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ABSTRACT 

 
The Multi-Agent-System (MAS) technology has many desirable attributes such 
as autonomy, sociality, reactivity and pro-activity. It is widely accepted as the 
technology platform for implementing effective and efficient management and 
automation processes within a microgrid environment. This paper proposes an 
implementation of a microgrid simulation utilizing Matlab and a MAS software 
program. The MAS software is implemented with the aid of the Java Agent 
Development Framework (JADE) middleware platform. The three intelligent 
agents are: Controller agent, Distributed Energy Resource (DER) agent and 
Load agent. The Controller agent monitors network processes, performs critical 
control task such as network reconfiguration and it is also capable of detecting 
network anomaly. The DER agent stores the associated energy resources 
information, monitors and controls the DER power levels. Finally, the Load agent 
stores information about the users and loads such as power consumption and 
the priority status of the load. Both DER and Load agents are able to interact and 
respond to Controller agent’s command for connecting / disconnecting from the 
power network. This simulation will demonstrate the benefits of employing a 
standard MAS environment that could serve as a platform for studying real-time 
microgrid’s communication, monitor and control technologies. 
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Chapter 1. INTRODUCTION 
 
This chapter will introduce the premise surrounding the idea of smart grid. Then 
the concept of microgrid and its technology will be introduced along with an 
overview of the Pennsylvania State University - Harrisburg (PSH) microgrid 
implementation. Finally, the goals and objectives of the thesis project within the 
framework of the PSH microgrid will be described. 
  

 

Smartgrid 
 
Smart-grid is a “buzz word” that encompasses many areas of disciplines beyond 
the traditional power grid and its systems. All things considered, smart grid is 
socially transformational [1]. The “Smart grid” refers to a class of technology that 
utilizes computer-based remote control and automation. These systems are 
made possible by two-way communication technology and computer processing 
that has been used for decades in other industries (U.S. Department of Energy) 
 
While much of the sophistication had already been implemented at the 
transmission level of electricity, many areas of development are still needed; 
especially at the distribution level. It is believed that smart grid technologies could 
help to provide the intelligence and sophistication needed for a modern power 
system. Many motivations are driving the development and deployment of the 
advanced power grid technologies such as rising cost of energy, new market 
model due to energy deregulation, the availability of renewable technology and 
an overall aging infrastructure that could affect the quality and reliability of 
electricity and pose security issues. The stakeholders in the smart grid initiatives 
are the consumers, private/commercial sector, government, research and 
academic institutions and business/financial sector. 
 
While smart grid is sometimes criticized for its shortcomings, such as in personal 
privacy and potential adverse health effect caused by its wireless system, it 
remains largely praised for the potential positive outcomes from its deployment. 
The inception of smart grid technologies is accompanied by numerous merits in 
areas of technical efficiency, cost, energy security and environmental 
preservation. Among many “smart” attributes of a smart grid, being able to 
discern the critical application from the common ones is an invaluable capability. 
Using the data collected through smart devices within its Advanced Metering 
Infrastructure (AMI), the operator could potentially allocate more of the grid’s 
resources to ensure the power quality is conforming to certain mission-critical 
applications [1, 2]. For example, in a case of power instability due to heavy 
loading, the utility may opt to use Direct Load Control (DLC) in order to switch off 
non-essential loads - to provide momentary power compensation. The initial 
capital investment for smart grid might be exorbitant for many, but a grid with 
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smart technology could with time lower the cost of operation, maintenance and 
expansion. For instance, higher Distributed Generation (DG) penetration could 
potentially curb the need to build new power transmission infrastructure, which 
will reduce the cost of grid expansion while increasing the efficiency of power 
utilization. 
 
Few hurdles still lie ahead. As of 2009, only 15 states have the interconnection 
standards that are considered favorable for distributed generation [1]. Also, 
concrete short-term financial incentives for end-users and power producers need 
to be defined in order to provide the impetus for further proliferation of DGs. 
Technological challenges in areas of energy storage systems also hinder the 
deployment of smart grid technology as well as for the integration of different 
renewable resources and the interoperability of smart grid standards. 
Furthermore it is difficult to establish standards when the technology is evolving; 
smart grid is a field where computer science, communications, information 
technology, economics and other disciplines congregate and these constituents 
are also under constant change [1, 2]. 
 
 
 

Microgrid 
 
A microgrid could be thought as a miniature smart grid. More specifically, a 
microgrid is defined as an electrical network, composed of interconnected loads 
and Distributed Energy Resources (DER) that could operate in both grid-
connected mode and in the autonomous island mode [3]. A microgrid typically 
incorporates advance monitoring, control and communication systems. The 
deployment of smart meter systems is an example of advanced monitor systems 
that provides a cost effective solution and allows a two-way information flow - 
through a variety of communication technologies such as Power Line Carrier 
(PLC) or Radio Frequency (RF) [4]. Advanced control system research is also 
very active in applications where the microgrid has direct access to loads within a 
house for example [5, 6]. 

 
Renewable energy technology has taken a great leap forward. For example, 
there is an increasing number of Electric Vehicles (EVs) and Plug-in Hybrid 
Electric Vehicles (PHEVs) that are online and participating in the energy 
exchange. The same increase in Distributed Generation (DG) adoption trend is 
seen with wind turbine, solar and other renewable energy sources. The increase 
in localized power production will inevitably entail the need to develop storage 
solutions in order to capture the energy - for either local use or pushing it back to 
the utility. Furthermore with the increasing number of DGs, there is a need to 
maintain normal operation at the distribution level [7, 8]. This is where the 
microgrid concept is introduced. A microgrid is essentially a miniaturized version 
of the smart grid and both share common advanced technologies. A microgrid 
has a common coupling point to the utility which allows it to operate in a normal 
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grid-connected mode or in islanding mode. Aside from lowering the cost of 
electricity, a well-structured power network such as the microgrid could provide 
the following added-benefits:  
 

1. Provide power during emergency situations 
2. Shave peak-load  
3. Increase overall grid stability and reliability 
4. Provide a market for producers and consumers to interact  
5. Provide engineering opportunities to advance science and technology  

 
There are many microgrid implementations in both commercial and academic 
settings. These test-beds host many advanced communication, monitor and 
control systems. A simple microgrid layout is shown in Figure 1. At its essence, it 
is composed of an AC network and a DC network with loads and generators in 
their respective network. These two networks are interfaced through a bi-
directional inverter. 
 

 
 

 
 

Figure 1, Simplified topology of a microgrid network 

 
 
Table 1 highlights few examples of microgrid test-beds. 
 
 

Microgrid Description 

CERTS 
(Columbus, 

Ohio) 

The Consortium for Electric Reliability Technology Solutions 
(CERTS) develop and disseminate electric reliability technology 
solutions in order to protect and enhance the reliability of the 
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U.S. electric power system under the emerging competitive 
electricity market structure. Areas of research include Real-Time 
Grid Reliability Management Reliability & Markets Distributed 
Energy Resources Integration Load as a Resource Reliability 
Technology Issues & Needs Assessment [9]. 

University of 
California 

Irvine 

Testing how microgrids operate internally as well as how they 
interface with the rest of the future smart grid. It is a test bed for 
different technologies through the development of the UCI 
Microgrid model, deployment of advanced metering and various 
pilot projects. The campus provides an attractive platform to 
support a flexible and robust platform for the deployment and 
evaluation of the various technologies and circuit configurations 
emerging in the microgrid future [10]. 

Jeju island 
(Korea) 

World’s largest Smart Grid community (6000 households) that 
provides a testing ground for advanced Smart Grid technologies, 
R&D, development of business models and verification of 
different power market models. More specifically the five areas 
of research are: smart power grid, smart place, smart 
transportation, smart renewable and smart electricity service 
[11]. 

 
Table 1, Example of microgrid implementations 

 
The microgrid that is currently under development at the Pennsylvania State 
University - Harrisburg (PSH) will also showcase advanced hardware and 
software systems. The test-bed will also be used to validate existing technologies 
and concepts in areas of communications, monitor and control. In addition, it will 
be served as a platform for developing advanced concepts and technologies in 
areas of data mining, economic dispatch, optimal control, wireless 
communication and other emerging smart grid concepts.   
 
Albeit smaller in scale and capacity in comparison to the microgrid initiatives 
described in Table 1, the PSH microgrid test-bed will serve as a platform to study 
technologies which might not be readily applicable in an industrial or commercial 
setting, but are nevertheless paradigm-shifting. The microgrid under 
development at PSH is shown in Figure 2. 
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Figure 2, Proposed PSH microgrid test-bed 

 
Various approaches have so far been proposed for modern power system 
control. For example, during an event of power interruption due to a fault, power 
restoration is required where an optimal target configuration is determined. 
Currently, many methods in power restoration are employed. They could be 
roughly classified into four categories: heuristics, expert systems, mathematical 
programming and soft computing. Heuristics and expert systems have been used 
in industries extensively, but they both have their own deficiency with respect to 
the optimality of solutions. On the other hand, mathematical programming could 
produce the optimal solution after the formulation, but it requires engineering 
judgment in formulating restoration problems. Furthermore, the long execution 
time required for mathematical programming makes it impractical considering the 
time constraints on site. At last, soft computing methods are easy to implement 
but they cannot obtain the optimal solutions in the true sense and they also 
require long computation time [12]. 
 
The microgrid has a distributed architectural which provides a platform where 
grid entities could participate in energy and information exchange. Many of the 
advanced interactions between these entities, such as determining the price of 
energy, could be hard to implement. Also the dilemma of software inter-
operability is a concern. Ideally, within the microgrid, devices such as generators 
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or loads should operate seamlessly regardless of the equipment manufacturer. It 
is only with a flexible and extensible and software approach that we could 
ultimately provide a rich platform where advanced microgrid processes and 
device interactions could take place and where the plug-and-play capability could 
facilitate microgrid integration with minimum software development.  
 
 
 

Goals and objectives 
 
Some microgrid implementations are currently experimenting with Multi-Agent 
System (MAS) technology – an advanced software system. One such 
implementation is by the National Technical University of Athens (NTUA) in 
cooperation with ANCO S.A. on the pilot microgrid of Kythnos island, Greece 
where the microgrid’s upstream and downstream monitor and control are 
managed by an agent system [5]. More specifically, the agents provide power 
management though a Direct Load Control (DLC) process. For instance, in case 
of a power emergency, a higher-level agent would notify a lower-level local agent 
to shed off non-essential loads such as a water pump. 
 
In this thesis, it will be shown that the MAS could be a viable solution for the 
shortcomings in modern microgrid control, power system extensibility and for the 
microgrid’s lack of rich sets of interaction. 
 
The long term objective of PSH power engineering group is to implement a 
physical microgrid in order to provide test-bed to study emerging smartgrid 
technologies, such as MAS. Prior to deploying the advanced technology, an 
assessment of the approach must be performed. In the framework of this project, 
a microgrid simulation will be performed. More specifically, a co-simulation 
platform involving an intelligent agent approach is explored. This simulation will 
hopefully pave the way for building the hardware-based microgrid with smart 
agent capabilities.  
 
Previous work [13, 14] on power system co-simulation had shown that MAS 
could be used to perform a simple load balancing process in an event of 
microgrid islanding. This project will illustrate an advanced co-simulation between 
a microgrid (in MATLAB) and a novel communication, monitor and control system 
implemented using a MAS software (JADE). A gateway interface program 
(MACSimJX) will manage the data flow between the microgrid and the MAS 
program. In the scope of this project, the primary roles of the MAS will be to 
perform a network reconfiguration tasks by balancing the loads and dispatching 
the DER in an event of microgrid islanding. 
 
Details about the microgrid program, MAS program and the interface program 
will be discussed in following chapters. It could be observed that this project 
brings several improvements over the previous co-simulation work in terms of the 
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complexity of the microgrid simulation as seen in [6, 13, 15] and most importantly 
by employing a different agent architecture design as seen in [6, 13, 14, 16]. 
Table 2 summarizes the key differences. 
 
 
 

Previous work Focus of research 

A single generator with 
different power levels. One 
single switchable load [6, 13, 
15]. 

A realistic microgrid with many switchable 
generators and loads. 

The DER and Load agents 
have a managerial role. Both 
agents have a priori power 
production / consumption 
information of each DER and 
load [6, 13, 14, 16]. 

DER and Loads agents are instances of a class 
definition hence make use of data encapsulation 
for sending agent data.  Every agent created 
from the “agent template” is independent of 
each other and is able to perform local tasks 
(i.e. acquire real-time data). 

Use a simple "Inform" Agent 
Communication Language 
(ACL) communication [6, 13, 
14, 16]. 

Make use of "call-for-proposal / propose / accept 
/ inform" ACL communication. This lays the 
ground work for a Contract Net Protocol that 
could be used on the PSH microgrid 

 

Table 2, Co-simulation comparison 

 
The proposed architecture makes use of object-oriented-programming to allow 
software code reuse and hence better exemplifies the concept of distributed 
networks by embedding the agents into the different microgrid entities or 
equipment such as DER and load [17, 18]. The modularity of the proposed MAS 
software architecture could facilitate microgrid expansion by cutting down on 
individual device software development. Furthermore, as it will be shown, the 
proposed software architecture along with the open MAS platform could promote 
the interoperability between different electric equipment manufacturers and allow 
operation on different computing platforms. 
 
These merits are very attractive for the microgrid implementation at PSH. This 
co-simulation should provide a good assessment of the agent technology. The 
agent concept (Controller / DER / Load agents) as well as the software 
developed for the co-simulation could be readily ported onto the real-time 
microgrid network composed of many distributed DER and loads.  
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Chapter 2. CONCEPT AND DESIGN 
 
 
In this chapter, the different software constituting the co-simulation platform will 
be described. First, the microgrid implemented in MATLAB will be explained. 
Then the MAS concept will be introduced along with an agent framework called 
JADE. At last, MACSimJX - the software which links the simulations running in 
MATLAB and in JADE will be described. 
 
 

Microgrid simulation 
 
In this thesis, a simulation of a microgrid network will be analyzed. Using an 
intelligent agent approach, it will be shown that a microgrid operation such as 
islanding (when microgrid disconnects from the upstream utility) could be 
achieved using an open architecture agent-based software. It is believed that this 
distributed control software used in the simulation could serve as a worthy 
candidate for the real-time microgrid control system implementation. 
 
Matlab’s Simulink with the SimPowerSystem extension is used to build the 
microgrid. For the purpose of this study, the microgrid’s main transformer is rated 
at 10 KVA with 7 kV primary and 208 V secondary supplying power to a three-
phase 208V AC network. The AC network is comprised of four 3-phase loads 
(labeled as “Load X” in Figure 3) and four 3-phase synchronous generators 
(labeled as “DER X” in Figure 3). The microgrid feeder is simulated by 100 MVA 
source. The microgrid network under simulation, shown in Figure 3, is a close 
representation (in terms of setup and capacity) to the one that is currently under 
development at PSH. 

 
 

Figure 3, Co-simulation microgrid under study 
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Shown in Table 3 are the ratings for the DER and loads. Initial simulation of the 
microgrid was performed in order to verify DER/load switching, voltage transient, 
fault generation, etc. The discrete-time ode45 solver (for accurate computation 
for non-stiff problems) was used with a 10 micro-seconds step, which translates 
to 100 kHz sampling time. As in most microgrid implementation, the total power 
capacity could be insufficient if all loads were to be supplied (i.e. 1700 W 
produced versus 1900 W consumed). 
 
 

Component / Rating Power Voltage (V) 

Feeder 100 MVA 7000 

Transformer 10 kVA 7000/208 

DER1 700 W 208 

DER2 600 W 208 

DER3 300 W 208 

DER4 100 W 208 

Load1 800 W 208 

Load2 600 W 208 

Load3 300 W 208 

Load4 200 W 208 

 
Table 3, Component rating 

 

 

Multi-Agent System (MAS) concept and design 
 
Both smartgrid and microgrid are distributed networks which incorporate many 
advanced communication, monitor and control technologies. It has been 
suggested that intelligent agent architecture could be adopted for such 
distributed networks. The Multi-Agent System (MAS) is inherently efficient in 
solving problems in a distributed environment [19]. It could be utilized to provide 
a powerful platform to develop and test innovative communication, monitor and 
control technologies in order to further increase the efficiency and effectiveness 
of the microgrid. 
 
MAS has been previously used in fields of computer science and artificial 
intelligence [12]. Examples of applications are planning, process control and 
communication network configurations [3, 12]. With the advent of smart grid 
technologies, MAS has been getting more attention in recent years from the 
power engineering world. In power engineering applications, MAS have a 
tendency to be exploited in two ways: as an approach to building flexible and 
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extensible hardware/software systems or as a modeling tool to describe complex 
systems and relationships by encapsulating data [1]. 
 
In a nutshell, an agent system is a software program which contains an 
agglomeration of different disparate agents, working in collaboration, to pursue 
assigned tasks and to achieve the overall goal of the system [15]. Its advantages 
include autonomy, sociality (ability to communicate with other agents), reactivity 
and pro-activity [15]. The MAS is envisioned as the future of an automated power 
monitor and power control system such as the SCADA [13]. For example, MAS 
could be used instead of a traditional zonal protection scheme in regards to fault 
handling [12, 13]. Furthermore it is believed that the MAS could provide added-
intelligence to the PSH microgrid operations and processes in areas of 
distributed control and advanced ability to engage in complex inter-agent 
interaction. 
 
There might be a lack of clear demarcation between MAS and conventional 
distributed software architecture with agent-like attributes. The fact is that many 
of these software architectures do not have the ability which provides inter-
platform compatibility. In order to fully benefit from MAS technology, inter-
platform communication must be agreed-upon. Early MAS used proprietary 
communication languages. Other systems have also used blackboard system-
type approaches to enable communication between agents. One of the first 
Agent Communication Languages (ACL) to be used by different researchers 
across different fields was the Knowledge Query and Manipulation Language 
(KQML). In recent years, KQML has been superseded by FIPA-ACL. A FIPA-
ACL message specifies 22 performative acts or speech acts in its message. By 
classifying the message using a performative, FIPA-ACL ensures that recipients 
will understand the meaning of a message in the same way as the sender, 
removing any ambiguity about the message’s content [20].  
 
Therefore without standardization, interaction between MAS programs developed 
by different parties could not be guaranteed. In light of increasing use of MAS in 
the power system world, standardization is very important. Open agent 
architecture does not place any restrictions on the programming language or 
origin of agents joining the system. This type of architecture is achieved through 
adherence to messaging standards: An example of a set of standards is that 
defined by the Foundation for Intelligent Physical Agents (FIPA) – a standards 
IEEE committee as of 8 June 2005. Amongst few existing open standard MAS 
platforms such as ZEUS and JACK, Java Agent DEvelopment Framework 
(JADE) is being explored in the thesis. JADE is chosen for this project simply 
because of the large availability of technical literature and for its overall popularity 
within the agent development community. 
 
The MAS is implemented using JADE, a Java framework for developing FIPA-
compliant agent applications. This middleware platform allows the developer to 
focus on the logical aspect of the system while it controls the communications 
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between different hosts and the message exchange between agents [21]. Using 
JADE agent environment, different computer programs (or agents) performing 
distinct sets of tasks could send, receive messages and interact with each other. 
The JADE platform provides the multi-threading capability that is needed in a 
multi-agent environment [22]. JADE also includes a runtime environment where 
the JADE agents can live, a library of classes that could be used to create new 
agents and a graphical tool that could be used to administer and monitor agent 
activities.  

 
The JADE agent environment is composed of a series of platforms and 
containers. A container could be understood as a computation entity on which 
the Java Virtual Machine is running. The agents, shown as A1-A5 in Figure 4, 
reside inside a container and there could be many containers but only one main 
container on each platform. In the case where another main container is created 
somewhere in the network, this container will constitute a new platform. An agent 
is inherently distributable and has no fixed ties to its environment. That said, the 
instances of the platform running on separate machines seamlessly connect and 
appear as a single instance [23].  The architecture is illustrated in Figure 4: 

 

 
 

Figure 4, JADE architecture 

 
As seen in Figure 5, each agent platform includes two utility agents: the agent 
management service (AMS) agent and the directory facilitator (DF) agent. The 
former is compulsory while the latter is optional. The AMS acts as white pages, 
maintaining a directory of agents registered with the MAS platform. The DF acts 
as yellow pages, maintaining a directory of agents and the services they can 
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offer other agents [20]. As it will be illustrated later in the project, an agent can 
use the DF to search for other agents that can provide the desired services in 
order to aid it in fulfilling its own particular goals. 

 
 

 
 

Figure 5, JADE user interface 

 
The scope of the thesis is to illustrate the islanding process using a MAS 
approach. Three agents are created for this purpose and they are: Controller 
agent, the Distributed Energy Resource (DER) agent and the Load agent. 
These agents, which currently constitute the MAS, could be considered as the 
“backbone agents” of the microgrid MAS. In other words, they are responsible for 
the essential network tasks and once they have been established, many other 
types of agents could be easily created and added to the MAS environment.  
 
The Controller agent monitors the network parameters such as voltage and 
frequency [6, 13, 14, 15]. It is also responsible, for instance for making control 
decisions in an event when a hazardous condition is detected. The Controller 
agent performs critical decisions based on the inputs provided by the DER 
agents and the Load agents. Some examples of critical decisions are: load 
shedding, islanding and fault handling. 

 
The DER agent is a program which stores the associated energy resource 
information. It could also monitor and control the DER power levels [6, 13, 14, 
15]. The DER agent responds accordingly to the Controller agent’s signal to 
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connect/disconnect an energy resource. 
 
Finally, the Load agent stores information about the users and loads such as 
power consumption and the priority status of the load. The Load agent is also 
able to interact and respond to the Controller agent’s command for 
connecting/disconnecting any load from the power network [6, 13, 14, 15]. 

 
For the islanding study, a total of nine agents are created; four DER agents, four 
Load agents and the Controller agent. The idea is to generate a sensible number 
of random combinations of DER and loads to test the load shedding and DER 
dispatch algorithms described later in Chapter 3. Theoretically, all the agents 
could either run on the same PC or across many PCs located on the same or 
different network where the JADE platform is pre-installed on each PC. Each 
agent runs on a single Java thread. Each Java thread has many behaviors that 
could be concurrently executed. The JADE agent has the following structure 
shown in Figure 6. 
 

 
Figure 6, Agent behavior diagram. Source [24] 

 
 
An agent behavior represents a task that an agent can carry out and is 
implemented as an object of a class that extends from 
jade.core.behaviours.Behaviour() [24]. There exist three types of behaviors; one-
shot, cyclic and generic behavior. As seen in the flow chart in Figure 6, the 
skeleton of a typical agent program is composed of a setup() function where any 
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behaviors are added and any input argument to the agent is processed. The core 
of the agent’s program is embedded within the behavior section. Each behavior 
class has an action() method which defines the operations to be performed. The 
action() method must be followed by a done() method which specifies whether or 
not a behavior has completed and removes the behavior from the pool of 
behaviors an agent is carrying out. When there are no behaviors available for 
execution, the agent thread goes to sleep in order to reduce CPU time 
consumption. The thread is awakened as soon as there is a behavior available 
for execution [24]. 
 
It is worth noting that many more agents could be created using the desired 
agent template, which is the advantage of using the JADE framework. For 
example, if a new generator (DER) is added to the PSH microgrid, its MAS 
software could inherit all the attributes (characteristics) and methods (operation 
and process) of the class DER agent. Therefore, it is not required to develop the 
control and/or the microgrid networking software for the new DER from scratch. 
This object-oriented approach not only reduces device software development 
time but also provides great plug-and-play ability that could allow a small network 
to be extended into a complex large-scale network [3]. The pseudo-code for each 
of the three agents will be delineated in chapter 3. 
 
 

MACSimJX, the co-simulation engine 
 
While Simulink is a very powerful simulation platform, it does not provide the 
tools to set up an agent framework. Fortunately, Simulink provides a work-around 
for adding functionality in the form of S-functions. This allows external programs 
written in other languages (in this case MAS written in Java) to be encapsulated 
inside the Simulink environment and run in their native language [22]. The issue 
arises as the S-functions are unable to handle multiple threads of execution - 
which is an essential attribute of MAS. 
 
A software program called MACSimJX (Multi-Agent Control for Simulink 
program), is used as a gateway to allow data transfer between Simulink and the 
external MAS programs - with parallel processing capacity. It also provides the 
much needed synchronicity between the Simulink simulation and the MAS 
environment. The MACSimJX has a client-server architecture where the client is 
embedded in the Simulink’s S-function and the server code is incorporated in a 
separate program [22]. The use of MACSimJX is not restricted for power system 
applications, for instance one agent application made use of the software to 
control the behaviour of a Boeing 747 in simulation [25]. 

 
As shown in Figure 7, the Simulink block contains the embedded MACSim S-
function, which represents the interface between Matlab and the agent world 
(JADE). The S-Function takes in eight input signals: the current at the feeder, the 
power generated by the four synchronous generators and the power consumed 
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by the four loads. The initial goal will be to establish the bi-directional 
communication between the Simulink and the agent world. In other words, real-
time data from the microgrid will be sent to the respective agent for analysis and 
control decisions would come back into Simulink in order to reconfigure the 
microgrid in the most power efficient way.   

 
 

 
Figure 7, MAS block containing S-Function with MACSimJX  

 
Typically, while the multi-agent system program is actively running, in a separate 
instance, the MACSimJX application is launched through the command prompt. 
Shown in Figure 8, the MACSimJX provides a simple graphical interface that 
enables the user to define the input and outputs of the MACSimJX S-function 
block. In other words, the definition will map the specified Simulink output signal 
to its specified agent implementation. The user also has the option to select the 
sampling frequency of agent system. In the current scenario, 100 kHz is used 
which is fast enough to handle faults (i.e. assuming a digital relay system 
operating at around 4 kHz). 
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Figure 8, MACSimJX interface for gateway I/O definition 

 
Figure 9 is a script file describing the agent definition process using 
MACSimJX. Basically, each of the 9 agents is created based on a .class file 
in the indicated class path. It could be observed that all DER agents are 
created using the same .class implementation, and the same applies for all 
load agents. This extensible software development approach reduces code 
development time for a large microgrid network composed of many DERs and 
loads.   
 
 
ATF Name: PSU_Microgrid 
 
Agent: 1 
Name: ControllerAgent 
Class path in package: myNewATF.ControllerAgent 
 
Agent: 2 
Name: DERAgent1_ 
Class path in package: myNewATF.DERAgent 
 
Agent: 3 
Name: DERAgent2_ 
Class path in package: myNewATF.DERAgent 
 
Agent: 4 
Name: DERAgent3_ 
Class path in package: myNewATF.DERAgent 
 
Agent: 5 
Name: DERAgent4_ 
Class path in package: myNewATF.DERAgent 
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Agent: 6 
Name: LoadAgent1_ 
Class path in package: myNewATF.LoadAgent 
 
Agent: 7 
Name: LoadAgent2_ 
Class path in package: myNewATF.LoadAgent 
 
Agent: 8 
Name: LoadAgent3_ 
Class path in package: myNewATF.LoadAgent 
 
Agent: 9 
Name: LoadAgent4_ 
Class path in package: myNewATF.LoadAgent 
 
MACSim inputs: 9, outputs: 10, sample rate (Hz): 100000 

 
Figure 9, Agent creation using MACSimJX 
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Chapter 3. IMPLEMENTATION 
 
 
This chapter will describe in detail the microgrid implementation using Matlab and 
touch upon the concept of islanding. Then the MAS implementation using JADE 
will be described and the pseudo-code for the Controller agent, DER agent and 
Load agent will be explained. The agent interaction at the moment of islanding 
will also be described. At last, the islanding simulation employing the MAS 
implementation will be presented. 
 
 

Experimental setup 
 
Preliminary MACSimJX software installation was not successful and it was 
determined that it was not optimized to execute on a 64-bit operating system. 
Therefore most of the JADE multi-agent system development was performed 
using the Toshiba computer while the Samsung computer was used for the 
Matlab Simulink microgrid simulation development. The final co-simulation was 
performed using the Toshiba computer which runs the MACSimJX that interfaced 
JADE with Matlab. Below is the description of the test setup: 
 
Hardware 

  

 Toshiba M100, Intel 1.66 GHz T2300, 980 MHz, 0.99 GB of RAM. 
Microsoft Windows XP, Home Edition, Service Pack 3, 32-bit OS 

 Samsung RC512, Intel i5-2410M 2.30 GHz, 4 GB of RAM 
Microsoft Windows 7, Home Premium, 64-bit OS 
 
 

Software 
 

 JADE 3.6 (last update 06/18/2007) 

 MATLAB R2009a, 32-bit 

 MATLAB R2011a, 64-bit 

 MACSimJX – MACSim with JADE extension, Pack A, version 1.7 
(01/18/2011) 

 
 
 

Microgrid monitor and control strategies 
 
The combined co-simulation network is shown in Figure 10. The MAS function 
block takes in Simulink data, processes it using the MAS Java applications and 
outputs the control signal back into Simulink in order to activate the breakers. 
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Figure 10, Co-simulation diagram 

 
 
For the co-simulation, an islanding situation followed by a load balancing process 
and DER dispatch was implemented using the MAS. A single phase ground fault 
was introduced at the feeder on phase A. As seen in the Figure 11, there is a 
very high current surge - close to 1 million amps peak. If such high current level 
is not cleared, potential damage to the equipment connected in the microgrid 
could occur. Therefore the microgrid will be required to isolate itself from the 
utility, which is the motivation behind going from a grid-connected mode into the 
islanding mode. The other motivation is to ensure that the power flowing to all 
loads, especially mission critical loads (e.g. hospital or military installation) is 
uninterrupted.   
 
Figures 11 and 12 respectively illustrate the simulated fault current surge at the 
utility feeder and the voltage waveform experienced on the 3-phase 208-volt 
network as a result of the fault. From Figure 12, it could be observed that the 
voltages on two of the three phases are operating at abnormal levels. 
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Figure 11, Ground fault current (A) between 0.05 and 0.1 second 

 
 

 
 

Figure 12, Line voltages (V) due to single-phase ground fault 
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In order to prevent the power transient from damaging the microgrid equipment, 
islanding will be required. To illustrate the concept of islanding, the feeder 
breaker is immediately opened following the fault by timing the control signal in 
Matlab. Shown in Figure 13, is the simulation response of a typical load bus if 
islanding is employed. 
 

 

 
 

Figure 13, Line voltages (V) when islanding occurs                                               

 
It could be observed that the voltages in the microgrid’s 208V lines (i.e. 3-ph 120 
Vrms) recovered much quicker than if they were left connected to the faulty 
mains (i.e. Figure 12). It should be noted that in this islanding case, it is assumed 
that the DER could produce sufficient power for the loads in the islanded 
configuration. However in a complex microgrid network where many DERs and 
loads are connected together and where power is often deficient, a network 
reconfiguration is required. Such reconfiguration during microgrid islanding could 
be a simple load balancing process where non-critical loads are shed so that the 
critical microgrid power demand could be met. A network reconfiguration might 
also entail the dispatching of DERs. Often times, DERs produce power at 
different costs depending on many factors such as fuel cost, solar irradiation, 
market incentives and other economic factors. Consequently, each DER has a 
unique cost function and it is often advantageous to dispatch the DERs to 
produce a specific amount of power in order to minimize cost.  
 
For the purpose of this study, the MAS implementation will be designed to shed 
the loads from a predefined priority list and determining the ideal DER to be 
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dispatched. The co-simulation will showcase the conversation between the 
agents that will lead to a seamless islanding. More specifically, the feeder will be 
monitored for fault. If a fault is detected, the MAS Controller agent will issue a 
request to all the DER and loads registered to the microgrid service to provide 
their current status such as power produced, consumed, cost of producing power 
and other relevant data. With the given information, the controller will determine 
the ideal network configuration by sending out control signals to energize/de-
energize the associated DER or load breaker(s). 

 
 

Multi-Agent System programming 

 
Natural representation of the world has previously been given as an advantage of 
object-oriented (OO) systems design, where entities in a system are modeled as 
objects. This has recently found favor with the power engineering community in 
standards such as the Common Information Model (CIM) and IEC 61850 [23]. 
The main benefit of the object approach is data-encapsulation. Meaning that the 
data structures which hold attributes of the object are hidden from external 
objects, yet they are indirectly accessible through method calls and standard 
interfaces.  
 
The MAS Agent-based design provides another level of abstraction to the object 
approach by hiding the methods an agent can perform while the methods are still 
indirectly accessible through standard messaging interfaces [23]. 

 
The class AgentData encapsulates the attributes of a DER object and a Load 
object as shown in Figure 14: 
 
 

     
     public class AgentData { 
     AID agentIDNum; 
     int onlineStatus; 
     int priorityNum; 
     double minCap; 
     double currentCap; 
     double maxCap; 
     double A;  
     double B; 
     double C; 
    } 

 

 
Figure 14, Agent class 

 
Each DER and Load object (agent) has an agent ID number and can let other 
agents know if whether or not its associated equipment is online and what is its 
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level of priority (i.e. critical load). In addition, it could communicate its minimum / 
current / maximum power level that it can or is producing or consuming 
(depending whether it is a DER or the Load). At last, the doubles A, B and C 
represent the coefficients of the cost function of the DER. These constants could 
be used in solving an optimal dispatch problem. 
 
The pseudo-code for the Controller agent is delineated in Figure 15 as follows: 
 
 
public class ControllerAgent extends UsefulAgentMethods 
 
 Registers the “islanding” service with AMS 
 

ControllerBehaviour Cyclic Behaviour 
               
             if data is received from Simulink 
   if current fault is detected 
    then send islanding signal to main breaker 
   else append data to a table 
   

       if a message is received from DER agent 
     then save the AgentData data structure sent from DER  
           into a DER agent object array 
 
       if a message is received from Load agent 
     then save the AgentData data structure sent from Load  
           into an Load agent object array 
 

    
     DataProcessing Behaviour 
   
  case 0: 
 
  if fault is detected 
   then send a CFP message to all DER and Load agents 
 
  case 1: 
 
  if message received is from the recipient agents 
   then make sure they are PROPOSE messages 
 
  case 2: 
 
  if all DER and Load AgentData are received 
 
   then calculate total power produced 

        then calculate total power consumed 
  
  if total power produced > total power consumed 

                     then output message “no network configuration is  
    required 
 

     else  then shed the non-critical loads by sending 
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   an ACCEPT_PROPOSAL messages to non-critical 
 
        then send a REJECT_PROPOSAL loads that are not  

    chosen for shedding 
 
     if total power produced < total power consumed  

               then determine which DER is offline and dispatch 
     by sending an ACCEPT_PROPOSAL 
 
    then send a REJECT_PROPOSAL to DERs that  
                          are not chosen for dispatch 
     

    case 3: 
  

        if message received is from the recipient agents 
   then make sure they are INFORM messages 

 
if case 3 is finished executing  
 then DataProcessing Behaviour terminates 
  
  

 
Figure 15, Controller agent pseudo-code 

 
Communication and interaction between agents is facilitated through the use of 
service. As shown in the pseudo-code in Figure 15, the Controller agent has 
currently registered a service called “islanding” with the Directory Facilitator (DF). 
In other words, if an agent (in this case DER or Load agents) needs to use the 
“islanding” features of the Controller agent, the agent would request a search 
with the DF and obtain corresponding ID of the agent providing such service. Of 
course, the Controller agent is not restricted to the “islanding” service; more 
services could be added at any time in the future. An agent could have the option 
to make its service private and therefore to be able to discriminate who can use 
and access them. 
 
The Controller agent is the trust center of the microgrid. It has a supervisory role 
and has control capability over other participating agents of the network. In the 
current islanding process, the controller has the responsibility of detecting a rapid 
current surge which is indicative of a ground fault. In the current scenario, if the 
detected current is greater than 0.5 million amperes, the Controller agent would 
send a control signal to the main breaker to transition the microgrid from a grid-
connected mode to an island mode. Then, the Controller agent immediately 
executes the DataProcessing() behavior where a fault notification message is 
sent to the agents (DER and Load) that had subscribed to its “islanding” service.  
 
Once the fault notification has been received by the DER and Load agents, the 
two agents will send their replies, containing their current power production or 
consumption respectively, back to the Controller agent. Additional DER and Load 
information such as priority, online/offline are also sent to the Controller agent. 
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The reason for such data gathering is to provide information regarding the DER 
and Loads so that the Controller agent could make a judicial decision about 
which load(s) could be shed and/or which DER could be dispatched in order to 
provide the required power to mission-critical loads in the microgrid.  
 
The DataProcessing() behavior will keep listening for a Propose ACL Message 
coming from the DER and Load agents and makes sure that all proposals are 
received before moving forward. When all agent data had been received, the 
Controller agent will compute the total power produced and the total power 
consumed at the moment of the fault. The Controller agent will then use this 
“snapshot” of the microgrid power flow to determine whether or not to reconfigure 
the network in order to achieve sufficient power in the islanded-mode. 
 
For example, if the total amount of power produced by the DER is larger than the 
total amount consumed by the loads; there is no need for load balancing. 
Otherwise, the Controller will request the different Load agents to disconnect 
their loads from the microgrid - in order of priority. In other words, the least 
important load is shed first. If after load shedding the total amount of power 
produced is still smaller than the power consumed, the Controller agent would 
then dispatch offline DER(s) to connect onto grid in order to compensate for the 
power deficiency. An Accept_Proposal ACL message is sent by the Controller 
agent to all the loads and DER considered for the load balancing and DER 
dispatch processes. For those that are not considered, a Reject_Proposal ACL 
message is sent. 
  
The pseudo-code for the DER agent is shown in Figure 16: 
 
 
public class DERAgent extends UsefulAgentMethods  
     

Registers the “DERPower” service with AMS 
 
DERBehaviour CyclicBehaviour 

 
  if data is received from Simulink 

   then append the power data into a table 
   

       if a message is received from another agent 
     then send the any relevant data to the sender 
 
 
ControlOrder CyclicBehaviour 
 
 if the received message is a CFP message 

                 then send a PROPOSE message to the sender by sending the               
      AgentData data structure 

 
 
ActionOrder CyclicBehaviour 
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 if the received message is an ACCEPT_PROPOSAL 
  then send a control signal to close the DER breaker 
   then send an INFORM message back to the sender 

      

 
Figure 16, DER agent pseudo-code 

 
In addition to listening for a fault notification message coming from the Controller 
agent, the DER agent also monitors its power production level. If a fault 
notification has been received, the DER will immediately send a Propose ACL 
message to the Controller agent. Furthermore, the DER’s current power status 
as well as other pertinent information is also sent to the Controller agent. Once 
the information is sent, the DER agent will wait for an Accept_Proposal ACL 
message from the Controller agent in an event the DER had been chosen to be 
dispatched online. For the purpose of the study, the decision to dispatch a DER 
is based on its capacity and whether if it is available (i.e. offline). For future 
iterations of the MAS program, the cost function (i.e. coefficient A, B and C) that 
is sent to the Controller agent could be used to determine the actual amount of 
power to be produced if performing an optimal dispatch is desired. Once the DER 
had been dispatched, the DER agent will send an Inform ACL message to the 
Controller agent, essentially acknowledging that the DER had been successfully 
dispatched.  
 
Very similar in structure to that of the DER agent, the pseudo-code for the Load 
agent is shown in Figure 17: 
 
 
 
public class LoadAgent extends UsefulAgentMethods  
     

Registers the “LoadPower” service with AMS 
 
LoadBehaviour CyclicBehaviour 

 
  if data is received from Simulink 

   then append the power data into a table 
   

       if a message is received from another agent 
     then send the any relevant data to the sender 
 
 
ControlOrder CyclicBehaviour 
 
 if the received message is a CFP message 

                 then send a PROPOSE message to the sender by sending the               
      AgentData data structure 

 
 
ActionOrder CyclicBehaviour 
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 if the received message is an ACCEPT_PROPOSAL 
  then send a control signal to open the load breaker 
   then send an INFORM message back to the sender 
 

 
Figure 17, Load agent pseudo-code 

 
Similar to the DER agent, the Load agent will constantly monitor and tabulate the 
power that its load is consuming while listening for any fault notification message 
from the Controller agent. Upon receiving the a fault notification, the Load agent 
will send its power consumption level, along with other pertinent information, to 
the Controller agent and then waits for an Accept_Proposal ACL message. If the 
message is received, the Load agent will first shed the load and then Inform the 
Controller agent that it had successfully done so. The agent messaging is 
encapsulated in the diagram in Figure 18. Each agent behavior is represented by 
a downward pointing arrow. The Controller agent has two behaviors (one cyclic 
and one generic), and the DER and Loads agents both have three cyclic 
behaviors. 
 
 

 
 

Figure 18, Agent conversation using ACL messages 
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Eclipse is used to develop the agent code. To test the MAS implementation, a 
simple dummy network was built, as seen in Figure 19. The network emulates 
the inputs for the DERs and loads (using step functions) and provides 
visualization at both inputs and outputs of the MAS. The dummy network played 
an important role during the MAS development process by cutting down on 
simulation time considering the large size of the actual microgrid network shown 
previously in Figure 10. 

 
 

 
 
 

Figure 19, MAS test network for developmental purpose 

   

 
 

Co-simulation result 
 
Similar to the simulated fault scenario in Figure 13, a single-phase ground fault 
has been induced in leg A at the feeder. However this time, the islanding process 
and the load balancing will be completely achieved by the MAS. The simulation 
will last 0.1 second, just long enough to capture few cycles in order to illustrate 
the transient response during islanding. 
 
The voltage profile seen at the three-phase line is shown in Figure 20. It could be 
observed that as the fault occurs around 0.06 seconds, there is a disturbance on 
two of the three phases. However this disturbance is short-lived as the microgrid 
quickly islands and performs the load balancing. In this particular case, two loads 
(load 3 and load 4) were shed off and generator 2 was brought online in order to 
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make up for the power deficiency (see case 3 of Chapter 4 for details of this 
islanding scenario). 
 
 

 
 

Figure 20, Three-phase voltage profile during islanding and load balancing 

 
Obviously, it is important to keep the voltage transient experienced during 
islanding as short as possible. The performance of the islanding process is not 
quantified (i.e. overshoot, steady-state, etc). In this study, the goal is to illustrate 
the agent system process during microgrid islanding. However it could be 
concluded that the MAS was able to accomplish the islanding process, perform 
load balancing and DER dispatch while keeping the disturbance within a narrow 
window of about 0.003. The time during which the conversation between the 
agents took place could not be precisely quantified but it is indeed very short. 
More test cases illustrating the conversation between the agents will be 
delineated in chapter 4.  
 
Figure 21 shows a sample of power data acquired by Load agent 2 and a sample 
plot generated in Microsoft Excel. It could be seen that the 600 W consumption 
was constantly being monitored by its associated agent. 
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Figure 21, Sample plot of the load data acquired by a load agent 
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Chapter 4. ANALYSIS AND DISCUSSION 
 
In this chapter, three islanding cases will be tested in order to illustrate the load 
shedding and DER dispatch processes. Improvement to the current MAS 
software will be discussed. Then the hardware-based microgrid work will be 
further re-iterated by introducing a ZigBee application. Finally the thesis project is 
concluded by recapping the discussed concepts. 
 

Test cases 
 
Different combinations of DER and loads are tested during the islanding process. 
Three cases will be used to illustrate in detail the load shedding and DER 
dispatching process. These important events are accompanied by output 
messages as seen in the command prompt window in Figure 22. All events are 
asynchronous because of the multi-threaded process; therefore, the order in 
which the output messages appear varies on each execution. 
   
 
Case 1: 
 
The first case illustrates a situation where the total power produced is larger than 
the total amount of power consumed. This is the ideal pre-islanding scenario 
where no action is required. Table 4 indicates the DERs and loads that are online 
and the respective priority number of each load (the lower the number, more 
important is the load). Figure 23 showcases the conversation seen by the Sniffer 
agent which is a built-in JADE agent responsible for displaying ACL messages 
between agents of the system. The Sniffer agent provides a network monitoring 
service by showing in real-time, the performative acts that are exchanged 
between the agents.   

 
 

 DER1 DER2 DER3 DER4 Load1 Load2 Load3 Load4 

Power 
(W) 

700 600 300 100 800 600 300 200 

Priority# - - - - 2 1 3 4 

 Status  - Online Online - - Online   

 
Table 4, Load balancing case 1, critical load is in bold 
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Figure 22, Result of islanding when capacity is sufficient 

 
 

 
 

Figure 23, Conversation seen by the sniffer agent 

 
Case 2: 

 
The second case illustrates a scenario where DER 3 and DER 4 are online and 
are generating a combined power of 400 W. However, the online loads 2, 3 
(critical load) and 4 are drawing a combined value of 1100 watts as shown in 
Table 5. Needless to say, upon islanding, the microgrid network would require 
reconfiguration in order to ensure sufficient power for the loads.  
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 DER1 DER2 DER3 DER4 Load1 Load2 Load3 Load4 

Power 
(W) 

700 600 300 100 800 600 300 200 

Priority# - - - - 2 3 1 4 

 Status  - - Online Online - Online Online Online 

 
Table 5, Load balancing case 2 

 
As shown in the command prompt in Figure 24, the Controller agent will 
command the load agents to shed their loads one by one, starting with the least 
critical one until the total power produced is larger or equal to the total power 
consumed. In this case, load 4 and load 2, with priority# 4 and #3 respectively, 
are shed. At the end, the load shedding process brought the total power 
consumption from 1100 watts down to 300 watts - allowing the microgrid to self-
sustain in the islanded-mode. 
 
Upon receiving the data structure sent from the load agents, the Controller agent 
sends an Accept_Proposal message to all potential Load agents whose load is 
considered for shedding. The Load agent accepts the shedding command and 
sends an Inform message acknowledging that the load will go offline. It should be 
noted that for simplicity’s sake and since there is no real Contract Net interaction 
per se, the Load agent will always accept to shed off its load. Potentially in the 
future, an actual negotiation implementation could be employed. For instance, 
the load agents could propose an economic term and condition to which it will 
accept to go offline. The Controller agent on the other hand could have the ability 
to accept or reject (through the use of Reject_Proposal) any proposal made by 
the load agents. 

 

 
 

Figure 24, Result of islanding when microgrid has power deficiency 
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Similar to case 1, the conversation between the interacting agents are monitored 
and displayed by the Sniffer agent as seen in Figure 25. 
 
 

 
Figure 25, Conversation seen by the sniffer agent 

 
Case 3: 

 
The last scenario explores the process of DER dispatch. In a nutshell, if the 
microgrid is still power deficient (i.e. total power produced < total power 
consumed) despite performing the load shedding process, then available DER(s) 
could be brought online to compensate for the power demand. From the DER 
data structures, which are sent to the Controller agent by the DER agents upon 
detecting a fault upstream, the Controller agent enumerates all the different 
combinations of offline DER(s) that could be dispatched in order to compensate 
for the power deficiency. This process could be seen in Figure 26 under “possible 
combinations of DER”. 
 
Also seen in Figure 26, the Load agents 3 and 4 are again called upon to shed 
their loads of 300 and 200 W respectively. However, the total power produced 
(400 W) is still 200 W short of the 600 W consumed. Consequently, the offline 
DER 2 is commanded to come online in order to ensure that the load 2 in the 
microgrid is properly supplied. 
 
 



 

35 
 

 DER1 DER2 DER3 DER4 Load1 Load2 Load3 Load4 

Power 
(W) 

700 600 300 100 800 600 300 200 

Priority# - - - - 2 1 3 4 

 Status  - - Online Online - Online Online Online 

 
Table 6, Load balancing case 3 

 

 
 

Figure 26, Result of islanding when microgrid has power deficiency 
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The conversation between the interacting agents is monitored and displayed by 
the Sniffer agent as seen in Figure 27. 
 
 

 
 

Figure 27, Conversation seen by the sniffer agent 

 
The microgrid’s simulation model is large and complex therefore the simulation 
time is lengthy; a 0.1 second simulation lasted about one hour. Furthermore, all 
nine agents are running on the same computer- therefore compounding to the 
computing bottleneck. For example, an extended simulation of two seconds took 
hours to complete. One solution was to disable local processes such as data 
appending or any unnecessary tasks. Consequently, it was observed that the 
simulation time could be shortened by as much as 30 percent. It should also be 
noted that the JADE’s built-in sniffer agent encountered an error during its 
execution as seen in Figure 28. 
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Figure 28, Sniffer agent execution error 

 
 
Base64 is an encoding/decoding technique, allowing for 8-bit data to be 
represented using only printable characters. It is believed that the error is 
probably the result of a missing conversion modules (The Base64 encoder / 
decoder was not originally a part of the Java language and there was a separate 
library that was required for this). According to the developer of MACSimJX, 
there is probably a conflict between the MACSimJX implementation and JADE's 
sniffer agent implementation. However it is believed that the conversation 
between the Controller and the DER/Load agents did occur simply because the 
Controller agent received the data structure it had requested from the DER/Load 
agents. Therefore the error is believed to be just an artifact of the conflict 
between MACSimJX and JADE implementations. The Sniffer agent captures in 
Figure 23, 25 and 27 are just meant to illustrate that the conversation took place 
between the agents as the content as well as the actual performative act might 
not be correct. 
 
 

Improvement 
 
The current MAS software is able to detect a fault and perform seamlessly the 
islanding, load shedding and DER dispatch processes. In addition to fault current 
detection, a frequency monitoring algorithm could also be implemented inside the 
Controller Agent. Furthermore, the restoration part of the simulation could be 
implemented - where the islanded microgrid is reconnected with the utility after 
the fault has cleared [6]. 
 
In this project, provision has been given for the Controller agent to achieve more 
advanced load balancing process such as using the polynomial of the cost 
function, sent from the DER, to perform an optimal dispatch. In the next iteration 
of the MAS co-simulation, it is envisioned that the Controller agent or another 
agent, whose task is to perform the optimal dispatch, would use the Lagrange 
multiplier to subsequently allow DER(s) to produce a specific amount of power. 
Another avenue of development is to exploit the Contract-Net protocol in an 
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actual bidding process. For example, in a power trading scenario where the 
DER(s) with the best price will produce power, a richer contract-net interaction 
could be implemented in order to handle the bidding, negotiation, awarding 
processes [7]. Furthermore, there could be room to investigate different 
algorithms used in solving assignment problems pertaining to the interactions 
between the buyer and seller agents such as auction algorithm [3, 26]. This will 
further enrich the interaction between DER and Load agents beyond just 
responding to request from the Controller agent. 
 
As mentioned in Chapter 3, the three types of agents, currently making up the 
MAS are considered essential because of their important roles in the microgrid. It 
is envisioned that many other types of agents could be easily created and added 
to the MAS in the future. Furthermore, new agent interactions implemented 
through additional behaviors could be added to the existing agent code without 
effecting any changes to the overall agent system. Highly specialized agents 
could be created in order to accomplish specific tasks or solve specific problems. 
For instance, if a process requires the design of a generator stabilizer, then a 
“Power System Stabilizer agent” could be implemented in order to control and 
improve any transient stability of the synchronous generator. Similarly, a “Cost 
agent” could be created in a situation where an economic problem requires a 
solution. The type of agent and its role in the microgrid is left to the developer’s 
discretion and the potential for agent exploitation and expansion is limitless. 
 
 

Future hardware-based work 
 
As the MAS program in this co-simulation project improves over the next 
iteration, when more behaviors / agents are added and more simulation 
scenarios are experimented, the thought process of incorporation of MAS into 
hardware should also be initiated. More specifically, the roles and location of the 
agents within the PSH microgrid should be determined. 
 
For the moment, it is envisioned that each of the DER and load within the PSH 
microgrid will be interfaced with a computer or an embedded system. The Java 
Virtual Machine (JVM) and/or the JADE will be installed and running on these 
distributed computer systems.  
 
The first step would be to port the Controller / DER / Load agent implementation 
from the co-simulation onto these computers. The JADE framework has 
advanced communication and agent management capabilities. In order to fully 
benefit from these underlying implementations, the agents should be first tested 
on different computer systems or on different networks. This topology would 
provide the necessary environment to test for agent communication and perform 
testing of agents that are physically located on different parts within the 
microgrid. For certain mission-critical applications written in other languages, it is 
understandable that the JADE could take on a data processing role rather than 
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that of a hardware control. For example, real-time data (or data from a database) 
could be piped into a Java-written agent for data mining purpose in order to 
forecast power consumption. Advanced computational models such as Artificial 
Neural Network (ANN) could be used to perform analytical and control functions. 
Furthermore, an area where JADE has seen a lot of development is in mobile 
applications. Therefore JADE-based agents could be developed to run on a 
smart phone to test for any mobile purpose. 
 
Furthermore, it is envisioned that the MAS software could also be made to 
interface with a wireless ZigBee network where the agent software will be 
running on the end device computer as shown in the Figure 29. 
 
 

 
 

Figure 29, Proposed ZigBee network employing the MAS approach 

 
The ZigBee standard, also known as IEEE 802.15.4 wireless standard, enables 
RF devices to operate on low-power, low data rate and on a secure 
communication network [27, 28]. The ZigBee wireless technology is currently 
used for smart energy system and home automation applications [27, 29, 30]. 
One particular ZigBee development platform is the Silicon Laboratories EM357 
chipset. The EM357 ARM Cortex M3 processor combines a 2.4 GHz radio 
transceiver with a 32-bit microprocessor, Flash memory and RAM with powerful 
hardware supported network-level debugging features. This family of SoC 
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processors is highly integrated with the EmberZNet PRO software platform with 
mesh networking capability [30]. 
 
ZigBee shares many of the MAS attributes such as extensibility (i.e. plug-and-
play) and autonomy (i.e. DLC) [28]. It is the communication solution of choice for 
a decentralized power network such the PSH microgrid. The EM357 was 
evaluated for the PSH microgrid development and a preliminary network was 
established along with basic communication functions between a coordinator 
node and two end-nodes. It is believed that the ZigBee network could add 
valuable monitoring capability to the PSH microgrid. More specifically, it is 
envisioned that the agents could be used as a ZigBee data aggregator [29] (i.e. 
data logging, event forecast, visualization, data conversion) or provide computing 
capability at the ZigBee node - as shown in Figure 29. The ZigBee specification 
defines the application and security layer specification of the technology, which is 
promoted by the ZigBee Alliance - a consortium of companies that draft ZigBee 
standards to ensure the interoperability of ZigBee-based consumer devices [19]. 
In terms of standardization, it is analogous to FIPA’s agent system 
standardization where an open architecture could allow agents interaction 
regardless of the platform on which the agents have been created or executed. 
 
 

Conclusion 
 
The distributed nature of the smart grid could provide potential corrective actions 
in a case of a disturbance. However, smart equipment only offer one level of 
situational awareness, as smart decision-making is the more critical aspect of the 
resiliency [1]. The distributed decision-making must be in concordance with the 
overall objective of the collective grid network. In order to achieve the grid 
objective in the most cost efficient and effective way, the interactions between 
the participants of the grid should be resolved through the use intelligent 
communication, monitor and control technologies. While using the FIPA-ACL 
communication, it was shown in this project that the MAS approach could provide 
a better modeling approach therefore could enhance the interaction between 
microgrid entities. 
 
The Multi-Agent System (MAS) is a good candidate for such application as 
evidenced by the islanding problem presented in this project. There exist many 
automated, intelligent and efficient systems or technologies which could be 
labeled as interpreted as “agents-like”. Being able to distinguish an agent system 
from these advanced implementations is important so that potential advantages 
and benefit could arise in the designs. The ability of MAS to be flexible, 
extensible, and fault tolerant is often part of the justification for their use [23]. In 
this thesis, it was shown that by using the object-oriented approach based on the 
Java language, which is also platform-independent, the software development 
process could be greatly accelerated. This will become more apparent in a large 
network with many DERs and Loads. 
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Furthermore, it was shown that this extensible software approach further 
provided decentralization to the electric network by delegating tasks to different 
agents within an agent system. This method could eventually allow different DER 
and load equipment manufacturers to embed a generic microgrid agent program 
in their equipment which will provide the plug-and-play capability and promote 
equipment interoperability. On the contrary, in a centralized system the 
installation of any new component would require extra programming of the 
central controller [26]. 
 
Smart grid and microgrid encompass many hi-tech applications which are 
constantly evolving; it is therefore difficult to set in stone smart grid technology 
standards. This thesis also emphasized the importance of using an open and 
standardized MAS platform such as JADE. Jade could facilitate microgrid 
network expansion through the use of middleware implementation and by 
providing built-in agent development and management tools. One of the goals of 
this project is to raise awareness among power engineers who are currently (or 
in the future) deploying MAS or MAS-like technology that it is important to 
standardize the agent development work in order to be able to fully benefit the 
merits of a distributed network. 
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Appendix 

 

Software development environment 

 
Shown in Figure 30, is the typical MAS development environment illustrating its 
main components. In 1 is the Eclipse IDE where the agents are implemented. In 
2 is the Matlab Simulink environment where the microgrid is designed and tested. 
In 3 is the command window used to compile the agent code. In 4 is the 
MACSimJX launcher window which also serves as the main output window for 
the agent process. In 5 is the JADE user interface. 
 

 

 
 

Figure 30, Co-simulation environment 
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Sample breaker control signal 
 
During the islanding process, the signal that is used to control the opening and 
closing of the breaker is a pulse generated from the MAS program. For instance 
during the case 3 of islanding, the control pulses are generated by the MAS in 
order to open the main breaker (island) connecting the microgrid to the utility. 
Furthermore, two more control pulses are sent to open the breakers connecting 
load 3 and load 4 (load shedding). At last, a pulse used to close the DER 2 
breaker (generator dispatch) is also generated by the MAS. These four control 
pulses are shown in Figure 31. 
 

 

 
 

Figure 31, Pulse signals generated by MAS for breaker control 
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