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ABSTRACT 

 
Vehicles equipped with internal combustion engine (ICE) have been in existence for over 

a hundred years. Although ICE vehicles (ICEVs) are being improved by modern automotive 

electronics technology, they need a major change to significantly improve the fuel economy and 

reduce the emissions. Electric vehicles (EVs) and hybrid EVs (HEVs) have been identified to be 

the most viable solutions to fundamentally solve the problems associated with ICEVs. 

This thesis is concerned with modeling and simulation of EVs. Specifically, additional 

attention is paid to algebraic loops, a general problem that may occur in many other systems 

besides vehicles. First, a nonlinear battery model is developed and the algebraic loop is broken by 

several different methods. The simulation results are compared and analyzed. Then a PEM fuel 

cell model is developed and the results from the literature are reproduced. The fuel cell model 

contains a more complex algebraic problem when connected to a load other than current source. 

This problem has not been talked about in the literature and some different methods are 

developed and compared to deal with it. Last, an electric vehicle model is developed and previous 

methods are applied to the vehicle model. The simulation results of the EV model are analyzed 

and discussed as well. 

Key words: Electric vehicle, battery, PEM fuel cell, linearization, algebraic loops, 

MATLAB/Simulink 
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Chapter 1  
 

Introduction 

Motivation 

Vehicles equipped with internal combustion engine (ICE) have been in existence for over 

a hundred years. Although ICE vehicles continue to be improved through modern automotive 

electronics technology, they need a major change to significantly improve fuel economy and 

reduce emissions. Electric vehicles (EVs) and hybrid Electric Vehicles (HEVs) have been 

identified as the most viable solutions to fundamentally solve the problems associated with ICE 

vehicles [1]-[4]. Hybrid electric vehicles (HEVs), battery electric vehicles (BEVs), and plug-in 

hybrid electric vehicles (PHEVs) are becoming more popular. PHEVs are charged by either 

plugging into electric outlets or by means of on-board electricity generation. These vehicles can 

drive at full power in electric-only mode over a limited range. As such, PHEVs offer valuable 

fuel flexibility [5]. PHEVs may have a larger battery and a more powerful motor compared to a 

HEV, but their range is still very limited [6]-[7]. A Fuel Cell Vehicle (FCV) or Fuel Cell Electric 

Vehicle (FCEV) is a type of vehicle that uses a fuel cell to power its on-board electric motor. Fuel 

cells in vehicles create electricity to power an electric motor, generally using oxygen from the air 

and stored hydrogen. As of 2009, motor vehicles used most of the petroleum consumed in the U.S. 

and produced over 60% of the carbon monoxide emissions and about 20% of greenhouse gas 

emissions in the United States.
 
In contrast, a vehicle fueled with pure hydrogen emits few 

pollutants, producing mainly water and heat, although the production of the hydrogen would 

create pollutants unless the hydrogen used in the fuel cell were produced using only renewable 

energy [20]. 

http://en.wikipedia.org/wiki/Vehicle
http://en.wikipedia.org/wiki/Fuel_cell
http://en.wikipedia.org/wiki/Electric_motor
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Hydrogen_vehicle
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In order to increase the efficiency and accuracy of automotive design, Computer Aided 

Engineering (CAE) has been playing an ever increasing role throughout the process of vehicle 

design process. With the increase of computing power, manufacturers are now able to perform 

design, testing, and optimization of a vehicle through computer simulation, all prior to the actual 

manufacturing of a vehicle [8]. 

The purpose of this thesis is to create a MATLAB/Simulink electric vehicle model that 

can be used for controller design and simulation before applying to hardware and real vehicle. 

This thesis mainly focuses on the algebraic loop problem during simulation that has not been 

thoroughly reported in the literature regarding vehicle modeling and simulation. 

 

 

Problem Statement 

An algebraic loop in a Simulink model occurs when a signal loop exists with only direct 

feedthrough blocks within the loop. Direct feedthrough means that the block output depends on 

the value of an input port; the value of the input directly controls the value of the output. Non-

direct-feedthrough blocks maintain a state variable. Two examples are the Integrator or Unit 

Delay block. 

Some Simulink blocks have input ports with direct feedthrough. The software cannot 

compute the output of these blocks without knowing the values of the signals entering the blocks 

at these input ports at the current time step. 

An example of an algebraic loop is shown in Figure 1-1. Note that this is not a 

recommended modeling pattern. 
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Figure 1-1. An example of an algebraic loop. 

Mathematically, this loop implies that the output of the Sum block is an algebraic 

variable xa that is constrained to equal the first input u minus xa (for example, xa = u – xa). The 

solution of this simple loop is xa = u/2. 

In Simulink models, algebraic loops are treated as algebraic constraints. Models with 

algebraic loops define a system of differential algebraic equations (DAEs). Simulink does not 

solve DAEs directly. Simulink solves the algebraic equations (the algebraic loop) numerically 

for xa at each step of the ODE solver [9]. 

Algebraic loops may cause some problems. If the model contains an algebraic loop, we 

cannot generate code for the model. The Simulink algebraic loop solver might not be able to 

solve the algebraic loop. While Simulink is trying to solve the algebraic loop, the simulation 

might execute slowly. Thus it worth doing some research on algebraic loops while modeling and 

simulation.  

This thesis begins with a Li-ion battery model which can be used as a subsystem in HEV 

model and develops a series of methods to break the algebraic loop and compares the results 

among them. Then the whole vehicle is modeled and simulated and the methods are applied to 

this more complex HEV model. These methods can also be applied to other models containing 

algebraic loops. 
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Organization 

In Chapter 2, a battery model that can be used in the electrical vehicle model is developed 

and analyzed. Tremblay, O. and Dessaint, L.-A., along with Dekkiche, A.-I., developed an easy-

to-use battery model in “A General Battery Model for the Dynamic Simulation of Hybrid Electric 

Vehicles” in 2007. They used only the battery state-of-charge (SOC) as a state variable in order to 

accurately reproduce the manufacturer’s curves for the four major types of battery chemistries 

[10]. These four types are: Lead-Acid, Lithium-Ion (Li-Ion), Nickel-Cadmium (NiCd) and 

Nickel-Metal-Hydride (NiMH). They described the battery model and its parameters. Later in 

2009, Tremblay and Dessaint presented an improved battery dynamic model [11]. The charge and 

the discharge dynamics of the battery model are validated experimentally with four batteries 

types. An interesting feature of this model is the simplicity to extract the dynamic model 

parameters from batteries datasheets. Only three points on the manufacturer’s discharge curve in 

steady state are required to obtain the parameters. The battery model is included in the “Electrical 

Sources” Library of Simulink.  

In Chapter 3, A PEM fuel cell model is also studied and developed. In [19], El-Sharkh et 

al. introduced an easy to use PEM fuel cell model but they assumed the temperature and internal 

resistance to be constant. In [21], Zhang et al. developed the temperature and internal resistance 

dynamics as functions of current, which turns out to be a more practical model. The fuel cell 

model used in this thesis in based on these two papers. 

In Chapter 4, an electrical vehicle model is developed using the battery and fuel cells as 

subsystems. Treating the other subsystems as power load of battery or fuel cells, the focus point 

of this vehicle model is still algebraic loops compared to other vehicle models in the literature. 

In Chapter 5, conclusions are made and future works are illustrated. 

  



 

 

Chapter 2  
 

Modeling and Simulation of Li-ion Battery 

A lithium-ion battery (sometimes Li-ion battery or LIB) is a member of a family 

of rechargeable battery types in which lithium ions move from the negative electrode to the 

positive electrode during discharge and back when charging [12]. Lithium-ion batteries are 

common in consumer electronics. They are one of the most popular types of rechargeable battery 

for portable electronics, with one of the best energy densities, no memory effect (note, however, 

that new studies have shown signs of memory effect in lithium-ion batteries [13]), and only a 

slow loss of charge when not in use. Beyond consumer electronics, LIBs are also growing in 

popularity for military, electric vehicle and aerospace applications [14]. For example, Lithium-ion 

batteries are becoming a common replacement for the lead acid batteries that have been used 

historically for golf carts and utility vehicles. Instead of heavy lead plates and acid electrolyte, the 

trend is to use a lightweight lithium/carbon negative electrodes and lithium iron phosphate 

positive electrodes. Lithium-ion batteries can provide the same voltage as lead-acid batteries, so 

no modification to the vehicle's drive system is required [15]. 

The battery block in Simulink implements a generic dynamic model parameterized to 

represent most popular types of rechargeable batteries [16]. The equivalent circuit of the battery 

is shown in Figure 2-1. 

http://en.wikipedia.org/wiki/Rechargeable_battery
http://en.wikipedia.org/wiki/Lithium
http://en.wikipedia.org/wiki/Consumer_electronics
http://en.wikipedia.org/wiki/Portable_electronics
http://en.wikipedia.org/wiki/Energy_density
http://en.wikipedia.org/wiki/Memory_effect
http://en.wikipedia.org/wiki/Loss_of_charge
http://en.wikipedia.org/wiki/Electric_vehicle
http://en.wikipedia.org/wiki/Aerospace
http://en.wikipedia.org/wiki/Lead_acid_battery
http://en.wikipedia.org/wiki/Electrolyte
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Figure 2-1. Equivalent circuit of battery [16]. 

The Li-ion battery is chosen to be used in the HEV system because of the advantages 

mentioned above. In this case, the structure of the battery model is illustrated in Figure 2-2. 

 

Figure 2-2. Li-ion battery model [10]. 

the mathematical equations are given below: 

Discharge Model (i* > 0) 

1 0( , *, ) * exp( ).
Q Q

f q i i E K i K q A Bq
Q q Q q

    
 

 

Charge Model (i* < 0) 

2 0( , *, ) * exp( ).
0.1

Q Q
f q i i E K i K q A Bq

q Q Q q
    

  
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where, 

EBatt = Nonlinear voltage (V) 

E0 = Constant voltage (V) 

Exp(s) = Exponential zone dynamics (V) 

Sel(s) = Represents the battery mode. Sel(s) = 0 during battery discharge, Sel(s) = 1 

during battery charging. 

K = Polarization constant (Ah
−1

) or Polarization resistance (Ohms) 

i* = Low frequency current dynamics (A) 

i = Battery current (A) 

q = Extracted capacity (Ah) 

Q = Maximum battery capacity (Ah) 

A = Exponential voltage (V) 

B = Exponential capacity (Ah)
−1

 [16] 

A typical discharge curve is composed of three sections, as shown below: 

 

Figure 2-3. Typical discharge curve [16]. 

The first section represents the exponential voltage drop when the battery is charged. The 

second section represents the charge that can be extracted from the battery until the voltage drops 

below the battery nominal voltage. Finally, the third section represents the total discharge of the 

battery, when the voltage drops rapidly [16]. 



8 

 

The model is based on specific assumptions and has limitations: 

1) Model assumptions: 

 Internal resistance is assumed to be constant during the charge and the discharge 

cycles and doesn't vary with the amplitude of the current. 

 Model parameters are deduced from discharge characteristics and assumed to be 

the same for charging. 

 Battery capacity doesn't change with the amplitude of current (No Peukert effect). 

 Temperature dependence is not included. 

 Self-Discharge is not represented. It can be represented by adding a large 

resistance in parallel with the battery terminals. 

 The battery has no memory effect. 

2) Model limitations: 

 The minimum no-load battery voltage is 0 volt and the maximum battery voltage 

is equal to 2E0. 

 The minimum capacity of the battery is 0 Ah and the maximum capacity is Qmax. 

 

 

Nonlinear Battery Model with Algebraic Loop 

The proposed model represents a nonlinear voltage which depends uniquely on the actual 

battery charge. If one applies this battery model to an external voltage source and a resister, a 

warning regarding algebraic loops appears when simulating. This is caused by the internal 

resistance. On this signal path, all the blocks are direct feedthrough blocks, as shown in Figure 2-

4. 



9 

 

The nominal voltage of this battery is 3.3V. The initial state of charge is 80%. The 

external voltage source is a step input from 3.25 V to 3.2 V at t = 20000 s. The battery 

discharges from the initial time t = 0 until its voltage reaches the external voltage, 3.25 V. 

This is the 1
st
 steady state. Then at t = 20000 s, as the external voltage drops, the 2

nd
 

transient begins. Finally the system reaches the 2
nd

 steady state until the battery voltage is 

equal to 3.2 V. 

 

Figure 2-4. Nonlinear battery model. 

The voltage, state of charge, and current waveforms are shown in Figure 2-5. 

 

Figure 2-5. Response of nonlinear battery model with algebraic loop. 
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Although MATLAB/Simulink can solve this algebraic loop, it takes longer time to get the 

results. The average simulation time of this model is 1.73 s. 

 

 

Breaking the algebraic loop explicitly 

The algebraic loop is caused only by the internal resistance. Every signal path inside the 

nonlinear subsystem contains at least one non-direct feedthrough block (e.g., integral or low pass 

filter). To break the algebraic loop explicitly, we need to develop a new set of equations to 

describe the same system and then reformat the blocks accordingly. 

The original system is described by 

2

           (1)

( )          (2)

batt batt batt

batt

V E iR

i g V V

 

 
 

Substituting (2) into (1), 

2

2

2

2

( )

(1 )

1

batt batt batt batt

batt batt batt batt

batt batt batt batt

batt batt
batt

batt

V E g V V R

E gR V gR V

gR V E gR V

E gR V
V

gR

  

  

  






 

and 

2
2 2( )

1

batt batt
batt

batt

E gR V
i g V V g V

gR

 
    

 
. 

Therefore the system can be reformatted as shown in Figure 2-6. 
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Figure 2-6. Breaking algebraic loop explicitly. 

In this model, all the signal paths go through the nonlinear subsystem, which contains no 

direct feedthrough loops. Therefore the algebraic loop is broken explicitly. The results from this 

model are accurate and the simulation time is the least. 

 

 

Adding a memory block 

The simplest method to avoid the algebraic loop warning is to add a non-direct 

feedthrough block on the signal path, for example, a memory block, as shown in Figure 2-7. 

But adding an additional block only to avoid algebraic loop is not recommended when 

modeling. The memory block may change the system dynamics and introduce additional time 

delay. Thus causes the results less accurate and longer simulation time. 
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Figure 2-7. Adding a memory block. 

 

 

Comparison and Analysis 

We have discussed three battery models with Thevenin load so far. To compare the 

simulation time, each model has been runned multiple times and the mean values of execution 

time are computed and recorded in Table 2-1. 

Table 2-1. Battery Models Comparison 

Model No. Model description Average simulation time 

1 
Battery with Thevenin load 

Algebraic loop 
1.73 s 

2 
Battery with Thevenin load 

Breaking algebraic loop explicitly 
0.88 s 

3 
Battery with Thevenin load 

Adding memory block 
1.11 s 

 

It is the fastest to analyze the system and reformat it to a form without algebraic loops. 

Adding a memory block do slower the simulation process by 27%. But still it’s better than 

leaving the algebraic loop for MATLAB/Simulink to solve. 
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Adding a memory block also introduces extra error to the system. The differences 

between model No.2 and No.3 are plotted in Figure 2-8. These data are generated under the 

condition of simulation step size = 1. The voltage and current errors mainly occur at the 

beginning of each transient. The state of charge error lasts longer but reaches zero when the 

system enter stead state. The memory block changes the system dynamics thus introduces extra 

error in transient. The error is caused mainly by the unit time delay. From the engineering point 

of view, since the model is always an approximation of real world, the error caused by memory 

block is tolerable. But it is still worth researching how does the memory block change the internal 

dynamics of the system, so that we have a thorough understanding of adding this block. 

 

Figure 2-8. Differences between model No.2 and No.3. 

 

 

 

To analyze more thoroughly, we linearize model No.2 and No.3. The operating point is 

chosen to be the 1
st
 steady state, which means Vbatt = 3.25V and i = 0.  
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Linearization and discretization of model No.2 

The linearized state space description of model No.2 is given by Simulink using the linear 

analysis toolbox. 

2 2

2 2

x = A x + B u

y = C x + D u
  

where 

2

*
,  , 

battV
i

V SOC
q

i

 
   

     
    

x u y  

and  

2 2

2 2

0.1528 0.001119 9.091
,  

0.05275 0.001119 9.091

0.005275 0.0001119 0.09091

0 0.01208 , 0 .

0.05275 0.001119 9.091

     
    

     

    
   

  
   
        

A B

C D

 

This is a continuous-time model. The eigenvalues of A2 are c1 = -0.1531 and c2 = -0.0007.  

Converting it to discrete-time model using sample time T = 1, which is the same as the 

simulation step size, we get 

2 2

2 2

[ 1] [ ] [ ]

[ ] [ ] [ ]

d d

d d

k k k

k k k

  

 

x A x B u

y C x D u
 

where 

2 2

2 2

0.8584 0.001037 8.426
, 

0.0489 0.9989 8.858

0.005275 0.0001119 0.09091

0 0.01208 , 0

0.05275 0.001119 9.091

d d

d d

    
    

    

    
   

  
   
        

A B

C D
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The eigenvalues of A2d are d1 = 0.8580 and d2 = 0.9993. 

The relationships between the eigenvalues of these two linear systems are 1

1
c T

d e
   and 

2

2
c T

d e
  . 

 

Linearization of model No.3 

On the other hand, the linearized state space description of model No.3 is given by 

Simulink using linear analysis toolbox. 

3 3

3 3

[ 1] [ ] [ ]

[ ] [ ] [ ]

k k k

k k k

  

 

x A x B u

y C x D u
  

where 

2

*
,  , 

battV
i

V SOC
q

i

 
   

     
    

x u y  

and  

3 3

3 3

0.8546 0.001065 8.651
, 

0.05275 0.9989 9.091

0.005275 0.0001119 0.09091

0 0.01208 , 0 .

0.05275 0.001119 9.091

    
    

    

    
   

  
   
        

A B

C D

 

This is a discrete-time model. The eigenvalues of A3 are 3 = -0.8542 and 4 = -0.9993.  

Note that 3 and d1 are not identical, although quite close. This indicates that adding a 

memory block not only discretizes the original continuous-time system, but also introduces extra 

error. 
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Analytical solutions to linearized system for model No.2 

The equations describing the linearized open circuit battery model are 

1 1

2

2

                           (3)

          (4)

100              (5)

( )          (6)

batt

batt

x i

V c x d i k

SOC c x

i g V V



  

 

 

 

where x is the state variable and V2 is the external voltage. 

Note that the algebraic loop lies in equations (4) and (6) because both Vbatt and i are 

functions of each other. 

Substituting (6) into (3), we derive 

2

1 1 2

1 1 2

1 1 2

1 2

1

( )

( )

( )

(1 ) ( )

( )      (7)
1

battx g V V

x g c x d i k V

x g c x d x k V

gd x g c x k V

g
x c x k V

gd

 

   

   

   

  


 

and  

  

1 1

2 100

battV c x d x k

SOC c x

i x

  

 

  

Alternatively, we can derive these equations from circuit analysis rather than 

algebraically. From (4), we can define Voc = c1x+k, thus Vbatt = Voc +d1i. Compared to the original 

model, Voc actually stands for Ebatt and d1 stands for the negative of internal resistance. Then we 

get the equivalent circuit shown in Figure 2-9. 
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Figure 2-9. Equivalent circuit. 

Therefore,  

2

1

1 2

1

1
( )

1/

( )
1

oci V V
d g

g
x c x k V

gd

 
 

  


 

which is the same as equation (7). 

To realize the standard state space form, we can take the constant terms as system 

inputs. From (7), we have, 

1
2

1 1 11 1 1

gc g g
x x k V

gd gd gd
  

  
 

1 1

1
1 1 2

1 1 1

1 1 1 1
1 2

1 1 1

1 1
2

1 1 1

( )
1 1 1

( ) ( 1)
1 1 1

1

1 1 1

battV c x d x k

gc g g
c x d x k V k

gd gd gd

gd c gd gd
c x k V

gd gd gd

c gd
x k V

gd gd gd

  

    
  

    
  

  
  

 

2 100SOC c x   

i x  

or write in the matrix form  



18 

 

x = Ax + Bu

y = Cx + Du
  

where 

2 , 

100

battk V

V SOC

i

   
   

 
   
      

u y  

and  

1

1 1 1

1 1

1 1 1

2

1

1 11

,  0
1 1 1

1
0

1 1 1

, 0 0 1 .

0
1 11

gc g g

gd gd gd

c gd

gd gd gd

c

gc g g

gd gdgd

 
   

   

   
     
   

    
   
   
       

A B

C D

 

Given initial condition x(0) and input u(t), we can solve the system by 

( )

0

( )

0

( ) (0) ( )                             

( ) (0) ( ) ( )          

t
t t

t
t t

t e e d

t e e d t





 

 





 

  





A A

A A

x x Bu

y C x C Bu Du
 

 

 

Analytical solution to linearized system for model No.3 

The linearized system for model No.3 is illustrated in Figure 2-10.  
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Figure 2-10. Linearized model for No.3. 

Based on the input-output relation of memory block, the state equation describing this 

system for time instances between consecutive sample points is 

 1 1 2( ) ( ) ( ) ,    ( 1) ,    0,  1,  2,  x t g c x t d i nT k V nT t n T n         

Given initial conditions x(nT) and i(nT), the solution is given by 

 1 1( ) ( ) 1 2

1

( )
( ) ( ) 1 ,  ( 1) ,  0,  1,  2,  

gc t nT gc t nT d i nT k V
x t e x nT e nT t n T n

c

    
       

 
 

Therefore, the equations describing the system at sample points are 

1 1

1

1 1

1

1 1 1

1
2

1 1

1 1 2

1
1 2 1 2

1 1

1 1 2

( 1) 1
[ 1] [ ] [ ] ( )

[ 1] [ 1] [ ] [ ]

( 1) 1
[ ] [ ] ( ) [ ] ( )

[ ] [ ] ( )

gc T gc T
gc T

gc T gc T
gc T

gc T gc T gc T

e d e
x n e x n i n k V

c c

i n gc x n gd i n g k V

e d e
gc e x n i n k V gd i n g k V

c c

gc e x n gd e i n ge k V

 
    

     

  
       

 

   

 

or in matrix form 

2

( 1) ( )

( 1) ( )
d d

kx n x n

Vi n i n

     
      

     
A B   
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where 

1 1 1

1

1 1 1 1

1

1 1 1

1 1

( 1) 1 1

,  

gc T gc T gc T
gc T

d d

gc T gc T gc T gc T

e d e e
e

c c c

gc e gd e ge ge

     
   

 
   
     

A B . 

This is a discrete time state space description. The solution to this system is given by 

1
1

0 2

( ) (0)

( ) (0)

n
n n j

d d

j

kx n x

Vi n i


 



    
      

     
A A B  

and  

 
1 1

2 100

battV c x d i k

SOC c x

  

 
. 

 Comparing these two linearized systems and their solutions, we find that adding a 

memory block increases the system dimension. Thus it changes the dynamics not only in 

discretizing aspect. It introduces extra error besides discretization. 

 

 

Nonlinear Internal Resistance 

From the previous analysis, we see that the algebraic loop is caused mainly by the 

internal resistance of the battery. It is easy to handle if we assume it to be constant. But in reality, 

the internal resistance is not constant; it is a nonlinear function of state of charge.  

Recall the expression for the battery voltage when discharging is given by 

0 * exp( )batt batt

Q Q
V E K i K q A Bq R i

Q q Q q
     

 
  

where i* is the filtered current.  
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The coefficient before i* stands for a nonlinear polarization resistance which is a function of 

battery state of charge. The use of the current filter solves the algebraic loop problem caused by 

this term [11]. 

In other commonly used battery models, there are no current filters, thus the algebraic 

loop contains nonlinear terms caused by nonlinear internal resistance. For instance, in [17] and 

[18] the internal resistance is expressed in a polynomial of charge or state of charge, i.e., 

2 3 4 5

0 1 2 3 4 5( )battR f q a a q a q a q a q a q       . Thus ( )batt ocV V f q i  . If the battery is 

connected to a Thevenin load, i.e., an external voltage source in series with a conductor,  

2

2

2

2

( )

( ) ( )

(1 ( )) ( )

( )

1 ( )

batt

batt oc batt

batt oc

oc
batt

i g V V

V V f q g V V

gf q V V gf q V

V gf q V
V

gf q

 

  

  






  

                           

2

2
2

2

( )

( )

1 ( )

( )

1 ( )

batt

oc

oc

i g V V

V gf q V
g V

gf q

g V V

gf q

 

 
  

 






 

If the battery is connected to a power load,  

2

2

2

( )

( )

( ) 0

4 ( )

2 ( )

batt oc

oc

oc

oc oc

P P
i

V V if q

iV i f q P

f q i V i P

V V f q P
i

f q

 


 

  

 

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Since the current should increase if the power load increases, the negative sign should be 

taken. Thus 

2 4 ( )

2 ( )

oc ocV V f q P
i

f q

 
  and 

2 4 ( )

2

oc oc

batt

V V f q P
V

 
 . 

Therefore, for the battery model without current filter and its internal resistance expressed 

as a function of charge, the algebraic loop can also be solved explicitly, albeit approximately. 

If the internal resistance is a function of current, then it may be difficult to solve the 

algebraic loop explicitly. In this case, the use of filtered current provides a method to simplify this 

problem while maintaining the battery characteristics. 
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Chapter 3  
 

Fuel Cells 

 

The ever increasing demand for electrical energy and the intense competition between 

electric companies in the new electric utility market has intensified research in alternative sources 

of electrical energy that are reliable and cost effective. The fuel cell, as a renewable energy source, 

is considered one of the most promising sources of electric power. Fuel cells are not only 

characterized by higher efficiency than conventional power plants, but they are also 

environmentally clean, have extremely low emission of oxides of nitrogen and sulfur and have 

very low noise [19]. 

Fuel cells are made up of three parts: an electrolyte, an anode and a cathode. In principle, 

a hydrogen fuel cell functions like a battery, producing electricity, which can run an electric 

motor. Instead of requiring recharging, however, the fuel cell can be refilled with hydrogen. 

Different types of fuel cells include polymer electrolyte membrane fuel cells, direct methanol fuel 

cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells, and 

regenerative fuel cells. 

There are fuel cell vehicles for all modes of transport. The most prevalent fuel cell 

vehicles are forklifts and material handling vehicles. Although there are currently no fuel cell cars 

available for commercial sale, over 20 FCEVs prototypes and demonstration cars have been 

released since 2009. Automobiles such as the GM HydroGen4, Honda FCX Clarity, Toyota 

FCHV-adv and Mercedes-Benz F-Cell are all pre-commercial examples of fuel cell electric 

vehicles. Fuel cell electric vehicles have driven more than 3 million miles, with more than 27,000 

refuelings [20]. 

http://en.wikipedia.org/wiki/PEMFC
http://en.wikipedia.org/wiki/DMFC
http://en.wikipedia.org/wiki/DMFC
http://en.wikipedia.org/wiki/Phosphoric_acid_fuel_cell
http://en.wikipedia.org/wiki/Molten_carbonate_fuel_cell
http://en.wikipedia.org/wiki/SOFC
http://en.wikipedia.org/wiki/GM_HydroGen4
http://en.wikipedia.org/wiki/Honda_FCX_Clarity
http://en.wikipedia.org/wiki/Toyota_FCHV-adv
http://en.wikipedia.org/wiki/Toyota_FCHV-adv
http://en.wikipedia.org/wiki/Mercedes-Benz_F-Cell
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There are many papers discussing the models for proton exchange membrane (PEM) fuel 

cells. PEM fuel cells generally operate at lower pressure and lower temperature with higher 

power density compared to other types of fuel cells. Therefore, they are more suitable for 

applications in small to medium power levels, such as fuel cell powered automobiles or micro-

grid power applications [21]. 

In this chapter, a PEM fuel cell model based on [19] and [21] is developed and the static 

and dynamic characteristics are reproduced using the parameters and load conditions those two 

papers provided. Then further studies of initialization and algebraic loop problem are analyzed 

and results are compared. 

 

 

Fuel cell model 

In [19], El-Sharkh et al. introduced a model that describes the polarization curves for the 

PEM fuel cell where the fuel cell voltage is the sum of three terms, the Nernst instantaneous 

voltage E in terms of gas molarities, activation over voltage act, and ohmic over voltage ohmic. In 

mathematical form, polarization curves can be expressed by the equation: 

cell act ohmicV E              (8) 

Where act is a function of the oxygen concentration CO2 and stack current I (A), and ohmic is a 

function of the stack current and the stack internal resistance Rint
 
(). Assuming constant 

temperature and oxygen concentration, (8) can be rewritten as (9): 

intln( )cellV E B CI R I           (9) 

The Nernst voltage in terms of gas molarities can be written as: 
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2 2

2

0.5

0 0 ln
2

H O

H O

p pRT
E N E

F p

  
   

    

        (10) 

where E0 is the open cell voltage (V) and R is the universal gas constant (J (kmol K)−
1
). 

The fuel cell model can be drawn as in Figure 3-1. 

 

Figure 3-1. The PEM fuel cell model [19]. 

 

To design an adequate fuel cell based distributed power generation system to 

accommodate different load changes, it is essential to have an accurate dynamic model for the 

fuel cell system so that adequate control systems can be designed to meet the load demand. In 

such a situation, the dynamics of the internal resistance characteristics of fuel cells have to be 

considered. El-Sharkh et al. assumed the internal resistance to be constant. In fact, the internal 

resistance will have effects on the static and dynamic characteristics of the fuel cell output. In 

[21], Zhang et al. described the characteristics of the equivalent internal resistance as a nonlinear 

function of stack current: 

int 0 exp ln( )
fc

R R fc

R

I
R A R B I



 
   

 
        (11) 
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where Rint is the equivalent internal resistance; AR, BR, R0 andτ R are all empirical parameters. 

To achieve reasonably accurate representation, the following values have been selected: AR = 0.82, 

BR = 0.13, R0 = 0.8, andτ R = 5 [21]. 

The amount of hydrogen flow required to meet the load change is given by  

2

0

2
H

N I
q

FU
 , where U is utilization rate. 

The oxygen flow is considered using the hydrogen, oxygen flow ratio, rh-o. 

Based on equations (9), (10) and (11) , a dynamic model of PEM fuel cell, that includes 

the effects of internal resistance variations has been developed. 

The static output characteristic (Voltage-Current relation) is shown in Figure 3-2. Model 

parameters extracted from Fig. 9 in [21] by curve fitting and are referred to Table 1 in [19] and 

are listed in Table 3-1. 

 

Figure 3-2. Static output characteristic of PEM fuel cell. 
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Table 3-1. PEM fuel cell model parameters 

Stack Temperature, (K) 343 

Faraday’s constant, F (C(kmol)
-1

) 96485339 

Universal gas constant, R (J(kmol)
-1

K) 8314.47 

No load voltage, E0 (V) 0.6 

Number of cells, N0 78 

Kr constant = N0/4F (kmol s
-1

 A) 2.02×10
-7

 

Utilization factor, U 0.8 

Hydrogen valve constant, kH2 (kmol s
-1

 atm) 4.22×10
-5

 

Water valve constant, kH2O (kmol s
-1

 atm) 7.716×10
-6

 

Oxygen valve constant, kO2 (kmol s
-1

 atm) 2.11×10
-5

 

Hydrogen time constant τ H2 (s) 3.37 

Water time constant τ H2O (s) 18.418 

Oxygen time constant τ O2 (s) 6.74 

Activation voltage constant, B (A
-1

) 0.35 

Activation voltage constant, C (V) 0.0136 

Hydrogen-Oxygen flow ratio, rh-o 1.168 

 

To validate the dynamic characteristics of the output voltage with respect to load changed, 

a step load increase from 0.1 A to 30 A and a step load decrease from 30 A to 0.1 A has been 

carried out. The results are shown in Figure 3-3. They are good matches to the results from [21]. 

In this case, the load is a current source. Thus there is no algebraic loop problem. In 

reality, when the fuel cell is connected to a Thevenin load or power load, this problem appears. 
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                               (a)                                                                                     (b) 

Figure 3-3. Dynamic responses subject to step load changes: (a) a step load increase and 

(b) a step load decrease. 

 

 

Algebraic loop in fuel cell model 

Since the fuel cell voltage is a function of current, there exists the algebraic loop problem 

when the fuel cell is connected to a load other than current source. For instance, when the fuel 

cell is connected to a Thevenin load, the system is described by: 

int

2

ln( )

( ).

cell

cell

V E B Ci R i

i g V V

  

 
 

V2 is an external voltage source steps from 0 to 15 V at t = 0. The simulation system is 

shown in Figure 3-4. 
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Figure 3-4. PEM fuel cell with a Thevenin load. 

The transfer function blocks are changed to state space description in order to specify 

appropriate positive initial conditions. These initial conditions can be calculated by replacing the 

state space descriptions (or first order transfer function blocks originally) with gain blocks. Then 

plot the voltage-current relations of the fuel cell and the load on the same figure. The point of 

intersection stands for the initial current and voltage at steady state. In our case, V2 is 0 before t = 

0 and the resistance is 10 . Thus the V-I relation for the Thevenin load is V = 10I            (12), 

which is a straight line as shown in Figure 3-5.  

 

Figure 3-5. Calculation of initial condition. 
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The point of intersection can be calculated by combining equations (9), (10), (11) and 

(12).Using the “fzero” function, MATLAB returns the result that the current equals 3.85 A and 

the voltage equals 38.54 V in Figure 3-5. Once we have the current and the voltage, we can use 

equations (9), (10) and (11) to calculate the initial conditions for the state space description 

blocks. 

We simulate the dynamic system with Thevenin load from t = -10 s to t = 50 s. The 

voltage and current curves are shown in Figure 3-6. As expected, the voltage and current hold at 

the initial values we calculated before the external voltage V2 steps to 15 V at t = 0. This 

simulation gives an algebraic loop warning. 

 

Figure 3-6. Voltage and Current of PEM fuel cell connected to a Thevenin load. 

 

We can avoid the algebraic loop problem by adding a memory block on the signal path of 

current. The differences between the systems with and without memory block are plotted in 

Figure 3-7. The main error occurs at the time when the sudden external voltage change applies. 
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Figure 3-7. Differences between systems with and without memory block. 

 

To solve the algebraic loop explicitly without adding a memory block, we have 

 int 2( ln( ) )i g E B Ci R i V     

int 2ln( ) ( )gB Ci i gR i g E V     

Using the expression for Rint in (11), we have 

0 2ln( ) ln( ) ( )R

i

R RgB Ci i gi A R e B i g E V


 
      

 
 

 

0 2(1 ) ln( ) ln( ) ( )R

i

R RgA i gR ie gB i i gB Ci g E V




                (13) 

This is a transcendental equation with respect to current. There is no explicit solution to this 

equation. We can use Taylor series as an approximation in the neighborhood of some operating 

point to get analytical solution near that point. 

Let f(i) be the left hand side of equation (13). The Taylor series near operating point i0 are 
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If we use a linear approximation, i.e., 0 0 0 2( ) ( ) '( )( ) ( )f i f i f i i i g E V     , then the explicit 

solution to this linear equation is given by 
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From Figure 3-6, we choose the operating point at t = 0-, which means i0 = 3.85 A. The 

simulation system is based on equations (9) and (14) and the voltage and current curves are 

shown in Figure 3-8. They are almost the same as those from figure3-6, which indicates using the 

first order Taylor series is already a good approximation in this case. 

The differences between this linear approximation and the original system with an 

algebraic loop are plotted in Figure 3-9, from which we can see the errors are very small, 

especially the voltage errors are negligible. The errors are much smaller than the system with 

memory block when sudden external voltage change applies as shown in Figure 3-7. 
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Figure 3-8. Voltage and current curves of fuel cell system with linear approximation. 

 

 

Figure 3-9. Differences between linear approximation and original system. 

 

If we use a second order approximation, i.e.,  

20
0 0 0 0 2

''( )
( ) ( ) '( )( ) ( ) ( )

2

f i
f i f i f i i i i i g E V       ,  

then we can solve this quadratic equation explicitly. 

-10 0 10 20 30 40 50
38.4

38.6

38.8

39

39.2

39.4

39.6

39.8
Voltage

Time(s)

V

-10 0 10 20 30 40 50
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
Current

Time(s)

A

-10 0 10 20 30 40 50
-2

0

2

4

6

8

10

12

14

16
x 10

-3 Voltage

Time(s)

V

-10 0 10 20 30 40 50
-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0
Current

Time(s)

A



34 

 

20
0 0 0 0 2

''( )
( ) '( )( ) ( ) ( ) 0

2

f i
i i f i i i f i g E V        

2

0 0 0 0 2

0

0

'( ) '( ) 2 ''( )[ ( ) ( )]

''( )

f i f i f i f i g E V
i i

f i

    
            (15), 
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. 

The differences between this quadratic approximation and the original system are shown 

in Figure 3-10. They are smaller than those illustrated in Figure 3-9. 

 

Figure 3-10. Differences between quadratic approximation and the original system. 
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magnitude; we can say that there is no need to add more higher order terms in the Taylor series 

approximation. 

 

In summary, the proposed fuel cell system stands for a system that contains an algebraic 

loop problem more complex than the battery system. To break the nonlinear algebraic loop (i.e., 

including transcendental equations), one can either add a non-direct feedthrough block (i.e., 

memory block) or solve it explicitly by using Taylor series approximation around some operating 

point. When the neighborhoods of some specific points are of more concern than the entire 

solution space, breaking the algebraic loop explicitly by some approximation may be a better 

choice. In the proposed model with a Thevenin load, even a linear approximation is more 

accurate than adding a memory block, especially when some sudden load change occurs. 

 

 



 

 

Chapter 4  
 

Electric Vehicle 

An electric vehicle plant basically consists of four subsystems: vehicle dynamics, electric 

traction system, brake system, and energy storage system. The overall structure is shown in 

Figure 4-1. 

 

Figure 4-1. Overall structure of electric vehicle. 

 

 

Vehicle dynamics describes the relationship between vehicle velocity and torque. 

According to Newton’s 2
nd

 law, F Ma . 

tan

front rear
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T T
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v adt   

 

The electric traction system computes the product of required torque and wheel rotation 

velocity and compares to the maximum power it could provide. If the required power is less than 

the maximum power, the electric traction system outputs the required torque and power. 

Otherwise the output torque has to be less than required. 

required requiredP T   

0

, if  < 

/ , if   

required required 0

out

required 0

T P P
T

P P P


 


 

out
out

T
P






  where  stands for the efficiency. 

 

The brake system identifies the polarity of velocity and outputs extra resistant torque to 

slow the vehicle down. If in full brake, the vehicle can stop within 180 feet from the initial 

velocity of 60 mph. 

 

The energy storage system can be a battery or PEM fuel cell. The battery’s rated voltage 

is 300 V and the rated capacity is 60 Ah.  

In this vehicle model, the other three subsystems can be treated as the power load of the 

battery or fuel cell. 

 

 



 

 

Algebraic Loop in the Electric Vehicle Model Using Battery 

In previous chapters, a battery model and a PEM fuel cell model are developed and 

studied. The algebraic loop problems in the two models are solved by several methods and the 

results are analyzed and compared. Now we apply these methods to the electric vehicle model. 

The operating point of this vehicle model is chosen at the cruise state with the velocity of 

20 m/s, that is, 72 km/h or 45 mph approximately. A constant torque of 142 Nm is required to 

hold this speed. At t = 2000 s, the input torque is raised to 160 Nm and the vehicle accelerates 

and reaches a new steady state with a higher velocity. 

For the electric vehicle model using battery, the algebraic loop problem is still caused by 

the internal resistance of the battery. When simulating, it takes MATLAB/Simulink 1.3 seconds 

to solve the algebraic loop. The waveforms are shown in Figure 4-2.  

 

Figure 4-2. Waveforms of vehicle model using battery. 
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We can see that as the input torque steps up, so do the vehicle velocity and current. They 

reach new steady state after approximately 4 minutes. The battery voltage and state of charge 

keeps going down, but at different rates. 

 

The equations describing the battery part are 

        (16)

                   (17)

batt batt batt

batt

V E iR

P
i

V

 


 

Substituting (16) into (17), 

batt batt

P
i

E iR



. Therefore,  

2

2 0

batt batt

batt batt

iE i R P

R i E i P

 

  
 

2 4

2

batt batt batt

batt

E E R P
i

R

 
  

Since the current should increase if the required power increases, the negative sign should 

be picked. Thus 

2 4

2

batt batt batt

batt

E E R P
i

R

 
  and 

2 4
      (18)

2

batt batt batt

batt

E E R P
V

 
 . 

Using this expression (18) instead of (16) to reformat the vehicle model, we can eliminate 

the algebraic loop, as shown in Figure 4-3. 
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Figure 4-3. Vehicle plant with algebraic loop broken explicitly. 

 

Besides the analytical method, a memory block can be added on the current path of the 

original vehicle model to avoid the algebraic loop warning, as shown in Figure 4-4. But again this 

is not recommended because it changes the dynamics and slows the simulation process. 

 

Figure 4-4. Vehicle plant with memeory block. 
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To compare the simulation time, each vehicle model has been runned multiple times and 

the mean values of execution time are computed and recorded in Table 4-1. 

Table 4-1. Vehicle models comparison 

Model No. Model description Average simulation time 

4 Vehicle model with algebraic loop 1.36 s 

5 
Reformatted vehicle model 

Breaking algebraic loop explicitly 
0.24 s 

6 
Vehicle model 

Adding memory block 
0.32 s 

 

Compared to model No.5, adding a memory block slows the simulation process by 35%. 

To compare the errors the memory block introduced, we plot the differences of the 

waveforms from model No.5 and No.6 in Figure 4-4. The errors are minor; mainly occur when 

the sudden load change applies because of the unit delay characteristic of the memory block. 

 

Figure 4-5. Differences between model No.5 and No.6. 
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To analyze more thoroughly, we linearize model No.5 and No.6 respectively at the cruise 

speed of 20 m/s. The linearized state space description of model No.5 is given by Simulink using 

linear analysis toolbox. 

5 5

5 5

x = A x + B u

y = C x + D u
  

Where 

*

, , required

batt

v
i

SOC
q T

i
v

V

 
   
     
   
    

 

x u y   

and 
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C D . 

 

This is a continuous-time model. The eigenvalues of A5 are c1 = -0.0997, c2 = -0.0133, 

and c3 = 0. Converting it to discrete-time model using sample time T = 1, which is the same as 

the simulation step size, we get 

5 5

5 5

[ 1] [ ] [ ]

[ ] [ ] [ ]

d d

d d

k k k

k k k
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 

x A x B u

y C x D u
 

where 
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The eigenvalues of A5d are d1 = 0.9051, d2 = 0.9868, and d3 = 1. 

Note that 1

1
c T

d e
  , 2

2
c T

d e
  , and 3

3
c T

d e
  . 

 

On the other hand, the linearized state space description of model No.6 is given by 

6 6
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This is a discrete-time model. The eigenvalues of A6 are 1 = 0.9023, 2 = 0.9868 and 3 = 1. 
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We can see that 1 is not equal to d1.This indicates that the memory block not only 

discretize the original continuous-time system, but also alters the internal dynamics. 

 

 

Algebraic Loop in the Electric Vehicle Model Using PEM Fuel Cells 

To replace the battery by PEM fuel cells in the electric vehicle system, we increase the 

number of cells to ensure the capability of power meet the demand of the vehicle load. 

The operating conditions are the same as the one using battery. First, the input torque is 

set to 141 Nm to hold the velocity of 20 m/s. Then the input torque is raised to 160 Nm and the 

vehicle accelerates and reaches a new steady state with a higher velocity. 

The waveforms of vehicle velocity, fuel cell current and voltage are shown in Figure 4-6. 

 

Figure 4-6. Waveforms of vehicle model using PEM fuel cells. 
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The equations describing the algebraic loop are 

intln( )cellV E B Ci R i    where 
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V
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Therefore,  intln( )i E B Ci R i P    

2
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          (19). 

Again we can not solve this transcendental equation explicitly. The Taylor series of the 

left hand side of (19) near operating point i0 is  
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If we use a linear approximation, i.e., 0 0 0( ) ( ) '( )( )f i f i f i i i P    , then the explicit solution 

to this linear equation is given by 
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From Figure 4-6, we choose the operating point at t = 0-, that is i0 = 47.66 A. Based on 

this linear approximation, the vehicle velocity, current and fuel cell voltage curves are shown in 

Figure 4-7. The differences between this linear approximation and the original system are plotted 

in Figure 4-8. 

 

 

Figure 4-7. Waveforms of linear approximation. 
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Figure 4-8. Differences between linear approximation and original system. 
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voltage magnitude. The error of vehicle velocity is negligible. If more higher order terms are used 

in the Taylor series, the errors can be reduced further. 

If we eliminate the algebraic loop by adding a memory block, the differences between 

this system and the original one are shown in Figure 4-9. Though the errors mainly occur at the 

time sudden load change applies while other times the results are quite accurate, the peak 

magnitude of the error is significantly larger than those shown in Figure 4-8.  
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Figure 4-9. Differences between systems with and without memory block. 

 

 

Drive Cycle 

Combining the proposed vehicle plant with a driver model, a drive cycle can be applied. 
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Figure 4-10. Velocity and torque. 

 

Figure 4-11. Power and SOC. 
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Two standard U.S. EPA (Environmental Protection Agency) drive cycles are used to 

simulate city and highway driving. The Highway Fuel Economy Driving Schedule 

(HWFET) represents highway driving conditions under 60 mph. The New York City Cycle 

(NYCC) features low speed stop-and-go traffic conditions [22]. The simulation results under 

these two conditions are shown in Figure 4-12, 4-13, 4-14, and 4-15. 

 

Figure 4-12. HWFET - velocity and torque. 

 

Figure 4-13. HWFET – power and SOC. 
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Figure 4-14. NYCC – velocity and torque. 

 

Figure 4-15. NYCC – power and SOC. 

Under the NYCC drive cycle, the vehicle velocity did not follow the input quite closely. 

Thus future work is needed to refine the model. 
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Chapter 5  
 

Conclusion 

A nonlinear Li-ion battery model and PEM fuel cell model are developed and studied 

thoroughly focusing on the algebraic loop problem. Then an electric vehicle model is developed 

and previous methods are applied to the vehicle model. 

Basically there are two ways to eliminate the algebraic loop. One is to analyze the 

mathematical relations between the relevant variables and express the outputs as some explicit 

function of the inputs. The other is to insert some non-direct feedthrough blocks on the signal 

path that causes the algebraic loop, such as a memory block. Adding a memory block is very 

simple and may work well in some systems. But the drawbacks are longer simulation time and 

changing system dynamics. It not only discretize the system but also alters the eigenvalues of the 

state matrix (if linear). This may not be an issue for some systems, but some other systems do 

require very high accuracy. The error mainly occurs when sudden load change applies. 

To break the algebraic loop explicitly, we need to look into the details of the blocks 

causing the algebraic loop. First separate the direct feedthrough path from the non-direct feed 

through parts. If the factor that causes the algebraic loop is linear, it is not difficult to handle and 

we can develop an explicit solution and reformat the system to eliminate the algebraic loop. If the 

algebraic loop is nonlinear, it may be harder to come to an explicitly solution. In the case of PEM 

fuel cell model, the algebraic loop turns out to be a transcendental equation, which can not be 

solved explicitly. In this case, we use the Taylor series expansion near the operation point of the 

system. We see that a first order approximation is already accurate enough. If not, we can add 

more terms to use a quadratic or even higher order polynomial approximation. This method turns 
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out to be effective for our models studied. The errors are much smaller than adding a memory 

block, especially when sudden load change applies. 

The proposed electrical vehicle gives an example of how to deal with systems contain 

algebraic loops. To make it a practical EV model, changes and refinery should be made and 

model parameters should be adjusted according to experimental data. An auxiliary power unit can 

be added to the vehicle plant if internal combustion engine is still of interest to make it a hybrid 

electrical vehicle. 
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Appendix A 

 

Simulink Diagrams 

A.1 Static PEM fuel cells model for operating point computing 

 

 

A.2 PEM fuel cells model using Taylor series approximation 
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A.3 Vehicle plant using PEM fuel cells subsystem 

 

 

 

A.4 Taylor series approximation for vehicle plant using fuel cells 
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A.5 Top level vehicle harness 

 

 

 

  



60 

 

Appendix B 

 

MATLAB Scripts 

B.1 Script_Batt_Thev_AL.m 

%% Script_Batt_Thev_AL.m simulates the nonlinear battery with Thevenin 

Load 
close all; 
clear all; 
clc; 
StartTime = 0; StopTime = 30000; FixedStepSize = 1; 

  
V2.time = [StartTime 20000]'; 
V2.signals.values = [3.25 3.2]'; 

  
for j = 1:20 
    tic; 
    t_Thv_AL = sim('Batt_Thevenin_Load_AL'); 
    toc; 
    t(j) = toc; 
end; 

  
AvgSimTime_Thv_AL = mean(t); 

  
figure('Name','Nonlinear Battery Thevenin Load AL','NumberTitle','off') 

  
subplot(1,3,1); 
plot(t_Thv_AL,Vbatt_Thv_AL); 
title('Voltage'); 
xlabel('t');ylabel('V','rotation',0); 
xlim([0,3e4]);ylim([3.18,3.36]); 
grid; 

  
subplot(1,3,2); 
plot(t_Thv_AL,SOC_Thv_AL); 
title('State of Charge'); 
xlabel('t');ylabel('%','rotation',0); 
xlim([0,3e4]);ylim([0,80]); 
grid; 

  
subplot(1,3,3); 
plot(t_Thv_AL,I_Thv_AL); 
title('Current'); 
xlabel('t');ylabel('A','rotation',0); 
xlim([0,3e4]);ylim([0,1]); 
grid; 

  
save('Thv_AL.mat'); 
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B.2 Script_Batt_Compare.m 

%% Script_Batt_Compare.m compares the differences between battery 

systems with and without memory block 

  
load Thv_NoAL.mat; 
load Thv_Mem.mat; 

  
Vbatt_diff = Vbatt_Thv_Mem - Vbatt_Thv_NoAL; 
SOC_diff = SOC_Thv_Mem - SOC_Thv_NoAL; 
I_diff = I_Thv_Mem - I_Thv_NoAL; 

  
figure('Name','Compare Thevenin Load','NumberTitle','off') 

  
subplot(1,3,1); 
plot(t_Thv_NoAL,Vbatt_diff,'linewidth',3); 
set(gca,'fontsize',14); 
title('Voltage'); 
xlabel('t');ylabel('V','rotation',0); 
% xlim([0,3e4]);ylim([3.18,3.36]); 
grid; 

  
subplot(1,3,2); 
plot(t_Thv_NoAL,SOC_diff,'linewidth',3); 
set(gca,'fontsize',14); 
title('State of Charge'); 
xlabel('t');ylabel('%','rotation',0); 
% xlim([0,3e4]);ylim([0,80]); 
grid; 

  
subplot(1,3,3); 
plot(t_Thv_NoAL,I_diff,'linewidth',3); 
set(gca,'fontsize',14); 
title('Current'); 
xlabel('t');ylabel('A','rotation',0); 
% xlim([0,3e4]);ylim([0,1]); 
grid; 

 

 

 

B.3 Script_FuelCell.m 

clc; 
close all; 
T = 343; 
F = 96485339; 
R = 8314.47; 
E0 = 0.6; 
N0 = 78; 
Kr = N0/4/F; 
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U = 0.8; 
k_H2 = 4.22e-5; 
k_H2O = 7.716e-6; 
k_O2 = 2.11e-5; 
tau_H2 = 6.37; 
tau_H2O = 6.37; 
tau_O2 = 6.37; 
tau1 = 2; 
tau2 = 2; 
CV = 2; 
B = 0.35; 
C = 0.0136; 

  
r_h_o = 1.168; 

  
A_R = 0.82; 
B_R = 0.13; 
R0 = 0.8; 
tau_R = 5; 

  
g = 0.1; 

  
StartTime = -50; StopTime = 50; 
FixedStepSize = 0.1; 

  
V2.time = [StartTime StartTime+FixedStepSize 0]'; 
V2.signals.values = [-0.1 0 15]'; 

  
% I.time = [StartTime 0]'; 
% I.signals.values = [30 0.1]'; 

  
% I.time = (StartTime:FixedStepSize:StopTime)'; 
% I.signals.values = (StartTime:FixedStepSize:StopTime)'; 

  
% P.time = [StartTime 0]'; 
% P.signals.values = [1 876]'; 

  
t = sim('PEM_fuel_cell'); 

  
i1 = I; 
v1 = Vcell; 

  
figure; 

  
% plot(I.signals.values,Vcell); 
% xlabel('Current(A)');ylabel('Voltage(V)'); 
% ylim([24,44]); 

  
subplot(1,2,1); 
plot(t,Vcell,'linewidth',3); 
set(gca,'fontsize',14); 
title('Voltage'); 
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xlabel('Time(s)');ylabel('V','rotation',0); 
xlim([-10,50]); 
ylim([38.4,39.8]); 
grid on; 

  
subplot(1,2,2); 
plot(t,I,'linewidth',3); 
set(gca,'fontsize',14); 
title('Current'); 
xlabel('Time(s)');ylabel('A','rotation',0); 
xlim([-10,50]); 
ylim([2.4,4]); 
grid on; 

 

 

 

B.4 Script_Vehicle_AL.m 

%% Script_Vehicle_AL.m simulates the vehicle model with algebraic loop 
% close all; 
% clear all; 
% clc; 
StartTime = 0; StopTime = 3000; FixedStepSize = 1; 

  
T_req_AL.time = [StartTime 2000]'; 
T_req_AL.signals.values = [141.576 160]'; 

  
% for j = 1:10 
%     tic; 
    t_EV_AL = sim('Vehicle_Plant_AL'); 
%     toc; 
%     t(j) = toc; 
% end; 

  
% AvgSimTime_Vehicle_AL = mean(t); 

  
figure('Name','Vehicle AL','NumberTitle','off') 

  
subplot(2,2,1); 
plot(t_EV_AL,v_AL,'linewidth',3); 
set(gca,'fontsize',14); 
title('Vehicle Velocity'); 
xlabel('t');ylabel('m/s','rotation',0); 
% xlim([0,3e4]);ylim([3.18,3.36]); 
grid; 

  
subplot(2,2,2); 
plot(t_EV_AL,SOC_AL,'linewidth',3); 
set(gca,'fontsize',14); 
title('State of Charge'); 
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xlabel('t');ylabel('%','rotation',0); 
% xlim([0,3e4]);ylim([0,80]); 
grid; 

  
subplot(2,2,3); 
plot(t_EV_AL,I_AL,'linewidth',3); 
set(gca,'fontsize',14); 
title('Current'); 
xlabel('t');ylabel('A','rotation',0); 
% xlim([0,3e4]);ylim([0,1]); 
grid; 

  
subplot(2,2,4); 
plot(t_EV_AL,Vbatt_AL,'linewidth',3); 
set(gca,'fontsize',14); 
title('Battery Voltage'); 
xlabel('t');ylabel('V','rotation',0); 
% xlim([0,3e4]);ylim([0,1]); 
grid; 

  
% save('Vehicle_AL.mat'); 

 


