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ABSTRACT 

 

Previous research has examined the relationship between roadway safety and 

design consistency using measures such as the difference between design and operating 

speeds and the difference in operating speeds on successive elements. While such 

measures have proven effective in identifying inconsistencies in the roadway, they do not 

directly identify the conditions associated with safety performance. The purpose of this 

research was to directly quantify the effects of geometric design consistency on roadway 

safety using measures that can be linked to specific geometric elements. To do so, five 

years of crash data and roughly 5,000 miles of alignment data from the state of 

Washington were utilized to model crash experience on 2.5 mile segments. 

Using mixed effects negative binomial modeling, three safety performance 

functions (SPFs) were developed. The first contained typical roadway parameters that 

were suggested for use by several contemporary safety management tools, while the 

second contained various geometric design consistency measures developed from the 

dataset. The final SPF contained both typical and design consistency parameters. After 

Empirical Bayes adjustments were applied using the conditional overdispersion 

parameters from the mixed effects negative binomial models, sites with potential (SWiPs) 

for safety improvements were ranked for each model using the scaled differences in 

frequencies between the predicted and adjusted number of crashes. 

A comparison was then made based on differences in SWiP rankings between the 

typical parameter model and the final model containing additional design consistency 

parameters. Ultimately, 40 unique segments were identified by each SPF out of the top 

220 segments ranked; this constitutes a 19 percent change in the top 10 percent of 
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segments identified as SWiPs. Additionally, there was marked variation in the order in 

which SWiPs were ranked. This disparity may lend credence to the incorporation of 

geometric design consistency parameters in the development of predictive safety models. 

Ultimately, by directly modeling the inconsistencies in geometric roadway design, 

practitioners may be able to better identify and categorize unsafe roadways both in the 

design stage and post-construction. However, it is important to note that the use of design 

consistency parameters does not ameliorate the modeling process solely based on a 

difference in SWiP identification; rather, it should encourage further avenues of research 

into the use of such measures in predictive safety modeling. Although this investigation is 

only preliminary, the results may help to burgeon the ever-expanding body of literature 

regarding the relationship between geometric design consistency and roadway safety.  



  v 
 

TABLE OF CONTENTS 

LIST OF FIGURES ................................................................................................................. vi 

LIST OF TABLES ................................................................................................................. vii 

ACKNOWLEDGEMENTS...................................................................................................... viii 

Chapter 1. INTRODUCTION ................................................................................................... 1 

1.1. General Background ............................................................................................. 1 

1.2. Purpose of Research ............................................................................................. 3 

Chapter 2. BACKGROUND AND LITERATURE REVIEW .......................................................... 5 

2.1. Design Consistency .............................................................................................. 5 

2.2. Speed Differences ................................................................................................ 6 

2.3. Alignment Indices .............................................................................................. 17 

2.4. Vehicle Stability ................................................................................................. 21 

2.5. Driver Workload ................................................................................................ 24 

2.6. Perceived Radius ................................................................................................ 28 

2.7. Summary ............................................................................................................ 33 

Chapter 3. METHODOLOGY ................................................................................................ 34 

3.1. Development of Safety Performance Functions................................................. 34 

3.2. Empirical Bayes Adjustments ............................................................................ 38 

3.3. Identification of Sites with Potential for Safety Improvements ......................... 40 

Chapter 4. DATA ACQUISITION AND PREPARATION ........................................................... 42 

4.1. Database Acquisition.......................................................................................... 42 

4.2. Preparation of Fixed-Length Segments .............................................................. 43 

Chapter 5. RESULTS ........................................................................................................... 47 

5.1. Safety Performance Functions ........................................................................... 47 

5.2. Empirical Bayes Adjustments ............................................................................ 57 

5.3. Ranking of Sites with Potential .......................................................................... 58 

Chapter 6. CONCLUSIONS .................................................................................................. 64 

6.1. Summary ............................................................................................................ 64 

6.2. Conclusions ........................................................................................................ 66 

6.3. Future Work ....................................................................................................... 68 

REFERENCES ...................................................................................................................... 71 

APPENDIX .......................................................................................................................... 75 

 



vi 

 

LIST OF FIGURES 

 

  

Figure 2-1. Relationship of roadway geometry and standard deviation of speed 

(Fitzpatrick et al., 2000) .............................................................................................. 7 

Figure 2-2. Relationship between (estimated operating speed-design speed) and crash 

rates (Awatta & Hassan, 2002) ................................................................................. 14 

Figure 2-3. Relationship between crash rates and ∆fR (Awatta & Hassan, 2002) ............ 23 

Figure 2-4. Effect of vertical curvature on horizontal curve perception (Lamm et al., 

1999) ......................................................................................................................... 29 

Figure 2-5. Test curve and three reference curves shown to study participants (Hassan et 

al., 2002) ................................................................................................................... 30 

Figure 3-1. Potential for safety improvement after Empirical Bayes adjustments (FHWA, 

2014). ........................................................................................................................ 39 
 

  



  vii 
 

LIST OF TABLES 

 

Table 2-1. Design consistency criteria (Lamm et al., 1999) ............................................... 8 

Table 2-2. Speed prediction equations (Fitzpatrick and Collins, 2000) ............................. 9 

Table 2-3. Design consistency evaluation summary (Richl & Sayed, 2005) ................... 10 

Table 2-4. Crash frequency as a function of exposure and continuous design density (Wu 

et al., 2013) ............................................................................................................... 16 

Table 2-5. Lognormal regression results of alignment indices applied to entire roadway 

sections (Anderson et al., 2000) ................................................................................ 19 

Table 2-6. Design consistency criterion for side friction (Lamm et al., 1999) ................. 22 

Table 4-1. Summary statistics of 2.5 mile segments ........................................................ 45 

Table 5-1. Safety performance function with typical roadway parameters ...................... 48 

Table 5-2. Correlation matrix for parameters in the typical parameter SPF ..................... 49 

Table 5-3. Safety performance model with geometric design consistency parameters .... 50 

Table 5-4. Correlation matrix for parameters in the geometric design consistency 

parameter SPF ........................................................................................................... 52 

Table 5-5. Safety performance model with combination of parameters ........................... 53 

Table 5-6. Correlation matrix for combination SPF ......................................................... 55 

Table 5-7. Parameter values for SR 002, Segment 1 in 2006 ........................................... 56 

Table 5-8. Top 20 SWiPs identified for each SPF ............................................................ 60 

Table 5-9. Changes to crash frequency due to change in independent parameters .......... 62 

Table A-1.  Variables compiled for each 2.5 mile segment.............................................. 75 

  



  viii 
 

ACKNOWLEDGEMENTS 

 

First and foremost, I would like to thank my thesis advisor, Dr. Paul P. Jovanis, 

for providing the encouragement and inspiration to undertake this research. His constant 

support and guidance has been essential from the outset of my career in transportation 

engineering. I would also like to thank the other members of my thesis committee, Dr. 

Eric T. Donnell and Dr. Vikash V. Gayah. Their wisdom and insightful comments over 

the past several years have not only vastly improved this work, but they have played a 

key role in my development as an engineer. I also owe a great deal of gratitude to 

doctoral candidate, Jonathan Wood, whose constant willingness to impart statistical 

knowledge made the completion of this research possible in my lifetime. 

Additionally, I would like to thank the Federal Highway Administration’s 

Universities and Grants Program, the Pennsylvania State University’s Graduate 

Fellowship Program, and the College of Engineering at the Pennsylvania State 

University, whose financial support helped fund this research and my graduate studies.  

Finally, I would like to thank my parents, without whom, I would not be at this 

point in my career. Their constant support and encouragement helped instill the requisite 

motivation for undertaking and completing my graduate work. 



  1 
 

Chapter 1. INTRODUCTION 

1.1. General Background 

One of the foremost aspirations of transportation professionals, regardless of 

realm of expertise, is to maintain the highest levels of safety throughout the roadway 

network. Over the past decade, there has been a marked decrease in the number of fatal 

automobile crashes, even with a steadily increasing number of vehicle-miles-traveled 

(VMT) by motorists. It remains to be seen whether this trend comes by dint of the recent 

economic downturn or through the efforts of programs like AASHTO’s Towards Zero 

Deaths and the methodologies established in the Highway Safety Manual (HSM). 

However, one fact remains evident. Current levels of safety, both those perceived by the 

roadway user and analytically derived through crash statistics, should leave transportation 

professionals far from complacent. It is imperative that innovative and more proficient 

methods for evaluating roadway safety are continuously being developed through 

research efforts at all levels of the profession. 

Although novel in terms of the overall history of transportation safety, the 

currently-established method for evaluating roadway safety utilizes statistical regression 

modeling to estimate crash frequency. These safety performance functions (SPFs) utilize 

historical crash data to estimate the predicted number of crashes for a roadway segment 

based on a set of baseline conditions. The disparity between the actual number of crashes 

experienced on a segment and the number predicted by the SPF may be an indication of a 

roadway that would benefit from investments in safety improvements. Though the 

parameters included in these models vary significantly, they typically include measures 

of exposure, such as Annual Average Daily Traffic (AADT) and roadway segment 
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length. The HSM provides recommendations for several other general roadway 

parameters to help predict crashes; however, the means and procedures utilized for the 

development of safety performance functions are far from being perfected. Therefore, 

considerable research has been directed towards developing more proficient and 

efficacious means to help estimate levels of safety. 

One such method, which has warranted significant study over the past decade, 

utilizes inconsistencies in roadway design to help identify potentially unsafe sections of 

roadway. Since these inconsistencies may take various different forms, the recent 

literature is rather diffuse; the full breadth of these current evaluation practices is 

evaluated in the subsequent section. It is important to note, however, that some of these 

methods developed for assessing design consistency, such as measuring the disparity 

between 85
th

 percentile speeds on successive elements, may require extensive financial 

and development efforts on the behalf of practitioners. Although the development of 

speed profile equations have allowed for the estimation of 85
th

 percentile speeds, these 

equations require field validation to ensure circumstantial applicability. Furthermore, 

such measures of consistency may only become efficacious in the evaluation of existing 

roadway systems. If, for example, a practitioner was attempting to evaluate the potential 

safety performance of several design alternatives, they would have to place their faith in 

the pertinence of speed profile equations to estimate 85
th

 percentile speeds; the 

practitioner has no method for verifying the applicability of the selected speed models to 

their potential designs. 
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1.2. Purpose of Research 

Therefore, it is the objective of this study to develop a methodology for assessing 

potential levels of roadway safety that do not require surrogate measures of design 

consistency. This is achieved through the direct use of geometric design inconsistencies, 

such as changes to intra-segmental horizontal curve radii and the number of changes in 

vertical grade within a segment. By incorporating these parameters into safety 

performance functions, levels of design consistency can be evaluated in a more direct 

manner. 

One advantage of using actual geometric alignment parameters to measure 

consistency stems from their general accessibility; most public agencies possess records 

of the geometric layout of their roadway network. Although the precision and diligence 

by which these files are maintained vary from agency to agency, geometric alignment 

parameters are much more readily available for utilization in safety performance 

functions (SPFs) than the values for 85
th

 percentile speed or driver workload for each 

particular segment of roadway under the agency’s control. By directly modeling 

inconsistencies in the geometric alignment, practitioners will also be afforded the ability 

to estimate the safety performance of existing roadways, as well as the performance 

between several alternatives in the design stage. The geometric data required to utilize the 

safety performance functions should be available to safety professionals conducting 

safety analysis on a single roadway or an entire network of roadways. Therefore, the 

incorporation of changes to geometric elements into current safety evaluation methods 

may serve practical applications with a trivial amount of effort. Before this analysis is 
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performed, however, it is imperative to first gain an understanding of the current state of 

practice of design consistency in the field of roadway safety. 
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Chapter 2.  BACKGROUND AND LITERATURE REVIEW 

 

2.1. Design Consistency 

The notion of using design consistency as a means of assessing roadway safety is 

not a novel one. Transportation professionals have long recognized the need to design 

roadways in a consistent manner; however, the manner in which they define “design 

consistency” has been subject to substantial discrepancy. Alexander & Lunenfeld (1986) 

suggest that design consistency implies that the roadway does not violate the expectancy 

of the driver or impede their ability to guide and control their vehicle in a safe manner. It 

makes sense intuitively that drivers will make more errors at geometric features that 

violate expectations than those that conform to their expectations. In order for a design to 

be considered inconsistent, however, it must possess a geometric feature or a combination 

of adjacent features, that violates driver expectations; which in turn, may surprise drivers 

and possibly make them drive in an unsafe manner (Messer, 1980).  

Others have taken a more specific approach. Wu et al. (2013) defined design 

consistency as the difference between operating speed and inferred design speed on 

successive elements. Similarly, Castro et al. (2011) describe an inconsistent design as one 

that violates driver expectancies solely through differences in operating and design 

speeds. However, using definitions such as these ultimately limit the scope of research on 

the relationship between design consistency and roadway safety. 

A survey conducted by Wooldridge et al. (2003) confirms the multiplicity of 

accepted definitions in practice. In a mail-back survey comprised of over thirty state 

agencies, practitioners were asked to provide their putative definition of design 

consistency. Despite being given five prepared definitions, nearly 40% of the respondents 
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offered their own definitions with particular emphasis on the selected phrasing. Many 

called for the inclusion of a spatial limit to design consistency over a given section of 

roadway. As discussed by Wooldridge et al. (2003), however, the term highway “section” 

is readily hard to define. A driver’s expectancy is not merely limited to their experiences 

on the preceding segment of road; expectancy can be developed over a driver’s career, or 

at the very least, their career within a certain region. Therefore, Wooldridge et al. (2003) 

developed a multifaceted definition of design consistency as the “conformance of a 

highway’s geometric and operational features with driver expectancy.” 

The more generalized definitions provided by Messer (1980) and Wooldridge et 

al. (2003) are used in this study, as they allow for a wide range of design consistency 

measures to be explored. The purpose of this study is to directly quantify the effect of 

design consistency measures in a way that relates it to specific geometric elements. Since 

the exact measures of design consistency that are used in this study have not yet been 

illuminated, it would not be prudent to assume a definition of consistency that limited 

potential results. Although many studies have followed similar approaches to modeling 

design consistency, it is important to recognize the unique contributions of each. Some of 

the most common measures used to develop a relationship between roadway safety and 

geometric design consistency are discussed in the subsequent sections. 

 

 

2.2. Speed Differences 

 

One of the most prevalent methods for evaluating design consistency has been the 

use of speed-profiles. It has been hypothesized that significant variations in speeds are an 

indication of inconsistent design features, while more consistent designs will produce a 
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more uniform speed profile (Nicholson, 1994; Fitzpatrick et al., 2000). This is perhaps 

best demonstrated by Figure 2-1, which illustrates a more pronounced drop in speed due 

to a horizontal curve with a small radius. 

 

 
Figure 2-1. Relationship of roadway geometry and standard deviation of speed (Fitzpatrick et al., 2000) 

 

Significant changes in operating speeds, such as this, may be a good indicator of a 

geometric design inconsistency. By modeling either the difference between design speeds 

(Vd) and operating speeds (V85) or the difference in operating speeds on successive 

roadway elements, researchers have attempted to identify sites where inconsistencies are 

present. Perhaps the most proverbial method for classifying design inconsistencies due to 

speed differences was proposed by Lamm et al. (1999). The criteria, which can be seen in 

Table 2-1, identify segments as either “good,” “fair,” or “poor” based on the magnitude 

of speed differential.  
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Table 2-1. Design consistency criteria (Lamm et al., 1999) 

Consistency Rating Criterion I (km/h) Criterion II (km/h) 

Good |V85 – Vd| < 10 |V85i – V85(i+1)| < 10 

Fair 10 < | V85 – Vd | < 20 10 < |V85i – V85(i+1)| < 20 

Poor | V85 – Vd | > 20 | V85i – V85(i+1) | > 20 

 

The use of these broad categories of “good, fair, and poor,” however, may not be 

the most effective manner in which to quantify design inconsistencies. For instance, if 

two successive elements experienced an operating speed differential of 20 kilometers per 

hour, the roadway’s consistency would be rated “fair” by Criterion II. However, if two 

successive elements along the same corridor experienced a speed differential of 20.1 

kilometers per hour, they would be experiencing “poor” design consistency. In reality, 

both situations are subject to nearly the same level of speed consistency, but the first set 

of successive segments may go unnoticed using the criteria established by Lamm et al. 

(1999). The three categories provide for an absolute statement about a particular 

segment’s consistency; rather, consistency would be more accurately identified through 

gradation.  

Furthermore, a driver’s desired operating speed (V85) is dependent on several 

factors, including weather, roadway condition, and geometric alignment (Fitzpatrick et 

al., 2000). As a result, desired operating speeds cannot be measured directly. In order to 

use them as a design consistency tool, they must be estimated assuming a relationship 

with roadway characteristics (see Table 2-2). There has been a multitude of studies 

(Lamm et al., 1999; Morrall & Talarico, 1994; TAC, 1994; Ottesen & Krammes, 2000; 

Voigt, 1996; Islam & Seneviratne, 1994) that have attempted to model this relationship 

with reasonable success using measures such as horizontal curve radii, degree of 
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curvature, and length of horizontal curve. Perhaps the most extensive study into 

developing speed prediction equations was put forth by Fitzpatrick & Collins (2000). By 

utilizing alignment data from over six states, the researchers were able to derive a series 

of equations to account for a wide variety of alignment conditions. These equations are 

shown in Table 2-2. 

 
Table 2-2. Speed prediction equations (Fitzpatrick & Collins, 2000) 

Equation No. Alignment Condition Speed Equation 

0 Tangent on grade Desired speed 

1 Horizontal curve on grade, -9 < G < -4% V85 = 102.10 - 3077.13/R 

2 Horizontal curve on grade, -4 < G < 0% V85 = 105.98 - 3709.90/R 

3 Horizontal curve on grade, 0 < G < 4% V85 = 104.82 - 3574.51/R 

4 Horizontal curve on grade, 4 < G < 9% V85 = 96.61 -2752.19/R 

5 Horizontal Curve combined with a sag vertical curve V85 = 105.32 -3438.19/R 

6 

Horizontal Curve combined with a non-limited sight 

distance crest vertical curve Smallest values from eqns. [1]-[4] 

7 

Horizontal Curve combined with a limited sight distance 

crest vertical curve V85 = 103.24 -3576.51/R; also check eqn. [6] 

8 Sag vertical curve on a tangent Desired speed 

9 Non-limited sight distance crest vertical curve on a tangent Desired speed 

10 Limited sight distance crest vertical curve on a tangent V85 = 105.08 -149.69/K 

Where R is the horizontal curve radii, G is the grade of the vertical curve, and K is rate of vertical curvature 

 
As evidenced by the sheer multitude of speed-profile equations developed in the 

aforementioned studies and the numerically-explicit formulas seen in Table 2-2, one 

might expect there to be variations in the classification of design consistency using 

methods like those in Table 2-1 depending on the speed-profile equations selected. Richl 

& Sayed (2005) attempted to demonstrate this fact by applying some of the most 

prevalent speed-profile equations to the same roadway and evaluating the design 

consistency achieved by each using the criteria developed by Lamm et al. (1999). Using 

an existing 36-segment roadway alignment proven to have substandard horizontal and 
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vertical curve features (using British Columbia highway standards established in BC 

MoTH, 1994), the researchers developed a summary of the design consistency 

evaluation, shown in Table 2-3. 

Table 2-3. Design consistency evaluation summary (Richl & Sayed, 2005) 

  Safety Criteria I (as in Table 2-1) Safety Criteria II (as in Table 2-1) 

Speed Model Good Fair Poor Good Fair Poor 

Lamm et al., 1988 34 1 1 27 8 1 

Lamm et al., 1999 (lane width) 30 6 0 29 6 1 

Lamm and Choueiri, 1987 31 5 0 31 5 0 

TAC, 1999 12 9 15 16 7 13 

Kanellaidus et al., 1990 15 9 12 22 5 9 

Morrall and Talarico, 1994 32 4 0 29 6 1 

Lamm et al., 1999 31 5 0 31 5 0 

Ottesen and Krammes, 2000 (model 1) 20 16 0 26 9 1 

Ottesen and Krammes, 2000 (model 2) 19 16 1 23 8 5 

Islam and Seneviratne, 1990 25 11 0 24 9 3 

Voigt, 1996 24 12 0 24 10 2 

FHWA, 2000 23 13 0 23 12 1 

 
As shown in the table, the speed-profile equations developed by TAC (1999) and 

Kanellaidus et al. (1990) generate operating speeds that are vastly different from the 

design speed of the roadway. The 15- and 12- “poor” roadway segments identified by 

these studies in Criteria I, respectively, would lead one to believe that there are 

significant design inconsistencies within the study corridor. However, several other 

studies show little design inconsistency. Even if the equations developed in these two 

studies (TAC and Kanellaidus et al.) were disregarded as outdated or inconsequential, 

other speed models exhibit similar differences. The discrepancy in the number of “good” 

and “fair” ratings generated from equations in the Lamm et al. (1999) and FHWA (2000) 

studies are significant; these are arguably two of the most prominent studies regarding 

operating speed estimation. This level of disparity between models may lead to 
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significantly different safety regression models to be developed. This is not to say that 

speed variations within roadway elements cannot be viable indicators of design 

consistency; in fact, many studies suggest a strong correlation. Rather, it establishes that 

any attempts to develop a relationship between design consistency and roadway safety 

using speed variations is only as strong as the speed-profile equations utilized. 

One of the first studies to actually model speed consistency as a measure of safety 

was put forth by Anderson et al. (1999). Using the speed prediction models developed by 

Fitzpatrick & Collins (2000) (using an earlier draft from 1998, but identical equations), 

the researchers were able to generate a speed-profile for over 290 highway segments 

(~3,000 miles) of two-lane rural roadways in the state of Washington. Due to the shape of 

the accident distribution, Anderson et al. applied count regression models to the data to 

generate the relationship shown in the equation below: 

 

                                        
 

Where: 

  Y = the number of accidents that occurred over the three year study period,  

CL = the length of the horizontal curve in feet, and  

SR = the speed reduction between adjacent segments [i.e., V85i – V85(i+1)] in miles- 

per-hour.  

 

The positive relationship between speed reduction and accident experience 

indicates that any increase in the speed discrepancy between two adjacent segments 

would increase the expected accident frequency experienced at those segments. With a 

high level of significance for all parameters (>95% confidence level), the results of this 
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model substantiate previous conjectures that changes in operating speeds can be a useful 

indicator of design inconsistencies. One measure that may lend more credence to this 

study would be to identify the hazardous sites (i.e., SWiPs) using the regression model 

and compare them to the hazardous or “poor” sites identified using the safety levels 

developed by Lamm et al. in Table 2-1. If similar sites were identified across both 

methods, it would further validate the use of speed reduction as an identifying factor of 

design consistency, and ultimately, roadway safety. 

Ng & Sayed (2004) took a similar approach towards modeling the relationship 

between speed reductions and safety. Using the speed prediction models developed by 

Morrall & Talarico (1994), the researchers again generated a negative binomial model 

relating accident experience as function of exposure and changes to operating speeds. 

These regression models can be seen below: 

 

                                                                 
 

                                                               
 

Where: 

  L = the length of the segment.  

 

The positive coefficient of the speed reduction term in the first equation (V85-Vd) 

indicates that differences in operating speeds are a good indicator of inconsistencies 

within a segment; while the positive coefficient of the speed reduction term in the second 

equation (∆V85) validates that a speed drop between two successive segments is expected 

to increase accidents. With a high level of significance for each parameter and the 

accident prediction models failing to reject the null hypothesis of the Pearson χ
2
-test, Ng 
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& Sayed further substantiate the use of speed reductions as an indicator of roadway 

safety. 

Anderson & Krammes (1999) and Awatta & Hassan (2002) both took markedly 

different approaches towards modeling operating speed changes as a measure of safety. 

While both studies still utilized the criteria established by Lamm et al. (1999) in Table 2-

1, they attempted to model crash rates, rather than frequency, along horizontal curves. 

Since crash rates are a function of exposure, the researchers were able to take a more 

simplistic statistical approach towards modeling. Anderson & Krammes utilized a linear 

model of mean crash rates against the mean speed differentials within a segment: 

 

   ̅̅ ̅̅                 
̅̅ ̅̅ ̅̅   

 

Where  

CR = the mean crash rate in crashes per million vehicles, and  

∆V85 = the mean estimated speed drop experienced between successive segments 

in miles-per-hour.  

 

The regression equation indicates that crash rates should rise when a greater speed 

drop is experienced. The model yielded an R
2
-value of 0.93. This may appear as though 

∆V85 explains an extremely high percentage of the variation in crash rates; however, this 

high coefficient of determination was only achieved because sites were grouped into 

speed-reduction intervals. By using these intervals in the regression equation, the scatter 

in the data became more limited. 

Awatta & Hassan modeled crash rates by developing a quadratic relationship with 

operating speed based measures. It is important to note, however, that the alignment used 
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in the study was artificial. As a result, the crash rates used in regression were only 

predicted rates using the methods developed by the Federal Highway Administration in 

Report 99-207. The alignment also only consisted of eight horizontal curves, leading to a 

relatively small sample size. Nevertheless, the safety models obtained are shown below: 

 

                                         

 

               
                      

 
With all other factors being held constant, the lack of change in speed within an 

element or between successive elements should indicate the average crash rate for a 

roadway element that has a consistent design. However, the parabolic nature of these 

equations would suggest that operating speeds below the design speed of the roadway 

would also lead to higher crash rates. This is illustrated in Figure 2-2. 

 
Figure 2-2. Relationship between (estimated operating speed-design speed) and crash rates (Awatta & 

Hassan, 2002) 

 

As evidenced by the figure, the relationship developed between crash rates and 

the predicted speed drop between successive elements contains increasing crash rates at 

both ends of the quadratic function. If all other factors affecting crashes are held constant, 

it may be difficult to explain why crash rates increase as operating speeds drop below the 
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design speed of the roadway. Despite this limitation, the relationships developed by 

Awatta and Hassan reaffirm the use of operating speed changes as an indicator of 

roadway safety. 

One of the apparent weaknesses of these previous studies is the lack of validation 

of the expected operating speeds when using the prediction models similar to that of 

Table 2-2. As evidenced by Richl & Sayed (2005), the application of any particular speed 

prediction model may result in a unique consistency and safety evaluation. If the actual 

operating speeds on the roadway cannot be accurately predicted by the speed-profile 

models, the safety analysis will not hold much merit. In order to overcome this, Wu et al. 

(2013) conducted a field study to measure the actual operating speeds on two 

Pennsylvania highways. They then validated the field results with the operating speeds 

predicted using the Design Consistency Module of the Interactive Highway Safety 

Design Model (IHSDM). However, rather than just evaluating the difference between 

speeds in successive elements, Wu et al. developed a measure of design consistency 

termed the “design consistency density.” In essence, this term measures changes between 

the operating speed and the inferred design speed (i.e., the design speed of road using the 

actual dimensions, rather than the limiting-criterion dimensions) while accounting for the 

effects of elements upstream and downstream of the study element (Wu et al., 2013). 

Donnell et al. (2009) established the inferred speed as a suitable measure of design 

consistency for operating speed measures. 

After evaluating multiple regression alternatives, Wu et al. determined that a 

mixed-effects negative binomial regression model would be the most appropriate given 

the repeated crash observations at identical locations over the seven years of data. 
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Utilizing both the continuous and categorical form of design consistency density (δ), the 

researchers were able to develop a set of models for both forms. The relationship 

developed between observed crash frequency and the continuous-form of design 

consistency density is shown in Table 2-4. 

 
 

Table 2-4. Crash frequency as a function of exposure and continuous design density (Wu et al., 2013) 

Variable A1 A2 A3 

Presence of a Horizontal Curve 0.272 0.278 0.366** 

log(AADT) 0.816** 1.000 0.701** 

log(Element Length) 0.829*** 0.873*** 1.000 

δ 0.029 0.0136*** 0.008 

Constant -3.314*** -1.574*** -1.733 

Model Statistics    

Number of groups 560.000 560.000 560.000 

AIC 754.700 755.600 755.000 

BIC 780.700 777.200 776.600 

Log-likelihood -371.400 -372.800 -372.490 

** Significant at 5% level, ***Significant at 1% level 

 
It is important to first note the differences between the models within this set. 

Model A1 features no constraints on the parameter coefficients; Model A2 constrains the 

coefficient of the AADT term to 1.0; and Model A3 constrains the coefficient of the 

element length to 1.0. The positive coefficient of the consistency term in each model 

indicates that there is a significant relationship at the 95% level between roadway safety 

performance and changes in speed within an element. As δ increases, so too does the 

expected crash frequency on the element. After applying statistically-thorough 

methodology to real-world data, the results of this work appear to further validate the 

notion of a significant link between speed changes and roadway safety performance. 
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With the results of the aforementioned studies, it would be difficult to argue the 

lack of correlation between operating speed variations and roadway safety. Most, if not 

all, of the empirical evidence demonstrates that as speed differentials increase, so does 

crash experience. However, this does not necessarily imply that operating speed changes 

are a suitable design consistency measure to be used by practitioners. These changes in 

speed are only surrogate measures of the true inconsistencies; they do not identify the 

reasons or conditions associated with the drop in speed. This is easily seen in equations 

used to estimate speed, as many of the speed-profile equations developed in Table 2-2 are 

direct functions of other geometric elements. Furthermore, the design speeds used in 

many of the studies are used to determine the values of various geometric roadway 

features, including superelevation rates, curve radii, and sight distances. In order to 

quantify the true, underlying effects of design consistency on roadway safety, 

investigations must be made into the effects of changes to individual roadway 

characteristics. Although the research in this area has been rather limited, several studies 

have attempted model design consistency using alternative measures. 

 

 

 

2.3. Alignment Indices 

 

One means to measure the quantitative effects of design consistency on safety is 

to use alignment indices. The purpose of indices is to quantitatively represent the general 

characteristics of the roadway segment’s alignment through the use of averages or ratios 

of geometric elements. After careful analysis of indices for both the horizontal and 

vertical alignment, Fitzpatrick et al. (2000) recommends several indices that have a high 

potential to draw out inconsistencies in the roadway. These include the average radius of 
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a segment, the ratio of the maximum and minimum radius experienced within a segment, 

the average tangent length, and the average rate of vertical curvature. A high rate of 

change or significant jump in one of these measures should indicate design 

inconsistencies. 

There are several benefits to using alignment indices in consistency analysis over 

traditional measures. First, they are relatively easy to understand and calculate for use by 

practitioners (Fitzpatrick et al., 2000). This is essential when attempting to establish 

methods that can be implemented in real world scenarios. Additionally, the indices are 

direct functions of the horizontal and vertical alignments, which would allow for 

“quantitative analysis of successive segments from a system-wide perspective” 

(Fitzpatrick et al., 2000). Ultimately, this is the main motive for even conducting design 

consistency analysis. 

Despite the benefits of alignment indices, their use in safety analysis has been 

limited. Anderson et al. (1999) has been one of the only studies to apply indices in safety 

regression models. The researchers investigated many of the same indices recommended 

by Fitzpatrick et al., including average radius, the ratio of maximum to minimum radius, 

and the average rate of vertical curvature. Anderson et al. also developed a rather unique 

alignment index using the ratio of a specific horizontal curve radius to the average radius 

of the entire segment. It is intuitive that encountering a radius that is significantly 

different than the average for the segment would violate driver expectancy. This index, 

dubbed the Curve Radius Ratio (CRR), is shown in the subsequent equation: 
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After applying lognormal regression to crash frequencies using exposure and the 

individual alignment indices as parameters, several significant relationships were 

developed. These regression equations can be seen in Table 2-5. 

 

 
Table 2-5. Lognormal regression results of alignment indices applied to entire roadway sections (Anderson 

et al., 2000) 

Model 

No. Parameter Coefficient 

Significant 

at 95% 

level? 

Additional R
2
 gained after 

adding design consistency 

criterion 

1 

Intercept -7.845 Yes 

1.40% 
AADT (logscale) 0.995 Yes 

Section Length (km) (logscale) 1.108 Yes 

Average Radius (m) -0.000137 Yes 

2 

Intercept -7.859 Yes 

0.66% 
AADT (logscale) 0.988 Yes 

Section Length (km) (logscale) 1.058 Yes 

(Max Radius ) / (Min Radius) 0.0043 Yes 

3 

Intercept -8.297 Yes 

3.29% 
AADT (logscale) 1.052 Yes 

Section Length (km) (logscale) 1.167 Yes 

Average Vertical Curvature Rate  

(m / % grade) -0.0028 Yes 

    

  

Freeman-Tukey R
2 

4* 

Intercept -5.932 Yes 

17.80% 
AADT (logscale) 0.8265 Yes 

Curve Length (km) (logscale) 0.7727 Yes 

CRR -0.3873 Yes 

*Poisson Regression utilized 

 
Each of the coefficients of the design consistency parameters represents the 

anticipated relationship between crash occurrence and the respective alignment index. As 

the average radius within a segment increases, one would expect the number of crashes 

related to design consistency to decrease since larger radii are usually more easily- 

traversed by the driver. Correspondingly, as the average length of vertical curves are 
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increased (thereby increasing the average VCR in model 3), fewer crashes would be 

expected. The ratio-based indices in models 2 and 4, however, require more careful 

analysis. The positive relationship between the ratio of maximum radius to minimum 

radius and crash frequency indicates that a larger disparity between extreme radii 

increases the number of expected crashes. Innately, any substantial variation of radii 

within the same segment would most likely result in higher crash frequencies. The 

negative relationship between CRR and crash experience signifies as an individual radius 

reaches or exceeds the segment average, the higher the reduction in expected crashes. 

The high level of significance and notable increase in the amount of variability explained 

in the crash data by adding the alignment indices to each model would indicate that these 

measures are appropriate for assessing design consistency. 

The only other notable study to include the use of alignment indices as measures 

of design consistency was conducted by Awatta & Hassan (2002). Their analysis, 

however, was only limited to a single index: CRR (as established by Anderson et al.). 

While their efforts in confirming previous work are well-founded, there lies an inherent 

problem with their use of any alignment indices relating to horizontal radii. As mentioned 

in the previous subheading, “Speed differences”, Awatta & Hassan developed their study 

using an artificial alignment with only the predicted number of crashes as a means of 

safety evaluation. The accident modification factors (AMFs) used to predict crashes 

along the alignment are a direct function of the horizontal curve radii present in each 

section.  Since the alignment index of CRR is also a direct function of curve radii, any 

regression attempts would suffer from significant autocorrelation. 
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Although there is an abundance of literature to help conjecture at the plausibility of 

alignment indices as a measure of design consistency (Polus & Dagan, 1987; Krammes et 

al., 1995a; Fitzpatrick et al., 2000; Castro et al., 2005), there is a considerable lack of 

applied safety analysis. Therefore, there is great potential to expand on the results of 

Anderson et al. (1999) with further study into the relationship between alignment indices 

and roadway safety. 

 

 

2.4. Vehicle Stability 

 

Another important measure of design consistency is vehicle stability while 

traversing the roadway, particularly over horizontal curvature. If insufficient side friction 

is provided through the roadway alignment, vehicles may begin to skid and slide off the 

roadway or into opposing travel lanes. A lack of consistency in side friction may inhibit 

drivers’ ability to guide and control their vehicle in a safe manner, violating driver 

expectancy (Ng & Sayed, 2004). 

There have been several studies (McLean, 1974; Dunlap et al., 1978; Lamm et al, 

1991; Morrall & Talarico, 1994; Lamm et al., 1999) that have attempted to model vehicle 

stability using the disparities between supplied and demanded side friction. The most 

prolific, however, has been the Highway Design and Traffic Safety Engineering 

Handbook established by Lamm et al. (1999). Similar to the speed consistency criteria 

presented in Table 2-1, Lamm et al. developed a criterion for evaluating the consistency 

of side friction; this is shown in Table 2-6. 
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Table 2-6. Design consistency criterion for side friction (Lamm et al., 1999) 

Evaluation Criterion 

Good ∆fR > 0.01 

Fair 0.01 > ∆fR > -0.04 

Poor ∆fR < -0.04 

∆fR = fR - fRD 

 

Where ∆fR is the difference between the side friction assumed (fR) and the side 

friction demanded by the vehicle (fRD). It can be seen that as the demanded side friction 

exceeds that provided by the roadway alignment, the consistency rating and potentially 

safety of the roadway segment decreases.  To estimate the available side friction, Lamm 

et al. also developed an empirical equation based on the roadway’s design speed: 

 

                               
  

 
As previously mentioned, the design speed is a surrogate measure of geometric 

elements, including horizontal curve radii.  With regards to the side friction demanded by 

the vehicle, analysis of a simple free body diagram of a cornering vehicle will lead to the 

development of the following equation: 

 

     
   

 

    
   

 
Ng & Sayed (2004) applied this method for evaluating consistency to the five 

years of crash data and over 319 horizontal curves they obtained from the Ministry of 

Transportation of British Columbia. Using negative binomial regression, they were able 

to develop a meaningful relationship between crashes and ∆fR: 
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With all parameters statistically significant at the 95% level, this model helps 

verify the assumptions made about vehicle stability as an indicator of design consistency. 

The negative coefficient indicates a decrease in the number of expected crashes as the 

available side friction further exceeds the side friction demanded by the vehicle. 

Awatta & Hassan (2002) also applied the measures established by Lamm et al. to 

their artificial alignment and crash data. With the dependent variable (crash rates) already 

accounting for exposure, the model only includes ∆fR as an independent parameter. This 

relationship is shown below: 

 

              
                   

 
The coefficient of correlation for this model was 0.978. This abnormally high 

value of the variation in crash rates is most likely due to the small sample size and the use 

of predicted crash rates, rather than actual crash rates in the study. The strong positive 

coefficient of the squared term in the model validates previous conjectures about the 

relationship between safety and vehicle stability. As the side friction demanded by the 

vehicle begins to exceed the assumed side friction provided by the roadway, the crash 

rates will begin to increase significantly. This is best illustrated by Figure 2-3. 

 
 

 
Figure 2-3. Relationship between crash rates and ∆fR (Awatta & Hassan, 2002) 
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Despite the limited number of studies evaluating the direct relationship between 

vehicle stability as a design consistency measure and roadway safety, the current 

literature demonstrates that disparity between the assumed and demanded side friction 

values serves as a good indicator of inconsistences in the roadway alignment. It is 

intuitive that a sudden deficiency in available side friction would violate driver 

expectancy and should warrant further research. 

 

2.5. Driver Workload 

 

Save for the development of speed-profiles, one of the most heavily investigated 

design consistency measures has been driver workload. As a result of the extensive work 

on the topic, a multitude of definitions have arisen. Senders (1970) defines driver 

workload as a measure of the “effort expended by a human operator while performing a 

task, independently of the performance task itself.” While Messer (1980) relates driver 

workload to the time rate at which drivers must perform the driving task. Regardless of 

the specific phrasing used, however, driver workload has generally been attributed to two 

parameters: available sight distance and visual demand on the driver. Shorter sight 

distances restrict the visual information that drivers can perceive, requiring them to 

update their predictions more often (i.e., increasing their mental workload). This mental 

effort is exacerbated when drivers are less familiar with the roadway (Fitzpatrick et al., 

2000). As a driver becomes more experienced with a particular road, they may come to 

expect many of the complex features that would require higher concentration from less 

familiar drivers. This relationship, however, has not been subject to any quantitative 

efforts in the literature. Rather, a preponderance of the research efforts have been focused 
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on developing a relationship between visual demand and the geometric elements of the 

roadway. 

One of the primary means of modeling visual demand is the use of visual 

occlusion. In essence, test subjects are placed on a test track or in a simulator with a 

device that blocks a portion of their vision. Subjects are able to request a glimpse of the 

roadway using a switch or button, but they are instructed to only take enough glimpses to 

stay on the roadway. By measuring the amount of “glimpses” needed at each point in the 

roadway, researchers can determine which geometric elements require more visual 

demand from drivers. Krammes et al. (1995b) and Fitzpatrick et al. (2000) performed 

visual occlusion studies, where visual demand was defined as the percentage of time 

spent looking at the roadway (i.e., un-occluded). Both studies found that visual demand 

was highly related to the radius of horizontal curves. 

Messer (1980) and Messer et al. (1981) modeled visual demand by focusing on 

the roadway’s effect on driver performance. Typically, very little visual processing 

capacity is required to perform driving tasks; it has been regarded as almost a 

subconscious act (Fitzpatrick et al., 2000; Wooldridge et al., 2003). However, when 

complex alignments and terrains are introduced, more frequent driver visual evaluations 

are required, which may violate driver expectancy. Consistent roadway geometry allows 

the driver to accurately predict the roadway’s path with little cognitive effort, in turn, 

leaving much of the driver’s mental capacity to be devoted to obstacle avoidance or 

navigation (Wooldridge et al., 2003). Using this principle, Messer and Messer et al. 

collected empirical data regarding driver expectations of roadway features and relating 
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violations of those expectancies to driver workload. The result was a series of equations 

that relates visual demand to roadway geometry (i.e., horizontal curve radius): 

 

           
    

 
 

 

           
    

 
 

 

The first equation represents the visual demand for drivers that are unfamiliar 

with the roadway, while the second represents the visual demand of familiar drivers. It 

can be seen that the relationships developed are highly dependent on horizontal curve 

radii, similar to the results of the visual occlusion studies by Krammes et al. (1995b) and 

Fitzpatrick et al. (2000). Further validating these relationships, Easa & He (2006) 

developed nearly identical equations for visual demand in their research. 

As Hassan et al. (2001) notes, however, the dependence of visual demand 

estimation models on curve radii may unfairly bias low-speed roadways. The selection of 

radii is often dependent on the design speed of the roadway; therefore, low-speed roads 

may contain smaller radii, which raise the visual demand. Although, if similar roadway 

classifications are utilized in a study (as two-lane rural roadways are used almost 

exclusively in consistency studies), then variations in radii will be limited between 

roadways. 

Despite the extensive research in modeling driver workload, there are limited 

applications to evaluate its effect on roadway safety. Krammes & Glascock (1992) and 

Ng & Sayed (2004) both applied the methodology developed by Messer et al. to 

determine a relationship between crash frequency and visual demand. Using negative 

binomial regression with real world crash data, it was found that both models for 
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predicting visual demand are good indicators of crash experience on two-lane rural roads. 

The regression models developed by Ng & Sayed are shown below: 

 

                                                          
 

                                                          

 
The positive coefficients of both VDLU and VDLF indicate that as the expected 

visual demand placed on the driver by the roadway increases, so too does the expected 

crash frequency. This confirms the intuitive assumptions of many researchers. 

Awatta & Hassan (2002) also attempted to model workload as a measure of 

safety. However, by using an artificial alignment, they depended on using predicted 

crashes to develop crash rates. As previously mentioned, the predicted crash rates are 

directly related to horizontal curve radii by means of AMF equations. One also notices 

that the visual demand models used (those of Messer et al.) are highly dependent on 

curve radii. Therefore, it is no surprise when high coefficients of correlation (R
2
 = 0.977) 

are obtained between predicted crash rates and estimated visual demand. 

Nevertheless, most of the literature coincides in its assessment of driver workload 

as a design consistency measure to model roadway safety. Although many of the 

relationships developed to model visual demand are reliant on subjective measures, 

increasing the workload of the driver does not have a positive effect on safety. Driver 

workload certainly merits further investigation; however, it may be a surrogate measure 

for other alignment indices which may better reflect changes to geometric elements. 
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2.6. Perceived Radius 

 

One aspect that remains missing from many analyses on design consistency is the 

exploration of the combined effects of horizontal and vertical alignments on driver 

perception. Current practices commonly result in the development of horizontal and 

vertical alignments at separate stages of design; they are then combined with only cursory 

consideration of consistency. AASHTO design standards only suggest the avoidance of 

several combinations of horizontal and vertical curves, such as refraining from 

introducing sharp horizontal curvature at or near the top of a pronounced crest vertical 

curve (AASHTO, 2004). These standards do not take into account the effect of combined 

horizontal and vertical curvature on driver perception, notably when entering horizontal 

curves. Several studies (Hassan & Easa, 2003; Taiganidis & Kanellaidis, 1999; Lipar. 

1997; Smith & Lamm, 1994; Appelt, 2000) have illustrated that drivers may experience 

an optical illusion when approaching horizontal curves that are combined with vertical 

curves. As Lamm et al. (1999) illustrate in Figure 2-4, horizontal curves may appear 

sharper when overlain with a crest vertical curve and less sharp when overlain with a sag 

vertical curve. (Note the lines are equally spaced, but the curves are perceived as “more” 

or “less” sharp when combined with vertical curvature.) 
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Figure 2-4. Effect of vertical curvature on horizontal curve perception (Lamm et al., 1999) 

 

This optical illusion may have an important effect on a driver’s selection of speed 

when entering a horizontal curve, and thereby, may affect the safety of the curve. This is 

particularly true for horizontal curves overlain with sag vertical curves. As the third curve 

(c) in Figure 4 illustrates, the driver may underestimate the radius of combined sag and 

horizontal curves, causing the driver to select a speed higher than the actual curve may 

permit. Smith & Lamm validated this effect using crash rate statistics on several 

roadways, where it was also found that excessive speed was the most common cause of 

crashes on horizontal curves overlain with sag vertical curves.  

While many researchers have recognized the need for further investigation into 

the effects of combined horizontal and vertical curvature, most have avoided efforts to 

develop a quantitative relationship for the so-called “perceived” radii. It was not until a 

series of endeavoring papers by Bidulka et al. (2002) and Hassan et al. (2002) that a 

relationship was developed. 

In order to quantify the influence of vertical alignment on horizontal curve 

perception, Bidulka et al. and Hassan et al. created a three-dimensional model of 40 

horizontal curve segments with varying alignment parameters. These included numerous 
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radii (R), superelevation rates (e), differences in vertical grades (A), turning directions, 

rates of change in vertical curvature (K), sight distances, and different visual 

backgrounds. By placing each test curve next to three reference curves, as seen in Figure 

2-5, the researchers were able to test whether drivers could determine differences 

between actual radii and perceived radii. Of the three curves, one was constructed with 

the same radius as the test curve, and the other two were designed with either a 100 meter 

increase or decrease in radius. 

 

 
 

 
Figure 2-5. Test curve and three reference curves shown to study participants (Hassan et al., 2002) 

 

The researchers presented the still images (40 curves in all) to 90 study 

participants, asking them to select which of the three curves was most similar to the test 

curve presented on the left side of the screen. A Chi-Squared test showed that a 

significant difference (α = 5%) existed between the actual radius and the perceived. The 

analysis also verified the original hypothesis about the effect of sag and crest curves 

overlain with the horizontal curve. The mean perceived radius on crest vertical curves 

was markedly lower than the actual radius for all 20 sag curves, while the mean perceived 
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radius for sag curves was considerably higher than the actual radius. This would indicate 

that drivers may end up selecting a speed that is too great for the actual radius present 

when sag vertical curves are overlain with horizontal curvature. A t-test verified the 

statistically significant difference between the actual and perceived radii at the 95% 

confidence level. 

Hassan et al. also investigated the effect of the different alignment parameters, 

aforementioned, and several driver characteristics (driver population, gender, age, 

eyeglass use, education, experience, rural driving, and trip duration) on the perception of 

curve radii. Using one-way ANOVA tests, significant parameters included the actual 

radius used in testing, the type of overlapping curve (sag curves more pronounced), 

turning direction, and sight distance. The researchers were unable to find any effects at 

the 95% significance level in superelevation rates, rates of vertical curvature, algebraic 

differences in grade, and each of the driver characteristics. In order to quantify the 

relationship between actual and perceived radii, linear regression was conducted using 

the significant alignment parameters. Several models evidenced that the use of turning 

direction and sight distance did not increase the coefficient of correlation. The final 

model is shown below: 

 

                                    

 

Where:  

Rp = the perceived radius,  

Ra = the actual radius, and  

V is a dummy variable for vertical curvature (0 for crest curves; 1 for sag curves).  
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The high R
2
-value of 0.996 can mainly be attributed to the small sample size 

utilized. Although additional studies are warranted, the relationship developed by Bidulka 

et al. and Hassan et al. represents a substantial step towards quantifiably linking the 

effects of combined horizontal and vertical alignments; thereby providing a more suitable 

means for evaluating design consistency of collective geometric parameters. 

Richl & Sayed (2005) attempted to measure the effects of using actual versus 

perceived radii on design consistency. Using the model developed for estimating 

perceived radius by Hassan et al., they constructed a table identical to Table 2-3. The use 

of perceived radius had an evident effect on calculated operating speeds, which in turn, 

changed the number of horizontal curve segments that received a “good” rating under 

Criteria I and II. Richl & Sayed found that the use of perceived radii resulted in a higher 

disparity between operating speeds on their alignment, causing markedly more design 

inconsistencies to be identified. Although they did not measure the effects of using 

perceived versus actual radii on crash frequencies, their study evidences the potential for 

using perceived radii as a more effective measure of design consistency. 

With the noticeable absence of studies that use perceived radii or any other 

measure that quantifies the relationship between horizontal and vertical curvature, there is 

a definite need to analyze the effects of such design consistency measures on roadway 

safety. Given the findings of this literature review, perhaps the best means to account for 

these measures would be through the use of alignment indices and other direct measures 

where actual radii are replaced with perceived radii. Alignment indices could also be 

developed to measure the differences between actual and perceived radii (e.g., the 

maximum difference between Rp and Ra). The use of such parameters would make a 
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significant contribution to the literature; although, it would only serve as a preliminary 

study in a widely vacant corner of the literature. 

 

2.7. Summary 

 Although safety professionals and practitioners have long acknowledged the need 

to develop consistent roadway designs, a putative definition of design consistency has yet 

to be established. The resulting eclectic nature of design consistency has led researchers 

to investigate a wide range of potential measures of consistency. Although measures, 

such as differences in speeds on successive elements, vehicle stability, and driver 

workload have been shown to effectively predict crash frequency, they act as surrogate 

measures of the true geometric inconsistencies in the roadway. Some of the more neoteric 

measures of consistency, such as alignment indices and perceived radius, hold more 

potential for evaluating the effects of design consistency on crash frequency since they 

directly measure changes to the geometric alignment. As a result, there is significant 

room to expand on these concepts, and they are thusly included in this investigation. 
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Chapter 3.  METHODOLOGY 

 

3.1. Development of Safety Performance Functions 

To evaluate the relationship between roadway safety and the consistency of 

geometric elements, regression models were developed to test the significance between 

crash frequency and the geometric parameters provided in the dataset. By forming 

roadway segments and utilizing multiple years of crash data, these relationships represent 

safety performance functions (SPFs) for the roadway classification(s) used in the study. 

The Highway Safety Manual (HSM) offers methods to calibrate generic SPFs to a 

particular location; however, given the extensive data set obtained, the development of 

jurisdiction-specific (Washington) safety performance functions may lead to a more 

effective method for modeling the subject at hand. Jovanis & Chang (1986) and Shankar 

et al. (1995) established the appropriateness of using count regression methods to model 

crash frequency; and hence, these methods have become a standard technique for the 

creation of most safety performance functions. Count regression was, therefore, 

investigated in this study. Given the typically overdispersed nature of crash data, negative 

binomial models may be the most appropriate distribution, as Poisson distributions 

constrain the mean and variance to be equal. Both count distributions are investigated; 

however, the overdispersion parameters in the preliminary models indicate that the crash 

frequency data are indeed overdispersed. 

Since the crash data also contains observations from the same segments over 

multiple years, it is important to account for the heterogeneity of each individual 

segment. One method to account for this would be to develop cross-sectional time-series 

or longitudinal data (i.e., panel data). Panel data groups individual observations from the 
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same location across time, which helps correct for the omitted time series variables that 

influence the behavior at each location (Kennedy, 2011). It also alleviates 

multicollinearity problems by combining variation across locations over time. This 

ultimately leads to more efficient estimation (Kennedy, 2011). 

When modeling time-variant variables, it is also important to consider the use of 

the random effects model. Random effects models are able to provide more efficient 

estimates of coefficients over fixed effects by reducing the degrees of freedom. 

Therefore, as long as the explanatory variables are not correlated with the composite 

error, the random effects models provide for a more accurate estimation of time-variant 

parameters (Kennedy, 2011). However, it is important to note that when using the 

random effects negative binomial model, the overdispersion parameter varies randomly 

from group to group, such that the inverse of one plus the dispersion follows a Beta(r, s) 

distribution (Stata, 2013): 

 
 

     
          

 

Where:  

δi = the dispersion parameter, and  

r and s = parameters for beta distributed random effect.  

 

In other words, each segment of roadway would experience a different α-value; 

this drastically increases the complexity of calculations necessary to generate a weighting 

factor for the Empirical Bayes adjustments (which is addressed subsequently). This 

precipitously-augmented statistical complexity is best evidenced by the joint probability 
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for the counts of group i under a random effects negative binomial distribution, which is 

specified as (Stata, 2013): 
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Where:  

yit = the outcome for road segment i at time t,  

xit = the vector of variables x for individual i at time t, and  

f is the probability density function for δi.  

 

Therefore, it would be prudent to investigate a method of regression that 

maintains the improved estimation of time-variant parameters achieved with random 

effects negative binomial modeling, but still allows for a reasonably direct manner, by 

which, to calculate an overdispersion parameter. One option would be to use a random 

effects Poisson distribution to model crash frequency, as established in Shin & 

Washington (2013). Shin & Washington (2013) and Wood (2013) demonstrate that a 

random effects Poisson model can provide nearly the same level of estimation efficiency 

as a random effects negative binomial model, as both types of count regression account 

for variance in parameters over time. However, the procedure for estimating an 

overdispersion parameter that can be used in EB adjustments is rather statistically 

involved. That is not to say the procedure is infeasible, but one of the primary goals of 

this research is to recommend a practical methodology for including geometric design 

consistency parameters in real-world safety evaluations. If the procedure for doing so 
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becomes so complex statistically, it may face significant opposition from practitioners 

and be relegated only to the realm of research. 

As a result, the most efficient method for developing a relationship between crash 

frequency and geometric roadway parameters would be through mixed effects negative 

binomial regression. Mixed effects negative binomial regression, in essence, combines 

both fixed effects and random effects into negative binomial regression. Although the 

overdispersion parameter of mixed effects NB regression is conditional upon the variance 

component corresponding to the random intercept (σ
2
), it inherently maintains the 

benefits of random effects modeling. In order to establish an overdispersion parameter 

that can be directly utilized in EB adjustments, a simple calculation can be made using 

the output of the statistical model. This equation can easily be derived by observing the 

disparity between the variance functions of the standard and mixed effects negative 

binomial models: 

 

Standard NB Regression:                       
  

 

M.E. NB Regression:                                     
  

 

Where:  

μit is the predicted outcome (i.e., the predicted crash frequency for individual i at 

time t).  

 

It can be seen that the only difference between these two variance functions is the 

scaling factor of the squared predictor. Therefore, the following conversion equation can 

be established to calculate an overdispersion parameter (α’) based on the conditional 
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overdispersion parameter (α) generated from the mixed effects negative binomial 

regression: 

 

        
         

 

Note: This α’ can be used directly in the calculations of a weighting factor for Empirical 

Bayes adjustments.  

 

Using mixed effects negative binomial regression, three safety performance 

functions were developed. The first contained typical roadway parameters (e.g., roadway 

width, shoulder width) that may be found in SPFs developed using the methods 

established in the HSM. The second contained geometric design consistency parameters 

(e.g., changes to intra-segmental horizontal curve radii and the number of changes in 

vertical grade within a segment), while the third combined parameters from the 

aforementioned models. By evaluating the disparity between the sites with potential 

(SWiPs) for safety improvements between the SPFs, an assessment can be made about 

the value of directly incorporating geometric design consistency parameters in safety 

performance evaluations. 

 

3.2. Empirical Bayes Adjustments 

Before the sites with promise for safety improvement can be identified, however, 

Empirical Bayes adjustments must be performed on the data. As explained by Hauer et al. 

(2002), these adjustments increase the precision of estimates beyond a potentially limited 

number of years of data and help account for regression-to-mean bias. These adjustments 

are critical when accident history is related to the reason behind conducting a safety 
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analysis (Hauer et al., 2002). Although the use of Empirical Bayes adjustments have 

become commonplace in the safety arena due to inclusion in safety management tools, 

such as the Interactive Highway Safety Design Model (IHSDM), it is still important to 

understand the connection between the output of the mixed effects negative binomial 

models (i.e., the SPFs) and the adjusted crash frequency. Figure 3-1 illustrates the overall 

concept of the EB adjustments. 

 
  

 
Figure 3-1. Potential for safety improvement after Empirical Bayes adjustments (FHWA, 2014). 

 

In order to get the “corrected” (‘adjusted’ may be a more suitable term) number of 

crashes at a particular location (the diamond in Figure 3-1), a weighting factor must be 

used to help balance the influence of the predicted crash frequency from the SPF and the 

number of years contained in the data set. This weighting factor is defined as (Hauer et 

al., 2002): 

 

        
 

           
 

 

 Where: 

 μ = the number of crashes predicted for location i by the SPF, 

 Y = the number of years of crash data for location i utilized in the SPF, and 
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α = the overdispersion parameter from the SPF (α’ from the equation derived 

above).  

 

Since the dataset obtained is unbalanced (i.e., not every roadway segment 

contains data for the full five years), the weight factor cannot be universally scaled 

against the overdispersion parameter and μ. For example, a segment where only two 

years of crash data were obtained would experience an adjustment more heavily weighted 

on the crash frequency predicted by the SPF, when compared to a similar segment with 

five years of data. The adjusted number of crashes can be calculated using the weighting 

factor in the following manner (Hauer et al., 2002): 

 

                                   
                                                      
                         

 

 

3.3. Identification of Sites with Potential for Safety Improvements 

After a unique EB adjustment is performed on each roadway segment (a different 

adjustment is made for each SPF), the next step in the analysis is to identify the sites with 

promise (SWiPs) for safety improvements using both the general roadway SPF and SPF 

with additional design consistency parameters. However, as Hauer (1996) points out, 

there are a multitude of methodologies for identifying sites with promise for safety 

improvements, and each one may identify a unique set of sites. For instance, the use of 

observed crash frequencies will most likely identify the most heavily traveled roads as 

SWiPs, as increasing exposure generally results in higher expected crash frequencies. 

Meanwhile, the use of crash rates as an identifying factor will indicate sites of high risk 
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to particular road users, particularly those on roads with low exposure rates. The criteria 

used to identify unsafe sites are highly dependent on the motive for the individual study. 

If practitioners are focused on achieving economic efficiency, the use of observed crash 

frequencies (F) or the largest jump in frequency may provide for the most effective use of 

funds. To achieve fairness to all users, the use of crash rates (R) or the scaled difference 

in crash rates (∆R/σR) would identify sites that expose users to an unacceptable level of 

risk (Hauer, 1996). Given the motivation for this study, however, it would be appropriate 

to utilize an identifying factor that recognizes sites that are deficient due to their initial 

geometric design. Therefore, sites are identified using the scaled difference between 

expected and observed crash frequencies (∆F/σF); this allows for the comparison of 

SWiPs identified by each model (i.e., those identified by general parameter model vs. 

design consistency model). 
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Chapter 4.  DATA ACQUISITION AND PREPARATION 

 

4.1. Database Acquisition 

 
In order to conduct this research, roadway and crash data were acquired from the 

Highway Safety Information System (HSIS), which is maintained by the University of 

North Carolina Highway Safety Research Center (HSRC) through contracts with the 

Federal Highway Administration. The HSRC has made the data readily available for 

research purposes. While HSIS collects and maintains data from nine different states in 

the U.S., only Washington State and Illinois contain the necessary information regarding 

crashes, roadway inventory, and horizontal/vertical alignment to conduct the analyses 

described in the preceding section. When comparing the roadways within these two 

states, the diversity of Washington’s topography and spatial interactions may provide for 

greater variability in road design compared to the relatively uniform landscape of Illinois. 

For this reason, five years (2006-2010) of the most recent HSIS data from Washington 

State were selected to conduct analyses. 

Within each individual year of the dataset, there is a plethora of pertinent 

information. The roadway inventory documents important roadway elements, including: 

Annual Average Daily Traffic (AADT), roadway and lane widths, median type, shoulder 

width and type, roadway lighting information, terrain, and roadway classification. A 

separate file contains horizontal curve information with curve radii, curve angles, and 

degree of curvature. Similarly, another file contains the vertical alignment information 

with direction and percentage of grade for each roadway in the inventory. Perhaps the 

most important data, however, is contained in the HSIS accident files. Each year contains 

accident locations to the nearest 1/100
th

 of a mile, the type of accident (e.g., run off the 
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road), the severity, the number of vehicles involved, and the apparent contributing 

factors. 

 
4.2. Preparation of Fixed-Length Segments 

 

Given the disjointed nature of the data files obtained through HSIS, a significant 

amount of work was done to prepare the data for analysis. In its original state, the 

database contained four separate data files, including: the roadway inventory, horizontal 

alignment, vertical alignment, and the accident files. To conduct the proposed safety 

analysis using safety performance functions, the data were integrated into a single file of 

roadway segments. Many previous studies regarding design consistency have utilized 

homogeneous segments in their regression analysis (Anderson et al., 2012; Richl & 

Sayed, 2005; and Ng, 2004). Since this method calls for segments to be generated with 

homogeneous geometric elements (Miaou et al., 1991), researchers have been left with 

segments of varied length. These unequal segment lengths can lead to greater 

heteroskedacity problems and a loss of estimation efficiency when conducting regression 

analysis (Shankar et al., 1995). For this reason, fixed-length segments of 2.5 miles were 

utilized for this research. Although 2.5 miles may seem arbitrary, it was selected to allow 

for sizeable variance of geometric elements within each segment. The primary goal of 

this research was to establish the relationship between safety and design consistency. If 

segment lengths are designed short enough to only contain minute changes in geometric 

characteristics, it may prove extremely difficult to capture the inconsistencies within the 

intra-segmental design. However, the procedure for segment creation utilized in this 

research would allow for different segment lengths to be generated with relative ease, 
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including the 1-mile segment that has pragmatically been used in traditional safety 

analysis. This procedure is described subsequently. 

Comprised of over 7,200 miles of Washington State roadways, the database 

contains a substantial amount of data in its raw form. In order to create a more focused 

analysis, only two-lane rural roadways were utilized in this study. This eliminates many 

of the more uniformly-designed roadways, such as urban freeways, which may contain 

limited design variation between adjacent segments. Although utilizing only two-lane 

rural roadways limits the scope of the research, it still leaves over 4,900 miles (per year) 

of roadway for analysis. After careful scrutiny and examination of the remaining data, 

several sections of roadway were further eliminated due to erroneous or missing data 

points, such as a negative curve length or missing grade information. Due to the high 

quality of data collection demanded by the HRSC for its HSIS database, these instances 

were limited, and approximately 4,800 miles of two-lane rural roadways remain for final 

analysis. 

To combine the four data files into a single dataset comprised of 2.5-mile 

segments, a computer program was developed using Visual Basic for Applications 

(VBA). Several different macros were written to gather information from each file on a 

line-by-line basis to calculate the proper roadway measurements and design consistency 

measures. Careful attention was paid to ensure that accurate statistics are produced when 

generating roadway segments; in particular, certain attention must be given to horizontal 

curvature that overlaps two adjacent segments. To account for this, a criterion has been 

established to exclude the double counting of any horizontal curves and to place the curve 

in the segment in which the Point of Intersection (PI) occurs.  
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For example, if a segment contained multiple horizontal curves, the average 

weighted (by curve length) radius, the average un-weighted radius, the maximum and 

minimum radii, the average change in radius, and the maximum change in radius would 

be calculated. These same measures would also be calculated using the perceived radius, 

as established in Bidulka et al. (2002) and Hassan et al. (2005). Altogether, over eighty 

statistics were calculated for each segment. This allowed for a comprehensive analysis of 

the relationship between safety and both traditional and design consistency parameters. A 

summary of the most important segment statistics is shown in Table 4-1; it is important to 

note that these values are calculated using all segments. 

 
Table 4-1. Summary statistics of 2.5 mile segments 

Variable 

Average 

Value Maximum Minimum Std. Dev. 

# of Horizontal Curves 5.7621 46 0 5.426 

Average Radius (ft.) 2723.0380 50000 0 3212.347 

Average Change in Radius (ft.) 1367.1587 32470 0 2281.233 

Average Perceived Radius (ft.) 2736.3786 51990.415 0 3231.520 

Average Change in Perceived Radius (ft.) 1393.9941 35009.474 0 2298.438 

Average Curve Angle (ft.) 2292.4335 16603.7 0 1546.109 

Max Change in Curve Angle (ft.) 4382.1055 21807.2 0 3334.501 

# of Intersections 3.4585 48 0 3.887 

AADT 2976.3388 25505 16 3089.083 

Left Shoulder Width (ft.) 4.5750 10 0 2.279 

# of Left Shoulder Changes 2.0660 29 0 2.558 

Average Lane Width (ft.) 11.5660 19.23 8.014 0.899 

Average Grade (%) 1.7965 8.64 0 1.198 

Average Change in Grade (%) 1.9316 11.50 0 1.245 

# of Grade Changes 12.9298 90 0 9.275 

# of Accidents 3.1921 61 0 4.324 

 
To develop panel data out of the HSIS dataset, segment indicators were developed 

for each 2.5-mile segment created. In Table 5-1, it can be seen that this resulted in the 

creation of 2,183 groups (i.e., groups of segments). The maximum number of 
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observations per group is five, intuitively, since there are only five years of data. The 

average number of observations per group is 4.1, which is indicative of unbalanced data. 

This comes as a result of missing roadway data for one or more years. 
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Chapter 5.  RESULTS 

 
5.1. Safety Performance Functions 

By utilizing all 8,969 segments developed with 5 years of data, the mixed effects 

negative binomial relationships developed represent safety performance functions for 

two-lane rural roadways in the state of Washington. Three models are presented in this 

report. The first is the typical parameters model (shown in Table 5-1), which contains 

many parameters that would be utilized in an SPF developed using current methods in the 

HSM. As aforementioned, over 80 statistics were tabulated for each segment. Although 

these consisted of roughly a 60/40 split of typical vs. design consistency parameters, 

extensive efforts were placed on testing combinations of typical roadway parameters 

within the safety performance function developed in Table 5-1. All ~80 segmental 

statistics can be found in Appendix Table A-1.  

Parameters were tested in an iterative manner, as their statistical insignificance in 

one model did not preclude their inclusion in a subsequent iteration. The significance of 

each variable was tested “alone” (i.e., only with exposure parameters) in a regression 

model. If a parameter demonstrated reasonably significant (~80% significance) predictive 

power alone, it was again tested in a combined model (i.e., more than one predictor 

beyond exposure parameters). Parameters that were found to be significant by 

themselves, but that did not provide any predictive power when used in combination, 

were not immediately thrown out. The iterative process led to constant updating of the 

variables that were included in the SPF, and parameters that were not significant in one 

model may hold a great deal of predictive power in another. Ultimately, roughly 50 

combined models were produced to generate the SPF in Table 5-1 (not including the 
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testing of individual parameters); the independent variables selected for this model were 

determined to provide the strongest explanation of crash frequency within a segment 

when used in combination. These parameters include averages of many geometric 

elements for each segment. Typically, segment length is also included as an exposure 

parameter; however, all segments are a uniform 2.5 mile length. 

 
Table 5-1. Safety performance function with typical roadway parameters 

 
# of Observations 8,969 

  
 

# of Groups 2,183 

  

Observations per group 

Min: 1 

  Average: 4.1 

  Max: 5 

  
 

Initial Log-L -18,119.1 

  
 

Final Log-L -16,501.4 

  Parameter Coefficient Std. Error z P>|z| 

ln(AADT) 0.9627391 0.0162774 59.15 <0.001 

# of intersections 0.0268844 0.0034275 7.84 <0.001 

Avg. Radius (un-weighted) -0.0000163 4.18E-06 -3.89 <0.001 

Avg. Curve Angle 0.0000335 8.73E-06 3.84 <0.001 

Avg. Left Shoulder Width -0.0488078 0.0063489 -7.69 <0.001 

Avg. Lane Width -0.0595456 0.0157426 -3.78 <0.001 

Average Grade 0.0264751 0.0110543 2.40 0.017 

Constant -3.921031 0.2074754 -28.28 <0.001 

ln(α) -3.352199 0.1506368 -22.25 <0.001 

panelID: var(constant) 0.1762309 0.0097513 

  Likelihood-ratio test vs. negative binomial regression: chibar2(01) = 1031.00,  

Prob> chibar2 < 0.001 

 

 

Where:  

ln(AADT) = the natural logarithm of the Annual Average Daily Traffic of the 

segment, 

ln(α) = the natural logarithm of the conditional overdispersion parameter, and 

var(constant) = the variance component of the random intercept. 
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The likelihood-ratio test compares the use of mixed effects negative binomial 

regression over standard negative binomial regression; the chi-bar squared statistic shows 

that there is enough variability to validate the use of mixed effects negative binomial 

regression over standard negative binomial regression. As expected, both exposure 

parameters are significant at the 99% level. If the natural logarithm of AADT was not an 

effective predictor of crash frequency, it may indicate an error in the dataset or an 

anomaly in the data; as intuitively, increasing traffic should lead to a higher number of 

expected crashes. The coefficients of the typical roadway parameters also correspond 

with a priori expectations. As horizontal curve radii, left shoulder widths, and lane widths 

increase within a segment, it would be expected that crash frequency would decrease. 

Furthermore, it is intuitive that as grades increase within a segment that roadway safety 

would suffer. The correlation table for this model is shown in Table 5-2. 

 
Table 5-2. Correlation matrix for parameters in the typical parameter SPF 

 
ln(AADT) # int. 

Avg. 

Radius 

Avg. 

C.A. 

Avg. Left 

S.W. 

Avg. 

L.W. 

Avg. 

Grade 

ln(AADT) 1.00 
      

# of intersections 0.29 1.00 
     

Avg. Radius (un-weighted) 0.09 -0.06 1.00 
    

Avg. Curve Angle -0.14 0.08 -0.20 1.00 
   

Avg. Left Shoulder Width 0.37 0.01 0.18 -0.29 1.00 
  

Avg. Lane Width 0.29 0.41 0.09 -0.11 0.24 1.00 
 

Average Grade -0.18 -0.11 -0.13 0.21 -0.19 -0.10 1.00 

 
There is noticeable correlation between the average lane width of a segment and 

the number of intersections within a segment; this comes as a result of the widening of 

the roadway at many intersections. Despite this high correlation between explanatory 

parameters, both variables were left in the model because it was determined that each 
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would provide valuable insights to portions of segments where they do not overlap (e.g., 

large lane widths at non-intersections). 

The next model establishes a safety performance function utilizing geometric 

design consistency parameters. These parameters include averages of many geometric 

elements for each segment; the primary purpose of this model is to determine which 

geometric design consistency parameters are the best candidates for addition into the 

combined model (Table 5-5), which includes both typical and geometric design 

consistency parameters. The geometric design consistency parameter model is shown in 

Table 5-3. 

 
Table 5-3. Safety performance model with geometric design consistency parameters 

 
# of Observations 8,969 

  
 

# of Groups 2,183 

  

Observations per group 

Min: 1 

  Average: 4.1 

  Max: 5 

  
 

Initial Log-L -18,211.6 

  
 

Final Log-L -16,498.0 

  Parameter Coefficient Std. Error z P>|z| 

ln(AADT) 0.908171 0.0149916 60.58 <0.001 

# of intersections 0.0202198 0.0031904 6.34 <0.001 

# of Horizontal Curves 0.0092413 0.0032352 2.86 0.004 

Max Change in Radius -9.01E-06 3.26E-06 -2.77 0.006 

Max Change in Curve Angle 0.0000208 5.95E-06 3.49 <0.001 
Avg. Change in Degree of 

Curvature 
0.0144231 0.0037762 3.82 <0.001 

# of Changes in Left 

Shoulder Width 
0.0087365 0.0049757 1.76 0.079 

# of Grade Changes 0.0057835 0.001439 4.02 <0.001 

Constant -6.484452 0.1192542 -54.38 <0.001 

ln(α) -3.346905 0.1493171 -22.41 <0.001 

panelID: var(constant) 0.1804132 0.0097767 

  Likelihood-ratio test vs. negative binomial regression: chibar2(01) = 1109.02,  

Prob> chibar2 < 0.001 
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Most of the coefficient directions coincide with a priori hypotheses, as the 

increase in the number or magnitude of changes to a particular element would violate 

driver expectancy, thereby increasing the expected number of crashes. The only 

coefficient that is counter-intuitive is the sign of the maximum change in radius 

parameter. The small magnitude of this coefficient (10
-6

), however, has marginal effects 

on the expected number of crashes.  

It is important to note that variables utilizing the perceived horizontal curve 

radius, rather than actual curve radius, were also tested in the regression models. Those 

tested included: average perceived radius, maximum perceived radius, minimum 

perceived radius, maximum change to perceived radius, ratio of maximum to minimum 

perceived radius, maximum perceived CRR, as well as other alignment index measures. 

The full list can be seen in Table A-1. However, it was determined that the use of 

perceived radii over actual radii added no additional explanatory benefits. In some cases, 

the perceived radii parameters offered coefficients that were smaller in magnitude and 

were less significant than their comparable “standard” radii counterparts (e.g., the use of 

maximum change in radius was consistently more significant than maximum change in 

perceived radius). That is not to say that the concept of perceived radius is not a 

significant predictor of crash frequency; it warrants significant research for use in 

individual safety studies. In its preliminary state, however, it would not be prudent to 

recommend that practitioners spend resources on estimating perceived radii when it 

appears to offer little benefit in large-scale safety analysis. Perhaps the development of 

more accurate or alternative methods for estimated perceived radius will offer more 

opportunities for inclusion in safety prediction models. 
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Numerous alignment indices were also tested, but again, crash frequency has 

proven to be better estimated by the more “straightforward” geometric design consistency 

parameters shown in the safety performance function above. It was rather interesting that 

measures, such as the CRR developed by Fitzpatrick et al. (2000), were not significant 

when combined with measures beyond the exposure parameters. In order words, 

alignment indices were found to be significant when modeled against crash frequency by 

themselves; however, their explanatory power was quickly drained when additional 

parameters were introduced into the model. Therefore, the more versatile geometric 

design consistency parameters were included in the final model, and they were among the 

first added to the combined parameter model. 

The likelihood-ratio test, again, validates the use of mixed effects negative 

binomial regression over the standard negative binomial regression. The correlation 

matrix for the variables included in this model is shown in Table 5-4. 

 
Table 5-4. Correlation matrix for parameters in the geometric design consistency parameter SPF 

  

ln(AA

DT) 
# int. 

# 

H.C. 

Max 

∆ R 

Max ∆ 

C.A.  

Avg. ∆ 

D.C. 

# ∆ 

L.S. 

# 

Grade 

∆ 

ln(AADT) 1.00               

# of intersections 0.29 1.00             

# of Horizontal Curves -0.11 -0.04 1.00           

Max Change in Radius 0.03 0.02 0.18 1.00         

Max Change in Curve Angle -0.12 0.01 0.42 0.17 1.00       
Avg. Change in Degree of 

Curvature 
-0.11 0.14 0.51 0.11 0.51 1.00     

# of Changes in Left 

Shoulder Width 
0.18 0.39 0.08 0.03 0.09 0.18 1.00   

# of Grade Changes 0.02 0.15 0.32 0.04 0.20 0.26 0.18 1.00 

 

 

There is a noticeable correlation between the maximum change in curve angle 

within a segment and the average change in the degree of curvature within a segment. 
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This high correlation most likely results from the relationship between curve angle and 

degree of curvature in basic horizontal curve equations. However, both variables are 

highly significant (99% level) in the model developed and add meaningful insights into 

effects of changes to these geometric parameters in the design of a roadway. 

The final model developed establishes a safety performance function using a 

combination of several typical roadway and geometric design consistency measures as 

independent parameters. This is shown in Table 5-5. 

 

Table 5-5. Safety performance model with combination of parameters 

 
# of Observations 8,969 

  
 

# of Groups 2,183 

  

Observations per group 

Min: 1 

  Average: 4.1 

  Max: 5 

  
 

Initial Log-L -18,179.4 

  
 

Final Log-L -16,470.4 

  Parameter Coefficient Std. Error z P>|z| 

ln(AADT) 0.9555412 0.0162278 58.88 <0.001 

# of intersections 0.0159068 0.0031686 5.02 <0.001 

# of Horizontal Curves 0.0038799 0.0032158 1.21 0.228 

Avg. Radius (un-weighted) -0.0000132 4.14E-06 -3.18 <0.001 

Max. Change in Curve Angle 0.0000182 5.82E-06 3.13 0.002 

Avg. Degree of Curvature 0.005336 0.0025353 2.10 0.035 

Avg. Change in Degree of 

Curvature 
0.0074592 0.0042775 1.74 0.081 

Avg. Left Shoulder Width -0.418261 0.0065761 -6.36 <0.001 

Max. Change in Left 

Shoulder Width 
0.0075586 0.0035266 2.14 0.032 

# of Grade Changes 0.004269 0.001417 3.01 0.003 

Constant -6.573308 0.1196526 -55.22 <0.001 

ln(α) -3.343782 0.1496526 -22.34 <0.001 

panelID: var(constant) 0.1686945 0.0094311 

  Likelihood-ratio test vs. negative binomial regression: chibar2(01) = 986.10,  

Prob> chibar2  < 0.001 
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The only new parameter (i.e., not included in one of the previous two models) is 

the average degree of curvature. This variable was not found to be significant even at 

moderate levels when incorporated into the previous two models; however, the iterative 

nature of the model development allowed for its testing in this final model, ultimately 

leading to the identification of its significance at the 95% level. The positive coefficient 

of this parameter is innate, as larger degrees of curvature for horizontal curves within a 

segment would create a more hazardous turning radius for drivers to negotiate. This 

would in turn increase the likelihood of a crash. The other independent parameters 

included in the combined model maintain the same sign of their coefficient as in the 

previous models; however, the significance of several parameters is decreased. This is 

evidenced by the decrease in coefficient size and z-statistic of average curve radius (un-

weighted) and average left shoulder with, which may experience a draining of 

explanatory power from the inclusion of the geometric design consistency parameters. 

To explore which parameters may be affecting one another, a correlation matrix is 

provided for the final combination model in Table 5-6. For the sake of brevity, the 

exposure parameters were left out of this correlation matrix; the correlations between 

these two parameters and the other explanatory variables can be found in Tables 5-2 and 

5-4. 
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Table 5-6. Correlation matrix for combination SPF 

  
# 

H.C. 

Avg. 

Radius 
Max ∆ 
C.A. 

Avg. 

D.C. 

Avg. ∆ 

D.C.  

Avg. 

L.S. 

Max ∆ 

L.S. 

# Grade 

∆ 

# of Horizontal Curves 1.00               

Avg. Radius (un-weighted) -0.19 1.00             

Max. Change in Curve Angle 0.42 -0.18 1.00           

Avg. Degree of Curvature 0.52 -0.25 0.46 1.00         
Avg. Change in Degree of 

Curvature 
0.51 -0.18 0.51 0.60 1.00       

Avg. Left Shoulder Width -0.29 0.21 -0.23 -0.25 -0.24 1.00     
Max. Change in Left 

Shoulder Width 
0.06 -0.02 0.08 0.03 0.09 -0.21 1.00   

# of Grade Changes 0.32 -0.14 0.20 0.20 0.26 -0.21 0.08 1.00 

 
The correlation between average degree of curvature and the average change in 

degree of curvature is high, intuitively. The inclusion of the average degree of curvature 

may explain the drop in level of significance of the average change in degree of curvature 

from 3.82 to 1.74; however, the other typical roadway parameters may also be drawing 

from its significance as a predictor. The high correlation between average degree of 

curvature and number of horizontal curves is also interesting, although, not unexpected. 

By incorporating the number of horizontal curves in a segment into the safety 

performance function, many of the typical roadway parameters experienced a decreased 

power to predict crash frequency. However, the inclusion of average degree of curvature 

and the number of horizontal curves create a more complete model; one where designers 

and safety practitioners can perceive the effects of geometric design consistency in a 

more efficacious manner. 

With the safety performance functions established, the predicted number of 

crashes can be calculated for each segment. This process is completed twice (once for the 

typical SPF and once for the SPF with additional geometric design consistency 
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parameters). An example calculation for a segment along State Route 002 in 2006 is 

shown below. The statistics for this segment of roadway in 2006 are shown in Table 5-7. 

  

Table 5-7. Parameter values for SR 002, Segment 1 in 2006 

Begin 

MP 

End 

MP SR AADT 

# of 

intersections 

Avg. 

Radius 

(un-

weighted) 

[ft] 

Avg. 

Curve 

Angle [ft] 

Avg. Left 

Shoulder 

Width [ft] 

Avg. 

Lane 

Width 

[ft] 

Avg. Grade 

(%) 

8.65 11.15 002 24850 5 3398.75 1414.75 8 12 1.17778 

      

# 

horizontal 

curves 

Max. ∆ in 

Curve 

Angle [ft] 

Avg. 

Degree of 

Curvature 

Avg. ∆ in 

Degree of 

Curvature 

Max. ∆  

in Left 

Shoulder 

Width [ft] 

# Grade 

Changes 

Actual 

Accident 

Frequency 

(5 years) 

      4 1522.8 1.9425 1.33333 0 8 10.2 

 

 

 

 

Crash Frequency using Typical Roadway Parameter SPF 

 

               
                                                                                                               
 

                                                                                            
 

                 

 

 

 

Crash Frequency using SPF w/ Additional Geometric Design Consistency Parameters 
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5.2. Empirical Bayes Adjustments 

With the number of predicted crashes from each SPF for 2006 generated, the 

Empirical Bayes adjustments are performed utilizing the conditional overdispersion 

parameter and variance component of the random intercept from the mixed effects 

negative binomial model output, shown in Tables 5-4 and 5-6. The first step in this 

process is to calculate the overdispersion parameter for use in the weighting equation, as 

explained in the methodology section of this report. 

 

Overdispersion Parameter of Typical Roadway Parameter SPF 

 

   {   
       }                                      

 

 

Overdispersion Parameter of SPF w/ Additional Geometric Design Consistency 

Parameters 

 

                                        
 

It is important to note that a different weight is achieved for each safety 

performance function. This weight is calculated for each SPF based on the five years of 

data available for this particular segment (SR 002, Segment 1), as described by Hauer 

(2001): 

Weight for Typical Roadway Parameter SPF 

 

        
 

           
  

 

                    
          

 

 

 

 

Weight for SPF w/ Additional Geometric Design Consistency Parameters 
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With this weight, the Empirical-Bayes-adjusted number of crashes can be 

determined, as shown by the diamond in Figure 3-1. The average crash frequencies 

predicted by the typical SPF and Combined SPF are 18.5650 and 17.9320 crashes per 

year, respectively, on State Route 002, Segment 1. 

 

 

Expected # of Crashes using Typical Roadway Parameter SPF 

 

                                          
                                       
                         

 

 

Expected # of Crashes using SPF w/ Additional Geometric Design Consistency 

Parameters 

 

                                          
                                       
                         

 

Since this segment of roadway contained all five years of data, the adjusted 

number of expected crashes (10.213 and 10.212) do not differ significantly from the 

actual crash frequency (10.2).  

 

5.3. Ranking of Sites with Potential 

One final step is necessary to prepare this segment for ranking of SWiPs; the 

scaled differences in crash frequency (∆F/σ) must be calculated for both SPFs. This 

process is shown below: 

 

Scaled Difference in Frequency for Typical Roadway Parameter SPF 
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Scaled Difference in Frequency for SPF w/ Additional Geometric Design Consistency 

Parameters 

 
  

 
  

              

     
        

 
 

The negative scaled difference in frequencies indicates that this segment 

experienced fewer crashes than would be expected for a segment of similar 

characteristics. This process is then repeated for each of the remaining 2,182 segments. 

The SWiPs were then ranked based on the highest scaled difference in frequencies, as 

shown in Table 5-8. As it turns out, Segment 1 of SR 002 (the example above) falls in the 

bottom third in SWiP rankings for both safety performance functions and would not be 

recommended for safety improvements using both traditional and design consistency 

evaluation methodologies. 
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Table 5-8. Top 20 SWiPs identified for each SPF 

  Typical Parameter SPF Combined SPF 

SWiP Rank State Route (Seg #) ∆F/σ Rank by Alternative SPF State Route (Seg #) ∆F/σ Rank by Alternative SPF 

1 502 (1) 39.7667 1 502 (1) 39.6058 1 

2 532 (4) 17.0199 2 532 (4) 18.9361 2 

3 009 (7) 12.5661 3 009 (7) 10.9542 3 

4 097 (78) 10.9770 4 097 (78) 10.7164 5 

5 539 (2) 8.9003 5 539 (2) 8.6924 4 

6 020 (134) 6.9307 6 020 (134) 7.1769 6 

7 101 (126) 6.5985 8 097 (228) 5.9918 8 

8 097 (228) 5.8141 7 101 (126) 5.9828 7 

9 017 (26) 5.6506 9 017 (26) 5.6788 9 

10 539 (3) 5.3109 12 009 (10) 5.3193 14 

11 009 (17) 5.0044 17 009 (9) 5.2992 13 

12 410 (8) 4.9355 15 539 (3) 5.2784 10 

13 009 (9) 4.8720 11 410 (2) 5.2136 18 

14 009 (10) 4.7261 10 003 (9) 5.0920 16 

15 003 (8) 4.5772 19 410 (8) 4.9383 12 

16 003 (9) 4.4945 14 101 (119) 4.6637 19 

17 507 (9) 4.4536 18 009 (17) 4.4796 11 

18 410 (2) 4.4104 13 507 (9) 4.4193 17 

19 101 (119) 4.1702 16 003 (8) 4.2849 15 

20 101 (143) 3.8932 21 500 (11) 3.9967 30 
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From the table, it can be seen that there is a not a noticeable amount of disparity 

between the top 20 sites with potential for safety improvements identified by the two 

safety performance functions. Save for some swapping of rankings (e.g., SR 410, 

Segment 2 was identified as the #18 SWiP in the typical parameter SPF and #13 in the 

combined SPF), most of the roadway segments selected for further investigation and 

potential safety improvements are similar between the two SPFs. There is only one 

segment in each of the top 20 sites identified that differs from the alternative SPF; this 

happens to be the #20 site for both SPFs, which is highlighted in yellow. So, it would 

appear that the addition of geometric design consistency parameters offer little benefit to 

safety professionals given the two SPFs identify nearly the same roadway segments. 

However, when the evaluation is expanded beyond the top 20 sites, greater 

disparity becomes readily apparent. Of the top 220 sites (~10% of all segments), there are 

40 unique segments that are not identified by the other safety performance function’s top 

220 ranked sites with potential for safety improvements. In other words, 40 of the top 220 

SWiPs identified by the combined model were not identified in the top 220 SWiPs of the 

traditional model. This indicates that the addition of geometric design consistency 

parameters to the safety performance function generated roughly a 19 percent change in 

the sites identified in the top 10 percent of SWiPs in the state of Washington. When tens 

of millions of dollars are being invested toward safety improvements on an annual basis, 

this disparity could have a significant impact on potential increases to levels of safety. 

In order to determine the source of these discrepancies between models, it would 

be prudent to evaluate the driving force behind the parameters contained within each 

model. This would typically be done through the use of elasticities; however, there is no 
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direct methodology for obtaining elasticities when using mixed effects negative binomial 

modeling. Therefore, an ad hoc procedure was utilized to demonstrate the effects of 

changes to the dependent variable through nominal changes to independent variables. 

Table 5-9 contains the minimum and maximum values for several of the variables in the 

combined SPF. Using these values, the expected crash frequencies are predicted using the 

SPF in Table 5-5, given all other variables are held constant. For example, the maximum 

value for average radius in the dataset is 50,000 feet; the number of crashes predicted for 

a segment with this value would be scaled by a factor of 0.517 (again, all other variables 

held constant). Meanwhile, if the minimum value of average radius were used in the SPF 

from Table 5-5, the term would take a value of 1. This leads to an overall change of 0.483 

in the predicted number of crashes between the maximum and minimum values present in 

the dataset. 

 

Table 5-9. Changes to crash frequency due to change in independent parameters   

 

Independent 

Parameter 

Max. 

Value 

Value in SPF 

[e
(value*coefficient)

] 

Min. 

Value 

Value in SPF 

[e
(value*coefficient)

] 

|Change in Crash 

Frequency| 

Typical 

Parameters 

Average 

Radius 
50,000 0.517 0 1 0.483 

# Horizontal 

Curves 
46 1.195 0 1 0.195 

Design 

Consistency 

Parameters 

Max. Change 

in Curve 

Angle 

21,807.20 1.487 0 1 0.487 

Max. Change 

in Left 

Shoulder 

Width 

35 0.001 0 1 0.999 

# Grade 

Changes 
90 1.468 0 1 0.468 
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Although this methodology is not ideal, it serves as a means to draw out the 

effects of changes to the independent parameters on crash frequency. It can be seen that 

changes to the design consistency parameters have a rather substantial effect on the 

predicted number of crashes. Despite the small magnitude of the coefficients of the 

design consistency parameters in the combined SPF, Table 5-9 demonstrates that they 

still have a significant impact on the predicted crash frequency of a segment. This, in 

turn, may help explain the differences in SWiPs identified between the typical parameter 

and combined safety performance functions. 

 Therefore, the results of these analyses illustrate that these direct and arguably 

more simplistic measures of geometric design consistency can be utilized to help better 

identify potentially unsafe roadways. Although the use of measures, such as changes to 

the 85
th

 percentile speeds on successive elements or high driver workloads, may be 

effective in identifying inconsistencies, they do not directly quantify the effects of 

geometric design consistency on roadway safety using measures that can be linked to 

specific geometric elements. Ultimately, practitioners are interested in identifying the 

conditions present that cause the inconsistencies, rather than just locations where they 

may be present. By incorporating the geometric consistency parameters developed in this 

report into safety performance functions, the elements that violate driver expectancy can 

be more readily identified, and hopefully, levels of design consistency can be evaluated 

in a more direct and efficacious manner. 
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Chapter 6.  CONCLUSIONS 

 

6.1. Summary 

 

Given the novelty of many current practices regarding roadway safety, considerable 

research has been directed towards developing new methods for evaluating and 

predicting levels of roadway safety. Many researchers have focused their efforts on the 

inclusion of design consistency measures in their evaluation techniques. Although design 

consistency has long been recognized as an important consideration in the development 

of roadway networks, researchers and practitioners have yet to agree on a clear-cut 

definition. This has, in part, resulted in a great deal of ingenuity, as researchers have 

attempted to directly quantify the effects of unique and innovative consistency 

parameters, such as changes to 85
th

 percentile speeds on successive elements or  driver 

workload. However, it has also left the body of literature rather diffuse.  

In order to focus the efforts to model design consistency, this research proposed the 

use of direct changes to geometric elements in roadway safety performance functions. 

Not only would these parameters attempt to directly quantify the effects of design 

consistency, but they would do so in a manner that could be easily adopted by 

practitioners. Although they do not replace current practices, the inclusion of parameters, 

such as the maximum change to horizontal curve radius within a roadway segment, 

would potential provide for a more efficacious method for evaluating roadway safety. 

To test this theory, five years of crash data was obtained for roughly 5,000 miles of 

two-lane rural roadways in the state of Washington. The roadway was divided into fixed 

segment lengths of 2.5 miles, and over 80 statistics were tabulated for each segment 

pertaining to the geometric alignment and consistency of the design. Mixed effects 
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negative binomial modelling was used to develop three safety performance functions. 

The first contained typical roadway parameters that might be used following the methods 

developed for the Highway Safety Manual, while the second SPF comprised of only 

geometric design consistency parameters. The third safety performance function 

contained typical roadway parameters with additional design consistency measures to 

potentially help improve the estimation of predicted crashes. 

After Empirical Bayes adjustments were performed on the roadway segments to 

help account for regression to the mean and natural fluctuations in crashes over time, the 

scaled differences in crash frequencies were calculated. This value, which represents the 

difference between the predicted crash frequency by the SPF and the adjusted crash 

frequency scaled by standard deviation of crashes, was then used to rank sites with 

potential for safety improvements. A larger difference in scaled frequency would, 

theoretically, indicate a site that would experience greater benefits from investments in 

safety [provided a safety audit identified the appropriate cause(s) for high crash 

frequency]. After all 2,183 roadway segments received a ranking based on this value, the 

rankings were compared between safety performance functions. The idea being that any 

disparity between SWiPs identified would indicate an improved estimation of the level of 

safety. 

 When comparing the SWiP-rankings between the typical parameter SPF and the 

SPF with additional geometric design consistency parameters, the incongruity becomes 

evident.  Although the top 20 sites with potential identified share similarities, the order of 

site rankings is evidently varied. When expanding the evaluation to the top 10 percent of 

SWiPs (a pragmatically-reasonable percentage of segments for practitioners to focus on), 
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40 of the sites are not contained on the alternative SPF’s ranking list. This accounts for 

roughly 19 percent of the top 10 percent of sites identified for safety improvements. 

Furthermore, there is a significant jockeying of rankings between these two SPFs at this 

level; it is much more marked than experienced with the top 20 sites. 

 

6.2. Conclusions 

 

From these outcomes, several conclusions can be made about the direct use of 

geometric design consistency parameters in safety evaluations of two-lane rural 

roadways. First, the use of perceived radii does not appear to offer any additional 

explanatory benefits over standard radii in safety performance functions. This stems from 

the lack of significance found for many perceived radius variables using mixed effects 

negative binomial modeling; the parameters tested can be found in Table A-1. Although 

some of these parameters may have been significant when modeled against crash 

frequency alone, the standard radius parameters performed more effectively when 

combined with other geometric design consistency parameters. 

A similar conclusion can be made about the use of alignment indices in the 

development of safety performance functions. Although several indices were found to be 

significant (e.g., minimum CRR and ratio of maximum to minimum radius) when 

modeled against crash frequency, they quickly lost any predictive power when combined 

with other parameters. This may be a result of correlation between these alignment 

indices and many of the more “direct” consistency measures (e.g., number of grade 

changes). 
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As evidenced by the SPFs, there are several geometric design consistency 

parameters that serve as good predictors of crash experience. These include the maximum 

changes in radius and curve angles, the average change in degree of curvature, and the 

number of changes to left shoulder width and vertical grade within a segment. The safety 

performance function in Table 5-3 demonstrates that these parameters could be utilized to 

estimate crash frequency; this would allow practitioners to directly model design 

consistency of geometric elements without using surrogate measures. The SPF in Table 

5-5 further establishes the versatility of these geometric consistency measures with their 

inclusion in a predictive model with standard roadway parameters. 

When comparing the sites with potential identified by the typical and combined 

safety performance functions, it is interesting to note the discrepancies in site rankings. 

Although this is only a perfunctory analysis, the disparity may be indicative of improved 

SWiP identification with the inclusion of geometric design consistency parameters in the 

SPF. However, it would be improper to make any conclusions over which SPF is a more 

effective means for predicting crash frequency at this time. In order for a conclusion to be 

made, further analysis would have to be placed on the effectiveness of investments at 

particular sites and more research would need to be conducted to verify these results. 

Presently, though, it is important to recognize the ability of geometric design consistency 

measures to identify alternative sites with potential for safety improvements when 

combined with traditional roadway parameters. 
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6.3. Future Work 

 

Based on the novelty of many studies in the current body of literature and the 

preliminary nature of this work, there are significant opportunities for future exploration 

into the effects of design consistency on roadway safety. The investigation into the 

literature exposed the potential of alignment indices to help model crash frequency. The 

work of Andersen et al. (1999) and Awatta & Hassan (2002) established that certain 

indices could be used estimate levels of safety; the analysis conducted in this report 

confirmed these results. However, these indices were only found to be significant when 

modeled against crash frequency alone. Future work should focus on developing unique 

and innovative alignment indices that will be effective predictors of crash frequency 

when combined with other parameters in a safety performance function. The use of 

alignment indices in SPFs holds enormous potential in future safety evaluations. 

 Similarly, research efforts should be placed towards gaining a better 

understanding of the concept of perceived radius. This notion of an optical illusion 

occurring when horizontal and vertical curvature are superimposed has become 

generally-accepted in academia; however, there currently exists only one set of papers 

that attempts to estimate the radius perceived by a driver. If additional inquiries were 

made into modeling this phenomenon, safety professionals may be inclined to incorporate 

perceived radii in their evaluation techniques. Although the current equations for 

estimating perceived radii were extremely beneficial for the purposes of this study, the 

parameters developed using perceived radii did not provide any additional explanatory 

benefits over the corresponding standard radii parameters. Perhaps when these equations 

are validated or alternative equations are developed through future work, a more 
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definitive assessment can be made about the effectiveness of using perceived radii over 

standard curve radii. 

 One of the most important assertions of this work has been the advocation for the 

direct use of geometric design consistency parameters in safety performance functions. 

However, as previously noted, the major weakness of this study is the inability to 

substantiate claims that the sites with potential identified by the safety performance 

function with these additional consistency parameters provides greater insights towards 

more effective safety improvements. Efforts should be placed into developing a study 

that utilizes micro-simulation software (e.g., VISSIM or AIMSUN) to test the 

effectiveness of changes to geometric elements in predicting crash frequency. This could 

be accomplished by developing several roadway alignments that differ only by the 

geometric design consistency parameters evaluated in this study (e.g., maximum change 

to radius within a segment) and observing the differences in crash frequencies 

experienced. Although the use of micro-simulation to estimate crashes suffers several 

limitations (notably the ability to accurately represent human behavior and driver error), 

this type of study could potentially lend credence to the results of this work. 

 Finally, efforts should be made to help validate the results achieved in this report. 

This study only included roadways from a single state and a single roadway 

classification; the results obtained are by no means conclusive. If researchers were to 

replicate the design of this work using multiple regions and classifications of roadways, 

achieving similar results would help validate the use of consistency in geometric 

alignment elements as a primary means for evaluating design consistency. Discrete levels 

of crash severity should also be modeled to assess the implications of geometric design 
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consistency on various crash outcomes. Consequently, there will consistently be room for 

development of future work within the field of roadway safety, particularly regarding the 

conception of new and improved techniques for evaluating safety. Safety professionals 

and practitioners must persistently strive to establish more proficient methods to improve 

safety throughout all levels of the roadway network and help prevent crashes wherever 

possible. Although this study is only a preliminary investigation into the use of geometric 

design consistency parameters in safety evaluations, it will hopefully aid in the 

development of an ever-burgeoning body of literature regarding roadway safety. 
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APPENDIX 
 

Table A-1.  Variables compiled for each 2.5 mile segment 

Variables 

Begin Milepost Avg. Curve Angle Avg. Change in Left Shoulder Width 

End Milepost Max. Curve Angle Max. Change in Left Shoulder Width 

Roadway I.D. Min. Curve Angle # of Changes in Left Shoulder Width 

Median Introduced? Avg. Change in Curve Angle Avg. Right Shoulder Width 

# Horizontal Curves Max. Change in Curve Angle Avg. Change in Right Shoulder Width 

Avg. Radius (weighted) Max. Curve Angle/Min Curve Angle Max. Change in Right Shoulder Width 

Avg. Radius (un-weighted) (Max. C.A. - Avg. C.A.)/Avg. C.A. # of Changes in Right Shoulder Width 

Max. Radius Avg. Degree of Curvature Avg. Lane Width 

Min. Radius Max. Degree of Curvature Max. Lane Width 

Avg. Change in Radius Min. Degree of Curvature Min. Lane Width 

Max. Change in Radius Avg. Change in Degree of Curvature Max. Change in Lane Width 

Min. Change in Radius Max. Change in Degree of Curvature # Changes in Lane Width 

Max. Radius - Min. Radius Max. D.C. / Min. D.C. AADT (weighted) 

Max. Radius/ Min. Radius (Max. D.C. - Avg. D.C.)/Avg. D.C. Avg. Roadway Width 

(Max. Radius - Avg. Radius)/Avg. 

Radius Access Type Max. Roadway Width 

Min. CRR # of Intersections Min. Roadway Width 

Max. CRR # of Intersections w/ Roadway Lighting Max. Change in Roadway Width 

Avg. Perceived Radius (weighted) Left Shoulder Type # Changes in Roadway Width 

Avg. Perceived Radius (un-weighted) Left Shoulder Type 2 Avg. Grade 

Max. Perceived Radius Right Shoulder Type # of Grade Changes 

Min. Perceived Radius Right Shoulder Type 2 Max. Grade 

Avg. Change in Perceived Radius Terrain Min. Grade 

Max. Change in Perceived Radius Functional Class Avg. Change in Grade 

Max. P. Radius/ Min. P. Radius Avg. Speed Limit Max. Change in Grade 

(Max. P. Radius - Avg. P. Radius)/Avg. 

P. Radius Max. Speed Limit Accidents 

Min. Perceived CRR Max. Change in Speed Limit Fatal Crashes 

Max. Perceived CRR Avg. Left Shoulder Width Injury-Only Crashes 

  

PDO Crashes 

 


