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ABSTRACT 

A computational study is performed to develop a capability of analyzing the effect 

damage has on the aerodynamic performance of airfoils.  A Cartesian immersed boundary method 

is implemented in 2D simulations of the compressible Navier-Stokes equations.  These equations 

are discretized using a Weighted Essentially Non-Oscillatory (WENO) scheme for spatial 

derivatives and a 4
th
 order Runge-Kutta scheme for temporal derivatives.  Results from time-

accurate, parallel computations are presented for a NACA 0009 airfoil in both undamaged and 

damaged states.  Time histories of lift, drag, and moment coefficients are shown, along with 

Mach contours and turbulent kinetic energy contours at three times throughout the simulations.  

Based on these initial results, it was determined that the boundary conditions used in the 

simulations were causing reflections of propagating disturbances which contaminate the solution.  

Further studies must be completed with the current methodology using alternate boundary 

conditions to validate its results prior to continuing its development for this application in aircraft 

survivability. 
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Chapter 1 

 

Introduction and Motivation 

In the airspace of modern warfare, aviators and their aircraft are subjected to a diversity 

of hostile threats posing a challenge to the aircraft's integrity and the pilot's life. Whether it be 

manned aircraft providing close air support, such as an A-10 "Thunderbolt", or unmanned aerial 

vehicles (UAVs) performing reconnaissance missions, these assets enter hostile environments 

where a strong probability exists for them to sustain damage from an array of small arms fire, to 

MAN-Portable Air Defense (MANPAD) rockets, to Surface-to-Air Missiles (SAMs).  

One aircraft that engages and is likely to sustain more ballistic damage than any other 

aircraft in the U.S. Air Force is the A-10 Thunderbolt II.  Engineered to be a flying tank, it can 

withstand severe damage and still return safely after completing its mission; thus making it one of 

the Air Force’s most survivable aircraft [1].  In the unmanned sector, the effectiveness of combat 

UAVs has been clearly demonstrated in reconnaissance, surveillance, and targeting roles, 

facilitated largely by the recent War on Terror in the Middle East.   

It is evident that these and other aerial assets of the military need to survive numerous 

missions throughout their lifetime.  Hence, one burden an aviator has when operating a damaged 

aircraft is making the decision to abandon or somehow salvage the plane, which certainly 

heightens the inherent risk to him or her.  Knowledge of the aircraft's state and remaining 

capabilities at these junctures is crucial to what decision is made.   

In 1983, an Israeli Air Force pilot, Captain Zivi Nadivi was faced with such a decision.  

As he was intercepting a hostile aircraft in a simulated air defense mission, his F-15D Eagle 

collided with an A-4 Skyhawk, resulting in the Skyhawk's destruction, and the right wing torn 

completely from the Eagle.  In Nadivi's account of the collision, his decision to apply afterburner 
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to recover the spinning aircraft was "totally opposite instinct."  The increased speed however, 

leveled the aircraft and enabled Nadivi to land the F-15 on one wing.  McDonnel Douglass 

investigated the incident, after first saying it was "aerodynamically impossible" for the aircraft to 

fly on one wing according to the latest computer simulations. Their findings showed that the wide 

fuselage of the F-15D produced enough lift that, with the afterburners lit, made the aircraft into a 

rocket with no need of wings [2,3].  It remains speculation as to whether this outcome could have 

been simulated with better computer technology and whether such technology could have 

enlightened Nadivi such that his decision to light the afterburners would have been his first 

response.  

More than two decades later, vast improvements have been made in computational 

aerodynamic simulations.  Applying new technology to the survivability arena, may allow 

decisions similar to that faced by Captain Nadivi to be easier to make.  Should an aircraft sustain 

damage, knowledge of how its aerodynamic characteristics change may enable the pilot to alter 

the handling of the vehicle in order to bring the asset safely home for repair.  Consider a wing that 

has ballistic damage, as in Figure 1.1.  How would this altered state of the structure affect the 

envelope the pilots or operators have to operate in? Would they encounter a flutter condition 

sooner than expected – possibly at normal cruising speeds?  If so, could the aircraft be salvaged if 

flown more conservatively; or less conservatively as the case may be?  Answers to questions like 

these require a strong understanding of fluid-structure interactions, as well as ample resources to 

analyze them.   
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Figure 1.1: Ballistic damage of aircraft wing in a range test 

 

Current engineering communities see a void in damage-assessment technology and a 

need for new capabilities in support of the war-fighter, which has motivated the research 

endeavor introduced here.  An aerodynamic analysis is performed on damaged airfoils that 

involve an interaction between a moving body and its surrounding fluid.  Much research has been 

conducted in the past on modeling such fluid-structure interactions.  Several approaches have 

been formulated and used throughout industry. But the underlying theme among them all is the 

expensive computational price to be paid.  

Computational Aeroelasticity History 

Sadeghi [8] reviewed various methodologies that have been used for dealing with fluid-

structure interaction numerically. Early modeling approaches relied on linear potential theory to 

formulate the mean flow and unsteady perturbations of the structure.  Some research studies 

investigated airfoil flutter using harmonic, indicial, and time-domain approaches.  Others solved 

the Transonic Small Disturbance (TSD) equation coupled to a spring-mass model to investigate 

shock wave motion and its relevance to the dip in flutter speeds seen in experimental data through 
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the transonic region.  All these linear approaches do not account for nonlinear behavior where the 

richness of the physics lies.  To account for nonlinearity, the Navier-Stokes equations must be 

solved, using an appropriate model for turbulence.  Turbulence, Sadeghi states, plays a key role 

where shock-boundary-layer interference influences shock motion.  

Nonlinear approaches were developed for investigating areas for which the earlier 

approaches were insufficient.   For example, the three-dimensional Euler equations were used to 

study the aeroelastic response of wings to unsteady flow.  Other investigators took an Eulerian-

Lagrangian approach to the solution of the fluid-structure dynamics as a single system.   

Sadeghi points out that with time-marching approaches, the computational grid must be 

updated each time step to account for the structural motion, which results in a significant 

computational cost even with modern computational resources.  Body-fitted grids are especially 

taxing to reproduce, which has spurred development of Cartesian grid based methods.  Cho et. 

al.[5] mention one such formulation recently implemented by Marshall and Ruffin [6] who solved 

the near-wall flow using a "cut-cell" methodology.  This methodology replaces reduced size cells 

intersecting the body with a boundary interpolation technique.  However, smoothness and 

stability issues in this cut-cell methodology, as the authors describe, renders it ineffective in 

viscous simulations where general bodies are modeled.  This motivates the use of "immersed 

boundary methods" which essentially removes the structural body from the model but represents 

its influence with fictitious body forces in the fluid-governing equations.   

Peskin originated an immersed body method in the 1940s by modeling flow through heart 

valves [7].  The technique had to be tuned for each unique application thereafter which exposed 

its limitation through equation stiffness and spurious oscillations arising in the results [5].  In the 

late 1990s, Mohd-Yusof [8] successfully addressed these issues by applying the fictitious body 

force to the discretized equations of motion.  Cho et. al.[5] review numerous examples using this 
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modification, including flow around square cylinders, flexible structures, and flapping wings, 

demonstrating the applicability of the technique.  

In the research presented here, the immersed boundary technique is applied to a study of 

effects of damage on airfoil performance.  The computational approach taken stems from the 

work completed by Dr. Cho at the Pennsylvania State University in developing a CARtesian 

Immersed BOUndary (CARIBOU) algorithm for fluid-structure interaction solutions.  This code 

is applied to solving the 2D compressible Navier-Stokes equations to an airfoil in undamaged and 

damaged states.   

The following chapter describes the mathematical framework within CARIBOU and how 

the body force representing the airfoil is included in the governing equations.  The discussion 

includes how the equations are averaged and the methodology for modeling the extra terms 

arising from the averaging process.  Chapter 3 explains how the equation formulation is 

implemented numerically.  A description is given of the computational domain and how the 

governing equations are transformed to discrete form.  Spatial and temporal discretization 

strategies are explained, in addition to the various initial and boundary conditions available in the 

current version of CARIBOU.  Finally, chapter 4 presents the results of the numerical 

simulations, including time histories of aerodynamic coefficients (CD, CL, CM) and images of the 

flow solutions at selected intervals throughout the simulations.  These results are drawn upon in 

chapter 5 for conclusions on how CARIBOU performed towards the intended objective, and what 

could be improved upon for future work. 



 

 

Chapter 2 

 

Equation Framework 

Chopra [9] recently developed a parallel implementation of an immersed boundary 

method for the simulation of oscillating airfoils, in close coordination to the work described by 

Cho et. al. [5].  The present research extends the CARtesian Immersed BOUndary (CARIBOU) 

code to modeling flow around damaged airfoils, using two-dimensional cases for a preliminary 

study.  Underlying its framework is a methodology closely resembling that of Mohd-Yusof [8], 

but using the compressible Navier-Stokes equations, written below in Cartesian tensor form.   

 (2.1a) 

 (2.1b) 

 (2.1c) 

 

An equation of state is also used as a closing equation to the above system, relating the 

pressure, temperature, and density.  The ideal gas law can be written as 

 (2.2) 
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As written, the variables in the governing equation are non-dimensionalized by free-stream 

quantities, namely for density; for velocity; for length (airfoil chord); for 

viscosity; for temperature; for pressure; and for stress.    

In the energy equation (2.1c), the total energy is defined by 

 , (2.4) 

and according to Fourier's law of heat conduction, the heat flux term is given by 

 . (2.5) 

The three nondimensional quantities M, Re, and PrL represent Mach number, Reynold's number, 

and the laminar Prandtl number respectively, defined using the above reference scales in addition 

to the mean freestream velocity ( ) and thermal conductivity ( ). That is, 

     (2.6a) 

     (2.6b) 

    . (2.6c) 
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Considering the momentum equation (2.1b), it is assumed the fluid is Newtonian and is 

thus characterized by a linear stress-strain relationship, expressed by 

 . (2.9) 

Terms in the stress tensor expression may be consolidated using Stoke's hypothesis which relates 

the bulk coefficient of viscosity, λ, to the dynamic coefficient of viscosity, μ, by  

 .  (2.10) 
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tractable analysis of turbulence. Hence the flow variables in the governing equations are 

decomposed into mean and fluctuating quantities: 

. (2.13) 

The prime denotes a fluctuation or perturbation of the quantity and the over-bar denotes the time 

average defined by 

. (2.14) 
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.      (2.17a) 

      (2.17b) 

      (2.17c) 

      (2.17d) 

      (2.17e) 

      (2.17f) 

      (2.17g) 
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will only produce additional unknowns, thereby resulting in the turbulence closure problem.  

Therefore, models must be developed for these terms.  

The Reynolds stress tensor term can be modeled using the Boussinesq eddy viscosity 

approximation, which relates the stress to the mean strain rate according to 

. (2.20) 
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term in the energy equation, given by 

. (2.21) 
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Menter's SST Turbulence Model 
 

Modeling the turbulent eddy viscosity is facilitated by Menter's Shear Stress Tensor 

(SST) model, derived from Wilcox's k-ω two-equation model.  Menter's approach removes from 

the original model its strong dependence on free-stream values and includes transport of principal 

shear stress for adverse pressure gradient boundary layers [12].  The two-equations comprising 

the model are 

 (2.23a) 

 (2.23b) 

where the Production (SP), Dissipation (SD) and Diffusion (D) terms for each equation are defined 

by, 

    (2.24) 

    (2.25) 

    (2.26) 
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Values for the parameters in the above definitions can be found in Menter [12]. Finally, the 

turbulent eddy viscosity can be evaluated from the kinetic energy and specific dissipation rate, 

according to 

. (2.30) 

 This overview of the equations governing the fluid motion provides the framework on 

which the current research study is built.  It was shown how the compressible Navier-Stokes 

equations were averaged, using both Reynolds and Favre averages, for exploiting the 

predictability of averaged quantities.  In so doing, extra terms appear in the framework, which are 

modeled using Menter’s SST turbulence model.  The following chapter explains how these 

equations are transformed to discrete space for computation.  
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Chapter 3 

 

Numerical Implementation 

The governing equations discussed in the previous chapter are now discretized for 

numerical simulation.  This chapter begins with a description of the stretched Cartesian grid on 

which the computations are performed, followed by an explanation of how the equations are 

transformed to a uniform grid through generalized coordinates.  Details for the discretization 

process are provided, including the construction of the Weighted Essentially Non-Oscillatory 

(WENO) scheme used for spatial derivatives and the 4 stage Runge-Kutta scheme used for 

temporal derivatives.  Concluding the chapter is a summary of the use of the body definition 

function, along with initial and boundary conditions used for the simulations.   

Computational Grid 

CARIBOU solves the two-dimensional governing equations on a stretched Cartesian grid 

in physical space.  The stretching is formulated using trigonometric hyperbolic functions with 

parameters defining the extent of clustering.  Various degrees of stretching can be used on the 

grid in both x- and y-directions according to the level of refinement necessary in that particular 

region. Figure 3.1(a) shows the stretched grid used around a NACA0009 airfoil.  Sections in the 

x-direction, around the leading and trailing edges, are more finely resolved compared to outer 

regions, as is the section surrounding the airfoil between -0.1 and 0.1 in the y-direction.  

Clustering the mesh in this fashion provides a reasonable resolution of the boundary layer.  The 

computational grid extends from -20 to 20 in both directions corresponding to 40 total chords, so 

the figure shows a close-up view of the grid in the vicinity of the airfoil body.  Figure 3.1(b) 



15 

 

shows the same airfoil, but with a semi-circular portion removed to simulate a damaged state.  

The mesh was adjusted to be uniform in the x-direction surrounding this damage to achieve 

sufficient smoothness of the curve, as shown in Figure 3.1(c). In both cases, the number of grid 

points was 330 in the x-direction and 380 in the y-direction. 

 

 

 

 

 

(a) (b) 

 
(c) 

Figure 3.1: Stretched Cartesian grid used for (a) undamaged and (b) damaged NACA 0009 airfoil; 

(c) uniform grid in x-direction in vicinity of damage 
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 This grid was used in both serial and parallel versions of CARIBOU.  Parallel 

computation significantly enhanced the efficiency of the simulations. Twelve processors on 

COCOA3, a cluster of 128 nodes and dual 2.4 GHz processors, each having 1 GB RAM have 

been used.  In parallel simulations, the domain is broken into blocks according to the number of 

processors and the number of grid points in each of the coordinate directions.  For 12 processors 

and the previously stated number of grid points, the domain is divided into 4 blocks in the x-

direction and 3 blocks in the y-direction. Message Passage Interfacing (MPI) routines are used to 

establish communication among these blocks.     

Discretization of Equations 

Discretization of the governing equations requires the physical grid in (x,y) coordinates to 

be transformed to a computational domain with coordinates (ξ,η).  Transforming the physical 

coordinates to this generalized coordinate system can be explained by considering the governing 

equations in vector form (with no source terms) 

 (2.31) 

where, 

     (2.32a) 
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     (2.32b) 

    . (2.32c) 

Subscripts in this definition, and those following, represent partial derivatives.  The spatial 

derivatives can be expanded in terms of the generalized coordinates according to, 

𝜕𝐸

𝜕𝑥
=
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𝜕𝜉
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+
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 (2.33a) 
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+
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 (2.33b) 

After expanding these terms, the entire equation can be multiplied by the Jacobian of the 

transformation defined as, 

. (2.34) 

Note that, 

𝐽  
𝜉𝑥 𝜉𝑦
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 =  
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−𝑦𝜉 𝑥𝜉
 , (2.35) 

Manipulation of the resulting terms leads to the following equation. 
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The last two bracketed terms contain second-order mixed derivatives which are equal on the basis 

of continuity.  Thus these terms cancel, leaving the transformed equation, 

  






























xxyxxt

xy

xx

qvuupe

uv

puu

u









E

  






























yyyyxt

yy

yx

qvuvpe

vv

puv

v









F

 yxyxJ 



18 

 

𝜕𝑄 

𝜕𝑡
+

𝜕𝐸 

𝜕𝜉
+

𝜕𝐹 

𝜕𝜂
= 0 (2.37) 

where the transformed solution vector ( ) and flux vectors ( , ) are defined as 

     (2.38a) 

     (2.38b) 

    . 

(2.38c) 

 

 

WENO Scheme 

Transformation to a uniform grid is necessary for the use of a Weighted Essentially Non-

Oscillatory (WENO) scheme to represent the fluxes in discrete form.  Due to the presence of the 

body, discontinuities arise in conventional differencing schemes.  These contaminate the solution 

with numerical oscillations.  Implementation of the WENO scheme reduces these numerical 

oscillations occurring at the fluid-body interface and in regions of rapid change (such as close to a 

shock) [13].   

Letting q represent a flux in either direction, the derivative of the flux at node i is defined 

by  

. (2.39) 

 

CARIBOU uses a 5th-order WENO scheme where the flux, q, is weighted according to 
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and each of the weighted fluxes are defined by, 

 

 (2.41a) 

 (2.41b) 

. (2.41c) 

Fluxes on the RHS of these expressions are averages at the respective node, where Lax-Friedrich 

flux splitting is used for the computation.  Specifically, the flux q is split into positive and 

negative components [5], 

𝑞 = 𝑞+ + 𝑞− (2.42) 

where 

 𝑞+ ′ ≥ 0 ,  𝑞+ ′ ≤ 0 . (2.43) 

The individual weights in the expressions are computed according to, 

 (2.44) 

where  

. (2.45) 

Lastly, the terms in Equation (2.38) are smoothness indicators and are represented by 
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Runge-Kutta Scheme 

Time derivative terms are discretized according to a 4th-order explicit Runge-Kutta (RK) 

scheme.  The formulation of this scheme for one dimension, using the variables introduced 

previously, can be written as,  

 (2.47a) 

 (2.47b) 

 (2.47c) 

. (2.47d) 

The four coefficients, a1, a2, a3, a4, are assigned the standard values (1/4, 1/3, ½, 1) respectively 

for time-accurate simulations, but for faster convergence in steady-state simulations, the values 

(3/8, ½, 1, 1) are assigned [14].  

Body Definition Function 

CARIBOU defines the region containing the body using a Body Definition Function 

(BDF) which assigns a value of 0 or 1 to each grid point in the domain depending on whether that 

point lies outside or inside, respectively, a prescribed boundary.  So, in Figure 3.1 for example, 

points inside the airfoil (colored red) would have a BDF value of 1, while points outside (colored 

gray) would have a BDF value of 0.   
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particular point.  This additional check switches the value of a body point to zero if this point also 

falls within the superimposed boundary.  Any number of damage shapes and sizes can be 

prescribed this way, as well as at any location.  The semi-circular shape used in this preliminary 

study was selected for simplicity, and the quarter chord location on the airfoil's upper surface was 

selected as a position that was expected to cause the most notable effect in the results. The radius 

for the damage shown in Figure 3.1 is 0.05, which is 5% of the airfoil chord. 

Initial Conditions 

Several initial conditions are available for selection in CARIBOU.  An integer value is 

assigned to the variable ic_case in the input file according to the desired condition.  Each 

condition is listed in  Table 3.1 with its corresponding value. 

 Table 3.1: Selections for initial conditions 

ic_case Corresponding initial condition 

1 Gaussian pulse 

2 Quiescent condition 

3 
Quiescent condition with body velocity equal to grid velocity (in moving 

grid simulations) 

4 Initial uniform mean flow 

5 Initial uniform mean flow with zero velocity inside body. 

11 Restart condition 

 

For each simulation reported in the following chapter, the initial condition used was that 

corresponding to ic_case = 5, uniform mean flow with zero velocity inside the body.  
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Boundary Conditions 

Boundary conditions (BC) are selected in CARIBOU in the same fashion as the  initial 

conditions. Namely the variable bc_case is given a value in the input file according to the 

following definitions in Table 3.2. 

 Table 3.2: Selections for boundary conditions 

bc_case Corresponding boundary condition 

1 Periodic     BC,  imposed in the inflow and outflow 

2 Mean flow BC,  imposed in the inflow 3 points 

3 Riemann    BC,  imposed in the inflow and outflow 

31 Riemann    BC,  imposed in all directions (in, out, bottom, top) 

4 Mean flow BC,  imposed in the inflow 

5 

left: mean flow BC 

right: extrapolation BC 

bottom: partly symmetric, partly no-slip BC 

top: extrapolation BC  

 

For each simulation in the present research, the boundary condition corresponding to bc_case = 5 

was used. For the left and bottom boundaries, each variable is imposed, and for the right and top 

boundaries, they are extrapolated.  Along the bottom boundary up to a specified point, the 

symmetric condition imposes values on each node which are equal to the neighboring, interior 

point values.  Beyond this specified point, the velocity components are set to zero while the 

symmetric condition is imposed for the remaining variables.  

By embedding multiple selections of initial and boundary conditions within the code, 

numerous simulations using different conditions can be performed to see the effect such 

conditions have on the results.  The numerical results presented in the following chapter show this 

effect for the conditions chosen.  Having presented the numerical implementation here, including 

a discussion of the stretched Cartesian grid, the transformation to a generalized computational 

grid, and the manner by which the governing equations have been discretized, the groundwork 

has been provided for the numerical results of the following chapter to be presented. 



 

 

Chapter 4 

 

Numerical Results 

Results of the developments discussed through the previous two chapters are now 

presented.  Various simulation cases are provided, showing time histories of lift, drag, and 

moment coefficients of an airfoil in damaged and undamaged states.  Experimental data for these 

coefficients are shown for comparison; in those cases where the data exists.  Contours of Mach 

number and turbulent kinetic energy are also presented to show the time evolution of the 

simulations.  These results are drawn upon in the following chapter for conclusions on how 

CARIBOU performed in this study along with avenues for future development. 

An NACA 0009 airfoil was the primary body shape used for running 2D simulations with 

CARIBOU.  The simulation cases covered three angles-of-attack of the airfoil (0°, 4°, 9°) for 

both undamaged and damaged states, for a total of six configurations. Angle-of-attack is specified 

as a parameter in the input file to the main code.  Adjusting this value causes the flow to be 

angled relative to the airfoil, which itself stays aligned with the grid (see Figure 3.1).  Keeping the 

airfoil aligned with the grid and rotating the flow allows the near wall regions to be well resolved.  

In contrast, if the airfoil were rotated relative to the flow, portions of the surface would approach 

coarser regions of the grid thereby decreasing flow resolution.  

The first simulation ran the undamaged airfoil at zero angle of attack (AOA), with a 

Mach number of 0.2 and Reynolds number of 100,000.  Figure 4.1 shows values of the 

aerodynamic coefficients for this case.  This was a time accurate simulation using a CFL of 0.5 

on 12 processors.  The time scale, t, used in the figure is nondimensionalized by free stream 

quantities as discussed previously.  Using a sound speed of approximately 340 m/s, the 

corresponding dimensional scale (t*) would cover approximately the first 0.5 seconds in physical 
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time.  The results show an initial transient solution that progresses to a nearly steady state 

behavior, where there are zero lift and moment coefficients and a drag coefficient of 

approximately 0.025.  Relative to the experimental data shown in the drag polar of Figure 4.2(b), 

this steady state drag is approximately twice than the minimum drag coefficient measured at a 

Reynolds number of 1.0x10
5
.  

 

Figure 4.1: Aerodynamic coefficient results: Undamaged NACA 0009, 0° AOA, Re = 1.0x10
5
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Figure 4.2: (a) NACA 0009 Lift Curves
15

  (b) NACA 0009 Drag Polar
15

  

 

From t = 20 (t* = 0.3 s) onwards, the simulation developed non-physical oscillations that 

indicates an underlying instability in the code.  This can also be seen in Figure 4.3 where flow 

solutions were selected from each period to show contours of Mach number (x-component) and 

nondimensional turbulent kinetic energy within the vicinity of the airfoil.  The last row of the 

figure shows a wavering energy trail, which is an artifact of the computational instability rather 

than a physical instability.  At 0° AOA, the flow should remain in a steady state condition as 

shown in the middle row of the figure.  
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Figure 4.3: Mach and turbulent kinetic energy contours of undamaged NACA 0009 airfoil at 0° AOA 

during transient, steady, and unstable simulation times 



27 

 

In comparison to the damaged airfoil under the same conditions, the same three regions 

(initial transient, steady state, and oscillatory) are observed in the results, as shown in Figure 4.4.  

The only difference is a slight reduction in lift.       

 

Figure 4.4: Aerodynamic coefficient results: Damaged NACA 0009, 0° AOA, Re = 1.0x10
5
 

 

Contours of Mach number and turbulent kinetic energy are shown in Figure 4.5 for the three 

separate periods in this simulation.  An effect of the damage can be seen in the steady state 

energy plot (middle row) with turbulent energy being generated at the back edge of the cutout and 

trailing along the upper surface. In comparison to the undamaged case at the same time period, 

the same level of turbulent energy is produced farther aft on the upper surface and is symmetrical 

with the lower surface.  The final plots on the last row of the figure correspond to the unstable 

region which is emphasized by points of strong energy concentration being shed from the airfoil.  

From the previous results of the undamaged airfoil in this region, the zero degree case has an 
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inherent instability embedded within it which prevents the effects of damage from being 

accurately described by these results.   
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Figure 4.5: Mach and turbulent kinetic energy contours of damaged NACA 0009 airfoil at 0° AOA 

during transient, steady, and unstable simulation times 
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A second simulation looked at the undamaged and damaged cases of the same NACA 

0009 airfoil at 4° AOA. Experimental data is presented in Table 4.1 for the undamaged state, with 

interpolated values for 4° AOA. 

Table 4.1: Experimental lift and drag coefficients for a NACA0009  

airfoil
15

 and (linearly interpolated values) at 4° AOA 

α CL CD 

3.15 0.353 0.0118 

(4.00) (0.424) (0.0134) 

4.19 0.440 0.0138 

 

Figure 4.6 shows CARIBOU's results for the undamaged case.  There is not a long steady 

state region prior to the simulation going unstable, but the initial transient portion does settle at 

values closely matching the experimental values for lift.  The drag coefficient is approximately 

0.04 which again is significantly larger than the experimental value of 0.01.     

 

Figure 4.6: Aerodynamic coefficient results: Undamaged NACA 0009, 4° AOA, Re = 1.0x10
5
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Figure 4.7 presents flow solutions for this case at times in the transient region, the steady 

region, and the unstable region to show the progression of the simulation through each of these 

periods.  The first row of pictures corresponds to the transient phase, where the flow has not yet 

settled.  The second row corresponds to approximately 0.15 seconds into the simulation (t = 10), 

where the flow has settled to an approximate steady state.  Considering the Mach contours, the 

angle of attack can be seen by the flow trailing upwards aft of the airfoil.  Also, the flow is 

accelerating over the airfoil as would be expected. The turbulent kinetic energy for this time 

shows several vortical structures beginning to shed from the upper surface.  These structures 

intensify as seen in the final row, corresponding to the region with strong oscillations near the end 

of the simulation.  The Mach number in this region shows an increase in velocity fluctuations 

which is obviously unstable as the steady state contour should still be seen at this time in the 

simulation.   
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Figure 4.7: Mach and turbulent kinetic energy contours of undamaged NACA 0009 airfoil at 4° AOA 
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Considering the damaged state for this case, there is no apparent effect on the 

aerodynamic characteristics shown in Figure 4.8. The time history of these quantities shows the 

same trends and values as the undamaged state.  

 

Figure 4.8: Aerodynamic coefficient results: Damaged, NACA 0009, 4° AOA, Re = 1.0x10
5
  

 

Minor effects from the damage can be seen in the contours of the x-component of Mach 

number and the nondimensional turbulent kinetic energy, shown in Figure 4.9.  In particular, the 

Mach contours have more oscillations in the wake in the steady state period than the undamaged 

case.  This is due to the cutout shedding small vortices downstream, as was seen in the 0° AOA 

results.    
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Figure 4.9: Mach and turbulent kinetic energy contours of damaged NACA 0009 airfoil at 4° AOA 
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The final simulation considered the undamaged and damaged states of the NACA 0009 

airfoil near its stall angle of 9° AOA.  Figure 4.10 shows clearly different profiles for the 

aerodynamic coefficients than those at lower angles of attack.  Namely, there is a rise in lift and 

drag and a corresponding dip in moment where there was otherwise steady state behavior.  Again 

however, the simulation transitions into growing oscillations that eventually produce "Not a 

Number" (NaN) as a result.  This progression can be seen in the contours of Mach number and 

turbulent kinetic energy for the initial, intermediate, and unstable periods of the simulation in 

Figure 4.11.  

 

Figure 4.10: Aerodynamic coefficient results: Undamaged NACA 0009, 9° AOA, Re = 1.0x10
5
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Figure 4.11: Mach and turbulent kinetic energy contours of undamaged NACA 0009 airfoil at 9° 

AOA during transient, intermediate, and unstable simulation times 
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Similar results for the damaged airfoil at 9° AOA can be seen in the coefficient time histories in 

Figure 4.12 and the contours of Figure 4.13.   

 

Figure 4.12: Aerodynamic coefficient results: Damaged NACA 0009, 9° AOA, Re = 1.0x10
5
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Figure 4.13: Mach and turbulent kinetic energy contours of damaged NACA 0009 airfoil at 9° AOA 

during transient, intermediate, and unstable simulation times 
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The results of the damaged and undamaged cases near the stall angle show very little 

difference.  At the stall angle, the flow has detached from the upper surface prior to reaching the 

damage location so any effects of the cutout will not be propagated downstream. This would 

likely change with different shapes of damage, such as portions of the lower surface removed or 

sections of both upper and lower surfaces removed to simulate a hole through the wing. 

According to the results presented, there is a numerical instability that contaminates the 

solution.  This instability appears as large oscillations in the aerodynamic coefficients at large 

times. Clearly, the source of the instability should be the focus of future work, but it is proposed 

here that the source lies with boundary conditions.  Boundary conditions often need more 

attention in time-accurate compressible codes such as used here.  Compressible disturbances 

propagating to the domain boundaries must be handled correctly, or they may reflect and 

contaminate the interior flow.   

It is likely in these results that disturbances are reflecting from the boundaries rather than 

radiating out of the domain as they should.  To check this, the zero degree case was re-executed 

using a smaller domain, measuring 10 chords by 10 chords rather than the original 40 by 40 

chords.  Figure 4.14 shows the comparison of lift coefficients between these cases.   
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Figure 4.14:  Comparison of lift using two different size computational domains 

 

Disturbances have less distance to travel to the boundary in the smaller domain, and less 

distance to reflect back, if they indeed are reflecting.  Therefore, their effect would be seen earlier 

in the time-accurate results.  Based on Figure 4.14, it is observed that the unstable oscillations 

begin sooner using the smaller domain, and so it is concluded that the outflow boundary 

conditions are a primary source for the instability. 

The next chapter summarizes the results of the present study and provides suggestions for 

future work.   
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Chapter 5 

 

Conclusions and Future Work 

Previous developments using the Cartesian immersed boundary approach have been 

extended to the survivability field, where an opportunity exists to further understanding on the 

effect that damage has on the aerodynamic characteristics of flight surfaces.  The results 

presented here are a preliminary step in the development of a way to predict, in real time, an 

aircraft's performance upon sustaining damage. This study considered a NACA 0009 airfoil with 

a semi-circular portion of its upper surface removed at the quarter chord, with a radius amounting 

to 5% of its chord.  Several simulations were conducted at various angles of attack to compare the 

lift, drag, and moment coefficients of the airfoil in the undamaged and damaged states.  These 

were time-accurate, compressible simulations conducted using parallel processing. 

Based on the results, it was observed that the semi-circular damage on the upper surface 

did not have a significant impact on the airfoil's characteristics.  The only effect that the results 

show is a small reduction of lift at 0° angle of attack, although this reduction was not seen at the 

4° and 9° angles of attack. For 0° and 4° angles of attack, CARIBOU computed higher drag than 

the experimental measurements. It is likely that the lack of effect of the damage in the 4° and 9° 

cases was due to the minimum pressure being forward of the quarter chord location in the 4° case 

and the flow being separated over most of the upper surface in the 9° case.    

Each simulation consistently produced unbounded oscillations in the results at large 

times, indicating the presence of an instability in the code.  It is likely that this instability is linked 

to the outflow boundary conditions, where compressible disturbances are being reflected rather 
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than radiated from the domain.  Such reflections contaminate the flow solutions, thereby 

preventing any solid conclusions being possible regarding the effect of damage. 

Future work should continue the development of this application, by first investigating 

the source of the instability and its connection to boundary conditions.  There are several other 

options programmed in CARIBOU for these conditions, which should be exercised. This will 

allow confidence to be developed with CARIBOU when consistent matching is obtained between 

numerical and experimental results.  Then various damage sizes, shapes, and locations can be 

explored.   

Though the eventual results presented in this thesis were unsatisfactory due to the 

numerical instability, the use of an immersed boundary method to examine the effects of different 

damage to an airfoil, or eventually to a wing and aircraft, offers considerable promise 
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