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ABSTRACT

Recently data mining algorithmsunning on largescale problemdace a tradeff between
computing timeand accuracy. It is hard ton@l an algorithm which reduces computing time without
sacrificingaccuracyDue to wide application area, research on alternating direction method of multipliers
(ADMM) has attracted huge intere€n L1-regularized least sques r@ression problem, specificaltn
an application to hyperspectral igiag, we empirically show th&DMM has outstanding pésrmance in
both computing speednd accuracyln particular, we test the effect of increasing penalties on the
performance of ADMM on both synthetic and r&td problems; andrni our numerical experimentge

comparea variable penalty ADMM (VFADMM) algorithm with split Bregman rathod (SBN).

A hypespectral image is a three dimensional dathe in wlch the first two dimensions describe
pixelsin the2D image andhe third dimension records the electromagnetic reflectance cbtresponding
pixel under varying waslenghs. Due to finite resolutim eachpixel is composeaf different materials
which can be identified by exploiting their electromagnetic reflectance under varying wavel&ngges.
most ofthematerials have tiny proportion in the combination, they can be safely oriiteedall theother
ones which aréominant a&ndmembers. Therefore, for a fixed pixel, the data aloeathird dimension
can be considered as a linear combinatioin@fspectra of thendmembersf that pixel. Since only a few
materialsare dominant, the dataubeis quite sparse the number of mixing endmembers with positive
weight The inverse problem of weight resolutiaran & modeld as an L1 regularized least squares
problem Numerical results show thdtd timespent for VRPADMM to obtainsimilar resolutios isjust 20%

of that for SBM.

In conclusion, we demonstrate that-¥BPMM is superior on solving both random and r&td
large scale problems. In particular, the empirical results for synthetic random experiments show that VP

ADMM can save up to 30% ofi¢ computing time when compared to SBM.
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Chapter 1

Introduction

In this thesiswe compareVariable Renalty Alternating Orection Methodof Multipliers (VP-
ADMM) with Split Bregman Mthod(SBM) on synthetic random experiments and-téalproblems on
hyperspectral imagingAlternating Direction Method of Mitiplier (ADMM) is closely related or
equivalent to many existing algorithms such as Dual Decompositiongl&fRachford Splitting,
Spingarndés Met hod of Parti al | andBregmandterativeBlgdcitrh r a 6 s
ADMM was first developed in 1970and wasnspired by Dual Ascent and Method of Multiplie@n a
linearly constrained prdbm with aseparable objective, one can Beal Ascento obtain decomposable
subproblemshowever, unless the subproblems have unigue solutions, the dual function is not differentiable
which adversely affects the convergeroa the other handhe methad of multipliers is a variant of Dual
Ascent methodwhere one minimizes the Augmented Lagrang#her tharthe Lagrangian The iterate
sequence generated by the method of multipliers converges under weaker assumptions as the dual function
of the augmemtd problem is always differentiableyt, this methoddoes not have the decomposability as
in the Dual Ascent methodDMM combines the advantages of the two methods, while eliminating the
weaknessesTypically in ADMM, the penalty parameter is fixetllere we investigate the effect adn
increasingpenaltysequencen ADMM, and compared VVADMM with SBM. The second algorithm,
SBM, was proposed by Tom Goldstein and Stanley Osher to solve a classeaxfuldrized optimization

problems using Bregman iterat®which is equivalent to constant pens#HMM.

A hyperspectral imaggl] is a three dimensionalathcube in wich the first two dimensions
describepixels in a 2Dimage andthe third dimension records the electromagnetic reflectance of the

correspondingpixel under varying waslengths.Due to finite resolution, eachixel is composedof



different mateals which can be identified by exploiting their electromagnetic reflectance under varying
wavelengthsUnder linear demixing assumptionost ofthe materials can bsafely omitted since they
have tiny proportiosin the combinationWe call the othedominant materialssendmembers. Therefqre

for a fixed pixel, the data along third dimensaan be considered as a linear combinatiathefpectra of

the endmembersf that pixel Since only a fevof them are dominanthe datacube is quite sparaehe

number of mixing endmembers with positive weight

Hyperspectral dmixing problems started to become a topic of interest in 1990s. Yuhas used
Spectral Angle Mapper (SAM) algorithm to discriminate among sgidilandscape mdmembers in 1992
[2]. In 1994, Joseph C. described an approach in the least squaré sertb®gonal Subspace Projection
which maximizes the signdéb-noise ratio and project the residual onto the signature of interest to detect
the presaceof a spectraf interesf3]. Heinz and Chang developed Orthogonal Subspace Projection in the
way of implementing the constrainfd]. In 2005 Jose M. P. Nascimento proposed a new method for
endmenber extraction from hyperspectral data: Vertex Component Analysis (VCA) and suppressed the
computational cmplexity to one or two ordef§]. Zymnis presented a simple heuristic for approximately
solving the product of two mmegative matrices based on the idea of alterngtiogcted subgradient
desceni6]. In this thesis, we revisit linear demixing problem; and implemerAMM in order to solve

it efficiently.

In order todescribe theproporions of dominant materials in each pixel, wsdel material
proportionsin one pixelasa vectorON 2 , in which u is the proportion of theth endmember in that
pixel forp E 1. Define a librarymatrix! N 2 , that containsinformation of electromagneti
reflectance of n endmembers under m wavelengths, in wjichthe electromagnetic reflectance of the |
th endmember unddhe ith wavelength.Given the observatiorvector & 2 , which represents the
electromagnetic reflectance ofiwed pixel under nwavelengthsit is reasonable to assume that there exists

asparsevectorON 2 suchthatE ! Gnd® 1. We useheapproximately equadymbolhere because
2



we only pick out some dominant materials as our endmembeesdhsf all materials found ithe pixel.
Given a proper librarynatrix A, our objective is to represent f such ttie coefficient vecto©is sparse
i.e., A0 L 1, where/ZOE denoteghe number of nomero components of iNumerical results show

thatVP-ADMM performs better thaBBM under bottcases: m>n and m<n

In the following we first introduceLASSO problem[7] where thesparserecoveryproblemis
formulatedby appending_1 regularizationterm to the quadratic loss tertdence, one can balance the
tradeoff between fidelity and sparsityhenwe introduceADMM [8] which splits the object function into
two parts and minimizthem separatelin an alternatindgashion In chapter 2, we briefly descril&BM,
an alternative solutiomethodfor nonnegative least squares problem which is a special case of LASSO
and apply it to both ratom and Hyperspectral imagendiging problems. In chapter 3, we condulée
samenumerical experiments usingP- ADMM. Finally, we compare the penfmane of both algorithms
on both syntheti@nd real problems in chapter@onclusions and future research directiare presented

in chapter 5.

1.1Least Absolute Shrinkage and Selection Operatio(LASSO)

Featwe dimension reduction is gettirigcreasinglymore importantas very high dimensioal
problemsonlarge datasstare attractindiugeinterest. Traditional featureductiontechniques suffer from
long run timesand overfitting. A the complexityof many traditional algorithmis the multiplepowers of
thedata dimensiortheamount of comptationis very large Further, vhendata sample size is famaller
than data dimension, overfitting is usually a problém. efficient feature selection hdke following
properties: (1xtability; (2)interpretability;(3) avoid errors in hypothesis testir(g) lower computational
complexity.However traditional feature selection methods, sucladaptive regressioisubset selection

and shrinkagestimationdo not have all these desiralpi®pertiesThus efficient feature selectiois an

3



important researcharea | nspi red by B iGarretefd, Tibskiranipmomosed 4S5O0([7]v e
andapplied it in variable selection in COX modétke definad a set of least square problewith L1-norm
ball constraintsin particular, letw ¥ Y denotethevector ofpredictorvariablei values inm observations
for'Q phchB & ando™ 'Y bethe correspondingesponsesTibshirani[7] performeda linear regression
on y andaddeda restriction such that the L1 norm of regression coefficient is less than or equal to a
threshold valet:

T ol B f wa subjecttog £ 0. (1.3
Expressior(1.1) is equivalento:

I ol QC OTAE subjectto# £ 0, (1.2
where8 h@B sy 2 . LASSOhasthedesirablepropertieof shrinkage anéeatureselection.
Letf ©° AQCQaw ®i& and0 A “&. Clearly, ift = thin (1.2), thenthe problem degenerates to
the original least squasestimation that has fulet ofpredicbrs. On the other handf t < t, then some
regression coefficients; will be equalto zero and the correspondingfall out of predictos set.For a
suitably chosen thedASS@ praplem aanube trittgnleduigalientlg-in the Lagrangian
form:

i i AQQmy WiAE _A& £8 (1.3)
Comparedo theexisting feature selection methods, it not only selects the features with strong
correlation with the class lab&lut also has good stabilitin the following yearsl. ASSO has gined huge
interest. Fu proposed ShootingAlgorithm [10] for LASSQO. The shrinkage parameter and the tuning
parameter are selected via getieed cross/alidation (GCV). Later, Osborne developed efficient
algorithm for orhogonal cas¢l1] by considering the primal and dual problems togetBeth methods
leaded to new insights inttve characteristics of the LASBestimator and to an improved method for

estimating its covariance matriradleyand Efron proposkl east Angle Regression methd@®] in 2004



which has the sameomputatioal complexity asthe least squarestimation. All these researdave

LASSO morepopularity,

In the hyperspéral demixing problenfor a fixed pixelthecorresponding proportions of materials
denoted byector uis nonnegative, and quite sparse; therefore, it has similgverties as the regression
coefficient vectorf DI AQQmmy OTE _A £ (88 1. Note that

I Wi @QQ@my ®wiA _QF i887

whereQN Y denotes the vector of all ones.

1.2 Alternating Direction Method of Multiplier s (ADMM)

ADMM was firstdeveloped in 1970snd wasnspired by Dual Ascent and Method of Multipliers.
Given a convexunction :R"Y  Ronsideran equality constrained minimization problem
i EDo 886 0 w8 (1.4
The Lagrangians given as
Dafd QO © dw @ . (1.5
The minimization probleml(4) is equivalento
i ENT A®dhw , (1.6

and ts dual problem igiven by

i ADED ofo . (1.7)

Underthe assumption aftrong duality given y’, and properly chosen step size sequencg {see [8]
and the references theregiohe can sok the problem usindual ascentalgorithm, where fo } sequence
is generatedl o r  a hslfollows: O 0

w NAOCED ahw |, (1.8)



W w | 0w W . (1.9
In order torelaxthe assumption of strong duglibne can usAugmented Lagrangiaih, given in
(2.10 in the dual scent method
D oftv QO o O -A o0 OF, (1.10
w h e r e isthe penaldy multiplier. The resulting algorithm is calleelmethod of multipliers
w NAJCED ohw | (1.1

&) &) oI o . (1.12
Since ** minimizes0 o |, we have:
™! o o
T Qo 0 w " 0w W
hQw ow . (1.13
Therefore, one can conclude thather than primal feasibility & o satisfiesthe first order
optimality conditiors for all k. Hence,once the primafeasibility is achieved, it is sufficiertib declare
optimality. Method of mltipliers improves theobustnessut does not hathe decomposability as in the
dual sscent methadOn the other handADMM combines the advantages of the two methods, while
eliminating the weaknessesDMM works on theconvexoptimizationproblens of the form
iﬁE’TQa) QG (88 6w 6d 8 (1.14
Theaugnented Lagrangian for (1.1#& given as
O oo Qo Qd w 0w d6d @ -Aw 6d .
Let * P'Y be a given penalty sequencehere’Y denoted strictly positive realésee the
experimental section for a particular choice of penalty sequehtejariable penalty ADMM, one

minimizes the augmented Lagrangian alternatingly in one variable while fixing the other, then updates the



dual variable according BaussSeidel metod. Thereforein ADMM, onesolves a series of subroblems

of the form
o AQOQCED o o (1.19
a AOQCED o o |, (1.16
&) 0 " 0w 6d o . (1.17

ADMM is similar to themethod of raltipliers but minimizesn x and z separateljNotice thatin method

of multipliers, sincez** minimizesd & Mo , we have

N RQd 6w "6 oW 6d & (1.18
QG 56 . (1.19
Similarly, since ¥ minimizes 0  «ftt ko , we have
N Qo bw "0 0w 6 (1.20
QG 6o "b6d A . (1.21)
Hencei h ” 6 6 & & is calledthe dual residual; and h 0 6a is called

the primal residual; and if both  andi are zero, thers{ hx ) is a primaidual optimal pair.

Hence the stopping criteria for ADMM are based on the primal and dual residuals

i f VIET T 0w | (1.22)
i i i i aowdn hoa har | (1.23)
wherei MY andi NY .
Let 6 denote the sequence of scaled residdald; — . ThenADMM can also be written as
w NAOCEO® —dwdéd o o6 (1.29



a NAOCERE — b 84 O o6 (1.25

6 — 6 bdm b4 & . (1.26

1.3 Contributions

SBM will be discussed irChapter 2 forthe LASSO problemand itis nothing but an ADMM
algorithm with a constant penalty. Sinite penaltyparametey i s h e | tlestepsize s fixadnat
each iteration Ai med at Aii mproving the convergence
dependent on the initial ch@ofthe gra | t y p d8], werieceasdhapenalty X in Variable Penalty
ADMM (VP-ADMM ) ateach iteration i *> &2for all k. We compareSBM [13], andVP-ADMM with
interior point methodghe numerical results show thaP-ADMM and SBM arebetter than ofthe-shelf
interior point method$n both practicalconvergence speed and accurémythe LASSO problemThe
experimentalresults showthat VRADMM and SBM can save nearly 99% of the computing titne
particular, ve testvP-ADMM and SBMon the nonnegative LASSO problem:

aQE o6 "E -Q06 i&806 mh (1.27
where— Tiis a given tradeff parameter, an@is a vector ofall ones. Note that sinae Thwe have
Qo6 AA&. We consider two cases for'Y . overdetermined (m>nraseand underdetermined
(m<n) caseForoverdetermined problems, we consider two subcasethéoproblem sizé m =2n, m =
4n. In each subcasee assign two values to n: n = 256, n = 512. In wdeéégrmined problems, we also
consider two subcases for ghblem size: m =n/2, m =n/4. In each subcasee assigriwo values to m:
m = 256, m = 512The resits showthat VRADMM can save up to@ of the computing time.

Finally, we use/P-ADMM and SBM to solve redife hyperspeatl image dmixing problems.

The time spent for VIADMM to obtain the similar resolutions is just 20% of that for SBM.



Chapter 2

Experimentswith Split Bregmen Method (SBM)

2.1 Problem Formulation

Given! N Y , and A& Y , least squareproblemis a commonly used technique by
practitioners to comput®™ 'Y such thatE ! @via solving

a Qb 6 GE. (2.1)

In hyperspectral demixing problerthe library matrix AV Y is usually ilkconditioned or singular

which makes (2.1)sensitive to errotsTherefore,solving the least squaeroblem (2.1) can cause
numerical issuesMoreover,the least squareestimaton methodalmost alwaysloes notead to a sparse
solution which causes interpretability issu€n the other hand, as introduced ihapterl, a LASSO

approacltanlead to a sparse solutiand it can also alleviate the numerical issues causeddnnitlitioned

A by solving

Qo6 E -Q06 88O . 2.2)

NoticethatOO 0 i s essential in this application since

2.2 Description of SBM Algorithm

In [1] the authors formulated (2.%) an equivalent form as follasv

6 Qe 6 & Q0 st o0 1 Q8 (2.3)



HerendY O 'Y is defined componentwise & A A whenA > 0, otherwisg” A Tt Given

fi xed par aen&SBMalgatlarisOmplemented on (2.3jerate sequence is computeda®ws:

0 _066 0 Q & b0 _-0Q (2.4)
@ o 6 Q (2.6

Below we show that SBM algorithm given in (2(2)6) is hothing but a constant penalty ADMM algorithm.

Note that (2.3) can be written equivalently as follows:

6 Qo E Q6 st 6 hQ ™ (2.7)

Moreover,(2.7) is in asimilar form with (1.14) where' Q6 -4 6 "& -Q 06, and™QQ is the

indicator function on the positive orthane.,"QQ mif Q 1 and Hotherwisel et | hexthe/ o,

augmented Lagrangiaof (2.7) can be written as

0 6Fichy -6 "&E Q6 QQ w o6 Q - k. (2.8)

Letl 1,andA _U forall k. Hence, (1.24) (1.26)is equivalent to

0 Oi WQED O "E Q6 -0 Q @ (2.9)
Q AQCQt 0 Q0 O i’ m, (2.10
A © O Q. (2.11)

Thereforethe primaidual iterate sequenceé {, Q hb } given in (2.4) (2.6) is exactly the same sequence
that is generated by the constant penalty ADMM algorithm with penalty eqgual @} when applied to
problem (2.7)which isequivalent to (2.3)Therefore, for allL 1, the algorithm convges to the ptimal

solution[8].

10
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2.3Random Experiments

2.3.1 Initialization

In this section, we describe how we initializedd and b. Here, we take twease into account

which arem O n-deteomined) and m < @underdetermined)

If  m w@ setthg initial value of was the unconstrained solution to
0 widQem o &E -Qo. (2.12
Takegradients on both sides, we have:
0 66 Q -Qm (2.13
Hence the solution can be written in closed form
6 00 00 -Q (2.14
If m<n,let
6 Wi &otmae (88 00 Q (2.15
Introducingdual variable) ¥ Y , we can write the Langrangiar (2.15 as:
bolw -mA 0 606 Q. (2.16
Since (2.15is convex, firstorder conditions are both necessary and sufficiégnce, 6 by ) is a primal
dual optimal pair for (2.12) if and only if
noo6m m+ 6 60 o, (2.17
n06h mt 06 QT (2.18
Combinethese wo equationsogether and whave:

6 0 00 Q (2.19

11



In both overdetermined and undeleterminedtass, we initialize 'Q iy  as follows:
Q no (2.19

© 6 Q. (2.20

2.3.2 Over-determined Case

Algorithm SBM (A, f, )

A ESAWY 11 &Y O B°YD A, k Y O
. while (STOP isfalse) do
6 v 11 )y A A _E

A Np O A
A NA O A
ENE p
. end while
return A andO
Figure2.1 SBM dgorithm steps in ovedetermined ase

1
2
3
4.
5.
6
7
8

In the overdeterminedtasevhere ml  n,andnhas a moderate size,0 © 'O can be stored
efficienty, allocatingonly r? double data type. Moreover, matrix vector multiplication in Step 4 with
_0 0 'O can be computed efficiently withith £ operatios. Therefore we can prealculate

_0 0 'O andstore itin thememory By caling the specific memory uriih eachiteration, the CP8 s

calculatingtime is significantly decreased. We chotise penalty parametérto be — ands to bel, 10

and 100 which is a trad®ff parameter between the fidelity and sparsityhe solutionln our numerical
testswe randomlygenerate 1@natrices Av 2 and 10vectors " 2 under theGaussian normal
distribution. We solvehte problem using Split Bregmanethod(SBM), displayed irFigure 2.1, for 10
pairs of A and f. In eacteplication as a benchmanke compute u*the optimal solution to (2.23alling

the interior point solver SDPT3 withi@VX, which is aMATLAB addon module to model convex

12



optimization problemsvith a library ofinterior pointmethod solversWe stop the algorithm whert &

sufficiently close to u*, i.eSTOP istrue if & A is smaller than thepecifiedtolerancetol. While

interior point methods aremeoretically more efficient then the firstder methods, in practice, @ming
anaccuratesolution can be moreéme-consumingthan to obtaining a moderate accuracy solution using a
first-order methodTo give an example, in our experimental settthg average computing tisef SDPT3
for the threes values are 12.6954seconds 11.6002secondsand 9.75318seconds respectively The
maximum computingimes are 13.8213econds12.9169secondsand 11.216%econdsrespectively. In
real worldapplications an image often contains millioref pixels, which meansmillion pairs of A and f.
Although A is a fixed matrix as a library, the total computing time forall those problem can be
prohibitively long For exampleconsider the problem of demixirsghyperspectramageof 0 T X O TT X
pixels, and it takes 12 seconds averagdor SDPT3to compute the demixing fanepixel. Thetotal time

to recoverthewhole image is about 3burs. Fortunately, the average computing tiofeéSBM for each

S value are 0.03798econds0.02923secondsind 0.0234Becondsrespectivelywhich arefar less than
the 12sec. average computing time of SDPMoreover, the maxamnputing time never exceeds 0.06

secondor SBM. The full table is:

Instance # -1 -10 =100

SDPT3 SBM SDPT3 SBM SDPT3 SBM

1 13.82 0.03 12.24 0.02 9.84 0.03

2 11.87 0.03 10.76 0.03 9.31 0.01

3 12.41 0.05 10.17 0.02 10.67 0.01

4 13.38 0.03 12.91 0.02 8.82 0.03

5 12.38 0.02 11.85 0.02 11.21 0.01

6 12.77 0.04 10.28 0.02 8.82 0.02

7 13.16 0.03 11.32 0.03 9.57 0.01

8 13.02 0.05 12.87 0.03 10.46 0.01

9 12.55 0.03 12.04 0.02 9.42 0.02

10 11.54 0.03 11.52 0.04 9.36 0.02
Average 12.69 0.03 11.60 0.02 9.75 0.02
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Max 13.82 0.05 12.91 0.04 11.21 0.03

Table2.1Running times oEBM andSDPT3for overdeterminedandom experiments

Wealsoreport two types of errofsr SMB solution Q b :relative suboptimality%é,
andthe relative infeasibility% as related optimal value errovhere @ h a0° " -Q6°

denotes the optimal value to (2.Zhose two measuréscreased a lot ialgorithm accuracy.

Relative Suboptimality
Instance # =1 =10

1 1.84E08 | 5.24E09

2 3.3308 | 1.03E08

3 2.80E08 | 1.37E08

4 1.45E08 | 2.02E08

) 1.42E08 | 1.45E08

6 2.44E08 | 2.19E08

7 2.65E08 | 1.87E08

8 1.48E08 | 9.90E09

9 2.09E08 | 2.61E09

10 2.15E08 | 3.73E09
Average | 217608 | 1.21E08
Max 3.33608 | 2.19E08

Table2.2 Relative suboptimalityalues for SBM outputin overdetermined ase

As shown in the table above function value solved by SBM is very clos@ptimalvaluecomputedoy
SDPT3 Thatmeans we can consider the solution of SBMeoptimal. Notice thatvhens equds 100,
SDPT3 solutions argery close to zero and the SBM solutions allezeros.Since this is due to over

penalization because of largezalug we omit those replications.

Relative Infeasibility
Instance # =1 =10
1 4.10E04 5.74E04
2 5.01E04 4.82E04
3 4.77E04 5.11E04
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3.63E04 7.19E04
3.87E04 5.62E04
4.95E04 6.02E04
4.99E04 6.13E04
3.47E04 6.00E04
4.32E04 4.66E04

O|l(N[o|o| >

10 4.56E04 4.94E04
Average 4.37E04 5.62E04
Max 5.01E04 7.19E04

Table2.3Relative infeasibilityvalues for SBM outputin overdetermined ase
Note that he algorithmSBM is very stable in terms of relative suboptimality, relative infeasibility, and

running time almost independentafalue

2.3.3 Under-determined Case

In the underetermined cas&@ ¢, when n islarge, bothstoring _0 6 O N'Y |
which requiresn?> memory units and multiplying it with  'Q @ _"&w~ Y | which requires
0 & operatioms, are all costlyTo sae the storage space and improwenputation efficiencywe conduct

a singular decomposition on@nceat the beginning of the algorithm.

We will show that for angoN 'Y , one carcompute _0 0 O  wvery efficiently.Let 0
Y% denote he singular value decompositiq®VD) of A such that"YN v , QN Y ¢ are
orthogonal matrices, ansN "Y' ¢ has all zeros in the offiagonal entriesfor m < n MATLAB
command YiYw =swd (A, comepatesthedrdduced SVD of A, i.elyN Y4 s orthogonal
WY Yisa diagonal matrixQ "Q¢) "®with singular values of A on the diagonal teaf indecreaing
orderie.,, , E , ,and®N 'Y %that contains the m columns @M 'Y corresponding
to a basis of the row space of Reti M ¥ be such that the first m components are the singular
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values of Aand the rest is equal tq De.,i , for'Q phE b andi mfor'Q & pFE .

Hence, h "Y'Y QQ& Q. Note that 6 6 O @ _  "Ow . Let0 be the ith column of
ON 'Y £.Sinced B 0D , we haveO ' B O U . Therefore,
0606 O .5 p 0O 00
Y

‘0 o008
P

This shows thatone cancompute _0 0 'O  very efficiently any N Y using only
multiplications with wN 'Y . Below in Figure 22, we display the subroutiné

C Ve Py . . , .
_0 © O c¢8tis very important to note théte total number of operations is O(2mn+m) which is

far less than O@). Moreover, hstead of storingah 1 matrix, one should only sto®™ 'Y  and, ™

'Y . Therefore, he total storagesquirement isnn+mdouble data types

o W o P
Subroutined ¢, 00 O o
1. Input: Yo =sR 6! ¥ WSO >
2. N o
3. fori=1tom
4. ON — p @
5. end for
6. return ® W

Figure 22 Subroutine to compute 6 0 O ®
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As in the overdetermined casave use CVX to computéhe optimal solutin u* to (2.2)calling SDPT3
We stop the algorithm wherf @ sufficiently close to u*, i.eSTOP istrue if G A  issmallerthan

the specifiedtoleranceol. The detailed steps are as follows:

Algorithm SBM (A, f,8)
1. & EsAwy ! 11 Ay 6 1
while (STOP isfalse) do
6O N- A A 1A
A Nnp O A

2
3
4
5. A NA O A
6
7
8

<
(@}
>
=~
-<
o

ENE »p
end while
return A and®

Figure 23 SBM dgorithm steps in undettetermined ase

We choosé to be— andgs to be 1, 10 and 100. We generate 10 matrcesyY and

10vectorsfN Y randomly under Gaussian normal distribution. We seb@h random instanessing

bothSBM andSDPT3for three differeng values Notethatrun times forSBM is significantly better than
those obtained b§DPT3 The average running timés SDPT3are 1091695seconds10.1104Zeconds
and 6.898364econddor s equal to 1, 10, and 10€gspectively whereasthe averageunning times for

SBM are 1.718246econds0.145503econdsand 0.062248&econdsAs a result, theunning times for

SBM are B5.74%,1.448% and 0.906 of the SDPT3untimes

=1 =10 =100
Instance #
SDPT3 SBM SDPT3 SBM SDPT3 SBM
1 11.91 3.33 9.96 0.13 7.05 0.06
2 11.59 1.42 11.01 0.20 5.77 0.05
3 11.55 1.22 9.89 0.12 6.66 0.06
4 11.48 1.51 9.79 0.11 7.00 0.05
5 10.90 1.22 9.79 0.14 7.78 0.05
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6 11.29 1.77 9.39 0.13 7.45 0.06

7 9.32 2.71 10.18 0.12 6.84 0.05

8 10.70 1.14 10.53 0.11 6.87 0.05

9 9.46 1.17 10.03 0.22 6.87 0.07

10 10.92 1.66 10.49 0.13 6.64 0.07
Average 10.91 1.71 10.11 0.14 6.89 0.06
Max 11.91 3.33 11.01 0.22 7.78 0.07

Table2.4 Running times of SBMindSDPT3for underdeterminedandom experiments

In the following two tables, @report the relative suboptimalit%Tsﬁ andthe relative infeasibility,

3

£ __% ofthe SBMoutputQ o
£ ZE

z

Relative Suboptimality

Instance # =1 =10
1 3.93E08 2.21E07
2 2.93E08 1.51E07
3 7.88E08 2.85E07
4 2.14E08 3.00E07
5 4.48E08 2.53E07
6 6.65E08 1.86E07
7 6.42E08 2.06E07
8 5.39E08 1.74E807
9 5.47E08 2.22E07
10 4.71E08 2.79E07
Average 5.00E08 2.28E07
Max 7.88E08 3.00E07

Table2.5Relative suboptimalityalues for SBM outputin underdetermined ase

Relative Infeasibility
Ins'fnce -1 -10
1 3.01E07 8.24E05
2 1.47&07 3.77E05
3 5.28E07 9.24E05
4 1.05E07 1.27E-04
5 1.98E07 1.00E04
6 3.53E07 7.00E05
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7 4.97E07 6.33E05

8 3.27E07 6.58E05

9 2.68E07 1.07E04
10 4.40E07 1.06E04
Average 3.16E07 8.51E05
Max 5.28E07 1.27E04

Table2.6 Relativeinfeasibility values for SBM outputin underdetermined ase

2.4 Demixing Hyperspectral Images

Since digital images have finite resolutienery pixel in a hyperspectral image consists iafumne

of different materialfendmembers)Under the linear demixingssumption, & are interested ifinding

only a few dominant materialsuch that superposition of their spectra, weighted according to material

proportions, approximates the spectra of the pidébrary for gven nendmerbersis a matrixo ¥ 'Y

containing the spectra of each endmemlib@r m spectra bands i.e., each column of Acontaining the

intensities of m EM frequencies,a unique signature of the corresponding endmember. In this section, we

consider an hyperspectral imageailable ahttp://www.agc.army.mil/Hypercube/ T h e

containso Tt X O Tt Rixels, and each witB10bands Since the images corresponding to several spectral

ma g e

bands were corruptedie discarded those corruptedraks, anckeeponly the images fot87 bands The

n=6 endmembers are hapitked by choosinghe coordinateg204, 73), (65, 146), (282, 82), (270, 220),

AuUr

(124, 213) and (213, 124)orresponding to road, roof, soil, grass, tree and cement. The 6 endmembers are

represented in the original image as follows:
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Figure 24: Library of endmembers chosdar URBAN image

The denixed heatmap for each endmember are as follows:

endmember 1(road) endmember 2(roof)

50 100 150 200 250 300

endmember 3(soil) endmember 4(grass)
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50 100 150 200 250 300 50 100 180 200 250 300

endmember 5(tree) endmember 6(cement)

250

300 50 100 150 200 250 300

50 100 150 200 250

Figure 25 Demixing hyperspectral image URBAN with SBM
In Figure 25, higher value of coloindicatesa higher proportiorof the endmember is fourid the pixel.
In order to form these imagesyrfeach pixel iro 1T X o 1T pesolution image, we solve (2.8)ith _
¢ TUAL 0 and- p mosing SBM, wher® N Y is constructed using m=187 band spectra of n=6

endmembers defined aboveWe stop SBM algorithm when‘@nd d*! are close, i.e., STOP taue if

A A is smaller than thepecifiedtolerancetol =1 x 10%.
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Chapter 3

Variable Penalty Alternating Direction Method of Multiplier

(VP-ADMM)

VP-ADMM is inspired bySBM which is equivalent to constant penalty ADNMd{gorithm. For
VP-ADMM, unlike SBM, we choose a variable penalty sequence incremdingan exponWet i al r
test the new algorithm both dhe randonty generated synthetiproblens andthe hyperspectral image
demixing problemintroduced in Section 2.4n the followingsection, we give out the proof of convergence

of ADMM.

3.1 Proof of convergence

Consider the convex problem in (2.7):
dﬁ"Qé/Eb 6 "E -Q06 st 06 hQ ™8 (3.2)
For a given variablegnalty sequence , define the augmented Lagrangian as in (2.8)
O ofdhy -6 &E Q06 QQ w o Q —m O&. (3.2)

LetA U7 for all k. Hence,the variable penalty ADMM algorithm given if1.24) - (1.26) is

equivalent to
6 Ol Qe E Q6 —o6 Q & (2.9)

Q AOCQE o Q o i88Q m, (2.10)
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) — 0 O Q . (2.11)
Therefore, VPADMM iterate sequenced Q can be computed as follows:

) 66 "0 "Q "o 6'Q -Q (2.9

Q né w0 . (2.5
The convergence of VRDMM follows from [14] where it has been shown thaBif p¥” Hothen
primal iterate sequence converges to an optisedltion. In practice, we observed in the numerical

experiments that the iterate sequence still converges even for exponentially increasing penalty sequences

for the nonnegative LASSO problem.

3.2Random Experiments

Suppose that the penalty parameter sequénces chosen such théat I 7 for some gven
the fixed al g»lrWetintializegh \ARARMVe simélarly td SBM usingthe same initial
valuesfor 6 andQ asin Chapter 2.For the overdeterminedcase we set 0 00 0Q -1Q
Q no ,and®d 0 'Q 7. For the underdetermined casewe setd 0 00 "QQ

po ,and 6 Q.

3.2.1 Over-determined Case

For the numerical tests in this sectiam use thesamestopping criteria of SBMi.e.,STOP idrue,

andwe terminate VRADMM at the end of iteration k if § A O, whereG is the optimal

solution to (2.2) computed by calling SDPT3 witllivX.We set t he update coeffi ci

fixed at 10We generate 10 random problems as m = 5il2,256,andrecord the running time @DPT3
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and VRADMM. In Table 3.1, wereport the running times of SDPTehd VRADMM on 10 random

instances for three different values of initial penalty paranieter p fp Tt 1@ 18t

Algorithm VP-ADMM (A, f,s,” ,b)

1. & EsALY 11 APYr O 1B
. while (STOP isfalse) do
6 N 11 ™) R BA &

<
(@]
>
=\
=~
<
o

~

2

3

4 A NpO A

5. A N A O A T
6 L

7 ENE p

8. end while

9. return A andO

Figure3.1 VP-ADMM algorithm steps in ovedetermined case

z =10 z =100 z =1000
Instance #
SDPT3 VP-ADMM SDPT3 VP-ADMM SDPT3 VP-ADMM

1 16.33 0.07 10.88 0.04 10.96 0.03

2 14.27 0.06 11.10 0.05 11.10 0.03

3 10.09 0.07 9.25 0.05 10.29 0.03

4 9.53 0.06 11.55 0.04 9.79 0.04

5 11.43 0.06 10.51 0.05 10.23 0.03

6 9.04 0.06 19.07 0.05 11.18 0.03

7 10.21 0.06 8.76 0.05 11.06 0.03

8 10.77 0.07 16.28 0.05 10.06 0.03

9 10.98 0.06 9.92 0.05 9.75 0.03

10 13.77 0.07 10.98 0.05 14.14 0.03
Average 11.64 0.06 11.83 0.05 10.86 0.03
Max 16.33 0.07 19.07 0.05 14.14 0.04

Table3.1Running times of VRADMM and SDPT3n overdetermined asefor' ' m n

Note thatvP-ADMM significantly improveshe performance by cutting down the running timkess than
0.1 secondThe running times of VIADMM are 0.59%, 0.44% and 3.3% of the running timeSDBPT3

24



respectively.When the same size problem solved many times repeatedly as in hyperspectral image

demixing, e.g. 1®times for a 10001000 resolution image, thimprovement in runtimes will make a huge

difference in the overall computation time.

In the following two tables, @report the relative suboptimali@?ss, andthe relative infeasibility,

A

z

£——=, of the VRADMM output Q b

Relative Suboptimality

Instance #| z =10 z =100 z =1000
4.99E08 | 1.87E08 2.26E-04

2 6.67E08 | 4.17E08 2.61E-04

3 5.48E08 | 5.75E08 4.09E-04

4 5.68E08 | 4.85E08 2.38E-04

5 4.41E08 | 7.65E08 2.67E-04

6 4.13E08 | 2.52E08 2.72E-04

7 5.49E08 | 4.41E08 1.89E-04

8 7.16E08 | 6.36E08 2.97E-04

9 4.94E08 | 5.55E08 3.90E-04

10 6.45E08 | 5.35E08 3.38E-04
Average | 554E08 | 4.85E08 2.89E-04
Max 7.16E08 | 7.65E08 4.09E-04

Table3.2 Relative suboptimalityalues for VRADMM outputoverdetermined ase for ' m n

Relative Infeasibility

Instance # z =10 z =100 z =1000
1 3.01E07 8.24E05 1.07E03
2 1.47E07 3.77TE05 1.26E03
3 5.28E07 9.24E05 1.88E03
4 1.05E07 1.27E-04 1.05E03
5 1.98E07 1.00E04 1.33E03
6 3.53E07 7.00E05 1.17E03
7 4 97E07 6.33E05 9.47E04
8 3.27E07 6.58E05 1.31E03
9 2.68E07 1.07E-04 1.52E03
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10 4.40E07 1.06E-04 1.33E03
Average 3.16E07 8.51E05 1.29E03
Max 5.28E07 1.27E04 1.88E03

Table3.3 Relative infeasibilityalues for VP-ADMM output in overdetermined ase for ' m n

3.2.2 Under-determined Case

In the undedetermined casestoring ! |~ ‘3 N R™"is a memoryconsumingor large n.
Therefore, v playthe same trick as in applyin§BM anddo a singular decomposition on For m < n
MATLAB command ™¥iYw =swd (A, computes thé reduced SVD of A, and by callingch_

subroutine, displayed in Figure22to compute_0 0 "O @ for givenw™ Y and_ T reduceshe
totd number of operationsom O(rf) to O(2mn+m) and thenemoryconsumptiorfrom r? to mn+m. The

detailed steps are as follows:

Algorithm VPADMM (A, f, s,” , b)

1. & ESAWPY ! 11 APYn & Y O
while (STOP isfalse) do
O N- A A AEr T

2

3

4

5. A N A O A T
6. " N7pv

7

8. end while

9. return A and®

Figure 3.2VP-ADMM algorithm stepsn underdetermined case

We generate 10 random problems as m = 256512, and solve with SDPTa&nd VRADMM. In
Table3.1, wereport the running times of SDP&8d VRADMM on 10 random instances for three different

values of initial penalty parameter v p fp mthp 1T &The stopping criterion iset as the same msthe
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overdetermined casd.e., STOP istrue, and we terminate VMADMM at the end of iteration k if

G A Ol whereG is theoptimal soluton to (2.2) computed by using SDPT3 We set =1 ¢

and t he updalOel Teemwefadeiruoningtimes obVAEDMM are7.99%, 1.43% and 2.24%

of the average running times 8DPT3 The table of running tinsas shown below

z =10 z =100 z =1000
Instance #
SDPT3 VP-ADMM SDPT3 VP-ADMM SDPT3 VP-ADMM

1 10.81 1.02 9.85 0.12 10.15 0.17

2 10.70 0.71 9.79 0.12 9.53 0.29

3 9.92 0.75 9.67 0.15 10.17 0.19

4 9.90 1.03 10.40 0.12 9.75 0.19

5 10.03 0.85 10.12 0.11 9.28 0.18

6 8.75 0.69 10.38 0.12 9.36 0.22

7 9.34 0.71 9.42 0.12 7.89 0.18

8 9.85 0.77 9.93 0.14 9.50 0.16

9 10.01 0.64 9.96 0.21 7.78 0.19

10 10.23 0.75 9.70 0.16 8.00 0.23

Average 9.95 0.79 9.92 0.14 9.14 0.20

Max 10.81 1.03 10.40 0.21 10.17 0.29

Table3.4 Ruming times of VRADMM and SDPT3n underdeterminedasef or d=10

In the following two tables, wreport the relative suboptimalit%Tss, andthe relative infeasibility,

A

=——=, of the VRADMM output Q

z

Relative Suboptimality

Instance # z =10 z =100 zZ =1000

1 1.16E07 9.35E08 3.11E08
5.17E08 4.09E08 1.39E08
4.38E08 3.50E08 2.09E08
5.85E08 4.52E08 1.06E08
8.87E08 1.26E07 4.28E09
6.32E08 5.34E08 1.48E08
7.56E08 7.99E08 1.87E08
8.82E08 4.68E08 1.51E08

(N[O || W|N
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9 8.62E08 5.61E08 2.78E08

10 5.21E08 4.42E08 1.15E08
Average 7.24E08 6.21E08 1.69E08
Max 1.16E07 1.26E07 3.11E08

Table3.5Relative suboptimalityalues for VRADMM output undedetermineda s e f or d

Relative Infeasibility
Instance # z =10 z =100 zZ =1000
1 7.20E-04 | 6.56E-04 6.60E-04
2 5.71E-04 | 5.75E-04 8.36E-04
3 6.33E-04 | 5.79E-04 8.81E-04
4 5.70E-04 | 5.70E-04 5.37E-04
&) 6.95E-04 | 8.62E-04 5.58E-04
6 5.99E-04 | 7.79E-04 7.69E-04
7 6.01E-04 | 6.76E-04 8.04E-04
8 7.80E-04 | 6.05E-04 6.50E-04
9 756E-04 | 6.43E-04 8.44E-04
10 6.34E-04 | 4.99E-04 6.85E-04
Average 6.56E04 | 6.44E04 7.22E04
Max 7.80E04 | 8.62E04 8.81E04

Table3.6 Relative infeasibilityvalues for VRADMM output in undedetermineda s e f or

3.3Demixing Hyperspectral Images

Todecompse the hyperspectral iecti@n .4 usingvVRABDMNID |,
we set the endmembers @94, 73), (65, 146), (282, 82), (270, 220), (124, 213) and (213,viliéh
representoad, roof, soil, grass, tree and cemémtFigure 3.3 higher value of coloindicatesa higher
proportionof the eadmember is founih the pixel. In order to form these images, for each pixebin x

o T pesolution image, we solve (2®jth— p msing VRADMM, whered N 'Y is constructed using
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m=187 band spectra of n=6 endmembers defined abowveder to conduca fair comparisen, we set the

stopping criteriorto bethe same ais SBM, i.e., we stop VRADMM when d¢and d*! are close, i.e., STOP

istrue if A A is smaller than thepecifiedtolerancetol =1 x 10,

endmember 1 (road) endmember 2(roof)

endmember 3(soil) endmember 4(grass)

e i o it 2 X
50 100 150 200 250 300 50 100 150 200 250 300

endmember 5(tree) endmember 6(cement)
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Figure3.3 Demixing hyperspectral image URBAN with WADMM
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Chapter 4

Comparisons

4.1 Algorithm Initialization

In this section, we investigate t hefinadadingc t

penalty sequence on VADMM . Our numerical tests show thtdite performance o8BM significanty

of

changes depending on t heDMMOb st ipmdrifzart maomc eo fi sa, muwchh

initialization. First, we conducthebehavioral testoBBMaswen e ed t o Kemdtwimpravevor o

deteriorate the performancéSBM.Ch o o si ng p r oipaeucial far fair compasss8nv

The stopping criterior both algorithmsare sets dual residuak and primal residuakrare both
less than or equal to 1 x 10Recall in section 1.2yhen ADMM algorithm implemented on (1.14), the
dual residual and primal residual for the iterate sequebde are definedas h ” 6 6 &

4 ;andi  h 6w od ¢ andifbothi andi  are zero, thero§ M ) is a primal
dual optimal pair.For the ADMM formulation (2.7), these residuals can be simplified to h

" Q ‘Q , andi h o Q , where” pA for all k for SBM.

The impact ofj:=1/a= on whBeM d st 4 ys OFis tlusteatedhim Eigure 4.1. The

measuementsareaverage iteration numbers, minimum iteration numbers and maximum iteration numbers.

We limit the maximum iteration number around 300, and chamyenly betweepé s | ow val ue
value.Foroverdetermined caseve design experiments as m = 2n and m = 4n, wherf256, 512}. For

underdetermined casdet m = n/2 and m = n/4, whereNn{256, 512}. Therefore we have four different
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problems fo each case. In each problene create 10 randomroups of A and,fand record the average

iteration number and the spread among thoseuhtbers.

Figure 4.1a)illustrates theaverage iteration numbers and their spsesg increasingrom 60 to
699Q whenm = 512, n = 256As indicatedn the figure the average iteration number first decreases and
then increases gsincreaseslt reaches the bottom wherequals 480T he spreadbetweerthe minimum
iteration number anthe maximum iteration numbencreases ags increases. igure 4.1b), Fgure 4.1c),
and Rgure 4.1d) also illustrateahe similar trend. The average iteration humbis minimizedwheny is
equalto 110Q 960, and 1980 forigure 4.Xb), Hgure 4.Xc), and kgure 4.1d), respectivelyNotice that
the optimal penalty value varies as problem stlz@ngesOn both sidgof the optimal value, the curve is

approximately linear and the ldiandside has a steeper slope.

m =512, n = 256, [60, 6990]

400
350
300
250
200
150
100

50

0 2000 4000 6000 8000

(a) Average, mhiimum and maximum iteration numbdos when m = 512, n 256
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m = 1024, n = 256, [100, 19900]

350
300
250
200
150
100

50

0 5000 10000 15000 20000 25000

(b) Average, miimum and maximum iteration numbédos when m = 1024, n = 256

m = 1024, n = 512, [120, 12000]
350

300 |,
250
200
150
100
50

0 2000 4000 6000 8000 10000 12000 14000

(c) Average, miimum and maximum iteration numbédos when m = 1024, n = 512
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m = 2048, n = 512,1 [180, 44730]
350
300
250
200
150
100
50

0 10000 20000 30000 40000 50000

(d) Average, maiimum and maximum iteration numbers when m = 2048, n = 512
Figure 4.1Average, mimum and maximum iteration numidersSBM in overdetermined ase

In theunderdetermineccase t h e i wEBMigtillustrdted in Figte 4.2.Same a inthe
overdetermined casehe average iteration number first decreases and then incregséscesaseslt
reaches the bottom whens equalto 250, 260, 420, and 370 iFgure 4.4a), Figure 4.2Zb), Hgure 4.Zc),
and Rgure 4.2d), respectivelyMoreover, againte spreadetweenthe minimum iteration number and the
maximum iteration numbencreases gsincreased\otice that the optimal penalty value varies as problem
size changesOn left-handside of optimal value, the curve imore volatile and has a steeper slopiee

curves have similar shapes in bate overdetermined anthe underdetermined case
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m =256, n = 512, ¢ [55, 1540]
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(a) Average, maiimum and maximum iteration numbers when m = 256, n = 512

m = 256, n = 1024,f [80, 674]
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(b) Average, maiimum and maximum iteration numbers when m = 256, n = 1024
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m =512, n = 10241 [100, 1684]
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(c) Average, miimum andmaximum iteration numbers when m =512, n = 1024

m =512, n = 2048, [145, 640]
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(d) Average, miimum and maximum iterath numbers when m =512, n = 2048

Figure 4.2Average, mimum and maximum iteration numkfersSBM in underdetermined ase

Based on the empirical evidenegs can conclude th#tteoptimal valueo f is \olatile and depends
highly on the problem sizparametersSince in realworld applicationsit is usually difficult and time
consuming to determine the optimvallue of} , especially fothoselarge sizé problens, variablepenalty

method<econe reasonabléo achieve a morebustmethod.
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4.2 Comparisonson Synthetic Random Problems

To conduct a fair comparison betwe&BM and VP-ADMM, we usethe best scenario of
behavioral test to set the penalglue} for SBM. T h u $s equal to800, i.e.,_

determined case arisl equal ta250, i.e.,_

simply set”

1.05 forthe overdetermined problesand1.01 fortheunderdetermined problem

4.2.1 Over-determined Case

We compare two algorithmia the view of total iteration countet m and n describe the size of
theproblens. We generate 10 identical and independent replications as m = 2n and m = 4n, wWf2&%6,n

512}. When dual residuaf and primal residuaksre both less than 1 x 1Qerminate the algorithnThe

t o

pZ¢ v, the undetdetermined casé-or VP-ADMM, we

} v anlSBM,and st d T

" for somé

maximum, minimum and average iteration timesdiselayed in Table 4.1.

pfP 1,7 the over

p8WNe choosghemultip | i er

Instance m =512, n = 256 m = 1024, n = 256 m = 1024, n =512 m = 2048, n =512
SBM | VP-ADMM SBM | VP-ADMM SBM | VP-ADMM SBM | VP-ADMM

1 32 25 30 21 34 25 30 22

2 31 24 28 21 34 25 30 22

3 30 24 30 21 34 25 30 23

4 32 24 29 21 34 25 30 23

5 33 24 29 21 35 25 29 22

6 32 24 31 21 35 25 30 22

7 32 24 31 21 36 26 30 22

8 33 25 29 21 34 26 30 23

9 32 25 31 21 35 25 30 23

10 32 25 29 21 34 26 30 22

Max 33 25 31 21 36 26 30 23

Min 30 24 28 21 34 25 29 22

Average | 31.9 24.4 29.7 21 34.5 25.3 29.9 224
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As shown irthe tableabove VP-ADMM decreases the average iteration numisgapproximately
30% of SBM. In spite of problem size, VADMM beats SBMin termsof maximumminimum and average
iteration numbers. Moreover, VRDMM has a smaller spreadoFinstance, when m = 1024 and: 256,

the spread between maximum and minimum iteration times of SBM is 3 while that is CAIDMM™

Table 4.1Comparisorof SBM and VPADMM for overdetermined case

which means VFADMM is quite stable.

4.2.2 The Under-determined Case

We generate 10 identical and independent replications as m = n/2 and m = n/4, Whi2&6m

512}. The Stopping criteria are the same ashimoverdeterminedcase The nmaximum, minimum and

average iteration numbers atisplayed in Table 4.2.

Instance| M=256,n=512 | m=256,n=1024 | m=512,n=1024 | m=512, n=2048
# SBM | VP-ADMM | SBM | VP-ADMM | SBM | VP-ADMM | SBM | VP-ADMM
1 59 49 92 81 74 57 122 111
2 53 48 88 76 65 55 120 111
3 54 48 119 81 69 58 117 109
4 56 51 98 80 66 58 122 114
5 60 51 90 78 66 58 115 109
6 57 48 91 80 66 58 121 113
7 55 48 94 81 65 57 124 108
8 55 47 90 81 65 56 121 112
9 56 49 91 79 62 55 121 112
10 57 51 91 80 67 58 116 107
Max 60 51 119 81 74 58 124 114
Min 53 47 88 76 62 55 115 107
Average | 56.2 49 94.4 79.7 66.5 57 119.9 110.6

Table4.2 Comparisorof SBM and VRPADMM for underdetermined case
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4.3 Comparisons ofVP-ADMM and SBM on Hyperspectral ImageDemixing

To make a clear comparison of SBM and VRDMM in demixing hyperspectral image, we put
togetherthe heatmaps obtained by both algorithms corresponding to the sanwmbes: On the left
handside ardhedemixed images using SBM amhthe righthandside arethedemixed images using \\P
ADMM. Due to same stopping criteria used, the images are visually the same; however, demising is far
more timeconsuming when SBM is used. Under the same stopping criteria, SBM takes 5 hours while VP

ADMM completes demixing alb 1t x o Ttpixels in about 1 hour.

endmember 1 (road)

50 100 150 200 250 300

endmember 2 (roof):

endmember 3 (soil):
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