of the execution paths of the plaintiff

program and the suspicious program. In addition, since LoPD is a formal pro-

gram semantics-based approach, we can provide a formal assurance of the resilience

against most types of known obfuscation attacks, as discussed in Section 3.3. More-

over, LoPD provides theoretical guarantees of the high detection accuracy, subject

to the limitations of the current symbolic execution tools and constraint solvers.1

1According to the Rice’s Theorem, testing any non-trivial computer program property is
undecidable. We do not aim to solve this undecidable problem, but rather to develop tools for
practical use with some degree of formal guarantee. All the conclusions, we draw from this
research are subject to the limitations of automated theorem proving or constraint solving and
other undecidable factors.

18

3.1 Overview

3.1.1 Problem Statement

The goal of our work is to automatically detect software plagiarism for nontrivial

programs in the presence of automatic code obfuscation. To be more specific, given

a plaintiff program P and a suspicious program S, our purpose is to detect if S is

generated by applying automatic semantics-preserving transformation techniques

on P . That is, we provide a Yes/No answer to the question: are S and P seman-

tically equivalent? Automatic semantics-preserving transformation changes the

syntax of the source code or binary code of a program but keeps the function and

the semantics of the program by automated tools (e.g., Loco [70], SandMark [71])

with little human effort. The reason that we only focus on automatic code trans-

formation is as follows. Although an exceptionally sedulous and creative plagiarist

may manually obfuscate the plaintiff code to fool any known detection technique,

the cost is sometimes higher than rewriting his own code, which conflicts with

the intention of software theft. After all, software theft aims at code reuse with

disguises, which requires much less effort than writing one’s own code.

We have two assumptions: (1) we have preknowledge about the plaintiff pro-

gram, e.g., the input space; (2) while we do not require access to the source code

of the suspicious program, we assume its binary code is available.

3.1.2 Basic Idea

Our basic idea is to search for any difference between the plaintiff program and the

suspicious program, and if differences are found, there is no plagiarism; otherwise,

it is likely that plagiarism exists.

At high level, three things characterize program behavior—input, output, and

the computation used to achieve the input-output mapping. Based on our design

philosophy, LoPD tries to rule out dissimilar programs by finding an input that

will cause these two programs to behave differently, either with different output

states or with different computation paths. Whenever we find such an input,

we can assert that the plaintiff program and the suspicious program are either

functionally or computationally different and is thus not plagiarism via automated

19

code obfuscation.

Given an input, the comparison between output states is relatively straightfor-

ward: since the plaintiff has the preknowledge of his own software, he can specify

which output variables and states are semantics-relevant (e.g., the terminal output

or the file modification) and how to measure the similarity between output states

(e.g., the mathematic computation programs require the exactly same result, while

the error messages from Web servers can tolerate some literal differences).

The challenge is how to compare the semantics of computation paths. Com-

putation path, also known as execution path, is a sequence of all instructions

executed during one round execution. The semantics of an execution path can

be captured by symbolic execution. To be more specific, symbolic expressions of

output variables in terms of input variables along with a path constraint repre-

sent the semantics of an execution path. The following is an example. n is the

input variable and a is the output variable. There are two execution paths. The

semantics of path 1 is the path constraint “n > 0 is true” along with the output

expression a = n − 1. In path 2, the semantics is the path constraint “n > 0 is

false” and the output expression a = 2n + 2.

The code

n = read()
if n > 0 then

a = n− 1
else

a = n + 1
a = a ∗ 2

end if
print a

Path 1

input: n > 0
True
a = n− 1

output: a = n− 1

Path 2

input: n <= 0
False

a = n + 1
a = (n + 1) ∗ 2

output: a = 2n + 2

Instead of directly comparing two execution paths, we propose a novel approach

based on the concept of path-deviation [54]. It is motivated by the fact that if one

program is an automatic semantics equivalent transformation of another program,

these two programs would have one-to-one (1:1) path correspondence, as defined in

Definition 1. That is, given the same input, the execution of each program follows

a certain path, respectively, and when given a different input, the programs should

either both follow their original path or both execute new paths. Note that there is

20

one exception: when an execution path of one program is split into two semantically

equivalent paths for the obfuscation purpose, there would be no one-to-one path

correspondence, but it is still a software plagiarism case. We will therefore also

handle this semantically equivalent path splitting problem in our detection system.

Definition 1. Given two programs P , S, their input spaces are IP and IS, re-

spectively. ∀x1, x2 ∈ IP ∪ IS, the execution paths of P with input x1, x2 are ep1,

ep2, respectively and the execution paths of S with input x1, x2 are es1, es2, re-

spectively. If ep1 = ep2 ↔ es1 = es2, P and S have one-to-one (1:1) path

correspondence.

If we can find two inputs which could cause one program to execute the same

path with both inputs, while the other program to execute two different paths

with these two inputs, we can rule out the case; that is, the suspicious program

will not be considered as a plagiarized one. We call such two programs having path

deviation, whose formal definition is:

Definition 2. Given two programs P , S, their input spaces are IP and IS, respec-

tively. ∃x1, x2 ∈ IP ∪ IS, the execution paths of P with input x1, x2 are ep1, ep2,

respectively and the execution paths of S with input x1, x2 are es1, es2, respectively.

If (ep1 = ep2 ∧ es1 6= es2) ∨ (ep1 6= ep2 ∧ es1 = es2), P and S have path deviation.

Figure 3.1 illustrates this path deviation idea. Given the same input x1, pro-

gram P and S take the execution path ep1 and es1, and output Op and Os, respec-

tively. If Op 6= Os, it means ep1 is different from es1, so it is not a plagiarism case.

If Op = Os, our next step is to try another input x2, hoping that (1) P will take

the same path ep1 but S will take a different path es2 given x2 or (2) the output

O′
p 6= O′

s. In either case, it is not a plagiarism case. If neither of the above two

cases occurs, we will try another input. If after many iterations we still cannot

find such a deviation-revealing input, it indicates the two programs are likely to

be the same.

However, a path deviation may be caused by the path splitting obfuscation,

that is, es1 and es2 in Figure 3.1 are semantically the same. Therefore, when we

find a deviation, we need to check the semantics equivalence of the deviated paths

(e.g. es1 and es2). Only when semantics differences exist between the two paths,

we claim that the two programs have true path deviation and they are dissimilar.

21

Input x1

Output Op

Input x1

Output Os

ep1 es1

Program P Program S

Input x2

Output Op'

Input x2

Output Os'

ep1 es1

Program P Program S

es2×

Figure 3.1. Path deviation example

Table 3.1. The tabular representation of relations between the reality and the detection
results.

Reality
a.Plagiarism b.Not

Plagiarism

Detection
Result

Case I. Same Output
I.1. PD 1 FN 2 TN 3

I.2. No PD TP 4 FP 5

Case II. Diff Output N/A - TN
1 path deviation 2 false negative 3 true negative 4 true positive 5 false positive

We leverage the techniques of logic-based execution path characterization in-

cluding symbolic execution, weakest precondition calculation, and constraint solv-

ing (e.g., STP [68, 69]) to find path deviation and to measure the semantics equiv-

alence of two execution paths.

To ensure the effectiveness of our approach, we analyze the possible false detec-

tion cases based on the results of output similarity measurement and path deviation

detection. The relations between the reality and the detection results are shown

in Table 3.1:

• Case I: Given the same input, P and S generate the same output.

Case I.1: Detection result: P and S have path deviation.

Case I.1.a (False Negative): P and S are indeed software plagiarism.

We check the semantics equivalence of es1 and es2 when we find a path

22

deviation. Only when a semantics deviation exists between the two paths,

we call the two programs dissimilar and conclude non-plagiarism. Since path

equivalence checker applies the weakest precondition (a symbolic formula)

that captures formal semantics of a path, and constraint solver that checks

the equivalence of symbolic formula, we ensure that there is no false negative

caused by the approach. However, this is subject to the limitations of the

constraint solving or theorem proving, which we will discuss in the limitation

section.

Case I.1.b (True Negative): P and S are indeed not software pla-

giarism.

Case I.2: Detection result: P and S do not have path deviation.

Case I.2.a (True Positive): P and S are indeed software plagiarism.

Case I.2.b (False Positive): P and S are indeed not software plagia-

rism. In practice, it is hard to image that two independent nontrivial software

will have one-to-one semantically equivalent path correspondence. Therefore,

in practice we do not have false positive. The case due to the limitations of

the constraint solving will be discussed in the limitation section.

• Case II (True Negative): Given the same input, P and S generate differ-

ent output. P and S are indeed not software plagiarism.

Based on the above analysis, LoPD tries to find a path deviation first and then

checks the path equivalence to make sure that such a deviation is a real semantics

deviation, not caused by obfuscation. Next we introduce the design details of

LoPD.

3.2 Design

3.2.1 Architecture

The overview of the system design is shown in Figure 3.2. We tackle the problem

by two phases: Path Deviation Detection and Path Equivalence Checking. In

the first phase, we detect whether there exists any path deviation between the

23

Plaintiff Program

Executable

Suspicious Program

Test

Input x

Executable

Plagiarism

Path Deviation

Detector

Input

Generator

Path

Equivalence

Checker

Find x’ cause

deviation?
Y

Next

Iteration?

N

Equivalence?

N

Y

N

Not

Plagiarism

Y

Same

Output?

Y

N

Figure 3.2. LoPD system design

plaintiff and suspicious programs. If there is no path deviation, we conclude that

this is a plagiarism case, because we believe it is impossible that two nontrivial

independent programs have 1:1 path correspondence. If there is a path deviation,

we check whether the deviated path is a semantically equivalent path split from the

original one, if yes, this is likely by obfuscation and it is a fake path deviation. If

no, it is a true path deviation and thus we conclude it is not a software plagiarism.

In each iteration, the input generator generates a test input x. The path devia-

tion detector symbolically executes both the plaintiff executable and the suspicious

executable in a monitored environment with x as input, records the execution path

of each program, and extracts a symbolic formula representing each path. First,

we compare the output states of two programs and if they are different, we can

claim these two programs are not plagiarism. If the output states are the same,

we need to further detect whether there is a path deviation. Based on the two

symbolic formulas representing the execution paths, we generate a special “check”

formula (Formula (3.1) in Section 4.3), to discover potential path deviations by

running the check formula through a constraint solver.

If an input x′ that causes path deviation is found, we apply path equivalence

24

checker to ensure this path deviation is not caused by a path-splitting or path-

merging attack. Let d represent the program that executes different paths with x

and x′. The path equivalent checker symbolically runs d with x′ as the input and

extracts a new formula representing the current path. If the two execution paths of

d with inputs x and x′ are semantically equivalent, it is not a true path derivation.

Once we verify the path deviation is not caused by path-splitting, we rule out

plagiarism and stop. If we cannot find a path deviation or the path deviation is

caused by path-splitting, we start a new iteration by generating a new input to

cover a different path. This process can be repeated for a number of iterations.

We set a threshold on the maximum number of iterations. The tool terminates

either after a true path deviation is found or the number of iterations reaches the

threshold.

The detection procedure is described in Algorithm 1. The details of each com-

ponent are described below.

3.2.2 Input generator

There are several ways to generate an input x for each iteration. The first option

is to generate a random input, ideally independent, for each iteration using meth-

ods such as fuzz testing [61]. However, random input generation might not be

desired. We adopt symbolic execution [13] and automatic test case generation us-

ing systematically white-box exploration (also called, concolic testing and directed

systematic path exploration) [63, 64, 65, 66, 67]. In this way, each iteration is

guaranteed to hit a different path.

We first randomly generate an initial input from the input space. Path con-

straints are collected during the program execution with the initial input and are

manipulated to cover different paths. Then a constraint solver is used to generate

the input that satisfies the corresponding path constraints.

3.2.3 Path Deviation Detector

The path deviation detector is used to detect if two tested programs have path

deviation, which is formally defined in Definition 2. Generally speaking, given an

input x, we are trying to find another input x′ that causes one of the program to

25

Algorithm 1 Path Deviation-based Software Plagiarism Detection

Require: Plaintiff Program P , Suspicious Program S
Ensure: Plagiarism / Not Plagiarism.
1: for i = 1 to max iteration do
2: Generate input x by Input generator.
3: P , S and x are given to the Path deviation detector. The output states are

Op and Os, respectively. The execution paths are ep and es

4: if Op = Os then
5: if The Path deviation detector can find another input x′ cause P and S

path deviated. then
6: The execution paths of P and S with input x′ are e′p and e′s.
7: d ← P or S, the one executes different paths with x, x′.
8: The Path equivalence checker checks the sematic equivalence of ed and

e′d
9: if ed and e′d are semantically equivalent then

10: continue
11: else
12: return ”Not Plagiarism”
13: end if
14: else
15: continue
16: end if
17: else
18: return “Not Plagiarism”
19: end if
20: end for
21: return “Plagiarism”

Test Input x

Symbolic

Executor

Symbolic

Executor

Theorem

Prover

Output Op

Formula Fp

Output Os

Formula Fs

Op=Os?

(Fp ¬Fs) (¬Fp Fs)

Not

Plagiarism

Path Deviation Detector

Plaintiff Program

Executable

Executable

Suspicious Program N

Y

Find x’ Satisfy

the formula?

N

Path

Deviaiton

Not Path

Deviation

Y

Figure 3.3. Path deviation detector

26

execute the same path as taking x as input, while the other program to follow a

different path from the one taking x as input. We leverage symbolic execution [13]

and weakest precondition [14, 15] to find such x′. The design of path deviation

detector is shown in Figure 3.3.

The symbolic executor performs a mixed concrete and symbolic execution [66,

72] for each tested program with x as input. In other words, the tested program

is first concretely executed with the input x in the executor, which is a monitored

environment with taint analysis. The input is the taint seed. The whole execution

path is logged, including the executed instructions, the taint information and the

output states.

The output states can be specified by the domain experts or the owner of the

plaintiff program. They may include the terminal output, the network interface

and the modification in file system, etc. Their output states are represented as Op

and Os, respectively. If Op 6= Os, programs P and S are semantically different. As

a result, we can get the correct conclusion that they are not software plagiarism.

The symbolic execution is operated on the logged concrete execution path. We

build a symbolic formula in terms of input variables to express each path constraint.

This formula reflects both the semantics of the execution path and the conditions

which make the program execute this particular path. We denote the execution

paths of plaintiff program and suspicious program with input x as ep and es,

respectively. The two formulas that we build based on these two paths are FO
p (I)

and FO
s (I) parameterized with the input variables I, based on the output state

O (O = Op = Os). These two formulas are built using the technique of weakest

precondition and have the property that they are true with some truth assignment

i (i ∈ input space) if and only if the program executes the corresponding path on

the input i and ends with output state O; i.e., the path is feasible on input i and

leads to output O:

FO
p (i) is true iff ep is feasible on input i and ends with output O.

Given any input that satisfies the formula, the execution of the program will

follow the original path, while given any input that does not satisfy the formula,

the execution will follow a different path. As a result, to find a path deviation

27

of plaintiff program and suspicious program, we need to find an input x′, which

makes the execution path of one program remain the same as its execution path

with input x, and the execution path of the other program be different from its

path with input x. As a result, we check the satisfiability of Formula (3.1), as used

by Brumley et. al. [54], via a theorem prover STP [68, 69].

(FO
p (I) ∧ ¬FO

s (I)) ∨ (¬FO
p (I) ∧ FO

s (I)) (3.1)

If Formula (3.1) is satisfiable, STP will return an assignment that satisfies the

formula.2 Without loss of generality, assume the assignment x′ satisfies the first

part of the disjunction, FO
p (I) ∧ ¬FO

s (I). This means that the input x′ will cause

the first program to follow path ep1, while the path es1 is infeasible in the second

program, as shown in Figure 3.1. That is, two programs behave differently on input

x and x′, unless paths es1 and e′s2 are semantically equivalent. If Formula (3.1) is

not satisfiable, it means that there exists no input that can deviate the programs

from these two paths.

Example. Consider the following two programs: one checks for condition

n > 0 and the other checks for condition n > 1:

f(n) = if (n > 0) then 2 else 1

g(n) = if (n > 1) then 2 else 1

Given an input 0 or any negative number, the path constraint formula of f is

¬(n > 0) and the formula of g is ¬(n > 1). The check formula is:

(¬(n > 0) ∧ (n > 1)) ∨ ((n > 0) ∧ ¬(n > 1))

A constraint solver can solve it with a satisfiable assignment n = 1, which causes

f to execute a different path but not g. If given an initial input 1, the two programs

have different output and we can directly conclude they are different programs If

we select a positive number as the initial input, the constraint solver could not find

a path deviation and we continue with white-box symbolic exploration to generate

2When STP cannot solve the formula to give a definite yes or no answer, we simply ignore the
case and try next one. We apply the same strategy for the path equivalence checker presented
in the next subsection.

28

Plaintiff / Suspicious

Program

Executable d
Symbolic

Executor

Od= Od’?

Path Equivalence Checker

Output Od’

Formula Fd’

Formula fO’Output Od

Formula Fd

Formula fO

(fO≠fO’) (Fd Fd’)

Satisfiable?

Not

equivalent

Equivalent
Y

N

Y

Test

Input x’

Theorem

Prover
N

Figure 3.4. Path equivalence checker

a new input for next round. This process repeats until it hits 0 or a negative

number. With symbolic exploration we can reach this desired input in one step,

since one of the path constraints is flipped to hit a different path.

3.2.4 Path Equivalence Checker

As discussed above, when we find a path deviation, we need to check whether these

two deviated paths are semantically equivalent path splitting to avoid false nega-

tive. The following is a simple example of semantically equivalent path splitting.

The left is the original code. The right is the code after path splitting, where the

value of n decides the path to go but both paths are semantically equivalent.

a = n if n > 0 then
a = n

else
a = n + 1
a = a− 1

end if

The detection of path equivalent is done by path equivalence checker, which

is shown in Figure 3.4. The new test input x′ is a satisfiable assignment of For-

mula (3.1) returned by constraint solver in the path deviation detection step, and

d represents the program that has different execution paths with input x and x′.

29

That is, d is either P or S. Taking Figure 3.1 as an example, d = S. In other

words, in the path deviation detection step, if the first part of the disjunction of

Formula (3.1), FO
p (I) ∧ ¬FO

s (I), is satisfiable, d = S, while if the second part,

¬FO
p (I) ∧ FO

s (I), is satisfiable, d = P . We compare the semantics equivalence of

d’s two execution paths, which take x and x′ as input, respectively. If these two

paths are semantically equivalent, the path deviation is caused by path splitting.

We take the next iteration, as shown in Figure 3.2. Otherwise, we can conclude

that P and S are not software plagiarism and call such path deviation as a true

path deviation.

We still apply symbolic execution and weakest precondition to detect path

equivalence. Program d is executed with input x′ in the symbolic executor, which

is the same one as in the path deviation detector. A path constraint formula F ′
d

and a symbolic formula of output states f ′O are generated. Both of them are in

terms of input variables. F ′
d captures the conditions that make d follow the same

execution path as input x′. f ′O captures the semantics of such execution path. The

formulas (Fd, fO) for the execution path of input x have already been generated

in the path deviation detection step.

In an execution path, the truthness and the target of a conditional branch are

fixed. By ignoring such conditional branches, we can force a program to follow

a particular execution path with any input, although some inputs may cause the

program to crash or to get a wrong output. In such way, we can pick any input

that satisfies either of the above path constraints (Fd or F ′
d), and give it to both

execution paths. If these two paths are equivalent, they should get the same results

with such input. In other words, if an input assignment satisfies at least one of

the path constraint formulas: Fd or F ′
d, fO and f ′O should be equal with this input

assignment:

Path Equivalent ⇔ (Fd ∨ F ′
d) → (fO = f ′O)

⇔ (fO = f ′O) ∨ ¬(Fd ∨ F ′
d)

Not Path Equivalent ⇔ ¬((fO = f ′O) ∨ ¬(Fd ∨ F ′
d))

⇔ (fO 6= f ′O) ∧ (Fd ∨ F ′
d) (3.2)

We check the satisfiability of Formula (3.2) via a constraint solver STP [68, 69].

30

If it is satisfiable, these two execution paths are not equivalent.

Example. Consider the same path splitting example in this section. Assume

n is the input variable, initial input x is n = 10 and x′ is n = −1:

fO(n) = n Fd = (n > 0)

f ′O(n) = n + 1− 1 = n F ′
d = ¬(n > 0)

Formula (3.2) is (n 6= n) ∧ (n > 0 ∨ ¬(n > 0)), which is not satisfiable. As a

result, the two paths are equivalent.

3.3 Counterattack Analysis

Since our logic-based method captures path semantics by weakest precondition,

in theory it is resilient to most known attacks such as noise injection, statement

reordering, register and constant splitting and opaque predication. In practical

implementation, we need to take into consideration the limitations of symbolic

execution, theorem proving, and weakest precondition calculation.

Noise instruction/data injection: Suppose an irrelevant statement S1 is

inserted right after statement S0. Given a postcondition R, the weakest precon-

dition for the original program is wp(S0, R), while the weakest precondition for

the new program is wp(S0; S1, R). Because S1 is an irrelevant statement we have

wp(S0; S1, R) = wp(S0; wp(S1, R)) = wp(S0, R). Similarly the equation also holds

in the cases of inserting multiple instructions. As a result, LoPD is resilient to

noise injection.

Statement reordering: Two instructions S1 and S2 can be reordered only

when there is no data or control flow between them: wp(S1; S2, R) = wp(S2; S1, R).

Similarly, the weakest precondition also remains the same when reordering multiple

instructions. So LoPD is resilient to instruction reordering.

Instruction splitting and aggregation: Two instructions S1 and S2 could

be merged into one instruction S0; in the other direction, instruction S0 could be

split into two instructions S1 and S2. Since they are semantically equivalent, there

31

is wp(S0, R) = wp(S1; S2, R). Hence, LoPD is resilient to instruction splitting and

aggregation obfuscation.

Opaque predicate: One opaque predicate E is inserted right before statement

S0. If E is an always true predicate, wp(if E then S0 end,R) = E ⇒ wp(S0; R) =

wp(S0, R). Similarly, the weakest precondition also remains the same when S0

represents multiple instructions or E is an always false predicate.

Path splitting and merging: By applying symbolic execution and weakest

precondition, we can effectively detect semantically equivalent path splitting /

merging.

In summary, LoPD provides a formal guarantee of resilience against most types

of obfuscation attacks.

3.4 Implementation and Evaluation

We implement a prototype system. The symbolic executor is built atop Bitblaze

infrastructure [72, 73]: we leverage their whole-system emulator, TEMU, to con-

cretely execute the tested programs and record the whole execution path; we use

vine, the static analysis component, to analyze the execution paths and extract

their symbolic formulas. We apply STP [68, 69] as the constraint solver to solve

path deviation Formula 3.1 and path equivalence Formula 3.2. STP is a decision

procedure whose output indicates whether the formula is satisfiable or not. If so,

it also provides an assignment to variables that satisfies the input formula. We in-

tegrate all the above components and implement an automatic software plagiarism

detection system in C and Python.

Our evaluations are in two categories: software plagiarism case and different

program case. The evaluation is performed on a Linux machine with Intel Centrino

duo 1.83GHz CPU and 2 GB RAM.

32

T
ab

le
3.

2.
T

he
te

st
ed

pr
og

ra
m

s
an

d
th

ei
r

ru
nn

in
g

ti
m

e
pe

r
it

er
at

io
n

fo
r

th
e

sa
m

e
pr

og
ra

m
ca

se
(i

n

se
co

nd
s)

.

N
am

e
T

y
p
e

E
x
ec

u
ti

on
T

im
e

(s
)

IG
1

P
D

D
2

P
E

C
3

T
ot

al
D

R
4

F
E

5
S
S

6
D

R
4

F
E

7
S
S

6

T
H

T
T

P
D

H
T

T
P

se
rv

er
1.

08
6.

21
10

.3
2

1.
17

6.
34

12
.3

2
2.

13
22

.7
8

m
in

i
h
tt

p
d

H
T

T
P

se
rv

er
0.

92
6.

98
8.

04
1.

08
6.

59
11

.5
2

3.
42

21
.5

5

7z
a

F
il
e

ar
ch

iv
er

12
.6

8
48

.5
3

28
.3

9
12

.9
6

43
.7

3
30

.4
6

18
.7

2
10

7.
47

gz
ip

F
il
e

ar
ch

iv
er

4.
89

13
.8

7
2.

53
5.

07
14

.8
3

3.
69

7.
02

30
.3

6

F
or

d
-F

u
lk

er
so

n
M

ax
im

u
m

fl
ow

1.
62

6.
11

7.
18

1.
52

5.
78

9.
27

3.
71

18
.4

3

tc
c

C
co

m
p
il
er

2.
89

58
.9

1
27

.2
5

3.
30

62
.9

1
32

.8
3

5.
36

11
2.

57

1
In

pu
t

G
en

er
at

or
2
P
at

h
de

vi
at

io
n

de
te

ct
or

3
P
at

h
eq

ui
va

le
nc

e
ch

ec
ke

r
4
D

yn
am

ic
R

un
ni

ng

on
T

E
M

U
5
Fo

rm
ul

a
(3

.1
)

ex
tr

ac
ti

on
6
ST

P
sl

ov
er

7
Fo

rm
ul

a
(3

.2
)

ex
tr

ac
ti

on

3.4.1 Case Study I: the Same Programs

In this section, we evaluate the effectiveness of LoPD in the software plagiarism

case, where one program is a semantics-preserving transformation of the other pro-

33

gram. We have 6 tested programs as shown in Table 3.2: thttpd3, mini httpd4,

7-Zip5, gzip6, Ford-Fulkerson maximum flow implementation [74] and tcc 7. The

input variables of thttpd and mini httpd are the HTTP requests and the output

states are the HTTP response according to a particular request. The input vari-

ables of the Ford-Fulkerson maximum flow implementation are a flow network and

the output state is the calculated maximum flow. For the other three programs,

the input variables are the input files and the output states are the generated new

files.

For each program, we generate different semantics-preserving executable files

by compiling the source code using gcc/g++ (with different optimization options:

-O0, -O1, -O2, -O3 and -Os) and tcc. Besides, we apply Diablo, a link-time

optimizer [75] and Loco [70], an obfuscation tool based on Diablo to generate two

additional executables. Different compilers and different levels of optimization can

change the syntax of executables, e.g., “-freorder-blocks” reorders basic blocks, “-

funroll-loops” unwinds loops and “-finline-small-functions” inserts small functions’

definitions in their caller [76]. Diablo rewrites the binaries during link-time. Loco

can obfuscate binaries by control flow flattening and opaque predicate. Hence, we

have 8 different executables for each program.

We use LoPD to do pairwise comparison of the generated 8 executables for each

program in Table 3.2. We set the threshold of the maximum number of iterations

to be 100. For all 168 tested pairs (28 executable pairs for each of the 6 tested

programs), LoPD do not find any true path deviation. That is, LoPD draws the

right conclusion that they are software plagiarism cases. There is no false negative.

Path splitting resilience check. In order to test the resilience of LoPD to

semantically-equivalent-path splitting/ merging attacks, we manually add 2 to 3

such split paths in the source code of each program in Table 3.2. Briefly, we find

a code segment s1, s2, ... sn, (si could be any type of statement, e.g., assignment,

declaration, conditional branch, etc). We obfuscate this segment by independent

statement reordering, variable splitting/merging, opaque predicate, etc. Then we

3http://www.acme.com/software/thttpd/
4http://www.acme.com/software/mini_httpd/
5http://www.7-zip.org/
6http://www.gnu.org/software/gzip/
7http://bellard.org/tcc/

34

add the if...else statement, where if c is true, the original segment will be

executed; otherwise, the obfuscated segment will be executed. As demonstrated in

the following example, the left part is the original code and the right part is the

code after path splitting. We compile the new code into executable and compare it

with one of the original executables by LoPD. LoPD finds no dissimilarity between

the obfuscated and original executables within 100 iterations. It indicates the two

programs are software plagiarism, as expected.

...
s1;
s2;
...
sn;
...

...
if c then

s1; s2; ... sn;
else

obf(s1; s2; ... sn;)
end if
...

The execution time per iteration is also shown in Table 3.2. The listed time

is the average running time of 28 executable pairs for each program and the path

splitting experiment. The execution time per iteration is within two minutes for

test cases. Note that, the average total time for each iteration is not the sum

of the other running time in this line, because path equivalence checker is only

needed when there is a path derivation. The total execution time of 100 iterations

is within three hours, which is reasonable for offline detectors.

3.4.2 Case Study II: Different Programs

In this section, we evaluate the effectiveness of LoPD in determining non-plagiarism

cases. In the first part of this evaluation, we evaluate different programs that have

the same purpose and are supposed to generate the same output when given the

same input, but there may exist some inputs that cause two programs to generate

different outputs, due to either implementation errors or functional extension. The

first three lines in Table 3.3 are such program pairs.

35

T
ab

le
3.

3.
T

he
te

st
ed

pr
og

ra
m

s
an

d
th

ei
r

ru
nn

in
g

ti
m

e
pe

r
it

er
at

io
n

fo
r

th
e

di
ffe

re
nt

pr
og

ra
m

s
ca

se
(i

n
s)

.

ID
P

ro
gr

am
P

P
ro

gr
am

S

E
xe

cu
ti

on
T

im
e

(s
)

IG
1

P
D

D
2

P
E

C
3

T
ot

al
D

R
P

4
D

R
S

5
F
E

6
SS

7
D

R
d

8
F
E

9
SS

7

1
T

H
T

T
P

D
m

in
i
ht

tp
d

1.
08

6.
21

6.
98

10
.2

3
1.

38
6.

83
12

.7
1

2.
35

32
.8

7

2
7z

a
gz

ip
12

.6
8

48
.5

3
13

.7
8

18
.6

5
10

.1
9

22
.8

0
20

.8
1

12
.3

9
12

4.
83

3
Fo

rd
-F

ul
ke

rs
on

P
us

h-
re

la
be

l
1.

62
6.

11
6.

95
10

.4
1

1.
45

6.
94

11
.8

3
3.

21
48

.5
2

4
Fo

rd
-F

ul
ke

rs
on

D
ijk

st
ra

sh
or

te
st

pa
th

1.
62

6.
11

5.
26

7.
86

2.
12

-
-

-
22

.9
7

5
T

H
T

T
P

D
gz

ip
1.

08
6.

21
13

.8
7

7.
27

1.
32

-
-

-
29

.7
5

6
tc

c
gz

ip
2.

89
58

.9
1

13
.8

7
17

.4
9

5.
12

-
-

-
98

.2
8

7
Fo

rd
-F

ul
ke

rs
on

7z
a

1.
62

6.
11

48
.5

3
20

.9
0

13
.2

1
-

-
-

90
.3

7

1
In

pu
t

G
en

er
at

or
2
P
at

h
de

vi
at

io
n

de
te

ct
or

3
P
at

h
eq

ui
va

le
nc

e
ch

ec
ke

r
4
D

yn
am

ic
R

un
ni

ng
of

P
on

T
E

M
U

5
D

yn
am

ic
R

un
ni

ng
of

S
on

T
E

M
U

6
Fo

rm
ul

a
(3

.1
)

ex
tr

ac
ti

on
7
ST

P
sl

ov
er

8
D

yn
am

ic
R

un
ni

ng
of

d
(d

=
S

O
R

P
)

on
T

E
M

U
9
Fo

rm
ul

a
(3

.1
)

ex
tr

ac
ti

on

36

15

20

25

30
T
h
e
 #
 o
f
T
r
u
e
 P
a
th
 D
e
v
ia
ti
o
n

1-5 5-10 11-20 21-30 Iteration # of first path deviation

Iterations:

0

5

10

1 2 3 4 5 6 7

T
h
e
 #
 o
f
T
r
u
e
 P
a
th
 D
e
v
ia
ti
o
n

The Pair ID

Figure 3.5. The number of path deviations discovered within the first N iterations.

Instead of terminating the detection process as long as we find a true path

deviation, we repeat 30 iterations and count the number of path deviations we

discover for each program pair. The results are shown in Figure 3.5. The x-axis

are different program pairs, whose IDs are the same as in Table 3.3. The bars

indicate the count of true path deviations LoPD finds within N (N = 5, 10, 20, 30)

iterations. The red line shows the number of iterations when LoPD find the first

true path deviation.

Thttpd and mini httpd are two HTTP servers. If their settings are the same,

both of them should give the same response when receiving the same request.

The first path deviation happens in the 3rd iteration. We find total 21 true path

deviations within 30 iterations. The deviations are caused because one of the

programs does not follow the HTTP protocol specifications and has bugs in its

implementation. A path deviation example is shown in Figure 3.6. When given

request x, both of them normally response “200 Ok”. Based on x, LoPD finds

another input x′ that causes path deviation, where mini httpd still returns “200

Ok”, but thttpd returns “400 Bad Request”.

37

input x : 00000000 48 45 41 44 20 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 48 54 54 50 2F 31 2E 30 0A 0A 0A HEAD /index.html HTTP/1.0...

input x
′
: 00000000 48 45 41 44 20 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 48 01 01 10 FF FF 02 01 0A 0A 0A HEAD /index.html H..........

Figure 3.6. Path deviation example of THTTPD vs. mini httpd.

The second program pair, 7za and gzip, are two file compression tools. If

given the particular parameters (e.g., no parameter for gzip and a -tgzip for the

7za), they can generate the same output file when operating on the same input

file. The first path deviation is found in the second generation. There are 13

path deviations out of 30 iterations. More specifically, when using them for file

compression, there is no path deviation for these two programs, but when using

them for file decompression, we can find a path deviation in most iterations. One

example of the path deviation is: the original input x is a normal .gz file, which

both programs compress correctly; LoPD generates a new input file x′ based on

x; both 7za and gzip report a CRC-Failed upon x′. After that, gzip terminates

without decompression, whereas 7za continues and generates a decompressed file

anyway.

Ford-Fulkerson and Push-relabel are two maximum flow implementations, using

different algorithms. Given the same flow network, they should always calculate the

same maximum flow. This is an example of the case that the same outputs do not

indicate the software plagiarism, because the two programs are computationally

different, i.e. applying different algorithms in this case. LoPD can find true path

deviations in all 30 iterations, although they can always get the same output. The

reason of the existence of true path deviation along with identical output can be

explained by a simplified analogy as follows. For any input x 6= 1, we can find an

input x = 1 to cause a path deviation. For example, with an initial input x = 2,

both programs execute x = x∗2; a new input x = 1 will make the left program still

execute x = x ∗ 2 while the right program goes to another path x = x + 1. Their

results remain equal. However, it is a true path deviation, because Formula (3.2),

(x ∗ 2 6= (x + 1))∧ ((x > 1)∨¬(x > 1)) in this case, is satisfiable and then the two

execution paths of the right program are not semantically equivalent.

For all evaluation in this part, within 3 iterations, LoPD draws the right con-

clusion that they are two different programs.

38

int x
...
if x > 0 then

x = x ∗ 2
else

x = x + 1
end if

int x
...
if x > 1 then

x = x ∗ 2
else

x = x + 1
end if

The second part of the evaluation is on different programs that may or may not

have the same purpose, but generate different outputs by given the same input.

Because LoPD relies on two programs taking the same input, but for some program

pairs, the intersection of two programs’ input spaces is empty, e.g., thttpd vs. tcc,

we can easily rule out software plagiarism case when one program crashes or returns

an error message and the other program executes normally. Hence we only choose

certain pairs that have common inputs. The last 4 lines in Table 3.3 are such

program pairs. Since in most cases, two programs of such pairs cannot generate

the same output regarding the same input, we can simply draw the conclusion

that they are different programs by comparing the outputs. However, in order

to evaluate how different the paths are in this case, we use LoPD to find path

deviation regardless of their outputs. Similar to previous evaluation, we do not

terminate the detection when we find a path deviation, although we have already

gotten the right conclusion that they are different programs. LoPD continues until

finishing 30 iterations.

The results are shown in Figure 3.5 with pair ID 4−7. For each pair, LoPD can

find true path deviation in all 30 iterations. The results are as expected, since two

programs in each pair have different functionalities and it is not hard to imagine

that both their path constraints and output states are different.

The execution time is shown in Table 3.3. The total running time per iteration

is longer than the software plagiarism case, because in most iterations path equiv-

alent checker is invoked. In real case, we do not need to run all 30 iterations as in

this experiment. As long as we find a true path deviation, LoPD will terminate.

For all 7 tested pairs, the first path deviation is discovered within 5 minutes.

Summary. We evaluated the effectiveness and efficiency of LoPD in both the

same program and different program cases in this section. The evaluation result

demonstrates that LoPD can effectively and efficiently detect the software plagia-

39

rism. LoPD can quickly find the dissimilarity between two different programs. It

sheds some light on the selection of the maximum iteration threshold. Since in the

evaluation of different program cases LoPD can find the first true path deviation

within 3 iterations and more than 10 true path deviations within 30 iterations, we

believe normally 100 iterations is a reasonable tradeoff between the accuracy and

efficiency.

3.5 Discussion

First, LoPD is not suitable for small programs, because when the program logic

and semantics are too simple, it is possible that two programs, such as bubble sort

and quick sort, have the one-to-one path correspondence. However, for nontrivial

software products, it is unlikely that two independent programs have such path

correspondence. Therefore, in practice, we do not need to concern about these

potential false positive cases.

Second, LoPD is limited theoretically by the capability of the constraint solving

or theorem proving. In the path deviation detector, when the constraint solver finds

a satisfying assignment to the formula, it is surely correct. However, when it says

no, it could really mean the formula is not satisfiable, or the solver cannot find a

satisfying assignment due to its limited capability. In this case, it can potentially

lead to false positives. Our solution is to iterate many rounds on path deviation

detection. It would be practically not possible that for a large number of rounds,

with a large number of different paths, the constraint solver will consistently report

no on satisfying assignments. In the path equivalence checker, the similar can

happen and LoPD can theoretically report false negative. In our experiments, we

have not seen such false positives or false negatives.

Third, LoPD needs to repeat the iteration until a true path deviation is found

or the maximum number of iterations is reached. Therefore, the threshold of such

number is a tradeoff between the accuracy and the efficiency. A low threshold

takes less time but may cause false positive, while a high threshold decreases

the possibility of false positive but takes more time. The evaluation results in

Section 3.4 give us some hints about threshold selection: LoPD can quickly find the

true path deviation for two different programs (within 3 iterations in all evaluated

40

cases). As a result, we believe setting the threshold at 100 is reasonable. We can

also leverage the preknowledge of the plaintiff program to customize the threshold,

e.g., for programs with less input dependent conditional branches, we choose a

lower threshold and otherwise we set a higher threshold.

Fourth, LoPD may find path deviations for two versions of the same software,

if one fixed some bugs in the other one or added new functions. LoPD reports that

they are not semantically equivalent. This is true. A similar situation happens

when an attacker steals a program and improves it. In fact, LoPD comes to the

right conclusion that the two programs are not semantically equivalent, even if

the they may be quite similar. Note that in this case the transformation is not

achieved automatically but involves human efforts. In order to be resilient to

manual modification on plaintiff programs, LoPD could provide a user interface

that presents the dissimilarity it finds (e.g., differences in the outputs, the input

that causes path deviation) to users and let users make a decision about whether

to continue the detection to find another difference or to terminate the process

and draw the conclusion. A possible alterative solution is to find all different

outputs and path deviations within the maximum count of iterations and calculate

a dissimilarity score, which can help users to make a final judgment.

In addition, LoPD focuses on the detection of whole-program plagiarism, where

a plagiarist copies the whole plaintiff program and uses it as a finished software

product. Whole-program plagiarism detection is very useful in real world. For

example, on Android application market, many software plagiarism cases are just

repackaging, which are the whole-program plagiarism cases. We view our proposed

whole program plagiarism detection approach, based on formal program semantics

foundation, as a major milestone towards solving the partial software plagiarism

problem. Without a deep understanding of the whole program plagiarism problem,

the partial software plagiarism problem probably won’t be solved with rigorous

soundness and completeness.

3.6 Summary

In this chapter, we propose LoPD, a novel logic-based software plagiarism detection

approach. LoPD leverages symbolic execution and weakest preconditions to cap-

41

ture the semantics of execution paths. In addition to formal assurance of resilience

against most types of known obfuscation attacks, LoPD provides theoretical guar-

antee of the high detection accuracy. Our evaluation results indicate that LoPD

is both effective and efficient in detecting software plagiarism.

Chapter 4

ValPD: Value-Based Algorithm

Plagiarism Detection

In order to detect algorithm plagiarism, we need to find an algorithm’s distinct

code-level characteristics that cannot be concealed. Such distinct characteristic

is considered as a signature. There are two key challenges: (1) what is a good

signature of an algorithm; (2) how to extract the signature of an algorithm from

its implementations. In this work, we develop a dynamic value-based plagiarism

detection methodology that addresses both challenges. First, we use core values,

i.e., the critical runtime values that are irreplaceable and uneliminatable for all im-

plementations of the same algorithm, as the “signature” of an algorithm. Then we

propose two novel approaches to extract core values from programs’ runtime values:

the N-version approach and the annotation approach. After that, we propose two

metrics: the longest common subsequence (LCS) and the value dependence graph

(VDG) to assess the similarity between core values extracted from an algorithm’s

plaintiff implementation and its suspicious implementation.

To the best of our knowledge, there was no previous work discussing similarity

assessment on the algorithm level.

4.1 Problem Statement

The goal of our work is to automatically detect algorithm plagiarism, i.e., given one

(or more) implementation(s) of a plaintiff algorithm and one suspicious program,

43

the proposed methods can automatically assess their algorithm-level similarity. In

real-world, the verdict of an algorithm plagiarism case is often algorithm specific,

therefore we believe it is more meaningful to provide an algorithm-level similarity

score than to draw a simple yes/no conclusion in algorithm plagiarism detection.

We also realize that no universal detection threshold can fit all algorithm plagiarism

cases because the potential threshold for each case may vary due to the algorithm

specific factors, e.g., how complex the algorithm is, how specific it is described,

etc. Therefore, instead of giving a yes/no answer, our approach provides users

with similarity scores between programs and lets users make their own decisions.

The scope of this work: we only focus on the computational algorithms,

that is the output of an algorithm is the computational calculation result of the

input variables. Those algorithms whose output is a selection or a permutation of

the input, e.g. sorting algorithms, are out of the scope of our work.

This work is based on the following assumptions: (1) We have the source code of

at least one implementation of the plaintiff algorithm; (2) We have preknowledge

(e.g., input and output) about the implementation(s) of the plaintiff algorithm;

(3) We assume the plaintiff has no access to the source code of the suspicious

program, but can provide the executable file of the suspicious program to the

detector. These assumptions are reasonable in the real world. In most cases,

the owner of an algorithm must have implemented the algorithm and is willing

to provide the source code in order to win a plagiarism lawsuit. In addition, the

owner must have preknowledge on her/his own algorithm.

4.2 Signature Selection

The first challenge in this work is to identify and represent the signature of an algo-

rithm. To address this challenge, we first discuss and compare several candidates,

and then explain why core values are selected as the signature of an algorithm.

4.2.1 Signature Candidates

There exist a wide range of properties that may be used as a potential signature

to characterize an algorithm.

44

System call sequence/graph is an essential characteristic of a program that

invokes many system calls. However, an examination of the algorithms listed in

the “Algorithm Design” book [77] indicates that few of these algorithms involve

system calls. This indicates that system call sequence/graph is not suitable to

characterize an algorithm.

Function call sequence/graph. Since most algorithms use functions to re-

duce code duplication and to improve modularity and readability, function calls

are better than system calls in this aspect. However, programmers have huge

flexibility to choose when and how to use functions. In addition, function call

sequence/graph can be easily changed by splitting or merging functions, or by

inserting useless functions.

Control flow graph (CFG) represents the control flow between basic blocks.

When an algorithm is implemented by different programmers, the implementation

details could cause significant differences in CFGs. Implementations in different

programming languages can also lead to different CFGs. In addition, attackers can

apply obfuscation techniques, such as opaque predicates, control flow flattening and

loop unwinding, to change CFGs.

Data flow graph is similar to CFG. Graphs are used to represent data flows

between basic blocks. Similar to CFGs, basic blocks as well as their relations

in data flow graphs are not stable when an algorithm is implemented in different

ways. Moreover, this property could be easily manipulated by basic block splitting,

irrelevant basic block injection, etc.

Instruction level control dependence characterizes the instruction level

control relations in a program. It suffers the same problem as the CFG.

Instruction level data dependence characterizes the relations among run-

time values. We observe that when feeding different implementations of the same

algorithm with the same input, some runtime values cannot be replaced or elim-

inated. Therefore, these runtime values along with their dependence, e.g., value

sequence or value dependence graph, are a good candidate to characterize an al-

gorithm.

Given the comparison results, we choose the irreplaceable and uneliminable

values, namely core values, as the signature to characterize an algorithm.

45

4.2.2 Core Values

Runtime values are the values in the output operands of machine instructions

executed during runtime. Given an input, the core values of an algorithm are a

subset of the runtime values of its implementations. They are derived from the

input and cannot be replaced or eliminated by implementing the same algorithm

in different ways.

Jhi et al. [3] have demonstrated that core values exist at implementation level.

Our experiments in Section 6 demonstrate the existence of core values at algorithm

level. The approach used to extract program’s core values by Jhi et al. [3] is not

suitable to obtain core values at algorithm level, since some of program’s core

values are not core values of the algorithm behind this program. Consider two

programs independently implementing the same algorithm, the core values of the

programs may be different, but the core values of the algorithm should remain the

same.

In the next section, we propose two novel approaches to extract algorithm-level

core values.

4.3 Our Approaches

In Section 4.2, we show that core values are a signature of an algorithm imple-

mented in a program. The next challenge is how to extract core values from a

program.

In principle there could be two ways to find core values. First, if we know what

core values are, we can directly identify them. Second, if we do not know what core

values are but we do know what core values are not, we can prune the non-core

values and hopefully the remaining set of values mainly contains core values, if not

all. Based on these two ways, we propose the N-version approach to indirectly

extract core values and the annotation approach to directly extract core values.

4.3.1 N-version Approach

The N-version approach is inspired by N-version programming [56, 78]. We use

this approach to filter out the diversities in independent implementations of the

46

same algorithm while keeping the persistent runtime values.

We identify a subset of non-core values and then refine runtime values by filter-

ing out these non-core values. Let PA be an implementation of an algorithm A, vPA

be a runtime value of PA taking I as input, and QA be any other implementation

of A. Then, the non-core values satisfy at least one of the following properties:

• If vPA is not derived from I, vPA is a non-core value of A.

• If vPA is not in the set of runtime values of QA taking input I, vPA is a

non-core value of A.

The N-version approach leverages both above properties to eliminate non-core

values. To leverage the first property, i.e., values are not derived from input, we

apply dynamic taint analysis. With input as taint seed, all tainted values are

derived from input, while others are not. To leverage the second property, we

require multiple independent implementations of the plaintiff algorithm. After

extracting runtime values from each implementation with the same test input,

we filter out non-common runtime values. We also utilize the relations among

common values, e.g., the sequences of values or the dependence among values, to

characterize an algorithm. The final remaining values as well as their relations are

considered as the signature of the algorithm.

The architectural view of the N-version approach is shown in Figure 4.1. Here,

the plaintiff provides N (N ≥ 2) implementations of the algorithm. These im-

plementations can be source code or executables. For each implementation, the

value sequence extractor extracts a refined value sequence, which only contains

runtime values derived from the input. Then the LCS (Longest Common Subse-

quence) extractor generates a common value subsequence out of all these refined

value sequences. This common value subsequence is considered as a signature of

the plaintiff algorithm. For a suspicious program, we usually have only one exe-

cutable. We also apply the value sequence extractor to extract its value sequence,

with the same test input as that used in plaintiff implementations. Finally, the

similarity detector compares the signature of the plaintiff algorithm with the value

sequence of the suspicious program to calculate a similarity score. Next we explain

the details of each component.

47

Plaintiff algorithm
Similarity

Score

Implementations
...

LCS

extractor
Common

Value Seq

Executable

Suspicious Program

Value

Sequence

Extractor

Similarity

Detector

Value

Sequence

Extractor

Value

Sequences

...

Test Input

Value

Sequence

Figure 4.1. The design of N-version approach

Value sequence extractor extracts refined value sequence of programs. The

same extractor is also used in our previous work [3]. This component first lever-

ages the dynamic taint analysis technique [79] to only preserve the runtime values

derived from input. We run a program in a virtual machine environment with the

input as the taint seed. The dynamic taint analyzer monitors the taint propagation

from the taint seed to registers and memory cells. Registers and memory cells are

tainted if they appear in destination operands of any instructions that take values

from tainted registers or tainted memory locations as input. The output values in

these tainted destination operands are appended into a value sequence.

Besides dynamic taint analysis, we also employ several other schemes to further

refine the value sequence:

• Value-updating instructions only. A value-updating instruction is a machine

instruction that does not preserve input in its output. For example, add is

a value-updating instruction, while mov is not. The value sequence should

only contain the output of value-updating instructions.

• Sequential reduction. If the value of a register or memory cell is sequentially

updated, the intermediate results, which are never read, will not be added

into the value sequence.

• Optimization-based refinement is only applied on plaintiff programs. It is

used to filter out the values that vary because of different compiler options.

We use several different optimized executables of the same program to gen-

erate value sequences. (e.g. GCC have five optimization flags -O0, -O1, -O2,

-O3, and -Os, which could create five different executables for the same pro-

48

Code Annotator

(Manual / Auto)

Knowledge of

Expert

Similarity

Detector

Plaintiff Algorithm

Source Code Annotated

Source Code

Core Value

Extractor
Core Value

Sequence

Executable

Suspicious Program

Value

Sequence

Extractor

Refined Value

Sequence

Test Input Similarity

Score

Executable

Figure 4.2. The design of annotation approach

gram). Then, we calculate the longest common subsequence of all these value

sequences to retain only the common values in the resulting value sequence.

• Address removal. Memory addresses are not core values, because they may

be changed by binary transformation techniques, such as word alignment and

local variable reordering. Hence, we refine the value sequence by removing

addresses. Array index is essentially the offset from the base address of the

array. It may vary from implementations, so we also eliminate array indexes.

LCS extractor generates the LCS of all refined value sequences for N imple-

mentations. Note that subsequence is not necessary to be a consecutive part of the

original value sequences. This common subsequence is considered as core values of

the algorithm, since each value in the subsequence is derived from the input and

is present in all plaintiff implementations.

Similarity detector compares the LCS of the N plaintiff implementations

with the refined value sequence of the suspicious program. It measures their simi-

larity and calculates a similarity score. The similarity metric is described in Sec-

tion 4.3.3.

4.3.2 Annotation Approach

N-version approach requires multiple independent implementations of a plaintiff

algorithm. Such requirement may limit its application in practice. Given this,

we propose the second approach, the annotation approach, to extract core values.

It only requires the source code of one implementation of the plaintiff algorithm.

Instead of obtaining core values by filtering out “noise”, annotation approach re-

sorts to auxiliary information to identify core values directly. The basic idea is to

utilize the auxiliary information to identify critical statements that generate core

49

values. We insert annotations at these statements and then compile and run the

annotated code to extract the core values from the annotated variables.

The scheme is shown in Figure 4.2. The code annotator adds annotations to the

source code either automatically or based on knowledge of domain experts. These

annotations identify which variables in which statements will contain algorithm-

level core values during execution. The core value extractor executes the annotated

source code with a specific input and records all runtime values flagged by annota-

tions. It also tracks the relations (e.g., the order of presence) among core values in

runtime. These values are core values, the sequence of which is the signature of the

plaintiff algorithm. Meanwhile, the value sequence extractor generates a refined

value sequence during the execution of a suspicious program given the same input

as the plaintiff algorithm. After execution, the core value sequence of a plaintiff

algorithm and the refined value sequence of a suspicious program are compared by

the similarity detector which provides a similarity score. Note that in annotation

approach the value sequence extractor and similarity detector are the same as in

the N-version approach.

We choose to annotate on source code instead of on binary code because of the

following reasons. First, every core value is the runtime value of a variable in the

source code. That is to say an adequate annotation at source code level is sufficient

to extract all core values. Second, source code can liberate the scheme from the

large amount of intermediate non-core values generated by machine operations.

Third, source code is written by programmers based on algorithm descriptions,

whereas binary code is generated from source code by compilers. Therefore, the

abstraction gap between binary code and algorithm is larger than that between

source code and algorithm.

In the rest of this section, we will explain the design of key components.

Code annotator and annotation methods. Code annotator adds annota-

tions to source code. These annotations can be generated by different methods.

One method is manual annotation based on the knowledge of domain experts (e.g.,

author of the algorithm). We can leverage experts’ full understanding of the al-

gorithm and its implementation to point out which variables reflect the critical

logic of the algorithm. This knowledge based annotation could be very accurate

for simple algorithms. However, as a manual process, it becomes extremely time-

50

1. int average(int x,int y, int z){
2. int sum,avg;
3. sum = x+y+z;
4. avg = sum / 3;
5. return avg;
6. }
7. void main(){
8. int x,y,avg;
9. printf ("Enter two numbers:");
10. scanf("%d",&x);
11. scanf("%d",&y);
12. scanf("%d",&z);
13. avg = average(x,y,z);
14. printf("The average is: %d",avg);
15. }

1. int average(int x,int y, int z){
2. int sum,avg;
3. sum = x+y+z; __Log_Value(sum);
4. avg = sum / 3; __Log_Value(avg);
5. return avg;
6. }
7. void main(){
8. int x,y,z,avg;
9. printf ("Enter three numbers:");
10. scanf("%d",&x);
11. scanf("%d",&y);
12. scanf("%d",&z);
13. avg = average(x,y,z); __Log_Value(avg);
14. printf("The average is: %d",avg);
15. }

Figure 4.3. Forward slicing and backward slicing annotation example

consuming when the plaintiff algorithms become complex.

Given the drawback of manual annotation, we propose an automatic annotation

method. It combines the techniques of static backward slicing and static forward

slicing [80, 81]. Backward slicing starts from the output variables and ends at

the beginning of the implementation. The result of backward slicing is the set of

statements which affect the output. In the opposite, forward slicing initiates from

the input variables and terminates at the end of the implementation. The result

of forward slicing is the set of statements affected by the input. The intersection

of these two sets is the statements that derive the output from the input. After

finding these important statements, we add an annotation to the result variable in

each statement.

Figure 4.3 shows an example. The left part is the original source code. First,

we specify input variables and output variables by preknowledge. x, y, z are the

input variables and avg is the output variable. The second step is to apply static

forward slicing and backward slicing based on the input and output variables. Line

3, 4 and 13 are statements in the intersection of resulting sets from forward slicing

and backward slicing. Based on the slicing result, we add annotations to these

statements. The right part is the annotated code.

Although automatic annotation method is not as accurate as the manual one in

identifying core values, it is often effective enough to detect algorithm plagiarisms

51

while much more efficient and scalable. We can also employ a hybrid annotation

scheme by combining both methods. That is, we can apply backward slicing and

forward slicing to get a candidate set of annotations and then manually remove

annotations on insignificant variables or add annotations on other crucial variables.

Core value extractor is used to extract core values from an implementation

of the plaintiff algorithm. The extractor runs in a virtual machine environment,

where a special system call is inserted to handle the annotation. The parameter

of this system call is the annotated variable. When an annotation is encountered

in execution, this system call will be invoked to record the runtime value of the

variable.

4.3.3 Similarity Metric

After extracting the signature (i.e., core value sequence) of a plaintiff algorithm

and the value sequence of a suspicious program, the similarity detector measures

their similarity in terms of the proportion of values common to both sequences.

We apply the longest common subsequence (LCS) algorithm to obtain the common

value sequence of two programs. Let |s| be the length of a sequence s, then the

similarity score is calculated by the following formula. Since our approach is input

sensitive, we randomly choose multiple inputs and the final similarity score is the

average of all similarity scores.

Similarity score =
|common value seq|
|signature seq|

4.4 Address Reordering Problems

Although the LCS metric is efficient, it is sensitive to value reordering. For ex-

ample, an adversary can reduce the length of the LCS by exchanging the order of

independent instructions or independent basic blocks. As shown in Figure 4.4, two

code segments are semantically equivalent, but the length of their LCS is only 2.

To defend this attack, we propose a technique to organize a value sequence into

subsequences showing unchangeable partial ordering of the values. To get such

reordering-intolerant subsequences, we build dynamic value dependence graphs

52

1. n1 = ((uint32) b[i] << 24);
2. n2 = ((uint32) b[i+1] << 16);
3. n3 = ((uint32) b[i+2] << 8);
4. n4 = ((uint32) b[i+3]);
5. n = n1 | n2 | n3 | n4;

1. n1 = ((uint32) b[i+3]);
2. n2 = ((uint32) b[i+2] << 8);
3. n3 = ((uint32) b[i+1] << 16);
4. n4 = ((uint32) b[i] << 24);
5. n = n1 | n2 | n3 | n4;

Figure 4.4. Reordering problem example

(VDGs) of the core values. Then we use a novel path comparison technique to

check whether the reordering-intolerant subsequences of the plaintiff program are

similar to any paths in the VDG of the suspect program.

Definition 1. (Value Dependence Graph). Given a program P , its value depen-

dence graph VDG(P) is a directed acyclic graph G(VP , EP), where VP is a set of

vertices each of which represents a runtime value that is the output of some in-

struction of P , EP is a set of edges (a, b) such that a ∈ VP , b ∈ VP , a 6= b, and the

runtime value represented by b is derived from the runtime value represented by a.

Since we have implementations of plaintiff algorithm PA and the suspicious

program S, we can construct VDGs from their runtime values (refined to expose

the core values). Both VDG(P) and VDG(S) are acyclic graphs. Then, if there is

no path between two nodes in the VDG, they are independent. In other words, all

values on a path from the root node to a leaf node have ordering dependence, so

reordering techniques cannot change their orders.

4.4.1 VDG Comparison

Both VDG(P) and VDG(S) are constructed during runtime given the same test

input. The runtime values along with their dependence are recorded. Each value

is represented by a node and dependence among values is represented by edges.

Once VDG(P) and VDG(S) are extracted, we propose a dynamic programming

algorithm to check whether dynamic data dependence paths in the VDG(P) are

similar to any path in the VDG(S). These paths transform an initial input to a

final output. For each such path p in VDG(P), we find a path in VDG(S) which

has the largest LCS with p. Since all the values contained in p have partial ordering

dependence, they cannot be reordered.

53

We calculate the longest matched path in VDG(S) of p following Formula (4.1)

and (4.2), where pi is the ith node in p, nj is a node in VDG(S), vpi
and vnj

represent the values of pi and nj, respectively. The computational complexity is

O(|p||VS|2), where |p| is the length of path p and |VS| is the number of nodes in

VDG(S).

LCS(pi, nj) =

0, if i = 0 or j = ROOT

maxt(LCS(pi−1, nt)) + 1,

if vpi
= vnj

, t ∈ {parents of j}
max{LCS(pi−1, nj), maxt(LCS(pi, nt))},

if vpi
6= vnj

, t ∈ {parents of j}

(4.1)

LCS(p, VDG(S)) = max
nl

(LCS(p|p|, nl)),

nl ∈ {leaf node of VDG(S)}
(4.2)

4.4.2 VDG Reduction

We further improve the performance of VDG comparison by removing useless

nodes and edges from VDG(S). We remove the nodes whose values do not ap-

pear in VDG(P) by merging the nodes to the nearest predecessors or successors if

possible. When such node has only one predecessor/successor, we merge it to its

predecessor/successor. Both the construction of VDG(S) and the reduction can

be done in O(|ES| + |VS|) time, where |ES| is the number of edges in VDG(S)

and |VS| is the number of nodes in VDG(S). Since the computational complexity

of path comparison is O(|p||VS|2), reducing node size will significantly improve its

performance.

4.4.3 VDG Similarity Metric

When p, a path of VDG(P) is compared to VDG(S), the per-path similarity score

is computed as follows:

PSSpath(p, VDG(S)) =
LCS(p, VDG(S))

|p|

54

Given a set of paths extracted from VDG(P), we use the weighted average of per-

path similarity scores as the path comparison score of two graphs, because long

paths are more likely to serve the main purpose of P and to reduce the chance

of false positives. Since P is provided by the plaintiff, we have control over the

source code and the compilation process to make sure that P would not contain a

large number of dummy instructions. The path comparison score of VDG(P) and

VDG(S) is calculated as follows:

PCS(VDG(P), VDG(S)) =

|ρ|∑
i=1

ωiPSSpath(pi, VDG(S))

where ρ is the set of paths selected from VDG(P), |ρ| is the number of paths in ρ,

pi ∈ ρ and |pi| is the length of path pi. ωi, the weight of ith path is defined as

ωi =
|pi|∑|ρ|

k=1 |pk|

4.5 Implementation and Experiment

We implement the value sequence extractor inside QEMU 0.9.1 [82, 83] by adding

dynamic taint analyzer. The static backward slicing and forward slicing utilize the

CodeSurfer 2.1 API [84]. Core value extractor is implemented by adding a new

system call which is dedicated to flag core values.

We evaluate the effectiveness of our approaches by conducting proof-of-concept

experiments. For each approach, we measure the similarities in the following three

cases: (1) implementations of the same algorithm (2) implementations of different

algorithms with the same purpose, and (3) implementation of different algorithms

with different purposes. More experiments are conduct for the automatic annota-

tion approach, since it is more practical. All tested algorithms are representative

and well-known. The evaluation is performed on a Linux machine with Intel Pen-

tium 4 2.80 GHz CPU and 1 GB RAM.

4.5.1 Effectiveness of the N-version Approach

In this part of the evaluation, we use three algorithms: MD5, AES and network

flow. We obtain multiple implementations of each plaintiff algorithm. All imple-

mentations are from open source libraries. To assure that these implementations

55

Table 4.1. The similarity scores in MD5 experiment with various inputs
of plaintiff implementations
1 2 3 4 5

Min 0.609 0.629 0.720 0.731 0.814
Max 0.832 0.997 1.000 1.000 1.000
Avg 0.729 0.891 0.934 0.962 0.980

Table 4.2. The similarity scores in AES experiment with various inputs
of plaintiff implementations

1 2 3
Min 0.206 0.337 0.480
Max 0.536 0.963 1.000
Avg 0.413 0.623 0.826

Table 4.3. The similarity scores in max flow experiment with various inputs
Similarity of same algorithm

of plaintiff implementations
1 2 3

Min 0.452 0.521 0.787
Max 0.992 1.000 1.000
Avg 0.676 0.787 0.886

Similarity of different algorithms
1 2 3

Min 0.011 0.077 0.113
Max 0.148 0.164 0.164
Avg 0.102 0.133 0.128

are independent, we use MOSS, an online software plagiarism detection service [85],

and VaPD, a dynamic value-based software plagiarism detection system [3], to

measure their pair-wise similarities. A low pair-wise similarity would suggest inde-

pendent. Therefore, we filter out the implementations with high similarity scores.

MD5. We have 6 independent implementations of MD5. First, to verify the

existence of algorithm level core values that present in all implementations, we

obtain the common value sequence of the first n (1 ≤ n ≤ 6) implementations,

respectively (when n = 1, the common value sequence is itself). As shown in

Figure 4.5, the length of common value sequence converges quickly as N increases

and eventually becomes stable. Similar results are observed for the other two

algorithms. This indicates that the irreplaceable and uneliminable core values of

an algorithm do exist.

56

�

�����

�����

�����

�����

������

������

�
���
���
��	
���
��

���
���
���
���
�

� � 	 �
 � ��
��

��
��	

�
�
��

��
��

���
���

��
��

��

���
���
���
�	�

�
��

����������	
����������
�	���
��

����������	�
��� ������	��	
�����	�����	�����
�

Figure 4.5. The similarity scores and lengthes of common value sequences for MD5

To test the effectiveness of N-version approach, we randomly choose N (2 ≤
N ≤ 5) implementations as plaintiff programs, while the rest are suspicious. Some

statistics of similarity scores are shown in Table 4.1. These results demonstrate that

as N increases, the similarity scores between plaintiff algorithm and plagiarized

program increase as well. In other words, the ability to detect algorithm plagiarism

is improved. When N = 3, the minimum similarity is 0.720, which is enough

to identify algorithm plagiarism. Figure 4.5 also indicates that as N increases,

similarity scores increase and converge to be stable.

AES. We use 3 implementations as plaintiff programs and the other one as

the suspicious program. The statistics of similarity scores are shown in Table 4.2.

Some similarity scores are not high enough to distinguish the same algorithm from

different algorithms. The reason is that in AES, a lot of intermediate values are

independent, so they could be in any order. Figure 4.4 shows an example. It may

result a false negative. In Section 4.5.3, we will show that by using a VDG-based

metric we are able to eliminate this false negative.

Both MD5 and AES have only one algorithm each, so we cannot test the false

positive.

Maximum flow algorithms. We have four implementations of the Ford-

Fulkerson algorithm and another implementation of the push-relabel algorithm.

57

�
���
���
���
���
���
���
��	
��

���
�

�� �� �� �� �� ��

���
���
���
�	�

�
��

�����������	
��

�����������	�	
�� ��	���	
��������	�	
��

�����������	
��
(a) MD5

�
���
���
���
���
���
���
��	
��

���
�

�� �� ��

���
���
���
�	�

�
��

�����������	
��

�����������	�	
�� ��	���	
������	�	
��

(b) AES

���
���
���
���
���
���
��	
��

�

���
���
���
�	�

�
��

�����������	
����
	�	�
��

�
���
���

�� �� �� �����������

���
���
���
�	�

�
��

�����������	
��
(c) Max Flow

Figure 4.6. The similarity scores of the annotation approach

58

The result is shown in Table 4.3. We are able to distinguish the case of the same

algorithm from that of different algorithms with the same purpose. For different

algorithms, the similarity scores are all very low, irrespective of N .

Conclusion. Results in Table 4.1, 4.2 and 4.3 demonstrate that as N increases,

similarity scores of implementations of the same algorithm increase, while similarity

scores of implementations of different algorithms are not affected. This indicates

that applying multiple implementations can significantly reduce noises in core value

extraction. The results also show that based on the LCS metric, false negative

exists due to the value reordering problem.

4.5.2 Effectiveness of the Annotation Approach

4.5.2.1 Manual Annotation Approach

We perform proof-of-concept experiments on algorithms of MD5, AES and network

maximum flow. For each algorithm, we randomly choose one implementation as

plaintiff and manually annotate its source code. The rest of implementations are

treated as suspicious programs. The results are shown in Figure 4.6. All similarity

scores are higher than 0.85 when the plaintiff program and suspicious program

implement the same algorithm. The similarity scores between implementations of

different maximum flow algorithms are all around 0.25. The results indicate that

the manual annotation approach can distinguish the case of the same algorithm

from the case of different algorithms.

4.5.2.2 Automatic Annotation Approach

First, we conduct the same experiments as for the manual annotation approach,

except that the plaintiff programs are automatically annotated through static for-

ward slicing and backward slicing. The results are also shown in Figure 4.6. For

both MD5 and AES algorithms, the similarity scores between implementations

of the same algorithm are slightly lower than those measured by the manual an-

notation approach, but are still higher than 0.80. For the max flow algorithms,

automatic annotation annotates the same variables in the plaintiff program as the

manual annotation does, since max flow algorithms only contain calculation oper-

ations in very few statements. The automatic annotation approach is effective for

59

�
���
���
���
���
���
���
��	
��

���
�

���
���
���
�	�

�
��

����������	��
� ���������	��
� �����������	��
�
�������������
� ������������
� �������������
�

Figure 4.7. The similarity scores of automatic annotation with the LCS Metric

all above three applications.

Besides the above three applications, we also conduct experiments on 6 other

applications. The list of all applications and their algorithms is shown in Table 4.4.

Algorithms with the same purpose. We first compare the similarities in

two cases: (1) the same algorithm and (2) different algorithms with the same

purpose. For each application, we choose one plaintiff implementation and two

suspicious implementations, one of which implements the same algorithm with

the plaintiff implementation and the other does not. We measure their similarity

Table 4.4. The List of Applications and their algorithms
Applications Plaintiff Algorithm The Different

Algorithm

MD5 MD5 -
AES AES -
SHA2 SHA2 -

MaxFlow Ford-Fulkerson Push-relabel
Convex hull Monotone chain Graham scan
Fibonacci Exponentiation by squaring Iterative

Greatest common divisor Extended Euclidean Brute force
Prime factorization Wheel Fermat

Multiplication Karatsuba Long

60

scores by giving 10 randomly generated inputs to each of them. Figure 4.7 shows

the experiment results. It indicates that for each application, there is a significant

gap between similarity scores of the same algorithm and those of different algo-

rithms, although no universal threshold can be applied for all applications. The

low similarity scores (< 0.7) for the same algorithm in the SHA2 and Fibonacci

applications are caused by the value reordering problem, which will be solved in

Section 4.5.3. The high similarity score of different algorithms for greatest common

divisor (GCD) application is caused by the reason that the brute force algorithm

goes through every integer until the GCD is found. As a result, all integers between

the GCD and the smaller integer are in its value sequence, therefore there are false

matches, which will be eliminated by the VDG metric. The same algorithm for

the convex hull application does not achieve high similarity scores (around 0.65)

because the suspicious program optimizes the algorithm and does less calculations.

Even though, the differences between similarity scores of the same algorithm and

those of different algorithms are still large enough to distinguish them from each

other. As a result, the automatic annotation approach is effective to distinguish

the same algorithm from different algorithms with the same application.

Algorithms with different purposes. We evaluate the similarities between

algorithms of different applications in Table 4.4. Since our approach is input sen-

sitive, we choose 28 pairs of different algorithms, each pair of which can accept the

same input. The results are quite positive: 20 pairs have the similarity scores lower

than 1%. The other 8 pairs have the similarity scores between 1% and 30%. These

higher similarity scores are all caused by the reason that the plaintiff algorithm

is simple and has short core value sequence, while the suspicious one is compli-

cated with much longer core value sequence, which increases the chance of false

matches. As a result, for simple plaintiff algorithms, the plaintiff can use manual

annotation to assure the accuracy of core value annotation and to reduce false

matches. Even applying automatic annotation, all the similarity scores between

programs implementing algorithms with different purposes are low enough to be

distinguished from those between programs implementing the same algorithm.

Conclusion. Manual annotation is more effective but needs domain experts

to annotate the source code manually. Although automatic annotation is not as

accurate as manual annotation, the detection accuracy is good enough to tell the

61

�
���
���
���
���
���
���
��	
��

���
�

���
���
���
�	�

�
��

����������	��
� ���������	��
� �����������	��
�
�������������
� ������������
� �������������
�

Figure 4.8. The similarity scores of automatic annotation with the VDG metric

same algorithm from different algorithms.

4.5.3 VDG-Based Metric

Both the N-version and the annotation approach can adopt VDG as a metric to

measure algorithm-level similarities. We perform the same experiments on the

VDG metric as in Section 4.5.1 and 4.5.2. We show the results of automatic

annotation using the VDG metric in Figure 4.8. Since both SHA2 and Fibobacci

implementations suffer from the value reordering problem, their similarity scores

are significantly increased. For the brute force algorithm of the GCD application,

false matches are eliminated because its VDG is wide with all paths shorter than

3, which are not matched to the paths in the plaintiff VDG. The other results are

similar to the results in Figure 4.7. Thus automatic annotation approach using

VDG as the metric is effective in detecting algorithm similarity.

In addition, previously we have one false negative in Section 4.5.1, when the

N-version approach is applied to detect similarity of the AES implementations

with the LCS metric. The false negative is eliminated when we adopt the VDG

metric. Its similarity scores are significantly increased (minimum score = 0.757,

when N = 3).

62

We also evaluate the scalability of VDG-based comparison with large graphs.

We use a large file as input to MD5 implementations. The VDG(P) has 75k nodes,

with the maximum path length of 21k. The VDG(S) has 448k nodes originally and

75k nodes after reduction. The running time of the path comparison process is

less than 4 hours. This result indicates the capability of our approach in handling

large graphs.

4.5.4 Resiliency to Automatic Obfuscation

Plagiarists can exploit automatic obfuscation tools to obfuscate their implementa-

tion of the plagiarized algorithms to further evade detection. In this section, we

evaluate the resiliency of our approaches to such cases.

We apply 3 different automatic obfuscation tools: Semantic Designs Inc’s C

obfuscator [86], Diablo link-time optimizer-based obfuscator (Loco) [70] and bi-

nobf [87]. The first one is source code-based while the latter two are binary-based.

The features of Semantic Designs Inc’s C obfuscator include, but are not limited

to, identifier scrambling, format scrambling, loop rewriting, and if-then-else rewrit-

ing. Loco can obfuscate binaries by control flow flattening and opaque predicate.

Binobf performs junk insertion, opaque predicate, jump table spoofing, etc.

We obfuscate the suspicious program of each application by these three tools

and repeat the experiments in Section 4.5.2. The core value sequences of obfuscated

suspicious programs are almost the same as those of original programs. The only

differences are caused by several value reordering cases. As a result, the similarity

scores are nearly the same as in Section 4.5.2. After we applied VDG as similarity

metric to eliminate value reordering problem, the similarity scores become the

same as in Section 4.5.3. The results show our approach is resilient to automatic

obfuscation techniques.

4.6 Discussion

4.6.1 Counterattacks

Software obfuscation techniques. An attacker may apply obfuscation tech-

niques to evade algorithm plagiarism detection. Since our approaches apply core

63

values as signature, we mainly focus on obfuscation methods that manipulate run-

time values. These methods include noise injection, irrelevant instruction reorder-

ing and data transformation [88].

Our approach is resilient to noise injection. Injecting noise to suspicious pro-

gram may cause false matches and will raise the chance of accusation, so if a

plagiarist knows the mechanism of our approach, he will never try to evade detec-

tion by injecting random noise. However, if a lot of noise is injected, the size of

value sequence or VDG could dramatically increase. This will slow down the simi-

larity score computation. Our solution filters out values that are not present in the

value sequence or VDG of the plaintiff program before performing the similarity

computation.

Our VDG metric is resilient to irrelevant instruction reordering as discussed in

Section 4.4.

Data transformation is another possible counterattack to evade plagiarism de-

tection. Splitting or merging variables can change the runtime values. For example,

a single byte value b can be split into 8 bytes, each of which represents one bit of

b. Another example is that an array of four bytes can be merged into one inte-

ger. However, whenever this value is used, the original value has to be assembled

back, unless the adversary adopts complicated methods to convert all operations

on the original variable type to operations on the new one, which is usually not

practical. As long as these original values are restored, our approach can detect

the plagiarism. Therefore, our approach is resilient to most variable splitting and

merging attacks and raises the bar for plagiarism and increase its cost—simple

data transformation attacks will be caught and sophisticated transformation has

a high overhead for the plagiarists.

Optimization. Attackers can utilize different compilers or compiler optimiza-

tion options to change the executables of their plagiarized programs. However,

based on the definition of core values, runtime values that vary from different

compilers and optimization options are not core values. Therefore, compiler opti-

mization does not eliminate core values. Hence, our approaches are not affected

by these optimization techniques.

Another way of changing runtime values is to optimize the algorithm for imple-

mentation. If a plagiarist optimizes a plaintiff algorithm and then implements it,

64

the similarity score will decrease. This can be solved by applying manual annota-

tion, because experts master complete knowledge about core values of an algorithm.

For a complex algorithm, in order to reduce similarity score, a significant amount

of optimization is required. The resulting algorithm after such optimization may

no longer be considered as the same as the original algorithm.

4.6.2 Partial Plagiarism

Less self-disciplined developers may steal an algorithm by implementing and em-

bedding it in a large program. Since only a small part of the whole program is

plagiarized, it is difficult to detect. To detect partial plagiarism, we need to make

sure the inputs to the plaintiff algorithm and the suspicious module are the same.

Then we can search in value sequence of the suspicious program to find a subse-

quence that matches the sequence of plaintiff algorithm. To this end, a feasible

solution on partial plagiarism detection must be able to identify suspicious modules

in a suspicious program. One possible solution is to leverage some characteristics

of a specified algorithm to provide a hint about the location of suspicious modules,

such as invoking special system calls or APIs.

4.6.3 Limitations

First, our detection results rely on the selection of a similarity score threshold

to decide whether or not an algorithm is plagiarized. However, there is no such

universal threshold for all algorithms, because the threshold may vary for each

algorithm depending on how complex it is, how specific it is described, etc. To this

end, instead of giving a yes/no answer, our approach provides users with similarity

scores between programs as initial evidences. Based on these evidences, users can

take further investigations, which often involve non-technical actions.

Second, our value-based methods are input sensitive. This means it is possible

that different algorithms handle certain input in the same way. This may cause

false positives. Nevertheless, since we choose multiple inputs randomly, this risk

would be effectively mitigated in practice.

Third, our approaches leverage dynamic taint analysis to extract values derived

from input. It suffers from the common limitations of dynamic taint analysis

65

techniques [89]. A plagiarist could use anti-taint-analysis techniques to hide core

values. Solutions to this issue still remain an open question.

Finally, our value-based approaches are not applicable to all algorithms, since

they rely on extracting runtime values from tainted value-updating instructions.

Some other algorithms, where the output is a permutation or a selection of the

input variables, e.g., sorting algorithms and finding minimum/maximum value in

an array, contain very few of such instructions. As a result, ValPD can only detect

computational algorithms.

4.7 Summary

In this chapter, we propose two dynamic value-based approaches, i.e., N-version

and annotation, to detect algorithm plagiarism. To the best of our knowledge,

our work is the first one focusing on algorithm plagiarism detection. We evaluate

the proposed approaches on different algorithms. The evaluation results indicate

that our approaches can detect algorithm plagiarism effectively. We believe our

work has laid a foundation as a first step towards a practical solution to algorithm

plagiarism detection for intellectual property protection.

Chapter 5

ViewDroid: User Interface-based

Android Application Repackaging

Detection

In this chapter, we propose a user interface-based Android application repackaging

detection method, called as ViewDroid. ViewDroid extract the navigation rela-

tions among views as the signature of an app. It is a higher level representation

of an app’s behavior than the traditional code level birthmarks (e.g., opcode se-

quence, program dependence graph). In other words, ViewDroid does not need

instruction-level details. Hence, it is resilient to code obfuscations such as noise

instruction/data injection, instruction reordering, instruction splitting and aggre-

gation and data dependence obfuscation, etc. In addition, the generation of view

graph relies on statically analyzing Android specific APIs (e.g. startActivity,

startActivityForResult). These APIs are provided by the Android system and

are hard to be replaced or modified. Therefore, view graph, as the birthmark, is

more robust to obfuscation techniques such as, API splitting, API renaming, API

re-implementation.

5.1 Android Application Background

Android is a Linux-based platform for mobile devices. Users can download and

67

install Android apps from various app markets. Android apps are published to

the market in a compressed file format (i.e., .apk file). It contains a manifest file

(i.e., AndroidManifest.xml), resource files (i.e., files in res directory), and compiled

Dalvik Executable (i.e., classes.dex). The manifest file lists the package name,

version number, critical components of the app, and the associate permissions

to each component. The resource folder includes all the raw resource files, such

as images and audio files, and the XML files which describe the layouts of user

interfaces. The Dalvik executable contains all the classes that implement the

functionality of all the primary components of an app. Some apps contain parts

that are implemented by native languages. Since relatively few Android apps

contain such components developed in the native languages C/C++ and they

mostly serve as background services, our current ViewDroid design only takes into

consideration the Dalvik executable, the relevant Android manifest file, and the

layout files in the resource folder .

Components serve as the building blocks for Android apps. There are four

types of components, namely, Activity, Service, Broadcast Receivers, and Content

Provider. An Activity provides a screen for the user to interact with. An app re-

quires one main activity to start but can have a number of other activities (roughly

one per screen view). A stack is designed to organize activities. When a new activ-

ity starts, it goes to the top of the stack. A Service is a component that runs in the

background, usually engaged in the performance of long-running tasks. In general,

a service is used to perform any task that is asynchronous with respect to the main

user interface. A Broadcast Receiver listens to special messages broadcasted by the

system or individual apps and relays work to other services or activities. Finally, a

Content Provider manages shared data and optionally exposes query and update

capabilities for other components to invoke. A message-like intent is used to help

the communications among components.

The execution sequence of an Android app usually starts from the main activ-

ity, specified in the manifest file. When the launching icon of an app is pressed

by user, the main activity will be launched. It serves as the main entry point

to the user interface. The app switches between activities by invoking platform

APIs, Context.startActivity() or Activity.startActivityForResult() with

Intent objects as parameter. An Intent object contains the information of

68

the target activity. A user interface is loaded when an activity is initialized

by the onCreate() method, which creates a new user view through APIs like

setContentView(). The view is then put on the top of the view stack and be-

comes the running activity. Therefore, by analyzing the Android specific APIs

within each Activity class, the user interface navigation relation information can

be constructed to build our view graph. Note that, in our work, we only consider

apps that have interaction with users (e.g., by key pressing, button clicking). Some

other apps, which only have background services and do not interact with users,

are out of our consideration.

5.2 Problem Statement

The most fundamental challenge of app repackaging detection is to find unique

birthmarks to characterize an app. The proposed birthmark should be accurate and

unique enough to identify an Android app. Moreover, as reported by Zhou et al. [2],

the plagiarists and malware writers tend to use obfuscation on the repackaged apps

to evade detection. Hence, to significantly raise the bar for stealthy repackaging,

the designed detection scheme must be resilient against most code obfuscation

techniques. Finally, since the Android app repackage problem is prevalent among

most Android markets, it is very important to build a detection tool that can

perform detection in large-scale scenarios.

Note that we only focus on non-trivial Android apps that interact with users

through user interface and are implemented as Dalvik executables. Apps that

contain components implemented by native-code languages are out of the scope of

our research. Those only providing background services without user interactions

are not under our consideration either.

5.2.1 Attack model

The general attack model in the Android app repackaging problem is: an attacker

has access to the plaintiff Android app package (.apk file); he repackages the app

by copying the code, making a few modifications (e.g., replacing the advertisement,

attaching malicious payloads), and applying automatic code obfuscation techniques

69

in order to evade detection; the repackaged app is then signed with a private key

and republished to the app markets.

Based on the level of modification on the original APKs and the effort an at-

tacker is willing to pay on the repackaging process, we further classify the repack-

aging attacks into the following three categories:

Lazy attack: A lazy attacker can make some simple changes over an app

without changing its code. For instance, repackaging an app with a different au-

thor name or with different advertisements is such rudimentary lazy attack. Non-

developers can be easily trained to perform such tasks manually. More knowl-

edgeable lazy attackers may apply current automatic code obfuscation tools to

repackage an app without changing its functionality, following the procedure sim-

ilar to that shown in our evaluation section.

Amateur attack: An amateur attacker not only applies automatic code ob-

fuscation but also changes/adds/deletes a small part of the functionalities. For

example, an attacker can add some online social functionalities along with the on-

line chat view to the original app. Attackers must pay more effort to understand

and thus modify the code. For example, they have to read the Android manifest

file to delete or append the components that they want to register for the app

and to insert some interaction code into the original component to glue the newly

added components.

Malware: A malware writer creates a malicious app that mimics a popular

app by inserting some malicious payload into the original program. In this way, the

malicious app can leverage the popularity of the original program to increase its

propagation speed. With this purpose, the attacker tries to make the functionality

and user interface of the repackaged apps similar to the original one. Under this

circumstance, an attacker actually has to perform most of tasks that an Amateur

attacker has to do. In addition, the attacker needs to write the malicious payload

either in Java or C/C++ and stealthily insert the payload into the app.

We further analyze how well ViewDroid can detect these attacks and other

potential advanced attacks in Section 5.5.

70

5.2.2 Design Goals

Accurate Birthmark: In order to measure the similarity between two Android

apps, ViewDroid must select an accurate birthmark to characterize apps. This

accurate birthmark should be able to reflect the primary semantics of Android

apps and tell independently-developed apps apart. In other words, the designed

birthmark for ViewDroid should cause very few false positives.

Obfuscation Resilience: Code obfuscation is a technique to transform a se-

quence of code into a different sequence that preserves the semantics but is much

more difficult to understand or analyze. Obfuscation techniques can also be applied

by attackers to evade repackaging detection. Hence, ViewDroid must be able to

detect repackaging with the presence of various automatic code obfuscation tech-

niques. In other words, the designed birthmark should be robust against various

obfuscators. Obfuscation resilient birthmarks will ensure low false negatives.

Scalable Detection: Because there are a huge number of apps on different

Android app markets, ViewDroid must be efficient and scalable enough to detect

repackaging in such a large-scale scenario.

5.3 Design

5.3.1 Overview

It is critical while very challenging to identify an accurate and obfuscation resilient

birthmark in the design of a repackaging detection tool. In the past, a good variety

of birthmarks have been proposed and evaluated for different types of program

languages (C, Java) and platforms (Linux, Windows). Some of these traditional

birthmarks have been proposed to detect Android app repackaging [24, 25, 27,

2]. They are all code-level birthmarks. Instead of applying traditional software

birthmarks, we propose a novel user interface-based one, namely feature view graph.

It fully leverages a unique characteristic of smartphone apps – they are mostly UI

intensive and event dominated [90]. Feature view graph represents a higher level

abstraction of an Android app’s semantics. Therefore, it has the potential to be

71

MainActivity.smali

Figure 5.1. An example of a Sudoku game view

more robust to code obfuscation. In order to meet the scalability requirement

of Android app repackaging detection, feature view graph is generated by static

analysis of the dissembled installation file of an Android app (i.e., the apk file).

Definition 3 gives the definition of view. Figure 5.1 is an example of a view,

which has a corresponding main activity. The main activity is launched after users

pressing the app launch icons on the phone. Four physical components are included

in this view. A user can choose from one of the three levels to play with the game

by pressing the corresponding buttons. Each button will bring the user to another

view. Also, a user can press the white button at the bottom to get more puzzles

online. This button will bring up the view of a browser. Figure 5.2 is an example of

view navigation, where the app changes views based on users’ interactive behavior.

All the user interaction semantics for a view can be constructed by analyzing the

corresponding Activity class that implements the view.

Definition 3. (View) A view is a user interface that is displayed to users for

interaction with the mobile app. Each view has a corresponding activity class that

defines the view’s functionality. A view contains one or more visible components

(e.g. buttons, trackball) on the screen. When touched, the components might trigger

other activities or services.

72

Figure 5.2. An example of view navigation

In order to describe the user interaction semantics for an Android app, we

define view graph in Definition 4.

Definition 4. (View Graph) A view graph of a mobile app is a directed graph

G(V, E), where V is a set of nodes, each of which represents a user interface view.

E is a set of edges < a, b > such that a ∈ V , b ∈ V and the smartphone display

can switch from view a to view b by user interaction or other triggers.

By adding features to each view and each edge, a view graph can represent an

app more accurately and also improve the efficiency of app similarity measurement

at the later stage. The features of a view could be the number, types or layout of

the visible components (e.g., buttons, menus), or a set of Android platform specific

APIs invoked in this view’s activity. However, the former one (e.g., layout) is much

easier for an attacker to manipulate because it does not represent the fundamental

semantics of an app. The latter one (i.e., Android specific APIs) is much more

stable and can reflect app’s semantics; as a result, we only consider that as view

73

features.

In a feature view graph, the feature of an edge is the event listener func-

tion (e.g., onClick(), onLongClick(), onTouch(), etc.) that is directly triggered

by user generated events. Generally, there are two types of events in Android

platform, user-generated events and system-generated events. We only focus on

user-generated events in our birthmark creation. This is because these events are

highly associated with the functionality of an individual app and the corresponding

user interaction with the app. For instance, the onClick() method of a registered

listener is triggered when the corresponding button is pressed by a user, so we

consider it as an edge feature. An example of system-generated events is when

the system sends a short-message-received event, which triggers the onReceive()

method registered for the SMS RECEIVED intent in the manifest file. Clearly,

this onReceive() method is not triggered by direct user interaction, so it is not

considered as an edge feature. The feature view graph is defined in Definition 5.

Definition 5. (Feature View Graph) A feature view graph of a smartphone

app is based on its view graph, G(V, E), where certain features are selected and

attached to V and E.

After creating the feature view graph of a plaintiff app and a suspicious app,

ViewDroid measures the similarity between the two graphs by an applying sub-

graph isomorphism algorithm. Since it is an NP-complete problem, we need to

improve the performance of graph matching. To this end, we apply a pre-filter to

eliminate those more obvious non-matching pairs in advance.

5.3.2 System Architecture

Figure 5.3 shows the system architecture of ViewDroid, which has three primary

components. Given two Android apps in .apk format, the Code Extractor will

extract and parse the smali code (the dissembled version of Dalvik bytecode),

human-readable Android Manifest file and layout XML files from each app’s in-

stallation package. After that the View Graph Constructor performs some static

analysis to generate a feature view graph for each app. A pre-filter is applied to

remove app pairs that are not likely to be similar. Then the Graph Similarity

74

Code

Extractor

App 2

Smali Code

& Res Files

Smali Code

& Res Files

App 1 View Graph

Constructor
App 1

App 2

Feature

View Graph

Feature

View Graph

App 1

App 2

Graph

Similarity

Measurement
Similarity Score

Figure 5.3. The ViewDroid system architecture.

Checker compares two feature view graphs and calculates a similarity score.

Code Extractor. The user interface layouts of an Android app are usually defined

in XML files in the res/layout/ directory. The activity of a view is implemented

in the classes.dex, which is compiled as Dalvik bytecode. Instead of focusing on

the view layout that can be easily modified, we conduct the analysis on the ac-

tivity class, which defines the functionality of a view and indicates the navigation

between views. We choose to perform the static analysis directly on the smali

code, which is an intermediate representation of Dalvik bytecode. This is because

smali code is the direct dissembled version of Dalvik binary with rich annotation

information. Our static analysis also uses some information from the Android

manifest files and the layout component files. Existing tools can be leveraged to

extract smali code and human-readable XML files from android app packages (e.g.

baksmali [22], AXMLPrinter2 [91], apktool [21]).

View Graph Constructor. As discussed in Section 5.1, the layout of an app

view is usually defined in XML resource files and loaded by activity code during

the execution to be presented to users. Most activities load a view by invoking

the setContentView() function with an XML file name as the parameter, in its

onCreate() function. A few special views are loaded by other functions, e.g., the

Settings view is loaded by the addPreferencesFromResource() function. View

navigation is implemented by activity switching. When an activity calls another

activity, an instance of the callee activity is created, a new view associated with

the callee will be loaded and put on the top of the system’s view stack to be

presented to users. An activity switches to another activity by invoking function

75

startActivity() or startActivityForResult() with an Intent object as the

parameter. As a result, we can construct the view graph by statically analyzing

these function invocations.

The detailed steps of view graph construction are as follows:

1. Generate view nodes: We need to collect all the activities that are as-

sociated with potential UI views, each of which is usually a separate smali

file loading a view layout in its onCreate() function. In each activity, we

parse and grep the view loading function, such as setContentView() and

addPreferencesFromResource() in the onCreate()function. The parame-

ters of these view loading functions are the names of the XML resource files.

After parsing all this relevant information, every view node and its relation

to the corresponding activity class is generated.

2. Extract view node features: For the features of the view nodes, we only

focus on the Android framework specific APIs. Since the Android platform

use Java APIs that are built on a subset of the Apache Harmony Java im-

plementation, we consider this set of APIs are more vulnerable to renaming

attacks. Attackers can easily find semantics similar or equivalent APIs from

other sources. However, the set of Android specific APIs, e.g., API methods

from the android.security.KeyChain or android.nfc.NfcManager classes, are

very hard to be replaced. In order to interact with the Android platform,

an app has to register certain permissions in the manifest files and use the

relevant APIs to perform tasks. Based on this observation, we build the fea-

ture for each view node accordingly. We first analyze each activity class file

associated with a view node to extract a set of invocations of the Android

specific APIs. Then we can build a invocation vector for each view node. In

such invocations vector, instead of making a counter for each API, we only

flag 1 whenever an API is invoked in the activity. This can protect View-

Droid from dummy code insertion attack and can also improve the efficiency

on the invocations vector pattern matching.

3. Generate edges: Edges in the feature view graph represents the activity

switch relationship among the set of views. The source view is associated with

the caller activity of the startActivity() or startActivityForResult()

76

functions. The target view is associated with the activity declared by the

Intent object. There are six kinds of Intent constructors [92]:

(1) Intent()

(2) Intent(Intent o)

(3) Intent(String action)

(4) Intent(String action, Uri uri)

(5) Intent(Context packageContext, Class<?> cls)

(6) Intent(String action, Uri uri, Context packageContext, Class<?>

cls)

As described in [41], constructors (5) and (6) specify the target activity in an

explicit way with a particular class name. We can perform analysis to trace

back to this hard-coded class name. Constructors (3) and (4) initialize an

implicit Intent object by an action name, with or without a URI. The associ-

ated target activity, which could be within the same app or in another app, is

selected by matching intent filters in the Android manifest files. The external

target is undecidable without knowing other apps installed in a smartphone.

In ViewDroid, we create a general destination node external activity to

represent all external targets and add an edge from the source activity to

this node. Constructor (1) initializes an empty intent, which is surrounded

by setClass(), setComponent() or setAction(). Hence, the identification

of the target activity is the same as constructors (3)-(6). Constructor (2)

copies another Intent object o. In this case, our analysis needs to trace back

to the activity, which is specified by the constructor of the object o.

In order to figure out all the possible switching relationships among views,

static analysis is performed. By analyzing all startActivity() and

startActivityForResult() functions, we can stitch the caller activity and

callee activity and therefore create an edge from the view of the caller activity

to the view of the callee activity. Our view switching-based invocation graph

is more robust to code obfuscation than the traditional call graph, because it

does not rely on the exact call sequence starting from one view node and end-

ing at another view node. Whenever there is a view switching relationship,

an edge is built to link the two views. It captures the user’s real experience

77

of view switching. Even though there might be several method invocations

between an actual view switching, we ignore all the intermediary method

calls, but just stitch the source and end view nodes for the corresponding

activity classes. As long as attackers want to keep most functionality of the

original app, the view switching relationship cannot be changed.

4. Extract edge features: In order to minimize false matches and improve

the efficiency of similarity measurement in a latter stage, we add a fea-

ture to each edge. It is the user-generated event that triggers the view

switch. During the static analysis, we can locate the startActivity() or

startActivityForResult() functions and analyze which function call ac-

tually triggers the view switching. The trigger could be library provided

event listener, such as onClick(), onTouch(), OnItemSelected() etc, or

app developer self-defined functions. We consider these triggers to be the

features of edges. Note that because the names of self-defined functions can

be easily modified by an attacker, so we label all the developer self-defined

trigger functions with the same name self defined trigger and consider

them potentially matched with each other.

Figure 5.4 illustrates the steps of view graph construction for a simple Sudoku

app. Figure 5.5 shows the feature view graph of an app that repackages the original

app in Figure 5.4. The repackaged app copies the original app, adds an AdActiv-

ity (node v8) and additional social network functions (nodes v9, v10, v11, v12).

Figure 5.6 shows the feature view graph of an independent app. Note that to make

the graph clear in these figures, we omit the node features.

Graph Similarity Checker. We apply the VF2 [93] subgraph isomorphism

algorithm to measure the similarity between two feature view graphs.

A pre-filter is leveraged to reduce the graph pairs that need to be compared.

If one of the following three criteria meets, we will consider that they are not

repackaging cases:

(1) If the size of two view graphs differs a lot (specifically, the size of the bigger

graph is at least 3 times of the smaller graph);

(2) If the node features (i.e., those Android specific APIs considered in feature view

78

Step 1: Generate Nodes Step 2: Extract Node Features

Step 3: Generate edges Step 4: Extract edge features:

v1

v2 v3

v4

v5

v6

onListItemClick

onListItemClickonOptionsItemSelected

onOptionsItemSelected

onKeyDown

v7

onOptionsItemSelected

v1

v2 v3

v4

v5

v6

v7

onContextItemSelected

Figure 5.4. An example of view graph construction

v1

v2 v3

v4

v5

v6

onListItemClick

onContextItemSelected
onOptionsItemSelected

onOptionsItemSelected

onKeyDown

F1

v7

onOptionsItemSelected

v8

F4

v9

onListItemClick

v10 v11 v12

onClick onClick onClick

onListItemClick

Figure 5.5. The feature view graph of a repackaging app.

graphs) in two view graphs have limited overlap (i.e., the number of overlapped

features is below 1/3 of the size of the smaller graph)

(3) If the sets of edge features in two view graphs have limited overlap (i.e., the

number of overlapped edge features is below 1/3 of the edge number in the smaller

graph)

When two graphs are compared by the subgraph isomorphism algorithm, only

79

v1

v2 v3

v6

v5

v4

v7

onClick onClick
onClick

F1

onClick

onClick

v15

F1 v9

F2

v10 v11 v12

F3 F4 F5v13

onClick onClick

F6 F7

v14

F8

F8

v8

onClick

onClick

Figure 5.6. The feature view graph of an independent app.

nodes and edges with similar features can be matched. We consider two view

nodes are similar when their API invocation vectors have the Jaccard distance

below 0.5. The Jaccard distance between two sets A and B is calculated with

Formula 5.1. Edges with the same event listener are considered as a matched pair.

Not only can this feature pre-comparison reduce false matches of nodes and edges,

thus decreasing the false positives caused by simple view graphs, but it can also

improve the efficiency of subgraph isomorphism computation.

Jd(A,B) = 1− A ∩B

A ∪B
(5.1)

If apps A and B have m matched nodes, with nA and nB nodes in their feature

view graphs, respectively, their similarity score is calculated as:

similarity score =
m

min(nA, nB)

5.4 Evaluation

ViewDroid is implemented in Python and Shell-script. The whole system is built

with 2400 lines of Python code and 400 lines of Shell-scripts. Our experiment was

80

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m
u
la
ti
v
e
P
ro
b
a
b
il
it
y

0

0.1

0 0.2 0.4 0.6 0.8 1

C
u
m
u
la
ti
v
e
P
ro
b
a
b
il
it
y

Similarity Score

Figure 5.7. The cumulative distribution function (CDF) of similarity scores.

conducted on a commodity machine with 1.6 GHz Intel Core i5 processor and 4

GB memory.

We have two sets of experiments. First, we conduct evaluation on a large set

of real-world apps to measure the effectiveness and efficiency of ViewDroid. We

also test the percentage of the repackaged malware cases. Second, we evaluate the

obfuscation resilience of ViewDroid by applying different obfuscation techniques

on existing apps and using ViewDroid to detect their similarities.

5.4.1 Real-world Large-scale Experiment

5.4.1.1 False Positive and Efficiency

We crawl totally 10, 311 top Android apps from Google Play. These apps belong to

20 categories. We randomly choose 100 samples from each category and compare

them with apps in the same category in a pairwise way. Totally 573, 872 app pairs

are compared.

Figure 5.7 shows the cumulative probability of similar scores of these 573, 872

app pairs. Most pairs (90%+) have similarity score less than 0.6. There is a

gap between similarity scores 0.6 and 0.7. As a result, we set the similarity score

81

threshold at 0.7 in the evaluation.

After applying ViewDroid to detect the repackaged apps, we manually check the

detected pairs to measure false positives. The manual checking has two criteria: (1)

We execute the app on a smartphone to check the similarity of their functionality;

(2) We check the code, including smali files, layout files and the permissions. Only

when both criteria are similar, we consider them as the real repackaging cases.

We find 129 false matched pairs in total in 11 categories. Most (112 out of 129)

of the false matches are caused by the invocations of ad libraries. When two

apps share the same ad libraries and one app’s graph size is relatively small, the

matched nodes related to the common ad libraries will result in a high similarity

score. These false matches can be eliminated by whitelisting known ad libraries.

That is, we can simply ignore views that are generated by whitelisted libraries.

The other 17 false matches are due to that one of the apps in each pair is very

simple. For their view features, no special API is invoked and therefore nodes

are not distinguishable. Moreover, their view graphs are small and easy to find

matchable (sub)graphs. Our detection results, after adding a whitelist to rule out

the known ad libraries, are shown in Table 5.1. The percentage column is the

proportion of apps, which either repackage other apps or are repackaged by others,

in all apps in each category. On average 4.7% among tested apps are found to be

the real repackaging cases. The book and comic categories have more repackaging

cases than other categories, because in both categories, there are existing products

that can convert an ebook into an Android app. The apps generated by the same

converting product are detected as repackaging pairs by ViewDroid. They are true

positives since they share the same code base and the same views.

Among all 542 repackaging pairs, 262 of them belong to lazy attacks. The

malware cases are analyzed in Section 5.4.1.3. The other pairs belong to the

amateur attacks. Note that ViewDroid only measures the similarity between two

apps. It does not identify which one is the original app and which one is the

repackaged one.

The average execution time of ViewDroid for each testing is listed in Table 5.2.

It is about 11s per pair. In rare cases, the graph construction time and graph

comparison time may take minutes. Only 0.6% apps take more than 1 minute to

construct view graph and 0.18% pairs need more than 1 minute to conduct graph

82

Table 5.1. The repackaging apps detected by ViewDroid

Category
Pair# App# Repackag- Repackag- %

ed Pair ed App

Books 34,550 495 81 55 11.1%
Business 23,882 455 10 13 2.9%
Comics 40,850 558 110 75 13.4%

Communication 20,582 487 0 0 0.0%
Education 40,950 559 7 11 2.0%

Entertainment 25,758 512 10 16 3.1%
Finance 37,650 526 9 13 2.5%

Game arcade 30,496 543 64 37 6.8%
Game cards 27,329 545 11 13 2.4%
Game casual 20,662 509 12 18 3.5%

Health 36,550 515 13 20 3.9%
Lifestyle 20,538 509 10 13 2.6%
Media 39,150 541 56 35 6.5%

Medical 38,650 536 14 21 3.9%
Music 19,655 496 21 20 4.0%
News 10,466 495 21 24 4.8%

Personality 37,050 520 31 25 4.8%
Photography 23,914 518 17 22 4.2%

Shopping 28,185 495 23 23 4.6%
Social 17,005 497 22 26 5.2%
Total 573,872 10,311 542 480 4.7%

Table 5.2. The execution time of ViewDroid (in second)
Code Graph Graph

Extraction Construction Comparison

Max 15 146 590
Avg 4 6 1

comparison. In addition, when applying ViewDroid to check a large number of

apps, code extraction and view graph construction for each app is only performed

once.

5.4.1.2 False Negative

In this section, we use a set of repackaged apps provided by a research group to

measure the false negative rate of ViewDroid. These apps were collected from

83

multiple Android markets. The app dataset includes totally 901 pairs of apps,

whose view graphs have more than 3 view nodes. By setting the similarity score

threshold at 0.7, as in Section 5.4.1.1, ViewDroid detects 868 pairs as repackaging

cases. Among 659 of them, each pair of apps have the similarity score 1.0.

We then manually check the 33 pairs that are not detected by ViewDroid.

They can be divided into three different categories. (1) For 11 pairs, two apps

of each pair do not share or share very little common code. They do not have

common functionalities or views either. As a result, not reporting them is the

correct detection result for these 11 pairs. They were falsely included in the app

dataset. (2) Another 10 pairs are not real repackaging cases either, although they

do share some code between each other. The shared code is not related to the

functionalities or the views of these apps, but is used as malicious payload to

create ad shortcuts or to send out messages without users’ awareness. That is,

attackers use different apps to propagate the same malicious payload. Therefore,

ViewDroid is correct again not reporting them. (3) The other 12 pairs are false

negatives of ViewDroid at detection threshold 0.7. Here, each pair of apps have

repackaged code related to their major functionalities, but have different code that

implements “add-on” functions. These add-on components are relative large and

complex compared to their carrier code. For example, two apps both implement a

Ninja game. The matched view nodes detected by ViewDroid are the game itself,

while the unmatched view nodes represent different social network functions. It is

very likely that these two apps both repackaged another benign app by inserting

their own customized social network library, which targets a specific market. The

similarity scores of false negative cases are all between 0.5 and 0.7. It indicates

that ViewDroid is able to find their common views. The false negative rate of

ViewDroid at detection threshold 0.7 is 1.3%.

5.4.1.3 Malware

We use VirusTotal [94], an online malware detection service, to scan all the repack-

aged pairs detected in Section 5.4.1. Among the 480 apps identified as involved

in repackaging cases (either the original ones or the repackaged ones) in our pre-

vious experiment, we detect 93 malware, which is 19.3% of repackaged apps. The

malware types are listed in Table 5.3. They mainly belong to two different cat-

84

Table 5.3. The malware attacks detected by ViewDroid
Type Number

Trojan.FakeApp/FakeFlash 25
Adware.Airpush 14
Adware.Plankton 17
Adware.LeadBolt 26

Other Adware 10
Virus 1

egories: Adware and Trojan horse. Adwares aggressively show advertisements

to smartphone users.Trojan horses usually pretend to be legitimate apps, but

steal sensitive information covertly. There is one virus detected. It is labeled

as Virus:BAT/Rbtg.gen.

5.4.1.4 Category-based Evaluation

Next we illustrate a different kind of evaluation on real-world apps. We first search

by some keyword in Google Play, then download the returned apps and pairwisely

compare their similarities. While our previous large-scale experiment randomly

chooses pairs in the app market to evaluate the effectiveness and scalability of

ViewDroid, this experiment is more interesting to individual app developers and

app users to understand how repackaging may affect them.

We list two examples here. The first keyword is sudoku and we download 20

sudoku game apps. Based on the similarity scores, we cluster these apps as shown in

Figure 5.8. An edge indicates two apps have a similarity score higher than 0.7. The

largest cluster has 9 apps. The app with dashed circle is similar to all the other 8

apps in the cluster. The other two clusters both have 3 apps. Our manual checking

verifies that the result has no false positives and false negatives. Further analysis

indicates that there are 3 pairs belonging to lazy attack, where plagiarists only

repackage the original apps without changing their functionality. The similarity

scores of these pairs are 1.0. ViewDroid also discoveries one malware case, the

red big node in Figure 5.8. VirusTotal identifies it as the Airpush Adware, which

aggressively shows ads in the Android notification bar. This app inserts Airpush

ads module into the original app and slightly modifies the functionality by removing

a strategy help view. The other repackaging pairs are all amateur attacks, where

85

Figure 5.8. The cluster of sudoku apps based on the similarity scores.

functionalities are added or removed, such as social network modules, help view,

strategy hint views and advertisements.

In the second example we search by the keyword flashlight and download 29

apps. We find 15 pairs with similarity scores higher than 0.7. Our manual checking

indicates that 3 pairs are false positive cases. They are all caused by one app that

has 4 views, only one of which relates to its functionality whereas the other three

are generated by an ad library. When compared to apps that share the same

library with it, the three ad views are matched and the similarity scores are 0.75.

Again, such false positives can be eliminated by whitelisting the ad libraries. The

similarity cluster is shown in Figure 5.9. Four clusters have more than one app.

Among all the 12 repackaged pairs, 2 belong to the lazy attacks, and 9 belong to

the amateur attack where views are added or removed (e.g., the “about” view,

“setting” view). One malware attack, shown as a big red node in Figure 5.9, is

found. It is reported as a trojan horse by VirusTotal (there is indeed another

malware in the 29 downloaded apps, but it is not the app repackaging case. It is

identified as Plankton [95]).

5.4.2 Obfuscation Resilience

To test the obfuscation resilience of ViewDroid, we try to obfuscate the existing

apps and malware with different obfuscators, and then check with ViewDroid the

similarity score between each original app and its corresponding obfuscated one.

86

Figure 5.9. The cluster of flashlight apps based on the similarity scores.

Most existing popular obfuscation tools (e.g. ProGuard [96] and DexGuard [97])

work on Java source code level and their obfuscators are limited to method renam-

ing, string encryption and class name encryption, etc. Therefore, we choose to use

an obfuscation resilience evaluation tool developed by Huang et al. [30]. This eval-

uation framework can obfuscate and repackage apps by using one or multiple obfus-

cators from different Java bytecode obfuscation platforms (e.g., Sandmarks [28]).

It directly targets the Dalvik bytecode. This actually mimics the real world sce-

narios where a plagiarist or repackager who only has access to the compiled Dalvik

bytecode but not the high-level Java source code and is eager to use various ob-

fuscation techniques to evade detection. In our current obfuscation resilience test,

we equip the framework to perform 39 obfuscators from both SandMarks [28] and

KlassMaster [29]. To our knowledge, this is the broadest obfuscation resilience

evaluation on Android app repackaging detection.

First of all, we generate pairs of apks from the obfuscation resilience evaluation

tool. Then, we use ViewDroid to measure the similarity pairwisely between the

obfuscated apk and the original apk. The higher similarity scores our ViewDroid

returns for each specific obfuscator, the better resilience against that particular

obfuscation.

We choose 50 apps from the Android app market based on different categories

and 50 malwares from the malware Gnome project based on different families [98].

With this 100 Android app set, we perform broadness analysis and depth analysis to

evaluate the obfuscation resilience aspect of ViewDroid provided by the evaluation

87

framework. The broadness analysis result shows the general weakness and strength

of ViewDroid against a broad range of obfuscation techniques. In this analysis,

each obfuscator is applied individually. On the other hand, the depth analysis

result evaluates the overall obfuscation resilience of ViewDroid against deep code

manipulation by serializing a set of obfuscators. In this analysis, ViewDroid is

evaluated against repackaged apps that have been obfuscated by multiple obfus-

cators. For example, an app may be obfuscated by variable renaming, followed by

noise injection and/or control-flow flattening. With depth analysis, we can test the

robustness of our detection scheme against more sophisticated obfuscation attacks.

5.4.2.1 Applying Single Obfuscation Algorithm

In our current evaluation setup, the broadness analysis is based on 39 obfuscation

algorithms from SandMarks and KlassMaster. In Table 5.4, the Obfuscation Al-

gorithm columns indicate the names of the obfuscation algorithms applied in our

framework. The ViewDroid columns list an average similar score for each obfusca-

tion case. Specifically, in each obfuscation case, ViewDroid computes a similarity

score for each original app (among totally 100 apps) and its obfuscated version and

finally reports the average over 100 apps. The AndroGuard columns are the results

reported by Huang et al. in [30], and we also compute three average similarity

scores for AndroGuard based on three obfuscators from KlassMaster, which were

not provided in the previous case study. All these three obfuscators have a K-tag

at the beginning of the obfuscators’ names in Table 5.4.

Based on the classification by Collberg et al. [88], all the single obfuscators

can be categorized as layout obfuscation, control-based obfuscation and data-based

obfuscation, which are tagged L, C and D after each obfuscator. The detailed expla-

nation of the difference between these categories can be found in Huang et al. [30].

Overall, ViewDroid has better obfuscation resilience than AndroGuard. This is

because in ViewDroid, repackaging detection is performed based on the similarity

of the high level semantics of the app using the created featured view graph, while

ignoring the detailed control/data dependency or data structure. From the result,

we can see that only 4 out of 39 obfuscators have an effect on ViewDroid, and the

average similarity scores of all the other 35 obfuscators tested against ViewDroid

are all 1.00.

88

T
ab

le
5.

4.
A

ve
ra

ge
Si

m
ila

ri
ty

Sc
or

e
by

V
ie

w
D

ro
id

co
m

pa
re

d
w

it
h

A
nd

ro
G

ua
rd

fo
r

ea
ch

O
bf

us
ca

to
r

fr
om

B
ro

ad
ne

ss

A
na

ly
si

s

O
bf

us
ca

ti
on

A
lg

or
it

hm
V

ie
w

D
ro

id
A

nd
ro

G
ua

rd
O

bf
us

ca
ti

on
A

lg
or

it
hm

V
ie

w
D

ro
id

A
nd

ro
G

ua
rd

C
on

st
P
oo

l
R

eo
rd

er
(L

)
1.

00
.9

2
N

od
e

Sp
lit

er
(D

)
.9

4
.9

4

St
at

ic
M

et
ho

d
B

od
ie

s
(C

)
1.

00
.8

8
C

la
ss

E
nc

ry
pt

er
(D

)
.0

0
.0

3

M
et

ho
d

M
er

ge
r

(C
)

1.
00

.6
5

R
eo

rd
er

P
ar

am
et

er
s

(D
)

1.
00

.9
2

In
te

rl
ea

ve
M

et
ho

ds
(C

)
1.

00
.5

6
P

ro
m

ot
e

P
ri

m
R

eg
is

te
r

(D
)

1.
00

.9
2

O
pa

qu
e

P
re

d
In

se
rt

(C
)

1.
00

.9
2

P
ro

m
ot

e
P

ri
m

T
yp

es
(D

)
1.

00
.9

3

B
ra

nc
h

In
ve

rt
er

(C
)

1.
00

.7
7

B
lu

dg
eo

n
Si

gn
at

ur
es

(D
)

1.
00

.9
6

R
an

d
D

ea
d

C
od

e
(C

)
1.

00
.9

2
O

b
je

ct
ify

(D
)

1.
00

.8
3

C
la

ss
Sp

lit
te

r
(C

)
.9

7
.8

7
P

ub
lic

iz
e

F
ie

ld
s

(D
)

1.
00

.9
1

M
et

ho
d

M
ad

ne
ss

(C
)

.9
2

.4
3

F
ie

ld
A

ss
ig

nm
en

t
(D

)
1.

00
.8

6

Si
m

pl
e

O
pa

qu
e

P
re

d
(C

)
1.

00
.9

2
V

ar
ia

bl
e

R
ea

ss
ig

n
(D

)
1.

00
.8

5

R
eo

rd
er

In
st

ru
ct

io
ns

(C
)

1.
00

.8
9

P
ar

am
et

er
A

lia
s

(D
)

1.
00

.9
2

B
ug

gy
C

od
e

(C
)

1.
00

.6
7

B
oo

le
an

Sp
lit

te
r

(D
)

1.
00

.8
5

In
lin

er
(C

)
1.

00
.8

9
St

ri
ng

E
nc

od
er

(D
)

1.
00

.8
7

B
ra

nc
h

In
se

rt
(C

)
1.

00
.8

7
O

ve
rl

oa
d

N
am

es
(D

)
1.

00
.9

1

D
yn

am
ic

In
lin

er
(C

)
1.

00
.8

4
D

up
lic

at
e

R
eg

is
te

rs
(D

)
1.

00
.8

9

Ir
re

du
ci

bi
lit

y
(C

)
1.

00
.8

6
R

en
am

e
R

eg
is

te
rs

(D
)

1.
00

.9
6

O
pa

qu
e

B
ra

nc
h

In
se

rt
(C

)
1.

00
.8

5
Fa

ls
e

R
ef

ac
to

r
(D

)
1.

00
.9

5

E
xc

ep
ti

on
B

ra
nc

h
(C

)
1.

00
.8

1
M

er
ge

L
oc

al
In

t
(D

)
1.

00
.9

4

K
-F

lo
w

O
bf

us
ca

ti
on

(C
)

1.
00

.7
7

K
-N

am
e

O
bf

us
ca

ti
on

(D
)

1.
00

.8
9

K
-S

tr
in

g
lit

er
al

s
E

nc
ry

pt
er

(D
)

1.
00

.9
1

The Class Encrypter obfuscator reduces the similarity score to 0, which is the

89

only obfuscator that ViewDroid returns a lower score than AndroGuard. However,

the score for AndroGuard is .03, which is very close to zero. This indicates that

static analysis based detection schemes are not well-suited for encryption based

obfuscation. By encrypting class files and decrypting them at runtime, Class En-

crypter can completely hide the static structure of the program. However, certain

heuristic can be built to preprocess these extreme encryption cases. For instance,

whenever decryption or decoding is used in the program very intensively or is iden-

tified for a very large portion of the code, it can be flagged as suspicious. Usually,

dynamic analysis-based detection is needed in this situation, which is, however,

lack of scalability. Overall, handling the heavy encryption and encoding-based

obfuscation is an interesting topic to explore in the future.

The other obfuscation algorithms that have some influence on ViewDroid are

Node Spliter, Method Madness and Class Splitter. After further analysis of the

feature view graph pairs computed from the 100 apps’ obfuscated versions, we find

that some graph nodes are split by obfuscators Node Spliter and Class Splitter, and

the names of the methods that trigger view switching are replaced by some random

names by Method Madness, which can potentially modify the feature of our view

graph. However, from the overall similarity scores of these four obfuscators, we can

see that these types of obfuscation cannot be performed frequently, as certain con-

ditions have to be satisfied before these obfuscators make the actual manipulations.

For instance, some class inheritance relationship has to be met in order to perform

Node Spliter or Class Splitter, and also relevant specification in the Android man-

ifest file should be changed accordingly. Furthermore, the obfuscation of method

randomization in Method Madness cannot be performed directly on the Android

framework APIs, tedious method rewriting work has to be performed before replac-

ing the invocation of the Android APIs. For instance, simply changing the invoca-

tion Landroid/app/Activity.dispatchTouchEvent (Landroid/view/MotionEvent;)Z

into Landroid/app/Activity. M103456d(Landroid/view/MotionEvent;)Z does not

work. As a result, we find that most apks become non-executable after the Method

Madness obfuscation.

90

5.4.2.2 Serializing Multiple Obfuscation Algorithms

Practically, especially when detection algorithms become more powerful, it is very

possible that an attacker will try a combination of various obfuscation algorithms.

Hence, besides the broadness analysis performed on ViewDroid, for depth analysis

we also apply multiple obfuscators by serializing the top-three obfuscators reported

from our broadness analysis, excluding the Class Encrypter. Due to the conflicts

among various obfuscators, not all the obfuscated apks are complete. We test

various permutation cases with these three obfuscators and find two of all the

permutations can be performed more successfully for the testing apps. One can

output 99 out of 100 obfuscated apks and the other outputs 96 out of 100 for all

the tested ones. These two interesting permutations are shown as follows:

1. [Node Spliter ⇒ Method Madness ⇒ Class Splitter]

Average Similarity Score of 99 apps : 0.915;

2. [Class Splitter ⇒ Method Madness ⇒ Node Spliter]

Average Similarity Score of 96 apps : 0.906;

Both cases have the same three obfuscators but at a different serializing or-

der. Although they can slightly reduce the average similarity scores by ViewDroid

compared to the solely applying the obfuscator Method Madness case (with score

0.92), these scores are both above .90, sufficiently large for the obfuscated apps to

be detected. Case 1 reduces the average score from 0.92 to 0.915, which shows

that applying serialized multiple obfuscators has only slightly higher influence on

ViewDroid than applying a single obfuscator. For Case 2, the average similarity

score is a little bit lower than Case 1. However, there are four apps that cannot

finish the whole serialized obfuscations. This indicates that although serialized ob-

fuscation is slightly more powerful, the attacker has to take the risk of ending up

with incomplete obfuscation. We encountered more failures when performing other

orders of serialization. Overall, our evaluation demonstrates that multiple obfusca-

tions are hard to be serialized, and even if successfully performed, they have little

impact on ViewDroid’s detection capability. Huang et al. [30] also reported that,

in some scenarios, applying multiple obfuscations can lower the similarity scores

reported by tools such as AndroGuard. Our experiment shows that ViewDroid’s

91

high-level abstracted birthmark is not affected much by the low-level (multiple)

code obfuscation.

5.5 Discussion

5.5.1 Attack Analysis on ViewDroid

As discussed in Section 5.2, based on different repackaging purposes, ViewDroid

might face various types of attacks.

• Lazy attack: In this attack, the attacker does not change the functionality

of original apps but applies automatic code obfuscation tools to repackage an

app. As a result, a lazy attack does not change the view navigation relations

of an app. In addition, code obfuscation has little impact on the feature view

graph generation, as demonstrated by evaluation in Section 5.4.2. Therefore,

ViewDroid can effectively detect such attacks.

• Amateur attack: An attacker not only applies automatic code obfuscation

but also makes small modifications on the functionalities. The feature view

graph could be changed slightly. However, because we use the subgraph

isomorphism algorithm to compare graphs, small changes of the view graph

may reduce the similarity score a little but will not affect the overall detection

result much. As a result, ViewDroid can tolerate small changes on app

functionalities and views.

• Malware: An attacker inserts some malicious payload into the original pro-

gram while trying to make the repackaged app look the same or similar to

the original one in order to leverage the popularity of the original program

for wide propagation. Clearly, their feature view graphs would also be very

similar. Therefore, ViewDroid can effectively detect such repackaging.

Other Potential Professional attacks: An attacker, who knows ViewDroid,

may attempt to change feature view graphs to evade detection. Attackers may (1)

92

insert a dummy view into the path of two directly connected views; (2) split one

view node into two view nodes; (3) self implement or obfuscate the invocation of

startActivity() and startActivityForResult() functions. Since we use the

subgraph isomorphism algorithm with a certain matching threshold (e.g., 0.7), in

order to affect the detection result, attackers need to modify many views of the

original apps. On one hand, it will significantly increase the workload of repack-

aging an app. On the other hand, the dummy nodes, edges and self-implemented

functions will increase the code size and decrease the performance of apps. We

have not seen such attacks in the real world yet.

5.5.2 Limitations

ViewDroid can detect the repackaging of non-trivial apps effectively, but for the

detection of apps with few views, more false positives can be reported. Even so,

the API vector node features can significantly reduce such false positives, because

only nodes with very similar API vectors can be matched.

ViewDroid can effectively detect the following three types of mobile app repack-

aging attacks: lazy attacks, amateur attacks and malware. However, some pro-

fessional attacks can potentially change view graphs, regardless of the workload

of attackers and the performance overhead of the repackaged apps. Dummy view

insertion may be defeated by examining the trigger function of the view switches.

If a switch is not triggered by user behavior, we can merge the target view with

its predecessor/successor in the feature view graph. A similar strategy has been

used by Chen et al. [42] to check for malicious behavior. Current ViewDroid can

effectively raise the bar of app repackaging.

As shown in our evaluation, ViewDroid has false negatives when the encrypter

obfuscation is used. This is because encryption changes the code completely and

hides all the static characteristics of an app. This is also a common problem of all

static analysis-based detection. To defeat against such attacks, dynamic analysis

may be applied. However, dynamic analysis is not efficient enough to be used as a

large-scale detection approach. This is the fundamental tradeoff between accuracy

and performance. How to build a hybrid approach to leverage both dynamic and

static analysis for encrypter obfuscation is also a very interesting and important

93

topic.

5.6 Summary

In this chapter, we proposed a user interface-based Android app repackaging de-

tection method, ViewDroid. The evaluation results show that ViewDroid can

effectively detect Android app repackaging with the presence of various obfus-

cation techniques. ViewDroid is also efficient enough for performing large-scale

experiments.

Chapter 6

Conclusion

This dissertation focuses on plagiarism detection. It proposes three components:

LoPD, ValPD and ViewDroid to solve different types of plagiarism, i.e., software

plagiarism, algorithm plagiarism and Android app repackaging, respectively. LoPD

is a program logic-based software plagiarism method. It applies symbolic execution

and weakest pre-condition reasoning to find dissimilarity between two programs

to rule out non-plagiarism cases. ValPD is a value-based algorithm plagiarism

detection approach. It uses core values as algorithm signature and proposes the N-

version and the annotation method to extra core values. A value dependence graph-

based similarity metric is proposed to solve value reordering problem. ViewDroid

is a user interface-based Android app repackaging detection scheme. It leverages

view graph to characterize an app. View graph is a higher level birthmark than

code-level birthmarks and therefore is more resilient to code obfuscation. All three

components are obfuscation resilient and none of them need the source code of

suspicious program.

Each method is proposed, implemented and evaluated on real-world programs

or apps. The evaluation results demonstrate their effectiveness, even with the

presence of various automatic code obfuscation techniques. Besides, ViewDroid is

efficient and scalable enough to perform evaluation on a large scale app set.

This work not only provides more obfuscation-resilient approaches to software

plagiarism detection and mobile app repackaging detection, but also lays a founda-

tion as a first step towards a practical solution for algorithm plagiarism detection.

The proposed techniques can be used to collect plagiarism evidences for lawsuits,

95

as well as to maintain the health of open source community and the app markets.

They will help deter the violation of intellectual property .

In the future, we will study how to apply our schemes to detect partial plagia-

rism. For the smartphone app repackaging problem, we are going to investigate

how to deal with professional attacks.

Bibliography

[1] “Compuware, IBM settle lawsuit,” http://www.zdnet.com/news/

compuware-ibm-settle-lawsuit/141925.

[2] Zhou, W., Y. Zhou, X. Jiang, and P. Ning (2012) “Detecting repackaged
smartphone applications in third-party Android marketplaces,” in Proceedings
of the second ACM conference on Data and Application Security and Privacy,
CODASPY ’12, pp. 317–326.

[3] Jhi, Y.-C., X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu (2011) “Value-
Based Program Characterization and Its Application to Software Plagiarism
Detection,” in 33rd International Conference on Software Engineering (ICSE
2011), the SEIP track.

[4] Liu, C., C. Chen, J. Han, and P. S. Yu (2006) “GPLAG: detection of
software plagiarism by program dependence graph analysis,” in KDD ’06:
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 872–881.

[5] Schleimer, S., D. S. Wilkerson, and A. Aiken (2003) “Winnowing:
local algorithms for document fingerprinting,” in Proceedings of the 2003 ACM
SIGMOD international conference on Management of data, SIGMOD ’03, pp.
76–85.

[6] Yang, W. (1991) “Identifying syntactic differences between two programs,”
Softw. Pract. Exper., 21(7), pp. 739–755.

[7] Myles, G. and C. Collberg (2005) “K-gram based software birthmarks,”
in Proceedings of the 2005 ACM symposium on Applied computing, SAC ’05,
pp. 314–318.

[8] Park, H., S. Choi, H. il Lim, and T. Han (2008) “Detecting Java Theft
Based on Static API Trace Birthmark,” Advances in Information and Com-
puter Security, pp. 121–135.

[9] Myles, G. and C. S. Collberg (2004) “Detecting Software Theft via
Whole Program Path Birthmarks,” in ISC, pp. 404–415.

97

[10] Tamada, H., K. Okamoto, M. Nakamura, A. Monden, and K. ichi
Matsumoto (2004) “Dynamic software birthmarks to detect the theft of
Windows applications,” in Int. Symp. on Future Software Technology.

[11] Schuler, D., V. Dallmeier, and C. Lindig (2007) “A dynamic birthmark
for Java,” in Proceedings of the twenty-second IEEE/ACM international con-
ference on Automated software engineering, ASE ’07, pp. 274–283.

[12] Zhang, F., Y. Jhi, D. Wu, P. Liu, and S. Zhu (2012) “A first step towards
algorithm plagiarism detection,” in Proceedings of the 2012 International Sym-
posium on Software Testing and Analysis, ACM, pp. 111–121.

[13] King, J. C. (1976) “Symbolic execution and program testing,” Commun.
ACM, 19.

[14] Dijkstra, E. W. (1976) A Discipline of Programming, Prentice Hall, Inc.

[15] Hoare, C. A. R. (1969) “An axiomatic basis for computer programming,”
Commun. ACM, 12(10).

[16] Lu, B., F. Liu, X. Ge, B. Liu, and X. Luo (2007) “A Software Birthmark
Based on Dynamic Opcode N-gram,” International Conference on Semantic
Computing, pp. 37–44.

[17] Wang, X., Y.-C. Jhi, S. Zhu, and P. Liu (2009) “Detecting Software Theft
via System Call Based Birthmarks,” in ACSAC, vol. 0, pp. 149–158.

[18] ——— (2009) “Behavior based software theft detection,” in Proceedings of
the 16th ACM conference on Computer and communications security, CCS
’09, pp. 280–290.

[19] “Number of avaliable Android applications,” http://www.appbrain.com/

stats/number-of-android-apps.

[20] Gibler, C., R. Stevens, J. Crussell, H. Chen, H. Zang, and H. Choi
(2013) “AdRob: Examining the Landscape and Impact of Android Applica-
tion Plagiarism,” in Proceedings of 11th International Conference on Mobile
Systems, Applications and Services.

[21] “Android-Apktool: A tool for reverse engineering Android apk files,” http:

//code.google.com/p/android-apktool/.

[22] “Smali: An assembler/disassembler for Android’s dex format,” http://code.

google.com/p/smali/.

[23] Crussell, J., C. Gibler, and H. Chen (2013) “Scalable Semantics-Based
Detection of Similar Android Applications.” in ESORICS.

98

[24] ——— (2012) “Attack of the Clones: Detecting Cloned Applications on An-
droid Markets,” in ESORICS, pp. 37–54.

[25] Hanna, S., L. Huang, E. Wu, S. Li, C. Chen, and D. Song (2012)
“Juxtapp: A Scalable System for Detecting Code Reuse Among Android Ap-
plications,” in Proceedings of the 9th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment.

[26] Zhou, W., Y. Zhou, M. Grace, X. Jiang, and S. Zou (2013) “Fast,
scalable detection of Piggybacked mobile applications,” in Proceedings of the
third ACM conference on Data and application security and privacy, ACM,
pp. 185–196.

[27] Desnos, A. and G. Gueguen. “Android: From Reversing to Decompila-
tion,” in Black hat 2011, Abu Dhabi.

[28] Collberg, C., G. Myles, and A. Huntwork (2003) “Sandmarks - a tool
for software protection research,” in IEEE Security and Privacy, vol. 1, no.
4.

[29] “KlassMaster,” http://www.zelix.com/klassmaster/docs/index.html.

[30] Huang, H., S. Zhu, P. Liu, and D. Wu. (2013) “A Framework for Evalu-
ating Mobile App Repackaging Detection Algorithms,” in Proceedings of the
6th International Conference on Trust & Trustworthy Computing.

[31] Lim, H.-i., H. Park, S. Choi, and T. Han (2008) “Detecting Theft of
Java Applications via a Static Birthmark Based on Weighted Stack Patterns,”
IEICE - Trans. Inf. Syst., E91-D(9), pp. 2323–2332.

[32] Tamada, H., M. Nakamura, A. Monden, and K. ichi Matsumoto
(2004) “Design and Evaluation of Birthmarks for Detecting Theft of Java Pro-
grams,” in Proc. IASTED International Conference on Software Engineering
(IASTED SE 2004), pp. 569–575, innsbruck, Austria.

[33] Krinke, J. (2001) “Identifying Similar Code with Program Dependence
Graphs,” in Proceedings of the Eighth Working Conference on Reverse En-
gineering (WCRE’01), WCRE ’01.

[34] Tamada, H., K. Okamoto, M. Nakamura, A. Monden, and K. ichi
Matsumoto (2007) Design and Evaluation of Dynamic Software Birth-
marks Based on API Calls, Information Science Technical Report NAIST-IS-
TR2007011, ISSN 0919-9527, Graduate School of Information Science, Nara
Institute of Science and Technology.

99

[35] Potharaju, R., A. Newell, C. Nita-Rotaru, and X. Zhang (2012)
“Plagiarizing Smartphone Applications: Attack Strategies and Defense Tech-
niques,” in Engineering Secure Software and Systems, Lecture Notes in Com-
puter Science, pp. 106–120.

[36] Baker, B. S. (1995) “On finding duplication and near-duplication in large
software systems,” in Proceedings of the Second Working Conference on Re-
verse Engineering, WCRE ’95.

[37] Kamiya, T., S. Kusumoto, and K. Inoue (2002) “CCFinder: a multilin-
guistic token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., 28, pp. 654–670.

[38] Jiang, L., G. Misherghi, Z. Su, and S. Glondu (2007) “DECKARD:
Scalable and Accurate Tree-Based Detection of Code Clones,” in Proceedings
of the ICSE ’07, pp. 96–105.

[39] Prechelt, L., G. Malpohl, and M. Phlippsen (2000) JPlag: Finding pla-
giarisms among a set of programs, Tech. rep., http://page.mi.fu-berlin.
de/prechelt/Biblio/jplagTR.pdf.

[40] Chen, K., P. Liu, and Y. Zhang (2014) “Achieving Accuracy and Scala-
bility Simultaneously in Detecting Application Clones on Android Markets,”
in 36th International Conference on Software Engineering (ICSE).

[41] Zheng, C., S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou (2012)
“SmartDroid: an automatic system for revealing UI-based trigger conditions
in Android applications,” in Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices, ACM, pp. 93–104.

[42] Chen, K. Z., N. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. Ma-
grino, E. X. Wu, M. Rinard, and D. Song (2013) “Contextual Pol-
icy Enforcement in Android Applications with Permission Event Graphs,” in
NDSS’13, San Diego, USA.

[43] Grace, M. C., W. Zhou, X. Jiang, and A.-R. Sadeghi (2012) “Unsafe
exposure analysis of mobile in-app advertisements,” in Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile Networks,
ACM, pp. 101–112.

[44] Anand, S., M. Naik, M. J. Harrold, and H. Yang (2012) “Automated
concolic testing of smartphone apps,” in Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering,
ACM, p. 59.

100

[45] Baxter, I. D., A. Yahin, L. Moura, M. Sant’Anna, and L. Bier
(1998) “Clone Detection Using Abstract Syntax Trees,” in Proceedings of the
International Conference on Software Maintenance, ICSM ’98.

[46] Komondoor, R. and S. Horwitz (2001) “Using Slicing to Identify Dupli-
cation in Source Code,” in Proceedings of the 8th International Symposium on
Static Analysis, SAS ’01, pp. 40–56.

[47] Gabel, M., L. Jiang, and Z. Su (2008) “Scalable detection of semantic
clones,” in Proceedings of the 30th international conference on Software engi-
neering, ICSE ’08, pp. 321–330.

[48] Sæbjørnsen, A., J. Willcock, T. Panas, D. Quinlan, and Z. Su (2009)
“Detecting code clones in binary executables,” in Proceedings of the eighteenth
international symposium on Software testing and analysis, ISSTA ’09, pp.
117–128.

[49] Collberg, C. and C. Thomborson (1999) “Software Watermarking: Mod-
els and Dynamic Embeddings,” in Principles of Programming Languages 1999,
POPL’99.

[50] Cousot, P. and R. Cousot (2004) “An abstract interpretation-based
framework for software watermarking,” in Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’04, pp. 173–185.

[51] Thomborson, C., J. Nagra, R. Somaraju, and C. He (2004) “Tamper-
proofing software watermarks,” in Proceedings of the second workshop on Aus-
tralasian information security, Data Mining and Web Intelligence, and Soft-
ware Internationalisation - Volume 32, ACSW Frontiers ’04, pp. 27–36.

[52] Collberg, C., E. Carter, S. Debray, A. Huntwork, J. Kececioglu,
C. Linn, and M. Stepp (2004) “Dynamic path-based software watermark-
ing,” in Proceedings of the ACM SIGPLAN 2004 conference on Programming
language design and implementation, PLDI ’04.

[53] Arboit, G. (2002) “A method for watermarking Java programs via opaque
predicates,” in Proc. Int. Conf. Electronic Commerce Research (ICECR-5).

[54] Brumley, D., J. Caballero, Z. Liang, N. James, and D. Song (2007)
“Towards automatic discovery of deviations in binary implementations with
applications to error detection and fingerprint generation,” in Proceedings
of 16th USENIX Security Symposium on USENIX Security Symposium, pp.
15:1–15:16.

101

[55] Chen, L. and A. Avizienis (1977) “On the Implementation of N-Version
Programming for Software Fault-Tolerance During Execution,” in IEEE 1st
Computer Software and Applications Conference(COMPSAC 77).

[56] ——— (1978) “N-Version programming: A fault-tolerance approach to relia-
bility of software operation,” in IEEE 8th International Symposium on Fault
Tolerant Computing (FTCS-8).

[57] Lyu, M. R. and Y. He (1993) “Improving the N-version programming pro-
cess through the evolution of a design paradigm,” in IEEE Transactions on
Reliability.

[58] Avizienis, A. (1995) “The methodology of n-version programming,” in Soft-
ware Fault Tolerance.

[59] Nagy, L., R. Ford, and W. Allen (2006) “N-Version Programming for
the Detection of Zero-day Exploits,” in IEEE Topical Conference on Cyber-
security.

[60] Cox, B., D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser (2006) “N-Variant Systems
A Secretless Framework for Security through Diversity,” in 15th USENIX
Security Symposium (SS06).

[61] Miller, B. P., L. Fredriksen, and B. So (1990) “An empirical study of
the reliability of UNIX utilities,” Commun. ACM, 33, pp. 32–44.

[62] Forrester, J. E. and B. P. Miller (2000) “An empirical study of the
robustness of Windows NT applications using random testing,” in Proceedings
of the 4th conference on USENIX Windows Systems Symposium - Volume 4.

[63] Korel, B. (1990) “Automated Software Test Data Generation,” IEEE Trans-
actions on Software Engineering, 16, pp. 870–879.

[64] Godefroid, P., M. Levin, and D. Molnar (2008) “Automated whitebox
fuzz testing,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS).

[65] Sen, K., D. Marinov, and G. Agha (2005) “CUTE: a concolic unit test-
ing engine for C,” in Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, ESEC/FSE-13, pp. 263–272.

[66] Godefroid, P., N. Klarlund, and K. Sen (2005) “DART: directed auto-
mated random testing,” in Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’05, pp. 213–223.

102

[67] Cadar, C., V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. En-
gler (2006) “EXE: Automatically Generating Inputs of Death,” in Proceed-
ings of the 13th ACM conference on Computer and communications security
(CCS ’06), pp. 322–335.

[68] “STP Constraint Solver,” http://sites.google.com/site/

stpfastprover/STP-Fast-Prover.

[69] Ganesh, V. and D. L. Dill (2007) “A Decision Procedure for Bit-Vectors
and Arrays,” in Computer Aided Verification (CAV ’07).

[70] Madou, M., L. Van Put, and K. De Bosschere (2006) “Loco: An Inter-
active Code (De)Obfuscation tool,” in Proceedings of ACM SIGPLAN Work-
shop on PEPM ’06.

[71] Collberg, C., G. Myles, and A. Huntwork (2003) “Sandmark–A Tool
for Software Protection Research,” IEEE Security and Privacy, 1, pp. 40–49.

[72] Song, D., D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena “BitBlaze: A
New Approach to Computer Security via Binary Analysis,” in Proceedings of
the 4th International Conference on Information Systems Security. Keynote
invited paper.

[73] “BitBlaze: Binary Analysis for Computer Security,” http://bitblaze.cs.

berkeley.edu/.

[74] Ford, D. R., L. R.and Fulkerson (1954) “Maximal flow through a net-
work,” Canadian Journal of Mathematics, pp. 399–404.

[75] “Diablo Is A Better Link-time Optimizer,” http://diablo.elis.ugent.be/.

[76] “Optimize Options - Using the GUN Compiler Collection (GCC),” http:

//gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.

[77] Kleinberg, J. and E. Tardos (2005) Algorithm Design, Addison-Wesley
Longman Publishing Co., Inc.

[78] Avizienis, A. (1985) “The N-Version Approach to Fault-Tolerant Software,”
IEEE Trans. Softw. Eng., 11, pp. 1491–1501.

[79] Newsome, J. and D. Song (2005) “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Commodity
Software,” in Proceedings of the NDSS 2005.

[80] Weiser, M. (1981) “Program slicing,” in Proceedings of the 5th international
conference on Software engineering, ICSE ’81, pp. 439–449.

103

[81] GrammaTech Inc. Dependence Graphs and Program Slicing, Tech. rep.,
white Paper.

[82] Bellard, F. (2005) “QEMU, a fast and portable dynamic translator,” in
Proceedings of the annual conference on USENIX Annual Technical Confer-
ence, ATEC ’05.

[83] “QEMU: opensource processor emulator http://wiki.qemu.org/Main_

Page,” .

[84] GrammaTech, “CodeSurfer,” http://www.grammatech.com.

[85] “MOSS - A System for Detecting Software Plagiarism. http://theory.

stanford.edu/~aiken/moss/,” .

[86] “Semantic Designs Inc. C Source Code Obfuscator.” http://www.

semdesigns.com/products/obfuscators/CObfuscator.html.

[87] “binobf: Binary Obfuscation Software.” http://www.cs.arizona.edu/

~debray/binary-obfuscation/.

[88] Collberg, C., C. Thomborson, and D. Low (1997) A Taxonomy of
Obfuscating Transformations, Tech. Rep. 148, http://www.cs.auckland.

ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97a/

index.html.

[89] Cavallaro, L., P. Saxena, and R. Sekar (2008) “On the limits of infor-
mation flow techniques for malware analysis and containment,” in DIMVA’
08.

[90] Ostrander, J. (2012) Android UI Fundamentals: Develop and Design,
Peachpit Press.

[91] “Prints XML document from binary XML file,” http://code.google.com/

p/android4me/downloads/detail?name=AXMLPrinter2.jar&can=2&q=.

[92] “Intent Android Developers,” developer.android.com/reference/

android/content/Intent.html.

[93] Cordella, L. P., P. Foggia, C. Sansone, and M. Vento (2004) “A
(sub) graph isomorphism algorithm for matching large graphs,” Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 26(10), pp. 1367–1372.

[94] “VirusTotal,” https://www.virustotal.com/en/.

[95] “Security Alert: New Stealthy Android Spyware - Plankton - Found in Official
Android Market,” http://www.csc.ncsu.edu/faculty/jiang/Plankton/.

104

[96] “ProGuard,” http://developer.android.com/tools/help/proguard.

html/.

[97] “DexGuard,” http://www.saikoa.com/dexguard.

[98] Zhou, Y. and X. Jiang (2012) “Dissecting Android Malware: Characteriza-
tion and Evolution,” Security and Privacy, IEEE Symposium on, pp. 95–109.

Vita

Fangfang Zhang

Fangfang Zhang is a PhD candidate in the Department of Computer Science and
Engineering at Pennsylvania State University since 2008. She received the B.S.
degree and M.S. degree in Computer Science from Peking University, China in
2005 and 2008, respectively.

Publications

1. F. Zhang, Y. Jhi, D. Wu, P. Liu and S. Zhu. A First Step Towards Algo-
rithm Plagiarism Detection. In Proceedings of the 2012 ACM International
Symposium on Software Testing and Analysis (ISSTA 2012), 2012.

2. W. Xu, F. Zhang, and S. Zhu. “JStill: Mostly Static Detection of Obfuscated
Malicious JavaScript Code” Proceedings of Third ACM Conference on Data
and Application Security and Privacy (CODASPY), 2013.

3. W. Xu, F. Zhang, and S. Zhu. “The Power of Obfuscation Techniques in Ma-
licious JavaScript Code: A Measurement Study.” Proceedings of MALWARE
2012.

4. W. Xu, F. Zhang, and S. Zhu. “Toward Worm Detection in Online So-
cial Networks” Proceedings of 25th Annual Computer Security Applications
Conference (ACSAC), 2010.

