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Abstract

This thesis makes contributions to two separate topic areas, namely anomaly detection
and network neutrality areas, which are related to each other. In the first part, we focus
on detecting samples from anomalous latent classes, buried within a collected batch of
known (normal) class samples, where the number of features for each sample is high.
We assume and observe to be true that careful feature selection within unsupervised
anomaly detection may be needed to achieve the most accurate results (depending on
the particular feature representation that is in use). We form pairwise feature tests based
on Gaussian mixture models, with one test for every pair of features. The mixtures are
estimated using known class samples (null training set). Using these mixture models,
p-values are obtained on the test batch samples under the null hypothesis. We use these
p-values in basically two different ways. In our first approach, we consider sample-by-
sample detection of anomalous class samples amongst the batch of collected samples.
We propose a novel sample-wise sequential anomaly detection procedure with growing
number of tests. New tests are included only when they are needed, i.e., when their
use on currently undetected samples will yield greater aggregate statistical significance
of multiple testing corrected detections than obtainable using the existing test set. This
approach aims to maximize aggregate statistical significance of all detections made up
until a finite horizon. We then approach this anomaly detection problem as a clustering
problem. We calculate approximate joint p-values for candidate anomalous clusters,
defined by (sample subset, test subset) pairs. Our approach sequentially detects the
most significant clusters of samples in a networking context. We use different kinds of
feature representations and conditioning contexts and experimented on many datasets
for comprehensive performance evaluation purposes. Our p-value clustering algorithm
is compared, using ROC curves, with alternative p-value based methods, our sample-
by-sample sequential detection, and the one-class SVM. All the competing methods
make sample-wise detections, i.e., they do not jointly detect anomalous clusters. The
anomalous class was either an HTTP bot (Zeus) or peer-to-peer (P2P) traffic. For
certain feature representations, our p-value clustering approach gives promising results
for detecting the Zeus bot and P2P traffic amongst Web.
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In the second part, we analyze some issues about the network neutrality. We inves-
tigate the relations between caching, pricing, and revenues of entities under the light of
network neutrality concerns. Firstly, we consider a model with two “eyeball” Internet
Service Providers (ISPs) (i.e., those acting as both network access and content providers
(CP)), with transit pricing of net traffic at their peering point. That is, there is an
inter-provider service-level agreement (SLA) involving a revenue based on net transit
traffic flow across their peering point(s). We studied the effects of caching remote con-
tent via a game between the ISPs on a platform having usage-priced subscribers. We do
this for two cases: one is for different congestion points in each ISP (depending traffic
origin) leading to tractable Nash equilibria; and the other is for a single congestion point
which we herein study numerically. Secondly, we consider a game between an ISP and
CP on a platform of end-user demand. A price-convex demand-response is motivated
based on the delay-sensitive applications that are expected to be subjected to the as-
sumed usage-priced priority service over best-effort service. Thus, we are considering a
two-sided market with multiclass demand wherein one class (that under consideration
herein) is delay-sensitive. Both the Internet and proposed Information Centric Network
(ICN, encompassing Content Centric Networking (CCN)) scenarios are considered. For
our purposes, the ICN case is basically different in the polarity of the side-payment (from
ISP to CP in an ICN) and, more importantly here, in that content caching by the ISP is
incentivized. A price-convex demand-response model is extended to account for content
caching. The corresponding Nash equilibria are derived and studied numerically.

iv



Table of Contents

List of Figures ix

List of Tables xv

Acknowledgments xvi

Chapter 1
Introduction 1
1.1 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Network Neutrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2
Background – P-value Calculations, Experimental Setup, and Fea-

ture Representations for Anomaly Detection 12
2.1 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 GMM Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Expectation-Maximization (EM) Algorithm . . . . . . . . . . . . 18

2.2.2.1 General Overview of EM . . . . . . . . . . . . . . . . . 18
2.2.2.2 EM for GMM Modeling . . . . . . . . . . . . . . . . . . 19

2.2.3 Selecting the Number of Components . . . . . . . . . . . . . . . 20
2.3 Calculation of P-values of Samples . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Univariate Gaussian Case . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Bivariate Gaussian Case . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Experimental Setup – Internet Flows . . . . . . . . . . . . . . . . . . . . 25
2.5 Feature Space Representations . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Lossless feature representation . . . . . . . . . . . . . . . . . . . 27
2.5.2 Alternating feature representation . . . . . . . . . . . . . . . . . 30

v



2.5.3 Alternating feature representation - with categorical feature 0 . . 32
2.5.4 Alternating feature representation - with categorical features 0

and ACK (together) . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.5 Alternating feature representation - with categorical features 0

and ACK (separately) . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.6 Alternating feature representation - with categorical features 0

and ACK (separately) (normalized p-values) . . . . . . . . . . . 35
2.5.7 Alternating feature representation - with categorical features 0

and ACK (separately)(without probabilities) . . . . . . . . . . . 35
2.6 Supervised Classification Results . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 3
Anomaly Detection – Sample-wise Detection Approach 40
3.1 Sample-wise Anomaly Detection with Growing Number of Tests . . . . . 40

3.1.1 Strategy 1: No Lookahead . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Strategy 2: Lookahead . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.3 Determining when to stop: significance assessment of detections: 44

3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 4
Anomaly Detection – Cluster-wise Detection Approach 48
4.1 Clustering Criterion and Algorithm . . . . . . . . . . . . . . . . . . . . . 48
4.2 Implementation Details of P-value Clustering . . . . . . . . . . . . . . . 51
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Methods of Comparison . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2.1 Alternating feature representation results . . . . . . . . 54
4.3.2.2 Alternating feature representation results - ACK packets

modified . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2.3 Lossless feature representation results . . . . . . . . . . 80
4.3.2.4 Alternating feature representation results - with categor-

ical feature 0 . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2.5 Alternating feature representation results - with categor-

ical features 0 and ACK (together) . . . . . . . . . . . . 86
4.3.2.6 Alternating feature representation results - with categor-

ical features 0 and ACK (separately) . . . . . . . . . . 89
4.3.2.7 Alternating feature representation results - with categor-

ical features 0 and ACK (separately) (normalized p-values) 93
4.3.2.8 Alternating feature representation results - with categor-

ical features 0 and ACK (separately)(without probabili-
ties) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vi



Chapter 5
Background – Network Neutrality, Games, and Internet Caching 97
5.1 Network Neutrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Revenue and Demand Models . . . . . . . . . . . . . . . . . . . . 98
5.2.2 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Internet Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 6
Network Neutrality – Effect of Caching in a Network with Two Eye-

ball ISPs 103
6.1 Two different eyeball ISPs . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Three different congestion points per ISP, fixed

caching factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3 One congestion point per ISP, fixed caching factors . . . . . . . . . . . . 107
6.4 Three different congestion points per ISP, fixed

caching factors, multiple providers of one of the types . . . . . . . . . . 109
6.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 7
Network Neutrality – Effect of Caching in Information-Centric Net-

works 118
7.1 Background discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.1 Network neutrality and ISP-level content caching . . . . . . . . . 118
7.1.2 Future Internet Architectures . . . . . . . . . . . . . . . . . . . . 119

7.2 Problem Set-Up: The Internet model . . . . . . . . . . . . . . . . . . . . 120
7.3 ICN model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 8
Conclusions 129

Appendix A
Explanation of convex demand response (Chapter 7) 133

Appendix B
Explanation of convex demand response, increasing in caching factor

(Chapter 7) 135

Appendix C
Convexity of cost of caching as a function of caching factor (Chapter

7) 137

vii



Bibliography 139

viii



List of Figures

1.1 Calculation of p-value of 10 (or 50) for N (9, 30) . . . . . . . . . . . . . . 3
1.2 A CP may use a Content Distribution Network (CDN) as depicted, or

may have a local caching agreement with a last-mile (LM) ISP, or neither 9

2.1 An example of a training set that is used to fit GMM . . . . . . . . . . 21
2.2 GMM components on the test set . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Division of the training based on conditioning contexts in lossless feature

representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Number of tests used versus number of made detections, for several meth-
ods, in detecting Zeus bots among Web flows. (File 1) . . . . . . . . . . 45

3.2 ROC curves for several anomaly detection methods, in detecting Zeus
bots among Web flows. (File 1) . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Number of tests used versus number of made detections, for several meth-
ods, in detecting Zeus bots among Web flows. (File 5) . . . . . . . . . . 46

3.4 ROC curves for several anomaly detection methods, in detecting Zeus
bots among Web flows. (File 5) . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Area under ROC performances vs. file size for all files and all methods
(alternating feature representation) (variance lower bound=1) . . . . . . 58

4.2 Mean area under ROC performances over all files for all methods (Method
IDs: 1=p-value clus order 2, 2=p-value clus order 3, 3=p-value clus order
5, 4=lookahead, 5=p-value sum, 6=p-value log sum, 7=ensemble of all
methods, 8=ensemble of p-value clus order 3 and p-value sum) (alternat-
ing feature representation) (variance lower bound=1) . . . . . . . . . . . 59

4.3 Area under ROC performances vs. file size for all files and 3 selected
methods (alternating feature representation) (variance lower bound=1) . 59

4.4 Area under ROC performances vs. hour of day for all files and all meth-
ods (hour of day range: 04:10-20:28) (alternating feature representation)
(variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



4.5 Port and dataset size dependence of area under ROC performance of p-
value clustering (order 5) (sizes of the datasets corresponding to each port
are color-coded: red shows the largest dataset, black shows the smallest
dataset, other files are depicted with colors in between red and black)
(alternating feature representation) (variance lower bound=1) . . . . . . 60

4.6 Port and dataset size dependence of area under ROC performance of p-
value sum (dataset sizes corresponding to each port are color-coded: red
shows the largest dataset, black shows the smallest dataset, other files
are depicted with colors in between red and black) (alternating feature
representation) (variance lower bound=1) . . . . . . . . . . . . . . . . . 61

4.7 True positive rate in the first 40 detections for all files and all methods
(alternating feature representation) (variance lower bound=1) . . . . . . 61

4.8 Mean true positive rate in the first 40 detections over all files for all
methods (Method IDs: 1=p-value clus order 2, 2=p-value clus order 3,
3=p-value clus order 5, 4=lookahead, 5=p-value sum, 6=p-value log sum,
7=ensemble of all methods) (alternating feature representation) (variance
lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.9 True positive rate in the first 40 detections for all files for 3 methods
(alternating feature representation) (variance lower bound=1) . . . . . . 62

4.10 Mean true positive rate in the first 40 detections over all files for 3 meth-
ods (Method IDs: 1=p-value clus order 2, 2=p-value clus order 3, 3=p-
value clus order 5, 4=lookahead, 5=p-value sum, 6=p-value log sum,
7=ensemble of p-value sum and p-value clus order 2) (alternating feature
representation) (variance lower bound=1) . . . . . . . . . . . . . . . . . 63

4.11 ROC curves (File 1 Web - Zeus) (alternating feature representation) (vari-
ance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.12 ROC curves (File 1 Web - Zeus) (alternating feature representation) (vari-
ance lower bound=3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.13 ROC curves (File 1 Web - Zeus) (alternating feature representation) (vari-
ance lower bound=5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.14 ROC curves (File 1 Web - Zeus) (alternating feature representation) (vari-
ance lower bound=10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.15 ROC curves (File 2 Web - Zeus) (alternating feature representation) (vari-
ance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.16 ROC curves (File 2 Web - Zeus) (alternating feature representation) (vari-
ance lower bound=10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.17 ROC curves (File 3 Web - Zeus) (alternating feature representation) (vari-
ance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.18 ROC curves (File 3 Web - Zeus) (alternating feature representation) (vari-
ance lower bound=10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.19 ROC curves (File 2 Web - File 2 P2P) (alternating feature representation)
(variance lower bound=10) . . . . . . . . . . . . . . . . . . . . . . . . . 67

x



4.20 Sensitivity of AUC performance on ν parameter for the one-class SVM . 68
4.21 ROC curves (File 4 Web - Zeus) (alternating feature representation) (vari-

ance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.22 ROC curves (File 5 Web - Zeus) (alternating feature representation) (vari-

ance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.23 ROC curves (File 6 Web - Zeus) (alternating feature representation) (vari-

ance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.24 ROC curves (File 7 Web - Zeus) (alternating feature representation) (vari-

ance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.25 ROC curves (File 8 Web - Zeus) (alternating feature representation) (vari-

ance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.26 ROC curves (Combined File Web - Zeus) (alternating feature representa-

tion) (variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . 71
4.27 ROC curves (Combined File Web - Zeus) (alternating feature representa-

tion) (variance lower bound=5) . . . . . . . . . . . . . . . . . . . . . . . 71
4.28 ROC curves (Combined File Web - Zeus) (alternating feature representa-

tion) (variance lower bound=10) . . . . . . . . . . . . . . . . . . . . . . 72
4.29 ROC curves (File 13 Web - Zeus) (alternating feature representation)

(variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.30 ROC curves (File 13 Web - Zeus) (File is divided into 5 subsets and the

results are averaged) (alternating feature representation) (variance lower
bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.31 ROC curves (File 1 Web - Zeus) (alternating feature representation)
(same-sized ACK packet usage) (variance lower bound=1) . . . . . . . . 75

4.32 ROC curves (File 2 Web - Zeus) (alternating feature representation)
(same-sized ACK packet usage) (variance lower bound=1) . . . . . . . . 76

4.33 ROC curves (File 3 Web - Zeus) (alternating feature representation)
(same-sized ACK packet usage) (variance lower bound=1) . . . . . . . . 76

4.34 ROC curves (File 5 Web - Zeus) (alternating feature representation)
(same-sized ACK packet usage) (variance lower bound=1) . . . . . . . . 77

4.35 ROC curves (File 6 Web - Zeus) (alternating feature representation)
(same-sized ACK packet usage) (variance lower bound=1) . . . . . . . . 77

4.36 ROC curves (File 7 Web - Zeus) (alternating feature representation)
(same-sized ACK packet usage) (variance lower bound=1) . . . . . . . . 78

4.37 ROC curves (File 1 Web - Zeus) (alternating feature representation)
(different-sized ACK packet usage) (variance lower bound=1) . . . . . . 78

4.38 ROC curves (File 2 Web - Zeus) (alternating feature representation)
(different-sized ACK packet usage) (variance lower bound=1) . . . . . . 79

4.39 ROC curves (File 3 Web - Zeus) (alternating feature representation)
(different-sized ACK packet usage) (variance lower bound=1) . . . . . . 79

4.40 ROC curves (File 6 Web - Zeus) (alternating feature representation)
(different-sized ACK packet usage) (variance lower bound=1) . . . . . . 80

xi



4.41 ROC curves (File 1 Web - Zeus) (Lossless feature representation) (vari-
ance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.42 ROC curves (File 2 Web - Zeus) (Lossless feature representation) (vari-
ance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.43 ROC curves (File 3 Web - Zeus) (Lossless feature representation) (vari-
ance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.44 ROC curves (File 3 Web - Zeus) (alternating feature representation) (cat-
egorical feature 0) (variance lower bound=1) . . . . . . . . . . . . . . . 83

4.45 ROC curves (File 4 Web - Zeus) (alternating feature representation) (cat-
egorical feature 0) (variance lower bound=1) . . . . . . . . . . . . . . . 84

4.46 ROC curves (File 6 Web - Zeus) (alternating feature representation) (cat-
egorical feature 0) (variance lower bound=1) . . . . . . . . . . . . . . . 84

4.47 ROC curves (File 7 Web - Zeus) (alternating feature representation) (cat-
egorical feature 0) (variance lower bound=1) . . . . . . . . . . . . . . . 85

4.48 ROC curves (Combined File Web - Zeus) (alternating feature representa-
tion) (categorical feature 0) (variance lower bound=1) . . . . . . . . . . 85

4.49 ROC curves (File 1 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the same category)
(variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.50 ROC curves (File 2 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the same category)
(variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.51 ROC curves (File 3 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the same category)
(variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.52 ROC curves (File 5 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the same category)
(variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.53 ROC curves (File 8 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the same category)
(variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.54 ROC curves (Combined File Web - Zeus) (alternating feature representa-
tion) (categorical features 0 and ACK, which are considered in the same
category) (variance lower bound=1) . . . . . . . . . . . . . . . . . . . . 89

4.55 ROC curves (File 1 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the separate cate-
gories) (variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . 90

4.56 ROC curves (File 3 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the separate cate-
gories) (variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . 91

xii



4.57 ROC curves (File 6 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the separate cate-
gories) (variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . 91

4.58 ROC curves (File 7 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the separate cate-
gories) (variance lower bound=1) . . . . . . . . . . . . . . . . . . . . . . 92

4.59 ROC curves (Combined File Web - Zeus) (alternating feature represen-
tation) (categorical features 0 and ACK, which are considered in the
separate categories) (variance lower bound=1) . . . . . . . . . . . . . . . 92

4.60 ROC curves (File 1 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the separate cate-
gories) (p-values for each test normalized) (variance lower bound=1) . . 93

4.61 ROC curves (File 4 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the separate cate-
gories) (p-values for each test normalized) (variance lower bound=1) . . 94

4.62 ROC curves (File 1 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the separate cate-
gories) (without probabilities) (variance lower bound=1) . . . . . . . . . 95

4.63 ROC curves (File 4 Web - Zeus) (alternating feature representation) (cat-
egorical features 0 and ACK, which are considered in the separate cate-
gories) (without probabilities) (variance lower bound=1) . . . . . . . . 95

5.1 Convex, piecewise-linear demand response . . . . . . . . . . . . . . . . . 100

6.1 Caching remote content . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Ua(pa, pb) (3 congestion points for each ISP, fixed caching factors) (α = 1) 110
6.3 Ub(pa, pb) (3 congestion points for each ISP, fixed caching factors) (α = 1) 111
6.4 Ua(pa, pb) (3 congestion points for each ISP, fixed caching factors) (α = 2) 112
6.5 Ub(pa, pb) (3 congestion points for each ISP, fixed caching factors) (α = 2) 113
6.6 Ua(pa, p

∗
b) (3 congestion points for each ISP, fixed caching factors) . . . 114

6.7 Ub(p
∗
a, pb) (3 congestion points for each ISP, fixed caching factors) . . . . 114

6.8 Ua(pa, p
∗
b) (1 congestion point for each ISP, fixed caching factors) . . . . 115

6.9 Ub(p
∗
a, pb) (1 congestion point for each ISP, fixed caching factors) . . . . 115

6.10 Ua1(pa1, p
∗
a2, p

∗
b) (3 congestion points for each ISP, fixed caching factors,

competing ISPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.11 Ua2(p∗a1, pa2, p

∗
b) (3 congestion points for each ISP, fixed caching factors,

competing ISPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.12 Ub(p

∗
a1, p

∗
a2, pb) (3 congestion points for each ISP, fixed caching factors,

competing ISPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 ISP and CP game on a platform of end-user demand-response . . . . . . 121
7.2 U∗1 /(Dmaxpmax) without caching cost . . . . . . . . . . . . . . . . . . . . 126
7.3 U∗1 /(Dmaxpmax) with linear caching cost, b = 0.04 . . . . . . . . . . . . . 126

xiii



7.4 U∗1 /(Dmaxpmax) with linear caching cost, b = 0.05 . . . . . . . . . . . . . 127
7.5 U∗1 /(Dmaxpmax) with quadratic caching cost, b = 0.05 . . . . . . . . . . . 127
7.6 U∗1 /(Dmaxpmax) with exponential caching cost, b1 = 0.05, b2 = 0.2 . . . . 128

xiv



List of Tables

2.1 LBNL files used in this thesis . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Alternating Feature Representation . . . . . . . . . . . . . . . . . . . . . 31
2.3 Supervised decision tree confusion matrix for the features (except for

timing based features) used in [22] (9-D Feature set) for File 1 . . . . . 37
2.4 Supervised decision tree confusion matrix for 20-dimensional alternating

feature space for File 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Supervised decision tree confusion matrix for 20-dimensional alternating

feature space for File 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 Supervised decision tree confusion matrix for 20-dimensional alternating

feature space for File 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7 Supervised decision tree confusion matrix for 20-dimensional alternating

feature space for File 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Supervised decision tree confusion matrix for 20-dimensional alternating

feature space for File 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9 Supervised decision tree confusion matrix for 20-dimensional alternating

feature space for File 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.10 Supervised decision tree confusion matrix for 20-dimensional alternating

feature space for File 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.11 Supervised decision tree confusion matrix for 20-dimensional alternating

feature space for File 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.12 Supervised decision tree confusion matrix for 20-dimensional alternating

feature space for Combined File . . . . . . . . . . . . . . . . . . . . . . . 39
2.13 Supervised decision tree confusion matrix for 20-dimensional alternating

feature space for File 2 (P2P) . . . . . . . . . . . . . . . . . . . . . . . . 39

xv



Acknowledgments

I would like to express my sincerest gratitude to my thesis advisors Dr. George Kesidis
and Dr. David Miller, who were very helpful at every stage of my studies.

I would also like to thank my parents and my friends who were supportive during
this long journey.

Finally, I acknowledge National Science Foundation (NSF) for supporting me under
grants no. 0915552 and 1116626. I would also like to acknowledge Cisco for supporting
me via a Cisco Systems URP Gift.

xvi



Dedication

To my parents and my sister

xvii



Chapter 1
Introduction

This thesis makes contributions to two separate areas, namely anomaly detection and

network neutrality. Although our work in anomaly detection is applicable to many

domains, we are particularly interested in application to network intrusion detection

problems which aim to detect anomalous behavior among network flows. Our contri-

butions in network neutrality are also related with network flows, since we investigate

the effects of caching on the pricing of network flows and revenues for different network

models.

Let us elaborate more on how anomaly detection and network neutrality are related to

each other. Suppose that there is anomalous traffic originating from particular end-users

in a network. Due to security concerns, this may enforce ISPs to take precautions (such

as throttling, blocking, etc.) against those users, even though they may not be aware

that their device is infected and included in a malicious network such as a botnet. This

discrimination against some users will result in violation of network neutrality principles.

Furthermore, inclusion in a malicious network may lead to a dramatic increase in the

traffic for certain users. This may lead to extra costs for those users, especially when

pricing is not flat-rate. This means that the users that are receiving same service may

not be priced similarly, since the users that are infected and included in botnets will be

consuming more bandwidth than the uninfected users. This is consequence of botnets

that violates net neutrality, which underlines the importance of detecting anomalies for

the sake of keeping the network neutral.
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1.1 Anomaly Detection

Anomaly detection has great practical significance, manifesting in a wide variety of ap-

plication domains including detection of suspicious/anomalous events in Internet traffic,

in human behavior, host-based computer intrusion detection, detection of equipment or

complex system failures, as well as of anomalous measurements in scientific experiments.

The scenario addressed in this thesis is detection of anomalies of an unknown anomalous

class, amongst the N samples in a collected data batch, X = {xi, i = 1, . . . , N, xi ∈ RD}.
The batch may consist, e.g., of samples collected over a fixed time window. We assume

there is a separate database exclusively containing “normal” examples that can poten-

tially be leveraged for learning the null hypothesis probability model (either on the full

D-dimensional space or on lower-dimensional subspaces), used to assess statistical sig-

nificance of detected anomalies. These statistical significance values are quantified by

p-values, which mean the probability of making an observation more extreme than a

given observation, under an assumed probability law. For instance, suppose that the

assumed probability model is Gaussian with mean 30 and variance 9. Then, the p-value1

of a sample having value 10 (or 50) can be found by calculating the area shown on Figure

1.1 (red regions on the figure). Notice that the samples having the same distance to the

mean have the same p-value, i.e. they are the same in statistical significance for this

probability model (10 and 50 in this example). The distance notion will be detailed in

Chapter 2.

There are several reasons why D may be large. First, some applications are inher-

ently high-dimensional, with many (raw) features. Second, large D may enable greater

anomaly detection power. In supervised classification, it may be possible to discrimi-

nate known classes using a small number of (judiciously chosen) features that have good

(collective) discrimination power. However, anomaly detection is inherently unsuper-

vised (with respect to the anomalies) – there are generally no anomalous examples and

no prior knowledge on which subset of raw (and/or derived) features may best elicit

anomalies. This suggests use of more features may increase the likelihood that a sample

will manifest a detectable effect. In our experiments, we will consider malicious network

traffic packet flows which mimic Web application flows to evade detection – considering

more rather than fewer features may typically be required to detect “evasive” anomalies.

There are multiple anomaly detection strategies that can be applied:

1This is called two-sided p-value. One can also calculate and use the area under one of the 2 red
regions, which would be called one-sided p-value. But, the two-sided p-value notion in 1-D shown in
Figure 1.1 gives an idea on how we calculate the p-values using the models with higher dimensions.
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Figure 1.1. Calculation of p-value of 10 (or 50) for N (9, 30)

1) Applying a single test, based on the joint density function defined on the full D-

dimensional feature space.

2) Applying multiple tests, e.g., tests on all pairwise feature densities.

(a) Detecting the sample yielding the smallest p-value over all these tests as the

anomaly with the highest priority.

(b) Detecting the samples according to (some type of) average p-value over all of

the tests.

3) Using outlier detection, e.g., one-class SVMs [109].

There are 2 problems with 1). Firstly, if D is large relative to N , the estimation

of the joint density will be inaccurate (i.e., there is a curse of dimensionality) [33].

Secondly, suppose that the features are statistically independent and that the anomaly

only manifests in one (or a small number) of the features. In this case, the joint log-

likelihood is the sum of the marginal (single feature) log-likelihoods, and the effect of a

single (anomalous) feature on the joint log-likelihood (which amounts to an average of

the marginal log-likelihoods) diminishes with increasing D.

There are also problems with 2). There is the complexity associated with using a

number of tests combinatoric (e.g., quadratic) in D. Ignoring complexity, in 2)(a), use

of many tests may unduly increase the number of false alarms – suppose there is a single
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anomaly in the batch, with the anomaly detectable by only one of the K = D(D−1)
2

pairwise tests, with p-value p. Assuming that the tests are independent, the probability

that no other sample will have a smaller p-value (and will thus be falsely detected

first, prior to detecting the anomaly), given p, is (1 − p)K(N−1), i.e., it is exponentially

decreasing in KN . Supposing p = 10−5, this probability is ∼ 0.9 for KN = 104, and it

is vanishing by KN = 106. In fact, possibility of missing the anomalous behavior that

manifests itself in only certain features (tests) exists in all of the methods mentioned

above. In 2)(b) this is caused by averaging over all tests, and in 3) by usage of all of the

features in one-class SVM.

Here we propose alternatives to these approaches for anomaly detection, inspired by

greedy feature selection techniques commonly used in supervised learning. For supervised

classification, it is well-known e.g. [104] that even if all features have some discrimination

power, use of all features may in fact degrade classification accuracy unless there is

sufficient training data for learning model parameters accurately enough to exploit this

discrimination power. The fact that training data may be limited relative to D motivates

feature selection and also e.g. decision trees, which may base decisions on only a small

complement of the full set of measured features. Also, for unsupervised clustering in

high dimensions, feature selection, embedded within the clustering process, has been

demonstrated to be crucial for reliable clustering and for accurate estimation of the

number of clusters [42]. But, it should be kept in mind that, since the AD problem is

unsupervised, it is a priori unknown which subset of features may be informative and

there are no ground-truth labeled anomalous class examples to guide selection of these

features. Thus, the “feature selection” problem for anomaly detection is much more

challenging than in the supervised case.

Conceptually allied to these approaches, but uncommon in an anomaly detection

setting, we propose 2 novel approaches for anomaly detection in a batch that are spartan

in their use of features/tests.

The first approach is a sample-wise sequential anomaly detection approach, in which

new tests are (greedily) included only when they are needed, i.e. when their use (on

the remaining batch) will yield more statistically significant detections (lower p-values

(corrected for multiple testing [19])) than those obtainable using the existing set of tests.

More generally, this approach seeks to maximize the aggregate statistical significance

of all detections up until a finite horizon. Our approach may be particularly suitable

when there is a latent anomalous class present in the data batch, discriminable from the

known class using an (albeit unknown) small subspace of the full feature space.
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There is prior work, somewhat related, in the statistics literature on sequential thresh-

olding of p-values to ensure a target family-wise error rate [48] or false discovery rate

[62] is achieved. However, such schemes do not alter the order in which anomalies are

detected – they only determine when to stop making detections. These works also do

not sequentially grow the number of tests, in interrogating the batch. There is also

work on designing classifiers to maximize the area under the ROC curve, rather than

to minimize the classifier’s error rate [116]. However, that work addresses a supervised

learning scenario, with all classes known a priori and with labeled training exemplars

provided for each class. By contrast, we optimize an estimated ROC curve associated

with the anomaly detection problem, for which there are no labeled (anomalous) exem-

plars. There is substantial prior literature on anomaly detection for network intrusion

detection, e.g., [23], based on numerous proposed statistical tests and heuristic crite-

ria. Most such approaches will only be effective in detecting specific types of anomalies,

within particular networking domains. Our algorithms may provide a robust mechanism

for identifying the most suitable such tests to use, adaptive to the networking domain,

to the particular anomalies/attacks that may be present, and to temporally changing

(nominal) network traffic statistics.

The second approach regards this problem as a clustering problem. Similar to the

sample-wise detection approach, we conjecture that (and assess whether) benefits may

be achieved by feature selection in an anomaly detection (AD) setting (which is known

to be true in supervised setting), i.e., we conjecture that use of many features/tests

(most of which have little power to reveal the anomalous class) may mask anomalous

classes/clusters that could be well-revealed using only a few (highly discriminating) tests.

Many existing AD methods (as well as our sample-wise detection approach) only make

separate anomaly detection decisions for each individual sample, i.e., they do not jointly

detect clusters of anomalies. In this thesis, however, we make joint detections of clusters

of samples, using as the detection criterion an approximate joint p-value. Candidate

clusters are jointly defined by their sample subset and the subset of features (tests) with

respect to which the cluster exhibits its most extreme deviation from the null – i.e., built

into our detection criterion is some intrinsic impetus for feature selection.

In Chapter 2, we formulate the calculation of p-values of samples. P-values are cal-

culated by using GMM models, which are modeled for each feature pair. In this chapter,

also the experimental procedure is explained. Although the methods proposed and used

in this thesis are applicable to any domain, we experimented on the network intrusion

detection domain. Particularly, we aimed to find anomalies disguised amongst Web
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(HTTP) traffic. So, the known class is Web traffic. The role of the latent unknown class

is played by HTTP bot (Zeus) traffic or peer-to-peer (P2P) traffic. How these flows are

obtained is explained. Multiple feature representations are described in this chapter,

which will be used in the experiments. The extraction and usage of the features are

explained in Chapter 2. Their advantages and disadvantages are discussed. The experi-

mental results for our sample-wise and cluster-wise approaches to anomaly detection are

provided in Chapters 3 and 4, respectively.

In Chapter 3, the sample-wise sequential anomaly detection approach is explained

by providing the mathematical objective and several sequential detection algorithms are

proposed for (approximately) optimizing this objective. Our approach is compared, in

area under the ROC curve, with several standard detection strategies for a network

intrusion domain, detecting Zeus bot intrusion flows embedded amongst (normal) Web

flows. We have also demonstrated the importance of careful feature representation, for

supervised discrimination of the Zeus bot from Web traffic. These approaches and the

related experimental study also take place in [73].

In Chapter 4, the algorithm that uses p-values for clustering is explained. The

comparison results with our sample-wise approach and other methods are provided.

Experimental results are provided for several different feature representations. Zeus or

P2P traffic is used as anomalous traffic in the experiments. A few of these experimental

results (using only the alternating feature representation) are reported in [57]. Extensive

analysis including different conditioning contexts are reported in [56].

Contributions:

• We propose two types of approaches that make use of feature selection in different

ways both of which basically use tests constructed from each feature pair and assess

statistical significance by using p-values.

– Our first approach in Chapter 3 makes sample-wise detections using growing

number of tests by making multiple test corrections for existing and unused

tests.

– Our second approach in Chapter 4 makes cluster detections by using a small

subset of tests for each cluster detection.

• We propose multiple types of feature representations, including different condition-

ing contexts.

• We observe that (test) feature selection is effective for anomaly detection in certain

feature spaces.
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• We experiment on Zeus-Web and P2P-Web separation problems using Lawrence

Berkeley National Laboratory (LBNL) datasets.

• We compare and contrast the performance of our algorithms against methods that

do not use feature selection. We provide comparisons in terms of area under ROC

and early detection successes of the algorithms.

• We observe the performance differences on many datasets with different sizes and

characteristics.

• We investigate the effect of order increase in both our sample-wise and cluster-

wise anomaly detection approaches that we have proposed (where the meaning of

“order” is different in each approach).

1.2 Network Neutrality

The continuing network (net) neutrality debate (e.g., [107, 79, 75, 13, 113, 45]) involves

several different entities, such as ISPs2, Content Providers (CPs), users, and governments

(including partnerships). Although there are many different perceptions for the definition

and the coverage of net neutrality, one succinct definition is provided in [45]: “[net

neutrality] usually means broadband service providers charge consumers only once for

Internet access, do not favor one content provider over another, and do not charge content

providers for sending information over broadband lines to end users.”

A communication network is “neutral” if it is both application neutral and does not

require side-payments for use by remote content providers. Application neutrality means

that the network does not handle packet-traffic differently based on the application type,

e.g., third party streaming video from Netflix is handled the same as the Internet Service

Provider (ISP)’s own “managed” streaming video service over commodity IP. Note that

application neutrality allows discrimination based on traffic volume and end-user speci-

fied priorities. So, differentiated services (diffserv) among application types is “neutral”

if requested by end-users, whereas application diffserv implemented unilaterally by an

ISP is not application neutral (even if for altruistic purposes, e.g., to give more band-

width for putative real-time applications). The focus of the following preliminary study

is on premium-access bandwidth, not the content or services delivered. An example of

a side payment is Neflix paying remote ISPs for access to their subscribers, rather than

only paying its own (local) access provider (Level 3).

2Equivalently, network service providers or access providers.
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Content providers, such as Amazon, Google, Yahoo!, and eBay, typically support net

neutrality because under non-neutral conditions they expect additional access-network-

ing expenses and additional limitations or exclusions on their access to their customers

[39]. In contrast to CPs, ISPs (particularly residential ISPs) such as AT&T, Verizon,

Comcast, and Deutsche Telekom, typically believe that neutrality regulations threaten

the profitability of their enormous infrastructure investments and maintenance costs

[39, 107], and that CPs do not pay a fair share of these costs while profiting from adver-

tising that is arguably not requested by consumers3. Also, flat-rate pricing frameworks

leading to “all-you-can-eat” consumer behavior result in high transport costs and con-

gestion in the ISPs’ access networks, e.g., [4], which makes ISPs complain about this

and leads them to take blocking (e.g., Comcast blocking P2P applications [1]) or pricing

(e.g., [93]) measures. It has been argued that some of these problems can be compen-

sated by side payments between CPs and ISPs [21, 8, 9, 115, 76]. Alternatively, the

introduction of premium service classes for applications has been suggested for: critical

applications such as health monitoring and home security (which are being increasingly

used [45]); streamed spectacle events such as sports activities or newly released movies

[39]; and interactive real-time video-conferencing/video-phone sessions. Applications en-

gages in premium services will obviously receive a higher Quality of Service (QoS) than

applications under best-effort network-access service, and will need to pay usage-based

costs (perhaps after a quota). Such payments are (content/application) neutral in na-

ture [27] due to the willingness of the users to pay for the premium content [21]. Under

net neutrality with flat-rate priced access4, ISPs may not have the incentive to improve

their existing infrastructure by increasing capacity [24] (particularly the router/switch

infrastructure to drive fiber-to-the-home (FTTH)) or by improved security measures

such as virus and spam filtering [39]. (Note that such usage-based costs may need to be

authenticated to the human subscriber/end-user.)

Regarding quality-of-service management, the physical location of requested content

is obviously important to the goal of decreasing delay experienced by the users [41].

This in turn underscores the importance of caching data proximal to the users, includ-

ing by their ISP. Some large content providers, such as eBay and Google, cache their

content around the world on their own servers, while smaller content providers often use

intermediary content distributors, such as Akamai, who have caching agreements with

local ISPs at different locations [39]. Such agreements or more dedicated partnerships

3Note that neutrality regulations for wireless access in the United States have not been instituted at
the time of writing of this thesis; see [4] for discussions of the mobile wireless access scenario.

4Limited only by uplink and downlink bandwidth of the service agreement.
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between ISPs and CPs (i.e., “eyeball” ISPs) lead to scenarios wherein ISPs may cache

each other’s content, which raises issues of transit pricing between them. See Figure 1.2.

To achieve end-to-end QoS, [18] argued that a sending ISP should pay for the transport

traffic over an interconnection between ISPs.

Figure 1.2. A CP may use a Content Distribution Network (CDN) as depicted, or may have a
local caching agreement with a last-mile (LM) ISP, or neither

Notwithstanding arguments for and against side-payments, the necessity of providing

a single interface (single contract including mutual services) to the end user is emphasized

by several presenters in [4]. Product offers to the end users are assumed to be made in

mainly two different ways: pull (on-demand) or push. Product offers can be prepared in

distributed (among ISPs), partially centralized (by any of the ISPs), or fully centralized

(by an external single facilitator entity) ways [32]. We herein primarily consider the

“pull” demand model for content product where content requested in the recent past is

cached in anticipation of similar demand locally.

In Chapter 6, we consider a model involving two different eyeball ISPs connected at

peering point(s) where revenue is generated corresponding to net traffic transmitted [53].

Initially, we consider a crude caching model captured by a single parameter, Φ, affecting

the revenue generated by transit traffic. For a more dynamic caching strategy, we model

user/customer migration among such ISPs (as in [21]) due to delay-dissatisfaction, and

so develop a game where the caching factors Φ are control variables, rather than fixed

parameters, of the players of the game.

Since the onset of the net neutrality debate, researchers have studied parsimonious
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models of the Internet marketplace to gain insight into the macroeconomic forces in

play. Performance is often assessed based on the Bertrand-Nash equilibria of noncoop-

erative, decentralized games, and in terms of dynamical convergence to these equilibria,

often considering limited resources (particularly bandwidth [110]) as in classical Cournot

games.

For example, games involving end-users and content providers on an ISP platform

were studied in [79, 75]. Shapley values, indicating fair division of revenue with a coalition

(or cooperative game), are used to argue for side-payments between ISPs and CPs in

[68, 69].

In Chapter 7 of this thesis, we consider a noncooperative game between a single

(or cooperating collective) CP and a single ISP on a platform of end-users served by

both, i.e., a two-sided market . We assume that the applications under consideration

are delay-sensitive. Applications only ever requiring best-effort service, and the revenue

they generate for the ISP and CP players, are not considered herein.

In Chapter 7, in addition to the current Internet setting, we are also interested

in that of proposed Information-Centric Networks (ICNs, generalizing Content-Centric

Networks (CCNs)), e.g., [40, 103, 84]. In a related discussion, different scenarios for

transit networks and content distribution networks (CDNs) [5, 71] were considered in

[6], including those in which the CDN (or individual CP) is incented to compensate

the transit network (ISP) to cache its content. In this thesis, the principle difference

between the Internet and ICN settings is the direction of the side-payment between ISP

and CP, similar to the difference between content-centric and access-centric networking

as described in [103] (see their Figures 7.5 and 7.6). Also, the ISP is incentivized to

cache in the ICN setting [54, 55].

Contributions:

• We studied the effects of caching remote content to access pricing and revenues

under different network models.

– In Chapter 6, we considered a game between eyeball ISPs with transit pricing

of network traffic at their peering point. Also, the scenario where multiple

ISPs are competing for the same group of end-users is also among the cases

that are investigated.

– In Chapter 7, we studied a game between an ISP and a CP, considering

Internet and ICN scenarios.

• We found the Nash equilibrium points in both of the network models.
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• In Chapter 7, we showed how a fractional caching factor could be optimal at Nash

equilibrium.

• In Chapter 7, we also observed cases where optimal caching factors take values 0

or 1.

• We compared utilities in Internet and ICN settings in Chapter 7. Caching incen-

tives and direction of the side-payment are the important details that differ in these

two scenarios.

• We investigated how caching incentives for ISPs are beneficial for utilities in Chap-

ter 7.

• In Chapter 6, we analyzed effects of content caching in a network of 2 ISPs for two

cases.

– Different congestion points in each ISP, leading to tractable Nash equilibrium

analyses.

– Single congestion point in each ISP, which is studied numerically in this thesis.

This imposed a throughput limit downstream to the end-users.

– Different congestion points in each ISP, where for there are multiple ISPs

competing for a group of end-users.



Chapter 2
Background – P-value Calculations,

Experimental Setup, and Feature

Representations for Anomaly

Detection

In this chapter, the background to understand Chapters 3 and 4 is provided. The algo-

rithms that we propose in Chapters 3 and 4 use p-values to make statistical significance

assessment of the samples. Tests are constructed from feature pairs. And p-values are

calculated for each of these tests. Bivariate or univariate GMM modeling is used, de-

pending on the existence of any categorical features. Starting with a brief discussion on

supervised and unsupervised learning concepts, all of these stages, including experimen-

tal setup, feature extraction, and different feature representations are explained in this

chapter.

2.1 Anomaly Detection

An anomaly can be defined at a high level as a pattern that does not conform to the

expected behavior, which is considered as “normal”. Anomalous behavior can occur in

different forms depending on its nature. There can be point anomalies, where individual

data instances are considered anomalous [23]. Another form can be multiple anomalies

originating from the same source, which are similarly behaving to each other (in some

sense), although their collective behavior is not considered normal.
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Anomaly detection has great importance in many application domains, e.g., network

traffic, image processing, sensor networks, even in text where sometimes there may be

interest in finding the novelties in a given context [23].

The output of anomaly detection can be scores or labels on the test data samples.

With some sort of scoring system, one can understand how anomalous a given sample

is. Another option is making a hard decision and labeling the samples as normal or

anomalous. [23]

Supervised anomaly detection techniques can be used, but they suffer from a fun-

damental limitation. This issue is due to the basic difference between supervised and

unsupervised learning. In supervised learning, the training set has labels for each sample.

For example, if one aims to train a supervised classification algorithm, then the class that

each training sample belongs is known. On the contrary, in unsupervised learning, labels

for the training set samples are not known. This in general makes unsupervised learning

much harder, if we compare similar types of problems [33, 15]. But, semi-supervised or

unsupervised anomaly detection algorithms have more wide spread applications, since

they do not need the existence of the targeted anomalous samples in the training set.

In unsupervised anomaly detection, the aim is to detect unknown (new) behavior. Un-

known behavior may be nominal (unknown knowns) or attack (unknown unknowns, as

typically assumed). Known behavior is typically assumed to include known knowns, but

may also include known unknowns (attack) and “natural outliers”. The null hypothesis

is based on the known behavior. In other words, the training set consists of samples that

belong to known behavior. The alternative hypothesis is the unknown behavior, which

is our aim to detect herein. No example of alternative hypothesis are present in the

training set. So, in this way, an unsupervised anomaly detector will be able to recognize

unknowns, which are anomalous or suspicious behavior even without encountering such

behavior before. This is an important problem in network intrusion detection: detection

of zero-day attacks.

2.1.1 Prior Work

As mentioned before, there are many application areas of anomaly detection. In this

thesis, the particular focus is on network intrusion detection, where most of the following

literature survey originates.

Depending on the aim of the anomaly detector, there are studies that employ super-

vised or unsupervised anomaly detection. Again, the basic difference between these two

approaches is the availability of anomalous samples in the training phase. In a supervised
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approach, anomalous samples are available in the training phase. There are many prior

studies on supervised anomaly detection, such as [121], [106], [120], [80], [65], [20], [61],

[94] and [91]. Detection systems based on known signatures, such as [83], [89] are widely

used in supervised methods.

There are also examples of semi-supervised [118] and hybrid approaches which utilize

both unsupervised and supervised techniques in anomaly detection, e.g., in [97] hybrid of

one-class SVM (unsupervised) and soft-margin SVM (supervised) is employed. Another

such work is [35], where anomaly detection is attempted after signature based detection.

But, as also mentioned in [98], where current problems about network intrusion de-

tection are examined, the aim in network intrusion detection should be to find previously

unseen anomalous activity, without the need to define the anomalous activity upfront.

(Also, attention is drawn to the fact that there is not enough publicly available re-

cent dataset, which is an obstacle for experimental studies). Another work highlighting

the importance of unsupervised anomaly detection is [67], where it is mentioned that

the possibility of detecting formerly unknown intrusions makes anomaly detection in-

teresting to attempt. As also mentioned in [74], signature-based “anomaly” detection

approaches, which are supervised, are unable to catch the unseen anomalies, since they

require availability of samples regarding to the targeted anomalies in the training phase.

Anomalous activity in the networks can be of various forms. A botnet is a widespread

anomalous activity source, which consists of a network comprised of compromised ma-

chines participating various kinds of malicious behaviors, such as fraud, distributed

denial-of-service attacks, etc. P2P activity can be also be viewed as an anomalous

behavior when it spoofs Web activity on port 80. There are many works in the literature

on network intrusion detection that are about detection of botnet traffic [14] and P2P

activity.

But there are different interpretations of anomalies in networks. For instance, [7]

targets anomalous time intervals that might be caused by various reasons such as large

data transfers and untimely congestion. In [26], traffic volume anomaly detection is

performed, where a volume anomaly is defined as an unusually small or large volume of

traffic occurring within a time period. [31] is on anomaly detection in high dimensional

data under the null hypothesis of no anomaly. Their test statistic is the magnitude of

the residuals of a Principal Component Analysis (PCA) analysis. An experimental study

targets volume anomalies in Internet traffic data.

There are also works that aim to detect machines where malicious activities take

place. In [44], a system called botminer is proposed which exploits behavioral anomalies.
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It aims to find the groups of already compromised machines in a network by utilizing

the existence of communication among the members of the botnet and analyzing certain

malicious activities of bots in the compromised machines. [94] proposes a two step

approach for online malware detection, which consists of clustering and detection engines.

Malicious operating system objects (e.g. processes and files) are detected in this work.

Firstly, they are clustered. Then, the detection engine detects the cluster as malicious

if the behaviors of the clusters match a predefined behavior template formed by a set

of behaviors. A set of malware software and a set of benign software are used to train

the template database (which makes the approach supervised). [108] attempts botnet

detection based on DNS query periodicity of bots. It targets to find bot-relevant domain

names and IP addresses. Common property of these works is that they utilize protocol

behavior anomalies.

There is also a significant research effort in finding anomalous flows in networks. For

instance, in [119], which is another work that utilizes protocol behavior anomalies, dis-

crimination of P2P botnet traffic from legitimate P2P traffic is performed by a two-phase

system. In the first phase, the P2P clients are detected. Then, flows are clustered by a

two-step clustering approach. The first step is K-means clustering where K is number of

expected clusters, and the second step is hierarchical clustering. The flow features used

here are number of packets and bytes (sent and received). The destination IP addresses

of the flows in these clusters are considered. The clusters whose distinct Border Gateway

Protocol (BGP) prefix count for these destination IPs is smaller than a selected threshold

are discarded. Second phase is the detection of P2P bots. The similarity between active

time of the bots and the active time of the underlying compromised system is used. Also,

the fact that overlap of peers contacted by two P2P bots belonging to the same P2P

botnet is much larger than that contacted by two clients in a legitimate P2P network is

used. After clustering, hosts in dense clusters are classified as P2P bots. In the experi-

mental part, they analyze results for different K values (in K-means clustering), but the

selection criterion is not mentioned. Another issue about this work is that the specific

properties of P2P botnets are utilized in this work, making it harder to apply for other

types of botnets and impossible to apply in other domains.

Another approach for detecting anomalous flows is by using flow-based features,

which has received interest recently. There are many studies that use network flows to

detect botnets [63], [38], including supervised and unsupervised settings. Some of these

works use payload information [66], [117], [114]. But, these approaches have drawbacks.

One issue is that payload information might be unavailable due to some reason such as
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encryption. Also, polymorphic or metamorphic malware can avoid payload-information

based detection systems.

Features that can be obtained from the packet headers are not prone to these kinds of

problems about payload usage. One such work is [36], where anomaly detection is made

among unlabeled data with the assumption that normal samples dominate the dataset.

Three methods that are used in this work are a fixed width clustering method based on

the distance between points, clustering by using distances to the k nearest neighbors, and

one-class SVM. In the experimental part, anomalous flows are detected. Flow features

such as total duration and total bytes transferred are used. In this approach, the selection

of the slackness (ν) parameter that is crucial for one-class SVM is not provided. This

work aims to provide an unsupervised framework, which is preferred in anomaly detection

settings as mentioned above. But, good hyperparameter selection in this work seems is

challenging, which is very important in especially unsupervised approaches. [85] has a

similar approach. Here, using a small part of data to select the best parameter value is

proposed. But, this is counter to the unsupervised nature of the approach.

In [60] network wide anomalies are found by aggregating IP-level traffic data into

origin-destination flows. The traffic between an origin-destination pair consists of the

flows that enter the network at the origin and exit from the destination. The drawback

of this approach is that this aggregation loses the flow-level resolution and is only able

to have a rough, high-level notion about the anomalies in the network.

Apart from works concerned about anomaly detection applications in open networks,

there are also studies targeting specific networks for anomaly detection. One such work

is given in [72], where the aim is perform anomaly detection in industrial control system

networks, which are deterministic and more behaviorally restricted compared to “open”

networks, such as Internet.

There are also outlier detection approaches that are applied to anomaly detection

problems. For example, [87] aims to find the outliers by ranking the samples based on

the distance of a sample from its kth nearest neighbor and declares the top n samples

to be outliers in this ranking. Here, it is assumed that anomalies are rare in the data.

[99] uses one-class SVM.

Among the aforementioned works, some of them perform sample-wise detections such

as [99], [87], [7]; whereas [36], [119], [94], [44] make cluster-wise detections. But none

of them use a statistical significance assessment using p-values. However, in a different

domain [82] where ecological adaptation of honey bees are studied, p-values are used to

represent the significance of relative differences of on protein levels. P-values are then
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clustered by using a hierarchical clustering approach.

2.2 GMM Modeling

Here, how the GMM modeling in this thesis is performed is explained. To give an

overview; in order to fit GMMs onto the training set data, firstly, K-means clustering

(Section 2.2.1) is run for a given number of components. Then, the result of K-means

is used in the initialization step of the EM algorithm (Section 2.2.2). Due to random

initialization in K-means clustering, this (running K-means and then EM) is repeated

multiple times. Best trial and best component count are picked according to BIC criterion

(Section 2.2.3). The details below will clarify this process.

2.2.1 K-means Clustering

K-means clustering [70, 15] is a widely used unsupervised algorithm that aims to mini-

mize the sum of Euclidean distance of each sample to the centroid of the cluster that it

belongs to. Aim is to find the values for {rjl} and {ml} that will minimize

L∑
l=1

V∑
j=1

rjl‖xj −ml‖22 (2.1)

where xj denotes the jth sample in a training set of size V , L is the number of clusters,

ml is the center of the lth cluster, and rjl ∈ {0, 1} is an indicator variable taking value

1 if xj belongs to the lth cluster.

The algorithm steps are as follows:

1) Randomly assign the centroids (ml) for each cluster.

2) Assign each sample to the cluster whose centroid is closest.

rjl =

 1, if l = arg min
i
‖xj −mi‖22

0, otherwise.

3) Update cluster centroids:

ml =

V∑
j=1

rjlxj

V∑
j=1

rjl
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4) Repeat steps 2) and 3) until the samples no more change the clusters that they belong

to.

K-means clustering is guaranteed to converge, although it may converge to a local

minimum. (Convergence properties are studied in [70].) The initialization of the cluster

centroids plays an important role in this respect. Running the algorithm more than one

time helps to avoid unlucky random initialization.

Also, it is worth noting that the samples are hard-assigned to the clusters, which will

not be the case in Expectation-Maximization algorithm presented in the next section.

2.2.2 Expectation-Maximization (EM) Algorithm

First, a general overview of the EM algorithm will be seen below. Then, how EM can

be used to fit GMM models on a given data will be discussed.

2.2.2.1 General Overview of EM

EM algorithm [29, 15] aims to find the maximum likelihood estimate when latent vari-

ables are used in the model. Let X denote the observed data, Y the latent variables,

and Θ the model parameters. Then, the log-likelihood is given by

lnP (X|Θ) = ln

{∑
Y

P (X,Y|Θ)

}
. (2.2)

Here, Y being latent makes X incomplete data. (X and Y together are called complete

data.) Therefore, (2.2) is in fact called incomplete log-likelihood function. EM algorithm

maximizes this iteratively as below:

1) Initialize Θ(t).

2) Expectation (E) Step:

Find P (Y|X,Θ(t)).

3) Maximization (M) Step:

Θ(t+1) = arg max
Θ

∑
Y

P (Y|X,Θ(t)) lnP (X,Y|Θ)

4) Stop, if convergence happens.

Assign Θ(t) ← Θ(t+1) and return to 2), if convergence criterion is not met.
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At each cycle, EM is guaranteed to increase the incomplete log-likelihood. Similar to

the case in K-means clustering, EM is also not guaranteed to find the global optimum, if

there are multiple local optima. In this case, it may converge to one of these local optima.

On the other hand, if the log-likelihood function is concave, then EM will converge to

the optimum point. Convergence properties of EM algorithm are studied in [112].

2.2.2.2 EM for GMM Modeling

In order to find the Gaussian components that generated the observed data, we use EM

algorithm. The latent variables here are the variables that denote the source component

generating each sample in the given data set. Let yjl denote these latent variables.

yjl = 1, if jth sample is generated by the lth Gaussian component and 0 otherwise. The

model parameters are means (µ
l
), covariance matrices (Σl), and mixing probabilities (αl)

for each component.

1) Initialize µ
l
, Σl, and αl for each component and calculate log-likelihood:

V∑
j=1

ln

(
L∑
l=1

αlfXj |l(xj |θl)

)
(2.3)

2) Expectation (E) Step: Find the posterior probabilities for each sample.

P (yjl = 1) =
αlfXj |l(xj |θl)
L∑
i=1

αifXj |i(xj |θi)

3) Maximization (M) Step: Update the model parameters.

µ
l

=
1

V

V∑
j=1

P (yjl = 1)xj

Σl =
1

V

V∑
j=1

P (yjl = 1)(xj − µl)(xj − µl)
T

αl =
1

V

V∑
j=1

P (yjl = 1)
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4) Calculate the log-likelihood

V∑
j=1

ln

(
L∑
l=1

αlfXj |l(xj |θl)

)
(2.4)

Stop, if convergence criterion is met.

Return to 2), if convergence criterion is not met.

2.2.3 Selecting the Number of Components

The training Web flows (represented by D-dimensional feature vectors) were fit using

GMMs (building both a D-dimensional GMM and all D choose 2 bivariate GMM mod-

els), with the Bayesian Information Criterion (BIC) [92] used to select the number of

components in any given model. The reason in using pairwise feature tests is that this

captures the possible dependence in the behavior of each feature pair. In addition to

this, it also keeps the training set size requirement low, avoiding curse of dimensionality.

The BIC cost that is tried to minimize in the GMM training step is provided below.

The first term uses the number of parameters that are present in the model (d(=2) is

the dimension and L is the number of GMM components) and the number of samples in

the training set (V ). (For each GMM component, there are d parameters in the mean

vector and d(d + 1)/2 different parameters in the covariance matrix. There are L − 1

number of free model parameters for the priors.) The second term in (2.5) stands for

the log-likelihood.

BIC Cost =

(
L

(
d+

d(d+ 1)

2

)
+ L− 1

)
ln(V )

2
− ln

 V∏
j=1

fXj
(xj)


=

(
L

(
d+

d(d+ 1)

2

)
+ L− 1

)
ln(V )

2
− ln

 V∏
j=1

L∑
l=1

αlfXj |l(xj |θl)


=

(
L

(
d+

d(d+ 1)

2

)
+ L− 1

)
ln(V )

2
−

V∑
j=1

ln

(
L∑
l=1

αlfXj |l(xj |θl)

)
(2.5)

Figure 2.1 shows a training set for 2 arbitrary features (out of 20). Figure 2.2 depicts

the GMM components that are fit onto the training set (Gaussian models are shown

with the contours that pass over half of the maximum pdf value for that component)

and the test set. (File 11 is used here.)

1For File numberings, see Table 2.1 in Section 4.3.
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Figure 2.1. An example of a training set that is used to fit GMM

2.3 Calculation of P-values of Samples

In this work, reference/null densities for low-dimensional collections of features are mod-

eled by multivariate Gaussian mixture models (GMMs), i.e.

fV (v) =

L∑
l=1

αlfV |l(v|θl) (2.6)

where αl ( 0 ≤ αl ≤ 1,
L∑
l=1

αl = 1) is the mass for each component density fV |l(v|θl), and

the parameter set θl = (µ
l
,Σl). We would like to calculate the p-value – the probability

that a feature vector will be more extreme than the given observed vector x. For a single

multivariate Gaussian density N (µ,Σ), the corresponding multivariate integral (over the

exterior of the ellipse defined by the squared Mahalanobis distance from x to µ) needs to

be calculated. Then, this can be extended to multiple Gaussian components case. The

next 2 subsections provide the formulations on how to find the necessary integral and

the extension to GMM case (i.e., with multiple Gaussian densities), for univariate and

bivariate Gaussian cases, respectively.
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Figure 2.2. GMM components on the test set

2.3.1 Univariate Gaussian Case

For this case, we can replace x with x, µ with µ, and Σ with σ2, since we are dealing

with 1-dimensional vectors. The p-value for a single Gaussian component can be found

as follows:

P-value =

∫
|x−µ|>r

1√
2πσ2

e−
(x−µ)2

2σ2 dx

=1−
∫

|x−µ|<r

1√
2πσ2

e−
(x−µ)2

2σ2 dx

=1−

∣∣∣∣∣∣ 2√
2πσ2

x∫
µ

e−
(z−µ)2

2σ2 dz

∣∣∣∣∣∣
=1−

∣∣∣∣erf

(
x− µ√

2σ2

)∣∣∣∣ (2.7)

since error function is defined as

erf(z) =
2√
π

z∫
0

e−t
2
dt. (2.8)
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Let E ∈ {0, 1} be a random variable, where 1 indicates an extreme value and 0

otherwise. Then, for a GMM, we obtain the following p-value result:

P [E = 1|x] =
L∑
l=1

P [C = l|x]P [E = 1|x,C = l]

=

L∑
l=1

P [C = l|x]

(
1−

∣∣∣∣erf

(
x− µ√

2σ2

)∣∣∣∣) , (2.9)

where C is the component of origin and P [C = l|x] is the mixture component posterior

which can be found as follows:

P [C = l|x] =
P [x|C = l]P [C = l]

L∑
k=1

P [x|C = k]P [C = k]

(2.10)

Although packet size pairs are modeled in this thesis, the univariate GMM p-value

given in (2.9) is also used in the network anomaly detection experiments when only

one of the packet sizes of the pair is used due to a certain conditioning context. These

conditioning contexts are defined in detail in Section 2.5.

2.3.2 Bivariate Gaussian Case

For this case, the corresponding multivariate integral can be exactly calculated by ap-

plying a whitening transformation, leading to the result that the p-value is 1 minus the

Rayleigh cdf FR(r2(x)), where r2(x) = (x− µ)
′
Σ−1(x− µ).

P-value =

∫∫
(x−µ)

′
Σ−1(x−µ)>r2

1

2π|Σ|1/2
e−

1
2

(x−µ)
′
Σ−1(x−µ)dx1dx2

=1−
∫∫

(x−µ)′Σ−1(x−µ)≤r2

1

2π|Σ|1/2
e−

1
2

(x−µ)
′
Σ−1(x−µ)dx1dx2 (2.11)

r2(x) =(x− µ)
′
Σ−1(x− µ)

=(x− µ)
′
GΛ−1G

′
(x− µ)

=(x− µ)
′
GΛ−

1
2 Λ−

1
2G
′
(x− µ)
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where G is the matrix whose columns are the eigenvectors of Σ. Let

Y = Λ−
1
2G
′
(x− µ) (‖Y ‖2 = r2)

Then,

dY =|Λ|−
1
2 dx

dx =|Λ|
1
2 dY (2.12)

So, the p-value in (2.11) becomes

P-value =1−
∫∫

Y 2
1 +Y 2

2 ≤r2

1

2π|Σ|1/2
e−

1
2

(Y 2
1 +Y 2

2 )|Λ|
1
2 dY1dY2 (2.13)

=1−
r∫
−r

√
r2−Y 2

1∫
−
√
r2−Y 2

1

1

2π
e−

1
2

(Y 2
1 +Y 2

2 )dY2dY1 (2.14)

By using the transformation (
Y1

Y2

)
=

(
ρ cos θ

ρ sin θ

)
, (2.15)

we obtain the following result:

P-value =1−
r∫

0

2π∫
0

ρ

2π
e−

1
2

(ρ2)dθdρ (2.16)

=

r∫
0

ρe−
ρ2

2 dρ (2.17)

=1− (1− e−
r2

2 ) (2.18)

=e−
r2

2 , r ≥ 0. (2.19)

As in Section 2.3.1, we obtain the following p-value result for a GMM:

P [E = 1|x] =
L∑
l=1

P [C = l|x]P [E = 1|x,C = l]
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=
L∑
l=1

P [C = l|x]e−r
2
l (x)/2, (2.20)

where C is the component of origin and P [C = l|x] is the mixture component posterior

which is:

P [C = l|x] =
P [x|C = l]P [C = l]

L∑
k=1

P [x|C = k]P [C = k]

(2.21)

Bivariate GMM p-value in (2.20) will be used in most of the network anomaly de-

tection experiments. Given a feature vector x ∈ RD, we can define such p-values for all

M ≡
(
D
2

)
feature pairs.

2.4 Experimental Setup – Internet Flows

The experiments in this section focus on anomaly detection in networks for Web traffic

(TCP port 80 flows). The Web flows are obtained from the LBNL repository [58]. Each

dataset includes packets captured from the same port and time of day. The experimental

results obtained in this thesis are based on the datasets that provide Web flows at least

10 times more than the number of Zeus flows (39). There are 53 such files, all of which

are used in the experiments. The file numbers provided in Table 2.1 are for short-hand

notations to some of these files. The number of Web flows having at least 10 packets

after the 3-way handshake is also given for each file in the table.

There are multiple anomalous classes that could be embedded amongst Web traffic.

One such is Zeus botnet traffic [59], which tries to disguise itself amongst the Web

traffic. Another is P2P traffic. For P2P-Web discrimination, we were able to find P2P

and Web flows from the same domain. The same dataset (File 2) obtained from the

LBNL repository is used to extract both types of flows. The Web flows from this data

set were also used in the Zeus experiments. Since LBNL datasets do not specify which are

the P2P flows, we used the port-mapper ([122]) obtained from the Cambridge dataset

[43]. The Cambridge dataset includes and explicitly annotates the P2P flows, which

enabled us to acquire the source and destination ports2 that define the P2P flows. Based

on these port-supervised examples, we learned a C4.5 decision tree to distinguish P2P

from non-P2P flows. We then applied this decision tree to the LBNL dataset (File 2) to

2We could have used only destination ports, but the port-mapper accuracy is higher when both source
and destination ports are used.
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File Number File Name Number of Web Flows

File 1 20041215-0510.port008 2925

File 2 20041215-1343.port008 5413

File 3 20041215-1443.port010 1634

File 4 20041215-1242.port006 4543

File 5 20041215-1142.port003 5472

File 6 20050106-1423.port026 4375

File 7 20050106-1727.port006 1716

File 8 20041215-0711.port015 18409

File 9 20041004-1326.port006 667

File 10 20041215-0410.port006 447

File 11 20041216-1518.port006 2875

File 12 20050106-1827.port006 1551

File 13 20050107-1323.port026 4933

Combined File All port006 files combined 11838

Table 2.1. LBNL files used in this thesis

identify the LBNL file’s P2P flows3.

In this thesis, in the anomaly detection experiments, 10-fold cross-validation is used

for the training-test split of a dataset. Web flows (from a single dataset) were partitioned

into 10 folds (with approximately the same number of flows). The Web flows in 9 of these

folds form the training set and the remaining fold combined with all of the anomalous

(Zeus or P2P) flows makes up the test fold (Zeus flows are obtained from [59]). This is

repeated 10 times for a dataset, selecting a different fold of Web flows to be included in

the test set at each time. An ROC plot is obtained for each of these. ROC plots shown

in this thesis show the average of these 10 ROC plots.

The number of Zeus flows having at least 10 packets after the 3-way handshake is

39. File 2 is used for P2P experiments. There are 271 P2P flows in this dataset.

These flows are obtained by using Tshark, which is terminal based Wireshark [3].

Packet fields (such as IP packet size, TCP port number, etc.) can be extracted from

pcap (packet capture) files, by using the proper field in Tshark. A complete list of fields

can be found in [3].

3Web (HTTP) flows’ TCP destination port is 80 and the decision tree does not assign port 80 to the
P2P class. Thus, the Web and P2P classes are disjoint, removing any possibility for ambiguity concerning
our flow labeling process for the LBNL datasets.
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2.5 Feature Space Representations

Detecting Zeus flows as Web anomalies is not a trivial task – the Zeus bot was constructed

to mimic Web flows, and in previous work [22], using a set of features including those

proposed in [64], we found that several standard supervised classifiers (given labeled

training examples of both Web and the bot) were unable to reliably discriminate Web

from Zeus. (Unsupervised) anomaly detection of bot flows amongst Web flows is even

harder than supervised classification. However, unlike the features proposed in [64],

we propose use of a feature space that preserves the bidirectional packet size sequence

information. This feature representation is provided in Section 2.5.2.

All of the representations use the first 10 packets after the 3-way handshake flow start

([102]) of each (TCP) flow (in order to have a system with low latency). The sizes and

directions of these packets are used. Also, ACK packets are crucial for TCP flows and

these are packets that have no payload, but only header. A minimal IP packet with no

payload has an IP packet size of 40. But there is the possibility of using Selective ACK

(SACK), which is used to acknowledge only certain portions of the traffic. This modified

usage of ACKs may lead to having 52 as an ACK packet size. Actually, 64 is also a

possible ACK packet size when SACK is used, but this is not frequently seen. Therefore,

the approaches that use whether there is an ACK packet or not as conditioning context

can use 40 or 52 packet sizes as an indicator for an ACK. A more careful approach can

treat the packets that have payload size 0 as ACK packets, which will make little or no

difference relative to choosing the packets with IP packet size 40 or 52.

But, there are different possible ways to utilize packet size, direction, and ACK

information, each having its own pros and cons. These are explained in the following

subsections. Considering the tradeoffs and the experimental results, we arrived at the

conclusion that the best feature representation among these is the “alternating feature

representation” that is provided in Section 2.5.2.

2.5.1 Lossless feature representation

Given 10 packet sizes and directions for each flow, the first well-grounded approach is

using ACK and direction information as conditioning context in GMM modeling and

treating them as categoricals.

In this approach, we have a 10-dimensional feature vector that is comprised of the

IP packet sizes of the 10 packets. The bivariate models are generated for each pair

of features, which makes
(

10
2

)
models in total. But, one should keep in mind that the
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possibility of encountering categorical features (ACK) in this approach, leads to 4 cases

for building models:

1. No feature is categorical: In this case, the bivariate GMM models need to be

obtained.

2. First feature is categorical: The univariate GMM models are obtained for the

second feature of the pair conditioned on the first feature is categorical.

3. Second feature is categorical: The univariate GMM models are obtained for the

first feature of the pair conditioned on the second feature is categorical.

4. Both features are categorical: No GMM models are obtained. Just the relevant

probabilities are calculated.

Each case can use the samples that fall into that category, e.g., bivariate models

for a pair of features can only be obtained by training on the samples that have non-

categorical values for those particular features. Further division of the training set is

caused by conditioning on the directions of the packets (client-to-server (C) or server-

to-client (S)). In fact, the situation is even worse than it seems, because the size of the

subgroups of the training set will not have equal sizes. So, some cases will have much

less than R/16 (or even 0) samples, if there are R samples in total. Hence, the sample

size available to each case becomes very limited compared to the total available training

set. This division of the training set into subgroups corresponding to each conditioning

context is depicted in Figure 2.3. To remind, in the figure, C and S at the third level

denote the directions of each of the packets.

After building the models, the next step is to calculate the p-values. The component

posteriors of the GMM for univariate and bivariate modeling are calculated as in (2.10)

and (2.21), respectively. As mentioned before, E ∈ {0, 1} is a random variable, where

1 indicates an extreme value and 0 otherwise. Consider these random variables for the

packet information for the derivations of p-values:

• Packet sizes: X =

[
X1

X2

]

• Packet directions: U =

[
U1

U2

]
. Ui ∈ {C, S} where C denotes client-to-server direc-

tion and S is the server-to-client direction.
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Figure 2.3. Division of the training based on conditioning contexts in lossless feature represen-
tation

• ACK indicators: A =

[
A1

A2

]
. Ai = 1 indicates that the packet is an ACK packet

and Ai = 0 indicates that it is not an ACK. (i ∈ {1, 2}).

For the cases where one of the features is categorical, p-value is found as follows,

which is obtained by modifying (2.9):

P-value =P [E = 1, A1 = 1, A2 = 0, U = u|X = x]

=P [A1 = 1, A2 = 0, U = u|X = x]·

P [E = 1|X = x,A1 = 1, A2 = 0, U = u]

=P [A1 = 1, A2 = 0, U = u]·
L∑
l=1

{P [C = l|X = x,A1 = 1, A2 = 0, U = u]·

P [E = 1|X = x,C = l, A1 = 1, A2 = 0, U = u]}

=P [A1 = 1, A2 = 0, U = u]·
L∑
l=1

P [C = l|X = x,A1 = 1, A2 = 0, U = u]

(
1−

∣∣∣∣erf

(
x2 − µ√

2σ2

)∣∣∣∣) (2.22)

where it is assumed that only the 1st packet is an ACK. If only the 2nd packet is an

ACK, then x1 needs to be swapped with x2 in (2.22).

As mentioned above, when both of the features in the feature pair are not categorical,

the p-values need to be calculated by using bivariate GMMs. This is done by modifying
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(2.20) in the following way:

P-value =P [E = 1, A1 = 0, A2 = 0, U = u|X = x]

=P [A1 = 0, A2 = 0, U = u|X = x]·

P [E = 1|X = x,A1 = 0, A2 = 0, U = u]

=P [A1 = 0, A2 = 0, U = u]·
L∑
l=1

{P [C = l|X = x,A1 = 0, A2 = 0, U = u]·

P [E = 1|X = x,C = l, A1 = 0, A2 = 0, U = u]}

=P [A1 = 0, A2 = 0, U = u]·
L∑
l=1

P [C = l|X = x,A1 = 0, A2 = 0, U = u]e−r
2
l (x)/2 (2.23)

The other case, in which both of the features are categorical, only the relevant prob-

abilities are in effect for the p-value calculations (of course, (2.24) can be calculated in

different ways, e.g., by conditioning the packets being ACKs on their directions).

P-value =P [A1 = 1, A2 = 1, U = u] (2.24)

The disadvantage of this feature representation is that it may require large null

training set sample sizes to accurately model densities under every conditioning context

shown in Figure 2.3, since each case can build model using only the available part of the

training set to that case.

2.5.2 Alternating feature representation

In order to both use the packet direction information without giving up full use of the

available training set, we propose a different feature representation. We define a 20-

dimensional feature vector consisting of the sizes of these 10 packets, assuming packets

strictly alternate client-to-server (C) and server-to-client (S). A zero packet size is in-

serted between 2 consecutive packets having the same direction, indicating the absence

of a packet in the reverse direction between these 2 packets. Hence, sizes of the first

10 packets (after the 3-way handshake) are deterministically placed in locations within

this 20-dimensional feature vector, given the particular packet direction sequence (for

the first ten packets). Zeros are placed in the remaining ten locations. Notice that
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this feature vector preserves bidirectional packet size sequence information. But, value

of each feature in this 20-dimensional feature vector depends on the directions of the

previous packets of the flow. This is not the case in lossless representation, since packet

sizes are conditioned on the directions of each packet in that representation. Examples

of alternatin feature representation are provided in Table 2.2. Suppose that the packet

sizes of the 10 packets (after 3-way) are S1, S2, ..., S10. In the table, how the feature

representation changes due to the different packet directions is visualized.

Packet Directions Feature Representation

C S C S C S C S C S S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 0 0 0 0 0 0 0 0 0 0

C S C S C C C C C C S1 S2 S3 S4 S5 0 S6 0 S7 0 S8 0 S9 0 S10 0 0 0 0 0

S S S S S S S S S S 0 S1 0 S2 0 S3 0 S4 0 S5 0 S6 0 S7 0 S8 0 S9 0 S10

Table 2.2. Alternating Feature Representation

For Zeus-Web discrimination, since the Zeus flows and the Web flows are captured

from different domains, packet interarrival time information is not exploited due to a lack

of realistic timing information for the Zeus flows. For P2P-Web discrimination, since the

source of both types of flows is the same domain, the timing information could be used.

However, timing is not exploited in this thesis. In addition, no payload information is

exploited (it is unavailable to us; moreover, encryption can easily defeat deep packet

inspection).

Notice that in this representation, ACK packets (of size either 40 or 52) and the lack

of alternating packet (represented by a zero) are heuristically treated just like any other

packet size value, modelled by Gaussian mixture models (GMMs).

Also, it is worth mentioning that the smallest IP packet size is 40. This IP packet size

value is used by ACK packets, which are used frequently in TCP flows. This will lead to

a sharp (with very low variance) Gaussian component with mean 40 (corresponding to

that feature). This Gaussian component will have negligible value at 0, which is why we

can comfortably place 0’s to obtain a 20-dimensional feature vector by using 10 packets

as explained above. Insertion of 0’s will lead to another Gaussian component with mean

0 (for the corresponding feature), which will again be very narrow, not affecting the

closest packet size value (40).

Since all of the packet sizes are regarded as continuous, only bivariate GMM modeling

is employed in p-value calculations. P-value of each sample is calculated as follows;

P-value =P [E = 1|X = x]
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=
L∑
l=1

P [C = l|X = x]P [E = 1|X = x,C = l]

=

L∑
l=1

P [C = l|X = x]e−r
2
l (x)/2,

which is derived in Section 2.3.2.

2.5.3 Alternating feature representation - with categorical feature 0

We have achieved finding a feature representation by proposing the approach in Section

2.5.2. But, the question arises about the concerns on categorical features that is men-

tioned in Section 2.5.1. In fact, since the alternating feature representation introduces

0’s in places of missing packets for certain places in the 20-dimensional feature space,

this is another source of categorical feature presence.

This leads us to regard the artificial 0’s as categorical features and use them as

conditioning context embedded in the alternating feature representation given in Section

2.5.2.

Similar to the representation in Section 2.5.1, we condition based on the categorical

features here. But unlike that, we do not have conditioning based on the direction of

the packets, since the alternating feature space has already taken into account direction

information.

The p-value calculation for each case is provided below:

1. No feature is categorical: None of the features in the feature pair is 0.

P-value =P [E = 1, X1 6= 0, X2 6= 0|X = x]

=P [X1 6= 0, X2 6= 0]·
L∑
l=1

{P [C = l|X = x,X1 6= 0, X2 6= 0]·

P [E = 1|X = x,C = l,X1 6= 0, X2 6= 0]}

=P [X1 6= 0, X2 6= 0]

L∑
l=1

P [C = l|X = x,X1 6= 0, X2 6= 0]e−r
2
l (x)/2 (2.25)

2. One feature is categorical: One of the features is 0. Suppose that only x1 is non-zero
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in the feature pair.

P-value =P [E = 1, X1 6= 0, X2 = 0|X = x]

=P [X1 6= 0, X2 = 0]

L∑
l=1

{P [C = l|X1 = x1, X1 6= 0, X2 = 0]·

P [E = 1|X1 = x1, C = l,X1 6= 0, X2 = 0]}

=P [X1 6= 0, X2 = 0]·
L∑
l=1

P [C = l|X1 = x1, X1 6= 0, X2 = 0]

(
1−

∣∣∣∣erf

(
x1 − µ√

2σ2

)∣∣∣∣) (2.26)

3. Both features are categorical: Both of the features are 0.

P [E = 1|x] = P [X1 = 0, X2 = 0] (2.27)

2.5.4 Alternating feature representation - with categorical features 0

and ACK (together)

The previous approach treats only 0’s as categoricals. But, following the discussion

in Section 2.5.1, ACK packets can also be treated as categoricals. This changes the

definition of being a categorical feature, compared to Section 2.5.3.

The p-value calculation for each case is provided below:

1. No feature is categorical: None of the features in the feature pair is 0 or ACK.

P-value =P [E = 1, X1 6= 0, A1 = 0, X2 6= 0, A2 = 0|X = x]

=P [X1 6= 0, A1 = 0, X2 6= 0, A2 = 0]·
L∑
l=1

{P [C = l|X = x,X1 6= 0, A1 = 0, X2 6= 0, A2 = 0]·

P [E = 1|X = x,C = l,X1 6= 0, A1 = 0, X2 6= 0, A2 = 0]}

=P [X1 6= 0, A1 = 0, X2 6= 0, A2 = 0]·
L∑
l=1

P [C = l|X = x,X1 6= 0, A1 = 0, X2 6= 0, A2 = 0]e−r
2
l (x)/2 (2.28)

2. One feature is categorical: One of the features is 0 or ACK. For GMM modeling

purposes, the value of the categorical doesn’t matter. The model is built upon the
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samples that have 0 or ACK for the categorical feature. The particular value of

the categorical feature affects only the multiplicating probability.

P-value =P [E = 1, (X1 6= 0, A1 = 0), (X2 = 0 ∪A2 = 1)|X = x]

=P [(X1 6= 0, A1 = 0), (X2 = 0 ∪A2 = 1)]·
L∑
l=1

{P [C = l|X1 = x1, (X1 6= 0, A1 = 0), (X2 = 0 ∪A2 = 1)]·

P [E = 1|X1 = x1, C = l, (X1 6= 0, A1 = 0), (X2 = 0 ∪A2 = 1)]}

=P [(X1 6= 0, A1 = 0), (X2 = 0 ∪A2 = 1)]·
L∑
l=1

P [C = l|X1 = x1, (X1 6= 0, A1 = 0), (X2 = 0 ∪A2 = 1)]·(
1−

∣∣∣∣erf

(
x1 − µ√

2σ2

)∣∣∣∣) (2.29)

where x2 ∈ {0, 40, 52}, if ACK packets can take values 40 or 52. If the 1st feature

was a categorical instead of the 2nd, then x1 and x2 would be swapped.

3. Both features are categorical: Both of the features are 0 or ACK.

P-value =P [(X1 = 0 ∪A1 = 0), (X2 6= 0 ∪A2 = 1)] (2.30)

Here, we are assigning a single event (X1 = 0∪A1 = 0) to being categorical, although

there are 2 different types of categoricals, which are 0 and ACK. Considering 0 or ACK

packets as the same type categoricals bears the danger of mixing the statistical properties

of the ACK packets and non-existing locations (0 value). This leads us to the next feature

representation in Section 2.5.5.

2.5.5 Alternating feature representation - with categorical features 0

and ACK (separately)

Here, we are using a similar approach to Section 2.5.4, but we treat non-existing locations

(0’s) and ACKs as different kinds of categoricals. This affects which samples to use in

the model building phase.

The p-value calculation for each case is provided below:

1. No feature is categorical: None of the features in the feature pair is 0 or ACK.

P-value is calculated with (2.28).
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2. One feature is categorical: Assume that the 1st feature is continuous and the 2nd

feature is 0 or an ACK. (If the 1st feature was a categorical instead of the 2nd,

then x1 and x2 would be swapped.) Assume that the 2nd feature is 0.

P-value =P [E = 1, (X1 6= 0, A1 = 0), (X2 = 0, A2 = 0)|X = x]

=P [(X1 6= 0, A1 = 0), (X2 = 0, A2 = 0)]·
L∑
l=1

{P [C = l|X1 = x1, (X1 6= 0, A1 = 0), (X2 = 0, A2 = 0)]·

P [E = 1|X1 = x1, C = l, (X1 6= 0, A1 = 0), (X2 = 0, A2 = 0)]}

=P [(X1 6= 0, A1 = 0), (X2 = 0, A2 = 0)]·
L∑
l=1

{P [C = l|X1 = x1, (X1 6= 0, A1 = 0), (X2 = 0, A2 = 0)]·(
1−

∣∣∣∣erf

(
x1 − µ√

2σ2

)∣∣∣∣)} (2.31)

3. Both features are categorical: Both of the features are 0 or ACK. Since there is no

GMM model to talk about in this case, only the probabilities are in effect. P-value

calculation is as in (2.30).

2.5.6 Alternating feature representation - with categorical features 0

and ACK (separately) (normalized p-values)

This approach is similar to Section 2.5.5, but with one difference. The p-values for each

test are normalized so that they are distributed between the minimum p-value that is

achieved by that test and 1. The rest of the calculations are the same as in Section 2.5.5.

The need for doing this arouse from the fact that when we use categorical features,

probability of belonging to a category (or not) is in play. This prevents most of the

p-values from reaching value 1. The importance of high p-values is they don’t tend to

get involved in the early cluster detections, which is a beneficial property for anomaly

detection with our p-value clustering approach.

2.5.7 Alternating feature representation - with categorical features 0

and ACK (separately)(without probabilities)

Here, approach described in Section 2.5.5 is used, but the probabilities corresponding to

each conditioning context are omitted in the p-value calculations.
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Hence, the p-value calculation for each case becomes as below:

1. No feature is categorical: None of the features in the feature pair is 0 or ACK.

P-value =P [E = 1|X = x,X1 6= 0, A1 = 0, X2 6= 0, A2 = 0]

=

L∑
l=1

{P [C = l|X = x,X1 6= 0, A1 = 0, X2 6= 0, A2 = 0]·

P [E = 1|X = x,C = l,X1 6= 0, A1 = 0, X2 6= 0, A2 = 0]}

=
L∑
l=1

P [C = l|X = x,X1 6= 0, A1 = 0, X2 6= 0, A2 = 0]e−r
2
l (x)/2 (2.32)

2. One feature is categorical: One of the features is 0 or ACK. The GMM model is

built, based on the value of the categorical feature, as explained in Section 2.5.5.

P-value =P [E = 1|X = x,X1 6= 0, A1 = 0, X2 = 0, A2 = 0]

=

L∑
l=1

{P [C = l|X1 = x1, (X1 6= 0, A1 = 0), (X2 = 0, A2 = 0)]·

P [E = 1|X1 = x1, C = l, (X1 6= 0, A1 = 0), (X2 = 0, A2 = 0)]}

=
L∑
l=1

{P [C = l|X1 = x1, (X1 6= 0, A1 = 0), (X2 = 0, A2 = 0)]·(
1−

∣∣∣∣erf

(
x1 − µ√

2σ2

)∣∣∣∣)} (2.33)

where x2 = 0. Like mentioned before, if the 1st feature was a categorical instead

of the 2nd, then x1 and x2 would be swapped. Above, it is assumed that only 2nd

feature categorical.

3. Both features are categorical: Both of the features are 0 or ACK. P-value is 1,

since only tool to quantify the p-values were probabilities of the features getting

the particular categorical values. Removal of these probabilities left this case’s

p-value calculation with 1.

P-value =1 (2.34)
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2.6 Supervised Classification Results

Below, supervised average test set decision tree classification performances for our pro-

posed 20-dimensional alternating feature space (Section 2.5.2) are provided. The confu-

sion matrix shown in Table 2.4 can be compared to the one shown in Table 2.3, which

shows the result based on the features proposed in [64] and those used in [22], which

do not preserve packet sequence information. These results are obtained by using C4.5

decision tree in Weka ([46]) (in Weka, this decision tree is called J48).

Note that the features used in [22] do not lead to accurate classification of the Zeus

flows. This comparison suggests the importance of exploiting statistical dependencies

between packet sizes in the length-20 sequence, for discriminating Zeus from Web. If

such exploitation is essential for supervised discrimination, it should also be pivotal for

(the more challenging problem of) anomaly detection of Zeus flows, amongst a batch of

Web flows.

9-D Feature Set Used in [22] Detected as Web Detected as Zeus

Actual Web 2895 30

Actual Zeus 17 22

Table 2.3. Supervised decision tree confusion matrix for the features (except for timing based
features) used in [22] (9-D Feature set) for File 1

Detected as Web Detected as Zeus

Actual Web 2896 29

Actual Zeus 9 30

Table 2.4. Supervised decision tree confusion matrix for 20-dimensional alternating feature
space for File 1

Detected as Web Detected as Zeus

Actual Web 5382 31

Actual Zeus 8 31

Table 2.5. Supervised decision tree confusion matrix for 20-dimensional alternating feature
space for File 2
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Detected as Web Detected as Zeus

Actual Web 1607 27

Actual Zeus 13 26

Table 2.6. Supervised decision tree confusion matrix for 20-dimensional alternating feature
space for File 3

Detected as Web Detected as Zeus

Actual Web 4513 30

Actual Zeus 12 27

Table 2.7. Supervised decision tree confusion matrix for 20-dimensional alternating feature
space for File 4

Detected as Web Detected as Zeus

Actual Web 5427 49

Actual Zeus 15 24

Table 2.8. Supervised decision tree confusion matrix for 20-dimensional alternating feature
space for File 5

Detected as Web Detected as Zeus

Actual Web 4336 40

Actual Zeus 12 27

Table 2.9. Supervised decision tree confusion matrix for 20-dimensional alternating feature
space for File 6

Detected as Web Detected as Zeus

Actual Web 1689 27

Actual Zeus 11 28

Table 2.10. Supervised decision tree confusion matrix for 20-dimensional alternating feature
space for File 7

Detected as Web Detected as Zeus

Actual Web 18332 67

Actual Zeus 8 31

Table 2.11. Supervised decision tree confusion matrix for 20-dimensional alternating feature
space for File 8
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Detected as Web Detected as Zeus

Actual Web 11698 101

Actual Zeus 11 28

Table 2.12. Supervised decision tree confusion matrix for 20-dimensional alternating feature
space for Combined File

Detected as Web Detected as P2P

Actual Web 5399 14

Actual P2P 10 261

Table 2.13. Supervised decision tree confusion matrix for 20-dimensional alternating feature
space for File 2 (P2P)



Chapter 3
Anomaly Detection – Sample-wise

Detection Approach

In this chapter, our sample-wise sequential anomaly detection approach is explained.

Experimental results are provided at the end of the chapter.

3.1 Sample-wise Anomaly Detection with Growing Num-

ber of Tests

Consider sequential detection applied to the batch X = {xi, i = 1, . . . , N, xi ∈ RD}
and suppose that k detections have already been made, with T (k) ⊂ T the set of tests

used in making the first k detections, T the set of all possible tests that may be used.

For now, we will suppose that, before any detections are made, we start with a default

initial test, i.e. T (0) = {t0}. (In the sequel, we specify how the first test is chosen).

Let S(k) ⊂ S ≡ {1, 2, . . . , N} denote the indices of the first k detected samples, with

S(0) = ∅.
In making the kth detection, we thus have two choices:

1) Use a test from the existing set of tests T (k−1),

2) Use a new test.

Let vk ∈ {0, 1} be defined as follows:

vk =

 1, if a new test is used in making the kth detection

0, if an existing test is used in the kth detection.
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If vk = 1, then we set T (k) = T (k−1)∪{tk}, where tk denotes the new test (one not used

in the first k− 1 detections). Now, suppose that p1 is the smallest p-value measured for

any of the samples in the set S−S(k−1) using the existing tests and let p2 be the smallest

p-value measured using a new test. Under choice 1), the probability of observing a p-value

more extreme than p1, under the null hypothesis (assuming independent tests) is 1 −
(1−p1)|T

(k−1)|(N−k+1). Under choice 2, this probability is 1− (1−p2)(|T −T (k−1)|)(N−k+1).

To maximize statistical significance of the kth detection, we should make the choice that

gives the smaller of the two probabilities. Also, we note that this probability is our

estimate of the probability that the kth detection is a false alarm, with one minus this

probability our estimate of the probability that this is a true detection. Thus, our choice

maximizes the “increment” that the kth detection gives to (effectively, our estimate of)

the true detection rate (PD) and simultaneously minimizes the increment given to our

estimate of the false alarm rate (PFA).

More generally, we can write an objective function that measures the aggregate sta-

tistical significance of the first L detections. First, we define

p∗(T ′,S ′) ≡ min
t∈T ′,s∈S′

p(t, s),

where p(t, s) is the p-value for test t on sample s. Then, we have:

SA(L) =
L∑
k=1

vk(1− (1− p∗(T − T (k−1),S − S(k−1)))(|T −T (k−1)|)(N−k+1))

+ (1− vk)(1− (1− p∗(T (k−1),S − S(k−1)))|T
(k−1)|(N−k+1)). (3.1)

Note that, based on our above discussion, (3.1) can also be interpreted as an (aggregated)

estimate of the false alarm rate, associated with the first L detections (PFA(L)). In

minimizing this quantity, we are also equivalently maximizing an (aggregated) estimate

of the true detection rate (PD(L)). In other words, minimizing (3.1) is consistent with

maximizing “front-loaded” partial area (for first L detections) under an (estimated) ROC

curve (AUC). We aim to maximize the partial AUC associated with the first L detections

(as opposed to the total AUC) because a human operator (or some automated response

system) may only be able to handle (corroborate and act on) L detections for a batch

of size N , and detections should clearly be prioritized by their significance level. We

propose two greedy strategies for maximizing (3.1). The first simply seeks, at the kth

detection step, to maximize significance of this single detection without consideration of

the effect on significance of future detections. The second (lookahead) strategy should
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obtain better decision sequences (in the sense of SA(L)) than those found by the first

method, albeit while requiring greater computational complexity.

3.1.1 Strategy 1: No Lookahead

1) Randomly select the first test, t0, from the full set T . Set T (0) = {t0}.

2) For k = 1, . . . , L:

Set vk ← 0. Reset vk to 1 if

1− (1− p∗(T − T (k−1),S − S(k−1)))(|T −T (k−1)|)τ

< 1− (1− p∗(T (k−1),S − S(k−1)))|T
(k−1)|τ .

where τ ≡ N − k + 1. Denote the pair achieving maximum significance by (tk, sk).

Set S(k) = ∫ (k−1) ∪ {sk}.
If (vk = 1) then T (k) = T (k−1) ∪ {tk}
else T (k) = T (k−1).

Endfor

3) Output the detection sets S(L) and T (L).

We make the following observations about this approach:

i) Random selection of the first test is done so that, initially, we need only correct for

a single test, in assessing statistical significance – if, instead, we were to initially

evaluate all tests on all samples, and add the test achieving the smallest p-value on

some sample, we need to correct for all tests at the very outset. In such a case,

detections will simply be made in order of increasing p-values. It is only by starting

from a randomly chosen initial test that parsimony in the use of tests and, thus, in

multiple testing correction, can be achieved, with the detection sequence now chosen

to minimize (3.1). Such parsimony is hoped to be beneficial when anomalies have a

common statistical character, e.g. when an unknown anomalous class is present in

the batch.

ii) Note that our procedure has built-in analytical significance assessment for each de-

tection made – thus, one can stop making detections when the assessed significance

(at some step) falls below a preset threshold (if the operator’s capacity (L) has not

yet been reached).
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3.1.2 Strategy 2: Lookahead

At the first step, a single test will be used. At step 2, there is the choice of sticking to

this test or adding a second test. At step 3, there are 4 possible choices for the sequence

of number of tests in use: {(1, 1, 1), (1, 1, 2), (1, 2, 2), (1, 2, 3)}. More generally, for U < L

detections, there are 2U such sequences, and we have not even considered the possible

test configurations (the particular set of tests comprising a given number of detections

sequence) that need to be evaluated for each such “number of tests” sequence. Thus,

the solution space grows at least exponentially in U . Global optimization of (3.1) for

large L is apparently infeasible. However, it is possible to improve on Strategy 1 at

some computational expense. The key observation is that, whereas one particular test,

if chosen at step k, may maximize statistical significance of the kth detection, another

test, if instead chosen at step k, may help achieve greater aggregate statistical significance

if one looks ahead to additional detection steps k+ 1, k+ 2, and so on. In other words, if

there is test “clustering”, wherein the same test (once added) will be repeatedly used for

multiple consecutive (or closely spaced) detections, such a test may be more valuable (in

the sense of (3.1)) than a test which, while maximizing statistical significance for the kth

detection, will not be used subsequently. One strategy exploiting such “test clustering”

is as follows.

Consider maximizing aggregate statistical significance of the first three detections

made. As noted above, there are four possible choices for the number of tests sequence.

For the first choice, (1, 1, 1), with a single test used, the best test can be found with

complexity O(|T |). For the sequences (1, 1, 2) and (1, 2, 2), finding the best pair of tests

in general requires O(|T |2) complexity (but this is the worst-case complexity – it can

be reduced to O(|T |) if the two most significant p-values, using different tests, are not

for the same samples). Likewise, for the sequence (1, 2, 3), finding the best test triple

will require, worst case, O(|T |3) complexity, but this can be reduced even to O(|T |) if

the three most significant detections, using different tests, are all for different samples.

Having found the best test sequences for each of these four cases, we can select the

case (with associated detections and tests) that achieves maximum aggregate statistical

significance for the first three detections made. We can then make permanent either

just the first detection or all three detections in the triple. This procedure can then be

repeated. In the former case, this means we next consider detections 2, 3, and 4, while in

the latter case we next consider detections 4, 5, and 6. If only the first detection in a triple

is made permanent, this procedure “looks ahead” two samples, in making its detection

decisions. If all three detections are made permanent, this procedure alternatively makes
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three detections jointly. Note that we can certainly extend this approach to look ahead

more than two samples, albeit with increased complexity.

3.1.3 Determining when to stop: significance assessment of detections:

Our Algorithm 1, which does not perform lookahead, naturally yields statistical signif-

icance assessments for each detection. Our lookahead procedure, which more directly

maximizes aggregate statistical significance, also directly yields these significance assess-

ments, but they may not be as accurate as in the non-lookahead case. Accordingly,

coupled to Strategy 2, as an alternative, one can use standard empirical assessment of

statistical significance. Specifically, we suppose that, separate from the batch X , there is

a fairly large database of examples from the known data class. One can then randomly

draw numerous batches (all of size N) from this database. For each such (null) batch,

one can apply our sample-wise detection procedure, which will yield a sequence of sig-

nificance values, based on 1− (1− p)#tests, associated with the detection sequence. For

the kth detection in the actual batch, with significance value δ, one can then obtain an

empirical significance level, measured as the fraction of kth significance values in the null

batches that are smaller than δ. Clearly, there is an associated accuracy/computation

tradeoff – complexity grows linearly with the number of batches (K) and the smallest sig-

nificance level attainable for K batches is 1
K . Even without highly accurate significance

assessment, via their determination of a detection sequence, our detection approaches

give an order of prioritization of samples for consideration (as {anomalous, suspicious,

interesting}) by a human operator. This may be all that is necessary given that an

operator has finite capacity for investigating anomalies.

3.2 Experimental Results

Figure 3.1 shows the number of tests used to make detections (averaged over all ten

test folds), as a function of number of detections made, for our approaches and for the

all-pairs approach. It can be observed, as expected, that our methods are more spartan

in their use of tests than all-pairs.

In Figure 3.2, ROC curve results, which are also averaged over all ten test folds, are

shown for a) use of a single joint test, based on the full 20-dimensional feature vector; b)

use of all pairwise tests; c) use of our (no lookahead) Strategy 1, with growing number of

tests; d) use of our lookahead strategy with modest lookahead order 2; e) detection based

on aggregation (summing) the log p-values of all the tests. We note the poor performance
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of the single joint test approach, and only very small differences in the ROC performance

between our proposed detection strategies and the all-pairwise approach. Finally, the

fact that the best performance is achieved by detecting flows based on aggregation of

all log p-values suggests that, at least for this domain (detecting Zeus amongst Web

flows), parsimonious use of tests may not be the optimal strategy, i.e., apparently useful

information is gleaned by exploiting all twenty features (and all feature pairs). Likewise,

aggregation of p-values is another way of utilizing all of the features, which performs the

best among the methods for this dataset. By the same token, the poor performance of

the single joint test suggests that how these features are jointly exploited is important

– significant inaccuracy is apparently introduced in the GMM modeling/estimation for

the joint (20-dimensional) feature space.
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Chapter 4
Anomaly Detection – Cluster-wise

Detection Approach

In this chapter, our cluster-wise anomaly detection approach is explained. Experimental

results are provided at the end of the chapter.

4.1 Clustering Criterion and Algorithm

Our detection algorithm aims to find the most significant outlier clusters by assessing

approximate joint p-values for candidate clusters. The p-value for a cluster of samples,

defined over a subset of all M pairwise feature tests, is calculated by combining the

individual p-values for all tests in the test subset, for all samples in the cluster. Let

p(t, s) be the p-value for test t on sample s. Then, by assuming tests are statistically

independent1, the p-value of a cluster factors as a product over the p-values of the

individual tests, and can be calculated as follows2:

Score =L[cluster with Nc samples, Mc tests|null hypothesis]

=Nc!

(
N

Nc

)(
M

Mc

) Mc∏
m=1

Nc∏
n=1

p(im, jn). (4.1)

1This is not really valid, since two pairwise feature tests may involve a common feature; moreover,
for two tests involving disjoint feature pairs, the features across the tests may anyway possess statistical
dependencies. However, this independence assumption is made for analytical tractability of our joint
p-value assessment.

2The logarithm of (4.1) can be taken to avoid problems of numerical precision/underflow.
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Here, N is the number of samples in the full data batch, Nc is the number of samples in

the cluster, M is the total number of available tests, Mc the number of tests evaluated for

the cluster, and with p(im, jn) the individual p-value corresponding to test im on sample

jn. The multiplicative factor Nc!
(
N
Nc

)(
M
Mc

)
compensates the joint significance score to

account for the number of candidate clusters of size (Nc,Mc), in a batch with N samples

and M tests. This compensation aims to allow fair comparison of scores for any two

candidate clusters that may possess different numbers of samples or different numbers

of tests. Note that permutations are counted for the samples – e.g., if Mc = 1, there are

Nc choices for the smallest p-value, Nc − 1 for the second smallest p-value, and so on.

Note that, since p-values are less than one, the p-value product in (4.1) strictly

decreases with more sample inclusions and use of more tests. However, since the as-

sumption of test independence becomes grossly invalid as the size of the test subset Mc

is increased, we must prevent “rewarding” the use of many tests in (4.1). We note that

the compensation (penalty) term increases as more samples are included. Moreover, for

Mc < M/2, the penalty term on the number of tests also increases for increasing num-

ber of tests. However, this penalty term in fact decreases as Mc increases beyond M/2.

Thus, the
(
M
Mc

)
penalty only dissuades large test subsets for Mc < M/2. Accordingly,

we place an upper bound on Mc (which, in practice, we set well below the value M/2).

By forming clusters (a sample subset joint with a test subset) to minimize (4.1), we

are identifying the jointly most anomalous subset of samples, and the subset of tests that

elicits these anomalies. Accordingly, the score in (4.1) approximately assesses statistical

significance like a traditional p-value (e.g., (2.20)), but for a cluster of samples, rather

than for a single sample.

If (4.1) is naively calculated for every possible candidate cluster, the computational

complexity will be O(2NM ), which is huge even for small batches. This emphasizes the

need for an efficient way to find the most significant clusters, minimizing (4.1). For

this purpose, for a given candidate subset of Mc tests, we sort all samples in increasing

order of their p-value products (
Mc∏
m=1

p(im, jn)). The incremental contribution to the

score obtained by including a new sample to a cluster with Mc tests and (currently) Nc

samples is:

Next score

Current score
=

(Nc + 1)!
(

N
Nc+1

)(
M
Mc

) Mc∏
m=1

Nc+1∏
n=1

pim,jn

Nc!
(
N
Nc

)(
M
Mc

) Mc∏
m=1

Nc∏
n=1

pim,jn
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=(N −Nc)

Mc∏
m=1

pim,jNc+1 (4.2)

where jNc+1 is the index of the new sample. Thus, working in sorted order, we include

samples in a cluster candidate so long as (4.2) is smaller than 1 with each new sample

inclusion:

(N −Nc)

Mc∏
m=1

pim,jNc+1 <1

Mc∏
m=1

pim,jNc+1 <
1

N −Nc
(4.3)

Another trick to speed up our algorithm is caching (storing) the p-value products

for each sample at each test order as a pre-processing step. This increases the storage

requirements, but so long as the test order Mc is kept low, this extra storage requirement

is not huge. These strategies dramatically reduce the computation required to choose

the best sample subset given a fixed set of tests, and to evaluate the associated joint

significance score.

It is crucial to emphasize our p-value clustering algorithm forms the clusters starting

from the lowest p-values, therefore from the most anomalous samples. As the algorithm

continues to detect clusters of samples, N therefore N −Nc will get smaller. So, 1/(N −
Nc) term in (4.3) will get larger, allowing higher p-values to be used in left-hand side of

(4.3).

Another point worth notable is that increasing Mc (which is the test combination

order) allows higher p-values (therefore more samples) to the cluster to be detected.

This is another reason to impose an upper bound on Mc. An example will help illustrate

this relation between p-values and Mc. The effect of addition of a sample on the score

of a cluster is given in (4.2). We continue adding samples as long as each new sample

decreases the score of the cluster, which means (4.3) is satisfied. Suppose that there are

64 flows left in the test set. So, N −Nc = 64. Let’s compare test combination orders 2

and 3 (Mc = 2 and 3). For order 2, geometric mean of the p-values of the current sample

corresponding to the 2 tests must be no greater than 1/8. For order 3, this geometric

mean becomes 1/4. So, using higher orders in the p-value clustering approach means

allowing samples with higher p-values, as well as the ones with lower p-values, into the

cluster. The lower the order is, the tighter the upper bound constraint on the p-value

becomes.



51

A full description of our overall detection algorithm, built around detecting clusters

that minimize (4.2), will be given in the next section.

4.2 Implementation Details of P-value Clustering

Bivariate GMM models for all
(

20
2

)
feature pairs were fit to the Web training set flows via

the Expectation-Maximization algorithm. The existence of categorical features (Section

2.5) led us to impose a lower bound on the diagonal components of the covariance

matrices of the bivariate GMM models. We used 10 as a lower bound, since this prevents

overlapping of any Gaussian components representing 40-sized and 52-sized ACK packets.

Additionally, since the packet sizes take integer values, it is reasonable to choose a lower

bound at least 1. We have observed that AUC performance is only modestly sensitive

to this choice. To select the number of Gaussian components for each of the bivariate

GMM models, the Bayesian Information Criterion (BIC) ([92]) was used. After fitting

the GMM models, for each test batch data sample, for all pairwise feature tests, the

p-values were calculated. Then, these p-values were used in the score function (4.1) to

evaluate cluster candidates and find the most significant outlier cluster. All the samples

in this cluster comprise the first set of detected samples. After their detection, these

samples are removed from the test batch. Then, this process (detecting the samples of

the most significant outlier cluster according to evaluation of (4.1) and removing them

from the test batch) is repeated until the samples in the test batch are depleted. ROC

plots were measured by counting the false alarms and true detections for each sequentially

detected cluster and reflecting this in “jumps” in the ROC curve. The ten ROC plots

obtained based on 10-fold cross-validation were used to calculate average ROC plots. The

performance comparison metric for different methods can be selected as area under ROC

(AUC). Another metric could be the true detection rate corresponding to a specified false

alarm rate (such as 0.05, 0.1). A steeper curve implies earlier detection of most of the

anomalous samples.

As the number of allowed tests in a candidate cluster is increased, the score function in

(4.1) monotonically decreases. However, as noted earlier, due to the escalating inaccuracy

of the test independence assumption for increasing test subset size Mc, this decrease in

the score is not necessarily indicative of improvement in the ROC plot. In fact, as seen

from the next section, increasing the maximum test order may result in a degradation

in the AUC performance. Increasing the order also leads to larger cluster detections at

each time. These effects led us to impose an upper bound on the allowed number of tests
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to be used in a cluster, i.e., the maximum test order. As we will observe from the ROC

plots, this limitation helps the algorithm to ensure good AUC performance. Essentially,

this forces focusing on the most discriminative tests for each cluster detection. Note also

that these most significant tests are automatically updated for each sequential cluster

detection, since the detection and removal of the most anomalous samples may lead to

a different “most discriminative subset of tests” for the next cluster detection.

For a given maximum test order, the globally minimum score will be achieved by

exhaustively evaluating all combinations of subsets of tests up to the maximum order.

For example, for a maximum test order of 3, we need to consider all possible test subset

combinations with one, two, and three tests, and find the cluster that has the minimum

score ((4.1)) amongst all these combinations. As the maximum test subset order is

increased, it becomes computationally infeasible to evaluate all test subset candidates.

To evaluate for test subset orders up to 5, we limited the number of test subset candidates

at the higher orders (4 and 5). Specifically, to find the order k test combinations, we

considered the best W order k − 1 test combinations and trial-added every remaining

test to each of these W test subsets. Clearly, the computational requirements grow with

W . In our experiments, we chose W = 100. It is worth noting that increasing W did not

change the results much, which implies the chosen top W order k− 1 test combinations

give adequate search breadth.

In the approach proposed in Chapter 3 and in other AD methods with which we will

compare, flow detections are made sequentially, one flow at a time. In other words, the

statistical significance of each flow is assessed separately. But, in our method, we are

evaluating the statistical significance of a cluster of flows, which results in anomalous

cluster detections based on (4.1). Although it is not uncommon to observe singleton

cluster detections (a cluster consisting of a single flow) based on the evaluation under

our criterion, these singletons typically occur in the later detected clusters (after all

or nearly all of the anomalous class flows are detected). The early detected clusters

tend to consist of a group of flows that mainly consist of the anomalous class (e.g.,

Zeus). Actually, it is observed that the first cluster may not necessarily include samples

that belong to the anomalous class. However, shortly after such “outlier” clusters are

detected, there is an early cluster that includes a majority of the Zeus samples.
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4.3 Experiments

4.3.1 Methods of Comparison

These methods are used to compare and contrast the performance of p-value clustering.

• One-class SVM: It is a widely used kernel method for anomaly detection ([23],

[109], and [47]). For one-class SVM experiments in this thesis, the LIBSVM soft-

ware was used. There is the issue of selecting the appropriate value for the SVM

hyperparameter, ν. In our anomaly detection setting, there is no validation set for

selecting ν, so this can be a problem in practice. In order to assess the best-case

(upper bound) performance for the one-class SVM, we selected the value for ν in

the interval (0, 1) that gives the best AUC performance on each data set tested.

Hence, one-class SVM results illustrate performance upper bounds, because we

optimistically chose ν. Figure 4.20 depicts the AUC performance sensitivity to the

value of ν.

• Lookahead: This method is discussed in Chapter 3. To remind, this method makes

individual sample detections, based on the results of a single test and uses looka-

head to assess the effect of using a new test on the multiple testing-corrected

significance (corrected p-value) for subsequent detections.

• P-value sum and p-value (log) sum: These are two other benchmark methods that

are used for comparison. They sort the samples based on the sum of their p-

values (log p-values) over all tests. Anomalous samples are expected to have small

aggregated p-values. These are also used in Chapter 3.

• Decision Tree: C4.5 decision tree is used in some experiments to give an idea on the

(average test set) supervised classification performance result for the corresponding

file.

• Ensemble Methods: The methods that are making individual sample detections

(Lookahead, p-value sum and p-value (log) sum) effectively based on the ranks

that they assign to the samples in the batch. In fact, p-value clustering methods

are also ranking the samples. The difference is that clustering methods treat the

samples of each cluster equally, therefore they are practically assigning the same

rank value to the samples of the same cluster. If the mean rank value of the samples

is assigned to each sample in a cluster detected by the clustering methods (e.g., if

the first cluster consists of 5 samples, 3 will be assigned to each of these samples)
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and these are summed with the ranks assigned by the other methods, then we can

obtain an overall ranking of all the samples based on these resulting ranks. All or

a subset of the methods can be used to obtain an ensemble result.

4.3.2 Results

In our experiments, several results are notable, regarding both comparisons between

methods using the same feature representation and cross-comparisons between different

feature representations. Both individual file results and summary of results correspond-

ing to all files are provided for comprehensive and in-depth understanding. A summary

of these results can be found in [57, 56].

4.3.2.1 Alternating feature representation results

We will present the results that are obtained by using alternating feature set that is

described in Section 2.5.2. Figures 4.1-4.30 belong to this subsection. The discussion of

the results of this subsection is provided below with different perspectives.

Effect of dataset on the performance: As seen in Figures 4.1, 4.3, and 4.4, perfor-

mance is very much dataset-dependent. It is hard to provide intuitions solely based on

these plots. There are a few factors in effect here.

1. Port: It can be seen from Figures 4.5 and 4.6 that the port that the flows are

collected from is very important the performance. The reason is that port affects

type and diversity of the traffic. It determines the characteristics of the web flows

and therefore how the null is informed. For instance, datasets collected from port

15 are perform very well, possibly due to significant differences of the Web traffic

collected from that port and Zeus traffic. And, also, these flows may have less

diversity, making it sufficient to inform the null with less number of flows. In fact,

the largest file among these 3 is experimented by reducing the training set size by

6 times and it is observed that the performance does not degrade with the reduced

size.

2. Dataset size: This determines how well-informed the null is. And when the null

is well-informed, then each feature better reflects the characteristics of the Web

traffic. This will lead to better discrimination. It can be seen from Figures 4.5 and

4.6 that for most of the ports, the worst performing datasets are the smallest ones

(shown in black), whereas the performance tends to improve when the dataset size

(therefore training set size) increases (shown with redder dots).
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3. Time of day: Taking into account file collection time of day explains some ex-

ceptions to the above two rules, e.g., for port 25 datasets. There are 3 datasets

collected from port 25 and the best performing dataset is the smallest of these.

The reason might be that this dataset is collected early in the morning, which is

different than the datasets collected in the afternoon. Early morning datasets tend

to have less diversity compared to other datasets. So, time of day may also affect

type and diversity of the traffic.

Overall performance of p-value dependent methods: Using this feature set to obtain

p-values and using these for individual detections leads to successful results (p-value

clustering, Lookahead, p-value sum, p-value (log) sum). The one-class SVM performs

very poorly in the Zeus experiments, as can be seen in Figures 4.14, 4.16, and 4.18. It

performs well in P2P experiment (Figure 4.19) like the other methods, but still one-

class SVM is the worst of all. Since all of the methods are using the same feature

representation, this indicates the statistical significance assessment power of p-values.

P-value clustering vs. Lookahead: P-value clustering outperforms Lookahead in al-

most all of the datasets, as seen in Figure 4.1. At this point, it is important to remember

that Lookahead is a sample-wise detection approach.

P-value clustering vs. P-value sum and P-value (log) sum: Although, on the aver-

age, p-value clustering approaches lag p-value sum and p-value (log) sum in AUC perfor-

mance as seen in Figure 4.2, clustering approaches tend to outperform p-value sum and

p-value (log) sum for larger files. This might be due to the existence of well-informed

features for large files (large training set), therefore making it possible for feature selec-

tion methods to obtain good discrimination. On the other hand, when the file size is

small, this means features are not informed enough, so the collective usage of them (as in

p-value sum and log sum) leads to better performance, instead of selectively using them.

Since all of these use the same p-values, the difference underlines the importance of test

(therefore feature) selection in anomaly detection, at least when alternating feature rep-

resentation is used. It is worth mentioning that when we use TP rate in the first 40

detections for performance assessment, instead of AUC, the early detection performance

of methods are evaluated. With this criterion, p-value clustering order 2 is the best of

all methods on the average, which can be seen in Figure 4.8. This means that feature

selection helps boosting the early detection performance, which can be crucial if the aim

to detect as many anomalies as possible in a short time.

Effect of order increase in P-value clustering: For our p-value clustering method, in-

creasing the maximum subset order affects the performance in different ways. There
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is not a single type of effect of increasing (maximum test combination) order on the

area under ROC performance. Some of the results depict that order increase from 2 to

3 degrades the performance, whereas the remaining results show that this change im-

proves the performance. But, order increase from 3 to 5 leads to a degradation in most

of the results. This is consistent with our earlier observation that the independent test

assumption becomes poor as the maximum test subset order increases. Average effect

of order increase in AUC performance can be seen in Figure 4.2.

Effect of variance lower bound: The existence of categorical features led us to impose

a lower bound on the diagonal components (variances) of the covariance matrices of the

bivariate GMM models. It is observed that AUC performance is only modestly sensitive

to this choice. To show this slight dependence, results for different lower bound choices

are provided for some of the files. Lower bound value that is used in each experiment is

provided in the captions.

Effect of using larger dataset: As mentioned above, in Figures 4.5 and 4.6, it can

observed that when the port number is kept constant, for larger datasets, the performance

tends to get better. To further understand the effect of dataset size, the following

experiment is performed on File 13. Firstly, File 13 is experimented as it is (Figure

4.29). Secondly, it is divided into 5 subsets, and experiments are done by using each

of these subsets separately (Figure 4.30). So, in this way, the training set size in the

latter case is 5 times smaller. Smaller training set size means poorly informed null.

With smaller training set, only p-value sum improved, all other methods degraded. This

points to the fact that performance of a selection od features with poorly informed null

is not as good as the collective performance of them. Better informed null is suitable

for using feature selection. Another experiment pointing to the importance of file size is

the experiment done with the largest file, which is File 8 (Section 4.3 provides file sizes).

It can be seen from Figure 4.25 that the performance is clearly better than all other

files. The reason might be the positive effect of large file (therefore training set) size

(in addition to the other effects, such as port and time of day). To further investigate,

we combined all of the port 6 files in LBNL repository. There are 6 such files in total,

whose names are provided in Section 4.3. 2 of these files (4 and 7) are used also used

individually in the other experiments. Results of experiments that use the combined

file are in Figures 4.26, 4.27, and 4.28. It can be seen by comparing these results with

File 4 (Figure 4.21) and File 7 (Figure 4.24) that combined file p-value clustering results

outperform both of the individual file results. In fact, as seen from Figure 4.5, p-value

clustering order 5 performance of the combined file (shown with port 0 in the figure) is
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better than the AUCs of all individual files (port 6 files) obtained with this method.

Supervised vs. Unsupervised detection: C4.5 decision tree results are shown as black

dots in some of the figures. The complete decision tree results, including the ones that

are not shown here, are provided in Section 2.6. It can be observed that datasets that

have similar decision tree results may have quite different anomaly detection results.

For example, Files 1, 2, and 8 have similar decision tree results, whereas very different

anomaly detection performances. This is not unexpected, since supervised detection is

much easier than unsupervised detection.

Zeus vs. P2P: Differences in the results suggest that anomalous behavior is very

different in Zeus and P2P cases. In the P2P case, we see that anomalous behavior can

be well-captured using either all or using only a small subset of the features. This suggests

that all the features are largely discriminating between the Web and P2P classes. But,

this is not completely valid for all Zeus datasets. Most of the Zeus experiments lag the

P2P experiment result in performance, no matter what the compared method is. This

means that discrimination between Zeus and Web classes is not as easy to accomplish

as P2P case in anomaly detection setting.

Individual Methods vs. Ensemble: By using the detection order of methods as ranks

assigned to the samples, ensemble approaches can be devised. These ranks from each

method can be summed for each sample and a new ranking can be obtained. It is observed

that ensemble methods never underperform all of the methods in use. Ensemble methods

either achieve some performance in between the methods in use, or in some cases, they

achieve better than all of the methods used. In the latter cases, it can be said that

there is a consensus on the true positives but not on the false positives. On the average,

ensemble approach improves the results. Performances of ensemble methods can be seen

in Figures 4.1, 4.3, 4.4, 4.7, and 4.9.

Most of the performance comparisons that are provided above are based on area

under ROC (AUC) performances of the methods. Other useful comparison metrics can

be derived by paying attention to the early detection performance. For example, true

positive rate in a certain number of first detections can be such a criterion, which is

also used here (by using first 40 detections). Another criterion can be the true detection

performance corresponding to a certain low false alarm rate, e.g., 0.1, 0.2. There are

some cases where the methods are significantly distinguishable from each other in early

detection success, where they have pretty close success to each other when AUC is used

to compare. This difference in early detection success between methods is noticable in

Figures 4.21, 4.23, 4.26, 4.27, and 4.28. In all of these, p-value clustering is superior
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to other methods with this criterion. More comprehensive results over all files for early

detection performances are collected in Figures 4.7 and 4.8. A crucial issue here is

that smaller datasets tend to have higher TP rate, which is expected since there are less

number of Web flows competing with the Zeus flows to take place in the first 40 detections

(remembering that 10-fold cross-validation is used, resulting in different number of Web

flows in the test set for each file).
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Figure 4.1. Area under ROC performances vs. file size for all files and all methods (alternating
feature representation) (variance lower bound=1)



59

0 1 2 3 4 5 6 7 8 9
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Method ID

M
ea

n 
A

U
C

Mean AUC of Methods over Files
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Figure 4.4. Area under ROC performances vs. hour of day for all files and all methods (hour
of day range: 04:10-20:28) (alternating feature representation) (variance lower bound=1)
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Figure 4.8. Mean true positive rate in the first 40 detections over all files for all methods
(Method IDs: 1=p-value clus order 2, 2=p-value clus order 3, 3=p-value clus order 5, 4=looka-
head, 5=p-value sum, 6=p-value log sum, 7=ensemble of all methods) (alternating feature rep-
resentation) (variance lower bound=1)
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Figure 4.9. True positive rate in the first 40 detections for all files for 3 methods (alternating
feature representation) (variance lower bound=1)
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Figure 4.10. Mean true positive rate in the first 40 detections over all files for 3 methods
(Method IDs: 1=p-value clus order 2, 2=p-value clus order 3, 3=p-value clus order 5, 4=looka-
head, 5=p-value sum, 6=p-value log sum, 7=ensemble of p-value sum and p-value clus order 2)
(alternating feature representation) (variance lower bound=1)
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Figure 4.11. ROC curves (File 1 Web - Zeus) (alternating feature representation) (variance
lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.86041)
P−value clustering algorithm
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(Area under ROC curve = 0.8673)
P−value clustering algorithm
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(Area under ROC curve = 0.77535)
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Figure 4.12. ROC curves (File 1 Web - Zeus) (alternating feature representation) (variance
lower bound=3)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.8519)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.86386)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.84797)
Lookahead order 2 
(Area under ROC curve = 0.82579)
P−value sum algorithm
(Area under ROC curve = 0.76933)
P−value (log) sum algorithm
(Area under ROC curve = 0.8152)

Figure 4.13. ROC curves (File 1 Web - Zeus) (alternating feature representation) (variance
lower bound=5)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.86134)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.86911)

P−value clustering algorithm
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One−class SVM
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C4.5 Decision tree

Figure 4.14. ROC curves (File 1 Web - Zeus) (alternating feature representation) (variance
lower bound=10)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average ROC Curve

False Alarm Rate

T
ru

e 
D

et
ec

tio
n 

R
at

e

 

 

P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.68992)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.71171)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.69758)
Lookahead order 2 
(Area under ROC curve = 0.66061)
P−value sum algorithm
(Area under ROC curve = 0.65192)
P−value (log) sum algorithm
(Area under ROC curve = 0.67581)

Figure 4.15. ROC curves (File 2 Web - Zeus) (alternating feature representation) (variance
lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.68152)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.71867)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.72229)

One−class SVM
ν = 0.01
(Area under ROC curve = 0.43301)

Lookahead order 2 
(Area under ROC curve = 0.67594)
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C4.5 Decision tree

Figure 4.16. ROC curves (File 2 Web - Zeus) (alternating feature representation) (variance
lower bound=10)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.85703)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.85436)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.83839)
Lookahead order 2 
(Area under ROC curve = 0.79505)
P−value sum algorithm
(Area under ROC curve = 0.86035)
P−value (log) sum algorithm
(Area under ROC curve = 0.86644)

Figure 4.17. ROC curves (File 3 Web - Zeus) (alternating feature representation) (variance
lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.85038)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.85367)

P−value clustering algorithm
(Max test combination order = 5)
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ν = 0.01
(Area under ROC curve = 0.40398)

Lookahead order 2 
(Area under ROC curve = 0.80305)

P−value sum algorithm
(Area under ROC curve = 0.8513)
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C4.5 Decision tree

Figure 4.18. ROC curves (File 3 Web - Zeus) (alternating feature representation) (variance
lower bound=10)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.97669)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.97632)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.96755)
One−class SVM
ν = 0.23
(Area under ROC curve = 0.92073)
Lookahead order 2 
(Area under ROC curve = 0.95127)
P−value sum algorithm
(Area under ROC curve = 0.93915)
P−value (log) sum algorithm
(Area under ROC curve = 0.94768)
C4.5 Decision tree

Figure 4.19. ROC curves (File 2 Web - File 2 P2P) (alternating feature representation) (variance
lower bound=10)
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Figure 4.20. Sensitivity of AUC performance on ν parameter for the one-class SVM
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.82196)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.82935)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.83043)
Lookahead order 2 
(Area under ROC curve = 0.76227)
P−value sum algorithm
(Area under ROC curve = 0.8195)
P−value (log) sum algorithm
(Area under ROC curve = 0.82618)

Figure 4.21. ROC curves (File 4 Web - Zeus) (alternating feature representation) (variance
lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.91738)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.91366)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.90897)
Lookahead order 2 
(Area under ROC curve = 0.90541)
P−value sum algorithm
(Area under ROC curve = 0.86969)
P−value (log) sum algorithm
(Area under ROC curve = 0.9088)

Figure 4.22. ROC curves (File 5 Web - Zeus) (alternating feature representation) (variance
lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.76098)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.80113)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.80796)
Lookahead order 2 
(Area under ROC curve = 0.6669)
P−value sum algorithm
(Area under ROC curve = 0.69763)
P−value (log) sum algorithm
(Area under ROC curve = 0.73055)

Figure 4.23. ROC curves (File 6 Web - Zeus) (alternating feature representation) (variance
lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.86743)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.86126)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.84459)
Lookahead order 2 
(Area under ROC curve = 0.82547)
P−value sum algorithm
(Area under ROC curve = 0.84871)
P−value (log) sum algorithm
(Area under ROC curve = 0.85142)

Figure 4.24. ROC curves (File 7 Web - Zeus) (alternating feature representation) (variance
lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.965)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.96956)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.96783)
Lookahead order 2 
(Area under ROC curve = 0.97311)
P−value sum algorithm
(Area under ROC curve = 0.97321)
P−value (log) sum algorithm
(Area under ROC curve = 0.97908)

Figure 4.25. ROC curves (File 8 Web - Zeus) (alternating feature representation) (variance
lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.85902)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.85704)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.86192)
Lookahead order 2 
(Area under ROC curve = 0.82461)
P−value sum algorithm
(Area under ROC curve = 0.82459)
P−value (log) sum algorithm
(Area under ROC curve = 0.85898)

Figure 4.26. ROC curves (Combined File Web - Zeus) (alternating feature representation)
(variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.86383)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.86113)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.8542)
Lookahead order 2 
(Area under ROC curve = 0.83198)
P−value sum algorithm
(Area under ROC curve = 0.81084)
P−value (log) sum algorithm
(Area under ROC curve = 0.85102)

Figure 4.27. ROC curves (Combined File Web - Zeus) (alternating feature representation)
(variance lower bound=5)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.86111)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.85199)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.85692)
Lookahead order 2 
(Area under ROC curve = 0.8309)
P−value sum algorithm
(Area under ROC curve = 0.80122)
P−value (log) sum algorithm
(Area under ROC curve = 0.84388)

Figure 4.28. ROC curves (Combined File Web - Zeus) (alternating feature representation)
(variance lower bound=10)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.86103)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.85782)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.87355)
Lookahead order 2 
(Area under ROC curve = 0.83372)
P−value sum algorithm
(Area under ROC curve = 0.79501)
P−value (log) sum algorithm
(Area under ROC curve = 0.79846)

Figure 4.29. ROC curves (File 13 Web - Zeus) (alternating feature representation) (variance
lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.77529)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.77382)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.76086)

Lookahead order 2 
(Area under ROC curve = 0.70696)

P−value sum algorithm
(Area under ROC curve = 0.8354)

P−value (log) sum algorithm
(Area under ROC curve = 0.76659)

Ensemble
(Area under ROC curve = 0.78709)

Figure 4.30. ROC curves (File 13 Web - Zeus) (File is divided into 5 subsets and the results
are averaged) (alternating feature representation) (variance lower bound=1)

4.3.2.2 Alternating feature representation results - ACK packets modified

Results here show us the effects of having the same and different sizes for the ACK

packets in Web and Zeus flows. It should be kept in mind that Zeus uses 40 as the ACK

packet size in almost all of its flows. Choice of ACK packet size in Web flows depends

on the file. Although 40 and 52 are seen in all datasets, the proportion of these values

changes from file to file. We analyze 2 different scenarios here. In these transformations,

the Zeus flows are not touched. The changes are made in only Web flows. These 2

different scenarios are mentioned in the captions of the figures as “same ACK packet

size usage” (for 52 → 40 ACK packet size change in Web) and “different ACK packet

size usage” (for 40→ 52 ACK packet size change in Web).

1) Same-sized ACK packet usage: The fundamental reason behind the difference in

the size of the ACK packets is the usage of selective ACK (SACK). The scenario ex-

perimented here investigates the effects of not using SACK. This case is possible when

SACK usage is not agreed by the client and server sides of the TCP communication

during the 3-way handshake. For experimental purposes, we changed the ACK sizes of

Web flows in a dataset. When we change all of the ACK packets sizes to 40 in Web

flows, it means both Web and Zeus flows are forced to use the same packet size value for
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the ACK packets. This removes the discriminative power of ACK packet values. The

results related to this scenario are in Figures 4.31 - 4.36. The discussion of these results

are provided below:

• Same-sized ACKs vs. Unmodified ACKs: If we compare these results with the cor-

responding ones (same file, same variance lower bound) in Section 4.3.2.1, we can

see the effects on individual file results. It is intuitive to think that when Web

and Zeus flows use the same ACK packet size, the performance will become worse.

This is valid for Files 1 (Figure 4.31 vs. Figure 4.11), 2, and 3 (for orders 2 and 3).

However, this is not the case for all of the results. For Files 3, 5, 6 (for order 5), and

7, the performance improved when the same ACK size is used. These imply that

discriminative characteristics of our alternating feature set and p-value assessment

algorithms do not exclusively rely on the different ACK packet size.

• P-value clustering vs. Other methods: As in the results without modification of

ACK packets (Section 4.3.2.1), p-value clustering methods are superior to other

approaches in some of the results, but not so for the other files.

• Effect of order increase in P-value clustering: For Files 1, 3, and 5, increasing p-

value clustering maximum test combination order degrades the performance.

Whereas, for Files 2 and 6, this increase makes a positive effect. For File 7, the

performance peaks at order 3. So, there are more files for which order increase

worsens the AUC performance.

2) Different-sized ACK packet usage: Unlike the previous scenario, changing all 40

packets to 52 has the effect of imposing a different packet size value for the ACK packets

in Web and Zeus flows. This scenario is also possible to encounter, e.g., when Web class

uses SACK extensively and Zeus does not use it. The related results are in Figures 4.37

- 4.40.

• Different-sized ACKs vs. Unmodified ACKs: Since ACK packets are used frequent-

ly in TCP, having different packet sizes for the ACK packets will boost the perfor-

mance. This can be observed in all of the results of this section.

• P-value clustering vs. Other methods: In contrary to the results with unmodified

ACKs (Section 4.3.2.1), p-value sum and p-value (log) sum methods are slightly

better than p-value clustering algorithms. In other words, the methods that exploit

the diversity of using all of the tests perform slightly better than methods that
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apply test selection. This might be a result of ACK packets occuring at multiple

locations in the 20-dimensional (alternating) feature set with different packet sizes

(40 and 52) for Web and Zeus, thus enhancing the discriminative power of all

features (therefore tests). Under this scenario, it appears that all of the features

are highly discriminative, both individually and collectively.

• Effect of order increase in P-value clustering: When the order is increased, espe-

cially from 3 to 5, there is a minor tendency to have a worse performance. But,

still, AUC is very high for all orders, so that this may be considered negligible.
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.7359)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.73156)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.71733)

Lookahead order 2 
(Area under ROC curve = 0.74796)

P−value sum algorithm
(Area under ROC curve = 0.70413)

P−value (log) sum algorithm
(Area under ROC curve = 0.73519)

Figure 4.31. ROC curves (File 1 Web - Zeus) (alternating feature representation) (same-sized
ACK packet usage) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.64625)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.65893)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.66696)

Lookahead order 2 
(Area under ROC curve = 0.64055)

P−value sum algorithm
(Area under ROC curve = 0.60633)

P−value (log) sum algorithm
(Area under ROC curve = 0.63167)

Figure 4.32. ROC curves (File 2 Web - Zeus) (alternating feature representation) (same-sized
ACK packet usage) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.87395)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.86705)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.86659)
Lookahead order 2 
(Area under ROC curve = 0.81377)
P−value sum algorithm
(Area under ROC curve = 0.89247)
P−value (log) sum algorithm
(Area under ROC curve = 0.88946)

Figure 4.33. ROC curves (File 3 Web - Zeus) (alternating feature representation) (same-sized
ACK packet usage) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.93463)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.93145)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.91824)
Lookahead order 2 
(Area under ROC curve = 0.91311)
P−value sum algorithm
(Area under ROC curve = 0.89297)
P−value (log) sum algorithm
(Area under ROC curve = 0.93032)

Figure 4.34. ROC curves (File 5 Web - Zeus) (alternating feature representation) (same-sized
ACK packet usage) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.74807)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.79979)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.81392)
Lookahead order 2 
(Area under ROC curve = 0.673)
P−value sum algorithm
(Area under ROC curve = 0.79542)
P−value (log) sum algorithm
(Area under ROC curve = 0.80266)

Figure 4.35. ROC curves (File 6 Web - Zeus) (alternating feature representation) (same-sized
ACK packet usage) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.8796)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.88246)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.87913)
Lookahead order 2 
(Area under ROC curve = 0.83758)
P−value sum algorithm
(Area under ROC curve = 0.8758)
P−value (log) sum algorithm
(Area under ROC curve = 0.87804)

Figure 4.36. ROC curves (File 7 Web - Zeus) (alternating feature representation) (same-sized
ACK packet usage) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.98978)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.98849)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.98232)
Lookahead order 2 
(Area under ROC curve = 0.98027)
P−value sum algorithm
(Area under ROC curve = 0.98897)
P−value (log) sum algorithm
(Area under ROC curve = 0.98969)

Figure 4.37. ROC curves (File 1 Web - Zeus) (alternating feature representation) (different-
sized ACK packet usage) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.96878)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.96978)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.96291)
Lookahead order 2 
(Area under ROC curve = 0.9692)
P−value sum algorithm
(Area under ROC curve = 0.97737)
P−value (log) sum algorithm
(Area under ROC curve = 0.98455)

Figure 4.38. ROC curves (File 2 Web - Zeus) (alternating feature representation) (different-
sized ACK packet usage) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.96578)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.96585)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.96181)
Lookahead order 2 
(Area under ROC curve = 0.94167)
P−value sum algorithm
(Area under ROC curve = 0.99562)
P−value (log) sum algorithm
(Area under ROC curve = 0.97433)

Figure 4.39. ROC curves (File 3 Web - Zeus) (alternating feature representation) (different-
sized ACK packet usage) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.9531)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.95639)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.95349)
Lookahead order 2 
(Area under ROC curve = 0.95328)
P−value sum algorithm
(Area under ROC curve = 0.99039)
P−value (log) sum algorithm
(Area under ROC curve = 0.98433)

Figure 4.40. ROC curves (File 6 Web - Zeus) (alternating feature representation) (different-
sized ACK packet usage) (variance lower bound=1)

4.3.2.3 Lossless feature representation results

Here, the results that are obtained by using lossless feature set that is described in

Section 2.5.1 are presented. Figures 4.41-4.43 belong to this subsection.

P-value clustering vs. Other methods: P-value clustering results lag others in AUC

performance. P-value sum and/or (log)sum methods perform the best in this feature

representation.

Effect of order increase in P-value clustering: Order increase has a degrading effect

on the p-value clustering performance.
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.6574)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.58166)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.49265)

Lookahead order 2 
(Area under ROC curve = 0.76889)

P−value sum algorithm
(Area under ROC curve = 0.82897)

P−value (log) sum algorithm
(Area under ROC curve = 0.79266)

Figure 4.41. ROC curves (File 1 Web - Zeus) (Lossless feature representation) (variance lower
bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.7517)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.64767)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.49948)
Lookahead order 2 
(Area under ROC curve = 0.70549)
P−value sum algorithm
(Area under ROC curve = 0.76061)
P−value (log) sum algorithm
(Area under ROC curve = 0.74652)

Figure 4.42. ROC curves (File 2 Web - Zeus) (Lossless feature representation) (variance lower
bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.72755)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.64375)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.53249)

Lookahead order 2 
(Area under ROC curve = 0.79647)

P−value sum algorithm
(Area under ROC curve = 0.84528)

P−value (log) sum algorithm
(Area under ROC curve = 0.84078)

Figure 4.43. ROC curves (File 3 Web - Zeus) (Lossless feature representation) (variance lower
bound=1)

4.3.2.4 Alternating feature representation results - with categorical feature

0

The results presented here are obtained by using the feature set that is described in

Section 2.5.3. To remind, this feature set uses the alternating feature representation

approach, but treats 0’s as categorical features and uses them as conditioning context.

The related results are in Figures 4.44 - 4.48.

P-value clustering vs. Other methods: P-value clustering with order 2 is better than

p-value sum and p-value (log) sum algorithms in almost all results. Either Lookahead

or p-value clustering with order 2 is the best performing method among all.

Effect of order increase in P-value clustering: In all of the results, this increase strict-

ly degrades the AUC performance.

Considering the sharp deterioration in p-value clustering due to increasing test com-

bination order together with the good performance of Lookahead against p-value sum

(and log sum) underlines the importance of test selection in this feature representation

and conditioning context. The bad ROC performance of p-value clustering with order 5

is because the detected clusters are becoming so large that even the existence of many

anomalous (Zeus) flows in the early clusters is far from bringing a discrimination success
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since high number of normal (Web) flows are present in all of the clusters, including the

early and important clusters. Obviously, having large-sizes clusters means there are small

number of them (for the same test set size). This can be observed from having smoother

ROC plots as the order is increased, since each cluster detection means proceeding in

the ROC line proportional to the size of the cluster.

In this feature representation and conditioning context, the high p-values are not seen

as frequent as the alternating feature representation without conditioning. The reason

of this is introducing the probabilities of each subset (resulting from conditioning) to the

calculation of p-values (Section 2.5.3). This makes the p-values smaller, which in turn

leads to larger clusters. The clusters get even larger when the order is increased. The

reasons of both phenomena are explained in Section 4.1.

The next subsection (Section 4.3.2.5) gives results regarding to the modeling where

ACK packets are also taken into account as categorical features, in addition to 0’s.
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.78292)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.74662)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.63482)

Lookahead order 2 
(Area under ROC curve = 0.76734)

P−value sum algorithm
(Area under ROC curve = 0.62234)

P−value (log) sum algorithm
(Area under ROC curve = 0.70853)

Figure 4.44. ROC curves (File 3 Web - Zeus) (alternating feature representation) (categorical
feature 0) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.75057)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.65231)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.52486)
Lookahead order 2 
(Area under ROC curve = 0.73737)
P−value sum algorithm
(Area under ROC curve = 0.54212)
P−value (log) sum algorithm
(Area under ROC curve = 0.57825)

Figure 4.45. ROC curves (File 4 Web - Zeus) (alternating feature representation) (categorical
feature 0) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.69636)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.63507)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.51323)

Lookahead order 2 
(Area under ROC curve = 0.62532)

P−value sum algorithm
(Area under ROC curve = 0.51869)

P−value (log) sum algorithm
(Area under ROC curve = 0.54317)

Figure 4.46. ROC curves (File 6 Web - Zeus) (alternating feature representation) (categorical
feature 0) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.75701)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.70517)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.54699)

Lookahead order 2 
(Area under ROC curve = 0.796)

P−value sum algorithm
(Area under ROC curve = 0.7034)

P−value (log) sum algorithm
(Area under ROC curve = 0.7608)

Figure 4.47. ROC curves (File 7 Web - Zeus) (alternating feature representation) (categorical
feature 0) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.82952)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.73389)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.65004)

Lookahead order 2 
(Area under ROC curve = 0.82444)

P−value sum algorithm
(Area under ROC curve = 0.55309)

P−value (log) sum algorithm
(Area under ROC curve = 0.64288)

Figure 4.48. ROC curves (Combined File Web - Zeus) (alternating feature representation)
(categorical feature 0) (variance lower bound=1)
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4.3.2.5 Alternating feature representation results - with categorical features

0 and ACK (together)

These results are obtained by using the feature representation defined in Section 2.5.4.

This feature set uses the alternating feature representation approach, but treats 0’s and

ACK packets as categorical features and uses them as conditioning context. The related

results are in Figures 4.49 - 4.54.

Comparison of methods: As in the previous set of results (Section 4.3.2.4), p-value

clustering with order 2 is superior to p-value sum and p-value (log) sum algorithms in

almost all results. Lookahead is the best performing method in almost all of the files.

The only exception to both of these is the File 8 result, shown in Figure 4.52.

Effect of order increase in P-value clustering: In all of the results, this increase strict-

ly degrades the AUC performance, as in Section 4.3.2.4 results.

Categorical features 0 and ACK vs. Only categorical feature 0: Comparing the

results presented in this subsection with the results in Section 4.3.2.4 (where only cate-

gorical features are 0’s) reveals that p-value clustering performance is adversely affected

by including ACK packets and 0’s into the single category.

This latter observation leads us to treat 0’s and ACK’s as different types of categorical

features. The effect of this is investigated in Section 4.3.2.6.
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.78621)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.64767)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.54359)

Lookahead order 2 
(Area under ROC curve = 0.80278)

P−value sum algorithm
(Area under ROC curve = 0.67559)

P−value (log) sum algorithm
(Area under ROC curve = 0.76848)

Figure 4.49. ROC curves (File 1 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the same category) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.57238)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.56372)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.49948)

Lookahead order 2 
(Area under ROC curve = 0.61226)

P−value sum algorithm
(Area under ROC curve = 0.46127)

P−value (log) sum algorithm
(Area under ROC curve = 0.51459)

Figure 4.50. ROC curves (File 2 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the same category) (variance lower bound=1)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average ROC Curve

False Alarm Rate

T
ru

e 
D

et
ec

tio
n 

R
at

e

 

 

P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.65469)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.59001)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.5001)

Lookahead order 2 
(Area under ROC curve = 0.80951)

P−value sum algorithm
(Area under ROC curve = 0.55269)

P−value (log) sum algorithm
(Area under ROC curve = 0.62702)

Figure 4.51. ROC curves (File 3 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the same category) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.766)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.71945)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.53292)
Lookahead order 2 
(Area under ROC curve = 0.84746)
P−value sum algorithm
(Area under ROC curve = 0.51255)
P−value (log) sum algorithm
(Area under ROC curve = 0.61702)

Figure 4.52. ROC curves (File 5 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the same category) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.97349)
P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.91823)
P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.90502)
Lookahead order 2 
(Area under ROC curve = 0.97326)
P−value sum algorithm
(Area under ROC curve = 0.96454)
P−value (log) sum algorithm
(Area under ROC curve = 0.9813)

Figure 4.53. ROC curves (File 8 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the same category) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.69166)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.62381)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.52389)

Lookahead order 2 
(Area under ROC curve = 0.78897)

P−value sum algorithm
(Area under ROC curve = 0.461)

P−value (log) sum algorithm
(Area under ROC curve = 0.52146)

Figure 4.54. ROC curves (Combined File Web - Zeus) (alternating feature representation)
(categorical features 0 and ACK, which are considered in the same category) (variance lower
bound=1)

4.3.2.6 Alternating feature representation results - with categorical features

0 and ACK (separately)

These results are obtained by using the feature representation defined in Section 2.5.5.

The results in Figures 4.55 - 4.59 belong to this approach.

Comparison of methods: As in the previous set of results (Section 4.3.2.5), p-value

clustering with order 2 performs well, compared to others. But, Lookahead is the best

performing method in almost all of the files, the only exception being File 6 (Figure 4.57)

where p-value clustering with order 2 outperforms all methods.

Effect of order increase in P-value clustering: Like in the previous approaches that

employ categorical features, order increase strictly worsens the AUC performance.

Comparison with previous categorical approaches: Here, p-value clustering is worse

than the case where only 0’s are categoricals (Section 4.3.2.4). In the current approach,

although the intention of separating the categories of 0’s and ACKs was to obtain im-

provement due to avoiding any mixing of these 2 types of categorical features compared

to Section 4.3.2.5, there is no uniform improvement for all methods and files. The con-

tinuation of relatively poor performance of p-value clustering methods might be due to

the tendency of the algorithm to form large clusters.
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Hence, these observations further lead us to make changes to the current approach,

carrying us to the next subsection (Section 4.3.2.7).
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.75398)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.74135)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.54012)

Lookahead order 2 
(Area under ROC curve = 0.83012)

P−value sum algorithm
(Area under ROC curve = 0.67678)

P−value (log) sum algorithm
(Area under ROC curve = 0.81085)

Figure 4.55. ROC curves (File 1 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the separate categories) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.70692)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.64455)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.54759)

Lookahead order 2 
(Area under ROC curve = 0.78831)

P−value sum algorithm
(Area under ROC curve = 0.55806)

P−value (log) sum algorithm
(Area under ROC curve = 0.63668)

Figure 4.56. ROC curves (File 3 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the separate categories) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.57894)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.50745)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.49802)

Lookahead order 2 
(Area under ROC curve = 0.55831)

P−value sum algorithm
(Area under ROC curve = 0.43666)

P−value (log) sum algorithm
(Area under ROC curve = 0.46212)

Figure 4.57. ROC curves (File 6 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the separate categories) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.68013)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.60393)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.49716)

Lookahead order 2 
(Area under ROC curve = 0.80864)

P−value sum algorithm
(Area under ROC curve = 0.62834)

P−value (log) sum algorithm
(Area under ROC curve = 0.69411)

Figure 4.58. ROC curves (File 7 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the separate categories) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.70273)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.57809)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.5105)

Lookahead order 2 
(Area under ROC curve = 0.78613)

P−value sum algorithm
(Area under ROC curve = 0.46328)

P−value (log) sum algorithm
(Area under ROC curve = 0.5252)

Figure 4.59. ROC curves (Combined File Web - Zeus) (alternating feature representation)
(categorical features 0 and ACK, which are considered in the separate categories) (variance lower
bound=1)
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4.3.2.7 Alternating feature representation results - with categorical features

0 and ACK (separately) (normalized p-values)

These results are obtained by using the feature representation defined in Section 2.5.6.

The results in Figures 4.60 and 4.61 belong to this approach.

Effect of normalization: Now, with the normalization applied to p-values obtained by

each test, p-value clustering methods got better, making (especially order 2) clustering

perform close to Lookahead.

Effect of order increase in P-value clustering: Unlike the previous approaches that

employ categorical features, in one result (Figure 4.60) order 5 is better than order

3. But, the other result (Figure 4.61) shows that the performance degrades as order

increases.

Positive effect gained by normalizing the p-values, making the maximum value reach

1, and the reason of this being the usage of probabilities corresponding to each condi-

tioning context brings our minds removing the probabilities and seeing the effect of this

to the performance. This is investigated in the next subsection.
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.79031)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.73529)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.7652)

Lookahead order 2 
(Area under ROC curve = 0.80777)

P−value sum algorithm
(Area under ROC curve = 0.70322)

P−value (log) sum algorithm
(Area under ROC curve = 0.81106)

Figure 4.60. ROC curves (File 1 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the separate categories) (p-values for each test
normalized) (variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.72071)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.68461)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.64074)

Lookahead order 2 
(Area under ROC curve = 0.74155)

P−value sum algorithm
(Area under ROC curve = 0.44603)

P−value (log) sum algorithm
(Area under ROC curve = 0.52338)

Figure 4.61. ROC curves (File 4 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the separate categories) (p-values for each test
normalized) (variance lower bound=1)

4.3.2.8 Alternating feature representation results - with categorical features

0 and ACK (separately)(without probabilities)

These results are obtained by using the feature representation defined in Section 2.5.7.

To remind, in this approach, 0’s and ACKs are categoricals regarded in different cate-

gories, but the probabilities that correspond to each category are not used in the p-value

calculations. The results in Figures 4.62 and 4.63 belong to this approach.

Comparison with using probabilities: Section 4.3.2.6 experiments use the probabili-

ties, but here they are not used. Here, we see that not using the probabilities of the

conditioning contexts improve the performance of the clustering methods. In compar-

ison with alternating feature representation without any conditioning or modifications

(coresponding results are in Section 4.3.2.1), the p-value clustering performance for one

file is better here (File 4), and it is worse for another file (File 1).

Effect of order increase in P-value clustering: This has a slight degrading effect on

the AUC performance for both order transitions (2 → 3 and 3 → 5) in Figure 4.62 and

same effect only in 3→ 5 transition in Figure 4.63.
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.80616)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.8016)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.79486)

Lookahead order 2 
(Area under ROC curve = 0.80983)

P−value sum algorithm
(Area under ROC curve = 0.693)

P−value (log) sum algorithm
(Area under ROC curve = 0.77886)

Figure 4.62. ROC curves (File 1 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the separate categories) (without probabilities)
(variance lower bound=1)
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P−value clustering algorithm
(Max test combination order = 2)
(Area under ROC curve = 0.87555)

P−value clustering algorithm
(Max test combination order = 3)
(Area under ROC curve = 0.88091)

P−value clustering algorithm
(Max test combination order = 5)
(Area under ROC curve = 0.86672)

Lookahead order 2 
(Area under ROC curve = 0.84268)

P−value sum algorithm
(Area under ROC curve = 0.7098)

P−value (log) sum algorithm
(Area under ROC curve = 0.81889)

Figure 4.63. ROC curves (File 4 Web - Zeus) (alternating feature representation) (categorical
features 0 and ACK, which are considered in the separate categories) (without probabilities)
(variance lower bound=1)
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4.3.3 Summary

In this chapter, experimental results are provided that enable us to make comparisons

between different feature representations and anomaly detection approaches. According

to these comparisons, the feature representation that achieves the best discrimination

is the alternating feature representation. It is observed that the other representations,

which use different conditioning contexts, tend to suffer from poorly informed null in

comparison to the alternating representation to which all of the training set is available.

Among the methods, there is not a method that uniformly achieves the best perfor-

mance in every case. Performances of the methods depend on the dataset. Properties of

the datasets that affect the performance are physical port number that the file is cap-

tured, dataset size, and capture time of day. It is observed that traffic in certain ports

tend to have less diversity and more separable from anomalous traffic. Also, dataset size

is directly proportional to training set size in our experiments, which determines how

well-informed null is. Time of day is another factor that has effect on the performance.

The files that are captured early in the morning tend to have less diversity and more

separable from anomalies, similar to the effect that is observed for some ports.

When null is well-informed, certain features have more discrimination power, which

are selected by the feature selection methods (p-value clustering approaches). But, when

null is poorly informed, collective decision of all of the features are more successful in

discrimination. In the latter case, p-value sum and p-value (log) sum methods perform

better than p-value clustering approaches.

The above comments are mostly based on area under ROC assessment. It is worth

mentioning that, on the average, p-value clustering (order 2) is the best when early

detection performance is evaluated by using true positive rate in the first 40 detections.



Chapter 5
Background – Network Neutrality,

Games, and Internet Caching

Another vein of this thesis has to do with the network neutrality debate. Mainly, inter-

actions between ISPs, CPs, and consumers are analyzed. Effects of caching on pricing

are investigated. This chapter outlines the revenue and demand models that are used in

Chapters 6 and 7. Reader must keep in mind that the notation used in the rest of this

thesis is unrelated with the previous chapters.

5.1 Network Neutrality

Network neutrality has been supported by the Federal Communication Commission in

the United States (with the possible exception of the cellular wireless access context

[11, 50]). Basically, network neutrality stipulates that

• two hypothetical sessions that are identical in terms of transmission patterns (bi-

trates), should be treated the same irrespective of the applications in play for the

sessions (i.e., application neutrality), and

• each end-host of a bidirectional session should pay only once to their own ISP for

Internet access (i.e., no side payments to remote ISPs).

A communication network is said to be neutral if satisfies both of the above concepts

(it is both application neutral and does not require side-payments for use by remote

content providers). Application neutrality means that the network does not handle

packet-traffic differently based on the application type, e.g., videos from Netflix are
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handled the same as the ISP’s own managed streaming video service over commodity IP.

It is worth mentioning that application neutrality allows discrimination based on traffic

volume and end-user specified priorities. So, differentiated services among application

types is neutral if requested by end-users themselves, whereas application differentiation

implemented unilaterally by an ISP is not application neutral.

So, departures from application neutrality are permitted at the request of the end-

users, e.g., if the end-user requests a higher quality-of-service (QoS) for a specific session.

Also, neutrality permits ISPs to act on aggregate traffic volume or to limit aggregate traffic

bandwidth. As an example of the former, the ISP could enforce a quota stipulated in an

end-user access agreement; such quotas are more tolerable by cellular wireless customers

owing to the convenience of mobile access. Note that a discussion of how the presence of

such access quotas (and other types of usage-priced overages) raises additional security

concerns over flat-rate priced access without traffic volume quotas [77]1 is given in,

e.g., [51]; i.e., the departure from flat-rate pricing incentivizes more secure end-hosts.

Network neutrality continues to be debated as its core economic issues as described

in, e.g., [45], have not been resolved. The debate concerns all participants in the enor-

mous and growing Internet economy: Internet service (access) providers (ISPs), content

providers (CPs, including providers of computing services), end-user consumers, and

government regulators.

5.2 Games

In Chapters 6 and 7, games between ISPs, CPs, and end-users are analyzed. In Section

5.2.1, the demand model that is used in the following chapters is explained and motivated.

Revenue model is also explained here. In Section 5.2.2, the (interior) Nash equilibrium is

explained, since this is investigated in the games that will be encountered in the following

chapters, under different scenarios. Although this section includes the basics, depending

on the specific scenario, the models provided here will be modified when it is necessary.

5.2.1 Revenue and Demand Models

Suppose there is a provider (or providers having common consumers) whose revenue

from its subscribers due to its local content is

U = pD, (5.1)

1Flat-rate (wired) residential-broadband end-user contracts typically do involve traffic bandwidth lim-
itations that are highly asymmetrical favoring the downlink.
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where p is a usage-based price and D is the total demand at that price. Note that ISPs

are continuing to depart from pure flat-rate pricing (based on access bandwidth) for

unlimited monthly volume, e.g., [95, 16].

Following [52], suppose that there are two broad classes of applications, one of which

is significantly sensitive to congestion of access bandwidth, e.g., delay-sensitive inter-

active real-time applications. Assume that applications of the other, best-effort type

are unlikely to engage in usage based-pricing for access bandwidth. As pricing reduces,

the demand for access-bandwidth reservation increases, so causing additional conges-

tion so that best-effort service will be increasingly inadequate for congestion-sensitive

applications. Therefore, the demand for usage-priced access-bandwidth reservation may

accelerate with reduced price. More specifically, say there is positive threshold

Dθ < Dmax

such that overall demand sensitivity to price is greater when D ≥ Dθ than when D < Dθ.

That is, for

dmax > dθ,

a convex, piecewise linear model for access bandwidth would be

D(p) = max{Dmax − dmaxp, D̂θ − dθp}, (5.2)

where

D̂θ = Dθ + (Dmax −Dθ)dθ/dmax,

pθ = (Dmax −Dθ)/dmax,

pmax = D̂θ/dθ = pθ +Dθ/dθ,

so that D(pθ) = Dθ, see Figure 5.1.

So, in this model, in the price range [pθ, pmax] (equivalently, demand range [0, Dθ])

corresponds to low demand sensitivity to price, dθ. The pricing range [0, pθ] (demand

range [Dθ, Dmax]), when delay-sensitive applications typically need to adopt usage-priced

(reserved or priority) access-bandwidth service, corresponds to higher demand sensitivity

to price, dmax.

Alternatively, suppose a convex, differentiable demand model that can approximate
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Figure 5.1. Convex, piecewise-linear demand response

(5.2), specifically

D(p) = Dmax(1− p/pmax)α. (5.3)

Here, α ≥ 1 and given dmax > dθ > 0 and 0 < Dθ < Dmax, pmax may be found using

D′(0) = −dmax and D′((D)−1(Dθ)) = D′(pθ) = −dθ. The specific forms of demand in

Eq. (5.2) and (5.3) are studied herein because they are tractable.

In [52], we explored the interior Nash equilibria resulting from such convex demand

responses. Note how the above models reduce to linear demand response (e.g., by taking

α = 1), i.e., revenue quadratic in prices, as assumed in many prior papers, e.g., [34].

In the following Chapters (6 and 7), the revenue and the demand models will be

based on Eqs 5.1 and 5.3, respectively. The pricing and demands will be changing due

to the differences in the models used in those chapters, which will lead to modifications

in revenue and demand formulations.

5.2.2 Nash Equilibrium

In Chapters 6 and 7, we will find the Nash equilibrium for the corresponding game in

each chapter. In these games, players aim to maximize their utility by changing their

pricing strategies.

The Nash equilibrium is a “stalemate” pricing point at which neither players’ utility

will improve by a strategy change. In the following chapters, a player can be an ISP,

eyeball ISP, or CP depending on the context. The strategy of a player is only the price

that is determined it. Here, to find the Nash equilibrium point, we need to find the point
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where none of the players’ utility will improve when it changes its pricing. So, at Nash

equilibrium point, the following must be satisfied for each player:

arg max
pi

U(pi, p̄
∗
i ) =p∗i (5.4)

where U is the utility, pi is the price of the ith player, and p̄∗i is the prices of the other

players at the equilibrium.

For two players whose utilities and prices are indexed by a and b, the Nash equilibrium

point (p∗a, p
∗
b) needs to satisfy

arg max
pa

Ua(pa, p
∗
b) =p∗a and (5.5)

arg max
pb

Ub(p
∗
a, pb) =p∗b . (5.6)

5.3 Internet Caching

Especially for the sensitive traffic that require high quality-of-service (QoS), the proxim-

ity of the physical location of requested content is crucial for decreasing delay experienced

by the end-users [41]. Caching significantly reduces the average response time for Web

data requests (of course, the fraction of cached content plays a big role on how much

improvement is obtained) [90]. Hence, keeping the data close to the users by caching

data is of high importance. ISPs are close to the end-users, which makes them a good

candidate for caching data. In fact, some large content providers (CPs) cache their con-

tent around the world on their own servers, while smaller CPs often use intermediary

content distributors, such as Akamai, that have caching agreements with local ISPs [39].

If there are highly dedicated partnerships between ISPs and CPs, ISPs participating

in these partnerships can be named as eyeball ISPs. So, as well as the scenario where

ISPs cache content of CPs, the scenarios in which eyeball ISPs cache a CP’s content or

another eyeball ISPs content are also possible.

The contribution of caching to the QoS, for especially the premium services, raises

the necessity to determine the amount of content to be cached. Web caches obviously

require investment in memory. But, being able to meet the query of the end-user locally

saves on the bandwidth that would otherwise be needed to bring the content that the

end-user requested (as well as improvement on QoS). In addition to the decision on

the size of the cache needed, another decision to make is the policy on how to use the

available cache memory. A cache hit means that a request made to the cache is already
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in the cache. Otherwise, if the requested data is not in the cache, then a cache miss is

said to occur. The cache replacement policies are crucial for effective management of

the caches. They basically aim to maximize the proportion of the cache hits among the

total queries made to the cache. Many policies can be employed as a cache replacement

policy. The more notable one among these is the Least Recently Used (LRU) [90, 17].

As the name implies, in this policy, if there is a cache miss, the requested object replaces

the object that hasn’t been used for the longest time.



Chapter 6
Network Neutrality – Effect of

Caching in a Network with Two

Eyeball ISPs

In this chapter, we first give a model involving two different eyeball ISPs connected at

peering point(s), where revenue is generated corresponding to net traffic transmitted, is

initially considered in Sections 6.1 and 6.2. We consider a caching model captured by a

single parameter, Φ, affecting the revenue generated by transit traffic. We assume that

there is no limit on the throughput downstream to the users of each ISP. In Section 6.3,

we modify the model so that there is an upper bound on the throughput that the users

can receive via their ISP. So, two possible mechanisms to distribute the allowed through-

put among the types of demands (local or remote content) are introduced. We next

consider the scenario where there are multiple providers competing for the same group

of users (without the throughput limit condition, as in the initial model). User/customer

migration among competing ISPs due to the price difference between them is modeled

by their “loyalties” to the ISPs. In Section 6.4, consideration of two ISPs competing for

the same set of users is added to the model described in Section 6.2. We provide the

results of numerical experiments on performance at Nash equilibrium in Section 6.5.

6.1 Two different eyeball ISPs

We consider a game focusing on two different eyeball ISPs, indexed a and b, on a platform

of users and CPs, i.e., the ISPs also serve as CPs so no separate pricing by CPs is
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Figure 6.1. Caching remote content

modeled. For k, j ∈ {a, b}, the demand for ISP k’s content is Dk(pj) when it is based on

ISP j’s access-bandwidth price pj . In the following, the same price pj will be used by

ISP j irrespective of content source, i.e., content is neutrally priced in this sense.

Suppose there are peering points between these two ISPs where net transit traffic

flow in one direction will correspond to net revenue for the (net) receiving ISP at rate

pt from the (net) transmitting ISP. For example, France telecom charges pt =$3/Mbps,

whereas pricing from the digital subscriber line access multiplexer (DSLAM) to core,

i.e., access bandwidth, for their content providers is $40/Mbps [86]. This said, many

existing peering agreements among non-transit ISPs have no transit pricing, i.e., pt = 0.

See [30, 105] for recent studies of models of transit pricing for a network involving a

transit ISP between the content providers and end-user ISPs.

Without caching, transit traffic volume is obviously maximal and remote content may

be subject to additional delay possibly increasing demand (reducing demand sensitiv-

ity) for usage-priced bandwidth reservations. However, poorer delay performance may

instead reduce demand for remote content or cause subscribers to change to ISPs that

cache remote content. So, caching will result in reduced demand for premium services by

transit traffic; in the following, we will model this with a caching factor Φk. We assume

fixed caching factors for each of the ISPs, which means the selected caching factors by

the ISPs do not change no matter how their demand changes.
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6.2 Three different congestion points per ISP, fixed

caching factors

By simply separately accounting for the demand for premium-access service by two

different user populations with similar content preferences, we take the utilities as:

Ua(pa, pb) =Da(pa)pa + ΦaDb(pa)pa

+ [(1− Φa)Db(pa)− (1− Φb)Da(pb)]
+pt,

Ub(pa, pb) =Db(pb)pb + ΦbDa(pb)pb

+ [(1− Φb)Da(pb)− (1− Φa)Db(pa)]
+pt

where [x]+ := max{x, 0} in the second (transit revenue) terms. Note that Φk ≤ 1 will be

chosen by ISP k at its minimal value, which we here assume to be strictly positive again

because an ISP that does not cache any remote content may lose subscribers, or demand

for remote content may be reduced owing to poor delay performance, cf., Section 6.4.

We will also assume that pt is fixed and, by volume discount, pt < min{pa, pb}. Also, we

have assumed different “upstream” congestion points for local and remote traffic and no

revenue from cached (best-effort) traffic. Moreover, for α > 1 (i.e., not linear demand

response) note how this model assumes three different congestion points, one at the

peering point, one at the local content source, and the last one at the cached content

source, but not a single one further downstream toward the users, cf., next section. That

is, in this section, we consider three separate congestion points per ISP for an example

of convex demand (assumptions that include the linear demand-response scenario as a

special case).

Again suppose, for k ∈ {a, b}, that

Dk(p) = Dmax,k

(
1− p

pmax

)α
, (6.1)

where the maximal price pmax > 0 and α ≥ 1 are also assumed to be common parameters

for both ISPs to simplify the following expressions for Nash equilibria. Without loss of

generality, assume the demand ratio

δ :=
Dmax,b

Dmax,a
≤ 1, (6.2)

i.e., demand for ISP a’s content is generally higher than that of ISP b.
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The first order Nash equilibrium conditions and the solutions of these for 3 cases are

provided below.

Case 1: (1− Φa)Db(p
∗
a) > (1− Φb)Da(p

∗
b).

∂Ua(pa, pb)

∂pa
=D′a(pa)pa +Da(pa) + Φa[D

′
b(pa)pa+

Db(pa)] + (1− Φa)D
′
b(pa)pt = 0

∂Ub(pa, pb)

∂pb
=D′b(pb)pb +Db(pb) + Φb[D

′
a(pb)pb

+Da(pb)] = 0

The solution is as follows:

p∗a =
pmax

1 + α
− pt(1− Φa)δα

(1 + α)(1 + Φaδ)
, (6.3)

p∗b =
pmax

1 + α
. (6.4)

The requirement pt < p∗a < p∗b < pmax gives the following condition on pt for an

interior Nash equilibrium:

pmax

pt
>1 +

α(δ + 1)

1 + δΦb
. (6.5)

Another way to put the case condition (1− Φa)Db(p
∗
a) > (1− Φb)Da(p

∗
b) is:

1 <
(1− Φa)δ

1− Φb

(
pmax − p∗a
pmax − p∗b

)α
, and (6.6)

1 <
(1− Φa)δ

1− Φb

(
1 +

(1− Φa)δpt
(1 + Φaδ)pmax

)α
. (6.7)

Case 2: (1− Φa)Db(p
∗
a) < (1− Φb)Da(p

∗
b).

∂Ua(pa, pb)

∂pa
=D′a(pa)pa +Da(pa) + Φa[D

′
b(pa)pa

+Db(pa)] = 0

∂Ub(pa, pb)

∂pb
=D′b(pb)pb +Db(pb) + Φb[D

′
a(pb)pb

+Da(pb)] + (1− Φb)D
′
a(pb)pt = 0
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The solution is as follows:

p∗a =
pmax

1 + α
, (6.8)

p∗b =
pmax

1 + α
− pt(1− Φb)α

(1 + α)(δ + Φb)
. (6.9)

The requirement pt < p∗b < p∗a < pmax imposes the following condition on pt:

pmax

pt
>1 +

α(δ + 1)

δ + Φb
(6.10)

The case condition (1− Φa)Db(p
∗
a) < (1− Φb)Da(p

∗
b) can be rewritten as:

1 >
(1− Φa)δ

1− Φb

(
pmax − p∗a
pmax − p∗b

)α
, and (6.11)

1 >
(1− Φa)δ

1− Φb

(
1 +

(1− Φa)δpt
(1 + Φaδ)pmax

)α
. (6.12)

Case 3: (1− Φa)Db(p
∗
a) = (1− Φb)Da(p

∗
b).

∂Ua(pa, pb)

∂pa
=D′a(pa)pa +Da(pa)

+ Φa[D
′
b(pa)pa +Db(pa)] = 0

∂Ub(pa, pb)

∂pb
=D′b(pb)pb +Db(pb)

+ Φb[D
′
a(pb)pb +Da(pb)] = 0

The solution of above equations is as follows:

p∗a = p∗b =
pmax

1 + α
(6.13)

The case condition reduces to

1− Φb

1− Φa
=
Dmax,b

Dmax,a
= δ (6.14)

6.3 One congestion point per ISP, fixed caching factors

In this scenario, at ISP a, the demands Da(pa) (demand for local content) and Db(pa)

(demand for remote content) share a common, significant congestion point proximal to
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the users, e.g., in a wireless-access setting. Again, we consider a system where the players

(eyeball ISPs) select access prices (plays) pa, pb > pt.

Given the prices pa for local content, we want an expression for demand D̂aa (local

content at ISP a) and D̂ba (remote content at ISP a) that has the following intuitive

property:

lim
Dmax,b→0

D̂aa = Da(pa) and lim
Dmax,a→0

D̂ba = Db(pa). (6.15)

And similarly for ISP b regarding D̂bb and D̂ab as a function of pb.

The following assumed property is also intuitive because the presence of remotely

originated traffic will congest locally originated traffic and vice versa:

D̂aa ≤ Da(pa) and D̂ba ≤ Db(pa) (6.16)

and similarly for the other ISP b.

Proportion Rule: Suppose that the throughput limit downstream to the users is Lk

for ISP k ∈ {a, b}. Then, at ISP a, the demands are as follows:

D̂aa =


Da(pa)

Da(pa) +Db(pa)
La, if Da(pa) +Db(pa) > La

Da(pa) , else.

and

D̂ba =


Db(pa)

Da(pa) +Db(pa)
La, if Da(pa) +Db(pa) > La

Db(pa) , else.

And similarly for ISP b.

Critical Price Rule: Another way to split the throughput among the demands is as

follows. For ISP a, when Da(pa) +Db(pa) > La, a new price p∗a is chosen so that

Da(p
∗
a) +Db(p

∗
a) = La. (6.17)

If pa < p∗a, then congestion will occur.

So, the expressions for the ISP revenues here can be taken as

Ua(pa) =D̂aapa + ΦaD̂bapa
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+ [(1− Φa)D̂ba − (1− Φb)D̂ab]
+pt

Ub(pb) =D̂bbpb + ΦbD̂abpb

+ [(1− Φb)D̂ab − (1− Φa)D̂ba]
+pt.

6.4 Three different congestion points per ISP, fixed

caching factors, multiple providers of one of the types

In this scenario, ISP a in Figure 6.1 is replaced by two ISPs, namely ISP a1 and a2,

which compete for the same group of subscribers. So, we need to consider three utility

functions; Ua1, Ua2, Ub; three demand functions, Da1, Da2, Db; and three access prices

for each of the ISPs’ own subscribers, pa1, pa2, pb. But the number of caching factors

increases to four: Φa1,b, Φa2,b, Φb,a1, and Φb,a2 (Φm,n meaning willingness of ISP m to

cache the content of ISP n). And, there are 2 transit prices, that are pt1 (for the traffic

between ISP a1 and ISP b) and pt2 (for ISPs a2 and b).

Ua1(pa1, pb) =σa1Da1(pa1)pa1 + σa1Φa1,bDb(pa1)pa1

+ [σa1(1− Φa1,b)Db(pa1))

− (1− Φb,a1)Da1(pb)]
+pt1

Ua2(pa2, pb) =σa2Da2(pa2)pa2 + σa2Φa2,bDb(pa2)pa2

+ [σa2(1− Φa2,b)Db(pa2))

− (1− Φb,a2)Da2(pb)]
+pt2

Ub(pa1, pa2, pb) =Db(pb)pb + Φb,a1Da1(pb)pb

+ Φb,a2Da2(pb)pb + [(1− Φb,a1)Da1(pb)

− σa1(1− Φa1,b)Db(pa1)]+pt1

+ [(1− Φb,a2)Da2(pb))

− σa2(1− Φa2,b)Db(pa2)]+pt2

where

σai =
1/pai

1/pa1 + 1/pa2
, ∀ i ∈ {1, 2}

represents customer stickiness (loyalty, inertia) to the ith ISP (e.g., [21]); i.e., since

σai ∝ 1/pai, the subscribers will not completely switch to the ISP with the lowest price.

The demand-response model provided in (5.3) is used here, now with k ∈ {a1, a2, b}.
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6.5 Numerical experiments

First, numerical results were obtained for the scenario where there are three congestion

points per ISP (with fixed caching factors, as explained in Section 6.2) with: α ∈ {1, 2},
Dmax,a = 20, Dmax,b = 10, pmax = 5, pt = 1, Φa = 0.5, and Φb = 0.3 as the selected

parameter values.

Figure 6.2. Ua(pa, pb) (3 congestion points for each ISP, fixed caching factors) (α = 1)

By using Ua(pa, pb) (Figure 6.2) and Ub(pa, pb) (Figure 6.3), the Nash equilibrium

point (p∗a, p
∗
b) were found in the following way:

1. Uniformly at random over (pt, pmax) select an initial point γ(0) = (p
(0)
a , p

(0)
b ).

2. ∀ k ≥ 1, find the updated point γ(k) = (p
(k)
a , p

(k)
b ) by synchronous best-response

updates, which are

p(k)
a = arg max

pa
Ua(pa, p

(k−1)
b )

p
(k)
b = arg max

pb
Ub(p

(k−1)
a , pb).

3. (a) If γ(k−1) ≈ γ(k), stop.

(b) Else, return to step 2).
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Figure 6.3. Ub(pa, pb) (3 congestion points for each ISP, fixed caching factors) (α = 1)

It was observed that the Nash equilibrium point found by using the above procedure

is the same as the equilibrium point corresponding to the proper case solution provided

in Section 6.2 (regardless of the randomly selected starting point) and it was found in

just a few iterations.

It can be observed in Figures 6.6 and 6.7 that p∗a > p∗b and Ua(p
∗
a, p
∗
b) > Ub(p

∗
a, p
∗
b) for

both values of α. This is intuitive since Dmax,a > Dmax,b, which implies that the demand

for ISP a’s content will be larger than ISP b’s at the same price. This immediately

implies larger gain for ISP a, which also means that ISP a might have some margin for

increasing pa in order to gain even more utility. Therefore p∗a > p∗b in this setting.

Next, numerical results were obtained for the model defined in Section 6.3, where

one congestion point per ISP and fixed caching factors assumptions are used. Here, the

throughput limit is split among the ISPs according to the proportion rule, cf., Section 6.3.

α ∈ {1, 2}, Dmax,a = 20, Dmax,b = 10, pmax = 5, pt = 1, Φa = 0.5, Φb = 0.3, La = 50,

and Lb = 5 are the selected parameters values. Notice that one of the throughput limits

(La) is selected significantly larger than the other one (Lb) to analyze the scenario where

congestion does not occur downstream to the users of ISP a, whereas it does occur for

ISP b. If both of the throughput limits are selected very large, then the problem reduces

to the three congestion points scenario (Section 6.2), since there will be no distribution

of the throughput limit between the two different kinds of demand at the congestion
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Figure 6.4. Ua(pa, pb) (3 congestion points for each ISP, fixed caching factors) (α = 2)

point (of each ISP).

The Nash equilibrium point was again quickly found by using synchronous best-

response updates.

In Figures 6.8 and 6.9, similar behaviors are observed compared with Figures 6.6 and

6.7. But, it is worth noting that in Figure 6.9, for values of pb where Ub is increasing (for

both α ∈ {1, 2}), the capacity Lb is fully utilized. In this region, increasing pb does not

lead to a decrease in the demand, which means there is a linear increase in the utility of

ISP b. But, after the peak, the total demand at ISP b is smaller than Lb, therefore the

increase in price pb leads to decreases in both demand and utility.

Finally, numerical results were obtained for the case where there are multiple provid-

ers competing for the same group of subscribers (Section 6.4). Again, synchronous

best-response updates are used, but for three utility functions (Ua1(pa1, pa2, pb),

Ua2(pa1, pa2, pb), and Ub(pa1, pa2, pb)) depending on the corresponding three access pricing

parameters (pa1, pa2, and pb). So, generally, for n competing ISPs (n = 2 in our case of

ISPs a1 and a2), the synchronous best-response update step (n+ 1 player synchronous

updates) will be as follows:

p
(k)
i = arg max

pi
Ui(pi, p

(k−1)
−i ), ∀ i
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Figure 6.5. Ub(pa, pb) (3 congestion points for each ISP, fixed caching factors) (α = 2)

where i is the index of the ISP (including the non-competing ISP (in our case, ISP b)),

pi is the price used by ISP i, and p−i is the set of prices used by the other ISPs.

The parameter values can be selected in various combinations. We used the param-

eters Dmax,a1 = 20, Dmax,a2 = 20, Dmax,b = 10, pmax = 5, pt1 = 1, pt2 = 1, Φa1,b = 0.2,

Φa2,b = 0.8, Φb,a1 = 0.5, and Φb,a2 = 0.5. These were selected so as to analyze the

effect of (static but different) caching factors of competing ISPs (ISPs a1 and a2) on the

utilities. It can observed from Figures 6.10 and 6.11 that the ISP with smaller Φ (a1)

also has (again following intuition) a smaller utility compared to its competitor ISP (a2).

The effect of α on the utilities and the equilibrium prices are the same as the previous

cases.
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Figure 6.6. Ua(pa, p
∗
b) (3 congestion points for each ISP, fixed caching factors)
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Figure 6.7. Ub(p
∗
a, pb) (3 congestion points for each ISP, fixed caching factors)



115

1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

35

p
a

U
a

 

 
α=1
α=2

Figure 6.8. Ua(pa, p
∗
b) (1 congestion point for each ISP, fixed caching factors)
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Figure 6.9. Ub(p
∗
a, pb) (1 congestion point for each ISP, fixed caching factors)
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Figure 6.10. Ua1(pa1, p
∗
a2, p

∗
b) (3 congestion points for each ISP, fixed caching factors, competing

ISPs)
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Figure 6.11. Ua2(p∗a1, pa2, p
∗
b) (3 congestion points for each ISP, fixed caching factors, competing

ISPs)
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ISPs)



Chapter 7
Network Neutrality – Effect of

Caching in Information-Centric

Networks

This chapter is organized as follows. Section 7.1 provides a motivational discussion on the

connection between network neutrality, ISP-level content caching, and future Internet

architectures. In Section 7.2, we summarize prior results on a simple ISP-CP game for the

“Internet” setting. In Section 7.3, we adapt these results to the ICN setting and extend

the model to account for content caching by the ISP. A key element of the extension is a

price-convex demand-response motivated by delay-sensitivity of the applications/content

under consideration. In Section 7.4, we give the results of a numerical study.

7.1 Background discussion

7.1.1 Network neutrality and ISP-level content caching

In Chapter 5.1, concerns about flat rate pricing are provided. Moreover, there may

be penalties for asymmetric (net) traffic-aggregates at inter-ISP and/or ISP/transit-

provider peering points [37, 105]. In some important instances, these penalties amount

to a side-payments between CPs and remote ISP. For example, a large CP may team

with a transit-provider (TP) and the peerings between that TP and an ISP may result

in traffic volumes that are naturally much higher from TP to ISP than vice versa. This

traffic asymmetry will generate revenue for the ISP from the TP, costs that the TP will
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naturally try to recover from the CP1 So for the “Internet” setting, we assume a net

side-payment from CP to ISP in the following.

Note that the presence of such transit costs may logically disincentivize ISP-level

content caching, e.g., [53]. However, poor transfer-delay performance due to a lack of

content caching by the ISP may diminish end-user demand (including causing end-users

to change to a competing ISP)2 For the “Internet” setting, we assume that ISPs are

not incentivized to cache content in the following, but we do model the effect of delay

performance on demand.

Here, we generally assume consumers are, to some extent (for some delay-sensitive

applications), willing to pay usage-based fees. Providers are then competing to settle on

their usage-based prices, their goal being to maximize associated revenues. Note that a

null price in the following does not mean a provider has no income, but rather that all

their monthly revenues come from flat-rate priced service components. The study of the

flat-rate regime is, however, out of the scope of this thesis; see [77, 93] for recent surveys

of such issues.

7.1.2 Future Internet Architectures

In the past few years, several NSF Future Internet Architecture (FIA) projects [81]

and EU projects (e.g., [2]) have proposed dynamic management of content by the net-

work layer, i.e., Content-Centric Networking (CCN) [12, 40]; e.g., eXpressive Internet

Architecture (XIA) [10] (via use of their Content IDentifier (CID)3), and Named Data

Networking [49]. Some of them leverage prior proposals for structured4 and unstruc-

tured peer-to-peer file-sharing systems, and notions of indirection [100]. In CCNs, the

end-users query the network with content identifiers that are typically hierarchically ar-

ranged (for scalable forwarding) and presume content “providers” (the publishers of a

publish-subscribe system) who have sorted out semantic issues associated with content

ontology.

1Recently, ISPs have also targeted advertising revenue of CPs [79] by filtering-out advertising from
delivered content [88], presumably under the premise that such advertising was not explicitly requested
(authorized) by the end-user.

2A similar trade-off occurs when large mirrored Content Distribution Networks (CDNs) connect to
large ISPs: the ISP’s customers benefit from increased proximity of content, but the ISP may lose “transit
revenue” and anyway want the CDN, or any individual CP, to help pay for infrastructure costs associated
with access to their customers, “Now what [the content providers] would like to do is use my pipes free,
but I ain’t going to let them do that because we have spent this capital and we have to have a return on
it” [78]. See also [25, 75] regarding ISP infrastructure investment modeling and analysis.

3The XIA framework also includes service identifiers (SIA) and end-host identifiers (HID), the latter
similar to existing IPv4 addresses.

4Which in turn leveraged DHTs used to manage some data centers.
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In addition to (or possibly instead of) a hierarchical CID system, scalability for a

publish-subscribe CCN can be achieved via limited scoping. For example, identifiers

based-on/learned from local caching will only have local meaning. So, such identifiers

could be reused spatially/horizontally, (this scoping could have physical significance in a

geospatial wireless social network). Under identifier reuse, the possibility of “collision”

could be made small when the identifier-space is large. Locally, the number of CIDs may

be small so that forwarding could be feasibly based on a flat identifier space.

In the following for a future “Information” Centric Network (ICN), we will assume

a coalition of ISP and content resolver/rendezvous-point, the latter selecting a CP or

CDN for each end-user query. If these entities are in fact separate, fairly dividing revenue

between them can be argued through the use of Shapley values, e.g., [68, 69]. Since in

this setting the ISP is pulling content, rather than the CP pushing content as in the

(current) “Internet” setting described in the previous subsection, one can, by the same

argument, expect that the CP should be compensated for their networking costs. So, for

the ICN setting, we assume a reverse in side-payments polarity, from ISP to CP5.

7.2 Problem Set-Up: The Internet model

Suppose there are two providers, one content (CP indexed 2) and the other access (ISP

indexed 1), with common consumer demand-response [34]6. First suppose that the de-

mand response to price is linear:

D = Dmax − d(p1 + p2), (7.1)

where d is demand sensitivity to the price, p1 and p2 are, respectively, the prices charged

by the ISP and CP, and Dmax > 0 is the demand at zero usage based price7. Suppose

the revenue of the ISP is

U1 = (p1 + ps)D, (7.2)

5Note that revenue from embedded advertising may be more fully shared in the ICN setting for the
same reason.

6Leader-follower dynamics, rather than simultaneous play at the same time-scale, are considered in
[?]. For the problem setting considered here, leader-follower dynamics were considered by us in [8] and
provider competition in [21, 53].

7Note that ISPs are continuing to depart from pure flat-rate pricing (based on maximum access
bandwidth) for unlimited monthly volume, e.g., [95, 16].
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where ps is the side payment from content to access provider. Similarly, the revenue of

the CP is

U2 = (p2 − ps)D. (7.3)

Consider a noncooperative game played by the CP and ISP adjusting their prices, re-

spectively p2 and p1, to maximize their respective revenues, with all other parameters

fixed. In particular, the fixed side-payment ps is here assumed regulated. Note that

the utilities are linear functions of ps so that if ps were under the control of one of the

players, it simply would be set at an extremal value.

Figure 7.1. ISP and CP game on a platform of end-user demand-response

The following simple result was shown in [8, 21].

Theorem 1. The interior Nash equilibrium8 is

p∗1 =
Dmax

3d
− ps and p∗2 =

Dmax

3d
+ ps

when

|ps| <
Dmax

3d
, (7.4)

8In this thesis, we do not consider boundary Nash equilibria, where at least one player is selecting an
extremal value for one of their control parameters, often resulting in that player essentially opting out
of the game, or maximally profiting from it at the expense of the other player. The boundary equilibria
are also specified in [8].
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with player utilities

U∗1 , U
∗
2 =

D2
max

9d
.

Note that this result allows ps < 0, i.e., net side payment is from ISP to CP (remu-

neration for content instead of access bandwidth). But in the Internet setting, we take

ps > 0, whether there is direct side-payment from CP to ISP (or, again, indirectly by

payment through the peering contract between the residential ISP and the ISP of the CP

- a contract that penalizes for asymmetric traffic exchange neutrally based on aggregate

traffic volume).

In [21, 52], we showed that the ISP may actually experience a reduction in rev-

enue/utility with the introduction of side payments, using a communal demand model

that had different demand-sensitivity-to-price parameters d per provider type and also

multiple providers of each type (i.e., provider competition). Such a model was also

considered in [9].

In [52], we used a convex, rather than linear, demand response to price, e.g.,

D = Dmax(1− (p1 + p2)/pmax)a, (7.5)

where a ≥ 1 and

pmax = Dmax/d when a = 1.

This model was motivated in [52] by considering two different types of users, as follows.

Suppose that (user-designated) premium class-of-service (CoS) applications are

• delay sensitive,

• given service priority by the ISP over best-effort applications for the bandwidth B

available between CP and ISP,

• subjected to usage-based charges by the ISP at price p1.

Best-effort applications exploit reserved-but-unused bandwidth (≤ B) by the premium

CoS applications, and unreserved bandwidth if any. So, some delay-sensitive applications

may be content with under best-effort CoS when demand for premium CoS is low (hence

reserved-but-unused bandwidth is high). Thus, as demand increases for premium CoS

applications, say because price p = p1+p2 reduces, there may be additional demand owing
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to migration of delay-sensitive applications by more price-sensitive users who would

otherwise tend to assign their delay-sensitive applications to best-effort CoS.

To better motivate this demand model, in Appendix A we derive a (more complex)

price-convex demand response based on the delay-sensitivity of the usage-priced appli-

cations under consideration.

The following simple extension of Theorem 1 was shown in [52] by summing the

first-order conditions ∂Ui/∂pi = 0, i ∈ {1, 2}, cf., (7.7).

Theorem 2. The interior Nash equilibrium for a strictly convex demand response D is

p∗1 = p∗/2− ps and p∗2 = p∗/2 + ps, (7.6)

where p∗ = p∗1 + p∗2 solves

2D(p∗) + p∗D′(p∗) = 0. (7.7)

and |ps| < p∗/2.

For the example of (7.5) with a > 1,

p∗ =
2

2 + a
pmax, (7.8)

U∗1 , U
∗
2 =

p∗

2
D(p∗) =

Dmaxpmax

2 + a

(
a

2 + a

)a
. (7.9)

Again, under communal demand response with only one provider of each type, neither

p∗ = p∗1 + p∗2 nor U∗1 depend on the side payment ps.

7.3 ICN model

Again, in an ICN, residential users request content (or, more generally, information

regarding application services) of the ISP/resolver, and the ISP/resolver decides the

content provider. Therefore in an ICN, it’s reasonable to assume that the side-payment

is from ISP to CP, i.e., ps < 0. Also, the ISP is motivated to cache content, unlike

for our simple Internet case, to reduce the side payment (i.e., avoid paying for, e.g., the

networking costs of the ISP-selected CP to transmit the user-requested content). Suppose

that the ISP decides to cache a fraction κ of the content and this results in lower delay

between the CP and ISP, and a lower required side-payment to the CP, cf., (7.11). If we

model mean delay as 1/(B −D), where B is the service capacity between CP and ISP,
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then with caching factor κ, this delay is reduced to 1/(B − (1− κ)D). For the model of

Appendix B, the demand response:

• is increasing in caching factor κ,

• tends to convex in price as κ→ 0, and

• tends to linear in price as κ→ 1.

In the following for the ICN setting, we take the following simplified form of demand

response than that of Appendix B with these above properties:

D = Dmax(1− (p1 + p2)/pmax)κ+(1−κ)a

= Dmax(1− (p1 + p2)/pmax)a+κ(1−a). (7.10)

Note how in this model, neither Dmax nor pmax are affected by κ, but cf. the linear

demand model (7.14). Because of ISP caching, the ISP and CP utilities generalize to

U1 = (p1 + (1− κ)ps)D − c(κ), (7.11)

U2 = (p2 − (1− κ)ps)D,

again with ps < 0, where c(κ) is the cost of caching borne by the ISP.

We can use the results of Theorem 2 here, with parameters (1−κ)ps and κ+(1−κ)a

instead of ps and a respectively, because the caching cost c component of U1 does not

depend on p2 or p1, and |ps| < p∗/2 implies |(1 − a)ps| < p∗/2. We can conclude that

the optimal utilities for ICN are

U∗1 + c(κ), U∗2

=
Dmaxpmax

2 + κ+ (1− κ)a

(
κ+ (1− κ)a

2 + κ+ (1− κ)a

)κ+(1−κ)a

. (7.12)

In the following section on numerical results, we consider performance at Nash equilibria

as a function of κ (under the assumption that |ps| < pmax/2).

7.4 Numerical results

In this section, we give some numerical results for the models of communal CP/ISP

demand given in the previous sections. Despite the fact that our models do not involve

a lot of parameters, our aim is not a comprehensive numerical study over the entire



125

parameter space. Instead, we give some numerical results for parametric instances to

show how optimal caching factors can be identified and comparisons made between the

“Internet” and ICN scenarios described above. To this end, Figures 7.2-7.6 depict ISP

utility U∗1 /(Dmaxpmax) with demand-exponent parameter a = 2.0. Figures 7.3-7.5 assume

a caching cost that is polynomial in caching factor, i.e., of the form

c(κ) = bDmaxpmaxκ
n,

where b > 0, while Figure 7.6 models caching cost as exponential in caching factor.

In Figure 7.2, b = 0 (i.e., no cache cost, c = 0) and we see that U∗1 increases with

caching factor κ. By (7.12), this figure also represents CP revenue U∗2 for the cases of

Figures 7.2-7.6.

Figures 7.3 and 7.4 illustrate how linear cache cost (n = 1) leads to optimal κ ∈ {0, 1}:
if b ≤ 0.04 then optimal κ = 1, otherwise if b ≥ 0.05 then optimal κ = 0 (the “Internet”

case).

In Appendix C, we argue how c(κ) is convex. Figure 7.5 shows how the ISP utility

may be concave in κ for quadratic (convex) cache cost (n = 2) - here for b = 0.05,

optimal κ ≈ 0.4. Alternatively, we could consider a convex, exponential caching cost

function

c(κ) = b1Dmaxpmax(eb2/(1−κ) − eb2), (7.13)

where b1, b2 > 0. Figure 7.6 shows how the ISP utility may also be be concave - here for

b1 = 0.05 and b2 = 0.2, optimal caching factor κ ≈ 0.5.

Again, note that under the premise that ISP-level caching is not incentivized in for

the (current) Internet setting, we can directly compare against the ISP utilities for the

“Internet” case by simply using the ISP utilities at κ = 0 in these figures.

Finally, consider the simpler case of demand-response that is linear in price. We can

take the caching factor κ as simply reducing the demand sensitivity to price (equivalently,

increasing the maximum price for which there is non-zero demand):

D = Dmax

(
1− p

pmax(1 + σκ)

)
, (7.14)

where σ > 0. Here, the results of Theorem 2 directly apply with pmax simply replaced

by pmax(1 + σκ) and a = 1 (or Theorem 1 with the demand-sensitivity d replaced by
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Figure 7.2. U∗
1 /(Dmaxpmax) without caching cost

Figure 7.3. U∗
1 /(Dmaxpmax) with linear caching cost, b = 0.04



127

Figure 7.4. U∗
1 /(Dmaxpmax) with linear caching cost, b = 0.05

Figure 7.5. U∗
1 /(Dmaxpmax) with quadratic caching cost, b = 0.05
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Figure 7.6. U∗
1 /(Dmaxpmax) with exponential caching cost, b1 = 0.05, b2 = 0.2

d/(1 + σκ)). For quadratic caching cost, the ISP utility,

U∗1
Dmaxpmax

=
1 + σκ

9
− bκ2.

is maximized when the caching factor is κ∗ = min{σ/(18b), 1}. So, when κ∗ < 1, the

concave, quadratic ISP utility U∗1 has maximal value

Dmaxpmax

(
1

9
+

σ2

182b

)
.



Chapter 8
Conclusions

In this thesis, we contributed to two areas, namely anomaly detection and network

neutrality. In both of the areas, our main focus was analysis of network traffic flows.

The application of anomaly detection part in this thesis was basically about detection

of anomalous flows in a network. In the net neutrality part, we dealt with pricing games

under the existence of content caching and their implications to the net neutrality, which

is a hot debate topic in the recent years. Both areas are related in the sense that the

existence of infected end-users may be attracting malicious traffic to the network, which

may lead ISPs to take precautions against those users, which in turn may result in

non-neutral policies to be applied to them.

In our efforts contributing to anomaly detection, we considered detection of anoma-

lous samples in a batch of collected samples. In our scenario, samples might be high-

dimensional. But, the features which were most discriminative are a priori unknown. Our

aim was to perform feature selection that will enable to successful detection of anomalies.

We basically provided 2 different types of approaches to this problem. In both of the ap-

proaches, we utilized p-values for statistical significance assessment of the samples. The

fundamental difference between the two approaches was that the first approach detected

one sample at a time, whereas the second approach detected the anomalous samples in

clusters. But, both of them may be particularly suitable when there is a latent anoma-

lous class present in the data batch, discriminable from the known class using an (albeit

unknown) small subspace of the full feature space.

In the sample-wise detection procedure new tests (formed by using the features) are

used and included to the existing test set only when they yield lower (corrected) p-values

than only using the previously existing set. This means existing test set size is growing
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as more detections are made. This approach seeks to maximize the aggregate statistical

significance of all detections up until a finite horizon. Before using and including a new

test, considering the future detections (looking ahead) leads to better discrimination

performance, while keeping the used test set small. And, this means that looking ahead

enables the algorithm to perform effective feature selection. Our approach was compared,

in area under the ROC curve, with several standard detection strategies for a network

intrusion domain, detecting Zeus bot intrusion flows embedded amongst (normal) Web

flows.

In the cluster-wise detection approach, we propose a procedure that aims to find the

most outlier clusters of samples by assessing an approximate joint p-value (joint signif-

icance) for each candidate cluster. Our method effectively selects and uses the most

discriminative features (by choosing a subset of the pairwise feature tests) to determine

the clusters of anomalous samples in a given batch. We compared our approach with

methods that use the p-values of individual samples but without clustering, and with

the one-class SVM, which uses the feature vector directly. We proposed multiple fea-

ture representations and compared their advantages and disadvantages using different

datasets in the experiments. We observed that, in detecting Zeus amongst Web, our

p-value clustering algorithm, when used with low maximum test combination orders,

with certain feature representations, and with sufficiently large training set, may outper-

form the tested alternative methods, which all make separate detection decisions for each

sample, and which all use all of the features (tests). Limiting the test order improves

the AUC performance, keeps the independent test assumption as valid as possible, and

keeps the algorithm computationally feasible. P-value clustering method also performs

better than the one-class SVM. Regarding to the comparison between our sample-wise

and cluster-wise detection approaches, which of these approaches is more successful in

discrimination depends on the dataset and (more importantly) feature representation.

We observed that dataset dependence is based on 3 basic factors, which are port, train-

ing set size, and time of day. Port and time of day affect the type and diversity of the

traffic. Training set size, along with these, determine how well-informed the null is. We

observed that when the null is well-informed, p-value clustering methods tend to perform

better since better informed nulls for the individual tests may give high discrimination

power to the tests. When the null is poorly informed, approaches that use the features

collectively (p-value sum and log sum) tend to outperform the feature selecting methods

(p-value clustering). Also, the performance assessment criterion is crucial. We saw that

in early detection performance, p-value clustering methods outperform others on the
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average, which was not the case when area under ROC is used.

As future experimental work, there are other datasets available online for experi-

mental purposes. For instance, ISCX datasets include botnet and non-malicious traffic

datasets [96]. For background traffic, Ericsson Lab dataset can be used [101].

The second main area that this thesis contributed is network neutrality. We investi-

gated the effects of content caching to the utilities and pricing policies of the entities in

the Internet. The entities under consideration are ISPs, eyeball ISPs, CPs, and end-users.

Game scenarios with different players are constructed and analyzed.

In the first model, we modeled the interaction of two different eyeball ISPs and ex-

plored the effect of differences in remote-content caching and demand on the net revenue

from transit-traffic at ISP-to-ISP peering points. We considered slight modifications in

this model. We changed the places of the congestion points, where the basic difference

became the existence of a throughput limit downstream to the end-users. We found

the Nash equilibrium points in these models. We have observed that the eyeball ISP

allowing larger maximum demand will have larger demand even if this ISP’s content is

at the same price as the other ISP’s content. This leads to larger gain for this ISP. It

also means that this ISP might have some margin to increase its price. Hence, when

we compare the prices of the ISPs at the Nash equilibrium, the ISP with larger possible

demand has higher price than the other ISP. In addition to this, for the case where the

downstream throughput to the end-users is limited, imposing a strict upper bound might

lead to a linear increase in the utility until the high prices become so effective that even

small throughput limit is not filled due to the users’ price sensitivity.

The second model that is considered in this thesis about net neutrality is a game

between a CP and an ISP on a platform of end-users served by both, which makes this

a two-sided market. Two cases are analyzed here. One of them is the Internet case,

where payment is in the same direction as traffic. So, the traffic that goes from CP to

the ISP requires CP to pay ISP for carrying this traffic to the end-users. The other case

is the Information-Centric Network, where CP transferring content to the ISP deserves

payment from ISP to the CP. Here, content and payment are in opposite directions

between CP and ISP. But, more importantly, in the ICN case, ISP is incentivized to

cache content, whereas in the Internet case, it is not. We also made analyses under

different assumptions about the caching cost. It is observed that without the caching

cost, the ISP utility function is increasing as the caching factor increases. We also

observed that how linear caching cost leads to optimal caching cost taking value either

0 or 1. There are also cases where ISP utility may be concave. These latter cases are
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where the optimal values of the caching factors are fractional.



Appendix A
Explanation of convex demand

response (Chapter 7)

We “implicitly” model the demand D = [g(D)]+ with

g(D) = (Dmax − dp)
(

1− λ

B −D

)
/

(
1− λ

B

)
, (A.1)

where

• B is the bandwidth reserved between CP and ISP for delay sensitive applications

paying usage-based prices,

• λ is demand sensitivity to mean delay, here modeled as 1/(B −D) (an expression

for mean delay taken from the M/M/1 queue [111]).

Here, λ > B −D results in zero demand D. That is,

D = [g(D)]+.

Letting

D̃ := (Dmax − dp)/(1− λ/B) = Dmax(1− p/pmax)/(1− λ/B),

and assuming

D̃ > 0,

we can find the interior fixed-point D of g+ (i.e., fixed point of g), giving the “explicit”

demand response

D = 1
2

[
(B + D̃)−

√
(B − D̃)2 + 4λD̃

]
. (A.2)
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It’s easy to see that this demand response has the following intuitive properties:

• D → Dmax as B →∞ and p→ 0

• D is a convex function of D̃ when B > λ, and hence also a convex function of price

p (as assumed in [52, 53]).

There are obviously many alternative demand models with similar properties.



Appendix B
Explanation of convex demand

response, increasing in caching

factor (Chapter 7)

As a result of ISP caching, only a fraction (1−κ) of the demand D is transmitted through

the bandwidth B between ISP and CP. So, (A.1) is modified to

gκ(D) = (Dmax − dp)
(

1− λ

B − (1− κ)D

)
/

(
1− λ

B

)
= (Dmax − dp)

(
1− λ/(1− κ)

B/(1− κ)−D

)
/

(
1− λ/(1− κ)

B/(1− κ)

)
So, solving D = gκ(D) results in (A.2) with B and λ replaced by B/(1−κ) and λ/(1−κ),

respectively:

D = 1
2

[
(
B

1− κ
+ D̃)−

√
(
B

1− κ
− D̃)2 + 4

λ

1− κ
D̃

]
. (B.1)

So, as κ → 0, the demand tends to (A.2), i.e., convex in price. On the other hand,

as κ→ 1, the demand tends to linear in price (7.1).

Since, gκ(D) = g0((1−κ)D) := g((1−κ)D), is decreasing in (1−κ)D (hence increasing

in caching factor κ), the solution

Dκ = gκ(Dκ)

is an increasing function of caching factor κ (in particular, Dκ ≥ D0). To see this, note
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that

D0 = g0(D0) < g0((1− κ)D0) = gκ(D0).

So, if Dκ ≤ D0, then we would have

Dκ ≤ D0 < gκ(D0) ≤ gκ(Dκ),

which contradicts the definition of Dκ in the first display above.



Appendix C
Convexity of cost of caching as a

function of caching factor (Chapter

7)

Assume that the cost of caching is proportional to the number of cached items (content),

in turn proportional to the (mean) amount of memory required to store them. For a

fixed population of N end-users (a proximal group served by an ISP), let π(j) be the

proportion of the items that will soon be of interest to precisely j end-users. Finally,

suppose the ISP naturally prioritizes its cache to hold the most popular content. So, a

“caching factor” κ, based on all-or-none decisions to cache content of the same popularity,

would satisfy

κ ∝
N∑

j=N−f(κ)

jπ(j).

for some f(κ) ∈ {0, 1, 2, ..., N}. The cost of caching would be proportional to the number

of cached items, i.e.,

c(κ) ∝
N∑

j=N−f(κ)

π(j).

Suppose that the great majority of potentially desired content is only minimally

popular, i.e., π(j) is decreasing1 We now argue that the caching cost c(κ) is convex

1Note that this general assumption obviously accommodates the empirically observed Zipf distribution
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and increasing for the simplified continuous scenario ignoring the (positive) constants of

proportionality:

κ =

∫ N

N−f(κ)
zπ(z)dz and c(κ) =

∫ N

N−f(κ)
π(z)dz,

with c(0) = 0 and c(1) = 1. By differentiating successively, we get

1 = (N − f(κ))π(N − f(κ))f ′(κ) (C.1)

c′(κ) = π(N − f(κ))f ′(κ)

⇒ 1 = (N − f(κ))c′(κ)

⇒ c′′(κ) = f ′(κ)(N − f(κ))−2 (C.2)

Note that f ′ > 0 by (C.1) and therefore c′′ > 0 by (C.2).

for content popularity, e.g., [28].



Bibliography

[1] Comcast v. FCC. 600 F.3d 642 (D.C. Cir. 2010).

[2] Pursuit project. http://www.fp7-pursuit.eu/PursuitWeb/?page id=177.

[3] Wireshark. http://www.wireshark.org/.

[4] In First Economics and Technologies for Inter-Carrier Services (ETICS) Workshop
Proceedings, 2010.

[5] M. Adler, R. Sitaraman, and H. Venkataraman. Algorithms for optimizing the
bandwidth cost of content delivery. Dec. 2011.

[6] P. Agyapong and M. Sirbu. Economic incentives in content-centric networking: Im-
plications for protocol design and public policy. In Proc. 39th Telecommunications
Policy Research Conference, Arlington, VA, 2011.

[7] T. Ahmed, B. Oreshkin, and M. Coates. Machine learning approaches to network
anomaly detection. In Proc. SysML, 2007.

[8] E. Altman, P. Bernhard, S. Caron, G. Kesidis, J. Rojas-Mora, and S. Wong. A
study of non-neutral networks under usage-based pricing. 2011.

[9] E. Altman, A. Legout, and Y. Xu. Network non-neutrality debate: An economic
analysis. In Proc. IFIP Networking, 2011.

[10] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu, A. Akella,
D. Andersen, J. Byers, S. Seshan, and P. Steenkiste. Xia: An architecture for an
evolvable and trustworthy internet. In Proc. ACM HOTNETS, Cambridge, MA,
2011.

[11] R. Arbogast and D. Kaut. FCC chairman lays out net neutrality plan, avoids title
ii, but walks tightrope. Dec. 1 2010.

[12] A. Baid, T. Vu, and D. Raychaudhuri. Comparing alternative approaches for
networking of named objects in the future Internet. In Proc. INFOCOM Computer
Communications Workshops, Mar. 2012.



140

[13] T. Berners-Lee. Net neutrality: This is serious. June 2006.

[14] J. Binkley and S. Singh. An algorithm for anomaly-based botnet detection. In
USENIX SRUTI 2006, pages 43–48, July 2006.

[15] C. M. Bishop. Pattern recognition and machine learning. Springer, 2007.

[16] K. Bode. AT&T to impose caps, overages. Available at:
http://www.dslreports.com/shownews/Exclusive-ATT-To-Impose-Caps-
Overages-113149, Mar. 13 2011.

[17] J.-C. Bolot and P. Hoschka. Performance engineering of the World Wide Web:
Application to dimensioning and cache design. pages 1397–1405, 1996.

[18] F. Bornstaedt, M. Roettgermann, F. Johansen, and H. Lønsethagen. The sending
party network pays.

[19] F. Bretz, T. Hothorn, and F. Westfall. Multiple comparisons using R. CRC Press,
2011.

[20] B. Caberera, B. Ravichandran, and R. Mehra. Statistical traffic modeling for
network intrusion detection. In Proc. the 8th International Symposium on Model-
ing, Analysis and Simulation of Computer and Telecommunication Systems, pages
466–473, San Francisco, CA, 2000.

[21] S. Caron, G. Kesidis, and E. Altman. Application neutrality and a para-
dox of side payments. In Proc. ACM ReArch, Nov. 30, 2010. See also
http://arxiv.org/abs/1006.3894.

[22] Z. Celik, J. Raghuram, G. Kesidis, and D. Miller. Salting public traces with attack
traffic to test flow classifiers. In Proceedings CSET USENIX Workshop, 2011.

[23] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM
Computing Surveys, 41(Article no: 15), 2009.

[24] H. Cheng, S. Bandyopadhyay, and H. Guo. The debate on net neutrality: A policy
perspective. 22:60–82, Mar. 2011.

[25] K. Cheng, S. Bandyopadhyay, and H. Gon. The debate on net neutrality: A policy
perspective. June 2008.

[26] P. Chhabra, C. Scott, E. Kolaczyk, and M. Crovella. Distributed spatial anomaly
detection. In IEEE INFOCOM, 2008.

[27] R. Chong. The 31 flavors of net neutrality. 12, 2008.

[28] G. Dan and N. Carlsson. Power-law revisited: A large scale measurement study of
P2P content popularity. In Proc. IPTPS, 2010.

[29] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series
B (Methodological), pages 1–38, 1977.



141

[30] A. Dhamdhere and C. Dovrolis. Can ISPs be profitable without violating “network
neutrality”? In Proc. ACM NetEcon, Seattle, 2008.

[31] Q. Ding and E. Kolaczyk. A compressed pca subspace method for anomaly detec-
tion in high-dimensional data.

[32] R. Douville. Etics architecture(s). In Second Economics and Technologies for
Inter-Carrier Services (ETICS) Workshop, June 2011.

[33] R. Duda, P. Hart, and D. Stork. Pattern classification, volume 2. Wiley New
York:, 2001.

[34] N. Economides. Net neutrality: Non-discrimination and digital distribution of
content through the internet. I/S: A Journal of Law and Policy, 4(2):209–233,
2008.

[35] L. Ertoz, E. Eilertson, A. Lazarevic, P.-N. Tan, V. Kumar, J. Srivastava, and
P. Dokas. The MINDS - Minnesota intrusion detection system. In Next Generation
Data Mining. MIT Press, 2004.

[36] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework
for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In
Data Mining for Security Applications, 2002.

[37] P. Faratin, D. Clark, P. Gilmore, S. Bauer, A. Berger, and W. Lehr. Complexity
of Internet connections. In Proc. 35th TPRC, 2007.

[38] M. Feily, A. Shahrestani, and S. Ramadass. A survey of botnet and botnet detec-
tion. In IEEE Third International Conference on Emerging Security Information,
Systems and Technologies, pages 268–273, 2009.

[39] P. Ganley and B. Allgrove. Net neutrality: A user’s guide. 22:454–463, 2006.

[40] A. Ghodsi, T. Koponen, J. Rjahalme, P. Sarolahti, and S. Shenker. Naming in
content-oriented architectures. In Proc. ACM SIGCOMM ICN, Toronto, Aug.
2011.

[41] J. Goldsmith and T. Wu. Who Controls the Internet: Illusions of a Borderless
World. Oxford University Press, 2006.

[42] M. Graham and D. Miller. Unsupervised learning of parsimonious mixtures on
large spaces with integrated feature and component selection. IEEE Trans. on
Signal Processing, 54:1289–1303, 2006.

[43] C. B. Group. Characterizing network-based applications. http://www.cl.cam.

ac.uk/research/srg/netos/brasil/data/index.html.

[44] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clustering analysis of
network traffic for protocol- and structure-independent botnet detection. In Proc.
USENIX Security, pages 139–154, 2008.



142

[45] R. Hahn and S. Wallsten. The economics of net neutrality. Economists’ Voice,
3(6):1–7, 2006.

[46] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten. The
weka data mining software: An update. SIGKDD Explorations, 11:10–18, 2009.

[47] K. A. Heller, K. M. Svore, A. D. Keromytis, and S. J. Stolfo. One class support
vector machines for detecting anomalous windows registry accesses. In Proc. of the
Workshop on Data Mining for Computer Security, 2003.

[48] S. Holm. A simple sequentially rejective multiple testing procedure. Scandinavian
Journal of Statistics, 6:65–70, 1979.

[49] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and R. Braynard. Net-
working named content. In Proc. 5th ACM International Conference on Emerging
Networking Experiments and Technologies (CoNEXT), pages 1–12, 2009.

[50] C. Kang. FCC approves net-neutrality rules; criticism is immediate.

[51] G. Kesidis. Congestion control alternatives for residential broadband access by
cmts. In Proc. IEEE/IFIP NOMS, Osaka, Japan, Apr. 2010.

[52] G. Kesidis. Side-payment profitability under convex demand-response modeling
congestion-sensitive applications. In Proc. IEEE ICC, Ottawa, June 2012.

[53] F. Kocak, G. Kesidis, and S. Fdida. Network neutrality with content caching and
its effect on access pricing. In S. Sen, C. Joe-Wong, S. Ha, and M. Chiang, editors,
Smart Data Pricing. John Wiley & Sons, 2013.

[54] F. Kocak, G. Kesidis, T.-M. Pham, and S. Fdida. The effect of caching on a
model of content and access provider revenues in information-centric networks.
ASE Science Journal, 2(3), 2013.

[55] F. Kocak, G. Kesidis, T.-M. Pham, and S. Fdida. The effect of caching on a
model of content and access provider revenues in information-centric networks. In
ASE/IEEE International Conference on Economic Computing (EconCom), Wash-
ington D.C., Sept. 2013.

[56] F. Kocak, D. J. Miller, and G. Kesidis. Detection of hidden anomalous classes in
network traffic using categorical and continuous features. journal paper in prepa-
ration.

[57] F. Kocak, D. J. Miller, and G. Kesidis. Detecting anomalous latent classes in a
batch of network traffic flows. In Annual Conference on Information Sciences and
Systems (CISS), March 2014.

[58] L. B. N. Laboratory and ICSI. LBNL/ICSI Enterprise Tracing Project. http:

//www.icir.org/enterprise-tracing.

[59] S. V. Labs. VRT Labs - Zeus Trojan Analysis. http://labs.snort.org/papers/
zeus/html.



143

[60] A. Lakhina, M. Crovella, and C. Diot. Characterization of network-wide anomalies
in traffic flows. In Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, pages 201–206, 2004.

[61] W. Lee and D. Xiang. Information-theoretic measures for anomaly detection. In
Proc. IEEE Symposium on Security and Privacy, pages 130–143, 2001.

[62] E. Lehmann and J. Romano. Testing statistical hypotheses. Springer, 2005.

[63] B. Li, J. Springer, G. Bebis, and M. Gunes. A survey of network flow applications.
36(2):567–581, Mar. 2013.

[64] W. Li and A. Moore. A machine learning approach for efficient traffic classification.
In Proc. of IEEE MASCOTS, 2007.

[65] K. Limthong and T. Tawsook. Network traffic anomaly detection using machine
learning approaches. In IEEE Network Operations and Management Symposium
(NOMS), pages 542–545, 2012.

[66] W. Lu, M. Tavallaee, G. Rammidi, and A. Ghorbani. Botcop: An online botnet
traffic classifier. In Communication Networks and Services Research Conference,
pages 70–77, 2009.

[67] E. Lundin and E. Jonsson. Anomaly-based intrusion detection: privacy concerns
and other problems. 34(4):623–640, 2000.

[68] R. Ma, D.-M. Chiu, J. Lui, V. Misra, and D. Rubenstein. Interconnecting eyeballs
to content: A shapley value perspective on isp peering and settlement. In Proc.
Workshop on Economics of Networked Systems (NetEcon), 2008.

[69] R. Ma, D.-M. Chiu, J. Lui, V. Misra, and D. Rubenstein. On cooperative set-
tlement between content, transit and eyeball internet service providers. In Proc.
ACM CoNEXT, 2008.

[70] J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations, 1967.

[71] B. Maggs. Presentation on CDNs (Akamai).
http://blog.lrem.net/2013/05/23/rescom-2013-bruce-maggs/, May 2013.

[72] M. Mantere, M. Sailio, and S. Noponen. Network traffic features for anomaly
detection in specific industrial control system network. 5(4):460–473, 2013.

[73] D. J. Miller, F. Kocak, and G. Kesidis. Sequential anomaly detection in a batch
with growing number of tests: Application to network intrusion detection. In
IEEE Intl. Workshop on Machine Learning for Signal Processing (MLSP), pages
1–6, 2012.

[74] M. Molina, I. Paredes-Oliva, W. Routly, and P. Barlet-Ros. Operational experi-
ences with anomaly detection in backbone networks. 31(3):273–285, 2012.



144

[75] J. Musacchio, G. Schwartz, and J. Walrand. A two-sided market analysis of
provider investment incentives with an application to the net-neutrality issue. Re-
view of Network Economics, 8(1), 2009.

[76] P. Njoroge, A. E. Ozdaglar, N. E. Stier-Moses, and G. Y. Weintraub. Investment
in two sided markets and the net neutrality debate. In Columbia Business School
DRO (Decision, Risk and Operations), Oct 2012.

[77] A. Odlyzko. Network neutrality, search neutrality, and the never-ending conflict
between efficiency and fairness in markets. 8, 2009.

[78] B. Online. At SBC, it’s all about scale and scope. Nov. 5 2005.

[79] R. C. P. Hande, M. Chiang and S. Rangan. Network pricing and rate allocation
with content provider participation. In Proc. IEEE INFOCOM, 2009.

[80] K. M. P. OKane, S. Sezer and E. Gyu. SVM training phase reduction using dataset
filtering for malware detection. 8(3), March 2003.

[81] J. Pan, S. Paul, and R. Jain. A survey of the research on future Internet architec-
tures. July 2011.

[82] R. Parker, A. Melathopoulos, R. White, S. Pernal, M. Guarna, and L. Foster.
Ecological adaptation of diverse honey bee (apis mellifera) populations. 5(6), 2010.

[83] V. Paxson. Bro: a system for detecting network intruders in real-time. 31(23):2435–
2463, 1999.

[84] T.-M. Pham, S. Fdida, and P. Antoniadis. Pricing in information-centric network
interconnection. In Proc. IFIP Networking, Brooklyn, NY, 2013.

[85] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data using
clustering. In Proc. ACM CSS Workshop on Data Mining Applied to Security
(DMSA), pages 5–8, Philadelphia, PA, 2001.

[86] E. Pouyllau. Presentation at ARC MANEUR meeting, INRIA, Paris, May 2011.

[87] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers
from large data sets. In ACM SIGMOD Conference, pages 427–438, Dallas, TX,
2000.

[88] A. Robertson. French government tells ISP to stop installing ad-blocking software
on its modems. Jan. 7 2013.

[89] M. Roesch. Snort: Lightweight intrusion detection for networks. In LISA, vol-
ume 99, pages 229–238, 1999.

[90] K. Ross. Hash-routing for collections of shared web caches. Nov-Dec 1997.

[91] J. Ryan, M.-J. Lin, and R. Miikkulainen. Intrusion detection with neural networks.
In Proc. Workshop on AI Approaches to Fraud Detection and Risk Management,
AAAI Press, pages 72–77, 1997.



145

[92] G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461–
464, 1978.

[93] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang. Pricing data: A look at past proposals,
current plans, and future trends. 2012.

[94] Z. Shan and X. Wang. Growing grapes in your computer to defend against malware.
9(2), Feb. 2014.

[95] A. Shin. Who’s the bandwidth bandit? Available at:
http://blog.washingtonpost.com/thecheckout/2006/10/bandwidth bandit.html,
Oct. 4 2006.

[96] A. Shiravi, H. Shiravi, M. Tavallaee, and A. Ghorbani. Toward developing a system-
atic approach to generate benchmark datasets for intrusion detection. 31(3):357–
374, May 2012.

[97] T. Shon and J. Moon. A hybrid machine learning approach to network anomaly
detection. pages 3799–3821.

[98] R. Sommer and V. Paxson. Outside the closed world: On using machine learning
for network intrusion detection. In IEEE Symposium on Security and Privacy
(SP), pages 305–316, 2010.

[99] V. Sotiris, P. Tse, and M. Pecht. Anomaly detection through a bayesian support
vector machine. 59(2), 2010.

[100] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection
infrastructure. In Proc. ACM SIGCOMM, pages 73–86, 2002.

[101] G. Szab, D. Orincsay, S. Malomsoky, and I. Szab. On the validation of traffic
classification algorithms. In 9th International Conference on Passive and Active
Network Measurement, pages 72–81, 2008.

[102] A. Tanenbaum and D. Wetherall. Computer Networks. Prentice Hall, 5th edition,
2010.

[103] D. Trossen and A. Kostopoulos. Techno-economic aspects of information-centric
networking. 2:26–50, 2012.

[104] G. Trunk. A problem of dimensionality: a simple example. IEEE Trans. Patt.
Anal. and Mach. Intell., 1:306–307, 1979.

[105] V. Valancius, C. Lumezanu, N. Feamster, R. Johari, and V. Vazirani. How many
tiers? pricing in the internet transit market. In Proc. ACM SIGCOMM, 2011.

[106] G. Venkatesh and N. Nadarajan. Http botnet detection using adaptive learning rate
multilayer feed-forward neural network. In I. Askoxylakis, H. Phls, and J. Posegga,
editors, Information Security Theory and Practice. Security, Privacy and Trust in
Computing Systems and Ambient Intelligent Ecosystems, volume 7322 of Lecture
Notes in Computer Science, pages 38–48. Springer Berlin Heidelberg, 2012.



146

[107] P. Waldmeir. The net neutrality dogfight shaking up cyberspace. Mar. 23 2006.

[108] K. Wang, C.-Y. Huang, S.-J. Lin, and Y.-D. Lin. A fuzzy pattern-based filtering
algorithm for botnet detection. 55:3275–3286, 2011.

[109] Y. Wang, J. Wong, and A. Miner. Anomaly intrusion detection using one class
SVM. In Proc. from the Fifth Annual IEEE SMC Information Assurance Work-
shop, pages 358–364, 2004.

[110] D. Weller and B. Woodcock. Bandwidth bottleneck: The hardware at the heart of
the Internet is not fast enough. Jan. 2013.

[111] R. Wolff. Stochastic modeling and the theory of queues. Prentice-Hall, Englewood
Cliffs, NJ, 1989.

[112] C. Wu. On the convergence properties of the EM algorithm. The Annals of
Statistics, 11(1):95–103, 1983.

[113] T. Wu. Network neutrality, broadband discrimination. 2:141, 2003.

[114] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda. Automatically
generating models for botnet detection. In 14th European Conference on Research
in Computer Security (ESORICS), 2009.

[115] P. H. M. C. D. T. Y. Wu, H. Kim. Revenue sharing among isps in two-sided
markets. In Proc. IEEE INFOCOM Mini Conference, Shanghai, 2011.

[116] L. Yan, R. Dodier, M. Mozer, and R. Wolniewicz. Optimizing classifier performance
via the Wilcoxon-Mann-Whitney statistics. In Proc. of Intl. Conf. on Machine
Learning, 2003.

[117] H. Zeidanloo, A. Manaf, P. Vahdani, F. Tabatabaei, and M. Zamani. Botnet
detection based on traffic monitoring. In International Conference on Networking
and Information Technology (ICNIT), 2010.

[118] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and A. Vasilakos. An effective network
traffic classification method with unknown flow detection. 10(2), 2013.

[119] J. Zhang, R. Perdisci, W. Lee, X. Luo, and U. Sarfraz. Building a scalable system
for stealthy P2P-botnet detection. 9(1), Jan. 2014.

[120] D. Zhao, I. Traore, A. Ghorbani, B. Sayed, S. Saad, and W. Lu. Peer to peer
botnet detection based on flow intervals. In D. Gritzalis, S. Furnell, and M. Theo-
haridou, editors, Information Security and Privacy Research, volume 376 of IFIP
Advances in Information and Communication Technology, pages 87–102. Springer
Berlin Heidelberg, 2012.

[121] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani, and D. Garant. Botnet
detection based on traffic behavior analysis and flow intervals. 39:2–16, 2013.



147

[122] G. Zou, G. Kesidis, and D. Miller. A flow classifier with tamper-resistant features
and an evaluation of its portability to new domains. IEEE Journal on Selected
Areas in Communications, 29(7):1449–1460, 2011.



Vita

Fatih Kocak

Education:

• 2010 – 2014: The Pennsylvania State Univ. (PSU), Electrical Engineering
PhD, supervised by Professors George Kesidis and David J. Miller

• 2007 – 2010: Bilkent University, Electrical and Electronics Eng., Ankara, Turkey
MS, supervised by Professor Sinan Gezici

• 2003 – 2007: Bilkent University, Electrical and Electronics Eng., Ankara, Turkey
BS, senior project supervised by Professor A. Enis Cetin

• 1996 – 2003: Adnan Menderes Anatolian High School, Aydin, Turkey

Experience:

• Aug. 2010 – April 2014: Research and Teaching Assistant in PSU
RA: Machine learning and data mining algorithms design and implementation (ap-
plications especially to network intrusion detection), network neutrality, peer-to-
peer caching
TA: Operating Systems (Computer Science), discrete-time linear systems and com-
munication systems courses (Electrical Eng.)

• Sep. 2007 – June 2010: RA and TA in Electrical and Electronics Eng., Bilkent
University
RA: Time-delay estimation in cognitive radio and multiple-input multiple-output
(MIMO) systems
TA: Probability, microprocessors, and analog electronics courses

• July 2007 – Dec. 2008: Engineer in Military Communications, Systems Engineering
Department of Communications Division of ASELSAN Inc., Ankara, Turkey
Design and integration of military communication systems, dealing with medium
access control layer, network layer and transport layer issues. Expertise on a variety
of basic Internet protocols and concepts

• Dec. 2006 – July 2007: Student (part-time) engineer in Command, Control and
Weapon Systems, Systems Engineering Department of Microwave System Tech-
nologies Division of ASELSAN Inc., Ankara, Turkey
Image and video processing applications (image and video fusion)

• June 2006 – July 2006: Intern in Research and Development Dept. of TRT (Na-
tional public broadcaster of Turkey)
Optimization of bandwidth and gain of FM transmitters

• June 2005 – July 2005: Intern in Command, Control and Weapon Systems, Systems
Engineering Department of Microwave System Technologies Division of ASELSAN
Inc., Ankara, Turkey
Image processing applications (pattern recognition)


