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ABSTRACT 

 

   HIV-associated sensory neuropathy influences over 50% of HIV patients. The 

clinical expression of HIV neuropathy is dramatically variable. Although many HIV 

patients report few symptoms, approximately half report distal neuropathic pain (DNP). 

To better understand how the central nervous system is associated with HIV DNP, in this 

thesis, an analysis of HIV-infected participants’ brain structural magnetic resonance 

imaging (MRI) volumes was performed. Using multivariable regression analysis 

(involving demographic and clinical variables), the relationship between HIV DNP and 

the MRI results was investigated. Our study concluded that worse severity of DNP 

symptoms was correlated with smaller cerebral cortical gray matter [1]. According to 

this conclusion, we performed a statistical classification analysis on the presence of DNP 

symptoms in the structural MRI images. We generated three relevant feature extraction 

schemes, leading to three separate experiments. These three experiments will be helpful 

and informative for our study on clinical HIV DNP diagnosis. The novelty in this work 

relative to existing HIV DNP studies is the optimization of DNP classification 

performance based on the MRI data sets, using low dimensional features and 

computationally efficient models.   
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Chapter 1 

 

INTRODUCTION 

 

  Pattern recognition has its origins in engineering, whereas machine learning 

stemmed from computer science. However, machine learning and pattern recognition 

could be viewed as two facets of the same field. And together they have been the focus 

of intense research over the past ten years. The fundamental ideas are about the discovery 

of pattern regularities in data through the use of automated computer algorithms. Using 

these learned regularities, we are able to develop some applications.  

  Applications in which the training data comprises examples of the input vectors 

along with their corresponding target vectors are known as supervised learning problems. 

Cases where the objective is to assign each input vector to one of a finite number of 

discrete categories are called classification problems. If the desired output consists of 

one or more continuous variables, the task is called regression [2]. 

  The use of computer technology in medical diagnosis and treatments nowadays 

is intensively prevalent and widespread across a large range of medical areas. We have 

seen plenty of applications of pattern recognition in bioinformatics, such as chronic pain 

study, cardiac diseases, tumor detection, human motional asymmetry, etc. This study 

attempts to analyze bio-imaging through the use of supervised learning methods.   
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Persistent pain now affects so many individuals with HIV infection that it has 

recently been termed an “evolving epidemic” [3]. HIV-associated distal neuropathic pain 

is one of the most prevalent neurologic complications of HIV infection in the era of 

combination antiretroviral therapy (CART), affecting approximately 20% of patients. 

HIV DNP is typically difficult to cure by current chronic pain therapies and is associated 

with unemployment, impairment in activities of daily living, and significantly 

diminished quality of life. Despite the prevalence, persistence, and impact of HIV DNP, 

little is known of its neurobiological underpinnings. 

A related work on HIV-associated sensory neuropathy showed that over half of 

HIV-infected patients have sensory neuropathy by physical examination or nerve 

conduction studies. About 40% of them report chronic DNP, while the remainder report 

only numbness or paresthesia or no symptoms at all [1]. Using procedures described in 

detail in a [4], the diagnosis of HIV Sensory Neuropathy (HIV-SN) was rendered by 

physicians and nurses trained in neurological AIDS disorders based on a standardized, 

neurological examination evaluating HIV-associated sensory neuropathy signs, 

including diminished ability to recognize vibrations and reduced sharp-dull 

discrimination in the feet and toes or reduced ankle reflexes. We define at least one sign 

of neuropathy bilaterally as evidence of HIV sensory neuropathy.  

   As described previously, HIV DNP was defined as a specific pattern of bilateral 

burning, aching, or shooting pain in a distal gradient in the lower extremities. 

Recognizing that this specific pattern of pain may occur in small fiber-predominant 

neuropathies in which clinical exam abnormalities are sometimes absent due to the 
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relative paucity of large fiber involvement, we included in the diagnosis of DNP those 

cases that did not have abnormal clinical exam findings. Indeed, some cases of HIV-SN 

have been shown to manifest predominantly small fiber involvement. Study clinicians 

classified DNP into five categories of severity: none, slight (occasional, fleeting), mild 

(frequent), moderate (frequent, disabling), and severe (constant, daily, disabling, 

requiring analgesic medication or other treatment).  In the statistical model these 

categories were represented by ordered values: 0=none, 1=slight, 2=mild, 3=moderate, 

and 4=severe.  In the assessments of DNP severity, additional characteristics were 

elicited including the continuity as well as its impact on daily activities and the need for 

analgesic medications. 

 To better understand the correlation between HIV-associated chronic DNP and 

central nervous system, 241 HIV-infected participants’ structural MRI brain images were 

scanned for this study. Since magnetic resonance (MR) imaging was introduced into 

clinical medicine and neuroimaging, it has been widely applied in medical diagnosis and 

treatments. Moreover, MRI is a cutting edge medical imaging technique that has been 

estimated as an effective tool in the study of the human brain. 

   

1.1   Statement of the Problem 

   Our work in this thesis consists of two separate stages. The first stage research 

was taken on the association between HIV DNP and the brain volume changes. It was 

investigated using both linear and nonlinear (Gaussian kernel support vector) 

multivariate regression analysis, controlling for key demographic and clinical variables.
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   Generally speaking, regression models are designed to determine how close are 

the values of the estimated observations to the ground truth values of the target variables, 

on the basis of training and test data. In general, a training set in machine learning 

applications is adopted to discover potentially predictive relationships. In regression 

analysis, particularly, the training set is used to build a model to predict the value of one 

or more continuous target variables given a vector of input variables. Comparing to the 

training set, in general sense, test set is used to evaluate the performance of the predictive 

relationships on a new distinct data set. In regression analysis, the outcomes of the test 

phase are usually represented by the error rates between the estimates and ground truth. 

Since the targets of our regression model were already available, we could utilize 

supervised learning methods. Regression is generally classified by linear regression 

models and nonlinear regression models. Linear regression models are commonly 

proposed based on estimation methods, i.e. least squares estimation and maximum 

likelihood estimation. However, nonlinear kernel regression models and graphical 

regression models are common nonlinear regression models, widely used to deal with 

complex data sets.  

   For medical diagnosis application, the second stage research was focus on the 

classification of the presence of HIV DNP based on observation of structural MRI brain 

imaging. Basically a classification system consists of two parts: feature extraction and 

classification model. An appropriate classification algorithm is definitely crucial for 

getting good classification results. Nevertheless, the performance of classifiers 

inevitably also depends on the choice of the features or characteristics of the pattern 

http://en.wikipedia.org/wiki/Observation
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selection. Feature extraction is introduced to reduce the dimensionality of data and 

transform the input data into a set of features. Moreover, it is used to draw out 

informative and meaningful descriptors of the data set.  

   However, feature extraction can be divided into dense feature extraction and 

sparse feature extraction. According to the properties of imaging data, a dense algorithm 

denotes implied voxel level extraction. In contrast, a sparse algorithm detects regions of 

interest for feature extraction. Our work centered on 3D MRI images and particularly in 

this thesis we considered sparsely extracted features.  

   Unlike regression analysis, which predicts continuous variable outputs, 

classification analysis is supposed to categorize discrete variable outputs. A classifier is 

used to identify to which of a set of categories a new observation belongs. In 

classification analysis, a training set is used for learning to predict and assign the given 

vector of input variables to one or more discrete, disjoint classes. And the outcomes of 

the test phase are commonly represented by classification error rates. Sometimes, in 

order to better understand the strength and utility of a classification model, true positives 

(sensitivity), true negatives (specificity), false positive, and false negatives are 

respectively obtained. Since the targets of our classification model were labeled and 

known, we applied a supervised learning method. Classification could be generally 

divided to linear classification models and nonlinear classification models. Linear 

classification models are commonly proposed based on linear discriminant functions and 

probabilistic theory. However, nonlinear kernel classification models and graphical 

classification models are common nonlinear classification models, i.e. Gaussian kernel 

http://en.wikipedia.org/wiki/Categorical_data
http://en.wikipedia.org/wiki/Observation
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support vector machine and decision trees.  

 

1.2   Organization of Thesis 

  In chapter 2, basic introduction of the data used in this thesis is firstly reviewed, 

including feature extraction algorithms regarding to the regression and classification 

analysis in this thesis. We then present 1) the linear regression and SVM recursive feature 

elimination (SVM-RFE) algorithms, which explore the correlation between HIV DNP 

and brain volume changes, 2) the introduction and application of linear discriminant 

analysis (LDA) classifiers, radial based function support vector machine (SVM) 

classification algorithm, Naive Bayes classifiers, and random forest classifier in the 

classification analysis. Chapter 3 presents experimental results for regression analysis 

and classification analysis and chapter 4 provides a summary, conclusion, and the 

suggestions for future studies.  
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Chapter 2 

METHODOLOGY 

 

  In this chapter, basic introduction of the data and some prior research relating to 

this thesis are reviewed. In addition, feature extraction schemes for regression and 

classification analysis are carefully discussed. These give us a starting point for the 

analysis of structural brain imaging. Then, in terms of the methodology in this thesis, 

key supervised learning concepts such as linear regression, support vector regression 

(SVR), linear discriminant analysis (LDA), radial based function support vector machine 

(SVM) classification, Bayes decision classifier, and decision tree algorithm are 

reviewed.  

 

2.1 Introduction of Data    

    In this section, we briefly discuss the data used in this thesis. Section 2.1.1 firstly 

demonstrates the subjects and MRI database we obtained. Section 2.1.2 explains the 

schemes and algorithms we used to acquire the features required by our machine learning 

models.  
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2.1.1 Subjects and MRI Data 

   We used T1-weighted CHARTER images1 that were collected by seven MRI 

scanning machines of five US academic medical centers participating in the CHARTER. 

Of 1,556 HIV patients at these five US academic medical centers, 241 underwent 

structural MRI.  The sites performing MRI included: one scanner from Johns Hopkins 

University (Baltimore, MD, n=47); two scanners from Mount Sinai School of Medicine 

(New York, NY, n=48); two scanners from University of California at San Diego (San 

Diego, CA, n=70); one scanner from University of Texas Medical Branch (Galveston, 

TX, n=46); and one scanner from University of Washington (Seattle, WA, n=30). In 

terms of the diagnosis of HIV-SN and HIV DNP, we have discussed it in chapter one. Of 

the 241 participants in this sub-study, 175 had no signs of DNP, 18 had occasional or 

fleeting DNP, 22 had frequent symptom of DNP, 10 had frequent and disabling DNP 

signs, and 4 had severe signs of DNP.  

 

2.1.2 Features for Regression 

   In our multivariate regression study of the correlation between HIV DNP and 

brain volume changes, we investigated the significance of features in the change of 

cerebral cortical gray matter volume. The target variables of the regression model were 

                                                             
1 The original data in this study was the structural MRI brain images in the case of 241 HIV-infected 

participants involved in the CNS HIV Antiretroviral Treatment Effects Research Study (CHARTER). The 

CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) study was first funded in September 

2002 in response to NIMH RFA 00-AI-0005 to explore the changing presentation of HIV neurological 

complications in the context of emerging antiviral treatments such as highly active antiretroviral therapy 

(HAART). 

https://www.charterresource.ucsd.edu/index.php
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241 participants’ log cortical gray matter volumes. The features of the regression model 

consisted of the demographic and clinical characteristics of the study participants, such 

as age, ethnicity, gender, cerebral-vault, scanner, history of D-drug use, history of 

inhalant abuse, history of methamphetamine abuse, Global Deficit Score, DNP, etc. 

   Table 2.1 shows all the covariates we used in the regression analysis. 41 

variables in total were used to estimate structural log cortical gray matter volumes. 

However, four out of 41 of them were categorical variables. In order to make use of these 

variables, we converted them into computable variables by creating new binary features 

from them. For example, variable “Ethnicity” consists of four categories: Caucasian, 

African American, Hispanic and other, which correspond to numerical values {”1”, “2”, 

“3”, “4”}. We therefore split “Ethnicity” into three binary feature sets. For a single data 

point, it has value “1” of only one of three feature sets and “0” otherwise. Similarly, 

variable “Scanner” represents six scanner machines, which correspond to numerical 

values {”1”, “2”, “3”, “4”, “5”, “6”}. We therefore split “Scanner” into six binary feature 

sets. For a single data point, it has value “1” of only one of three feature sets and “0” 

otherwise. Variable “D-drug ever” consists of three categories: current, past, and never, 

which correspond to numerical values {”1”, “2”, “3”}. We therefore split “D-drug ever” 

into two binary feature sets. For a single data point, it has value “1” of only one of three 

feature sets and “0” otherwise. Variable “Antiretroviral Regimen” consists of five 

categories: None, PI-based 2 , NNRTI-based 3 , PI+NNRTI-based and other, which 

                                                             
2 Protease Inhibitor 
3 Non-nucleoside reverse-transcriptase 
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correspond to numerical values {”1”, “2”, “3”, “4”, “5”}. We therefore split 

“Antiretroviral Regimen” into four binary feature sets. For a single data point, it has 

value “1” of only one of three feature sets and “0” otherwise. Consequently, 52 features 

in total were obtained to establish the regression model. We named this data set 

regression.dat. 

 

Table 2.1 List of the explanatory variables used for the multivariable models of the 

association between DNP and log brain volumes. The types of each explanatory variable 

are listed. 

 

FEATURE TYPE FEATURE TYPE 

Distal Neuropathic Pain Continuous Alcohol Abuse Ever Binary 

Age Continuous Alcohol Dep Ever Binary 

Education Continuous Cannabis Abuse Ever Binary 

Ethnicity Categorical Cannabis Dependence Ever Binary 

Gender Binary Cocaine Abuse Ever Binary 

Log-cerebralVault Continuous Cocaine Dep Ever Binary 

Scanner Categorical Halucinogen abuse Binary 

HCV status Binary Halucinogen Dependence Binary 

Plasma HIV RNA Binary Inhalant Abuse Ever Binary 

CSF HIV RNA  Binary Inhalant Dependence Ever Binary 

Sqrt CD4 Nadir Continuous Methamphetamine Abuse Binary 

Sqrt CD4 Current Continuous MethamphetaimeDependence Binary 

Current D-drug Exp Continuous Opiate Abuse Ever Binary 

On D-drugs (Y/N) Binary Opiate Dependence Ever Binary 

D-drug ever Categorical Sedative Abuse Ever Binary 

Total D-drug Exposure Continuous Sedative Dependence Ever Binary 
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# protease inhibitors Continuous Global Deficit Score Continuous 

Antiretroviral Regimen Categorical Opiate Pain Treatment Binary 

Beck Depression  Continuous TAP Treatment Binary 

Major Depression  binary Anticonvulsant Pain Treatment Binary 

Major Depression Ever binary   

 

 

2.1.3 Features for Classification  

   Given the structural MRI images from 241 HIV study participants, the following 

classification study involved the presence or absence of HIV DNP analysis. Unlike the 

demographic and clinical features in regression models, the classification models were 

obtained based on extracting features from MRI brain images. So the reliability of feature 

extraction inherently is need to capture the intrinsic information in the MRI imaging. 

After clinical evaluation by bioimaging specialists, eight out of 241 HIV participants’ 

brain scanning images were diagnosed as abnormal brains4 and they were carefully 

excluded and removed by the neuroimaging experts. 

   We then used only 233 investigable HIV-infected patients’ standard space MRI 

brain images in classification analysis. And the target variables in the classification 

models were certainly intended to be the presence of DNP. Based on the data profile, the 

ground truths of 233 patients’ pain conditions were categorized into {“0”, ”1”, “2”, “3”, 

“4”} with respect to the severity of DNP. Intuitively, pain condition “0” was 

automatically labeled as “0”, and all pain conditions other than “0” in general were 

                                                             
4 Abnormalities in this case include the presence of brain tumors, brain lesions, enlarged ventricles, etc. 
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labeled as “1” in our experiments. Considering this class separation principle, among 

these 233 patients, there are 169 patients with DNP symptoms and 64 patients with no 

DNP symptoms. 

   Using these 233 MRI subjects as described above, three separate experiments 

were performed with a goal of classifying/diagnosing binary DNP conditions. The 

fundamental idea of the three experiments was the same. However, what distinguished 

them was the feature subsets (models) we selected to perform the classification analysis. 

In order to investigate and obtain more effective and significant information from the 

image data, we tended to gradually increase the dimensionality of the feature space in 

our experiments. We started from volume space feature extraction, and then extended to 

area space feature extraction and to sub-regional area space feature extraction. We 

therefore proposed three separated classification experiments, with the feature 

dimensionality escalated, from one to the next.  

 

2.1.3.1 Features for Volume Space Classification  

    To begin with, the first experiment is a study regarding volume space features of 

brain images and how they predicted the presence of DNP in individuals diagnosed as 

HIV-infected. By the CHARTER study, the MRI brain images were manually identified 

to cerebral cortex5 and cerebral sub-cortex. Regardless of the structure of human brain, 

                                                             
5 The cerebral cortex is the outer covering of gray matter over the hemispheres. This is typically 2- 3 mm 

thick, covering the gyri and sulci. Certain cortical regions have somewhat simpler functions, termed the 

primary cortices. These include areas directly receiving sensory input (vision, hearing, somatic sensation) 

or directly involved in production of limb or eye movements [5]. 
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cerebrum could be segmented into gray matter (grey matter), white matter and 

cerebrospinal fluid (CSF) from the perspective of anatomical components. CHARTER 

study segmented gray matter, white matter and CSF by hand in FSLView6. In addition, 

the structural volumes of the three components were computed in both cortical brain and 

sub-cortical brain and eventually six volumes were chosen for the study. Furthermore, 

all structural volumes were log transformed to symmetrize the distributions and stabilize 

the variances. Table 4.2 shows the names of six log-volumes and their mean, and 

standard deviation values.  

 

Table 2.2 Classification features in volume space. The mean and standard deviation 

values are listed. 

 

Volume (log transformed) Num. Subj. Mean Stdev 

Cortical Gray Matter 233 13.299 0.139 

Subcortical Gray Matter 233 10.462 0.104 

Abnormal White Matter 233 8.935 0.363 

Total White Matter 233 13.077 0.147 

Ventricular CSF 233 9.857 0.554 

Sulcal CSF 233 11.175 0.603 

                                                             
6 FMRIB Software Library (FSL) [6] [7] is a comprehensive library of analysis tools for FMRI, MRI and 

DTI brain imaging data. FSL is available as both precompiled binaries and source code for Apple and PC 

(Linux) computers. It is freely available for non-commercial use. FSLView is one of the self-installed tools 

in FSL, which provides visual viewing of MRI data.  
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   Using 6 log-volume variables from the data profiles as the feature subset, three 

variables were controlled in this experiment: Age, Ethnicity, and Gender. The individuals 

diagnosed with HIV in this research were both male and female with the youngest age 

being 23 and the oldest age being 67 from 4 ethnicities. Male and female were separated 

and classified by age with other patients within roughly a decade of the same age (below 

age 34, ages 35-44, ages 45-55, and ages 55 above). And then African American patients 

were separated from other races. These 16 groupings’ brain region volumes were 

averaged and then the group-averages were subtracted from the individual volume 

estimations of each group to arrive at a set of detrended (by group averaging) values. 

However, the feature set version without detrending was used as a comparison 

experiment. We entitled the data set with detrending process volume_norm.dat and the 

data set with no detrending process volume.dat. In addition, instead of detrending the 

feature vectors using group averaging, we also inserted variable age, variable gender, 

and variable ethnicity into the data set and created the third volume space data set entitled 

volume_plus.dat. 

 

2.1.3.2 Features for Area Space Classification  

   In the second experiment, we increased the dimensionality of the feature subsets. 

To do so, some image processing techniques were required on 233 standard-space 𝑇1- 

weighted images. Although the most sufficient information in the standard-space 𝑇1- 

weighted images implicitly exists in the voxel space features, high dimensional feature 

sets will bring about considerably low computational efficiency. As a result, we 
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compromised to conduct classification studies based on area space features by slicing 

the MRI brain images. In addition, some recent neuroimaging studies have revealed 

several correlated brain regional activities based on the changes of brain volumes. They 

provided us convincing evidence to remove uncorrelated brain anatomy from the whole 

brain images. In such a way, the dimensionality of features was further reduced.  

   Over 30 independent studies in distinct chronic pain conditions have suggested 

gray matter decrease positively correlates with chronic pain [8]. Neuropathic pain, as 

one type of chronic pain conditions, was usually diagnosed based on clinical signs. A 

recent study demonstrated that patients exhibited a gray matter decrease in the insula, 

ventromedial prefrontal cortex, and nucleus accumbens [9]. In contrast, neuronal 

activation patterns in primary headache studies showed the areas known to be generally 

involved in pain processing: the cingulate, insular cortex, and thalamus. Since most of 

the subcortical regions were proved to be uncorrelated to the presence of DNP, we 

decided to eliminate the effects of brainstem and cerebellum in classification analysis.  

   Image preprocessing was performed using the FSL 4.1 in Ubuntu 13.04 system 

and MATLAB 8.0 in Windows. The input to our processing was a standard-space 𝑇1- 

weighted image in NifTI7 format. First, using a precise gray matter mask carefully 

created by fslmaths in FSLutils8, we roughly removed 99% of tissues other than gray 

matters. Next, we tended to remove two useless subcortical brain tissues (cerebellum and 

                                                             
7 NIfTI is adapted from the widely used ANALYZE™ 7.5 file format. The primary goal of NIfTI is to 

provide coordinated and targeted service, training, and research to speed the development and enhance the 

utility of informatics tools related to neuroimaging. 

8 FSLUTILS is a set of useful command-line utilities which allow the conversion, processing etc. of 

Analyze and Nifti format data sets. 
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brainstem) from the whole brain image, using the FSL masking algorithm. In FSLView, 

the electronic atlas MNI structural atlas 9  has cerebellum and brainstem masks for 

standard space brain images. We therefore used these automated masking techniques and 

gained a segmented cerebellum image and a brainstem image.  

   In order to strip cerebellum and brainstem from the whole brain, we outputted 

the whole brain image, cerebellum image and brainstem image to the processing in 

MATLAB. First, the program MRIcro10 was chosen to convert the NifTI file into an 

equivalent file type pair ‘.img’ and ‘.hdr’. Next, we used an MRI toolbox to import the 

MRI ‘.img’ data to our image processing algorithm. We then implemented a linear 

subtraction algorithm to wipe out cerebellum and brainstem regions, such that only the 

regions we are interested in remained in the image. Figure 2.1 shows the original 

standard-space 𝑇1 - weighted image. Figure 2.2 shows the image preprocessing 

outcomes in MATLAB.  

 

 

 

 

 

                                                             
9  MNI structural atlas is one of the eleven templates and atlases with FSL. See: 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases 

10 MRIcro allows Windows and Linux computers view medical images. It is a standalone program, but 

includes tools to complement SPM (software that allows neuroimagers to analyse MRI, fMRI and PET 

images). MRIcro allows efficient viewing and exporting of brain images. In addition, it allows 

neuropsychologists to identify regions of interest (ROIs, e.g. lesions). MRIcro can create Analyze format 

headers for exporting brain images to other platforms. More information here 

http://www.mccauslandcenter.sc.edu/mricro/mricro/index.html


   17 

 

Figure 2.1 An example of original standard-space 𝑇1 - weighted image (patient ID: 

RA029006, image dimensionality: 91x109x91) displayed by SPM8 11 . Upper left: 

coronal view (front view of head); Upper right: sagittal view (right side view of head); 

Lower left: axial view (top view of head). Cursor position: X: 46; Y: 40; Z: 31. 

 

 

 

 

 

 

 

 

                                                             
11 SPM (Statistical Parametric Mapping) refers to the construction and assessment of spatially extended 

statistical processes used to test hypotheses about functional imaging data. SPM8 (SPM version 8) 

provided a relatively simple interface while also being a software package written for use with MATLAB. 



   18 

 

Figure 2.2 An example of processed standard-space 𝑇1- weighted image (patient ID: 

RA029006, image dimensionality: 91x109x91) displayed by MATLAB. Cerebellum and 

brainstem tissues in the brain have been successfully stripped out (Cursor position: X: 

46; Y: 40; Z: 31, the same position as Figure 2.1). 

 

 

 

   In terms of the anatomy of brain, MRI images are displayed according to three 

different 3-D views of the target tissues (see Figure 2.1), each a sequence of 2-D images. 

Using these processed three-view MRI images (see Figure 2.2), we intensively sliced the 

standard-space 𝑇1- weighted images in three directions. For the coronal view, we had a 

sequence of 109 2-D images/slices. For all 109 2-D slices, the areas of cortex regions 

were computed and the 87 non-zero values were used as features for each patient/sample. 

For the sagittal view, we had a sequence of 91 2-D images/slices. For all 91 2-D slices, 
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the areas of cortex regions were computed and the 74 non-zero values were used as 

features for each patient/sample. For the axial view, we had a sequence of 91 2-D 

images/slices. For all 91 2-D slices, the areas of cortex regions were computed and the 

65 non-zero values were used as features for each patient/sample. As a result, 226 

features of slices area have been acquired. Among them, all the cortical gray matter 

regions and the region of interest (ROI) in the subcortical gray matter were collected.  

   With the same idea of group-averaging scheme in the first experiment (section 

2.1.3.1), a feature set with detrending values was used in the second experiment. 

However, the feature set version without detrending were used as comparison 

experiment. We entitled the data set with detrending process slicearea_norm.dat and the 

data set with no detrending process slicearea.dat. In addition, instead of detrending the 

feature vectors using group averaging, we also inserted variable age, variable gender, 

and variable ethnicity into the data set and created the third area space data set entitled 

slicearea_plus.dat. 

      

2.1.3.3 Features for Sub-regional Area Space Classification  

    In the third experiment of the classification analysis, we further expanded the 

dimensionality of the area-space feature subset. The idea was straight forward based on 

the feature extraction algorithm in section 2.1.3.3. Sub-regional slices areas were 

retrieved using a grid segmentation on the 2-D images/ slices. As showed in Figure 2.2, 

we used the stripped images without cerebellum and brainstem brain. We then equally 

cut the images crosswise into four sub-regions in all three views. Therefore, instead of 
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an individual area space feature extracted from a slice, four area space features were 

computed and acquired from that. As a result, roughly four times larger size of feature 

set has been processed to filter out the zero area values, and we intuitively obtained 878 

features of the sub-regional slices areas. 

With the same idea of group-averaging scheme in the first experiment (section 

2.1.3.1), a feature set with detrending values was used in the second experiment. 

However, the feature set version without detrending were used as comparison 

experiment. We entitled the data set with detrending process subslicearea_norm.dat and 

the data set with no detrending process subslicearea.dat. In addition, instead of 

detrending the feature vectors using group averaging, we also inserted variable age, 

variable gender, and variable ethnicity into the data set and created the third sub-regional 

area space data set entitled subslicearea_plus.dat. 

 

2.2 Regression by Linear Discriminant Functions 

    The simplest form of linear regression models are linear functions of the input 

variables. However, we can obtain a much more useful class of functions by taking linear 

combinations of a fixed set of nonlinear functions of the input variables, known as basis 

functions. Such models are linear functions of the parameters, which gives them simple 

analytical properties. Although linear models have significant limitations as practical 

techniques for pattern recognition, particularly for problems involving input spaces of 
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high dimensionality, they have nice analytical properties and form the foundation for 

more sophisticated models. 

2.2.1 Linear Basis Function Models 

    The simplest multiple variables regression model is one that involves a linear 

combination of the input variables 

𝑦(𝐱, 𝛚) = 𝜔0 + 𝜔1𝑥1 + 𝜔2𝑥2 + ⋯ + 𝜔𝑛𝑥𝑛 

where 𝐱 =  [

𝑥0

𝑥2

⋮
𝑥𝑛

] ϵ 𝑅𝑛+1, and 𝛚 =  [

𝜔0

𝜔2

⋮
𝜔𝑛

] ϵ 𝑅𝑛+1. Let 𝑛 to be the number of features 

involved in the regression model, we then have a linear combination 

𝑦(𝐱, 𝛚) =  [𝜔0 𝜔1 ⋯  𝜔𝑛] ∗ [

𝑥0

𝑥2

⋮
𝑥𝑛

] = 𝛚𝐓𝐱 =  𝜔0 + 𝜔1𝑥1 + 𝜔2𝑥2 + ⋯ + 𝜔𝑛𝑥𝑛.  

For convenience of notation, we usually define 𝑥0 = 1. Given an input data sample x 

with 𝑛 + 1 features, we estimate the parameter matrix 𝛚 and target variable 𝑦(𝐱, 𝛚). 

This is often simply known as linear regression. Now we extend this simple regression 

model to multiple training sample space. Such that, 𝑚 dimensional input variables with 

𝑛 features in the form 

𝐗 =  [
𝑥1

0 ⋯ 𝑥1
𝑛

⋮ ⋱ ⋮
𝑥𝑚

0 ⋯ 𝑥𝑚
𝑛

]  ϵ 𝑅𝑚×(𝑛+1) 

where 𝑥𝑗
(𝑖)

 denotes value of feature 𝑖 in 𝑗𝑡ℎ training sample. In order to figure out the 

best fit estimate the target variable 𝑡 =  [𝑡1 𝑡2 ⋯  𝑡𝑚]T, we investigate the parameter 

matrix 𝛚 by minimizing a sum of squares error function. However, this error function 

could be motivated as the maximum likelihood and least squares approach. In terms of 

Sum-of-Square error (SSE), given the equation of 1this error as, 
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𝐸𝐷(𝛚) =  
1

2
‖𝑡 −  𝛚T𝐗𝐓‖2. 

Given this SSE function, we can take gradient of that with respect to 𝛚. We then set this 

gradient to zero and solve for 𝛚 to obtain 

𝛚 = (𝐗T𝐗)−1𝐗𝐓𝑡. 

Given a new set of test data �̂� to this regression model with the parameter vector 𝛚, 

the outcomes �̂� can be linearly estimated.  

 

2.2.2 Linear Models for Feature Ranking 

   In statistical analysis, linear regression models are prevalently used to investigate 

the practical statistical problems, for instance, statistical hypothesis tests [10]. A t test 

statistic as a type of hypothesis test, can be used to determine if two sets of data are 

significantly different from each other. In particular, in terms of the parameters ω’s, ωi 

can be defined as the change of target value when 𝑥𝑖  increases by 1 unit, all other 

features already fixed. A t-test statistic on ωi is a measurement of how much evidence 

we have to reject the null hypothesis12. Alternatively, there is another measurement to 

identify whether the null hypothesis holds. In statistical significance testing, the p-value 

is the probability of seeing something more extreme than the given observation if the 

null hypothesis is true. If this p-value is less than the significance level previously set, it 

rejects the null hypothesis and supports the alternative hypothesis. Apparently, the 

smaller the p-values are, the more evidence we have against H0. 

                                                             
12 It can be considered as a null hypothesis H0: ωi = 0 and an alternative hypothesis Ha: ωi ≠ 0. We 

interpret the hypothesis as a test measuring the linear relationship between the target variable and feature 

𝑥𝑖. The null hypothesis indicates that there is no linear relationship between them. 

http://en.wikipedia.org/wiki/Significance_testing
http://en.wikipedia.org/wiki/Probability
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    We used the concept of t-statistic and p-values to conduct a linear regression 

model selection/ refinement. Regardless of sufficient information provided by high 

dimensional feature subsets, more is not always better according to the curse of 

dimensionality. This term was originally coined by Richard E. Bellman when 

considering problems in dynamic optimization. When the number of predictors is large 

relative to the data sample size, we tend to observe either one or more of these predictors 

are not significantly related to the target variable or two or more of the predictors are 

related to each other. In either case, we would prefer to drop unnecessary predictors.  

The methods commonly used in the linear regression area are stepwise 

procedures 13 . Accordingly, we used stepwise backward elimination in our linear 

regression analysis. Generally, we assumed that we had one target/ response variable 𝑡 

(the log cortical gray matter volume) and a pool of the demographic and clinical 

characteristics covariates 𝐱 =  [𝑥1 𝑥2 ⋯  𝑥𝑚]T. And an elimination criterion was set by 

specifying a level of significance α . First, we fitted the model with all predictors/ 

covariates (we show the regression results in chapter 4). If all predictors are significant 

(p-values less than α), stop and retain all predictors. However, if any are not significant, 

remove the least significant one (the predictor indexed by the largest p-values). Second, 

if one predictor was removed in the first step, we refit the model without that predictor 

and repeat the filtering procedure in the first step. We then repeatedly replicate the 

elimination steps until all the p-values in the regression model are less than α. We 

                                                             
13  Stepwise model selection procedures include stepwise backward selection/ elimination, stepwise 

forward selection/ elimination and the combination of stepwise forward and backward elimination.  
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discussed the features used for the regression analysis in section 2.1.2. If we manually 

controlled the elimination steps, we stop high at top 10 significant features remaining in 

the model. However, without human intervention, the stepwise backward elimination 

algorithm automatically stopped at top 13 significant features remaining in the model, 

which means 13 features can be considered to have correlations with the target variable. 

We implemented the linear regression model selection processing using Minitab14. 

 

2.3 Classification by Linear Discriminant Functions 

    In the previous section, we explored a class of linear regression models having 

particularly simple analytical and computational properties. We now discuss an 

analogous class of linear models for solving classification problems. The objective in 

classification is to take an input vector x and to allocate it to one of K discrete, disjoint 

classes Ck, where k = 1, … , K. with each input assigned to one and only one class. 

 

2.3.1 Linear Discriminant Analysis (LDA) 

   The input space is thereby divided into decision regions whose boundaries are 

called decision boundaries or decision surfaces, by which we mean boundaries of 

decision regions in the input space. In linear classification analysis, data sets whose 

classes can be separated exactly by linear decision surfaces are said to be linearly 

separable. Similar to the definition of target variables in linear regression models, we use 

                                                             
14  Minitab 16 statistical software, Minitab Inc., 2010, www.minitab.com. Minitab is a statistics 

package developed at the Pennsylvania State University by researchers Barbara F. Ryan, Thomas A. Ryan, 

Jr., and Brian L. Joiner in 1972. The newest version is Minitab 17. 

www.minitab.com
http://en.wikipedia.org/wiki/List_of_statistical_packages
http://en.wikipedia.org/wiki/List_of_statistical_packages
http://en.wikipedia.org/wiki/Pennsylvania_State_University
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target values to represent class labels. Moreover, in the linear regression models, 

considered in section 2.2, the model prediction 𝑦(𝐱, 𝛚) was given by a linear function 

of the parameters 𝛚. Returning to the simplest case, the model is also linear in the input 

variables and therefore takes a simplest linear discriminant function 𝑦(𝐱, 𝛚) = 𝛚𝐓𝐱 +

b, where 𝛚 is called a weight vector and b is a bias parameter. In particular binary 

classification case, the decision boundary in this case is 𝑦(𝐱, 𝛚) = 0, an input vector x 

is assigned to class C1 if 𝑦(𝐱, 𝛚) ≥ 0 and to class C2 otherwise.  

    There are three methods to learning the parameters of linear discriminant 

functions, based on least squares, Fisher’s linear discriminant, and the perceptron 

algorithm. The ideas of least squares or maximum likelihood were already mentioned in 

section 2.2. Intuitively, we saw that the minimization of a sum of squares error function 

led to simple closed-form solution for the parameter values. Thus, it is a straightforward 

attempt to apply the same formalism to classification problems. The advantage of least 

squares approach is this is an effective and efficient approximation algorithm to 

implement. Yet, the problems of least squares approach are they lack robustness to 

outliers and Maximum likelihood, e.g. a Gaussian conditional distribution may or may 

not be a good model assumption for the data.  

    The basic idea of Fisher’s linear discriminant is to maximize a function that will 

give a large separation between the projected classes means while also give small 

variance within each class. By contrast, the least-squares approach to the determination 

of a linear discriminant was to make the predictions as close as possible to the target 

values. Actually, the Fisher criterion can be obtained as a special case of least squares. 
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In terms of maximizing class separation, we attempt to maximize inter-class projected 

mean and simultaneously minimize the intra-class variance. Hence the solution of that 

is to maximize the ratio of them. Considering a two-class problem in which there are N1 

points of class C1  and N2  points of class C2 , so that the mean vectors of the two 

classes are given by 

𝐦𝟏 =
1

𝑁1
∑ 𝑥𝑛

𝑛∈C1

,       𝐦𝟐 =
1

𝑁2
∑ 𝑥𝑛

𝑛∈C2

. 

Suppose we take the input vector x and project it down to one dimension using 𝑦 =

𝛚𝐓𝐱. The simplest measure of the separation of the classes, when projected onto 𝛚, is 

the separation of the projected class means.  

𝑚1 − 𝑚2 =  𝛚𝐓(𝐦𝟏−𝐦𝟐). 

The projection function 𝑦 = 𝛚𝐓𝐱 transforms the set of labelled data points in x into a 

labelled set in the one-dimensional space y. The within-class variance of the transformed 

data from class Ck is therefore given by 

𝑆𝑘
2 =  ∑ {𝑦𝑛 −  𝑚𝑘}2.

𝑛∈𝐶𝑘

 

Now the Fisher criterion is defined to be maximizing the ratio of the between-class 

variance to the within-class variance 

𝐽(𝛚) =  
(𝑚1 − 𝑚2)𝟐

𝑆1
2 + 𝑆2

2 . 

By some basic rules of matrix computation, we could rewrite the Fisher criterion in the 

form  

𝐽(𝛚) =  
𝛚𝐓𝑺B𝛚

𝛚𝐓𝑺w𝛚
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where 𝑺B  is the between-class covariance matrix with the form 𝑺B =

(𝐦𝟏−𝐦𝟐)(𝐦𝟏−𝐦𝟐)T and 𝑺w is the within-class covariance matrix , denoted by  

𝑺w = ∑ (𝐱𝐧−𝐦𝟏)(𝐱𝐧−𝐦𝟏)T

𝒏∈𝑪𝟏

+ ∑ (𝐱𝐧−𝐦𝟐)(𝐱𝐧−𝐦𝟐)T

𝒏∈𝑪𝟐

. 

We take the derivation of 𝐽(𝛚) with respect to 𝛚 and 𝐽(𝛚) is maximized when 

(𝛚𝐓𝑺B𝛚)𝑺w𝛚 = (𝛚𝐓𝑺w𝛚)𝑺B𝛚.  We then simply it by multiplying 𝑺w
−𝟏

 on both 

sides and such that 𝛚 is obtained as a proportion of the difference of the class means 

𝛚 ∝ 𝑺w
−𝟏(𝐦𝟐−𝐦𝟏). 

 

2.3.2 LDA for Feature Selection 

    In terms of the application of LDA in this thesis, we made use of a Fisher’s LDA 

classifier to implement the feature selection for the classification experiments of DNP 

diagnosis. In such a way, we linearly reduced the feature subset dimensionality and 

complexity. Feature subset selection techniques are commonly designed to find a reliable 

range of tradeoffs between accuracy and data complexity [12]. The basic idea of this 

subset selection is to select a subset of existing features based on some pre-defined 

criteria. “Filtering” methods select features independent to classifier training, based on 

evaluation of discrimination power for individual features or small feature groups, e.g. 

information theory based measurements, variance ratio (VR) and average variance ratio 

(AVR). “Wrapper” methods are generally more reliable to solve the discrimination 

problems using some classifiers based on some criterion such as classification rate. 

Regardless of the statistical backward feature selection we discussed in section 2.2, 

practical wrapper methods inherently involve greedy heuristic search such as sequential 
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feature selection and classifier design steps, with features sequentially selected to 

maximize the current subset’s joint discrimination power. Two basic components in 

classical feature selection algorithms are a selection criterion and a stopping criterion. In 

our study, we used a LDA classifier (Fisher’s LDA) which we obtained an evaluation to 

measure the goodness of the feature subsets. To be precise, the optimization criterion 

exclusively measured in our HIV DNP study was focus on the rate of true positive 

(sensitivity) due to the unbalanced characteristic of target values. The stopping condition 

was governed by a sequential backward selection algorithm, which starts from the full 

set and removes features sequentially. We implemented 5-fold cross validation [13] as a 

quantitative validation to improve the feature elimination accuracy by remove the 

features indexed by the worst mean sensitivity results.     

 

2.4 Classification by Nonlinear Kernel Method and SVMs 

    In section 2.2, we considered linear parametric models for regression in which 

the form of the mapping 𝑦(𝐱, 𝛚) from the input 𝐱 to the output 𝑦 is fitted by a vector 

𝛚 of adaptive parameters. This approach can be also used in nonlinear parametric model. 

The linear parametric models can be reformulated in term of an equivalent dual 

representation [11] in which the kernel function intrinsically evaluated. Although a 

couple of decades passed, the kernel idea was reintroduced by Boser, Guyon and V. 

Vapnik in 1992 giving rise to the technique of support vector machines (SVM). Since 

then SVM became widely prevalent many years ago for solving problems in regression 

and classification analysis. 
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2.4.1 Kernel Method and SVM  

    The kernel function is given by the linear combination of the feature space 

mapping function 𝛷(𝐱) 

𝑘(𝐱, 𝐱′) =  𝛷(𝐱)T𝛷(𝐱′). 

The kernel concept was introduced into the field of pattern recognition by Aizerman et 

al in 1964. The kernel function is a generalization of the distance (similarity) metric; it 

measures the similarity between two expression vectors as the data are projected into a 

higher-dimensional space. The simplest case of a kernel function is referring to the linear 

kernel function, such that 𝛷(𝐱) =  𝐱. In terms of more complex specialization involves 

radial basis function/ Gaussian kernel, the nonlinear kernel method is introduced in 

which is commonly used in the form of 

𝑘(𝐱, 𝐱′) = exp (−
‖𝐱 − 𝐱′‖

2

2𝜎2
). 

    The support vector machine approaches this problem through the concept of the 

margin. Margin as an extremely important concept, is defined as the smallest/ minimum 

distance between the decision boundary and any of the samples. Maximizing the margin 

causes a particular choice of decision boundary (hyper-plane). The location of this 

boundary is determined by a subset of the data points, known as support vectors. The 

hyper-plane is increasingly dominated by the nearby data points. In the limit, the hyper-

plane becomes independent of data points that are not support vectors. Generally, support 

vector machine constructs a hyper-plane which maximizes the margin. Intuitively, we 

return to the binary classification problem with the linear model in the form of 

Hyper-plane: 𝑦(𝐱) =  𝛚𝐓𝛷(𝐱) + b 
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where 𝛷(x) denotes a fixed feature-space transformation and b the bias parameter. We 

then recall the concept of target variables 𝑡 (𝑡𝑚 = ±1 in binary classification models, 

where 𝑚 denotes a certain training data point). Start by assuming the training data is 

linearly separable in the feature space, i.e. there exists one choice of parameters 𝛚 and 

b such that the hyper-plane function satisfies 𝑦(𝐱𝒎) > 0 for points having 𝑡𝑚 = +1. 

And on the other hand, the hyper-plane function satisfies 𝑦(𝐱𝒎) < 0 for points having 

𝑡𝑚 = −1. Therefore, 𝑡𝑚𝑦(𝐱𝒎) > 0 for all training data points, in which we normalize 

it as 𝑡𝑚(𝛚𝐓𝛷(𝐱𝒎) + b) ≥ 1.  

    Recall that the perpendicular distance of a point 𝐱𝒎 from a hyper-plane defined 

by 𝑦(𝐱𝒎) = 0 where 𝑦(𝐱𝒎) takes the hyper-plane function is given by |𝑦(𝐱𝒎)|/‖𝛚‖ 

Furthermore, we are only interested in solutions for which all data points are correctly 

classified, so that 𝑡𝑚𝑦(𝐱𝒎) > 0  for all data points. Thus the distance of a point 𝐱𝒎 to 

the decision surface is given by 

𝑡𝑚𝑦(𝐱𝒎)

‖𝛚‖
=

𝑡𝑚(𝛚𝐓𝛷(𝐱𝒎) + b)

‖𝛚‖
. 

The margin is given by the perpendicular distance to the closest point 𝐱𝒎 from the data 

set, and we wish to optimize the parameters 𝛚 and b in order to maximize this distance. 

Thus the maximum margin solution is found by solving 

 

argmax𝛚,b {
1

‖𝛚‖
min[𝑡𝑚(𝛚𝐓𝛷(𝐱𝒎) + b)]} 

where 𝑡𝑚(𝛚𝐓𝛷(𝐱𝒎) + b)/‖𝛚‖  is the distance between a data point 𝐱𝒎  to the 

decision surface. The optimization problem simply requires that we maximize ‖𝛚‖−1, 

which is equivalent to minimizing ‖𝛚‖2, and so we have to solve the optimization 

problem  
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argmax𝛚,b

1

2
‖𝛚‖2. 

In order to solve this constrained optimization problem, we introduce Lagrange 

multipliers 𝑎𝑚 ≥ 0, giving the Lagrange function  

𝑳(𝛚, b, 𝐚) =
1

2
‖𝛚‖2 − ∑ 𝑎𝑚{𝑡𝑚(𝛚𝐓𝛷(𝐱𝒎) + b) − 1}

𝑀

𝑚=1

 

where 𝐚 = (a1, … , a𝑚)T. Even though there is a minus sign in front of the Lagrange 

multipliers, we could still solve for the optimization function by maximizing the values 

of the Lagrange multipliers. Now we take the derivation of the Lagrange function with 

respect to 𝛚 and b and set it to zero. We then obtain that 

𝛚 = ∑ 𝑎𝑚𝑡𝑚𝛷(𝐱𝒎)

𝑀

𝑚=1

,            ∑ 𝑎𝑚𝑡𝑚

𝑀

𝑚=1

= 0.    

So when we eliminate 𝛚 and b using two representations we obtained, we just need to 

maximize  

�̃�(𝐚) =  ∑ 𝑎𝑚

𝑀

𝑚=1

−
1

2
∑ ∑ 𝑎𝑚𝑎𝑛

𝑀

𝑛=1

𝑀

𝑚=1
𝑡𝑚𝑡𝑛𝑘(𝐱𝒎, 𝐱𝒏) 

here we introduce the kernel function 𝑘(𝐱𝒎, 𝐱𝒏)  is defined to be 𝑘(𝐱𝒎, 𝐱𝒏) =

𝛷(𝐱𝐦)T𝛷(𝐱𝒏). To classify new data points using the training model, we reformulate 

𝑦(𝐱) and replace 𝛚 by expressing 𝑎𝑚 and the kernel function 

𝑦(𝐱) =  ∑ 𝑎𝑚𝑡𝑚𝑘(𝐱, 𝐱𝒎)
𝑀

𝑚=1
+ b. 

Recall the constraints 𝑡𝑚(𝛚𝐓𝛷(𝐱𝒎) + b) ≥ 1 , we now demonstrate a constrained 

optimization of this form satisfies the Karush-Kuhn-Tucker (KKT) conditions with three 

properties as following: 

𝑎𝑚 ≥ 0 

𝑡𝑚𝑦(𝐱𝒎) − 1 ≥ 0 
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𝑎𝑚(𝑡𝑚𝑦(𝐱𝒎) − 1) = 0. 

It means for all data points, either 𝑎𝑚 = 0 or 𝑡𝑚𝑦(𝐱𝒎) − 1 = 0 holds. Regardless of 

how large the number of 𝑎𝑚 = 0  points is, they are literally not supposed to be 

constructive predictions for new data points. On the other hand, those data points who 

satisfies 𝑡𝑚𝑦(𝐱𝒎) = 1  are called support vectors lie on the maximum margin 

hyperplanes in feature space. SVM therefore is a type of sparse kernel machine. 

    For the purpose of maximizing the margin while softly penalizing points that lie 

on the wrong side of the margin boundary, we introduce slack variables 𝜉𝑚 to provide 

a formalism where data points are allowed to be on the ‘wrong side’ of the margin 

boundary, but with a penalty that increases with the distance from that boundary. We 

therefore minimize 

𝐶 ∑ 𝜉𝑚

𝑚

𝑚=1

+
1

2
‖𝛚‖2 

where the cost parameter C > 0 balances the trade-off between the slack variables penalty 

and the margin. Moreover, if we include the Lagrange multipliers 𝑎𝑚  and KKT 

conditions analysis, we obtain a box constraint 0 < 𝑎𝑚 < 𝐶. We therefore denote a soft 

margin SVM called C-SVM.  

 

2.4.2 Radial Basis Function Kernel C-SVM for Classification 

   In terms of the application of C-SVM classifier in this thesis, we implemented a 

weighted RBF kernel SVM classifier to determine the DNP presents or not. Recall that 

a Gaussian kernel is defined to be represented as 
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𝑘(𝐱, 𝐱′) = exp (−
‖𝐱 − 𝐱′‖

2

2𝜎2
) . 

‖𝐱 − 𝐱′‖2 should be recognized to be the squared Euclidean distance between 𝐱 and 𝐱′. 

We thereby conclude that Gaussian kernel is a RBF kernel. Moreover, we replace 1/2𝜎2 

by a kernel hyper-parameter 𝛾, such that the RBF (Gaussian) kernel could be rewritten 

as  

𝑘(𝐱, 𝐱′) = exp (−𝛾‖𝐱 − 𝐱′‖
2
). 

When we applied RBF kernel in C-SVM in our experiments, we had two hyper-

parameters: regularization constant C and kernel parameter 𝛾. They are required hyper-

parameters optimization, which led to a grid search algorithm. Hence, to perform a grid 

search, we selected a set of reasonable values for each, where 𝐶 ∈ [2: 25] and 𝛾 ∈

[−23: 0]. Grid search trained an C-SVM with a pair of hyper-parameters (C, 𝛾) in the 

cross product of these two sets. We investigated the highest sensitivity scores from the 

grid search on the training data set only. Finally, we test how well the methods generalize 

to new data using the unbiased test data.  

 

2.5 Regression by Nonlinear Kernel Method and 𝜖-SVR  

   Now we extend support vector machine to regression problems. As we known, 

instead of taking an input vector x and assign it to K discrete and disjoint classes, we 

estimate the target values and minimize the error function in the regression. A version 

of SVM for regression was proposed in 1996 by Vladimir N. Vapnik, et al [15]. This 

method is called support vector regression (SVR) [16]. 

 

http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Vladimir_N._Vapnik
http://en.wikipedia.org/w/index.php?title=Support_vector_regression&action=edit&redlink=1
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2.5.1 𝜖-Support Vector Regression 

   The model generated by support vector classification (as described above) 

accounts only for a subset of the training data, because the cost function for building the 

model is not correlated to the training points that are not the support vectors. In a simple 

linear regression model, we minimize a regularized error function15 given by 

𝐸𝐷(𝛚) =  
1

2
∑{𝑡𝑗 −  𝛚T𝐱𝐓}

2
𝑚

𝑗

+
𝜆

2
‖𝛚‖2. 

In order to acquire sparse solutions, Vapnik replaced the quadratic error function term 

by an 𝜖-insensitve error function, which actually insert a threshold term 𝜖 to zero out 

the difference between the prediction 𝑦(𝐱) and the target vector t. Therefore, we 

produce and minimize a regularized error function given by 

𝐸𝐷(𝛚) =  𝐶 ∑ 𝐸𝜖(𝑡𝑗 −  𝛚T𝐱𝐓)

𝑚

𝑗

+
1

2
‖𝛚‖2 

where  𝐸𝜖(𝑡 −  𝑦(𝐱)) =  {
0,                if |𝑡 −  𝑦(𝐱)| < 𝜖
|𝑡 −  𝑦(𝐱)| − 𝜖,     othewise

. 

   As the soft margin SVM idea we discussed in section 2.4.1, we reformulate the 

optimization problem by introducing two slack variables 𝜉𝑚 and 𝜉𝑚. The purpose to 

do so is that 𝜖 and two slack variables establish a 𝜖-tube for a target point, such that 

𝑦(𝐱) − 𝜖 − 𝜉𝑚  ≤ 𝑡𝑚 ≤ 𝑦(𝐱) + 𝜖 + 𝜉𝑚 , where 𝜉𝑚  and 𝜉𝑚  are nonzero and positive 

unless the prediction 𝑦(𝐱) lies outside the tube region. We therefore are able to rewrite 

the regularized error function as 

𝐸𝐷(𝛚) =  𝐶 ∑(𝜉𝑚 + 𝜉𝑚)

𝑚

𝑗

+
1

2
‖𝛚‖2. 

                                                             
15 Recall the non-regularized error function with respect to the Sum of Square error (SSS) showed in 

section 2.2.1, a penalty term controlled by a regularization term 𝜆 is added to the equation of this error. 



   35 

 

To minimize this error function with respect to two slack variables, as we showed in 

section 2.4.1, Lagrange multipliers are introduced and we optimize the Lagrangian 

function. In C-SVM, we obtain the box constraints 0 < 𝑎𝑚 < 𝐶 and 0 < �̂�𝑚 < 𝐶. To 

estimate new data points using the training model, we reformulate 𝑦(𝐱) and replace 𝛚 

by expressing 𝑎𝑚, �̂�𝑚, and the kernel function 

𝑦(𝐱) =  ∑ (𝑎𝑚 − �̂�𝑚)𝑘(𝐱, 𝐱𝒎)
𝑀

𝑚=1
+ b. 

The corresponding KKT conditions, which states that the product of the dual variables 

and the constraints mush vanish. In other words, for all data points, either 𝑎𝑚 = 0 or 

𝜉𝑚 + ϵ + 𝑦(𝐱𝒎) − 𝑡𝑚 = 0  holds. Regardless of how large the number of 𝑎𝑚 = 0 

points is, they are literally not supposed to be constructive predictions for new data points 

because 𝑎𝑚 ≠ 0 data points either lies on or above the upper boundary of the 𝜖-tube. 

On the other hand, regardless of how large the number of �̂�𝑚 ≠ 0 points is, they are 

literally not supposed to be constructive predictions for new data points because �̂�𝑚 ≠

0 either lies on or below the lower boundary of the 𝜖-tube. We again have a sparse 

solution and we call this soft margin SVR 𝜖-SVR.  

 

2.5.2 𝝐-SVR-RFE for Feature Ranking 

    We presented a nonlinear regression model to validate the feature ranking 

performance in the section 2.2.2, which involves a feature subset selection technique 

called SVR-Recursive Feature Elimination (SVR-RFE) [17].  We implemented RBF 

kernel SVR wrapped with RFE to nonlinearly rank the input features we discussed in the 

section 2.1.2. SVM-RFE removes the feature with least weight magnitude in the SVM 
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solution. Intuitively, we ran 50 different random 5-fold splits of the data. For each split 

(trial) we selected the two SVR hyper-parameters (𝜖  and 𝛾 for 𝜖-SVR) using grid 

search to minimize the average held-out fold mean-squared prediction error. The sample 

mean and standard deviation of the RFE feature ranks over the 50 trials were used to 

compare with that of the feature ranking results we acquired in 2.2.2. All the 𝜖-SVR 

models were implemented in the LIBSVM toolbox compatible with MATLAB 8.0 [14].   

 

2.6 Classification by Bayesian Decision Theory 

    Bayes decision theory is a fundamental statistical approach to the classification 

task. Unlike to the discriminant functions classification analysis we discuss, the 

probabilities play an important role in the parametric Bayes classifiers. The form of the 

input distributions is assumed to be known and parameters of the distributions are 

estimated from the design samples [18]. 

 

2.6.1 Bayes Decision Rule 

    Although the Bayes classifier is optimal its implementation is often difficult in 

practice due to its complexity, particularly when the data dimensionality is high. The 

traditional Bayes classifier characterizes classes by their probability density functions 

(pdfs) on the input features and uses Bayes decision rule to form decision regions form 

these densities. The Bayes decision rule generalizes an optimal classifier, i.e. 

classification error is minimal, when the model assumptions are correct.  
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    In mathematical way, we express x to be the input vector and 𝐶𝑖 represents one 

of the possible classes that are of interest. Let 𝑝(𝑥|𝐶𝑖) represent the class-conditional 

pdf for x and 𝑝(𝐶𝑖) represents the priori probability that class 𝐶𝑖  occurs. Then the 

Bayes rule is given by a conditional a posteriori probability of a class 

𝑝(𝐶𝑖|𝑥) =
𝑝(𝑥|𝐶𝑖)𝑝(𝐶𝑖)

𝑝(𝑥)
 

where 𝑝(𝑥) = ∑ 𝑝(𝑥|𝐶𝑖)𝑝(𝐶𝑖)𝑖 .  

 

2.6.2 Naïve Bayes for Classification  

Naïve Bayes classifier is a probabilistic classifier based on applying Bayes' 

theorem with assumptions of feature independence, by which we assumes that the 

presence or absence of a particular feature is unrelated to the presence or absence of any 

other feature, given the class variable. Due to the independence assumptions, we call this 

Bayes probabilistic model naïve Bayes. In terms of Naïve Bayes classifier, the idea is 

pretty simple. Using Bayes’ theorem, we achieve a classifier as  

 

The estimation of parametric naïve Bayes commonly uses the maximum likelihood 

method as showed above. To be more precise, this classifier stems from the maximum a 

posterior (MAP) decision rule. Regardless of the oversimplified assumptions, naive 

Bayes classifiers perform very well in many complex real-world situations. 

   In this thesis, we used Gaussian kernel model of this Naïve Bayes classifier to 

predict the presence or absence of HIV DNP, by computing the probability of each class 

and the product of the likelihood functions. The Naïve Bayes classifier results were used 

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Bayes%27_theorem
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to compare with that of Gaussian kernel SVM (section 2.4.2) and random forest classifier, 

which we are going to discuss in the next section.  

 

2.7 Classification by Decision Tree Theory 

   As one of the directed graphical models, decision trees are useful for expressing 

relationships between random variables in the decision analysis. In the case of directed 

graphs, a tree is defined such that there is a single node, called the root, which has no 

parents, and all other nodes have one parent. 

   Random Forest [19] is an ensemble classifier that comprises of many decision 

trees. It outputs the class that is the mode of the class's output by individual trees. It deals 

with “small n large p”-problems, high-order interactions, correlated predictor variables. 

In terms of the algorithm of random forest, we assume that the user knows about the 

construction of single classification trees. Random Forests grows many classification 

trees. To classify a new object from an input vector, put the input vector down each of 

the trees in the forest. Each tree gives a classification, and we say the tree "votes" for 

that class. The forest chooses the classification having the most votes (over all the trees 

in the forest). Each tree is grown as follows: If the number of cases in the training set is 

N, sample N cases at random - but with replacement, from the original data. This sample 

will be the training set for growing the tree. If there are M input variables, a number 

m<<M is specified such that at each node, m variables are selected at random out of the 

M and the best split on these m is used to split the node. The value of m is held constant 
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during the forest growing. Each tree is grown to the largest extent possible. There is no 

pruning. The Random forest algorithm can be summarized to be the following steps: 

 

 

Let Ntrees be the number of trees to build for each of Ntrees iterations 

   1. Select a new bootstrap sample from training set 

   2. Grow an un-pruned tree on this bootstrap. 

   3. At each internal node, randomly select mtry predictors and determine the best split 

using only these predictors. 

   4. Do not perform cost complexity pruning. Save tree as is, alongside those built thus 

far. 

Output overall prediction as the majority vote (classification) from all individually 

trained trees. 

    In this thesis, we implemented a random forest algorithm for the classification 

of the presence or absence of HIV DNP analysis. The Random forest classifier results 

were used to compare with that of Gaussian kernel SVM (section 2.4.2) and Naïve Bayes 

classifier (section 2.6.2). 
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Chapter 3 

EXPERIMENTAL RESULTS 

 

    In chapter 2, linear regression, epsilon-support vector regression (SVR), linear 

discriminant analysis (LDA) models, Gaussian kernel support vector machine (SVM) 

classifiers, Naïve Bayes classifiers, and random forest classifiers and learning algorithms 

were described. In this chapter, we perform the experimental comparisons of our two 

regression algorithms, and three classification techniques. First, the objectives of the 

experiments in this thesis are demonstrated. Then, we make several different 

comparisons of our regression and classification analysis methods. We will first pairwise 

compare our regression structures and learning methods. Then, we compare SVM 

classifier with the other two classifiers in three parallel experiments based on three 

different data sets. Third, we “vertically” compare the experimental significance of 

feature resolutions in the classification analysis. In addition, we make comparisons 

between the experiments with detrending and that without detrending. 

     The goals of the study are as follows: First, the study of regression analysis 

seeks the correlation between HIV DNP and cortical brain gray matter volume. Then, 

the classification study should firstly be able to achieve not only accuracy, but sensitivity 

and specificity rates as high as possible. Furthermore, more than one quantitative 
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validation should be implemented in the study, in order to analyze the advantages of 

different classifiers. In particular, we implemented nonlinear weighted support vector 

machine (SVM), repeated random subsampling (RRS) random forest and RRS Naïve 

Bayes classifiers. 

 

3.1 Experimental Comparisons 

    In the case of regression, we simply compare the feature ranking results of two 

regression models. For each of the classifiers, two types of comparisons may be indicated. 

The first relates to the performance achieved by three distinct classifiers, which 

demonstrates how well the classification methods generalize to new data. The second 

and the more important comparison relates to the influence of feature dimensionality in 

classification analysis. In addition, we also measure the necessity of removing trends 

(age, gender and ethnicity) from the data samples by comparing the supplementary 

results using detrended data with that using non-detrended data. 

 

3.1.1 Linear Regression vs. 𝝐-SVR 

    The objective of this study is to prove our assumption on the correlation between 

HIV DNP and the brain volume of cortical gray matter. Due to this primary objective, 

we used linear regression to explore how significant a role HIV DNP plays in the cortical 

gray matter brain volume changes. Furthermore, since our focus in this regression 

analysis is on the significance of features (feature ranking), we used all the data points 

to train the regression models, without any test data points. Here, we firstly implemented 
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a simple linear regression model and computed statistical p-values for each of the input 

variables in the regression model. However, the features remaining in the final selected 

model are considered as significantly influencing features in the cortical gray matter 

brain volume change. As the definition and properties of p-values we described in 

chapter 2, we should be able to investigate the significance of feature HIV DNP in the 

final selected model by sorting those p-values in ascending order. The higher order a 

feature ranks the more significant it is supposed to be.     

    The RBF 𝜖-SVR is specified by a set Gaussian basis functions exp (−𝛾‖𝐱 −

𝛍𝒋‖
2

), and by a set of scalar weights {𝜆𝑗}, where x is the input vector and 𝑗 = 1,2, … , 𝑀. 

The weight vector indicates the significance of a feature in the model. The model 

selection algorithm we built was called recursive feature elimination (RFE). Statistically, 

we ran 50 different random 5-fold splits of the data (held-out cross validation) in order 

to obtain statistically meaningful results. Instead of setting a stopping condition for the 

algorithm, we recursively removed the minimum weight value and retrained the model 

until all features were eliminated from the model. Meanwhile, the indexes of the 

eliminated features were recorded, such that we should be able to investigate the 

significance of variable HIV DNP in the model by averaging the ranks of the index vector 

for 50 trials.  

    Table 3.1 gives the linear regression model analysis obtained by Minitab 16. For 

each of those 52 features, we calculated the p-values during the backward feature 

elimination process (the significance level was chosen to be 𝛼 = 0.2) and reported them 

in the figure. Table 3.2 shows top 10 ranked features selected by 50 trials SVM-RFE 
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algorithm. We made the ranking based on 50 trials average ranks a certain feature 

appeared to be. The mean and standard deviation of top 10 ranked features, as well their 

names were given. Note that the standard deviations presented to identify some 

negligible statistical significant features, which inferred to the high instability in the 

regression model due to high standard deviation.   
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Table 3.1 List of the explanatory features used for the multivariable models of the 

association between DNP and log brain volumes. The feature names along with the p-

values (uncorrected for multiple comparisons) were listed. And the features less than 

0.20 were the features in the final selected model. 
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Table 3.2 The top 10 features by their mean ranked over 50 experimental trials which 

predict total cortical gray matter volume. Excluding the three bolded features (4th, 7th, 

and 8th) with negligible statistical significance owing to high sample standard deviation, 

DNP ranks seventh. 

 

mean feature 

ranks 

Features Mean Stdev 

1 Log_cerebralVAULT 1 0 

2 GDS 2.42 0.55 

3 Age 2.61 2.54 

4 Sqrt cd4 current 4.36 8.18 

5 Gender 5.37 1.47 

6 Ethnicity 6.79 0.16 

7 Education 7.66 8.04 

8 Sed abuse 7.68 6.59 

9 Scanner 8.34 0.50 

10 DNP 9.52 1.57 

 

   Our results in Table 3.1 and Table 3.2 together proved the assumption we made 

regarding the correlation between HIV DNP and cerebral cortical gray matter volume. 

Table 3.1 shows that DNP ranked sixth for the multivariable model, by which it means 

worse severity of DNP symptoms is significantly correlated with smaller cerebral 
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cortical gray matter volume. Correspondingly, Table 3.2 shows that the nonlinear 

regression model validated the same conclusion made by linear regression model. DNP 

ranked seventh in 50 trials feature ranking made by SVM-RFE. All the features ranked 

top 10 in term of statistical significance should be considered to be significantly 

correlated with cerebral cortical gray matter volume change.  

 

3.1.2 Classifiers Comparisons 

    Due to the imbalance of the data samples (the ratio of active16 data points and 

inactive17 data points is 1:2.64), the sensitivity rates in the study would be considerably 

improved by equilibrating the ratio of the active and inactive data samples. Therefore, 

the algorithms used in the study should be able to reduce the imbalanced data impacts as 

much as possible.  

   The hyper-parameters optimization algorithm is necessarily crucial to our C-

SVM classification analysis. It is because firstly, grid search algorithm essentially 

generalizes the optimal decision separation between two classes. Secondly, this 

automated optimization algorithm actually enhanced the data imbalance tolerance by 

adjusting the regularization hyper-parameter C. Therefore, our C-SVM algorithm with 

RBF kernel is called weighted-SVM algorithm. We then evaluated the classification 

performance using 50 different random 10-fold splits of the data, followed by a held-out 

cross validation algorithm. For each of the split (trial), we obtained the average 

                                                             
16 Active data, in particular, stands for those samples with the presence of HIV DNP. 

17 Inactive data, in particular, stands for those samples with the absence of HIV DNP. 
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performance scores in the cross validation procedure. And eventually we took the 

average scores in 50 trials as the final outcomes from the weighted-SVM classifiers. All 

the SVM classification models were implemented in the LIBSVM [14] toolbox 

compatible with MATLAB 8.0.  

    Similarly, weighted random forest (WRF) algorithm [20] is also a good solution 

to data imbalance problems when we implemented random forest classifier. [21] 

compared WRF and balanced random forest (BRF) on six different and highly 

imbalanced datasets. In WRF, they tuned the weights for every data set, while in BRF, 

they changed the votes cutoff for the final prediction. They concluded that BRF is more 

computationally efficient than WRF for imbalanced data. They also found that WRF is 

more vulnerable to noise compared to BRF. However, we introduce an alternative RF 

algorithm without tuning the class weights or the cutoff parameter, which is called 

repeated random subsampling (RRS) random forest algorithm [23]. Random sub-

sampling [22] is known as Monte Carlo cross validation, Random subsampling 

validation is based on randomly splitting the data into subsets. In our particular case, the 

169 inactive data points has been randomly partitioned into three groups, such that the 

ratio of active data points and inactive data points from each subset was fixed to be 1:1.14. 

Eventually, every inactive sample in the training data was selected once, while every 

active sample was selected three times. After training and test the model on all the sub-

samples, we employed a majority vote for the three sub-samples sets classification 

results, by which it means average votes were rounded to the nearest integers. We 

evaluated the classification performance using 50 different random 3-fold splits of the 
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data, followed by a held-out cross validation algorithm. We computed the average 

majority votes for accuracy, sensitivity and specificity scores. 

  Using the RRS idea we described, we applied RRS-Naïve Bayes classifier to 

modify the imbalanced dataset impacts on the Naïve Bayes classification analysis. We 

evaluated the classification performance using 50 different random 3-fold splits of the 

data, followed by a held-out cross validation algorithm. We computed the average 

majority predicted outcomes for accuracy, sensitivity and specificity scores given by 

those posterior probabilities we obtained.  

   Table 3.3 shows an experiment on the data set volume.dat, allowing each model 

to produce 50 classifier solutions. The accuracy rates, sensitivity rates, and specificity 

rates were averaged over 50 trials. Accordingly, two similar experiments were performed 

on the data sets slicearea.dat and subslicearea.dat. The experimental results are listed in 

Table 3.4 and Table 3.5. 

 

Table 3.3 Comparison of Weighted SVM, RRS random forest and RRS Naïve Bayes 

classifiers on the volume.dat data set (experiment 1). Overall accuracy rates, sensitivity 

rates and specificity rates were listed, which are the average of 50 experimental trials.   

 

Classifiers Accuracy 

(mean) 

Accuracy 

(stdev) 

Sensitivity 

(mean) 

Sensitivity 

(stdev) 

Specificity 

(mean) 

Specificity 

(stdev) 

Weighted 

SVM 

69.51% ±1.92% 53.37% ±3.70% 78.05% ±3.01% 

RRS-RF 53.17% ±4.97% 55.36% ±10.66% 50.04% ±7.78% 

RRS-NB 50.95% ±6.48% 51.36% ±10.60% 50.74% ±11.08% 
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Table 3.4 Comparison of Weighted SVM, RRS random forest and RRS Naïve Bayes 

classifiers on the slicearea.dat data set (experiment 2). Overall accuracy rates, sensitivity 

rates and specificity rates were listed, which are the average of 50 experimental trials.   

 

Classifiers Accuracy 

(mean) 

Accuracy 

(stdev) 

Sensitivity 

(mean) 

Sensitivity 

(stdev) 

Specificity 

(mean) 

Specificity 

(stdev) 

Weighted 

SVM 

78.56% ±2.02% 63.54% ±3.12% 84.28% ±3.18% 

RRS-RF 62.18% ±5.41% 55.74% ±10.07% 64.65% ±8.34% 

RRS-NB 57.65% ±4.94% 57.43% ±9.94% 57.75% ±7.55% 

 

Table 3.5 Comparison of Weighted SVM, RRS random forest and RRS Naïve Bayes 

classifiers on the subslicearea.dat data set (experiment 3). Overall accuracy rates, 

sensitivity rates and specificity rates were listed, which are the average of 50 

experimental trials.  

  

Classifiers Accuracy 

(mean) 

Accuracy 

(stdev) 

Sensitivit

y (mean) 

Sensitivity 

(stdev) 

Specificity 

(mean) 

Specificity 

(stdev) 

Weighted 

SVM 

80.12% ±2.89% 67.29% ±3.01% 85.05% ±4.68% 

RRS-RF 58.87% ±5.64% 55.85% ±7.49% 59.36% ±10.16% 

RRS-NB 58.12% ±4.52% 60.99% ±10.22% 57.68% ±9.50% 

    

   We have observed from the Table 3.3, Table 3.4 and Table 3.5 that the 

classification performance of three classifiers. Generally, weighted SVM classifiers 

over-performed the other two classifiers. And overall, the performance of RRS Naïve 



   50 

 

Bayes classifiers was not as good as that of RRS random forest classifiers. Regardless 

of the advantages of Naïve Bayes classifiers and random forest classifiers, they have 

respectively instinctive disadvantages: 1) Random forest classifier may be too complex 

to for such a classification problem where the parameters are estimated from a limited 

number of training samples. 2) Even though 10-fold cross validation on the classification 

models with a finite number of training samples will expectedly bring about high 

variances results, random forest classifiers always produce even higher variances than 

weighted SVM classifiers in three experiments. 3) Naïve Bayes classifier assumption is 

always not true, especially for these three data sets. 4) RRS estimation algorithm is 

unable to perform as good as the weighted classifiers algorithm in terms of dealing with 

data imbalance problems, although it is much more computationally efficient and easy 

to implement.     

 

3.1.3 Feature Dimensionality Influence Comparisons 

    In this section we compare the performance of classification analysis on different 

data sets. As we discussed in section 2.1.3, we extracted features from the MRI brain 

images and created three distinct data sets, which end up with three experiments using 

weighted SVM classifiers, RRS random forest classifiers and RRS Naïve Bayes 

classifiers. Although the data sets are different, they are actually correlated in terms of 

feature dimensionality. It is due to the fact that we generalized volume.dat, slicearea.dat, 

and subslicearea.dat based on gradually increasing the feature resolutions. Moreover, 
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the ideas of three experiments are absolutely identical. People always say data beats 

algorithms, which is especially applicable to the cases of mining a finite number of data. 

In particular, the samples of our HIV DNP study are certainly limited and imbalanced. 

It is necessary to discover more useful information from the perspective of feature 

exaction. We therefore make comparison of the influence of feature dimensionality in 

our particular HIV DNP classification study, which explicitly illustrates the correlation 

between data and classification performances. For example, if we simply select the 

performance rates of weighted-SVM classifiers in these three experiments, we are 

certainly able to observe the trends of classification improvements we make as the 

feature dimensionality increases.     

   Figure 3.1 shows the performance of weighted SVM classifiers in the three 

experiments with different feature dimensionalities of the data sets. It is clear to observe 

that sensitivity rates, overall accuracy rates and specificity rates considerably increases 

in the area space data set (226 features) with respect to that of the volume space data set 

(6 features). Moreover, the overall performance slightly improves using the sub-regional 

area space data set (878 features) with respect to area space data set. We therefore 

conclude that it is potentially worthy to employ even higher dimensional features data 

set in the study to explore the trends of classification performance in feature resolutions 

series.  
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Figure 3.1 Comparison of weighted-SVM classifiers performances in three data sets with 

different feature resolutions. (·) represents the number of features. Overall speaking, sub-

regional area space features set performs the best than the other two lower dimensional 

feature sets.   

 

 

3.1.4 Detrending Effect Comparison 

 

3.1.4.1 Group Mean Detrending 

    With the idea of group mean detrending described in section 2.1.3.1, three data 

sets with detrending values were used in the supplementary experiments: 

volume_norm.dat, slicearea_norm.dat, subslicearea_norm.dat. In section 3.1.2, we 

compared the performance of weighted-SVM classifiers, RRS random forest classifiers, 

and RRS Naïve Bayes classifiers on the feature set version without detrending. In this 

section, we replicated three classifiers algorithms on three group mean detrending data 
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sets and compare the performance with the results shown in section 3.1.2. Table 3.6, 

Table 3.7 and Table 3.8 below show the classification results. 

 

Table 3.6 Comparison of Weighted SVM, RRS random forest and RRS Naïve Bayes 

classifiers on the volume_norm.dat data set (experiment 1). Overall accuracy, sensitivity, 

and specificity rates were listed, which are the average of 50 experimental trials.   

 

Classifiers Accuracy 

(mean) 

Accuracy 

(stdev) 

Sensitivity 

(mean) 

Sensitivity 

(stdev) 

Specificity 

(mean) 

Specificity 

(stdev) 

Weighted 

SVM 

72.06% ±1.92% 52.86% ±3.34% 79.22% ±3.06% 

RRS-RF 53.08% ±3.78% 53.94% ±8.32% 52.64% ±8.57% 

RRS-NB 56.15% ±6.28% 57.73% ±9.88% 55.35% ±10.76% 

 

Table 3.7 Comparison of Weighted SVM, RRS random forest and RRS Naïve Bayes 

classifiers on the slicearea_norm.dat data set (experiment 2). Overall accuracy, 

sensitivity, and specificity rates were listed, which are the average of 50 experimental 

trials.   

 

Classifiers Accurac

y (mean) 

Accuracy 

(stdev) 

Sensitivity 

(mean) 

Sensitivity 

(stdev) 

Specificity 

(mean) 

Specificity 

(stdev) 

Weighted 

SVM 

76.98% ±2.25% 63.78% ±3.06% 79.68% ±3.10% 

RRS-RF 55.12% ±4.92% 52.36% ±8.99% 56.56% ±8.28% 

RRS-NB 51.72% ±8.17% 57.81% ±9.75% 52.37% ±12.42% 
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Table 3.8 Comparison of Weighted SVM, RRS random forest and RRS Naïve Bayes 

classifiers on the subslicearea_norm.dat data set (experiment 3). Overall accuracy, 

sensitivity, and specificity rates were listed, which are the average of 50 experimental 

trials. 

 

Classifiers Accurac

y (mean) 

Accuracy 

(stdev) 

Sensitivity 

(mean) 

Sensitivity 

(stdev) 

Specificity 

(mean) 

Specificity 

(stdev) 

Weighted 

SVM 

72.03% ±2% 64.09% ±2.87% 75.37% ±3.36% 

RRS-RF 57.16% 3.93% 56.82% ±10.41% 58.81% 6.75% 

RRS-NB 55.38% 7.52% 56.77% ±11.49% 54.74% 10.49% 

 

    We then pairwise compare the experimental results in Table 3.6, Table 3.7 and 

Table 3.8 with that in Table 3.3, Table 3.4 and Table 3.5. We observe that weighted-

SVM classifiers still bring in the best performances in each supplementary experiments. 

But we are also able to see that the overall performances have no improvement if group-

mean detrending algorithm applied to the data. In other words, we overestimated the 

effect of group mean detrending in our MRI brain image data. However, it does not imply 

trends elimination process is useless or unnecessary in our medical imaging analysis. It 

just indicates that grouping-mean idea is not reliable in our experiments due to the finite 

number of data samples we have. Very few data points in each group will cause the high 

variances in feature subsets.   
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3.1.4.2 Detrending by Additional Covariates 

    Group mean detrending algorithm brought about several disadvantages, 

however, we implemented another detrending approach using additional covariates. we 

have three data sets with demographic covariates were used in the supplementary 

experiments: volume_plus.dat, slicearea_plus.dat, subslicearea_plus.dat. In section 

3.1.2, we compared the performance of weighted-SVM classifiers, RRS random forest 

classifiers, and RRS Naïve Bayes classifiers on the feature set version without 

detrending. In this section, we replicated three classifiers algorithms on three additional 

covariates detrending data sets and compare the performance with the results shown in 

section 3.1.2. Table 3.9, Table 3.10 and Table 3.11 below show the classification results. 

 

Table 3.9 Comparison of Weighted SVM, RRS random forest and RRS Naïve Bayes 

classifiers on the volume_plus.dat data set (experiment 1). Overall accuracy, sensitivity, 

and specificity rates were listed, which are the average of 50 experimental trials.   

 

Classifiers Accuracy 

(mean) 

Accuracy 

(stdev) 

Sensitivity 

(mean) 

Sensitivity 

(stdev) 

Specificity 

(mean) 

Specificity 

(stdev) 

Weighted 

SVM 

70.56% ±1.46% 53.56% ±3.87% 78.91% ±2.76% 

RRS-RF 56.67% ±5.03% 58.81% ±9.79% 51.76% ±8.87% 

RRS-NB 54.95% ±7.42% 55.63% ±9.40% 52.87% ±10.36% 
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Table 3.10 Comparison of Weighted SVM, RRS random forest and RRS Naïve Bayes 

classifiers on the slicearea_plus.dat data set (experiment 2). Overall accuracy, sensitivity, 

and specificity rates were listed, which are the average of 50 experimental trials.   

 

Classifiers Accurac

y (mean) 

Accuracy 

(stdev) 

Sensitivity 

(mean) 

Sensitivity 

(stdev) 

Specificity 

(mean) 

Specificity 

(stdev) 

Weighted 

SVM 

80.12% ±1.96% 63.90% ±2.93% 86.26% ±3.01% 

RRS-RF 60.48% ±5.11% 60.80% ±9.29% 60.32% ±7.47% 

RRS-NB 56.58% ±4.89% 56.67% ±9.16% 56.54% ±8.43% 

 

Table 3.11 Comparison of Weighted SVM, RRS random forest and RRS Naïve Bayes 

classifiers on the subslicearea_plus.dat data set (experiment 3). Overall accuracy, 

sensitivity, and specificity rates were listed, which are the average of 50 experimental 

trials. 

 

Classifiers Accurac

y (mean) 

Accuracy 

(stdev) 

Sensitivity 

(mean) 

Sensitivity 

(stdev) 

Specificity 

(mean) 

Specificity 

(stdev) 

Weighted 

SVM 

81.42% ±1.24% 67.54% ±2.57% 86.16% ±3.16% 

RRS-RF 63.08% ±4.62% 66.36% ±8.86% 61.39% ±7.82% 

RRS-NB 58.46% ±5.76% 59.09% ±11.63% 58.14% ±9.16% 

 

    We then pairwise compare the experimental results in Table 3.9, Table 3.10 and 

Table 3.11 with that in Table 3.3, Table 3.4 and Table 3.5. We observe that weighted-

SVM classifiers still bring in the best performances in each supplementary experiments. 
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But we are also able to see that the overall performances achieve a little improvement if 

additional covariates detrending algorithm applied to the data. In other words, the effect 

of additional covariates detrending algorithm over-performs the group mean detrending 

algorithm on our MRI brain image data. After all, trends elimination process is 

necessarily reliable in our medical imaging analysis.    
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Chapter 4 

CONCLUSION 

 

4.1 Summary  

    This thesis presents a novel study relative to existing HIV DNP studies in terms 

of the optimization of DNP classification performance based on the MRI brain images, 

using low dimensional feature subsets and computationally efficient models.    

   In chapter 1, the state of the arts of pattern recognition applications in 

bioinformatics were discussed. Key statistical regression and classification concepts for 

supervised learning problems were reviewed. In chapter 2, we introduced the data sets 

for regression and classification models. Under the assumption of the association 

between HIV DNP and the brain volume changes, we can test the hypothesis using 

multivariate regression analysis. Then for the purpose of diagnosing the presence of HIV 

DNP based on the brain images, a classification analysis was applied. We presented some 

supervised learning approaches such as linear regression model, SVR model, LDA, 

Gaussian kernel SVM, Bayes decision classifiers, and decision tree classifiers.  

   Chapter 3 presented the experimental results based on comparisons of the 

regression analysis and classification performances of several models. We first compared 

the nonlinear regression model with the linear multivariate regression model. We 
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concluded that our nonlinear regression analysis performances validated the results we 

obtained from the linear regression model. Second, we compared the performances of 

three classifiers we implemented on the non-detrended data sets. We concluded that the 

weighted-SVM classifier is the most reliable classifier in our three classification 

experiments. Then we “vertically” compared the performances of the non-detrended data 

sets with distinct feature resolutions. We concluded that the classification performances 

gradually improved as the feature resolutions increased. As a result, the data set with 

sub-regional area space features performed the best, and the overall accuracy rate 

reached 80%. Finally, in order to understand the helpfulness of trends elimination for 

feature vectors, we pairwise compared the performances of non-detrended data sets with 

those of detrended data sets. We concluded that the data sets with group mean detrending 

performed not as good as the non-detrended data sets in all three classification 

experiments. It is due to the fact that our group mean detrending algorithm controlled 

three covariates and thereby generalized 16 groups, however, high variance in the feature 

vectors was caused by high dimensional group averaging on our limited data samples. 

Alternatively, when we simply added those covariates into the data sets rather than taking 

group averaging, we observed and concluded that the classification results of the data 

sets with additional covariates over-performed those of the non-detrended data sets. In 

other words, trends elimination approaches improve the overall performance in our 

classification analysis.   
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4.2 Suggestions for Future Studies      

Although we maximized the overall accuracy, as well as sensitivity and 

specificity rates in our classification analysis, absolute high classification performances 

haven’t been achieved in the existing area space. In the future, we may want to further 

improve the HIV DNP classification performances by extending our study into voxel 

space. Based on the MRI brain images, new feature extraction algorithms are supposed 

to be developed to extract voxel intensity features from gray scale images or binary 

features from binary images. Furthermore, we are able to develop a HIV DNP regional 

detection algorithm based on classification analysis in voxel space. On the other hand, 

an intermediate solution might also be investigable to implement. That is, we could try 

even higher feature resolution data in area space, for instance, 16 quadrant area space 

data.  
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