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Abstract: Research repeatedly demonstrates the effectiveness of pairing practice problems with 

similar worked examples to improve student performance on problem-solving tasks.  

However, missing from the research is how these “example-problem pairs” can be 

designed to improve pervasive conceptual deficiencies in the calculus domain.  The 

current study addressed the effectiveness of example-problem pairs in the content area of 

related rates.  Of special interest were visual representations and student-generated 

representations with worked examples on several outcome measures.  A pre-posttest 

experimental design was used with three conditions: conventional problem-solving (CP), 

worked examples with mathematical representations (WE-M), and worked examples with 

mathematical and visual representations (WE-V).  Participants included undergraduate 

students in introductory calculus courses.  Findings did not reveal statistically significant 

differences among the conditions on procedural performance, mental effort, conceptual 

understanding, or drawing.  However, further analyses suggested prior knowledge and 

use of drawings were significant factors contributing to the effectiveness of the worked 

example format.  Limitations of the current study and suggestions for future research are 

provided. 
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Chapter One 

Introduction 

 

 

Whether in the classroom or demonstrated in a textbook, math instruction often follows a 

predictable pattern.  New concepts and processes are introduced through instructional 

explanations and demonstrated or modeled with a few worked examples.  A series of practice 

problems is then presented that solidifies understanding of content and skill in procedures (see 

Larson, Hostetler, Edwards, & Heyd, 2001). 

In comparison to this conventional problem-solving method, recent research has 

uncovered greater learning outcomes through the extension of worked examples into the practice 

phase, especially for novice learners.  The combination of worked examples and practice 

problems has been studied in many content areas such as physics (Ward & Sweller, 1990) and 

chemistry (Biesinger & Crippen, 2010).  However, upper-level mathematics courses, such as 

calculus, have received little attention within this line of research.   

Research on learning and instruction in calculus is critical as it is a required introductory 

course to many STEM fields.  For example, topics in calculus are used in mechanical 

engineering, physics, chemistry, and even business.  Using the cognitive load theory as a 

framework, the current study extended the worked example research to the calculus domain to 

discover if benefits from examples paired with problem-solving tasks transfer to this content 

domain.  The worked examples in the current research employed verbal, mathematical, and 

schematic representations of related rates problems. 

 

Cognitive Load Theory and the Worked Example Effect 

According to Sweller’s cognitive load theory (Sweller, 1988), when learners face a 

problem solving task there are three types of “load” imposed on their working memory.  Intrinsic 
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load is the load within the material that must be experienced by a learner in order to construct an 

accurate internal representation of the information (see Sweller, 2010; Sweller, Van Merrienboer, 

& Paas, 1998).  Extraneous load refers to the load caused by features within the instruction that 

are irrelevant to the concepts to be learned (Sweller, 2010).  This load interferes with the 

processing and storage of pertinent information by directing a learner’s attention to unimportant 

information in the material (Sweller et al., 1998).  

While intrinsic and extraneous load relate to the content and instruction of the material, 

germane load is the load that the learner dedicates to the intrinsic load of the material (Sweller et 

al., 1998; Sweller, 2010).  Effective instructional design, according to cognitive load theory, 

reduces extraneous load and increases germane load (Chandler & Sweller, 1991).  When there is 

too much extraneous information within the material, limited working memory is taxed and 

allocates fewer cognitive resources to the intrinsic load of the material, reducing the germane load 

(Sweller & Chandler, 1994).  In contrast, if there is less extraneous information, a learner will 

have more resources dedicated to the intrinsic load, which results in an increase in germane load. 

Research utilizing the cognitive load theory examined worked examples as an 

instructional method.  These existing studies frequently presented “example-problem (E-P) pairs”   

This format presents a problem with given solution steps followed by a similar problem for the 

learner to solve (see Atkinson, Renkl, & Merrill, 2003; Renkl, Atkinson, & Große, 2004; van 

Gog, Kester, & Paas, 2011).  Researchers consistently reported statistically significant differences 

on learning outcomes between students who practice through example-problem pairs and those 

who practice with only problem-solving tasks.  The repeated superiority of performance by the 

students exposed to worked examples is known as the “worked example effect” (Sweller, 2006).  

This effect demonstrated that students not only perform better when learning from example-

problem pairs, but may do so in less time (Paas & Van Merrienboer, 1994; van Gog, Paas, & Van 

Merrienboer, 2006; Zhu & Simon, 1987), and with fewer initial errors (Sweller & Cooper, 1985).  
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This suggested that worked examples are a more efficient form of instruction than traditional 

problem-solving tasks.   

There is evidence that the benefits of worked examples can be attributed to a reduction of 

cognitive load (Schowonke, Renkl, Salden, & Aleven, 2011; Tuovinen & Sweller, 1999; van Gog 

et al., 2011; van Gog et al., 2006).   Schwonke, Renkl, Salden, and Aleven (2001) , for example, 

conducted a study with German high school students in circle geometry.  Participants in this study 

were randomly assigned to five different experimental groups that differed by the number of 

provided solution steps and to-be-solved steps.  Results from the study revealed that regardless of 

the difficulty of the task, students reported higher extraneous cognitive load for the to-be-solved 

steps than for the provided steps.  These high reports of cognitive load, in turn, negatively 

affected learning outcomes as measured by both procedural and conceptual posttest items.  It was 

also reported that extraneous load decreased for participants were given a higher ratio of worked 

solution steps, though this difference was not found to be statistically significant. 

In addition to the effectiveness of worked examples over conventional problem-solving, 

the worked example research has extended to test other variables.  For example, a copious 

number of studies focused on the format of the examples in order to learn how to optimize their 

effectiveness.  These studies addressed various factors including fading the steps as a scaffold for 

successful acquisition (Atkinson et al., 2003; Renkl et al., 2004; Salden, Aleven,& Schwonke, 

2010; Schwonke et al., 2011), or the presence of aids such as prompts or arrows (Cantrambone, 

1996).  These studies have been conducted through both computer programs (Schwonke, 

Berthold, & Renkl, 2009) and traditional paper and pencil format (Carroll, 1994).  Other variables 

addressed in-depth within the worked example literature include the age and ability of the 

participants, learner activities in which participants engage, the independent and dependent 

measures, and the content that is taught.      

 Worked example researchers studied various age groups elementary students (Mwangi & 

Sweller, 1998; van Loon-Hillen, van Gog, & Brand-Gruwel, 2012) to the elderly (Van Gerven, 
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Paas, Van Merrienboer, Schmidt, 2002).   University students were the most common participants 

(Atkinson et al., 2003; Biesinger & Crippen, 2010; Große & Renkl, 2007; etc.).   The participants 

in these studies also included those with disabilities (Owen & Fuchs, 2002) and low-achieving 

students (Carroll, 1994).   Relatedly, results reported that those with lower prior knowledge tend 

to benefit the most from example-problem pairs (Kalyuga, Chandler, Tuovinen, & Sweller, 

2001). 

  Other studies, still, focused on the activities in which learners may engage to study 

examples.  For example Große and Renkl (2007) addressed identifying errors and Rittle-Johnson, 

Star, and Durkin (2009) examined comparing examples.  From these studies interesting findings 

suggest that the interaction between worked example format and learner activities also contributes 

to the effectiveness of the worked examples for increased learning outcomes when compared to 

conventional problem-solving tasks. 

Worked example research covered a range of outcome variables.  As previously 

described, performance and cognitive load data are frequently collected.  Additionally, a few 

studies designed outcome measures that distinguish between procedural and conceptual 

performance.  Using the NAEP (1988) as a guide, Martin (2000, described later in chapter 2 of 

this paper) defined procedural knowledge as “the ability to note, select, and apply the appropriate 

concrete, numerical, or symbolic procedures required to solve a problem” (p. 77).  Conceptual 

knowledge was “characterized by the ability to identify examples and non-examples of a concept; 

to use, connect and interpret various conceptual representations; to know, apply, distinguish, and 

integrate facts, definitions, and principles, and to interpret assumptions and relations in a 

mathematical setting” (p. 77).  

Procedural knowledge, in the worked example research was most often measured through 

practice and posttest performance items (Schwonke, et al., 2009).   Conceptual knowledge, on the 

other hand, has been measured in various ways, including verbal selection items (Rittle-Johnson, 

et al., 2009) or written explanations of rationale (Berthold, et al., 2009).  Studies presented 
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evidence that worked examples may improve conceptual knowledge, but that these results may be 

dependent upon other supports, such as self-explanation prompts (Berthold & Renkl, 2009; 

Schwonke, Renkl,  Krieg,Wittwer, & Aleven, 2009).   

Although worked examples research is extensive, there are areas within the literature that 

received little or no attention.  These areas include calculus as a content area, multiple 

representations as an instructional method, and learner-generated representations as a problem-

solving strategy.  The purpose of the current study was to address gaps in the research to explore 

the effects of worked examples and representations on calculus students’ procedural and 

conceptual knowledge.   

 

Calculus 

Studies on worked examples were conducted in a wide range of highly-structured content 

areas such as physics (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; van Gog, Paas, Van 

Merrienboer, 2008; Ward & Sweller, 1990) and chemistry (Biesinger & Crippen, 2010; Crippen, 

Biesinger, Muis, & Orgill, 2009; Darabi, Nelson, & Paas, 2007).  Mathematics, in general, was 

frequently studied (e.g. Carroll, 1994; Kalyuga & Sweller, 2004).  Strong evidence from these 

studies suggested that worked examples can improve both procedural and conceptual outcomes in 

mathematics (Rittle-Johnson et al., 2009; Schwonke, et al. 2009). 

Though mathematics is studied frequently in this literature only one study was conducted 

in the calculus domain.  This course-long study, conducted by Miller (2010), focused on the 

effects of student participation in supplemental calculus instruction in addition to regular class 

instruction. This supplemental instruction utilized a “three-step” instructional approach during a 

weekly out-of-class discussion.  The three steps included (1) students studying a worked example 

on a computer program, (2) students solving a similar problem with the class that was given by 

the instructor, and then (3) students individually solving a problem similar to the previous worked 

example and problem.  Those students in the class that participated in this “three-step” 
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supplemental instruction received significantly higher posttest scores at the end of the semester 

than those students who did not participate.  Though Miller’s study utilized worked examples, it 

focused on the success of the supplemental instruction in comparison to class instruction alone.  It 

did not directly examine the effects of worked examples in the calculus course.  

The worked example effect in calculus instruction merits much more attention than it has 

been given.  Calculus is not only important for STEM fields, as previously mentioned, but it is a 

content area in which a large number of students are known to struggle.  In fact, Zimmerman 

(1991) considered introductory calculus the most challenging mathematics course for 

undergraduate students.  Reports in the 1980s and 1990s indicated that over half of the students 

enrolled in calculus either failed or dropped their course (Aspinwall & Miller, 1997; Ferrini-

Mundy & Graham, 1991).    

Many scholars attributed the extensive failure in calculus to students’ inability to 

conceptually understand fundamental calculus principles such as limits or derivatives (Aspinwall 

& Miller 1997; Orton, 1983a; Orton, 1983b; see also Mahir, 2009).  Even students who are 

procedurally successful in calculus frequently demonstrate inadequate conceptual knowledge 

(Orton, 1983a; Orton, 1983b).    In contrast to its prerequisite courses, the fundamental principles 

in calculus involve infinitesimal numbers and dynamic problem situations, both of which can be 

difficult to represent mentally.  Owing to this difficulty, experts recommended a widespread 

reform of calculus instruction that included more visual representations in order to enhance 

conceptual understanding (see Zimmerman & Cunningham, 1991).   

The current study addressed the worked example effect in the calculus domain for both 

procedural and conceptual knowledge outcomes.  Given the recommendation for more visuals in 

the calculus curriculum for conceptual understanding, the current study used traditional example-

problem pairs that contained only mathematical calculations as well as example-problem pairs 

with embedded visual representations of the problem situation in the example.  
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Multiple Representations 

A representation can be defined as a configuration that “stands for, symbolizes...or 

represents something else” (see Goldin & Kaput, 1996, pg. 398).   Internal representations 

include mentally constructed representations while external representations include observable 

physical configurations (Goldin, 1998; Goldin & Kaput, 1996).  External representations often 

include socially accepted systems such as mathematical notations or language (Goldin,1998) but 

also comprise other formats such as text, pictures, diagrams, or even manipulatives (Marley & 

Carbonneau, 2014).   

Multiple types of representations may exist for a single concept.   A function, for 

example, is a central concept throughout mathematics and is commonly represented in four 

different forms: graphical, algebraic, tabular, and verbal (Brenner, et al., 1997).  Different 

representations may reveal or conceal various features of a particular principle and, therefore, 

influence a student’s conception of the principle and even elicit different thinking processes 

(Parnafes & Disessa, 2004).  How students conceive “rate,” for example, has been found to be 

influenced by the type of representation of “function” to which they have been exposed (Herbert 

& Pierce, 2011).    

Students’ familiarity with multiple representations of a concept and their  ability to work 

with these multiple representations has been linked to their achievement (Panasuk, 2010) and 

depth of conceptual understanding  (Niemi, 1996; Panasuk, 2010; Panasuk & Beyranev,  2010) in 

that topic area. These findings hold within the calculus domain.  Villegas, Castro, and Gutiérrez 

(2009), for example, conducted a case study with three calculus students who were asked to solve 

optimization problems.  Analysis of protocols from the students’ think aloud data revealed a 

relation between students’ ability to work with, talk about, and translate between different 

representations and their success in solving the problems. 
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The research literature on multiple representations in worked examples is limited in both 

quantity and scope.  Schwonke, Berthold, & Renkl (2009) used eye-gaze data to determine 

difficulties students have when they learn from multiple representations.  In their study, worked 

examples were presented that utilized diagrammatic trees and arithmetical calculations to 

represent probability calculation.  A verbal problem stem was also presented.  Results from the 

gaze patterns suggested that deeper conceptual understanding was related to extensive visual 

processing of the diagrams.  The reverse was also found in that visual processing without 

diagrams was negatively related to conceptual understanding. 

Similarly, Berthold and colleagues (Berthold & Renkl, 2009; Berthold, Eysink, & Renkl, 

2009) also used worked examples in probability calculation. Both of these two studies were 

concerned with instructional aids that improved student learning from these worked examples.  

Self-explanation prompts and other aids that helped students integrate the representations 

significantly affected conceptual understanding as measured by open-ended explanation items.  

However, these prompts appeared to impair procedural performance as measured by similar and 

transfer items at posttest. 

 

Learner-Generated Representations 

Learner-generated drawing is “defined as a strategy in which learners construct 

drawing(s) to achieve a learning goal” (Van Meter & Garner, 2005, p. 287).  It is a strategy often 

employed to learn from text and requires translation across verbal and visual representation types.   

According to the generative theory of drawing construction, at least three cognitive processes are 

involved during drawing construction.  First, learners must select important information from the 

verbal text and create a verbal representation of the content.  Second, the learner uses this 

representation to create a non-verbal representation.  Last, the learner integrates the two 

representations (Van Meter & Garner, 2005, see pps. 317-318). 
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Findings from several experiments support that students who utilize drawing as a strategy 

to learn from text demonstrate improved learning outcomes over  those students who do not 

employ this strategy (Schwamborn, Mayer, Thillmann, Leopold, & Leuter, 2010; Van Meter, 

2001; Van Meter, Aleksic, Schwartz & Garner, 2006).  Conclusions from such research support 

that drawing a representation is even more effective than mere study of an illustration.  Many of 

these studies were conducted in science domains, such as biology.   

There is less existing research for drawing in learning mathematical concepts and 

procedures.  De Bock, Verschaffel, and Janssens (1998), for example, found that students who 

were prompted to make a drawing of arithmetical word problems performed better than those 

who did not draw representations of the problem, though this difference was not statistically 

significant.  Within the calculus domain, drawing research is most often conducted on 

constructing or sketching graphs for derivatives (Asiala, Cottrill, Dubinsky, & Schwingendorf, 

1997; Ubuz, 2007).  The current research targets drawing as a problem-solving strategy of 

students learning calculus problems that require differentiation. 

Important to the current study is the distinction between pictorial and schematic 

representations.  Pictorial representations are those that highlight the appearance of an object or 

scenario. While schematic representations are those that include information on relations between 

elements (Hegarty & Kozhevnikov, 1999).     In the instance of a cube, a pictorial representation 

would demonstrate a picture or image of a cube while a schematic representation would include 

basic information on its physical appearance and would include information on the important 

elements such as the length of the sides or if the sides were perpendicular.  Research indicates 

that schematic representations are more effective for successful problem-solving than pictorial 

representations (Edens & Potter, 2008).   

In their review of learner-generated drawings, Van Meter and Garner (2005) defined 

drawings as a representation intended to “look-like, or share a physical resemblance with the 

object(s) that the drawing depicts” (p. 287).  Schematic representations or diagrams were not 
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considered part of learner-generated drawing as they did not tend to focus on the physical 

appearance of an object.   The successful use of a learner-generated representation in the current 

study would both a correct representation of the physical appearance as well as the schematic 

elements.  For example, one problem in the current study presents a scenario with a person flying 

a kite (see Appendix F, page 53).  This problem scenario utilizes three different lengths including 

the diagonal, horizontal, and vertical distances between the person and the kite.  To successfully 

solve this problem, learners must recognize that the distances create a triangle and in order to find 

the missing values, the Pythagorean Theorem must be used.  An accurate representation, in this 

case, would include the correct physical arrangement of the schematic elements within the 

problem.    

Previous research on drawing as a strategy suggested that it is most effective when 

students are additionally provided instruction on how to draw accurately (Schwamborn et al., 

2010; Van Meter, 2001).  In the current study, the nature of one of the research questions 

addressed how the worked example format elicited spontaneous use of drawing.  Therefore, no 

drawing instruction or prompts to draw were provided.   
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Chapter 2 

The Current Study 

 

 

The current study focused on worked examples with representations of related rates 

problems in the calculus domain.  Specifically, the following research questions were addressed: 

 

1. Are there differences in problem solving performance among students who learn from 

either worked examples with both mathematical and visual representations (WE-V), 

worked examples with mathematical representations only (WE-M), or conventional 

problems without worked examples (CP)? 

2. Are there differences in conceptual knowledge among students who learn from either 

worked examples with mathematical and visual representations, worked examples with 

mathematical representations only, or conventional problems? 

3. Are there differences in reported cognitive load among students provided worked 

examples with mathematical and visual representations, worked examples with 

mathematical representations only, or conventional problems? 

4. Do students who spontaneously use learner-generated representations outperform 

students who do not?   

5. Are there differences in the number of learner-generated representations among the 

students who learn related rates from either worked examples with mathematical and 

visual representations, worked examples with only mathematical representations, or 

conventional problems?  

  

It is expected, as previous research suggested (Orton, 1983b) that related rates problems 

will be difficult for students to solve with only conventional problem-solving tasks.  As such, it is 
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hypothesized that students who receive the conventional problems only without worked examples 

will experience the highest reported cognitive load of the three conditions.  This high cognitive 

load will result in lower procedural performance and conceptual knowledge than the other two 

groups.   

The worked example effect is expected to be demonstrated by those students within the 

worked example conditions.  The presence of mathematical calculations will reduce student-

reported cognitive load, freeing more working memory space for the construction of an internal 

representation of the material.  This developed schema will result in greater procedural and 

conceptual knowledge than the conventional problem group.  The visual representations may 

serve as an external representation that frees working memory space as well as.  Students who 

receive the worked examples with both mathematical and visual representations are projected to 

outperform both of the other experimental conditions on procedural and conceptual measures.   

It is also anticipated that students who spontaneously generate representations will 

perform better on procedural learning outcomes.  As theories of drawing suggested, learners who 

engage in drawing as a strategy create and strengthen connections between verbal and visual 

representations of the problems.  Furthermore, when learners generate their own representations 

for problems, they will have a more correct internal representation of the problem situation and 

therefore, higher procedural performance.  Relatedly, it is expected that the condition with both 

visual and mathematical representations will encourage usage of the spontaneous drawing 

strategy more than the other two conditions, another reason for an expected higher performance 

from these students. 

 

Related Rates 

Related rates involve the relation among the rates of change of multiple variables within a 

function and typically require implicit differentiation for successful solution.  The following is an 
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example of a related rates problem and can also be found in the instructional booklet of the study 

material (see Appendix E): 

 

 A stone dropped into a still pond sends out a circular ripple whose radius 

increases at a constant rate of  
  

   
.  How rapidly is the area enclosed by the 

ripple increasing when the radius is      ? 

 

In this example, the student must find the rate that an area changes at a certain point in 

time.  The notion of changing rates is unique to calculus courses.  Where prerequisite algebra 

courses might require a student to find what an area is, a related rates problem requires a student 

to find how the area is changing at a certain moment in time.  The dynamic nature of these types 

of problems requires a more complex mental construct than a static situation used in algebra.   

The topic of related rates matched the purposes of this study for several reasons.  First, as 

previously mentioned, little research has addressed worked examples that use calculus as the 

content area.  Related rates are an application of differentiation within the calculus domain and 

are tasks that prove difficult for students to complete successfully.  Past studies have exposed 

general low performance on related rates problems (Martin, 2000; Orton, 1983b).  In fact, Orton 

(1983b) revealed that problems that involve rates of change were some of the most challenging 

items for calculus students to complete both in high school and college.  

Second, the high number of steps required to solve related rates problems introduces 

constraints on learners’ processing.  In addition to a high number of steps, these steps involve 

interconnected “elements” or concepts.  As Sweller (2010) suggested, tasks that involve several 

concepts that require reference to each other increase intrinsic cognitive load.  For example, the 

number of variables, the average rates versus instantaneous rates, the direction of change of the 

variables, as well as the process of differentiation, and the correct equation all must be conceived 
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in relation to each other for successful problem completion.  The number of interconnected steps 

makes these problems likely to result in high measures of reported cognitive load. 

 

Table 1  

Steps used in related rates problems. 

 Martin (2000)  Current Study 

1 “Sketch situation and label the sketch 

with variables or constants.” 

(Conceptual) 

  

2 “Summarise the problem statement by 

defining the variables and rates involved 

in the problem (words to symbol 

translation) and identifying the requested 

information.” (Conceptual) 

1 “Identify all known and unknown 

variables in the given problem.” 

3 “Identify the relevant geometric 

equation.” (Procedural) 

2 “Find an equation that relates the 

variables together.” 

4 “Implicitly differentiate the geometric 

equation to transform a statement 

relating measurements to a statement 

relating rates.” (Procedural) 

3 “Find the derivative of both sides of the 

equation using implicit differentiation 

with respect to t.” 

5 “Substitute specific values of the 

variables into the related-rates equation 

and solve for the desired rate.” 

(Procedural) 

4 “Substitute the known variables into the 

resulting equation from Step 3 and solve 

for the unknown.” 

6 “Interpret and report results.”  

(Conceptual) 

  

(7) “Solve an auxiliary geometry problem.” 

(Varies) 

(5) (Concurrent instruction tells students 

that sometimes an extra calculation is 

required and gives an example) 
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Martin (2000) organized the steps required to complete geometric related rates problems 

through a study of calculus textbooks and instructor interviews.  The resultant “standard solution 

model” presented six or seven steps as seen in Table 1.  The current study adapted Martin’s 

solution model to include only four or five steps.  Table 1 presents a comparison of the steps 

recommended by Martin and the steps used in the current study.   It should be noted that the last 

step in both methods is not required in every related rates problem and may occur in different 

stages within the solution procedure.   

The third reason related rates were used in this study is that the implementation of the 

steps to solve related rates problems requires a complex process involving both procedural and 

conceptual knowledge.  In addition to the creation of a standard solution model, Martin (2000) 

also classified each step of the related rates solution process as either procedural or conceptual 

(see Table 1).  Though many concepts in applied mathematics require both procedural and 

conceptual knowledge, related rates, in particular, rely on complexity of conceptual 

understanding as foundational to accurate procedural application.  

Ample evidence suggested that difficulties with related rates problems are due to a lack 

of conceptual understanding.   Martin’s (2000) study that accompanied the related rates solution 

model revealed that students commit more errors on steps that are classified as conceptual than on 

those that are classified as procedural.  In addition, students tend to view related rates problems as 

algorithms in which to substitute values but fail to take into account the context and relation of 

the variables (White & Mitchelmore, 1996).  Other research gave evidence that errors can be 

specifically attributed to misconceptions or inadequate conceptions of average and instantaneous 

rates of change (Schneider, 1992; Thompson, 1994).  In fact, Orton (1983b) found that students 

avoid the use of rates of change and instead substitute values of a variable as they might do in 

algebra.   

Data from a pilot study (n=11) conducted for the current research supported the findings 

from these studies.   Aside from minor calculation errors, the most common mistake students 
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made on these types of problems was misidentifying or misunderstanding a rate of change (see 

Figure 1), a step classified as conceptual by Martin (see Martin’s (2000) Step 2 in Table 1).  

 

 

 

Figure 1  

Student errors of changing rates and derivatives. 

 

Another common error that students from the pilot study committed was the failure to use 

a derivative.  Several of the pilot students simply substituted given values into a geometric 

equation, even after they were instructed to use implicit differentiation to complete the problem 

(see Figure 1).  Though Martin declared the differentiation step was procedural, these student 

errors also support the notion that students do not understand the concept of a derivative and its 

use in related rates problems.  

Furthermore, students in the pilot study were prompted in the posttest to explain why 

derivatives were used in the related rates problems.  Almost all participants, including those who 
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failed to use a derivative during problem-solving, provided a definition of a derivative with the 

phrase “rate of change.”   This suggested that even if students knew how to define a derivative, 

many did not know when and why to use derivatives in related rates problems.  This coincides 

with Orton‘s (1983b) assertion that many students have a low-level understanding of derivatives 

and fail to understand them conceptually. 

The fourth reason for using related rates in the current study is that many related rates 

problems are geometric in nature.  Thus, it was expected that students might spontaneously use a 

drawing strategy for problem solution, an additional focus of this research. 
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Chapter Three 

Methodology 

   

 

Design 

The current study followed a pretest-posttest with a control group design.  Participants 

were randomly assigned to one of three experimental conditions.  The first was a control 

condition that required students to complete related rates problems without paired worked 

examples.  This condition resembled traditional practice and is also known as conventional 

problem solving (CP).  The second condition presented example-problem pairs with worked 

examples that contained only a single representation, mathematical calculations (WE-M).  The 

third condition utilized worked examples that used multiple representations by presenting visual 

representations along with the mathematical calculations (WE-V).  These visual representations 

were schematics of the geometric problem situation.  

 

Participants 

 Participants were recruited in accord with approved procedures of the Penn State 

University Office of Research Protections (Protocol ID #42960, see Appendix A) from two 

introductory calculus courses (three classes) at a university in northwestern Pennsylvania.  One of 

the courses was a business calculus course while the other course was a technical calculus course.  

The technical calculus instructor taught two sections of the same course, both of which 

participated in the study.  Students volunteered for the study and received 1% extra course credit 

for their participation. 

Originally 80 students participated in the study.  Nine participants were removed from 

further analysis because they failed to finish the posttest due to self-imposed time constraints.  Of 
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the remaining 71 participants, 69% were male (n = 49), 67.6% (n = 48) identified themselves as 

Caucasian and 76.1% (n = 54) reported English as their first language.   The average reported age 

was 19.1 years and 78.9% (n = 56) of the students reported they had first-year status with the 

university.  The high number of first-year students in the sample made it challenging to collect 

accurate GPA data.   

The demographic questionnaire also revealed that 56.3% (n = 40) of the students reported 

that they had previously taken courses covering calculus, either in high school or during their 

undergraduate education.  The date of the study was arranged so that none of the students 

received related rates in their current calculus course but all of the students received prerequisite 

content including implicit differentiation. 

  

Materials 

The study materials included a consent form, demographic questionnaire, formula sheet, 

pretest, instructional booklet, acquisition packet, and posttest.  All materials were administered in 

a paper-and-pencil format.  Each part to the study was organized into numbered, sequential 

sections.  Each section had its own set of instructions for that portion of the study.  The materials 

were placed in an envelope with instructions for the general procedure for the entire study written 

on the outside of the packet. 

 

Demographic Questionnaire 

The first section of the research materials included a consent form, demographic survey, 

and a formula sheet.  The demographic survey (Appendix B) asked students about their personal 

background such as their age, race, academic standing, GPA, and gender.  Also asked were 

questions about their mathematics background.  Participants were asked the number of 

mathematics courses taken, their previous level of exposure to calculus content, and their 

expected grades in the course.   
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Formula Sheet   

To ensure that students who did not have formulas memorized were not at a 

disadvantage, a formula sheet was available to students at all times during the study (see 

Appendix C).  The one-page sheet gave students all formulas required within the study including 

areas, volumes, and surface areas of geometric shapes.  The distance-rate-time formula and the 

Pythagorean Theorem were also provided.  Last to be included were basic rules of differentiation, 

though implicit differentiation was not given on this sheet. 

 

Pretest  

The second section of the materials administered a pretest to the students.  The 11-item 

measure tested students’ prior knowledge in both algebra and calculus.  The algebra items 

required students to find the value of a variable in an equation and to find the area or volume of a 

particular geometric shape.  The calculus topics addressed the prerequisite skills required to 

successfully understand and solve related rates problems—taking derivatives and using implicit 

differentiation.  Also included in the pretest were two simple related rates problems to account for 

students who might already be able to successfully solve these types of problems.  The pretest is 

included in Appendix D. 

 

Instructional Booklet 

An instructional booklet and was next provided to all participants as the third section of 

the study.  It contained three pages on related rates and focused on both the conceptual 

understanding as well as the procedure for successfully completing the problems (see Appendix 

E).   The instructional booklet was designed to represent typical instruction students are exposed 

to in a textbook (e.g. Larson, et al., 2001).  For example, the instruction began with a review of 

the concept of a derivative and explained how derivatives are used in related rates problems.  

Explanation also contrasted related rates problems to algebra problems that simply find the area 
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or volume of an object.  Before explanation of the process of solving related rates problems, 

implicit differentiation was reviewed with a short example.    

After the general explanation of topic, the instructional booklet included the list of steps 

to complete the related rates problems as given in Table 1.  After presentation of the steps, the 

booklet gave two worked examples of related rates problems.   These worked examples were 

designed to teach students to solve related rates problems at two levels of complexity.  The first 

example required four steps and the use of an area formula while the second worked example 

required five steps and the use of a volume formula.    

To scaffold procedural understanding throughout the instruction, the first example 

included explicitly labeled steps that corresponded with the list given in the instructional booklet.  

The second example did not include these labels.   Written explanations were embedded within 

the instructions that compared and contrasted the two examples.  Neither of these examples gave 

a visual representation of the problem, but included the mathematical calculations only.   

 

Acquisition Task 

The fourth section contained the acquisition task.  Students were given a practice task 

that included eight related rates problems presented in pairs.  Each pair contained items that were 

similar in structure and required number of steps, but differed in their surface features.  For 

example, in the first pair of items both problems required four steps and the use of an area 

formula.  However, the first item used the area of a square while the second gave a scenario using 

a circle.  The other pairs required the use of different formulas including volume, surface area, 

and the Pythagorean Theorem.  As the students worked through the problems, the pairs increased 

in difficulty by the number of required steps to successful completion.  The first three pairs 

required four steps to completion and the final pair required five steps. 

The presentation format of the acquisition items differed by condition and this 

differentiation served as the independent variable in the experiment (see Appendices F, G, & H).  
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The control group was not given any solution steps throughout the task.  In this condition, 

students solved all eight problems.  In contrast, the worked example groups were both given all 

solution steps for the first item in each pair.  The second item in each pair did not have any 

solution steps given and participants in the worked example conditions were required to solve 

these problems.  The difference between the worked example groups was the number of 

representations included in the worked example.  Those students in the WE-M group received the 

mathematical calculations in a format identical to the second worked example provided in the 

instructional materials.  Those in the WE-V group also received a visual representation of the 

scenario in addition to the mathematical steps.  These representations illustrated the problem 

situation (see Appendix H).  The visual representations included a diagram of the geometric 

shape, labels that indicated parts of the shape (e.g. “s” for “side” or “h” for “height”), and arrows 

to show where and in which direction the object was changing. 

Cognitive load was assessed after each item by a 9-point Likert-type scale, similar to that 

first introduced by Paas (1992).  This measure, in previous research as well as the current study, 

asked students to rate the perceived “mental effort” they expended while completing a task (for 

more on the relation between mental effort and cognitive load see Sweller et al., 1998).  When 

previously tested among 16-18 year-old students, this scale was found to have a Cronbach’s alpha 

of .90 (Paas, 1992).  Since then, this scale has been used in numerous other studies with various 

populations and domains (e.g. Boekhout, van Gog, van de Wiel, Gererds-Last, & Geraets, 2010; 

Darabi, Nelson, & Paas, 2007; van Gog et al., 2011).  In the current study, students were asked to 

rate their perceived mental effort after each item, whether it was a problem-solving task or a 

worked example. 
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Posttest 

The fifth and final section of the research materials contained a posttest.  The posttest was 

divided into two sections. The first of the two sections measured procedural knowledge while the 

second measured conceptual knowledge. 

 

Procedural Items 

In the first section, four new related rates problems were presented.  Two of these 

problems paralleled items on the pretest and differed only by a slight change in phrasing and use 

of different values.  Both of these problems were volume problems that required four steps.   The 

other two items on the posttest were considered transfer items.  The first required six steps to 

completion as well as the use of two formulas: the Pythagorean Theorem and the simple distance 

formula (d = rt).   The second transfer item required four steps but gave a scenario from the 

domain of business calculus.  Instead of using formulas for shapes, an equation was given for 

calculating the expected cost of producing paper.  Mental effort and confidence were also 

assessed on each of the four items.   

 

Conceptual Items 

After the four related rates problems, two items were administered to assess student 

conceptual understanding.  The first item was an identification task and the second a 

representation task.  The first item asked students to identify examples of related rates problems 

from a given list of geometric scenarios (see Appendix I).  Of the seven examples listed, only 

three were correct examples.  The other four scenarios were designed to mimic superficial 

features of related rates problems but contain a different underlying deep structure.  For example, 

these scenarios included phrases such as “change” or “time,” but also presented a situation that 

would not be appropriate to use a derivative.  The second item prompted students to draw as 
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many “types” of representations for a given related rates problem.  They were explicitly 

instructed not to solve it.   

These conceptual tasks were developed and then revised through consultation with a 

mathematics education professor.  Feedback on the original items resulted in only minor changes 

from the original wording. 

 

Procedure 

The experiment was administered over a two-day period.  Students were given windows 

of time at which to participate.  Start and end times were flexible and students completed the 

work at their own individual pace.  Students were allowed to sign up for an arrival time with 

instructions to plan for at least one and a half hours to complete the materials.   Participants were 

randomly assigned to condition upon entry to the experimental setting.  They were handed an 

envelope that contained all materials with general instructions written on the outside of the 

packet.  The instructions were also explained to the students aloud to ensure they understood the 

general procedure.  Students were allowed to use a scientific calculator, but were not allowed to 

use calculators with calculus or graphing functions. 

Student participants first completed consent forms and the demographic items.  During 

the same section, a formula sheet was given with the instruction that they could use it at all times 

throughout the study.  Afterward, the participants completed the pretest, with instructions to do 

their best and to skip those problems they could not complete only after trying their best. 

Participants were then instructed to study the instructional booklet as they would a 

textbook until they felt they understood the information well.  They were also informed at that 

time that the following task would include solving problems in the content area addressed within 

the booklet.  Further, they were informed that they would not be able to return to the instructional 

explanations. 
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After students studied the instructional materials, they completed the acquisition task.  

Those in the worked example conditions were instructed to study the worked example first until 

they understood it before they attempted the paired problem-solving item.  No students were 

given prompts to draw during the acquisition task, but the instructions did encourage them to use 

“any known strategy.”  Students recorded their start and finish time for this task at the beginning 

and end of the items. 

Once the participants completed the practice problems and rated their mental effort and 

confidence on those items, they immediately proceeded to the posttest.  They were again 

instructed to try their best and use any known strategy to complete the problems.  Students were 

prompted to enter a start time at the beginning and end of the 4 items.  Time was not recorded for 

the conceptual items.  The study administrator monitored the students frequently to ensure 

compliance to the research protocol. 

 

Pilot Study 

During the semester preceding the current study, 11 students enrolled in the business 

calculus course at the same institution participated in a pilot study conducted to test the materials 

and experimental procedure.  Due to the small sample size obtained for the pilot, inferential 

analyses of outcome data were not conducted.  However, responses from the pilot study 

confirmed the material was at the appropriate level for the students, the instructions and items 

were understandable, and the measures were reliable.     

Data from the pilot study resulted in a few changes to the research materials administered 

in the current study.  First, the order of the practice items changed so that the items were 

presented in increased difficulty.  Second, one item on the posttest was changed to better align 

with the practice problems by the number of steps required.  And third, the conceptual items were 

altered to target deeper conceptual understanding.  The original conceptual item for the pilot 

materials consisted of open-ended questions that elicited student understanding of derivatives and 
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related rates.  The responses for these items, however, did not produce enough variance among 

students’ responses.  Therefore the item format was modified to require students to instead 

identify examples and nonexamples of related rates scenarios. 
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Chapter Four 

Results 

 

 

Pre-Analysis Considerations 

Responses on the prestest were used to ensure there was a random distribution of 

students.  All items on the pretest were scored as simply correct or incorrect.  Scales were created 

from the data to include algebra, geometry, differentiation, implicit differentiation, and related 

rates prior knowledge.  One item on the pretest (Item 4) was discarded because of the negative 

correlation with other items.  This item was one of three that targeted differentiation (see 

Appendix D).  All other scales included two items. 

The results for each of the scales of pretest items are provided by condition in Table 2.  

The one-way ANOVA did not reveal a significant difference among conditions on any of the 

pretest scales.  The overall mean score on the two related rates items was 0.27 (SD = 0.65) out of 

2 possible points.  This indicates, as expected, student performance on related rates problems was 

very low at pretest. 

The differences between the technical and business calculus courses were also considered 

when analyzing the pretest (see Table 3).  A chi-square test (see Table 4) confirmed that the 

distribution of the students in each course was equal among the conditions, (  (2, N = 71) = 4.25, 

p = 0.120).  The business calculus students received one more day of class instruction on implicit 

differentiation than the technical calculus students before the study commenced.  This difference 

resulted in the business calculus scores to be significantly higher on this scale.  There was also a 

significant difference between the courses on the Geometry scale, though slight.  No other 

significant difference was found between the two courses at pretest.  Course differences were 

controlled as random assignment to condition was realized and tested as noted above and in Table 

4. 
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Table 2  

Means and standard deviations for pretest results by subscale. 

 Condition   

Measure 
CP 

(n = 24) 
WE-M 
(n = 25) 

WE-V 
(n = 22) 

F p 

Algebra 1.13 (.68) 1.48 (.65) 1.36 (.73) 1.70 0.19 

Geometry 1.17 (.82) 1.52 (.56) 1.50 (.60) 2.06 0.14 

Differentiation 1.13 (.95) 1.48 (.96) 1.18 (.73) 2.00 0.14 
Implicit     

Differentiation 
0.83 (.82) 0.80 (.71) 1.00 (.87) 0.41 0.66 

Prerequisite 
Total 

4.25 (2.07) 5.28 (2.01) 5.05 (2.07) 2.23 0.12 

Related Rates 0.21 (.59) 0.28 (.68) 0.32 (.72) 0.16 0.85 

Pretest Total 4.46 (2.28) 5.56 (2.38) 5.36 (2.42) 1.49 0.23 

*Denotes statistically significant difference.  
Note: The maximum scores were:  Prerequisite Total: 8; Pretest Total: 10; all 

other scales: 2. 

 

 

 

Table 3  

Results of the pretest measures by course. 

 Course   

Measure 
Technical  

(n = 43) 

Business  

(n = 28) 

t p 

Algebra 1.33 (.71) 1.33 (.67) -0.05 0.964 
Geometry 1.28 (.73) 1.59 (.57) -2.00* 0.050 

Differentiation 1.28 (0.98) 1.25 (0.75) -0.69 0.494 

Implicit Differentiation 0.67 (0.78) 1.19 (0.74) -2.76* 0.008 
Prerequisite Total 4.56 (2.12) 5.32 (0.93) -2.01 0.049 

Related Rates 0.30 (0.67) 0.22 (0.64) 0.50 0.620 

Pretest Total 4.86 (2.57) 5.63 (2.00) -1.40 0.166 

*Denotes statistical significance at the α=0.05 level. 

 

 

Table 4 

Distribution of the number of students within conditions by course. 

 Condition  

Course CP WE-M WE-V Total 

Technical 15 18 10 43 

Business 9 7 12 28 

Total 24 25 22 71 
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Research Question 1 

The first research question asked, “Are there differences in problem solving performance 

among students who learn from either worked examples with both mathematical and visual 

representations, worked examples with mathematical representations only, or conventional 

problems without worked examples?”  

To answer this question, the paired items (2, 4, 6, and 8) on the acquisition task and the 

four related rates items on the posttest were scored as either correct or incorrect.  The dependent 

measures used for procedural outcomes include the total paired items score on the acquisition 

task, the total posttest score, the similar posttest scores and the transfer posttest score.  One-way 

ANCOVAs were conducted on each of these dependent variables by condition using the total 

pretest score as a covariate.   

Table 5 presents the descriptive statistics, F-statistics, and p-values resulting from the 

analyses of the dependent variables.  Across conditions, participants scored fairly low on all 

procedural knowledge measures.  Inferentially, no significant differences were found on any of 

the dependent measures after controlling for students’ prior knowledge.  This suggests that type 

of worked example did not have a significant effect on procedural knowledge outcomes. 

 

Table 5  

Results of student procedural performance by condition. 

  Condition 

F 

 

 CP  
(n=24) 

WE-M  
(n=25) 

WE-V  
(n=22) 

p 

Acquisition  0.75 (1.33) 1.28 (1.54) 1.18 (1.37) 0.24 0.789 

Posttest -Similar 0.92 (0.88) 0.88 (0.88) 0.77 (0.69) 1.03  0.364 
Posttest -Transfer  0.38 (0.77) 0.36 (0.70) 0.36 (0.58) 0.36  0.700 

Posttest -Total  1.29 (1.43) 1.24 (1.42) 1.14 (1.23) 0.89  0.415 

Note: The maximum scores for the measures are as follows: Acquisition Items: 4; Posttest 

Similar and Posttest Transfer: 2, Total Posttest: 4. 

*Denotes statistical significance at the α=.05 level. 
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Research Question 2 

The second research question asked, “Are there differences in conceptual knowledge 

among students who learn from either worked examples with mathematical and visual 

representations, worked examples with mathematical representations only, or conventional 

problems ?”  For this question, the identification task and the representation task on the posttest 

were used as conceptual measures.  Table 6 reports results from these two items. 

 

Identification Task 

The first conceptual item, as described in the methods section, required students to 

identify examples of related rates problems.  The following equation was used to score this item. 

 

      
                                 

 
 

 

According to this equation, a student who could correctly identify all three of the correct 

responses and only the correct three would receive a score of 1.  Of the 71 students that 

completed the similar and transfer items on the posttest, six did not attempt the first conceptual 

item and so were not used in the analyses. 

In all, many students found the first conceptual item challenging, with only one student 

receiving a perfect score.  It was found that the WE-M group scored the highest on this item, 

followed by the WE-V group and finally the CP group.   

 A closer analysis shows which types of errors were most commonly made on this item.  

Across the three conditions, it was more likely that students over-selected the examples than 

under-selected them.  This was expected because the wording of the examples was designed to 

focus on superficial features of related rates problems.  Interestingly, the WE-V group tended to 

make this overgeneralization error at a greater rate than the other groups.   
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Representation Task 

The second conceptual item required students to create as many types of representations 

as possible for a related rates problem without solving it.  Initial evaluation of the student-

generated representations on this task revealed three types of representations--mathematical, 

visual, and graphical.  In this study “visual” representations included those that were schematic or 

pictorial in nature but not those that were graphical.   

It is important to note that graphical representations did not appear anywhere in the 

materials.  It is also important to note that the instructions on this task specifically stated to not 

solve the problem that was presented, only represent it.  Therefore, it is unclear if students 

presented mathematical calculations as a representation or because they did not follow directions.  

As visual and graphical representations were the focus of this study, mathematical representations 

are not discussed in depth.  There were 4 students who gave only a mathematical representation 

and did not present a visual or graphical representation. 

The student-generated representations were tallied by type.  Many students drew more 

than one representation, but no student drew two of the same type of representation.  That is, 

some students presented a schematic and mathematical representation, but no student presented 

two different schematic representations.  The number of representations a student generated, 

therefore, equaled the number of types of representations a student drew.  

Among all students, the most preferred type of representation was a visual representation.  

A total of 53 students generated visual representations.  The second type of representation most 

commonly generated was a mathematical representation (n = 27).  Graphical representations were 

generated the least often with only 10 examples of this type of representation occurring among 

the 71 students.   

Of the three experimental conditions, students in the WE-V group generated the largest 

mean number of representations.  However, those in the WE-M group produced the highest mean 
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number of graphical representations.  Interestingly, students in the control group tended to 

provide more visual representations and total representations than the WE-M group.   

In response to the second research question, there does not appear to be a difference in 

students’ measured conceptual knowledge among the conditions as measured by outcomes on the 

identification task.  Outcomes on the representation task suggested; however, that experimental 

conditions may influence the type of representation students generate for these problems.   

 

Table 6  

Means and standard deviations of the conceptual items on the posttest. 

  Condition 

 CP 

(n = 24) 

WE-M 

(n = 25) 

WE-V 

(n = 22) 

Conceptual Identification Task 

False Examples Selected (Error) 
True Examples Not Selected (Error) 

True Examples Selected 

False Examples Not Selected 

0.56 (0.18) 

2.18 (1.22) 
0.86 (0.83) 

2.09 (0.87) 

1.86 (1.25) 

0.62 (0.18) 

1.95 (1.13) 
0.72 (0.88) 

2.23 (0.92) 

2.09 (1.06) 

0.59 (0.16) 

2.43 (1.03) 
0.43 (0.60) 

2.53 (0.68) 

1.62 (0.97) 
Conceptual Representation Task    

   Mathematical Representations 0.36 (0.49) 0.32 (0.48) 0.50 (0.51) 

Visual Representations 0.81 (0.39) 0.64 (0.49) 0.86 (0.35) 

Graphical Representations 0.09 (0.29) 0.20 (0.41) 0.14 (0.35) 
   Total Representations 1.27 (0.70) 1.16 (0.80) 1.50 (0.67) 

 

 

Research Question 3 

For the third research question it was asked, “Are there differences in reported cognitive 

load among students provided worked examples with mathematical and visual representations, 

worked examples with mathematical representations only, or conventional problems? 

Consistent with previous research (Paas, 1992; etc.), cognitive load was measured by the 

self-reported mental effort ratings on the acquisition and posttest.  Only the paired items were 

used in the analysis of the acquisition task, even though all students were prompted to report 

mental effort on all acquisition task items.  Reliability analyses of the mental effort rating scales 
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resulted in a Cronbach’s alpha of 0.88 for the acquisition scores.  The mental effort rating scale 

for the posttest resulted in a reliability of 0.66. This somewhat lower reliability score was 

expected due to the presence of similar and transfer items. 

One-way ANCOVAs analyzed the differences in students’ ratings among conditions with 

the total pretest score as a covariate.   No significant difference was found among the conditions 

on the acquisition (F(2, 69) = 0.90, p = 0.41) or posttest tasks (F(2, 69) = 1.09, p =0.34).  For 

both the acquisition and posttest tasks, the CP group reported the highest average mental effort 

(M = 6.21, SD = 1.80; M = 5.50, SD = 1.91) followed by the WE-V group (M = 6.18, SD = 1.25; 

M = 5.13, SD = 1.20) and lastly, the WE-M condition (M = 5.49, SD = 1.77; M = 4.97, SD = 

1.73).   

In response to the third research question, contrary to expectations, these data did not 

indicate a difference in the cognitive load reported by students among conditions. 

 

Research Question 4 

The fourth research question addressed differences in performance between students who 

used a drawing strategy and those who did not.  Specifically, the question asked, “Do students 

who spontaneously use learner-generated representations outperform students who do not?”   

To answer this question, learner-generated representations were scored as either present 

or not on each of the acquisition items.  The total number of drawings each student generated on 

these problems was counted.  The participants were divided across conditions into those who 

drew at least once (n = 43) and those who did not generate any drawings (n = 28).  An 

independent t-test was conducted on total acquisition problem performance by these groups.  A 

statistically significant difference was found on practice problem performance (t(61) = -2.00, p = 

0.050, d = 0.453) between those who that did draw (M = 1.35, SD = 1.51) and those who that did 

not draw (M = 0.67, SD = 1.18).  Those who generated drawings performed higher on the practice 

problem performance.  
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Similar results were found when the same analysis was performed on the posttest 

performance.  Students were divided into a group that drew at least once on the posttest (n = 41) 

and those that did not generate any drawings on this measure (n = 30).  Again, a significant 

difference (t(69) = -2.81, p < .01, d = 0.67) favored the performance of the students who drew at 

least once (M = 1.59, SD = 1.48) over those who did not draw (M = 0.73, SD = 0.87). 

Therefore, as expected, the use of student-generated representations did result in 

significantly higher performance scores on both acquisition and posttest tasks. 

 

Research Question 5 

The fifth question asked if there was a significant difference among the conditions on the 

number of drawings that were produced by the students.  A one-way ANCOVA with total pretest 

score as covariate failed to reveal a significant difference in the number of drawings among the 

conditions on the practice problems (F(67,2) = 2.62, p = 0.08) or on the posttest  (F(67, 2) = 2.21, 

p = 0.12).  Descriptive statistics for these measures are given in Table 7.  On both measures, the 

WE-V drew the most often, followed by the CP group and finally, the WE-M group. 

Though drawing resulted in higher performance, the visually-oriented worked examples 

failed to elicit this strategy more often than the other two groups.   

 

Table 7  

Means and standard deviations for number of drawings by condition. 

 Condition 

 CP 

(n = 24) 

WE-M 

(n = 25) 

WE-V 

(n = 22) 

Acquisition Drawings 0.67 (0.64) 0.56 (0.58) 1.05 (1.00) 

Posttest Drawings 0.58 (0.50) 0.52 (0.59) 0.91 (0.87) 
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Chapter Five 

Discussion 

 

 

The purpose of this research was to explore the effect of visual representations embedded 

into worked examples in comparison to worked examples with calculations only and traditional 

practice problem tasks on students’ learning of calculus related rates.  Areas of special interest 

were procedural and conceptual knowledge, cognitive load, and student-generated 

representations.  The current study experienced several limitations but yet yielded many 

interesting findings, both of which warrant future research on worked examples with multiple 

representations in related rates.   

 

Procedural and Conceptual Knowledge 

The first and second research questions addressed procedural and conceptual learning 

outcomes.  Findings from previous research led to the expectation that the two worked examples 

conditions would lead to a higher procedural performance.  Furthermore, previous research 

warranted an expectation that visual representations embedded within worked examples would 

improve student conceptual knowledge (Berthold & Renkl, 2009).  Findings from the current 

study, however, indicated no significant differences on students’ conceptual or procedural 

performance among the experimental conditions.   

There are several possible reasons for failing to find a significant difference in students’ 

performance among the conditions on the procedural and conceptual measures.  One limitation in 

this study that may have contributed to the lack of significant results in several measures was a 

small sample size.  Power analyses from previous studies suggest a sample size of 818 is 

desirable to indicate significant performance results in this study.  To conduct this analysis, effect 
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sizes were extrapolated from previous research in worked examples that used multiple 

representations and a similar number of conditions (Berthold, Eysink, & Renkl, 2009). 

In addition to a small sample size, the results on the procedural and conceptual measures 

hinted at a floor effect.  Including the known difficulty of relate rates problems, consistent low 

results in this study may be due to either poorly designed instruction in the instructional booklet 

or students’ failure to study the instructions thoroughly.  Future research might include controlled 

instructional study time across conditions or an instructor-led training to ensure students receive 

the adequate instruction to complete the problem solving tasks. 

More importantly, the current study did not include means to ensure students used the 

examples effectively.  Previous studies suggest that the manner in which students use worked 

examples contributes to resulting outcomes.  For example, Carroll (1994) found that less 

successful students frequently engaged in rote copying of examples and thereby reduced worked 

examples to mere references.  In contrast, high-performing students in his experiment studied the 

worked examples first, and then completed the paired problems.  Though the current study 

instructed students to study the worked examples before attempting the paired problem, there was 

no mechanism in place to guarantee students followed this procedure.  While this may be 

ecologically valid of true study behavior, it causes a challenge in examining the benefits and 

results of worked examples, representations, and drawing on student learning of related rates.   

Relatedly, additional research indicates the importance of self-explanation to receive 

greater benefits from studying from worked examples.  Chi and colleagues (1989) demonstrated 

that students who performed higher on tasks involving worked example-problem pairs (“good” 

students) self-explained the worked examples while the “poor” students (those who performed 

lower) did not exhibit this behavior.  This self-explanation effect was also demonstrated on 

worked examples with multiple representations such as those found in the current study (Berthold 

et al., 2009; Berthold & Renkl, 2009).  Future research could test the benefit of required self-

explanation coupled with the current experimental conditions. 
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Most importantly, the students in the WE-V group may not have been given adequate 

supports to integrate the representations to optimize learning from of these types of worked 

examples.  Relating aids and self-explanation prompts were found essential in previous research 

on worked examples with multiple representations (Berthold et al., 2009; Berthold & Renkl, 

2009). 

Tarmizi and Sweller (1988) exemplified integration of representations through their study 

of worked examples in geometry.  They found that students who studied using a diagram with the 

shape and angle information integrated into the same image experienced significantly higher 

learning outcomes than those who studied from worked examples where the diagram and values 

of angles were given in separate sources.  The separate sources of information caused a split-

attention effect, which increased cognitive load and decreased performance.  The purpose of the 

current study was to discover the effect of the visual representations in related rates problems and 

did not address supports for integration. The schematics that were presented contained minimal 

information including only a few labels and arrows to indicate direction.  Future research should 

address further integration of the representations.  For example, if more information, such the 

values of variables (            and operators (         ⁄         is given within the visual 

representation, is the benefit of studying with multiple representations recovered?   

In addition to the research questions, there are a couple findings revealed in the 

procedural performance data that merit further discussion.  First, exploratory analyses that 

targeted prior knowledge and performance give strong evidence for an expertise-reversal effect 

(see Kalyuga, 2007; Kalyuga, Chandler, & Sweller, 1998; Kalyuga & Sweller, 2004).   The 

approximate highest (n = 24) and lowest (n = 22) thirds of the students at pretest were considered 

to create a high and low prior knowledge groups.  A two-way ANOVA demonstrated a significant 

effect of prior knowledge on acquisition (F(1,46) = 10.87,  p < .01) and posttest scores 

(F(1,46)=11.85, p<.01).  There was no effect of condition on the acquisition task (F(2,46) = 0.04, 
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p=.96) or the posttest (F(2,46) = 0.07, p = .93).  The interaction between the two factors also was 

not significant (for acquisition, F(2,46) = 2.78, p = .07; for posttest, F(2,46) = 2.18, p = .13).  

However, when only the similar items were analyzed on the posttest, the interaction was 

significant (F(2,46) = 3.72, p = 0.03). 

Figures 2 and 3 illustrate this possible expertise reversal effect.  These plots indicate that 

for students with lower prior knowledge, the WE-V condition resulted in the highest scores while 

the WE-M condition resulted in the lowest performance for these participants.  For the students 

with higher levels of prior knowledge, the opposite pattern is revealed.  Again, a greater sample 

size might have demonstrated statistically significant results.  Research in the future should 

address how prior knowledge interacts with worked examples with multiple representations, 

particularly those worked examples for related rates. 

 

  

Figure 2  

Acquisition performance by condition and prior knowledge level. 
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Figure 3  

Posttest performance by condition and prior knowledge level. 

 

The second finding that warrants attention is the nature of the representations on the 

second conceptual item.  Most students produced visual representations while very few (n =10) 

produced graphical representations, even though the word “graph” was in the item prompt (see 

Appendix I).  Due to the high number of variables within related rates problems, a graphical 

representation may not be helpful in problem solving.  However, derivatives are typically taught 

using graphical representations (Ubuz, 2007).  A graphical representation of related rates, 

therefore, may help in conceptual understanding of related rates problems.  Future research 

should explore how students are able to connect the related rates problems to the graphical 

representations of derivatives and the effectiveness of this connection for conceptual knowledge. 

 

Cognitive Load 

The third research question posed if there would be a difference between the three 

conditions on student-reported mental effort.  It was hypothesized that the WE-V group would 

experience the least amount of cognitive load because a visual representation was already 
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provided.  This expectation was not met due to lack of significant differences among the groups 

on this measure.   

The current study suggested that there were no differences in students’ reported cognitive 

load across the conditions.  Given that integration of the representations improves learning 

outcomes, it might be speculated that the students in the WE-V group experienced high cognitive 

load because they were not given enough support to integrate the verbal, mathematical, and visual 

representations of the problems.  The lack of an integration aid gave these students more 

information to study without reducing the intrinsic load. However, this does not explain why the 

WE-V group did not report significantly higher cognitive load than the other groups if more 

cognitive processes were required.  Furthermore, reported cognitive load was analyzed on the 

paired problems, which were all conventional problem-solving tasks that did not have multiple 

representations that were given in the problem. 

Future research should be conducted to not only determine if integrated worked examples 

of related rates reduce reported cognitive load, but studies should also be designed to determine 

the source of the load in these types of worked examples.  Specifically, what features or aspects 

within the worked examples cause the high cognitive load ratings?  Is it one representation in 

particular, or is the process of integration the cause for high cognitive load? 

 

Student-Generated Representations 

The fourth and fifth questions asked if students who drew outperformed those who did 

not and if one condition elicited more student-generated drawings than the other groups.  As 

expected, significant differences were found between those who drew and those who did not draw 

on both the acquisition task and posttest.  The superior performance of those who drew in this 

study suggests that the strategies students use to solve problems do influence performance, 

possibly even more so than the type of worked example from which students study.   
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One purpose of this research was to determine if the presence of these visual 

representations elicited a spontaneous drawing strategy more often than conventional worked 

examples or problems.  As such, the instructions in the current study did not prompt or require 

students to sketch representations of the problem.  Unexpectedly, there were not differences 

among conditions on the number of drawings generated by the students.  Therefore, drawing did 

have a significant influence on performance, but visuals embedded within worked examples did 

not increase the use of drawing as a strategy.   

Though this finding was unexpected, it presents an observation for mathematics 

instruction.  The current research suggests that the mere presence of schematic representations 

does not prompt students to use a drawing strategy any more than conventional problem-solving 

tasks.  Future research should be conducted to discover the conditions under which students use 

the drawing strategy and when they find it the most effective.  

It is possible that the use of student-generated drawings was affected by the type of item.  

On the acquisition task, for example, across conditions students most often spontaneously 

generated drawing on the last item (Item 8).  This item was also the most difficult of the paired 

items according to performance and mental effort scores.  It is unclear from the current study if 

the eighth item was more difficult because it was a five-step item (required the use of an 

additional calculation), a Pythagorean theorem item, or because the problem did not specifically 

state the geometric shape to be used as the other paired items did.  Any of these reasons might 

cause students to generate a visual representation of the problem. Similar drawing results were 

demonstrated on the posttest, with most of the drawings appearing for the third item.   

Additional research on the use of prompted and spontaneous drawing across different 

types of problems should explore how the problem situation influences the effectiveness of 

drawing as a problem-solving strategy.  Specifically, when students are prompted or required to 

draw on less difficult items, would this result in increased cognitive load and lower performance?  

Also, are there problem scenarios for which certain types of drawings are more useful?   
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Noteworthy is the difference between the control group and the worked example group 

with only mathematical representations on the number of student-generated representations.  On 

both the acquisition task and posttest, the control group drew more often than the worked 

example group with mathematical representations, though the difference was slight.  This pattern 

was also shown in the second conceptual task where students were required to generate 

representations.  Though no conclusions can be drawn from the current data without statistically 

significant results, one might speculate from these data that worked examples have the potential 

to suppress spontaneous usage of problem-solving strategies.  When a solution pattern is 

provided, a learner could assume that all necessary information to solve the problem is given and 

may be less likely to employ problem-solving strategies that are not evident in the example.   

Furthermore, drawing accuracy was not addressed in this current study but has been 

known to influence learning outcomes (Schwamborn, et al, 2010).  Future research should also 

address drawing accuracy in related rates problems.  Do worked examples with embedded visual 

representations aid in producing more accurate student-generated representations on the paired 

problems, and perhaps greater performance? Also, as previously mentioned, some researchers 

have suggested instruction on drawing as a strategy is helpful for successful problem solution.  

Future studies can be conducted on how to instruct students to draw accurate representations. 

 

Conclusion 

The current study contributed to the existing research in several ways.  First, this study 

addressed the topic area of calculus, a subject that could benefit from research on worked 

examples but given little previous research attention.  In this study, the worked example effect did 

not hold in the calculus domain.  Second, the study resulted in data that demonstrates superior 

performance for students who generate their own representations of related rates problems.  This 

effect has been found in other areas of research such as biology or other areas of mathematics but 
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was not yet found in this topic area.  Third, data suggested that a possible expertise reversal effect 

exists for the worked examples with visual representations. 

From the current study, the visual representations embedded within example-problem 

pairs did not produce greater procedural or conceptual knowledge in the area of related rates.  Nor 

did they reduce cognitive load or elicit more student-generated representations as the hypotheses 

projected.  However, prior knowledge and the use of student-generated representations did 

influence successful problem-solving in this area.  These findings warrant further investigation 

into the interactivity of worked example format, prior knowledge, and student-generated 

representations.  Specifically, under what conditions do visual representations hinder students 

with higher prior knowledge?  Or, how does the nature of the task affect the use and effectiveness 

of drawings on related rates problems?   

Also important to study is the use of other types of representations for related rates 

problems.  As previously mentioned, different representational types can influence students’ 

conceptions of topics within mathematics (Panasuk, 2010).  In the current study, schematic 

representations were given as a visual representation of related rates problems.  Arrows were used 

in these schematics to depict the changing nature of the objects in the problems.  Additionally, 

few students generated a graphical representation of related rates. Further research should be 

conducted on other elements within the schematic representations as well as other types of visual 

representations such as graphs. 

Another important issue is the possibly impaired usage of drawing for students who learn 

by worked examples with only calculations.  Though results were not significant in this study, 

further research should examine this important observation.  Worked examples may produce 

greater performance results, as previous research suggests, but is this superior performance 

obtained at the expense of stifling problem-solving strategies? 
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Appendix A 

Section 1 of 5: Consent Form 

 

Informed Consent Form for Social Science Research 

The Pennsylvania State University 

Title of Project:  

Worked Examples and Learning Strategies: A Study in the Calculus Domain 

Principal Investigator:  Charlyn W. Shaw, Graduate Student  

232 Cedar Building 

University Park, PA 16802  
cws195@psu.edu 

 

Advisor:  Dr. Rayne A. Sperling  

   232 Cedar Building 
   University Park, PA 16802 

   rsd7@psu.edu  

 
1. Purpose of the Study:  The purpose of this study is to explore the learning outcomes related 

to different types of worked examples used in instructional materials. 

 

2. Procedures to be followed:  This study follows a pretest/post-test design.  You will first be 
asked to complete initial forms including demographic information and a pretest.  Following 

the pretest, you will study an instructional sheet and complete problem-solving tasks.  A post-

test will follow.  Scientific calculators will be allowed (extras will be available).  At a later 
time, your class grades and a following test score will also be requested from your professor. 

 

3. Discomforts and Risks:  There are no risks in participating in this research beyond those 
experienced in everyday life.  

 

4. Benefits: You will be given an added 1% of your final grade for participation in this project.  

You will also be allowed access to the materials used in this study that could be useful 
resources for studying in your course.  Your responses are also beneficial to the research 

community as they will help improve the instructional design of learning materials. 

 
5. Duration:  It will take at most 2 hours to complete this experiment. 

 

6. Statement of Confidentiality: Your participation in this research is confidential.  You will 
be asked to give your Penn State user ID at the beginning of the study to be able to report an 

extra credit list to your professor.  Once the class grades and test scores are received and an 

extra credit list is given to the professor, identifying information will be removed from the 

data collected.  The data will be stored and secured at the Cedar building on the University 
Park campus in a locked file. The Pennsylvania State University’s Office for Research 

Protections, the Institutional Review Board and the Office for Human Research Protections in 

the Department of Health and Human Services may review records related to this research 

mailto:cws195@psu.edu
mailto:rsd7@psu.edu
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study. In the event of a publication or presentation resulting from the research, no personally 

identifiable information will be shared.    
  

7. Right to Ask Questions: Please contact Charlyn Shaw at cws195@psu.edu with questions, 

complaints or concerns about this research. You can also use this e-mail address if you feel 

this study has harmed you. If you have any questions, concerns, problems about your rights 
as a research participant or would like to offer input, please contact The Pennsylvania State 

University’s Office for Research Protections (ORP) at (814) 865-1775. The ORP cannot 

answer questions about research procedures. Questions about research procedures can be 
answered by the research team. 

 

8. Payment for participation:  You will receive 1% extra on your MATH 110/140 final grade.  
If a student is unable to participate, an optional problem-solving booklet can also be 

completed for this extra credit if requested.  The problems will take an equivalent amount of 

time to complete (approximately 2 hours). 

 
9. Voluntary Participation: Your decision to be in this research is voluntary. You can stop at 

any time. You do not have to answer any questions you do not want to answer. Refusal to 

take part in or withdrawing from this study will involve no penalty or loss of benefits you 
would receive otherwise. 

 

 You must be 18 years of age or older to take part in this research study.  If you agree to take part 

in this research study and the information outlined above, please sign your name and indicate the 

date below.   

 

You will be given a copy of this consent form for your records. 

 

 

_____________________________________________  _____________________ 

Participant Signature       Date 

 

_____________________________________________  _____________________ 

Person Obtaining Consent      Date 
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Appendix B 

Section 1 of 5: Demographic Questionnaire 

PSU user-ID (example: xyz123):__________________  

Gender: ________________ Age: ________ Race: _____________________________  

Major: ____________________________  

GPA: _________  

Are you a native English speaker?  Yes  No  

Year in College:  

First-Year  Sophmore  Junior   Senior   Other  

If “other,” please explain:  

Math SAT :________ Verbal SAT:________ Total SAT:_________  

If you took another test, such as the ACT, please indicate the test and score:___________ 

Current MATH course:   MATH 083 MATH 110  MATH 140  MATH 140H  

Current Instructor:     Olszewski        Falvo /Olsavsky       Olsavsky      Ong     Other: ___ 

Have you taken this course previously?   Yes  No  

Last test score in MATH 083/110/140:_________ (NOT letter grade) 

Grade you expect to receive in this course:  A  B  C  D  F  

Grade typically achieved in a math course:  A B C D F  

Number of math-related courses have you taken after enrolling in college:__________ (DO count 

current math courses this semester, including 083/110/140.  Do NOT count a course twice if it 

was repeated.) 

Please list the courses and indicate the courses you are currently taking:  

 

Did any of these courses cover calculus content?  Yes  No  

If yes, please specify:  

 

Math classes taken before enrolling in college: (Check all that apply)  

_____Basic Math  

_____Pre-Algebra  

_____Geometry  
_____Algebra 1  

_____Algebra 2  

_____Trigonometry  

_____Statistics  

_____Pre-Calculus  

_____Calculus  
_____Calculus AP  

_____Other (please specify):___________
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Appendix C 

Section 1 of 5: Formula Sheet 

*You may use this sheet during all sections of the study. 

Volume and Surface Area Formulas 

Shape Surface Area Volume 

 

Rectangular prism 

 

              
 

      
 

 
Cube 

 

 

      

 

     

 

Right circular cylinder 
 

 

            
 

 

       

 

Right circular cone 
 

 

    √          
  

 

 
     

 

Sphere 

 

 

       
  

 

 
    

Other Formulas 

Pythagorean Theorem          

 
 

Formula with distance, rate 

and time 

 

     
 

Basic Differentiation Rules 
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]  
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Appendix D 

Section 2 of 5: Pretest 

Directions:  Please complete the following questions to the best of your ability.  You are 
encouraged to use any known strategies to complete the problems but you will not be 

allowed to ask any questions.  Please show all work on the paper provided.   

 
If you do not know how to solve an item, you may skip it.  Please record the time you 

start as well as the time you finish when prompted to do so.  After you mark the finish 

time, please do not return to work on the problems.  When you are finished, turn your 

paper over and continue to the next section. 
 

*(Large space left after each item to show work.) 

 
Start Time: _____:__________  

 

1) Solve for  :                           

2) If      √       , find      .  
3) What is the volume of a sphere with              ? 

4) Use the product and chain rules to find       when                    . 

5) Find 
  

  
  by implicit differentiation:               

6) What is the surface area of a cone with                and       ? 

7) Solve for  :                           
8) Air is being let out of a spherical balloon so that the radius decreases at a constant rate of 

    
  

   
.  At what rate is air being removed when the radius is     ? 

9) Use the quotient and chain rules to find        when       
        

  . 

10)  Find 
  

  
  by implicit differentiation:          

11)  A cube is increasing in size by each of its sides increasing at a uniform rate of   
  

   
.  How 

fast is the volume changing when each edge is     ? 

 
Finish Time: _____:__________  
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Appendix E 

Section 3 of 5: Instructional Booklet 

Directions: Record the start time then read the following information just as you would a 
textbook. Please study the materials until you feel like you understand them. You are 

encouraged to use any known strategy to help you understand the information. You will 

not be able to ask questions during this activity. The next section will include solving 
practice problems in the subject area covered in this booklet. When you feel you 

understand the information, record the finish time and turn this section over before 

continuing to the next. You will not be allowed to return to this section.  

 
Start Time: _____:__________  

 

Applications of Derivatives: Solving Related Rates Problems 

 
Recall: A derivative is the slope of the tangent line for an equation at a certain point. Derivatives 

tell at what rate a variable is changing in relation to another variable (i.e. the rate at 

which “y” changes with respect to “x”).  

 
Through this instruction, you will learn how to solve problems involving related rates of change. 

Related rates problems deal with the relationship between two variables within an equation. In 

other words, as one variable within an equation changes, how does it affect the rate of change of 
another variable within the same equation?  

 

For example, a person is standing next to a lamppost.  The light from the lamppost casts a shadow 
of the person on the ground. One could use algebra and geometry to calculate the length of the 

person’s shadow. You would need the height of the person, the height of the lamppost and the 

distance between the person and the lamppost.  

 
What if the person began walking away from the lamppost? The person’s shadow would change 

in length as he moved away. One can use calculus to determine how fast the length of his shadow 

is changing as the person walks away.  
 

It is important to note that the length of the shadow is not changing at a constant rate. After the 

first three feet the shadow could be changing at a different rate than it would be six feet away 
from the lamppost. It is important to know at which point in time you are considering.  

 

The following table gives more examples of the differences of the uses of algebra and calculus for 

similar problems. 
 

Scenario Sample Algebra Question 
Sample Related Rates 

Question 

A cone-shaped tank that is 
being filled with water. 

What is the volume of the 
water in the tank when the 

depth and radius are at a 

certain point? 

At what rate is the volume 
changing at a certain depth 

and radius? 

A thin, circular, sheet of metal 

expands when heated. 

What is the area of the sheet of 

metal at a given radius? 

At what rate is the area of the 

sheet of metal changing at a 

given radius? 
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Related rates problems are an application of derivatives.  They use implicit differentiation to find 

the derivative of an equation with respect to a certain variable, usually time, t. 
 

Review: Use implicit differentiation to find the derivative of           with respect to t. 

 

          
 

  
[  ]  

 

  
[   ]  

 

  
[  ] 

  
  

  
    

  

  
   

 

Once an equation is differentiated, the known values can be substituted into the equation.  The 

equation can then be solved for the unknown values.  The following chart gives the steps to 
solving related rates problems.  Following the chart, there are two provided examples. 

 

Steps for Solving a Related Rates Problem 

1. Identify all known and unknown variables in the given problem. 

2. Find an equation that relates the variables together. 

3. Find the derivative of both sides of the equation using implicit differentiation with 

respect to t. 

4. Substitute the known variables into the resulting equation from Step 3 and solve for the 
unknown. 

 

Example 1 

 
Circular Ripples in a Pond   A stone dropped into a still pond sends out a circular ripple whose 

radius increases at a constant rate of  
  

   
.  How rapidly is the area enclosed by the ripple 

increasing when the radius is      ? 
 

Step 1: Identify the known and unknown variables in the given problem. 

 
  

  
  

  

   
   The rate of the change of the radius. 

  

  
     The rate of the change of the area. (Unknown) 

          The radius at time, t. 

 

Step 2: Find an equation that relates the variables together. 
 

        The formula for the area of a circle. 

 

Step 3: Find the derivative of both sides of the equation using implicit differentiation with respect 
to t. 

 

        
  

  
 

 

  
[   ]  

  

  
  (  

  

  
)  

  

  
    

  

  
  The derivative using implicit differentiation and the chain rule. 
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Step 4: Substitute the known variables into the resulting equation from Step 3 and solve for the 

unknown. 
 

  

  
    

  

  
  

  

  
        ( 

  

   
)  

  

  
    

   

   
  When the radius is     , the area is increasing at a rate of   

   

   
. 

 

Some related rates problems require the use of extra calculations to complete steps 3 or 4.  This 
might even require using other formulas.  Consider the following example and compare it to the 

previous example. 

 

Example 2 
 

Conical Sand Pile  Sand is falling off a conveyor and into a conical sand pile at a rate of   
   

   
.  

The diameter of the base of the cone is always three times the height.  At what rate is the height 

of the pile changing when the pile is      high? 

 

Step 1: Variables 

 

   
  

  
    

   

   
    

          

   
  

  
    

            
          

Step 2: Equation 
 

      
 

 
      

       
 

 
   

  

 
  

 
 

      
 

 
      

      
 

 
 (

  

 
)
 

   

      
 

 
 (

   

 
)  

      
 

 
     

Steps 3&4: Derivation and Solution 
 

          
 

 
     

       
  

  
 

 

  
[
 

 
   ]  

        
  

  
 

 

 
 (     

  
)  

       
  

  
 

 

 
     

  
  

  
   

   
 

 

 
        

  

  
  

  
   

   
 

 

 
         

  

  
  

  
   

   
            

  

  
  

       
  

  
 

  

      

  

   
 

 

   

  

   
  

 

In the previous example, there was more than one unknown variable.  The volume formula was 

the equation used to relate the variables together, but needed to be in terms of  .  The relation 

between   and   was given and was substituted into the equation. Because the relation was 
constant (the diameter was always three times the height), it was inserted into the equation before 

taking the derivative. 

 

 

Finish Time: ______:____________ 
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Appendix F 

Section 4 of 5: Acquisition Task, Condition 1 

Directions: The following packet contains four pages of related rates problems.  Each page 
presents two problems that are similar to each other.  Both problems are followed by two 

short questions about the mental effort required to complete the problem and your 

confidence in your answers.   
 

You are encouraged to use any known strategy to solve the problems but you will not be 

allowed to ask any questions.  Please show all your work on the paper provided.  Record 
the start and stop times when prompted to do so.  When you are finished, turn this section 

over and continue to the next section. 

 

Note:  While solving the problems, please remember to note the units and the sign of the rate of 
change (increasing is + and decreasing is - ). 

 

*(Large space left after each problem to show work.  Mental effort and confidence scale shown 
after workspace for every item) 
 

 
 

Start Time: _____:__________  

 

1. The sides of a square are increasing at a rate of  
  

   
     What is the rate of change in the 

area of the square when one side measures      ? 

 
2. Oil spilled from a ruptured tanker spreads out in a circle whose area increases at a 

constant rate of   
   

  
.  How fast is the radius of the spill increasing when the radius is 

    ? 
 

3. A ice cube in the shape of a cube is melting in such a way that each side is decreasing at a 

rate of     
  

   
. At what rate is the surface area of the ice cube changing when the side is 

    ? 
 

4. A sphere has a surface area that is increasing at a rate of   
   

   
.  At what rate is the radius 

increasing when the radius is      ? 
 

5. A rectangular prism with a square base is increasing in volume by   
   

   
.  At the time 

when the length of the side of the base is      and the height is     , the height is 

increasing at 
 

 

  

   
.  If the base remains square, what is the change of the length of the 

side at that time?   
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6. The radius of a right circular cylinder is increasing at a rate of   
  

    
 and the height is 

decreasing at a rate of   
  

   
.  At what rate is the volume changing when the radius is 

     and the height is      ? 

 

7. A       ladder is leaning against a wall.  If the top of the ladder slides down the wall at 

a rate of   
  

   
, how fast will its base be moving away from the wall when the top is      

above the ground? 
 

8. A girl is flying a kite on a piece of string.  The kite is        above the ground and the 

wind is blowing the kite horizontally away from her at   
  

   
.  At the time        of 

string has been let out, what rate must she let out the string to keep it flying at the same 
height? 

 

Finish Time: _____:__________ 
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Appendix G 

Section 4 of 5: Acquisition Task, Condition 2 

Directions: The following packet contains four pages of related rates problems.  Each page 
presents two problems that are similar to each other.  The first problem is a worked 

example and the second is one you must solve.  Both problems are followed by questions 

about the mental effort you used to understand or complete the problem and/or your 
confidence in your answer.  FIRST, study the worked example and answer the mental 

effort question, THEN complete the second problem and answer the following questions.   

 
You are encouraged to use any known strategy to solve the problems but you will not be 

allowed to ask any questions.  Please show all your work on the paper provided.  Record 

the start time and stop times when prompted to do so.  When you are finished, turn this 

section over and continue to the next section. 
 

Note:  While solving the problems, please remember to note the units and the sign of the rate of 

change (increasing is + and decreasing is - ). 
 

*(Large space left after each paired problem to show work.  Mental effort scale shown after every 

example and work space. Confidence scale shown after every workspace for odd-numbered 

items) 
 

 
 

Start Time: _____:__________  

 

1. The sides of a square are increasing at a rate of  
  

   
     What is the rate of change in the 

area of the square when one side measures      ? 

 
 

2. Oil spilled from a ruptured tanker spreads out in a circle whose area increases at a 

constant rate of   
   

  
.  How fast is the radius of the spill increasing when the radius is 

    ? 
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3. A ice cube in the shape of a cube is melting in such a way that each side is decreasing at a 

rate of     
  

   
. At what rate is the surface area of the ice cube changing when the side is 

    ? 

 

4. A sphere has a surface area that is increasing at a rate of  
   

   
.  At what rate is the radius 

increasing when the radius is      ? 

 

5. A rectangular prism with a square base is increasing in volume by   
   

   
.  At the time 

when the length of the side of the base is      and the height is     , the height is 

increasing at 
 

 

  

   
.  If the base remains square, what is the change of the length of the 

side at that time?   
 

 

6. The radius of a right circular cylinder is increasing at a rate of   
  

   
 and the height is 

decreasing at a rate of   
  

   
.  At what rate is the volume changing when the radius is 

     and the height is      ? 

 

7. A       ladder is leaning against a wall.  If the top of the ladder slides down the wall at 

a rate of   
  

   
, how fast will its base be moving away from the wall when the top is      

above the ground? 
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8. A girl is flying a kite on a piece of string.  The kite is        above the ground and the 

wind is blowing the kite horizontally away from her at   
  

   
.  At the time        of 

string has been let out, what rate must she let out the string to keep it flying at the same 

height? 

 
Finish Time: _____:__________ 
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  Appendix H 

Section 4 of 5: Acquisition Task, Condition 3 

Directions: The following packet contains four pages of related rates problems.  Each page 
presents two problems that are similar to each other.  The first problem is a worked 

example and the second is one you must solve.  Both problems are followed by questions 

about the mental effort you used to understand or complete the problem and/or your 
confidence in your answer.  FIRST, study the worked example and answer the mental 

effort question, THEN complete the second problem and answer the following questions.   

 
You are encouraged to use any known strategy to solve the problems but you will not be 

allowed to ask any questions.  Please show all your work on the paper provided.  Record 

the start time and stop times when prompted to do so.  When you are finished, turn this 

section over and continue to the next section. 
 

Note:  While solving the problems, please remember to note the units and the sign of the rate of 

change (increasing is + and decreasing is - ). 
 

*(Large space left after each paired problem to show work.  Mental effort scale shown after every 

example and work space. Confidence scale shown after every workspace for odd-numbered 

items) 
 

 
 
Start Time: _____:__________  

1. The sides of a square are increasing at a rate of  
  

   
   What is the rate of change in the 

area of the square when one side measures      ? 

 
2. Oil spilled from a ruptured tanker spreads out in a circle whose area increases at a 

constant rate of   
   

  
.  How fast is the radius of the spill increasing when the radius is 

    ? 
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3. A ice cube in the shape of a cube is melting in such a way that each side is decreasing at a 

rate of     
  

   
. At what rate is the surface area of the ice cube changing when the side is 

    ? 

 

4. A sphere has a surface area that is increasing at a rate of   
   

   
.  At what rate is the radius 

increasing when the radius is      ? 

 

5. A rectangular prism with a square base is increasing in volume by   
   

   
.  At the time 

when the length of the side of the base is      and the height is     , the height is 

increasing at 
 

 
 

  

   
.  If the base remains square, what is the change of the length of the 

side at that time?   

 

6. The radius of a right circular cylinder is increasing at a rate of   
  

    
 and the height is 

decreasing at a rate of   
  

   
.  At what rate is the volume changing when the radius is 

     and the height is      ? 

 

7. A       ladder is leaning against a wall.  If the top of the ladder slides down the wall at 

a rate of   
  

   
, how fast will its base be moving away from the wall when the top is      

above the ground? 
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8. A girl is flying a kite on a piece of string.  The kite is        above the ground and the 

wind is blowing the kite horizontally away from her at   
  

   
.  At the time        of 

string has been let out, what rate must she let out the string to keep it flying at the same 

height? 

 

 Finish Time: _____:__________ 
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Appendix I 

Section 5 of 5: Posttest 

 
Directions:  This activity contains two parts.  The first section contains problems in the same 

subject area that you just practiced.  The second section contains a survey about your 

experiences solving the problems.   
 

For the first part, please complete the questions to the best of your ability.  You are 

encouraged to use any known strategies to complete the problems but you will not be 
allowed to ask any questions.  Please show all work on the paper provided.   

 

If you do not know how to solve an item, you may skip it.  Please record the time you 

start as well as the time you finish when prompted to do so.  After you mark the finish 
time, please do not return to work on the problems.   

 

When you are finished with both parts, turn your paper over, return all sections to the 
envelope and turn it in to the proctor. 

 

Part 1 

*(Large space left after each problem to show work.  Mental effort and confidence scale shown 

after workspace for every item.  Part 2 not included.) 
 

 
Start Time: _____:__________ 

 

1. A spherical balloon is being deflated so that the radius decreases at a constant rate of 

   
  

   
.  At what rate is air being removed when the radius is     ? 

 

2. All edges of a cube are expanding at a rate of   
  

   
.  How fast is the volume changing 

when each edge is      ? 

 

3. A train, starting at 11 am, travels east at        while another, starting at noon from the 

same point, travels south at       .  How fast are they separating at 3 pm? 

 

4. The cost C (in dollars) of manufacturing x number of high-quality computer laser printers 

is  

        
 

 ⁄     
 

 ⁄          

If the current level of production is 1728 printers and is increasing at the rate of 350 

printers each month, find the rate at which the cost is increasing each month.  

Finish Time: _____:__________ 
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5. For which of the following scenarios would differentiation be appropriate to use to find 

the solution?  You may use the area at the bottom of the page for scratch paper. 

(Mark all that apply) 

 

 Finding the area of a square at a certain time if the lengths of sides are uniformly 

changing and the length of the sides at that time are known. 

 Finding the volume of a cylinder at a certain time when its radius and height are 

given at that time. 

 Finding the change in height of a pyramid at a specific time as its volume increases 

but the area of its base stays the same. 

 Finding the radius of a circle at a certain time when its change in area and change in 

radius at that time are given. 

 Finding the change in volume of a cube between time a and time b when its volume 

at both times are given. 

 Finding the change of the surface area of a sphere at a certain time when its radius at 

that time and the rate of change of the radius at that time are given. 

 Finding the area of a circle at a certain time when the radius at that time is given as 

well as the change in radius at that time. 

 

6. Please construct as many representations of as many types (such as a drawing or a graph) 

as possible for the following scenario.  In each representation, include all important 

details that are needed to solve the problem.  Do NOT find an answer to the problem.   

A stone dropped  into a still pond sends out a circular ripple whose radius increases at a constant 

rate of  
  

   
.  How rapidly is the area enclosed by the ripple increasing when the radius is      ? 
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