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Abstract

We analyze sudoku in detail. We study sudoku as it pertains to computational complexity, graph
coloring, and various programming methods that can be used to solve sudoku. We construct inte-
ger and constraint programs to solve sudoku problems. We conduct empirical experiments using
these programs. Our results exhibit constant solve times for our integer program and varied
solve times for our constraint program depending on difficulty. For easier sudokus, constraint
programming performs significantly faster,but as difficulty increases, our integer program exhib-
ited faster solve times. Additionally, we applied a heuristic. When combined with a heuristic,
the constraint program solve times were significantly improved. The solve times were drastically
better than those of our integer program for easy, medium, and hard difficulty, and were only
slightly worse for evil difficulty. We tested to see how solve times reduced when more information
is provided to our constraint solver. We observe an exponential decay function in solve times as
more cells were filled in. Finally, we present future research that we wish to conduct.
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Chapter 1
Summary of Results in Thesis

Recently, sudoku puzzles have become a popular and addictive logic puzzle played by many.

The rules of sudoku are simple; fill in a grid so that each number is contained in every row,

column, and box only once. Sudokus are universally accessible as they are merely an assortment

of numbers scattered throughout a grid; no language barrier prevents one from attempting a

sudoku. Yet despite the puzzle’s simplicity, millions participate due to the challenge that these

puzzles present. Countless books containing sudokus have been published. Some books even

teach the reader different techniques for solving sudokus faster. Currently, you would be hard

pressed to find a newspaper that doesnt publish a daily sudoku.

The general public are not the only ones interested in sudokus. Recently, many scholars have

begun to explore sudoku puzzles to understand various properties about these puzzles. Some

areas that have been studied are computational complexity, relation to graph structure, and the

sudoku as a graph coloring problem. Computer programs have been written that can be used to

solve sudoku puzzles, as well as various heuristics.

In this thesis, we conduct a literature review to gain a better understanding of sudoku puzzles

and what properties sudokus have as they pertain to the aforementioned topics. We then for-

mulate an integer program, a constraint program, and a heuristic that solve sudoku puzzles. We

test our programs as a means for comparing integer programming and constraint programming

solution methods to try to determine the most efficient way of solving sudokus. From out testing,

we found that integer programming will solve a sudoku problem at a consistent time regardless

of difficulty, whereas constraint programming solve times vary based on difficulty. For easier

sudokus, use of a constraint program is superior, but as the difficulty increases, integer program-

ming becomes a more efficient method for solving sudokus. Also, when introducing a heuristic

in conjunction with the constraint program, we were able to reduce solve times significantly and

only the hardest sudokus would be better solved by an integer program.

We also explore solve times while varying the number of cells filled in for a sudoku to determine

what makes certain sudokus easy and others hard. We show empirically that solve times of a
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sudoku follow an exponential decay function as more and more cells are filled in. An area that

we would like to further explore in this problem is to determine whether specific cells in a sudoku

graph have a greater impact on solve time. If such critical cells exist, is there a way to quickly

identify them and make use of this information. In addition to exploring the idea of critical

cells, another area of future research that we wish to conduct is applying our methods for solving

sudoku to a deception problem.



Chapter 2
Literature Review

2.1 Sudoku Background

We begin by giving an introduction to the rules of sudoku. This will provide sufficient motivation

for the study of sudoku. According to Peter Gordon and Frank Longo, who have written books

on solving sudokus,[1] a sudoku is an n2×n2 grid that is initially filled in with a certain number

of cells. The number of cells initially filled in generally typifies the difficulty of the sudoku; the

fewer cells, the harder the sudoku. The goal is to fill in the entire grid without repeating any

number 1 thru n in each row, column, or n × n box. Each digit 1 thru n will therefore be used

only once. It should be noted that a valid initial grid must contain some form of symmetry.

Another key consideration for a sudoku is that the solution must be unique.

2.2 Sudoku Complexity

In Takayuki Yato’s Masters Thesis titled Complexity and Completeness of finding another so-

lution and its Application to Puzzles, Yato proved that a sudoku puzzle is NP complete for

generalized nxn sudokus. Yato shows that a sudoku can be viewed as an Another Solution Prob-

lem (ASP). An ASP problem as it applies to sudoku means that given an initial grid or partially

completed grid containing a solution s, find a solution to the sudoku other than s. A problem

is considered ASP complete if it is contained in the class FNP. FNP is the function problem

extension of an NP class To show the ASP completeness of sudokus, Yato used known results

of Latin squares, which were published by Colbourn.[2] The problem of a partial Latin square

completion is ASP complete via a reduction to 1 in 4 SAT. Yato then uses proofs from Colbourn’s

paper to show that a 1 in 4 SAT problem can be reduced to a 1 in 3 SAT problem which is known

to be NP complete.[3] Hence, Yato was able to prove that sudoku puzzles are NP complete.

This information is important in the study of sudokus because it plays an important role in

how one should approach solving sudokus. Hence various algorithms and heuristics have been
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divised with this knowledge. We will now discuss some literature regarding IP and CP as a

method of solving sudokus.

2.3 Integer Programming

In Bartlett’s article titled An Integer Programming Model for the Sudoku Problem, the authors

justify why integer programming is well suited to solving sudoku problems. They demonstrate

how a sudoku can be modeled in the form of an IP. [4] We construct our own IP model in the

next section which is similar and contains all the same properties as their model. In their paper,

they show that a sudoku can also be thought of as a constraint programming problem as well.

Hence the objective function for the IP is meaningless and is merely used in order to run the

program.

Bartlett also looks into different properties of sudokus. At this point, all research suggests

that the minimum number of initial values for a sudoku that has a unique solution is 17. Bartlett

shows that an individual element of a 9× 9 sudoku gives at most 29 of the decision variables of

729. In general they show that the total number of decision variables effected by an individual

cell is bounded above by 3(n− 1) + (m− 1)2 + 1 out of n3. This means that any particular cell

effects at most that many other cells in the grid.

Another angle in which they attempt to understand sudokus is from the perspective of sudoku

creation. They discuss how a brute force method can be used to create solutions. They then

wish to find faster methods of creating sudokus. To do this, they were able to show how existing

sudokus known to have unique solutions can be modified to create new sudoku puzzles that also

retain the uniqueness property.

2.4 Constraint Programming

We give a brief background on constraint programming. [5] [6] Constraint programming attempts

to solve problems based on satisfying constraints. In theory, constraint programs provide less

cognitive burden, are more similar to how we think of problems naturally, and can determine

results in similar and sometimes even faster results than a traditional Integer Linear Program.

The theory behind constraint programming is that when solving a problem that involves

multiple constraints, in order to determine the solution, all constraints must be satisfied. Hence

you tell the constraint program what all of the constraints are and it finds a solution that satisfies

all the constraints. An example in which a constraint program is easier and more intuitive to

write than an integer program is to suppose we are dealing with disequalities. If we want to

write out that that in a integer program, we would need to form a disjunction of xi < xj or

xi > xj . Whereas, the constraint program uses a much more intuitive AllDifferent predicate that

essentially does the same thing, but is easier to write out and requires less burden on the user

writing the program.
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There are many different types of ways to formulate a constraint programming problem.

Python constraint is the solver that we used and some of the types of constraints include AllDif-

ferent, AllEqual, ExactSum, InSet, NotInSet, MinSum, MaxSum, and Function. These types of

constraints have specific properties. The constraint program has three different possible solvers,

which include a backtracking solver, a recursive backtracking solver, and a minimum conflicts

solver. Constraint programming appears to have a more limited set of applications than integer

programming, which is a drawback. [7]

As alluded to previously, a sudoku can be thought of as a constraint program since it seeks

to satisfy a series of constraints. Given the uniqueness of a sudoku, a constraint program should

not require any form of search when determining the solution of a sudoku. The key constraint

that we seek to take advantage of via constraint programming is that all the rows, columns, and

boxes must have different digits. Simonis [8] pairs the all different constraint with other possible

constraints and then tests these combination to determine whether or not they are able to solve

the sudoku for varying difficulty and then how long it takes. Certain combinations work at better

rates than others. In the next section, we will use a CP that has been shown to always solve a

sudoku regardless of difficulty.

2.5 Coloring/Graphs

An article by Herzberg approaches the problem of sudoku as a graph coloring problem. It is

clear that a sudoku can be thought of as a graph. [9] Each cell interacts with other cells as we

discussed in Bartlett’s article. Herzberg then says that a sudoku could be reduced to a coloring

problem. A sudoku begins as a partial coloring and the question becomes whther the partial

coloring can be completed as a total coloring. In general for an n2 × n2 sudoku, at least n2 − 1

colors must be used in the given partial coloring in order for the given puzzle to be unique.

The article then theorizes that for every sudoku graph, there is a proper coloring that uses

n2 colors, with a chromatic number of n2. They approach sudoku from a coloring problem to

verify whether or not a sudoku problem is unique. This validates the sudoku.



Chapter 3
IP/CP formulation and Heuristics

3.1 Introduction

We demonstrate various methods for solving sudoku. These methods include integer program-

ming (IP), constraint programming (CP), and the development of a heuristic. We provide pseudo

code for each and discuss how each method works.

3.2 Integer Programming

Integer programming is a good method for solving sudoku puzzles because a sudoku can be

modeled as a maximization problem with a series of constraints. The objective function ensures

that every cell is assigned a number. The rules of sudoku can be thought of as the constraints. We

can define the rules that allow each number to be contained only once in each row, column, and

box as constraints. In the following subsection, we formulate our integer programming problem.

3.2.1 Integer Program

Sets:

• I : indices I = {1, ..., n3}

• R: rows R = {1, ..., n}

• Ri ⊆ I, i ∈ R row indices

• C: columns C = {1, ..., n}

• Ci ⊆ I, i ∈ C column indices

• B: boxes B = {1, ..., n}

• Bi ⊆ I, i ∈ B box indices
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• N : cells N = {1, ..., n}

• Ni ⊆ I i ∈ N cell indices

Constraints:

∑
k∈Ri

⋂
Nj

xk = 1 ∀ i ∈ R, j ∈ N (3.1)

∑
k∈Ci

⋂
Nj

xk = 1 ∀ i ∈ C j ∈ N (3.2)

∑
k∈Bi

⋂
Nj

xk = 1 ∀ i ∈ B, j ∈ N (3.3)

∑
k∈Ni

xk = 1 ∀i ∈ N (3.4)

Objective:

max
∑
k

xk

From the problem formulation, we defined the optimization as a maximization problem. We

define sets for the total number of values in the puzzle, the rows, columns, boxes, and cells. Once

these were defined we set up constraints to ensure each row column and box contains exactly one

of each number. The maximization of our objective function ensures that every cell is assigned

a number. Below we present a few simple examples to demonstrate more easily how our integer

program works.

We applied integer programming to various 9×9 sudoku puzzles using Pythons GLPK solver,

which is used for linear and integer programming. We use a brief example to demonstrate of

the code works. We begin by defining a grid of 81 cells. Each cell could contain a digit from 1

to 9. Hence we have 729 possible values in a sudoku, this is the index set given in the problem

formulation. The first nine values are associated with the first cell since it could be any number

between 1 and 9. Likewise, the second nine values pertain to the second cell. And so on and

so forth. All of these values are binary. Hence if we have the following value[3] = 1, then cell 1

equals 4 (notice that python starts everything at 0 instead of 1). Whereas value[3] = 0 means

that cell 1 does not equal 4. Similarly, value[15] = 1 means that cell 2 equals 7.

We define our constraints to ensure that each cell is limited to one number. From the previous

example, value[3] = 1, our cell constraint then sets value[0], value[1], , value[8] = 0. We next

define the row constraint. We want each row to only contain one of each number. Our constraint

acts thusly, suppose value[3] = 1, meaning that cell 1 equals 4. The row constraint then sets all

the other binaries in the same row that corresponds to a cell equaling 4, to zero. In this case,

value[12], value[21], , value[75] all equal 0. Using the same logic, we define our column constraints

and box constraints to act in the same manner.
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A final observation to note about the IP solver is that it does not determine if the solution is

unique. If the sudoku has multiple solutions, the IP solver will determine one solution, but will

not attempt to search for more. And if no solution exists, the IP will be able to determine this

quickly through an infeasibility test.

3.3 Constraint Programming

Using constraint programming, we approach the same problem from a different angle. Constraint

programming utilizes the all different constraint and exact sum constraint. The exact sum

constrain is used to ensure that each row/column/box add up to (n+1)∗n
2 , which is the summation

from 1 through n2. In the case of a 9x9 sudoku, the row/column/box add up to 45 (summation

of 1 through 9). The all different constraint ensures that all values in each row/column/box are

different. The constraint program seeks to reduce the domains of each cell in terms of possible

candidates for what digit a cell will be. A search is done iteratively until a solution in which all

constraints are satisfied is found.

This method will also determine an optimal solution if one exists and not seek to determine if

multiple optima exist. Since its approach seeks to satisfy constraints, there is much more variance

in solving time as we will see in the next section.

Solve Sudoku using Constraint Programming:

Input: Sudoku Grid

Define:

Rows

Columns

Boxes

Linesum = (n+1)∗n
2

For row in row set do:

exactsumconstraint(linesum)

alldifferentconstraint()

end

For column in column set do:

exactsumconstraint(linesum)

alldifferentconstraint()

end

For box in box set do:
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exactsumconstraint(linesum)

alldifferentconstraint()

end

Output: Completed Sudoku Grid

3.4 Heuristic

We want to study the impact of a sudoku puzzle when a heuristic is implemented. Our general

idea when approaching the creation of a heuristic is thus, it must be simple enough that it takes

little time when executed and it should have a chance of significantly improving the solving time

of the integer and/or constraint program.

When thinking about solving a sudoku puzzle, the simplest way to go about solving is to

look at each particular cell and eliminate as many possible candidates until only one remains.

Then the cell can be filled in accordingly. We wanted to structure our heuristic in a similar

manner. The idea being such a solving method will not require much computing time due to its

simplicity, yet at the same time could provide meaningful improvements to the solving time when

paired with an integer program or constraint program. Obviously as puzzles become harder, this

method is insufficient to solve an entire puzzle, but it could provide enough new information that

the solving time is reduced.

The heuristic looks at each cell in the grid. If a cell is initially filled in, the heuristic reduces

the domain of that cell to the number that is filled in. If the cell is blank, the heuristic assigns

it a domain of 1 through 9 of which all are possible candidates for the value of that particular

cell. This is done for all 81 cells in the sudoku. Once the domains are established, the heuristic

evaluates each row. If a particular number is filled in for row one, that number is removed from

the domains of all the unsolved cells in row 1. This process continues iteratively for rows 2

through 9. The same logic is again applied to columns and boxes. Once all of this takes place

there could be some cells whose domain has been reduced to be one number. This means that

that particular cell has been solved. The heuristic then runs another iteration using this new

information. Eventually one of two possibilities will occur. First, the sudoku is solved, in which

case the IP/CP are not needed. Or second, the heuristic stalls.

For the case in which the heuristic stalls, we established a counter to determine how many cells

are filled in at each iteration. If the counter remains the same for two consecutive iterations, the

algorithm terminates. The heuristic has done its job and now an IP or CP can be applied. The

logic behind doing this is that if the heuristic fails to provide any new information in one iteration,

there will be no new information the rest of the way forward, hence we should discontinue our

search.

Heuristic
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Input: Sudoku Grid

Define:

Rows

Columns

Boxes

Cells

Cell Domains = {1, ..., n}
Values = {1, ..., n} Counter

While counter > 0: do:

For all cells in sudoku grid do:

If value exists in row do

remove value from cell domain

If value exists in column do

remove value from cell domain

If value exists in box do

remove value from cell domain

If cell domain contains one digit do

append value to cell

end

update counter

end

Output: Completed Sudoku Grid
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Results of Experimentation

4.1 Method

In order to compare different programming methods in a meaningful way, we devised a stan-

dardized procedure to test the solve times for each method. We used www.websudoku.com [10]

to generate random sudokus. This particular website categorizes sudokus by four different levels

of difficulty: easy, medium, hard, and evil. We tested our programs on ten different puzzles

replicating each individual puzzle 20 times. We recorded the mean, median, standard deviation,

minimum, and maximum for each level of difficulty. All of the times were recorded via the timer

function in python.

Our integer program used the GLPK solver package in python. We used Simple API’s code

for our constraint solver with a slight modification in python. [11] Full code for both the integer

program as well as the constraint program are provided in the appendix.

4.2 IP/CP Results

We begin by comparing the solve times of our Integer Program with our Constraint Program.

The results are displayed in Table 4.1, all times are in seconds. Additionally, a bar graph is used

in figure 4.1 to illustrate the comparison between the mean running times at each difficulty level.

From this data, we observe that the CP solver took longer as the level of difficulty increased.

Meanwhile, the IP solver was very consistent in it’s solving times. In addition, the standard

deviation of running times was much greater for the constraint program. It would stand to

reason that Integer Programming is preferable especially as difficulty and the size of the problem

increases.
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Constraint Program
Difficulty

Easy Medium Hard Evil
Mean 0.05212 0.14628 0.34467 0.92403
Median 0.05200 0.12798 0.23807 0.79115
Std Deviation 0.01034 0.08693 0.25957 0.76987
Minimum 0.03481 0.04164 0.08287 0.19204
Maximum 0.06815 0.30634 0.86603 2.22008

Table 4.1. Constraint programming run times on various sudoku puzzle types.

Integer Program
Difficulty

Easy Medium Hard Evil
Mean 0.17209 0.17813 0.18117 0.18211
Median 0.17144 0.17892 0.18006 0.18270
Std Deviation 0.00306 0.00305 0.00165 0.00254
Minimum 0.16811 0.17194 0.17937 0.17598
Maximum 0.17796 0.18178 0.18423 0.18507

Table 4.2. Integer programming run times on various sudoku puzzle types.

4.3 Heuristic

Additionally, we tested the solving times of the Constraint Program with the incorporation of

a heuristic. As detailed in the previous section, our heuristic goes cell by cell and reduces the

domain of possible values accounting for numbers in the same row, column, and box. Once all the

cells domain’s are reduced, if any cells have a domain reduced to only one value, then that cell is

assigned the corresponding value. This same process is applied for each row and column so that

if only one value appears in a particular row or column, that cell is assigned that particular value.

Once this process is completed, the constraint program runs as usual with this new information.

The purpose of this heuristic is to provide the constraint program with additional information.

The intuition being a constraint program will solve faster when there is more information being

provided. Our results back up this claim. An almost every circumstance the CP was able to

solve faster when using the heuristic.

The reason we only apply our heuristic with the constraint program is that we observed that

the solve times for the integer program remained steady regardless of difficulty. This suggests

that the amount of information given prior to solving an integer program has significantly less

impact on the solve time compared to the constraint program.

We encountered the following observations while testing, see Figure 4.2.. Regardless of diffi-

culty, the heuristic was able to significantly reduce solving times. For easy and medium sudokus,

the heuristic was able to solve the sudoku without having to call the constraint program what-

soever. This was also the case for most, but not all of the hard sudokus. For evil sudokus, the

heuristic filled in a number of cells but eventually stopped, causing the constraint program to be

called. Since, there were less cells remaining for the constraint program, it was able to solve the
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Figure 4.1. A bar chart comparing the run times in solving a sudoku with Integer Programming vs.
Constraint Programming.

Difficulty: Easy
Time Elapsed
w/o heuristic w/ heuristic % less time % faster

Mean 0.05212 0.01749 66.4510% 198.0713%
Median 0.05200 0.01753 66.2916% 196.6623%
Std Deviation 0.01034 0.00148
Minimum 0.03481 0.01427
Maximum 0.06815 0.02047

Table 4.3. Comparing solve time on easy sudoku with and without a heuristic.

problem faster.

4.4 Cells remaining reduction

Based on our research with our heuristic, the question occurred to us, is there a certain number

of cells in which the sudoku can be solved very quickly with a Constrain Program? Our intuition

was that the fewer cells remaining, the less time it would take the CP to solve. To measure this,

we devised the following experiment. First, we took an evil puzzle. We chose evil puzzles since

they have that most unfilled cells. For evil puzzles, 55 of the 81 cells are unfilled. This provides

a picture for how solving times improve as more information becomes available. Additionally,

we know every evil puzzle on www.websudoku.com is ensured to have a unique solution which

is an important assumption for all sudoku problems. By using a random number generator, we

randomly picked one cell at a time to fill in with the correct solution. Using this new information,
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Difficulty: Medium
Time Elapsed
w/o heuristic w/ heuristic % less time % faster

Mean 0.14628 0.02856 80.4769% 412.2142%
Median 0.12798 0.03043 76.2244% 320.5994%
Std Deviation 0.08693 0.00505
Minimum 0.04164 0.02059
Maximum 0.30634 0.03377

Table 4.4. Comparing solve time on medium sudoku with and without a heuristic.

Difficulty: Hard
Time Elapsed
w/o heuristic w/ heuristic % less time % faster

Mean 0.34467 0.05089 85.2354% 577.2969%
Median 0.23807 0.04260 82.1067% 458.8685%
Std Deviation 0.25957 0.02113
Minimum 0.08287 0.03629
Maximum 0.86603 0.10538

Table 4.5. Comparing solve time on hard sudoku with and without a heuristic.

we postulate that the sudoku should solve faster. Our results are shown in Figure 4.3.

From our experiment, our results show an exponential decay in the amount of time it takes

to solve a sudoku puzzle. We saw that solve times would decrease drastically with one new cell

of information but there was not a particular number of cells remaining when that jump would

occur. Sometimes it occurred with the first new piece of information, other times it occurred on

the fourth. This leads us to the idea that there are critical cells that have a greater effect on

solving time reduction. This is a topic we wish to investigate further.

Difficulty: Evil
Time Elapsed
w/o heuristic w/ heuristic % less time % faster

Mean 0.92403 0.27150 70.6181% 240.3461%
Median 0.79115 0.14235 82.0076% 455.7896%
Std Deviation 0.76987 0.25068
Minimum 0.19204 0.05163
Maximum 2.22008 0.81147

Table 4.6. Comparing solve time on evil sudoku with and without a heuristic.
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Figure 4.2. A bar chart comparing the run times in solving a sudoku with Integer Programming vs.
Constraint Programming vs. Constraint Programming with Heuristic.

Figure 4.3. Solution time as a function of percent of puzzle solved using the constraint programming.



Chapter 5
Conclusions and Future Work -

Deception Problem/Graph Problem

5.1 Conclusions

In this thesis, we presented a review of various results on sudoku. We discussed the complexity

of sudoku problems, various integer and constraint programming results related to sudoku, as

well as heuristics that have been used in solving sudokus. We also discussed graph properties

and coloring properties of sudokus.

We then defined our own integer and constraint programs to solve sudokus. We formulated a

heuristic that can aid in reducing the solving times for sudokus when using constraint program-

ming. We tested these programs and observed that the integer program solved consistently at

just under one fifth of a second regardless of difficulty. Meanwhile the constraint program was

able to solve easier sudokus extremely quickly but as the difficulty increased, so did the solve

times. So much so that the hardest sudokus took nearly five times as long to solve compared to

the integer program.

We then paired the constraint programming solver with a heuristic. We saw significant

improvement in solve time regardless of difficulty. For easy, medium, and hard sudokus the

heuristic typically solved the sudoku faster than the integer program. This is usually because

the constraint program was never called. But for the most difficult sudokus the solve time was

still worse than that of an integer program.

This heuristic testing inspired us to look into how the number of empty cells effects solving

times. We observed exponential decay in solve times as more cells were filled in. This suggests

a possible area of future research on critical cells.
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5.2 Complexity

As we stated above we want to learn more about the structure of sudokus and how this relates

to solve times. We witnessed an exponential decay in solve time as more cells were filled in

when information is provided, but in our testing we saw that solve times significantly reduced

relatively early on in our testing and then steadied off. But sometimes it would take longer to

get to this improvement in solve times. Other times it would happen right away. We showed

in our literature review that sudokus can be thought of as graph coloring problems. Hence, we

would like to explore the properties of these so called critical cells exist.

Is there a way to determine based on what cells are initially given, which cell will reduce

remaining solve time the most? We could then say that this cell is more important in some

respects to the other cells in the sudoku puzzle. If we knew the two or three most important

cells of a sudoku puzzle, how could we then use this information to solve the sudoku faster?

This idea of critical cells should not merely be contained to sudoku puzzles. There are

probably a myriad of graph coloring applications that could benefit from a more thorough analysis

of these so called critical cells. We feel that studying this topic from the perspective of sudokus

could provide a greater understanding and then we would be able to better apply this knowledge

in these various other applications.

5.3 Desception

Finally, we wish to explore how these types of programs and heuristics that were used to solve

sudokus could be used to understand deception. A possible idea of a deception problem is one

in which we receive information from various sources (eg: social media, informant, etc.). We

want to determine veracity of the information. Is the person giving us this information trying to

deceive us in any way?

A brief example of how this could be tied back to the sudoku problem is that suppose a person

wants to do the sudoku problem in the inflight magazine on an airplane. When he opens the

sudoku he sees that it is already partially filled in. Would it be best to continue where the last

person left off or to erase that person’s answers and start over? Our heuristic could be modified

and applied in this scenario to determine if there are any glaring inconsistencies in the puzzle.

For instance if two of the same number are contained in the same row, we obviously would not

trust the information given.

Is there a way to modify our heuristic to determine the most likely to be filled in cells based

on the given information? If the cells filled in adhere to a predictable solving pattern, then

that would suggest the information is good. But if the cells filled in do not follow a logical

solving pattern, then there is a greater chance that the person guessed or filled that cell in with

faulty logic. We ultimately would want to use this information and apply it in other settings to

determine the trustworthiness of information.



Appendix A
Integer Programming Python Code

In this appendix we give the python code that we used for solving sudoku using the integer

programming approach.

import glpk

import time

start_time = time.time()

lp = glpk.LPX()

lp.name = ’sample’

lp.obj.maximize = True

################################################

cells = [’’]*81

values = [0]*729

################################################

cells[0:9] = [0,0,0,0,0,0,0,0,0]

cells[9:18] = [0,0,0,0,0,0,0,0,0]

cells[18:27] = [0,0,0,0,0,0,0,0,0]

cells[27:36] = [0,0,0,0,0,0,0,0,0]

cells[36:45] = [0,0,0,0,0,0,0,0,0]

cells[45:54] = [0,0,0,0,0,0,0,0,0]

cells[54:63] = [0,0,0,0,0,0,0,0,0]

cells[63:72] = [0,0,0,0,0,0,0,0,0]
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cells[72:81] = [0,0,0,0,0,0,0,0,0]

################################################

lp.rows.add(324)

for r in lp.rows:

r.bounds = 1.0

lp.cols.add(729)

for c in lp.cols:

c.name = ’x%d’ % c.index

c.kind = int

################################################

for rowconstr in range(0,729):

if cells[(rowconstr/9)] == (rowconstr%9 + 1):

values[rowconstr] = 1.0

for colconstr in range(0,729):

lp.cols[colconstr].bounds = values[colconstr], 1.0

################################################

cell = ([1.0]*9 + [0.0]*729)*80 + [1.0]*9

row = ((([1.0] + [0.0]* 8)*8 + [1.0] + [0.0]*657)*9 + [0.0]*72)*8 +

(([1.0] + [0.0]* 8)*8 + [1.0] + [0.0]*657)*8 + ([1.0] + [0.0]*8)*8 +[1.0]

col = (([1.0] + [0.0]*80)*8 + [1.0] + [0.0]*81)*80 + ([1.0] +

[0.0]*80)*8 + [1.0]

box = (((([1.0] + [0.0]*8)*2 + [1.0] + [0.0]*62)*3 + [0.0]*487)*9 +

[0.0]*18)*2 + ((([1.0] + [0.0]*8)*2 + [1.0] + [0.0]*62)*3 +

[0.0]*487)*9

+ [0.0]*180 + (([1.0] + [0.0]*8)*2 + [1.0] + [0.0]*62)*3 + ([0.0]*487

+

(([1.0] + [0.0]*8)*2 + [1.0] + [0.0]*62)*3)*8 + [0.0]*18 + ([0.0]*487 +

(([1.0] + [0.0]*8)*2 + [1.0] + [0.0]*62)*3)*9 + [0.0]*18 + ([0.0]*487 +
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(([1.0] + [0.0]*8)*2 + [1.0] + [0.0]*62)*3)*9 + [0.0]*667 + (([1.0] +

[0.0]*8)*2 + [1.0] + [0.0]*62)*3 + ([0.0]*487 + (([1.0] + [0.0]*8)*2 +

[1.0] + [0.0]*62)*3)*8 + [0.0]*18 + ([0.0]*487 + (([1.0] + [0.0]*8)*2 +

[1.0] + [0.0]*62)*3)*9 + [0.0]*18 + ([0.0]*487 + (([1.0] + [0.0]*8)*2+

[1.0] + [0.0]*62)*3)*8 + [0.0]*487 + (([1.0] + [0.0]*8)*2 + [1.0] +

[0.0]*62)*2 + [1.0] + [0.0]*8 + [1.0] + [0.0]*8 + [1.0]

lp.obj[:] = 1.0

lp.matrix = cell+row+col+box

#################################################

lp.simplex()

lp.integer()

for colconstr in range(0,729):

if lp.cols[colconstr].value == 1:

cells[colconstr/9] = (colconstr%9 +1)

print cells[0:9]

print cells[9:18]

print cells[18:27]

print cells[27:36]

print cells[36:45]

print cells[45:54]

print cells[54:63]

print cells[63:72]

print cells[72:81]

print ’Z = %g;’ % lp.obj.value

print time.time() - start_time



Appendix B
Constraint Program

In this appendix we give the python code that we used for solving sudoku using the constraint

programming approach.

import sys, math

sys.path.append("./python-constraint-1.1")

#Importing constraint

from constraint import *

import time

start_time = time.time()

cells = [’’]*81

cells[0:9] = [0,0,0,0,0,0,0,0,0]

cells[9:18] = [0,0,0,0,0,0,0,0,0]

cells[18:27] = [0,0,0,0,0,0,0,0,0]

cells[27:36] = [0,0,0,0,0,0,0,0,0]

cells[36:45] = [0,0,0,0,0,0,0,0,0]

cells[45:54] = [0,0,0,0,0,0,0,0,0]

cells[54:63] = [0,0,0,0,0,0,0,0,0]

cells[63:72] = [0,0,0,0,0,0,0,0,0]

cells[72:81] = [0,0,0,0,0,0,0,0,0]

def solveSudoku(size = 9, originalGame = None):
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""" Solving Sudoku of any size """

sudoku = Problem()

#Defining size of row/col

rows = range(size)

cols = range(size)

#every line got same sum

lineSum = sum(range(1, size+1))

#Creating board

board = [(row, col) for row in rows for col in cols]

#Defining game variable, a single range will be enough

sudoku.addVariables(board, range(1, size * size + 1))

#Row set

rowSet = [zip([el] * len(cols), cols) for el in rows]

colSet = [zip(rows, [el] * len(rows)) for el in cols]

#The original board is not empty, we add that constraint to the

list of constraint

if originalGame is not None:

for i in range(0, size):

for j in range(0, size):

#Getting the value of the current game

o = originalGame[i][j]

#We apply constraint when the number is set only

if o > 0:

#We get the associated tuple

t = (rows[i],cols[j])

#We set a basic equal constraint rule to force the

system to keep that variable at that place

sudoku.addConstraint(lambda var, val=o: var == val,

(t,))

#The constraint are like that : and each row, and each

columns, got same final compute value, and are all unique

for row in rowSet:

sudoku.addConstraint(ExactSumConstraint(lineSum), row)

sudoku.addConstraint(AllDifferentConstraint(), row)
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for col in colSet:

sudoku.addConstraint(ExactSumConstraint(lineSum), col)

sudoku.addConstraint(AllDifferentConstraint(), col)

#Every sqrt(size) (3x3 box constraint) got same sum

sqSize = int(math.floor(math.sqrt(size)))

#xrange allow to define a step, here sq (wich is sq = 3 in 9x9

sudoku)

for i in xrange(0,size,sqSize):

for j in xrange(0,size,sqSize):

#Computing the list of tuple linked to that box

box = []

for k in range(0, sqSize):

for l in range(0, sqSize):

#The tuple i+k, j+l is inside that box

box.append( (i+k, j+l) )

#Compute is done, now we can add the constraint for that

box

sudoku.addConstraint(ExactSumConstraint(lineSum),

box)

sudoku.addConstraint(AllDifferentConstraint(), box)

#Computing and returning final result

return sudoku.getSolution()

if __name__ == ’__main__’:

rg = 9

initValue = [cells[0:9],

cells[9:18],

cells[18:27],

cells[27:36],

cells[36:45],

cells[45:54],

cells[54:63],

cells[63:72],

cells[72:81]]

res = solveSudoku(rg, initValue)
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print

if res is not None:

for i in range(0, rg):

for j in range(0, rg):

print res[i, j],

print

print

else:

print "No result to show"

#print "The sudoku solver took", time.time() - start_time, "to run"

print time.time() - start_time



Appendix C
Heuristic

We paired this heuristic with the constraint program in chapter four. Below is just the heuristic,

a slight modification is necessary to combine this code with the constraint program.

import sys, math

sys.path.append("./python-constraint-1.1")

#Importing constraint

from constraint import *

import time

start_time = time.time()

cells = [’’]*81

domain = [’’]*81

for i in range(0,81):

domain[i] = [1,2,3,4,5,6,7,8,9]

##################################################

#####

cells[0:9] = [4,0,0,0,0,0,0,0,1]

cells[9:18] = [0,8,0,0,7,0,2,0,3]

cells[18:27] = [0,0,0,9,0,0,0,6,0]

cells[27:36] = [5,9,0,7,0,0,0,0,6]

cells[36:45] = [0,0,0,0,2,0,0,0,0]

cells[45:54] = [6,0,0,0,0,1,0,4,2]
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cells[54:63] = [0,5,0,0,0,9,0,0,0]

cells[63:72] = [3,0,6,0,4,0,0,2,0]

cells[72:81] = [2,0,0,0,0,0,0,0,8]

##################################################

#####

count = 0

for i in range(0,80):

if cells[i] == 0:

count = count + 1

newcount = 0

def cdr():

#cell domain reducer

for j in range(0,81):

for k in range(1,10):

if cells[j] == k:

domain[j] = [k]

##########################################

#row domain reducer

def rdr():

startrow = 0

endrow= 9

while startrow < 80:

for l in range(startrow,endrow):

for m in range(1,10):

for n in range(startrow,endrow):

if cells[n] == m:

#if len(domain[l]) > 1:

if m in domain[l]:

a = domain[l].index(m)

domain[l].pop(a)

startrow = startrow + 9
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endrow = endrow + 9

#############################################

#col domain reducer

def coldr():

cr1 = 0

cr2 = 9

cr3 = 18

cr4 = 27

cr5 = 36

cr6 = 45

cr7 = 54

cr8 = 63

cr9 = 72

while cr1 < 9:

for l in (cr1,cr2,cr3,cr4,cr5,cr6,cr7,cr8,cr9):

for m in range(1,10):

for n in (cr1,cr2,cr3,cr4,cr5,cr6,cr7,cr8,cr9):

if cells[n] == m:

if len(domain[l]) > 1:

if m in domain[l]:

a = domain[l].index(m)

domain[l].pop(a)

cr1 = cr1 + 1

cr2 = cr2 + 1

cr3 = cr3 + 1

cr4 = cr4 + 1

cr5 = cr5 + 1

cr6 = cr6 + 1

cr7 = cr7 + 1

cr8 = cr8 + 1

cr9 = cr9 + 1

###############################################

#box domain reducer

def bdr():
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for l in (0,1,2,9,10,11,18,19,20):

for m in range(1,10):

for n in (0,1,2,9,10,11,18,19,20):

if cells[n] == m:

if len(domain[l]) > 1:

if m in domain[l]:

a = domain[l].index(m)

domain[l].pop(a)

for l in (3,4,5,12,13,14,21,22,23):

for m in range(1,10):

for n in (3,4,5,12,13,14,21,22,23):

if cells[n] == m:

if len(domain[l]) > 1:

if m in domain[l]:

a = domain[l].index(m)

domain[l].pop(a)

for l in (6,7,8,15,16,17,24,25,26):

for m in range(1,10):

for n in (6,7,8,15,16,17,24,25,26):

if cells[n] == m:

if len(domain[l]) > 1:

if m in domain[l]:

a = domain[l].index(m)

domain[l].pop(a)

for l in (27,28,29,36,37,38,45,46,47):

for m in range(1,10):

for n in (27,28,29,36,37,38,45,46,47):

if cells[n] == m:

if len(domain[l]) > 1:

if m in domain[l]:

a = domain[l].index(m)

domain[l].pop(a)

for l in (30,31,32,39,40,41,48,49,50):

for m in range(1,10):

for n in (30,31,32,39,40,41,48,49,50):

if cells[n] == m:
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if len(domain[l]) > 1:

if m in domain[l]:

a = domain[l].index(m)

domain[l].pop(a)

for l in (33,34,35,42,43,44,51,52,53):

for m in range(1,10):

for n in (33,34,35,42,43,44,51,52,53):

if cells[n] == m:

if len(domain[l]) > 1:

if m in domain[l]:

a = domain[l].index(m)

domain[l].pop(a)

for l in (54,55,56,63,64,65,72,73,74):

for m in range(1,10):

for n in (54,55,56,63,64,65,72,73,74):

if cells[n] == m:

if len(domain[l]) > 1:

if m in domain[l]:

a = domain[l].index(m)

domain[l].pop(a)

for l in (57,58,59,66,67,68,75,76,77):

for m in range(1,10):

for n in (57,58,59,66,67,68,75,76,77):

if cells[n] == m:

if len(domain[l]) > 1:

if m in domain[l]:

a = domain[l].index(m)

domain[l].pop(a)

for l in (60,61,62,69,70,71,78,79,80):

for m in range(1,10):

for n in (60,61,62,69,70,71,78,79,80):

if cells[n] == m:

if len(domain[l]) > 1:

if m in domain[l]:

a = domain[l].index(m)

domain[l].pop(a)
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##############################################

# ROW CHECKER

def rc():

startrc = 0

endrc = 9

while startrc < 80:

for r in range(1,10):

count = 0

for q in range(startrc,endrc):

if r in domain[q]:

count = count + 1

if count == 1:

for q in range(startrc,endrc):

if r in domain[q]:

cells[q] = r

startrc = startrc + 9

endrc = endrc + 9

##############################################

# COLUMN CHECKER

def colc():

cc1 = 0

cc2 = 9

cc3 = 18

cc4 = 27

cc5 = 36

cc6 = 45

cc7 = 54

cc8 = 63

cc9 = 72

while cc1 < 9:

for r in range(1,10):
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count = 0

for q in (cc1,cc2,cc3,cc4,cc5,cc6,cc7,cc8,cc9):

if r in domain[q]:

count = count + 1

if count == 1:

for q in (cc1,cc2,cc3,cc4,cc5,cc6,cc7,cc8,cc9):

if r in domain[q]:

cells[q] = r

cc1 = cc1+1

cc2 = cc2+1

cc3 = cc3+1

cc4 = cc4+1

cc5 = cc5+1

cc6 = cc6+1

cc7 = cc7+1

cc8 = cc8+1

cc9 = cc9+1

##############################################

# BOX CHECKER

def bc():

for r in (1,10):

count = 0

for q in (0,1,2,9,10,11,18,19,20):

if r in domain[q]:

count = count + 1

if count == 1:

for q in (0,1,2,9,10,11,18,19,20):

if r in domain[q]:

cells[q] = r

for r in (1,10):

count = 0

for q in (3,4,5,12,13,14,21,22,23):

if r in domain[q]:
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count = count + 1

if count == 1:

for q in (3,4,5,12,13,14,21,22,23):

if r in domain[q]:

cells[q] = r

for r in (1,10):

count = 0

for q in (6,7,8,15,16,17,24,25,26):

if r in domain[q]:

count = count + 1

if count == 1:

for q in (6,7,8,15,16,17,24,25,26):

if r in domain[q]:

cells[q] = r

for r in (1,10):

count = 0

for q in (27,28,29,36,37,38,45,46,47):

if r in domain[q]:

count = count + 1

if count == 1:

for q in (27,28,29,36,37,38,45,46,47):

if r in domain[q]:

cells[q] = r

for r in (1,10):

count = 0

for q in (30,31,32,39,40,41,48,49,50):

if r in domain[q]:

count = count + 1

if count == 1:

for q in (30,31,32,39,40,41,48,49,50):

if r in domain[q]:

cells[q] = r

for r in (1,10):

count = 0

for q in (33,34,35,42,43,44,51,52,53):

if r in domain[q]:
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count = count + 1

if count == 1:

for q in (33,34,35,42,43,44,51,52,53):

if r in domain[q]:

cells[q] = r

for r in (1,10):

count = 0

for q in (54,55,56,63,64,65,72,73,74):

if r in domain[q]:

count = count + 1

if count == 1:

for q in (54,55,56,63,64,65,72,73,74):

if r in domain[q]:

cells[q] = r

for r in (1,10):

count = 0

for q in (57,58,59,66,67,68,75,76,77):

if r in domain[q]:

count = count + 1

if count == 1:

for q in (57,58,59,66,67,68,75,76,77):

if r in domain[q]:

cells[q] = r

for r in (1,10):

count = 0

for q in (60,61,62,69,70,71,78,79,80):

if r in domain[q]:

count = count + 1

if count == 1:

for q in (60,61,62,69,70,71,78,79,80):

if r in domain[q]:

cells[q] = r

##############################################

#domain/cell reducer

def dcr():
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for p in range(0,81):

if len(domain[p]) == 1:

domain[p] = int(’’.join(map(str,domain[p])))

for j in range(0,81):

for k in range(1,10):

if domain[j] == k:

cells[j] = k

def heuristic():

cdr()

rdr()

coldr()

bdr()

rc()

colc()

bc()

dcr()

while newcount != count:

newcount = count

print "New Count = " + str(newcount)

heuristic()

count = 0

for i in range(0,80):

if cells[i] == 0:

count = count + 1

##############################################

#printer

for l in range(0,81):

print "cell " + str(l) + " = " + str(domain[l])

for l in range(0,81):

print "cell " + str(l) + " = " + str(cells[l])
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print "cells[0:9] = " + str(cells[0:9])

print "cells[9:18] = " + str(cells[9:18])

print "cells[18:27] = " + str(cells[18:27])

print "cells[27:36] = " + str(cells[27:36])

print "cells[36:45] = " + str(cells[36:45])

print "cells[45:54] = " + str(cells[45:54])

print "cells[54:63] = " + str(cells[54:63])

print "cells[63:72] = " + str(cells[63:72])

print "cells[72:81] = " + str(cells[72:81])

print time.time() - start_time

##################################################

#######
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