
The Pennsylvania State University

The Graduate School

Department of Computer Science and Engineering

PARALLEL I/O PROFILING AND OPTIMIZATION IN HPC

SYSTEMS

A Dissertation in

Computer Science and Engineering

by

Seong Jo Kim

c© 2014 Seong Jo Kim

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

May 2014

The dissertation of Seong Jo Kim was read and approved1 by the following:

Mahmut T. Kandemir
Professor of Computer Science and Engineering
Dissertation Adviser
Chair of Committee

Mary J. Irwin
Professor of Computer Science and Engineering
Evan Pugh Professor and A. Robert Noll Chair

Padma Raghavan
Distingushed Professor of Computer Science and Engineering
Associate Vice President for Research and Director of Strategic
Initiatives
Director of Institute of CyberScience

Dinghao Wu
Assistant Professor of Information Science and Technology

Rajeev Thakur
Special Member
Senior Computer Scientist, Argonne National Laboratory
Deputy Director of Mathematics and Computer Science Division,
Argonne National Laboratory

Raj Acharya
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering

1Signatures on file in the Graduate School.

iii

Abstract

Efficient execution of large-scale scientific applications requires high-performance

computing systems designed to meet the I/O requirements. To achieve high-performance,

such data-intensive scientific applications use multiple layers of I/O software stack that

consists of high-level I/O libraries such as PnetCDF and HDF5, the MPI library, and

parallel file systems. To design efficient parallel scientific applications, understanding

the complicated flow of I/O operations and the involved interactions among the libraries

is quintessential. Such comprehension helps identify I/O bottlenecks and thus exploits

the potential performance in different layers of the storage hierarchy.

To trace the execution of I/O operations and to understand the complex inter-

actions in the I/O stack, we have designed and implemented a parallel I/O profiling

and visualization framework for high-performance storage systems, IOPro. IOPro auto-

matically generates an instrumented I/O stack, runs applications on it, and visualizes

detailed statistics in terms of user-specified metrics of interest. Next, we introduce a dy-

namic performance visualization and analysis framework for parallel I/O, called IOPin.

IOPin performs the instrumentation with minimal overhead in the binary code of the

I/O stack at runtime and provides the language independent instrumentation targeting

specific applications written in C/C++ and Fortran. Furthermore, it requires neither

source code modification nor recompilation of the application and the I/O software stack

components. Lastly, we propose an automatic parallel I/O code generation and optimiza-

tion framework for HPC applications, called IOGenie. Using a graphical user interface,

iv

our tool takes high-level annotations for I/O as input, analyzes the given options, and

generates optimized I/O code that effectively exercises the underlying I/O stack.

Overall, this thesis proposes three frameworks, IOPro, IOPin, and IOGenie. IO-

Pro and IOPin help understand the complex interactions across different I/O layers

from applications to the underlying parallel file systems, using two different approaches:

static code instrumentation and runtime binary instrumentation. IOGenie helps users

write data-intensive applications easily and effectively and enhances the quality of tool-

generated code that exploits various optimizations on the underlying I/O software.

v

Table of Contents

List of Tables . vii

List of Figures . viii

Acknowledgments . x

Chapter 1. Introduction . 1

Chapter 2. IOPro: A Parallel I/O Profiling and Optimization Framework in HPC
Systems . 7

2.1 Introduction . 8
2.2 Background . 10

2.2.1 Challenges . 10
2.2.2 Performance Metrics . 11

2.3 High-level View of Instrumentation, Execution, and Visualization . . 13
2.3.1 Instrumentation Engine . 13
2.3.2 Execution Engine . 15
2.3.3 Data Process Engine . 16

2.4 Technical Details . 18
2.4.1 Code Instrumentation . 18
2.4.2 Configuration of Running Environments 20
2.4.3 Computation Methodology 21
2.4.4 Query Model . 25

2.5 Evaluation Results . 27
2.5.1 FLASH I/O . 29
2.5.2 S3D I/O . 37
2.5.3 Case Study: Pinpointing I/O Interference in the Concurrent

Execution of Multiple Applications 44
2.6 Conclusions . 47

Chapter 3. IOPin: Runtime Profiling of Parallel I/O in HPC Systems 49
3.1 Overview of Dynamic Instrumentation 50
3.2 Backgrounds . 52

3.2.1 Overview of Dynamic instrumentation 52
3.2.2 Overview of Pin . 53
3.2.3 Critical Path Detection Affecting Parallel I/O Performance . 54

3.3 Technical Details . 56
3.3.1 Detailed Dynamic Instrumentation 56

3.4 Evaluation . 59
3.5 Conclusions . 62

vi

Chapter 4. IOGenie: Automatic Parallel I/O Code Generation and Optimization
framework for HPC Applications . 64

4.1 Introduction . 64
4.2 OVERVIEW . 66

4.2.1 HPC Architecture and I/O Software Stack 66
4.2.2 Overview of IOGenie . 68

4.3 OUR I/O MODEL . 69
4.3.1 Data Set Definition Model . 70
4.3.2 Data Access Model . 71

4.4 FRAMEWORK . 73
4.4.1 I/O Hints . 73
4.4.2 I/O Options . 74
4.4.3 Code Generation Engine . 76

4.4.3.1 Hint Parser . 77
4.4.3.2 Hint Analyzer . 78
4.4.3.3 I/O Optimizer . 78
4.4.3.4 Code Generator . 80

4.5 EVALUATION . 81
4.5.1 FLASH I/O . 81
4.5.2 S3D I/O . 83
4.5.3 Experimental Results . 86

4.6 Conclusions . 89

Chapter 5. Related Work . 91
5.0.1 Static/Dynamic Instrumentation 91
5.0.2 Tracing and debugging . 92
5.0.3 Large-scale Distributed System Tracing 92
5.0.4 Code Generation . 93
5.0.5 I/O Software Stack Optimizations 93
5.0.6 Caching and Prefetching . 94

Chapter 6. Conclusions and Future Work . 95

Bibliography . 98

vii

List of Tables

2.1 Statistics that can be analyzed by IOPro. 17
2.2 Accepted query format. 22
2.3 Overhead comparison. 28
2.4 Baseline: S3D I/O detailed server I/O time and striped size of data. . . 46
2.5 Running S3D I/O with the synthetic benchmark in interference. 46
2.6 Running S3D I/O with the synthetic benchmark without interference. . 46

viii

List of Figures

1.1 Parallel I/O software stack. 2

2.1 Overview of IOPro. 13
2.2 The front-end (setup view) of the instrumented engine of IOPro. 14
2.3 The front-end (configuration view) of the execution engine. 16
2.4 The front-end (query analyzer view) of data processing engine. 17
2.5 Illustration showing how probes are inserted into the different layers of

the I/O stack components by the instrumentation engine. 20
2.6 Computation of Latency and throughput. 21
2.7 Inclusive (dotted arrow) and exclusive (solid arrow) latency models. . . 24
2.8 Computation of inclusive latency. 25
2.9 Average execution time comparison. 28
2.10 Number of I/O calls issued to all servers from one process using the

HDF5 interface. 30
2.11 Inclusive latency values for the FLASH I/O benchmark. 31
2.12 Total maximum and minimum latency from all processes. 33
2.13 Maximum and minimum latency from the perspective of Process 16 for

mpi call id ranging from 18 to 23. 35
2.14 Disk throughput for mpi call id 0 to 23 to write a checkpoint file from

process 16 to 4 servers. 36
2.15 Inclusive latency of the S3D I/O benchmark. 38
2.16 Inclusive latency from the perspective of Process 320 and Process 192. . 39
2.17 Detailed latency from mpi call id 0 to 3 to create the first checkpoint file

in Process 320. 41
2.18 Disk throughput to server 0 from all 8 aggregator processes for mpi call id

0 to 3 to create the first checkpoint file. 43
2.19 Comparisons of the execution time and the maximum I/O time in servers. 45

3.1 Overview of our dynamic instrumentation framework. 51
3.2 The critical path affecting the application performance. 55
3.3 Detailed illustration of how the trace information is passed. 57
3.4 Comparison of S3D I/O execution time. 59
3.5 Comprehensive results drawn by IOPin. 60

4.1 Architecture of an HPC system. 67
4.2 High-level view of IOGenie. 68
4.3 Multidimensional arrays. 69
4.4 Sample data access pattern. 71
4.5 GUI view for giving the dataset hint. 75
4.6 GUI view for entering the data hint. 76
4.7 GUI view for specifying the I/O level. 77

ix

4.8 Sample code generation by IOGenie, assuming an application written in
C and PnetCDF as the high-level I/O library. 79

4.9 The block structure of FLASH mapped into memory and a checkpoint file. 82
4.10 S3D I/O data partitioning and mapping patterns. 85
4.11 Comparison of the average execution times of the hand-generated code

vs. the tool-generated code. 87

x

Acknowledgments

I would like to express my special appreciation and thanks to my advisor Professor

Dr. Mahmut Kandemir, you have been a tremendous mentor for me. I would like to

thank you for encouraging my research and for supporting me to grow as . Your advice

on both research as well as on my career have been priceless. I would also like to thank

my committee members, professor Dr. Mary Jane Irwin, professor Dr. Padma Raghavan,

professor Dr. Dinghao Wu, and Dr Rajeev Thakur for serving as my committee members

even at hardship. I also want to thank you for letting my defense be an enjoyable moment,

and for your brilliant comments and suggestions, thanks to you. I would especially like

to thank my colleagues at Penn State University.

A special thanks to my family. Words cannot express how grateful I am to my

mother, and father for all of the sacrifices that youve made on my behalf. Your prayer

for me was what sustained me thus far. I would also like to thank all of my friends who

supported me in praying, and incented me to strive towards my goal.

1

Chapter 1

Introduction

Users of HPC systems often find an interesting situation: it is not the CPU, mem-

ory, or network that restricts the performance of applications, but the storage systems.

In fact, the prior research [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] shows that I/O behavior

can be a dominant factor that determines the overall performance of many HPC appli-

cations from computational chemistry to biology to nuclear physics to financial services.

Therefore, understanding the parallel I/O operations and the involved issues is a must to

write efficient parallel I/O code to extract maximum performance from high-performance

storage systems.

Unfortunately, understanding parallel I/O behavior and writing a efficient parallel

I/O code is not trivial as it is a result of complex interactions between hardware and a

number of software layers, collectively referred to as the I/O software stack, or simply

I/O stack. Figure 1.1 illustrates a typical I/O stack used in many (if not most) HPC

systems. Note that this figure is intended to present the software layers and a logical

view; it is not meant to illustrate the physical connectivity and configuration of an I/O

stack. At the lowest level is the storage hardware consisting of disks, SSDs, controllers,

and interconnection network connecting multiple physical devices. At this level, data

are accessed at the granularity of “blocks” across multiple physical devices such as in a

RAID array. Above the storage hardware are the parallel file systems, such as Lustre [14],

2

Parallel I/O Applications

High-level I/O libraries:

PnetCDF, HDF5

MPI-IO library

POSIX I/O

Parallel File Systems

Storage Hardware

Fig. 1.1. Parallel I/O software stack.

GPFS [15], PanFS [16], and PVFS [17]. The roles of the parallel file system are to

manage the data on the storage hardware, present the data as a directory hierarchy,

and coordinate accesses to files and directories in a consistent fashion. The MPI-IO

library [18], part of MPI-2 [19], sits, as a middleware, on top of the parallel file systems.

It provides a standard I/O interface and a suite of optimizations including data caching

and process coordination [1, 2, 3, 4, 5, 6].

While the MPI-IO interface is effective and advantageous because of its perfor-

mance and portability, it does not support structured data abstraction for scientific

applications. To provide that, high-level I/O libraries (e.g., Parallel netCDF [20] and

HDF5 [21]) are added on top of MPI-IO. These high-level libraries allow application

programmers to better describe how their applications access shared storage resources.

Furthermore, they provide data abstractions that match the way the scientific applica-

tions view data. As shown in Figure 1.1, a parallel I/O application may directly call the

3

MPI-IO library or a POSIX I/O function to access the disk-resident data sets. Alter-

natively, large-scale, data-intensive applications may exercise several layers of the I/O

stack. Since the interactions among these layers are complex and unpredictable, under-

standing and characterizing those interactions must precede writing a parallel I/O code

that efficiently utilizes these I/O software layers. For example, a high-level HDF5 code

can be fragmented into different smaller calls, over the I/O stack, and each of these calls

can experience a different latency. Similarly, two independent I/O calls can conflict in

accessing the same storage device/component.

One approach to understanding I/O behavior is to let application programmers

or scientists instrument I/O software stack manually. Unfortunately, this approach is

extremely difficult and error-prone. In fact, instrumenting even a single I/O call may

necessitate modifications to numerous files from the application to multiple I/O software

layers below. Since many parallel scientific applications today are expected to run on

large-scale systems with hundreds of thousands of processes in order to achieve better

resolution, even collecting and analyzing trace information from them is laborious and

burdensome.

Even if users or scientists understand numerous APIs and their complex interac-

tions in the I/O stack, it will be still challenging for them to write a parallel I/O code

since there exist various optimization opportunities across I/O libraries and parallel file

systems, which helps improve I/O performance. In particular, it is not unusual for an

average (non-I/O expert) user to make mistakes in orchestrating I/O accesses in the

code. Further, such a user may not be able to take full advantage of I/O optimization

4

opportunities within and across different layers of the I/O stack. Writing correct and

optimized I/O code is a serious challenge even for experienced programmers.

Motivated by these observations, we propose a parallel I/O profiling and visu-

alization framework for high-performance storage systems, called IOPro and a runtime

I/O profiling tool, called IOPin. We also propose an GUI-based parallel I/O code gen-

eration and optimization framework for HPC applications, called IOGenie. Instead of

manually instrumenting source code of applications and other components of the I/O

stack, IOPro takes as input the description of the target I/O stack and the application

program, and automatically generates the instrumented I/O stack to trace the specified

I/O operations, and compiles and builds it. Next, it runs the application with detailed

configuration information for I/O servers (PVFS2 in our case) and an MPI process man-

ager, mpiexec. It then collects and analyzes the trace log data and presents detailed

statistics based on user-specified metrics of interest.

Unlike IOPro, IOPin provides dynamic binary instrumentation for the I/O stack.

To implement our current prototype of IOpin, we leverage a lightweight binary instru-

mentation using Pin [22]. That is, our tool performs the instrumentation in the binary

code of the MPI library and the underlying parallel file system, PVFS, at runtime.

Therefore, in this scheme, our tool provides a language-independent instrumentation ca-

pability, targeting scientific applications written in C/C++ or Fortran. Furthermore,

our tool requires neither source code modification nor recompilation of the applications

and parallel I/O stack components.

Lastly, motivated by the observation indicating that writing correct and efficient

parallel I/O code is very challenging, IOGenie automatically generates parallel I/O code

5

for any I/O stack, based on the user input parameters—high-level I/O hints and anno-

tations. Specifically, it takes the I/O hints, analyzes the given hints, and formulates the

optimized code at each I/O point that users specify in the application.

A unique aspect of our implementation of IOPro is that it provides an integrated

profiling and analysis environment (IPAE) for the entire parallel I/O software stack. It

can work with different I/O stacks and user-provided probe code. For instance, with

the user-specified probes, it can trace parallel I/O in Blue Gene/P systems that deploy

the I/O Forwarding Scalability Layer (IOFSL) [23]. It can also provide a reconfigurable

setup for the I/O stack. Our proposed infrastructures, IOPro and IOPin, also provide

a hierarchical view for parallel I/O. In our implementation, every MPI I/O call has a

unique identification number in the MPI-IO layer and is passed to the underlying file

system with trace information. This mechanism helps associate the MPI I/O call from

the application with its subcalls in the file system layer systematically. In addition,

our framework visualizes detailed I/O performance metrics for each I/O call, including

latency, throughput, estimated energy consumption, and the number of I/O calls issued

to and from servers and clients. Using our IOGenie, users can easily write a parallel I/O

code in the data-intensive applications and also enhance the quality of the generated

code that exploits various optimizations on the underlying I/O software.

We believe that our three infrastructures are a powerful and useful tool for scien-

tists and application programmers as well as performance engineers. For the scientists

and application programmers who do not have an in-depth knowledge of underlying

complexities of emerging HPC systems, IOPro and/or IOPin can provide detailed I/O

statistics that helps them understand the characteristics of I/O from the perspective of

6

the applications. Also, our automatic I/O code generator is expected to significantly im-

prove programmers’ productivity. For the performance engineers, it enables customized

instrumentation for more detailed performance measurements. Therefore, IOPro and

IOPin can enable insights into the complex I/O interactions of scientific applications

and provide an adaptive I/O strategy and IOGenie can improve programmers’ produc-

tivity and the code quality of scientific applications.

The rest of this dissertation is organized as follows. Chapter 2 explains our

proposed parallel I/O profiling and visualization framework for high-performance storage

system, IOPro. Chapter 3 elaborates on the runtime profiling approach for parallel I/O

leveraged by Pin, and Chapter 4 discusses our automatic parallel I/O code generation and

optimization tool for HPC applications. Related work is discussed in Chapter 5, followed

by our concluding remarks and a brief discussion of the future work in Section 6.

7

Chapter 2

IOPro: A Parallel I/O Profiling and Optimization

Framework in HPC Systems

Efficient execution of large-scale scientific applications requires high-performance

computing systems designed to meet the I/O requirements. To achieve high-performance,

such data-intensive parallel applications use a multi-layer layer I/O software stack, which

consists of high-level I/O libraries such as PnetCDF and HDF5, the MPI library, and

parallel file systems. To design efficient parallel scientific applications, understanding the

complicated flow of I/O operations and the involved interactions among the libraries is

quintessential. Such comprehension helps identify I/O bottlenecks and thus exploits the

potential performance in different layers of the storage hierarchy. To trace the execution

of I/O operations and to understand the complex interactions in the I/O stack, we have

designed and implemented a GUI-based integrated profiling and analysis environment,

IOPro. IOPro automatically generates an instrumented I/O stack, runs applications

on it, and visualizes detailed statistics in terms of the user-specified metrics of interest.

We present results from two real applications and demonstrate how our tool is used in

practice. By generating on the end-to-end trace of the whole I/O stack and pinpointing

I/O interference, IOPro aids in understanding I/O behavior and proving I/O solutions

to improve the performance.

8

2.1 Introduction

Emerging data-intensive applications make significant demands on storage system

performance. Although some of the most important issues exist in parallel I/O systems,

including parallel I/O system components and architecture, parallel access patterns, and

consistency semantics, I/O is a dominant factor that determines the overall performance

of many HPC applications. Therefore, understanding the parallel I/O operations and the

involved issues is critical to meet the requirements for a particular HPC system and/or

decide I/O solutions to accommodate expected workloads.

Unfortunately, understanding parallel I/O behavior is not trivial as it is a result

of complex interactions between hardware and a number of software layers, collectively

referred to as the I/O software stack, as shown in Figure 1.1. Since the interactions in

the I/O software stack are complex and unpredictable, understanding and characteriz-

ing those interactions must precede performance tuning and optimization for the HPC

applications.

One approach to understanding I/O behavior is to let application programmers

or scientists instrument the I/O software stack manually. Unfortunately, this approach

is extremely difficult and error-prone. In fact, instrumenting even a single I/O call may

necessitate modifications to numerous files from the application to multiple I/O software

layers below. Worse, a high-level I/O call from the application program can be frag-

mented into multiple calls (subcalls) in the MPI library, which is severely challenging.

9

Since many parallel scientific applications today are expected to run on large-scale sys-

tems with hundreds of thousands of processes in order to achieve better resolution, even

collecting and analyzing trace information from them is laborious and burdensome.

Motivated by these observations, we have developed a performance analysis and

visualization framework for parallel I/O, called IOPro. Instead of manually instrument-

ing source code of applications and other components of the I/O stack, IOPro takes as

input the description of the target I/O stack and the application program, automatically

generates the instrumented I/O stack to trace the specified I/O operations, and compiles

and builds it. Next, it runs the application with detailed configuration information for

I/O servers (PVFS2 in our case) and an MPI process manager, mpiexec. Then, it collects

and analyzes the trace log data and presents detailed statistics based on user-specified

metrics of interest.

A unique aspect of our implementation is that it provides an integrated profiling

and analysis environment (IPAE) for the entire parallel I/O software stack. It can work

with different I/O stacks and user-provided probe code. For instance, with the user-

specified probes, it can trace parallel I/O in Blue Gene/P systems that deploy the I/O

Forwarding Scalability Layer (IOFSL) [23]. Also, it can provide a reconfigurable setup

for the I/O stack. Last but not least, it provides a hierarchical view for parallel I/O.

In our implementation, every MPI I/O call has a unique identification number in the

MPI-IO layer and is passed to the underlying file system with trace information. This

mechanism helps associate the MPI I/O call from the application with its subcalls in

the file system layer systematically. In addition, our framework visualizes detailed I/O

10

performance metrics for each I/O call, including latency, throughput, estimated energy

consumption, and the number of I/O calls issued to and from servers and clients.

We believe that IOPro is a powerful and useful tool for scientists and application

programmers as well as performance engineers. For the scientists and application pro-

grammers who do not have an in-depth knowledge of underlying complexities of emerging

HPC systems, it can provide detailed I/O statistics that helps them understand the char-

acteristics of I/O from the perspective of the applications. By using the performance

measurements of the underlying I/O stack, more optimized code can be implemented.

For the performance engineers, it enables customized instrumentation for more detailed

performance measurements. Therefore, IOPro can enable insights into the complex I/O

interactions of scientific applications and provide an adaptive I/O strategy.

2.2 Background

In this section, we discuss the challenges in characterizing the I/O performance

of modern HPC systems. We also explain the importance of the collected performance

metrics and their usage to improve the I/O performance.

2.2.1 Challenges

Modern HPC systems comprise multiple entities such as high-level I/O libraries

(e.g., PnetCDF and HDF5), the MPI library as a middleware, and POSIX on top of the

underlying parallel file systems. When a scientific application runs on large-scale systems

with hundreds of thousands of processes, its operation is often complex and difficult to

understand. Frequently, application I/O calls can be optimized in the middle I/O layer to

11

achieve better performance. Also, the high-level I/O calls from applications can break

down into multiple calls in the MPI library, which make it extremely challenging to

understand and reason about.

Most of the previous research in this area focuses on presenting performance

metrics for the given applications. However, these statistics only reflect quantitative

information at each layer of the I/O stack rather than a deep understanding of the I/O

interaction and association from the application through the multiple libraries to the

underlying parallel file system. Instead, our scheme provides a qualitative approach

to associate high-level I/O from the application with the operations in the underlying

parallel file system by automatically injecting the probe code, and visualizes the user-

provided metrics of interest for better understanding. As a result, it helps scientists and

system engineers profile and improve the performance of applications running on deep

storage hierarchies. We want to emphasize that, while in principle a knowledgeable user

can manually instrument an I/O stack, in practice this is very difficult due to the complex

interactions between different layers, which makes it very challenging to pass/propagate

values/metrics of interest across the layers and accumulate results.

2.2.2 Performance Metrics

Depending on I/O demands and data access patterns, a given parallel applica-

tion may require bounded execution time, relatively low throughput, or both. In many

parallel applications, the requests from different processes are frequently interleaved and

merged into contiguous portions of the file to reduce the high I/O latency. When such

an optimization, broadly referred to as collective I/O, is used, all the joined processes

12

broadcast and exchange the information related to the I/O request. If the I/O access

patterns of all processes are contiguous and can benefit from collective I/O, an aggregator

process can access disk-resident data by two-phase I/O: (1) redistribution of data to the

processes (communication phase) and (2) a single, large, contiguous access to data (I/O

phase) in case of write operation. This method has the additional cost of interprocess

communication, but it can significantly reduce the I/O time. Although collective I/O is

performed to improve I/O latency, the performance of collective I/O can be significantly

affected by the critical path from the process to the server. For example, if the process on

the critical path has a small size of temporary buffer needed for two-phase I/O, frequently

copies the data into the buffer, and communicates other processes for redistribution, it

can degrade the performance. In this case, the critical path from the aggregator process

to the server dominates the overall application performance. Also, the I/O server on the

critical path can be a major bottleneck in certain situations such as explosion of I/O

requests to the server, network hardware failure, or faulty I/O server. Since the I/O op-

erations interfere with each other during the execution of multiple applications, it is also

important to figure out how many I/O operations are issued and which server(s) the I/O

requests from the applications target. In case of burst I/O to the server, by setting MPI

hints the application can perform I/O operations without striping data to the bottleneck

I/O server. Using our framework, therefore, users can easily/automatically generate the

instrumented I/O stack to capture latency, throughput, and I/O call access information

that affect the performance, and analyze those metrics by visualization.

13

ConfigurationSetup Query

Probe

Library

Instrumented

App

MPI

PFS

I/O Lib

Instrumentation

Engine Execution

Engine

Data

Process

Enging

Trace

Log Files
Output

Statistics

App'

MPI'

PFS'

I/O Lib'

Probe selector

Probe inserter

User input

Fig. 2.1. Overview of IOPro. It takes as input an application program and I/O stack
information and builds an instrumented I/O stack to profile I/O operations, separately
from the original I/O stack. After configuring the PFS server (PVFS in our case) and
MPI program launcher, mpiexec, it runs the application program. The query analyzer
then collects trace log files and returns the statistics based on the metrics of interest.

2.3 High-level View of Instrumentation, Execution, and Visualization

In this section, we first give a high-level view of IOPro. As shown in Figure 2.1,

IOPro consists of three main components: instrumentation engine, execution engine,

and data processing engine. Each of these components works with its corresponding

front-end (i.e., setup view, configuration view, and query analyzer, respectively), as will

be explained in the following subsections.

2.3.1 Instrumentation Engine

To provide an automated I/O tracing functionality for parallel applications, IOPro

accepts the necessary information from the setup view (Figure 2.2). This information

includes the directory locations of an application and the I/O software stack such as

the parallel file system (e.g., PVFS), the MPI library (e.g., MPI-IO), and the high-level

I/O library (e.g., HDF5). It also takes the location of trace log files generated by each

14

Fig. 2.2. The front-end (setup view) of the instrumentation engine of IOPro.

layer of the I/O stack. As shown in Figure 2.2, an instrumented file for a high-level

I/O library is automatically chosen, depending on the selected high-level I/O library. In

the example, H5FDmpio.c would be instrumented when targeting HDF5. In addition,

the make option “make -f Makefile.bb flash benchmark io” is given to compile the

FLASH I/O benchmark [24]. Further, if desired, a trace option can be chosen here to

track a specific operation and code range (i.e., write, read, or both) and application source

code lines (1-5000 in this case). Note that the current implementation targets a user-

level parallel file system. Unlike other system-level parallel file systems such as Lustre,

GPFS, and PanFS, PVFS2 clients and servers can run at user-level 1. Therefore, we can

easily implement the functionality to trace and profile I/O operations in a hierarchical

1PVFS2 also supports an optional kernel module that allows a file system to be mounted as
in other file systems

15

fashion, without kernel modifications that are normally not allowed in system-level file

systems.

As a backend of setup view, an instrumentation engine consists of a probe selector

and a probe inserter. In this context, a probe is a piece of code being inserted into the

application code and I/O software stack (e.g., in the source code of the high-level I/O

library, the MPI library, and PVFS2), which helps us collect the requested statistics.

Using the user-provided information from the setup, the instrumentation engine inserts

the probe into the appropriate locations in the I/O stack automatically, and generates

an instrumented version of PVFS2, the MPI-IO library as well as the high-level I/O

library. More details are provided in Section 2.4.

2.3.2 Execution Engine

After creating the instrumented I/O stack and the application program success-

fully in the previous stage, the execution engine builds and compiles them. Also, as in

Figure 2.3, the front-end (configuration view) in the execution engine takes information

about the file systems, storage locations, endpoints that each server manages, metadata

servers, and I/O servers. Using the user-provided information, it creates a global PVFS2

server configuration file (e.g., fs.conf). In general, PVFS2 servers are deployed using

this global configuration file shared by all PVFS2 servers. Figure 2.3 shows an example

of the front-end of the execution engine where the user-provided information is taken to

run the application. In this example, bb18 is configured as a metadata server and bb05,

bb06, bb07, and bb08 as I/O servers. The 512 MPI processes specified in the mpd.hosts

16

Fig. 2.3. The front-end (configuration view) of the execution engine.

file that has node information would be launched by mpiexec to run the executable

flash benchmark io.

We want to emphasize that the instrumented I/O stack is separately built from

the non-instrumented one. Therefore, the application can run either on the instrumented

I/O stack or on the non-instrumented (original) I/O stack by setting LD LIBRARY PATH.

2.3.3 Data Process Engine

After running the application with the user-provided information in the execution

engine, the data process engine collects all trace log files from each layer of the target I/O

stack. Table 2.1 lists a representative set of high-level metrics that can be profiled and

visualized by our prototype of IOPro. Based on the user’s query taken in the front-end

of the data process engine (Figure 2.4), the data process engine calculates the statistics

17

Table 2.1. Statistics that can be analyzed by IOPro.

I/O latency experienced by each I/O call in each layer (MPI library, client, server, or disk)
in I/O stack
Average I/O access latency in a given segment of the program
Throughput achieved by a given I/O read and write call
Disk power consumption incurred by each I/O call
Number of disk accesses made by each I/O call
Amount of time spent during inter-processor communication in executing a collective I/O
call
Number of I/O nodes participating in each collective I/O

Fig. 2.4. The front-end (query analyzer view) of data processing engine.

18

using the collected trace log files, returns the performance metrics, and visualizes it for

further investigation. The detailed query specification is discussed later in Section 2.4.4.

2.4 Technical Details

In this section, we go over the code instrumentation component of IOPro and the

use of probes, the configuration of the servers, the role of the query analyzer, and various

sample queries.

2.4.1 Code Instrumentation

Using the information provided in the setup view (Figure 2.2), IOPro automati-

cally patches PVFS, the MPI library, and the high-level I/O libraries, such as PnetCDF

and HDF5, as a preparation for code instrumentation. Using the probe library that

maintains probe template codes for PVFS, MPI , PnetCDF, and HDF5, the instrumen-

tation engine generates actual probes that contain the trace log file location. In this

context, a probe is a piece of code inserted into the I/O software stack software to help

collect the required statistics. IOPro then creates a probe location file from a provided

template file (as in Listing 1) that specifies the appropriate location in the MPI library

and PVFS where the probes should be inserted. The syntax given in Listing 1 is for

illustrative purposes and is based on an initial prototype of IOPro that is currently under

development. Probe selector, a sub-component of the instrumentation engine, parses the

probe location file and extracts the location information for the probe code to be in-

serted. Using the extracted probe location information, the probe inserter automatically

inserts the appropriate probes into the proper locations in the I/O stack.

19

Figure 2.5 illustrates how the instrumentation engine works. In this figure, IO-

CallIDs is a small array that contains information of each layer such as the MPI I/O

call ID, PVFS client ID, PVFS server ID, disk operation ID, I/O type, and the start

timestamp and the end timestamp of each layer. When IOCallIDs are passed from the

upper layer to the layers below, the inserted probes extract the information from them

and generate the trace log files with latency statistics at the boundary of each layer.

Note that a high-level MPI I/O call can be fragmented into multiple small subcalls.

For example, in two-phase I/O [6], which consists of an I/O phase and a communication

phase, tracing an I/O call across the boundaries of the layers in the I/O stack is not

trivial. In our implementation, each call has a unique identification number in the current

layer and passes it to the layers below. This helps us associate the high-level call with

its subcalls in a hierarchical fashion. It also helps analyze trace log data by combining

the statistics that come from different layers in a systematic way (for example, all the

variables that hold latency information at different layers are associated with one another

using these IDs).

In the PVFS server, a unique data structure, called flow descriptor, maintains all

the information to perform requested I/O operations from the PVFS clients. This struc-

ture is used by our tool. In Figure 2.5, for example, the Server-start-probe inserted into

the PVFS server layer extracts the necessary information passed from the PVFS client

and packs it into the flow descriptor. Since the flow descriptor is passed to the entire

PVFS server, the probes inserted in the server can extract the necessary information

from it and manipulate the statistics to trace I/O calls without much difficulty.

20

Code

Instrumenter

MPI_File_write_all

MPI_File_write_all

ADIO_PVFS2_WriteContig ADIO_PVFS2_WriteStrided

PVFS_sys_io io_datafile_setup_msgpairs

io_start_flow flow_callback

bmi_recv_callback_fn

App-start-probe

MPI_File_write_all(…, IOCallIDs)

App-end-probe

MPI_File_write_all(…, IOCallIDS) {

 MPI-start-probe

 MPI-end-probe

}

ADIO_PVFS2_WriteContig(…
 … , IOCallIDs) {

 MPI-probe

 PVFS_sys_write(…, IOCallIDs);

}

PVFS_sys_io(…, *IOCallIDs)

{

 Client-start-probe

 Client-end-probe

}

io_start_flow() {

 Server-start-probe

}

flow_callback() {

 Server-end-probe

}

disk

ADIO_PVFS2_WriteStrided(…
 … , IOCallIDs) {

 MPI-probe

 PVFS_sys_write(…, IOCallIDs);

}

io_datafile_setup_msgpairs(…
 … , *IOCallIDs) {

 Client-probe

 PINT_SERVE_REQ_IOFILL(

 …, *IOCallIDs)

Probe

Location File

flow_multiqueue_post

trove_write_callback_fn

Disk-end-probe

Disk-start-probe

Application

MPI-IO

PVFS2 Client

PVFS2 Server

bmi_recv_callback_fn

disk

flow_multiqueue_post

trove_write_callback_fn

Fig. 2.5. Illustration showing how probes are inserted into the different layers of
the I/O stack components by the instrumentation engine. Left: I/O call flows when
MPI File write all() is issued. Right: the instrumented I/O stack.

2.4.2 Configuration of Running Environments

After PVFS is installed, the user specifies which nodes in the cluster will serve as

metadata servers and I/O nodes. The user also determines how many MPI processes will

be used to run the application. Unfortunately, manually configuring the PVFS servers

and running the parallel application on them can be very tedious and challenging. Instead

of manual configuration, our tool provides a simple mechanism to specify configuration

of running environments (see Figure 2.3). It takes the configuration metrics for the

servers such as metadata server(s) and I/O server(s) as well as a filename storing this

configuration, protocol, port number, storage location, and a log filename for each server.

21

Latencyi

Latencyi-1 A Latencyi-1 B Latencyi-1 C

Layer(i)

Layer(i-1)

(a) Computation of I/O latency

Throughputi

Thpti-1 A Thpti-1 B Thpti-1 C

Layer(i)

Layer(i-1)

(b) Computation of I/O throughput

Fig. 2.6. Computation of latency and throughput. I/O latency computed at each layer
is equal to the maximum value of the I/O latencies obtained from the layers below it. In
contrast, I/O throughput is the sum of I/O throughput coming from the layers below.

It also takes a filename that specifies the host machine(s) from which the MPI job

launcher, mpiexec, is launched and the number of processes (or clients) to be used for

running the given application.

This simple configuration method also provides us with the flexibility of running

a single application and/or multiple applications using different configuration options

without recompilation of the instrumented I/O stack. For example, we can easily run

the application program(s) on the instrumented I/O stack with different combinations

of configurations such as (1) running the same application but varying the number of

metadata server(s), I/O server(s), or PVFS clients; (2) running different applications on

the same configuration; (3) different mixes of the previous two; and (4) running multiple

applications on the same configuration and/or a different one.

2.4.3 Computation Methodology

After running the application program, the data process engine collects all trace

log files from each layer of the I/O stack. Based on the user’s queries, it then processes

22

the trace log and returns the corresponding statistics. As shown in Figure 2.4, our cur-

rent implementation provides functionalities to analyze latency, throughput, estimated

energy consumption, and the number of calls issued from clients to servers. We want

to emphasize however that, if desired, IOPro can be easily extended to accommodate

additional/new statistics. Table 2.2 shows the input query formats accepted by the cur-

rent implementation of our tool. The detailed description of our query will be given in

Section 2.4.4.

Table 2.2. Accepted query format.
Latency Breakdown Inclusive process id mpi call id
Latency Breakdown Exclusive process id mpi call id
Latency Operation List process id mpi call id pvfs call id server id
Latency Operation Max process id mpi call id pvfs call id server id
Latency Operation Min process id mpi call id pvfs call id server id
Latency Operation Avg process id mpi call id pvfs call id server id
Thru. process id mpi call id pvfs call id server id
Energy active p inactive p process id mpi call id pvfs call id server id
Call process id mpi call id pvfs call id server id

Figure 2.6 illustrates the computation of latency and throughput. For each I/O

call, the I/O latency value computed at each layer is the maximum value of the I/O

latencies from the layers below it.

Latencyi = Max(Latencyi−1A,Latencyi−1B,Latencyi−1C) (2.1)

However, the computation of I/O throughput in Figure 2.6(b) is additive; in other words,

I/O throughput at any layer is computed by summing the sizes of data coming from the

23

layers below below it.

Throughputi =
∑

(Thpti−1A, Thpti−1B, Thpti−1C) (2.2)

To compute (estimate) the energy consumption for I/O call, we employ the power model

described in [25].

In our work, inclusive latency means the time spent in the current layer, which

includes the latency in the layers below. Exclusive latency is the time spent in the current

layer and excludes the sublayers. That is, it can be calculated from inclusive latency by

subtracting the sublayer latency from the current layer. Figure 2.7 demonstrates how

the inclusive and exclusive latencies are computed (the dotted arrows denote inclusive

latency, and the solid arrows indicate exclusive latency). The figure also shows the

employed tracing mechanism, which identifies and distinguishes I/O calls at each layer.

Each layer generates a unique ID such as process id, mpi call id, pvfs call id, and server id

when an I/O call is passed. This unique number is cumulatively carried down to the

sublayers. All information for the I/O calls passed through the entire I/O stack is stored

in the last layer. By matching and identifying these IDs, one can easily relate the high-

level MPI I/O call to the subcalls.

Figure 2.8 shows the computation of inclusive latency in more detail. When, for

instance, a collective I/O call is issued, this I/O call can be fragmented into multiple

I/O calls in the MPI library if the size of requested I/O is larger than that of the buffer

in the MPI library. For example, in the figure, mpi call id 0 is fragmented into two

pvfs call id’s 0 and 1. In the PVFS client layer, each split I/O call has its own ID,

24

mpi_call_id

process_id

server_id server_id

disk_op_id

MPI

PVFS

Client

PVFS

Server

PVFS

Disk

LMPI

LClient

LServer

LDisk

disk_op_id

pvfs_call_idpvfs_call_id

Fig. 2.7. Inclusive (dotted arrow) and exclusive (solid arrow) latency models.

00 and 01 for the mpi call id 0, respectively. When these calls reach servers 0 and 1,

the cumulative trace information is 000 and 001 for cumulative ID 00 (blue line), and

010 and 011 for ID 01 (red one). This relationship is maintained until the end of the

I/O stack is reached. Therefore, for mpi call id 0, the inclusive latency computed at the

PVFS client layer is

Latencyclient =
∑

(L00, L01), (2.3)

and the inclusive latency at the PVFS server layer is

Latencyserver =
∑

(Max(L000, L001),Max(L010, L011)), (2.4)

where L denotes latency. Exclusive latency, on the other hands, can be calculated as

shown in Figure 2.7.

25

0

0 1

0 1

MPI

PVFS

Client

PVFS

Server

PVFS

Disk

LMPI

LServer

0

00 01

000 010 001 011

LClient

LDisk0000 0100 0010 0110

pvfs_call_id

Fig. 2.8. Computation of inclusive latency.

2.4.4 Query Model

As listed in Table 2.2, the current implementation of our tool provides four user

metrics to be analyzed: latency, throughput, energy, and call information. Below, we

discuss the details of our queries (metrics in square brackets are the user-provided input).

• Latency Breakdown Inclusive [process id] [mpi call id]

This query returns the inclusive latency information given process id and mpi call id.

For example, the query ‘Latency Breakdown Inclusive [0-1] [1-10]’ returns the in-

clusive latency for the mpi call id 1 to 10 issued from the process 0 and 1 to all

servers in breakdown-fashion, as described in Section 2.4.3. This is also applied

to compute exclusive latency.

• Latency Operation List [process id] [mpi call id] [pvfs call id] [server id]

This returns all latency information, listing detailed latency statistics for all match-

ing process-server combinations. For example, a query such as Latency Operation

26

List [0-4] [1-10] [-] [1-3] returns all combinations for mpi call id 1 to 10 issued from

the process 0 to 4 to the server 1 to 3. In this case, all possible combinations are

15. In the parameter pvfs call id, “-” means all. By default, pvfs call id is set to

“-” for simplicity since it is implicitly fragmented depending on the size of the I/O

request.

• Latency Operation Max/Min [process id] [mpi call id] [pvfs call id] [server id]

This is similar to the list latency format except that it returns the maximum/min-

imum latency. For example, Latency Operation Max [0-4] [1-10] [-] [1-3] returns

the maximum latency for mpi call id 1 to 10 issued from processes 0 to 4 to servers

1 to 3. Unlike list latency, this shows only the maximum latency among the given

servers and the corresponding server number. Note that this query provides the

latency statistics from the process’s and server’s points of view. More specifically,

from the process’s point of view, we can easily identify in which server a given

mpi call id experiences the maximum latency. From the server’s point of view,

we can identify the process that has the most latency in that server. Also, unlike

inclusive/exclusive latency, it presents detailed latency, not in breakdown fashion.

For example, if an mpi call id 0 is split into ten subcalls, it returns the maximum

latency among all ten individual subcalls.

• Latency Operation Avg [process id] [mpi call id] [pvfs call id] [server id]

This returns the average latency given the ranges of processes, MPI I/O calls, and

servers for each MPI I/O call.

27

• Throughput [process id] [mpi call id] [pvfs call id] [server id]

This calculates disk throughput in each PVFS server for each mpi call id from the

process’s and server’s points of view.

• Energy [active power] [inactive power] [process id] [mpi call id] [pvfs call id] [server id]

This calculates the estimated energy consumption in server class disks [25]. It also

plots both the process’s and the server’s views. Here, active power is the amount

of power consumption (in watts) when the status of disk is active; inactive power

is the power consumption when the disk is not active.

• Call [process id] [mpi call id] [pvfs call id] [server id]

This returns statistics about the number of issued I/O calls from processes to

servers. Using this query, one can detect which I/O server is suffering the most

from the I/O requests.

2.5 Evaluation Results

Most of the GUI components of IOPro have been implemented in Java and the

JFreeChart library [26]. Our implementation was evaluated on the Breadboard clus-

ter [27] at Argonne National Laboratory. In our experiments, we built an I/O stack with

pvfs-2.8.2, mpich2-1.2.1p1, pnetcdf-1.2.0, and hdf-1.8.5. Then, IOPro automatically gen-

erated an instrumented version of this I/O stack using IOPro. Note that we opted to

use PVFS, the user-level parallel file system, so that we could easily implement a tracing

and profiling mechanism without kernel modifications.

28

 0

 10

 20

 30

 40

 50

 60

4 8

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

)

Number of I/O Servers

non-instrumented
instrumented

(a) FLASH I/O

 0

 10

 20

 30

 40

 50

4 8

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

)

Number of I/O Servers

non-instrumented
instrumented

(b) S3D I/O

Fig. 2.9. Average execution time comparison. Two benchmarks run on 512 MPI
processes with 1 metadata server and various number of I/O servers. It can be seen
that, in both benchmarks, the overhead caused by our implementation is approximately
8.5%.

To evaluate the overhead caused by our implementation, we measured the average

execution time after 20 iterations, running two I/O intensive benchmarks, S3D I/O and

FLASH I/O. In each run, we dropped cache both in the servers and in compute nodes

to minimize the effect on cache. Figure 2.9 compares the average execution time of

two benchmarks running with 512 MPI processes and various number of I/O servers

on a non-instrumented I/O stack and an instrumented one. The result shows that the

overhead from all combinations is approximately 8.5%, on average. Table 2.3 presents

the detailed statistics.

Table 2.3. Overhead comparison

Benchmark I/O Server Non-instrumented Instrumented Overhead

FLASH I/O
4 49.66 sec 52.85 sec 6.4 %
8 31.32 sec 34.96 sec 11 %

S3D I/O
4 39.86 sec 43.16 sec 8.3 %
8 36.39 sec 39.40 sec 8.3 %

29

To demonstrate the capabilities of IOPro, below we present detailed results with

two benchmarks.

2.5.1 FLASH I/O

FLASH I/O benchmark [28] is the I/O kernel of the FLASH application [24],

a block-structured adaptive mesh hydrodynamics code that solves fully compressible,

reactive hydrodynamic equations, developed for studying nuclear flashes on neutron stars

and white dwarfs. The computational domain is divided into small blocks that are

distributed across different MPI processes. The FLASH block is a three-dimensional

array and there are 80 blocks on each MPI process. Each block contains inner blocks with

additional 4 element of guard cells to hold the state variables of the neighboring blocks.

The inner block surrounded by guard cells has 24 data array variables, e.g., density,

velocities, energy, and pressure. Every process writes these blocks into a checkpoint

file using 24 collective I/Os, in a manner that the checkpoint file appears as the data

for variable 0 up to variable 23. FLASH I/O generates one checkpoint file and two

visualization files that contain centered and corner data. FLASH I/O works with both

the PnetCDF and HDF5 interfaces to save data and metadata in each high-level I/O

format.

In our evaluation, we ran the FLASH I/O benchmark on 1 metadata server, 4

I/O servers, and 512 MPI processes using the HDF5 interface. We configured a 8×8×8

block size in X-Y-Z dimensions. In this experiment, FLASH I/O produces a 3.8 GB

checkpoint file and two visualization files (329 MB and 466.8 MB, respectively). From

Figure 2.10, we see that 32 collective I/O calls without fragmentation are evenly issued

30

Fig. 2.10. Number of I/O calls issued to all servers from one process using the HDF5
interface. We see that each server receives the same number of calls from that process.

to all servers from one process. The checkpoint file is generated by the first 24 I/O calls

and two visualization files are created by the following 4 I/O calls, respectively.

Figure 2.11 illustrates the inclusive latency of the FLASH I/O benchmark from

Process 0 to process 30 among all 512 processes. The total time in the figure presents

the global time spent in each layer to run the application program, using different color

legends. The context information gives the detailed latency statistics in the MPI I/O

library, PVFS client, PVFS server, and server disk layers for each process. We observe

that the latency in the MPI I/O library and the PVFS layer is unevenly distributed

among the processes. For example, the most time spent in the MPI library for the I/O

requests is approximately 11.51 seconds, in process 16, and the least is about 8.97 seconds

in process 1. We observe that the overhead in the MPI library is relatively small. In

MPI-IO, the default collective buffering scheme is set to automatic, that is, MPI-IO uses

heuristics to determine whether it enables the optimization. Since FLASH I/O accesses

noncontiguous data, rarely exploiting data exchanges and optimization for collective I/O,

31

Fig. 2.11. Inclusive latency values for the FLASH I/O benchmark.

MPI-IO disables collective buffering and automatically converts collective I/O requests

to independent I/O requests. We find that the latency in the MPI I/O library increases

about 14% because of the communication overhead when forcefully enabling collective

I/O. Since all the joined processes exploit independent I/O for running the application,

the completion time for each substantially differs.

32

1 [-1;App;common;Lib/APP/APP-common-probe1;-n 0]

2 [-1;App;write;Lib/APP/APP-write-probe;-l MPI_File_write(;before]

3 [-1;App;write;Lib/APP/APP-write-probe;-l MPI_File_write_at(;before]

4 [-1;App;write;Lib/APP/APP-write-probe;-l MPI_File_write_at_all(;before]

5 [-1;App;write;Lib/APP/APP-write-probe;-l MPI_File_write_all(;before]

6 [-1;App;read;Lib/APP/APP-read-probe;-l MPI_File_read(;before]

7 [-1;App;read;Lib/APP/APP-read-probe;-l MPI_File_read_at(;before]

8 [-1;App;read;Lib/APP/APP-read-probe;-l MPI_File_read_at_all(;before]

9 [-1;App;read;Lib/APP/APP-read-probe;-l MPI_File_read_all(;before]

10 [0;MPI;latency;Lib/MPI-IO/MPI-start-probe;-n 73;src/mpi/romio/mpi-io/read.

11 c]

12 [0;MPI;latency;Lib/MPI-IO/MPI-end-probe;-n 164;src/mpi/romio/mpi-io/read.c

13]

14 [0;MPI;latency;Lib/MPI-IO/MPI-start-probe;-n 75;src/mpi/romio/mpi-io/read_

15 all.c]

16 [0;MPI;latency;Lib/MPI-IO/MPI-end-probe;-n 120;src/mpi/romio/mpi-io/read_a

17 ll.c]

18 [0;MPI;read;Lib/MPI-IO/MPI-rw-probe1;-n 158;src/mpi/romio/adio/common/ad_r

19 ead_coll.c]

20 [0;MPI;read;Lib/MPI-IO/MPI-rw-probe2;-n 730;src/mpi/romio/adio/common/ad_r

21 ead_coll.c]

22 [0;MPI;latency;Lib/MPI-IO/MPI-start-probe;-n 73;src/mpi/romio/mpi-io/write

23 .c]

24 [0;MPI;latency;Lib/MPI-IO/MPI-end-probe;-n 171;src/mpi/romio/mpi-io/write.

25 c]

26 [0;MPI;latency;Lib/MPI-IO/MPI-start-probe;-n 75;src/mpi/romio/mpi-io/write

27 _all.c]

28 [0;MPI;write;Lib/MPI-IO/MPI-rw-probe2;-n 526;src/mpi/romio/adio/common/ad_

29 write_coll.c]

30 [0;MPI;write;Lib/MPI-IO/MPI-rw-probe1;-n 679;src/mpi/romio/adio/common/ad_

31 write_coll.c]

32 [1;Client;latency;Lib/PVFS/client-start-probe;-n 377;src/client/sysint/sys

33 -io.sm]

34 [1;Client;latency;Lib/PVFS/client-end-probe;-n 402;src/client/sysint/sys-i

35 o.sm]

36 [2;Server;latency;Lib/PVFS/server-start-probe;-n 152;src/server/io.sm]

37 [2;Server;latency;Lib/PVFS/server-end-probe;-n 5270;src/io/job/job.c]

38 [3;Disk;latency;Lib/PVFS/disk-read-start-probe;-n 190;src/io/flow/flowprot

39 o-bmi-trove/flowproto-multiqueue.c]

40 [3;Disk;latency;Lib/PVFS/disk-read-end-probe;-n 1010;src/io/flow/flowproto

41 -bmi-trove/flowproto-multiqueue.c]

42 [3;Disk;latency;Lib/PVFS/disk-write-start-probe;-n 1343;src/io/flow/flowpr

43 oto-bmi-trove/flowproto-multiqueue.c]

44 [3;Disk;latency;Lib/PVFS/disk-write-end-probe1;-n 1514;src/io/flow/flowpro

45 to-bmi-trove/flowproto-multiqueue.c]

Listing 1. A sample template file specifying probe locations. In this template file, five
different probes are specified for the application, MPI I/O library, PVFS client, PVFS
server, and disk layers, including probe names and location information to be inserted
as well as file names to be instrumented in the I/O stack.

33

(a
)

M
ax

im
u
m

la
te

n
cy

of
F

L
A

S
H

I/
O

(b
)

M
in

im
u

m
la

te
n

cy
o
f

F
L

A
S

H
I/

O

F
ig

.
2.

12
.

T
ot

al
m

ax
im

u
m

an
d

m
in

im
u

m
la

te
n

cy
fr

om
al

l
p

ro
ce

ss
es

.
In

b
ot

h
fi

gu
re

s,
th

e
ti

m
e

sp
en

t
in

th
e

P
V

F
S

cl
ie

n
t

la
ye

r
is

th
e

sa
m

e,
b

u
t

th
e

ti
m

e
sp

en
t

in
th

e
P

V
F

S
se

rv
er

an
d

d
is

k
is

d
iff

er
en

t.

34

Figure 2.12 compares the maximum and the minimum latency for all I/O requests

issued to all servers from Process 0 to Process 30. Unlike in Figure 2.12(a), we observe

a bigger latency gap between the client layer and the server (the green portion) in

Figure 2.12(b). We also notice the latency difference spent in the server and the disk

between Figure 2.12(a) and Figure 2.12(b). If the data lies on the data block, but is

smaller and not fit into it, it take less time to write the smaller portion of the data.

Figure 2.13 plots more detailed latency statistics for mpi call id 18 through 23. The

difference between the maximum and minimum latency of process 16 (in Figure 2.12) is

caused by the latency in the server from those I/O calls, as shown in Figure 2.13. Note

that the number on the server legend (the green bar) in Figure 2.13 is the server ID.

The I/O request (18-0) from the process, for example, spends the maximum amount of

time in server 0 and has minimum latency in server 3 even if it stripes 64 KB data over

all servers.

35

(a
)

P
ro

ce
ss

16
’s

m
ax

im
u

m
la

te
n

cy
(b

)
P

ro
ce

ss
1
6
’s

m
in

im
u

m
la

te
n

cy

F
ig

.
2.

13
.

M
ax

im
u

m
an

d
m

in
im

u
m

la
te

n
cy

fr
om

th
e

p
er

sp
ec

ti
ve

of
P

ro
ce

ss
16

fo
r

m
p

i
ca

ll
id

ra
n

g
in

g
fr

o
m

1
8

to
2
3
.

36

Disk throughput from mpi call id 0 through 23 from process 16 is plotted in

Figure 2.14.

Fig. 2.14. Disk throughput for mpi call id 0 to 23 to write a checkpoint file from process
16 to 4 servers.

Here, we observe the I/O characteristics of FLASH I/O. Although FLASH I/O

issues collective I/O requests to write checkpoint files, MPI-IO disables them and auto-

matically converts them to independent I/O requests because the data is noncontiguous.

We also notice that collective buffering rather degrades the performance of the FLASH

I/O. Based on this observation, the optimized code can be implemented in a way to

exploit the potential benefits of collective I/O. As seen in Figure 2.13, the latencies of

the I/O calls in the specific servers are higher than the others. Therefore, the application

and I/O stack can be tuned to reduce those variances.

37

2.5.2 S3D I/O

The S3D I/O benchmark is a parallel turbulent combustion application, named

S3D [29], developed at Sandia National Laboratories. Using a direct numerical simula-

tion, S3D solves the fully compressible Navier-Stoke, total energy, species, and mass con-

tinuity equations coupled with detailed chemistry. A checkpoint is performed at regular

intervals; its data consists primarily of the solved variables in 8-byte, three-dimensional

arrays. This checkpoint data can be used to obtain several physical quantities of in-

terest. Therefore, most of the checkpoint data is maintained for later use. At each

checkpoint, four global arrays—representing the variables of mass, velocity, pressure,

and temperature—are written to files.

Among those four arrays, pressure and temperature are three-dimensional arrays

while mass and velocity are four-dimensional. All four arrays share the same size for

the lowest three spatial dimensions X, Y, and Z and are partitioned among the MPI

processes along with X-Y-Z dimensions. For the three-dimensional arrays, the subarray

of each process is mapped to the global array in block partitioning of X-Y-Z dimensions.

For the four-dimensional arrays, the lowest X-Y-Z dimensions are partitioned as same

as the three-dimensional arrays, but the fourth dimensions is not partitioned. For the

arrays of mass and velocity, the length of fourth dimensions is 11 and 3, respectively.

S3D I/O supports MPI-IO, PnetCDF, and HDF5 interfaces. In our evaluation, we

configured 1 metadata server and 8 I/O servers and ran S3D I/O on 512 MPI processes

with the PnetCDF interface. We maintain the block size of the partitioned X-Y-Z

dimensions as 400×200×200 in each process. With this configuration, S3D I/O produces

38

Fig. 2.15. Inclusive latency of the S3D I/O benchmark.

three checkpoint files, 1.9 GB each. The average execution time on the instrument I/O

stack with 8 I/O servers is presented in Figure 2.9(b).

Figure 2.15 shows the inclusive latency generated by the query analyzer. For a

collective write in S3D I/O, a subset of MPI tasks (called aggregator) in each compute

node communicate with other processes to exchange data and write a large chunk of data

into a temporary buffer. After that, the aggregator in each node ships the I/O request

to the destination I/O servers. In our configuration, we have 8 aggregator processes to

perform the actual I/O operation (Figure 2.15). We observe that each process spends

about 33.4 seconds (on average) in the MPI I/O library and that most of the time spent

in the server layer is for disk operations. We also notice a latency gap between the

MPI I/O library and the PVFS client layer (the yellow portion in Figure 2.15). In S3D

I/O, all the joined processes heavily exchange the data for optimization, such as two-

phase I/O [6] and data sieving [5]. This optimization and synchronization results in the

overhead in the MPI library.

39

(a
)

P
ro

ce
ss

32
0’

s
in

cl
u

si
v
e

la
te

n
cy

(b
)

P
ro

ce
ss

1
9
2
’s

in
cl

u
si

v
e

la
te

n
cy

F
ig

.
2.

16
.

In
cl

u
si

ve
la

te
n

cy
fr

om
th

e
p

er
sp

ec
ti

v
e

of
P

ro
ce

ss
32

0
an

d
P

ro
ce

ss
19

2.
T

h
e

to
ta

l
ti

m
e

d
iff

er
en

ce
fo

r
d

is
k

o
p

er
a
ti

o
n

b
et

w
ee

n
th

em
is

m
ai

n
ly

ca
u

se
d

b
y

m
p

i
ca

ll
id

4
(3

.3
1

se
c.

vs
.

1.
99

se
c.

)
an

d
8

(4
.1

4
vs

3.
03

)
in

2.
16

(a
)

a
n

d
2
.1

6
(b

).

40

Figure 2.16(a) and Figure 2.16(b) plot inclusive latencies from the perspective of

Process 320 and Process 192 that have a maximum and minimum latency in the disk,

respectively. In both plots, the time spent in the MPI library for mpi call id 0, 4, and 8

is relatively longer than that for the other I/O calls. In general, S3D I/O produces three

checkpoint files using 12 collective I/O calls, and these files are generated by call ids 0∼3

(first file), 4∼7 (second file), and 8∼11 (third file). The first I/O call (0, 4, and 8) in

each checkpoint file initially opens the checkpoint file and write the mass variable to it.

Recall that, among the four arrays of mass, velocity, pressure, and temperature, mass

and velocity are four-dimensional arrays whose length of fourth dimensions are 11 and 3,

respectively. Since the mass array is the largest, it takes longer to be written into each

checkpoint file. In the same reason, the last I/O call (3, 7, and 11) to write velocity takes

relative longer time than to write pressure and temperature. In Figure 2.15, the total

time difference of disk operation between Process 320 (12.68 seconds) and Process 192

(10.51 seconds) is mainly caused by mpi call id 4 (3.31 vs. 1.99) and mpi call id 8 (4.14

vs 3.03) in Figure 2.16(a) and Figure 2.16(b).

Generated by using the max query format, Figure 2.17 presents detailed I/O

information ranging from mpi call id 0 to 3 that create the first checkpoint file. Here,

mpi call id 0 spends considerable time in the MPI I/O library to open the checkpoint

file and write data into it. Since the size of the requested I/O to write the mass array is

bigger than the buffer in the MPI library, this I/O call is split into multiple subcalls. In a

typical collective I/O, all processes communicate with one another and exchange access

information among all processes and reorganize I/O requests for better performance.

After this step, all participating processes issue the I/O requests but cannot send the

41

Fig. 2.17. Detailed latency from mpi call id 0 to 3 to create the first checkpoint file
in Process 320. The x-axis is a pair of (mpi call id - pvfs call id) and the y-axis is the
execution time in log scale. Here, mpi call id 0 and mpi call id 3 are fragmented into
11 subcalls (pvfs call id) and 3 in the MPI library, respectively. The number on the
PVFS server (green bar) in the figure indicates the server ID where the I/O call has the
maximum value.

next I/O requests until all finish their I/O requests. In Figure 2.17, mpi call id 0 is

fragmented into eleven subcalls from (0-0) to (0-10) when writing the mass array whose

length of the fourth dimension is 11, and mpi call id 3 three subcalls (3-0), (3-1) and

(3-2) to write velocity whose length of the fourth dimension is 3, respectively. The

latency difference between the MPI library layer and the PVFS layer, in mpi call id 0,

is caused by communications and data exchanges as well as by synchronizations among

the split I/O requests.

Note that the inclusive latency is computed by summing all maximum values of

the corresponding split calls from the I/O call in the given process(es). Further, the

42

maximum latency shows more detailed information for the split calls, if any, such as

individual maximum values and the server ID having a maximum among the server’s

given ranges. Therefore, the inclusive latency for mpi call id 0 is calculated by adding

the maximum values of the split calls for this I/O call in Figure 2.17. Figure 2.18

plots the disk throughput from the perspective of the server 0. Among 8 aggregator

processes, Process 192 has a maximum throughput (23.44 MB/sec, 24.39, 26.83, and

27.67, respectively) for (2-0), (3-0), (3-1), and (3-2).

43

F
ig

.
2.

18
.

D
is

k
th

ro
u

gh
p

u
t

to
se

rv
er

0
fr

om
al

l
8

ag
gr

eg
at

or
p

ro
ce

ss
es

fo
r

m
p

i
ca

ll
id

0
to

3
to

cr
ea

te
th

e
fi

rs
t

ch
ec

k
p

o
in

t
fi

le
.

T
h

e
x
-a

x
is

is
a

p
ai

r
of

(m
p
i

ca
ll

id
-

p
vf

s
ca

ll
id

).
H

er
e,

ca
ll

id
p

ai
rs

of
(2

-0
),

(3
-0

),
(3

-1
),

an
d

(3
-2

)
fr

om
th

e
P

ro
ce

ss
1
9
2

h
av

e
m

ax
im

u
m

d
is

k
th

ro
u

gh
p

u
t

in
th

e
se

rv
er

0.

44

Unlike FLASH I/O, all the joined processes heavily exchange data to do optimiza-

tion before sending I/O requests to the PVFS server in S3D I/O. In addition to optimiza-

tion, communication and synchronization among the processes cause the overhead in the

MPI library. Based on this understanding, scientists and application programmers can

customize the existing code to reduce the overhead, specifically in mpi call id 0, 4, and

8 at the application level. Also, performance engineers may improve the performance in

the MPI I/O library and disk operation at the system level.

2.5.3 Case Study: Pinpointing I/O Interference in the Concurrent Execu-

tion of Multiple Applications

In HPC systems that share I/O system resources across processes, interference

occurs when multiple applications access a storage resource, which in turn, causes sub-

stantial I/O performance degradation. To simulate this real case scenario and to profile

detailed metrics in such a situation, first, we separately run two benchmarks, S3D I/O

and a synthetic benchmark and measure the execution of each benchmark, as a baseline

experiment. We run S3D I/O with the same configuration as in Section 2.5.2, using 512

MPI processes with 1 metadata server and 8 I/O servers. Here, the synthetic benchmark

accesses data in row, column, and block fashion, and generates a 2 GB checkpoint file.

At this time, we run the synthetic benchmark on 64 MPI processes, but it only stripes

data over 1 I/O server, by setting MPI hints. After that, we run both benchmarks at

the same time so that I/O operations are interfered in each other. S3D I/O accesses 8

I/O servers to write data and the synthetic benchmark only stripes 1 I/O servers among

45

 0

 10

 20

 30

 40

 50

 60

 70

S3D I/O Synthetic

T
im

e
 (

se
c
)

Execution time
Server I/O time

(a) Running individually.

 0

 10

 20

 30

 40

 50

 60

 70

S3D I/O Synthetic

T
im

e
 (

se
c
)

Execution time
Server I/O time

(b) Running concurrently.

Fig. 2.19. Comparison of the execution time and the maximum I/O time in servers.
In Figure 2.19(a), the execution time of S3D I/O and the synthetic benchmark is 39.63
seconds and 36.43, and, in Figure 2.19(b), 56.18 and 61.11, respectively. In both the ex-
periments, the corresponding detailed I/O server time and striped data size are described
in Table 2.4 and Table 2.5.

8 I/O servers. The compute node was not overlapped when running concurrently in this

experiment.

Figure 2.19 compares the execution time and the I/O time in the server when each

benchmark runs separately. In Figure 2.19(a), considered as the baseline, the execution

time and the maximum server I/O time are 39.63 seconds and 33.29 in S3D I/O and

36.43 and 35.64 in the synthetic benchmark, respectively. Table 2.4 presents detailed

metrics in S3D I/O. When I/O operations are interfered, as shown in Figure 2.19(b),

the execution time increases upto 56.2 seconds in S3D I/O and 61.1 in the synthetic

benchmark (see Table 2.5). Therefore, the overhead of the execution time caused by I/O

interference are 42% and 68%, respectively. In this scenario, the data from S3D I/O are

evenly striped to 8 I/O servers, about 732 MB each. At the same time, the synthetic

benchmark accesses one of the 8 I/O servers to write a 2 GB checkpoint file. This I/O

46

Table 2.4. Baseline: S3D I/O detailed server I/O time and striped size of data.

Server 0 Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 Server 7
33.29 sec 33.28 33.27 33.28 33.28 33.27 33.29 33.28
732 MB 732 MB 732 MB 732 MB 732 MB 732 MB 732 MB 732 MB

Table 2.5. Running S3D I/O with the synthetic benchmark in interference.

Server 0 Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 Server 7
46.31 sec 46.22 46.26 46.27 46.24 46.21 46.15 46.20
2.73 GB 732 MB 732 MB 732 MB 732 MB 732 MB 732 MB 732 MB

server is a bottleneck and causes the degradation of the overall I/O performance in both

applications.

Table 2.6. Running S3D I/O with the synthetic benchmark without interference.

Server 0 Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 Server 7
35.64 sec 32.74 32.72 32.72 32.72 32.74 32.73 32.73

2 GB 837 MB 837 MB 837 MB 837 MB 837 MB 837 MB 837 MB

Based on this observation, a new I/O strategy can be adopted to prevent the

interference. By setting up the MPI hints not to stripe the bottleneck I/O server, thus

striping data only to 7 I/O servers, the execution time S3D I/O are 42.35 seconds,

and the I/O time and striped data size in server is presented in Table 2.6. Note that

the execution time of S3D I/O with 7 I/O servers increases about 7% compared to the

baseline. By ensuring that the two applications do not interfere with each other however,

one can eliminate performance degradation.

47

2.6 Conclusions

Performance analysis and visualization is an important step in understanding I/O

behavior, which is a result of complex interactions in the I/O stack. Performing manual

code instrumentation is often difficult and extremely error-prone. Even building the I/O

stack and configuring the running environment for application benchmarks is not trivial

because of the scale of the current HPC systems. Moreover, collecting and analyzing

trace data from them is challenging and daunting task. To alleviate these difficulties, we

have developed a parallel I/O profiling and visualizing framework, IOPro. Our tracing

utility uses existing MPI I/O function calls and therefore adds minimum overhead to

the execution time of applications. Our framework provides multiple metrics to analyze

and investigate detailed I/O behavior, including latency, throughput, energy consump-

tion, and call information. The results from these metrics contribute to evaluating and

explaining the parallel I/O behavior.

We used two application benchmarks, S3D I/O and FLASH I/O, to evaluate our

implementation of IOPro. Our experiments demonstrate different I/O behaviors in each

application: S3D I/O exchanges data among the joined processes to do optimization and

synchronization in the MPI library whereas FLASH I/O rarely does such optimization.

Although both applications issue collective I/O requests to write the checkpoint files,

the characteristics of I/O are different in each benchmark. By using the performance

information depending on the I/O behavior, the application programs can be optimized

to improve the performance. Also, customized instrumentation can be performed to get

more detailed performance statistics in the I/O stack.

48

Lastly, we show that, when multiple applications interfere each other due to shar-

ing I/O system resources, our framework can be used to profile detailed performance

metrics, aid in understanding complex I/O behavior, and detect the issue that degrades

the performance. Based on the gleaned information, the user can then employ an ap-

propriate solution.

49

Chapter 3

IOPin: Runtime Profiling of Parallel I/O

in HPC Systems

Many I/O- and data-intensive scientific applications use parallel I/O software to

access files in high performance. On modern parallel machines, the I/O software consists

of several layers, including high-level libraries such as Parallel netCDF and HDF, mid-

dleware such as MPI-IO, and low-level POSIX interface supported by the file systems.

For the I/O software developers, ensuring data flow is important among these software

layers with performance close to the hardware limits. This task requires understanding

the design of individual libraries and the characteristics of data flow among them. In

this chapter, we discuss a dynamic instrumentation framework, called IOPin, that can be

used to understand the complex interactions across different I/O layers from applications

to the underlying parallel file systems. Instead of manually instrumenting applications

and other components of the I/O stack, we leverage a lightweight binary instrumentation

using probe mode in Pin [22] to implement our current prototype. That is, IOPin per-

forms the instrumentation with minimal overhead in the binary code of the MPI library

and the underlying parallel file system at runtime. Our preliminary experience indicates

that the costs of using the proposed dynamic instrumentation is about 7% of the appli-

cation execution time. Therefore, it provides the language-independent instrumentation

targeting scientific applications written in C/C++ and Fortran. Furthermore, our tool

50

requires neither source code modification nor recompilation of the application and the

I/O stack components.

A unique aspect of our runtime profiling framework is that it provides a hierar-

chical view for parallel I/O. As in IOPro, each MPI I/O call has a unique identification

number in the MPI-IO layer and is passed to the underlying file system with trace infor-

mation. This mechanism helps associate the MPI I/O call issued from the applications

with its sub-calls in the PVFS layer in a systematic way. In addition, our tool provides

detailed I/O performance metrics for each I/O call, including I/O latency at each I/O

software stack layer, the number of disk accesses, disk throughput, the number of I/O

calls issued to the PVFS server.

3.1 Overview of Dynamic Instrumentation

The main goal behind this work is to understand the I/O characteristics of parallel

applications, by detecting a “critical I/O path” at runtime from the process to the

parallel file system that affects the entire system performance. Based on the knowledge

about I/O behavior, application programmers and scientists can optimize performance by

redesigning applications or system architecture. Our current prototype exploits Pin [22],

a lightweight binary instrumentation tool to instrument the binary code of the MPI

library and PVFS. As a result, our tool does not require source code modification and

recompilation of the I/O software stack components.

Figure 3.1 shows the overview of our Pin-based framework. This figure is intended

to explain the flow of MPI I/O call and how the framework carries out the dynamic in-

strumentation when a collective write function is issued. In the figure, two Pin profiling

51

PVFS

Client

MPI-IO

Library

MPI_File_write_all

MPI_File_write_all

PVFS_sys_io

PVFS

Sever io_start_flow flow_callback

trove_write_callback_fn

disk

Client-side

Pin Process

Server-side

Pin Process

High-level I/O

Lib. or App.

Client Log

Manager

Sever Log

Manager

Fig. 3.1. Overview of our dynamic instrumentation framework. The client Pin pro-
cess creates trace information for the MPI library and PVFS client at the boundary
of each layer, and send it to the client log manager. The server Pin process produces
trace information—the latency spent in the server, processed bytes, the number of disk
accesses, and I/O throughput—and transmits it to the server log manager.

processes on the client side and the server side generate trace log information at the

border of each layer—the MPI library, PVFS client, and PVFS server. The log on the

client side contains trace information of each layer such as rank, mpi call id, pvfs call id,

I/O type (read/write), and latency spent in the MPI library and PVFS client. In the

server log with these metrics, additional information is also sent to the server log man-

ager, such as pvfs server id, latency in server, bytes to be read/written, the number of

disk accesses, and disk throughput for the MPI I/O call at runtime.

Both log managers are implemented in SQLite [30], a software library that im-

plements a SQL database engine. Each log manager sends the record information back

to the corresponding Pin process that has a maximum latency for the I/O operation.

Then, the Pin identifies the process that has a maximum I/O latency from it, and traces

52

and instruments only this process. This selective dynamic instrumentation not only

reduces overheads, but also detects only one critical I/O path that affects the system

performance effectively in the I/O stack.

3.2 Backgrounds

In this section, we briefly discuss dynamic binary instrumentation, Pin instru-

mentation, and parallel I/O operation widely exploited in HPC.

3.2.1 Overview of Dynamic instrumentation

Dynamic binary instrumentation (DBI) is a popular technique to analyze the

software behavior at runtime through the injection of instrumentation code. The instru-

mentation code is executed in the application’s address space as a part of the normal

instruction stream after injection and is entirely transparent to the applications. In this

reason, DBI is widely used to implement the instrumentation platforms that provide

an API to facilitate the development of instrumentation. Using the instrumentation

platforms, a lot of analysis and profiling tools are developed for cache simulation [31],

memory allocation error [32] and leak detection, security violation detection [33], and

modeling of system performance [34].

Observing and analyzing the application behavior during execution makes it pos-

sible for software developers and scientists to gain insight into the characteristics and

state of the application at various running points. Since the usability of DBI-based pro-

filing and analysis tool heavily depends on its overhead caused by itself, the platform

developer particularly focuses on improving the performance of DBI [35].

53

3.2.2 Overview of Pin

Pin is a software system that performs runtime binary instrumentation of Linux

and Window applications. The goal of Pin is to provide an instrumentation platform

for implementing a variety of program analysis tools for multiple architectures. Pin

provides a rich API that observes all the architectural state of a process such as the

contents of registers, memory, and control flows. Also, the Pin API makes it possible

to write portable instrumentation tools (called Pintools). In Pin, user may add analysis

routines to the application process, and write instrumentation routines to determine

where the analysis routines are called. Pin also provides a limited ability to alter the

program behavior by allowing an analysis routine to overwrite the registers and memory.

Instrumentation is performed by a just-in-time (JIT) compiler. The input to this

compiler is not bytecode, but a native executable. Pin intercepts the execution of the

first instruction of the executable and generates (“compiles”) new code for the straight-

line code sequence starting at this instruction. It then transfers control to the generated

sequence. The generated code sequence is almost identical to the original one, but Pin

ensures that it regains control when a branch exits the sequence. After regaining control,

Pin generates more code for the branch target and continues execution. Every time JIT

fetches some code, the Pintool has the opportunity to instrument it before it is translated

for execution. The translated code and its instrumentation is saved in a code cache for

future execution of the same sequence of instrumentation to improve performance. Our

initial evaluation for the parallel I/O application in JIT mode shows that the overhead

ranges from 38.7% to 78% of the application execution time.

54

Application binary is also instrumented in Pin probe mode. Probe mode is a

method of using Pin to insert probes at the start of specified routines. Here, a probe is

a jump instruction that overwrites an original instruction in the application. Before the

probe is inserted, the first few instructions of the specified routine are relocated. Pin

copies and translates the original bytes of the application binary and then the probe

redirects the flow of control to the replacement function. After instrumentation the

control flow returns to the original function. Therefore, in probe mode, the application

and the replacement routine are run natively. This improves performance, but it puts

more responsibility on the tool writer. Many of the Pin APIs that are available in JIT

mode are not applicable in probe mode. In this work, IOPin is implemented in probe

mode.

3.2.3 Critical Path Detection Affecting Parallel I/O Performance

On a modern cluster today that is a generic client/server architecture for sci-

entific applications, the entire application performance heavily depends on the parallel

I/O performance in the system. In many parallel applications, to reduce the high I/O

latency, the requests from different processes are frequently interleaved and merged into

contiguous portions of the file. When such optimization, broadly referred to as collective

I/O, is used, all the joined processes broadcast and exchange the information related

to the I/O request. If the I/O access pattern of all processes is contiguous and can

have benefits from collective I/O, the aggregator process in Figure 3.2 can access the

data by two-phase I/O — (1) redistribution of data to the processes (communication

phase) and (2) a single, large, contiguous access to data (I/O phase) in case of write

55

.

i

.

j

M processes

N I/O servers

Fig. 3.2. The critical path affecting the application performance. Among the number
of M processes and N servers, a MPI I/O call from the ith process (aggregator) to the

jth server dominates the entire application performance for the given collective I/O call.

operation. This method slightly adds the cost of interprocess communication among the

joined processes, but it can significantly reduce the I/O time. Although collective I/O is

performed to improve I/O latency, the performance of collective I/O can be significantly

affected by the critical path from the process to the server for the given I/O. If the

process on the critical path has a small size of temporary buffer needed for two-phase

I/O and frequently copies the data into the buffer, and communicates other processes for

redistribution, it can degrade the performance. In this case, the critical path from the

aggregator process i to the server j can dominate the overall application performance

in Figure 3.2. Also, the I/O server on the critical path can be bottleneck in certain

reasons such as network problem, explosion of I/O requests to the server, or faulty I/O

56

server. Our implementation may perform optimization at process level by changing two

user-controllable parameters specified in MPI-IO hints for collective I/O at runtime: the

number of processes that perform I/O operation in the I/O phase and the temporary

buffer size (4 Mbytes by default) needed for two-phase I/O on each process.

3.3 Technical Details

We provide here details about dynamic code instrumentation and computation

methodology for latency and throughput.

3.3.1 Detailed Dynamic Instrumentation

Figure 3.3 illustrates in detail how our implementation performs dynamic instru-

mentation. When an MPI I/O function call is issued from the high-level I/O library

or application, the Pin process on the client side generates trace information, includ-

ing rank, mpi call id, pvfs call id, I/O types (read/write), and timestamp in the MPI

library. By definition, the MPI I/O function call is replaced with PVFS sys io function

in the MPI library with additional arguments (PVFS IO WRITE and PVFS HINT NULL) to

be issued to PVFS client. Here, the Pin process packs the trace information into a

PVFS hints structure and replaces the last argument, PVFS HINT NULL (initially set

to NULL by default), with the Pin-customized hint in the PVFS sys io(). In the PVFS

client, the Pin process extracts the trace information from hints and stores the trace

information in the buffer to calculate latency later. The Pin-defined hint is encapsulated

into a state machine control block (smcb) structure and passed to the PVFS server.

57

Generate trace info. for MPI_File_write_all()

PVFS

Client

MPI-IO

Library

MPI_File_write_all

MPI_File_write_all

PVFS_sys_io(…, hints)

#define PVFS_sys_write(ref,req,off,buf,mem_req,creds,resp)

 PVFS_sys_io(ref, req, off, buf, mem_req, creds, resp,

 PVFS_IO_WRITE, PVFS_HINT_NULL)

PVFS_sys_write

PVFS

Server

PVFS_sys_io(ref, req, off, buf, mem_req, creds, resp,

 PVFS_IO_WRITE, PVFS_hints)

rank, mpi_call_id, pvfs_call_id

io_start_flow(*smcb, ...)

PVFS_hints

Server-side

Pin Process

rank, mpi_call_id, pvfs_call_id

trove_write_callback_fn(*user_ptr, …)

original call flow

Pin call

flow

The server Pin searches hints from *smcb passed

from the traced process, extracts trace info., gener-

ates a log, and sends it to the server log manager.

The server log manager identifies/instruments the I/O

server that has a maximum latency.

flow_callback(*flow_d, ...)

Pack trace info. into

PVFS_hints

Client-side

Pin Process

Replace PVFS_HINT_NULL

with PVFS_hints

Client starting point

Client ending point

Server starting point

Server ending point

Disk starting/ending point

High-level

I/O Lib.,

or App.

Client Log

Manager

Sever Log

Manager

The client side Pin sends

a log to the client log

manager. The client log

manager returns a record

that has a max. latency

for the I/O. Pin instrume-

nts the corresponding

MPI process selectively.

Fig. 3.3. Detailed illustration of how the trace information is passed. The Pin process
creates a PVFS hints structure that contains rank, mpi call id, and pvfs call id. It then
replaces PVFS HINT NULL in PVFS sys io() with the Pin-generated PVFS hints.

58

At the starting point of server, the Pin process searches a customized PVFS hints

from the first argument (*smcb) and extracts the trace information. For each I/O opera-

tion, PVFS server maintains a flow descriptor structure from smcb. This flow descriptor

includes all information about the corresponding I/O request and flows until the end of

the I/O operation. Since the Pin-customized hint containing the trace information exists

in flow descriptor, the server Pin process can extract it from hints in flow descriptor at

any point in the server without complexity.

At the entry point of disk write operation, trove write callback fn(), the Pin

process acquires the address that points to the flow descriptor from the first argument

(void *user ptr) in the function. It then finds the PVFS hints from it and stores disk

I/O information, including the bytes processed, the number of disk accesses at the end of

the disk operation with the corresponding rank, and the id information extracted from

hints.

At the exit point of the server, Pin produces the log information with necessary

information, e.g., rank, mpi call id, pvfs call id, I/O type, bytes processed for the corre-

sponding MPI I/O operation, the number of accesses to disk, latency spent in the server,

and disk throughput. This server log information is sent to the server log manager.

Again, the Pin process on the client side generates a log at the exit point of the layer

and sends it to the client log manager.

The client log manager sends the record information back to the client Pin process

that has a maximum latency for the I/O operation. The client Pin detects the MPI

process that has the maximum I/O latency, and traces and instruments only this process.

The server side Pin also identifies the I/O server that spends the longest time to handle

59

 0

 50

 100

 150

 200

 250

 300

64 procs 128 procs 256 procs 512 procs

T
im

e
(s

ec
)

Number of Processes

un-instrumented
Pin-instrumented

Fig. 3.4. Comparison of S3D I/O execution time. This figure shows the execution time
running on un-instrumented I/O stack and Pin-instrumented. The overhead caused by
Pin-instrumentation in probe mode is about 7%, on average.

the I/O request. Our selective dynamic instrumentation not only reduces the overhead,

but also effectively detects only one “critical I/O path” to the server among hundreds of

thousands processes that affects the system performance in the I/O software stack.

At the end of the execution, by simply associating the mpi call id and pvfs call id

in the client with the one in the server, the entire I/O path from the MPI library to

PVFS server can be traced with the performance metrics. The detailed computation

methodology for the performance metrics is explained in Section 2.4.3.

3.4 Evaluation

Our dynamic instrumentation framework for the parallel I/O application is eval-

uated on the Breadboard [27] cluster at Argonne National Laboratory (ANL). Each

60

 1
 2
 4
 8

 16
 32

 0 1 2 3 4 5 6 7 8 9 10 11

T
im

e
 (

s
e
c
o
n
d
s
)

mpi_call_id

3

1

1 1

3

1 1 1

3

1 1 1

MPI
Client

Server

(a) Execution time of S3D I/O.

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0 1 2 3 4 5 6 7 8 9 10 11

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

mpi_call_id

(b) I/O throughput of S3D I/O.

Fig. 3.5. Comprehensive results drawn by IOPin. In (a), for each mpi call id, the
latency spent in MPI, client, and server is plotted in order. The latencies for some
mpi call id’s in client and server are barely seen because they are less than 0.1 sec. The
figure on the server bar implies the number of fragmented calls (sub-calls). In (b), the
throughput of mpi call id 0, 4, and 8 is plotted cumulatively even if they are split into
3 sub-calls.

node of this cluster consists 8 quad-core Intel Xeon Processors and 16 GB main mem-

ory. Therefore, each physical node can support 32 MPI processes. We evaluated our

implementation running on 1 metadata server, 8 I/O servers, and 256 processes. In

our evaluation, we use pnetcdf-1.2.0 as a high-level I/O library, mpich2-1.4 as a middle-

ware, and pvfs-2.8.2 as a parallel file system. To demonstrate the effectiveness of the

framework, we tested a I/O-intensive benchmark, S3D-IO [29].

S3D I/O is the I/O kernel of S3D application, a parallel turbulent combustion

application using a direct numerical simulation solver developed at Sandia National Lab-

oratories (SNL). A checkpoint is performed at regular intervals; its data consists primar-

ily of the solved variables in 8-byte, three-dimensional arrays. At each checkpoint, four

61

global arrays—representing the variables of mass, velocity, pressure, and temperature—

are written to files. All four arrays share the same size for the lowest three spatial

dimensions X, Y, and Z and are partitioned among the MPI processes along with X-Y-Z

dimensions. In our evaluation, we maintain the block size of the partitioned X-Y-Z di-

mension as 200 × 200 × 200 in each process. With the PnetCDF interface, it produces

three checkpoint files, 976.6MB each.

Figure 3.4 compares the execution time of S3D I/O when running on un-instrumented

I/O stack and dynamically instrumented I/O stack. We observe that, with the process

counts of 32, 64, 128, and 256, the average overhead incurred by our proposed dynamic

instrumentation is about 7%.

Plotted in Figure 3.5(a) is the latency spent in the MPI library, PVFS client, and

PVFS server from the perspective of one of the aggregator processes on a critical I/O

path among 256 processes. Note that a large fraction of the time spent in the server is

for disk operations even though not shown here. In S3D I/O, three checkpoint files are

produced by 12 collective I/O calls, and each checkpoint file is generated by 0∼3, 4∼7,

and 8∼11, respectively. For example, the first checkpoint file is opened by mpi call id

0. The four arrays of mass, velocity, pressure, and temperature are sequentially written

by the mpi call id 0, 1, 2, and 3. We observe from Figure 3.5(a) the latency difference

between the MPI library and the PVFS client. During the collective I/O operation

in S3D I/O, all the joined processes heavily exchange data for optimizations such as

data sieving [5] and two-phase I/O [6]. In addition, communication and synchronization

among the processes cause the overhead in the MPI library. We also notice that the

latency in the MPI library for mpi call id 0, 4, and 8 is longer than that of the others.

62

These calls are to open the individual checkpoint file and to write the mass value which

is the largest array among the four. In our experiment, these calls are fragmented into

3 sub-calls to satisfy the I/O requests. The figure on the server bar in Figure 3.5(a)

indicates the number of fragmented calls which is also the number of disk accesses.

Figure 3.5(b) plots the throughput of an individual I/O call from mpi call id 0

to 11. The first calls (0, 4, and 8) to create the individual checkpoint file are split into

3 sub-calls, respectively, and the throughput of those I/O calls is plotted cumulatively.

We observe that the I/O throughput to for creating and writing the first file is higher

than the others, on average, which needs to be further investigated.

Based on the understanding of I/O characteristic from the given applications,

scientists and application programmers can customize the existing application code to

better use the middleware. Also, performance engineers may reduce the the overhead

caused by such optimizations in the MPI library.

3.5 Conclusions

Understanding I/O behavior is one of the most important steps for efficient ex-

ecution of data-intensive scientific applications. The first step in understanding I/O

behavior is to instrument the flow of an I/O call. Unfortunately, performing manual

instrumentation is extremely difficult and error-prone since the characteristics of I/O

are a result of complex interactions of both hardware and multiple layers of software

components. Because of the scale of the current HPC systems, collecting and analyzing

trace information are challenging and daunting tasks. To alleviate these difficulties, we

propose a dynamic instrumentation framework working on the binary code of the MPI

63

library and PVFS. The tool inserts trace information into a PVFS hints structure and

passes it into the sub-layers at runtime. This method can provide a hierarchical view of

the I/O call from the MPI library to the PVFS server without source code modification

or recompilation of the I/O stack.

We used a scientific application benchmark, S3D I/O, to evaluate our proposed

framework. Changing the number of processes to run S3D I/O, we made different ex-

periments and observed that the overhead induced by our implementation is about 7%

on average. Our tool provides several metrics to understand and analyze I/O behavior,

such as the latency of each layer, the number of fragmented I/O calls and disk accesses,

and I/O throughput. The results from these metrics contribute to evaluating and tuning

the applications and I/O software stack.

64

Chapter 4

IOGenie: Automatic Parallel I/O Code Generation and

Optimization framework for HPC Applications

In this chapter we introduce an automatic parallel I/O code generation framework,

called IOGenie, which generates the efficient and optimized code for the scientific parallel

applications written in C/C++ and Fortran. Using a graphical user interface, our tool

takes high-level annotations for I/O as input, analyzes the given options, and generates

optimized I/O code that effectively exercises the underlying I/O stack. This tool helps

users write data-intensive applications easily and effectively. Also, it enhances the quality

of tool-generated code that exploits various optimizations on the underlying I/O software.

Our experience indicates that the overhead of running tool-generated applications is

negligible.

4.1 Introduction

In response to the need for complex and highly scalable HPC applications, to-

day’s parallel computing offers a comprehensible portfolio of computing and storage

resources. In such platforms, design and implementation of data-intensive parallel ap-

plications should provide high levels of reliability, efficiency, availability, and scalability.

Accordingly, novel approaches and numerous optimizations have been investigated at

different layers such as intermediate libraries and parallel file systems to improve the

I/O performance and overcome the I/O bottleneck. To map a given application onto

65

the target I/O system and coordinate its accesses to parallel file systems, different I/O

software layers are developed and built in the I/O stack that consists of high-level I/O

libraries such as PnetCDF and HDF5 as well as middleware like MPI-IO, as shown in

Figure 1.1. These libraries/middleware are widely used in a variety of scientific domains

to achieve high-performance.

Considering numerous APIs and their complex interactions among these libraries,

it is difficult for users to understand their details and interactions. In addition, there

exist various optimization opportunities across I/O libraries and parallel file systems,

which helps improve I/O performance. Thus, writing a parallel I/O code that efficiently

exploits these optimizations is a very challenging task. In particular, it is not unusual for

an average (non-I/O expert) user to make mistakes in orchestrating I/O accesses in the

code. Further, such a user may not be able to take full advantage of I/O optimization

opportunities within and across different layers of the I/O stack. Writing correct and

optimized I/O code is a serious challenge even for experienced programmers.

In this chapter, we discuss a GUI-based I/O code generation and optimization

framework, called IOGenie, which automatically generates parallel I/O code for any I/O

stack, based on the user-supplied input parameters—high-level hints and annotations. As

shown in Figure 4.2, our prototype of IOGenie consists of two main components, namely,

a graphical user interface (GUI) and code generation engine. The front-end GUI accepts

high-level hints provided by users and the back-end code generation engine performs the

actual code generation. The I/O hints taken from the GUI include information such as

the I/O library to be used, datasets definition, data access patterns at each I/O point,

and data layouts in the storage nodes. The code generation engine, then, analyzes the

66

given hints and formulates the optimized code at each I/O point that users specify in the

application. Note that, unlike MPI hints to be used by users to optimize file access, the

hint in this dissertation is an interface for users to pass general information to our tool.

Also, when there is no confusion, the hint(s) and annotation(s) are used interchangeably.

The main goal of our tool is to improve programmers’ productivity and enhance

the code quality of scientific applications. The GUI provides a convenient and user-

friendly interface for users to enter hints. Also, the format of high-level hints supported

by our tool provides a good abstraction. Thus, users can easily specify I/O operations

to be performed in the application. Using the given hints, our tool then generates an

optimized I/O code considering the I/O access patterns of the application as well as the

potential optimizations presented by the underlying I/O libraries.

4.2 OVERVIEW

In this section, we briefly discuss an architecture model in HPC, a parallel I/O

software stack, and parallel I/O operations widely exploited in HPC.

4.2.1 HPC Architecture and I/O Software Stack

Most large-scale data-intensive applications run on internet services (or “cloud

computing”) or high-performance computing (HPC) systems. In this work, we assume

data-intensive applications are written in Message Passing Interface (MPI) [19, 36], a

dominant parallel programming model in large-scale. Also, our tool targets scientific

applications running on HPC systems. Traditionally, HPC is defined by parallel scientific

applications that is normally deployed in separate compute nodes and storage nodes with

67

Interconnect Network

Compute

node

Compute

node

Compute

node

Compute

node

Metadata

server
IO node IO node IO node

Fig. 4.1. Architecture of an HPC system.

interconnect network, as shown in Figure 4.1. In HPC, processes of an application run

on the compute nodes in parallel. These processes heavily perform communications,

computations, and synchronization with each other. During the execution, they issues

I/O to the servers when I/O is required. The I/O requests are delivered to the I/O

servers through the interconnect network. The servers, then, dispatch the requests to

the disks attached to them. Again, the responses of the requests are sent back to the

compute nodes from the I/O nodes through the network.

Parallel I/O operation places a tremendous burden on application programmers

since it is difficult to be coordinated and optimized. To facilitate parallel I/O, scientific

applications running on HPC systems exercise a number of intermediate layers, called

I/O software stack, as presented in Figure 1.1.

68

App. code

 w/o I/O

I/O Level

I/O Hints

Front-end

Graphic

User

Interface

Back-end

Hint

Parser

Hint

Analyzer

I/O

Optimizer

Code

Generator
App. code

 with I/O

Fig. 4.2. High-level view of IOGenie.

4.2.2 Overview of IOGenie

The high-level view of IOGenie is presented in Figure 4.2. It comprises two main

components including a front-end graphical user interface (GUI) and a back-end code

generation engine. The GUI accepts as inputs application code without I/O, I/O level,

and I/O hints. Here, the application code is in the form of a template that only contains

computation code, not including I/O operations. The I/O level indicates the layer and

the library that should perform I/O in the I/O software stack. Lastly, I/O hints specify

the necessary I/O information, e.g., data set definition and data access pattern. This

input information is utilized by IOGenie to guide I/O code generation.

More specifically, these input parameters are passed to the code generation en-

gine that accommodates a hint parser, a hint analyzer, an I/O optimizer, and a code

generator. First, the hint parser breaks the given hints down. Then, the hint analyzer

resolves them. The I/O optimizer tries to improve the quality of the I/O operations by

employing optimization techniques applicable in the selected I/O library. Finally, the

69

x

4,5

y

4,9 8,2 7,3 6,2

1,3 6,5 8,9 9,43,5

8,3 2,2 1,1 7,85,2

5,7 0,9 2,3 5,57,5

3,8 5,3 2,3 5,51,2

(a) 2-D array

1.2

x

y

835 863 114

589 432 109632

289 311 723335

984 905 103532

880 493 917814

712

306

119

232

226

642

z

(b) 3-D array

Fig. 4.3. Multidimensional arrays.

code generator brings out the application code that includes the generated I/O opera-

tion code as well as the original application code with computation. Note that the GUI

interface is developed to simplify and facilitate the use of our tool.

4.3 OUR I/O MODEL

In this section, we introduce an I/O model that can be used to specify the types

of data sets and data access patterns. Since the I/O model employed by IOGenie is

unified, it covers most common types of data sets and access patterns for different I/O

libraries. Also, it determines the formats of the I/O hints. Therefore, our tool can

generate parallel I/O code for different I/O libraries from the same set of I/O hints. The

I/O model supported by our tool accommodates two parts: 1) data set definition model

and 2) data access model.

70

4.3.1 Data Set Definition Model

Multidimensional arrays are very common in scientific applications to store data.

They are mapped into one dimensional machine memory layout. Mapping of multidi-

mensional arrays into one dimensional memory dramatically affects the performance of

the parallel applications.

The data set definition model in our tool supports the multidimensional array

representation. This multidimensional array is the primary data set format supported

by high-level I/O libraries such as PnetCDF and HDF5. A multidimensional array has

two key components, namely, element type and data space. The element type defines

the data type of each element in the array, whereas the data space specifies the number

of dimensions and the length (extent) of each dimension of the array.

We use a tuple < datatype, dimension > to describe a multidimensional array,

where datatype is int, double, and other basic types, and dimension is itself a tuple

of the form < dimension1, dimension2, . . . >. Figure 4.3 shows two examples of mul-

tidimensional arrays. Figure 4.3(a) is a two-dimensional array, and Figure 4.3(b) is a

three-dimensional array. In this example, three dimensional array can be described as a

tuple < int, < 5, 5, 5 >>. The data space can also be a supercube when the number of

dimensions exceeds three.

We also support the concept of attribute to comply with metadata provided by

high-level I/O libraries such as PnetCDF and HDF5. Metadata is used to describe the

properties of the multidimensional array. It also provides additional information as to

how to interpret the data stored in the array. For example, assuming the temperature

71

x

y

0

P2P1

P3
P4

(a) Irregular accesses

x

y

0

P3

P1 P2

P4

(b) Regular accesses

Fig. 4.4. Sample data access patterns.

data is stored in a multidimensional array, one attribute can be defined to specify the

unit of the temperature, e.g., Fahrenheit or Celsius.

4.3.2 Data Access Model

In addition to the mapping of multidimensional arrays to flat memory, the order

in which array entries are accessed has an effect on the behavior of our target applica-

tions. For example, strided access to one-dimensional array reduces spacial locality and

ultimately degrades utilization of memory bandwidth.

The data access model in this work is used to specify how a data set is accessed,

that is, the portion of data accessed by each process. For simplicity and conciseness, the

same access model is applied for both read and write. Our data access model supports

subarray, one of the most common data access patterns in HPC applications. To de-

scribe a subarray, the length of each dimension and the offset coordinates (the smallest

indices in each dimension of the data set) are required. In our model, we use a tuple

72

< offset, length > to determine a subarray, where offset and length are also tuples, that

is, < offset1, offset2, . . . > and < length1, length2, . . . >, respectively.

There are two alternate methods for users to specify the data access patterns

for the processes that the application runs on. If the number of processes is small and

the access patterns to data are irregular from one another, users will specify them by

providing specific information for each individual process. If the number of processes

is large though, for example, if hundreds of thousands of processes are spawned in a

large scientific application, entering the access information individually for each and

every process may not be feasible. Luckily, in most of such applications, the data access

patterns from the processes are usually regular. IOGenie, thus, employs a compact data

access model so that users can specify the access patterns as a whole for all processes

from a global view. The access pattern of each individual process is easily derived from

the global compact specification.

Figure 4.4 shows two examples for irregular and regular access patterns from

four processes, respectively. To describe the access patterns in Figure 4.4(a), the off-

set and the length of each dimension for all processes (P1, P2, P3, and P4) are nec-

essary. For example, the access pattern of process P2 in Figure 4.4(a) can be rep-

resented using << 0, 3 >,< 1, 1 >>. In Figure 4.4(b), we can use a single tuple

< processes, offsets, lengths, strides > to express the access patterns, where processes

is the number of processes, offsets is the smallest indices of all processes, lengths is the

length in each dimension (identical to all processes), and strides is the access distance

between different processes in each dimension. In this case, the tuple is << 2, 2 >,<

1, 1 >,< 2, 2 >,< 3, 3 >>.

73

The I/O model discussed above is a general model that can be adapted to work

with different I/O libraries. Note however that some libraries possess unique features

that do not exist in other libraries. These featured data set definitions or access patterns

can not be represented by the general I/O model. To address this limitation and make the

functionality of our tool more complete, we design IOGenie to enable future extensions.

For example, HDF5 supports “compound” data type similar to a structure in C or

a common block in Fortran. It is a collection of one or more datatypes. Using our

tool, users can describe more complex data structures and access patterns; each such

composite type is a combination of two or more atomic types. We, thus, include I/O

model to be compatible with this specific feature for HDF5 library.

4.4 FRAMEWORK

In this section, we discuss the front-end components of IOGenie, which consist of

I/O hints and I/O options. We also elaborate on the back-end code generation engine

that comprises the hint parser, hint analyzer, I/O optimizer, and code generator.

4.4.1 I/O Hints

Based on the general I/O model presented in Section 4.3, we next define the

format of the I/O hints. According to the I/O model, there are two groups of I/O hints

for data definition and data access.

Listing 2 presents the format of our data definition hints. The data definition

group includes dimension hints, variable hints, and attribute hints that are used to-

gether to specify the data that will be accessed by the application. Specifically, the

74

dimension hint provides data space information. The variable hint defines the data type

and the data space for each variable. The attribute hint adds additional information

to interpret data. Lastly, read and write hints describe the portion of the data to be

accessed. As presented in Listing 2, each hint is composed of an operator and several

parameters. Operator indicates the type of I/O operations, and each parameter specifies

its variable information. Note that the exact locations of these hints make differences in

the sense that they determine the location to define specific data and to access them in

the program. The directives starting with ‘#’ are used by the hint parser to locate these

hints.

To specify these hints, users may choose to type them directly to the proper

locations of the original source code. Alternately, users can give data set definitions and

data write information through the GUI, as shown in Figures 4.5 and 4.6, respectively.

Compared to the manual typing, this GUI-based input method can be safer and easier

since it provides user-friendly and intuitive dialogues with clues. This latter option will

be particularly helpful and efficient when users are not quite familiar with the formats

of our I/O hints.

4.4.2 I/O Options

In addition to the I/O hints, additional information is needed to enable our frame-

work to generate the desired I/O operations. If it is necessary to include additional

guidances such as the I/O level, the I/O library (e.g., PnedCDF or HDF5), and the type

of source code (e.g., C/C++ and Fortran), users can also specify these options using the

GUI. Figure 4.7 shows the GUI view for entering I/O options.

75

Fig. 4.5. GUI view for giving the dataset hint. Users can enter dimensions, variables,
and attributes to be accessed by the application.

76

Fig. 4.6. GUI view for entering data hint.

The I/O level option determines the layer on which code-level I/O operations

should be performed in the I/O stack. The I/O library option indicates the library

for which I/O operation should be generated. Our prototype currently supports I/O

operations written in C/C++ and Fortran. Using the language option, it provides code

generation with the same library but written in different languages. Again, users can

either directly enter these options into the source code or utilize the dialogue in the GUI

to provide them. For example, if a user develops a C program that needs to handle

data at a high abstraction level and the PnetCDF library is available, one may give the

following options— the high-level I/O library with PnetCDF, and C as the programming

language.

4.4.3 Code Generation Engine

The code generation engine is a core part (back-end) of our tool. It automatically

generates parallel I/O code based on the I/O hints and annotations provided by the

77

Fig. 4.7. GUI view for specifying the I/O level.

users. As described in Figure 4.2, it consists of four main components: hint parser,

hint analyzer, I/O optimizer, and code generator. The hint parser reads the hints that

are inserted by the users. Then, the hint analyzer extracts necessary I/O information

from the hints. Next, the I/O optimizer performs optimizations based on the extracted

I/O information and the I/O library specified by the user. Finally, the code generator

translates the results from the previous steps into parallel I/O code and inserts that code

into the target application code.

4.4.3.1 Hint Parser

As presented in Listing 2, a number of hints are grouped together as hint sets if

the I/O operations related to them are required at the same location in the application

code. Each hint set has three parts, namely, set head, set body, and set tail. The hint

parser recognizes the set body with the aid of set head and set tail. It then processes

the hints one after another and translates them into internal hint representations.

78

4.4.3.2 Hint Analyzer

The hint analyzer takes the internal hint representations passed from the hint

parser, and tries to make connections among different I/O hints. For example, the

analyzer associates the hint that specifies variable access with the hint that indicates

variable definition. One advantage of doing this is that the hint formats can be compacted

so that users do not need to input redundant information repeatedly.

4.4.3.3 I/O Optimizer

The I/O optimizer tries to further improve the internal hint representations by

taking into account the access patterns of all the processes and the available optimization

techniques in the chosen library. Note that the optimizations in the I/O library do not

necessarily have positive effects on the performance, depending on whether the benefits

brought can offset the cost incurred. Usually, it is the user’s responsibility to decide

whether to apply a specific optimization or not. Considering the situation that a user may

be unfamiliar with the I/O library, these possible optimizations can be either neglected

or inappropriately used. For example, in the I/O libraries such as PnetCDF, HDF5,

and MPI-IO, choosing between collective I/O and independent I/O is not trivial. To

solve this problem, the I/O optimizer takes advantage of the input I/O information and

automatically decides whether to apply the available optimizations or not. Depending on

the decision, the optimizer then reconstructs the internal hint representations to include

optimization information that will be carried out by the code generator.

79

Fig. 4.8. Sample code generation by IOGenie, assuming an application written in C
and PnetCDF as the high-level I/O library. Considering I/O hints, such as dimensions,
variables, and attributes, starting with “#” in the left window, our tool generates the
corresponding I/O code on the right.

80

4.4.3.4 Code Generator

The code generator translates the internal I/O representations into the target

parallel I/O code and inserts it into the application source code. The generator checks

the operations in the I/O hints along with associated parameters and replaces them

with the corresponding APIs of the chosen I/O library and language. In addition, it

generates optimized code by taking into account the optimization decisions from the

I/O optimizer. For example, if the target I/O code is for PnetCDF and the optimizer

has decided that collective I/O is more beneficial at a certain point in the application,

then the data access APIs in the generated code will end up with “ all” for collective

I/O.

Figure 4.8 shows a sample I/O code generation performed by our framework. In

this example, the application is written in C and utilizes PnetCDF as the high-level I/O

library, on top of PVFS. Running on PnetCDF, an application first enters ‘define’ mode

to describe all attributes, dimensions, types, and structures of variables. The program

will then exit it and enter ‘data’ mode, where it performs I/O. As the first step, the

necessary hints to define dimensions, variables, and attributes are taken on the left side

window, through the GUI view shown in Figure 4.5. Then, our tool transforms the hints

internally and generates the I/O code on the right side.

The goal of IOGenie is not only to improve the productivity of code generation,

but also to ensure the quality of the generated I/O code. The latter one is achieved

via the I/O optimizer component in the code generation engine as discussed above. An

important point to note is that the optimizations in our optimizer are accomplished for

81

user level applications, not the I/O library. Thus, our tool will never modify the I/O

libraries under any circumstance.

4.5 EVALUATION

Our implementation for automatic code generation and optimization is evaluated

on the Breadboard cluster at Argonne National Laboratory [27]. This cluster is con-

figured as follows. There are 1 metadata server and 8 I/O servers, each with 4 1GHz

Dual-Core AMD Opteron processors and 4GB of RAM. Each of the compute nodes has

16 2.4GHz Intel Xeon processors with 24GB RAM and, thus, can host 64 MPI processes.

We built an I/O stack that consists of PnetCDF-1.2.0, mpich2-1.4, and pvfs-2.8.2. We

evaluated our implementation with various number of MPI processes, 64, 128, 256, and

512. In the evaluation, we used two parallel scientific applications that heavily issue I/O

operations: FLASH I/O and S3D I/O.

4.5.1 FLASH I/O

The FLASH code [24] is an adaptive mesh hydrodynamics code that solves fully

compressible, reactive hydrodynamic equations, developed mainly for the study of nu-

clear flashes on neutron stars and white dwarfs. A typical large production run of FLASH

will generate about 500GB of data, distributed between 1,000 plot files and 100 check-

point files. Since I/O accounts for much of the running time, we only run the FLASH

I/O benchmark, created to test I/O performance of FLASH independently of the entire

code. The computational domain is divided into small blocks that are distributed across

MPI processes. The FLASH block is a three-dimensional array and there are 80 blocks

82

x

y

z

nxb
guard

cells

nyb

v0

v1

v23

blk0

blk1

blk79

P0

P1

P n-1

blk2 P2

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

v2

Variables Blocks Processes x y z

Memory mapping File mapping

Fig. 4.9. The block structure of FLASH mapped into memory and a checkpoint file.
The FLASH block is a three-dimensional array with an additional 4 elements as guard
cells in each direction and there are 80 blocks in each MPI process. Each inner block
surrounded by guard cells (in the middle figure) has 24 variables. Unlike the Flash block
mapping into memory (in the middle figure), each variable has 80 FLASH blocks, and
all 24 variables are contiguously mapped into a checkpoint file (in the rightmost). Using
collective I/O, every process writes the contiguous 8× 8× 8 blocks into a checkpoint file
for all 24 variables.

on each MPI process. Each block contains inner blocks with additional four guard cells

to hold the state variables of the neighboring blocks for use in the hydrodynamic al-

gorithm. The inner block surrounded by guard cells has 24 data array variables, e.g.,

density, velocities, energy, and pressure. Every process writes these blocks to a check-

point file using 24 collective I/O, in a fashion that the checkpoint file appears as the data

for variable 0 up to variable 23. Since the number of blocks is fixed to 80 for each process,

increasing the number of MPI processes linearly increases the I/O amount. FLASH I/O

produces one checkpoint file and two visualization files that contain centered and corner

data. The I/O time to create the checkpoint file dominates the entire benchmark. Fig-

ure 4.9 presents the block structure of FLASH and describes how the block is mapped

into memory and a checkpoint file. Unlike the Flash block mapping into memory, each

variable has 80 FLASH blocks and all 24 variables are contiguously mapped into the

83

checkpoint file. Note that the size of contiguous memory region per process is only the

size of double, e.g,. 8 bytes. However, the contiguous regions in the file are 8 × 8 × 8

(for the dimensions x, y, and z) × double, that is, 4096 bytes. Since the access pattern

of FLASH I/O is noncontiguous in memory and in file, it is a challenging application for

parallel I/O systems.

4.5.2 S3D I/O

The S3D I/O benchmark is the I/O kernel of a parallel turbulent combustion

application, named S3D [29], developed at Sandia National Laboratories. Using direct

numerical simulation (DNS), S3D solves the fully compressible reacting Navier-Stroke,

total energy, species and mass continuity equations coupled with detailed chemistry.

The equations are solved on a conventional structured Cartesian mesh, and scalable

parallelism is achieved through MPI and a domain decomposition strategy. A checkpoint

is carried out at regular intervals to store the values of three-dimensional Cartesian mesh

points to the variables in 8-byte three-dimensional arrays. This checkpoint data can be

used to obtain several more derived physical quantities of interest. Therefore, most of

checkpoint data is maintained for later use. At each checkpoint, four global arrays—

representing the variables of mass, velocity, pressure, and temperature—are written to

the files using four collective write operations for four arrays.

84

1 #begin_dimensions

2 name: len;

3 ...

4 #end_dimensions

5

6 #begin_variables

7 name: data_type, num_dim, dim1_name, dim2_name,

8 dim3_name, ...;

9 ...

10 #end_variables

11

12 #begin_attributes

13 name: assoc_var_name, data_type, value;

14 ...

15 #end_attributes

16

17 #begin_write

18 array: process_id, var, dim1_start, dim1_count,

19 dim2_start, dim2_count, ..., buffer;

20 ...

21 #end_write

22

23 #begin_read

24 array: process_id, var, dim1_start, dim1_count,

25 dim2_start, dim2_count, ..., buffer;

26 ...

27 #end_read

Listing 2. A sample format of data definition hints. The dimension hint provides
data space information. The variable hint defines the data type and the data space.
The attribute hint adds additional information to interpret data. Read and write hints
describe the portion of the data to be read and written, respectively.

85

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1

0
P

1
1

P
1

2
P

1
3

P
1

4
P

1
5

1
6

1
7

1
8

1
9

2
3 2
7

3
1

3
9

4
3 4
7

5
5

5
9 6
3

3
2

3
3

3
4

3
5

4
8

4
9

5
0

5
1

x

y

z

(a
)

3D
ar

ra
y.

P
4

1

P
4

1

P
4

1

n
 =

 0

n
 =

 1

n
 =

 m
 -

 1

n
:

 i
n

d
ex

 o
f

th
e

4
th

 d
im

en
si

o
n

m
:

le
n

g
th

 o
f

th
e

4
th

 d
im

en
si

o
n

n
 =

 0n
 =

 1

n
 =

 m
-1

4
D

 s
u

b
ar

ra
y

in
 P

4
1

lo
g

ic
al

 t
o

 g
lo

b
al

m
ap

p
in

g

(b
)

4
D

a
rr

ay
.

F
ig

.
4.

10
.

S
3D

I/
O

d
at

a
p

ar
ti

ti
on

in
g

an
d

m
ap

p
in

g
p
at

te
rn

s
[3

7]
.

F
or

th
re

e-
d

im
en

si
on

al
ar

ra
y

in
(a

),
th

e
su

b
a
rr

ay
o
f

ea
ch

p
ro

ce
ss

is
m

ap
p

ed
to

th
e

gl
ob

al
ar

ra
y

in
b

lo
ck

p
ar

ti
ti

on
in

g
of

x
-y

-z
d

im
en

si
on

s.
F

or
fo

u
r-

d
im

en
si

on
al

a
rr

ay
in

(b
),

th
e

lo
w

es
t

x
-y

-z
d

im
en

si
on

s
ar

e
p

ar
ti

ti
on

ed
th

e
sa

m
e

w
ay

as
th

e
th

re
e-

d
im

en
si

on
al

ar
ra

y
s,

b
u

t
th

e
fo

u
rt

h
d

im
en

si
on

is
n

o
t

p
a
rt

it
io

n
ed

.

86

Figure 4.10 shows the data partitioning patterns and mapping of S3D arrays.

Among four arrays, pressure and temperature are three-dimensional arrays as shown

in Figure 4.10(a), whereas mass and velocity are four-dimensional as depicted in Fig-

ure 4.10(b). All arrays of four variables share the same size of three-dimensions, x, y, and

z, and are assigned to MPI processes along the x -y-z dimensions. For three-dimensional

arrays, the subarray of each process is mapped to the global array in block partition-

ing of x-y-z dimensions. For four-dimensional arrays, the lowest x-y-z dimensions are

partitioned similar to the three-dimensional arrays, but the fourth dimension is not par-

titioned. For the arrays of mass and velocity, the length of fourth dimension is 11 and

3, respectively.

4.5.3 Experimental Results

To demonstrate the capabilities and effectiveness of our implementation, we first

ran the default versions of our two benchmarks that include originally hand-optimized

I/O code and measured the execution time of each. After that, we ran them again,

but with tool-generated I/O code at this time. To generate I/O operations for the

benchmarks, we used the template files written in C and Fortran that do not contain

I/O operations: ncmpi parallel write.c for FLASH I/O and pnetcdf m.f90 for S3D

I/O.

Figure 4.11 compares the average execution times with the hand-generated I/O

code and the IOGenie-generated I/O code for FLASH I/O and S3D I/O. We measured

the average execution time after 20 iterations. In each run, we dropped cache in the

87

 0

 5

 10

 15

 20

 25

 30

 35

 40

64 128 256 512

E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
)

Number of MPI Processes

hand-generated
tool-generated

(a) FLASH I/O average execution time.

 0

 10

 20

 30

 40

 50

 60

 70

64 128 256 512

E
x
e
c
u
ti

o
n
 T

im
e
 (

se
c
)

Number of MPI Processes

hand-generated
tool-generated

(b) S3D I/O average execution time.

Fig. 4.11. Comparison of the average execution times of the hand-generated code vs.
the tool-generated code.

servers and the compute nodes to minimize the effect on cache. The results shown in

Figure 4.11 for the IOGenie-generated versions include all overheads of our approach.

In Figure 4.11(a), the average execution time of FLASH I/O increases with an

increase in the number of MPI processes. Recall that as the number of MPI processes is

scaled up, the total amount data is scaled up as well. Accordingly, the execution time

increases along with the increase in the number of processes. The FLASH I/O bench-

mark performs poorly under independent I/O due to the number of I/O requests and

its access patterns, without optimizations. It issues a huge number of I/O requests, 80

(blocks) × 8 (x-elements) × 8 (y-elements) × 8 (z-elements) × 24 (variables), that is

983,040 requests per MPI process. What is worse, the access pattern of the FLASH code

is noncontiguous in memory and in file. During each collective write, every MPI process

writes contiguous blocks of data, appended to the data written by the previous ranked

MPI process. As a result, a write request from one process is not overlapped or inter-

leaved with a request from another process. This non-interleaved access pattern triggers

88

the independent I/O subroutine, instead of collective I/O subroutines, even if MPI col-

lective I/O writes are explicitly called in the FLASH I/O benchmark. This behavior

is governed by the romio cb write hint, by controlling whether collective buffering is

applied to collective write operations. In MPI-IO, the value of romio cb write is set to

automatic by default. That is, MPI-IO uses heuristics to determine when to enable the

optimization. We noticed that when the hint was set to enable to use collective writes,

the I/O performance of FLASH I/O was worse than the case where it is set to the default

value. However, the performance is significantly improved with data sieving, combining

I/O requests through buffering, by reducing the number of I/O requests. Therefore, our

tool generates collective I/O operations for FLASH I/O based on the user specification

and lets MPI-IO determine the I/O subroutines to use.

In our evaluation of S3D I/O, we keep the size of partitioned x-y-z dimensions as

200 × 200 × 200 in each process. Each run produces three checkpoint files, each with a

size of 976.6MB. Unlike FLASH I/O, as shown in Figure 4.11(b), the average execution

time of S3D I/O decreases with an increase in the number of MPI processes. For a

collective write in S3D I/O, a subset of MPI tasks (called aggregator) in each client node

performs two-phase I/O. The aggregator communicates with other processes to exchange

data and writes a large chunk of data into a temporary buffer. After that, the aggregator

process in each node ships the I/O request to the I/O servers. In our configuration, each

client node can host 64 MPI processes. In Figure 4.11(b), thus, we have the aggregator

processes with the number of 1, 2, 4, and 8, to do actual I/O operations. As we increase

the number of MPI processes, the aggregate I/O amount proportionally increases as

well. Since a large amount of I/O data is performed by the aggregator process as we

89

increase the number of MPI processes, the execution time decreases as can be observed in

Figure 4.11(b). Observing that the two-phase I/O strategy can significantly improve the

parallel I/O performance in S3D I/O, our tool generates I/O operation code to exploit

it for S3D I/O.

4.6 Conclusions

Poor I/O performance has been widely recognized as the bottleneck in HPC do-

main. Despite the significant effort and advance to improve I/O performance in hardware

system architecture and software libraries, scientific analyses and discoveries are daunted

and discouraged without efficient use them. In this work, we propose an automatic

parallel I/O code generation framework, called IOGenie, to generate the efficient and

optimized code for the scientific parallel applications. Using a graphical user interface,

our tool accepts high-level I/O hints provided by users, analyzes the given annotations,

and generates optimized I/O code that effectively exercises the underlying I/O stack.

In our evaluation, using two scientific data-intensive applications, FLASH I/O and S3D

I/O, written in C and Fortran, respectively, our tool generates optimized I/O operations,

depending on data access patterns of the applications. For the FLASH I/O benchmark

whose data access pattern is noncontiguous, our tool generates I/O code to be suitable

for data sieving, while it generates I/O operations to be appropriate to two-phase I/O for

the contiguous data access in the S3D I/O benchmark. Also, our experiments indicate

that the overhead of tool-generated code is negligible.

The contribution of this work is two-fold. One is to improve the productivities of

programmers by supporting code generation in different I/O libraries. The other is to

90

enhance the quality of tool-generated I/O code by applying optimizations, considering

data access patterns from the applications as well as the optimizations in the underlying

I/O libraries.

91

Chapter 5

Related Work

There exist prior research in profiling performance and diagnosing the related

problems in large-scale distributed systems. In this section, we discuss the work related

to static/dynamic instrumentation, and tracing, profiling frameworks. we also discuss

the previous work related to code generation and optimizations at various layers of an

I/O software stack.

5.0.1 Static/Dynamic Instrumentation

Over the past decade a lot of static/dynamic code instrumentation tools have been

developed and tested that target different machines and application domains. Static in-

strumentation generally inserts probe code into the program at compile time. Dynamic

instrumentation, on the other hand, intercepts the execution of an executable at dif-

ferent points of execution and inserts instrumentation code at runtime. ATOM [38]

statically instruments the binary executable through rewriting at compile time. FIT [39]

is an ATOM-like static instrumentation tool but aims at retargetability rather than

instrumentation optimization. HP’s Dynamo [40] monitors an executable’s behavior

through interpretation and dynamically selects “hot instruction traces” from the run-

ning program. DynamoRIO [41] is a binary package with an interface for both dy-

namic instrumentation and optimization. PIN [22] is designed to provide a functionality

simulator to the ATOM toolkit; but, unlike ATOM which instruments an executable

92

statically by rewriting it, PIN inserts the instrumentation code dynamically while the

binary executable is executing. Dyninst [42] and Paradyn [43] are designed for dynamic

instrumentation to reduce the overheads incurred during instrumentation.

5.0.2 Tracing and debugging

Tools such as CHARISMA [44], Pablo [45], and Tuning and Analysis Utilities

(TAU) [46] collect and analyze file system traces [47]. Paraver [48] is designed to an-

alyze MPI, OpenMP, Java, hardware counter profiles, and operating system activity.

Open|SpeedShop [49] is targeted to support performance analysis of applications. Ko-

jak [50] aims at the development of a generic automatic performance analysis environ-

ment for parallel programs, and Stack Trace Analysis Tool (STAT) [51] is designed to

help debug large-scale parallel programs.

5.0.3 Large-scale Distributed System Tracing

To understand complex system behavior, Magpie [52] automatically extracts a sys-

tem’s workload during execution and produces a workload model. This work has been

extended to datacenters [53]. Fay [54] provides dynamic tracing of distribute systems for

user- and kernel-mode operations in x86-64 Windows systems. Lee et al. [55] proposed

the dynamic probe class library API for large-scale systems, extended by DynInst. Dar-

shan [56] captures I/O behavior such as I/O rates, transaction sizes, and I/O library

usage in HPC applications. Vampir [57] provides an analysis framework for MPI appli-

cations, and IOPin [58] performs the runtime profiling of parallel I/O operations in HPC

systems.

93

5.0.4 Code Generation

Automated code generation has been the subject of many prior works. Budinsky

et al. describe the architecture and implementation of a tool that automates the imple-

mentation of design patterns [59]. Given application-specific information for a given pat-

tern, the tool generates all the pattern-prescribed code automatically. Domain-specific

modeling [60] mainly aims to raise the level of abstraction and generate final products

in a chosen programming language or other forms. Using high-level abstraction beyond

programming, it specifies the solution in a language that directly uses concepts and rules

from a specific problem domain. Model-driven engineering [61] offers a promising ap-

proach to alleviate the complexity of platforms and express domain concepts effectively

by combining domain-specific modeling languages with an automated code transforma-

tion process.

5.0.5 I/O Software Stack Optimizations

Extensive prior research has focused on improving I/O performance at various

levels in the I/O software stack. Parallel file systems such as Lustre [14], GPFS [15],

PanFS [16], and PVFS [17], coordinate accesses to files and provide an interface to

access contiguous regions of files in high-performance. In comparison, MPI-IO [18], part

of MPI-2 [19] specification, provides the standard I/O interface in HPC and a variety of

optimizations such as data sieving[5], collective I/O [5], and two-phase I/O [6].

Zhang et al. propose resonant I/O technique to rearrange the I/O requests from

multiple MPI processes with the striping patterns so that non-sequential access changes

94

into sequential access [62]. This new collective I/O strategy demonstrate significant per-

formance improvements. Chen et al. propose the layout-aware collective I/O scheme [63]

that recognizes the underlying physical data layout and rearranges accesses for locality

and concurrency. Song et al. propose to coordinate I/O servers to serve one application

at a time to reduce the completion time, and at the same time to maintain the server

utilization and fairness [10]. At the application layer, Kandaswamy et al. investigate the

impact of I/O optimization techniques considering the specifics of the applications [64].

5.0.6 Caching and Prefetching

Many prior I/O related studies have focused on caching and prefetching in HPC

systems. Liao et al. propose application-aware client-side file caching [65] for MPI-IO

and extend it in [66] to enhance parallel I/O performance. Vilayannur et al. propose

discretionary caching for parallel I/O that employs both compilation techniques and

runtime support [67]. Eshel et al. design a scalable, high-performance, cluster file system

cache for data-intensive applications [68]. Data is cached and updated using pNFS that

performs parallel I/O between clients and servers. Client-side caching is supported in

several parallel file systems such as GPFS [15] and PanFS [16].

Patterson et al. present informed prefetching and caching to allocate buffers

dynamically using access patterns for I/O-intensive applications [69]. Voelker et al.

propose cooperative prefetching and caching using optional program-provided hints to

with disk-latency reduction technologies [70]. Patrick et al. implement and test a hint

passing mechanism from an application to the underlying I/O stack [71]. The I/O stack

in turn fuses these user-specified hints to perform cross-layer I/O optimizations.

95

Chapter 6

Conclusions and Future Work

Poor I/O performance has been widely recognized as the bottleneck in HPC do-

main. Despite the significant effort and advance to improve parallel I/O performance

in hardware system architecture and software libraries, scientific analyses and discov-

eries are daunted and discouraged without efficient use of them. To optimize parallel

I/O, performance analysis and visualization is an important step towards developing an

understanding and characterizing I/O behavior, which is essentially a result of complex

interactions in the the software libraries and hardware components. Performing manual

code instrumentation is often difficult and extremely error-prone. Even building the

I/O stack and configuring the running environment for application benchmarks is not

trivial because of the scale of the current HPC systems. Moreover, collecting and ana-

lyzing trace data from them is a challenging task. To alleviate these difficulties and help

write the efficient and optimized parallel I/O code for scientific parallel applications, this

dissertation proposes three complimentary infrastructures, namely, IOPro, IOPin, and

IOGenie.

IOPro provides the integrated profiling and analysis environment for the entire

I/O stack. It uses existing MPI I/O function calls and therefore adds minimum over-

head to the execution time of applications. By leveraging runtime dynamic instrumenta-

tion, IOPin also provides profiling functionality for parallel I/O with minimum overhead.

96

These two infrastructures (IOPro and IOPin) provide multiple metrics to analyze and in-

vestigate detailed I/O behavior, including latency, throughput, energy consumption, and

call information. The results from these metrics contribute to evaluating and explaining

the parallel I/O behavior across the I/O stack. In addition, our automatic parallel I/O

code generation framework, IOGenie, helps generate the efficient and optimized parallel

I/O code automatically for a large set of scientific parallel applications. Using a graphical

user interface, our tool accepts high-level I/O hints provided by users, analyzes the given

annotations, and generates optimized I/O code that effectively exercises the underlying

I/O stack.

We used two scientific data-intensive applications, S3D I/O and FLASH I/O, to

evaluate the use and effectiveness of IOPro, IOPin, and IOGenie. Our experiments with

IOPro and IOPin clearly demonstrate different I/O behaviors in each application: S3D

I/O exchanges data among the joined processes to do optimization and synchronization

in the MPI library whereas FLASH I/O rarely does such optimization. Although both

applications issue collective I/O requests to write the checkpoint files, the characteristics

of I/O are quite different in each benchmark. By using the performance information

depending on the I/O behavior, the application programs can be optimized to improve

the storage system performance. Also, customized instrumentation can be performed

to obtain more detailed performance statistics from the underlying I/O stack. This

dissertation also shows that, when multiple applications interfere each other due to

sharing I/O system resources, IOPro can be used to profile detailed performance metrics,

aid in understanding complex I/O behavior, and detect the issue that degrades the

97

performance. Based on the gleaned information, the user can then employ an appropriate

solution.

In our evaluation, IOGenie generates optimized parallel I/O operations in our two

benchmarks, depending on data access patterns of the applications. For the FLASH I/O

benchmark whose data access pattern is noncontiguous, our tool generates I/O code for

data sieving, while it generates I/O operations to be appropriate to two-phase I/O for

the contiguous data access in the S3D I/O benchmark. Also, our experiments indicate

that the overhead of tool-generated code is negligible.

Overall, the contribution of this dissertation is two-fold. First, it provides an

infrastructure to help understand the complex I/O behavior by instrumentation and

suggest I/O solutions to improve the performance using IOPro and IOPin. Second, it

helps improve the programmers’ productivity by automating I/O code generation and

embedding cross layer I/O stack optimization.

In the future, we plan to test our infrastructure under very large MPI process

counts and to further explore the potential of our tool to provide better optimizations

in parallel I/O. We also plan to extend the functionality of IOPro to adopt customized

user’s probe to better provide customized performance metrics. By integrating dynamic

instrumentation into IOPro, the extended infrastructure can provide both static and run-

time instrumentation. In addition, by implanting IOGenie into it, our total I/O solution

package helps understand and characterize parallel I/O behavior using both static and

dynamic approaches, diagnose I/O issue involved in software and hardware, and write

an efficient parallel I/O code that maximizes high-performance storage systems, in one

spot.

98

Bibliography

[1] A. Ching, A. Choudhary, K. Coloma, W.-k. Liao, R. Ross, and W. Gropp, “Noncon-
tiguous I/O Accesses Through MPI-IO,” in Cluster Computing and the Grid, 2003.
Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on. IEEE,
2003, pp. 104–111.

[2] X. Ma, M. Winslett, J. Lee, and S. Yu, “Improving MPI-IO output performance with
active buffering plus threads,” in Parallel and Distributed Processing Symposium,
2003. Proceedings. International. IEEE, 2003, pp. 10–pp.

[3] K. Coloma, A. Choudhary, W.-k. Liao, L. Ward, E. Russell, and N. Pundit, “Scal-
able high-level caching for parallel I/O,” in Parallel and Distributed Processing Sym-
posium, 2004. Proceedings. 18th International. IEEE, 2004, p. 96.

[4] W. Liao, A. Ching, K. Coloma, A. Choudhary et al., “An implementation and eval-
uation of client-side file caching for MPI-IO,” in 2007 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 2007, p. 49.

[5] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective I/O in ROMIO,”
in Proceedings of the Seventh Symposium on the Frontiers of Massively Parallel
Computation. Published by the IEEE Computer Society, 1998, pp. 182–189.

[6] J. Del Rosario, R. Bordawekar, and A. Choudhary, “Improved parallel I/O via a
two-phase run-time access strategy,” ACM SIGARCH Computer Architecture News,
vol. 21, no. 5, pp. 31–38, 1993.

[7] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the I/O perfor-
mance of HPC applications using a parameterized synthetic benchmark,” in Pro-
ceedings of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, 2008,
p. 42.

[8] X. Zhang, K. Davis, and S. Jiang, “Iorchestrator: improving the performance of
multi-node i/o systems via inter-server coordination,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Network-
ing, Storage and Analysis. IEEE Computer Society, 2010, pp. 1–11.

[9] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock, K. Schwan,
and M. Wolf, “Managing variability in the IO performance of petascale storage sys-
tems,” in Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Computer So-
ciety, 2010, pp. 1–12.

[10] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “Server-side I/O coordination
for parallel file systems,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 2011, p. 17.

99

[11] X. Zhang, K. Davis, and S. Jiang, “QoS support for end users of I/O-intensive
applications using shared storage systems,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis.
ACM, 2011, p. 18.

[12] ——, “Opportunistic Data-driven Execution of Parallel Programs for Efficient I/O
Services,” in Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International. IEEE, 2012, pp. 330–341.

[13] Y. Chen, X.-H. Sun, R. Thakur, H. Song, and H. Jin, “Improving parallel I/O
performance with data layout awareness,” in Cluster Computing (CLUSTER), 2010
IEEE International Conference on. IEEE, 2010, pp. 302–311.

[14] P. Schwan, “Lustre: Building a file system for 1000-node clusters,” in Proceedings
of the 2003 Linux Symposium, vol. 2003, 2003.

[15] F. B. Schmuck and R. L. Haskin, “GPFS: A shared-disk file system for large com-
puting clusters,” in FAST, vol. 2, 2002, p. 19.

[16] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Zelenka, and
B. Zhou, “Scalable performance of the Panasas parallel file system,” in Proceed-
ings of the 6th USENIX Conference on File and Storage Technologies. USENIX
Association, 2008, p. 2.

[17] P. Carns, W. Ligon III, R. Ross, and R. Thakur, “PVFS: A parallel file system for
Linux clusters,” in Proceedings of the 4th annual Linux Showcase & Conference-
Volume 4. USENIX Association, 2000, pp. 28–28.

[18] R. Thakur, W. Gropp, and E. Lusk, “On implementing MPI-IO portably and with
high performance,” in Proceedings of the sixth workshop on I/O in parallel and
distributed systems. ACM, 1999, pp. 23–32.

[19] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and
M. Snir, “MPI - The Complete Reference: Volume 2, The MPI-2 Extensions,” 1998.

[20] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel,
B. Gallagher, and M. Zingale, “Parallel netCDF: A high-performance scientific I/O
interface,” in Proceedings of the 2003 ACM/IEEE conference on Supercomputing.
IEEE Computer Society, 2003, p. 39.

[21] “HDF5: Hierarchical Data Format,” http://www.hdfgroup.org/HDF5/.

[22] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Reddi,
and K. Hazelwood, “Pin: building customized program analysis tools with dynamic
instrumentation,” in ACM SIGPLAN Notices, vol. 40, no. 6. ACM, 2005, pp.
190–200.

[23] “IOFSL: I/O Forwarding Scalable Layer,” http://www.mcs.anl.gov/research/projects/iofsl/.

100

[24] B. Fryxell, K. Olson, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice,
R. Rosner, J. Truran, and H. Tufo, “FLASH: An adaptive mesh hydrodynamics
code for modeling astrophysical thermonuclear flashes,” The Astrophysical Journal
Supplement Series, vol. 131, p. 273, 2000.

[25] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke, “DRPM: dy-
namic speed control for power management in server class disks,” in Computer
Architecture, 2003. Proceedings. 30th Annual International Symposium on. IEEE,
2003, pp. 169–179.

[26] http://http://www.jfree.org/jfreechart/.

[27] http://wiki.mcs.anl.gov/radix/index.php/Breadboard.

[28] http://flash.uchicago.edu/site/flashcode/.

[29] R. Sankaran, E. Hawkes, J. Chen, T. Lu, and C. Law, “Direct numerical simulations
of turbulent lean premixed combustion,” in Journal of Physics: conference series,
vol. 46. IOP Publishing, 2006, p. 38.

[30] SQLite, http://www.sqlite.org/.

[31] A. Jaleel, M. Mattina, and B. Jacob, “Last level cache (llc) performance of data
mining workloads on a cmp-a case study of parallel bioinformatics workloads,” in
High-Performance Computer Architecture, 2006. The Twelfth International Sympo-
sium on. IEEE, 2006, pp. 88–98.

[32] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” ACM Sigplan Notices, vol. 42, no. 6, pp. 89–100, 2007.

[33] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure execution via program
shepherding,” in Proceedings of the 11th USENIX security symposium, 2002, pp.
191–206.

[34] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi, “Pin-
pointing representative portions of large intel R© itanium R© programs with dynamic
instrumentation,” in Proceedings of the 37th annual IEEE/ACM International Sym-
posium on Microarchitecture. IEEE Computer Society, 2004, pp. 81–92.

[35] X. Gao, M. Laurenzano, B. Simon, and A. Snavely, “Reducing overheads for ac-
quiring dynamic memory traces,” in Workload Characterization Symposium, 2005.
Proceedings of the IEEE International. IEEE, 2005, pp. 46–55.

[36] W. D. Gropp, E. L. Lusk, and A. Skjellum, Using MPI: portable parallel program-
ming with the message-passing interface. the MIT Press, 1999, vol. 1.

[37] W.-k. Liao and A. Choudhary, “Dynamically adapting file domain partitioning
methods for collective I/O based on underlying parallel file system locking pro-
tocols,” in High Performance Computing, Networking, Storage and Analysis, 2008.
SC 2008. International Conference for. IEEE, 2008, pp. 1–12.

101

[38] A. Srivastava and A. Eustace, ATOM: A system for building customized program
analysis tools. ACM, 1994, vol. 29, no. 6.

[39] B. De Bus, D. Chanet, B. De Sutter, L. Van Put, and K. De Bosschere, “The design
and implementation of FIT: a flexible instrumentation toolkit,” in Proceedings of
the 5th ACM SIGPLAN-SIGSOFT Workshop on Program analysis for software tools
and engineering. ACM, 2004, pp. 29–34.

[40] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: a transparent dynamic op-
timization system,” in ACM SIGPLAN Notices, vol. 35, no. 5. ACM, 2000, pp.
1–12.

[41] D. L. Bruening, “Efficient, transparent, and comprehensive runtime code manipu-
lation,” Ph.D. dissertation, Massachusetts Institute of Technology, 2004.

[42] “Dyninst: An application program interface (api) for runtime code generation,”
Online, http://www.dyninst.org.

[43] J. K. Hollingsworth, O. Niam, B. P. Miller, Z. Xu, M. J. Gonçalves, and L. Zheng,
“MDL: A language and compiler for dynamic program instrumentation,” in Pro-
ceedings of Parallel Architectures and Compilation Techniques. IEEE, 1997, pp.
201–212.

[44] N. Nieuwejaar, D. Kotz, A. Purakayastha, S. Ellis, and M. Best, “File-access char-
acteristics of parallel scientific workloads,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 7, no. 10, pp. 1075–1089, 1996.

[45] H. Simitci, “Pablo MPI Instrumentation User’s Guide,” Department of Computer
Science, University of Illinois, 1996.

[46] S. Moore, F. Wolf, J. Dongarra, S. Shende, A. Malony, and B. Mohr, “A scalable
approach to MPI application performance analysis,” Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pp. 309–316, 2005.

[47] S. Moore, D. Cronk, K. London, and J. Dongarra, “Review of performance analysis
tools for mpi parallel programs,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface. Springer, 2001, pp. 241–248.

[48] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to visualize and
analyze parallel code,” in Proceedings of WoTUG-18: Transputer and occam Devel-
opments, vol. 44, 1995, pp. 17–31.

[49] “Open | SpeedShop,” URL: http://www.openspeedshop.org/wp/.

[50] B. Mohr and F. Wolf, “KOJAK–A tool set for automatic performance analysis of
parallel programs,” Euro-Par 2003 Parallel Processing, pp. 1301–1304, 2004.

[51] D. Arnold, D. Ahn, B. De Supinski, G. Lee, B. Miller, and M. Schulz, “Stack
trace analysis for large scale debugging,” in 2007 IEEE International Parallel and
Distributed Processing Symposium. IEEE, 2007, p. 64.

102

[52] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using Magpie for Request
Extraction and Workload Modelling.” in OSDI, vol. 4, 2004, pp. 18–18.

[53] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed systems tracing
infrastructure,” Google research, 2010.

[54] Ú. Erlingsson, M. Peinado, S. Peter, M. Budiu, and G. Mainar-Ruiz, “Fay: exten-
sible distributed tracing from kernels to clusters,” ACM Transactions on Computer
Systems (TOCS), vol. 30, no. 4, p. 13, 2012.

[55] G. L. Lee, M. Schulz, D. H. Ahn, A. Bernat, B. R. de Supinski, S. Y. Ko, and
B. Rountree, “Dynamic binary instrumentation and data aggregation on large scale
systems,” International Journal of Parallel Programming, vol. 35, no. 3, pp. 207–
232, 2007.

[56] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7 character-
ization of petascale I/O workloads,” in Cluster Computing and Workshops, 2009.
CLUSTER’09. IEEE International Conference on. IEEE, 2009, pp. 1–10.

[57] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach, VAMPIR:
Visualization and analysis of MPI resources, 1996.

[58] S. J. Kim, S. W. Son, W.-k. Liao, M. Kandemir, R. Thakur, and A. Choudhary,
“IOPin: Runtime Profiling of Parallel I/O in HPC Systems,” in High Performance
Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:. IEEE,
2012, pp. 18–23.

[59] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu, “Automatic code
generation from design patterns,” IBM Systems Journal, vol. 35, no. 2, pp. 151–
171, 1996.

[60] S. Kelly and J.-P. Tolvanen, Domain-specific modeling: enabling full code generation.
Wiley. com, 2008.

[61] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,” Computer,
vol. 39, no. 2, pp. 0025–31, 2006.

[62] X. Zhang, S. Jiang, and K. Davis, “Making resonance a common case: A high-
performance implementation of collective i/o on parallel file systems,” in Parallel
& Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on.
IEEE, 2009, pp. 1–12.

[63] Y. Chen, X.-H. Sun, R. Thakur, P. C. Roth, and W. D. Gropp, “Lacio: A new
collective I/O strategy for parallel I/O systems,” in Parallel & Distributed Processing
Symposium (IPDPS), 2011 IEEE International. IEEE, 2011, pp. 794–804.

[64] M. A. Kandaswamy, M. Kandemir, A. Choudhary, and D. Bernholdt, “An experi-
mental evaluation of I/O optimizations on different applications,” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 13, no. 12, pp. 1303–1319, 2002.

103

[65] W.-k. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russell, and S. Tideman, “Col-
lective caching: application-aware client-side file caching,” in High Performance Dis-
tributed Computing, 2005. HPDC-14. Proceedings. 14th IEEE International Sym-
posium on. IEEE, 2005, pp. 81–90.

[66] W. Liao, A. Ching, K. Coloma, A. Choudhary et al., “An implementation and eval-
uation of client-side file caching for MPI-IO,” in 2007 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 2007, p. 49.

[67] M. Vilayannur, A. Sivasubramaniam, M. Kandemir, R. Thakur, and R. Ross, “Dis-
cretionary caching for I/O on clusters,” in Cluster Computing and the Grid, 2003.
Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on. IEEE,
2003, pp. 96–103.

[68] M. Eshel, R. L. Haskin, D. Hildebrand, M. Naik, F. B. Schmuck, and R. Tewari,
“Panache: A Parallel File System Cache for Global File Access.” in FAST, 2010,
pp. 155–168.

[69] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka, Informed
prefetching and caching. ACM, 1995, vol. 29, no. 5.

[70] G. M. Voelker, E. J. Anderson, T. Kimbrel, M. J. Feeley, J. S. Chase, A. R. Karlin,
and H. M. Levy, “Implementing cooperative prefetching and caching in a globally-
managed memory system,” in ACM SIGMETRICS Performance Evaluation Review,
vol. 26, no. 1. ACM, 1998, pp. 33–43.

[71] C. M. Patrick, M. Kandemir, M. Karaköy, S. W. Son, and A. Choudhary, “Cashing
in on Hints for Better Prefetching and Caching in PVFS and MPI-IO,” in Proceed-
ings of the 19th ACM International Symposium on High Performance Distributed
Computing. ACM, 2010, pp. 191–202.

Curriculum Vitae

Brief Biography

I received a Ph.D. and a Master’s degree in Computer Science and Engineering at Penn-
sylvania State University (Advisor: Mahmut Kandemir). In addition to these academic
activities, I have 2+ years industry experience.

Publications

IOGenie: An Automatic Parallel I/O Code Generation and Optimization Framework for
HPC Applications, Seong Jo Kim, Jun Liu, and Mahmut Kandemir (In progress)

IOPro: A Parallel I/O Profiling and Visualization Framework for High-Performance
Storage Systems Seong Jo Kim, Yuanrui Zhang, Seung Woo Son, Mahmut Kandemir,
Wei-keng Liao, Rajeev Thakur, and Alok Choudhary, In Journal of Supercomputing
(JSC) (Under revision)

IOPin: Runtime Profiling Parallel I/O in HPC Systems, Seong Jo Kim, Seung Woo Son,
Mahmut Kandemir, Wei-keng Liao, Rajeev Thakur, and Alok Choudhary, In Proceedings
of the 7nd international workshop on Petascale data storage: held in conjunction with
Supercomputing’12 (PDSW12)

An Evolutionary Path to Object Storage Access, David Goodell, Seong Jo Kim, Robert
Latham, Mahmut Kandemir, and Robert Ross, In Proceedings of the 7nd interna-
tional workshop on Petascale data storage: held in conjunction with Supercomputing’12
(PDSW12)

Automated Tracing of I/O Stack, Seong Jo Kim, Yuanrui Zhang, Seung Woo Son, Ramya
Prabhakar, Mahmut Kandemir, Christina Patrick, Wei-keng Liao, and Alok Choudhary,
In Proceedings of 17th European MPI Users’ Group Meeting (EuroMPI 2010)

