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ABSTRACT 

Recently, data mining algorithms running on large-scale problems face a trade-off between 

computing time and accuracy. It is hard to find an algorithm which reduces computing time without 

sacrificing accuracy. Due to wide application area, research on alternating direction method of multipliers 

(ADMM) has attracted huge interest. On L1-regularized least squares regression problem, specifically on 

an application to hyperspectral imaging, we empirically show that ADMM has outstanding performance in 

both computing speed and accuracy. In particular, we test the effect of increasing penalties on the 

performance of ADMM on both synthetic and real-life problems; and in our numerical experiments, we 

compare a variable penalty ADMM (VP-ADMM) algorithm with split Bregman method (SBM). 

A hyperspectral image is a three dimensional data-cube in which the first two dimensions describe 

pixels in the 2D image and the third dimension records the electromagnetic reflectance of the corresponding 

pixel under varying wavelengths. Due to finite resolution, each pixel is composed of different materials 

which can be identified by exploiting their electromagnetic reflectance under varying wavelengths. Since 

most of the materials have tiny proportion in the combination, they can be safely omitted. We call the other 

ones which are dominant as endmembers. Therefore, for a fixed pixel, the data along the third dimension 

can be considered as a linear combination of the spectra of the endmembers of that pixel. Since only a few 

materials are dominant, the data-cube is quite sparse in the number of mixing endmembers with positive 

weight. The inverse problem of weight resolution can be modeled as an L1 regularized least squares 

problem. Numerical results show that the time spent for VP-ADMM to obtain similar resolutions is just 20% 

of that for SBM. 

In conclusion, we demonstrate that VP-ADMM is superior on solving both random and real-life 

large scale problems. In particular, the empirical results for synthetic random experiments show that VP-

ADMM can save up to 30% of the computing time when compared to SBM. 
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Chapter 1 

Introduction  

In this thesis, we compare Variable Penalty Alternating Direction Method of Multipliers (VP-

ADMM)  with Split Bregman Method (SBM) on synthetic random experiments and real-life problems on 

hyperspectral imaging. Alternating Direction Method of Multiplier (ADMM) is closely related or 

equivalent to many existing algorithms such as Dual Decomposition, Douglas-Rachford Splitting, 

Spingarnôs Method of Partial Inverses, Dykstraôs Alternating Projections, and Bregman Iterative Algorithm.  

ADMM was first developed in 1970s and was inspired by Dual Ascent and Method of Multipliers. On a 

linearly constrained problem with a separable objective, one can use Dual Ascent to obtain decomposable 

subproblems; however, unless the subproblems have unique solutions, the dual function is not differentiable 

which adversely affects the convergence. On the other hand, the method of multipliers is a variant of Dual 

Ascent method, where one minimizes the Augmented Lagrangian rather than the Lagrangian. The iterate 

sequence generated by the method of multipliers converges under weaker assumptions as the dual function 

of the augmented problem is always differentiable; but, this method does not have the decomposability as 

in the Dual Ascent method. ADMM combines the advantages of the two methods, while eliminating the 

weaknesses. Typically in ADMM, the penalty parameter is fixed. Here, we investigate the effect of an 

increasing penalty sequence in ADMM , and compared VP-ADMM with SBM.  The second algorithm, 

SBM, was proposed by Tom Goldstein and Stanley Osher to solve a class of L1-regularized optimization 

problems using Bregman iterations which is equivalent to constant penalty ADMM.  

A hyperspectral image [1] is a three dimensional datacube in which the first two dimensions 

describe pixels in a 2D image and the third dimension records the electromagnetic reflectance of the 

corresponding pixel under varying wavelengths. Due to finite resolution, each pixel is composed of 
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different materials which can be identified by exploiting their electromagnetic reflectance under varying 

wavelengths. Under linear demixing assumption, most of the materials can be safely omitted since they 

have tiny proportions in the combination. We call the other dominant materials as endmembers. Therefore, 

for a fixed pixel, the data along third dimension can be considered as a linear combination of the spectra of 

the endmembers of that pixel. Since only a few of them are dominant, the datacube is quite sparse in the 

number of mixing endmembers with positive weight.  

Hyperspectral demixing problems started to become a topic of interest in 1990s. Yuhas used 

Spectral Angle Mapper (SAM) algorithm to discriminate among semi-arid landscape endmembers in 1992 

[2].  In 1994, Joseph C. described an approach in the least square sense ð Orthogonal Subspace Projection 

which maximizes the signal-to-noise ratio and project the residual onto the signature of interest to detect 

the presence of a spectra of interest [3]. Heinz and Chang developed Orthogonal Subspace Projection in the 

way of implementing the constraints [4]. In 2005, Jose M. P. Nascimento proposed a new method for 

endmember extraction from hyperspectral data: Vertex Component Analysis (VCA) and suppressed the 

computational complexity to one or two orders [5].  Zymnis presented a simple heuristic for approximately 

solving the product of two nonnegative matrices based on the idea of alternating projected subgradient 

descent [6]. In this thesis, we revisit linear demixing problem; and implement VP-ADMM in order to solve 

it efficiently. 

In order to describe the proportions of dominant materials in each pixel, we model material 

proportions in one pixel as a vector, Õɴ 2 , in which ui is the proportion of the i-th endmember in that 

pixel for ρ É Î. Define a library matrix !ᶰ2 , that contains information of electromagnetic 

reflectance of n endmembers under m wavelengths, in which A ij is the electromagnetic reflectance of the j-

th endmember under the i-th wavelength. Given the observation-vector Æɴ 2 , which represents the 

electromagnetic reflectance of a fixed pixel under m wavelengths, it is reasonable to assume that there exists 

a sparse vector Õɴ 2  such that Æ !Õ and Õ π. We use the approximately equal symbol here because 
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we only pick out some dominant materials as our endmembers instead of all materials found in the pixel. 

Given a proper library matrix A, our objective is to represent f such that the coefficient vector Õ is sparse, 

i.e., ᴁÕᴁḺÎ, where ᴁÕᴁ denotes the number of non-zero components of u. Numerical results show  

that VP-ADMM  performs better than SBM under both cases: m>n and m<n. 

In the following, we first introduce LASSO problem [7] where the sparse recovery problem is 

formulated by appending L1 regularization term to the quadratic loss term. Hence, one can balance the 

trade-off between fidelity and sparsity. Then we introduce ADMM  [8] which splits the object function into 

two parts and minimizes them separately in an alternating fashion. In chapter 2, we briefly describe SBM, 

an alternative solution method for non-negative least squares problem which is a special case of LASSO, 

and apply it to both random and Hyperspectral image demixing problems. In chapter 3, we conduct the 

same numerical experiments using VP- ADMM. Finally, we compare the performance of both algorithms 

on both synthetic and real problems in chapter 4. Conclusions and future research directions are presented 

in chapter 5. 

1.1 Least Absolute Shrinkage and Selection Operation (LASSO) 

Feature dimension reduction is getting increasingly more important as very high dimensional 

problems on large datasets are attracting huge interest. Traditional feature reduction techniques suffer from 

long run times and overfitting. As the complexity of many traditional algorithms is the multiple powers of 

the data dimension, the amount of computation is very large. Further, when data sample size is far smaller 

than data dimension, overfitting is usually a problem. An efficient feature selection has the following 

properties: (1) stability; (2) interpretability; (3) avoid errors in hypothesis testing; (4) lower computational 

complexity. However, traditional feature selection methods, such as adaptive regression, subset selection 

and shrinkage estimation, do not have all these desirable properties. Thus, efficient feature selection is an 
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important research area. Inspired by Biremanôs Nonnegative Garrote [9], Tibshirani proposed LASSO [7] 

and applied it in variable selection in COX models. He defined a set of least square problems with L1-norm 

ball constraints. In particular, let ὼᶰὙ  denote the vector of predictor variable i values in m observations 

for Ὥ ρȟςȟȣȟὲ and ώᶰὙ  be the corresponding responses. Tibshirani [7] performed a linear regression 

on y and added a restriction such that the L1 norm of regression coefficient is less than or equal to a 

threshold value t: 

                       ‍ ὥὶὫάὭὲᴁώ В ‍ὼᴁ        subject to ᴁ‍ᴁ ὸ .                        (1.1) 

Expression (1.1) is equivalent to: 

                             ‍ ὥὶὫάὭὲᴁώ ὢ‍ᴁ        subject to ᴁ‍ᴁ ὸ ,                            (1.2) 

where 8  ȿØȟØȟȣȟØȿɴ 2 . LASSO has the desirable properties of shrinkage and feature selection. 

Let ‍ᶻ ÁÒÇάὭὲᴁώ ὢ‍ᴁ  and Ô ᴁ‍ᴁz. Clearly, if t = t0 in (1.2), then the problem degenerates to 

the original least squares estimation that has full set of predictors. On the other hand, if t < t0, then some 

regression coefficients ‍i will be equal to zero and the corresponding xi fall out of predictors set. For a 

suitably chosen Lagrange multiplier ɚ, the LASSO problem can be written equivalently in the Lagrangian 

form: 

‍ ὥὶὫάὭὲ ᴁώ ὢ‍ᴁ ‗ᴁ‍ᴁȢ                                                (1.3) 

Compared to the existing feature selection methods, it not only selects the features with strong 

correlation with the class label, but also has good stability. In the following years, LASSO has gained huge 

interest. Fu proposed a Shooting Algorithm [10] for LASSO. The shrinkage parameter and the tuning 

parameter are selected via generalized cross-validation (GCV). Later, Osborne developed an efficient 

algorithm for orthogonal case [11] by considering the primal and dual problems together. Both methods 

leaded to new insights into the characteristics of the LASSO estimator and to an improved method for 

estimating its covariance matrix. Bradley and Efron proposed Least Angle Regression method [12] in 2004 
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which has the same computational complexity as the least square estimation. All these research gave 

LASSO more popularity. 

In the hyperspectral demixing problem, for a fixed pixel, the corresponding proportions of materials 

denoted by vector u is non-negative, and quite sparse; therefore, it has similar properties as the regression 

coefficient vector  ‍ ὥὶὫάὭὲ ᴁώ ὢ‍ᴁ ‗ᴁ‍ᴁ ίȢὸȢ ‍ π. Note that  

‍ ὥὶὫάὭὲ ᴁώ ὢ‍ᴁ ‗Ὡ‍   ίȢὸȢ   ‍ π, 

where Ὡɴ Ὑ  denotes the vector of all ones. 

1.2 Alternating Direction Method of Multiplier s (ADMM)  

ADMM was first developed in 1970s and was inspired by Dual Ascent and Method of Multipliers. 

Given a convex function f: Rn Ÿ R, consider an equality constrained minimization problem  

ÍÉÎὪὼ ίȢὸȢ  ὃὼ ὦ Ȣ                                                            (1.4) 

The Lagrangian is given as 

ὒὼȟώ Ὢὼ ώ ὃὼ ὦ .                                                     (1.5) 

The minimization problem (1.4) is equivalent to 

ÍÉÎÍÁØὒὼȟώ ,                                                                      (1.6) 

and its dual problem is given by 

ÍÁØÍÉÎὒὼȟώ .                                                               (1.7) 

Under the assumption of strong duality, given y0, and properly chosen step size sequence {‌ }  (see  [8] 

and the references therein), one can solve the problem using dual ascent algorithm, where {ὼ}  sequence 

is generated for all k Ó 0 as follows: 

ὼ  ɴÁÒÇÍÉÎὒ ὼȟώ  ,                                                       (1.8) 
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ώ ώ ‌ ὃὼ ὦ .                                                  (1.9) 

In order to relax the assumption of strong duality, one can use Augmented Lagrangian Lɟ given in 

(1.10) in the dual ascent method. 

ὒ ὼȟώ Ὢὼ ώ ὃὼ ὦ ᴁὃὼ ὦᴁ ,                                  (1.10) 

where ɟ > 0 is the penalty multiplier. The resulting algorithm is called the method of multipliers: 

ὼ ᶰÁÒÇÍÉÎὒ ὼȟώ  ,                                                (1.11) 

ώ ώ ”ὃὼ ὦ .                                             (1.12) 

Since xk+1 minimizes ὒ ὼȟώ , we have: 

πɴ ‬ὒ ὼ ȟώ  

                                         ‬Ὢὼ ὃ ώ ”ὃὼ ὦ  

 ЋὪὼ ὃώ  .                                              (1.13) 

Therefore, one can conclude that other than primal feasibility, ὼ ȟώ  satisfies the first order 

optimality conditions for all k. Hence, once the primal feasibility is achieved, it is sufficient to declare 

optimality. Method of multipliers improves the robustness but does not have the decomposability as in the 

dual ascent method. On the other hand, ADMM combines the advantages of the two methods, while 

eliminating the weaknesses. ADMM works on the convex optimization problems of the form: 

ÍÉÎ
ȟ
 Ὢὼ Ὣᾀ     ίȢὸȢ      ὃὼ ὄᾀ ὧȢ       (1.14) 

The augmented Lagrangian for (1.14) is given as 

ὒ ὼȟᾀȟώ Ὢὼ Ὣᾀ ώ ὃὼ ὄᾀ ὧ ᴁὃὼ ὄᾀ ὧᴁ . 

Let ” ṖὙ  be a given penalty sequence, where Ὑ  denoted strictly positive reals (see the 

experimental section for a particular choice of penalty sequence). In variable penalty ADMM, one 

minimizes the augmented Lagrangian alternatingly in one variable while fixing the other, then updates the 
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dual variable according to Gauss-Seidel method. Therefore, in ADMM, one solves a series of sub-problems 

of the form: 

ὼ ÁÒÇ ÍÉÎὒ ὼȟᾀȟώ  ,                                                   (1.15) 

ᾀ ÁÒÇ ÍÉÎὒ ὼ ȟᾀȟώ  ,                                                 (1.16) 

ώ ώ ” ὃὼ ὄᾀ ὧ .                                         (1.17) 

ADMM is similar to the method of multipliers but minimizes in x and z separately. Notice that in method 

of multipliers, since zk+1 minimizes ὒ ὼ ȟᾀȟώ , we have 

πɴ ЋὫᾀ ὄώ ”ὄ ὃὼ ὄᾀ ὧ                                 (1.18) 

      ЋὫᾀ ὄώ  .                                                                            (1.19) 

Similarly, since xk+1 minimizes  ὒ ὼȟᾀȟώ , we have 

πɴ ЋὪὼ ὃώ ”ὃ ὃὼ ὄᾀ ὧ                                (1.20) 

ЋὪὼ ὃώ  ”ὃὄᾀ ᾀ  .                                   (1.21) 

Hence, ί ḧ”ὃὄᾀ ᾀ  is called the dual residual; and ὶ ḧὃὼ ὄᾀ ὧ is called 

the primal residual; and if both ί  and ὶ  are zero, then (ὼ ȟᾀ ) is a primal-dual optimal pair. 

Hence the stopping criteria for ADMM are based on the primal and dual residuals: 

ί ‭ Ѝὲ‭ ‭ ὃώ  ,                                      (1.22) 

ὶ ‭ ὴ‭ ‭ άὥὼ ὃὼ ȟὄᾀ ȟᴁὧᴁ  ,                        (1.23) 

where ίᶰὙ  and ὶ ᶰὙ .  

Let ό  denote the sequence of scaled residuals: όȡ  . Then ADMM can also be written as 

ὼ ÁɴÒÇ ÍÉÎ Ὢὼ ὃὼ ὄᾀ ὧ ό  ,                            (1.24) 



 

 

8 

 

ᾀ ÁɴÒÇ ÍÉÎ Ὣᾀ ὃὼ ὄᾀ ὧ ό  ,                         (1.25) 

ό  ό ὃὼ ὄᾀ ὧ  .                                     (1.26) 

1.3 Contributions 

SBM will be discussed in Chapter 2 for the LASSO problem, and it is nothing but an ADMM 

algorithm with a constant penalty. Since the penalty parameter ɟ is held constant, the step size is fixed at 

each iteration. Aimed at ñimproving the convergence in practice, as well as making performances less 

dependent on the initial choice of the penalty parameterò [8], we increase the penalty ɟk in Variable Penalty 

ADMM (VP-ADMM ) at each iteration, i.e. ɟk > ɟk-1 for all k. We compare SBM [13], and VP-ADMM with 

interior point methods; the numerical results show that VP-ADMM and SBM are better than off-the-shelf 

interior point methods in both practical convergence speed and accuracy for the LASSO problem. The 

experimental results show that VP-ADMM and SBM can save nearly 99% of the computing time. In 

particular, we test VP-ADMM and SBM on the nonnegative LASSO problem:  

άὭὲ ᴁὃό Ὢᴁ  –Ὡό    ίȢὸȢ   ό π ȟ                                             (1.27) 

where – π is a given trade-off parameter, and Ὡ is a vector of all ones. Note that since ό πȟ we have 

Ὡό ᴁόᴁ. We consider two cases for ᶰὙ  : over-determined (m>n) case and under-determined 

(m<n) case. For over-determined problems, we consider two subcases for the problem sizes: m = 2n, m = 

4n. In each subcase, we assign two values to n: n = 256, n = 512. In under-determined problems, we also 

consider two subcases for the problem sizes: m = n/2, m = n/4. In each subcase, we assign two values to m: 

m = 256, m = 512. The results show that VP-ADMM can save up to 30% of the computing time.  

Finally, we use VP-ADMM and SBM to solve real-life hyperspectral image demixing problems. 

The time spent for VP-ADMM to obtain the similar resolutions is just 20% of that for SBM. 
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Chapter 2 

Experiments with  Split Bregmen Method (SBM) 

2.1 Problem Formulation 

Given !ᶰὙ , and Æɴ Ὑ , least squares problem is a commonly used technique by 

practitioners to compute Õɴ Ὑ such that Æ !Õȟ via solving  

 άὭὲ ᴁὃό Ὢᴁ.                                                   (2.1) 

In hyperspectral demixing problem, the library matrix A ɴ Ὑ   is usually ill-conditioned or singular, 

which makes (2.1) sensitive to errors. Therefore, solving the least squares problem (2.1) can cause 

numerical issues. Moreover, the least squares estimation method almost always does not lead to a sparse 

solution, which causes interpretability issues. On the other hand, as introduced in Chapter 1, a LASSO 

approach can lead to a sparse solution and it can also alleviate the numerical issues caused by ill-conditioned 

A by solving  

άὭὲ ᴁὃό Ὢᴁ  –Ὡό    ίȢὸȢ   ό π .                                      (2.2) 

Notice that Õ Ó 0 is essential in this application since the proportion of each material cannot be negative. 

2.2 Description of SBM Algorithm 

In [1] the authors formulated (2.2) in an equivalent form as follows:  

 άὭὲ
ȟ
ᴁὃό Ὢᴁ  –Ὡό     s.t.       ό ᶮὨȢ                            (2.3)  
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Here, ȡɲὙ ᴼὙ  is defined componentwise as ᶮÄ Ä when Ä > 0; otherwise, ᶮÄ π. Given 

fixed parameter ɚ>0, when SBM algorithm is implemented on (2.3), iterate sequence is computed as follows: 

ό ‗ὃὃ Ὅ Ὠ ὦ ‗ὃὪ ‗–Ὡ,                        (2.4) 

Ὠ ᶮό ὦ ,                                                 (2.5) 

  ὦ ὦ ό Ὠ  .                                              (2.6) 

Below we show that SBM algorithm given in (2.4)-(2.6) is nothing but a constant penalty ADMM algorithm. 

Note that (2.3) can be written equivalently as follows: 

 άὭὲ
ȟ
ᴁὃό Ὢᴁ  –Ὡό     s.t.       ό Ὠȟ   Ὠ πȢ    (2.7) 

Moreover, (2.7) is in a similar form with (1.14) where Ὢό ᴁὃό Ὢᴁ –Ὡό, and ὫὨ  is the 

indicator function on the positive orthant, i.e., ὫὨ π if Ὠ π; and Њ otherwise. Let ɟ:=1/ɚ, then the  

augmented Lagrangian of (2.7) can be written as 

ὒ όȟὨȟώ ᴁὃό Ὢᴁ  –Ὡό ὫὨ ώ ό Ὠ ᴁό Ὠᴁ.               (2.8) 

Let ʇ ʇ, and Â ‗Ù for all k. Hence, (1.24) - (1.26) is equivalent to  

ό ὥὶὫ άὭὲ ᴁὃό Ὢᴁ –Ὡό ό Ὠ ὦ  ,           (2.9)                                       

            Ὠ ÁÒÇάὭὲό Ὠ ὦ    ίȢὸȢ  Ὠ π ,                                 (2.10) 

ὦ ὦ ό Ὠ  .                                                     (2.11) 

Therefore, the primal-dual iterate sequence {ό , Ὠȟὦ}  given in (2.4) - (2.6) is exactly the same sequence 

that is generated by the constant penalty ADMM algorithm with penalty equal to ʍ ρȾʇ when applied to 

problem (2.7), which is equivalent to (2.3). Therefore, for all ‗ π, the algorithm converges to the optimal 

solution [8]. 
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2.3 Random Experiments 

2.3.1 Initialization  

In this section, we describe how we initialized u, d and b. Here, we take two cases into account, 

which are m Ó n (over-determined) and m < n (under-determined). 

If m Ó n, we set the initial value of u as the unconstrained solution to 

ό ὥὶὫάὭὲᴁὃό Ὢᴁ –Ὡό .                                  (2.12) 

Take gradients on both sides, we have: 

ὃ ὃό Ὢ –Ὡ π.                                               (2.13) 

Hence, the solution can be written in closed form: 

ό ὃὃ ὃὪ –Ὡ .                                            (2.14) 

If m < n, let 

ό ὥὶὫάὭὲᴁόᴁ      ίȢὸȢ        ὃό Ὢ .                                       (2.15) 

Introducing dual variable ύᶰὙ , we can write the Langrangian of (2.15) as: 

ὒόȟύ ᴁόᴁ ύ ὃό Ὢ .                                    (2.16) 

Since (2.15) is convex, first-order conditions are both necessary and sufficient. Hence, όȟύ ) is a primal-

dual optimal pair for (2.12) if and only if 

ᶯὒόȟύ π 
 
ᵼ ό ὃύ π ,                                     (2.17) 

ᶯὒόȟύ π 
 
ᵼ ὃό Ὢ π .                                       (2.18) 

Combine these two equations together and we have: 

ό ὃ ὃὃ Ὢ .                                                   (2.19) 
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In both over-determined and under-determined cases, we initialize Ὠȟὦ  as follows: 

Ὠ ᶮό  ,                                                         (2.19) 

ὦ ό Ὠ .                                                  (2.20) 

2.3.2 Over-determined Case 

 Algorithm  SBM ( A, f, ʂ) 

1. ÆӶ Ŷ !Æ ʂÅ, u0 Ŷ !! ÆӶ, d0 ŶᶮÕ  , b0 Ŷ Õ Ä, k Ŷ 0 

2. while (STOP is false) do 

3.         Õ ᴺ ‗!! ) Ä Â ‗ÆӶ 

4.         Ä ᴺᶮÕ Â  

5.         Â ᴺÂ Õ Ä  

6.         ËN Ë ρ 

7. end while 

8.  return  Ä and Õ 

Figure 2.1 SBM algorithm steps in over-determined case 

In the over-determined case where m ḻ n, and n has a moderate size, ‗ὃὃ Ὅ  can be stored 

efficiently, allocating only n2 double data type. Moreover, matrix vector multiplication in Step 4 with 

‗ὃὃ Ὅ  can be computed efficiently within ὕὲ  operations. Therefore we can pre-calculate 

‗ὃὃ Ὅ  and store it in the memory. By calling the specific memory unit in each iteration, the CPUôs 

calculating time is significantly decreased. We choose the penalty parameter ʇ to be   and ʂ  to be 1, 10 

and 100, which is a trade-off parameter between the fidelity and sparsity of the solution. In our numerical 

tests, we randomly generate 10 matrices A ɴ 2  and 10 vectors f ɴ 2  under the Gaussian normal 

distribution. We solve the problem using Split Bregman Method (SBM), displayed in Figure 2.1, for 10 

pairs of A and f. In each replication, as a benchmark we compute u*, the optimal solution to (2.2), calling 

the interior point solver SDPT3 within CVX, which is a MATLAB  add-on module to model convex 
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optimization problems with a library of interior point method solvers. We stop the algorithm when dk is 

sufficiently close to u*, i.e., STOP is true if  Õᶻ Ä is smaller than the specified tolerance tol. While 

interior point methods are theoretically more efficient then the first-order methods, in practice, obtaining 

an accurate solution can be more time-consuming than to obtaining a moderate accuracy solution using a 

first-order method. To give an example, in our experimental setting, the average computing times of SDPT3 

for the three ʂ values are 12.6954 seconds, 11.6002 seconds and 9.75318 seconds, respectively. The 

maximum computing times are 13.8217 seconds, 12.9169 seconds and 11.2165 seconds, respectively. In 

real world applications, an image often contains millions of pixels, which means million pairs of A and f. 

Although A is a fixed matrix as a library, the total computing time for all those problems can be 

prohibitively long. For example, consider the problem of demixing a hyperspectral image of σπχσπχ 

pixels, and it takes 12 seconds on average for SDPT3 to compute the demixing for one pixel. The total time 

to recover the whole image is about 314 hours. Fortunately, the average computing times of SBM for each 

ʂ value are 0.03793 seconds, 0.02923 seconds and 0.02347 seconds, respectively, which are far less than 

the 12 sec. average computing time of SDPT3. Moreover, the max computing time never exceeds 0.06 

second for SBM. The full table is: 

Instance #  
 = 1  = 10  = 100 

SDPT3 SBM SDPT3 SBM SDPT3 SBM 

1 13.82 0.03 12.24 0.02 9.84 0.03 

2 11.87 0.03 10.76 0.03 9.31 0.01 

3 12.41 0.05 10.17 0.02 10.67 0.01 

4 13.38 0.03 12.91 0.02 8.82 0.03 

5 12.38 0.02 11.85 0.02 11.21 0.01 

6 12.77 0.04 10.28 0.02 8.82 0.02 

7 13.16 0.03 11.32 0.03 9.57 0.01 

8 13.02 0.05 12.87 0.03 10.46 0.01 

9 12.55 0.03 12.04 0.02 9.42 0.02 

10 11.54 0.03 11.52 0.04 9.36 0.02 

Average 12.69 0.03 11.60 0.02 9.75 0.02 



 

 

14 

 

Max 13.82 0.05 12.91 0.04 11.21 0.03 

Table 2.1 Running times of SBM and SDPT3 for over-determined random experiments 

We also report two types of errors for SMB solution Ὠ ȟό : relative suboptimality, 
ȿ ȿz

ȿ ȿz
 , 

and the relative infeasibility, 
ᴁ ᴁ

ᴁ ᴁz
 as related optimal value error, where Ὢᶻḧ ᴁὃόᶻ Ὢᴁ  –Ὡόᶻ 

denotes the optimal value to (2.2). Those two measures increased a lot in algorithm accuracy. 

Relative Suboptimality 

Instance #   = 1  = 10 

1 1.84E-08 5.24E-09 

2 3.33E-08 1.03E-08 

3 2.80E-08 1.37E-08 

4 1.45E-08 2.02E-08 

5 1.42E-08 1.45E-08 

6 2.44E-08 2.19E-08 

7 2.65E-08 1.87E-08 

8 1.48E-08 9.90E-09 

9 2.09E-08 2.61E-09 

10 2.15E-08 3.73E-09 

Average 2.17E-08 1.21E-08 

Max 3.33E-08 2.19E-08 

Table 2.2 Relative suboptimality values for SBM output in over-determined case 

As shown in the table above, the function value solved by SBM is very close to optimal value computed by 

SDPT3. That means we can consider the solution of SBM to be optimal. Notice that when ʂ  equals 100, 

SDPT3 solutions are very close to zero and the SBM solutions are all zeros. Since this is due to over 

penalization because of large – value, we omit those replications. 

Relative Infeasibility 

 Instance #  = 1  = 10 

1 4.10E-04 5.74E-04 

2 5.01E-04 4.82E-04 

3 4.77E-04 5.11E-04 
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4 3.63E-04 7.19E-04 

5 3.87E-04 5.62E-04 

6 4.95E-04 6.02E-04 

7 4.99E-04 6.13E-04 

8 3.47E-04 6.00E-04 

9 4.32E-04 4.66E-04 

10 4.56E-04 4.94E-04 

Average 4.37E-04 5.62E-04 

Max 5.01E-04 7.19E-04 

Table 2.3 Relative infeasibility values for SBM output in over-determined case 

Note that the algorithm SBM is very stable in terms of relative suboptimality, relative infeasibility, and 

running time almost independent of ɖ value.  

2.3.3 Under-determined Case 

In the under-determined case ά ὲ, when n is large, both storing ‗ὃὃ Ὅ ᶰὙ , 

which requires n2 memory units, and multiplying it with  Ὠ ὦ ‗ὪӶɴ Ὑ , which requires  

ὕὲ  operations, are all costly. To save the storage space and improve computation efficiency, we conduct 

a singular decomposition on A once at the beginning of the algorithm.  

We will show that for any ὼɴ Ὑ , one can compute ‗ὃὃ Ὅ ὼ very efficiently. Let ὃ

ὟὛὠ  denote the singular value decomposition (SVD) of A such that ὟᶰὙά ά
, ὠᶰὙὲὲ are 

orthogonal matrices, and Ὓɴ Ὑά ὲ
 has all zeros in the off-diagonal entries. For m < n, MATLAB  

command ὟȟὛӶȟὠ = svd (A, óeconô) computes the reduced SVD of A, i.e., ὟᶰὙά ά
 is orthogonal, 

ὛӶɴὙά ά
 is a diagonal matrix, ὨὭὥὫ„ȟ with singular values of A on the diagonal sorted in decreasing 

order, i.e., „ „ Ễ „ , and ὠᶰὙ
ὲά

that contains the m columns of ὠᶰὙ  corresponding 

to a basis of the row space of A.  Let ίɴ Ὑὲ be such that the first m components are the singular 
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values of A and the rest is equal to 0, i.e., ί „ for Ὥ ρȟỄȟά and ί π for Ὥ ά ρȟỄȟὲ. 

Hence,  ḧὛὛ ὨὭὥὫί . Note that ‗ὃὃ Ὅ ὠ ‗   Ὅὠ . Let ὺbe the i-th column of 

ὠᶰὙὲὲ. Since Ὅ В ὺὺ , we have Ὅ ὠὠ
Ὕ В ὺὺ . Therefore,  

‗ὃὃ Ὅ  ‗ „Ὥ
ς ρ ὺὺ ὺὺ                

    ‗ „Ὥ
ς ρ ὺὺ Ὅ ὠὠ

Ὕ
 

Ὅ
ρ

‗ „Ὥ
ς ρ

ρὺὺȢ 

This shows that one can compute ‗ὃὃ Ὅ ὼ very efficiently any ὼɴ Ὑ  using only 

multiplications with ὠᶰὙ . Below in Figure 2.2, we display the subroutine ὓὼ

‗ὃὝὃ Ὅ
ρ
ὼȢ It is very important to note that the total number of operations is O(2mn+m) which is 

far less than O(n2). Moreover, instead of storing an Î Î matrix, one should only store ὠᶰὙ and „ᶰ

Ὑ . Therefore, the total storage requirement is mn+m double data types. 

Subroutine ὓὼȟ‗ ‗ὃὝὃ Ὅ
ρ
ὼ 

1. Input:  ὟȟὛӶȟὠ = svŘ ό!Σ ΨŜŎƻƴΩύΣ  „ ὨὭὥὫ ὛӶ 

2. ώN ὠὼ 

3. for i = 1 to m 

4.          ώᴺ
 „Ὥ
ς ρώ 

5. end for 

6. return  ὼ ὠώ 

Figure 2.2 Subroutine to compute ‗ὃὃ Ὅ ὼ 
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As in the over-determined case, we use CVX to compute the optimal solution u* to (2.2) calling SDPT3. 

We stop the algorithm when dk is sufficiently close to u*, i.e., STOP is true if  Õᶻ Ä is smaller than 

the specified tolerance tol. The detailed steps are as follows: 

 

Algorithm  SBM ( A, f, ʂ) 

1. ÆӶ Ŷ !Æ ʂÅ, u0 Ŷ ! !! Æ, d0 ŶᶮÕ  , b0 Ŷ Õ Ä, k Ŷ 0 

2. while (STOP is false) do  

3.        Õ ᴺ- Ä Â ʇÆӶ ȟ‗ 

4.        Ä ᴺᶮÕ Â  

5.        Â ᴺÂ Õ Ä  

6.        ËN Ë ρ 

7. end while 

8.  return  Ä and Õ 

Figure 2.3 SBM algorithm steps in under-determined case 

    We choose ʇ to be  and ʂ  to be 1, 10 and 100. We generate 10 matrices A ɴ Ὑ  and 

10 vectors f ᶰὙ  randomly under Gaussian normal distribution. We solve each random instance using 

both SBM and SDPT3 for three different ʂ values. Note that run times for SBM is significantly better than 

those obtained by SDPT3. The average running times for SDPT3 are 10.91695 seconds, 10.11042 seconds 

and 6.898364 seconds for ʂ equal to 1, 10, and 100, respectively; whereas, the average running times for 

SBM are 1.718246 seconds, 0.145503 seconds and 0.062248 seconds. As a result, the running times for 

SBM are 15.74%, 1.44% and 0.90% of the SDPT3 run times.  

Instance # 
 = 1  = 10  = 100 

SDPT3 SBM SDPT3 SBM SDPT3 SBM 

1 11.91 3.33 9.96 0.13 7.05 0.06 

2 11.59 1.42 11.01 0.20 5.77 0.05 

3 11.55 1.22 9.89 0.12 6.66 0.06 

4 11.48 1.51 9.79 0.11 7.00 0.05 

5 10.90 1.22 9.79 0.14 7.78 0.05 
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6 11.29 1.77 9.39 0.13 7.45 0.06 

7 9.32 2.71 10.18 0.12 6.84 0.05 

8 10.70 1.14 10.53 0.11 6.87 0.05 

9 9.46 1.17 10.03 0.22 6.87 0.07 

10 10.92 1.66 10.49 0.13 6.64 0.07 

Average 10.91 1.71 10.11 0.14 6.89 0.06 

Max 11.91 3.33 11.01 0.22 7.78 0.07 

Table 2.4 Running times of SBM and SDPT3 for under-determined random experiments 

In the following two tables, we report the relative suboptimality, 
ȿ ȿz

ȿ ȿz
, and the relative infeasibility, 

ᴁ ᴁ

ᴁ ᴁz
, of the SBM output Ὠ ȟό . 

Relative Suboptimality 

Instance #   =1  =10 

1 3.93E-08 2.21E-07 

2 2.93E-08 1.51E-07 

3 7.88E-08 2.85E-07 

4 2.14E-08 3.00E-07 

5 4.48E-08 2.53E-07 

6 6.65E-08 1.86E-07 

7 6.42E-08 2.06E-07 

8 5.39E-08 1.74E-07 

9 5.47E-08 2.22E-07 

10 4.71E-08 2.79E-07 

Average 5.00E-08 2.28E-07 

Max 7.88E-08 3.00E-07 

Table 2.5 Relative suboptimality values for SBM output in under-determined case 

Relative Infeasibility 

Instance 

#  
 =1  =10 

1 3.01E-07 8.24E-05 

2 1.47E-07 3.77E-05 

3 5.28E-07 9.24E-05 

4 1.05E-07 1.27E-04 

5 1.98E-07 1.00E-04 

6 3.53E-07 7.00E-05 
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7 4.97E-07 6.33E-05 

8 3.27E-07 6.58E-05 

9 2.68E-07 1.07E-04 

10 4.40E-07 1.06E-04 

Average 3.16E-07 8.51E-05 

Max 5.28E-07 1.27E-04 

Table 2.6 Relative infeasibility values for SBM output in under-determined case 

2.4 Demixing Hyperspectral Images 

Since digital images have finite resolution, every pixel in a hyperspectral image consists of mixture 

of different materials (endmembers). Under the linear demixing assumption, we are interested in finding 

only a few dominant materials such that superposition of their spectra, weighted according to material 

proportions, approximates the spectra of the pixel. A library for given n endmembers is a matrix  ὃᶰὙ  

containing the spectra of each endmember for m spectral bands, i.e., each column of A, containing the 

intensities of m EM frequencies, is a unique signature of the corresponding endmember. In this section, we 

consider an hyperspectral image, available at http://www.agc.army.mil/Hypercube/. The image ñUrbanò 

contains σπχσπχ  pixels, and each with 210 bands. Since the images corresponding to several spectral 

bands were corrupted, we discarded those corrupted bands, and keep only the images for 187 bands. The 

n=6 endmembers are hand-picked by choosing the coordinates (204, 73), (65, 146), (282, 82), (270, 220), 

(124, 213) and (213, 124), corresponding to road, roof, soil, grass, tree and cement. The 6 endmembers are 

represented in the original image as follows: 

http://www.agc.army.mil/Hypercube/
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Figure 2.4: Library of endmembers chosen for URBAN image 

 

The demixed heatmap for each endmember are as follows:   

             endmember 1 (road)                                       endmember 2 (roof) 

                      
             endmember 3 (soil)                                          endmember 4 (grass) 
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                endmember 5 (tree)                                      endmember 6 (cement) 

 

Figure 2.5 Demixing hyperspectral image URBAN with SBM 

In Figure 2.5, higher value of color indicates a higher proportion of the endmember is found in the pixel. 

In order to form these images, for each pixel in σπχσπχ resolution image, we solve (2.2) with ‗

ςππȾ„ ὃ and – ρππ using SBM, where ὃᶰὙ  is constructed using m=187 band spectra of n=6 

endmembers defined above.   We stop SBM algorithm when dk and dk+1 are close, i.e., STOP is true if  

Ä Ä is smaller than the specified tolerance tol =1 × 10-4.  
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Chapter 3 

Variable Penalty Alternating Direction Method of Multiplier   

(VP-ADMM)  

   VP-ADMM  is inspired by SBM which is equivalent to constant penalty ADMM algorithm. For 

VP-ADMM,  unlike SBM, we choose a variable penalty sequence increasing at an exponential rate of ɓ. We 

test the new algorithm both on the randomly generated synthetic problems and the hyperspectral image 

demixing problem introduced in Section 2.4. In the following section, we give out the proof of convergence 

of ADMM. 

3.1 Proof of convergence 

Consider the convex problem in (2.7): 

 άὭὲ
ȟ
ᴁὃό Ὢᴁ  –Ὡό     s.t.       ό Ὠȟ   Ὠ πȢ    (3.1) 

For a given variable penalty sequence ” , define the augmented Lagrangian as in (2.8): 

ὒ όȟὨȟώ ᴁὃό Ὢᴁ  –Ὡό ὫὨ ώ ό Ὠ
 
ᴁό Ὠᴁ.               (3.2) 

Let Â ÙȾ”  for all k. Hence, the variable penalty ADMM algorithm given in (1.24) - (1.26) is 

equivalent to  

ό ὥὶὫ άὭὲ ᴁὃό Ὢᴁ –Ὡό ό Ὠ ὦ  ,           (2.9)                                       

               Ὠ ÁÒÇάὭὲό Ὠ ὦ    ίȢὸȢ  Ὠ π ,                                 (2.10) 
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ὦ ὦ ό Ὠ  .                                                     (2.11) 

Therefore, VP-ADMM iterate sequence όȟὨ   can be computed as follows: 

ό ὃὃ ”Ὅ ”Ὠ ”ὦ ὃὪ –Ὡ,                        (2.4) 

Ὠ ᶮό ὦ .                                                 (2.5) 

The convergence of VP-ADMM follows from [14] where it has been shown that if В ρȾ” Њ then 

primal iterate sequence converges to an optimal solution. In practice, we observed in the numerical 

experiments that the iterate sequence still converges even for exponentially increasing penalty sequences 

for the nonnegative LASSO problem. 

3.2 Random Experiments 

Suppose that the penalty parameter sequence ”  is chosen such that ” ‍” for some given 

the fixed algorithm parameter ɓ>1. We initialized VP-ADMM similarly to SBM, using the same initial 

values for ό and Ὠ as in Chapter 2. For the over-determined case, we set  ό ὃὃ ὃὪ –Ὡ, 

Ὠ ᶮό , and ὦ ό Ὠ Ⱦɼ. For the under-determined case, we set ό ὃ ὃὃ Ὢ, Ὠ

ᶮό , and  ὦ ό Ὠ Ⱦɼ. 

3.2.1 Over-determined Case 

For the numerical tests in this section, we use the same stopping criteria of SBM, i.e., STOP is true, 

and we terminate VP-ADMM at the end of iteration k if Õᶻ Ä ÔÏÌ, where Õᶻ is the optimal 

solution to (2.2) computed by calling SDPT3 within CVX. We set the update coefficient ɓ as 1.01 and ɖ is 

fixed at 10.We generate 10 random problems as m = 512, n = 256, and record the running time of SDPT3 
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and VP-ADMM . In Table 3.1, we report the running times of SDPT3 and VP-ADMM on 10 random 

instances for three different values of initial penalty parameter ” ᶰρπȟρππȟρπππȢ  

Algorithm  VP-ADMM  ( A, f, ʂ, ”, ɓ) 

1. ÆӶ Ŷ !Æ ʂÅ, u0 Ŷ !! ÆӶ, d0 ŶᶮÕ  , b0 Ŷ Õ Ä Ⱦ‍, k Ŷ 0 

2. while (STOP is false) do 

3.         Õ ᴺ !! ”Ὧ ) ”ὯÄ ”Ὧ Â ÆӶ 

4.         Ä ᴺᶮÕ Â  

5.         Â ᴺ Â Õ Ä Ⱦ‍ 

6.        ” ᴺ‍” 

7.         ËN Ë ρ 

8. end while 

9.  return  Ä and Õ 

Figure 3.1 VP-ADMM algorithm steps in over-determined case 

 

Table 3.1 Running times of VP-ADMM and SDPT3 in over-determined case for ʹҐмл 

 

Note that VP-ADMM  significantly improves the performance by cutting down the running time to less than 

0.1 second. The running times of VP-ADMM are 0.59%, 0.44% and 3.3% of the running times of SDPT3 

Instance #  
ⱬ  = 10 ⱬ  = 100 ⱬ  = 1000 

SDPT3 VP-ADMM  SDPT3 VP-ADMM  SDPT3 VP-ADMM  

1 16.33 0.07 10.88 0.04 10.96 0.03 

2 14.27 0.06 11.10 0.05 11.10 0.03 

3 10.09 0.07 9.25 0.05 10.29 0.03 

4 9.53 0.06 11.55 0.04 9.79 0.04 

5 11.43 0.06 10.51 0.05 10.23 0.03 

6 9.04 0.06 19.07 0.05 11.18 0.03 

7 10.21 0.06 8.76 0.05 11.06 0.03 

8 10.77 0.07 16.28 0.05 10.06 0.03 

9 10.98 0.06 9.92 0.05 9.75 0.03 

10 13.77 0.07 10.98 0.05 14.14 0.03 

Average 11.64 0.06 11.83 0.05 10.86 0.03 

Max 16.33 0.07 19.07 0.05 14.14 0.04 
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respectively. When the same size problem solved many times repeatedly as in hyperspectral image 

demixing, e.g. 106 times for a 10001000 resolution image, this improvement in runtimes will make a huge 

difference in the overall computation time.  

In the following two tables, we report the relative suboptimality, 
ȿ ȿz

ȿ ȿz
, and the relative infeasibility, 

ᴁ ᴁ

ᴁ ᴁz
, of the VP-ADMM output Ὠ ȟό . 

Relative Suboptimality 

 Instance # ⱬ  = 10 ⱬ  = 100 ⱬ  = 1000 

1 4.99E-08 1.87E-08 2.26E-04 

2 6.67E-08 4.17E-08 2.61E-04 

3 5.48E-08 5.75E-08 4.09E-04 

4 5.68E-08 4.85E-08 2.38E-04 

5 4.41E-08 7.65E-08 2.67E-04 

6 4.13E-08 2.52E-08 2.72E-04 

7 5.49E-08 4.41E-08 1.89E-04 

8 7.16E-08 6.36E-08 2.97E-04 

9 4.94E-08 5.55E-08 3.90E-04 

10 6.45E-08 5.35E-08 3.38E-04 

Average 5.54E-08 4.85E-08 2.89E-04 

Max 7.16E-08 7.65E-08 4.09E-04 

Table 3.2 Relative suboptimality values for VP-ADMM  output over-determined case for ́ Ґмл 

 

Relative Infeasibility 

Instance #  ⱬ  = 10 ⱬ  = 100 ⱬ  = 1000 

1 3.01E-07 8.24E-05 1.07E-03 

2 1.47E-07 3.77E-05 1.26E-03 

3 5.28E-07 9.24E-05 1.88E-03 

4 1.05E-07 1.27E-04 1.05E-03 

5 1.98E-07 1.00E-04 1.33E-03 

6 3.53E-07 7.00E-05 1.17E-03 

7 4.97E-07 6.33E-05 9.47E-04 

8 3.27E-07 6.58E-05 1.31E-03 

9 2.68E-07 1.07E-04 1.52E-03 
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10 4.40E-07 1.06E-04 1.33E-03 

Average 3.16E-07 8.51E-05 1.29E-03 

Max 5.28E-07 1.27E-04 1.88E-03 

Table 3.3 Relative infeasibility values for VP-ADMM  output in over-determined case for ́ Ґмл 

3.2.2 Under-determined Case 

In the under-determined case, storing !! ”Ὧ)  ɴRn×n is a memory-consuming for large n. 

Therefore, we play the same trick as in applying SBM and do a singular decomposition on A. For m < n, 

MATLAB  command ὟȟὛӶȟὠ = svd (A, óeconô) computes the reduced SVD of A, and by calling  ὓὼȟ‗ 

subroutine, displayed in Figure 2.2, to compute ‗ὃὃ Ὅ ὼ  for given ὼɴ Ὑ  and ‗ π, reduces the 

total number of operations from O(n2) to O(2mn+m), and the memory consumption from n2 to mn+m. The 

detailed steps are as follows: 

Algorithm  VPADMM ( A, f, ʂ, ”, ɓ) 

1. ÆӶ Ŷ !Æ ʂÅ, u0 Ŷ ! !! Æ, d0 ŶᶮÕ  , b0 Ŷ Õ Ä Ⱦ‍, k Ŷ 0 

2. while (STOP is false) do  

3.        Õ ᴺ- ”Ä ”Â ÆӶȟρȾ”  Ⱦ ” 

4.        Ä ᴺᶮÕ Â  

5.        Â ᴺ Â Õ Ä Ⱦ‍ 

6.       ” ᴺ‍”  

7.        ËN Ë ρ 

8. end while 

9.  return  Ä and Õ 

Figure 3.2 VP-ADMM algorithm steps in under-determined case 

 

We generate 10 random problems as m = 256, n = 512, and solve with SDPT3 and VP-ADMM. In 

Table 3.1, we report the running times of SDPT3 and VP-ADMM on 10 random instances for three different 

values of initial penalty parameter ” ᶰρπȟρππȟρπππȢ  The stopping criterion is set as the same as in the 
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over-determined case, i.e., STOP is true, and we terminate VP-ADMM at the end of iteration k if 

Õᶻ Ä ÔÏÌ, where Õᶻ is the optimal solution to (2.2) computed by using SDPT3. We set ɖ=10, 

and the update coefficient ɓ=1.001. The average running times of VP-ADMM are 7.99%, 1.43% and 2.24% 

of the average running times of SDPT3. The table of running times is shown below: 

Instance # 
ⱬ  = 10 ⱬ  = 100 ⱬ  = 1000 

SDPT3 VP-ADMM  SDPT3 VP-ADMM  SDPT3 VP-ADMM  

1 10.81 1.02 9.85 0.12 10.15 0.17 

2 10.70 0.71 9.79 0.12 9.53 0.29 

3 9.92 0.75 9.67 0.15 10.17 0.19 

4 9.90 1.03 10.40 0.12 9.75 0.19 

5 10.03 0.85 10.12 0.11 9.28 0.18 

6 8.75 0.69 10.38 0.12 9.36 0.22 

7 9.34 0.71 9.42 0.12 7.89 0.18 

8 9.85 0.77 9.93 0.14 9.50 0.16 

9 10.01 0.64 9.96 0.21 7.78 0.19 

10 10.23 0.75 9.70 0.16 8.00 0.23 

Average 9.95 0.79 9.92 0.14 9.14 0.20 

Max 10.81 1.03 10.40 0.21 10.17 0.29 

Table 3.4 Running times of VP-ADMM and SDPT3 in under-determined case for ɖ=10 

In the following two tables, we report the relative suboptimality, 
ȿ ȿz

ȿ ȿz
, and the relative infeasibility, 

ᴁ ᴁ

ᴁ ᴁz
, of the VP-ADMM output Ὠ ȟό . 

Relative Suboptimality 

Instance # ⱬ  = 10 ⱬ  = 100 ⱬ  = 1000 

1 1.16E-07 9.35E-08 3.11E-08 

2 5.17E-08 4.09E-08 1.39E-08 

3 4.38E-08 3.50E-08 2.09E-08 

4 5.85E-08 4.52E-08 1.06E-08 

5 8.87E-08 1.26E-07 4.28E-09 

6 6.32E-08 5.34E-08 1.48E-08 

7 7.56E-08 7.99E-08 1.87E-08 

8 8.82E-08 4.68E-08 1.51E-08 
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9 8.62E-08 5.61E-08 2.78E-08 

10 5.21E-08 4.42E-08 1.15E-08 

Average 7.24E-08 6.21E-08 1.69E-08 

Max 1.16E-07 1.26E-07 3.11E-08 

Table 3.5 Relative suboptimality values for VP-ADMM  output under-determined case for ɖ=10 

 

 

 

 

Relative Infeasibility 

Instance #  ⱬ  = 10 ⱬ  = 100 ⱬ  = 1000 

1 7.20E-04 6.56E-04 6.60E-04 

2 5.71E-04 5.75E-04 8.36E-04 

3 6.33E-04 5.79E-04 8.81E-04 

4 5.70E-04 5.70E-04 5.37E-04 

5 6.95E-04 8.62E-04 5.58E-04 

6 5.99E-04 7.79E-04 7.69E-04 

7 6.01E-04 6.76E-04 8.04E-04 

8 7.80E-04 6.05E-04 6.50E-04 

9 7.56E-04 6.43E-04 8.44E-04 

10 6.34E-04 4.99E-04 6.85E-04 

Average 6.56E-04 6.44E-04 7.22E-04 

Max 7.80E-04 8.62E-04 8.81E-04 

Table 3.6 Relative infeasibility values for VP-ADMM  output in under-determined case for ɖ=10 

3.3 Demixing Hyperspectral Images 

To decompose the hyperspectral image ñURBANò, discussed in Section 2.4, using VP-ADMM, 

we set the endmembers as (204, 73), (65, 146), (282, 82), (270, 220), (124, 213) and (213, 124) which 

represent road, roof, soil, grass, tree and cement. In Figure 3.3, higher value of color indicates a higher 

proportion of the endmember is found in the pixel. In order to form these images, for each pixel in σπχ

σπχ resolution image, we solve (2.2) with – ρπusing VP-ADMM, where ὃᶰὙ  is constructed using 
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m=187 band spectra of n=6 endmembers defined above. In order to conduct a fair comparison, we set the 

stopping criterion to be the same as in SBM, i.e., we stop VP-ADMM when dk and dk+1 are close, i.e., STOP 

is true if  Ä Ä is smaller than the specified tolerance tol =1 × 10-4.  

 

 

                                 endmember 1  (road)                                      endmember 2 (roof) 

 

                               endmember 3 (soil)                                          endmember 4 (grass) 

 

                               endmember 5 (tree)                                        endmember 6 (cement) 
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Figure 3.3 Demixing hyperspectral image URBAN with VP-ADMM  
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Chapter 4 

Comparisons 

4.1 Algorithm Initialization  

In this section, we investigate the effect of fixed parameter ɚ on SBM and the effect of increasing 

penalty sequence on VP-ADMM . Our numerical tests show that the performance of SBM significantly 

changes depending on the initialization of ɚ, while VP-ADMMôs performance is much more robust to 

initialization. First, we conduct the behavioral test on SBM as we need to know how ɚ tends to improve or 

deteriorate the performance of SBM. Choosing proper ɚ for SBM is crucial for fair comparison. 

The stopping criteria for both algorithms are set as dual residual sk and primal residual rk are both 

less than or equal to 1 × 10-4.  Recall in section 1.2, when ADMM algorithm implemented on (1.14), the 

dual residual and primal residual for the iterate sequence ὼȟᾀ  are defined as ί ḧ”ὃὄᾀ

ᾀ ; and ὶ ḧὃὼ ὄᾀ ὧ; and if both ί  and ὶ  are zero, then (ὼ ȟᾀ ) is a primal-

dual optimal pair. For the ADMM formulation (2.7), these residuals can be simplified to ί ḧ

” Ὠ Ὠ , and ὶ ḧό Ὠ , where ” ρȾʇ for all k for SBM. 

The impact of ɟ:=1/ ɚ on SBM when ɖ stays constant (ɖ = 10) is illustrated in Figure 4.1. The 

measurements are average iteration numbers, minimum iteration numbers and maximum iteration numbers. 

We limit the maximum iteration number around 300, and change ɟ evenly between ɟôs low value and high 

value. For over-determined case, we design experiments as m = 2n and m = 4n, where n  ɴ{256, 512}. For 

under-determined case, let m = n/2 and m = n/4, where m  ɴ{256, 512}. Therefore we have four different 
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problems for each case. In each problem, we create 10 random groups of A and f, and record the average 

iteration number and the spread among those 10 numbers.  

Figure 4.1(a) illustrates the average iteration numbers and their spreads as ɟ increasing from 60 to 

6990, when m = 512, n = 256. As indicated in the figure, the average iteration number first decreases and 

then increases as ɟ increases. It reaches the bottom when ɟ equals 480. The spread between the minimum 

iteration number and the maximum iteration number increases as ɟ increases. Figure 4.1(b), Figure 4.1(c), 

and Figure 4.1(d) also illustrate the similar trend. The average iteration number is minimized when ɟ is 

equal to 1100, 960, and 1980 for Figure 4.1(b), Figure 4.1(c), and Figure 4.1(d), respectively. Notice that 

the optimal penalty value varies as problem size changes. On both sides of the optimal value, the curve is 

approximately linear and the left-hand-side has a steeper slope. 

 

(a) Average, minimum and maximum iteration numbers for when m = 512, n = 256 
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(b) Average, minimum and maximum iteration numbers for when m = 1024, n = 256 

 

 

(c) Average, minimum and maximum iteration numbers for when m = 1024, n = 512 
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(d) Average, minimum and maximum iteration numbers when m = 2048, n = 512 

Figure 4.1 Average, mimum and maximum iteration numbers for SBM in over-determined case 

In the under-determined case, the impact of ɟ to SBM is illustrated in Figure 4.2. Same as in the 

over-determined case, the average iteration number first decreases and then increases as ɟ increases. It 

reaches the bottom when ɟ is equal to 250, 260, 420, and 370 in Figure 4.2(a), Figure 4.2(b), Figure 4.2(c), 

and Figure 4.2(d), respectively. Moreover, again the spread between the minimum iteration number and the 

maximum iteration number increases as ɟ increases. Notice that the optimal penalty value varies as problem 

size changes. On left-hand-side of optimal value, the curve is more volatile and has a steeper slope. The 

curves have similar shapes in both the over-determined and the under-determined case. 
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(a) Average, minimum and maximum iteration numbers when m = 256, n = 512 

 

(b) Average, minimum and maximum iteration numbers when m = 256, n = 1024 
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(c) Average, minimum and maximum iteration numbers when m = 512, n = 1024 

 

(d) Average, minimum and maximum iteration numbers when m = 512, n = 2048 

Figure 4.2 Average, mimum and maximum iteration numbers for SBM in under-determined case 

Based on the empirical evidence, we can conclude that the optimal value of ɟ is volatile and depends 

highly on the problem size parameters. Since in real-world applications, it is usually difficult and time-

consuming to determine the optimal value of ɟ, especially for those large sized problems, variable-penalty 

methods become reasonable to achieve a more robust method.  
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4.2 Comparisons on Synthetic Random Problems 

To conduct a fair comparison between SBM and VP-ADMM, we use the best scenario of 

behavioral test to set the penalty value ɟ for SBM. Thus ɟ is equal to 800, i.e., ‗ ρȾψππ, in the over-

determined case and is equal to 250, i.e., ‗ ρȾςυπ, in the under-determined case. For VP-ADMM, we 

simply set ” to ɟ value used in SBM, and set ” ‍” for some ‍ ρȢ We choose the multiplier ɓ as 

1.05 for the over-determined problems and 1.01 for the under-determined problems. 

4.2.1 Over-determined Case 

We compare two algorithms in the view of total iteration count. Let m and n describe the size of 

the problems. We generate 10 identical and independent replications as m = 2n and m = 4n, where n  ɴ{256, 

512}. When dual residual rk and primal residual sk are both less than 1 × 10-4, terminate the algorithm. The 

maximum, minimum and average iteration times are displayed in Table 4.1. 

Instance 

#   

m = 512, n = 256 m = 1024, n = 256 m = 1024, n = 512 m = 2048, n = 512 

SBM VP-ADMM  SBM VP-ADMM  SBM VP-ADMM  SBM VP-ADMM  

1 32 25 30 21 34 25 30 22 

2 31 24 28 21 34 25 30 22 

3 30 24 30 21 34 25 30 23 

4 32 24 29 21 34 25 30 23 

5 33 24 29 21 35 25 29 22 

6 32 24 31 21 35 25 30 22 

7 32 24 31 21 36 26 30 22 

8 33 25 29 21 34 26 30 23 

9 32 25 31 21 35 25 30 23 

10 32 25 29 21 34 26 30 22 

Max 33 25 31 21 36 26 30 23 

Min  30 24 28 21 34 25 29 22 

Average 31.9 24.4 29.7 21 34.5 25.3 29.9 22.4 
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Table 4.1 Comparison of SBM and VP-ADMM  for over-determined case 

As shown in the table above, VP-ADMM decreases the average iteration number by approximately 

30% of SBM. In spite of problem size, VP-ADMM beats SBM in terms of maximum, minimum and average 

iteration numbers. Moreover, VP-ADMM has a smaller spread. For instance, when m = 1024 and n = 256, 

the spread between maximum and minimum iteration times of SBM is 3 while that is 0 of VP-ADMM 

which means VP-ADMM is quite stable.  

4.2.2 The Under-determined Case 

We generate 10 identical and independent replications as m = n/2 and m = n/4, where m  ɴ{256, 

512}. The Stopping criteria are the same as in the over-determined case. The maximum, minimum and 

average iteration numbers are displayed in Table 4.2. 

 Instance 

#   

m = 256, n = 512 m = 256, n = 1024 m = 512, n = 1024 m = 512, n = 2048 

SBM VP-ADMM  SBM VP-ADMM  SBM VP-ADMM  SBM VP-ADMM  

1 59 49 92 81 74 57 122 111 

2 53 48 88 76 65 55 120 111 

3 54 48 119 81 69 58 117 109 

4 56 51 98 80 66 58 122 114 

5 60 51 90 78 66 58 115 109 

6 57 48 91 80 66 58 121 113 

7 55 48 94 81 65 57 124 108 

8 55 47 90 81 65 56 121 112 

9 56 49 91 79 62 55 121 112 

10 57 51 91 80 67 58 116 107 

Max 60 51 119 81 74 58 124 114 

Min  53 47 88 76 62 55 115 107 

Average 56.2 49 94.4 79.7 66.5 57 119.9 110.6 

Table 4.2 Comparison of SBM and VP-ADMM  for under-determined case 
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4.3 Comparisons of VP-ADMM and SBM on Hyperspectral Image Demixing 

To make a clearer comparison of SBM and VP-ADMM in demixing hyperspectral image, we put 

together the heatmaps obtained by both algorithms corresponding to the same 6 endmembers. On the left-

hand-side are the demixed images using SBM and on the right-hand-side are the demixed images using VP-

ADMM. Due to same stopping criteria used, the images are visually the same; however, demising is far 

more time-consuming when SBM is used. Under the same stopping criteria, SBM takes 5 hours while VP-

ADMM completes demixing all σπχσπχpixels in about 1 hour. 
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