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Abstract

Knowledge discovery has received tremendous interests and fast developments in
both text mining and social user mining. The main purpose is to search massive
volumes of data for patterns as so-called knowledge. Knowledge can exist in dif-
ferent formats such as texts or numbers. Knowledge can be observed or hidden
in different hierarchies. Knowledge can even be user-generated such as social con-
tent and social activity in Web 2.0 era. In this dissertation, we study a series of
new knowledge discovery techniques using four data mining applications. First, we
propose our novel framework on mining text databases using time series by bridg-
ing two seemly unrelated domains - alphabets strings and numerical signals. We
study how various transformation methods affect the accuracy and performance
of detecting near-duplicate texts in record linkage. Second, we develop new topic
models on mining text documents using latent topics to tackle the noisy data prob-
lem in document modeling. We show how the incorporation of textual errors and
topic dependency into the generative process affect the generalization performance
of topic models. Third, we introduce our novel methods in mining social content
using time series to classify user interests. We show the accuracy of our approach
in both binary and multi-class classification of sports and political interests of so-
cial users. Finally, we introduce our generative modeling approach in mining social
activity using latent topics to predict user attributes. We show the performance
of our methods in predicting binary and multi-class demographical attributes of
social users.
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Chapter 1
Introduction

1.1 Overview

In the real world, we are facing and need to deal with enormous data from vari-

ous database applications, e.g., data warehouses, search engines, digital libraries,

social networks and so on. As a result, data mining research focuses on methods,

algorithms and tools to handle large amounts of data and has become an impor-

tant part of many application domains. Data mining is a process of extracting

or discovering useful knowledge in large-scale data [4]. It also refers to knowledge

discovery from data (KDD) [5], which describes the typical process of extracting

useful information from raw data. According to a survey [6] by the program com-

mittee members of SIGKDD (the ACM International Conference on Knowledge

Discovery and Data Mining), ICDM (the IEEE International Conference on Data

Mining), and SDM (the SIAM International Conference on Data Mining), some

top data mining topics include link mining, classification, clustering, association

analysis and statistical learning. The top algorithms such as k-means, SVM, EM

algorithm, kNN, PageRank etc. have been developed to cover all these data mining
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topics in data mining research [6]. Other data mining techniques include associ-

ation rule mining, anomaly detection, feature selection and dimension reduction.

Additional details can be found in [4, 5, 7, 8, 9]. Data mining is an integral part

of many related fields including statistics, machine learning, pattern recognition,

database systems, visualization, data warehousing, and information retrieval [5].

Previous study1 has shown that approximately 80%-85% of all data stored in

databases are texts. With the rapid growth of World Wide Web, there are billions

of pages containing rich information of images, videos, but most importantly, text

contents on the Internet. How to leverage data mining techniques to automatically

discover useful information from these unstructured text data has become more and

more interesting and challenging. Text mining refers to the process of extracting or

mining knowledge from large amount of text data. It usually involves the process

of four steps: structuring the input text, defining appropriate distance function

between data units, deriving interesting patterns within the structured data, and

finally evaluation and interpretation of the mining output such as clusters and

classifiers. For examples, commercial search engines such as Google and Yahoo!

highly leverage text mining techniques to retrieve relevant documents from user

queries, which shows the success of text mining for effective information extraction

from massive amount of text data.

During the last decade, the emergence of online social networking sites such as

Facebook and Twitter has led to a massive volume of user-generated contents on

the Web. Millions of users connect to each other, express themselves and share

interests through social networks [10]. Social media, defined as a group of Internet-

based applications that build on the technological foundations of Web 2.0, has

become a popular platform for news dissemination, professional networking, social

1http://www.edbt2006.de/edbt-share
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Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Text Mining Social User Mining 

Figure 1.1. Dissertation Overview.

recommendations, and online content curation. The popularity of social media

continues to grow exponentially, including blogs, microblogs, social bookmarking

applications, location-based social networks and business review sites, etc. Social

data, unlike traditional text data, are being created and driven by social users

behind the contents. Therefore, social user mining is gaining increasing attention

as it appears to become an important vehicle for delivering better user experience.

In this dissertation, we present a series of new methods for knowledge discovery

in both text mining and social user mining. Figure 1.1 illustrates an overview of

the thesis structure.
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The first part of this study is mining texts in record linkage (Chapter 3) and

document modeling (Chapter 4).

In chapter 3, we study if the mapping between text and time series data is

feasible such that the traditional record linkage problem in text mining can find

their counterparts in time series (and vice versa). We present a new time series

framework that utilizes different combinations of text granularity (e.g., character or

word level) and n-grams (e.g., unigram or bigram). To assign appropriate numeric

values to each character, our method adopts different space-filling curves (e.g.,

linear, Hilbert, Z orders) based on the keyboard layout. We achieve comparable

accuracy with considerable speed-up in applying our approach to data linkage.

In chapter 4, we introduce two probabilistic generative document models based

on latent Dirichlet allocation (LDA), to deal with textual errors in the document

modeling problem. Our method is inspired by the fact that most large-scale text

data are machine-generated and thus inevitably contain many types of noises.

Our new models are developed from the traditional LDA by adding binary switch

variables into the term generation process in order to tackle the issue of noisy text

data. We show our approach can achieve better generalization performance on real

and synthetic OCR document collections.

The second part of this study is mining users on social content (Chapter 5)

and social activity (Chapter 6).

In chapter 5, we study the problem of mining social content for classifying

Twitter user interests. We extract time series features from tweets by exploiting

important temporal information and solve the classification problem in time series

domain. Our approach is inspired by the fact that some Twitter users often exhibit

periodicity patterns when they share their interests or express their opinions. We

apply our proposed methods to classification of both sports and political interests of
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Twitter users and compare the performance against the traditional classification

methods using textual features. We show our time series approach can boost

classification accuracy significantly.

In chapter 6, we study the problem of mining social activity for predicting

demographical attributes of Facebook users. We introduce a user-level LDA model

approach to extract topic features from Facebook Likes. By semantically modeling

the relationship between users and their social activity, we show our approach can

improve prediction accuracy of both binary and multi-class attributes effectively.

1.2 Motivation

1.2.1 Record Linkage

Since modern database applications increasingly need to deal with dirty data due to

a variety of reasons, e.g., data entry errors, heterogeneous formats, or ambiguous

terms, recently considerable research efforts have focused on the record linkage

problem in order to determine if two entities in a text collection are approximately

the same or not [11]. Thus, record linkage with the objective of improving the

data quality of database systems has become an important and practical problem.

On the other hand, more and more time series data are being generated from

many scientific or application domains, e.g., bio-medical or geographic experiments,

monitoring or detection of network traffics, daily fluctuations of stock prices, to

name a few. As a consequence, time series data mining has recently received

tremendous attention in the data mining community. A lot of new methodolo-

gies have been developed for indexing, classification and clustering of time series

data [12]. These emerging methods take sequences of numeric values as the subject
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domain and mainly focus on dimensional reduction, representation methods and

distance measures when dealing with time series.

Traditional data mining research focus on document indexing, classification,

clustering, association rule mining and record linkage in the context of pure al-

phabet text which, in turn, needs string manipulation as a supporting technique.

Most contemporary data mining techniques take sequences of strings as the sub-

ject domain, however in some cases, the text data are information-sensitive and

may not be available due to security and privacy reasons. For example, hospitals

may want to do data mining or record linkage by third party, but do not want

to disclose raw text data of patient records. To tackle this information-sensitive

issue, we shift our vision from text to time series when we develop mining meth-

ods in the particular situation. Our idea is motivated by the fact that there is

lack of connection between the emerging time series data mining approaches and

the traditional text mining approaches, and new techniques developed in one area

do not easily get carried over to the other area. However, there exist common

characteristics in many data mining problems between these two domains. Taking

classification as an example, both document classifiers and time series classifiers

involve defining appropriate similarity functions in order to find common patterns

thereafter. Motivated by these observations, we believe that once we are able to

find an effective and efficient way to convert between strings and time series, many

relevant data mining problems in one domain can be solved in the other domain.

Towards this effort, as a solution to information-sensitive text mining, we aim to

build a generic framework to convert string data to time series data.

Example 1. We illustrate our idea using a simple example. Suppose we have the

following three partient records of name and address information:
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Record #1: Steve Allen 15201-B Burbank Bl. Van Nuys CA

Record #2:

Record #3:

Allen, S., 15201 Burbank Blvd Van Nuys California

Woody Allen 930 5th Ave. New York NY

(a) Original string records

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8
Record #1

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8
Record #2

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8
Record #3

(b)Time series after transformation

Figure 1.2. A simple example of transforming text to time series.

“Steve Allen 15201-B Burbank Bl. Van Nuys CA”

“Allen, S., 15201 Burbank Blvd Van Nuys California”

“Woody Allen 930 5th Ave. New York NY”

Obviously, the first two records are referring to the same patient and the third

record belongs to a different patient. Figure 1.2 shows the three time series after

we use one of the transform schemes of our framework to convert these strings. We

can easily see that the time series of the first two records preserve similar shapes

in real-value domain (with some shifting) while the time series of the third record

has a rather different shape. 2
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As the first work of this dissertation, we develop a generic framework to convert

string data to time series data, such that all the relevant data mining problems in

one domain can find their counterparts in the other. We are interested in whether

and to what extent the performance of mining solutions developed in the time series

domain can be improved over the solutions in the original text mining domain.

Toward this objective, we introduce our T3 (Text To T ime series) framework to

map string/text data to time series data. During the transformation of the entire

text corpus, T3 utilizes different combinations of granularity (i.e., character level

or word level) to extract text units from record strings. Furthermore, T3 utilizes

n-grams (i.e., unigram, bigram or trigram) to form subsequences of text units. In

order to assign appropriate numeric values to each character, T3 adopts different

space-filling curves (i.e., linear, Hilbert, Z orders) based on the keyboard layout.

In addition, to associate real values to each token/word, T3 uses the tf-idf weight

of the traditional weighting scheme from information retrieval and text mining.

We apply the T3 framework to the record linkage problem, one of the traditional

data mining problems, to determine whether or not two entities represented as

relational records are approximately the same. Through extensive experiments

using both real and synthetic data sets, the efficacy of our proposed schemes is

experimentally validated.

1.2.2 Document Modeling

Using topic models for representing documents has recently been an area of tremen-

dous interests in text mining and machine learning. Probabilistic topic models are

stochastic models for text documents that explicitly model topics in document

corpora. Because probabilistic topic models are “generative”, they describe a pro-
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in the types of errors they commit in recognizing text, par-
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of recognized words is significantly lower than the individ-
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1. INTRODUCTION
The digital era has set expectations that all documents are

available electronically for searching and retrieval. Many
legacy documents, available in print only, are difficult to
impossible for optical character recognition (OCR) software
to recognize. If these documents are going to be available
for indexing, searching and other automated uses, some way
must be found to create digital transcriptions.
Problems with OCR of poor quality printed text make

the documents less accessible as the OCR output is less ac-
curate to the point of being useless. Examples of this in-
clude typewritten documents where letters are incompletely
formed or misaligned, copies of documents using poor du-
plicating technologies of carbon paper and mimeographing,
and newsprint on deteriorating paper. An example of the
first type is shown in Figure 1. This example is rendered by
three OCR engines, as shown in Figure 2.

Figure 1: Poor quality text from Eisenhower Com-
muniqué No. 237.

OCR Output
OCR A: RAILWAY mmmSBZ

OCR B: RAILWAY ANSP

OCR C: RAILWAI TRANSPORT

Figure 2: OCR Results from Figure 1. Underlining
added for emphasis.

This paper presents results demonstrating the degree to
which the output of multiple OCR engines may be used to
improve the overall quality of the recognized text. A neces-
sary component of the process is the alignment of the results
from multiple OCR engines in order to identify alternative
hypotheses for words in the form of a word hypothesis lat-
tice. The alignment problem itself is the subject of much
research, and this paper will present an admissible heuristic
for use in the A* algorithm which substantially reduces the
fraction of the state space that needs to be explored to find
all optimal alignments of the texts.
For this paper we will use the Eisenhower Communiqués [9],

a collection of 610 facsimiles found in the Harold B. Lee Li-

231

(a) typewritten text

(b) OCR output

Figure 1.3. Three examples of erroneous OCR outputs for a poor quality typewritten
text (taken from [1]). Erroneous outputs are underlined.

cedure for generating documents using a series of probabilistic steps. One of the

popular paradigms of topic models, characterized by the Latent Dirichlet Allo-

cation (LDA) model, consists of a series of probabilistic document models and

extensions where topics are modeled as hidden random variables. The LDA model

is a widely used Bayesian topic model which can model the semantic relations

between topics and words for document corpora. The LDA model assumes that

text documents are mixtures of hidden topics and applies Dirichlet prior distribu-

tion over the latent topic distribution of a document having multiple topics. In

addition, it assumes that topics are probability distribution of words and words

are sampled independently from a mixture of multinomials. Since the LDA model

was introduced in [13], it has quickly become one of the most popular probabilistic

document modeling techniques in data mining and also has inspired a series of

extensions (e.g., [14, 15, 16, 17, 18, 19, 20]).

Despite tremendous advancement in document modeling, however, we believe

that two major limitations still remain in generative models.

First, the LDA model assumes that the entire document corpus is error-free to

ensure accurate calculation of frequencies of words. However, an increasing num-
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ber of new large-scale text data are often machine-generated, and thus inevitably

erroneous. For instance, speech recognition softwares can turn audio data into

textual transcripts with varying error rates. Similarly, Optical Character Recogni-

tion (OCR) engines, despite great success in recent attempts such as Google Books

or Internet Archive, are not without problems, and often produce error-abundant

text data. [21] pointed out that although researchers are having increasing levels

of success in digitizing hand-written manuscripts, error rates remain significantly

high. Consider our illustrations below.

Example 2. As an illustration, consider Figure 1.3 that shows three examples of

OCR outputs for a poor-quality typewritten text “RAILWAY TRANSPORT.” All

three popular OCR engines (i.e., ABBYY FineReader, OmniPage Pro, and Google

Tesseract) generated outputs with one erroneous word for each. It is known that

the accuracy of the LDA model often declines significantly as word error rates

increase [1]. Now, consider Table 1.1 that shows some top words (selected by the

LDA model) for five topics of a small sample of Unlv2 OCR data set. From the list,

we can see that there exist a lot of erroneous words in the selected top words. In

addition, the words are not representative and the differences between the topics

are difficult to identify. This example shows that the performance of traditional

LDA model greatly suffers when documents contain erroneous words. 2

Second, since the LDA model does not consider the order of the topics and

words, during parameter estimation and inference, the topics and the words are

assumed to be exchangeable. The LDA model relies on the bag-of-words docu-

ment prototype. It assumes each word in a document is generated by a latent

topic and explicitly models the word distribution of each topic as well as the prior

2http://code.google.com/p/isri-ocr-evaluation-tools/updates/list
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Table 1.1. Top words (selected by LDA) for five different topics of a small sample of
Unlv OCR data set (erroneous words are in italic).

Top words

school, stu, district, teacher, angel, lo, board, educ
sto, food, res, servic, low, leonard, temperatur, retail
air, airlin, fli, american, engin, subject, threate, pil

mln, dlrs, year, net, quarter, share, dlr, ln
mcknight, vista, de, fleetwood, brown, davi, san, democr

distribution over topics in the document. However, we argue that the ordering

of words and phrases are often critical to capture the meaning of texts in data

mining tasks. Successive words in the same document are more likely to belong

to the same topic. For example, a phrase “social network” is a term in modern

information society under Web 2.0 while “social” is a term from traditional soci-

ology and “network” refers to a particular term in computer science. Often, the

ordering of terms carries special meanings in addition to the appearance of individ-

ual words. Therefore, incorporating topic dependency is important to learn topics

and also to disambiguate words which may belong to different topics. More im-

portantly, considering the ordering of consecutive terms can often help in dealing

with errors found in parts. For instance, despite the typo “betwork” in the middle

from a phrase “social betwork analysis”, surrounding correct words “social” and

“analysis” still have common semantic connections that could be exploited.

As the second work of this dissertation, we introduce our novel models to tackle

the issues of noisy text data in document modeling. In particular, we propose a

new LDA model termed as TE-LDA (LDA with Textual Errors) to deal with

textual errors in document corpora. We further extend it to a new TDE-LDA

(LDA with Topic Dependency and textual Errors) model in order to take into

account topic dependency in the document generation process. Through a set of

comprehensive experiments, the efficacy of our proposed models is validated using
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both real and synthetic data sets.

1.2.3 Social User Mining

The emergence and rapid growth of online social media sites such as Facebook

and Twitter has led to a massive volume of user-generated contents on the Web.

For example, since it is founded in 2006, Twitter has grown to become one of the

most popular social media and microblogging services. Twitter users can share

timely social information about daily or weekly activities and statuses with their

followers by posting short text messages (i.e., tweets) with 140 characters limit in

length. As of 2012, there are over 500 millions of registered users generating over

340 millions of tweets every day3.

With a growing number of users using social network services (SNS), being

able to understand about the users better becomes critical in many applications.

If businesses have an access to users’ demographics such as gender and ethnicity or

particular user interests toward brand or sports teams, such knowledge can be use-

ful in personalizing the contents or targeted online marketing [22]. Despite these

implications, however, only a small fraction of users voluntarily provides informa-

tion about themselves. For example, Twitter as one of the most popular microblog

sites has been used as a rich source of real-time information sharing in everyday

life. Many popular search engines such as Google, Yahoo! and Bing have started

including feeds from Twitter in their search results. When Twitter users express

their interests about organizations, companies, brands, or sports in tweets, it in

turn provides important opportunities for businesses in improving their services

such as targeted advertising and personalized services. Since the majority of Twit-

ter users’ basic demographic information (e.g., gender, age, ethnicity) is unknown

3http://techcrunch.com/2012/07/30/page/2/
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or incomplete, being able to accurately identify the hidden information about users

becomes an important and practical problem. However, Twitter provides limited

metadata about their users. Important user profile information such as age and

gender are typically incomplete or inaccurate. Moreover, other useful attributes

such as ethnicity, personal properties and preferences are not usually disclosed

due to privacy concerns [23]. Consequently, observable user information such as

contents of tweets provides valuable and more importantly reliable information for

social user mining and knowledge discovery in Twitter.

Some researchers have already studied the problem of Twitter user classifica-

tion [23, 24, 25]. For example, [23] presented an exploratory study of classification

about latent user attributes in Twitter including gender, age, regional origin, and

political orientation. The authors utilized various features including sociolinguistic

features like presence of emoticons, unigrams and bigrams features derived from

the tweet text, and other behavior and network features for binary classification.

[25] focused on other binary classification problems such as political affiliation (e.g.,

Democrats or Republicans), ethnicity identification and affinity for business like

Starbucks. The authors developed a machine learning framework to learn classifi-

cation models from labeled data and a broad set of features such as profile features,

tweeting behavior features, linguistic content features and social network features.

However, previous research has shown that profile information do not carry

enough good-quality information to be directly applied for user classification pur-

poses [24]. Moreover, other information such as tweeting behavior features are not

useful for most classification tasks [23]. Different from previous work, we focus on

classifying Twitter users based on the contents of their tweets. While linguistic

contents usually assume the bag-of-words model on textual data, we argue that

Twitter users often exhibit a periodicity pattern when they post tweets to share



14

Figure 1.4. Daily trends for the terms “friends” and “school,” taken from [2].

their activities and statuses or express their opinions. This is because people tend

to show interests in different activities during different time frames. Recent re-

search [26] has shown that contents on microblogging platforms such as Twitter

show patterns of temporal variation and pieces of content become popular and

fade away in different temporal scales. Previous study [2] has shown that contents

on microblogging platforms such as Twitter show patterns of temporal variation

and there exists a recurring pattern in word usage. Such patterns may be observed

over a day or a week. For example, Figure 1.4 (taken from [2]) shows that the

terms “school” and “friends” have different frequency patterns during weekly time

frame.

Example 3. Consider Figure 1.4 that shows the trends for the terms “friends”

and “school.” Note that the term “school” is more frequent during the early week

and “friends” takes over during the weekend. 2

As a result, instead of using tweet messages directly, one may leverage the

temporal information derived from the word usage within tweet streams and model
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tweet features as time series to amplify its periodicity pattern to boost the accuracy

in classification. Therefore, in classifying Twitter users, we advocate to convert

tweet contents into time series based on word usage patterns, and then perform

time series based classification algorithms.

As the third work of this dissertation, we introduce our novel time series ap-

proach to tackle the problem of classifying Twitter user interests. In particular,

we propose a new framework to convert Twitter users to time series by incorpo-

rating temporal information into the stream of tweets such that the user classifi-

cation problem can be solved in time series domain. The efficacy of our proposed

approach is validated through extensive experiments in both sports and political

interest domains.

On the other hand, among the vast amount of user-generated contents, Face-

book Likes activity is one of the highly available and public information in online

social networks. Facebook Likes refer to the social activity by Facebook users

to express their positive association with online contents such as photos, friends’

status updates, products, sports, musicians, books, restaurants, or other popular

websites [27]. Compared to other social activities [28], Facebook Likes are cur-

rently publicly available by default. Previous research has shown that 57% of

Facebook user profiles publicly reveal at least one Like among different categories.

This large amount of available activity information suggests that the majority of

users consider this Facebook activity does not violate their privacy as there seems

no correlation between their Likes and private data.

Thus, it is natural to try to utilize Facebook Likes provided by users in order

to infer the missing user attributes in an online social network. Such ability of

automatically predict user attributes is very useful for many social networking

applications such as friend recommendation and content sharing. Also it has less
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privacy concerns as users are more willing to publicly reveal their Likes activity in

online social networks.

As the fourth work of this dissertation, we introduce our topic modeling ap-

proach to tackle the problem of attribute prediction of Facebook users. In par-

ticular, we propose a LDA approach to extract the topic features from Facebook

Likes activity such that the prediction problem can be solved using latent topics.

The efficacy of our proposed approach is validated through extensive experiments

using real data sets on four binary and multi-class demographical attributes of

Facebook users.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows.

In Chapter 2, we review the related work for record linkage, document modeling

and social user mining.

In Chapter 3, we present our novel idea of T3 framework on mining texts using

time series in order to solve the record linkage problem in time series domain. We

propose two variations of granularity, three variations of n-grams, and four varia-

tions of score assignments based on space-filling curve techniques for characters or

tf-idf weighting technique for tokens, in order to convert record strings. We show

the efficacy of our proposed T3 schemes using both real and synthetic data sets.

In Chapter 4, we present our TE-LDA and TDE-LDA model on mining texts

using latent topics in order to tackle the document modeling problem in the pres-

ence of textual errors. We incorporate textual errors into term generation process

in TE-LDA. We further extend it to TDE-LDA by taking into account topic depen-

dency to leverage on semantic connections among consecutive words even if parts
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are typos. Through extensive experiments, we show that our proposed models are

able to model the document corpus in a more meaningful and realistic way, and

achieve better generalization performance than the baseline LDA model and the

n-grams model.

In Chapter 5, we study the problem of mining social content for classifying

Twitter user interests using tweet messages. We apply the traditional document

categorization methods to Twitter user classification in both binary and multi-class

scenarios. We further introduce a novel time series approach to convert Twitter

users to time series by incorporating temporal information into the stream of tweets

such that the user classification problem can be solved in time series domain. More-

over, we propose two classification algorithms for multi-class user classification in

time series domain. Through extensive experiments, we demonstrate that our

time series approach can boost classification accuracy significantly with respect to

identifying Twitter users with certain sports and political interests.

In Chapter 6, we study the problem of mining social activity for predicting

Facebook user attributes using Facebook Likes. We introduce a user-level LDA

model approach to tackle the problem of user attribute prediction. In particular,

we extract topic features from Facebook Likes activity such that the prediction

problem can be solved using latent topics. Through comprehensive experiments,

we show that our proposed approach can improve prediction accuracy effectively

using real data sets on four binary and multi-class demographical attributes of

Facebook users.

Finally, we conclude this dissertation by summarizing our new methods and

contributions, and outline future work in Chapter 7.



Chapter 2
Related Work

2.1 Record Linkage

The general linkage problem has been known as record linkage [29, 30], merge-

purge [31], citation matching [32], object matching [33], entity resolution [34],

authority control [35], and approximate string join [33, 36], to name a few. Excel-

lent survey papers [37, 11] provide the latest advancement of the linkage problem.

In terms of scalability issue, researchers have proposed the blocking technique,

computationally efficient distance function [38], or parallel linkage [39]. In addi-

tion, [38] conducted an in-depth study on the blocking issue of the linkage problem

in the context of digital library. [40] presented the novel idea of solving the record

linkage problem using BLAST, one of the most popular gene sequence alignment

algorithms in Bioinformatics. They proposed four variations of linkage solutions to

translate text data into DNA sequences and demonstrated the good combination

of accuracy and speed of applying BLAST to record linkage.

On the other hand, time series data mining has received tremendous atten-

tion in the data mining community during the last decade. Many time series
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representation methods such as Discrete Fourier Transformation (DFT) [12], Dis-

crete Wavelet Transformation (DWT) [41], Piecewise Aggregate Approximation

(PAA) [42], Singular Value Decomposition (SVD) [12] and Symbolic Aggregate ap-

proXimation (SAX) [43] etc. have been proposed together with the corresponding

similarity measures such as Euclidean Distance (ED) [12], Dynamic Time Warp-

ing (DTW) [44], Distance based on Longest Common subsequence (LCSS) [45]

and so on. Recently, [46] summarized and evaluated the state-of-the-art repre-

sentation methods and similarity measures for time series data through extensive

experiments.

However, none of these existing works attempted to solve the linkage problem

using time series mining techniques as we did in this dissertation. Recently the

authors in [47] mentioned a method to transform text into a time series represen-

tation in the case of translating biblical text in both English and Spanish. The

basic idea is to convert the bible text into bit streams based on the occurrences of

a particular word in the text. Then a time series is generated based on the number

of word occurrences within a predefined sliding window across the bit streams. Al-

though it is useful in the case of generating time series for the translation versions

of the same text in two different languages, their method can not been directly

applied to the record linkage problem because each record may have different sets

of words and it would be hard, if not impossible, to find a common word among

them before the time series conversion.

2.2 Document Modeling

Probabilistic document modeling has received tremendous attention in the data

mining community. A series of probabilistic models have been introduced to sim-
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ulate the document generation process. These models include the Naive Bayesian

model and the Probabilistic Latent Semantic Indexing (PLSI) model [48]. The

LDA model has become most popular in the data mining and information re-

trieval community due to its solid theoretical statistical foundation and promising

performance. A wide variety of extensions of LDA model have been proposed for

different modeling purposes in different contexts. For example, the author-topic

model [14, 18] uses the authorship information with the words to learn topics.

The correlated LDA model learns topics simultaneously from images and caption

words [15]. The Link-LDA model and Topic-link LDA model [16] represent topics

and author communities using both content words and links between documents.

Most topic modeling techniques require the bag-of-words assumption [13]. They

treat the generation of all words independently from each other given the param-

eters. It is true that these models with the bag-of-words assumption simplified

the problem domain and enjoyed a big success, hence attracted a lot interests

from researchers with different backgrounds. Some researchers tried to drop this

assumption to assume that words are generated dependently. For example, [49]

developed a bigram topic model on the basis of the hierarchical Dirichlet language

model, by incorporating the concept of topic into bigram models. [50] proposed

a topical n-grams model to automatically determines whether to form an n-gram

based on the surrounding context of words. [19] developed a probabilistic time

series model to capture the evolution of topics in large document corpora. [51]

proposed a hidden topic Markov model (HTMM) to incorporate a hidden Markov

structure into LDA. However, their model is based on the assumption that all words

in the same sentence must have the same topic and imposes a sentence boundary

for words. [52] proposed a correlated topic model which allows for correlations

between topic assignments and draws a topic proportion from a logistic normal
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instead of a Dirichlet distribution. [53] proposed the HMMLDA model as a gen-

erative composite model which considers both short-range syntactic dependencies

and long-range semantic dependencies between words. [54] proposed a probabilistic

model to match documents at both general topic level and specific word level in

information retrieval tasks.

Recently, a number of researchers proposed topic segmentation models which

are closely related to topic models. Topic segmentation is to split a text stream

into coherent and meaningful segments. For example, the aspect hidden markov

(HMM) model proposed in [55] models unstructured data which contains streams

of words. In the aspect HMM model, documents are separated into segments and

each segment is generated from a unique topic assignment and there is no mixture

of topics during the inference. [56] proposed a Bayesian approach to linear topic

segmentation which assumes some numbers of hidden topics are shared across mul-

tiple documents. [57, 58] further extended this work by marginalizing the language

models using the Dirichlet compound multinomial distribution, and applied the

model to both linear topic segmentation and hierarchical topic segmentation for

the purpose of multi-scale lexical cohesion. [59] proposed a statistical model that

combines topic identification and segmentation in text document collections, and

the model is able to identify segments of text which are topically coherent and

cluster the documents into overlapping clusters as well. Note that the Markov

transition is based on segments with each being generated from a linear combina-

tion of the distributions associated with each topic.

Most topic modeling techniques require clean document corpora. This is to

prevent the models from confusing patterns which emerge in the noisy text data.

Recent work in [1] is the first comprehensive study of document clustering and

LDA on synthetic and real-word Optical Character Recognition (OCR) data. The
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character-level textual errors introduced by OCR engines serve as baseline doc-

ument corpora to understand the accuracy of document modeling in erroneous

environment. As pointed out by these researchers, even on clean data, LDA will

often do poorly if the very simple feature selection step of removing stop-words

is not performed first. The study shows that the performance of topic modeling

algorithms degrades significantly as word error rates increase.

2.3 Social User Mining

Recently, researchers tried to tackle the problem of short text classification in social

networks from different perspectives [60, 61, 62]. [60] used a small set of domain-

specific features extracted from the user’s profile and text to effectively classify

the text to a predefined set of generic classes such as news, events, opinions, deals

and private messages. [61] tried to improve the classification accuracy by gaining

external knowledge discovered from search snippets on Web search results. [62]

proposed a non-parametric approach for short text classification in an information

retrieval framework. And the predicted category label is determined by the ma-

jority vote of the search results for better classification accuracy. [63] proposed a

classification model of tweet streams that switches between two probability esti-

mates of words, which can learn from stationary words and also respond to busty

words. Note that these classification methods are carried over tweets. In contrast,

in this dissertation, we focus on the problem of classification over users.

Several researchers have investigated the problem of detecting user attributes

such as gender, age, regional origin, political orientation, sentiment, location, and

spammer based on user communication streams. [64] investigated statistical mod-

els for identifying the gender of Twitter users as the binary classification problem.
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They adopted a number of text-based features through various basic classifier

types. [23] presented a study of classification experiments about more latent user

attributes such as gender, age, regional origin, and political orientation. They

adopted various sociolinguistic features such as emoticons, ellipses, character repe-

tition, etc., and used support vector machines to learn a binary classifier. Although

the authors gave a general framework with classification techniques for various user

attributes mining tasks, they employed a lot of domain knowledge in their exper-

iments. [65] focused on classification problem on positive or negative feelings on

tweet streams for opinion mining and sentiment analysis. [66, 67] studied user

geo-location detection problem in the city level. Based purely on the contents of

the user’s tweets, the authors proposed a probabilistic framework to automatically

identify words in tweets with a local geo-scope for estimating a Twitter user’s

city-level location. [68] further improved the prediction quality of a Twitter user’s

home location by estimating the spatial word usage probability with Gaussian Mix-

ture models. Meanwhile, they also proposed unsupervised measurements to rank

the local words to remove noises effectively. [69] used a number of characteristics

features related to user social behavior as attributes of machine learning process

for classifying users as either spammers or non-spammers on Twitter.

[70] proposed a temporal semantic analysis model to compute the degree of

semantic relatedness of words by studying patterns of word usage over time. [26]

proposed a time-aware clustering algorithm to uncover the common temporal pat-

terns of online content popularity. [24] is closely related to our work. The authors

developed a general machine learning approach to learn three binary classification

models based on Decision Trees for identifying political affiliation, ethnicity, and

business affinity from labeled data using a broad set of features such as profile,

tweeting behavior, linguistic content and social network features.
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On the other hand, some researchers have studied the problem of predicting pri-

vate traits and attributes from digital records of human behavior such as browsing

logs [71, 72, 73], properties of Facebook or Twitter profiles including the number

of friends or the density of friendship networks [74, 75, 76, 77]. Recent study [27]

has shown that Facebook Likes can be used to automatically and accurately pre-

dict sensitive personal attributes, such as sexual orientation, ethnicity, religious

and political views, intelligence, happiness, drug use, parental separation, age, and

gender. Based on demographic profiles and results of psychometric tests as well

as their Facebook Likes data from 58,466 volunteers, their study used regression

models to predict individual psychodemographic profiles from Facebook activities.

The method can achieve best discriminative results for predicting dichotomous

variables such as gender and ethnicity. And the authors claimed that even for nu-

merical variables such as openness attribute from personality traits, the prediction

accuracy is also close to the accuracy of a standard personality test.



Chapter 3
Record Linkage Using Time Series

3.1 Overview

In this chapter, we focus on the Record Linkage problem, one of the traditional

data mining problems, to determine whether or not two entities represented as rela-

tional records are approximately the same. The record linkage problem frequently

occurs in database applications (e.g., digital libraries, search engines, customer

relationship management) and get exacerbated in the situation of integrating data

from heterogeneous sources as poor quality data is prevalent in databases due to

a variety of reasons including lack of standards for recording database fields, tran-

scription errors, data entry mistakes, etc. For instance, a customer address table

in a data warehouse may contain multiple address records which are all from the

same residence, and therefore need to be consolidated. For another example, sup-

pose we would like to integrating two digital libraries such as DBLP and CiteSeer.

Because citations in two systems tend to have different formats, it is not always

trivial to identify all matching pairs.

Formally, the record linkage problem can be formulated as follows.
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Definition (Record Linkage) Given a collection of record entities R, identify

all similar entity pairs (a, b) such that a, b ∈ R and dist(a, b) < φ, where dist() is

some distance function and φ is some pre-selected threshold. 2

Despite significant advancement in each area, data mining research in textual

data (e.g., web pages of search engines, citations of digital libraries, relationship

data in social networks) and time series data (e.g., network traffic observations,

daily fluctuations of stock prices) have not been developed in a close synchroniza-

tion. New techniques developed in one area do not easily get carried over to the

other area. This is partly due to the fact that although both deal with many simi-

lar problems such as defining appropriate distance functions or finding interesting

patterns, their subject domains are different – i.e., alphabetical strings vs. numer-

ical signals. Therefore, toward this lack of connection between the emerging time

series and the traditional text mining approaches, in this chapter, we investigate

if there exists feasible transformation between two data types such that relevant

data mining problems in one data type can find their counterparts in the other

type. We are interested in whether and to what extent the performance of mining

solutions developed in one domain can be improved over the solutions in the other

domain.

In this chapter [78], we present the T3 (Text To T ime series) framework to

map text data to time series data. During the transformation of the entire text

corpus, T3 utilizes different combinations of granularity (i.e., character level or

word level) to extract text units from strings. Furthermore, T3 utilizes n-grams

(i.e., unigram, bigram or trigram) to form subsequences of text units. In order

to assign appropriate numeric values to each character, T3 adopts different space-

filling curves (i.e., linear, Hilbert, Z orders) based on the keyboard layout. In



27

Time
Series

database

Text

Record
String

database

Research Problems

1.Record Indexing
2.Record Classification
3.Record Clustering
4.Asso. Rule Mining
5.Similarity discovery

T^3
Real Values

Symbolized
Time

Series

SAX
Fourier
Wavelets
etc…

Dimension Reduction

Symbolization

Research Results

Hashing
Suffix Tree
BLAST
etc…

Algorithm

K-means
Doc Clustering
KNN
etc…

Research Results

Comparison

Text

Time Series

Figure 3.1. Overview of the T3 framework.

addition, to associate real values to each token, T3 uses the tf-idf weight of the

traditional weighting scheme from information retrieval and text mining. We apply

the T3 framework to the record linkage problem. Through extensive experiments

using both real and synthetic data sets, the efficacy of our proposed schemes is

experimentally validated. To the best of our knowledge, this is one of the first

attempts to solve a text mining problem in time series domain. Our experiments

reveal that T3 shows comparable accuracy (despite the lossy transformation in

T3) when compared to a popular distance measure (e.g., Levenshtein distance) in

text domain. However, T3 also achieves much improved speed-up thanks to the

numerical data of time series domain.
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3.2 Proposed T3 Framework

The basic idea of T3 is illustrated in Figure 3.1. Instead of solving data mining

problems on string/text data, we first scan the string database using the proposed

transformation schemes in T3. After the string database is mapped to a new time

series database, we then employ dimension reduction and symbolization techniques

directly on the real values of time series. In general, T3 serves as a convenient

bridge to connect two subject domains: numerical signals and alphabetical strings.

Therefore, our approach can be considered as a novel complement to existing

text mining algorithms which were solely built for generic use based on string

manipulation.

In this section, we introduce in detail the transformation schemes in our pro-

posed T3 framework. Given any sequence s from a database of textual sequences

D, T3 utilizes different combinations of granularity, n-grams and score assignments

to convert strings to time series. In particular, T3 performs three basic steps during

the transformation:

• Phase 1 (Determine the text unit): T3 can treat each record or docu-

ment in the database as a sequence of characters or a sequence of word tokens.

At character-level granularity, each alphabet, number or special character in

the sequence s is considered as a single text unit. And at word-level granu-

larity, a single unit would be any word in the sequence s.

• Phase 2 (Determine the n-grams): After determining the single unit of

the sequence, T3 adopts the n-grams concept from various areas of statistical

natural language processing. Basically, an n-gram is a sub-sequence of n

single units from a given sequence. In particular, in T3, an n-gram is a

sub-sequence of n consecutive characters at character-level granularity and
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a sub-sequence of n consecutive tokens at word- level granularity. T3 uses

three kinds of n-grams to transform the entire text corpus.

• Phase 3 (Determine the score assignment): Given the units and n-

grams, in the third step, T3 now turns to assign appropriate numeric values

to convert the sequence s to a time series. Based on different granularity, T3

uses different weighting techniques to assign scores to each unit.

We explain the detailed schemes of transformation in the following.

3.2.1 Granularity

Each record or document in the text domain can be considered as a sequence of

characters or a sequence of word tokens. During the process of converting string

data into time series data, T3 extracts single units from sequences and then assign

pre-assigned values to each unit. In this chapter, we use two different levels of

granularity as follows:

• character level : An alphabet letter is regarded as a single text unit. In the

transformation, ignoring upper/lower cases, we consider 64 (= 26 + 10 +

28) cases – i.e., 26 cases for 26 English alphabets, 10 cases for 10 numbers

(e.g., 0 to 9), and 28 cases for all special characters such as @, #, $. We

do distinguish among special characters since some of special characters in

record strings appear in our data sets.

• word level : At this granularity, an English word (also called “token”) is re-

garded as a single text unit and T3 simply extracts each token from sequences

and then assign appropriate values to each token based on the weighting
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scheme. Note that token-level granularity is coarse compared to fine granu-

larity at character level. Therefore, for the same text sequence, the length

of time series after transformation at token level is much shorter than the

length of corresponding time series after transformation at character level.

In the experimentation, by default, we use the character-level granularity.

3.2.2 N-grams

In statistical natural language processing, an n-gram is a sub-sequence of n con-

secutive items from a given sequence. These items could be symbols, letters, or

words according to the application. As mentioned above, in our T3 framework, we

treat either a character or a token as the single unit of sequences. Therefore, an

n-gram in T3 is a sub-sequence of n consecutive characters at character level and

a sub-sequence of n consecutive tokens at word level. n-grams have different sizes

and T3 adopts three sizes of n-grams to extract sub-sequences from the original

text sequence as follows. We illustrate these three n-grams using a sequence “time

series data mining” as an example.

• unigram: An n-gram of size 1 is called a unigram. That is, it only contains

one single unit of the text sequence. For the above example, a unigram at

word level would be “time”, “series”, “data”, “mining”.

• bigram: An n-gram of size 2 is called a bigram. That is, it contains two

single units of the text sequence. For the above example, a bigram at word

level would be “time series”, “series data”, “data mining”.

• trigram: An n-gram of size 3 is called a trigram. That is, it contains three

single units of the text sequence. For the above example, a trigram at word
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Table 3.1. A complete example of different combinations of granularity level and n-
grams.

Coding Transformation

char + unigram “t”,“i”,“m”,“e”,“s”,“e”,“r”,“i”,“e”,“s”,“d”,
“a”,“t”,“a”,“m”,“i”,“n”,“i”,“n”,“g”

char + bigram “ti”,“im”,“me”,“es”,“se”,“er”,“ri”,“ie”,“es”,“sd”,
“da”,“at”,“ta”,“am”,“mi”,“in”,“ni”,“in”,“ng”

char + trigram “tim”,“ime”,“mes”,“ese”,“ser”,“eri”,“rie”,“ies”,“esd”,
“sda”,“dat”,“ata”,“tam”,“ami”,“min”,“ini”,“nin”,“ing”

word + unigram “time”, “series”, “data”, “mining”
word + bigram “time series”, “series data”, “data mining”
word + trigram “time series data”, “series data mining”

level would be “time series data”, “series data mining”.

In the experimentation, by default, we use unigram during the transformation.

Example 4. Table 3.1 shows a complete example of how to transform the se-

quence “time series data mining” based on different combinations of granularity

level and n-grams. 2

3.2.3 Score Assignment

Score assignment is the most important part of the T3 framework. At this stage, T3

assigns appropriate numeric values in order to actually convert strings to time se-

ries. Based on different levels of granularity, T3 adopts different weighting schemes

in order to assign scores to subsequences of text units.

At character level, T3 uses the QWERTY keyboard layout, to allocate each text

unit, i.e. alphabets, numbers or special alphabets, into equal-length or varying-

length bins within the range [0,1]. Then the median value of each bin is used to

represent the corresponding character. During the allocation of bins, we consider

the following three possible layouts:
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Figure 3.2. Hilbert curve vs. Z-order curve.

• linear order : This layout is simply based on each key position on the key-

board following the order of row by row. Each character is then assigned an

appropriate real value within the range [0,1].

• Hilbert order : In this layout, we regard the keyboard as a small 2D space and

then adopt the space filling curve techniques to map 2-dimensional space to

1-dimensional sequence. Figure 3.2(top) shows the details of Hilbert space-

filling curve. After we get the 1-dimensional sequence, we then allocate it

to uniform bins within the range [0,1] so that each character is assigned

a real value. Hilbert order has good locality-preserving behaviors so that
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alphabets at similar locations in the keyboard have similar real values during

the score assignment. Our idea is motivated by the fact that alphabets at

similar locations in the keyboard have higher probability of typo, which is

a traditional problem in data mining research. Using Hilbert space-filling

curve, characters at similar locations will have similar real values which, in

turn, mitigate the typo problem that may cause sequence dissimilarity.

• Z order : In addition to Hilbert space-filling curve, we also implement Z

order space-filling curve. Figure 3.2(bottom) shows the details of Z space-

filling curve. Z order also has good locality-preserving behaviors compared

to Hilbert order and we are interested in whether there is significant perfor-

mance difference between these two space-filling curves.

Table 3.2 shows the actual assignment of scores using linear, Hilbert, and Z-

ordering.

At word level, T3 uses the tf-idf weight (term frequency-inverse document fre-

quency) of the traditional weighting scheme from information retrieval and text

mining. The tf-idf weight is a statistical measure to estimate how important a

token in a string record is within a record database such that it increases propor-

tionally to the number of times that the token occurs in the string but is offset by

its frequency in the database. Each token of a record string is assigned an impor-

tance weight using the tf-idf weight such that the whole string can be converted

into a time series.

3.2.4 Discussion

Note that the three dimensions of approaches (i.e., granularity, n-gram, and score

assignment) in T3 are not exhaustive at all. One can easily devise more sophis-
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Table 3.2. Actual assignment table.
Char Linear Hilbert Z

A 0.5535 0.1215 0.2295
B 0.9045 0.5805 0.7155
C 0.8505 0.2565 0.3915
D 0.6075 0.2295 0.3375
E 0.3375 0.3645 0.1755
F 0.6345 0.3105 0.3645
G 0.6615 0.5535 0.6615
H 0.6885 0.6345 0.6885
I 0.4725 0.7695 0.6345
J 0.7155 0.6615 0.7695
K 0.7425 0.7425 0.7965
L 0.7695 0.9855 0.9855
M 0.9585 0.6885 0.8235
N 0.9315 0.6075 0.7425
O 0.4995 0.9585 0.9315
P 0.5265 0.9315 0.9585
Q 0.2835 0.0945 0.0675
R 0.3645 0.3375 0.2025
S 0.5805 0.2025 0.2565
T 0.3915 0.5265 0.4995
U 0.4455 0.7965 0.6075
V 0.8775 0.2835 0.4185
W 0.3105 0.0675 0.0945
X 0.8235 0.1755 0.3105
Y 0.4185 0.4995 0.5265
Z 0.7965 0.1485 0.2835
0 0.2565 0.9045 0.9045
1 0.0135 0.0135 0.0135
2 0.0405 0.0405 0.0405
3 0.0675 0.3915 0.1215
4 0.0945 0.4185 0.1485
5 0.1215 0.4455 0.4455
6 0.1485 0.4725 0.4725
7 0.1755 0.8235 0.5535
8 0.2025 0.8505 0.5805
9 0.2295 0.8775 0.8775

All special char. 0.9855 0.7155 0.8505
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ticated transformation schemes from text strings to numeric time series. For in-

stance, as to the score assignment dimension, in addition to the keyboard layout

based assignment for the character level or weighting based assignment for the

word level, one may use Linguistic characteristic (e.g., while a character-level bi-

gram “on” occurs frequently, another bigram “xz” rarely occurs in English) to

assign different assignment scores. Similarly, domain-specific characteristics of

text data can be adopted. For instance, instead of character-level or word-level,

one may use phrase-level or paragraph-level summary as the basic text unit when

dealing with documents. Since our immediate goal is to evaluate the validity of T3

framework to show that “there exist some reasonable information-lossy conversion

schemes from text domain to time series domain so that text-based data mining

problems can be solved in time series domain”, we rather leave the development of

more sophisticated conversion schemes in T3 framework for future work.

3.3 Experimental Validation

In order to validate our proposed T3 framework, we use the record linkage problem.

In a nutshell, once we transform all textual records into time series data using T3

framework, for a given query time series q, we attempt to retrieve q’s true duplicate

time series. Then, we compare the performance of T3 with that of a traditional

record linkage solution that uses the text string as input. If the performance

of T3 in solving the record linkage problem in time series domain is comparable

to that of a traditional record linkage solution, then it shows the validity of our

proposed T3 framework. Since the transformation schemes in T3 “lose” some

information of original text string (i.e., lossy conversion), we expect the accuracy

of T3 framework to drop slightly, compared to the accuracy of a traditional record
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Table 3.3. Summary of data sets.
Name Data Error Domain # of records Max # of duplicates # of queries # of targets

map real real map name 337 2 19 19
bird real real bird name 982 2 67 67

business real real business name 2,139 2 279 279
census real real census info. 841 2 326 326

university real real university name 116 16 15 15

cora real real citation 1,326 5 98 194
restaurant real real restaurant info. 864 2 111 111
celebrity real real celebrity address 2615 2 276 276

dblp real synthetic citation 5359 5 1,369 3,991

dbgen synthetic synthetic mailing list 9,947 19 960 8,987

linkage solution. However, what we are more interested in these experimentations is

the comparison among different schemes in T3 framework and any possible benefits

of those schemes.

The record linkage problem can be modeled as a selection problem (i.e., select

top-k similar records) as well as a threshold problem (i.e., find all similar records

above a threshold). For illustration purpose, we briefly describe the selection

version of the linkage problem as follows. Imagine that given a query record qr,

there are k true duplicates, d1, ..., dk, in the database of records Dr. Then, the goal

of record linkage is to obtain the true duplicates from the retrieved top-k records.

In the best scenario, if all k true duplicates are retrieved, then we get the precision

and recall of 1.0. Note that in this chapter, we adopt both the selection approach

and the threshold approach for further experimental analysis.

Given a set of query records Qr and a database of records Dr, a naive nested-

loop style algorithm with quadratic running time to find all duplicate records is:

for each record r ∈ Qr

for each record si ∈ Dr

compute dist(r, si);

return {s1, ..., sk} with the lowest dist(r, si).
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3.3.1 Set-Up

Table 3.3 shows the summary of data sets that we used in our experiments. The

first five data sets map, bird, business, census, and university are real data sets

which contain real string data and real errors. They are downloaded from Second

String1 data repository. Each of the original data sets has several fields with the

first field as the key attribute of each record. We pre-processed the data sets by

finding the true duplicates for each query record and then manually removed all the

key fields to make each record only contain information of its own domain. The

other three data sets cora, restaurant, and celebrity are also real data sets

containing real string data and real errors. Both cora and restaurant data sets

are downloaded from RIDDLE2 data repository3. Note that the original cora data

set from RIDDLE has 1,295 citation records of computer science papers, which are

all duplicates of 116 unique citations. Each citation has a number of duplicates,

some as many as 55 duplicates. Each citation record is labeled with a unique

identifier. We hand-selected 292 records of 98 citations such that each citation can

have up to five duplicates. We did not use the full data set in the original cora data

set since some of the duplicates were incorrectly labeled and it is unrealistic that

duplicates of only a few entities take a large portion of the entire database records.

Since the number of selected records is too small, we next extended the data set

with 1,034 additional citation records manually collected from the Web (mainly

from the paper lists of researchers in computer science departments), making total

of 1,326 records. From here forward, we refer to this modified version of cora data

set as simply cora data set. In the experiments, we search for 194 duplicates of

1http://secondstring.sourceforge.net/
2http://www.cs.utexas.edu/users/ml/riddle/
3The celebrity data set was provided to us by Ned Porter at US Census Bureau.
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Table 3.4. Parameter settings used for the dbgen (above) and dblp (bottom) data set.
Note that probabilities for different error types are independent to each other.

Error Type Probability

Typo errors exist 0.3
Single typo error 0.6

Multiple typo error 0.4
First name is dropped 0.3

First name is abbreviated 0.7
Middle name is dropped 0.2

Middle name is abbreviated 0.8

Typo errors exist 0.9
Single typo error 0.9

Multiple typo error 0.1
Venue information as a full name 0.4

Pages and month information are dropped 0.5
Numeric information has a typo 0.2

98 original records in this cora data set.

Also note the original celebrity data set has 2764 records of celebrities’ ad-

dresses with their names. The name of a celebrity is used as a key to distinguish

duplicates in the data set. In the original data set, there are the records with the

same address for different celebrity names. They may refer the addresses shared

by family members who are all celebrities. Since such records are not proper for

our problem, only one of them are kept among the records with the same address

for different names so that 129 records are removed from the original celebrity

data set. And, among the remaining 2615 records, 276 records are used as query

strings and each of them has an exactly one duplicate.

Next, a new citation data set dblp was generated using real citation records

from similar venues of DBLP. To inject artificial errors, we randomly selected

ten venues from similar research domains such as CIKM, SIGKDD, SIGMOD,

and again randomly selected citations published in those venues. Once we had

initial citations, we generated duplicates by introducing typographical errors. For
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Table 3.5. Examples of some data sets.
Name Sample Data

bird “Gavia stellata Red-throated Loon”

business “3Com Corporation”

restaurant “cassells 3266 w sixth st la 213 480 8668 hamburgers”

celebrity “ANDRE AGASSI 8921 ANDRE DR. LAS VEGAS NV 89113”

dblp “Bell Data Modelling of Scientific Simulation Proams SIGMOD Conference 1982”

dbgen “Colbri P Beer 478 Naftel St 6j2 Rio Blanco PR 00744”

instance, single typo error was generated by inserting a new character, replacing a

characters by different character, deleting a character, or swapping two characters

in a word. However, for numeric data fields (e.g, journal volumes or numbers), we

only use insertion and deletion. The detailed parameter settings to generate errors

are shown in Table 3.4.

Finally, using the data generation tool, DBGen [31], we generated one synthetic

data set containing patient information with nine attributes such as SSN, first

name, middle name, last name, street number, street name, city, state, and ZIP

number. Note that unlike aforementioned data sets, this data set contains only

synthetically generated data and errors. DBGen permits us to control error rates

in records in detail. Using DBGen, we generated the synthetic patient data –

dbgen. dbgen has around 10,000 patient records with on average 19 duplicates per

record. In dbgen, the probability for a token to have a typo (10% single vs. 90%

multiple typos) in person and street name fields is substantially increased to 0.8.

In order to get a general idea, Table 3.5 shows examples of record strings in

some of the data sets.

Distance Measures. Given two time series T1 and T2, a distance function, de-

noted by Dist(T1,T2), calculates the distance between the two time series. we use

the Levenshtein Distance (LD) in text domain and Euclidean Distance (ED) and

Dynamic Time Warping (DTW) in time series domain. All measures are known

to work well for order-conscious text or time series data [44]. Since ED requires
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two time series to have the same length, in our experimentation, we augment the

shorter time series to have the same length as the longer time series by simply

adding prefix or suffix of median values (i.e., 0.5). The DTW function, on the

other hand, allows a time series to be “stretched” or “compressed” to provide a

better match with other time series [47, 44]. In this chapter, we show the per-

formance of these two distance functions in terms of precision, recall and running

time.

3.3.2 Evaluation Metrics

To evaluate the efficiency and effectiveness of the proposed T3 framework, we

mainly use two evaluation metrics – speed and accuracy. In particular, to measure

the speed of a method, we use the Running Time (T) excluding any pre-processing

steps. To measure the accuracy, we use the average Precision (P) and Recall (R).

Suppose that T denotes a set of true matching records and S denotes a set of records

retrieved by an algorithm. Then, we have: precision= |S∩T ||S| and recall= |S∩T ||T | . We

will use the precision-recall (PR) graph to present the accuracy.

3.3.3 Comparison of Transformation Schemes

We first compare the performance of different combinations of granularity, n-grams

and score assignment in T3. In this comparison, we choose one distance function

(i.e, either ED or DTW) and then perform tests of all major coding schemes using

the same distance measure. Figures 3.3(a) and (b) present the precision of the

record linkage task using ED and DTW, respectively. Among data sets, the results

of tests on celebrity, restaurant, and cora are presented. In Figure 3.3(a) with

ED, note that both Hilbert and Z order based schemes outperform the others with
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(b) Comparison using DTW

Figure 3.3. Comparison among eight different transformation schemes based on dis-
tance function ED and DTW using three data sets.

respect to the precision. This is reasonable because both Hilbert and Z order have

a good locality-preserving behavior such that alphabets in the neighborhood in

the keyboard have the similar real values during the score assignment. Therefore,

this can reduce a number of false positives in cases when true duplicates have
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some dissimilar characters caused by typos or data entry errors. Between these

two orders, Hilbert order performs slightly better than Z order scheme, but not

significantly. Figure 3.3(b) shows the similar results when DTW is adopted as the

distance function in the experiment.

Another interesting finding is that the word-level transformation schemes using

tf-idf weighting as scores do not show a significantly better precision, although they

can find true duplicates faster because of the shorter time series generated. The

reason is that using the word-level schemes based on tf-idf weights, the resulting

time series is entirely determined by the tf-idf weight of each token. To some

extent, we lose the lexical information of tokens. For instance, there might exist a

situation where two tokens are completely different but happen to carry equal or

similar tf-idf weights. This can affect the shapes of time series and hence generate

false positives.

Also note that from Figures 3.3(a) and (b), we do not see much difference be-

tween unigram and bigram schemes (trigram schemes have similar patterns and not

shown for limited space). This is partially because our record linkage solutions are

obtained in real-value domain after record stings are converted to time series, and

higher-gram techniques may not be as effective as in the case of string manipula-

tion in text domain. Overall, the transformation scheme based on the combination

of character-level granularity, unigram and Hilbert order appears to be the best

scheme. Therefore, we adopt this scheme (denoted as char-uni-hilbert) in the

following experiments.
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Figure 3.4. Comparison among ED, DTW, and LD using five data sets (based on
char-uni-hilbert).

3.3.4 Comparison of Distance Functions with Baseline

Next, we compare the performance of different distance functions in our pro-

posed T3 framework. In this comparison, we fix the transformation scheme to

char-uni-hilbert and then compare among ED and DTW (in time series do-
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main), and LD (in text domain) as the baseline. Figures 3.4(a) and (b) show the

precision and running time of three distance measures in the context of record

linkage problem. The results of tests on map, bird, business, restaurant and

celebrity are presented. In these data sets, each query string has exactly one

duplicate. Therefore record linkage on these data sets is straightforward and aims

to find the other duplicate for each of the query records.

In Figure 3.4(a), note that LD consistently produces better precision than ED

and DTW, except map data set. This is as expected because LD directly operates

on the original record strings in text domain without the loss of any information.

What we are more interested is: as a complementary approach for solving the

record linkage problem in time series domain, how good is the performance of T3

techniques compared to the baseline? Figure 3.4(a) shows that T3 with ED and

DTW can yield comparable precision on four data sets (and better precision on

one data set). Since the various transformation schemes in T3 tend to lose some

information from original text strings during the conversion, we expect to lose

some degree of accuracy in T3, when compared to LD. Therefore, although there

appears to be degraded accuracy in T3, since it is comparable to the baseline

without using T3, we believe that the result is still promising. Also note that the

overall precision of either our proposed schemes or the baseline is around 0.6 across

all the data sets in Figure 3.4(a). This is due to the characteristics of our data sets.

As shown in Table 3.5, our data sets are real data sets which contain a lot of mis-

spelling errors and mis-alignments. Therefore, we expect low degree of accuracy of

matching similar records. More research is needed so that one can transform text

to time series while maintaining or improving the accuracy. Another interesting

finding is that DTW mostly performs better than ED (i.e., in map, restaurant,

and celebrity data sets) and the difference increases as the size of data sets and
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Figure 3.5. PR graphs of ED, DTW and LD methods using char-uni-hilbert.
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lengths of record strings increase. This is reasonable as DTW is usually regarded

as a much more robust distance measure for time series [44] and allows similar

shapes to match even in the case that two time series are not aligned well in the

time axis.

Figure 3.4(b) shows the average running time per query. We can clearly see that

both ED and DTW methods consistently run much faster than the baseline LD,

across all data sets. Furthermore, ED method even performs faster than DTW.

While ED is the fastest (with low accuracy), overall, DTW shows a good trade-

off of having faster running time with comparable accuracy. The running time of

DTW increases as the length of record strings increases. This is partially due to

the cost of dynamic programming in DTW, which is in the magnitude of square

of record length.

The precision-recall (PR) graphs in Figure 3.5 are generated with both precision

and recall of the ED, DTW and LD methods by increasing k, which is the number

of answers returned by an algorithm to solve the record linkage task. The value of

k changes from 1 to 30. At each point, corresponding precision and recall values

are measured and plotted. The PR graphs of three large data sets, cora, dblp

and dbgen, are presented. As we can see from Figure 3.5, DTW and the baseline

LD outperform ED by a large margin. Furthermore, DTW produces PR curves

that are comparable to the baseline. This is consistent with what we found in

Figure 3.3(c). In addition, note that both LD and DTW run much faster than LD

(in Figure 3.6), again consistent with Figure 3.3(d).
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Figure 3.6. Running time per query (s) on different sizes of dblp and dbgen subsets.

3.3.5 Scalability

Since the scalable processing is a critical issue in the record linkage problem, we

also study the scalability of T3 framework. We select two large data sets, i.e., dblp

and dbgen. From dblp with 5,359 real citation records, we prepare different subsets
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of 500, 1000, 2000, 3000, 4000 and 5000 records. Furthermore, we generate four

different datasets of 10,000, 20,000, 50,000 and 100,000 records from the original

dblp dataset. Also, from dbgen with 9,947 mailing lists, we generate subsets of

1000, 2000, 4000, 6000, 8000, and 10000 records (we add 53 more mailing lists

to generate 10000 records). Again, we generate three different datasets of 20,000,

50,000 and 100,000 records from the original dbgen dataset. With these data

sets and the fixed transformation scheme of char-uni-hilbert, we measure the

running time as the data size increases.

Figure 3.6 shows the results. In general, Figures 3.6(a) and (b) show similar

patterns. As the size of data sets increases, the running time per query increases

linearly for both ED and DTW. However, the running time for LD increases more

rapidly compared to that of our approaches. This indicates that our record linkage

solution is more scalable to handle a large amount of data. Furthermore, ED

consistently outperforms DTW in terms of speed. This is as expected because

DTW involves a procedure of dynamic programming in calculating the distance,

which decreases the overall speed as the size of data increases. But as we mentioned

earlier, DTW method has better precision in terms of accuracy of record linkage.

3.4 Summary

In this chapter, we have presented our novel design of the T3 framework to trans-

form text to time series data. We proposed two variations of granularity, three

variations of n-grams, and four variations of score assignments based on space-

filling curve techniques for characters or tf-idf weighting technique for tokens. We

adopted two similarity measures, Euclidean Distance (ED) and Dynamic Time

Warping (DTW), to calculate the distance between two time series and have shown
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the efficacy of our proposed schemes using both real and synthetic data sets.

In terms of record linkage, our schemes in the T3 framework show promising

results with good combination of speed and accuracy, compared to conventional

string matching methods such as Levenshtein Distance (LD). In particular, Hilbert

space-filling technique at character-level granularity is the best variation of trans-

formation schemes while DTW is a better distance measure regarding precision

and ED outperforms regarding running time. With respect to accuracy and speed,

the experimental results confirm that our T3 framework can generate precision-

recall curves comparable to the baseline LD. We believe our approach can shed

new insights in both areas of text mining and time series mining.



Chapter 4
Document Modeling Using Latent

Topics

4.1 Overview

In this chapter, we focus on the Document Modeling problem, one of the tradi-

tional document representation and text retrieval problems. The most conventional

methodology proposed for documents is to represent each document as a weight

vector of numbers in vector space models [79], each of which is a tf-idf weight

of each word in the document. The tf-idf weight is based on the frequency of a

word in a document and tend to give a measure of the importance of the word

to represent the document in a corpus. Language models [80] are also used to

represent documents, such as bigram, instead of unigram as in tf-idf method. Re-

cently some more sophisticated ways for document modeling are emerging, such as

topic models. Probabilistic topic models are stochastic models for text documents,

which explicitly model topics in the document corpus. As generative models, they

describe a procedure for generating documents using a series of probabilistic steps.
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Since it was introduced in 2003 [13], the latent Dirichlet allocation (LDA) model

has quickly become a powerful tool for statistical analysis of text documents. LDA

assumes that text documents are mixtures of hidden topics and applies Dirichlet

prior distribution over the latent topic distribution of a document having multiple

topics. Also, it assumes that topics are probability distribution of words and words

are sampled independently from a mixture of multinomials. Therefore, LDA is a

widely used Bayesian topic model which can model the semantic relations between

topics and words for document corpora.

Formally, the document modeling problem can be formulated as follows.

Definition (Document Modeling) Given a document collection D from a fixed

vocabulary V , model and extract a set of T topics {φ1, ...,φT} where φi is a

semantically coherent topic in D defined as a multinomial distribution of all words

in V , i.e., {p(w|φi)}w∈V with the constraint
∑

w∈V p(w|φi) = 1. 2

LDA requires accurate counts of the occurrences of words in order to estimate

the parameters of the model, Therefore, it assumes that the entire document cor-

pus is clean in order to ensure correct calculation of frequencies of words. However,

as text data become available in massive quantities, textual errors are appearing

inevitable in large-scale document corpora. These textual errors include typos,

spelling errors, transcription errors caused by text or speech recognition tools, dig-

itization errors of Google Books and Internet Archives, etc. For example, Walker

et al. [1] point out that although researchers are having increasing levels of suc-

cess in digitizing hand-written manuscripts, error rates remain significantly high.

Figure 1.3 shows an example of typewritten documents and output by three Op-

tical Character Recognition (OCR) engines. Even on clean data, LDA will often

do poorly if the very simple feature selection steps of removing stop-words is not
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performed first. It is shown that the performance in terms of accuracy declines

significantly as word error rates increase [1], which highlights the importance of

taking into account the noisy data issue in document modeling.

As large-scale text data become available on the Web, textual errors in a corpus

are often inevitable (e.g., digitizing historic documents). Due to the calculation

of frequencies of words, however, such textual errors can significantly impact the

accuracy of statistical topic models such as LDA. To address such an issue, in this

chapter [81], we propose two novel extensions to LDA (i.e., TE-LDA and TDE-

LDA): (1) The TE-LDA model incorporates textual errors into term generation

process; and (2) The TDE-LDA model extends TE-LDA further by taking into

account topic dependency to leverage on semantic connections among consecutive

words even if parts are typos.

In summary, with respect to the document modeling problem with varying

degrees of noisy corpora and using the perplexity as an evaluation metric, our

second proposal with a better result, TDE-LDA, outperforms: (1) the traditional

LDA model by 16%-39% using real data and by 20%-63% using synthetic data;

and (2) the state-of-the-art N-Grams model [50] by 11%-27% using real data and

by 16%-54% using synthetic data.

4.2 The LDA Model

In this section, we give a brief overview of the Latent Dirichlet Allocation (LDA)

model. [13] introduced the LDA model as a semantically consistent topic model,

which attracted considerable interest from both the statistical machine learning

and natural language processing communities. LDA models documents by assum-

ing that a document is composed by a mixture of hidden topics and that each topic
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is characterized by a probability distribution over words.

The model is known as a graphical model for topic discovery. The notations are

shown in Table 4.1. θd denotes a T -dimensional probability vector and represents

the topic distribution of document d. φt denotes a W -dimensional probability

vector where φt,w specifies the probability of generating word w given topic t.

Multi(.) denotes multinomial distribution. Dir(.) denotes Dirichlet distribution.

α is a T -dimensional parameter vector of the Dirichlet prior distribution over θd,

and β is a W -dimensional parameter vector of the Dirichlet prior distribution over

φt. The process of generating documents is shown in Algorithm 1.

Algorithm 1: The LDA Model.

For each of the T topics t, sample a distribution over words φt from a1

Dirichlet distribution with hyperparameter β;
For each of the D documents d, sample a vector of topic proportions θd from2

a Dirichlet distribution with hyperparameter α;
For each word wd,i in document d, sample a topic zd,i from a multinomial3

distribution with parameters θd;
Sample word wd,i from a multinomial distribution with parameters φzd,i .4

Performing exact inferences for the LDA model is intractable due to the choice
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Table 4.1. Notations
Symbol Description

D total number of documents
W total number of word tokens
T total number of topics
Nd total number of words in document d
wd,i ith word in document d
zd,i latent topic at ith word in document d
θd,i probability of topic i in document d
φt,w probability of word w in topic t

of distribution and the complexity of the model. The existing approximate algo-

rithms for parameter estimation and inference of the LDA model include variational

methods [13], EM algorithm [48] and Markov Chain Monte Carlo (MCMC) [82].

One assumption in the generation process above is that the number of topics is

given and fixed. LDA model considers documents as “bags of words”, i.e., there

is no ordering between words and all words as well as their topic assignments in

the same document are assumed to be conditionally independent. Furthermore,

finding good estimates for the parameters of LDA model requires accurate counts

of the occurrences and co-occurrences of words, which in turn requires a “perfect”

corpus with errors as few as possible.

4.3 Proposed Models

To account for textual errors in the traditional LDA topic model, in this section,

we propose a new LDA model termed as TE-LDA (LDA with Textual E rrors)

to take into account noisy data in the document generation process. We further

extend it to a new TDE-LDA (LDA with Topic Dependency and textual E rrors)

model in order to take into account topic dependency in the document generation

process. We explain the details of our proposed models in the following.
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4.3.1 TE-LDA

In this model [83], we distinguish the words in the documents and separate them

as tokens and typos. Given a document, each word has a probability to be an error

and we want to capture this probability structure in the term generation process.

In order to reflect the nature of textual errors in the generative model, we adopt

a switch variable to control the influence of errors on the term generation.

The proposed model is illustrated in Figure 4.2. Here we introduce some no-

tations used in the graphical model: D is the number of documents, T is the

number of latent topics, Nd is the total number of words in document d (with

Nd = Nterm + Ntypo, the sum of all the true terms and typos). α, β and β′ are

parameters of Dirichlet priors, θd is the topic-document distribution, φt is the term-

topic distribution. φtypo is the term distribution specifically for typos. We include

an additional binomial distribution δ with a Beta prior of γ which controls the

fraction of errors in documents.

For each word w in a document d, a topic z is sampled first and then the word

w is drawn conditioned on the topic. The document d is generated by repeating

the process Nd times. To decide if each word is an error or not, a switch variable

X is introduced. The value of X (which is 0 or 1) is sampled based on a binomial

distribution δ with a Beta prior distribution of γ. When the sampled value of X

equals 1, the word w is drawn from the topic zt which is sampled from the topics

learned from the words in document d. When the value of X equals 0, the word

w is drawn directly from the term distribution for errors. Overall, the generation

process for TE-LDA can be described in Algorithm 2.



56

α 

β 

D 

Nd 

θd 

zd,i 

φt 

wd,i 

T 

γ 

X 

δd 

φtypo β’ 

Figure 4.2. TE-LDA Model.

4.3.2 Topic Dependency

As we mentioned in the introduction section, LDA relies on the bag-of-words as-

sumption. However, in many data mining tasks, words are often connected in

nature and successive words in the document are more likely to be assigned the

same topic. Therefore, incorporating topic dependency is important to capture

the semantic meaning of texts and also to disambiguate words which may belong

to different topics. Even in noisy text corpora, consecutive words may be depen-

dent to each other regardless of textual errors. For example, in a phrase “text dat

mining” with textual error “dat” as typo of word “data”, the correct word “text”

and “mining” still have semantic connections and both words belong to the same

topic of data mining. Hence, incorporating this correlation gives a more realistic

model of the latent topic structure and we expect to obtain better generalization
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Algorithm 2: The TE-LDA Model.

For each of the D documents d , sample θd ∼ Dir(α)and δd ∼ Beta(γ);1

For each of the T topics t, sample φt ∼ Dir(β);2

Sample φtypo ∼ Dir(β′);3

foreach Nd words wd,i in document d do4

Sample a flag X ∼ Binomial(δd);5

if X = 1 then6

Sample a topic zd,i ∼ Multi(θd);7

Sample a word wd,i ∼ Multi(φzd,i);8

endif9

if X = 0 then10

Sample a word wd,i ∼ Multi(φtypo);11

endif12

endfch13

performance quantitatively. To apply topic dependency and drop the bag-of-words

assumption, we assume the topics in a document form a Markov chain with a tran-

sition probability that depends on a transition variable Y . When Y equals 0, a

new topic is drawn from θd. When Y equals 1, the current topic of word wi is

equivalent to the previous topic of word wi−1.

[50] proposed a topical n-grams model to automatically determine whether

to form an n-gram based on the surrounding context of words. The n-grams

model is an extension of the bigram topic model, which makes it possible to decide

whether to form a bigram for the same two consecutive words depending on the

nearby context. As a result, the n-grams model imposes a Markov relation on the

word set. In contrast, topic dependency considers the relation between consecutive

topics instead of words. That is, the Markov relation is on the topic set instead

of the word set. Figure 4.3(a) shows an alternative graphical model for applying

topic dependency to LDA. The n-grams model is illustrated in Figure 4.3(b). We

incorporate topic dependency in our proposed TE-LDA model in the following.
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Figure 4.3. Comparison of topic dependency and term dependency.
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4.3.3 TDE-LDA

We extend our TE-LDA model and further incorporate topic dependency into

one unified model, named as TDE-LDA. The proposed model is illustrated in

Figure 4.4.

For each word w in a document d, a topic z is sampled first and then the word

w is drawn conditioned on the topic. The document d is generated by repeating

the process Nd times. To decide if each word is an error or not, a switch variable

X is introduced. The value of X (which is 0 or 1) is sampled based on a binomial

distribution δ with a Beta prior distribution of γ. When the sampled value of X

equals 1, the word w is drawn from the topic zt which is sampled from the topics

learned from the words in document d. To decide if the current topic is dependent

to the previous topic or not, a switch variable Y is introduced. The value of Y

(which is 0 or 1) is sampled based on a binomial distribution δ with a Beta prior

distribution of γ. When the sampled value of Y equals 1, the topic zi is assigned

to be identical to the previous one zi−1 to reflect the dependency between them.

When the value of Y equals 0, the topic zi is sampled from the topics learned from

the words in document d. And the word w is drawn from the topic zt. When the

value of X equals 0, the word w is drawn directly from the term distribution for

errors. The generation process for TDE-LDA can be described in Algorithm 3.

4.3.4 Discussion

In this section, we discuss two important issues on our proposed models.

Rare Words vs. Textual Errors

In terms of frequency of words, note that it is difficult to differentiate between

rare-but-correct-English words and typos because both appear rather seldom in
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the corpus. Without prior knowledge of grammar and syntax of human language

or helps of dictionary, that is, machines cannot solely rely on the word frequency to

tell the difference between a textual error and a rare word. To illustrate this point,

we selected the Reuters newswire data set (to be explained in Section 4.4.1) and

combined two OCR Magazine data sets. We calculated the percentages of words

that appear from once to five times in the corpus. In Figure 4.5, the percentage

curves of both typos and rare words exhibit very similar patterns in both corpora,

making a computation-based differentiation hard. Therefore, our models adopt a

supervised approach to distinguish rare words and textual errors in the document

modeling process. One may use linguistic characteristics to differentiate typos

in an unsupervised fashion. However, since the immediate goal of this work is

to evaluate the validity of incorporating textual errors into document modeling

process, we rather leave the development of more sophisticated modeling methods

for future work.
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Algorithm 3: The TDE-LDA Model.

For each of the D documents d, sample θd ∼ Dir(α)and δd ∼ Beta(γ);1

For each of the T topics t, sample φt ∼ Dir(β);2

Sample φtypo ∼ Dir(β′);3

foreach Nd words wd,i in document d do4

Sample a flag X ∼ Binomial(δd);5

if X = 1 then6

Sample a flag Y ∼ Binomial(δd);7

if Y = 1 then8

Assign a topic zd,i = zd,i−1;9

endif10

if Y = 0 then11

Sample a topic zd,i ∼ Multi(θd);12

endif13

Sample a word wd,i ∼ Multi(φzd,i);14

endif15

if X = 0 then16

Sample a word wd,i ∼ Multi(φtypo);17

endif18

endfch19

Topic vs. Term Dependency

The bigram topic model and n-grams model we mentioned in section 4.3.2 deter-

mine whether to form a bigram or an n-gram based on the surrounding words

in the document. Although these models show better generalization performance

over LDA, we argue that incorporating term dependency is not suitable in noisy

text data for two reasons. First, in noisy document corpora, simply forming bi-

gram or n-gram between consecutive words will increase the overall error rate.

This is because an erroneous word will impact both the previous word and the

succeeding word in terms of term combination. But it only impacts itself under

the bag-of-words assumption for documents. Secondly, even though our TE-LDA

model has a mechanism to distinguish between textual errors and correct words,

by skipping typos the document model may generate incorrect bigram or n-gram
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Figure 4.5. Comparison of percentages of typos and rare words.

word combinations which, in turn, decreases the accuracy of generalization per-

formance. Therefore, we only consider topic dependency in order to capture the

semantic relation of words. As a result, in this chapter, we select the traditional

LDA model and the n-grams model without error modeling as baselines.

4.4 Experimental Validation

In order to validate our proposed models, we applied it to the document modeling

problem. We trained our new models as well as the traditional LDA model on both

synthetic and real text corpora to compare the generalization performance of these

models. The documents in the document corpora are treated as unlabeled and the

goal is to achieve high likelihood on a held-out test data [13]. In our experiments,

each model was trained on 90% of the documents in each data set with fixed

parameters α=0.5, β=0.01, β′=0.01 and γ=0.1 for simplicity and performance.
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Table 4.2. Summary of data sets.
Name Error Domain # of documents # of unique terms AVG document length

OCR Business real business documents 220 4,556 252
OCR Magazine real magazine articles 320 9,842 462
OCR Legal real legal documents 300 4,608 339

OCR Newspaper real newspaper articles 240 5,948 346
OCR Magazine2 real magazine documents 200 10,485 872

OCR BYU real communique documents 600 33,749 529

TREC AP synthetic newswire articles 16,333 23,075 458
NIPS synthetic proceedings 1,740 13,649 2,843

Reuters synthetic newswire articles 12,902 12,112 223

The trained model was used to calculate the estimate of the marginal log-likelihood

of the remaining 10% of the documents.

4.4.1 Set-Up

Table 4.2 shows the summary of both real and synthetic data sets that we used in

our experiments.

First, we prepared real data sets that contain varying degrees of errors in texts.

From the PDF images in the data set, Unlv, using one of the most popular OCR

engines (Google Tesseract), we converted PDF images to a textual document cor-

pus. Since Unlv has the full texts as the ground truth, by comparing the transcript

generated from OCR, we can exactly pinpoint which words are errors. In the end,

we prepared five subsets: Business, Magazine, Legal, Newspaper, Magazine2.

Similarly, we prepared another real corpus called BYU1 which consists of 600 of the

Eisenhower World War II communiques. This data set contains the daily progress

of the Allied campaign until the German surrender. Example documents from

Newspaper data set and BYU data set are shown in Figure 4.6. The quality of these

originals is quite poor, hence the error rate is pretty high for the outputs of OCR

engine. Note that in these real data sets, we cannot control the degrees of errors,

and the error rates are determined by the OCR engine.

1http://www.lib.byu.edu/dlib/spc/eisenhower
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(a) OCR Newspaper

(b) OCR BYU

Figure 4.6. Example documents from UNLV and BYU data sets.
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Second, to conduct more controlled experiments, we also prepared synthetic

data sets. In particular, we used three well-known benchmark data sets in the doc-

ument modeling literature: TREC AP, NIPS, and Reuters-21578. The TREC As-

sociate Press (AP) data set2 contains 16,333 newswire articles with 23,075 unique

terms. The NIPS data set3 consists of the full text of the 13 years of proceed-

ings from 1988 to 2000 Neural Information Processing Systems (NIPS) Confer-

ences. The data set contains 1,740 research papers with 13,649 unique terms. The

Reuters-21578 data set4 consists of newswire articles classified by topics and or-

dered by their date of issue. The data set contains 12,902 documents and 12,112

unique terms.

For all the above synthetic data sets, we generated erroneous corpora to simu-

late different levels of Word Error Rates (WER) – i.e., the ratio of word insertion,

substitution and deletion errors in a transcript to the total number of words. Then,

we closely studied the impact of textual errors in document modeling. In our ex-

periments, we used three types of edit operations (i.e., insertion, deletion and

substitution) in all the documents as follows: (1) insertion: a number of terms are

randomly selected in a uniform fashion to insert a single character into the terms;

(2) deletion: a number of terms are randomly selected in a uniform fashion to

delete a single character from the terms; (3) substitution: a number of terms are

randomly selected in a uniform fashion to change a single character of the terms.

Note that multiple edit operations are not allowed for a single word. Let S, D

and I denote the number of substitution, deletion and insertion operations, and

let N denote the total number of words. Then, WER is calculated as follows. The

procedure repeats until the desirable WER is achieved.

2http://www.daviddlewis.com/resources/testcollections/trecap/
3http://www.cs.nyu.edu/~roweis/data.html
4http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
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WER =
S +D + I

N

4.4.2 Evaluation Metrics

The purpose of document modeling is to estimate the density distribution of the

underlying structure of data. The common approach to achieve this goal is by

evaluating the document model’s generalization performance on new unseen doc-

uments. In our experiments, we calculated the perplexity of a held-out test set to

evaluate the models. In language modeling, the perplexity quantifies the goodness

of measuring the likelihood of a held-out test data to be generated from the learned

distribution of the trained model. In particular, it is monotonically decreasing in

the likelihood of the test data, which means a lower perplexity score corresponds

to better generalization performance of the document model. Formally, for a test

data of Dtest documents the perplexity score is calculated as follows [13, 82]:

perplexity(Dtest) = exp{−
∑Dtest

d=1 log p(wd)∑Dtest

d=1 Nd

}

p(wd) =
K∑
k=1

p(wd|zk)ptest(zk|d)

In the above equations, the probability p(wd|zk) is learned from the training process

and ptest(zk|d) is estimated through an additional Gibbs sampling process on the

test data based on the parameters φ and δ learned from training data.
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4.4.3 Comparison between TE-LDA and Baseline LDA

We first examine the performance of our TE-LDA model on real OCR data sets.

Note that our immediate objective is to evaluate the validity of incorporating

textual errors into document modeling process. This is based on the fact that most

large-scale text data are machine-generated and thus inevitably contain many types

of noise. As a novel solution, our TE-LDA model is developed from the traditional

LDA model by adding a switch variable into the term generation process in order

to tackle the issue of noisy text data. Hence, in this experiment, we compare

the generalization of our TE-LDA model with the traditional LDA on various

erroneous OCR text data. For example, each subset of real OCR data Unlv has

a fixed WER, determined by the OCR engine. Due to the poor quality of PDF

images and imperfect OCR process, WERs range from 0.2856 to 0.3739. That is,

about 28–37% of words in the corpus could be erroneous words. Similarly, the

WER of real OCR data BYU is as high as 48%.

Recently, [3] proposed an algorithm for applying topic modeling to OCR error

correction. The algorithm builds two models on an OCR document. One is a

topic model which provides information about word probability and the other is

an OCR model which provides the probability of character errors. The algorithm

can reduce OCR errors by around 7%. We use the same error detecting technique

to further correct our six real OCR data sets and then compare the performance of

our TE-LDA model with the traditional LDA again. By doing so, we aim at finding

out how the behavior of both topic models changes as the error rate changes on real

OCR data. Figure 4.7 shows the perplexity of TE-LDA and LDA as a function

of the number of hidden topics (e.g., 10, 20, 40, and 80). As we can see, our

proposed TE-LDA model consistently outperforms the traditional LDA model on
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Figure 4.7. Perplexity of different models in original and improved Unlv and BYU data
sets. From (a) to (f), data sets are Business, Magazine, Legal, Newspaper, Magazine2
from Unlv and BYU. The WER of original data sets are 0.2856, 0.3158, 0.3148, 0.372,
0.3739 and 0.4856, respectively. The WER of improved data sets (using the technique
from [3]) are 0.2653, 0.2893, 0.2985, 0.3468, 0.3518 and 0.4438, respectively.
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both original and improved Unlv as well as BYU data sets. An interesting finding is

that LDA performs better on improved corpora while TE-LDA performs better on

original corpora. This is reasonable because our model is specifically designed to

deal with textual errors in modeling noisy text documents and can achieve better

generalization performance as the word error rates increase.

4.4.4 Comparison among Different Models

In this section, we systematically evaluate the performance of different models

using various real and synthetic data sets. Since our purpose is to understand

the performance of document modeling in erroneous environment, we compare the

performance of our proposed models and the baseline models without removal of

typos in text corpora.

Results using Real Data Sets

We first compare the performance of our proposed models with the traditional

LDA model and Wang’s n-grams model on the real OCR data sets. Figure 4.8

shows the perplexity of TE-LDA and TDE-LDA models as a function of the num-

ber of hidden topics (e.g., 10, 20, 40, and 80) on the five subsets of Unlv corpus

and the BYU corpus. As we can see, despite high WERs and different document

themes among these data sets, our proposed TE-LDA and TDE-LDA models con-

sistently outperform the traditional LDA model and the n-grams model. Note also

that TDE-LDA is the best among the proposed models and the baseline models,

which demonstrates that considering topic dependency improves the generalization

performance of topic models in the context of noisy data.

Table 4.3 shows examples of top words selected by LDA and the n-grams model

as well as our models on the topic 3 of Table 1.1. From the table, note that
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Figure 4.8. Perplexity of different models as a function of the number of topics (X-
axis) in Unlv and BYU data sets. From (a) to (f), the data sets are Business, Magazine,
Legal, Newspaper, Magazine2 from Unlv and BYU. The fixed word error rates (WER) of
these data sets are 0.2856, 0.3158, 0.3148, 0.372, 0.3739 and 0.4856, respectively. Note
the relatively high WERs due to the poor quality of PDF images in Unlv and BYU data
sets.
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Table 4.3. Comparison of the selected top words using LDA vs. N-grams vs. our
proposed models on a small sample of Unlv OCR data set. OCR-introduced erroneous
words are in italic.

Model Top words

LDA air, airlin, fli, american, engin, subject, threate
N-GRAMS american airlin, air flight, threate flight, boe plane
TE-LDA air, american, plane, flight, bomb, pilot, airport

TDE-LDA air, plane, pilot, american, passenger, aboard, bomb

LDA suffers from choosing many OCR-introduced erroneous words as top words.

Furthermore, the n-grams model tends to select several erroneous n-gram words as

well. On the contrary, both TE-LDA and TDE-LDA models selected no erroneous

top words, highlighting the superiority of our models in dealing with noisy text

data. Overall, compared to others, our TDE-LDA model can select meaningful and

generic top words or highly related words and make the topic more understandable.

Results using Synthetic Data Sets

We then systematically compare the performance of our proposed models with

the traditional LDA model as well as Wang’s n-grams model on the synthetically

generated erroneous corpora. In this comparison, we simulate different levels of

WER (e.g., 0.01, 0.05, 0.1). Figures 4.9(a)-(c) show the perplexity of TE-LDA and

TDE-LDA models as a function of the number of hidden topics in the TREC AP

corpus. As we can see from Figures 4.9(a)-(c), at different levels of WER, our TE-

LDA and TDE-LDA models consistently outperform the traditional LDA model.

Furthermore, as WER increases, the margin of improvement increases. This is due

to the incorporation of textual errors into the generation of terms in the document

modeling process. We can also see that the models with consideration of topic

or term dependency outperform the ones without that, regardless of whether we

take into account textual errors during term generation. However, TDE-LDA is
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Figure 4.9. Performance summary using TREC AP data set. Perplexity of different
models as a function of the number of topics (X-axis) in (a)-(c). Perplexity of different
models as a function of WER (X-axis) in (d)-(f).
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Figure 4.10. Performance summary using NIPS data set. Perplexity of different models
as a function of the number of topics (X-axis) in (a)-(c). Perplexity of different models
as a function of WER (X-axis) in (d)-(f).
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Figure 4.11. Performance summary using Reuters data set. Perplexity of different
models as a function of the number of topics (X-axis) in (a)-(c). Perplexity of different
models as a function of WER (X-axis) in (d)-(f).
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the best among the models and show better generalization of incorporating topic

dependency in noisy text data. This demonstrates the improved performance of

topic models with the removal of bag-of-words assumption.

In Figures 4.9(d)-(f), we fix the number of topics K and demonstrate how

the different models perform as the WER increases in the TREC AP corpus. An

interesting finding here is that the perplexity of both LDA and n-grams models

increases as the word error rates increase. This is because these two models do

not consider the errors in the term generation where the accuracy of calculation

of word frequencies is affected. In contrast, our TE-LDA and TDE-LDA models

outperform the other two and the margin of improvement increases as the word

error rates increase. The experimental results in the NIPS (Figures 4.10) and

Reuters (Figures 4.11) corpora show similar perplexity patterns.

4.5 Summary

In this chapter, we have proposed two extensions to the traditional LDA model to

account for textual errors in latent document modeling. Our work is motivated by

the facts that textual errors in document corpora are often abundant and separat-

ing words cannot completely capture the meaning of texts in data mining tasks.

To overcome these constraints, we proposed our TE-LDA and TDE-LDA mod-

els to incorporate textual errors into the term generation process. Both TE-LDA

and TDE-LDA adopt a switching mechanism to explicitly determine whether the

current term is generated from the topic-document distribution through the gen-

eral topic generation route or from a special word distribution through the typo

processing route. However, TDE-LDA models the transition of topics between con-

secutive words as a first-order Markov process. Through extensive experiments, we
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have shown that our proposed models are able to model the document corpus in a

more meaningful and realistic way, and achieve better generalization performance

than the traditional LDA model and the n-grams model.



Chapter 5
Mining Social Content Using Time

Series

5.1 Overview

Twitter, one of the most popular microblog sites, has been used as a rich source of

real-time information sharing in everyday life. When Twitter users express their

opinions about organizations, companies, brands, or sports in tweets, it in turn

provides important opportunities for businesses in improving their services such

as targeted advertising and personalized services. Since the majority of Twitter

users’ basic demographic information (e.g., gender, age, ethnicity) is unknown

or incomplete, being able to accurately identify the hidden information about

users becomes an important and practical problem. In this chapter, we study the

problem of classifying Twitter users to a fixed set of categories based on the content

of their tweets. Formally, we define our research problem as:

Definition (Twitter User Classification) Given a set of Twitter users U , a

stream of tweet messages Tu = {t1, ...,t|Tu|} for each user u ∈ U , a pre-defined set
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of K class labels C = {c1, ...,cK}, and labeled samples such that 〈u, c〉 ∈ U × C,

learn a classifier ψ: U → C to assign a class label to a unlabeled user. 2

The majority of existing solutions focused on using “textual” features of Twit-

ter users (e.g., tweets messages) [25] or “network” features (e.g., follower/follwee

network) [23] in classifying Twitter users. Despite their success, in this chapter,

we argue that modeling tweet features as time series to amplify its periodicity pat-

tern can be more effective in solving certain types of Twitter user classification

problems.

In this chapter [84], we generate time series from tweets by exploiting the latent

temporal information and solve the classification problem in time series domain.

Our approach is inspired by the fact that Twitter users sometimes exhibit the

periodicity pattern when they share their activities or express their opinions. We

apply our proposed methods to both binary and multi-class classification of sports

and political interests of Twitter users and compare the performance against eight

conventional classification methods using textual features. Experimental results

show that our best binary and multi-class approaches improve the classification

accuracy over the best baseline binary and multi-class approaches by 15% and

142%, respectively.

5.2 Classifying User Interests using Textual Fea-

tures

We first present the baseline classification approach for classifying users based on

the textual features extracted from tweets. Given a stream of tweets, we represent

each user as a document with a bag of words and directly extract features from
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the document content.

5.2.1 Feature Selection

We select two types of features based on tweet contents: TF-IDF and Topic Vector

generated from Latent Dirichlet Allocation (LDA).

TF-IDF . Term Frequency – Inverse Document Frequency (TF-IDF) [79] is a

classical term weighting method used in information retrieval. The idea is to find

the important terms for the document within a corpus by assessing how often the

word occurs within a document (TF) and how often in other documents (IDF). In

our Twitter user setting, we have:

TF − IDF (t, u) = − log
df(t)

U
× tf(t, u)

where tf(t;u) is the term frequency of word t within the stream of tweets of user

u, df(t) is the document frequency within the corpus (i.e., how many users’ tweets

contain at least one instance of t), and U is the number of users in the corpus.

Topic Vector . The Latent Dirichlet Allocation (LDA) proposed by [13] models

documents by assuming that a document is composed by a mixture of hidden top-

ics and that each topic is characterized by a probability distribution over words.

This model provides a more compressed format to represent documents. In Twitter

user classification, we adapt the original LDA by replacing documents with users’

tweet streams. While LDA represents documents as bags of words, we represent

Twitter users as words of their tweets. Therefore, a Twitter user is represented

as a multinomial distribution over hidden topics. Given a number U of Twitter

users and a number T of topics, each user u is represented by a multinomial dis-
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tribution θu over topics, which is drawn from a Dirichlet prior with parameter α.

A topic is represented by a multinomial distribution φt, which is drawn from an-

other Dirichlet prior with parameter β. The topic vector acts as a low-dimensional

feature representation of users’ tweet streams and can be used as input into any

classification algorithm. In other words, for each user u, we can use LDA to learn

θu for that user and then treat θ as the features in order to do classification. The

next step is to correctly assign a class label to each user in the reduced dimensional

space.

5.2.2 Classification Methods

We select two popular classifiers over text domain: Naive Bayes (NB) and Support

Vector Machines (SVM).

Naive Bayes. The Naive Bayes is a simple model which works well on text cate-

gorization [85], and it is a successful classifier based on the principle of Maximum

A Posteriori (MAP). In this chapter, we adopt a multinomial Naive Bayes model.

Given the user classification problem having K classes {c1, c2 ...,cK} with prior

probabilities P (c1),...,P (cK), we assign a class label c to a Twitter user u with

feature vector f = (f1, f2..., fN), such that

c = arg max
c
P (c = ck|f1, f2..., fN)

That is to assign the class with the maximum a posterior probability given the

observed data. This posterior probability can be formulated using Bayes theorem

as follows:



81

P (c = ck|f1, f2..., fN) =
P (ck)×

∏N
i=1 P (fi|ck)

P (f1, f2..., fN)

where the objective is to assign a given user u having a feature vector f consisting of

N features to the most probable class. P (fi|ck) denotes the conditional probability

of feature fi found in tweet streams of user u given the class label ck. Typically

the denominator P (f1, f2..., fN) is not computed explicitly as it remains constant

for all ck. P (ck) and P (fi|ck) are obtained through maximum likelihood estimates

(MLE).

Support Vector Machines . The Support Vector Machines is another popular

classification technique [86]. While Naive Bayes is a generative classifier to form

a statistical model for each class, SVM is a large-margin classifier. The basic idea

of applying SVM on classification is to find the maximum-margin hyperplane to

separate among classes in the feature space. Given a corpus of U Twitter users

and class labels for training {(fu, cu)|u = 1, ..., U}, where fu is the feature vector of

user u and cu is the target class label, SVM maps these input feature vectors into

a high dimensional reproducing kernel Hilbert space, where a linear machine is

constructed by minimizing a regularized functional. The linear machine takes the

form of ϕ(f) = 〈w · φ(f)〉+ b where φ(·) is the mapping function, b is the bias and

the dot product 〈φ(f) ·φ(f ′)〉 is also the kernel K(f , f ′). The regularized functional

is defined as:

R(w, b) = C ·
U∑
u=1

`(cu, ϕ(fu)) +
1

2
‖w‖2

where the regularization parameter C > 0, the norm of w is the stabilizer and
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∑U
u=1 `(cu, ϕ(fu)) is empirical loss term. In standard SVM, the regularized func-

tional can be minimized by solving a convex quadratic optimization problem which

guarantees a unique global minimum solution.

5.3 Classifying User Interests using Time Series

In this section, we introduce our novel time series approach to tackle the prob-

lem of Twitter user classification. In particular, we propose a new technique for

feature selection in order to convert Twitter users to time series by incorporating

temporal information into the stream of tweets. We also propose two classification

algorithms such that the multi-class Twitter user classification problem can be

solved effectively in the time series domain.

5.3.1 Feature Selection

In this subsection, we explore the impact of temporal information in classifying

Twitter users. Our assumption is that Twitter users often exhibit periodicity pat-

terns when they post tweets to share their activities and statuses or express their

opinions. This is because people from various categories tend to do different ac-

tivities during different time frames. For example, sports fans usually post more

relevant tweets about their favorite teams or players on game days during the sea-

son instead of offseason. Female shoppers love to share more of their opinions on

Twitter during weekends or holidays. Travel enthusiasts tend to share more about

their journey during summer time. [2] has shown that users participate in online

social communities which share similar interests and there are recurring daily or

weekly patterns in word usages. Another recent study [26] has also indicated that

contents on microblogging platforms such as Twitter show patterns of temporal
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variation and pieces of content become popular and fade away in different tempo-

ral scales. Thus, we aim at leveraging temporal information in generating features

from contents of tweet streams for our classification task. Our feature extraction

process consists of two stages as follows.

Given a set of Twitter users U and K class labels C = {c1, c2 ...,cK}, first,

we identify the category-specific keywords as a good source of relevant information

of the entity in each class. In particular, we can harvest this kind of category

related keywords from some external knowledge sources such as Wikipedia, or

more directly, we can make use of online dictionaries such as WordNet, i.e. a

network of words, to find all the related terms linked to the category keywords.

For example, different sports have different Wikipedia pages consisting of rich

corpora of sports-specific keywords which can be utilized to identify positive topics

generated by sports fans in tweet streams. This keyword extraction process can

be done manually or automatically depending on the scope of classification tasks

and applications. The dictionary of these predefined keyword features serves as a

rich representation of the entity in each category and contributes towards positive

evidence of each class.

Second, given a stream of tweet messages Tu = {t1, t2, ...,t|Tu|} for each Twitter

user u, we divide these tweets into segments based on predefined sliding time

windows, e.g., daily or weekly time frames. We then record the number of word

occurrences of category-specific keywords that appear in all the tweet messages

within each sliding window. Based on these numbers, we convert each user into

a numerical time series by calculating the frequency or percentage of keywords

occurrences at different granularity levels, e.g., word or tweet levels. These time

series reflect temporal fluctuations with respect to frequency changes of positive

mentions of keywords in tweet messages from users in each class.
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Figure 5.1. (a)-(c): daily time series based on the frequency of relevant words, frequency
of relevant tweets, and percentage of relevant tweets; (d)-(f): weekly time series based on
the frequency of relevant words, frequency of relevant tweets, and percentage of relevant
tweets.
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Example 5. As an illustration, consider Figure 5.1 that shows examples of using

football-specific keywords (details shown in section 6.4.1) to generate daily and

weekly time series of two followers and two non-followers of the NFL team, New

York Giants, during the month of September 2011. Figures 5.1(a) and 5.1(d) show

daily and weekly time series based on frequencies of football-specific words. On

a daily basis, we treat a user’s daily tweet streams as a bag of words and count

the frequency of football-specific words that appear in the daily tweet messages.

On a weekly basis, we treat a user’s tweet streams on game days (i.e., Sunday and

Monday) vs. non-game days (i.e., Tuesday through Saturday) separately. That is,

we count the frequency of football-specific words that appear in tweet messages

on game days vs. non-game days in each week. We can easily see that both

daily and weekly time series of the followers preserve similar shapes in real-value

domain (with some shifting) while the time series of the non-followers have rather

different shapes. Figures 5.1(b) and 5.1(e) show daily and weekly time series

based on frequencies of football-specific tweets. On a daily basis, we count the

frequency of tweets containing football-specific words that appear in daily tweet

messages. On a weekly basis, we count the frequency of tweets containing football-

specific words that appear in the tweet messages on game days vs. non-game days

separately. Figures 5.1(c) and 5.1(f) show daily and weekly time series based on

the percentage of football-specific tweets (i.e., fraction of the number of tweets

containing football-specific keywords over the number of tweet messages within

each time frame). Note that regardless of particular feature extraction methods

to generate time series, there is a clear difference between time series of football

followers and non-followers. 2

Each time series serves as a feature vector of the corresponding Twitter user
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Algorithm 4: Time Series Feature Extraction.

Input : A set of Twitter users U and a stream of tweet messages Tu = {t1,
t2, ...,t|Tu|} for each user u with class label c from a predefined set
of K class labels C = {c1, c2 ...,cK}, a new user v and a stream of
tweet messages Tv

Output: A set of time series TS = {TS1, TS2, ...,TS|U |}where TSu is a
converted time series feature vector for each user u

/*stage1: preprocessing*/;1

for class in classList do2

build category-specific keyword lists list[class] = preProcess(class);3

endfor4

/*stage2: transformation*/;5

for class in classList do6

for u in userList[class] do7

break Tu into smaller segments S;8

for s in S do9

count the number of occurrences ws of keywords from list[class]10

in s ;
endfor11

convert user u into a time series TSu from w; return(TSu);12

endfor13

endfor14

for further classification in the domain of numerical signals. The detailed feature

extraction process is shown in Algorithm 4.

5.3.2 Classification Methods

In time series classification, using feature-based methods as in section 5.2 is a

challenging task because it is not easy to do feature enumeration on numerical time

series data. Therefore, we use the common distance-based approach to classify time

series. Previous research has shown that compared to commonly used classifiers

such as SVM, k-nearest neighbor (kNN) classifier (especially 1NN) with dynamic

time warping distance is usually superior in terms of classification accuracy [87].
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kNN . The kNN is one of the simplest non-parametric classification algorithms,

which does not need to pre-compute a classification model [88]. Given a labeled

Twitter user set U , a positive integer k, and a new user u to be classified, the kNN

classifier finds the k nearest neighbors of u in U , kNN(u), and then returns the

dominating class label in kNN(u) as the label of user u. In particular, if k = 1,

the 1NN classifier will return the class label of the nearest neighbor of user u in

terms of distance in time series feature space.

5.3.3 Distance Functions

We select two types of distance functions for user classification in time series do-

main: Dynamic Time Warping (DTW) and Symbolic Aggregate approXimation

(SAX).

DTW . The Dynamic Time Warping (DTW) is a well-known technique to find

an optimal alignment between two time series [89]. Intuitively, the time series

are warped in a nonlinear fashion to match each other. The idea of DTW is

to align two time series in order to get the best distance by aligning. In data

mining and information retrieval research, DTW has been successfully applied to

automatically deal with time-dependent data. Given two Twitter Users’ time series

feature vectors X = (x1, x2..., x|X|) and Y = (y1, y2..., y|Y |), DTW is to construct a

warping path W = (w1, w2..., wK) with max(|X|, |Y |) ≤ K < |X| + |Y | where K

is the length of the warping path and wk is the kth element (i, j)k of the warping

path. The optimal warping path is the path which minimizes the warping cost:

DTW (X, Y ) = min{
K∑
k=1

d(wk)}
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The optimal path can be found very efficiently using dynamic programming to

evaluate the following recurrence:

γ(i, j) = d(i, j) + min{γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)}

where γ(i, j) denotes the cumulative distance as the distance d(i, j) found in the

current cell and the minimum of the cumulative distances of the adjacent elements.

SAX . The Symbolic Aggregate approXimation (SAX) is known to provide good

dimension reduction and indexing with a lower-bounding distance measure [90]. In

many data mining applications, SAX has been reported to be as good as well-known

representations such as Discrete Wavelet Transform (DWT) and Discrete Fourier

Transform (DFT). However, SAX requires less storage space. In this chapter, we

adopt the same SAX technique in [90] for classifying Twitter users in time series

domain.

5.3.4 Multi-class User Classification

We present two classification variations in time series domain for multi-class Twit-

ter user classification.

One-Vs-All . The first approach is to reduce the problem of classifying among K

classes into K binary problems and each problem discriminates a given class from

the other K − 1 classes. In this approach, we build K binary classifiers where the

kth classifier is trained with positive examples belonging to class k and negative

examples belonging to the other K − 1 classes. For the kth binary classifier, we

convert all users into time series using the category-specific keyword list of the kth

class. When classifying a new user v, the classifier with the nearest neighbor of
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Algorithm 5: One-Vs-All User Classification.

Input : A set of Twitter users U and a stream of tweet messages Tu = {t1,
t2, ...,t|Tu|} for each user u with class label c from a predefined set
of K class labels C = {c1, c2 ...,cK}, a new user v and a stream of
tweet messages Tv

Output: The class label for user v
for class in classList do1

for u in userList do2

TSu = FeatureExtraction(u);3

endfor4

TSv = FeatureExtraction(v);5

/*classification*/;6

learn a kNN classifier on time series TSv and TSu where u ∈ U ;7

endfor8

/*pairwise comparison*/;9

for class in classList do10

find the class with the best kNN classifier ;11

endfor12

return(class);13

the user is considered the winner, and the corresponding class label is assigned to

the user v. The detailed classification algorithm is shown in Algorithm 5.

All-At-Once . The second approach is to convert Twitter users of each class

c into time series simultaneously using the category-specific keyword list of the

corresponding class. Given a new user v, we convert v using the combination of

keyword lists of all classes. When classifying the new user v, the classifier returns

the label of the nearest neighbor as the corresponding class label to be assigned to

the user v. The detailed classification algorithm is shown in Algorithm 6.

5.4 Experiments on Sports Interests

In order to validate our classification approaches, we first apply them to both bi-

nary and multi-class classification problems with respect to identifying NFL foot-
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Algorithm 6: All-At-Once User Classification.

Input : A set of Twitter users U and a stream of tweet messages Tu = {t1,
t2, ...,t|Tu|} for each user u with class label c from a predefined set
of K class labels C = {c1, c2 ...,cK}, a new user v and a stream of
tweet messages Tv

Output: The class label for user v
for class in classList do1

for u in userList[class] do2

TSu = FeatureExtraction(u);3

endfor4

listAll += list[class]5

endfor6

convert user v into a time series TSv using listAll ;7

/*classification*/;8

learn a kNN classifier to find the best class on time series TSv and TSu9

where u ∈ U ;
return(class);10

ball fans and team fans. Specifically, our experimental questions are the following:

1. Binary: How accurately can we predict if a Twitter user is a football fan or

not?

2. Multi-class: How accurately can we predict the football team (1 out of 32

teams) of a Twitter user when she is known as a football fan?

5.4.1 Set-Up

Data Collection . We focused on the football season from Sep. 2011 to Dec.

2011 in the experiments. Starting from the 32 official Twitter accounts of NFL

football teams, we first identified 1,000 followers per team (i.e., a total of 32,000

users) as the “fan” corpus. Similarly, we also identified a total of 32,000 users

who do not follow any Twitter account of the football teams as the “non-fan”

corpus. Each user has at least 3-4 tweets per day (i.e., about 400 tweets for 4-
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month period). For each tweet, we removed the external links, non-alphabetic

characters such as “@” and “#”, emoticons and stop words, and then filtered

out tweets with less than five words. At the end, our data set included a total

of 64,000 users and 2.56 million tweets. From the Wikipedia page of each of

the 32 NFL teams, next, we automatically harvested the team and player names

from the roster section, and manually identified football-specific keywords such as

“nfl” and “quarterback” as well as team-specific keywords. This semi-automatic

generation process of category-specific keywords resulted in a total of 2,330 unique

terms at the end in our dictionary. Team-specific keywords serve as category-

specific keywords for multi-class classification purpose while the combination of

team-specific and football-specific keywords serve as category-specific keywords

for binary classification purpose.

Evaluation Metrics . The binary classification task is to classify the users into

two classes, i.e., one class which represents the users who are fans of NFL football

(positive class) and the other class which represents user that are not fans of NFL

football (negative class). Moreover, the multi-class classification task is to classify

the users into 32 classes with each representing the fans of each individual NFL

team. For evaluation purpose, all the users can be grouped into four categories, i.e.,

true positive (TP), true negatives (TN ), false positives (FP) and false negatives

(FN ). For example, the true positives are the users that belong to positive class

and are in fact classified to the positive class, and the false positives are the users

not belonging to positive class but incorrectly classified to the positive class. Since

we are interested in both positive and negative classes especially in multi-class

classification, we use the accuracy (ACC) metric to measure the performance of
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our different classifiers as follows:

ACC =
TP + TN

TP + FP + TN + FN

In all subsequent experiments, we use the 10-fold cross validation [25] to measure

the accuracy.

Baseline Method . We use two types of baselines. First, the naive keyword-

based (KB) classification uses the category-specific keywords when classifying a

Twitter user. Given a stream of tweets from a user, we count the percentage of

keywords from each category-specific keyword list present in the tweet corpus. If

the percentage exceeds a predefined threshold, then the user is classified into the

positive class. If there is a tie, then the class label with higher percentage ratio is

returned. Second, the NB or SVM based classification using the textual features

in Section 5.2 serves as the more sophisticated baseline. Finally, we compare the

accuracy of our proposed time-series based classification against these two types

of baselines.

5.4.2 Binary Classification

Given a stream of tweets from a user, the goal of binary classification is to predict

whether the user is likely to follow NFL football teams, i.e., whether the user is a

football fan or not. In this task, we combine all the tweets crawled for each of the

32 NFL teams and their fans as positive examples (i.e., 32,000 positive users) and

similarly combine all the tweets from the users who do not follow any of the teams

as negative examples (i.e., 32,000 negative users).

As to the baselines, we used a total of 8 approaches, all of which use features



93

in text domain. First, we tested two approaches using the keyword-based classi-

fier at word level (Word+KB) and tweet level (Tweet+KB). The Word+KB (resp.

Tweet+KB) computes the percentage of words (resp. tweets) containing football-

related keywords and uses a simple threshold (e.g., 10%) to classify a user into the

positive class. Second, we prepared 6 baselines using three variations of features

(i.e., TF-IDF and LDA with 20 and 100 topics) and two classifiers (i.e., NB and

SVM).

As to our proposed methods, we first used football-specific keywords to convert

each user’s tweets into a time series on both daily and weekly time scales. On a

daily scale, we treat a user’s daily tweet streams as a bag of words and count the

number of football-specific words (DW) or football-specific tweets (DT) that appear

in the daily tweet messages. On a weekly scale, we treat a user’s tweet streams on

game days (i.e., Sunday and Monday) and non-game days (i.e., Tuesday through

Saturday) separately within each week. Then, we prepared two variations – weekly

words (WW) and weekly tweets (WT). Next, we used two distance functions (i.e.,

DTW and SAX) and kNN classifier to do classification in time series domain.

Previous research has shown that compared to commonly used classifiers such as

SVM, 1-nearest neighbor (1NN) classifier with the DTW distance usually yields

superior classification accuracy [87]. Therefore, in this chapter, we applied 1NN

classifier for simplicity purpose.

Figure 5.2 shows the performance comparison of two types of baseline ap-

proaches. We can clearly see that TF-IDF or LDA based methods show much im-

provements over the keyword-based baseline. First, we can observe that keyword-

based baseline at tweet level slightly outperforms the word-level baseline. This is

reasonable because as long as a user’s tweet contains a category-specific keyword,

the classifier treats the entire tweet relevant to the positive class and this in turn
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Figure 5.2. Binary classification of Twitter users in text domain.
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increases the relatedness of the user’s tweet stream to the positive class. Second,

regarding difference between features extracted from tweet contents, we can see

that classifiers using the topic feature derived from topic models outperform clas-

sifiers using the TF-IDF feature. For example, SVM classifier using topic feature

outperforms SVM classifier using TF-IDF and improves the classification accuracy

by up to 25%. This is consistent with [24] as topic-based linguistic features are

consistently reliable and more discriminative in user classification tasks. Third,

using either TF-IDF feature or topic feature, SVM classifier generally outperforms

NB classifier. This is also consistent with previous experimental results which

show that SVM performs better than NB in general classification tasks [86]. And

finally, Figure 5.4 shows the impact of number of topics to the Naive Bayes and

SVM classifiers using topic feature. We can see that as number of topics increases,

the accuracy of the corresponding classifiers also increases and converges at around

100 topics.

Figure 5.3 shows the performance of our proposed time series approach for user

classification. First, we can see that our 1NN classifier using DTW or SAX as dis-

tance functions generally performs better than all baseline methods in Figure 5.2.

For example, 1NN classifier using time series feature on a weekly basis and DTW

as distance function outperforms SVM classifier using topic feature by improving

the classification accuracy by around 15%, and outperforms NB classifier using

topic feature by 22%. Second, regarding user classification in time series domain,

1NN classifier using DTW as distance function generally outperforms 1NN classi-

fier using SAX as distance function. This is due to the fact that SAX is actually

used as a symbolization technique for dimension reduction specifically in time se-

ries classification. Our time series approach consists of a transformation process to

convert textual features to time series features, thus further symbolizing the time
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Figure 5.4. Impact of the number of topics in LDA topic features.

series may not be necessary and consequently results in some loss of information.

However, the performance of 1NN classifier using SAX is still comparable to or

slightly better than the performance of SVM classifier using topic feature.

5.4.3 Multi-class Classification

Next, the goal of multi-class classification is to predict which particular team (out

of 32 NFL football teams) a given user is a fan of. In this task, we used the corpus

with a total of 32,000 fans, i.e., 1,000 users per class. Similar to Section 5.4.2, we

applied 8 baselines using features in text domain and 8 variations of our proposal

in time series domain. In addition, we adopted two alternatives to evaluate multi-

class classification scenario, as illustrated in Algorithms 5 and 6.

Figure 5.5 compares the multi-class classification accuracy among 8 baseline

methods in text domain. Again, NB or SVM based baseline methods outperform

keyword-based heuristics. First, regarding different features extracted from tweet
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Figure 5.6. Multi-Class classification of Twitter users in Time Series domain. (Refer
to Figure 5.3 for notations. Dotted line denotes the accuracy of the “best” multi-class
classifier in text domain from Figure 5.5.)

contents, it is shown that classifiers using the topic feature derived from topic mod-

els outperform classifiers using the TF-IDF feature. For example, SVM classifier



98

using topic feature outperforms SVM classifier using TF-IDF and improves the

classification accuracy by up to 27%, which is consistent with the binary classifica-

tion case. This again confirms that topic-based linguistic features are consistently

more reliable and discriminative in multi-class user classification tasks. Second, in

terms of accuracy, SVM classifier outperforms NB classifier by 23% using either

TF-IDF feature or topic feature, which again shows that SVM performs better

than NB in multi-class classification tasks.

Figure 5.6 shows the performance of our proposed time-series based Algorithm 5

and Algorithm 6 for multi-class user classification. First, our 1NN classifier using

DTW or SAX as distance functions show significant improvements over the basic

methods in Figure 5.5. For example, our proposed All-At-Once classification algo-

rithm using time series feature on a weekly basis and DTW as distance function

outperforms SVM classifier using topic feature by improving the classification ac-

curacy by around 39%. Second, our proposed One-Vs-All classification algorithm

further improves the accuracy by 67% over the All-At-Once classification algo-

rithm in the same setting and hence improves by 142% over the baseline. This is

because our One-Vs-All classification algorithm builds K binary classifiers when

classifying a new user, and returns the classifier producing the best result as the

winner. Moreover, during the training of kth binary classifier, the algorithm uses

the category-specific keywords of kth class to convert all the users in the training

set into time series such that the inter-class difference among users from different

categories can be amplified in order to boost the accuracy of classifying the new

user into the positive class.
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5.4.4 Impact of Temporal Feature Size

Next, we select the “best” binary and multi-class classifiers in time series domain

as shown in Figures 5.3 and Figures 5.6, and further study the impact of temporal

feature size in terms of classification accuracy. First, we choose different time

periods ranging from 1, 2, 3, and 4 months. This represents different lengths of

time series for classification. Second, in addition to daily and weekly time frames

we used in converting tweet streams into time series, we further divide daily time

frame into smaller segments, i.e., a half day and one quarter day. This represents

different scales of time series generated for classification. Figure 5.7(a) compares

the classification accuracy as a function of length of time series. We can clearly

see that the performance of both binary and multi-class time series classifiers show

similar patterns. First, as the length of time series increases, the accuracy of

classification in time series domain increases accordingly. This is because the

periodicity pattern in tweet streams tends to be steady in larger time periods.

Second, the length of time series doesn’t impact the accuracy of our time series

classifiers too much even on shorter time periods, which demonstrates that our time

series classifiers are robust. Figure 5.7(b) compares the classification accuracy

as a function of time scale. First, as the time scale decreases, the accuracy of

classification in time series domain decreases accordingly. This is because temporal

variation in tweet streams can be aggregated in larger time scales, which in turn

can amplify the inter-class difference. Second, using smaller time scale to convert

into time series doesn’t impact the accuracy of our time series classifiers too much,

which again shows our time series classifiers are fairly reliable.
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5.5 Experiments on Political Interests

In order to corroborate our proposal, in this section, we further perform a classi-

fication task of user interests on a different data set. In this experiment, we aim

at tackling the binary classification problem to identify users as either Democrats

(i.e., left) or Republicans (i.e., right). Our experimental question is: How accu-

rately can we predict if a Twitter user is a democrat or a republican?

We used the data set on political polarization from [91], which contains political

communications during six-week period (Sep. 14 – Nov. 1, 2010) leading up to

2010 U.S. congressional midterm elections. A political communication is defined

as any tweet containing at least one politically relevant hashtag. From the set of

political tweets, two types of networks, i.e., mentions and retweets, are constructed

among a set of Twitter users. Both networks represent public user interaction for

political information flow. In this data set, each tweet has the timestamp and a

set of hashtags available (no tweet messages available). Each user has the political

affiliation information available (i.e., ground truth). Using only users with at least

30 retweet (RT) activities during the time period, at the end, our data set included

200 Democrats and 200 Republicans, a total of 14,952 retweets with 1,829 unique

hashtags. The data set also provides 678 left-leaning (i.e., democrats) political

hashtags (e.g., #p2, #dadt, #healthcare, #hollywood, #judaism, #capitalism,

#recession, #security, #dreamact, #publicoption) and 611 right-leaning (i.e.,

republicans) political hashtags (e.g., #tcot, #gop, #twisters, #israel, #foxnews,

#sgp, #constitution, #patriots, #rednov, #abortion). Note that we used only

hashtags in this experiment.

Since the data set does not contain textual messages but only hashtags, the

textual feature based baselines in Section 5.2 are not applicable. Instead, there-
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Table 5.1. Democrats-specific (LEFT) and Republicans-specific (RIGHT) hashtags.
Category Hashtag

LEFT #p2, #dadt, #healthcare, #hollywood, #judaism,
#capitalism, #recession, #security, #dreamact, #publicoption

RIGHT #tcot, #gop, #twisters, #israel, #foxnews,
#sgp, #constitution, #patriots, #rednov, #abortion

fore, we used two naive keyword-based (KB) classification as the baseline – i.e., the

TAG+KB (resp. RT+KB) computes the percentage of hashtags (resp. retweets)

containing category-related keywords and uses a simple threshold (e.g., 10%) to

classify a user into the positive class. As to our proposed methods, we first used

category-specific hashtags to convert each user’s retweets into a time series on

the daily time scale. We treat a user’s daily retweet streams as a bag of hash-

tags and count the number of category-specific hashtags (DH) or category-specific

retweets (DR) that appear in the daily retweets. We prepared two variations, us-

ing either democrats-specific (LEFT) and republicans-specific (RIGHT) hashtags to

covert users into time series. Finally, we used the 1NN classifier with DTW as the

distance function to do classification in time series domain. Same as Section 6.4,

we measured the classification accuracy with 10-fold cross validation.

Figure 5.8 shows the comparison result. Similar to the results for sport interests

in Section 6.4, our time series based classifiers outperform both heuristic baseline

methods significantly. For instance, the best performing 1NN classifier using daily

time series feature at hashtag level (LEFT+DH) increases the accuracy from the

baselines using retweets (RT+KB) and hashtags (TAG+KB) by 16% and 22%,

respectively. Next, regardless of using democrats-specific or republicans-specific

hashtags, our time series classifiers at hashtag level (LEFT+DH or RIGHT+DH)

outperforms the retweet-level classifiers (LEFT+DR or RIGHT+DR) . This is be-

cause there exist multiple category-specific hashtags in political retweets of a demo-
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Figure 5.8. Binary classification results on political interests. Note that DR and DH
are daily time series at retweet and hashtag levels, respectively.

crat or republican user such that the inter-class difference can be “amplified” when

it is captured as time series based on the frequency of relevant political hashtags.

5.6 Summary

In this chapter, we presented a novel method to classify Twitter user interests

using time series generated from the contents of tweet streams. By amplifying the

latent periodicity pattern in tweets into time series, we showed the cases where

both binary and multi-class classification accuracy can be improved significantly.

Using real data sets on both sports and political interests, we validated our claim

through comprehensive experiments by showing that our time series based classi-

fiers outperform up to eight competing classification solutions significantly.



Chapter 6
Mining Social Activity Using Latent

Topics

6.1 Overview

Online social networks (OSNs) have become popular platforms for news dissemi-

nation, professional networking, social recommendations, and online content cura-

tion. Millions of users connect to each other, express themselves and share interests

through OSNs. For example, Facebook, LinkedIn and MySpace are social networks

used to find and organize contacts while Flickr, YouTube and Instagram are used

to share multimedia contents.

However, today’s OSNs rely on users to manually post profiles consisting of

attributes such as demographic information, geographic location and personal in-

terests. This represents a significant burden on users who are members of multiple

OSNs. As a result, not all users provide these attributes in their profiles which, in

turn, reduces the usefulness of online social networking applications because such

profile information is important for grouping users, sharing contents and recom-
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mending friends or products.

On the other hand, among the vast amount of user-generated contents, Face-

book Likes activity is one of the highly available and public information in OSNs.

Facebook Likes refer to the social activity by Facebook users to express their

positive association with online contents such as photos, friends’ status updates,

products, sports, musicians, books, restaurants, or other popular websites [27].

Unlike other social activities, Facebook Likes are currently publicly available by

default. Previous research has shown that 57% of Facebook user profiles publicly

reveal at least one Like among different categories. This large amount of available

activity information suggests that the majority of users consider this Facebook

activity does not violate their privacy as there seems no correlation between their

Likes and private data.

Thus, it is natural to try to utilize Facebook Likes provided by users in order

to infer the missing user attributes in an online social network. Such ability of

automatically predicting user attributes is very useful for many social networking

applications such as friend recommendation and content sharing. Also it has less

privacy concerns as users are more willing to publicly reveal their Likes activity in

online social networks.

In this chapter, we study the problem of predicting user attributes to pre-

defined categories based on the activity of their Facebook Likes. Formally, we

study the following:

Definition (User Attribute Prediction) Given a set of Facebook users U , a

set of Facebook Like items I, a |U | × |I| Likes matrix L = [l1, ..., l|U |]
T , where

lu,i ∈ {0, 1} represents user u ∈ U likes item i ∈ I or not, a pre-defined set of K

attribute labels A = {a1, ..., aK}, and labeled samples such that 〈u, a〉 ∈ U × A,
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predict and assign an attribute label to a unlabeled user v with |I|-dimensional

Likes vector lv . 2

Some researchers have already studied the problem of predicting private traits

and attributes from digital records of human behavior. Recent study [27] has

shown that Facebook Likes can be used to automatically and accurately predict

sensitive personal attributes, such as sexual orientation, ethnicity, religious and

political views, intelligence, happiness, drug use, parental separation, age, and

gender. Based on demographic profiles and results of psychometric tests as well

as their Facebook Likes data from 58,466 volunteers, their study used regression

models to predict individual psychodemographic profiles from Facebook activities.

The method can achieve best discriminative results for predicting dichotomous

variables such as gender and ethnicity. And the authors claimed that even for nu-

merical variables such as openness attribute from personality traits, the prediction

accuracy is also close to the accuracy of a standard personality test.

In this chapter, we introduce our topic modeling approach to tackle the problem

of user attribute prediction. In particular, we propose a LDA framework to extract

topic features from Facebook Likes activity such that the prediction problem can

be solved using latent topics. The efficacy of our proposed approach is validated

through comprehensive experiments.

6.2 Predicting User Attributes using Activity

Features

We first present the baseline models for predicting user attributes based on the

activity features extracted from Facebook Likes. Given a set of Facebook activities,
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we represent each user as a vector of likes and directly extract activity features

from the users.

6.2.1 Feature Selection

We use Principal Component Analysis (PCA) to select reduced feature vectors

based on Facebook Likes: Principal Components of Likes from Singular-Value

Decomposition (SVD).

PCA by SVD . The Principal Component Analysis [92] is an unsupervised di-

mension reduction technique and seeks a projection that can best represent the

data in the reduced space. Assume x (with components xj, j = 1, ..., n) is a Face-

book Likes feature vector with probability distribution P (x). Let {xα|α = 1, ...m}

be a sample from P (x), which form the n×m data matrix X = [x1,x2, ...,xm].

PCA is based on the first and the second empirical moments of the sample data

matrix. The mean vector,

〈x〉 =
1

m

m∑
i=1

xi

and the empirical covariance matrix,

C =
1

m

m∑
i=1

(xi − 〈x〉)(xi − 〈x〉)T

Using the matric formulation, we have

C =
1

m
XXT

where the mean of the data has been removed so that the matrix will not be

affected by the location of the center of the data.
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PCA is to find the directions in the data with the most variation, i.e., the

eigenvectors corresponding to the largest eigenvalues of the covariance matrix, and

to project the data onto these directions. Let’s denote the matrix of eigenvectors

sorted according to eigenvalue by Ũ, then the PCA transformation of the data is

Y = ŨTX

The eigenvectors are called the principal components. By selecting only the first

d rows of Y, we can project the original data from n dimensions to d dimensions.

We can use Singular-Value Decomposition (SVD) to perform PCA. By decom-

position using SVD, we have

X = UΓVT

and the covariance matrix can be written as

C =
1

m
XXT =

1

m
UΓ2UT

where U is a n ×m matrix with orthonormal columns (UTU = I), while V is a

m×m matrix with orthonormal columns (VTV = I), and Γ is a m×m diagonal

matrix with positive or zero elements called the singular values.

The transformed data in terms of the SVD decomposition of X can thus be

written as

Y = ŨTX = ŨTUΓVT

where ŨTU is a simple n × m matrix which is one on the diagonal and zero

elsewhere.
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6.2.2 Prediction Models

We select three popular models over the activity features: Naive Bayes (NB),

Support Vector Machines (SVM) and Logistic Regression (LR).

Naive Bayes . In this chapter, we adopt a multinomial Naive Bayes model. Given

the user attribute prediction problem having K labels {a1, a2 ...,aK} with prior

probabilities P (a1),...,P (aK), we assign an attribute label a to a Facebook user u

with Likes feature vector l = (l1, l2..., lN), such that

a = arg max
a
P (a = ak|l1, l2..., lN)

That is to assign the attribute label with the maximum a posterior probability

given the observed data. This posterior probability can be formulated using Bayes

theorem as follows:

P (a = ak|l1, l2..., lN) =
P (ak)×

∏N
i=1 P (li|ak)

P (l1, l2..., lN)

where the objective is to assign a given user u having a feature vector l consisting

of N features to the most probable attribute label. P (li|ak) denotes the conditional

probability of feature li found in Facebook Likes of user u given the attribute label

ak.

Support Vector Machines . Given a corpus of U Facebook users and attribute

labels for training {(lu, au)|u = 1, ..., U}, where lu is the Likes feature vector of

user u and au is the target attribute label, SVM maps these input feature vectors

into a high dimensional reproducing kernel Hilbert space, where a linear machine is

constructed by minimizing a regularized functional. The linear machine takes the
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form of ϕ(l) = 〈w · φ(l)〉+ b where φ(·) is the mapping function, b is the bias and

the dot product 〈φ(l) · φ(l′)〉 is also the kernel K(l, l′). The regularized functional

is defined as:

R(w, b) = C ·
U∑
u=1

`(au, ϕ(lu)) +
1

2
‖w‖2

where the regularization parameter C > 0, the norm of w is the stabilizer and∑U
u=1 `(au, ϕ(lu)) is empirical loss term. In standard SVM, the regularized func-

tional can be minimized by solving a convex quadratic optimization problem which

guarantees a unique global minimum solution.

Logistic Regression . The Logistic Regression, like the Naive Bayes, is a very

popular and widely used classification technique. While Naive Bayes is a gen-

erative model to form a statistical model for each class, Logistic Regression is a

discriminative model. Given the user attribute prediction problem having K labels

{a1, a2 ...,aK}, a Facebook user u with Likes feature vector l = (l1, l2..., lN), and a

parameter vector θ, for binary classification with -1, 1 class coding, we define the

label probability via the logistic function:

P (a|l) =
1

1 + exp(−aθTl)

Logistic regression can be easily generalized to K multiple classes with each

class has its own parameter θk, we then define the label probability via the softmax

function:

P (a = ak|l) =
exp(θTk l)∑K
i=1 exp(θTi l)

Finding the parameter θ can be done by maximizing the conditional log likeli-
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hood of the training data (l, a)1:n:

arg max
θ

n∑
i=1

log p(ai|li, θ)

6.3 Predicting User Attributes using Latent

Topics

In this section, we introduce our LDA-based approach to tackle the problem of user

attribution prediction. In the following, we give the general problem formulation

for Facebook Likes Network (LN) and topic-based generative modeling in terms of

LN.

6.3.1 Problem Formulation

We define the following terms in this chapter:

• A user u is a sequence of N Facebook Like items denoted by l = {l1, l2, ..., lN},

where ln denotes the nth like item of the user.

• A corpus is a group of M users denoted by U = {u1, u2, ..., uM}.

• A vocabulary of Likes is a set of unique like items in a corpus denoted by

L = {l1, l2, ..., lp} with size p.

• The relationships between users and likes are connected by a set of latent

variables Z = {z1, z2, ..., zT} with size T , each of which represents a latent

topic.

The Likes Network (LN) is formally defined as:
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Figure 6.1. A connectivity graph of users, topics and likes in Likes Network.

Definition (Likes Network) A Likes Network is defined as a bipartite graph

G = (V,E) where V is the set of vertices V and it contains two classes X and Y

such as V = X ∪ Y and X ∩ Y = ∅, each edge ei,j ∈ E has one endpoint (i) in X

and the other endpoint (j) in Y . X represents a set of users while Y represents a

set of likes items. An edge (x, y) ∈ E from user x to item y indicates the user x

”likes” the item y. 2

We assume that there is a set of latent topics existing in the Likes Network

such that a set of likes are most likely co-occurred in a specific topic, and we define

a topic as:

Definition (Topic) A semantically coherent topic φ in a Likes Network G is

defined as a multinomial distribution of all like items in L, i.e., {p(l|φ)}l∈L with

the constraint
∑

l∈L p(l|φ) = 1. 2

Based on the definitions of these concepts, we give the problem formulation as

follows:

Definition (Topic-Likes Modeling) Given a Likes Network G, model and ex-

tract a set of T topics {φ1, ...,φT} where φi is a topic in G. 2
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In our user-topic-likes scenario, an observation is treated as a tuple {u, l} that

represents an instance that a user u likes an item l. The relationship inherent in

the tuples is associated by a set of topics Z. Our mixture model has a conditional

independence assumption of variables, i.e., the observed variables are conditionally

independent on the state of the underlying latent variable, which are essentially

related to users’ attributes. Specifically, a user u is a mixture of several topics in

Z with different probabilities, and the latent variables consequently generate a set

of likes l that are most likely co-occurred in a specific topic. Figure 6.1 shows the

graphical illustration of users, topics and likes.

6.3.2 User-level LDA model

In this section, we introduce our user-level LDA model for activity-based user

attribute prediction in a Likes Network. While LDA represents documents as bags

of words, we represent users as their Facebook Likes. Therefore, a Facebook user

is represented as a multinomial distribution over hidden topics. Given a number

U of Facebook users and a number T of topics, each user u is represented by a

multinomial distribution θu over topics, which is drawn from a Dirichlet prior with

parameter α. A topic is represented by a multinomial distribution φt over likes,

which is drawn from another Dirichlet prior with parameter β.

The notations are shown in Table 6.1. θu denotes a T -dimensional proba-

bility vector and represents the topic distribution of the user u. φt denotes a

L-dimensional probability vector where φt,l specifies the probability of generating

Facebook like l given topic t. Multi(.) denotes multinomial distribution. Dir(.)

denotes Dirichlet distribution. α is a T -dimensional parameter vector of the Dirich-

let distribution over θu, and β is a L-dimensional parameter vector of the Dirichlet
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Table 6.1. Notations
Symbol Description
U total number of Facebook users
L total number of Facebook like items
T total number of topics
Nu total number of like items of user u
lu,i ith like item of user u
zu,i latent topic at ith like item in Facebook likes of user u
θu,i probability of topic i of user u
φt,l probability of like item l in topic t

U 
N 

α θu β zu,i φt lu,i 

T 

Figure 6.2. User-level LDA Model.

distribution over φt. The generative process is shown in Algorithm 7.

The topic vector acts as a low-dimensional feature representation of users’ Face-

book Likes and can be used as input into any prediction algorithm. In other words,

for each user u, we can use our proposed user-level LDA model to learn θu for that

user and then treat θ as the features in order to do user attribute prediction. We

still apply Naive Bayes, Support Vector Machines and Logistic Regression models

in the reduced dimensional space.

Algorithm 7: User-level LDA model for Facebook Likes.

For each of the T topics t, sample a multinomial distribution φt from a Dirichlet1

distribution with prior β;
For each of the U users u, sample a multinomial distribution θu from a Dirichlet2

distribution with prior α;
For each like item lu,i of user u, sample a topic zu,i from a multinomial3

distribution with parameter θu;
Sample like lu,i from a multinomial distribution with parameter φzu,i .4
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6.4 Experiments on Demographical Attributes

In order to validate our proposed approach, we apply it to both binary and multi-

class user attribute prediction with respect to identifying Facebook users’ personal

demographical information. Specifically, our experimental questions are the fol-

lowing:

1. Binary: How accurately can we predict a Facebook user’s gender and political

views respectively?

2. Multi-class: How accurately can we predict a Facebook user’s age group and

relationship status respectively?

6.4.1 Set-Up

We used data on US Facebook users’ psychodemographic profiles and their lists of

Likes from [27]. The original data were obtained from the myPersonality applica-

tion1. Volunteer users provided their data for this study and gave their consent to

have their scores and profile information recorded for analysis. We selected 1609

Facebook users who declared their gender, age, relationship status and political

view in their profiles (i.e., ground truth). In particular, gender (i.e.,“male” or

“female”) and political view (i.e., “Democrat” or “Republican”) are two binary

attributes. Figure 6.3(a) and Figure 6.3(b) show the distribution of gender and

political view attributes respectively. Relationship status attribute recorded from

the user profile has ten classes, where the options are “Single”, “In a Relationship”,

“Married”, “Engaged”, “Complicated”, “Open”, “Widowed”, “Divorced”, “Sepa-

rated” and “Partnership”. Age attribute was originally recorded as a numerical

1http://www.mypersonality.org



116

variable, and we further divided the users into five age groups, where the groups

are “less than 20 years old”, “between 20 and 30 years old”, “between 30 and 40

years old”, “between 40 and 50 years old” and “more than 50 years old”. Fig-

ure 6.4(a) and Figure 6.4(b) show the distribution of age and relationship status

attributes respectively.

Evaluation Metrics . For evaluation purpose, all the users can be grouped

into four categories, i.e., true positive (TP), true negatives (TN ), false positives

(FP) and false negatives (FN ). For example, the true positives are the users that

belong to positive class and are in fact predicted to the positive class, and the false

positives are the users not belonging to positive class but incorrectly predicted to

the positive class. Since we are interested in both positive and negative classes

especially in multi-class prediction, we use the accuracy (ACC) metric to measure

the performance as follows:

ACC =
TP + TN

TP + FP + TN + FN

In all subsequent experiments, we use the 10-fold cross validation [25] to measure

the accuracy.

Baseline Method . We use SVD in Section 6.2 to reduce the dimensionality of

the user-likes matrix in order to facilitate the predictive analysis, i.e., each user

is represented as a vector of principle component scores. As the baseline, SVD

provides a low-rank approximation to the original matrix. We use the NB, SVM

and LR based prediction models using the activity features in Section 6.2 as the

baseline. In the following, we compare the accuracy of our proposed topic-based

prediction method against the baseline.
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Figure 6.3. Percentages of Facebook users on two binary attributes.
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Figure 6.4. Percentages of Facebook users on two multi-class attributes.
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Figure 6.5. Gender prediction of Facebook users using Likes.

6.4.2 Binary Attribute Prediction

Given a set of Facebook Likes from a user, the goal of our binary attribute predic-

tion is to predict: (a) gender of the user, i.e., whether the user is a female or male;

(b) political view of the user, i.e., whether the user is a democrat or republican.

We used three different baseline approaches SVD+NB (resp. SVD+SVM and

SVD+LR), all of which use SVD with 100 components to obtain activity features

after reducing the dimensionality of the user-likes matrix. As to our proposed

methods, we first used the user-level LDA model with 100 topics to extract topic

features from Facebook Likes activity. Then we applied three variations LDA+NB

(resp. LDA+SVM and LDA+LR) to predict the user attributes.

Gender . Figure 6.5 shows the prediction accuracy of baselines and our methods

for gender attribute. First, we can clearly see that all methods achieve fairly high

accuracy (e.g., above 80%). This demonstrates the high predictive power of Likes
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Figure 6.6. Political View prediction of Facebook users using Likes.

activity to discriminate the gender of Facebook users. Second, we can see that

for each of the three prediction models, the topic features derived from our topic

modeling approach outperform the activity features using SVD, which shows topic-

based linguistic features are consistently reliable and more discriminative in general

classification and prediction tasks. Third, using either SVD component features or

topic features, SVM model generally outperforms NB model and LR model, which

shows that SVM performs better than NB and LR in general classification and

prediction tasks [86].

Political View . Figure 6.6 shows the prediction accuracy of baselines and our

methods for political view attribute. First, we can see that although both at-

tributes (i.e., gender and political view) are binary, all prediction methods achieve

not as high accuracy as in the previous gender prediction. This indicates less pre-

dictive power of Likes activity to discriminate the political view of Facebook users
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Figure 6.7. Age prediction of Facebook users using Likes.

as compared to the gender attribute. Second, we can see that similar to the gender

case, the topic features derived from our topic modeling approach outperform the

activity features using SVD, which again shows topic-based linguistic features are

consistently reliable and more discriminative. Third, using either SVD component

features or topic features, SVM model generally outperforms NB model and LR

model, which shows similar pattern in terms of prediction performance.

6.4.3 Multi-class Attribute Prediction

Next, the goal of multi-class prediction is to predict: (a) age of the user, i.e., which

age group (out of 5 groups) the user is belonging to ; (b) relationship status of the

user, i.e., which relationship (out of 10 relationships) the user is currently in.

Similar to Section 6.4.2, we applied 3 baselines using SVD component features

and 3 variations of our proposal using topic features.
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Figure 6.8. Relationship Status prediction of Facebook users using Likes.

Age . Figure 6.7 compares the multi-class prediction accuracy among baseline

methods and our proposed methods for age attribute. First, regarding different

features extracted from Facebook Likes, it is shown that all models using the topic

features derived from our topic modeling approach outperform the models using the

SVD component features. For example, NB model using topic features outperforms

NB model using activity features and improves the prediction accuracy by 9%,

which is consistent with the binary prediction case. This again confirms that

topic-based linguistic features are consistently more reliable and discriminative in

multi-class user classification and prediction tasks. Second, in terms of accuracy,

SVM model outperforms NB or LR model by up to 17% using either activity

features or topic features, which again shows that SVM performs better than NB

and LR in multi-class classification and prediction tasks.

Relationship Status . Figure 6.8 compares the multi-class prediction accuracy
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among baseline methods and our proposed methods for relationship status at-

tribute. First, we can clearly see that all methods achieve fairly low accuracy (e.g.,

below 50%). This indicates the less predictive power of Likes activity to discrim-

inate the relationship status of Facebook users as compared to the age attribute.

Second, regarding different features extracted from Facebook Likes, it is again

shown that all models using the topic features derived from our topic modeling

approach outperform the models using the SVD component features. For exam-

ple, NB model using topic features outperforms NB model using activity features

and improves the prediction accuracy by 13%, which is consistent with the binary

prediction case. Third, in terms of accuracy, SVM model outperforms NB or LR

model by up to 28% using either activity features or topic features, which shows

similar pattern in terms of prediction performance.

6.5 Summary

In this chapter, we presented a user-level LDA model approach to predicting Face-

book user attributes using topic features extracted from Facebook Likes activity.

By semantically modeling the relationship between users and their social activity,

we have shown the cases where both binary and multi-class prediction accuracy

can be improved effectively. Using real data sets on four demographical attributes

of Facebook users, we validated our claim through comprehensive experiments by

showing that our prediction models using latent topics outperform three competing

prediction solutions.



Chapter 7
Conclusion and Future Work

7.1 Contributions

In this dissertation, we have presented a series of new methods for mining texts and

social users using time series and latent topics. We applied our methods to four

data mining applications, e.g., record linkage, document modeling, mining social

content and mining social activity, and showed the performance of our knowledge

discovery solutions.

On mining texts using time series in terms of record linkage, our contributions

include: (1) As a solution to information-sensitive text mining in time series do-

main, we formally propose our T3 framework to map string/text to time series

and show how to apply it to the record linkage problem. (2) At character level,

we propose and evaluate nine different combinations of n-grams and space-filling

curve techniques to translate string data into time series data. At word level, we

propose and evaluate three n-grams during numeric assignments while considering

the relative importance of tokens in the string data. (3) We apply the T3 frame-

work to the record linkage problem and compare the performance against popular
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approximate pattern matching schemes such as Levenshtein and report promising

results of our proposal in terms of both speed and accuracy.

On mining texts using latent topics in terms of document modeling, our contri-

butions include: (1) As a solution to tackling noisy text data problems in document

modeling, we formally incorporate textual errors into the document generation

process and show how to apply it to the model formulation. (2) We discard the

bag-of-words assumption in the LDA model. Instead, we assume that successive

words in the document are more likely to have the same topic. We model the

topics in a document to form a Markov chain with a transition probability and

show how to incorporate dependency of topics into the generative process. (3) We

apply our proposed models to both real and synthetic data sets and compare the

performance against the traditional LDA model and the state-of-the-art N-Grams

model, and report promising results of our proposal in terms of perplexity.

On mining social content using time series in terms of social user mining, our

contributions include: (1) As a solution to the Twitter user classification problem in

time series domain, we formally propose our framework to map users to time series

for classification. (2) We formulate the problem of user classification as a document

categorization problem in the Twitter setting, and show the procedure of feature

selection as well as the detailed evaluation of different classifiers. (3) We validate

our approach in in both binary and multi-class Twitter user classification settings

and successfully demonstrate that our proposal substantially outperforms eight

competing methods in identifying Twitter users with certain sports and political

interests.

On mining social activity using latent topics in terms of social user mining,

our contributions include: (1) As a solution to predicting social user attributes

using latent topics, we formally propose our topic modeling framework based on
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Facebook activities. (2) We formulate the problem of predicting user attributes

using Facebook Likes, and show the procedure of feature selection and dimension

reduction as well as the detailed evaluation of different prediction models. (3)

We validate our topic modeling approach in both binary and multi-class Facebook

user attribution prediction and show that our proposal can effectively improve the

performance of baseline methods in predicting four demographical attributes of

Facebook users.

7.2 Future Work

Many directions are ahead for future research.

On record linkage, first we plan to extend our T3 framework to other text mining

areas such as document clustering and classification. The sizes and dimensions

of the data increase dramatically when documents are considered. Second, more

sophisticated transformation schemes and advanced similarity functions need to be

devised to provide comparable accuracy using time series data to their counterpart

using text data.

On document modeling, first we plan to infer more complex topic structures and

conduct tests of statistically significant differences across all the models. Second,

we plan to apply our proposed models to handling textual errors in user-generated

contents on social media.

On social user mining, first we will explore other feature selection techniques in

time series domain and investigate more sophisticated transformation schemes to

incorporate content features. Second, we plan to integrate other activity features

and incorporate user attribute as an additional latent variable in supervised gener-

ative modeling in order to further improve classification and prediction accuracy.
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