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ABSTRACT

The mammalian nose is a mytirpose organ that houses a convoluted airway labyrinth
responsible for respiratory air conditing, filtering of environmental contaminants, and
chemical sensing. Because of the complexity of the nasal cavity, the anatomy and function of
these upper airways remain poorly understood in most mammals. However, recent advances in
high-resolution medial imaging, computational modeling, and experimental flow measurement
techniques are now permitting the study of respiratory airflow and olfactory transport phenomena
in anatomicallyaccurate reconstructions of the nasal cavity. Here, we focus on efftaksitate
an anatomicalhaccurate transparent model fidanarparticle image velocimetry (PIV)
measurements. Challenges in the desigrfaloicationof anoptically transparenanatomical
modelwith refractive indexmatched working fluicare addresse®IV velocity field
measurement@ndresistance curve measarentsare presentedvhichwill laterbeused to
validate concurrent computational fluid dynamics (CFD) simulations of mammalian nasal

airflow.
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Chapter 1

Introduction and literature review

1.1 Introduction

This thesis willsummarizehe develpment of a complex internal flow experiment from
specimen tgphysical model experiments thaill be used fowvalidationof computational fluid
dynamics (CFD}¥imulations oimammalian nasdlinction The nrammas thatare being
considered in this studyrethe coyote, deehobcat, sea otter, amglay squirrel. Ultimatelythe
east ern ¢ mnasapassagdrigurel-B Wwad shosefor thearchitecture of the scaled
benchmarlbecauseunder physiological conditionthe squire | 6 s nasal fl ow patte
Reasoning for laminar flow will bdescribeelow. Considerable time was taken in the
development of the benchmark under the constraints of data acquisitioeans oPlanar

Particle Image VelocimetryP{V) techniques.

Figure 1-1. A) An overlay of theeastern gray squirrgiasal geometry. BA close up of the
bilateraly symmetricnasal geometry.



1.2 Literature review

1.2.1 The mammalian nasal anatomy

The mammalia nasal airway houses contorted passageways. These passageways are
formed by thin bony structures called turbingg.Figure1-2). These turbinate®r sometimes

called turbinalsare lined withepithelium whichis filled with vasculaturend

C(A) . (B)

single scroll double scroll
e.g., human - e.g., rat, deer

folded
e.g., squirrel "\

branching
e.g., canine

Figure 1-2. Crosssections of various mammalian airways, with the bony structure called
turbinates in black and the airway shown in white. Flow is into the. fagmplexity is seen to
increase from (A) to (D)

aids in thefour primary physiological functionsf the mammalian noseonditioningof inspired
air by heat transfer (e.g. heating or cooling), humidification and removing particuaaiks
sensing odorant molecules.
The nasal avity is divided into bilateralhsymmetric halves by theasal septunThe
sagittal plane is oriented such that the reflection where the plane interests is symmetric along the

nasal septum. The transverse plane is orthogonal to the sagittalAviat@ncally, each half of
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the nose is comprised of three main regions: the nasal vesthmikespiratorymaxilloturbinal)

region,and the olfactoryethmotrbinal) region(seeFigure1-3).

Nasal Nasomaxillary
Vestibule | Maxilloturbinal Region ﬁ‘egiOT,\ Ethmoturbinal Region
I I

Figure1-3. Sagittal view of thee a st er n g masg gesnoetryi darie énthasce of the
nasal airway bdorsal concha) dorsal meatus d)maxilloturbinal €) maxillary sinusf) nase
palatine canag)) ethmoturbinal$) nasopharyx

The rasal cavity beginat the narisinto whichflow i during inspiratiori erters prior to
movingcaudally into the nasa&kstibule The nasal vestibule is responsible for distributing
inspired air to the respiratory and olfactory regions of the.ige tothe sparse vasculature and
smallcrosssectional areaf the nasal vestibulseeFigure1-4 for crosssectional comparisQnit
is unlikely that the nasal vestobdli éeNpygospwnigdes
1958) The nasal vestibule branches into the darsdtusandthe maxilloturbind airways. The
maxilloturbinalairways, shown inFigure1-4, is a fractalike branching structure that provides a

largesurface area for heat
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and moisture exchangalthoughboth arecombined with the same orgahe maxilloturbinalair

flow (respiratory)s distinctly separate from thethmoturbinahir flow (olfactory) (Craven, et al.,

2010)

Axial Location (mm) 0.0

2.0 mm

Maxilloturbinal Region

Y

¢ Nasal Vestibule > -

1.0 2.0

e f. R

Nasomaxillary Region

9.1

10.0 11.0

12.0 135

» @

»

2%%?)
.

Figurel-4. Transverse crossections of the nasal geometry of the eastern grey squirrel (life size).
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Figure 1-5. Distribution of Reynolds number in the nasal airway of the eastern gray squirrel,
based on an anatomical reconstruction of the nose and physiological estimates of the flow rate, as
in (Craven, et al., 2007)

1.2.2Studies of nasal airflow

Previous experimental and computational studies of nasal ainftoeextensively
summarized byLawson, 2010)ncluding experimental studies that utilized rapid prototyping
techniques for creating physicgabdek for optical flow measurements using particle image

velocimetry.For more information, see sectitr?.3of (Lawson, 201Q)

1.2.3 Other experimental studies usingptical techniques

1.2.2.1 Experimental studies in complgeometries

PIV requiresthat optical distortion of both the light sheet and optical axis of the camera
to be minimalo reduce noise in PIV dat@io help reduce these optichstortions, index
matching of the working fluid anain optically cleamodelare employedIn Tablel-1, provided
by (Budwig, 1994) are a list of properties of aquensolutions and organic liquids that have been
used in various experiments whene working flud wasindexed matched with the experimental

model



Tablel-1. Properties of matching fluids. andt
at20°C

6

are the density and absolute viscosity of water

n ol o I References and comments

Aqueous solutions

glycerin 133-1.47 1-1.26 1-1490

zinc jodide 133-1.62 Hendricks and Avram (1981}, range
of vivy is 1 to 10

sadium iodide 1.5 60% Chen and Fan (1992)

Nal by wt.

potassium thiocyanate 1.33-1.49 1-1.39 1-2.4  Jan et al. (1989), mix with glycerin
to increase viscosity

ammonium thiocyanate 1.33-1.50 1-1.15 1-2.1  Hooper {1992}

sodium thiocyanate 1.33-1.48 1-1.34 1-7.5  Duncan et al. (1990)

Organic liquids

kerosene 1.45 0.82 Bovendeered et al. (1987)

silicone oil mixture 1.47 1.03 190 Edwards and Dybbs (1984)

mineral oil {paraffin oil) 1.48 0.85

turpentine 1.47 0.87 1.49

solvent naphtha 1.50 0.67

soybean oil 1.47 0.93 69

olive oil 147 0.92 84

castor oil 1.48 0.96 986

tung oil 1.52 0.93

cassia oil 1.60 Sinkankas (1966}

dibutylphthalate 1.49 Hendricks and Avram (1981):

Mixture of oil of turpentine
and tetrahydronaphtalene
{Tetraline)

cauiion, expcrteralcgen
Liu et al. (1990)

The solutioncontainingzinc iodide demonstrated a widange of index matching and

according tqHendriks & Aviram, 1982})he solution also hasectochromic properties. Placing

anelectrifiedanode in the free stremwill produce a dark brown trace of iodide. This property

could be used for flow visualization. Thadidetrace can be revsed by adding a reducing agent

1.30bjective

The objectiveof this research is to create anatomically accuraexperimental model of

a complex rodent nasal airway awadacquire PIV

measurements in the model for validabion

concurrent CFD simulation3he results of this work afatended to contribute to the

fundamentalinderstandingfaasal form and function in mammals, and to advance current state

of-the-art optical flow measurement techniques in complex experimental models.



Chapter 2

Materials and Methods

2.1 Experimental Model & Setup

In this chapter the desigof both the experimental setup and the experimental model will
be presentk Scaling methods were appligdthe development of the expegntal modeto
maintain dynamic similarity with physiological conditiomdethods for calibrating? 1V

measurements a complex internal flow geometwill also be presented.

2.1.1 Physical Model Design

The internal architecture of the physical model sr@atedhrough &five step process
(Figure2-1). Given the aim to aeqre experimental data via optical technigueEsistraints

associated with these techniques wemesidered during the development of the model.
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Figure 2-1. Methodology for generating an anatomically @ete computational and
experimental model of the mammalian nasal cavity.

2.1.1.1 Anatomical Reconstruction

A female eastern grey squir@ciurus carolinensjsspecimen with anass of
approximately 418 gvas acquiredh central Pennsylvania (PA)om alocal hunter in accordance
with the regulations of the PA Game Commissibime head was removed and preservet?in
paraformaldehyde solutioRligh-resolution magnetic resonance imaging (MRI) scans were
acquired, which resolve the bone and epitheliumémtisal passagewéye Rycke, et al.,
2003) A MRI contrast agenMagnevist (Beyer, Germanyyasused to improve the quality of
the MRI scans.

Acquisition of MRI data consisprimarily of time periods: T,T,and TE. Tand T, are
associated with the magnetic response of the material in question. TE is the time period between

the input of the MRI scanner and measurement of the response (MR signal) of the material. The
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response is dependent on proton density of the tiggueishaupt, et al., 2003n order to collect
accurateanatomicainformation the nasal cavity needs to be complefilgd with liquid, as
pockets of air can distort the surrounding tissue and corrupt the MRI scaRrgy(geR-2.)

The removal ofrappedhir required the specimen to be submerged in solution. The
specimen was oriented in various posisisach that air bubbles were seen exiting at the nares
and at the nasopharynx. large anatomically complex regions, a vacuum pinagh to be used to
help dislodgemore entrained air pockets located in the internal nasal geometry. The submerged
specimen was sealed into a latex sheath zip ties The sealed specimen was then placed into
the14-TeslaMRI scannefAgilent Technologies, USAHigh-resolution MRI scans were then

acquired withan isotropic resolution of 40 micrans

Figure 2-2. TransverseMRI slice in the asterngrey squirrel nasalairway. Blue arrowindicates
liquid-filled airways, red arrowpointsto an air pocket
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Image segmentatioof the left nasahirway (Figure2-3) wasaccomplished usingvizo
(Visualization Sciences GroupdSA). Due to peliminary image processing, sagntation of
large airways was trivial and was mostigcomplished by means of algorithmic schemes
available in Avizancludingregion growimg, thresholding, contour extii@n by means of edge

detection, andantour interpoléion and extrapolation in the axial direction

Figure2-3. A, raw MRI data slie. B, segmentedirway crosssection

After segmenting th&IRI data, ahreedimensional surface model wdengeneatedby
means of a modified form of thearchingcubesalgorithm(Lorensen & Cline, 19873vailable in
Avizo, yielding a triangulated surface mesh of the nasal airgyht subsequent surface
smoothing was then perfoed to reducsurface castellation @ 6 s t a i (Taubirs 1995y 6 6

yielding the final reconstructed surface model ofléfenasal airway (Figure-2).
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Figure 2-4. Threedimensionakurface model of thieft nasal airwayof the easterngrey squirrel
reconstructedfrom high-resolution MRI data. The rd surfaceis the external nose of the
specimenThe grey surface is theternal nasahirwaygeometry.

Experimentaktudyof flow in the nasahirway of keerscented mammatlsss proven
challengingTo advance statef-the-art optical flow measurement techniques in complex
anatomical models, one of the reastirat we chose the eastern gray squirrel is dits toore
complex msal anatomy compared with most other rodent specidsisasated inFigure2-5,
while beingless complex than other kesoented species, such as the canine (Craven et al.,
2007).However, thenasal airway®f the gray squirrehave characteristic dimensions on the
order of 1 mm, making it difficult to study flow patterns in detail at 1:1 s@&les, we chose to

fabricate al0 timedlife size physical model for optical flow measurements.
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Figure 2-5. Comparison of rodent nasal anatgniljustrating the complex nasal airway of the
eastern gray squirrel in comparison to other rodent speligsrow shows characteristiasal
airwaysin the respiratorymaxilloturbinal) region of thenose Bottom row showsirwayslocated

in the olfactory(ethmoturbinalyegion(Richter, et al., n.d.)

To generate a digitastereolithography (SLT) fildor fabrication, the reconstructed
surface model as prepared in the commercial software packdggics (Materialise, USA)In
particular, the model was first scaled by 10 times life size. TBeolean operations were used to
subtract the ® surface geometry from | ar ge rectanguhagatvioVvemeopft
airway. Theairway negative was then digitally cut into five sectiof#g(re 2-6) to simplify the

fabrication of the physical model.
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Figure 2-6. The reconstructed surface model of 1e& nasal airwayof the squirrel (left) was
subtracted from a large rectangular block to create a negative of the airway, which was then

digitally cut into five sections (right) to simplify fabrication of the expemntal model.

2.1.1.2Construction ofRefractivelndex-MatchedModel

An ideal index matched experiment should consist of an optically clear model

that shares the same index of refraction with a colourless working fluid.

R R N RN R A

= e
= =3
-" -
— .
HEA :
- e —r
S= e —
3;-1, e — = g
e &

.

Water Glycerol (59%) / water (41%)



14

Figure2-7. A view of gridlines is seen throughsgaledhuman nasatavity model when filled
with air (left), water (middle), and an optimal glycerol/water mixtiva matches the refractive
index of the mode(right). (Hopkins, et al., 2000)

Of the rapid prototyping techniques available in industry were chose as candidate
techniques for fabricating the nasal airway model: PolgJstereolithography (SLA). SLA is an
additive fabrication process; it constts the object in a vat of Usurable photopolymer via a
computercontrolledlaser. Polyet uses inkjet heads to displace lditable material onto a build
tray-. The photopolymer material is cured upon exit of the inkjet by laser IBith processes
produce the B object layer by layer. Afterareful examination of samples created using both

techniquesthe SLA technique was chosen fordfgical clarity, as seen ifrigure2-8.

£
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Figure 2-8. Two sample cubes produced by SLA (left) aRdlyJet(right). The SLA layer
resolution is 51 microns anithe PolyJetlayer resolution is 15 microng.he sirfaces of the
sample parts are unfinishddonetheless, note the lack of optical itlawith the PolyJet part.

It is important to not¢hat, in our experience, SLA did not produce a perfect, optically
transparent part. Due to slight optical inhomogenieitye materiglsample SLA parts were
somewhabpaque (Figure-8), resultingn the part scattering light (Figure9®, which is

undesirable for PIV measurements. To minimize this effect, the amount of SLA material was
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minimized by keeping the viewing walls as thin as structurally possible to minimize light

scattering.

Figure2-9. Gridlines can be sedmehinda sampleSLA cube(2x2x2 irf). The cube resiis seen
scatteringight from a 532 nm 100 mw laser beamhich isthe same wavelength of light used
later inPIV data acquisition.

Lastly, itis important tanote the significancef the orientation ofhe PIV
instrumentation (i.ecamera and light sheeth particular, due to optical inhomogeneity in the
material caused by the SLA layering, light rays that are parallel to theqflémelayering are
distorted. This effect can be minimized by orienting the PIV light sheet and camefanygks
to the layering of th&LA part(seeFigure2-10for illustration). Accordingly, the 10 times scaled
nasal airwgt model was fabricated with these constraints via the SLA process by Forecast3D

(Carlsbad, CA)Figure2-11.
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Figure2-10. Influence of the alignment of the laser light sheet amdera axis to the layers ah
SLA part(Butscher, et al., 2012)

Figure2-11. Tentimes scaledSLA mockl of thenasal airway of theastern grey squirrehares
are at the leftflow is from left to right Index of refraction of the Somos 11122 resin that was
usedto fabricate thenodelis 1.5121.515 atsodium Dline wavelength










































































































































