
The Pennsylvania State University
The Graduate School

EFFICIENT COMBINATORIAL METHODS IN SPARSIFICATION,

SUMMARIZATION AND TESTING OF LARGE DATASETS

A Dissertation in
Computer Science and Engineering

by
Grigory Yaroslavtsev

c© 2014 Grigory Yaroslavtsev

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

May 2014

The dissertation of Grigory Yaroslavtsev was reviewed and approved∗ by the following:

Sofya Raskhodnikova
Associate Professor of Computer Science and Engineering
Chair of Committee and Dissertation Advisor

Piotr Berman
Associate Professor of Computer Science and Engineering

Jason Morton
Assistant Professor of Mathematics and Statistics

Adam D. Smith
Associate Professor of Computer Science and Engineering

Raj Acharya
Head of Department of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

Abstract

Increasingly large amounts of structured data are being collected by personal computers,
mobile devices, personal gadgets, sensors, etc., and stored in data centers operated by the
government and private companies. Processing of such data to extract key information is
one of the main challenges faced by computer scientists. Developing methods for construct-
ing compact representations of large data is a natural way to approach this challenge.

This thesis is focused on rigorous mathematical and algorithmic solutions for sparsi-
fication and summarization of large amounts of information using discrete combinatorial
methods. Areas of mathematics most closely related to it are graph theory, information
theory and analysis of real-valued functions over discrete domains. These areas, somewhat
surprisingly, turn out to be related when viewed through the computational lens. In this
thesis we illustrate the power and limitations of methods for constructing small represen-
tations of large data sets, such as graphs and databases, using a variety methods drawn
from these areas.

The primary goal of sparsification, summarization and sketching methods discussed
here is to remove redundancy in distributed systems, reduce storage space and save other
resources by compressing the representation, while preserving the key structural properties
of the original data or system. For example, the size of the network can be reduced by
removing redundant nodes and links, while (approximately) preserving the distances or
connectivities between the nodes.

This thesis serves as an overview of results in [31, 30, 152, 38, 171, 33]. It also contains
an extension of results in [152] obtained jointly with David Woodruff.

iii

Table of Contents

List of Figures viii

List of Tables ix

Acknowledgments x

Chapter 1
Introduction 1
1.1 Organization . 1
1.2 Overview . 2

I Approximate Sparse Network Design 6

Chapter 2
Approximate Sparsification of Directed Graphs 7
2.1 Introduction . 7

2.1.1 Relation to Previous Work . 8
2.1.2 Our Techniques . 8
2.1.3 Directed Steiner Forest . 9
2.1.4 Organization . 10

2.2 An Õ(
√
n)-Approximation for Directed k-Spanner 10

2.2.1 Sampling . 11
2.2.2 Randomized Rounding . 11
2.2.3 Antispanners . 12
2.2.4 LP, Separation Oracle and Overall Algorithm 13

2.2.4.1 Separation Oracle . 14
2.2.4.2 Overall Algorithm for Directed k-Spanner 16

2.3 LP and Rounding for Graphs with Unit-Length Edges 16

iv

2.4 An Õ(n1/3)-Approximation for Directed 3-Spanner with Unit-Length
Edges . 18

2.5 An O(n2/3+ε)-Approximation for Directed Steiner Forest 24
2.6 Conclusion . 27

Chapter 3
Sparsification of Node-Weighted Planar Graphs 28
3.1 Preliminaries . 30

3.1.1 Uncrossable families of cycles and proper functions 31
3.2 Algorithm . 33

3.2.1 Generic local-ratio algorithm . 33
3.2.2 Minimal pocket violation oracles . 34

3.3 Proof of 18/7 approximation ratio with pocket oracle 35
3.3.1 Complex witness cycles and decomposition of the debit graph 36
3.3.2 Pruning . 37
3.3.3 Envelopes . 38
3.3.4 Tight examples . 40

II Concise Representations of Real Functions in Property Testing 42

Chapter 4
Concise Representations of Submodular Functions 43
4.1 Introduction . 43

4.1.1 Related work . 46
4.2 Structural result . 48
4.3 Generalized switching lemma for pseudo-Boolean DNFs 50
4.4 Learning pseudo-Boolean DNFs . 54

Chapter 5
Transitive-Closure Spanners and Testing Functions on Hypergrids 59
5.1 Introduction . 59

5.1.1 Results . 61
5.1.1.1 Steiner 2-TC-spanners of Directed d-dimensional Grids. . . 61

5.1.2 Applications . 63
5.2 Definitions and Observations . 64
5.3 Lower Bound for 2-TC-spanners of the Hypergrid 67
5.4 Our Lower Bound for k-TC-spanners of d-dimensional Posets for k > 2 . . . 70

5.4.1 The Case of d = 2 . 71
5.4.2 The Case of Constant d . 73

v

III Communication Complexity Methods in Summarization 76

Chapter 6
Lower bounds for Testing of Functions on Hypergrids 77
6.1 Introduction . 77
6.2 Preliminaries . 81
6.3 Lower bounds on the line . 82

6.3.1 Monotonicity . 83
6.3.2 Convexity . 84
6.3.3 The Lipschitz property . 86

6.4 Lower bounds on the hypergrid . 87
6.4.1 Monotonicity . 89
6.4.2 Convexity . 90
6.4.3 The Lipschitz property . 92

Chapter 7
Beyond Direct-Sum with Application to Sketching 94
7.1 Introduction . 94
7.2 The Direct Sum Theorem . 100
7.3 Lower Bounds for Protocols with Abortion 105

7.3.1 Equality Problem . 105
7.3.2 Augmented Indexing . 106

7.4 Applications . 109
7.4.1 Hard Problem . 109
7.4.2 Estimating Multiple `p Distances . 110
7.4.3 Other Applications . 113

Chapter 8
Optimal Round-Complexity of the Set Intersection Problem 116
8.1 Definitions and preliminaries . 120
8.2 Upper bound . 121

8.2.1 Auxiliary protocols . 121
8.2.2 Main protocol . 122

Bibliography 125

Chapter A
Appendix 139
A.1 Concentration results . 139
A.2 Omitted proofs . 140

A.2.1 Lemma A.2.1 . 140
A.2.2 Analysis of the generic local-ratio algorithm 141
A.2.3 Uncrossing proper sets (Lemma 3.1.2) 141

vi

A.3 Proof of 12/5 approximation ratio with triple pocket oracle 142
A.4 Converting a learner into a proper learner 143
A.5 Information Cost When Amplifying Success Probability 143
A.6 Auxiliary Results for Lower Bounding Applications 144

A.6.1 Generic Indexing problems . 144
A.6.2 Encoding of Indexing Over Augmented Set Indexing 146

A.7 Proof for Other Applications . 148
A.7.1 Proof of Theorem 7.4.10 . 148
A.7.2 Proof of Theorem 7.4.11 . 149
A.7.3 Proof of Theorem 7.4.12 . 150
A.7.4 Proof of Theorem 7.4.13 . 150

A.8 Lower bound . 151
A.9 O(

√
k)-round protocol with linear communication 153

A.10 Communication in the Set Intersection protocol 154

vii

List of Figures

2.1 Linear program for the arbitrary-length case, LP-A. A is the set of all
minimal antispanners for thin edges. 14

2.2 Linear program for the unit-length case, LP-U. 17
2.3 Linear program LP-DSF for the case |D − C| > |D|/2 26

3.1 Family of instances of Subset Feedback Vertex Set with approximation
factor 18/7 for the primal-dual algorithm with oracle Minimal-Pocket-
Violation . 41

3.2 Family of instances of Subset Feedback Vertex Set with approxima-
tion factor 12/5 for primal-dual algorithm with oracle Minimal-3-Pocket-
Violation . 41

5.1 Box partition BP(2) and jumps it generates. 72

viii

List of Tables

3.1 General graphs . 29
3.2 Planar graphs . 29

5.1 The size of the sparsest Steiner k-TC-spanner for d-dimensional posets on
n vertices for d ≥ 2 . 62

6.1 Query complexity bounds for testing properties of the function f : [n]d → Z
(top) and of the function f : [n] → [r] (bottom). All the bounds are for
nonadaptive tests with two-sided error unless marked otherwise. 78

ix

Acknowledgments

First and foremost, I would like to thank my advisor Sofya Raskhodnikova for the three
exciting years of joint collaboration. During these years Sofya has been both an invaluable
mentor and a helpful colleague, while also granting me an unlimited freedom to pursue
my research interests and continuous support at different stages of my PhD. For all this I
am forever grateful. I would also like to thank Piotr Berman for our fruitful collaboration
and his availability to discuss all sorts of algorithmic questions any time. I am grateful
to Adam Smith for research advice and our collaboration on privacy projects not included
in this thesis. I am also very thankful to Sofya, Piotr and Adam for bringing many great
parts of the research culture from MIT to the Theory group at Penn State, which made
my time there extremely enjoyable and productive.

I would like to thank my co-authors on the papers included into this thesis – Piotr
Berman, Arnab Bhattacharyya, Eric Blais, Elena Grigorescu, Konstantin Makarychev,
Marco Molinaro, Sofya Raskhodnikova and David Woodruff. During my PhD I was lucky
to work with many other co-authors, whom I would like to thank for their hard work
– Alexandr Andoni, Joshua Brody, Amit Chakrabarti, Ranganath Kondapally, Aleksan-
dar Nikolov, Krzysztof Onak, Cecilia M. Procopiuc, Adam Smith, Divesh Srivastava and
Anthony Wirth.

Roughly a half of my PhD was spent in research labs and I am particularly grateful to my
mentors during the time there – Graham Cormode, Howard Karloff, Cecilia M. Procopiuc
and Divesh Srivastava (AT&T Labs – Research, Summer 2011), David Woodruff (IBM
Research, Almaden, Summer 2012), Alex Andoni (Microsoft Research, Silicon Valley, Fall
2012) and Konstantin Makarychev (Microsoft Research, Redmond, Summer 2013). These
internships have been tremendously helpful in extending my expertise in the design and
analysis of algorithms. In particular, the strong direct sum results in Chapter 7 were
obtained at IBM, Almaden (jointly with Marco Molinaro and David Woodruff) and the
bounded-round protocols for the set interstion problem in Chapter 8 were obtained there
as well (jointly with David Woodruff). These research internships also resulted in lasting
collaborations with members of the labs, which I maintain until the present day.

Discussions with multiple people have contributed to some parts of this thesis – Paul
Beame, Vitaly Feldman, Nick Harvey, Kevin Matulef, Ryan O’Donnell, Lev Reyzin, Rocco
Servedio, C. Seshadhri and Jan Vondrak.

I would like to thank the faculty members of the Theory group at Penn State for

x

multiple useful discussions – Martin Furer, Sean Hallgren and Paul Medvedev. I would
also like to thank my office mates at the Theory lab for the fun times there – Ishan Behoora,
Kashyap Dixit, Abhradeep Guha Thakurta, Megan Heysham, Madhav Jha, Ngai Lam Ho,
Meiram Mirzabulatov, Sandeep Narayanaswami, Fang Song, Youngtae Youn, Huiwen Yu
and Ye Zhang.

During all three years of working on this thesis I was supported by the College of
Engineering Fellowship and partially by University Graduate Fellowship at Penn State. I
am deeply grateful for this support which made it possible for me to concentrate fully on
my research pursuits.

Finally, I would like to thank the committee members Adam Smith, Piotr Berman and
Jason Morton for their comments on this manuscript.

Research included into this thesis wouldn’t be possible without the generous support
provided by the NSF/CCF CAREER award 0845701.

xi

To my mother.

xii

Chapter 1
Introduction

1.1 Organization

This thesis consists of three parts, covering different aspects of our study of compact
representations.

Sparsification. In Part I we discuss design of efficient algorithms for structure-
preserving network design. Sparsification is used to speed up algorithms and reduce
communication overheads. It allows one to cut costs and optimize performance in
networks. We focus on algorithms for sparsification of networks by removing extra
features such as redundant links and nodes while (approximately) preserving their
connectivity properties and distances.

This part consists of two chapters. In Chapter 2 we discuss approximate sparsification
of directed graphs. We present approximation algorithms for constructing graph
spanners in directed graphs and consider several related problems. This part is based
on [31]. In Chapter 3 we discuss approximate sparsification of planar graphs. This
part is based on [33].

Property Testing. In Part II we discuss algorithmic techniques for testing struc-
tural properties of the data. Property testing can be informally described as an ex-
tremely efficient algorithmic way to do a sanity check. It allows one to test whether
data satisfies a certain structural property by performing an analysis of a carefully
chosen small sample. Very efficient algorithms for selection and analysis of such a
sample are the main subject of studies in this area. Because of their efficiency such
algorithms are natural candidates for applications in fast decision making and for
selection of further algorithmic solution for data analysis. For example, by looking
at a very small portion of the data it is possible to make an approximate decision
about whether it is sorted and analyze other related properties.

This part consists of two chapters. In Chapter 5 we discuss relationship between
property testing algorithms and graph spanners introduced in Chapter 2. We show
almost optimal lower bounds on a certain type of spanners for the hypergrid do-
mains. In particular, these lower bounds rule out a specific approach to property

2

testing of functions over hypergrids. This part is based on [30]. In Chapter 4 we dis-
cuss sparsification of submodular functions with discrete ranges. This part is based
on [171].

Communication Compelxity. In Part III we discuss the rigorous theoretical
framework of communication complexity. It allows to reason about efficiency of
bandwidth utilization by algorithms, operating in a distributed setting. It is also one
of the main techniques for proving lower bounds in the analysis of discrete algorithms
in many diverse areas of computer science, ranging from data structures to circuit
lower bounds. By giving reductions to their communication counterparts one can
show information-theoretic lower bounds for the problems of interest.

In this thesis we use communication complexity as a tool for lower bounds in applica-
tions to sketching and property testing. These applications motivate advancements
in the field of communication complexity in new directions. In Chapter 6 we show re-
ductions from communication complexity to a number of property testing problems,
involving functions over hypergrids. The properties we consider are monotonicity, the
Lipschitz property and convexity. This chapter is based on [38]. In Chapter 7 we give
a new theorem in communication complexity, which falls into a class of direct sum
results. Informally, our results show that for a certain class of communication prob-
lems solving multiple instances simultaneously is as hard as solving every individual
instance with high probability. We also explain how our direct sum result implies
optimum lower bounds for a large number of sketching techniques. This chapter is
based on [152]. Finally, in Chapter 8 we give almost optimal protocols for the prob-
lem of finding an intersection between two distributed databases in bounded number
of rounds of communication. This chapter is closely related to Chapter 7 because
our lower bound for the set intersection problem follows from the results developed
there. This chapter is based on joint work with David Woodruff, which was done
while the author was an intern at IBM Research, Almaden.

1.2 Overview

In this section we give an overview of the technical results presented in this thesis and
place them into the context of the previous work.

Part I. Approximate Sparse Network Design.

Sparsification of undirected graphs is one of the most beautiful parts of theoretical computer
science, which ties together deep mathematics with applications to the analysis of large
graphs. Branches of mathematics, such as spectral graph theory and metric embeddings,
give us powerful tools to address multiple problems, such as graph partitioning, sparsest
cut and others. For multiple specific variants of sparsification strongly positive results
are known (spanners, cut and vertex sparsifiers, mimicking networks, distance-preserving
minors, etc.).

3

For directed graphs the situation is much more challenging: there is no consistent
spectral graph theory for directed graphs, metric embeddings give only limited results.
Under most of the specific definitions mentioned above no (non-trivial) sparsifiers exist (or
are known) for directed graphs. My research is focused on methods in graph sparsification,
which are applicable to directed graphs by design. Using the examples below I will illustrate
that the state of the art approximation algorithms for many problems in sparse network
design in directed graphs (as compared to undirected graphs) still have a very combinatorial
flavor.

A k-spanner of a graph is a subset of edges which preserves distances in the original
graph up to a factor of k. A Steiner forest of a graph is a subset of edges which preserves
connectivity between designated source-sink pairs of terminals. In Chapter 2 we present
approximation algorithms for minimizing the size of spanners and Steiner forests in directed
graphs. Following our work, an efficient implementation of our techniques was shown to
give promising experimental results on real instances of the iBGP overlay design problem
by Dinitz and Wilfong [72]. Our worst-case approximation guarantee was complemented
by hardness results shown by Dinitz, Kortsarz and Raz [70]. Although our algorithms are
designed for directed graphs, the algorithm for 3-spanners improves over the classic result
of Althöfer, Das, Dobkin, Joseph and Soares [11], who give an approximation algorithm
for undirected graphs.

In Chapter 3 we study sparsification of planar graphs, giving approximation algorithms
for a set of basic node-weighted network design problems, including Feedback Vertex
Set, Bipartization, Subset Feedback Vertex Set, Directed Feedback Vertex
Set and Node-Weighted Steiner Forest. We give analysis of the approximation
ratio achieved by classic primal-dual algorithms of Goemans and Williamson [102] and
justify their successful experimental performance in applications to VLSI design observed
by Kahng, Vaya and Zelikovsky [130]. We also show how to obtain better approximation
by using more sophisticated oracles with the primal-dual framework of [102].

Part II. Concise Representations of Real Functions in Property Testing.

In Chapter 5 we discuss sparsification of posets (transitively closed directed acyclic graphs).
Such sparsification can be used for construction of efficient access control hierarchies. It
is known [12, 182] that posets corresponding to such hierarchies can be represented by a
small number of attributes and thus can be embedded into low-dimensional hypergrids in
an order-preserving manner. This chapter also serves as a transition point from network
design applications of sparsification to applications to property testing. Existence of a
sparse spanner for the poset domain implies an efficient property testing algorithm for
monotonicity [95]. In general, even an optimal spanner for a poset might be as dense
as the original graph. We show that efficient and explicit sparsification by spanners is
possible if one allows to introduce Steiner nodes. We also show that the dependence on
the size of the poset and the dimension of the hosting hypergrid is almost optimal in our
constructions.

In network design the role of sparsification is rather straightforward and can be seen as
optimization of the design by removal of redundant elements. In the analysis of functions
the role of sparsification is sometimes more implicit — existence of a concise representation

4

implies certain structural properties, which can be used in the algorithm design without
constructing the representation explicitly.

In Chapter 4 we focus on understanding concise representations of real-valued submod-
ular functions with applications to learning theory and property testing. We study integer
submodular functions f : 2X → {0, . . . , k} (discrete analogs of convex functions over the
Boolean hypercube). We show that such functions can be represented by formulas of
bounded width. This lets us argue that they have non-trivial concentration in the Fourier
spectrum and thus Kushilevitz-Mansour learning algorithm can be used to PAC-learn such
functions with query complexity and running time polynomial in |X|.

Previous work on learning submodular functions gives mostly negative results [100, 111,
21, 55, 18] in the regime when the size of the domain |X| is large. Our results can be seen as
positive because our learning algorithms are exact (as compared to additive/multiplicative
approximation) and much more efficient. Positive results obtained in the previous only
apply to restricted subclasses of submodular functions (such as coverage functions) or under
assumptions of discrete continuity (the Lipschitz condition). Mostly negative results about
property testing submodular functions were obtained by Seshadhri and Vondrak [185] and
positive results are only known for coverage functions [47]. Our work illustrates that the
barriers established in the previous work can be overcome for submodular functions with
discrete range.

Part III. Communication Complexity Methods in Summarization.

Communication complexity is a theoretical framework used to reason about efficiency of
bandwidth utilization by algorithms operating in a distributed setting (see [143]). It is
also one of the main techniques for proving lower bounds in the analysis of discrete algo-
rithms in many diverse areas of computer science, ranging from data structures to circuit
lower bounds. By giving reductions to their communication counterparts one can show
information-theoretic lower bounds for the problems of interest. In Part III we use com-
munication complexity as a tool for lower bounds in applications to sketching and property
testing. These applications motivate advancements in the field of communication complex-
ity in new directions.

In Chapter 6 we introduce strong, and in many cases optimal, lower bounds for the
number of queries required to nonadaptively test three fundamental properties of functions
f : [n]d → R on the hypergrid: monotonicity, convexity, and the Lipschitz property. Our
lower bounds also apply to the more restricted setting of functions f : [n] → R on the
line (i.e., to hypergrids with d = 1), where they give optimal lower bounds for all three
properties. The lower bound for testing convexity is the first lower bound for that property,
and the lower bound for the Lipschitz property is new for tests with 2-sided error. The lower
bounds are obtained via the connection to communication complexity established in [37].
These results are the first to apply this method to functions with non-hypercube domains.
A key ingredient in this generalization is the set of Walsh functions, an orthonormal basis
of the set of functions f : [n]d → R.

In Chapter 7 we study the communication complexity counterpart of the problem of
constructing a small sketch of multiple objects (vectors, matrices, databases). It is known
in communication complexity as a direct sum theorem. It gives a lower bound on the

5

complexity of solving multiple copies of the same communication problem simultaneously.
We give an optimal such theorem for one-way communication for a natural class of com-
munication problems (e.g., Equality and Augmented Indexing). Using the connection
mentioned above, this implies that several sketching techniques (Johnson-Lindenstrauss
transform, sketching matrix products, generation of mergeable summaries of databases)
are optimal for sketching multiple objects simultaneously.

In Chapter 8 we study the communication complexity of computing the intersection
of two datasets stored distributedly. The motivation for this problem comes from ap-
plications to computing joins in databases, Jaccard similarity index, rarity and related
statistics. When the sizes of both sets are bounded (at most k) we show that the set
intersection problem requires a different approach as compared to its well-studied deci-
sion version (“small-set-disjointness”). We present a family of protocols which achieves
an almost optimal tradeoff between the total communication and the number of rounds.
The optimality guarantee is shown by using an extension of our techniques developed in
Chapter 7.

Part I

Approximate Sparse Network
Design

Chapter 2
Approximate Sparsification of
Directed Graphs

2.1 Introduction

A spanner of a graph is a sparse subgraph that approximately preserves distances in the
original graph. This notion was first used by Awerbuch [15] and explicitly introduced by
Peleg and Schäffer [165].

Definition 2.1.1 (k-spanner, [15, 165]). Given a graph G = (V,E) with nonnegative edge
lengths d : E → R≥0 and a real number k ≥ 1, a subgraph H = (V,EH) is a k-spanner
of G if for all edges (s, t) ∈ E, the graph H contains a path from s to t of length at most
k · d(s, t). The parameter k is called the stretch.

Spanners have numerous applications, such as efficient routing [62, 63, 167, 175, 190],
simulating synchronized protocols in unsynchronized networks [166], parallel, distributed
and streaming algorithms for approximating shortest paths [59, 60, 82, 92], algorithms for
distance oracles [26, 191], property testing, property reconstruction and key management
in access control hierarchies (see [35, 34, 128], the survey in [170] and references therein).

We study the computational problem of finding the sparsest k-spanner of a given di-
rected graph G, that is, a k-spanner of G with the smallest number of edges. We refer to this
problem as Directed k-Spanner and distinguish between the case of unit edge lengths
(i.e., d(e) = 1 for all e ∈ E) and arbitrary edge lengths. The Undirected k-Spanner
problem refers to the task of finding the sparsest k-spanner of a given undirected graph.
The natural reduction from Undirected k-Spanner to Directed k-Spanner preserves
the approximation ratio.

Our main results are an algorithm with approximation ratio O(
√
n log n) for Directed

k-Spanner with arbitrary edge lengths and an algorithm with approximation ratioO(3
√
n log n)

for Directed 3-Spanner with unit edge lengths, where n is the number of nodes in the in-
put graph G. Our approximation guarantee for Directed 3-Spanner almost matches the
integrality gap of Ω(n1/3−ε) by Dinitz and Krauthgamer [71] for a natural linear program-
ming relaxation of the problem. Our result also directly implies the same approximation
ratio for the Undirected 3-Spanner problem with unit edge lengths.

8

Our techniques also apply to the Directed Steiner Forest problem. Our result for
this problem is discussed in Section 2.1.3.

2.1.1 Relation to Previous Work

Directed k-Spanner with unit edge lengths has been extensively studied. Note that
in this case, we can assume that k is a positive integer. For k = 2, the problem has
been completely resolved: Kortsarz and Peleg [139] and Elkin and Peleg [84] gave an
O(log n)-approximation, and Kortsarz [138] proved that this approximation ratio can-
not be improved unless P=NP. Elkin and Peleg [85] gave an Õ(|E|1/3)-approximation for
Directed 3-Spanner, which is an Õ(n2/3)-approximation for dense graphs with Θ(n2)
edges. For general k ≥ 3, Bhattacharyya et al. [35] presented an Õ(n1−1/k)-approximation;
then Berman, Raskhodnikova and Ruan [32] improved it to Õ(n1−1/dk/2e), and recently
Dinitz and Krauthgamer [71] gave Õ(n2/3)-approximation, presenting the first algorithm
with approximation ratio independent of k. For the special cases of k = 3 and k = 4,
Berman, Raskhodnikova and Ruan’s algorithm gives an Õ(

√
n)-approximation. Dinitz and

Krauthgamer also gave an Õ(
√
n)-approximation for the case k = 3, using different tech-

niques than in [32]. Thus, our algorithms improve on [32] for all k ≥ 3, where k 6= 4, and
on [71] for all k ≥ 3.

Dinitz and Krauthgamer’s algorithms also work for Directed k-Spanner with arbi-
trary edge lengths. For this case, one can no longer assume that k is an integer. Dinitz
and Krauthgamer achieved an Õ(n2/3)-approximation for all k > 1 and Õ(

√
n) for k = 3

for arbitrary edge lengths. We improve this approximation ratio to Õ(
√
n) for all k > 1.

In contrast to the directed case, a simple approximation algorithm for Undirected
k-Spanner was known for decades. For all integer k ≥ 3 and for all undirected graphs G
with arbitrary edge lengths, a k-spanner can be constructed in polynomial time by a greedy
algorithm proposed by Althofer, Das, Dobkin, Joseph and Soares [11]. It follows from the
Moore bound for irregular graphs by Alon, Hoory and Linial [8] that the graph constructed

by this greedy algorithm has O(n
1+ 1
dk/2e) edges. Since a k-spanner of a connected graph

must have at least n − 1 edges, an approximation ratio O(n
1

dk/2e) follows. Our result
improves the ratio for Undirected 3-Spanner from O(

√
n) to Õ(n1/3) in the case of

unit-length edges.
Elkin and Peleg [83, 86], improving on [138], showed that it is quasi-NP-hard to ap-

proximate Directed k-Spanner, even when restricted to unit edge lengths, with ratio
better than 2log1−ε n for k ∈ (3, n1−δ) and all δ, ε ∈ (0, 1). For Undirected k-Spanner
with unit-length edges, such a strong hardness result does not hold since the problem is
O(1)-approximable when k = Ω(log n).

2.1.2 Our Techniques

Our algorithms operate by combining two graphs: the first obtained from randomized
rounding of a fractional solution to a linear programming relaxation of the problem and
the second obtained by growing shortest-path trees from randomly selected vertices. The
idea of combining a linear programming approach with sampling of shortest-path trees to
solve Directed k-Spanner first appeared in [35]. Dinitz and Krauthgamer [71] used the

9

same approach in their main algorithm (for arbitrary stretch k), but with a novel, flow-
based linear program (LP). In this paper, we propose alternative randomized LP rounding
schemes that lead to better approximation ratios. Sampling and randomized rounding
has been previously used by Kortsarz and Peleg [140] to construct undirected low-degree
2-spanners. In that work, the sampling step selects uniformly random edges, and the LP
is different from ours.

We also give new LP relaxations of Directed k-Spanner, slightly simpler than that
in [71], although they describe the same polytope. Our LP relaxation for the general case
is stated in terms of antispanners, a graph object “dual” to spanners. An antispanner for
an edge (s, t) is a set of edges whose removal from the graph destroys all paths of stretch
at most k from s to t. Like in [71], our LP has a polynomial number of variables and
an exponential number of constraints. We use the ellipsoid algorithm with a randomized
separation oracle to solve it. In the case of unit edge lengths, we present a different LP that
has an extra advantage: it has a polynomial number of constraints and thus can be solved
quickly without using the ellipsoid algorithm. We apply two different rounding schemes to
the fractional solution of this LP: one for general stretch, another for stretch k = 3.

We note, however, that our method would yield the same approximation ratios with
the LP of Dinitz and Krauthgamer [71] and, in the case of 3-spanners for graphs with
unit edge lengths, with their rounding method as well. Dinitz and Krauthgamer gave a
separate algorithm for Directed 3-Spanner that uses randomized rounding, but does
not combine it with sampling. By combining with sampling, we obtain an algorithm with
better approximation ratio for the case of unit lengths. Our rounding method allows for
simpler analysis.

2.1.3 Directed Steiner Forest

Finally, we apply our techniques to the Directed Steiner Forest (DSF) problem, a
fundamental network design problem on directed graphs. In this problem, the input is a
directed graph G = (V,E) with edge costs and a collection D ⊆ V × V of vertex pairs.
The goal is to find a minimum-cost subgraph of G that contains a path from s to t for
every pair (s, t) ∈ D. DSF is an NP-hard problem and is known [76] to be quasi-NP-hard

to approximate with ratio better than 2log1−ε n for all ε ∈ (0, 1). DSF is also known [93]
to be as hard as MAX-REP, a basic problem used for hardness reductions, for which the
current best approximation ratio is O(n1/3) [52].

Previous to this work, the best known approximation ratio for DSF, independent of
the size of D, was O(nε ·min(n4/5,m2/3)) due to Feldman, Kortsarz and Nutov [93]. Their
algorithm has the same structure as the algorithms for Directed k-Spanner in [35,
71]: it combines two graphs obtained, respectively, by sampling and solving an LP. In
addition, the LP relaxation they formulate is closely related to that developed by Dinitz
and Krauthgamer, with edge costs replaced by edge lengths. Our technique for the spanner
problem also applies to the DSF problem, yielding an improved approximation ratio of
O(n2/3+ε) for any fixed ε > 0.

10

2.1.4 Organization

In Section 2.2, we explain the general outline of our algorithms, introduce antispanners and
show how to find an Õ(n1/2)-approximate solution to Directed k-Spanner in polynomial
time. In Section 2.3, we present a more efficient algorithm for the special case when all the
edges of the graph are of unit length. In Section 2.4, we show the Õ(n1/3)-approximation for
Directed 3-Spanner with unit-length edges. Finally, Section 2.5 describes the O(n2/3+ε)-
approximation for Directed Steiner Forest. In Section 2.6 we give a conclusion and
directions for future work.

2.2 An Õ(
√
n)-Approximation for Directed k-Spanner

Our first result is stated in the following theorem.

Theorem 2.2.1. There is a polynomial time randomized algorithm for Directed k-
Spanner with expected approximation ratio O(

√
n log n).

All algorithms in this paper have the same structure. They break the problem into two
parts and obtain separate solutions to each part: one by random sampling and the other
by randomized rounding of a solution to a linear program. We start by explaining how we
break Directed k-Spanner into two parts. In Section 2.2.1, we describe how to obtain a
solution to the first part using random sampling. Section 2.2.2 describes our randomized
rounding scheme for Directed k-Spanner. In Section 2.2.3, we introduce antispanners,
a graph object used to formulate and analyze our linear programming relaxations. In
Section 2.2.4, we formulate our linear programming relaxation and separation oracle, and
finish the description and analysis of the algorithm, completing the proof of Theorem 2.2.1.

Let G = (V,E) be a directed graph with edge lengths d : E → R≥0, given as an input
to our algorithm, and OPT be the size of its sparsest k-spanner. We assume that G is
weakly connected. Otherwise, our algorithm should be executed for each weakly connected
component separately.

Definition 2.2.1 (Local graph Gs,t). For an edge (s, t) ∈ E, let Gs,t = (V s,t, Es,t) be the
subgraph of G induced by the vertices that belong to paths from s to t of length at most
k · d(s, t).

We classify edges according to the sizes of their local graphs.

Definition 2.2.2 (Thick & thin edges). Let β be a parameter in [1, n]. If |V s,t| ≥ n/β,
the corresponding edge (s, t) is thick, and otherwise, it is thin. The set of all thin edges is
denoted by E. In Sections 2.2.1–2.3, we set β =

√
n and in Section 2.4, β = n1/3.

Definition 2.2.3. A set E′ ⊆ E settles an edge (s, t) ∈ E if (V,E′) satisfies the k-spanner
property for this edge, i.e., it contains a path of length at most k · d(s, t) from s to t.

Our algorithm must find a small subset of edges that settles all edges in E. To accomplish
this, it finds two subsets of edges, E′ and E′′, such that E′ settles all thick edges and E′′

settles all thin edges. The output of the algorithm is (V,E′ ∪ E′′).

11

2.2.1 Sampling

The following procedure uses random sampling to construct an edge set E′ that settles
all thick edges. Recall that an in-arborescence is a directed rooted tree where all edges are
oriented towards the root; an out-arborescence is defined similarly.

Algorithm 2.1 Sample(β)

1: E′ ← ∅, S ← ∅;
2: for i = 1 to β lnn do
3: v ← a uniformly random element of V ;
4: T inv ← a shortest path in-arborescence rooted at v;
5: T outv ← a shortest path out-arborescence rooted at v;
6: E′ ← E′ ∪ T inv ∪ T outv , S ← S ∪ {v}; //Set S is used only in the analysis.
7: end for
8: Add all unsettled thick edges to E′;
9: return E′.

Lemma 2.2.2. Algorithm 2.1, in polynomial time, computes a set E′ that settles all thick
edges and has expected size at most 3β lnn ·OPT .

Proof. After the execution of the for-loop in Algorithm 2.1, |E′| ≤ 2(n−1)β lnn ≤ 2β lnn ·
OPT . The last inequality holds because OPT ≥ n− 1 for weakly connected graphs G.

If some vertex v from a set V s,t appears in the set S of vertices selected by Sample,
then T inv and T outv contain shortest paths from s to v and from v to t, respectively. Thus,
both paths are contained in E′. Since v ∈ V s,t, the sum of lengths of these two paths is at
most k · d(s, t). Therefore, if S ∩ V s,t 6= ∅, then the edge (s, t) is settled. For a thick edge
(s, t), the set S ∩ V s,t is empty with probability at most (1 − 1/β)β lnn ≤ e− lnn = 1/n.
Thus, the expected number of unsettled thick edges added to E′ in Step 8 of Sample is
at most |E|/n ≤ n− 1 ≤ OPT .

Step 8 ensures that the set E′, returned by the algorithm, settles all thick edges.
Computing shortest path in- and out-arborescences and determining whether an edge is
thick can be done in polynomial time.

2.2.2 Randomized Rounding

To obtain a set E′′ that settles all thin edges, each of our algorithms solves a linear program
and rounds the resulting fractional solution. The LP is a relaxation of Directed k-
Spannerfor the set of all thin edges. It has a variable xe and a constraint xe ≥ 0 for each
edge e ∈ E. The variable xe in the corresponding optimal {0,1}-solution indicates whether
the edge e is present in the smallest spanner for all thin edges. The following randomized
rounding procedure is used in our algorithms for Directed k-Spanner, both for arbitrary
and for unit lengths. As an input it gets a fractional vector {x̂e} with nonnegative entries.

12

Algorithm 2.2 RandomizedSelection(x̂e)

1: E′′ ← ∅;
2: for each edge e ∈ E do
3: Add e to E′′ with probability min(

√
n lnn · x̂e, 1);

4: end for
5: return E′′.

The following proposition shows that if the sum of values assigned by {x̂e} to edges in
some A ⊆ E is at least 1 then E′′ intersects A with high probability.

Claim 2.2.3. Let A ⊆ E. If Algorithm 2.2 receives a fractional vector {x̂e} with nonneg-
ative entries satisfying

∑
e∈A x̂e ≥ 1, the probability that it outputs a set E′′ disjoint from

A is at most exp(−
√
n lnn).

Proof. If A contains an edge e, such that x̂e ≥ (
√
n lnn)−1, then e ∈ E′′ with probability

1. That is, E′′ is never disjoint from A.
Otherwise, for all edges e ∈ A, the probability that e ∈ E′′ is exactly

√
n lnn · x̂e. The

probability that no edges of A are in E′′ is, therefore,

∏
e∈A

(1−
√
n lnn · x̂e) ≤ exp

(
−
∑
e∈A

√
n lnn · x̂e

)
≤ exp(−

√
n lnn).

The first inequality above follows from the fact that 1−x ≤ exp(−x) for x ≥ 0. The second
one holds because

∑
e∈A x̂e ≥ 1.

2.2.3 Antispanners

In this section, we introduce antispanners, a graph object used in the description of our
LP for Directed k-Spanner and crucial in the analysis of the parts of our algorithms
that settle thin edges. After giving the definition, we show how to construct minimal
antispanners (in Claim 2.2.4) and give an upper bound on their number (in Claim 2.2.5.)

For a given edge (s, t), we define an antispanner to be a subset of edges of G, such
that if we remove this subset of edges from G, the length of the shortest path from s to t
becomes larger than k · d(s, t).

Definition 2.2.4 (Antispanner). A set A ⊆ E is an antispanner for an edge (s, t) ∈ E if
(V,E \ A) contains no path from s to t of length at most k · d(s, t). If no proper subset of
an antispanner A for (s, t) is an antispanner for (s, t) then A is minimal. The set of all
minimal antispanners for all thin edges is denoted by A.

The edge set of a k-spanner of G must intersect all antispanners for all edges of G. In
other words, it has to be a hitting set for all minimal antispanners. Specifically, a set E′′

that settles all thin edges must be a hitting set for all minimal antispanners in A. We now
prove that if a set E′′ does not settle some thin edge, then we can efficiently find a minimal
antispanner A ∈ A disjoint from E′′.

13

Claim 2.2.4. There exists a polynomial time algorithm that, given a set of edges E′′ ⊂ E
that does not settle some thin edge, outputs a minimal antispanner A ∈ A for some thin
edge, such that A ⊆ E \ E′′.

Proof. The algorithm first finds a thin edge (s, t) with no directed path from s to t of
length at most k ·d(s, t) in E′′. Recall that all paths from s to t of length at most k ·d(s, t)
in G lie in the local graph Gs,t = (V s,t, Es,t). (See Definition 2.2.1.) Therefore, Es,t \ E′′
is an antispanner for (s, t). The algorithm sets A = Es,t \ E′′ and then greedily deletes
edges e from A while A \ {e} is an antispanner, that is, while (V s,t, Es,t \ A) contains no
paths of length at most k · d(s, t) from s to t. When no more such edges can be deleted,
the algorithm returns A.

Next, we give an upper bound on the number of minimal antispanners for thin edges.

Claim 2.2.5. |A| ≤ |E| · (n/β)n/β. In particular, if β =
√
n, then |A| ≤

√
n
√
n+4

.

Proof. Fix a thin edge (s, t) and a minimal antispanner A for (s, t). Let TA be an out-
arborescence (shortest path tree) rooted at s in the graph (V s,t, Es,t\A). Denote by dTA(u)
the distance from s to u in the tree TA. If TA contains no directed path from s to u, let
dTA(u) = ∞. We show that A = {(u, v) ∈ Es,t : dTA(u) + d(u, v) < dTA(v)}, and thus TA
uniquely determines A for a given thin edge (s, t).

Consider an edge (u, v) ∈ A, and let A− denote A \ {(u, v)}. Since the antispanner A
is minimal, the graph (V,E \A−) contains a path from s to t of length at most k · d(s, t).
This path must lie in (V s,t, Es,t \A−) and must contain the edge (u, v). Thus, the distance
from s to t in the graph (V s,t, Es,t \ A−) is at most k · d(s, t) and is strictly less than
dTA(t). Hence, TA is not a shortest path tree in the graph (V s,t, Es,t \ A−). Therefore,
dTA(u) + d(u, v) < dTA(v).

If (u, v) ∈ Es,t satisfies the condition dTA(u) + d(u, v) < dTA(v), then (u, v) /∈ Es,t \A;
otherwise, TA would not be a shortest path tree. Hence, (u, v) ∈ A.

We now count the number of out-arborescences rooted at s in (V s,t, Es,t \A). For every
vertex u ∈ V s,t, we may choose the parent vertex in at most |V s,t| possible ways (if a vertex
is a not reachable from s, we choose it as its own parent). Thus, the total number of trees
is at most |V s,t||V s,t| ≤ (n/β)n/β.

Since there are at most |E| thin edges, the claim follows.

2.2.4 LP, Separation Oracle and Overall Algorithm

In this section, we describe a randomized algorithm for constructing a small subset of
edges E′′ ⊆ E that settles all thin edges. First, we formulate an LP relaxation of this
problem. Then we describe how to solve it using the ellipsoid method with a separation
oracle (Section 2.2.4.1). Finally, in Section 2.2.4.2, we summarize the resulting algorithm
for Directed k-Spanner and complete the proof of Theorem 2.2.1.

A set E′′ that settles must intersect all minimal antispanners for all thin edges. This
condition can be expressed using linear program LP-A (see Fig. 2.1). LP-A has a variable
xe for each edge e ∈ E and a constraint (2.2) for each minimal antispanner A for every thin
edge. Recall that A is the set of all minimal antispanners for thin edges. In the integral
solution {xinte } corresponding to a k-spanner with an edge set E′′ ⊆ E, we set xinte = 1 if

14

Minimize
∑
e∈E

xe subject to: (2.1)

∑
e∈A

xe ≥ 1 ∀A ∈ A (2.2)

xe ≥ 0 ∀e ∈ E (2.3)

Figure 2.1: Linear program for the arbitrary-length case,
LP-A. A is the set of all minimal antispanners for thin
edges.

e ∈ E′′ and xinte = 0 otherwise. All constraints in (2.2) are satisfied for {xinte } since E′′

intersects every antispanner. The value of the objective function
∑

e x
int
e is equal to the

size of E′′. Hence, LP-A is a relaxation of Directed k-Spanner.
For ease of presentation, we assume that we have guessed OPT , the size of the sparsest

spanner. (We can try all values in {n−1, . . . , n2} for OPT and output the sparsest spanner
found in all iterations). We replace the objective function (2.1) with∑

e∈E
xe ≤ OPT, (2.4)

and call the resulting linear program LP-A′.

2.2.4.1 Separation Oracle

LP-A′ has a polynomial number of variables and, by Claim 2.2.5, an exponential in Õ(
√
n)

number of constraints. We solve it using the ellipsoid algorithm with a separation oracle.
Our separation oracle receives a fractional vector {x̂e}, satisfying (2.3) and (2.4). If {x̂e}
is a feasible solution to LP-A′, then the separation oracle outputs a set E′′ of size at most
2OPT ·

√
n lnn, which settles thin edges. Otherwise, it outputs either a set E′′ with the

same guarantee or a violated constraint from (2.2) for some antispanner A. The separation
oracle can also fail with small probability. If it happens during an execution of the ellipsoid
algorithm, we output the input graph with all its edges as a k-spanner.

15

Algorithm 2.3 SeparationOracle(x̂e)

1: //Sample a random set of edges E′′, picking each e ∈ E
//with probability min(x̂e

√
n lnn, 1) (see Algorithm 2.2).

E′′ ← RandomizedSelection(x̂e)
2: if E′′ settles all thin edges then
3: if |E′′| ≤ 2OPT ·

√
n lnn then return E′′;

4: else fail;
5: else
6: Find an antispanner A ⊆ E \ E′′ from A using the algorithm from Claim 2.2.4.
7: if

∑
e∈A xe < 1 then return violated constraint

∑
e∈A xe ≥ 1;

8: else fail.
9: end if

The separation oracle is described in Algorithm 2.3. Next we analyze the probability
that the separation oracle fails.

Lemma 2.2.6. The probability that the separation oracle fails during an execution of the
ellipsoid algorithm is exponentially small in n.

Proof. The separation oracle can fail for two reasons:

1. The size of the sampled set E′′ is too large.

2. The minimal antispanner A found by the oracle does not correspond to a violated
constraint.

To analyze the probability of the first event, note that the expected size of E′′ is at
most

√
n lnn

∑
e∈E xe ≤ OPT ·

√
n lnn. By the Chernoff bound,

Pr(|E′′| > 2OPT ·
√
n lnn) ≤ exp(−c ·OPT ·

√
n lnn) = exp(−Ω(n

√
n lnn)).

Thus, the probability that the separation oracle fails because |E′′| > 2OPT ·
√
n lnn is

exponentially small in n.
To analyze the probability of the second event, consider one call to the separation

oracle. Fix a minimal antispanner A satisfying
∑

e∈A x̂e ≥ 1. Claim 2.2.3 shows that the
probability that E′′ is disjoint from A is at most exp(−

√
n lnn). Claim 2.2.5 demonstrates

that |A| ≤
√
n
√
n+4

. Therefore, by a union bound, the probability that there is a minimal

antispanner A ∈ A satisfying
∑

e∈A x̂e ≥ 1 and also disjoint from E′′ is at most
√
n
√
n+4 ·

exp(−
√
n lnn) = exp(−1

2

√
n lnn+ 2 lnn). Thus, the probability that the separation oracle

fails during one call because
∑

e∈A x̂e ≥ 1 is exponentially small in n. Since the number of
iterations of the ellipsoid algorithm is polynomial in n, a union bound over all iterations
gives that the overall probability that the separation oracle fails during an execution of the
ellipsoid algorithm is exponentially small in n.

Lemma 2.2.6 implies, in particular, that when the separation oracle is given a feasible
solution to LP-A′, it fails to output a set E′′ with exponentially small probability. Since
E′′ is obtained by running Algorithm 2.2, we obtain the following corollary that will be
used in Section 2.3.

16

Corollary 2.2.7. Given a feasible solution to LP-A′, Algorithm 2.2 with all but expo-
nentially small probability produces a set E′′ that settles thin edges and has size at most
2OPT ·

√
n lnn.

2.2.4.2 Overall Algorithm for Directed k-Spanner

Proof of Theorem 2.2.1. We settle thick edges by running Sample(
√
n), according to

Lemma 2.2.2. We settle thin edges by running the ellipsoid algorithm as described in
Sections 2.2.4 and 2.2.4.1. If the separation oracle fails, which, by Lemma 2.2.6, happens
with exponentially small probability, we output a spanner containing all edges E. Thus, the
expected size of the set E′′ is at most 2OPT ·

√
n lnn+o(1), and the resulting approximation

ratio of the algorithm is O(
√
n lnn). The ellipsoid algorithm terminates in polynomial time,

so the overall running time is polynomial.

2.3 LP and Rounding for Graphs with Unit-Length Edges

In this section, we describe how to settle all thin edges, and thus prove Theorem 2.2.1, for
the case of unit-length edges. Our motivation for presenting this special case is two-fold.
First, we show that for the unit-length case, one can directly formulate a polynomial-sized
LP relaxation, and this makes the approximation algorithm more efficient. Second, we also
use the LP from this section to present a better algorithm for 3-spanners in Section 2.4.

Our LP for the case of unit lengths, LP-U, is stated in terms of local layered graphs
which we introduce next.

Definition 2.3.1 (Layered expansion). Given a directed graph G = (V,E), its layered
expansion is a directed graph Ḡ = (V̄ , Ē), satisfying the following:

1. Let V̄ = {vi : v ∈ V and i ∈ Z≥0}, where vi denotes the i-th copy of v. The set of
all the i-th copies of nodes in V is the i-th layer of V̄ .

2. Let L = {(u, u) : u ∈ V } be the set of loops. Define the i-th copy of an edge e = (u, v)
to be ei = (ui, vi+1), and the i-th copy of a loop e = (u, u) to be ei = (ui, ui+1). Let
Ē = {ei : e ∈ E ∪ L and i ∈ Z≥0}.

Layered expansion Ḡ contains a path from s0 to tk if and only if G contains a path
from s to t of length at most k. A local layered graph for a thin edge (s, t) is defined next.
It consists of all paths in the layered expansion Ḡ that correspond to paths from s to t of
length at most k in the original graph G or, in other words, to paths in the local graph
Gs,t, defined in Definition 2.2.1.

Definition 2.3.2 (Local layered graph). For a thin edge (s, t) and k ≥ 1, the local layered
graph is a subgraph Ḡs,t = (V̄ s,t, Ēs,t) of Ḡ with a source s̄ = s0 and a sink t̄ = tk, such
that Ḡs,t contains all nodes and edges on paths from s̄ to t̄.

Our algorithm solves the linear program LP-U defined in Figure 2.2. Recall that E
denotes the set of thin edges. LP-U has variables of two types: xe, where e ∈ E, and fs,tei ,
where (s, t) ∈ E and ei ∈ Ēs,t. A variable xe represents whether the edge e is included in

17

Minimize
∑
e∈E

xe subject to:

Flow requirement
∑

e0∈Out(s0)

fs,te0 ≥ 1 ∀(s, t) ∈ E

Flow conservation
∑

ei−1∈In(vi)

f s,tei−1
−
∑

ei∈Out(vi)

fs,tei = 0 ∀(s, t) ∈ E ,∀vi ∈ V̄ s,t \ {s̄, t̄}

Capacity constraints xe −
k−1∑
i=0

fs,tei ≥ 0 ∀(s, t) ∈ E ,∀e ∈ E

xe ≥ 0 ∀e ∈ E
fs,tei ≥ 0 ∀(s, t) ∈ E ,∀ei ∈ Ēs,t

Figure 2.2: Linear program for the unit-length case, LP-U.

the k-spanner. We think of a path from s to t of length at most k in G as a unit flow from
s̄ to t̄ in Ḡs,t. A variable fs,tei represents flow along the edge ei in Ḡs,t. We denote the sets
of incoming and outgoing edges for a vertex vi ∈ Ḡs,t by In(vi) and Out(vi), respectively.

Given x̂e, a fractional solution of LP-U, we construct the set E′′ by first running Algo-
rithm 2.2 and then adding all unsettled thin edges.

Lemma 2.3.1. The algorithm described above, in polynomial time, computes a set E′′ that
settles all thin edges and has expected size at most 2

√
n lnn ·OPT + o(1).

Proof. We prove, in Claim 2.3.2, that in a fractional optimal solution {x̂e}∪{f̂s,tei } to LP-U,
the vector {x̂e} is a fractional solution to LP-A′. Then we apply Corollary 2.2.7 to get the
desired bound on the expected size of E′′. At the end, we argue that the algorithm runs
in polynomial time.

Claim 2.3.2. In a fractional optimal solution {x̂e} ∪ {f̂s,tei } to LP-U, the vector {x̂e} is a
fractional solution to LP-A′.

Proof. First, we argue that LP-U is a relaxation of Directed k-Spanner for the unit-
length case or, in other words, that an optimal solution to this program has value at most
OPT . Let H be a sparsest k-spanner of G. Assign xe = 1 if e is in H and xe = 0 otherwise.
For each thin edge (s, t), consider a simple path from s to t in H of length `, where ` ≤ k.
Set fs,tei to 1 if either e is the ith edge on that path or i ∈ {`+ 1, . . . , k} and ei = (ti−1, ti);
otherwise, set it to 0. Since the resulting assignment is a feasible solution to LP-U, the
optimal solution to this program has value

∑
e∈E x̂e ≤ OPT .

Next, we argue that if {x̂e}∪{f̂s,tei } is a feasible solution to LP-U then {x̂e} satisfies the
antispanner constraints for LP-A′, given in (2.2). Consider a thin edge (s, t) and a minimal
antispanner A ∈ A for (s, t). Let Ā = {ei : e ∈ A and ei ∈ Ēs,t} be the set of copies of the
edges in A in the local layered graph. Let S̄ ⊆ V̄ s,t be the set of nodes that can be reached
from s̄ in (V̄ s,t, Ēs,t \ Ā) and T̄ = V̄ s,t \ S̄ be the set of the remaining nodes. Since A is an

18

antispanner for (s, t), node t̄ is in T̄ , and thus (S̄, T̄) is an (s̄, t̄) cut in Ḡs,t. Note that only
edges from Ā can cross the cut because for an edge (ui, vi+1) /∈ Ā if ui is reachable from s̄
then so is vi+1.

For a fractional solution {x̂e} ∪ {f̂s,tei } to LP-U,

∑
e∈A

x̂e ≥
∑
e∈A

k−1∑
i=0

f̂s,tei =
∑
ei∈Ā

f̂s,tei ≥
∑

ei∈ cut (S̄,T̄)

f̂s,tei =
∑

e0∈Out(s0)

f̂ s,te0 ≥ 1. (2.5)

The first inequality above follows from the capacity constraints in LP-U, the following
equality holds by definition of Ā, the second inequality holds because Ā contains the edges
in the cut (S̄, T̄), the last equality follows from the flow conservation, and the last inequality
is the flow requirement.

We proved that in a fractional optimal solution {x̂e} ∪ {f̂s,tei } to LP-U, the vector {x̂e}
satisfies constraints (2.2) and (2.4) of LP-A′. Since constraints (2.3) are also in LP-U,
vector {x̂e} is a fractional solution to LP-A′.

By, Claim 2.3.2, vector {x̂e} is a fractional solution to LP-A′. Corollary 2.2.7 says that,
given such a solution, Algorithm 2.2 with all but exponentially small probability produces a
set E′′ that settles thin edges and has size at most 2OPT ·

√
n lnn. After we add all unsettled

thin edges, the expected size of the resulting set E′′ is at most 2OPT ·
√
n lnn+ o(1).

It remains to argue that the described algorithm takes polynomial time. To write down
LP-U, we only need to know V,E, k and the set of thin edges, E . The first three are
inputs to the algorithm, and E can be computed in polynomial time. LP-U can be written
down and solved in polynomial time because it has O(|E|2 · k) = O(n5) variables and
constraints.

Proof of Theorem 2.2.1 for the case of unit-lengths. We run Algorithm 2.1 to get E′. We
construct E′′ by running Algorithm 2.2 and adding all unsettled thin edges. Let the edge
set of our k-spanner be E′ ∪E′′. By Lemmas 2.2.2 and 2.3.1, E′ settles all thick edges, E′′

settles all thin edges, the expected size of E′ ∪ E′′ is O(
√
n lnn · OPT), and the resulting

algorithm runs in polynomial time, as required.

2.4 An Õ(n1/3)-Approximation for Directed 3-Spanner with
Unit-Length Edges

In this section, we show an improved approximation for the special case of Directed 3-
Spanner with unit length edges. The algorithm follows the general strategy explained in
Section 2.2. The LP rounding scheme here is different from that presented in Section 2.2.2
and used in the two algorithms for Directed k-Spanner in Sections 2.2 and 2.3. We
note that Algorithm 2 from [71] with ρ = Θ̃(n1/3) could also be used to prove our result.
The rounding scheme we present is simpler and allows for simpler analysis.

As in [71], we use random variables for vertices instead of edges to guide edge selection
process. Intuitively, this allows us to introduce positive correlations in selection of edges

19

adjacent to the same vertex. Because the correlations are local, the improvement in ap-
proximation deteriorates for larger values of k. To simplify analysis, instead of threshold
rounding (as in the previous sections) we use Poisson random variables.

Theorem 2.4.1. There is a polynomial time randomized algorithm for Directed 3-
Spanner for graphs with unit edge lengths with expected approximation ratio O(n1/3 log n).

Proof. We define thick and thin edges as in Definition 2.2.2, with β = n1/3, and run
Sample(n1/3). By Lemma 2.2.2, the resulting edge set E′ settles all thick edges and has
expected size at most 3n1/3 lnn ·OPT . Then we obtain an optimal solution {x̊e} ∪ {f̊s,tei }
of the linear program LP-U from Fig. 2.2. Our rounding scheme is stated in Algorithm 2.4.
It consists of two stages: first, we round {x̊e} to obtain a new solution {x̂e}, where every
assignment x̂e is an integer multiple of n−2/3; second, we round {x̂e} to obtain an edge set
E′′ that settles all thin edges with high probability.

In the first step we sample a random variable from Poisson distribution for every edge.
Recall, that a Poisson random variable X with mean λ is supported over non-negative
integers and has a probability density function:

Pr[X = k] =
λke−λ

k!
, ∀k ∈ Z≥0.

The only properties of the Poissson distribution that we use in the analyisis are concentra-
tion bound stated in the Appendix, integrality of the support and the fact that the sum of
Poisson random variables is again a Poisson random variable.

Algorithm 2.4 Randomized3SpannerSelection(̊xe)

1: E′′ ← ∅;
//Obtain a new solution {x̂e}, where each coordinate x̂e is a multiple of n−2/3 :

2: for each edge e ∈ E do
3: Pe ← sample from the Poisson distribution with mean λe = 6n2/3x̊e;
4: x̂e ← Pen

−2/3;
5: end for

//Round {x̂e} to get E′′:
6: for each vertex u ∈ V do
7: ru ← uniform sample from (0, 1);
8: end for
9: for each edge e = (u, v) ∈ E do

10: if min(ru, rv) ≤ x̂eαn1/3 lnn then add e to E′′;
11: //α > 1 is an absolute constant
12: end for
13: return E′′.

Lemma 2.4.2 below analyzes the first stage. Then Lemmas 2.4.3 and 2.4.4 analyze the
set E′′ produced by the second stage. Lemma 2.4.3 bounds the expected size of E′′ by
O(OPTn1/3 lnn). Lemma 2.4.4 shows that E′′ settles a given thin edge with probability
at least 1 − 1/n. Consequently, the expected number of unsettled thin edges is at most

20

|E|/n ≤ n − 1 ≤ OPT , and they can be added to the solution without affecting the
approximation ratio. This completes the proof of Theorem 2.4.1.

It remains to prove the lemmas that were used in the proof of Theorem 2.4.1.
Recall that s̄ and t̄ are used to denote the source and the sink the the local layered

graph of an edge (s, t) as in Definition 2.3.2.

Lemma 2.4.2. Given a feasible solution {x̊e} ∪ {f̊s,tei } of LP-U of cost LP , Algorithm 2.4
on lines 2–5 computes a vector {x̂e} of cost at most 20LP (i.e., satisfying

∑
e x̂e ≤ 20LP)

such that all x̂e are integer multiples of n−2/3. Moreover, for every thin edge (s, t) and cut
(S̄, T̄) in the local layered graph Ḡs,t with s̄, s1 ∈ S̄ and t2, t̄ ∈ T̄ , vector {x̂e} satisfies∑

(u,v)∈Es,t:(ui,vi+1)∈S̄×T̄

x̂(u,v) ≥ 1. (2.6)

This stage of the algorithm succeeds with probability 1 − exp(−cn2/3) for some constant
c > 0.

Proof. For every edge e, we independently sample a Poisson random variable Pe with mean
λe = 6n2/3x̊e, and set x̂e = Pen

−2/3. Since the support of the Poisson distribution is on
nonnegative integers, all x̂e are integer multiples of n−2/3. We need to verify that x̂e
satisfies (2.6) and that its cost is bounded by 20LP .

Fix a thin edge (s, t) and a cut (S̄, T̄) in Ḡs,t with s̄, s1 ∈ S and t2, t̄ ∈ T . Let
A = {(u, v) ∈ Es,t : (ui, vi+1) ∈ S̄ × T̄}. We will show that it is an antispanner for
(s, t). For every path p = s → u → v → t of length 3 in Gs,t, one of the edges on the
path s̄ → u1 → v2 → t̄ crosses the cut (S̄, T̄) and, consequently, one of the edges of p
belongs to A. Similarly, for every path p = s → u → t of length 2 (respectively, path
p = s → t of length 1) one of the edges on the path s̄ → u1 → t2 → t̄ (respectively, path
s̄→ s1 → t2 → t̄) crosses the cut (S̄, T̄), and one of the edges of p belongs to A. Therefore,
A is an antispanner for (s, t). By Claim 2.3.2, if {x̊e} ∪ {f̊ s,tei } is a feasible solution to
LP-U then {x̊e} satisfies the antispanner constraints for LP-A′, given in (2.2). That is,∑

e∈A x̊e ≥ 1.

Next, we bound
∑

e∈A x̂e = n−2/3
∑

e∈A Pe. The sum
∑

e∈A Pe is distributed as a

Poisson random variable with mean λA =
∑

e∈A λe ≥ 6n2/3. By Lemma A.1 in the
Appendix,

Pr[
∑
e∈A

x̂e < 1] = Pr[
∑
e∈A

Pe < n2/3] ≤ Pr[
∑
e∈A

Pe ≤ 6/e · n2/3] ≤ exp(−6n2/3/4).

Since (s, t) is a thin edge, |V̄ s,t \ {s̄, t̄}| ≤ 2n2/3, and the number of cuts (S̄, T̄) in

V̄ s,t separating s̄ and t̄ is at most 22n2/3
= exp(ln 4 · n2/3). Hence, by a union bound,

(2.6) holds for all such cuts simultaneously with probability at least 1 − e−cn
2/3

, where
c = 6/4− ln 4 > 0. By a union bound, the previous sentence is true for all thin edges (s, t)
simultaneously with a constant if c is set to c/2 = 1

2(6/4− ln 4).

Finally, observe that the cost of {x̂e} is n−2/3×
∑

e∈E Pe. The sum
∑

e∈E Pe is a Poisson

21

random variable with mean 6n2/3
∑
x̊e = 6n2/3LP . By Lemma A.1,

Pr[
∑
e∈E

Pe ≥ 20n2/3LP] ≤ Pr[
∑
e∈E

Pe ≥ 6 · e · n2/3LP] ≤ exp(−6n2/3LP) ≤ exp(−6n2/3).

Thus, the probability that the cost of {x̂e} exceeds 20LP is exponentially small.

Lemma 2.4.3 (Analog of Lemma 4.1 in [71]). E[|E′′|] = O(OPTn1/3 lnn).

Proof. By a union bound, the probability that an edge e belongs to E′′ is at most
2x̂eαn

1/3 lnn. Therefore, since α is a constant,

E[|E′′|] ≤
∑
e∈E

2x̂eαn
1/3 lnn = O(OPTn1/3 lnn).

Lemma 2.4.4 (Analog of Lemma 4.2 in [71]). If (s, t) is a thin edge for which condi-
tion (2.6) holds, then E′′ settles (s, t) with probability at least 1− 1/n.

Proof. Fix a thin edge (s, t). Let

Ē′′ = {ei : e ∈ E′′ and ei ∈ Ēs,t} ∪ {(s̄, s1), (t2, t̄)}

be the set of copies of the edges in E′′ in the local layered graph Ḡs,t. We show that, with
probability at least 1− 1/n, there is a path from s̄ to t̄ in (V̄ s,t, Ē′′) and, consequently, the
edge (s, t) is settled.

Let {f̂s,tei } be the maximum flow from s̄ to t̄ in the graph Ḡs,t with capacities x̂ei
set to x̂(u,v) on edges ei = (ui, vi+1) for u 6= v, infinite capacities (x̂ei = ∞) on edges
ei ∈ {(s̄, s1), (t2, t̄)} and zero capacities (x̂ei = 0) on edges ei = (ui, ui+1) for ei /∈
{(s̄, s1), (t2, t̄)}. Note that this flow may be different from the flow {f̊s,tei } obtained by
LP-U. By (2.6), the capacity of the minimum cut between s̄ and t̄ is at least 1. Thus, the
value of the flow {f̂s,tei } is at least 1.

In the simplest case, the flow is routed along n2/3 disjoint paths of capacity n−2/3

each. The probability that a given path s̄ → u1 → v2 → t̄ belongs to (V̄ s,t, Ē′′) is at
least 0ru ≤ αn−1/3 lnn and rv ≤ αn−1/3 lnn ≥ (αn−1/3 lnn)2. The probability that at

least one path belongs to Ē′′ is 1− (1− α2 n−2/3 ln2 n)n
2/3

> 1− 1/n. In the general case,
however, we need a more involved analysis.

To analyze the general case, we partition the set V s,t into two disjoint sets S and T
such that at least 1/4 units of flow {f̂s,tei } are routed along the paths s̄ → u1 → v2 → t̄,
where u ∈ S and v ∈ T . To see that such a partition exists, randomly add every vertex in
V s,t \ {s, t} to S or T with probability 1/2. Add s to S and t to T . Then for every path
s̄ → u1 → v2 → t̄ (where u 6= v), 0u ∈ S and v ∈ T ≥ 1/4, so the expected contribution
of every path to the new flow is at least 1/4 of the original flow over the path. Because
the total new flow from s̄ to t̄ can be represented as a sum of flows over such paths, the
expected flow routed from s̄ to t̄ through S and T (as described above) is at least 1/4.
That is, for at least one partition (S, T) the flow is at least 1/4. Fix this partition.

22

Let {fei} be the maximum flow in Ḡs,t (with the same capacities as above) routed from s̄
to t̄ through S and T , such that all fei are multiples of n−2/3. Such a flow exists because all
capacities are multiples of n−2/3. Observe that (u, v) ∈ Ē′′ if min(ru, rv) ≤ x̂(u,v)αn

1/3 lnn

and, consequently, also if min(ru, rv) ≤ f(u,v)αn
1/3 lnn, since f(u,v) ≤ x̂(u,v).

Consider the following two cases:

1. f(s̄,u1) ≥ n−1/3 for some vertex u ∈ S.

2. f(s̄,u1) < n−1/3 for all vertices u ∈ S.

Case 1. Fix a vertex u ∈ S for which f(s̄,u1) ≥ n−1/3. We will show that with
probability at least 1 − 1/n there is a path from s̄ to t̄ via u1 in Ḡs,t. The edge (s̄, u1)
always belongs to Ē′′ because αx̂(s̄,u1)n

1/3 lnn ≥ αf(s̄,u1)n
1/3 lnn > 1 ≥ ru. Consider an

arbitrary path u1 → v2 → t̄. Note that f(v2,t̄) ≥ f(u1,v2), since all flow from u1 to v2 must

be routed to t̄ along the edge (v2, t̄). Thus, if rv ≤ αf(u1,v2) n
1/3 lnn, then (u1, v2) ∈ Ē′′ and

(v2, t̄) ∈ Ē′′. Therefore, if there is no path from u1 to t̄ in Ē′′, then rv > αf(u1,v2) n
1/3 lnn

for all v ∈ T . This happens with probability at most∏
v∈T

min(1− αf(u1,v2) n
1/3 lnn, 0) ≤

∏
v∈T

exp
(
−αf(u1,v2) n

1/3 lnn
)

= exp

(
−

(∑
v∈T

f(u1,v2)

)
αn1/3 lnn

)
≤ exp

(
−f(s̄,u1) αn

1/3 lnn
)

≤ exp(− lnn) =
1

n
.

Therefore, with probability at least 1 − 1/n, there is a path from s̄ to t̄ in Ḡs,t and,
consequently, the edge (s, t) is settled.

Case 2. For every u ∈ S, define a random variable Fu1 :

Fu1 =
∑

v∈T :ru≤αf(u1,v2)n
1/3 lnn

f(u1,v2).

This random variable gives a lower bound on the amount of flow that can be routed along
the edges Ē′′ from the source s̄ to the set of copies of nodes in T through the vertex u1.
(Recall that Ē′′ is a random set.)

Claim 2.4.5. Pr
ru : u∈S

[∑
u∈S

Fu1 ≥
αn−1/3 lnn

8

]
≥ 1− 1

2n
.

Proof. The value of Fu1 depends only on ru, and hence all random variables Fu1 are in-
dependent. If f(u1,v2) > 0 then f(u1,v2) ≥ n−2/3 because f(u1,v2) is a multiple of n−2/3.
Therefore, for all nodes u ∈ S and v ∈ T with positive flow f(u1,v2),

Pr
ru

[
ru ≤ αf(u1,v2)n

1/3 lnn
]

= min(αf(u1,v2)n
1/3 lnn, 1) ≥ αn−2/3n1/3 lnn ≥ αn−1/3 lnn.

23

This implies that for all nodes u ∈ S and v ∈ T ,

f(u1,v2) · Pr
ru

[
ru ≤ αf(u1,v2)n

1/3 lnn
]
≥ f(u1,v2) · αn−1/3 lnn.

Therefore,

E[
∑
u∈S

Fu1] =
∑
u∈S

(∑
v∈T

f(u1,v2) Pr
ru

[
ru ≤ αf(u1,v2)n

1/3 lnn
])

≥
∑
u∈S

(∑
v∈T

f(u1,v2)

)
αn−1/3 lnn =

(∑
u∈S

f(s̄,u1)

)
αn−1/3 lnn ≥ α

4
n−1/3 lnn.

Now we use the assumption that f(s̄,u1) ≤ n−1/3 for all u ∈ S. By flow conservation,

it implies that all Fu1 are bounded from above by n−1/3. By the Hoeffding inequality 1

applied with ε = 1/2 and c = n−1/3,

Pr
ru

[∑
u∈S

Fu1 ≥
αn−1/3 lnn

8

]
= 1− Pr

ru

[∑
u∈S

Fu1 <
1

2
E[
∑
u∈S

Fu1]

]

≥ 1− exp

(
−α lnn

32

)
≥ 1− 1

2n
.

Next, we condition on the event that
∑

u∈S Fu1 ≥ αn−1/3 lnn/8, and bound the condi-
tional probability that there exists a path from s̄ to t̄.

Claim 2.4.6. For any fixed {ru}u∈S, such that
∑

u∈S Fu1 ≥ αn−1/3 lnn/8, we have

Pr
rv : v∈T

[
there is no path s̄→ u1 → v2 → t̄ in E′′

]
≤ 1

2n
.

Proof. For every v ∈ T , let

Fv2 =
∑

u1:ru≤αf(u1,v2)n
1/3 lnn

f(u1,v2).

If for some ṽ ∈ T we have Fṽ2 > 0, then for some ũ ∈ S, rũ ≤ αf(ũ1,ṽ2)n
1/3 lnn,

rũ ≤ αf(s̄,ũ1)n
1/3 lnn and, hence, the path s̄→ ũ1 → ṽ2 belongs to E′′. Also,

f(ṽ2,t̄) =
∑
u∈S

f(u1,ṽ2) ≥ Fv2 .

1Here we use the following variant of the Hoeffding’s inequality. Let X1, . . . , Xn be independent random
variables taking values in [0, c]. Let Sn =

∑
Xi, let µ = E[Sn]. Then, for every positive ε,

0Sn ≤ (1− ε)µ ≤ e−
1
2
ε2µ/c.

For reference see, e.g., [112] Theorem 2.3(c) (page 200).

24

Now for a fixed {ru}u∈S and a vertex ṽ ∈ T , we bound the probability that (ṽ2, t̄) ∈ E′′
from below by

Pr
rṽ

[
rṽ ≤ αf(ṽ2,t̄)n

1/3 lnn
]
≥ min(αf(ṽ2,t̄)n

1/3 lnn, 1) ≥ min(αFṽ2n
1/3 lnn, 1).

Note that we have a lower bound on the sum of Fv2 ’s:

∑
v∈T

Fv2 =
∑
u∈S

Fu1 ≥
αn−1/3 lnn

8
.

Thus, we can use the same argument as in Claim 2.2.3 to get a lower bound on the overall
probability:

Pr
rv

[
(v2, t̄) /∈ E′′, for all v ∈ T with Fv2 > 0

]
≤ exp

(
−
∑
v∈T

αFv2n
1/3 lnn

)
≤ exp(−α2 ln2 n/8) <

1

2n
.

By Claims 2.4.5 and 2.4.6, the probability that there exists a path s̄→ u1 → v2 → t̄ is
at least (1− 1/(2n))2 > 1− 1/n.

2.5 An O(n2/3+ε)-Approximation for Directed Steiner Forest

Let us first recall the Directed Steiner Forest (DSF) problem. Given a directed graph
G = (V,E), a cost function c : E → R+ and a set D ⊆ V × V of ordered pairs, the goal is
to find a min-cost subgraph H of G that contains a path from s to t for every (s, t) ∈ D.
In contrast to spanners, there is no restriction on the paths used to connect pairs, but the
objective to be optimized depends on arbitrary edge costs.

Theorem 2.5.1. For any fixed ε > 0, there is a polynomial time randomized algorithm for
Directed Steiner Forest with expected approximation ratio O(n2/3+ε).

Our algorithm for DSF builds on the algorithm of Feldman, Kortsarz and Nutov [93]
for the problem. We describe their algorithm and most of their analysis, using notation
compatible with previous sections of this paper, and show where we make our improvement.
As mentioned in [93], one can assume without loss of generality that D ⊆ S × T for two
disjoint subsets S and T of V and that the costs are metric.

Let τ denote our guess for the optimal value of OPT . We start from τ = 1 and
repeatedly double our guess each time we find it is too small. Thus, it suffices to give the
approximation guarantee for the iteration when OPT ≤ τ ≤ 2 · OPT . The algorithm has
two parameters: β and `. We set β = n1/3 and ` = τ/n2/3 below.

Let us adapt some terminology from the previous sections to this new setting.

Definition 2.5.1 (Thick & thin pairs). For a pair (s, t) ∈ D, let Gs,t = (V s,t, Es,t) be
the subgraph of G induced by the vertices on paths from s to t of cost at most `. A pair
(s, t) ∈ D is thick if |V s,t| ≥ n/β and it is thin otherwise.

25

Definition 2.5.2. A set E′ ⊆ E settles a pair (s, t) ∈ D if the subgraph (V,E′) contains
a path from s to t.

The high-level structure of the algorithm is the same as for the spanner problem. We
will describe how to find in polynomial time two sets E′, E′′ ⊆ E ,such that E′ settles all
the thick pairs and E′′ settles all the thin pairs.

The thick pairs can be settled by random sampling, just as in Section 2.2.1. For
p = O((log n)/(n/β)), if each vertex is selected with probability p to lie in a set R, then
for every (s, t) ∈ D, R ∩ V s,t 6= ∅ with high probability. Let the set E′ be constructed by
adding, for each u ∈ R, s ∈ S, t ∈ T , the edges of a path from s to u of cost at most ` if
one exists and the edges of a path from u to t of cost at most ` if one exists. The expected
number of thick pairs still not settled is at most |D|/n2 ≤ 1. Thus, we can add the edges
of a minimum-cost path from s to t for any unsettled thick pair (s, t) and still have that
the expected cost of E′ be O(n · pn · ` + τ) = Õ(n`β + τ) = Õ(n2/3τ), where we use τ as
an upper bound on the cost of a minimum-cost (s, t)-path.

We remove the settled thick pairs from D, so that it only consists of the unsettled thin
pairs. Next, we construct an edge set E′′ that settles all the thin pairs. Define the density
of a subset of E to be the ratio between the total cost of the subset and the number of pairs
in D settled by it. We show how to efficiently construct a subset K with expected density
O(n2/3+ε) · τ/|D|. This allows us to compute the set E′′: starting from |D| unsettled thin
pairs and E′′ = ∅, find K of expected density O(n2/3+ε) · τ/|D|, add the edges in K to
E′′, remove the settled pairs from D, and repeat. As shown in Theorem 2.1 of [93], this
greedy procedure produces a subset E′′ of expected cost O(n2/3+ε) · τ that settles all the
thin pairs, completing the proof of Theorem 2.5.1.

The edge set K is produced by constructing two sets K1 and K2 and letting K be
the set of smaller density. We guarantee that one of K1 and K2 has expected density
O(n2/3+ε) · τ/|D|. Whether the guarantee is provided for K1 or K2 depends upon which
one of the two cases below holds. Suppose H is an optimal solution with cost τ (we ignore
the factor of 2 for simplicity). Let C be the set of pairs (s, t) ∈ D for which the minimum
cost of an (s, t)-path in H is at least `; that is, these are the costly pairs to settle. The two
cases are: |C| ≥ |D|/2 and |C| < |D|/2.

Case 1: |C| ≥ |D|/2. This case relies on a result of Chekuri, Even, Gupta and Segev
[54]. Define a junction tree to be the union of an ingoing tree and an outgoing tree (not
necessarily disjoint) rooted at the same vertex. [54] shows an O(nε)-approximation for
the minimum density junction tree of a graph. Fortunately, there exists a junction tree of
density at most τ2/(|C|`). To see why, take the paths in H connecting the pairs in C. The
sum of the costs of all such paths is at least |C|`. If we denote the maximum number of these
paths that any edge belongs to as µ, then the sum of the costs of the paths is at most µ · τ
and thus there exists an edge, which belongs to µ ≥ |C|`/τ paths. Therefore, there must
be a junction tree K1 which contains this edge and connects at least |C|`/τ pairs in D. K1

has density at most τ/(|C|`/τ) = τ2/(|C|`). Thus, when |C| ≥ |D|/2, the algorithm of [54]
(deterministically) returns a junction tree of density O(nε ·τ/` ·τ/|D|) = O(n2/3+ε) ·τ/|D|.

Case 2: |D − C| > |D|/2. In this case, we attempt to find a subgraph that connects
many pairs of D using low-cost edges. Consider the problem of connecting at least |D|/2
pairs from D using paths of cost at most ` while minimizing the total cost of the edges. For
(s, t) ∈ D, let Π(s, t) be the set of (s, t)-paths of cost at most `, and let Π =

⋃
(s,t)∈D Π(s, t).

26

Minimize
∑
e∈E

c(e) · xe subject to: (2.7)

∑
(s,t)∈D

ys,t ≥ |D|/2∑
Π(s,t)3P3e

fP ≤ xe ∀(s, t) ∈ D, e ∈ E

∑
P∈Π(s,t)

fP = ys,t ∀(s, t) ∈ D

0 ≤ ys,t, fP , xe ≤ 1 ∀(s, t) ∈ D,P ∈ Π, e ∈ E

Figure 2.3: Linear program LP-DSF for the case |D −
C| > |D|/2

We can formulate an LP-relaxation for this problem, LP-DSF, shown in Figure 2.3, which
closely resembles the LP used by [71] for Directed k-Spanner. Each edge e has a capacity
xe, each path P ∈ Π carries fP units of flow, and ys,t is the total flow through all paths
from s to t. Also, the total flow through all paths in Π should be at least |D|/2. It is
clear that LP-DSF is a relaxation of the problem of connecting at least |D|/2 pairs in D
while minimizing the cost of the edges. [93] shows that in polynomial time, we can find a
solution {x̂e} ∪ {ŷs,t} such that

∑
e∈E c(e) · x̂e is within (1 + ε) factor of OPT , the optimal

solution to LP-DSF, for any fixed ε > 0.
Our improvement comes in the analysis of the rounding algorithm for LP-DSF. Suppose

{x̂e}∪{ŷs,t} is a feasible solution to LP-DSF. Let K2 be the edge set obtained by selecting
each edge in E with probability min((8n lnn)/β · xe, 1).

Lemma 2.5.2. With probability ≥ 1 − 1/n2, set K2 settles every thin pair (s, t) with
ŷs,t ≥ 1/4.

Proof. We reinterpret Definition 2.2.4 in terms of edge costs instead of lengths. More
precisely, define a set A ⊆ E to be an antispanner for a pair (s, t) ∈ D if (V,E \A) contains
no path from s to t of cost at most `. By exactly the same argument as in Claim 2.2.5, the
set of all minimal antispanners for thin pairs is of size at most n2(n/β)n/β.

For every thin pair (s, t) ∈ D with ŷs,t ≥ 1/4, if A is an antispanner for (s, t), then∑
e∈A x̂e ≥

∑
P∈Π(s,t) f̂P ≥ 1/4, where f̂P is the value of the variable fP in LP-DSF that

corresponds to the solution {x̂e}∪{ŷs,t}. So, the probability that K2 is disjoint from A is at
most exp(−(n lnn)/β), by the same argument as in Claim 2.2.3. Thus, by the bound on the
total number of antispanners of thin pairs from above, the union bound, and Claim 2.2.4,
it follows that with high probability, K2 settles every thin pair (s, t) with ŷs,t ≥ 1/4.

We add to K2 a minimum cost path between any pair (s, t) with ŷs,t ≥ 1/4 that is
still not settled. In expectation, the number of such pairs is |D|/n2 ≤ 1, so that the total
expected cost2 of K2 is at most (16n lnn)/β ·τ . A simple argument shows that the number

2This is where we save over [93]. The cost of their comparable K2 is O(n2/β2 · τ).

27

of pairs (s, t) in D for which ŷs,t < 1/4 is at most 2|D|/3; assuming the opposite makes the
total amount of flow between all pairs strictly less than |D|/2. So, the expected density of
K2 is at most:(

16n lnn

β
· τ
)
/ (|D| − 2|D|/3) =

48n lnn

β
· τ
|D|

= Õ(n2/3) · τ/|D|.

As we said earlier, the set K is taken to be either K1 or K2, depending upon which
has the smaller density. By the above, expected density of K is at most O(n2/3+ε) · τ/|D|.
This concludes the proof of Theorem 2.5.1.

2.6 Conclusion

For general Directed k-Spanner, we obtained an approximation ratio of Õ(
√
n) and

for Directed 3-Spanner with unit edge lengths we obtained an approximation ratio
of Õ(n1/3). The second bound almost matches the LP integrality gap of Dinitz and
Krauthgamer [71]. It remains an interesting open question whether one can get an ap-
proximation ratio of Õ(n1/3) for the general case.

All our algorithms are randomized and have an expected approximation factor. Our
algorithms consist of multiple stages and the analysis of concentration of the cost of the
solution can be done using standard concentration bounds for each stage separately in the
same way as in the previous work (e.g. [35, 71, 93]), so we omit it to simplify presentation.
It remains open whether these algorithms can be derandomized.

Chapter 3
Sparsification of Node-Weighted
Planar Graphs

In feedback vertex set problems input is a graph G = (V,E), a family of cycles C in G
and a non-negative weight function w : V → R≥0 on the set of vertices of G. The goal is
to find a set of vertices H ⊂ V which contains a node in every cycle in C such that the
total weight of vertices in H is minimized. This is a special case of a general hitting set
problem, when sets correspond to cycles in the graph.

Feedback Vertex Set (FVS) problem in a graph is the problem of finding a hitting
set for all cycles. We consider the problem of hitting sets for cycles that satisfy some special
properties. There are four natural examples.
• Odd cycles. If H ⊂ V is a hitting set for all odd-length cycles then the subgaph

of G, induced by the vertex set V \H is bipartite and removal of H is called graph
bipartization. The corresponding hitting set problem is denoted as Bipartization
(BIP).
• The set of all cycles which contain at least one node from a given set of nodes. The

corresponding hitting set problem is known as Subset Feedback Vertex Set
(S-FVS).
• The set of all directed cycles of a given directed graph. The corresponding problem

is called Directed Feedback Vertex Set (D-FVS).
• In Node-Weighted Steiner Forest problem we are given a weighted undirected

graph and a set of terminal pairs (si, ti). The goal is to select a subset of vertices of
the graph of minimum weight such that in the subgraph induced by these vertices all
pairs of terminals are connected. In Section 3.1.1 we show that Node-Weighted
Steiner Forest (NWSF) belongs to a class of problems which can be expressed as
hitting set problems for some collection of cycles.

While in general graphs Feedback Vertex Set can be approximated within factor
of 2 for all graphs, as shown by Becker and Geiger [29] and Bafna, Berman and Fujito [19],
hitting a restricted family of cycles can be much harder. For example, the best known
approximation ratio for graph bipartization in general graphs is O(log n) by Garg, Vazirani
and Yannakakis [99]. For D-FVS the best known approximation is O(log n log logn), as

29

Problem Approximation Hardness of approximation

FVS
2 [29]

MAX-SNP, [144]
2 [19]

BIP O(log n) [99] 1.3606, (P 6= NP [73])

D-FVS Õ(log n) [88] 2− ε, (UGC, [134])

S-FVS 8 [89]

NWSF O(log k) [137] (1− o(1)) log k [91],
if NP * ZTIME(2n

η
) for some η > 0

Table 3.1: General graphs

Problem Previous work (our analysis)1 Our work

FVS
10 [22]

2.4
3(18/7) [102]

BIP, D-FVS, S-FVS 3(18/7) [102]

NWSF
6 [67]
3(18/7) [151]

Table 3.2: Planar graphs

shown by Even, Naor, Schieber and Sudan [88]. These and other results for general graphs
are summarized in Table 3.1.

Yannakakis [195] has given an NP-hardness proof for many vertex deletion problems
restricted to planar graphs which applies to all problems that we consider. Also, it is
known that D-FVS is NP-hard even if both indegree and outdegree of every vertex are at
most 3 (Garey and Johnson, [98, p. 191]). For planar graphs, the unweighted Feedback
Vertex Set problem admits a PTAS, as shown by Demaine and Hajiaghayi [68] using
a bidimensionality technique. Goemans and Williamson [102] created a framework for
primal-dual algorithms that for planar instances of all above problems provide approxima-
tion algorithms with constant approximation factors. More specifically, they showed 9/4-
approximations for FVS, S-FVS, D-FVS and BIP. For Node-Weighted Steiner For-
est it was shown by Demaine, Hajiaghayi and Klein [67] that the generic framework of Goe-
mans and Williamson gives a 6-approximation which was improved to 9/4-approximation
by Moldenhauer [151]. However, the original paper by Goemans and Williamson [102]
contains a mistake in the analysis. Similar mistake was repeated in [151]. We exhibit the
mistake on an example and prove that no worse example exists. More precisely, primal-
dual approximation algorithms of Goemans and Williamson for all problems described
above give approximation factor 18/7 rather than 9/4. We also give an improved version
of the violation oracle which can be used within the primal-dual framework of Goemans
and Williamson and guarantees approximation factor 2.4. Results for planar graphs are
summarized in Table 3.2.

The edge counterparts of the given problems, i.e. finding a minimum-weight subset of

1See discussion in the text.

30

edges which intersects with every cycle in a given collection, are also well-studied. They
reduce to vertex-weighted versions by adding a new vertex on each edge and assigning
its weight to be equal to the weight of the edge. These problems are also significantly
simpler, especially in planar graphs. Feedback Edge Set problem is a complement
of the maximum spanning tree problem. Minimum-weight graph bipartization by edge
removals is complementary to the maximum-weight cut problem which in planar graphs
can be solved in polynomial time (Hadlock [113], Dorfman and Orlova [77]). Directed
Feedback Edge Set problem in planar graphs reduces to finding a minimum-weight
dijoin in the dual graph which can be solved in polynomial time (see, e.g. Grötschel,
Lovász and Schrijver [109, p.253-254]). Edge-weighted Steiner Forest problem in planar
graphs is NP-hard [98], but admits a PTAS, as shown recently by Bateni, Hajiaghayi and
Marx [27].

Applications and ramifications Node-weighted Steiner problems have been stud-
ied theoretically in many different settings, see e.g. [137, 154, 174, 145]. Applications of
such problems range from maintenance of electric power networks [110] to computational
sustainability [69]. Experimental evaluation of primal-dual algorithms for feedback vertex
set problems in planar graphs in applications to VLSI design was shown by Kahng, Vaya
and Zelikovsky [130].

As observed by Goemans and Williamson primal-dual algorithms for feedback vertex set
problems in planar graphs have close connections to conjectures of Akiyama and Watanabe
and Gallai and Younger about the size of minimum feedback vertex set in planar graphs.
See [102] for more details.

Organization We give basic definitions and preliminary observations in Section 3.1. In
Section 3.1.1 we show that a wide class of node-weighted network design problems in planar
graphs, introduced by Demaine, Hajiaghayi and Klein [67], can be equivalently defined as
a class of hitting set problems for appropriately defined collections of cycles satisfying
uncrossing property, as introduced by Goemans and Williamson [102]. In Section 3.2 we
introduce local-ratio analog of primal-dual framework of Goemans and Williamson for such
problems and give examples of violation oracles which can be used within this framework.

In Section 3.3 we give a corrected version of the analysis of the approximation factor
achieved by the generic primal-dual algorithm with a violation oracle, presented by Goe-
mans and Williamson in [102]. In A.3 we present analysis of primal-dual algorithms with
a new violation oracle which gives approximation factor 2.4. In Section 3.3.4 we show
examples, on which these approximation factors are achieved.

3.1 Preliminaries

A simple cycle of length k is a sequence of vertices v1, . . . , vk+1, where vk+1 ≡ v1, all
vertices v1, . . . vk are distinct, (vi, vi+1) ∈ E for all 1 ≤ i ≤ k and all these edges are
distinct. When working with simple graphs, the edge set above is uniquely defined. Note
that in undirected simple graphs a simple cycle has length at least three. For a cycle C,
the edge set of C is denoted as E(C), although to simplify presentation we will abuse the
notation slightly and sometimes refer to it as just C.

Every planar graph has a combinatorial embedding that for each vertex specifies a
cyclic ordering of edges that are adjacent to it. A subset U ⊂ V defines G[U], the induced

31

subgraph ofG, with node set U and edges {(u, v) ∈ E : u, v ∈ U}. An embedding of a planar
graph naturally defines embeddings of all its induced subgraphs. We denote the set of faces
of a planar graph as F (for a standard definition of the set of faces via a combinatorial
embedding, see e.g. [136]). The planar dual of a graph G is graph G∗ = (F,E′) where F is
the set of faces of G, and E′ is the set of pairs of faces that share an edge. We select one
face F0 as the outer face.

For a simple cycle C = (v1, . . . , vk+1) we denote the set of faces that are surrounded
by C as Faces(C). More formally, let E′′ be the set of pairs of faces that share an edge
that is not on C then in (F,E′′) has exactly two connected components. We denote as
Faces(C) the connected component of (F,E′′) that does not contain the outer face F0.
A family of cycles Z is laminar iff for every C,D ∈ Z either Faces(C) ⊂ Faces(D), or
Faces(D) ⊂ Faces(C), or Faces(D) ∩ Faces(C) = ∅.

We use notation • to denote contact between two objects. More formally u • V , if
u ⊆ V . For example, we can have nodes and edges in contact with faces and cycles.

3.1.1 Uncrossable families of cycles and proper functions

Our algorithms apply to every family of cycles that satisfies the following:

Definition 3.1.1 (Uncrossing property [102]). For any two cycles C1, C2 ∈ C such that
there exists a path P2 in C2 which is edge-disjoint from C1 and which intersects C1 only at
the endpoints of P2, the following must hold. Let P1 be a path in C1 between the endpoints
of P2. Then either P1 ∪ P2 ∈ C and (C1 \ P1) ∪ (C2 \ P2) contains a cycle in C, or
(C1 \ P1) ∪ P2 ∈ C and (C2 \ P2) ∪ P1 contains a cycle in C.

Many natural families of cycles satisfy the uncrossing property. Goemans and Williamson [102]
showed this for FVS, D-FVS, BIP, and S-FVS. We show that a certain class of node-
weighted connectivity problems in planar graphs can be expressed as problems of finding
hitting sets for families of cycles satisfying the uncrossing property. To formalize this
statement we introduce some definitions.

Definition 3.1.2 ((0, 1)-proper function). A Boolean function f : 2V → {0, 1} is proper if
f(∅) = 0 and it satisfies the following two properties:

1. (Symmetry) f(S) = f(V \ S).

2. (Disjointness) If S1 ∩ S2 = ∅ and f(S1) = f(S2) = 0 then f(S1 ∪ S2) = 0.

These two properties imply the property known as complementarity: if A ⊆ S and
f(S) = f(A) = 0 then f(S \A) = 0.

For a set S ⊆ V , let Γ(S) be its boundary, i.e. the set of nodes not in S which have
a neighbor in S, or formally Γ(S) = {v ∈ V |v /∈ S,∃u ∈ S : (u, v) ∈ E}. As observed by
Demaine, Hajiaghayi and Klein [67], a wide class of node-weighted network design problems
can be formulated as the following generic integer program, where f : 2V → {0, 1} is a
proper function:

Minimize:
∑
v∈V

w(v)x(v)

32

Subject to:
∑

v∈Γ(S)

x(v) ≥ f(S) for all S ⊆ V

x(v) ∈ {0, 1} for all v ∈ V,

For example, for Node-Weighted Steiner Forest the corresponding (0, 1)-proper func-
tion is defined as follows: f(S) = 1 iff there exists a pair of terminals (si, ti), such that
|S ∩ {si, ti}| = 1. The edge-weighted version of this program was introduced by Goemans
and Williamson in [101]. Note that without loss of generality we can assume that the input
graph is triangulated. Otherwise we add extra nodes of infinite cost inside each face and
connect these new nodes by edges to all nodes on their faces without changing the cost of
the optimum solution.

In Theorem 3.1.1 we will show that problems which can be expressed by a generic
integer program above with some (0, 1)-proper function f can also be expressed as prob-
lems of hitting uncrossable collections of cycles. We give some definitions and simplifying
assumptions first.

Definition 3.1.3 (Active sets and boundaries). For a proper function f : 2V → {0, 1} we
say that sets S, such that f(S) = 1 are active. For an active set S we refer to its boundary
Γ(S) as active boundary. If an active boundary forms a simple cycle we call it active

simple boundary. We denote the collection of all active simple boundaries as CfA.

Using this terminology, the generic integer program expresses the problem of finding a
minimum weight hitting set for the collection of all active boundaries. Note that we can
assume that all active singleton sets are included into the solution because each such set
{s} forms a boundary of its complement V \ {s}, which is active by symmetry, and thus
{s} has to be hit. We simplify the generic integer program using this observation so we
can assume that all active boundaries don’t contain active singleton sets. In particular,
this implies by disjointntess of f that all active boundaries Γ(S) are not active, namely
f(Γ(S)) = 0.

We first show that finding a minimim weight hitting set for all active boundaries is
equivalent to finding a minimum weight hitting set for CfA by showing that every active
boundary contains an active simple boundary as a subset in Lemma A.2.1. Then we show
that the family of active simple boundaries CfA satisfies the uncrossing property.

Theorem 3.1.1. Let G(V,E) be a triangulated planar graph. For every proper function

f : 2V → {0, 1} the collection of active simple boundaries CfA forms an uncrossable family
of cycles.

Proof. Consider two active simple boundaries Γ(S1) and Γ(S2). If Γ(S2) crosses Γ(S1) then
there exists a collection of edge-disjoint paths in Γ(S2) which we denote as P , such that
each path Pi ∈ P has only two nodes in common with Γ(S1). Each path Pi ∈ P partitions
S1 \Pi into two parts which we denote as A1

i and A2
i respectively. Let’s fix a path Pi ∈ P ,

such that at A1
i doesn’t contain any other paths from P .

There are two cases: A1
i ∩S2 = ∅ and A1

i ⊆ S2. They are symmetric because if A1
i ⊆ S2

we can replace the set S2 by a set S′2 = V \ S2 \ Γ(S2), ensuring that A1
i ∩ S2 = ∅. Note

that the boundary doesn’t change after such replacement, because Γ(S2) = Γ(S′2). By

33

symmetry of f we have that f(S2) = f(V \ S2) = 1. Because f(Γ(S2)) = 0 by disjointness
we have f(V \ S2 \ Γ(S2)) = f(S′2) = 1, so S′2 is also an active set.

This is why it is sufficient to consider only the case when A1
i ∩ S2 = ∅. We will show

the following auxiliary lemma:

Lemma 3.1.2. Let A1, A,B ⊆ V be such that A1 ⊆ A, A1 ∩B = ∅ and f(A) = f(B) = 1.
Then at least one of the following two statements holds:

1. f(A1 ∪B) = f(A \A1) = 1.

2. f(A1) = max [f(B \ (A \A1)), f((A \A1) \B)] = 1.

The proof of the lemma follows from the properties of (0, 1)-proper functions and is
given in A.2.3

To show the uncrossing property for cycles C1 = Γ(S1) and C2 = Γ(S2) we select the
paths in the definition of the uncrossing property as P1 = Γ(A2

i) \ Pi and P2 = Pi. Now
we can apply Lemma 3.1.2 to sets A1

i , S1 and S2, because A1
i ⊆ S1, A1

i ∩ S2 = ∅ and
f(S1) = f(S2) = 1. Thus, by Lemma 3.1.2 either f(A1

i ∪ S2) = f(S1 \A1
i) = 1 or f(A1

i) =
max(f(S2\(S1\A1

i)), f((S1\A1
i)\S2)) = 1. In the first case we have f(A2

i) = f(A1
i ∪S2) = 1

and thus both cycles P1 ∪ P2 = Γ(A2
i) and (C1 \ P1) ∪ (C2 \ P2) = Γ(A1

i ∪ S2) are active
simple boundaries. In the second case f(A1) = 1 and thus the cycle (C1 \P1)∪P2 = Γ(A1)
is an active simple boundary. The cycle (C2 \ P2) ∪ P1 is not necessarily simple, but it
forms a boundary of an active set (S2 \ (S1 \A1

i))∪ ((S1 \A1
i)\S2). Thus, by Lemma A.2.1

it contains an active simple boundary, which is a cycle in CfA.

3.2 Algorithm

3.2.1 Generic local-ratio algorithm

We will use a local-ratio analog of a generic primal-dual algorithm formulated by Goemans
and Williamson [102] which we state as Algorithm 3.1

Algorithm 3.1 Generic local-ratio algorithm (G(V,E), w, C).
1: w̄ ← w.
2: S ← {u ∈ V : w̄(u) = 0}.
3: while S is not a hitting set for C do
4: M← a collection of cycles returned by a violation oracle Violation(G, C, S).
5: cM(u)← |{M ∈M : u •M}|, for all u ∈ V .

6: α← minu∈V \S
w̄(u)
cM(u) .

7: w̄(u)← w̄(u)− αcM(u), for all u ∈ V .
8: S ← {u ∈ V : w̄(u) = 0}.
9: end while

10: return a minimal hitting set H ⊂ S of C.

Note that we don’t need to specify the collection of cycles C explicitly. instead the
generic algorithm requires that we specify an oracle Violation(G, C, S) used in Step 4.

34

Given a graph G, collection of cycles C and a solution S if there are some cycles in C which
are not hit by S this oracle should return a non-empty collection of such cycles, otherwise
it should return the empty set. Such an oracle also allows to perform Step 3 and Step 10
without explicitly specifying C.

The performance guarantee of the generic algorithm depends on the oracle used as
described below. If z : Z → R we use z(Z) to denote

∑
a∈Z z(a).

Theorem 3.2.1 (Local-ratio analog of Theorem 3.1 in [102]). If the set M returned by a
violation oracle used in Step 4 of the generic local-ratio Algorithm 3.1 satisfies that for any
minimal solution H̆:

cM(H̆) ≤ γ|M |,

then Algorithm 3.1 returns a hitting set H of cost w(H) ≤ γw(H∗), where H∗ is the
optimum solution.

We give the proof of this theorem for completeness in A.2.2.
The simplest violation oracles return a single cycle. Bar-Yehuda, Geiger, Naor and

Roth [22] show that for FVS this approach can give a 10-approximation for planar graphs
and Goemans and Willamson [102] improve it to a 5-approximation. They also analyzed
an oracle, which returns a collection of all faces in C, which are not hit by the current
solution, and showed such oracle gives a 3-approximation for all families of cycles satisfying
uncrossing property. Thus, by Theorem 3.1.1 such oracle gives a 3-approximation for all
problems that we consider. We now give more complicated examples of violation oracles
which give better approximation factors.

3.2.2 Minimal pocket violation oracles

The following oracle, introduced by Goemans and Williamson [102], returns a collection of
faces in C inside a minimal pocket not hit by the current solution H.

Definition 3.2.1. A pocket for a planar graph G(V,E) and a cycle collection C is a set
U ⊆ V such that:

1. The set U contains at most two nodes with neighbors outside U .
2. The induced subgraph G[U] contains at least one cycle in C.

Algorithm 3.2 Minimal-Pocket-Violation (G, C, S).

1: C0 ← {c ∈ C : c not hit by S}
2: Construct a graph GS by removing from G:

3: All edges which do not belong to any cycle in C0.
4: All vertices which are not adjacent to any edges.

5: Let U0 be a pocket for GS and C0 which doesn’t contain any other pockets.
6: return A collection of all cycles in C0 which are faces of GS [U0].

As in the generic algorithm, we will not specify C and C0 explicitly, but will rather
use an oracle to check relevant properties with respect to them. We show analysis of the
approxiamtion factor obtained with this oracle in Section 3.3.

35

We will obtain a better approximation ratio by analyzing the following oracle in Sec-
tion A.3.

Definition 3.2.2. A triple pocket for a planar graph G(V,E) and a cycle collection C is
a set U ⊆ V such that:

1. The set U contains at most three nodes with neighbors outside U .
2. The induced subgraph GS [U] has at least three faces in C.

The violation oracle Minimal-3-Pocket-Violation finds a minimal U0 that is either
a pocket or a triple pocket, and otherwise works like Minimal-Pocket-Violation.

3.3 Proof of 18/7 approximation ratio with pocket oracle

According to Theorem 3.2.1, to show that Algorithm 1 has approximation factor 18/7 it
suffices to prove the following:

Theorem 3.3.1. In every iteration of the generic local-ratio algorithm (Algorithm 3.1)
with oracle Minimal-Pocket-Violation for every minimal hitting set H̆ of C we have
cM(H̆) ≤ γ|M| for γ = 18/7.

The rest of this section is the proof of this theorem. The strategy of the proof is a
variant of amortized analysis. We consider an arbitrary minimal hitting set H̆ of C-cycles
in the residual graph GS (as defined in Algorithm 3.2). For every cycle in M we get 1
unit of credit, and for a node h ∈ H̆ we get cM(h)/γ units of debit (i.e. negative), and we
need to show that overall balance is non-negative. We start by decomposing the balance
into smaller parts which are simpler to analyze than the balance of the entire pocket. The
goal is to limit the impact of the nodes in H̆ for which witness cycle Ah is not in M. We
decompose the pocket into parts that have at most two such nodes (Section 3.3.1). Further
analysis refers to one such part.

We further simply the analysis of the balance by applying a pruning rule, each appli-
cation of the pruning rule makes the instance smaller while the balance decreases. Thus it
is enough to prove the claim when the pruning rule cannot be applied. In particular, this
proves the claim if pruning produces an instance with no credits and debits. (Section 3.3.2).

Finally (Section 3.3.3) we define objects called envelopes and we assign all credits and
debits to the envelopes. Then we show that each envelope has a non-negative balance.
The nature of the pocket oracle eliminates conceivable envelopes with negative balance.
In the next section we show that we eliminate more types of envelopes with the oracle
Minimal-3-Pocket-Violation which gives an approximation factor 12/5.

Before we proceed we need several definitions.

Definition 3.3.1 (See also [102]).

(a) Given a hitting set H̆ for C we say that A ∈ C is a witness cycle for h ∈ H̆ if
A ∩ H̆ = {h}.
(b) If H̆ is a minimal hitting set, we can select AH̆ = {Ah : h ∈ H̆}, a family of witness

cycles for H̆.
(c) Given a pocket GS [U0] with M being set of faces of GS [U0] that are in C we define
debit graph, a bipartite graph G = (M∪ H̆, E) with edges E = {(M,h) ∈M× H̆ : M •h}.

36

(d) For N ⊂M we define EN = {(M,h) ∈ E : M ∈ N} and balance(N) = |N | − |EN |/γ.

Goemans and Williamson showed the following:

Lemma 3.3.2 (Lemma 4.2 in [102]). For every collection of cycles C and every minimal
hitting set H̆ there exists a laminar family of witness cycles AH̆ .

Observe also that the planar embedding of GS defines a planar embedding of G. We
are going to use the fact that G is planar. By the definition, cM(H) = |E|, so to prove
Lemma 3.3.1 it suffices to show that

balance(M) ≥ 0 (3.1)

We prove inequality (3.1) using mathematical induction on |M ∪AH̆ |.

3.3.1 Complex witness cycles and decomposition of the debit graph

In this subsection we will show a sufficient condition for inequality (3.1) and thus for our
theorem.

Definition 3.3.2. If Ag ∈ Ahmin and Ag 6∈ M we say that Ag ∈ AH̆ is a complex witness
cycle and that g is an outer (hit) node.

Complex witness cycle Ah makes the analysis more complicated because there exist
debits associated with pairs (M,h) but there is no credit for Ah. We reduce the problem of
proving the non-negative balance of the debit graph to the problem of proving sufficiently
high balances in simpler parts of that graph, where a part may have at most two complex
witness cycles. There are two types of complex witness cycles:

Definition 3.3.3. Let Cg = Faces(Ag) ∩ C and Mg = Cg ∩M.
If all nodes of a complex witness cycle Ag are in the pocket U0 we say that Ag is a

hierarchical witness cycle. Otherwise both contact nodes of U0 belong to Ag and we say
that Ag is a crossing witness cycle.

First we discuss how to handle the hierarchical witness cycles. If there are such cycles,
one of them, say Ag, has a minimal set Faces(Ag), and for such a cycle Ag we will show
that

balance(Mg) ≥ 1− 1/γ (3.2)

As a consequence of this inequality we can simplify the debit graph G by removing Mg

and inserting in its place Ag. After that replacementMg becomes {Ag} and EMg becomes
{(Ag, g)}, so balance(Mg) changes to 1 − 1/γ. The replacement reduces |AH̆ ∪M| while
the inequality (3.2) assures that the balance(E) does not increase. This allows to invoke
the inductive hypothesis.

We can repeat the simplification as long as there exists a hierarchical witness cycle.
Note that we in the set of pairs EMg (of the form “cycle M , hit node h”) only g is a hit
node with a complex witness cycle.

Now it remains to consider the case when for every hit node g that occurs in pairs of E ,
if its witness cycle Ag is complex then Ag is a crossing witness cycle. Each such Ag contains

37

a path Pg ⊂ U0 between the two contact nodes of U0, these paths cannot cross each other,
thus they split pocket U0 into subpockets; a subpocket has the boundary contained in two
paths that either are of the form Pg or form a part of the outer face of G[U0].

Let X be the set of faces of M that are contained in a subpocket. It is sufficient to
show that if X 6= ∅ then

balance(X) ≥ 1− 2/γ. (3.3)

We established that it suffices two consider two types of simplified debit graphs and
to prove that they respectively satisfy inequalities (3.2) and 3.3. We can describe a more
general type of a debit graph that includes both types as special cases. In our first type,
Ag is a hierarchical witness cycle that does not contain other hierarchical witness cycles in
its interior and we can define W , the set of nodes of GS that are on Ag or its interior. In
our second type, Pg and Ph are two paths connecting the contacts of U0 and W is the set
of nodes of GS that are on these two paths or in the interior of the cycle formed by these
two paths; W may contains outer nodes only on these paths. Let MW be the set of faces
of G[W] that are in M, the inequalities (3.2) and (3.3) have LHS equal to balance(MW).

Moreover, RHS of (3.2) and (3.3) also can be written with the same expression: if a is
the number of the outer nodes in W than in both cases RHS = 1− a/γ. The next lemma
summarizes these observations.

Lemma 3.3.3. To prove (3.1) it suffices to prove the following. Consider W ⊂ U0 such
that H̆ ∩W contains a ≤ 2 outer nodes, all on the outer face of G[W]. Let MW be the set
of faces in M that have all nodes in W . Then

balance(MW) ≥ 1− a/γ (3.4)

In the remainder of this section we will refer to W and a as introduced in this lemma,
and we will assume that we have at most a outer nodes, all on the outer face of W .

3.3.2 Pruning

The following operation simplifies MW and thus facilitates the proof of inequality (3.4).
Pruning M cycles of small degree. If a cycle M ∈ MW \ AH̆ participates in at most two

edges in E , we remove M from M. If Ah ∈ MW for some h ∈ H̆ and h participates in at
most two edges in E , including (Ah, h), we remove h from H̆ and Ah from M.

Lemma 3.3.4. Each step of pruning decreases |MW | by exactly 1 and balance(MW) by
at least 1− 2/γ.

IfMW 6= ∅ and applications of pruning lead toMW = ∅ then before pruning inequality
(3.4) was true.

Proof. The first claim follows from the fact that a step of pruning decreases |MW | by 1
and EMW

by at most 2.
The second claim for a = 2 follows from the first claim because we apply at least one

step of pruning.
The second claim for a = 1 follows from the fact that before the last step of pruning

we have |Mg| = 1, i.e. Mg = {M} for some face M . If M is not a witness cycle then all

38

witness cycles except Ag were eliminated, hence EMW
consists of exactly one pair (M, g).

If M is a witness cycle Ah, then EMW
consists of exactly one pair (Ah, h). In both cases

balance(Mg) = 1− 1/γ.

3.3.3 Envelopes

It remains to prove inequality (3.4) when pruning cannot be applied and EMW
is non-empty.

We decompose balance(MW) into parts that can be analyzed using Euler formula.
We partition the set of all faces of G[W] into three parts as follows: A = MW ∩ AH̆ ,

B =MW \AH̆ and Z is the set of faces in W which are not inM. Consider the dual graph
G∗ = (A ∪ Z, E∗); we have an edge between two vertices of G∗ if the corresponding faces
share an edge. For every connected component Ci of G∗ let Ei be the set of its boundary
edges which are edges that are adjacent to one face in Ci ⊂ A∪Z and one face in B. Every
Ei forms a cycle (not necessarily simple) and we call such cycles envelopes.

Definition 3.3.4 (Envelopes in W). Envelopes in W are cycles consisting of boundary
edges of connected components in the dual of A ∪ Z. We assign each h ∈ AH̆W to an
envelope which contains h; we select the one which is on the boundary of the component of
A∪Z that contains Ah. If h is an outer node, select the envelope which is on the boundary
of the component of A ∪ Z that contains the other face of G[W]. An outer envelope is an
envelope to which we assigned an outer node.

We will split balance(MW) into balances of envelopes; an edge (M,h) is assigned to
the envelope where we assigned h together with its witness cycle Ah; below we explain how
to assign faces from B to envelopes. We will show that each envelope has a non-negative
balance and at least one envelope has a sufficient positive balance.

Envelopes do not have to be simple cycles, but balance for non-simple envelopes is
positive, we omit the details in the preliminary version, instead, we assume that each
envelope is a simple cycle.
Envelopes: normal form. For an envelope S we define principal neighbors, B-faces that
have edges on S. Because we do not have pockets inside W , S must have at least 3 principal
neighbors, except for the outer envelope. One can see that a traversal of S is a face of G
of the form

(h0, B0, h1 . . . , ha−1, Ba−1, h0).

Envelopes: normalizing neighbors. First, suppose that some B ∈ B contains both hi
and hi+1 but B 6= Bi. This case is excluded, because if there are someM faces between B
and Bi we would have a pocket, and if there are not, Bi would have at most two neighbors:
hi and hi+1, and we have prunedM-cycles with at most two neighbors in EMW

. (Observe
that hi, hi+1 do not have to belong to H̆.)

Now we modify EMW
to E ′ as follows:

• we eliminate pairs of the form (Ah, h);
• for each envelope S we contract nodes of H̆ that were assigned to S to a single node

S.
The resulting graph is bipartite, but it can be a multi-graph. Therefore we modify

it further: if Bi is a principal neighbor of S and (B, hi), (B, hi+1) ∈ EMW
, in E ′ these

two edges produce a single double edge. The edge set E ′ may remain a multigraph, e.g.

39

if B = Bi the same as outer neighbor Bj then we have two double edges from B to S.
However, the edges from B to S cannot be consecutive in the circular ordering of S, hence
this multigraph does not have faces with two edges only.

Note that non-outer hit nodes assigned to an envelope S are contact nodes of S; oth-
erwise such a node h would belong to exactly two edges of E : (Ah, h) and (B, h) where B
is the principal neighbor that contains S; in that case h and Ah would be eliminated by
pruning.

Let nS be the number of contact nodes of S, and let nS−`S be the number of hit nodes
assigned to S. Also, let dS be the number of edges of the modified graph that are incident
to S.

If S is not the outer envelope, nS ≥ 3.
Balance of envelopes We define balanceS as the part of balance(EMW

) that can be
attributed to S. We will consider EMW

edges that are incident to H-nodes of S, and A-
cycles of these nodes, and a “share” of B-cycles that can be attributed to S using dS and
the Euler formula.

Suppose that the modified graph has m nodes, d edges and f faces. Note that d =
∑
dS.

Also, m = b+ s where b is the number of faces in B and s is the number of envelopes.
Because each face has at least 4 edges and each edge is in two faces, we have f ≤ d/2,

hence the Euler formula implies m = d− f + 2 ≥ d/2 + 2.
Thus we can allocate dS/2 nodes to an envelope S, because one of these nodes is S, we

allocate dS/2−1 B-nodes, while to the outer envelopes we can allocate extra two B-nodes.
To simplify the estimate of the number of pairs in E that are incident to S we assume

first that `S = 0. For an non-outer envelope S we allocate nS A-faces, and this gives this
estimate:

balanceS =

nS + dS/2− 1− (2nS + dS)/γ =

3

2
nS − 1 + (dS − nS)/2− (3nS + (dS − nS))/γ ≥ γ > 2

3

2
nS − 1− 3nS/γ ≥ nS ≥ 3

7

2
− 9/γ = 0 γ =

18

7

For every contact node h that is not a hit node (counted by `S) we decrease the number
of credits in balance(S) by 1, as we do not have the credit of Ah, and the number of debits
by 3/γ as we do not have (Ah, h), (B, h) and (B′, h) where B,B′ are the principal neighbors
adjacent to h on S. Thus balance(S) ≥ `S(3/γ − 1).

To estimate the balance of outer envelopes, observe that each outer envelope is in a
separate connected component of the modified graph: all outer nodes are on the outer face
of G[W] so they are in the same connected component of G∗, hence an outer envelope
is a connected component of edges of the boundary of that component of faces. In turn,
B-nodes of the modified graph are separated between the interiors of the outer envelopes.
As a result, we can add 2 to the lower bound of each outer envelope.

40

Therefore an outer envelope S with a′ outer nodes has balance at least

3

2
nS − 1− 3nS/γ + 2− a′(1− 1/γ) =

3nS

(
1

2
− 1/γ

)
+ 1− a′(1− 1/γ) ≥ nS ≥ 2

4− 6/γ − a′(1− 1/γ) > (2− a′)(1− 1/γ) γ ≥ 2

For a′ < 2 this gives the desired claim. For a′ = 2 and nS one can improve the estimate
to 2(1− 2/γ). Thus we have proven inequality (3.4) which suffices to prove Theorem 3.3.1,
i.e. we showed that oracle Minimal-Pocket-Violation guarantees approximation factor
18/7. We generalize this proof to show that oracle Minimal-3-Pocket-Violation gives
approximation factor 12/5 in Theorem A.3.1, which is deferred to A.3.

3.3.4 Tight examples

We show instances of graphs, on which the primal-dual algorithm with oracles Minimal-
Pocket-Violation and Minimal-3-Pocket-Violation gives 18/7 and 12/5 approxi-
mations respectively.

Our examples are for the Subset Feedback Vertex Set problem. Recall that in
this problem we need to hit all cycles which contain a specified set of “special” nodes. Our
examples are graphs with no pockets (or triple pockets), in which every face belongs to the
family of cycles that we need to hit – this is ensured by selection of “special” nodes, which
are marked with a star. The weights of vertices are assigned as follows. Given a node u
with degree d(u), its weight is w(u) = d(u) if u is a solid dot and w(u) = d(u)+ ε otherwise
(for some negligibly small value of ε).

First we show an example for the oracle Minimal-Pocket-Violation in Figure 3.1.
Because there are no pockets, the first execution of the violation oracle returns the collection
of all faces in the graph. Thus, in each building block of Picture 3.1 (which shows 5 such
blocks from left to right), the primal-dual algorithm selects the black dots with total
weight 18 while stars also form a valid solution with weight 7 + 3ε. Hence the ratio will be
arbitrarily close to 18/7, if we repeat the building block many times.

Similar family of examples for the oracle Minimal-3-Pocket-Violation is shown
in Figure 3.2. In these examples there are no pockets or triple pockets, so the oracle
Minimal-3-Pocket-Violation returns the collection of all faces in the graph. As above,
the primal-dual algroithm selects the black dots with total weight 12 within each block,
while the cost of the solution given by the stars is 5+2ε, so we can make the ratio arbitarily
close to 12/5.

41

ll

l

l

ll

_

_

_

ll

l

l

ll

_

_

_

ll

l

l

ll

_

_

_

ll

l

l

ll

_

_

_

ll

l

l

ll

_

_

_

_

_

Figure 3.1: Family of instances of Subset Feedback Vertex Set with approximation
factor 18/7 for the primal-dual algorithm with oracle Minimal-Pocket-Violation

_

_

l l l

l l _

l l l

_

l l l

l l _

l l l

_

l l l

l l _

l l l

_

l l l

l l _

l l l

_

l l l

l l _

l l l

Figure 3.2: Family of instances of Subset Feedback Vertex Set with approximation
factor 12/5 for primal-dual algorithm with oracle Minimal-3-Pocket-Violation

Part II

Concise Representations of Real
Functions in Property Testing

Chapter 4
Concise Representations of
Submodular Functions

4.1 Introduction

We investigate learning of submodular set functions, defined on the ground set [n] =
{1, . . . , n}. A set function f : 2[n] → R is submodular if one of the following equivalent
definitions holds:

Definition 4.1.1. 1. For all S, T ⊆ [n]:

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T).

2. For all S ⊂ T ⊆ [n] and i ∈ [n] \ T :

f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T).

3. For all S ⊆ [n] and i, j ∈ [n] \ S:

f(S ∪ {i}) + f(S ∪ {j}) ≥ f(S ∪ {i, j}) + f(S).

Submodular set functions are important and widely studied, with applications in com-
binatorial optimization, economics, algorithmic game theory and many other disciplines.
In many contexts, submodular functions are integral and nonnegative, and this is the set-
ting we focus on. Examples of such functions include coverage functions1, matroid rank
functions, functions modeling valuations when the value of each set is expressed in dollars,
cut functions of graphs2, and cardinality-based set functions, i.e., functions of the form
f(S) = g(|S|), where g is concave.

1Given sets A1, . . . , An in the universe U , a coverage function is f(S) = | ∪j∈S Aj |.
2Given a graph G on the vertex set [n], the cut function f(S) of G is the number of edges of G crossing

the cut (S, [n]/S)).

44

We study submodular functions f : 2[n] → {0, 1, . . . , k}, and give a learning algorithm
for this class. To obtain our result, we use tools from several diverse areas, ranging from
operations research to complexity theory.

Structural result. The first ingredient in the design of our algorithm is a structural
result which shows that every submodular function in this class can be represented by a
narrow pseudo-Boolean disjunctive normal form (DNF) formula, which naturally general-
izes DNF for pseudo-Boolean functions. Pseudo-Boolean DNF formulas are well studied.

In the next definition and the rest of the paper, we use domains 2[n] and {0, 1}n in-
terchangeably. They are equivalent because there is a bijection between sets S ⊆ [n] and
strings x1 . . . xn ∈ {0, 1}n, where the bit xi is mapped to 1 if i ∈ S and to 0 otherwise.

Definition 4.1.2 (Pseudo-Boolean DNF). Let x1, . . . , xn be variables taking values in
{0, 1}. A pseudo-boolean DNF of width k and size s (also called a k-DNF of size s) is an
expression of the form

f(x1, . . . , xn) =
s

max
t=1

(
at

(∧
i∈At

xi

)(∧
j∈Bt

x̄j

))
,

where at are constants, At, Bt ⊆ [n] and |At| + |Bt| ≤ k for t ∈ [s]. A pseudo-boolean
DNF is monotone if it contains no negated variables, i.e., Bt = ∅ for all terms in the max
expression. The class of all functions that have pseudo-Boolean k-DNF representations
with constants at ∈ {0, . . . r} is denoted DNFk,r.

It is not hard to see that every set function f : 2[n] → {0, . . . , k} has a pseudo-Boolean
DNF representation with constants at ∈ {0, . . . , k}, but in general there is no bound on
the width of the formula.

Our structural result, stated next, shows that every submodular function f : 2[n] →
{0, . . . , k} can be represented by a pseudo-Boolean 2k-DNF with constants at ∈ {0, . . . , k}.
Our result is stronger for monotone functions, i.e., functions satisfying f(S) ≤ f(T) for all
S ⊆ T ⊆ [n]. Examples of monotone submodular functions include coverage functions and
matroid rank functions.

Theorem 4.1.1 (DNF representation of submodular functions). Each submodular function
f : {0, 1}n → {0, . . . , k} can be represented by a pseudo-Boolean 2k-DNF with constants
at ∈ {0, . . . , k} for all t ∈ [s]. Moreover, each term of the pseudo-Boolean DNF has at most
k positive and at most k negated variables, i.e., |At| ≤ k and |Bt| ≤ k. If f is monotone
then its representation is a monotone pseudo-Boolean k-DNF.

Note that the converse of Theorem 4.1.1 is false. E.g., consider the function f(S) that
maps S to 0 if |S| ≤ 1 and to 1 otherwise. It can be represented by a 2-DNF as follows:
f(x1 . . . xn) = maxi,j∈[n] xi ∧ xj . However, it is not submodular, since version 3 of the
definition above is falsified with S = ∅, i = 1 and j = 2.

Our proof of Theorem 4.1.1 builds on techniques developed by Gupta et al. [111] who
show how to decompose a given submodular function into Lipschitz submodular functions.
We first prove our structural result for monotone submodular functions. We use the decom-
position from [111] to cover the domain of such a function by regions where the function is
constant and then capture each region by a monotone term of width at most k. Then we

45

decompose a general submodular function f into monotone regions, as in [111]. For each
such region, we construct a monotone function which coincides with f on that region, does
not exceed f everywhere else, and can be represented as a narrow pseudo-Boolean k-DNF
by invoking our structural result for monotone submodular functions. This construction
uses a monotone extension of submodular functions defined by Lovasz [146].

Learning. Our main result is a PAC-learning algorithm with membership queries
under the uniform distribution for pseudo-Boolean k-DNF, which by Theorem 4.1.1 also
applies to submodular functions f : 2[n] → {0, . . . , k}. We use a (standard) variant of the
PAC-learning definition given by Valiant [193].

Definition 4.1.3 (PAC and agnostic learning under uniform distribution). Let Un be the
uniform distribution on {0, 1}n. A class of functions C is PAC-learnable under the uniform
distribution if there exists a randomized algorithm A, called a PAC-learner, which for every
function f ∈ C and every ε, δ > 0, with probability at least 1− δ over the randomness of A,
outputs a hypothesis h, such that

Pr
x∼Un

[h(x) 6= f(x)] ≤ ε. (4.1)

A learning algorithm A is proper if it always outputs a hypothesis h from the class C. A
learning algorithm is agnostic if it works even if the input function f is arbitrary (not
necessarily from C), with ε replaced by opt+ ε in (4.1), where opt is the smallest achievable
error for a hypothesis in C.

Our algorithm accesses its input f via membership queries, i.e., by requesting f(x) on some
x in f ’s domain.

Theorem 4.1.2. The class of pseudo-Boolean k-DNF formulas on n variables with con-
stants in the range {0, . . . , r} is PAC-learnable with membership queries under the uniform
distribution with running time polynomial in n, kO(k log r/ε) and log(1/δ), even in the ag-
nostic setting.

Our (non-agnostic) learning algorithm is a generalization of Mansour’s PAC-learner
for k-DNF [147]. It consists of running the algorithm of Kushilevitz and Mansour [142]
for learning functions that can be approximated by functions with few non-zero Fourier
coefficients, and thus has the same running time (and the same low-degree polynomial
dependence on n). To be able to use this algorithm, we prove (in Theorem 4.4.1) that
all functions in DNFk,r have this property. The agnostic version of our algorithm follows
from the Fourier concentration result in Theorem 4.4.1 and the work of Gopalan, Kalai
and Klivans [108].

The key ingredient in the proof of Theorem 4.4.1 (on Fourier concentration) is a gen-
eralization of H̊astad’s switching lemma [115, 28] for standard DNF formulas to pseudo-
Boolean DNF. Our generalization (formally stated in Lemma 4.3.1) asserts that a function
f ∈ DNFk,r, restricted on large random subset of variables to random Boolean values, with
large probability can be computed by a decision tree of small depth. (See Section 4.3 for
definitions of random restrictions and decision trees.) Crucially, our bound on the proba-
bility that a random restriction of f has large decision-tree complexity is only a factor of
r larger than the corresponding guarantee for the Boolean case.

Theorems 4.1.2 and 4.1.1 imply the following corollary.

46

Corollary 4.1.3. The class of submodular functions f : {0, 1}n → {0, . . . , k} is PAC-
learnable with membership queries under the uniform distribution in time polynomial in n,
kO(k log k/ε) and log(1/δ), even in the agnostic setting.

Implications for testing submodularity. Our results give property testers for
submodularity of functions f : 2[n] → {0, . . . , k}. A property tester [178, 103] is given
oracle access to an object and a proximity parameter ε ∈ (0, 1). If the object has the
desired property, the tester accepts it with probability at least 2/3; if the object is ε-far
from having the desired property then the tester rejects it with probability at least 2/3.
Specifically, for properties of functions, ε-far means that a given function differs on at least
an ε fraction of the domain points from any function with the property.

As we observe in Proposition A.4.1, a learner for a discrete class (e.g., the class of
functions f : 2[n] → {0, . . . , k}) can be converted to a proper learner with the same query
complexity (but huge overhead in running time). Thus, Corollary 4.1.3 implies a tester for
submodularity of functions f : 2[n] → {0, . . . , k} with query complexity polynomial in n
and kO(k log k/ε), making progress on a question posed by Seshadhri [184].

4.1.1 Related work

Structural results for Boolean submodular functions. For the special case of
Boolean functions, characterizations of submodular and monotone submodular functions
in terms of simple DNF formulas are known. A Boolean function is monotone submodular
if and only if it can be represented as a monotone 1-DNF (see, e.g., Appendix A in [21]). A

Boolean function is submodular if and only if it can be represented as

(∨
i∈S

xi

)∧(∨
j∈T

x̄j

)
for S, T ⊆ [n] [81].

Learning submodular functions. The problem of learning submodular functions
has recently attracted significant interest. The focus on learning-style guarantees, which
allow one to make arbitrary mistakes on some small portion of the domain, is justified by a
negative results of Goemans et al. [100]. It demonstrates that every algorithm that makes
a polynomial in n number of queries to a monotone submodular function (more specifically,
even a matroid rank function) and tries to approximate it on all points in the domain, must
make an Ω(

√
n/ log n) multiplicative error on some point.

Using results on concentration of Lipschitz submodular functions [41, 40, 194] and
on noise-stability of submodular functions [56], significant progress on learning submod-
ular functions was obtained by Balcan and Harvey [21], Gupta et al. [111] and Cher-
aghchi et al. [56]. These works obtain learners that approximate submodular functions,
as opposed to learning them exactly, on an ε fraction of values in the domain. However,
their learning algorithms generally work with weaker access models and with submodular
functions over more general ranges.

Balcan and Harvey’s algorithms learn a function within a given multiplicative error
on all but ε fraction of the probability mass (according to a specified distribution on the
domain). Their first algorithm learns monotone nonnegative submodular functions over
2[n] within a multiplicative factor of

√
n over arbitrary distributions using only random

examples in polynomial time. For the special case of product distributions and monotone

47

nonnegative submodular functions with Lipschitz constant 1, their second algorithm can
learn within a constant factor in polynomial time.

Gupta et al. [111] design an algorithm that learns a submodular function with the range
[0, 1] within a given additive error α on all but ε fraction of the probability mass (according
to a specified product distribution on the domain). Their algorithm requires membership
queries, but works even when these queries are answered with additive error α/4. It takes
nO(log(1/ε)/α2) time.

Cheraghchi et al. [56] also work with additive error. Their learner is agnostic and only
uses statistical queries. It produces a hypothesis which (with probability at least 1−δ) has
the expected additive error opt+α with respect to a product distribution, where opt is the
error of the best concept in the class. Their algorithm runs in time polynomial in nO(1/α)

and log(1/δ).
Observe that the results in [111] and [56] directly imply an nO(log(1/ε)k2) time algo-

rithm for our setting, by rescaling our input function to be in [0, 1] and setting the error
α = 1/(2r). The techniques in [111] also imply nO(k) time complexity for non-agnostically
learning submodular functions in this setting, for fixed ε and δ. To the best of our knowl-
edge, this is the best dependence on n, one can obtain from previous work.

Chakrabarty and Huang [47] gave an exact learning algorithm for coverage functions,
a subclass of monotone submodular functions. Their algorithm makes O(n|U |) queries,
where U is the size of the universe. (Coverage functions are defined as in Footnote 1 with
additional nonnegative weight for each set, and f(S) equal to the weight of ∪j∈SAj instead
of the cardinality.)

In a related line of work, focused on learning subadditive and fractionally subadditive
functions with multiplicative approximation positive results are obtained by Balcan, Con-
stantin, Iwata and Wang [20] and by Badanidiyuru, Dobzinski, Fu, Kleinberg, Nisan and
Roughgarden [18].

Property testing submodular functions. The study of submodularity in the con-
text of property testing was initiated by Parnas, Ron and Rubinfeld [162]. Seshadhri and
Vondrak [185] gave the first sublinear (in the size of the domain) tester for submodular-
ity of set functions. Their tester works for all ranges and has query and time complexity

(1/ε)O(
√
n logn). They also showed a reduction from testing monotonicity to testing sub-

modularity which, together with a lower bound for testing monotonicity given by Blais,
Brody and Matulef [37], implies a lower bound of Ω(n) on the query complexity of testing
submodularity for an arbitrary range and constant ε > 0.

Given the large gap between known upper and lower bounds on the complexity of
testing submodularity, Seshadhri [184] asked for testers for several important subclasses
of submodular functions. The exact learner of Chakrabarty and Huang [47] for coverage
functions, mentioned above, gives a property tester for this class with the same query
complexity.

For the special case of Boolean functions, in the light of the structural results mentioned
above, one can test if a function is monotone submodular with O(1/ε) queries by using the
algorithm from [164] (Section 4.3) for testing monotone monomials.

48

4.2 Structural result

In this section, we prove Theorem 4.1.1 that shows that every submodular function over a
bounded (nonnegative) integral range can be represented by a narrow pseudo-Boolean
DNF. After introducing notation used in the rest of the section (in Definition 4.2.1),
we prove the theorem for the special case when f is monotone submodular (restated in
Lemma 4.2.1) and then present the proof for the general case. In the proof, we give a
recursive algorithm for constructing pseudo-Boolean DNF representation which has the
same structure of recursive calls as the decomposition algorithm of Gupta et al. [111] for
the monotone case. Our contribution is in showing how to use these calls to get a monotone
pseudo-Boolean k-DNF representation of the input function. For the non-monotone case
the structure of recursive calls that we use is different from that of [111].

Lemma 4.2.1 (DNF representation of monotone submodular functions). Every monotone
submodular function f : {0, 1}n → {0, . . . , k} can be represented by a pseudo-Boolean
monotone k-DNF with constants at ∈ {0, . . . , k} for all t ∈ [s].

Proof. Algorithm 4.1 below, with the initial call Monotone-DNF(f, ∅), returns the col-
lection C of terms in a pseudo-boolean DNF representation of f .

Algorithm 4.1 Monotone-DNF(f, S).

input : Oracle access to f : 2[n] → {0, . . . , k}, argument S ∈ 2[n].
output: Collection C of monotone terms of width at most k.

1: C ← (f(S) ·
∧
i∈S

xi)

2: for j ∈ [n] \ S do
3: if f(S ∪ {j}) > f(S) then
4: C ← C∪ Monotone-DNF(f, S ∪ {j}).
5: end if
6: end for
7: return C

First, note that the invariant f(S) ≥ |S| is maintained for every call Monotone-
DNF(f, S). Since the maximum value of f is at most k, there are no calls with |S| > k.
Thus, every term in the collection returned by Monotone-DNF(f, ∅) has width at most
k. By definition, all terms are monotone.

Next, we show that the resulting formula max
Ci∈C

Ci exactly represents f . For a clause

Ci ∈ C and S ∈ 2[n] we use an indicator function Ci(S) → {0, 1} such that Ci(S) = 1
iff Ci is satisfied by the assignment of values to its variables according to S. For all
Y ∈ 2[n] we have f(Y) ≥ max

Ci∈C
Ci(Y) by monotonicity of f . To see that for all Y we have

f(Y) ≤ max
Ci∈C

Ci(Y), fix an arbitrary Y and let T = {Z | Z ⊆ Y, f(Z) = f(Y)} and T be

a set of the smallest size in T . If there was a recursive call Monotone-DNF(f, T) then
the term added by this recursive call would ensure the inequality. If T = ∅ then such a
call was made. Otherwise, consider the set U = {T \ {j} | j ∈ T}. By the choice of T ,
we have f(Z) < f(T) for all Z ∈ U . By submodularity of f (see Definition 4.1.1, part

49

2), this implies that the restriction of f on T ↓ is a strictly increasing function. Thus, the
recursive call Monotone-DNF(f, T) was made and the term added by it guarantees the
inequality.

For a collection S of subsets of [n], let fS : S → R denote the restriction of a function
f to the union of sets in S. We use notation 1S : 2[n] → {0, 1} for the indicator function
defined by 1S(Y) = 1 iff Y ∈

⋃
S∈S

S.

Definition 4.2.1 (S↓ and S↑). For a set S ∈ 2[n], we denote the collection of all subsets
of S by S↓ and the collection of all supersets of S by S↑.

Proof of Theorem 4.1.1. For a general submodular function, the formula can be constructed
using Algorithm 4.2, with the initial call DNF(f, [n]). The algorithm description uses the
function fmon

S↓
, defined next.

Definition 4.2.2 (Function fmon
S↓

). For a set S ⊆ [n], define the function fmon
S↓

: S↓ →
{0, . . . , k} as follows: fmon

S↓
(Y) = minY⊆Z⊆S f(Z).

Note that if f is a submodular function then for every set S ⊆ [n] the function fS↓ is
a submodular function.

Proposition 4.2.2 (Proposition 2.1 in [146]). For every set S ⊆ [n], if fS↓ is a submodular
function, then fmon

S↓
is a monotone submodular function.

Algorithm 4.2 DNF(f, S).

input : Oracle access to f : 2[n] → {0, . . . , k}, argument S ∈ 2[n].
output: Collection C of terms, each containing at most k positive and at most k negated

variables.

1: Cmon ←Monotone-DNF(fmon
S↓

, ∅);
2: C ←

⋃
Ci∈Cmon

(Ci · (
∧

i∈[n]\S
x̄i));

3: for j ∈ S do
if f(S \ {j}) > f(S) then
4: C ← C∪ DNF(f, S \ {j}).

5: return C ;

Let S be the collection of sets S ⊆ [n] for which a recursive call is made when
DNF(f, [n]) is executed. For a set S ∈ S, let B(S) = {j | f(S \ {j}) ≤ f(S)} be the
set consisting of elements such that if we remove them from S, the value of the function
does not increase. Let the monotone region of S be defined by S≤↓ = {Z | (S \ B(S)) ⊆
Z ⊆ S} = S↓∩(S \B(S))↑. By submodularity of f (Definition 4.1.1, part 2) the restriction
fS≤↓ is a monotone nondecreasing function.

Proposition 4.2.3. Fix S ∈ S. Then f(Y) ≥ fmon
S↓

(Y) for all Y ∈ S↓. Moreover,

f(Y) = fmon
S↓

(Y) for all Y ∈ S≤↓.

50

Proof. By the definition of fmon
S↓

, we have fmon
S↓

(Y) = minY⊆Z⊆S f(Z) ≤ f(Y) for all Y ∈
S↓. Since the restriction fS≤↓ is monotone nondecreasing, fmon

S↓
(Y) = minY⊆Z⊆S f(Z) =

f(Y) for all Y ∈ S≤↓.

The following proposition is implicit in [111]. We give a proof for completeness.

Proposition 4.2.4. For all functions f : 2[n] → {0, . . . , k}, the collection of all monotone
regions of sets in S forms a cover of the domain, namely, ∪S∈SS≤↓ = 2[n].

Proof. The proof is by induction on the value f([n]) that the function f takes on the largest
set in its domain. The base case of induction is f([n]) = k. In this case, S consists of a
single set S = [n], and the function f is monotone non-increasing on S↓ = S≤↓. Now
suppose that the statement holds for all f , such that f([n]) ≥ t. If f([n]) = t− 1 then for
every Y ∈ 2[n] there are two cases:

1. There is no Z of size n− 1 such that f(Z) > f([n]) and Y ∈ Z↓ then Y ∈ [n]≤↓ and
thus Y is covered by the monotone region of [n].

2. There exists a set Z of size n − 1 such that f(Z) > f([n]) and Y ∈ Z↓ then there
exists a set S ∈ S, such that Y ∈ S↓ by applying inductive hypothesis to fZ↓ , so Y
is covered by S↓.

Lemma 4.2.1 and Proposition 4.2.2 give that the collection of terms Cmon, constructed in
Line 1 of Algorithm 4.2, corresponds to a monotone pseudo-Boolean k-DNF representation
for fmon

S↓
. By the same argument as in the proof of Lemma 4.2.1, |S| ≥ n− k for all S ∈ S,

since the maximum of f is at most k. Therefore, Line 2 of Algorithm 4.2 adds at most
n− |S| negated variables to every term of Cmon, resulting in terms with at most k positive
and at most k negated variables.

It remains to prove that the constructed formula represents f . For a set S, let CS
denote the collection of terms obtained on Line 2 of Algorithm 4.2. By construction,
CS(Y) = fmon

S↓
·1S↓(Y) for all Y ∈ 2[n]. For every Y ∈ 2[n], the first part of Proposition 4.2.3

implies that CS(Y) = fmon
S↓

(Y) · 1S↓(Y) ≤ f(Y), yielding maxS∈S CS(Y) ≤ f(Y). On

the other hand, by Proposition 4.2.4, for every Y ∈ 2[n] there exists a set S ∈ S, such
that Y ∈ S≤↓. For such S, the second part of Proposition 4.2.3 implies that CS(Y) =
fmon
S↓

(Y) · 1S↓(Y) = f(Y). Therefore, f is equivalent to maxS∈S CS .

4.3 Generalized switching lemma for pseudo-Boolean DNFs

The following definitions are stated for completeness and can be found in [158, 147].

Definition 4.3.1 (Decision tree). A decision tree T is a representation of a function
f : {0, 1}n → R. It consists of a rooted binary tree in which the internal nodes are labeled
by coordinates i ∈ [n], the outgoing edges of each internal node are labeled 0 and 1, and the
leaves are labeled by real numbers. We insist that no coordinate i ∈ [n] appears more than
once on any root-to-leaf path.

51

Each input x ∈ {0, 1}n corresponds to a computation path in the tree T from the root
to a leaf. When the computation path reaches an internal node labeled by a coordinate
i ∈ [n], we say that T queries xi. The computation path then follows the outgoing edge
labeled by xi. The output of T (and hence f) on input x is the label of the leaf reached by
the computation path. We identify a tree with the function it computes.

The depth s of a decision tree T is the maximum length of any root-to-leaf path in T .
For a function f , DT-depth(f) is the minimum depth of a decision tree computing f .

Definition 4.3.2 (Random restriction). A restriction ρ is a mapping of the input variables
to {0, 1, ?}. The function obtained from f(x1, . . . , xn) by applying a restriction ρ is denoted
f |ρ. The inputs of f |ρ are those xi for which ρ(xi) = ? while all other variables are set
according to ρ.

A variable xi is live with respect to a restriction ρ if ρ(xi) = ?. The set of live variables
with respect to ρ is denoted live(ρ). A random restriction ρ with parameter p ∈ (0, 1) is
obtained by setting each xi, independently, to 0, 1 or ?, so that Pr[ρ(xi) = ?] = p and
Pr[ρ(xi) = 1] = Pr[ρ(xi) = 0] = (1− p)/2.

We will prove the following generalization of the switching lemma [115, 28].

Lemma 4.3.1 (Switching lemma for pseudo-Boolean formulas). Let f ∈ DNFk,r and ρ be
a random restriction with parameter p (i.e., Pr[ρ(xi) = ?] = p). Then

Pr[DT-depth(f |ρ) ≥ s] < r · (7pk)s.

Proof. We use the exposition of Razborov’s proof of the switching lemma for Boolean
functions, described in [28], as the basis of our proof and highlight the modifications we
made for non-Boolean functions.

Define R`n to be the set of all restrictions ρ on a domain of n variables that have exactly
` unset variables. Fix some function f ∈ DNFk,r, represented by a formula F , and assume
that there is a total order on the terms of F as well as on the indices of the variables. A
restriction ρ is applied to F in order, so that Fρ is a pseudo-Boolean DNF formula whose
terms consist of those terms in F that are not falsified by ρ, each shortened by removing
any variables that are satisfied by ρ, and taken in the order of occurrences of the original
terms on which they are based.

Definition 4.3.3 (Canonical labeled decision tree). The canonical labeled decision tree
for F , denoted T (F), is defined inductively as follows:

1. If F is a constant function then T (F) consists of a single leaf node labeled by the
appropriate constant.

2. If the first term C1 of F is not empty then let F ′ be the remainder of F so that
F = max(C1, F

′). Let K be the set of variables appearing in C1. The tree T (F)
starts with a complete binary tree for K, which queries the variables in K in the
order of their indices. Each leaf vσ in the tree is associated with a restriction σ which
sets the variables of K according to the path from the root to vσ. For each σ, replace
the leaf node vσ by the subtree T (Fσ). For the unique assignment σ satisfying C1,

52

also label the corresponding node by Lσ equal to the maximum of the labels assigned
to the predecessors of this node in the tree and the integer constant associated with
the term C1.

Note that the above definition is more general than a canonical decision tree for Boolean
DNF formulas because it uses labels for some of the internal nodes in the tree to indicate
that the paths from the parent node to these internal nodes restrict the value of the formula
to be at least the value of the label. For the Boolean DNFs such labels are not needed and
thus if we apply to them the definition above we get a standard definition of a canonical
decision tree, as in [28]. Formally, for pseudo-Boolean DNF formulas the label Lσ of the
internal node σ represents the fact that the value of the formula on the leaves in the subtree
of σ is at least Lσ.

Using the terminology introduced above, we can state the switching lemma as follows.

Lemma 4.3.2. Let F be a pseudo-Boolean formula, representing a function f ∈ DNFk,r,
s ≥ 0, p ≤ 1/7 and ` = pn. Then

|{ρ ∈ R`n : |T (F |ρ)| ≥ s}|
|R`n|

< r(7pk)s.

Proof. Let stars(k, s) be the set of all sequences β = (β1, . . . , βt) such that for each j ∈ [t],
the coordinate βj ∈ {?,−}k \ {−}k and such that the total number of ?’s in all the βj is s.

Let S ⊆ R`n be the set of restrictions ρ such that |T (F |ρ)| ≥ s. We will define an
injective mapping from S to the cartesian product R`−sn × stars(k, s)× [2s]× [r].

Let F = maxiCi. In the exposition below we use the same notation π to denote both a
restriction and a path in the canonical labeled decision tree, which sets variables according
to π. Suppose that ρ ∈ S and π is the restriction associated with the lexicographically first
path in T (F |ρ) of length at least s. Trim the last variables in π along the path π from the
root so that |π| = s. Let c be the maximum label of the node on π (or zero, if none of the
nodes on pπ are labeled). Partition the set of terms of F into two sets F ′ and F ′′, where
F ′ contains all terms with constants > c and F ′′ contains all terms with constants ≤ c (for
Boolean formulas, c = 0 and F = F ′). We will use the subformula F ′ and π to determine
the image of ρ. The image of ρ is defined by following the path π in the canonical labeled
decision tree for Fρ and using the structure of the tree.

Let Cν1 be the first term of F ′ that is not set to 0 by ρ. Since |π| > 0, such a term
must exist and will not be an empty term (otherwise, the value of F |ρ is fixed to be > c).
Let K be the set of variables in Cν1 |ρ and let σ1 be the unique restriction of the variables
in K that satisfies Cν1 |ρ. Let π1 be the part of π that sets the variables in K. We have
two cases based on whether π1 = π.

1. If π1 6= π then by the construction of π, restriction π1 sets all the variables in K.
Note that the restriction ρσ1 satisfies the term Cν1 but since π1 6= π the restriction
ρπ1 does not satisfy term Cν1 .

2. If π1 = π then it is possible that π does not set all of the variables in K. In this case
we shorten σ1 to the variables in K that appear in π1.

53

Define β1 ∈ {?,−}k based on the fixed ordering of the variables in the term Cν1 by
letting the jth component of β1 be ? if and only if the jth variable in Cν1 is set by σ1. Since
Cν1 |ρ is not the empty term, β1 has at least one ?. From Cν1 and β1 we can reconstruct
σ1.

Now by the definition of T (F |ρ), the restriction π \ π1 labels a path in the canonical
labeled decision tree T (F |ρπ1). If π1 6= π, we repeat the argument above, replacing π and ρ
with π \ π1 and ρπ1, respectively, and find a term Cν2 which is the first term of F ′ not set
to 0 by ρπ1. Based on this, we generate π2, σ2 and β2, as before. We repeat this process
until the round t in which π1π2 . . . πt = π.

Let σ = σ1σ2 . . . σt. We define ξ ∈ {0, 1}s to be a vector that indicates for each variable
set by π whether it is set to the same value as σ sets it. We define the image of ρ in the
injective mapping as a quadruple, 〈ρσ1 . . . σt, (β1, . . . , βt), ξ, c〉. Because ρσ ∈ R`−sn and
(β1, . . . , βt) ∈ stars(k, s) the mapping is as described above.

It remains to show that the defined mapping is indeed injective. We will show how
to invert it by reconstructing ρ from its image. We use c to construct F ′ from F .
The reconstruction procedure is iterative. In one stage of the reconstruction we recover
π1 . . . πi1 , σ1 . . . σi−1 and construct ρπ1 . . . πi−1σi . . . σt. Recall that for i < t the restriction
ρπ1 . . . πi−1σi satisfies the term Cνi , but does not satisfy terms Cj for all j < νi. This
holds if we extend the restriction by appending σi+1 . . . σt. Thus, we can recover νi as
the index of the first term of F ′ that is not falsified by ρπ1 . . . πi−1σi . . . σt and the consant
corresponding to this term is at least c.

Now, based on Cν1 and βi, we can determine σi. Since we know σ1 . . . σi, using the vector
ξ we can determine πi. We can now change ρπ1 . . . πi−1σi . . . σt to ρπ1 . . . πi−1πiσi+1 . . . σt
using the knowledge of πi and σi. Finally, given all the values of the πi we reconstruct ρ
by removing the variables from π1 . . . πt from the restriction.

The computation in the following claim completes the proof of the switching lemma.

Claim 4.3.3 ([28]). For p < 1/7 and p = `/n, the following holds:

|R`−sn | · |stars(k, s)| · 2s

|R`n|
< (7pk)s.

Proof. We have |R`n| =
(
n
`

)
2n−`, so:

|R`−sn |
|R`n|

≤ (2`)s

(n− `)s
.

We use the following bound on |stars(k, s)|.

Proposition 4.3.4 (Lemma 2 in [28]). |stars(k, s)| < (k/ ln 2)s.

Using Proposition 4.3.4 we get:

|S|
|R`n|

≤ |R
`−s
n |
|R`n|

· |stars(k, s)| · 2s

54

≤
(

4`k

(n− `) ln 2

)s
=

(
4pk

(1− p) ln 2

)s
.

For p < 1/7, the last expression is at most (7pk)s, as claimed.

4.4 Learning pseudo-Boolean DNFs

In this section, we present our learning results for pseudo-Boolean k-DNF and prove The-
orem 4.1.2.

Let Rr denote the set of multiples of 2/(r − 1) in the interval [−1, 1], namely Rr =
{−1,−1 + 2/(r − 1), ..., 1 − 2/(r − 1), 1}. First, we apply a transformation of the range
by mapping {0, . . . , r} to Rr. Formally, in this section instead of functions f : {0, 1}n →
{0, . . . , r} we consider functions f ′ : {−1, 1}d → [−1, 1], such that f ′(x′1, . . . , x

′
n) = 2/(r −

1) · f(x1, . . . , xn) − 1, where x′i = 1 − 2xi. The mapping is one to one and thus a
learning algorithm for the class of functions that can be represented by pseudo-Boolean
DNF formulas of width k with constants in the range Rr implies Theorem 4.1.2. Thus, we
will refer to this transformed class also as DNFk,r.

For a set S ⊆ [n], let χS be the standard Fourier basis vector and let f̂(S) denote the
corresponding Fourier coefficient of a function f .

Definition 4.4.1. A function g ε-approximates a function f if E[(f −g)2] ≤ ε. A function
is M -sparse if it has at most M non-zero Fourier coefficients. The Fourier degree of a
function, denoted deg(f), is the size of the largest set, such that f̂(S) 6= 0.

The following guarantee about approximation of functions in DNFk,r by sparse func-
tions is the key lemma in the proof of Theorem 4.1.2.

Theorem 4.4.1. Every function f ∈ DNFk,r can be ε-approximated by an M -sparse func-
tion, where M = kO(k log(r/ε)).

Proof of Theorem 4.4.1. We generalize the proof by Mansour [147], which relies on multiple
applications of the switching lemma. Our generalization of the switching lemma allows us
to obtain the following parameters of the key statements in the proof, which bound the
L2-norm of the Fourier coefficients of large sets in Lemma 4.4.2 and the L1-norm of the
Fourier coefficients of small sets in Lemma 4.4.4.

Lemma 4.4.2. For every function f ∈ DNFk,r,∑
S : |S|>28k log(2r/ε)

f̂2(S) ≤ ε/2.

Proof. The proof relies on the following result.

55

Proposition 4.4.3 ([147, 158]). Let f : {0, 1}n → {−1, 1} and fρ be a random restriction
with parameter p. Then for every t ∈ [n],∑

|S|>t

f̂2(S) ≤ Pr
ρ

[deg(f |ρ) ≥ tp/2].

Because deg(f |ρ) ≤ DT-depth(f |ρ) and thus Pr[deg(f |ρ) ≥ tp/2] ≤ Pr[DT-depth(f |ρ) ≥
tp/2]. By using Lemma 4.3.1 and setting p = 1/14k and t = 28k log(2r/ε), we complete
the proof.

The main part of the proof of Theorem 4.4.1 is the following lemma, which bounds the
L1-norm of Fourier coefficients, corresponding to sets of bounded size.

Lemma 4.4.4. For every function f ∈ DNFk,r and τ ∈ [n],∑
S : |S|≤τ

|f̂(S)| ≤ 4r(28k)τ = rkO(τ).

Proof. Let L1,t(f) =
∑
|S|=t |f̂(S)| and L1(f) =

∑n
t=0 L1,t(f) =

∑
S |f̂(S)|.

We use the following bound on L1(f) for decision trees.

Proposition 4.4.5 ([142, 158]). Consider a function f : {−1, 1}n → [−1, 1], such that
DT-depth(f) ≤ s. Then L1(f) ≤ 2s.

We show the following generalization of Lemma 5.2 in [147] for DNFk,r.

Proposition 4.4.6. Let f ∈ DNFk,r and let ρ be a random restriction of f with parameter
p ≤ 1/28k. Then Eρ [L1(f |ρ)] ≤ 2r.

Proof. By the definition of expectation,

Eρ[L1(f)]

=
n∑
s=0

Pr[DT-depthf |ρ = s]

·Eρ [L1(f |ρ) | DT-depth(f |ρ) = s] .

By Proposition 4.4.5, for all ρ, such that DT-depth(f |ρ) = s, it holds that L1(f) ≤ 2s. By
Lemma 4.3.1, Pr[DT-depth(f |ρ) ≥ s] ≤ r(7pk)s. Therefore, Eρ[L1(f)] ≤

∑n
s=0 r(7pk)s2s =

r ·
∑n

s=0(14pk)s. For p ≤ 1/28k the lemma follows.

We use Lemma 5.3 from [147] to bound L1,t(f) by the value of Eρ [L1,t(f |ρ)]. Be-
cause in [147] the lemma is stated for Boolean functions, we give the proof for real-valued
functions for completeness.

Proposition 4.4.7 ([147]). For f : {0, 1}n → [−1, 1] and a random restriction ρ with
parameter p,

L1,t(f) ≤
(

1

p

)t
Eρ [L1,t(f)] .

56

Proof. Consider a random variable L supported on 2[n], such that for each xi independently,
Pr[xi ∈ L] = p. The random variable L is the set of live variables in a random restriction
with parameter p. We can rewrite L1,t as:

L1,t(f) =
∑
|S|=t

|f̂(S)|

=

(
1

p

)t
EL

 ∑
S⊆L,|S|=t

∣∣∣f̂(S)
∣∣∣
 . (4.2)

For an arbitrary choice of L and a subset S ⊆ L we have:

|f̂(S)| = |Ex1,...,xn [f(x1, . . . , xn)χS(x1, . . . , xn)]|
≤ Ex/∈L|Ex∈L [f(x1, . . . , xn)χS(x1, . . . , xn)] |

= Eρ
[
|f̂ |ρ(S)| | live(ρ) = L

]
,

where the last line follows from the observation that averaging over xi /∈ L is the same as
taking the expectation of a random restriction whose set of live variables is restricted to
be L. Because the absolute value of every coefficient S is expected to increase, this implies
that: ∑

S⊆L

∣∣∣f̂(S)
∣∣∣

≤Eρ

 ∑
S⊆L,|S|=t

|f̂ |ρ(S)| | live(ρ) = L |

=Eρ [L1,t(fρ)|live(ρ) = L] .

Using this together with (4.2), we conclude that

L1,t(f)

=

(
1

p

)t
EL

 ∑
S⊆L,|S|=t

∣∣∣f̂(S)
∣∣∣

≤
(

1

p

)t
Eρ [L1,t(f |ρ)] .

Note that
∑

S : |S|≤τ |f̂(S)| =
∑τ

t=0 L1,t(f). By setting p = 1/28k and using Proposi-
tions 4.4.6 and 4.4.7, we get:

L1,t(f) ≤ 2r(28k)t.

Thus,
∑

S : |S|≤τ |f̂(S)| ≤ 4r(28k)τ = rkO(τ), completing the proof of Lemma 4.4.4.

57

Let τ = 28k log(2r/ε) and L =
∑
|S|≤τ |f̂(S)|. Let G = {S : |f̂(S)| ≥ ε/2L and |S| ≤ τ}

and g(x) =
∑

S∈G f̂(S)χS(x). We will show that g is M -sparse and that it ε-approximates
f .

By an averaging argument, |G| ≤ 2L2/ε. Thus, function g is M -sparse, where M ≤
2L2/ε. By Lemma 4.4.4, L = rkO(τ) = kO(k log(r/ε)). Thus, M = kO(k log(r/ε)), as claimed in
the theorem statement.

By the definition of g and by Parseval’s identity,

E[(f − g)2]

=
∑
S/∈G

f̂2(S)

=
∑

S : |S|>τ

f̂2(S) +
∑

S : |S|≤τ,|f̂(S)|≤ε/2L

f̂2(S).

By Lemma 4.4.2, the first summation is at most ε/2. For the second summation, we get:∑
S : |S|≤τ,|f̂(S)|≤ε/2L

f̂2(S)

≤

(
max

S : |f̂(S)|≤ε/2L
|f̂(S)|

)∑
|S|≤τ

|f̂(S)|

≤ ε

2L
· L = ε/2.

This implies that E[(f − g)2] ≤ ε and thus g ε-approximates f .

To get a learning algorithm and prove Theorem 4.1.2 we can use the sparse approxi-
mation guarantee of Theorem 4.4.1 together with Kushilevitz-Mansour learning algorithm
(for PAC-learning) or the learning algorithm of Gopalan, Kalai and Klivans (for agnostic
learning).

Proof of Theorem 4.1.2. We will use the learning algorithm of Kushilevitz and Mansour [107,
142], which gives the following guarantee:

Theorem 4.4.8 ([142]). Let f be a function that can be ε-approximated by an M -sparse
function. There exists a randomized algorithm, whose running time is polynomial in M ,
n, 1/ε and log(1/δ), that given oracle access to f and δ > 0, with probability at least 1− δ
outputs a function h that O(ε)-approximates f .

Setting the approximation parameter in Theorem 4.4.8 to be ε′ = ε/Cr2 for large
enough constant C and taking M = kO(k log(r/ε′)) we get an algorithm which returns a
function h that (ε/r2)-approximates f . The running time of such algorithm is polynomial
in n, kO(k log(r/ε)) and log(1/δ). By Proposition 4.4.9, if we round the values of h in
every point to the nearest multiple of 2/(r − 1), we will get a function h′, such that
Prx∈Un [h′(x) 6= f(x)] ≤ ε, completing the proof.

58

Proposition 4.4.9. Suppose a function h : 2[n] → [−1, 1] is an ε-approximation for
f : 2[n] → Rr. Let g be the function defined by g(x) = argminy∈Rr |h(x) − y|, breaking
ties arbitrarily. Then Prx∈Un [g(x) 6= f(x)] ≤ ε · (r − 1)2.

Proof of Proposition 4.4.9. Observe that |f(x)−h(x)|2 ≥ 1/(r−1)2 whenever f(x) 6= g(x).
This implies

Pr
x∈Un

[g(x) 6= f(x)] ≤

Pr
x∈Un

[(r − 1)2 · |f(x)− h(x)|2 ≥ 1] ≤

Ex∈Un [(r − 1)2 · |f(x)− h(x)|2] ≤
(r − 1)2 · Ex∈Un [|f(x)− h(x)|2] ≤ ε(r − 1)2.

The last inequality follows from the definition of ε-approximation.

Extension of our learning algorithm to the agnostic setting follows from the result of
Gopalan, Kalai and Klivans.

Theorem 4.4.10 ([108]). If every function f in a class C has an M -sparse ε-approximation,
then there is an agnostic learning algorithm for C with running time poly(n,M, 1/ε).

This completes the proof of Theorem 4.1.2.

Chapter 5
Transitive-Closure Spanners and
Testing Functions on Hypergrids

5.1 Introduction

Graph spanners were introduced in the context of distributed computing by Awerbuch [16]
and Peleg and Schäffer [165], and since then have found numerous applications. Our focus
is on transitive-closure spanners, introduced explicitly in [36], but studied prior to that in
many different contexts [51, 50, 198, 10, 53, 187, 39, 188, 189, 75, 117, 6].

Given a directed graph G = (V,E) and an integer k ≥ 1, a k-transitive-closure
spanner (k-TC-spanner) of G is a directed graph H = (V,EH) such that: (1) EH is a
subset of the edges in the transitive closure ofG; (2) for all vertices u, v ∈ V , if dG(u, v) <∞
then dH(u, v) ≤ k and if dG(u, v) = ∞ then dH(u, v) = ∞, where dG(u, v) denotes the
distance from u to v in G. That is, a k-TC-spanner is a graph with a small diameter that
preserves the connectivity of the original graph. The edges of the transitive closure of G,
added to G to obtain a TC-spanner, are called shortcuts and the parameter k is called the
stretch.

TC-spanners have numerous applications, and there has been a lot of work on finding
sparse TC-spanners for specific graph families. See [170] for a survey. In some applications
of TC-spanners, in particular, to access control hierarchies [6, 66], the shortcuts can use
Steiner vertices, that is, vertices not in the original graph G. The resulting spanner is
called a Steiner TC-spanner.

Definition 5.1.1 (Steiner TC-spanner). Given a directed graph G = (V,E) and an integer
k ≥ 1, a Steiner k-transitive-closure spanner (Steiner k-TC-spanner) of G is a
directed graph H = (VH , EH) such that: (1) V ⊆ VH ; (2) for all vertices u, v ∈ V , if
dG(u, v) < ∞ then dH(u, v) ≤ k and if dG(u, v) = ∞ then dH(u, v) = ∞. Vertices in
VH\V are called Steiner vertices.

For some graphs, Steiner TC-spanners can be significantly sparser than ordinary TC-
spanners. For example, consider a complete bipartite graph Kn

2
,n
2

with n/2 vertices in each
part and all edges directed from the first part to the second. Every ordinary 2-TC-spanner

60

of this graph has Ω(n2) edges. However, Kn
2
,n
2

has a Steiner 2-TC-spanner with n edges: it
is enough to add one Steiner vertex v, edges to v from all nodes in the left part, and edges
from v to all nodes in the right part. Thus, for Kn

2
,n
2

there is a factor of Θ(n) gap between
the size of the sparsest Steiner 2-TC-spanner and the size of an ordinary 2-TC-spanner.

v

We focus on Steiner TC-spanners of directed acyclic graphs (DAGs) or, equivalently,
partially ordered sets (posets). They represent the most interesting case in applications of
TC-spanners. In addition, there is a reduction from constructing TC-spanners of graphs
with cycles to constructing TC-spanners of DAGs, with a small loss in stretch ([170],
Lemma 3.2), which also applies to Steiner TC-spanners.

The goal of this work is to understand the minimum number of edges needed to form
a Steiner k-TC-spanner of a given graph G as a function of n, the number of nodes in G.
More specifically, motivated by applications to access control hierarchies [6, 66] and prop-
erty reconstruction [34, 128], described in Section 5.1.2, we study the relationship between
the dimension of a poset and the size of its sparsest Steiner TC-spanner. The dimension of a
poset G is the smallest d such that G can be embedded into a d-dimensional directed hyper-
grid via an order-preserving embedding. (See Definition 5.2.1). Atallah et al. [6], followed
by De Santis et al. [66], use Steiner TC-spanners in key management schemes for access
control hierarchies. They argue that many access control hierarchies are low-dimensional
posets that come equipped with an embedding demonstrating low dimensionality. For this
reason, we focus on the setting where the dimension d is small relative to the number of
nodes n.

We also study the size of sparsest (Steiner) 2-TC-spanners of specific posets of di-
mension d, namely, d-dimensional directed hypergrids. Our lower bound on this quantity
improves the lower bound of [34] and nearly matches their upper bound. It implies that our
construction of Steiner 2-TC-spanners of d-dimensional posets is optimal up to a constant
factor for any constant number of dimensions. It also has direct implications for property
reconstruction. The focus on stretch k = 2 is motivated by this application.

Several classes of posets, in addition to low-dimensional hypergrids, are known to have
small dimension. For example, if a planar poset, that is, a poset with a planar Hasse
diagram, has both a minimum and a maximum element, it has dimension at most 2. A
planar poset with either a minimum or a maximum element has dimension at most 3 [192].
(In general, however, a planar poset can have an arbitrary dimension [133]). One can also
bound the dimension in terms of cardinality of the poset: every poset of cardinality n ≥ 4
has dimension at most n/2 [118]. Also, if every element in an n-element poset has at most
u points above it, then its dimension is at most 2(u+ 1) log n+ 1 [97]. Thus, posets with
low dimension occur quite naturally in a variety of settings.

61

5.1.1 Results

5.1.1.1 Steiner 2-TC-spanners of Directed d-dimensional Grids.

The directed hypergrid, denoted Hm,d, has vertex set1 [m]d and edge set {(x, y) : ∃ unique
i ∈ [d] such that yi − xi = 1 and if j 6= i, yj = xj}. We observe (in Corollary 5.2.4) that
for the grid Hm,d, Steiner vertices do not help to create sparser k-TC-spanners. In [34], it
was shown that for m ≥ 3, sparsest (ordinary) 2-TC-spanners of Hm,d have size at most

md logdm and at least Ω
(md logdm

(2d log logm)d−1

)
. They also give tight upper and lower bounds for

the case of constant m and large d. Our first result is an improvement on the lower bound
for the hypergrid for the case when m is significantly larger than d, i.e., the setting in the
above applications.

Theorem 5.1.1. Every (Steiner) 2-TC-spanner of Hm,d has Ω
(md(lnm− 1)d

(4π)d

)
edges.

The proof of Theorem 5.1.1 constructs a dual solution to a linear programming relax-
ation of the 2-TC-spanner problem. We consider a linear program (LP) for the sparsest
2-TC-spanner of Hm,d. Our program is a special case of a more general LP for the spars-
est directed k-spanner of an arbitrary graph G, used in [36] to obtain an approximation
algorithm for that problem. We show that for our special case the integrality gap of this
LP is small and, in particular, does not depend on n.

Specifically, we find a solution to the dual LP by selecting initial values that have a
combinatorial interpretation: they are expressed in terms of the volume of d-dimensional
boxes contained in Hm,d. For example, the dual variable corresponding to the constraint
that enforces the existence of a length-2 path from u to v in the 2-TC-spanner is initially
assigned a value inversely proportional to the number of nodes on the paths from u to v.
The final sum of the constraints is bounded by an integral which, in turn, is bounded by
an expression depending only on the dimension d.

We note that the best lower bound known previously [34] was proved by a long and
sophisticated combinatorial argument that carefully balanced the number of edges that stay
within different parts of the hypergrid and the number of edges that cross from one part
to another. The recursion in the combinatorial argument is an inherent limitation of [34],
resulting in suboptimal bounds even for constant d. In contrast, our linear programming
argument can be thought of as assigning types to edges based on the volume of the boxes
they define, and automatically balancing the number of edges of different types by selecting
the correct coefficients for the constraints corresponding to those edges. It achieves an
optimal bound for any constant number of dimensions.

Steiner TC-spanners of General d-dimensional Posets. We continue the study
of the number of edges in a sparsest Steiner k-TC-spanner of a poset as a function of its
dimension, following [6, 66]. We note that the only poset of dimension 1 is the directed
line Hn,1. TC-spanners of directed lines were discovered under many different guises.
They were studied implicitly in [198, 51, 50, 10, 53, 75, 13] and explicitly in [39, 189].
Chandra, Fortune and Lipton [51, 50] implicitly showed that, for constant k, the size of

1For a positive integer m, we denote {1, . . . ,m} by [m].

62

Stretch k Prior bounds on Sk(G)

2d− 1 O(n2) [6]

2d− 2 + t for t ≥ 2 O(n(logd−1 n)λt(n)) [6]

2d+O(log∗ n) O(n logd−1 n) [6]

3
O(n logd−1 n log log n)

for fixed d [66]

Stretch k Our bounds on Sk(G)

Ω

(
n
(

logn
cd

)d)
2 O(n logd n)

for a fixed c > 0

≥ 3
Ω(n logd(d−1)/ke n)

for fixed d

Table 5.1: The size of the sparsest Steiner k-TC-spanner for d-dimensional posets on n
vertices for d ≥ 2

the sparsest k-TC-spanner of the directed line is Θ(n · λk(n)), where λk(n) is the kth-row
inverse Ackermann function2 .

Table 5.1 compares old and new results for d ≥ 2. Sk(G) denotes the number of
edges in the sparsest Steiner k-TC-spanner of G. The upper bounds hold for all posets
of dimension d. The lower bounds mean that there is an infinite family of d-dimensional
posets for which all Steiner k-TC-spanners have the specified number of edges.

Atallah et al. constructed Steiner k-TC-spanners with k proportional to d.
De Santis et al. improved their construction for constant d. They achieved
O(3d−tnt logd−1 n log logn) edges for odd stretch k = 2t + 1, where t ∈ [d]. In particu-
lar, setting t = 1 gives k = 3 and O(n logd−1 n log log n) edges.

We present the first construction of Steiner 2-TC-spanners for d-dimensional posets. In
our construction, the spanners have O(n logd n) edges, and the length-2 paths can be found
in O(d) time. This result is stated in Theorem 5.2.2 (in Section 5.2). Our construction,
like all previous constructions, takes as part of the input an explicit embedding of the
poset into a d-dimensional grid. (Finding such an embedding is NP-hard [196]. Also, as
mentioned previously, in the application to access control hierarchies, such an embedding
is usually given.) The Steiner vertices used in our construction for d-dimensional posets
are necessary to obtain sparse TC-spanners, as manifested by the example presented after
the proof of Theorem 5.2.2.

Theorem 5.1.1 implies that there is an absolute constant c > 0 for which our upper
bound for k = 2 is tight within an O((cd)d) factor, showing that no drastic improvement
in the upper bound is possible. To obtain a bound in terms of the number n of vertices
and dimension d, substitute n for md and (lnn)/d for lnm in the theorem statement. This
works for all n larger than some constant to the power d and gives the following corollary.

Corollary 5.1.2. There is an absolute constant c > 0 for which for all d ≥ 2 and n larger
than some constant to the power d, there exists a d-dimensional poset G on n vertices such

that every Steiner 2-TC-spanner of G has Ω
(
n
(logn
cd

)d)
edges.

In addition, we prove a lower bound for all constant k > 2 and constant dimension
d, which qualitatively matches known upper bounds. It shows that, in particular, ev-

2The Ackermann function [2] is defined by: A(1, j) = 2j , A(i + 1, 0) = A(i, 1), A(i + 1, j + 1) =

A(i, 22A(i+1,j)

). The inverse Ackermann function is α(n) = min{i : A(i, 1) ≥ n} and the ith-row inverse is
λi(n) = min{j : A(i, j) ≥ n}. Specifically, λ2(n) = Θ(logn), λ3(n) = Θ(log log n) and λ4(n) = Θ(log∗ n).

63

ery Steiner 3-TC-spanner has size Ω(n log n), and even with significantly larger constant
stretch, every Steiner TC-spanner has size n logΩ(d) n.

Theorem 5.1.3. For all constant d ≥ 2 and sufficiently large n, there exists a d-dimensional
poset G on n vertices such that for all k ≥ 3, every Steiner k-TC-spanner of G has
Ω(n logd(d−1)/ke n) edges.

This theorem (see Section 5.4) captures the dependence on d and greatly improves upon
the previous Ω(n log log n) bound, which follows trivially from known lower bounds for
3-TC-spanners of a directed line.

The lower bound on the size of a Steiner k-TC-spanner for k ≥ 3 is proved by the
probabilistic method. We note that using the hypergrid as an example of a poset with large
Steiner k-TC-spanners for k > 2 would yield a much weaker lower bound because Hm,d
has a 3-TC-spanner of size O((m log logm)d) and, more generally, a k-TC-spanner of size
O((m ·λk(m))d), where λk(m) is the kth-row inverse Ackermann function [34]. Instead, we
construct an n-element poset embedded in Hn,d using the following randomized procedure:
all poset elements differ on coordinates in dimension 1, and for each element, the remaining
d− 1 coordinates are chosen uniformly at random from [n]. We consider a set of partitions
of the underlying hypergrid into d-dimensional boxes, and carefully count the expected
number of edges in a Steiner k-TC-spanner that cross box boundaries for each partition.
We show that each edge is counted only a small number of times, proving that the expected
number of edges in a Steiner k-TC-spanner is large. We conclude that some poset attains
the expected number of edges.

Organization. We explain applications of Steiner TC-spanners in Section 5.1.2.
Section 5.2 gives basic definitions and observations. In particular, our construction of sparse
Steiner 2-TC-spanners for d-dimensional posets (the proof of Theorem 5.2.2) is presented
there. Our lower bounds constitute the main technical contribution of this paper. The
lower bound for the hypergrid for k = 2 (Theorem 5.1.1) is proved in Section 5.3. The
lower bound for k > 2 (Theorem 5.1.3) is presented in Section 5.4.

5.1.2 Applications

Numerous applications of TC-spanners are surveyed in [170]. We focus on two of them:
property reconstruction, described in [34, 128], and key management for access control
hierarchies, described in [6, 36, 66].

Property Reconstruction. Property-preserving data reconstruction was introduced
by Ailon, Chazelle, Comandur and Liu [5]. In this model, a reconstruction algorithm, called
a filter, sits between a client and a dataset. A dataset is viewed as a function f : D → R.
A client accesses the dataset using queries of the form x ∈ D to the filter. The filter
looks up a small number of values in the dataset and outputs g(x), where g must satisfy a
pre-specified structural property (e.g., be monotone or have a low Lipschitz constant) and
differ from f as little as possible. Extending this notion, Saks and Seshadhri [181] defined
local reconstruction. A filter is local if the output function g does not depend on the order
of the queries. Local filters can be used for distributed computations [181] and in private
data analysis [128]. A filter is nonadaptive if its lookups do not depend on the answers to
previous lookups.

64

Our results on TC-spanners are relevant to reconstruction of two properties of functions:
monotonicity and having a low Lipschitz constant. Reconstruction of monotone functions
was considered in [5, 34, 181]. A function f : [m]d → R is called monotone if f(x) ≤ f(y) for
all (x, y) ∈ E(Hm,d). Reconstruction of functions with low Lipschitz constant was studied
in [128]. A function f : [m]d → R has Lipschitz constant c if |f(x) − f(y)| ≤ c · |x − y|1.
In [34], the authors proved that the existence of a local filter for monotonicity of functions
with low lookup complexity implies the existence of a sparse 2-TC-spanner of Hm,d. In
[128], an analogous connection was drawn between local reconstruction of functions with
low Lipschitz constant and 2-TC-spanners. Our improvement in the lower bound on the
size of 2-TC-spanners of Hm,d directly translates into an improvement by the same factor in
the lower bounds on lookup complexity of local nonadaptive filters for these two properties,
showing they are optimal for any constant d.

Key Management for Access Control Hierarchies. Atallah et al. [6] used sparse
Steiner TC-spanners to construct efficient key management schemes for access control
hierarchies. An access hierarchy is a partially ordered set G of access classes. Each user is
entitled to access a certain class and all classes reachable from the corresponding node in
G.

One approach to enforcing the access hierarchy is to use a key management scheme
of the following form [6, 66]. Each edge (i, j) has an associated public key P (i, j), and
each node i, an associated secret key ki. Only users with the secret key for a node have
the required permissions for the associated access class. The public and secret keys are
designed so that there is an efficient algorithm A which takes ki and P (i, j) and generates
kj , but for each (i, j) in G, it is computationally hard to generate kj without knowledge
of ki. Thus, a user can efficiently generate the required keys to access a descendant class,
but not other classes. The number of runs of algorithm A needed to generate a secret
key kv from a secret key ku is equal to dG(u, v). To speed this up, Atallah et al. suggest
adding edges and nodes to G to increase connectivity. To preserve the access hierarchy
represented by G, the new graph H must be a Steiner TC-spanner of G. The number of
edges in H corresponds to the space complexity of the scheme, while the stretch k of the
spanner corresponds to the time complexity.

We note that the time to find the path from u to v is also important in this application.
In our upper bound, this time is O(d), which for small d (e.g., constant) is likely to be
much less than 2g(n), where g(n) is the time to run algorithm A. This is because algorithm
A involves the evaluation of a cryptographic hash function, which is expensive in practice
and in theory.3

5.2 Definitions and Observations

For integers j ≥ i, interval [i, j] refers to the set {i, i + 1, . . . , j}. Logarithms are always
base 2, except for ln which is the natural logarithm.

Each DAG G = (V,E) is equivalent to a poset with elements V and partial order �,
where x � y if y is reachable from x in G. Elements x and y are comparable if x � y or

3Any hash function which is secure against poly(n)-time adversaries requires g(n) ≥ polylogn evaluation
time under existing number-theoretic assumptions.

65

y � x, and incomparable otherwise. We write x ≺ y if x � y and x 6= y. The hypergrid
Hm,d with dimension d and side length m was defined in the beginning of Section 5.1.1.
Equivalently, it is the poset on elements [m]d with the dominance order, defined as follows:
x � y for two elements x, y ∈ [m]d iff xi ≤ yi for all i ∈ [d].

A mapping from a poset G to a poset G′ is called an embedding if it respects the partial
order, that is, all x, y ∈ G are mapped to x′, y′ ∈ G′ such that x �G y iff x′ �G′ y′.

Definition 5.2.1 (Poset dimension, [80]). Let G be a poset with n elements. The dimension
of G is the smallest integer d such that G can be embedded into the hypergrid Hn,d.

Dushnik and Miller [79] proved that for any m > 1, the hypergrid Hm,d has dimension
exactly d.

Fact 5.2.1. Each d-dimensional poset G with n elements can be embedded into a hypergrid
Hn,d, so that for all i ∈ [d], the ith coordinates of images of all elements are distinct.
Moreover, such an embedding can be obtained from an arbitrary embedding of G into Hn,d
in time O(dn log n).

Proof. Let G be a d-dimensional poset G with n elements. By Definition 5.2.1, it can be
embedded into a hypergridHm,d. For an element x ∈ G let (x1, . . . , xd) be the d-dimensional
vector of coordinates of x in the embedding above. If m > n, we can sort all these vectors
in lexicographic order in time O(dn log n) since pairwise comparisons can be done in O(d)
time. This gives a linear extension of G, which we denote as L. Finally, for each dimension
i ∈ [d], in O(n) time, we can go through the list of elements sorted by the ith coordinate,
and reassign the ith coordinates, so that all of them are distinct, resolving ties according
to the order of L.

It remains to show that this transformation, call it f , does not change the partial order
of G. Consider a pair of elements x ≺ y in G. If xi < yi for some i ∈ [d] then f(x)i < f(y)i
because we did not change the order of distinct coordinates. If xi = yi for some i ∈ [d]
then f(x)i < f(y)i since x precedes y in L. Therefore, f(x) ≺ f(y). Finally, consider
incomparable elements x and y of G. Since they are incomparable, xi < yi while xj > yj
for some i, j ∈ [d]. Then f(x)i < f(y)i while f(x)j > f(y)j , and consequently, f(x) and
f(y) are incomparable, as required.

Sparse Steiner 2-TC-spanners for d-dimensional Posets. We give a simple
construction of sparse Steiner 2-TC-spanners for d-dimensional posets. For constant d,
it matches the lower bound from Section 5.3 up to a constant factor. Note that the
construction itself works for arbitrary, not necessarily constant, d.

Theorem 5.2.2. Each d-dimensional poset G on n elements has a Steiner 2-TC-spanner
H of size O(n logd n). Given an embedding of G into the hypergrid Hn,d, graph H can be
constructed in time O(dn logd n). Moreover, for all x, y ∈ G, where x ≺ y, one can find a
path in H from x to y of length at most 2 in time O(d).

Proof. Consider an n-element poset G embedded into the hypergrid Hn,d. Transform it,
so that for all i ∈ [d], the ith coordinates of images of all elements are distinct. (See
Fact 5.2.1.) In this proof, assume that the hypergrid coordinates start with 0, i.e., its
vertex set is [0, n − 1]d. Let ` = dlog ne and b(t) be the `-bit binary representation of t,

66

possibly with leading zeros. Let pi(t) denote the i-bit prefix of b(t) followed by a single
1 and then ` − i − 1 zeros. Let lcp(t1, t2) = pi(t1), where i is the length of the longest
common prefix of b(t1) and b(t2).

To construct a Steiner 2-TC-spanner (VH , EH) of G, we insert at most `d edges into
EH per each poset element. Consider a poset element with coordinates x = (x1, . . . , xd)
in the embedding. For each d-tuple (i1, . . . , id) ∈ [0, ` − 1]d, let p be a hypergrid vertex
whose coordinates have binary representations (pi1(x1), . . . , pid(xd)). If x ≺ p, we add an
edge (x, p) to EH ; otherwise, if p ≺ x we add an edge (p, x) to EH . Note that only edges
between comparable points are added to EH .

Observe that for d > (2 log n)/(log log n), the theorem is trivial since then n logd n > n3,
and the transitive-closure of G has O(n2) edges and can be computed in O(n3) time. For
smaller d, dlog ned = O(logd n) and, consequently, EH contains O(n logd n) edges and can
be constructed in O(dn logd n) time, as described, if bit operations on coordinates can be
performed in O(1) time.

For all pairs of poset elements x = (x1, . . . , xd) and y = (y1, . . . , yd), such that x ≺
y, there is an intermediate point z with coordinates whose binary representations are
(lcp(x1, y1), . . . , lcp(xd, yd)). By construction, both edges (x, z) and (z, y) are in EH . Point
z can be found in O(d) time, since lcp(xi, yi) can be computed in O(1) time, assuming
O(1) time bit operations on coordinates.

Note that the Steiner vertices used in our construction for d-dimensional posets are
necessary to obtain sparse TC-spanners. Recall our example of a bipartite graph Kn

2
,n
2

for

which every 2-TC-spanner required Ω(n2) edges. Kn
2
,n
2

is a poset of dimension 2, and thus,

by the upper bound in Theorem 5.2.2, has a Steiner 2-TC-spanner of size O(n log2 n).
(As we mentioned before, for this graph there is an even better Steiner 2-TC-spanner
with O(n) edges.) To see that Kn

2
,n
2

is embeddable into a [n] × [n] grid, map each of
the n/2 left vertices of Kn

2
,n
2

to a distinct grid vertex in the set of incomparable vertices
{(i, n/2 + 1− i) : i ∈ [n/2]}, and similarly map each right vertex to a distinct vertex in the
set {(n+ 1− i, i+ n/2) : i ∈ [n/2]}. It is easy to see that this is a proper embedding.

Equivalence of Steiner and non-Steiner TC-spanners for Hypergrids. Our
lower bound on the size of 2-TC-spanners for d-dimensional posets of size n is obtained by
proving a lower bound on the size of the Steiner 2-TC-spanner of Hm,d where m = n1/d.
The following lemma, used in Section 5.4, implies Corollary 5.2.4 that shows that sparsest
Steiner and non-Steiner 2-TC-spanners of Hm,d have the same size.

Lemma 5.2.3. Let G be a poset on elements V ⊆ [m]d with the dominance order and
H = (VH , EH) be a Steiner k-TC-spanner of G with minimal VH . Then H can be embedded
into Hm,d.

Proof. For each s ∈ VH − V , we define Prev(s) = {x ∈ V : x ≺ s}. If Prev(s) = ∅ then
VH is not minimal because H remains a Steiner k-TC-spanner of G when s is removed.
We map each Steiner vertex s to r(s), the replacement of s in [m]d, whose ith coordinates
for all i ∈ [d] are maxx∈Prev(s) xi.

Consider an edge (x, y) in H. If x, y ∈ V our embedding does not alter that edge. If
x ∈ V , y ∈ VH − V then x ∈ Prev(y) and x ≺ r(y) by the definition of r. If x, y ∈ VH − V
then Prev(x) ⊆ Prev(y) and the monotonicity of max(S) for sets implies r(x) � r(y).

67

Finally, if x ∈ VH − V and y ∈ V then for each z ∈ Prev(x) and each i ∈ [d], we have
zi ≤ yi because z ≺ x ≺ y, and this implies r(x) � y.

Corollary 5.2.4. If Hm,d has a Steiner k-TC-spanner H, it also has a k-TC-spanner with
the same number of nodes and at most the same number of edges.

5.3 Lower Bound for 2-TC-spanners of the Hypergrid

In this section, we prove Theorem 5.1.1 that gives a nearly tight lower bound on the size
of (Steiner) 2-TC-spanners of the hypergrids Hm,d. By Corollary 5.2.4, we only have to
consider non-Steiner TC-spanners.

Proof of Theorem 5.1.1. We start by introducing an LP relaxation for the sparsest 2-TC-
spanner of an arbitrary graph. Our lower bound on the size of a 2-TC-spanner of Hm,d is
obtained by finding a feasible solution to the dual program, which, by definition, gives a
lower bound on the objective function of the primal.

An Integer Program for Sparsest 2-TC-spanner. For each graph G = (V,E), we
can find the size of a sparsest 2-TC-spanner by solving the following integer LP, a special
case of an LP from [36] for directed k-spanners. For all vertices u, v ∈ V satisfying u � v,
we introduce variables xuv ∈ {0, 1}. For u 6= v, they correspond to potential edges in a
2-TC-spanner H of G. (We need variables xvv for notational convenience in the last part
of the proof.) For all vertices u, v, w ∈ V satisfying u � w � v, we introduce auxiliary
variables x′uwv ∈ {0, 1}, corresponding to potential paths of length at most 2 in H. The
integer LP is as follows:

minimize
∑

u,v : u�v
xuv

subject to xuw − x′uwv ≥ 0, xwv − x′uwv ≥ 0 ∀u, v, w : u � w � v;∑
w : u�w�v

x′uwv ≥ 1 ∀u, v : u � v.

Given a solution to the LP, we can construct a 2-TC-spanner H = (V,EH) of G of
size not exceeding the value of the objective function by including (u, v) in EH iff the
corresponding variable xuv = 1 and u 6= v. In the other direction, given a 2-TC-spanner
H = (V,EH) of G, we can find a feasible solution of the LP with the value of the objective
function not exceeding |EH | + |V |. Let E′H = EH ∪ L, where L is the set of loops (v, v)
for all v ∈ V . Then we set xuv = 1 iff (u, v) ∈ E′H and x′uwv = 1 iff both (u,w) ∈ E′H and
(w, v) ∈ E′H . Therefore, the size of a sparsest 2-TC-spanner of G and the optimal value of
the objective function of the LP differ by at most |V |. They are asymptotically equivalent
because |V | = O(|EH |) for every weakly connected graph G.

A Fractional Relaxation of the Dual LP. Every feasible solution of the following
fractional relaxation of the dual LP gives a lower bound on the optimal value of the objective
function of the primal:

maximize
∑

u,v : u�v
yuv

68

subject to
∑

w : v�w
y′uvw +

∑
w : w�u

y′′wuv ≤ 1 ∀u, v : u � v; (5.1)

yuv − y′uwv − y′′uwv ≤ 0 ∀u, v, w : u � w � v; (5.2)

yuv ≥ 0, y′uwv ≥ 0, y′′uwv ≥ 0 ∀u, v, w : u � w � v.

Finding a Feasible Solution for the Dual. When the graph G is a hypergrid Hn,d,
we can find a feasible solution of the dual, which gives a lower bound on the objective
function of the primal. To do that, we perform the following three steps. First, we choose
initial values ŷuv for the variables yuv of the dual program and, in Lemma 5.3.1, give a lower
bound on the resulting value of the objective function of the primal program. Second, we
choose initial values ŷ′uvw and ŷ′′uvw for variables y′uvw and y′′uvw so that (5.2) holds. Finally,
in Lemma 5.3.2, we give an upper bound on the left-hand side of (5.1) for all u � v. Our
bound is a constant larger than 1 and independent of n. We obtain a feasible solution to
the dual by dividing the initial values of the variables (and, consequently, the value of the
objective function) by this constant.

Step 1. For a vector x = (x1, . . . , xd) ∈ [0,m − 1]d, let the volume V (x) denote∏
i∈[d](xi + 1). This corresponds to the number of hypergrid points inside a d-dimensional

box with corners u and v, where v − u = x. We start building a solution to the dual by
setting ŷuv = 1

V (v−u) for all u � v. This gives the value of the objective function of the
dual program, according to the following lemma.

Lemma 5.3.1.
∑

u,v : u�v
ŷuv > md(lnm− 1)d.

Proof. Substituting 1/(V (v − u)) for ŷuv, we get:

∑
u,v : u�v

ŷuv =
∑

u,v : u�v

1

V (v − u)
=
∑
l∈[m]d

∏
i∈[d]

m− li + 1

li
=

∑
l∈[m]

m− l + 1

l

d

> ((m+ 1) ln(m+ 1)−m)d > md(lnm− 1)d.

Step 2. The values of ŷ′uvw and ŷ′′uvw are set as follows to satisfy (5.2) tightly (without
any slack):

ŷ′uvw = ŷuw
V (v−u)

V (v−u) + V (w−v)
, ŷ′′uvw = ŷuw−ŷ′uvw = ŷuw

V (w−v)

V (v−u) + V (w−v)
.

Step 3. The initial values ŷ′uvw and ŷ′′uvw do not necessarily satisfy (5.1). The following
lemma gives an upper bound on the left-hand side of all constraints in (5.1).

Lemma 5.3.2. For all u � v,
∑

w : v�w
ŷ′uvw +

∑
w : w�u

ŷ′′wuv ≤ (4π)d.

Proof. Below we denote v− u by x0 = (x0
1, . . . , x

0
d), a d-dimensional vector of ones (1, . . . ,

69

1) by ~1 and
∏
i∈[d] dxi by dx.∑

w : v�w
ŷ′uvw +

∑
w : w�u

ŷ′′wuv

=
∑

w : v�w
ŷuw

V (v − u)

V (v − u) + V (w − v)

+
∑

w : w�u
ŷwv

V (v − u)

V (u− w) + V (v − u)

=
∑

w : v�w

V (v − u)

V (w − u)(V (v − u) + V (w − v))

+
∑

w : w�u

V (v − u)

V (v − w)(V (u− w) + V (v − u))

< 2
∑

x∈[0,m]d

V (x0)

V (x0 + x)(V (x0) + V (x))

≤ 22d+1
∑

x∈[1,m+1]d

V (x0)

V (x0 + x)(V (x0) + V (x))
(5.3)

< 22d+1

∫
Rd+

V (x0)dx

V (x0 + x)(V (x0) + V (x))
(5.4)

= 22d+1

∫
Rd+

V 2(x0)dt

V (t)V (x0)(V (x0) +
∏
i

(ti(x0
i + 1) + 1))

(5.5)

< 22d+1

∫
Rd+

V (x0)dt

V (t)(V (x0) +
∏
i
ti(x0

i + 1))

= 22d+1

∫
Rd+

dt

V (t)(~1 + V (t− 1))
.

The first two equalities above are obtained by plugging in values of ŷ′ and ŷ′′ from
Steps 1 and 2 with appropriate indices. The first inequality is obtained by extending
each sum to the whole subgrid. Here (5.3) holds because 1

V (u) ≤
2d

V (u+1) for all u, such

that ui ≥ 0. In (5.4), the sum can be bounded from above by the integral because the
summand is monotone in all variables. To get (5.5), we substitute x with t such that
xi = ti(x

0
i + 1). Then V (x0 + x) = V (t)V (x0), and dx = V (x0)dt. To obtain the last

inequality, we substitute V (x0) for
∏
i

(x0
i + 1).

Proposition 5.3.3. Let Id =
∫
Rd+

dt
V (t)(~1+V (t−1))

. Then Id ≤ πd

2 for all d.

70

Proof. To bound the integral Id, we first make a substitution xi = 1−ti
1+ti

:

Id =

∫
[−1...1]d

dx∏
1≤i≤d

(1 + xi) +
∏

1≤i≤d
(1− xi)

.

Then we bound the denominator using the inequality a+ b ≥ 2
√
ab and get

Id ≤
∫

[−1...1]d

dx

2
√ ∏

1≤i≤d
(1 + xi)×

∏
1≤i≤d

(1− xi)
=
Jd

2
,

where J denotes the following integral:

J =

1∫
−1

dx√
1− x2

= π.

Therefore, Id ≤ πd

2 , as claimed.

Lemma 5.3.2 follows from Proposition 5.3.3.

Finally, we obtain a feasible solution by dividing initial values ŷuv, ŷ
′
uvw and ŷ′′uvw by

the upper bound (4π)d from Lemma 5.3.2. Then Lemma 5.3.1 gives the desired bound on
the value of the objective function:

∑
u,v : u�v

ŷuv
(4π)d

> md

(
lnm− 1

4π

)d
.

This concludes the proof of Theorem 5.1.1.

5.4 Our Lower Bound for k-TC-spanners of d-dimensional
Posets for k > 2

In this section, we prove Theorem 5.1.3 that gives a lower bound on the size of Steiner
k-TC-spanners of d-dimensional posets for k > 2 and d ≥ 2.

Proof of Theorem 5.1.3. Unlike in the previous section, the poset which attains the lower
bound is constructed probabilistically, not explicitly.

We consider n-element posets G embedded in the hypergrid Hn,d, where the partial
order is given by the dominance order x � y on Hn,d. The elements of G are points
p1, p2, . . . , pn ∈ [n]d, where the first coordinate of each pa is a. (By Fact 5.2.1, each d-
dimensional poset with n elements can be embedded into Hn,d, so that the first coordinates
of all points are distinct.) Let Gd be a distribution on such posets G, where the last d− 1
coordinates of each point pa are chosen uniformly and independently from [n].

71

Recall that Sk(G) denotes the size of the sparsest Steiner k-TC-spanner of poset G.
The following lemma gives a lower bound on the expected size of a Steiner k-TC-spanner
of a poset drawn from Gd.

Lemma 5.4.1. E
G←Gd

[Sk(G)] = Ω(n logd
d−1
k
e n) for all k ≥ 3 and constant d ≥ 2.

To simplify the presentation, we first prove the special case of Lemma 5.4.1 for 2-
dimensional posets in Section 5.4.1. The general case is proved in Section 5.4.2. Since
Lemma 5.4.1 implies the existence of a poset G, for which every Steiner k-TC-spanner has
Ω(n logd(d−1)/ke n) edges, Theorem 5.1.3 follows.

5.4.1 The Case of d = 2

This section proves a special case of Lemma 5.4.1 for 2-dimensional posets, which illustrates
many of the ideas used in the proof of the general lemma. In both proofs, we assume that
` = log n is an integer.

Lemma 5.4.2 (Special case of Lemma 5.4.1). E
G←G2

[Sk(G)] = Ω(n log n) for all k ≥ 3 and

d = 2.

Proof. To analyze the expected number of edges in a Steiner TC-spanner H of G, we
consider ` partitions of [n]2 into horizontal strips. We call strips boxes for compatibility
with the case of general d.

Definition 5.4.1 (Box partition). For each i ∈ [`], define sets of equal size that partition
[n] into 2i intervals: the jth such set, for j ∈ [2i], is Iij = [(j − 1)2`−i + 1, j2`−i]. Given

i ∈ [`], and j ∈ [2i], the box B(i, j) is [n]× Iij and the box partition BP(i) is a partition of

[n]2 that contains boxes B(i, j) for all j ∈ [2i].

For each odd j, we group boxes B(i, j) and B(i, j + 1) into a box-pair. We call j the
index of the box-pair and refer to B(i, j) and B(i, j + 1) as the bottom and the top box in
the box-pair. Recall that a poset G consists of elements p1, p2, . . . , pn ∈ [n]2, where the
first coordinate of each pa is a. We analyze the expected number of edges in a Steiner
TC-spanner H of G that cross from bottom to top boxes in all box-pairs. To do that,
we identify pairs of poset elements (pa, pb), called jumps, that force such edges to appear.
By Lemma 5.2.3, we can assume that all Steiner vertices of H are embedded into Hn,2.
Therefore, if pa is in the bottom box and pb is in the top box of the same box-pair then
H must contain an edge from the bottom to the top box. To ensure that we count such
an edge just once, we consider only pa and pb for which no other point pc with c ∈ (a, b) is
contained in this box pair. Next we define jumps formally. This concept is also illustrated
in Figure 5.1.

Definition 5.4.2 (Jumps). Given a poset G, embedded into Hn,2, and an index i ∈ [`],
a jump generated by the box partition BP(i) is a pair (pa, pb) of elements of G, such
that for some odd j ∈ [2i], the following holds: pa ∈ B(i, j), pb ∈ B(i, j + 1), but pc /∈
B(i, j)∪B(i, j + 1) for all c ∈ (a, b). The set of jumps generated by all partitions BP(i) for
i ∈ [`] is denoted by J .

72

B(2,1)

B(2,2)

B(2,3)

B(2,4)

dimension 1

d
im

en
si

o
n

 2

Figure 5.1: Box partition
BP(2) and jumps it generates.

Next we establish that the number of jumps in a poset
G is a lower bound on the number of edges in a Steiner TC-
spanner of G (Proposition 5.4.3) and bound the expected
number of jumps from below (Proposition 5.4.4).

Proposition 5.4.3. Let G be a poset, embedded into Hn,2,
and H = (VH , EH) be a Steiner k-TC-spanner of G. Then
|EH | ≥ |J |.

Proof. To prove the statement, we establish an injective
mapping from J to EH . By Lemma 5.2.3, we can as-
sume that all Steiner vertices ofH are embedded intoHn,2.
Given a jump (pa, pb), let j be the index of the box-pair
containing pa in the bottom box and pb in the top box.
We define e(a, b) ∈ EH by following an arbitrary path from pa to pb in H. This path is
contained in the box-pair B(i, j) ∪ B(i, j + 1). We define e(a, b) as the edge on that path
that starts in B(i, j) and ends in B(i, j + 1).

It remains to show that the mapping e(a, b) is injective. Consider an edge (u, v) of H
with u = (u1, u2) and v = (v1, v2). Observe that there is a unique box-pair B(i, j)∪B(i, j+1)
such that v ∈ B(i, j) and u ∈ B(i, j + 1). (Indices i and j can be determined by finding
the number of the form j2`−i in the interval [u2, v2 − 1], such that `− i is maximized.) At
most one jump (a, b) satisfies pa ∈ B(i, j), pb ∈ B(i, j + 1) and a ≤ u1 ≤ v1 ≤ b, since the
intervals [a, b] are disjoint for all jumps in a box pair.

Proposition 5.4.4. When a poset G is drawn from the distribution G2, the expected size
of J is at least n(`− 1)/4.

Proof. We first find the expected number of jumps generated by the partition BP(i) for a
specific i. Let λi(pa) be the index j of the box-pair B(i, j) ∪ B(i, j + 1) that contains pa.
This is well defined since box-pairs with respect to BP(i) partition [n]2. Let ρi(pa) be 0 if
pa is in the bottom box of that box pair, and 1 otherwise. One can think of λi(pa) as the
location of pa, and of ρi(pa) as its relative position within a box-pair. Importantly, when
G is drawn from G2, that is, the second coordinates of points pa for all a ∈ [n] are chosen
uniformly and independently from [n], then random variables ρi(pa) are independent and
uniform over {0, 1} for all a ∈ [n].

We group together points pa that have equal values of λi(pa), and sort points within
groups in increasing order of their first coordinate a. Since there are 2i−1 box-pairs, the
number of groups is at most 2i−1. Observe that random variables ρi(pa) within each group
are uniform and independent because random variables λi(pa) and ρi(pa) are independent
for all a ∈ [n]. Now, if we list ρi(pa) in the sorted order for all points in a particular
group, we get a sequence of 0s and 1s. Two consecutive entries correspond to a jump iff
they are 01. The last position in a group cannot correspond to the beginning of a jump.
The number of positions that can correspond to the beginning of a jump in all groups is
n minus the number of groups, which gives at least n − 2i−1. For each such position, the
probability that it starts a jump (i.e., the probability of 01) is 1/4. Thus, the expected
number of jumps generated by the partition BP(i) is at least (n− 2i−1)/4.

73

Summing over all i ∈ [`], we get the expected number of jumps in all partitions:
(n`−

∑`
i=1 2i−1)/4 > n(`− 1)/4 = Ω(n log n).

Propositions 5.4.3 and 5.4.4 imply that, for a poset G drawn from G2, the expected
number of edges in a Steiner TC-spanner of G is Ω(n log n), concluding the proof of
Lemma 5.4.2.

5.4.2 The Case of Constant d

This section proves Lemma 5.4.1, a generalization of Lemma 5.4.2 and the main building
block in the proof of Theorem 5.1.3.

Proof of Lemma 5.4.1. Generalizing the proof for d = 2 to arbitrary constant d, we con-
sider `d−1 partitions of [n]d into boxes, where ` = log n. As before, we assume ` is an
integer. In this proof, let `′ = b`/(d− 1)c and d′ = d(d− 1)/ke.

Definition 5.4.3 (Box partition). Given vectors ~ı = (i1, . . . , id−1) ∈ [`′]d−1 and ~ =

(j1, . . . , jd−1) ∈ [2i1] × · · · × [2id−1], the box B(~ı,~) is [n] × Ii1j1 × . . . × I
id−1

jd−1
, and the box

partition BP(~ı) is a partition of [n]d that contains boxes B(~ı,~) for all eligible ~.

Next we generalize the definition of the set of jumps J . We denote (d− 1)-dimensional
vectors (0, . . . , 0) and (1, . . . , 1) by ~0 and ~1, respectively. We say that a vector ~ is odd if
all of its coordinates are odd. Now we form box-pairs from boxes B(~ı,~) and B(~ı,~+~1) for
odd vectors ~. Analogously to the 2-dimensional case, we call B(~ı,~) the bottom box and
B(~ı,~+~1) the top box in a box-pair.

Definition 5.4.4 (Jumps). Given a poset G, embedded into Hn,d, and an index vector
~ı ∈ [`′]d−1, a jump generated by the box partition BP(~ı) is a pair (pa, pb) of elements of
G, such that for some odd vector ~, the following holds: pa ∈ B(~ı,~), pb ∈ B(~ı,~ + ~1), but
pc /∈ B(~ı,~)∪B(~ı,~+~1) for all c ∈ (a, b). The set of jumps generated by all partitions BP(~ı)
for ~ı ∈ [`′]d−1 is denoted by J .

Next we generalize the definitions of location λi(pa) and relative position ρi(pa). Unlike
in the 2-dimensional case, now some boxes (and, consequently, some points) do not belong
to box-pairs. For each odd ~, we group boxes B(~ı,~+~α) for all ~α ∈ {0, 1}d−1 into a megabox.
We call ~ the index vector of the megabox, and refer to α as the relative position of a box
in the megabox. Observe that megaboxes with respect to BP(~ı) partition [n]d. Given ~ı, let
λ~ı(pa) be the index vector ~ of the megabox of pa with respect to BP(~ı), and let ρ~ı(pa) be
the relative position vector ~α of the box of pa in the megabox. In other words, to obtain
λ~ı(pa), we take the index ~ of the box B(~ı,~) containing pa, and round its coordinates down
to the nearest odd numbers. Then ρ~ı(pa) = ~ − λ~ı(pa), where ~ is the index of the box
B(~ı,~) containing pa.

Proposition 5.4.5. Let G be a poset, embedded into Hn,d, and H = (VH , EH) be a Steiner
k-TC-spanner of G. Then |EH | = Ω(|J |/`d−1−d′).

Proof. To prove the statement, we establish a mapping from J to EH that takes O(`d−1−d′)
jumps to one edge. By Lemma 5.2.3, we can assume that all Steiner vertices of H are
embedded into Hn,d.

74

First, we describe how to map a jump (pa, pb) to an edge e(a, b) ∈ EH . Each such jump
is generated by a box partition BP(~ı) for some ~ı. We follow an arbitrary path of length at
most k in H from pa to pb, say, (pa = u0, . . . , uk = pb), and let e(a, b) be an edge (uc−1, uc)
with the maximum (over all c ∈ [k]) Hamming distance between ρ~ı(uc−1) and ρ~ı(uc). Note
that the maximum distance is at least d′ because ρ~ı(u0) = ~0 and ρ~ı(uk) = ~1. That is, for
(u, v) = e(a, b), the difference ρ~ı(v)− ρ~ı(u) is a vector in {0, 1}d−1 with at least d′ ones. In
addition, the edge e(a, b) belongs to the megabox of pa and pb.

Now we count the jumps (pa, pb) mapped to a specific edge (u, v). First, we find all
such jumps generated by a single box partition BP(~ı). Observe that, for such a jump,
pa and pb belong to the same megabox as u and v, i.e., λ~ı(u). Moreover, interval [a, b]
contains [u1, v1]. Since intervals [a, b] are disjoint for all jumps in a megabox, this uniquely
determines [a, b]. Hence, there is at most one such jump.

It remains to count box partitions BP(~ı) which can generate a jump mapped to a specific
edge (u, v). Recall that ρ~ı(v) − ρ~ı(u) must be a vector in {0, 1}d−1 with at least d′ ones.
There are less than 2d−1 such vectors. Consider one of these vectors, say, ~γ. If for some
t ∈ [d − 1], γt = 1 then it is uniquely determined by the largest power of 2 that divides
a number in [ut, vt − 1]. When γt = 0, there are at most `′ possible values of it because
~ı ∈ [`′]d−1. Since d is a constant, there are at most 2d−1(`′)d−1−d′ = O(`d−1−d′) possible
vectors ~ı, such that BP(~ı) could have generated a jump (pa, pb).

Therefore, O(`d−1−d′) jumps map to the same edge of EH and, consequently, |EH | =
Ω(|J |/`d−1−d′).

Proposition 5.4.6. When a poset G is drawn from the distribution Gd, the expected size
of J is Ω(`d−1n).

Proof. We first analyze the expected number of jumps generated by the partition BP(i) for
a specific i. Under the distribution Gd, the values ρ~ı(pa) are independent and uniform over
{0, 1}d−1 for all a ∈ [n]. Let P be the set of elements pa in all the box-pairs, i.e., elements
with ρ~ı(pa) equal to ~0 and ~1. The expected size of P is n/2d−2. We group together elements
pa of P that have equal values of λ~ı(pa), and sort elements within groups in increasing order
of their first coordinate a.

Observe that random variables ρ~ı(pa) within each group are uniform and independent
because random variables λ~ı(pa) and ρ~ı(pa) are independent for all a ∈ [n]. Now, if we list
ρ~ı(pa) in the sorted order for all elements in a particular group, we get a sequence of ~0s
and ~1s. Two consecutive entries correspond to a jump iff they are ~0~1. The last position in
a group cannot correspond to the beginning of a jump. The expected number of positions
that can correspond to the beginning of a jump in all groups is n/2d−2 minus the expected
number of groups. Letm(~ı) denote the number of megaboxes with respect to a box partition
BP(~ı). The number of groups is at most m(~ı). On every position in the reordered sequence
that is not the final position in its group, the expected number of jumps started is 1/4, so
the expected number of jumps is at least (n/2d−2 −m(~ı))/4 = n/2d −m(~ı)/4.

The number of megaboxes in all box partitions is

∑
~ı∈[`′]d−1

m(~ı) =
∑

~ı∈[`′]d−1

d−1∏
t=1

2it−1 =

(
`′∑

i1=1

2i1−1

)d−1

< 2`
′(d−1) ≤ 2` = n.

75

Therefore, the expected number of jumps generated by all box partitions is at least

(`′)d−1n/2d − 1

4

∑
~ı∈[`′]d−1

m(~ı) ≥ (`′)d−1n/2d − n/4 = Ω(`d−1n).

The last equality holds because d is constant.

By linearity of expectation, Propositions 5.4.5 and 5.4.6 imply that the expected number
of edges in a Steiner TC-spanner H of G under the distribution Gd is

Ω
(
(E
G←Gd

|J |)/`d−1−d′) = Ω(`d−1n/`d−1−d′) = Ω(n`d
′
) = Ω(n logd(d−1)/ke n).

This concludes the proof of Lemma 5.4.1.

Part III

Communication Complexity
Methods in Summarization

Chapter 6
Lower bounds for Testing of
Functions on Hypergrids

6.1 Introduction

We consider the problem of testing properties of functions over the hypergrid1: given
oracle access to a function f : [n]d → R, for some (finite or infinite) set R ⊆ R, and given
a property P of functions mapping [n]d to R, what is the minimum number of queries to
f that a randomized algorithm must make to distinguish with high probability between
the case where f has the property P from the case where f is far2 from having the same
property? We focus on nonadaptive tests—algorithms that must fix all their queries before
observing the value of the function on any of the queried inputs.

The problem of testing properties of functions has been studied extensively (see, for
example, the surveys [176, 177] and the book [104]), but most of this research has been
restricted to functions f : [n] → R on the line and to functions f : {0, 1}d → R on the
hypercube. (These classes of functions correspond to the special cases of the hypergrid
where d = 1 and n = 2, respectively.) The purpose of the current research is to generalize
tools developed in these more specialized settings to improve our understanding of property
testing of functions with general hypergrid domains. In particular, we show for the first
time how the connection with communication complexity established in [37] can be applied
to obtain lower bounds on functions with non-hypercube domains. We then use this method
to obtain significantly stronger, and in many cases optimal, lower bounds on the number of
queries required to nonadaptively test three of the most fundamental properties of functions
on the hypergrid: monotonicity, convexity, and the Lipschitz property.

Monotonicity. The function f : [n]d → R is monotone if for any two inputs
(x1, . . . , xn), (y1, . . . , yn) ∈ [n]d that satisfy x1 ≤ y1, . . . , xn ≤ yn, the function f satis-
fies f(x1, . . . , xn) ≤ f(y1, . . . , yn).

1We use [n] to denote the set {1, 2, . . . , n}.
2See Section 6.2 for the formal definitions. For the purposes of this introduction, we say that f is far

from having the property P if we need to modify the value of f on a constant fraction of its inputs to turn
it into a function that does satisfy P.

78

Functions on the hypergrid

Our lower bounds Previous lower bounds Upper bounds

Monotonicity Ω(d log n) Ω(d) (adaptive, n = 2) [37] O(d log n) [49]

Convexity Ω(d log n) — —

Lipschitz Ω(d log n) Ω(d) (adaptive, n = 2) [127] O(d log n) [49]

Functions on the line

Our lower bounds Previous lower bounds Upper bounds

Monotonicity Ω(min{log r, log n}) Ω(min{log r, log n}) (1.-s. err.) [87]
O(log n) [87]

Ω(log n) (adaptive, r � n) [87, 94]

Convexity Ω(log n) (r = Ω(n2)) — O(log n) [163]

Lipschitz Ω(min{log r, log n}) Ω(min{log r, log n}) (1-s. err.) [127] O(log n) [127]

Table 6.1: Query complexity bounds for testing properties of the function f : [n]d → Z
(top) and of the function f : [n]→ [r] (bottom). All the bounds are for nonadaptive tests
with two-sided error unless marked otherwise.

Monotonicity testing is a classic problem in property testing that has been studied ex-
tensively for functions on the line [87, 94], on the hypercube [105, 75, 95, 37, 49, 48], on gen-
eral partially ordered set domains [95], and on hypergrid domains as well: Dodis et al. [75]
showed that we can test whether f : [n]d → [r] is monotone with O(d log n log r) queries.
Ailon and Chazelle [4] gave an alternative algorithm with the incomparable query complex-
ity O(d2d log n). Very recently, Chakrabarty and Seshadhri [49] improved on both these
results by showing that O(d log n) queries are sufficient for the task.

Prior to this work, however, the only known query complexity lower bounds for the
problem of testing whether the function f : [n]d → Z is monotone were for two special
cases: When n = 2, (i.e., for the hypercube), we know that Ω(d) queries are required to
test monotonicity [37] and that this bound is optimal [48]. And when d = 1 and r is
large enough, we know that Θ(log n) queries are both necessary and sufficient for testing
monotonicity [87, 94].

We give the first lower bound for testing monotonicity of functions on general hypergrid
domains. Furthermore, the bound that we obtain is optimal for nonadaptive tests, since it
matches the upper bound of Chakrabarty and Seshadhri [49].

Theorem 6.1.1. Fix ε ∈ (0, 1
8]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for

monotonicity of functions f : [n]d → [nd] must make Ω(d log n) queries.

The special case d = 1 of the theorem also gives the first nontrivial lower bound on the
query complexity of two-sided error monotonicity tests for functions f : [n] → [r] on the
line when r is subexponential in n.3

3Strictly speaking, our result gives the first lower bound in the two-sided error model for any finite r,
but the Ramsey theory arguments of Fischer [94] can be extended to finite ranges when r is large enough.

79

Convexity. The function f : [n]d → R is convex if for all x, y ∈ [n]d and all ρ ∈ [0, 1]
such that ρx+(1−ρ)y ∈ [n]d, the function f satisfies f(ρx+(1−ρ)y) ≤ ρf(x)+(1−ρ)f(y).

Convexity testing is another classic problem in property testing. This problem was first
studied by Parnas, Ron, and Rubinfeld [163], who showed that we can test if f : [n] → R
is convex with O(log n) queries. In the same paper, they proposed two open problems: to
understand the testing of closely-related properties, and to examine the problem of testing
convexity in the setting of functions f : [n]d → R on the hypergrid. While there has been
much work on the first open problem—including results on testing submodularity [185, 171],
convexity of images [169], and convexity of geometric sets in Rd [168]—our lower bound
represents the first progress on the study of testing convexity on the hypergrid.

Theorem 6.1.2. Fix ε ∈ (0, 1
8]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for

convexity of functions f : [n]d → R must make Ω(d log n) queries.

We also prove a matching lower bound for separate convexity, a closely-related (but
weaker) property of functions on hypergrids (see Definition 6.4.5). Our results also hold
for testing concavity.

The special case of our lower bound for d = 1 gives the first lower bound for testing
convexity on the line.4 This lower bound matches the query complexity of the nonadaptive
test of Parnas, Ron, and Rubinfeld [163], showing that their algorithm and our lower bound
are both optimal.

Lipschitz property.
The function f : [n]d → R is Lipschitz if for any two inputs (x1, . . . , xn), (y1, . . . , yn) ∈

[n]d, the function f satisfies |f(x1, . . . , xn)− f(y1, . . . , yn)| ≤
∑n

i=1 |xi − yi|.
The problem of testing the Lipschitz property on functions with hypergrid domains

has applications to data privacy and program checking [127, 74]. Notably, Dixit et al. [74]
have used Lipschitz testers to construct privacy testers. Motivated by these applications,
Jha and Raskhodnikova [127] initiated the study of testing whether functions are Lips-
chitz. They showed that testing if a function f : {0, 1}d → [r] is Lipschitz can be done
with O(min{d2, dr}) queries, that testing f : [n] → [r] for the same property can be
done with O(log min{n, r}) queries, and that the latter bound is optimal for nonadap-
tive tests with one-sided error. Awasthi et al. [14] gave the first algorithms for test-
ing the Lipschitz property for functions f : [n]d → [r] on the hypergrid, showing that
O(min{d3/2n log n, dr log r, dr log n}) queries suffice for the task. Finally, Chakrabarty and
Seshadhri [49] improved this bound for arbitrary ranges by showing that O(d log n) queries
suffice for testing whether f : [n]d → R is Lipschitz.

We give the first lower bound for testing the Lipschitz property for functions with
hypergrid domains.

Theorem 6.1.3. Fix ε ∈ (0, 1
8]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for the

Lipschitz property of functions f : [n]d → [R], where R = Ω(dn) must make Ω(d log n)
queries.

4One might ask whether the lower bound for testing monotonicity on the line immediately implies a
matching lower bound for testing convexity. It does not, and while it is certainly possible that a direct
argument showing this implication exists, this argument would certainly not be trivial (c.f. [185]).

80

The lower bound in the theorem is optimal: it shows that no nonadaptive test can
improve on the query complexity of Chakrabarty and Seshadhri’s test in the hypergrid
setting. The special case of the theorem when d = 1 is also optimal; showing that the
algorithm of Jha and Raskhodnikova for the line is optimal, even if we allow two-sided
error.

Our techniques.
We obtain our lower bounds by exploiting the connection between property testing

and communication complexity discovered in [37]. This connection, which we describe in
Section 6.2, gives a method for establishing reductions between property testing problems
and (a special class of) communication problems. These reductions then let us build on
the rich body of work in communication complexity to prove lower bounds in property
testing. This approach has been particularly successful in establishing lower bounds for
testing properties of functions over the hypercube [37, 45, 127], but until the present work
it had yet to be applied to functions over other domains.

One important reason why the previous lower bounds were restricted to properties of
functions over the hypercube is that a key ingredient in all these proofs is the use of parity
functions—the set of functions χS : {0, 1}d → {0, 1}, S ⊆ [d], defined by χS(x) =

∑
i∈S xi

(mod 2). These functions form an orthonormal basis for the set of functions mapping
{0, 1}n to R, a fact that is exploited in the reductions.

We prove our lower bounds for functions with hypergrid domains by replacing the use
of parity functions with Walsh functions, a set of functions that forms an orthonormal
basis of the functions mapping [n]d to R. These functions offer different challenges in the
construction of reductions and their analysis, but the resulting lower bounds are as clean
and natural as the ones obtained for functions on the hypercube.

Remarks on adaptivity.
All the lower bounds introduced in this paper are for nonadaptive tests—that is, tests

that must fix all their queries in advance, before observing the value of the function on any
of the inputs that are queried. Interestingly, all the best known upper bounds on the query
complexity of testing monotonicity, convexity, or the Lipschitz property (for functions over
any domain) are achievable with nonadaptive tests and nearly all the lower bounds for
testing these properties only apply to nonadaptive tests. In fact, apart from the result
in [37], the only lower bound for monotonicity testing that applies to adaptive tests is
obtained via an intricate argument of Fischer [94] that uses deep results in Ramsey theory
to show that adaptivity cannot help in this setting.

In light of this general phenomenon, our results suggest two promising directions for
future research: if one believes that the upper bounds can be improved in general, then
our lower bounds imply that a completely new algorithmic approach which critically makes
use of adaptivity will be required; conversely, if one believes that adaptivity does not
help for these testing problems, then the proof of this statement will probably lead to a
better understanding of the role of adaptivity in property testing and stronger connections
between property testing and Ramsey theory or other areas of combinatorics.

Organization. The basic definitions and facts for property testing and communication
complexity are introduced in Section 6.2. In Section 6.3, we prove our lower bounds for
functions on the line; the more general lower bounds for functions with hypergrid domains
are presented in Section 6.4.

81

6.2 Preliminaries

Property testing. The basic property testing definitions are as follows. For a more
thorough introduction to the area, we recommend [176, 177].

Definition 6.2.1 (Relative distance to a property). Let P be a property (i.e., a set) of
functions on a domain D, with range R and consider a function f : D → R. The relative
distance of f to the property is the minimum over all functions g ∈ P of the fraction of
points in D on which f and g differ. We say f is ε-far from P if its relative distance from
P is at least ε.

Definition 6.2.2 (Property test [106, 178]). Fix ε ∈ (0, 1). A (two-sided error, adaptive)
ε-test for a property P is a randomized algorithm which, given oracle access to a function
f , accepts with probability at least 2/3 if f ∈ P, and rejects with probability at least 2/3 if
f is ε-far from P.

A test has one-sided error if it always accepts functions in P. It is nonadaptive if the
queries to f do not depend on the answers to the previous queries.

Communication complexity.
In a (two-player) communication game C, Alice receives some input a, Bob receives

some input b, and they must compute the value of some function fC(a, b) on their joint
input. A protocol defines how Alice and Bob communicate. The maximum number of
bits exchanged by Alice and Bob during the execution of a protocol over the possible
inputs a and b is the complexity of the protocol. A randomized protocol is valid for fC
if for every input, the protocol computes fC correctly with probability at least 2/3. The
communication complexity of fC is the minimum complexity of any protocol that is valid
for fC .

A number of different communication models have been extensively studied. We focus
on the one-way shared randomness model. In this model, the only communication allowed is
directed from Alice to Bob. Alice and Bob share access to a common source of randomness
that can be used to determine the protocol. The communication complexity of fC in the
one-way shared randomness model is denoted RA→B(fC).

A fundamental function fC studied in the one-way shared randomness model is Aug-
mented Index. Alice’s input to this function is a set A ⊆ [t] while Bob’s input is an
index i ∈ [t] and the set B = A ∩ [i− 1]. The output of Augmented Index is 1 if i ∈ A
and 0 otherwise. No randomized one-way communication protocol for this function does
significantly better than the näıve protocol where Alice communicates her whole set to
Bob.

Theorem 6.2.1 ([150]). The one-way communication complexity of Augmented Index
in the shared randomness model is RA→B(Augmented Index) = Θ(t).

The connection between communication complexity and property testing is established
via combining operators. An operator ψ that takes as input a and b, the inputs of Alice
and Bob, respectively, and outputs a function h(x) = ψ[a, b](x) is called a one-bit one-
way combining operator if for all x in the domain of h, Bob can compute the value h(x)
with only one bit of communication from Alice. Next we summarize the conditions on the

82

combining operator which are sufficient for a successful reduction from the Augmented
Index communication game to the problem of testing a given property.

Definition 6.2.3 (Reduction operator). Let t ∈ N be a parameter. A combining opera-
tor ψ[A, i,B] is called a reduction operator for (the Augmented Index problem and) a
property5 Pt and a value ε0 ∈ (0, 1) if it is a one-bit one-way combining operator and the
function h = ψ[A, i,B] satisfies the following two conditions for all valid inputs A ⊆ [t],
i ∈ [t] and B = A ∩ [i− 1] to Augmented Index:

1. If Augmented Index(A, i,B) = 0 then h ∈ Pt.

2. If Augmented Index(A, i,B) = 1 then h is ε0-far from Pt.

The following lemma is implicit in [37].

Lemma 6.2.2 (Reduction lemma). If there exists a reduction operator for (the Aug-
mented Index problem and) a property Pt and a value ε0 ∈ (0, 1) then for all ε ∈ (0, ε0],
every nonadaptive ε-test for Pt requires Ω(t) queries.

Proof. To prove the lemma, we reduce the Augmented Index communication game to
the problem of ε-testing property Pt and then apply Theorem 6.2.1.

Let ψ[A, i,B] be a reduction operator. Consider a nonadaptive ε-test T for Pt that
makes at most q(t) queries for some ε ∈ (0, ε0]. Then the following protocol for Augmented
Index uses q(t) bits of communication from Alice to Bob. In this protocol, both players run
the test T using shared randomness to find out the positions x1, . . . , xq queried by the test.
Since T is nonadaptive, they can run it on any input of the right size. Then Alice sends to
Bob q ≤ q(t) bits of information that Bob needs to compute h(x1), . . . , h(xq), where h =
ψ[A, i,B]. One bit per query point is sufficient because ψ is a one-bit one-way combining
operator. Bob answers the queries of T with h(x1), . . . , h(xq) and outputs 0 if T accepts and
1 otherwise. The correctness of the protocol for the cases when Augmented Index(A, i,B)
is 0 and 1, respectively, follows from the conditions 1 and 2 of Definition 6.2.3.

The reduction establishes that RA→B(Augmented Index) ≤ q(t). Consequently, by
Theorem 6.2.1, the query complexity of the test, q(t), is Ω(t).

6.3 Lower bounds on the line

We use two classes of functions on the domain [2m] (where6 m ∈ N) in the constructions
that establish the lower bounds on the query complexity for testing properties of functions
on the line: step functions and Walsh functions. Functions in both classes are constant on
blocks of inputs in [2m], which we define next.

Definition 6.3.1 (Blocks). Let i ∈ {0, . . . ,m}. For k ∈ [2m−i], the kth block of length 2i

is the set of integers [2i(k − 1) + 1, . . . , 2ik]. We denote this block Bi
k.

5In our reductions, the integer t is used to parameterize the size of the domain of functions under
consideration. Specifically, for functions on the d-dimensional hypergrid domain [n]d, we set n = 2t/d.

6The parameter m is set to t in the application of the reduction lemma (Lemma 6.2.2) to testing functions
on the line; in the case of d-dimensional hypergrids, it is set to t/d.

83

Observe that blocks of length 2i partition [2m].

Definition 6.3.2 (Step functions). For i ∈ {0, . . . ,m}, the step function of block length
2i is the function si : [2m]→ [2m−i] defined by si(x) = k, such that x ∈ Bi

k. (Equivalently,
si(x) =

⌊
x−1
2i

⌋
+ 1.)

The step functions of block length 2i are constant on each block Bi
k. Walsh functions

indexed by i, which we define next, are equal to 1 on the first half of each block Bi
k and

to -1 on the second half. In other words, whether they take the value 1 or -1 on input x
is determined by the ith bit of the binary representation of x − 1, denoted by biti(x − 1),
where the bits are numbered starting from the least significant.

Definition 6.3.3 (Walsh functions). For i ∈ [m], let wi : [2m] → {−1, 1} be the function
defined by wi(x) = (−1)biti(x−1). For any S ⊆ [m], Walsh function wS : [2m] → {−1, 1}
corresponding to S is wS(x) =

∏
i∈S wi(x). (If S = ∅ then wS(x) = 1 for all x.)

Also, we define wm+1(x) = 1. (This is needed only in one of the proofs).

For two functions u,w we denote the the function v(x) = u(x)w(x) by u × w. We
use ‖ · ‖ to denote the L1-norm, that is, ‖u‖ =

∑
x u(x), where the sum is over all x in

the domain of u. With this notation, we can express the fundamental properties of Walsh
functions that we will use in our proofs.

Proposition 6.3.1. 1. ‖wS‖ ≥ 0 for all sets S ⊆ [m].

2. For all sets A,B ⊆ [m], Walsh function wA4B : [2m]→ {−1, 1} corresponding to the
symmetric difference between A and B satisfies wA4B = wA × wB.

6.3.1 Monotonicity

Theorem 6.3.2. Fix ε ∈ (0, 1
4]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for

monotonicity of functions f : [n]→ [r] requires Ω(min(log n, log r)) queries.

Proof. To prove the lower bound of Ω(log n) queries (for n < r), we apply the reduction
lemma (Lemma 6.2.2) with the parameter t in the lemma set to m. To get the bound of
Ω(log r) queries (for r ≤ n), we use the same proof with t set to blog2(r− 1)c, except that
the sets given to Alice and Bob reside in {m− t+ 1, . . . ,m} instead of [m]. Let ψ be the
combining operator that receives Alice’s set A, and Bob’s index i and set B as input and
returns the function h : [2m]→ Z defined by

h(x) = 2si(x) + wS(x),

where S = A4B = A∩ {i, . . . ,m}. The range of h is [2 · 2t−1 + 1] = [2t + 1], i.e. it is equal
to [n+ 1] when t = m and to [r] when t = blog2(r − 1)c.

By Proposition 6.3.1(2), wS = wA × wB. Bob knows B, so to determine h(x) he only
needs Alice to communicate a single bit—namely, the value wA(x). Thus, ψ is a one-bit
one-way combining operator.

To prove that ψ is a reduction operator for monotonicity of functions on the line and
ε0 = 1/4, it remains to show that it satisfies Items 1 and 2 of Definition 6.2.3. To demon-
strate this, we prove the following lemma, which in addition to the required statements
about h, also contains a statement about a related function h− needed in Section 6.4.1.

84

Lemma 6.3.3. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. Consider the functions h = 2si +wS and
h− = 2si − wS .

1. If i /∈ S, then the functions h and h− are monotone;

2. If i ∈ S, then the function h is 1
4 -far from monotone.

Proof. Recall the definition of blocks (Definition 6.3.1). When i /∈ S, i.e., S ⊆ {i +
1, . . . ,m}, the functions si, wS and −wS are constant on each block Bi

k (for k ∈ [2m−i]).
The value of of functions wS and −wS can decrease (from 1 to -1) only between the blocks
(i.e., if wS(x) > wS(x + 1) then x ∈ Bi

k and (x + 1) ∈ Bi
k+1 for some k ∈ [2m−i − 1]).

But the step function si increases by 1 on each subsequent block Bi
k. Thus, h and h− are

monotone (nondecreasing). This completes the proof of Item 1.
When i ∈ S, i.e., i is the smallest element in S, Walsh function wS changes value

in the middle of each block Bi
k. If this change is from 1 to -1, then wS is 1/2-far from

monotone on this block, and so is h because the step function si is constant on each Bi
k.

Note that this change is from 1 to -1 for all blocks on which wS\{i} evaluates to 1. By
Proposition 6.3.1(1), ‖wS\{i}‖ ≥ 0, so it happens for at least half of the blocks. Thus, h is
1
4 -far from monotone.

By Lemma 6.3.3, the function h is monotone when i /∈ A and it is 1
4 -far from monotone

when i ∈ A. That is, ψ is a reduction operator for monotonicity of functions of the form
f : [2m] → [t + 1] and ε0 = 1/4. Then, by Lemma 6.2.2, any nonadaptive ε-test for this
property, where ε ∈ (0, 1/4] requires Ω(t) queries. That is, when r > n, we get a bound of
Ω(m) = Ω(log n), and when r ≤ n, we get a bound of Ω(log r).

6.3.2 Convexity

Recall that the function f : [n] → R is convex if for all x, y ∈ [n] and all ρ ∈ [0, 1]
such that ρx+ (1− ρ)y is also an integer in [n], the function f satisfies f(ρx+ (1− ρ)y) ≤
ρf(x)+(1−ρ)f(y). Equivalently, we can define convexity in terms of the discrete derivative
of functions on the line.

Definition 6.3.4 (Discrete derivative). The discrete derivative of the function f : [n]→ R
is the function f ′ : [n− 1]→ R defined by f ′(x) = f(x+ 1)− f(x).

Definition 6.3.5 (Convexity, concavity). The function f : [n] → R is convex (resp.,
concave) if its derivative f ′ is a monotone nondecreasing (resp., nonincreasing) function.

We present a lower bound for testing the convexity of functions on the line; the same
bound also applies for testing concavity.

Theorem 6.3.4. Fix ε ∈ (0, 1
8] and n = 2m for some m ≥ 1. Any nonadaptive ε-test for

convexity of functions f : [n]→ [r], where r = Ω(n2), requires Ω(log n) queries.

Proof. We apply the reduction lemma (Lemma 6.2.2) with the parameter t in the lemma
set to m. Our construction for the lower bound uses Walsh functions and rising-step-
size functions, which are built from step functions (see Definition 6.3.2). The discrete
derivatives of these new functions, which we call double-step functions, play a crucial role
in our construction.

85

Definition 6.3.6 (Rising-step-size and double-step functions). Fix i ∈ [m]. The rising-
step-size function ri : [n] → [n2] is defined by ri(x) = si(x) + 2

∑x−1
y=1 si(y). Its discrete

derivative, r′i(x) = si(x + 1) + si(x), is called a double-step function. Equivalently (by
Definitions 6.3.1 and 6.3.2), for all k ∈ [2m−i], function r′i(x) is equal to 2k on all but the
last element x of the block Bi

k, and to 2k + 1 on the last element of Bi
k.

Given Alice’s set A ⊆ [m] and Bob’s index i ∈ [m] and the prefix set B = A ∩ [i − 1]
the combining operator ψ[A, i,B] returns the function

h(x) = ri(x) +
1

2
(wS(x) + 1),

where S = A4B = A ∩ {i, . . . ,m}. Since wS = wA × wB, the operator ψ is a one-bit
one-way combining operator. It remains to show that if i /∈ A, then h is convex and that if
i ∈ A, then h is 1/8-far from convex. We do so in the following lemma, which is also used
in Section 6.4.3.

Lemma 6.3.5. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. The functions h = ri + 1
2(wS + 1) and

h− = ri − 1
2(wS + 1) satisfy the following properties.

1. If i /∈ S, then h and h− are convex;

2. If i ∈ S, then h is 1
8 -far from convex.

Proof. First, consider the case where i /∈ S. The discrete derivative of h is h′(x) = r′i(x) +
1
2w
′
S(x). It is sufficient to prove that h′ is nondecreasing. Since S ⊆ {i + 1, . . . ,m}, the

function wS is constant on each block Bi
k (for k ∈ [2m−i]). That is, for all but the last

element x of a block Bi
k, the discrete derivative w′(x) = 0 and, consequently, h′(x) =

r′i(x) = 2k. Now consider h′(x), where x is the last element of a block Bi
k. Recall that

r′i(x) = 2k + 1. Since Walsh functions are ±1-valued, the value 1
2w
′
S(x) is in {−1, 0, 1}.

Thus, h′(x) ∈ [2k, 2k+2], i.e., h′(x−1) ≤ h′(x) ≤ h′(x+1). Therefore, h′ is a nondecreasing
function. The same argument shows that when i /∈ S, the function h− is also convex.

Now consider the case where i ∈ S. We start the analysis of this case by showing that
for at least half of the blocks Bi

k, the derivative w′S(x) = −2 on the 2i−1th element of Bi
k

(i.e., on the input x = 2i(k − 1) + 2i−1.) Note that wS = wi ×wS\{i}. Proposition 6.3.1(1)
gives that ‖wS\{i}‖ ≥ 0, implying that Prx[wS\{i}(x) = 1] ≥ 1/2. Since S ∩ [i − 1] = ∅,
the function wS\{i} is constant within the blocks Bi

k. Thus, for at least half of these
blocks it is a constant 1. For each block Bi

k, the function wi is 1 on the first half of the
block and −1 on the second half. Combining these observations, for half of the blocks
Bi
k, the derivative of wS on the middle point x = 2i(k − 1) + 2i−1 of the block satisfies

w′S(x) = wS(x+ 1)− wS(x) = wS\{i}(x+ 1) · wi(x+ 1)− wS\{i}(x) · wi(x) = −2.
Let Bi

k be a block where w′S(x) = −2 on the 2i−1th element x of Bi
k. Note that

w′S(x) = 0 on all other inputs in the block apart from the last one because wS is constant
on all blocks Bi−1

j . Consider any three points x, y, z ∈ Bi
k such that x ≤ (k− 1)2i + 2i−1 <

y < z, namely, x is in the first half of the block Bi
k while y and z are in the second

half. Then h′(y) = h′(y + 1) = · · · = h′(z − 1) = 2k so (h(z) − h(y))/(z − y) = 2k.
However, h′((k − 1)2i + 2i−1) = 2k − 2 so (h(y) − h(x))/(y − x) < 2k, which violates
convexity. To fix convexity on all such triples, we must change the value of h on all the

86

points (k− 1)2i + 1, . . . , (k− 1)2i + 2i−1 in the first half of the block Bi
k, or on all but one

point in the second half of Bi
k. Thus, we need to change at least 1/4 of the points in Bi

k.
Since this is the case for at least half of all blocks, h is 1/8-far from convex.

Lemma 6.3.5 completes the proof that ψ is a reduction operator for convexity and,
thus, of the claimed lower bound for convexity.

6.3.3 The Lipschitz property

Theorem 6.3.6. Fix ε ∈ (0, 1
4]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for the

Lipschitz property of functions f : [n]→ [r] requires Ω(min(log n, log r)) queries.

Proof. To obtain the Ω(log n) bound (for r > n), we apply the reduction lemma (Lemma 6.2.2)
with the parameter t in the lemma set to m.

Definition 6.3.7 (Up-down staircase functions). For all i ∈ {0, 1, . . . ,m}, let the up-down
staircase function of block-length 2i be the function ui : [2m] → [2i], such that ui(1) = 1
and the discrete derivative of ui is

u′i(x) =

{
0 if x is divisible by 2i;

wi+1(x) otherwise.

In other words (using Definition 6.3.1), function ui takes values 1, . . . , 2i on consecutive
inputs from the block Bi

j if j is odd, and values 2i, . . . , 1 if j is even.

The combining operator ψ receives Alice’s set A, and Bob’s index i and set B as input
and returns the function h : [2m]→ Z defined by

h(x) = ui(x)− 1

2
(wS(x) + 1),

where S = A4B = A ∩ {i, . . . ,m}. Since wS = wA × wB, the operator ψ is a one-bit
one-way combining operator. It remains to show that if i /∈ A, then h(x) is Lipschitz and
otherwise it is 1/4-far from Lipschitz. To demonstrate this, we prove a stronger lemma,
which is also used in Section 6.4.3.

Lemma 6.3.7. Fix i ∈ [m] and S ⊆ {i, . . . ,m}. Consider the functions h(x) = ui(x) −
1
2(wS(x) + 1) and h−(x) = ui(x)− 1

2(−wS(x) + 1).

1. If i /∈ S, then the functions h and h− are Lipschitz;

2. If i ∈ S, then the function h is 1
4 -far from Lipschitz.

Proof. If i /∈ S, i.e., S ⊆ {i + 1, . . . ,m}, then the function wS is constant on each block
Bi
k (for k ∈ [2m−i]). Let w(x) = −1

2(wS(x) + 1). Since Walsh functions are ±1-valued, the
discrete derivative w′(x) is in {−1, 0, 1} for all x, and w′(x) = 0 for all x not divisible by 2i.
By definition of the up-down staircase functions, u′i(x) ∈ {−1, 0, 1} for all x, and u′i(x) = 0
for all x divisible by 2i. Thus, h′ = u′i + w′ takes values only in {−1, 0, 1}, implying that
h is Lipschitz. The proof that h− is Lipschitz is analogous.

87

When i ∈ S, i.e., i is the smallest element in S, the rescaled Walsh function w(x) =
−1

2(wS(x) + 1) changes value in the middle of each block Bi
k. This change is either from -1

to 0 or vice versa. In the former case, the discrete derivative w′ is 1 on the 2i−1th element
of the block, in the latter, it is -1. In both cases, it is 0 on all other elements of the block
besides the last one. Next we show that if the former case occurs on a block with odd i
(similarly, if the latter case occurs on a block with even i), then h is 1/2-far from Lipschitz
on this block.

Consider the case when i is odd and w′ is 1 on the 2i−1th element of a block Bi
k. Since

i is odd, u′i takes value 1 on all but the last element of Bi
k. Then h′ = u′i + w′ is 2 on

the 2i−1th element of Bi
k, and 1 on all other elements of the block besides the last one.

We pair up all elements of Bi
k as follows: each element x in the first half of the block is

paired up with the element x + 2i−1. The function h is not Lipschitz on each such pair:

h(x+ 2i−1)−h(x) =
∑x+2i−1−1

y=x h′(y) = 2i−1 + 1. Thus, h is 1/2-far from Lipschitz on each

such block. The other case (when i is even and w′ is -1 on the 2i−1th element of a block
Bi
k) is analogous—the only difference is that h′ takes negative values.

We can rephrase what we just proved as follows: the function h is 1/2-far from Lipschitz
on all blocks Bi

k with k ∈ [2m−i], where wS\{i}(x) = wi+1(x) for all x ∈ Bi
k. Equivalently,

wS\{i}(x) × wi+1(x) = w(S\{i})4{i+1}(x) = 1 for all x ∈ Bi
k. By Proposition 6.3.1(1),

‖w(S\{i})4{i+1}‖ ≥ 0. Since w(S\{i})4{i+1} is constant on each block Bi
k, it is 1 on at least

half of such blocks. Thus, h is 1/2-far from Lipschitz on at least half of the blocks Bi
k.

That is, overall h is 1/4-far from Lipschitz.

This completes the proof of the Ω(log n) lower bound. To get the bound of Ω(log min{n, r}),
we use the same proof with t set to min{m, blog2(r− 1)c}. The range of h is {0, 1, . . . , 2t},
i.e., it has size min(n+ 1, r).

6.4 Lower bounds on the hypergrid

In this section, we generalize the lower bounds for testing functions on the line to the
hypergrid setting. To obtain our lower bounds for testing functions on the domain [2m]d,
we give a reduction from the Augmented Index problem by applying the reduction lemma
(Lemma 6.2.2) with the parameter t set to md. With this parameter setting, inputs to
Augmented Index consist of subsets of [md] and an index in [md]. We associate each
such subset with a d-dimensional vector of subsets of [m] and each such index with a
d-dimensional vector of indices in {0, 1, . . . ,m}.

Definition 6.4.1 (Vector representation). Fix m, d ∈ N. The d-dimensional vector corre-
sponding to the set S ∈ [md] is S = (S1, . . . ,Sd), where Sj = {` ∈ [m] : (j − 1)m+ ` ∈ S}
for every j ∈ [d]. The d-dimensional vector corresponding to the index i ∈ [md] is
i = (i1, . . . , id), where ij = max{0,min{m, i− (j − 1)m}} for every j ∈ [d].

Equivalently, i = (m, . . . ,m, ij∗ , 0, . . . , 0), where j∗ = di/me and ij∗ = i − (j∗ − 1)m.
Observe that i ∈ S iff ij∗ ∈ Sj∗ . Recall that in the Augmented Index problem, Bob
is given an element i, and he has to find out whether i is in Alice’s set. Intuitively, in
our reduction from Augmented Index to the problem of testing a property P (such as

88

monotonicity) of d-dimensional functions, the function h returned by the combining oper-
ator will satisfy P on all axis-parallel lines in dimensions other than j∗. Most restrictions
of h to lines in the special dimension j∗ will behave as in the one-dimensional case: many
of them will be far from P if i is in Alice’s set; otherwise, all of them will be in P. This
suffices for the proofs for monotonicity, the Lipschitz property and for separate convexity
(Definition 6.4.5), a property closely related (but not equivalent) to convexity. For convex-
ity itself, it doesn’t suffice to ensure that restrictions of the function on the axis-parallel
lines are convex, so in this case if i is in Alice’s set we construct the reduction in such a
way that projections on all (not necessarily axis-parallel) lines are convex.

Next we extend the definitions of step functions and Walsh functions (namely, Defini-
tions 6.3.2 and 6.3.3, respectively) to multiple dimensions.

Definition 6.4.2 (Componentwise sum). For a family of functions fi : [n] → R, indexed
by i ∈ {0, 1, . . . ,m}, and a vector i ∈ {0, 1, . . . ,m}d, the componentwise sum f̂i : [n]d → R
of f is defined by f̂i(x1, . . . , xd) =

∑d
j=1 fij (xj).

Definition 6.4.3 (Step functions). The step function indexed by the d-dimensional vec-
tor i ∈ [m]d is the componentwise sum ŝi : [2m]d → [d2m] defined by ŝi(x1, . . . , xd) =∑d

j=1 sij (xj).

Definition 6.4.4 (Walsh functions). The Walsh function indexed by the d-dimensional
vector S of subsets of [m] is the function wS : [2m]d → {−1, 1} defined by wS(x1, . . . , xd) =∏d
j=1wSj (xi).

Next we extend Proposition 6.3.1 to the hypergrid setting.

Proposition 6.4.1. 1. ‖wS‖ ≥ 0 for all d-dimensional vectors S of subsets of [m].

2. Fix A,B ⊂ [md], and S = A4B. Let A,B,S be the d-dimensional vector represen-
tations of sets A,B, S, respectively. Walsh function wS : [2m]d → {−1, 1} satisfies
wS(x) = wA(x) · wB(x) for all x ∈ [2m]d.

Proof of Item 1. It is sufficient to prove that if the random variables X1, . . . , Xd are i.i.d.
and uniform over [2m] then Pr[wS(X1, . . . , Xd) = 1] ≥ 1/2. If Sj = ∅ then wSj (Xj) = 1.
For all j ∈ [d] such that Sj 6= ∅, the random variables wSj (Xj) ∈ {−1, 1} are i.i.d. and
uniformly distributed over {−1, 1}. Thus, Pr[wS(X1, . . . , Xd) = 1] = Pr[

∏
j∈[d]wSj (Xj) =

1] ≥ 1/2.

Corollary 6.4.2. Let S be the d-dimensional representation of S ⊆ [md]. The product∏
k∈[d]\{j}wSk(xk), where xk ∈ [2m] for all k ∈ [d] \ {j}, evaluates to 1 for at least half of

the settings of variables xk.

Proof. Let S′ be the (d− 1)-dimensional vector (S1, . . . ,Sj−1,Sj+1, . . . ,Sd). Then:∏
k∈[d]\{j}

wSk(xk) = wS′(x1, . . . , xj−1, xj+1, . . . , xd).

By Proposition 6.4.1(1), this expression is 1 for at least half of the settings of xk.

89

6.4.1 Monotonicity

We extend our construction from Section 6.3.1 to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. We use Lemma 6.2.2, giving a reduction with parameter t = md.
Let A ⊆ [md] be Alice’s input and i ∈ [md] and B = A ∩ [i− 1] be Bob’s input.

The combining operator ψ is defined as follows. It receives A, i,B as input. Then it
computes S = A4B = A∩{i, . . . ,md} and the d-dimensional vectors i and S corresponding
to i and S, respectively. (See Definition 6.4.1. Also recall definitions of the step functions ŝi
and Walsh functions wS on the hypergrid—specifically, Definitions 6.3.2, 6.4.2 and 6.4.4.)
It returns the function h : [n]d → {d− 1, . . . , dn+ 1} defined by

h(x) = 2ŝi(x) + wS(x).

By Proposition 6.4.1, wS = wA · wB, where A and B are d-dimensional vector repre-
sentations of A and B, respectively. Bob knows i and B and can compute their vector
representations. To determine h(x), he only needs Alice to communicate the bit wA(x).
Thus, ψ is a one-bit one-way combining operator.

Lemma 6.4.3 concludes the proof that ψ is a reduction operator for monotonicity and
ε0 = 1/8, implying the theorem.

Lemma 6.4.3. Fix i ∈ [md] and S ⊆ {i, . . . , dm}, and let i and S, respectively, be their
d-dimensional vector representations.

1. If i /∈ S, then the function h is monotone;

2. If i ∈ S, then the function h is 1
8 -far from monotone.

Proof. Let j∗ = di/me. We will show that all line restrictions of h to dimensions other
than j∗ are monotone. If i /∈ S, we will show that all line restrictions of h to dimension j∗

are also monotone, so h itself is monotone. Conversely, if i ∈ S, we will show that at least
half of the line restrictions of h to dimension j∗ are 1/4-far from monotone, so h itself is
1/8-far from monotone.

Consider the restriction of h = 2ŝi + wS to a line in dimension j ∈ [d], i.e., a function
h̄ : [2m] → N defined by h̄(xj) = h(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄d), where the values x̄k ∈
[2m] are fixed for all k ∈ [d] \ {j}. Then

h̄(xj) = 2
∑
k 6=j

sik(x̄k) + 2sij (xj) + wSj (xj) ·
∏
k 6=j

wSk(x̄k)

= 2sij (xj)± wSj (xj) + c, (6.1)

where ± means “either + or -” and c is a constant independent of xj .
If j < j∗ then Sj = ∅, ij = m and h̄ = 2sm ± w∅ + c = 2 ± 1 + c. And if j > j∗ then

ij = 0, so h̄(xj) = 2xj ± wSj (xj) + c. In both cases, the function h̄ is monotone.
Finally, if j = j∗ then ij = i − (j − 1)m. In this case, i ∈ S iff ij ∈ Sj . If ij /∈ Sj

then, by (6.1) and Lemma 6.3.3, h̄(xj) is monotone. Since all line restrictions of h(x) are
monotone, the overall function h(x) is monotone. Now suppose ij ∈ Sj . Consider the
product

∏
k 6=j wSk(x̄k) that determines whether the expression ± in (6.1) is actually a plus

90

or a minus. By Corollary 6.4.2, this product evaluates to 1 for at least half of the line
restrictions h̄ of h in dimension j. For those restrictions, h̄(xj) = 2sij (xj) + wSj (xj) + c

and, since ij ∈ Sj , Lemma 6.3.3 implies that h̄ is 1
4 -far from monotone. Thus, at least half

of the line restrictions of h in dimension j are 1/4-far from monotone. Since the domains
of line restrictions of h in dimension j partition the domain of h, it implies that the overall
function h(x) is 1

8 -far from monotone.

6.4.2 Convexity

In this section, we give lower bounds for testing convexity and a related property called
separate convexity.

Definition 6.4.5 (Separate convexity). The function f : [n]d → R is separately convex if
for all i ∈ [d] and all sets of values (x̄1, . . . , x̄i−1, x̄i+1, . . . x̄d) ∈ [n]d−1, the one-dimensional
function f̄ : [n]→ R defined by f̄(xi) = f(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄d) is convex.

Separate convexity is a weaker property than (standard) convexity: every convex func-
tion is also separately convex, but the converse is not true.

Theorem 6.4.4. Fix ε ∈ (0, 1
8]; m, r ∈ N. Let n = 2m. Any nonadaptive ε-test for separate

convexity of functions f : [n]d → [r] where r = Ω(dn2) must make Ω(d log n) queries.

The proofs of Theorem 6.4.4 and Theorem 6.1.2 have some common elements so we
present them together.

Proof of Theorem 6.1.2 and Theorem 6.4.4. We apply Lemma 6.2.2 with parameter t =
md. Let A ⊆ [md] be the set received by Alice and let i ∈ [md] and B = A ∩ [i − 1] be
Bob’s input. Let j∗ = di/me. Let A,B and i be the d-dimensional vectors corresponding
to A,B and i respectively. The combining operator ψ receives A and i as input and returns
the function h : [n]d → R defined by

h(x1, . . . , xd) = α

(
1

2
(wS(x) + 1) + rij∗ (xj∗)

)
+

d∑
j=j∗+1

xj
2

where S is a d-dimensional vector corresponding to S = A4B = A ∩ {i, . . . ,md} and r
is the family of rising-step-size function (Definition 6.3.6). The parameter α > 0 will be
selected later. For any x ∈ [n]d, Bob only needs the single bit wA(x) from Alice to compute
h(x), so ψ is a one-bit one-way combining operator.

To show that ψ is a reduction operator for convexity (resp., separate convexity) we
need to show that if i /∈ S (or equivalently ij∗ /∈ Sj∗) then h is convex (resp., separately
convex) and otherwise h is 1

8 -far from convex (resp., separately convex).
We first show how to complete the proof using the following two lemmas and then

present their proofs below.

Lemma 6.4.5. If ij∗ /∈ Sj∗ then :

1. For α = 1 the function h is separately convex.

91

2. There exists a value of α > 0 such that the function h is convex.

Lemma 6.4.6. If ij∗ ∈ Sj∗ then the function h is 1
8 -far from separately convex for all

α > 0.

The proof of Theorem 6.4.4 for separate convexity is completed by setting α = 1 and
noting that the range of h is [r] for [r] = O(dn2) because for every k ∈ [m] the range of rk
is O(n2). In the proof of Theorem 6.1.2 for convexity we set α to the value from the second
part of Lemma 6.4.5. Then Lemma 6.4.6 implies that h is 1

8 -far from convex because the
distance to convexity is at least the distance to separate convexity.

Proof of Lemma 6.4.5, Part 1. The proof follows by showing that every restriction of h to
any dimension j ∈ [d] is a convex function.

Every one-dimensional restriction h̄ of h in dimension j∗ can be expressed as h̄(xj∗) =
α(rij∗ (xi)±

1
2wSj∗ (xj∗))+c, where c is some constant independent of xj∗ . Because ij∗ /∈ Sj∗

this function is convex by Lemma 6.3.5. For all j < j∗ every one-dimensional restriction h̄
of h to dimension j is a constant function. For all j > j∗, the restrictions of h to dimension
j can be expressed as h̄(xj) = ±1

2αwSj (xj) + xj
2 + c. The derivative of the first term wSj

satisfies that |12αw
′
Sj

(xj)| ≤ α and the derivative of the second term is 2xj , so for α ≤ 1

the derivative h̄′ is a nondecreasing function and h̄ is convex. Hence, the function h is
separately convex for all α ≤ 1.

Proof of Lemma 6.4.5, Part 2. We show how to pick a parameter 0 < α < 1 such that the
function h is convex. By definition, to prove convexity we need to show that for every pair
of points (x, y) ∈ [n]d × [n]d and every 0 < γ < 1 for which z = γx + (1 − γ)y ∈ [n]d, we
have that h(z) ≤ γh(x) + (1− γ)h(y).

The function h is independent of the first j∗ − 1 coordinates, so that:

h(x) = h(y1, . . . , yj∗−1, xj∗ , . . . , xd)

and
h(z) = h(y1, . . . , yj∗−1, zj∗ , . . . , zd).

First, consider the case when for all j > j∗ it holds that xj = yj so we have x =
(x1, . . . , xj∗ , yj∗+1, . . . , yd). By Lemma 6.4.5 (Part 1), all the restrictions h̄ of h to dimension
j∗ are convex, so in this case h(z) ≤ γh(x) + (1− γ)h(y).

Otherwise, fix an index j > j∗ such that xj 6= yj .

Proposition 6.4.7. Define φj∗(x) =
∑d

t=j∗+1 xt
2. For all n, d ≥ 1 there exists a value

δ∗(n, d) > 0 such that the inequality

φj∗(γx+ (1− γ)y) ≤ γφj∗(x) + (1− γ)φj∗(y)− δ∗(n, d)

holds for all pairs (x, y) such that xj 6= yj for some j > j∗ and all γ ∈ (0, 1) such that
γx+ (1− γ)y ∈ [n]d.

Proof. We have:

φj∗(γx+ (1− γ)y)− γφj∗(x)− (1− γ)φj∗(y)

92

=
d∑

t=j∗+1

(γxt + (1− γ)yt)
2 − γ

d∑
t=j∗+1

xt
2 − (1− γ)

d∑
t=j∗+1

yt
2

=
d∑

t=j∗+1

(
(γxt + (1− γ)yt)

2 − γxt2 − (1− γ)yt
2
)

≤
(

(γxj + (1− γ)yj)
2 − γxj2 − (1− γ)yj

2
)
< 0.

The first inequality uses convexity of x2. The second inequality uses its strict convexity
and the fact that xj 6= yj .

Let δ(x, y, j, γ, n, d) = −
(

(γxj + (1− γ)yj)
2 − γxj2 − (1− γ)yj

2
)
> 0. Note that j and γ

can take at most d and nd different values respectively for any fixed pair (x, y). Thus there
are at most dn3d different valid tuples (x, y, j, γ). The claim follows by letting δ∗(n, d) =
minx,y,j,γ δ(x, y, j, γ, n, d).

We set α = δ∗(n,d)
6(2n2+1)

. Using the notation introduced above,

h(x) = α

(
1

2
(wS(x) + 1) + rij∗ (xj∗)

)
+
∑
j>j∗

xj
2 = α

(
1

2
(wS(x) + 1) + rij∗ (xj∗)

)
+φj∗(x).

Because the range of cij∗ is [2n2],

h(z)− γh(x)− (1− γ)h(y) ≤ φj∗(z)− γφj∗(x)− (1− γ)φj∗(y) + 3α(2n2 + 1)

≤ −δ∗(n, d) + 3α(2n2 + 1) = −δ∗(n, d)/2 < 0,

where the inequalities follows from Proposition 6.4.7. This concludes the proof of the fact
that h is convex.

Proof of Lemma 6.4.6. If ij∗ ∈ Sj∗ then by Corollary 6.4.2 the product
∏
k 6=j∗ wSk(xk)

evaluates to 1 for at least half of the line restrictions h̄ of h to dimension j∗. For such
restrictions, h̄(xj∗) = α(1

2wSj∗ (xj∗) + rij∗ (xj∗)) + c, for some constant c. Lemma 6.3.5

implies that h̄ is 1
8 -far from convex. The domains of the restrictions h̄ of h in dimension

j∗ partition the domain of h, so we conclude that the function h is 1
8 -far from separately

convex.

6.4.3 The Lipschitz property

In this section, we extend our construction from Section 6.3.3 to prove Theorem 6.1.3.

Proof of Theorem 6.1.3. The starting point of the reduction is the same as in the proof
of the lower bound for monotonicity in Section 6.4.1. We use the same notation for the
parameters of the reduction from Augmented Index, Alice’s and Bob’s inputs, the set
S = A4B = A ∩ {i, . . . ,md} and the vector representation of these objects. Let ûi be
the componentwise sum (see Definition 6.4.2) of the up-down staircase functions ui (see

93

Definition 6.3.7). The combining operator ψ returns the function

h(x) = ûi(x)− 1

2
(wS(x) + 1).

As in the proof of Theorem 6.1.1, ψ is a one-bit one-way combining operator. The next
lemma completes the proof of the theorem.

Lemma 6.4.8. Fix i ∈ [md] and S ⊆ {i, . . . , dm}, and let i and S be their respective
d-dimensional vector representations.

1. If i /∈ S, then the function h is Lipschitz;

2. If i ∈ S, then the function h is 1
8 -far from Lipschitz.

Proof. Consider the restriction of h to a line in dimension j ∈ [d], i.e., consider the single-
variate function h̄(xj) = h(x̄1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄d), where the values x̄k ∈ [2m] are
fixed for all k ∈ [d] \ {j}. Then

h̄(xj) =
∑
k 6=j

uik(x̄k) + uij (xj)−
1

2

(
wSj (xj) ·

∏
k 6=j

wSk(x̄k) + 1
)

= uij (xj)−
1

2
(±wSj (xj) + 1) + c, (6.2)

where ± means “either + or -” and c is a constant independent of xj .
Let j∗ = di/me. If j < j∗ then Sj = ∅, ij = m and h̄ = uij − 1

2(±1 + 1) + c. Since
every up-down staircase function ui is Lipschitz, and since a Lipschitz function plus a
constant function is Lipschitz, the resulting function h̄ is Lipschitz. If j > j∗ then ij = 0,
so h̄(xj) = 1− 1

2(±wSj (xj) + 1) + c,, i.e., h̄ is again a Lipschitz function because it is the
sum of a Lipschitz function and a constant function.

Finally, if j = j∗ then ij = i− (j − 1)m. In this case, i ∈ S iff ij ∈ Sj . If ij /∈ Sj then,
by (6.2) and Lemma 6.3.7, h̄ is Lipschitz. Since all line restrictions of h are Lipschitz, the
overall function h is Lipschitz. Now suppose ij ∈ Sj . Consider the product

∏
k 6=j wSk(x̄k)

that determines whether the expression ± in (6.1) is actually a plus or a minus. By
Corollary 6.4.2, this product evaluates to 1 for at least half of the line restrictions h̄(xj)
of h in dimension j. For those restrictions, h̄(xj) = uij + 1

2(wSj + 1)(xj) + c and, since

ij ∈ Sj , Lemma 6.3.7 implies that h̄ is 1
4 -far from Lipschitz. Thus, at least half of the line

restrictions of h in dimension j are 1/4-far from Lipschitz. Since the domains of the line
restrictions of h in dimension j partition the domain of h, the overall function h is 1

8 -far
from Lipschitz.

Acknowledgment

The authors would like to thank Madhav Jha for his participation in the project. He
declined to be a co-author, but we would like to acknowledge his contributions to the
results presented here. We also thank Joshua Brody for insightful conversations about
communication complexity.

Chapter 7
Beyond Direct-Sum with Application
to Sketching

7.1 Introduction

We study the two-party communication complexity of solving multiple instances of a
function f(x, y). In this setting, Alice has x1, . . . , xk, while Bob has y1, . . . , yk, and
they would like to communicate as few bits as possible in order to compute the list
(f(x1, y1), . . . , f(xk, yk)) with probability at least 2/3. We call this problem fk((x1, . . . , xk),
(y1, . . . , yk)). A natural protocol for fk would be for Alice and Bob to run an independent
protocol for each i ∈ [k] to compute f(xi, yi) with probability at least 1−1/(3k). Then, by
a union bound, the entire list is computed correctly with probability at least 2/3. If we let
Rδ(f) denote the minimal communication cost of a randomized protocol for computing f
with probability at least 1− δ, this gives us the upper bound R1/3(fk) = O(kR1/(3k)(f)).
A natural question is whether this is optimal.

A direct sum theorem in communication complexity states that solving k copies of f
with probability at least 2/3 requires at least k times as much communication as solving a
single copy with probability at least 2/3, that is, R1/3(fk) = Ω(kR1/3(f)). The direct sum
problem is the focus of much work [46, 186, 123, 114, 25, 135, 43]. The direct sum theorem
is known to hold for a number of specific functions, though it is not true for randomized
private coin communication in general, as demonstrated by the Equality function. For this
function, Alice and Bob have x ∈ {0, 1}k and y ∈ {0, 1}k respectively, and f(x, y) = 1 if
x = y, otherwise f(x, y) = 0. In this case, R1/3(fk) = Θ(k) [90], yet R1/3(f) = Θ(log k)
[143].

One of the most general known results about direct sums for communication is the
following. Letting Dµ

1/3(fk) denote the distributional complexity of fk, that is, the minimal

cost of a deterministic protocol for computing fk which errs on at most a 1/3 fraction of
inputs, weighted according to distribution µ, then Dµ,r

1/3−ε(f
k) = Ω(k(Dµ

1/3(f)−r log(1/ε)−

O(
√
Dµ

1/3(f)r))), where Dµ,r
1/3−ε(f

k) denotes the minimal cost of a deterministic protocol

for computing fk with error probability at most 1/3 − ε according to µ, and which uses

95

at most r rounds of communication [43]. Moreover, this holds even if the protocol is only
required to individually solve each of the n copies of f with probability at least 1/3 − ε,
rather than to simultaneously solve all copies. Other related work includes direct product
theorems, which state that any protocol which uses o(kR1/3(f)) communication has success

probability at most exp(−k) in solving fk. Direct product theorems are known to hold
for several functions, such as disjointness [135] and bounded round public-coin randomized
communication [121, 122]. For more discussion on the latter two works, see below.

The starting point of our work is the following observation: even if a direct sum or
direct product theorem were to hold for a function f , this is not enough to obtain optimal
communication bounds, since one would only be able to conclude that:

Ω(kR1/3(f)) = R1/3(fk) = O(kR1/(3k)(f)).

The ratio of the upper and lower bounds is O(R1/(3k)(f)/R1/3(f)), which can be as large
as Θ(log k). This Θ(log k) factor is important in applications, which we describe below.
Generic direct sum (or direct product) theorems are not suitable for addressing this gap,
since such theorems do not take into account whether or not f becomes harder with
smaller error probability, i.e., whether Rδ(f) � Rδ′(f) for δ � δ′. For many functions,
R1/3(f) = Θ(R0(f)), e.g., for the disjointness problem, and there is nothing to prove in
this case. Still for other functions, such as equality on n-bit strings, one can show that
Rδ(f) = Θ(log 1/δ + log n), and so Rδ(f)� Rδ′(f) for δ � δ′ � 1/n.

Our Results: Our main theorem is a strengthening of the direct sum theorem for two-
party randomized communication complexity to address this gap. We note that although
our applications are for 1-way protocols, our main theorem holds for general 2-way commu-
nication. For that, we introduce the notion of deterministic protocols Π with the following
“abortion” property.

Definition 7.1.1 (Protocols with abortion). Consider a communication problem given by
f : X × Y → Z and a probability distribution µ over X × Y. We say that a deterministic
protocol ΠD (β, δ)-computes f with respect to µ if it satisfies the following (where (X,Y) ∼
µ):

1. (Abortion probability) Pr[ΠD(X,Y) = ‘abort’] ≤ β

2. (Success probability) Pr[ΠD(X,Y) 6= f(X,Y) | ΠD(X,Y) 6= ‘abort’] ≤ δ.

We can view randomized protocols as distributions over deterministic protocols (both for
private-coin and public-coin protocols). We say that a randomized protocol Π (α, β, δ)-
computes f with respect to µ if Pr

ΠD∼Π
[ΠD (β, δ)-computes f] ≥ 1 − α. The probability is

taken over all randomness of the parties.

One should think of β � δ. Notice that a protocol that (β, δ)-computes f is more
powerful than a deterministic protocol which errs with probability at most ≈ β on the input
distribution µ, since it “knows when it is wrong”. On the other hand, it is less powerful
than a deterministic protocol which errs with probability at most δ on distribution µ.

In our proofs we use the information complexity framework (see Section 7.2 for an
introduction and basic definitions), developed and used for many important communication

96

complexity problems [23, 25, 46, 114]. Our definitions are most closely related to those
in [24] (see also [25]). Let λ be a distribution on X × Y × D with marginals µ on X × Y
and ν on D. Let (X,Y,D) ∼ λ and suppose for any value of d ∈ D that X and Y
are independent conditioned on D = d. The conditional information cost of Π under
λ is defined as I(Π(X,Y);X,Y |D), where (X,Y,D) ∼ λ. Let ICµ,α,β,δ(f |ν) denote the
minimum, over all protocols Π that (α, β, δ)-compute f , of I(X,Y ; Π | D), where with
some abuse of notation, Π is also used to denote the transcript of the protocol (that
is, the set of messages exchanged together with the output). We also use the notation
ICµ,δ(f |ν) to denote the minimum of I(X,Y ; Π | D) over all randomized protocols Π, which
(0, 0, δ)-compute f (that is, which err with probability at most δ on every input, where
the probability is over the random coins of Π). Notice that I(X,Y ; Π | D) ≤ H(Π) ≤ |Π|
(where |Π| is the maximum number of bits transmitted by Π over all inputs and choices of
randomness), and so ICµ,δ(f |ν) is a lower bound on Rδ(f). As we will also be interested in
1-way protocols, we use IC→µ,α,β,δ(f |ν) and IC→µ,δ(f |ν) to denote the above notions, where
the minimum is taken over only 1-way protocols Π.

The following is our main theorem.

Theorem 7.1.1. (Informal) For all δ ≤ 1/3,

ICµk,δ(f
k|νk) ≥ Ω(k) ICµ, 1

20
, 1
10
, δ
k
(f |ν),

and also IC→µk,δ(f
k|νk) ≥ Ω(k) IC→

µ, 1
20
, 1
10
, δ
k

(f |ν).

As an example usage of our theorem, we can apply it to the Equality function f
on k-bit strings. Namely, we are able to show for certain distributions µ and ν that
IC→µ,1/20,1/10,1/k(f |ν) = Ω(log k), matching the lower bound for protocols that are not al-

lowed to abort. Our theorem therefore implies that R→1/3(fk) = Ω(k log k), that is, the

randomized 1-way complexity of solving k copies of Equality simultaneously is Ω(k log k).
This is matched by a trivial O(k log k) upper bound which solves Equality independently
on each instance with probability 1−O(1/k). To the best of our knowledge, no such result
was known in the literature.

More importantly, we are able to apply our theorem to the augmented indexing problem
on large domains with low error [126], denoted by Inda(k,N). In this problem, Alice has a
list x1, x2, . . . , xN , each item belonging to the set [k] = {1, 2, . . . , k}, while Bob has input
j ∈ [N], x1, x2, . . . , xj−1, and y ∈ [k]. The function f evaluates to 1 if xj = y, and otherwise
it evaluates to 0. We consider 1-way protocols Π, where the message is sent from Alice to
Bob. It is known that R→1/k(f) = Θ(N log k) [126]. We are able to show that for certain

distributions µ and ν, we in fact have IC→µ,1/20,1/10,1/k(f |ν) = Ω(N log k). Plugging this

in to our main theorem, we obtain that R→1/3(fk) = Ω(kN log k). Previously, it was only

known that R→1/3(fk) = Ω(kN), which can be shown by using that IC→µ,1/3(f |ν) = Ω(N)

[23], and applying a standard direct sum argument [24].
Our lower bound is optimal in light of a trivial upper bound in which Alice sends

her entire input to Bob. The augmented indexing problem is known to have a long list of
applications to data streams and sketching, some of the most recent applications appearing
in [132, 129, 126], and so our lower bound on solving k copies of this problem applies to

97

solving multiple copies of these problems, as described below.
Applications: 1 Our first application is to the sketching complexity [120, 149] of

n-point Johnson-Lindenstrauss transforms. Here one wants to design a distribution over
k × d matrices S so that given any n points p1,p2, . . . ,pn in Rd, with probability at
least 1 − δ, for all i and j, ‖Spi − Spj‖2 = (1 ± ε)‖pi − pj‖2. See Definition 1 of [183],
where this is referred to as JLT(ε, δ, n). Alon [6] has shown that this problem requires
k = Ω(1

ε2
1

log 1/ε log n
δ) dimensions. Jayram and the second author show that for a constant

number of points (n = O(1)), k = Ω(ε−2 log 1
δ), which is also achievable by applying known

Johnson-Lindenstrauss transforms [126]. We note that such work does not imply that for
general n there is a lower bound of k = Ω(ε−2 log n

δ). Indeed, for all we knew, it could
have been that k = O(1

ε2
1

log 1/ε log n
δ), since there may be a better strategy than setting the

failure probability to O(δ/n2) and taking a union bound over the
(
n
2

)
pairs of points. Our

main theorem rules out this possibility, showing that k = Ω(ε−2 log n
δ) (Theorem 7.4.10). In

fact, the main theorem shows that even if S is allowed to depend on the first n/2 points in
an arbitrary way, the same lower bound still holds. In addition, we show that any encoding
φ(p1), . . . , φ(pn) that allows pairwise `p-distance estimation for p ∈ {1, 2} requires bit size
Ω(nε−2 log n

δ (log d+ logM)), where M is the largest entry in absolute value of the vectors
pi’s (Theorem 7.4.4); this is again optimal and achieved by known dimension reduction
techniques [119].

A related problem is that of sketching matrix product, initiated in [183]. Here one
wants to design a distribution over n×k matrices S, so that given n×n matrices A and B,
one can “sketch” the matrices to obtain AS and STB such that the matrix C = ASSTB
approximates the product AB for some measure of error. Ideally, we would like k to be
as small as possible, and obtain an entrywise error guarantee, namely, for all i, j ∈ [n],
we would like |(AB)i,j − Ci,j | ≤ ε‖Ai‖2‖Bj‖2, where Ai denotes the i-th row of A and
Bj the j-th column of B. This notion of error has been used in several works, see the
end of Section 1.1 of [160] for a discussion. In particular, Sárlos [183] achieves this error
guarantee with k = O(ε−2 log n

δ), for success probability 1 − δ. Later, Clarkson and the
second author [58] were able to achieve k = O(ε−2 log 1

δ) with the weaker guarantee that
‖AB − C‖F ≤ ε‖A‖F ‖B‖F . A natural question left open is whether k = O(ε−2 log 1

δ)
is possible with the entrywise error guarantee. Using our main theorem, we show that
this is not possible, namely that k = Ω(ε−2 log n

δ) is required in order to achieve the
entrywise error guarantee (Theorem 7.4.12). We therefore separate the complexity of the
two problems. Moreover, we show that sketches that satisfy the weaker guarantee that there
is a procedure f outputting a matrix such that |f(AS,B)i,j − (AB)i,j | ≤ ε‖Ai‖‖Bj‖ for all
matrices A,B ∈ [±M]n×n, then the bit size of AS is at least Ω(n 1

ε2
log n

δ (log n + logM)),
which is achieved in [183].

The final application we discuss is to multiple aggregation queries. While much of the
data stream literature involves sequentially processing a large database to answer a single
query, such as the number of distinct elements in a certain column or the join size of two
tables, what one usually wants is to perform a sequence of such queries to different parts
of the database. This issue was raised in [7], where the authors consider the setting of a

1All logarithms are base 2, unless otherwise specified. To simplify the notation, we assume throughout
that quantities like 1/ε2 and 1/δ are always integral.

98

relation which holds multiple tables, each of which has multiple columns of attributes. The
authors consider the problem of sketching each of the columns of attributes in each of the
different tables, so that the storage size of the database can be reduced, yet at any later
time, a user can ask for the join size along an attribute shared by two tables. They show
that if the number of tables and attributes is poly(n), then each column can be compressed
to O(ε−2 log n

δ logM) bits, where M is an upper bound on the number of records in each
table. It was left open whether or not this is optimal. Using our main theorem, we can
show that Ω(ε−2 log n

δ logM) bits are in fact necessary (Theorem 7.4.13).
All of our results concerning linear sketches also hold for the turnstile model of data

streaming [155, 9] and for more general data structures which, given their current state,
and an update to the underlying vector, can produce a new state. Such data structures
are sometimes referred to as mergeable summaries [3].

Our Techniques: Our starting point is the direct sum framework of [24]. There the
authors show that for (X,Y,D) ∼ λ with (X,Y) ∼ µ and D ∼ ν, if X and Y are in-
dependent conditioned on D = d for any d ∈ D, then ICµk,δ(f

k|νn) = Ω(k ICµ,δ(f |ν)).

To show this, they start with any randomized private coin protocol Π for fk, with in-
puts (X1, Y1), . . . , (Xk, Yk) and values D1, . . . , Dk, so that the Xi and Yi are independent
conditioned on Di. They study the mutual information between the transcript and the
inputs, conditioned on D1, . . . , Dk, namely I(X,Y; Π|D) = H(X,Y|D) −H(X,Y|Π,D),
where X = (X1, . . . , Xn), and Y and D are defined similarly. By the chain rule for mutual
information,

I(X,Y; Π | D) =

k∑
i=1

I(Xi, Yi; Π | D,X<i,Y<i),

where X<i and Y<i denote the first i− 1 coordinates of X and Y, respectively. For each
summand, we further have

I(Xi, Yi; Π | D,X<i,Y<i) =∑
x<i,y<i,

d−i

I(Xi, Yi; Π | Di,X<i = x<i,Y<i = y<i,D−i = d−i)

· Pr[X<i = x<i,Y<i = y<i,D−i = d−i],

where D−i denotes D with its i-th coordinate removed. The next step is the embed-
ding step, which argues that for any choice of x<i,y<i, and d−i, I(Xi, Yi; Π | Di,X<i =
x<i,Y<i = y<i,D−i = d−i) is at least ICµ,δ(f |ν). This step works by building a protocol
Π′ for solving f by hardwiring the values x<i,y<i and d−i into Π′. Then given inputs
(A,B) to Π′ distributed according to µ, the parties set Xi = A, Yi = B, and generate X>i

and Y>i using private randomness without any communication. This is possible given the
conditioning D−i = d−i. A randomized protocol Π for fk, for every input, solves f in
each coordinate simultaneously with probability at least 1−δ, and therefore Π′ is a correct
protocol for f with probability at least 1 − δ. Moreover, this simulation guarantees that
I(Xi, Yi; Π | Di,X<i = x<i,Y<i = y<i,D−i = d−i) = I(A,B; Π′ | Di) ≥ ICµ,δ(f |ν).

99

Our main idea is to change the embedding step as follows. Observe that

1− δ ≤ Pr(Π(X,Y) = fk(X,Y))

=
k∏
i=1

Pr(Πi(X,Y) = fki (X,Y) | Π<i(X,Y) = fk<i(X,Y)),

where Πi(X,Y) denotes the i-th coordinate of the output of Π, and fki (X,Y) the i-th
coordinate of the output of fk, and similarly define Π<i(X,Y) and fk<i(X,Y). Hence, by
averaging, most of the k terms in the product are at least 1−O

(
δ
k

)
. Qualitatively speaking,

conditioned on Π succeeding on a typical prefix of the first i − 1 coordinates, it is much
more likely to succeed on the i-th coordinate than it would be without this conditioning.

This motivates the following change to the embedding step: since x<i and y<i are
hardwired into Π, the parties know the value f(xj , yj) for all j < i, and given the output
of Π, can first verify whether or not Π<i(X,Y) = (f(x1, y1), . . . , f(xi−1, yi−1)). If this
condition holds, then they can output Πi(X,Y) as usual. However, if this condition fails
to hold, the parties output ‘abort’. We prove that for a typical prefix x<i,y<i, for most
of the random seeds of the protocol and for most choices of random suffixes X>i and
Y>i, the following holds: the parties only abort with constant probability over the inputs
(A,B) ∼ µ, and given that they do not abort, the output is correct with a very large
1 − O(1/k) probability. Moreover, we still have that the information revealed by this
protocol can be used to lower bound the term I(Xi, Yi; Π | D,X<i,Y<i).

To complete the direct sum argument, we need a way of lower-bounding the informa-
tion revealed by a protocol with this abortion property. For this, we directly bound the
information revealed by designing an estimation procedure for predicting (Xi, Yi) from the
transcript of Π, and applying Fano’s inequality. This part generalizes the approach used
in [126], who show lower bounds for (0, 0, δ)-protocols. In our case we show that allowing
constant probability of failure over the choice or randomness of the protocol and constant
probability of abortion over the choice of the input doesn’t change the asymptotic depen-
dence of information cost as a function of the success probability over the choice of the
input conditioned on non-abortion.

Other Related Work: In [121, 122], the authors show that for O(1)-round public-coin

randomized communication complexity Rpub

1−(1−ε/2)Ω(kε2)
(fk) = Ω

(
εk
(
Rpub
ε (f)−O

(
1
ε2

)))
,

where ε > 0 is arbitrary. One cannot apply this theorem to our problem, as one would
need to set ε = 1/k to obtain our results, at which point the theorem gives a trivial bound.
A similar problem occurs trying to apply the direct sum theorem of [124]. These are not
drawbacks of these works, since their study is for a vastly different regime of parameters,
namely, for constant ε, and for every relation f . We instead only consider functions f for
which we can lower bound the conditional information cost of protocols with the abortion
property. These are of particular importance for sketching and streaming applications and
for these functions we obtain the first optimal bounds.

100

7.2 The Direct Sum Theorem

We give a summary of basic properties of the entropy of a discrete random variable X,
denoted as H(X), and the mutual information between two discrete random variables X
and Y , denoted as I(X;Y) = H(X)−H(X|Y), below (see Chapter 2 in [61] for the proofs):

Proposition 7.2.1. 1. Entropy span: 0 ≤ H(X) ≤ log |supp(X)|.

2. I(X;Y) ≥ 0 because H(X|Y) ≤ H(X).

3. Chain rule: I(X1, X2, . . . , Xn;Y |Z) =
∑n

i=1 I(Xi;Y |X1, . . . , Xi−1, Z).

4. Subadditivity: H(X,Y |Z) ≤ H(X|Z) +H(Y |Z), where the equality holds if and only
if X and Y are independent conditioned on Z.

5. Fano’s inequality: Let A be a random variable, which can be used as “predictor”
of X, namely there exists a function g such that Pr[g(A) = X] ≥ 1 − δ for some
δ < 1/2. If |supp(X)| ≥ 2 then H(X|A) ≤ δ log(|supp(X)| − 1) + h2(δ), where
h2(δ) = δ log(1/δ) + (1− δ) log 1

1−δ is the binary entropy.

We recall standard definitions from information complexity and introduce the infor-
mation complexity for protocols with abortion, denoted as ICµ,α,β,δ(f |ν), more formally.
Given a communication problem f : X ×Y → Z, consider the augmented space X ×Y ×D
for some D. Let λ be a distribution over X ×Y ×D, which induces marginals µ on X ×Y
and ν on D. We say that ν partitions µ, if µ is a mixture of product distributions, namely
for a random variable (X,Y,D) ∼ λ, conditioning on any value of D makes the distribution
of (X,Y) product.

To simplify the notation, a δ-protocol for f is one that for all inputs (x, y) ∈ X × Y
computes f(x, y) with probability at least 1− δ (over the randomness of the protocol).

Definition 7.2.1. Let Π be a protocol, which computes f . The conditional information cost
of Π under λ is defined as I(Π(X,Y);X,Y | D), where (X,Y,D) ∼ λ. The conditional
information complexity of f with respect to λ, denoted by ICµ,δ(f |ν), is defined as the
minimum conditional information cost of a δ-protocol for f . The information complexity
with aborts, denoted by ICµ,α,β,δ(f |ν), is the minimum conditional information cost of a
protocol that (α, β, δ)-computes f . The analogous quantities IC→µ,δ(f |ν) and IC→µ,α,β,δ(f |ν)
are defined by taking the respective minimums over only one-way protocols. For bounded-

round protocols with abortion the information costs IC
(r)
µ,δ(f |ν) and IC

(r)
µ,α,β,δ(f |ν) are defined

by taking the respective minimums over only r-round protocols.

Our main theorem gives a lower bound the conditional information cost of a δ-protocol
for k copies of a communication problem. More precisely, for a function f : X ×Y → Z let
fk : (X ×Y)k → Zk denote its k-fold version fk(x,y) = (f(x1, y1), f(x2, y2), . . . , f(xk, yk)).

Theorem 7.2.2. Let δ ≤ 1/3. Then for every function f : X × Y → Z and distribution λ
on X ×Y ×D with marginal µ on X ×Y and marginal ν on D, such that µ is partitioned
by ν, it holds that ICµk,δ(f

k|νk) ≥ Ω(k) ICµ, 1
20
, 1
10
, δ
k
(f |ν). Moreover, this result also holds

for 1-way protocols: IC→µk,δ(f
k|νk) ≥ Ω(k) IC→

µ, 1
20
, 1
10
, δ
k

(f |ν).

101

For the remaining part of the section we prove this theorem. Amplifying the success
probability by repeating the protocol a constant number of times, it is easy to see that
ICµk,δ(f

k|νk) = Ω(1) ICµk,δ/2000(fk|νk), and similarly for one-way protocols (see Appendix
A.5). Thus, without loss of generality we work with (δ/2000)-protocols instead.

We focus on the first part of the theorem. For each i ∈ [k], consider independent
random variables (Xi, Yi, Di) ∼ λ; to simplify the notation, we use Wi to denote the pair
(Xi, Yi). Let Π be a (δ/2000)-protocol for fk with private randomness R that achieves
I(Π(W, R); W|D) = ICµk, 1

2000
(fk|νk). Our goal is to lower bound the mutual information

I(Π(W, R); W|D) by k
8 ICµ, 1

20
, δ
10
, δ
k
(f |ν), by essentially showing that Π needs to compute

most of the k instances with probability 1−O(δ/k).
To make this precise, the guarantee of the protocol gives that

1− δ

2000
≤ Pr(Π(W, R) = fk(W))

=

k∏
i=1

Pr(Πi(W, R) = fki (W) | Π<i(W, R) = fk<i(W)).

Using the bound p ≤ e−(1−p) (valid for all p ∈ [0, 1]) to each term in the right-hand side,
we can then use Markov’s inequality to show that for at least half of the indices i ∈ [k] we
have the strong conditional guarantee

Pr(Πi(W, R) = fki (W) | Π<i(W, R) = fk<i(W)) (7.1)

≥ 1−
2 ln(1− δ

2000)−1

k
≥ 1− δ

200k
,

where the last inequality uses the first-order approximation of ln at 1. We call these
indices good. Moreover, using the chain rule, we can express the mutual information
I(Π(W, R); W | D) in terms of the information revealed of each component of W:

I(Π(W, R); W | D) =
k∑
i=1

I(Π(W, R);Wi | D,W<i). (7.2)

The idea is then, for each good index i, to obtain from Π a protocol that (1/20, δ/10, δ/k)-
computes fki (W) and which reveals only O(I(Π(W, R);Wi | D,W<i)) conditional infor-
mation about Wi, effectively showing that I(Π(W, R);Wi | D,W<i) ≥ Ω(ICµ, 1

20
, δ
10
, δ
k
(f |ν)).

This is accomplished by simulating Π over some of its input. We show next that we can
“hardwire” the first i − 1 inputs of Π while preserving the relevant properties of the pro-
tocol. Unfortunately hardwiring the last k − i inputs of Π and its random seed (and thus
leaving only input i free) might change the mutual information with Wi drastically; but we
show that there is a large set of suffixes that still preserve most properties that we need.
The existence of such suffixes is proved via the probabilistic method.

102

Lemma 7.2.3. Consider a good index i ∈ [k]. Then there exists a prefix w<i ∈ (X ×Y)i−1

and a set G of fixings of the suffix W>i and the random bits used by Π with the following
properties:

1. (Low information cost) I(Π(W, R);Wi | D,W<i = w<i) ≤ 4 I(Π(W, R);Wi | D,W<i).

2. (Large set of fixings) Pr((W>i, R) ∈ G) ≥ 1− 1
20 .

3. (Success probability) For every (w>i, r) in G we have

Pr
[
Π<i(w<iWiw>i, r) 6= fk<i(w<iWiw>i)

]
≤ δ

10
.

4. (Conditional success probability) For every (w>i, r) in G we have

Pr[Πi(w<iWiw>i, r) 6= fki (w<iWiw>i) | Π<i(w<iWiw>i, r) = fk<i(w<iWiw>i)] ≤
δ

k
.

Proof. We start by proving the following proposition.

Proposition 7.2.4. Consider a good index i ∈ [k]. Then there exists w<i ∈ (X × Y)i−1

such that the following hold:

• I(Π(w<iW≥i, R);Wi | D,W<i = w<i) ≤ 4 I(Π(W, R);Wi | D,W<i)

• Pr[Π<i(w<iW≥i, R) 6= fk<i(w<iW≥i)] ≤ δ
500

• Pr[Πi(w<iW≥i, R) 6= fki (w<iW≥i) | Π<i(w<iW≥i, R) = fk<i(w<iW≥i)] ≤ δ
50k .

Proof. We use the probabilistic method, so first we analyze the expected value of the
quantities in the left-hand side of the above expression with respect to the random variable
W<i.

For Item 1, it follows from the definition of conditional mutual information that

E
W<i

[I(Π(W<iW≥i, R);Wi | D,W<i)]

= E
W<i

[
E
D

[I(Π(W, R);Wi | D,W<i) |W<i]

]
= I(Π(W, R);Wi|D,W<i).

For Item 2, the product structure of µk and the guarantee of Π give

E
W<i

[
Pr
(

Π<i(W<iW≥i, R) 6= fk<i(w<iW≥i)
)]

= Pr(Π<i(W, R) 6= fk<i(W))

≤ Pr(Π(W, R) 6= fk(W)) ≤ δ

2000
.

103

For Item 3, we now use the fact that i is good to obtain∑
w<i

Pr
[
Πi(w<iW≥i, R) 6= fki (w<iW≥i) | Π<i(w<iW≥i, R) = fk<i(w<iW≥i)

]
·Pr(W<i = w<i | Π<i(W, R) = fk<i(W))

= Pr[Πi(W, R) 6= fki (W) | Π<i(W, R) = fk<i(W)] ≤ δ

200k
.

Although this last expectation is with respect to the distribution conditioned on Π<i(W, R)
= fk<i(W), because of the guarantee of Π, this conditioning does not change the distribu-
tion by much; more precisely, for every event E we have Pr(E) ≤ Pr(E | Π<i(W, R) =
fk<i(W)) + δ/2000 < Pr(E | Π<i(W, R) = fk<i(W)) + 1/4.

Using Markov’s inequality to upper bound the probability of being 4 times larger than
the expectation in each of the 3 items and taking a union bound, we obtain that the there
is a w<i satisfying the desired properties in the proposition. This concludes the proof.
�

The proof of Lemma 7.2.3 then follows from Proposition 7.2.4 above and again from
the application of Markov’s inequality and the union bound. �

Now we use the protocol Π hardwiring W<i = w<i (for a w<i as above) and D−i = d−i
to obtain a protocol to (1/20, δ/10, δ/k)-compute f under the distribution µ. The idea is to
simulate the inputs W>i (conditioned on D = d) and run the protocol Π(w<iWiW≥i, R),
aborting whenever Π<i(w<iWiW≥i, R) 6= fk<i(w<iWiW≥i).

Lemma 7.2.5. Consider a good i ∈ [k], let w<i satisfy Lemma 7.2.3 and let d−i be such
that Pr(W<i = w<i,D−i = d−i) 6= 0. Then there exists a protocol Π̄ with input in X × Y
and only private randomness R̄ satisfying the following:

• Π̄ (1
20 ,

δ
10 ,

δ
k)-computes f with respect to the distribution µ

• For (W̄ , D̄) ∼ λ, I(Π̄(W̄ , R̄); W̄ | D̄) = I(Π(W, R);Wi | Di,D−i = d−i,W<i = w<i).

Moreover, if Π is 1-way, then Π̄ is also 1-way.

Proof. The protocol Π̄ is constructed as follows. Suppose that Alice has input x ∈ X and
Bob has input y ∈ Y. Since ν partitions µ, Alice and Bob use their private randomness
to sample respectively X′>i and Y′>i according to the distribution µk−i conditioned on
D−i = d−i; more precisely, the random variable (X′>i,Y

′
>i) has the same distribution as

(X>i,Y>i) | (D−i = d−i). They also use their private randomness to obtain a random
variable R′ with same distribution as the random coins used in Π.

Using these random variables, the players run the protocol Π(w<i, (x, y), (X′>i,Y
′
>i), R

′)
to obtain estimates of the vector-valued function fk(w<i, (x, y), (X′>i,Y

′
>i)). Finally, since

w<i is known to Bob, he checks whether Π gave the correct values of the first i− 1 coor-
dinates of fk(w<i, (x, y), (X′>i,Y

′
>i), namely if

Πj(w<i, (x, y), (X′>i,Y
′
>i), R

′) = fkj (wj)

104

for all j < i; if so, he outputs the estimate of f(x, y) = fki (w<i, (x, y), (X′>i,Y
′
>i)) given

by Πi(w<i, (x, y), (X′>i,Y
′
>i), R

′), and otherwise he aborts. Let

Π̄(x, y, R̄) = Π(w<i, (x, y), (X′>i,Y
′
>i), R

′)

to denote the transcript exchanged with (and output of) this protocol.
We first analyze the information revealed by the protocol. Consider (W̄ , D̄) ∼ λ.

Using the definition of our random variables and the product structure of λk, it follows by
substitution of random variables that

I(Π̄(W̄ , R̄); W̄ | D̄) = I(Π(W, R);Wi | Di,D−i = d−i,W<i = w<i),

which gives the second part of the lemma.
For the correctness of the protocol, let the set G be defined as in Lemma 7.2.3. Take

any (w>i, r) ∈ G; we claim that, conditioned on ((X′>i,Y
′
>i), R

′) = (w>i, r), the protocol
Π̄ (δ/10, δ/k)-computes f (notice that conditioned on ((X′>i,Y

′
>i), R

′) = (w>i, r) the pro-
tocol is indeed a deterministic one). Since the event ((X′>i,Y

′
>i), R

′) ∈ G only depends
on the randomness of the protocol, and since Pr(((X′>i,Y

′
>i), R

′) ∈ G) ≥ 1 − 1/20, this
implies that Π̄ (1/20, δ/10, δ/k)-computes f .

To prove the claim, let E denote the event ((X′>i,Y
′
>i), R

′) = (w>i, r). It follows again
from the definition of our random variables that the probability that Π̄(X̄, Ȳ , R̄) aborts
conditioned on E is equal to the probability that Π<i(w<iW≥i, R) 6= fk<i(w<iW≥i) con-
ditioned on (D−i,W>i, R) = (d−i,w>i, r). Using the mutual independence between Wi,
W>i and R, this is the same as the probability that Π<i(w<iWiw>i, r) 6= fk<i(w<iWiw≥i);
by definition of G (Item 3 of Lemma 7.2.3), this probability is at most δ/10. Similarly, we
obtain that

Pr
[
Π̄(W̄ , R̄) 6= f(W ′) | Π̄ does not abort, E

]
= Pr

[
Πi(w<iW≥i, R) 6= fki (w<iW≥i) | Π<i(w<iW≥i, R)

= fk<i(w<iW≥i), (D−i,W>i, R) = (d−i,w>i, r)] ≤
δ

k
,

where the last inequality follows again from the product structure of λk, independence of
R from the other random variables, and from the definition of G. This proves the claim
and shows that Π̄ (1/20, δ/10, δ/k)-computes f , giving the second item in the lemma.

Finally, notice that if Π is one-way then Π̄ is also one-way. This concludes the proof of
the lemma. �

The previous lemma (averaged out over all d−i), together with the first part of Lemma
7.2.3, gives that for every good index i ∈ [k] we can lower bound I(Π(W, R);Wi | D,W<i)
by 1

4 ICµ, 1
20
, δ
10
, δ
k
(f |ν). Since at least half of the i’s in [k] are good, plugging this bound

on (7.2) gives that ICµk, δ
2000

(fk|νk) ≥ k
8 ICµ, 1

20
, δ
10
, δ
k
(f |ν), and similarly for the one-way

information complexity. This concludes the proof of Theorem 7.2.2.

105

7.3 Lower Bounds for Protocols with Abortion

In this section we prove lower bounds on the information cost of one-way protocols with
abortion. To illustrate the techniques, we first consider the equality problem. In order
to make the argument more formal, we introduce the following formalization of one-way
protocols. Alice has a (possibly random) function M : X →M and Bob has a (also possibly
random) function B :M×Y → Z that depends on the received message and on its input,
and B(M(x), y) is the estimate for f(x, y) output by Bob. Consider the augmented space
X ×Y ×D and let λ be a distribution on it that has marginal µ over X ×Y and marginal
ν over D. Notice that, whenever ν partitions µ, the conditional information cost of the
protocol (M,B) is given by I(M(X);X | D) = I(M(X);X,Y | D), where (X,Y,D) ∼ λ.
For such distributions, IC→µ,δ(f |ν) is the minimum of I(M(X);X | D) over all one-way
δ-protocols (M,B) for f .

7.3.1 Equality Problem

Let EQ` denote the equality problem: Alice and Bob have respectively the binary strings
x and y of length ` and their goal is to check whether x = y or not.

Lemma 7.3.1. For ` = log(1/20δ), with δ ∈ (0, 1), there exists a distribution with
marginals µ and ν, such that ν partitions µ and

IC→
µ, 1

20
, 1
10
,δ

(EQ`|ν) = Ω (log(1/δ)) .

Proof. To construct µ and ν, let D0 be a random variable uniformly distributed on {0, 1}
and let D be a random variable uniformly distributed on {0, 1}`. Let (X,Y) be a random
variable supported on {0, 1}`×{0, 1}` such that, conditioned on D0 = 0 we have X and Y
distributed independently and uniformly on {0, 1}`, and conditioned on D0 = 1 we have
X = Y = D. Let µ be the distribution of (X,Y) and let ν be the distribution of (D0D).
Note that ν partitions µ.

Consider a one-way protocol Π for EQ` and let M denote Alice’s message function.
Since X and Y are independent conditioned on D0D, we have

I(M(X); X,Y | D0D) = I(M(X); X | D0D) = H(X | D0D)−H(X |M(X), D0D).

Notice that H(X | D0D) ≥ 1
2 H(X | D0 = 0,D) = 1

2 log(1/20δ).
From Fano’s inequality [61] we also have

H(X |M(X), D0D) ≤ H(X |M(X)) ≤ 1 + pe log(|supp(X)|),

where pe = ming Pr[g(M(X)) 6= X] is the minimum error over all predictors g. Thus, to
prove the lemma it suffices to show that if Π (1/20, 1/10, δ)-computes EQ` then we can
obtain a predictor with error at most 2/5.

First assume Π is a deterministic protocol that (1/10, δ)-computes EQ`. We say that
an input x for Alice is good if Π(x,y) = 1 iff x = y; we claim that many inputs are good.

106

Note that the probability mass that our distribution assigns to every input (x,x) is

p1 = Pr[D0 = 0] Pr[X = Y = x | D0 = 0]

+ Pr[D0 = 1] Pr[X = Y = x | D0 = 1] = 200δ2 + 10δ.

The probability assigned to every input (x,y) for x 6= y is equal to p2 = 200δ2. So
the number of x’s such that Π(x,x) = abort is at most Pr[Π = abort]/p1 = 1/(10p1) ≤
1/(100δ). Similarly, the number of x’s such that there is at least one y where the protocol
does not abort but makes a mistake is at most Pr[Π 6= EQ`,Π 6= abort]/p2 ≤ δ/(200δ2) =
1/(200δ). Finally notice that if x does not satisfy either of these two conditions then x
is good. This implies that there are at most 3

200δ not good x’s, and hence the probability
that X is not good is at most 3/10.

Now notice that if x is good then we can recover x itself from M(x) using Π: simply
find the unique y such that Bob outputs 1 upon receiving message M(x). This then gives
a predictor g with error probability pe ≤ 3/10 as desired.

For the case where Π only (1/20, 1/10, δ)-computes EQ`, we can use the same argument
as before and run Bob’s part of the protocol over all y upon receiving message M(x), but
now we need Bob’s private coins RB to do it. This gives a predictor for X using M(X)
and RB with error at most 3/10 + 1/20 ≤ 2/5, which shows that H(X | M(X), D0D) =
H(X |M(X), D0D, R

B) ≤ 1 + 2
5 log(1/20δ). This concludes the proof. �

7.3.2 Augmented Indexing

In order to obtain the desired lower bound for our applications we need a generalization of
EQ`, namely the augmented indexing problem on large domain with low error Inda(k,N),
presented in the introduction.

Theorem 7.3.2. Consider an integer k and a parameter δ such that k is at least a suf-
ficiently large constant and δ ≤ 1

20k . Then there is a distribution with marginals µ and ν
such that ν partitions µ and IC→

µ, 1
20
, 1
10
,δ

(Inda(k,N)|ν) ≥ Ω (N log k).

In the remainder of this section we prove Theorem 7.3.2. To do so, we consider the
following hard distribution for Inda(k,N). First we have the random variable D uniformly
distributed in [k]N and a random variable D0 taking value 0 or 1 with equal probability.
The distribution of Alice’s input is given by X and the distribution of Bob’s input is
given by (I,Y<I , Y) as follows: when D0 = 1, we set I uniformly at random from [N],
Y<I = X<I = D<I , Y = XI = DI and X>I uniformly in [k]N−I ; when D0 = 0, we again
set I uniformly at random from [N], Y<I = X<I = D<I , X>I uniformly in [k]N−I , but
now Y and XI are picked independently and uniformly at random in [k].

Let λ denote the joint distribution of (X, I,Y<I , Y,D0,D≤I), with marginal µ over
(X, I,Y<I , Y) and marginal ν over (D0,D≤I) (notice that the we use D≤I and not D).
We remark that µ is partitioned by ν.

Now we show that Theorem 7.3.2 holds with the distribution defined above. For that,
consider a private-randomness one-way protocol given by Alice’s message function M and
Bob’s output function B that (1/20, 1/10, δ)-computes Inda(k,N) with respect to µ and

107

has conditional information cost I(M(X); X | D0D≤I) = IC→
µ, 1

20
, 1
10
,δ

(Inda(k,N) | ν). We

show that the mutual information I(M(X); X | D0D≤I) is Ω(N log k).
First, using the chain rule for mutual information, we express the above conditional

information in terms of the conditional information of each Xi revealed by M(X):

I(M(X); X | D0D≤I) =
N∑
i=1

I(M(X);Xi | D0D≤I ,X<i) (7.3)

=
N∑
i=1

H(Xi | D0D≤I ,X<i)−
N∑
i=1

H(Xi |M(X), D0D≤I ,X<i).

We first claim that for each i, the term H(Xi | D0D≤I ,X<i) is at least (1
2N + i−1

N) log k.
To see this, notice that conditioned on I = i and D0 = 0, Xi is independent of D≤I ,
and H(Xi | D0 = 0,D≤I ,X<i, I = i) = log k. Similarly, conditioned on I < i, Xi is
independent of D≤I and hence H(Xi | D0D≤I ,X<i, I < i) = log k. Since the first event
holds with probability 1/2N and the second holds with probability (i − 1)/N , it follows
that H(Xi | D0D≤I ,X<i) ≥ (1

2N + i−1
N) log k. Adding over all i’s then gives that

N∑
i=1

H(Xi | D0D≤I ,X<i) ≥
N

2
log k.

Now we need to upper bound the second summation in (7.3). For that, we will show
that the guarantee of the protocol implies that M(X) together with the prefix X<i leads
to a good predictor of Xi (for most i’s); an application of Fano’s inequality will then give
the desired upper bound.

To make things more explicit, let RA and RB denote respectively Alice’s and Bob’s pri-
vate randomness, and define R = (RA, RB). To simplify the notation we use Π(x, j, y, r)
to denote the transcript (and, as usual, also the output) of the protocol when Alice
get x, Bob gets (j,x<j , y) and the random seed is r = (rA, rB), namely Π(x, j, y, r) =
B(M(X, rA), j,x≤j , y, r

B). We also use f(x, j, y) to denote the function of the associated
communication game, namely f(x, j, y) equals 0 if xj 6= y and 1 if xj = y.

We first focus on tuples (i,x, r) that allows for a good predictor of xi. To capture
the bad tuples, let U1 be the set of tuples (i,x, r) such that the protocol with random
seed r aborts on the instances where Alice has input x and Bob has input (i,x<i,xi) (so
it is an ‘equal’ input), namely U1 = {(i,x, r) : Π(x, i, xi, r) = ‘abort’}. Also define U2

as the tuples (i,x, r) where the protocol with random seed r makes a mistake (but does
not abort) when Alice gets input x and Bob gets input (i,x<i, y) for some y, namely
U2 = {(i,x, r) : ∃y st Π(x, i, y, r) 6= f(x, i, y) and Π(x, i, y, r) 6= abort}. We say that a
tuple (i,x, r) is good if it does not belong to either U1 or U2.

Notice that if (i,x, r) is good, then: (i) Π(x, i, xi, r) = 1; (ii) for every y 6= xi,
Π(x, i, y, r) 6= 1. Good tuples render a good predictor for Xi.

108

Lemma 7.3.3. For every index i ∈ [N], there is a predictor gi such that

Pr
[
gi(M(X, RA),X<i) = Xi

]
≥ Pr((i,X, R) is good).

Proof. We are first going to use the protocol and the information M(x, r),x<i, r
B to es-

timate xi as follows: let g̃i(M(x, rA),x<i, r
B) be any value y such that Π(x, i, y, r) =

B(M(x, rA), i,x<i, y, r
B) = 1. (If no such y exists, set the function value to any arbitrary

value). It follows directly from the paragraph before the statement of the lemma that
g̃i(M(x, r),x<i, r

B) = xi for all good (i,x, r), and hence

E
RB

[
Pr
[
g̃i(M(X, RA),X<i, R

B) = Xi

]]
= Pr

[
g̃i(M(X, RA),X<i, R

B) = Xi

]
≥ Pr((i,X, R) is good).

To remove the dependence on RB, simply choose an outcome rB such that

Pr
[
g̃i(M(X, RA),X<i, r

B) = Xi

]
≥ Pr((i,X, R) is good),

and set gi(m,x<i) = g̃i(m,x<i, r
B). �

Using this lemma and Fano’s inequality [61], we obtain that

N∑
i=1

H(Xi |M(X, RA), D0D≤I ,X<i) ≤ N + log k

N∑
i=1

Pr((i,X, R) is not good).

Since we have assumed that k is at least a sufficiently large constant, it suffices to show that∑N
i=1 Pr((i,X, R) is not good) ≤ 9N/20. The following lemma then concludes the proof.

Lemma 7.3.4. Pr((I,X, R) is not good) ≤ 9/20.

Proof. Using the union bound, we get that the probability that (I,X, R) is not good is at
most the probability that it belongs to U1 plus the probability that it belongs to U2. We
claim that Pr((I,X, R) ∈ U1) ≤ 3/10. Using the definition of U1 and the fact that the
random variable (X, I,XI , R) has the same distribution as (X, I, Y,R)|(D0 = 1), we get
that

Pr((I,X, R) ∈ U1) = Pr(Π(X, I,XI , R) = abort)

= Pr(Π(X, I, Y,R) = abort | D0 = 1)

= Pr(protocol aborts | D0 = 1).

Furthermore, since the protocol (1/20, 1/10, δ)-computes f , by union bound we see that the
probability that it aborts is at most 3/20. Therefore, using the fact that Pr(D0 = 1) = 1/2,
we directly get that Pr((I,X, R) ∈ U1) ≤ 3/10.

Now we claim that the second term Pr((I,X, R) ∈ U2) is at most 3/20. To do so, let
C denote the event (which is solely determined by the random seed R) that the protocol

109

(1/10, δ)-computes f . Given that C happens with probability at least 1/20, to prove the
claim it suffices to show Pr((I,X, R) ∈ U2 | C) ≤ 1/10. For that, let Err denote the event
that Π(X, I, Y,R) 6= f(X, I, Y) and Π(X, I, Y,R) 6= abort. Similar to the previous case,
using the definition of U2 and the fact that the random variable (X, I, y, R)|C has the same
distribution as (X, I, Y,R)|(D0 = 0, Y = y, C), we get

Pr((I,X, R) ∈ U2 | C) =

Pr

 ∨
y∈[k]

(Π(X, I, y, R) 6= f(X, I, y) and Π(X, I, y, R) 6= abort) |C

≤
∑
y∈[k]

Pr (Err | D0 = 0, Y = y, C)

= k · E
Y

[Pr (Err | D0 = 0, Y, C) | D0 = 0, C]

= k · Pr (Err | D0 = 0, C) ,

where the second equality follows from the fact that Pr(Y = y | D0 = 0, C) = Pr(Y = y |
D0 = 0) = 1/k for all y.

By definition of C, we have that Pr(Err | C) ≤ δ, so using the fact that Pr(D0 =
0 | C) = Pr(D0 = 0) = 1/2 we obtain that Pr(Err | D0 = 0, C) ≤ 2δ. Plugging this
bound in the last displayed equation and using the fact that δ ≤ 1/20k, we get that
Pr((I,X, R) ∈ U2 | C) ≤ 1/10 as desired. This concludes the proof of the lemma. �

7.4 Applications

For our application we will often assume that the dimension d of the vectors that we
consider satisfies d1−γ ≥ 1

ε2
log n

δ for some constant γ > 0 (where n is the number of copies
of the communication problem), otherwise Alive can simply send her whole input to Bob.

All of our lower bounds come from a reduction to the same hard problem, which is an
n-fold version of the augmented indexing problem with a further indexing on top of it.

7.4.1 Hard Problem

During our reductions it will be more convenient to work with a different reformulation
of the augmented indexing problem Inda(u,N). In this new problem, Alice has a set
S ⊆ [1/(ε2δ)] of size exactly 1/ε2, where the i-th element is required to belong to the

range [(i−1)
δ + 1, iδ] (so S selects an integral element from each interval [(i−1)

δ + 1, iδ] with
i ∈ [1/ε2]). Bob has an element k ∈ [1/(ε2δ)] and also the set S′ ⊆ S consisting of the
elements in S which are strictly smaller than k. Their goal is to decide whether k belongs
to S or not. Denote this problem by SetInd(ε, δ).

We claim that the problem SetInd(ε, δ) is equivalent to the problem Inda(u,N) with
N = 1/ε2 and universe size u = 1/δ. To see this, given elements x1, x2, . . . , xN in [u],
we can “concatenate” them to form the set {x1, u + x2, . . . , (N − 1)u + xN} ⊆ [1/(ε2δ)].

110

Therefore, given an instance of Inda(u,N) it is easy to construct an instance of SetInd(ε, δ)
(with the same yes/no answer) using this concatenation. Moreover, we can reverse this
operation and use it to obtain the reverse mapping from an instance of SetInd(ε, δ) to an
instance of Inda(u,N).

Using this correspondence, Theorem 7.3.2 directly gives the following.

Corollary 7.4.1. Assume that δ is at most a sufficiently small constant. Then there is a
distribution with marginals µ and ν such that ν partitions µ and IC→

µ, 1
20
, 1
10
,δ

(SetInd(ε, δ) |
ν) ≥ Ω(1

ε2
log 1

δ).

Now we consider the n-fold version of this problem: Alice and Bob receive n instances
of SetInd(ε, δ/n) and they want, with probability at least 1−δ, to solve all of them. Denote
this problem by nSetInd(ε, δ). Our direct sum theorem directly gives the following.

Corollary 7.4.2. Assume that δ is at most a sufficiently small constant. Then there is a
distribution with marginals µ and ν such that ν partitions µ and IC→µn,δ(nSetInd(ε, δ)|νn) ≥
Ω(n 1

ε2
log n

δ).

Finally, we take an augmented indexing of r copies of this problem to obtain our
hard problem Ind(nSetInd(ε, δ), r). More precisely, an instance of Ind(nSetInd(ε, δ), r) is
obtained as follows: consider r instances (SA1 ,SB1), . . . , (SAr ,SBr) of nSetInd(ε, δ) (where
SAi and SBi denote respectively Alice’s and Bob’s part of the input); then Alice receives
SA1 , . . . ,SAr and Bob receives and index j and the collections SA1 , . . . ,SAj−1 and SBj ; their

goal is to solve the instance (SAj ,SBj).
The following lower bound follows from Corollary 7.4.2 and standard direct sum argu-

ments; for completeness we present a proof in Section A.6.1 of the appendix.

Corollary 7.4.3. Assume that δ is at most a sufficiently small constant. Then there is a
distribution with marginals µ and ν such that ν partitions µ and IC→µ,δ(Ind(nSetInd(ε, δ), r)|ν)

≥ Ω(r · n 1
ε2

log n
δ).

7.4.2 Estimating Multiple `p Distances

Consider the following communication problem: Alice has n vectors v1,v2, . . . ,vn ∈
[±M]d, Bob has n vectors u1,u2, . . . ,un ∈ [±M]d, and their goal is to compute (with
probability at least 1 − δ) approximations (1 ± ε)‖ui − vi‖p to the `p distances for all
i ∈ [n]. Let `p(n, d,M, ε) denote this problem.

Theorem 7.4.4. Assume that n is at least a sufficiently large constant and that ε is at
most a sufficiently small constant. Also assume that there is a constant γ > 0 such that
d1−γ ≥ 1

ε2
log n

δ . Then R→δ (`p(n, d,M, ε)) ≥ Ω
(
n 1
ε2

log n
δ (log d+ logM))

)
for p ∈ {1, 2}.

In the remaining part of this section we prove the above theorem. Since we can amplify
the success probability of a protocol by repeating it and taking majority (see Section A.5),
we will assume throughout that δ is at most a sufficiently small constant. We separately
obtain the lower bound Ω(n 1

ε2
log n

δ log d) when the alphabet M is small (Lemma 7.4.5)
and the lower bound Ω(n 1

ε2
log n

δ logM) when the alphabet is large (Lemma 7.4.7). It is
easy to verify that together these lemmas imply Theorem 7.4.4.

111

Lower Bound for Small Alphabet Size. We consider the problem with M = 1
and prove the following.

Lemma 7.4.5. Assume that n is at least a sufficiently large constant, δ is at most a
sufficiently small constant and ε ≤ 1/25. Also assume that there is a constant γ > 0 such
that d1−γ ≥ 1

ε2
log n

δ . Then R→δ (`p(n, d, 1, ε)) ≥ Ω
(
n 1
ε2

log n
δ log d)

)
for p ∈ {1, 2}.

To prove this lemma, we show how to use the n-fold `p approximation problem
`p(n, d, 1, ε/25) to solve the indexing problem Ind(nSetInd(2ε, δ), c log d), for some constant
c. The main component of the reduction is the following lemma, which is a special case of
Lemma 3.1 in [126]; although in [126] the authors present the lemma for instances of the
problem Inda(k,N), the equivalence between this problem and SetInd(ε, δ) directly gives
the following.

Lemma 7.4.6 ([126]). Given ε, η ∈ (0, 1], consider subsets S1, S2, . . . , Sr of [1/(4ε2η)],
each of size 1/4ε2 (assumed to be odd). Also consider an index j ∈ [r] and an element
k ∈ [1/(4ε2η)] and let S′ be the set consisting of all the elements of Sj that are smaller
than k. Then there is an encoding of these objects, based on a random variable R, into
vectors u = u(S1, S2, . . . , Sr, R) and v = v(S1, S2, . . . , Sj−1, S′, j, k, R) with the following
properties:

1. The vectors u and v belong to {0, 1}d′, where d′ = O(10r 1
ε2

log 1
η).

2. If k does not belong to the set Sj, then with probability at least 1−η we have ‖u−v‖pp ≥
d′10−j+1(1

2 −
3ε
10) for all p > 0.

3. If k belongs to the set Sj, then with probability at least 1 − η we have ‖u − v‖pp ≤
d′10−j+1(1

2 −
6ε
10) for all p > 0

Using this lemma, the reduction of Ind(nSetInd(2ε, δ), c log d) (for some constant c
to be determined) to `p(n, d, 1, ε/25) (where Alice and Bob have shared randomness) is
straightforward. Let Alice’s instance for Ind(nSetInd(2ε, δ), c log d) be given by the sets
{S`i }i∈[n],`∈[c log d], where for a fixed ` the sets S`1, S

`
2, . . . , S

`
n correspond to the `’th copy of

the n-fold problem in the indexing of Ind(nSetInd(2ε, δ), c log d); unraveling the definition
of the problem, we get that each S`i is a subset of [n

4ε2δ
] of size 1/4ε2. Similarly, let Bob’s

instance be given by the index j ∈ [c log d], the elements k1, k2, . . . , kn, the sets {S`i }i∈[n],`<j

and the sets S′1, S
′
2, . . . , S

′
n; again unraveling the definitions we have that for all i the set S′i

consists of all the elements of Sji less than ki. The players want to decide whether ki ∈ Sji
holds or not for all i.

For that, they evoke Lemma 7.4.6 with η = δ/n and use their inputs and shared

randomness to make Alice compute ui = ui(S
1
i , S

2
i , . . . , S

c log d
i , R) for each i, and make

Bob compute vi = vi(S
1
i , S

2
i , . . . , S

j−1
i , S′i, j, k, R) for each i. Notice that these vectors

have O(dc 1
ε2

log n
δ) coordinates, so we can use the fact d1−γ ≥ 1

ε2
log n

δ to set the constant
c to be small enough (depending on γ) so that these vectors have at most d coordinates.
Then Alice and Bob use a protocol for `p(n, d, 2, ε/25) to obtain with probability 1− δ an
approximation vali = (1± ε

10)‖ui−vi‖pp for all i. Based on Items 2 and 3 of Lemma 7.4.6,

Bob then outputs that ki belongs to Sji iff vali ≤ d10−j+1(1
2 −

5ε
10).

112

It is easy to see that whenever both the guarantees of Lemma 7.4.6 hold for all n pairs
{(ui,vi)}ni=1 and the protocol for `p(n, d, 1, ε/25) succeeds, then Bob outputs the correct
answer. Since this happens with probability at least 1 − 2δ, we obtain the lower bound
R→δ (`p(n, d, 1, ε/25)) ≥ R→,pub

2δ (Ind(nSetInd(2ε, δ), c log d))), where shared randomness is
allowed.

A well-know result relates the randomized complexity of private-randomness and shared-
randomness protocols (using the assumption that δ is sufficiently small) [141]:

R→4δ(f) ≤ R→,pub
2δ (f) +O(log I + log 1

δ), (7.4)

where I denotes the bit size of the input. Using this bound and employing our lower bound
on R→4δ(Ind(nSetInd(2ε, δ), c log d)) given by Corollary 7.4.3, we obtain that

R→,pub
2δ (Ind(nSetInd(2ε, δ), c log d))

≥ R→4δ(Ind(nSetInd(2ε, δ), c log d))−O
(

log
(n
εδ

+ log d
))

≥ Ω(n 1
ε2

log n
δ log d),

where the last inequality uses the fact that n is at least a sufficiently large constant. This
concludes the proof of Lemma 7.4.5.

Lower Bound for Large Alphabet Size. In this part we prove the following.

Lemma 7.4.7. Assume that n is at least a sufficiently large constant, δ is at most a suffi-
ciently small constant and ε ≤ 1/75. Also assume that d ≥ Ω(1

ε2
log n

δ) and that there is a

constant γ > 0 such that M1−γ ≥ d
ε3

log n
δ . Then R→δ (`p(n, d,M, ε)) ≥ Ω

(
1
ε2
n log n logM)

)
for p ∈ {1, 2}.

For that, we need two specific statements of JL-type transforms.

Theorem 7.4.8. [1] Let V be an arbitrary set of n points in Rd and consider k ≥ C 1
ε2

log n
δ

for some sufficiently large constant C. Let S be a k × d matrix with entries picked inde-
pendently uniformly from {−1/

√
k, 1/
√
k}. Then with probability at least 1 − δ we have

‖Su− Sv‖22 = (1± ε)‖u− v‖22 for all u, v ∈ V .

Lemma 7.4.9. (`2 → `1 JL) Let V be an arbitrary set of n points in Rd and consider k ≥
C 1
ε2

log n
δ for some sufficiently large constant C. Let S be a k×d matrix with entries picked

independently uniformly from the centered normal distribution with standard deviation 1/k.
Then with probability at least 1− δ we have ‖Su− Sv‖1 = (1± ε)‖u− v‖2 for all u, v ∈ V .

Proof sketch. This result is essentially proved in [148]. More precisely, consider a vector
x ∈ Rd with ‖x‖ = 1 and define Yi = kSix, where Si is the i-th row of S. By 2-stability of
the normal distribution, Yi is also normal with variance 1. The proof then follows exactly
as in the proof of Theorem 5.1 of [148]. �

Again the lower bound is proved using a reduction from the indexing problem
Ind(nSetInd(ε, δ), r), but now with r set to c logM , for some constant c to be determined
later. Indeed, we simply modify the reduction above as follows, starting with the `2 case.

113

Assume for now that the players can use shared randomness. As before, the players evoke
Lemma 7.4.6 with η = δ/2n and make Alice compute ui = ui(S

1
i , S

2
i , . . . , S

c logM
i , R) for

each i, and make Bob compute vi = vi(S
1
i , S

2
i , . . . , S

j−1
i , S′i, j, k, R) for each i. These vectors

have O(M c 1
ε2

log n) coordinates, which is O(M) for small enough c by our assumption that

M1−γ ≥ d
ε3

log n
δ . Now the players use their shared randomness to apply the JL transform

from Theorem 7.4.8 and obtain the vectors {u′i}i and {v′i}i satisfying the following: (i)
with probability at least 1− δ/2 we have ‖u′i−v′i‖22 = (1± ε

20)‖ui−vi‖22 for all i ∈ [n]; (ii)
the dimension of each of these vectors is O(1

ε2
log n

δ), which is O(d) due to the assumption

d ≥ Ω(1
ε2

log n
δ); (iii) all entries of these vectors belong to the set 0,±1/

√
k, . . . ,±O(M/

√
k).

Then Alice and Bob can use a protocol for `2(n,O(d), O(M), ε/50) that succeeds with
probability 1 − δ to compute (1 ± ε

20) approximations to the distances ‖u′i − v′i‖22 for all

i and decide whether ki belongs to Sji or not for every i just as before. It is easy to see
that Alice and Bob will report the right answer with probability at least 1− 2δ, and hence
R→δ (`2(n,O(d), O(M), ε/50)) ≥ R→,pub

2δ (Ind(nSetInd(2ε, δ), c logM))). Again using (7.4)
and Corollary 7.4.3 concludes the proof of Lemma 7.4.7 for the case `2.

For the case of `1 distance again the players evoke Lemma 7.4.6 with η = δ/2n and

make Alice compute ui = ui(S
1
i , S

2
i , . . . , S

c logM
i , R) for each i, and make Bob compute vi =

vi(S
1
i , S

2
i , . . . , S

j−1
i , S′i, j, k, R) for each i. Again that these vectors have O(M c 1

ε2
log n) =

O(εM/d) coordinates for small enough c (due to our assumption onM). Now for each i they
use their shared randomness to obtain a matrix S with d′ = O(1

ε2
log n

δ) = O(d) columns
satisfying the guarantees from Lemma 7.4.9 (with approximation factor (1± ε

75) and success
probability 1− δ). Then for all i Alice computes the vector ũi by taking Sui and rounding
each entry to the closest additive multiple of ε/75d′, and Bob can compute ṽi similarly. One
can then verify that with probability 1− δ we have ‖ũi− ṽi‖1 = (1± 2ε

75)‖ui−vi‖2 (see for
instance Section A.7.1). Then Alice checks if ‖ũi‖∞ ≤ 2‖ui‖22 (which is O(εM/d)) for all i;
if so, she and Bob use a protocol for `1(n,O(d), O(M), ε/75) to compute (1±ε/75)‖ũi−ṽi‖1
for all i with probability 1− δ. It is easy to see that with probability at least 1− 2δ Alice
and Bob compute an approximation (1 ± ε

10)‖ui − vi‖22 for all i, which can be used as
before to solve their instance of Ind(nSetInd(2ε, δ), c logM)). The proof of the lemma then
follows just as in the `2 case.

7.4.3 Other Applications

The proof of the lower bound for the remaining applications is similar in spirit to that of
Theorem 7.4.4, and are presented in Section A.7 of the appendix.

JL Transforms. The main result of this section is an optimal lower bound on the
dimension of a JL transform.

Definition 7.4.1. A family F of k×d matrices together with a distribution µ on F forms
a Johnson-Lindenstrauss transform with parameters ε, δ, n, d (or JLT(ε, δ, n, d) for short),
if the following holds for S ∼ µ: for any set V of n vectors in Rd, for all u,v ∈ V we have
(1 − ε)‖u − v‖2 ≤ ‖Su − Sv‖2 ≤ (1 + ε)‖u − v‖2 with probability at least 1 − δ. We say
that k is the dimension of the transform.

Theorem 7.4.10. Assume that n is at least a sufficiently large constant and that ε is at
most a sufficiently small constant. Also assume that there is a constant γ > 0 such that

114

d1−γ ≥ 1
ε2

log n
δ . Then any JLT(ε, δ, n, d) has dimension at least Ω(1

ε2
log n

δ). Moreover, this
holds even if the guarantees of the transform only need to hold for vectors in {−1, 0, 1}d.

Sketching Multiple Inner Products. Consider the following communication prob-
lem: Alice has n vectors u1,u2, . . . ,un ∈ [±M]d and Bob has n vectors v1,v2, . . . ,vn ∈
[±M]d. Alice needs to send sketches Su1, Su2, . . . , Sun of her vectors to Bob, who then
has to output (with probability at least 1− δ) approximations 〈ui,vi〉 ± ε‖ui‖‖vi‖ for all
i ∈ [n]. Let Ip(n, d,M, ε) denote this problem.

Theorem 7.4.11. Assume that n is at least a sufficiently large constant and that ε is at
most a sufficiently small constant. Also assume that there is a constant γ > 0 such that
(d logM)1−γ ≥ 1

ε2
log n

δ . Then Rsketch
δ (Ip(n, d,M, ε)) ≥ Ω

(
n 1
ε2

log n
δ (log d+ logM)

)
.

Notice that the above lower bound requires the protocol to be a sketching one: other-
wise one can apply a JL transform to reduce the dimension and use `2 sampling to solve
Ip(n, d,M, ε) with communication Õ(n 1

ε2
log n

δ log log1+εM) [153, 57].

Matrix Sketching. Given a matrix A, we use Ai to denotes its i-th row and use Aj

to denote its j-th column.

Theorem 7.4.12. Assume that n is a sufficiently large constant and that ε is at most a
sufficiently small constant. Also assume that there is a constant γ > 0 such that n1−γ ≥
1
ε2

log n
δ . Let S be a random n×k matrix which has an estimation procedure f outputting a

matrix satisfying the following: for every pair of matrices A,B ∈ [±M]n×n, with probability
at least 1 − δ we have f(AS,B)i,j = (AB)i,j ± ε‖Ai‖‖Bj‖ for all i, j ∈ [n]. Then the bit
size of AS is at least Ω(n 1

ε2
log n

δ (log n+ logM)). Moreover, if the estimation is given by
f(AS,B)i,j = (ASSTB)i,j, then the dimension k is at least Ω(1

ε2
log n

δ).

Database Joins. We refer the reader to [7] for more details about this application.
Consider a database consisting of n tables and multiple attributes, with value domain D.
Let M denote the maximum number of records over all these tables. Given attribute j in
table i, we use f ji (d) to denote the number of records in table i whose value for attribute

j is equal to d. We see f ji as a vector in {0, 1, . . . ,M}|D|. Given attribute j in table i
and attribute j′ in table i′, the join size of these attributes is gives by the inner product

〈f ji , f
j′

i′ 〉. For simplicity, we assume that there is only one attribute ji in each table i that
we are interested in estimating join sizes. We have the following bounds for estimating
these join sizes.

Theorem 7.4.13. Assume that n is at least a sufficiently large constant and that ε is at
most a sufficiently small constant. Consider linear sketches of the n frequency vectors f jii
which allow the join size estimation 〈f jii , f

ji′
i′ 〉±ε‖f

ji
i ‖‖f

ji′
i′ ‖ for all i, i′ ∈ [n] with probability

at least δ. Then we have the following lower bounds for the total bit size required by these
sketches:

• If there is a constant γ > 0 such that |D|1−γ ≥ 1
ε2

log n
δ , then we have the lower bound

Ω(n 1
ε2

log n
δ log |D|).

• If d ≥ n
ε2δ

and M is at least a sufficiently large constant, then we have the lower
bound Ω(n 1

ε2
log n

δ logM).

115

As mentioned earlier, the bounds above actually lower bound the total size of computing
a mergeable summary for the n tables.

Chapter 8
Optimal Round-Complexity of the
Set Intersection Problem

Communication complexity [197] quantifies the communication necessary for two or more
players to compute a function, where each player holds only a portion of the function’s
input. This model is widely studied, with applications in circuit complexity [172], combi-
natorial auctions [157], compressed sensing [17], data streams [9], and many other areas.
We refer the reader to the book by Kushilevitz and Nisan [143] for a thorough treatment
of the subject, which we briefly survey in Section 8.1.

One of the most well-studied problems in communication complexity is the disjointness
function DISJnk(S, T). In this problem, Alice has an input set S ⊆ [n] of size at most k,
Bob has an input set T ⊆ [n] of size at most k, and DISJnk(S, T) = 1 iff |S∩T | = 0. H̊astad
and Wigderson [116] showed that the randomized communication complexity with constant
error probability, denoted R(DISJnk), of this problem is Θ(k). The lower bound of Ω(k)
follows by taking known lower bounds for set disjointness without a cardinality restriction
on S and T , due to Kalysundaram and Schnitger [131], simplified by Razborov [173] and
Bar-Yossef et al. [24], and combining them with a padding argument. The upper bound
of O(k) is due to a protocol given by H̊astad and Wigderson, which they also remark was
known and used many years ago [161].

In this paper we are interested in a seemingly much harder problem than the disjointness
function. Namely, we are interested in recovering the entire set intersection S ∩ T , rather
than only deciding if |S ∩T | = 0. We call this problem the INTk problem. Computing the
intersection or the size of the intersection of two sets is a fundamental problem in computer
science. Since communicating |S| and |T | can be done in one-round with a negligible
amount of communication, a protocol for intersection gives a protocol for computing the
size |S ∪ T | of the union with our communication/round tradeoff. This in turn gives a

protocol for computing the exact Jaccard similarity |S∩T ||S∪T | , exact Hamming distance, exact

number of distinct elements, and exact 1-rarity and 2-rarity [65].
By the lower bound for the disjointness function, we have that R(INTk) = Ω(k),

which holds for any number of rounds. Also, Alice and Bob can deterministically exchange
their inputs using only O(k log(n/k)) bits of communication, so the deterministic 1-round

117

communication complexity D(1)(INTk) is O(k log(n/k)). They can also first hash the
elements in their sets to O(log k)-bit strings, and exchange the hashed values, from which
they can decide which elements are in the intersection with probability 1 − 1/kC , for an
arbitrarily large constant C > 0. This means that the randomized 1-round communication
complexity R(1)(INTk) is O(k log k), which is optimal since R(1) (DISJnk) = Ω(k log k) [64,
42].

A somewhat related problem is that of computing k copies of the equality function EQnk .
In this problem, Alice has k strings x1, . . . , xk ∈ {0, 1}n, Bob has k strings y1, . . . , yk ∈
{0, 1}n, and f(x1, . . . , xk, y1, . . . , yk), and EQnk(x1, . . . , xk, y1, . . . , yk) is a length-k bit vec-
tor, where the i-th bit is 1 iff xi = yi. Feder, Kushilevitz, Naor, and Nisan [90] show that
R(EQnk) = Θ(k). One unfortunate aspect of their protocol is that the number of rounds
they achieve is Ω(

√
k), as their protocol seems to be inherently sequential.

We observe in Appendix A.9 that by hashing into buckets, given a protocol for EQnk ,
we can build a protocol for the INTk problem. Plugging in the protocol of Feder et al.,
we obtain a randomized protocol for INTk with the optimal O(k) bits of communication
in Theorem A.9.1. However, the round complexity is O(

√
k). Another way of obtaining

the optimal O(k) bits of communication is to use a technique of Braverman and Rao to
compress a protocol to its so-called internal information cost [43]. For the INTk problem,
the internal information cost is O(k), and so this results in a protocol with the optimal
O(k) bits of communication, with a much smaller O(log k) number of rounds. It may seem
plausible that one can combine the hashing technique we use in Appendix A.9 together
with O(k) invocations of the recent round-optimal protocols for EQn [44], each with er-
ror probability O(1/k). However, with such low error probability one invocation of the
protocol of [44] requires Ω(log k) communication for any number of rounds, even though
the expected communication for the simpler task of verifying that two unequal inputs are
indeed not equal with error probability O(1/k), can be smaller.

Our Results: In this paper we give a new randomized protocol for INTk which achieves
the optimal O(k) bits of communication, and simultaneously achieves O(log∗ k) number of
rounds, where log∗ k is the iterated logarithm function, that is the number of times the
logarithm function must be iteratively applied before the result is at most 1. Our num-
ber of rounds provides a significant improvement on the earlier O(log k) rounds needed to
achieve the optimal O(k) bits of communication given in previous work.

We also provide a more refined tradeoff, showing that with O(r) rounds, one can achieve
communication O(k ilogrk), where ilogrk is the function obtained by iteratively applying
the logarithm function r times (e.g., ilog1k = log k, log2 k = log log k, etc.). Our protocols
work in the common random string model, but can be turned into constructive protocols
(i.e., without using Newman’s theorem) in the private random string model, incurring an
additive O(log log n) bits of communication with no increase in the number of rounds.

Next, we establish the first lower bound for the INTk problem with r rounds. Namely,
for any r ≥ 1, we show that the r-round randomized communication complexity R(r)(INTk)
is Ω(k logr k), which shows that our O(r)-round protocol has the best possible communica-
tion (up to a constant factor) as any r-round protocol. We also note that there is a simple
Ω(log logn) lower bound in the private random string model, for any number of rounds,
which follows by a reduction of INT1 with sets drawn from the universe of size n to the

118

EQlogn
1 problem. Hence, our protocol in the private random string model is also optimal.
Since EQnk is also a special case of INTk (Fact 8.1.1), we also significantly improve the

round complexity of Feder et al. [90]. We further show that our tradeoff for EQnk is optimal
in the sense that our communication upper bound for O(r) rounds matches what is best
possible for any protocol with r rounds. a

Our Techniques: Upper Bounds: Our upper bounds use hashing and verification. First
consider the following toy protocol: there is a hash function h : [n] → [k/ log k] that the
two players share. For each i ∈ [k/ log k], the players run a set intersection protocol on
Si = {x ∈ S | h(x) = i} and Ti = {y ∈ T | h(y) = i}. To do so, note that with high
probability, simultaneously for all i ∈ [k/ log k], |Si| = O(log k) and |Ti| = O(log k). Alice
and Bob now agree on a hash function gi : [n] → [log3 k]. If Alice sends gi(x) to Bob
for each x ∈ Si, then Bob can compute gi(y) for each y ∈ Ti and check if gi(y) is in the
list of hashed elements that Alice sent. Bob can similary send the gi(y) values to Alice.
Both parties therefore obtain candidate sets IA and IB, respectively, for the intersection
Si∩Ti. The communication for a given i ∈ [k/ log k] is O(log k log log k) and the correctness
probability is 1− 1

Ω(log k) . An important observation now is that IA and IB contain Si ∩ Ti
with probability 1. Therefore, if IA = IB, then in fact IA = IB = Si ∩ Ti. By spending an
additional O(log k) bits of communication, Alice and Bob can run an equality test on IA
and IB, which one should think of as a “verification test”, which succeeds with probability
1− 1

kC
, for an arbitrarily large constant C > 0. Whenever the equality test succeeds, Alice

and Bob can conclude IA = IB = Si ∩ Ti, since all such equality tests simultaneously suc-
ceed with very high probability. For the values of i ∈ [k/ log k] for which the corresponding
equality test detects that IA 6= IB, then the players re-run the set intersection protocol on
Si and Ti. The expected number of re-runs for each i ∈ [k/ log k] is less than 1, and so
the overall expected communication is at most 2k/ log k ·O(log k log log k) = O(k log log k),
which can be made worst-case by terminating the protocol if it consumes more than a
constant factor times its expected communication cost.

To improve the communication futher, we instead hash into k buckets using a hash
function h, and build a “verification tree” with these k buckets as the leaves. The tree
has r levels, where r is the number of rounds we seek to achieve. For 2 ≤ i ≤ r, the
nodes at distance i from the leaves have ilogr−ik/ ilogr−i+1k children, while the nodes at
distance 1 (the parents of the leaves) have ilogr−1k children. For a given i ∈ [k], define
Si and Ti as before. For each i ∈ [k], we run a set intersection protocol on Si and Ti, now
with only constant expected communication. For a node at distance 1 from the leaves, we
have a candidate set intersection for each of its ilogr−1k children. We concatenate these
ilogr−1k candidate intersections as strings, and verify they are equal with a single equality

test. If the equality test succeeds, then we proceed to the next level in the tree. At a node
v in a given level of the tree, we perform a single equality test on all candidate intersec-
tions of leaves in the subtree T (v) rooted at v. If the equality test fails at v, we re-run
the set intersection protocol at all leave in T (v). By carefully choosing the correctness
probabilty of the equality tests run at different levels in the tree, we are able to induc-
tively show the expected communication until the root succeeds is O(k), and the number
of rounds is O(r). Detailed description of the protocol and analysis is given in Section 8.2.2.

119

Lower Bounds: We prove our lower bounds by combining a recent improvement to the direct
sum theorem in information complexity [152] with recent information cost lower bounds

for the EQ problem [44]. The first observation is that INTk is at least as hard as EQ
n/k
k .

We use the information complexity paradigm, which was recently surveyed in a PODS
tutorial [125]. Our usage of this paradigm is most closely related to that developed in [24].
Roughly, the idea is to consider the mutual information I(Π;X,Y) = H(Π)−H(Π|X,Y),
where X,Y are the inputs to the two players in a communication problem f drawn from
a distribution µ, Π is the transcript of the randomized protocol used, and H is the en-
tropy function. Since I(Π;X,Y) ≤ H(Π) ≤ |Π|, the mutual information lower bounds the

communication of Π. Setting IC
(r)
µ (f) = mincorrect Π I(Π;X,Y), where correct Π means a

randomized r-round protocol Π which errs in computing f(X,Y) with probability at most

1/3 on every input (X,Y), one has IC
(r)
µ (f) ≤ R(r)(f). Letting f s be the function in

which one player has inputs X1, . . . , Xs and the other has inputs Y1, . . . , Ys, and the out-
put is the s-tuple (f(X1, Y1), f(X2, Y2), . . . , f(Xs, YS)), a direct sum theorem [24] shows

IC
(r)
µs (fs) ≥ s · IC(r)

µ (f), where (X1, Y1), . . . , (Xs, Ys) ∼ µs. Hence,

R(r)(INTk) ≥ R(r)(EQ
n/k
k) ≥ IC(r)

µk
(EQ

n/k
k) ≥ k · IC(r)

µ (EQn/k).

We now would like to show that IC
(r)
µ (EQn/k) = Ω(ilogrk) for X,Y ∼ µ. Ideally, we could

appeal to a recent bound of [44] which shows that for µ the product uniform distribution

on X,Y , IC
(r)
µ (EQn/k) = Ω((1 − δ)3 ilogr((1 − δ)/ε)), where ε is the probability that the

protocol declares that X = Y when in fact X 6= Y , and δ is the probability that the
protocol declares that X 6= Y when in fact X = Y . Here the probability is over X and
Y drawn from µ, as well as the randomness of the protocol. If ε and δ are fixed constants

bounded away from 0 and 1, then we obtain IC
(r)
µ (EQn/k) = Ω(1), which is too weak.

We instead use the following improvement to the direct sum theorem of Molinaro et al.
[152]. We will also need to use a distribution µ′ different than µ above, as well as the notion
of conditional information complexity. Our distribution µ′ is such that Prµ′ [X 6= Y] ≥ 1/3
and Prµ[X = Y] ≥ 1/3. There is also an auxiliary random variable W ∼ ν, so that
conditioned on W = w for any value w, X and Y are indepenent. Molinaro et al. show

that IC
(r)

(µ′)k
(fs) ≥ s · IC(r)

µ′,1/20,1/10,1/s(f), where IC
(r)
µ′,1/20,1/10,1/s(f) is the minimum value

of I(Π;X,Y |W) over r-round randomized protocols Π which, with probability at least
19/20 over their randomness, result in a deterministic protocol which is allowed to output
“abort” with probability at most 1/10, and given that it does not abort, it is correct
with probability at least 1 − 1/s. Here, the latter two probabilities are over input pairs
(X,Y) ∼ µ′. Our main idea is to change such a protocol for the EQn/k problem: whenever
it would output “abort”, have it instead declare that X 6= Y . Then, conditioned on the
private randomness resulting in a deterministic protocol with the property as described,
which we call event E , this modification makes the resulting deterministic protocol have
the property that if X 6= Y , then the protocol outputs X = Y with probability at most
(1/s)/Prµ′ [X 6= Y] ≤ 3/s. However, if X = Y , then the protocol may output X 6= Y with
probability 1/10 + (1/s)/Prµ′ [X = Y] ≤ 1/10 + 3/s ≤ 1/5, where the latter follows for
s ≥ 30. Call the new protocol Π′. Then, conditioned on E , Π′ rarely (probability O(1/s))
makes a mistake when X 6= Y , while with constant probability it makes a mistake when

120

X = Y . This is exactly the property we need to apply [44]. We are able to show that

I(Π;X,Y |W) = Ω(I(Π;X,Y |W, E))− 1

= Ω(I(Π′;X,Y |W, E))− 2 = Ω(IC(r)
µ (EQn/k))− 2 = Ω(ilogrk),

where the non-trivial step is showing that for X,Y ∼ µ′ and W ∼ ν, that I(Π′;X,Y |W, E)

= Ω(IC
(r)
µ (EQn/k)), which we prove directly using the definition of µ and ν ′ given in [152],

and their relationship with µ.

Recent Related Work: In very recent and independent work, Saglam and Tardos [180]
give a tight communication bound for the DISJnk problem of R(1) (DISJnk) = Θ(k ilog(r)k. As
with the upper bounds in [44] (which are variants of those in yet an earlier version of that
by Saglam and Tardos [179]), the authors are providing a protocol for an easier problem
than INTk. However, their lower bound also implies our lower bound, though the tech-
niques used are very different. One possible advantage of our lower bound is we establish
an information cost lower bound, which is used in direct sum theorems for communication
cost (see Section 8.1 for definitions).

Recently, Braverman et. al [42] also give lower bounds on the exact communication
cost of DISJnk , showing that it is 2

ln 2k ± o(k), though the result does not establish a round
versus communication tradeoff.

8.1 Definitions and preliminaries

In the two-player communication model there is a function f : D×D → R, where D stands
for domain and R for range. Alice and Bob are given respective inputs x, y ∈ D, and need
to jointly compute f(x, y). They take turns exchanging bits to each other according to
a protocol, and then the players write the output of the protocol on their output tape.
For deterministic protocols, this output must equal f(x, y) for every input pair x, y. We
let D(f) be the minimum, over deterministic protocols that compute f , of the maximum
number of bits exchanged by the protocol over all inputs.

For randomized protocols, there are two well-studied and closely-related models. In the
common random string model the players share an infinite string of independent unbiased
coin tosses, and the players are otherwise deterministic. The correctness requirement is that
for every input pair x, y, the output of Alice and Bob is equal to f(x, y) with probability at
least 1− δ, for some specified δ > 0, where the probability is taken over the shared random
string. We let Rδ(f) be the minimum, over protocols in the common random string model
satisfying the correctness protocol for f , of the maximum number of bits exchanged by the
protocol over all inputs and shared random strings. For brevity, we let R(f) = R1/3(f).
We note that a 2/3 success probability can be amplified to 1 − ε for an arbitrarily small
constant ε > 0 by incurring a constant factor overhead in communication.

In the private random string model, the players do not share a random string, but rather
are allowed to be randomized using private randomness. By a result of Newman [156], any
problem that can be solved in the common random string model can be solved in the
private random string model, adding only O(log log T) to the communication complexity,

121

where T is the number of different inputs to the players. One unfortunate aspect of
this reduction is that it is non-constructive in the sense that for each input length n,
the protocol used is either hardwired an advice string that depends on n, or the players
must search for the advice string, which doesn’t require communication, but can result in
unnecessary computation. We give our upper bounds in the common random string model,
but describe how to translate them into constructive protocols in the private random string
model, preserving optimality.

Besides the total communication, another well-studied resource is the total number of
messages exchanged between the two players, known as the round complexity. In certain
applications a server may not always be online, resulting in a significant delay between
messages. There may also be undesirable overhead in the transmission of each message.
Thus, it is important to not only achieve optimal communication, but also an optimal
number of rounds for a given amount of communication. We use D(r)(f) and R(r)(f)
to denote the deterministic and randomized communication complexity (in the common
random string model) for protocols restricted to using at most r rounds.

Let EQn denote the communication problem of solving Equality on binary strings
of length n. Let EQn

k denote the communication problem, corresponding to k indepen-
dent instances of EQn. Let INTk denote the communication problem of computing the
intersection of two sets S, T ⊆ [n], such that |S|, |T | ≤ k.

A simple reduction from EQn
k to INTk can be given as follows. For an instance

(x1, . . . , xk, y1, . . . , yk) of EQn
k an instance of INTk is constructed by creating two sets

of pairs (1, x1), . . . (k, xk) and (1, y1), . . . (k, yk). The size of the intersection between these
two sets is exactly equal to the number of equal (xi, yi) pairs. This fact for DISJnk can be
also found in [44] as Lemma 6.3.

Fact 8.1.1 ([44]). If there exists a protocol Π for INTk, where the sets are drawn from a
universe of size N ≥ kc for c > 2 then there exists a protocol Π′ for EQn

k with the same
communication complexity and success probability for n = blog(Nk)c.

We will use the following fact about collision probability of a randomly chosen hash
function.

Fact 8.1.2. Given a subset S ⊆ [n] for size |S| ≥ 2, i ≥ 0 and t = Θ(|S|i+2), a random
hash function h : [n]→ [t] has no collisions with probability at least 1− 1/|S|i, namely for
all x, y ∈ S such that x 6= y it holds that h(x) 6= h(y). Moreover, a random hash function
satisfying such guarantee can be constructed using only O(log n) random bits.

8.2 Upper bound

8.2.1 Auxiliary protocols

We first describe auxiliary protocols Basic-Set-Intersection (Lemma 8.2.1) and Equal-
ity (Fact 8.2.3) that we use as building blocks in our main algorithm in Section 8.2.2. For
a two-party communication protocol Π we denote the output of the protocol for the first
party as ΠA(x, y) and for the second party as ΠB(x, y).

122

Lemma 8.2.1 (Protocol Basic-Set-Intersection(S, T)). There exists a randomized
protocol Π(with shared randomness), such that for any S, T ⊂ [n] and an integer i ≥ 1, the
sets S′ = ΠA(S, T) and T ′ = ΠB(S, T) satisfy the following properties:

1. S′ ⊆ S, T ′ ⊆ T .

2. If S ∩ T = ∅ then S′ ∩ T ′ = ∅ with probability 1.

3. If S ∩ T 6= ∅ then (S ∩ T) ⊆ (S′ ∩ T ′). Also, with probability 1 − 1/mi it holds that
S′ = T ′ = (S ∩ T).

The total communication in the protocol is O (i · (|S|+ |T |) log(|S|+ |T |)) and the protocol
can be executed in 4 rounds.

Proof. The parties first exchange the sizes of their sets |S| and |T | and determine m =
|S|+ |T |. Using shared randomness they pick a random hash function h : [n]→ [t], where
t = Θ(mi+2). They exchange sets h(S) and h(T) using total communication O(i ·m logm).
The outcome of the protocol is ΠA(S, T) = h−1(h(T))∩ S and ΠB(S, T) = h−1(h(S))∩ T .
Since exchanging the sizes of the sets takes two rounds and another two rounds are required
to exchange h(S) and h(T), the total number of rounds of communication is 4.

By construction we have S′ = h−1(h(T)) ∩ S ⊆ S and similarly T ′ ⊆ T so the first
property holds. If S∩T = ∅ then S′∩T ′ = (h−1(h(T))∩S)∩(h−1(h(S))∩T) ⊆ (S∩T) = ∅
and the second property holds. Because S ⊆ h−1(h(S)) and T ⊆ h−1(h(T)) we have S∩T ⊆
(h−1(h(T))∩S)∩ (h−1(h(S))∩T) = S′∩T ′, the first part of the third property. Moreover,
if the hash function h has no collisions among S ∪ T then S′ = h−1(h(T)) ∩ S = T ∩ S
and T ′ = h−1(h(S)) ∩ T = S ∩ T . The proof is completed using the analysis of collision
probability given by Fact 8.1.2.

Corollary 8.2.2. If for the protocol Π for Basic-Set-Intersection in Lemma 8.2.1 it
holds that ΠA(S, T) = ΠB(S, T) then ΠA(S, T) = ΠB(S, T) = S ∩ T .

In our main protocol in Section 8.2.2 we will use an EQn test with the following
guarantees to verify correctness of the protocol Basic-Set-Intersection. The following
guarantee is achieved by a protocol, which uses a random hash function h into k bits.

Fact 8.2.3. There exists a randomized (with shared randomness) protocol Π for EQn with
the following properties. If x = y then ΠA(x, y) = ΠB(x, y) = 1 with probability 1. If x 6= y
then ΠA(x, y) = ΠB(x, y) = 0 with probability at least 1− 1/2k. The total communication
in the protocol is O(k) and it can be executed in two rounds.

8.2.2 Main protocol

We will use the following definition of the iterated logarithm functions ilogiz. Let ilog0z =
z and for an integer i ≥ 1 let ilogiz = log

(
ilogi−1z

)
.

Theorem 8.2.4. For every integer r > 0 there exists an O(r)-round constructive ran-
domized communication protocol (with shared randomness) for INTk with total expected
communication O(k ilogrk) and success probability 1− 1/poly(k).

123

Proof. For r = 1 the parties use shared randomness to pick a hash function h : [n] → [m]
for m = kc, where c > 2. Then each of the parties uses ck log k bits to exchange h(S) and
h(T) respectively. By Fact 8.1.2 the probability that h has a collision on a set S ∪ T is at
most 1− 1/Θ(kc−2).

For r > 1 consider a tree T of depth r with the set of nodes at the i-th level for 0 ≤ i ≤ r
denoted as Li (these are the nodes at distance i from the leaves). Let the degree at the
i-th level for 2 ≤ i ≤ r be equal to di = ilogr−ik/ ilogr−i+1k and the degree at the first
level is d1 = ilogr−1k. Note that this guarantees that the total number of leaves in the
tree is k. For a node v ∈ T , let c(v) denote the set of children of v. For a node v ∈ T ,
let C(v) denote the set of all leaves in the subtree of v. Note that for a node v ∈ Li the
number of such leaves is |C(v)| = ilogr−ik.

Definition 8.2.1 (Set assignment). A set assignment A to the leaves of T is a vector A =
(A1, . . . ,Ak), consisting of k sets. We say that the set A` is assigned to a corresponding
leaf ` in T .

Definition 8.2.2 (Induced assignment). Let A = (A1, . . . ,Ak) be a set assignment for the
leaves of T . For every internal node v ∈ T denote an assignment induced at this vertex by
A as Av = ∪i∈C(v)Ai.

Now we describe the protocol used by the parties. First, Alice and Bob use shared
randomness to pick a hash function h : [n] → [k]. Using this hash function they define
initial assignments of sets S−1 and T−1 respectively as follows. For a leaf ` ∈ [k] of T , let
S−1
` = h−1(h(`)) ∩ S and T−1

` = h−1(h(`)) ∩ T .
Then the protocol proceeds in r stages. In stage i for 0 ≤ i < r the parties construct

new assignments to the leaves of T , which induce new assignments on the internal nodes.
We will show that after r stages the parties obtain an assignment to the leaves, such that
with high probability the set induced by this assignment in the root of T is exactly S ∩ T .
We use notation Si and T i respectively for the i-th assignment that the parties make to
the leaves of the tree. The description of the i-th stage is given as Algorithm 8.1. This
completes the description of the protocol.

Algorithm 8.1 Protocol for INTk. Stage i.

Input: Inputs of the parties S, T ∈ [k]k, assignments Si−1, T i−1 from the previous stage.

1: For every v ∈ Li run the protocol Equality(Si−1
v , T i−1

v) with success probability
1− 1/(ilogr−i−1k)4.

2: Let F be the set of vertices for which the equality protocol above returns Si−1
v 6= T i−1

v .
We call these vertices failed.

3: For every v ∈ F and every leaf u ∈ C(v) run Basic-Set-Intersection(Si−1
u , T i−1

u)
with success probability 1 − 1/(ilogr−i−1k)4 and assign Siu = ΠA(Si−1

u , T i−1
u) and

T iu = ΠB(Si−1
u , T i−1

u) respectively.
4: For every v /∈ F and every leaf u ∈ C(v) assign Siu = Si−1

u and T iu = T i−1
u .

In the rest of the proof we first analyze the correctness probability of the protocol
above (the key lemma is Lemma 8.2.5) and then total communication (Lemma A.10.1).

124

The proof of Theorem 8.2.4 is completed by observing that the protocol can be executed
in O(r) rounds.

Lemma 8.2.5. After stage i for every leaf u ∈ T it holds that Siu = T iu with probability at
least 1− 1/(ilogr−i−1k)4, taken over all the randomness of the protocol.

Proof. If u is in the subtree of a node v, which is not failed at level i then we know that
Sv = Tv and thus Su = Tu for each u ∈ C(v) with probability at least 1− 1/(ilogr−i−1k)4

by the guarantee of the Equality(Sv, Tv) test. Otherwise, u is in the subtree of a failed
node v at level i. In this case the claim follows because we run Basic-Set-Intersection
protocol for this leaf with success probability at least 1− 1/(ilogr−i−1k)4.

We call a node v ∈ Li correct if after stage i it holds that Siv = T iv.

Corollary 8.2.6. Every node v ∈ Li is correct with probability at least 1−1/(ilogr−i−1k)3.
In particular, the root of the tree is correct with probability at least 1− 1/k3.

Proof. From Lemma 8.2.5 applied to the level i it follows that after the execution of stage i
for every leaf u ∈ C(v) it holds that Siu = T iu with probability at least 1− 1/(ilogr−i−1k)4.
Hence, by a union bound over all ilogr−ik such leaves with probability at least 1 −
ilogr−ik/(ilogr−i−1k)4 ≥ 1− 1/(ilogr−i−1k)3 we have Siv = T iv.

The correctness proof of the protocol now follows from Corollary 8.2.6 together with
the following invariant applied to the root of the tree after round r − 1.

Proposition 8.2.7. If for a node v ∈ T Alice and Bob assign Siv and T iv to it respectively
then if Siv = T iv then Siv = T iv = Sv ∩ Tv.

Proof. Note that this invariant is maintained by Basic-Set-Intersection (Corollary 8.2.2).
During the execution of the protocol the sets S′v and T ′v only change when we apply Basic-
Set-Intersection to the leaves in T . Clearly, if the invariant is maintained for all leaves
then it is also maintained for all internal nodes as well.

In Appendix A.10 we show that the total expected communication in the protocol is
O(k ilogrk). Finally, the bound on the number of rounds of communication follows from
the fact the communication in each of the r stages for the Equality tests can be done
in parallel in two rounds (Fact 8.2.3). After in four more rounds we can perform all
Basic-Set-Intersection protocols in parallel (Lemma 8.2.1). This gives 6r rounds of
communication.

Bibliography

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss
with binary coins. Journal of Computer and System Sciences, 66(4):671 – 687, 2003.

[2] W. Ackermann. Zum Hilbertshen aufbau der reelen zahlen. Math. Ann., 99:118–133,
1928.

[3] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei
Wei, and Ke Yi. Mergeable summaries. In PODS, pages 23–34, 2012.

[4] Nir Ailon and Bernard Chazelle. Information theory in property testing and mono-
tonicity testing in higher dimension. Inf. Comput., 204(11):1704–1717, 2006.

[5] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Property-
preserving data reconstruction. Algorithmica, 51(2):160–182, 2008.

[6] Noga Alon. Perturbed identity matrices have high rank: Proof and applications.
Combinatorics, Probability & Computing, 18(1-2):3–15, 2009.

[7] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. Tracking join and
self-join sizes in limited storage. J. Comput. Syst. Sci., 64(3):719–747, 2002.

[8] Noga Alon, Shlomo Hoory, and Nathan Linial. The Moore Bound for Irregular
Graphs. Graphs and Combinatorics, 18:53–57, 2002.

[9] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[10] Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product
queries. Technical Report 71/87, Tel-Aviv University, 1987.

[11] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On
sparse spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–
100, 1993.

[12] Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken. Key management for
non-tree access hierarchies. In SACMAT, pages 11–18, 2006.

126

[13] Mikhail J. Atallah, Keith B. Frikken, and Marina Blanton. Dynamic and efficient
key management for access hierarchies. In ACM Conference on Computer and Com-
munications Security, pages 190–202, 2005.

[14] Pranjal Awasthi, Madhav Jha, Marco Molinaro, and Sofya Raskhodnikova. Testing
Lipschitz functions on hypergrid domains. In APPROX-RANDOM, pages 387–398,
2012.

[15] Baruch Awerbuch. Communication-time trade-offs in network synchronization. In
PODC, pages 272–276, 1985.

[16] Baruch Awerbuch. Communication-time trade-offs in network synchronization. In
Michael A. Malcolm and H. Raymond Strong, editors, PODC, pages 272–276. ACM,
1985.

[17] Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds for
sparse recovery. In SODA, pages 1190–1197, 2010.

[18] Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam
Nisan, and Tim Roughgarden. Sketching valuation functions. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12,
pages 1025–1035. SIAM, 2012.

[19] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for
the undirected feedback vertex set problem. SIAM J. Discrete Math., 12(3):289–297,
1999.

[20] Maria-Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. Learning
valuation functions. In Shie Mannor, Nathan Srebro, and Robert C. Williamson,
editors, COLT, volume 23 of JMLR Proceedings, pages 4.1–4.24. JMLR.org, 2012.

[21] Maria-Florina Balcan and Nicholas J. A. Harvey. Learning submodular functions. In
STOC, pages 793–802, 2011.

[22] Reuven Bar-Yehuda, Dan Geiger, Joseph (Seffi) Naor, and Ron M. Roth. Approxi-
mation algorithms for the vertex feedback set problem with applications to constraint
satisfaction and bayesian inference. In SODA’94, pages 344–354, Philadelphia, 1994.
SIAM.

[23] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. The sketching
complexity of pattern matching. In APPROX-RANDOM, pages 261–272, 2004.

[24] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information
statistics approach to data stream and communication complexity. J. Comput. Syst.
Sci., 68(4):702–732, 2004.

[25] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. In STOC, pages 67–76, 2010.

127

[26] Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted
graphs in expected Õ(n2) time. ACM Transactions on Algorithms, 2(4):557–577,
2006.

[27] Mohammadhossein Bateni, Mohammadtaghi Hajiaghayi, and Dániel Marx. Approxi-
mation schemes for Steiner forest on planar graphs and graphs of bounded treewidth.
J. ACM, 58:21:1–21:37, October 2011.

[28] Paul Beame. A switching lemma primer. In Unpublished notes:
http://www.cs.washington.edu/
homes/beame/papers/primer.ps, 1994.

[29] Ann Becker and Dan Geiger. Optimization of Pearl’s Method of Conditioning and
Greedy-Like Approximation Algorithms for the Vertex Feedback Set Problem. Artif.
Intell., 83(1):167–188, 1996.

[30] Piotr Berman, Arnab Bhattacharyya, Elena Grigorescu, Sofya Raskhodnikova,
David P. Woodruff, and Grigory Yaroslavtsev. Steiner transitive-closure spanners
of low-dimensional posets. In ICALP (1), pages 760–772, 2011.

[31] Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova,
and Grigory Yaroslavtsev. Approximation algorithms for spanner problems and di-
rected Steiner forest. Inf. Comput., 222:93–107, 2013.

[32] Piotr Berman, Sofya Raskhodnikova, and Ge Ruan. Finding sparser directed span-
ners. In FSTTCS, pages 424–435, 2010.

[33] Piotr Berman and Grigory Yaroslavtsev. Primal-dual approximation algorithms for
node-weighted network design in planar graphs. In APPROX-RANDOM, pages 50–
60, 2012.

[34] Arnab Bhattacharyya, Elena Grigorescu, Madhav Jha, Kyomin Jung, Sofya Raskhod-
nikova, and David P. Woodruff. Lower bounds for local monotonicity reconstruction
from transitive-closure spanners. SIAM J. Discrete Math., 26(2):618–646, 2012.

[35] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and
David P. Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380–1425,
2012.

[36] Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and
David P. Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380–1425,
2012.

[37] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via
communication complexity. Computational Complexity, 21(2):311–358, 2012.

[38] Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing
properties of functions on hypergrid domains. Electronic Colloquium on Computa-
tional Complexity (ECCC), 20:36, 2013.

128

[39] Hanls L. Bodlaender, Gerard Tel, and Nicola Santoro. Tradeoffs in non-reversing
diameter. Nordic J. Comput., 1(1):111 – 134, 1994.

[40] Stéphane Boucheron, Gábor Lugosi, and Pacal Massart. On concentration of self-
bounding functions. Electron. J. Probab., 14:1884–1899, 2009.

[41] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. A sharp concentration
inequality with application. Random Struct. Algorithms, 16:277–292, May 2000.

[42] Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From informa-
tion to exact communication. Electronic Colloquium on Computational Complexity
(ECCC), 19:171, 2012.

[43] Mark Braverman and Anup Rao. Information equals amortized communication. In
FOCS, pages 748–757, 2011.

[44] Joshua Brody, Amit Chakrabarti, and Ranganath Kondapally. Certifying equal-
ity with limited interaction. Electronic Colloquium on Computational Complexity
(ECCC), 19:153, 2012.

[45] Joshua Brody, Kevin Matulef, and Chenggang Wu. Lower bounds for testing com-
putability by small width OBDDs. In Mitsunori Ogihara and Jun Tarui, editors,
Theory and Applications of Models of Computation, volume 6648 of LNCS, pages
320–331. Springer, 2011.

[46] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao. Informa-
tional complexity and the direct sum problem for simultaneous message complexity.
In FOCS, pages 270–278, 2001.

[47] Deeparnab Chakrabarty and Zhiyi Huang. Testing coverage functions. In ICALP
(1), pages 170–181, 2012.

[48] Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean
functions over the hypercube. In STOC, pages 411–418, 2013.

[49] Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and
Lipschitz testing over hypercubes and hypergrids. In STOC, pages 419–428, 2013.

[50] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Lower bounds for con-
stant depth circuits for prefix problems. In Josep Dı́az, editor, ICALP, volume 154
of Lecture Notes in Computer Science, pages 109–117. Springer, 1983.

[51] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Unbounded fan-in circuits
and associative functions. J. Comput. Syst. Sci., 30(2):222–234, 1985.

[52] Moses Charikar, MohammadTaghi Hajiaghayi, and Howard J. Karloff. Improved
approximation algorithms for label cover problems. Algorithmica, 61(1):190–206,
2011.

[53] Bernard Chazelle. Computing on a free tree via complexity-preserving mappings.
Algorithmica, 2:337–361, 1987.

129

[54] Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity
problems in undirected graphs and the directed Steiner network problem. ACM
Trans. Algorithms, 7(2):18, 2011.

[55] Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari, and Homin K. Lee. Submodular
functions are noise stable. In SODA, pages 1586–1592, 2012.

[56] Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari, and Homin K. Lee. Submodular
functions are noise stable. In SODA, pages 1586–1592, 2012.

[57] Kenneth L. Clarkson, Elad Hazan, and David P. Woodruff. Sublinear optimization
for machine learning. In Proceedings of the 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science, FOCS ’10, pages 449–457, Washington, DC, USA,
2010. IEEE Computer Society.

[58] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the stream-
ing model. In STOC, pages 205–214, 2009.

[59] Edith Cohen. Fast algorithms for constructing t-spanners and paths with stretch t.
SIAM J. Comput., 28(1):210–236, 1998.

[60] Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected
shortest paths. J. ACM, 47(1):132–166, 2000.

[61] Thomas M. Cover and Joy A. Thomas. Elements of information theory (2 ed.).
Wiley, 2006.

[62] Lenore Cowen. Compact routing with minimum stretch. J. Algorithms, 38(1):170–
183, 2001.

[63] Lenore Cowen and Christopher G. Wagner. Compact roundtrip routing in directed
networks. J. Algorithms, 50(1):79–95, 2004.

[64] Anirban Dasgupta, Ravi Kumar, and D. Sivakumar. Sparse and lopsided set dis-
jointness via information theory. In APPROX-RANDOM, pages 517–528, 2012.

[65] Mayur Datar and S. Muthukrishnan. Estimating rarity and similarity over data
stream windows. In ESA, pages 323–334, 2002.

[66] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. New constructions for
provably-secure time-bound hierarchical key assignment schemes. Theor. Comput.
Sci., 407(1-3):213–230, 2008.

[67] Erik Demaine, MohammadTaghi Hajiaghayi, and Philip Klein. Node-weighted
Steiner tree and group Steiner tree in planar graphs. In ICALP’09.

[68] Erik D. Demaine and MohammadTaghi Hajiaghayi. Bidimensionality: new connec-
tions between fpt algorithms and ptass. In SODA’05, pages 590–601, Philadelphia,
2005. SIAM.

130

[69] Bistra Dilkina and Carla Gomes. Solving connected subgraph problems in wildlife
conservation. In Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, volume 6140 of LNCS, pages 102–116.
Springer Berlin / Heidelberg, 2010.

[70] Michael Dinitz, Guy Kortsarz, and Ran Raz. Label cover instances with large girth
and the hardness of approximating basic k-spanner. In ICALP (1), pages 290–301,
2012.

[71] Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear
programs. In Proceedings of the 43rd annual ACM symposium on Theory of comput-
ing, STOC ’11, pages 323–332, New York, NY, USA, 2011. ACM.

[72] Michael Dinitz and Gordon T. Wilfong. iBGP and constrained connectivity. In
APPROX-RANDOM, pages 122–133, 2012.

[73] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex
cover. The Annals of Mathematics, 162(1):pp. 439–485, 2005.

[74] Kashyap Dixit, Madhav Jha, Sofya Raskhodnikova, and Abhradeep Thakurta. Test-
ing the Lipschitz property over product distributions with applications to data pri-
vacy. In TCC, pages 418–436, 2013.

[75] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and
Alex Samorodnitsky. Improved testing algorithms for monotonicity. In RANDOM,
pages 97–108, 1999.

[76] Yevgeniy Dodis and Sanjeev Khanna. Designing networks with bounded pairwise
distance. In STOC, pages 750–759, 1999.

[77] Y.G. Dorfman and G.I. Orlova. Finding the maximal cut in a graph. Engineering
Cybernetics, pages 502–506, 1972.

[78] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 2009.

[79] B. Dushnik and E.W. Miller. Concerning similarity transformations of linearly or-
dered sets. Bulletin Amer. Math. Soc., 46:322–326, 1940.

[80] Ben Dushnik and E. W. Miller. Partially ordered sets. Amer. J. Math., 63:600–610,
1941.

[81] Oya Ekin, Peter L. Hammer, and Uri N. Peled. Horn functions and submodular
boolean functions. Theor. Comput. Sci., 175(2):257–270, 1997.

[82] M. Elkin. Computing almost shortest paths. In PODC, pages 53–62, 2001.

[83] Michael Elkin and David Peleg. Strong inapproximability of the basic k-spanner
problem. In ICALP, pages 636–647, 2000.

131

[84] Michael Elkin and David Peleg. The client-server 2-spanner problem with applica-
tions to network design. In SIROCCO, pages 117–132, 2001.

[85] Michael Elkin and David Peleg. Approximating k-spanner problems for k > 2. Theor.
Comput. Sci., 337(1-3):249–277, 2005.

[86] Michael Elkin and David Peleg. The hardness of approximating spanner problems.
Theory Comput. Syst., 41(4):691–729, 2007.

[87] F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-
checkers. J. Comput. Syst. Sci., 60(3):717–751, 2000.

[88] G. Even, J. (Seffi) Naor, B. Schieber, and M. Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica, 20:151–174, 1998.

[89] Guy Even, Joseph Naor, and Leonid Zosin. An 8-approximation algorithm for the
subset feedback vertex set problem. SIAM J. Comput., 30(4):1231–1252, 2000.

[90] Tomás Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized communi-
cation complexity. SIAM J. Comput., 24(4):736–750, 1995.

[91] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652,
July 1998.

[92] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. Graph distances in the data-stream model. SIAM J. Comput., 38(5):1709–
1727, 2008.

[93] Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximating algorithms
for Directed Steiner Forest. In SODA, pages 922–931, 2009.

[94] Eldar Fischer. On the strength of comparisons in property testing. Information and
Computation, 189(1):107–116, 2004.

[95] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Alex Samorodnitsky. Monotonicity testing over general poset domains. In STOC,
pages 474–483, 2002.

[96] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table
with 0(1) worst case access time. J. ACM, 31(3):538–544, 1984.

[97] Z. Füredi and J. Kahn. On the dimension of ordered sets of bounded degree. Order,
3:15–20, 1986.

[98] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, 1990.

[99] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Approximate max-flow
min-(multi)cut theorems and their applications. SIAM J. Comput., 25:235–251,
February 1996.

132

[100] Michel X. Goemans, Nicholas J. A. Harvey, Satoru Iwata, and Vahab S. Mirrokni.
Approximating submodular functions everywhere. In SODA, pages 535–544, 2009.

[101] Michel X. Goemans and David P. Williamson. A general approximation technique
for constrained forest problems. SIAM J. Comput., 24(2):296–317, 1995.

[102] Michel X. Goemans and David P. Williamson. Primal-dual approximation algorithms
for feedback problems in planar graphs. Combinatorica, 18:37–59, 1998.

[103] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

[104] Oded Goldreich, editor. Property Testing: Current Research and Surveys, volume
6390 of Lecture Notes in Computer Science. Springer, 2010.

[105] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnit-
sky. Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

[106] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connec-
tion to learning and approximation. J. ACM, 45(4):653–750, 1998.

[107] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In STOC, pages 25–32, 1989.

[108] Parikshit Gopalan, Adam Tauman Kalai, and Adam R. Klivans. Agnostically learn-
ing decision trees. In Cynthia Dwork, editor, STOC, pages 527–536. ACM, 2008.

[109] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and
combinatorial optimization. Springer : Berlin [u.a.], 1988.

[110] Sudipto Guha, Anna Moss, Joseph Naor, and Baruch Schieber. Efficient recovery
from power outage (extended abstract). In STOC’99, pages 574–582, 1999.

[111] Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan Ullman. Privately re-
leasing conjunctions and the statistical query barrier. In Lance Fortnow and Salil P.
Vadhan, editors, STOC, pages 803–812. ACM, 2011.

[112] M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed. Probabilistic methods
for algorithmic discrete mathematics, volume 16. Springer Verlag, 1998.

[113] Frank Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM
J. Comput., 4(3):221–225, 1975.

[114] Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan.
The communication complexity of correlation. IEEE Transactions on Information
Theory, 56(1):438–449, 2010.

[115] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In STOC,
pages 6–20, 1986.

133

[116] Johan H̊astad and Avi Wigderson. The randomized communication complexity of
set disjointness. Theory of Computing, 3(1):211–219, 2007.

[117] William Hesse. Directed graphs requiring large numbers of shortcuts. In SODA,
pages 665–669, 2003.

[118] T. Hiraguchi. On the dimension of partially ordered sets. Science Reports Kanazawa
University, 1:77–94, 1951.

[119] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. J. ACM, 53(3):307–323, May 2006.

[120] Piotr Indyk. Sketching, streaming and sublinear-space algorithms. 2007. Graduate
course notes, available at http://stellar.mit.edu/S/course/6/fa07/6.895/.

[121] Rahul Jain. New strong direct product results in communication complexity. Elec-
tronic Colloquium on Computational Complexity (ECCC), 18:24, 2011.

[122] Rahul Jain, Attila Pereszlényi, and Penghui Yao. A direct product theorem for the
two-party bounded-round public-coin communication complexity. In FOCS, pages
167–176, 2012.

[123] Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A direct sum theorem in
communication complexity via message compression. In ICALP, pages 300–315,
2003.

[124] Rahul Jain, Pranab Sen, and Jaikumar Radhakrishnan. Optimal direct sum and
privacy trade-off results for quantum and classical communication complexity. CoRR,
abs/0807.1267, 2008.

[125] T. S. Jayram. Information complexity: a tutorial. In PODS, pages 159–168, 2010.

[126] T. S. Jayram and David P. Woodruff. Optimal bounds for Johnson-Lindenstrauss
transforms and streaming problems with sub-constant error. In Dana Randall, editor,
SODA, pages 1–10. SIAM, 2011.

[127] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz func-
tions with applications to data privacy. In Ostrovsky [159], pages 433–442. Full
version available at http://eccc.hpi-web.de/report/2011/057/.

[128] Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of lipschitz func-
tions with applications to data privacy. SIAM J. Comput., 42(2):700–731, 2013.

[129] Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for Lp samplers,
finding duplicates in streams, and related problems. In PODS, pages 49–58, 2011.

[130] Andrew B. Kahng, Shailesh Vaya, and Alexander Zelikovsky. New graph bipar-
tizations for double-exposure, bright field alternating phase-shift mask layout. In
ASP-DAC’01, pages 133–138, New York, 2001. ACM.

http://stellar.mit.edu/S/course/6/fa07/6.895/

134

[131] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication com-
plexity of set intersection. SIAM J. Discrete Math., 5(4):545–557, 1992.

[132] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space com-
plexity of sketching and streaming small norms. In SODA, pages 1161–1178, 2010.

[133] David Kelly. On the dimension of partially ordered sets. Discrete Mathematics,
35(1-3):135–156, 1981.

[134] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within
2-epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008.

[135] Hartmut Klauck. A strong direct product theorem for Disjointness. In STOC, pages
77–86, 2010.

[136] Philip Klein. Flatworlds: Optimization Algorithms for Planar Graphs.

[137] Philip N. Klein and R. Ravi. A nearly best-possible approximation algorithm for
node-weighted Steiner trees. J. Algorithms, 19(1):104–115, 1995.

[138] Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–
450, 2001.

[139] Guy Kortsarz and David Peleg. Generating sparse 2-spanners. J. Algorithms, 17:222–
236, 1994.

[140] Guy Kortsarz and David Peleg. Generating low-degree 2-spanners. SIAM J. Comput.,
27(5):1438–1456, 1998.

[141] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. Computational Complexity, pages 21–49, 1999.

[142] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier
spectrum. SIAM J. Comput., 22(6):1331–1348, 1993.

[143] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

[144] John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary
properties is NP-complete. Journal of Computer and System Sciences, 20(2):219 –
230, 1980.

[145] Xianyue Li, Xiao-Hua Xu, Feng Zou, Hongwei Du, Pengjun Wan, Yuexuan Wang,
and Weili Wu. A PTAS for node-weighted Steiner tree in unit disk graphs. In
Combinatorial Optimization and Applications, volume 5573 of LNCS, pages 36–48.
Springer Berlin / Heidelberg, 2009.

[146] Laszlo Lovasz. Submodular functions and convexity. In Mathematical Programming
and the State of the Art, pages 233–257, 1982.

135

[147] Yishay Mansour. An O(nlog logn) learning algorithm for DNF under the uniform
distribution. J. Comput. Syst. Sci., 50(3):543–550, 1995.

[148] Jiri Matousek. On variants of the Johnson-Lindenstrauss lemma. Random Structures
and Algorithms, 33(2):142–156, 2008.

[149] A. McGregor. Data streams and linear sketches. 2007. STOC Workshop pre-
sentation, available at http://people.cs.umass.edu/~mcgregor/stocworkshop/

mcgregor.pdf.

[150] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data struc-
tures and asymmetric communication complexity. J. Comput. Syst. Sci., 57(1):37–49,
1998.

[151] Carsten Moldenhauer. Primal-dual approximation algorithms for node-weighted
Steiner forest on planar graphs. In ICALP’11, pages 748–759, 2011.

[152] M. Molinaro, D.P. Woodruff, and G. Yaroslavtsev. Beating the direct sum theorem
in communication complexity with implications for sketching. In Proc. 24th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2013.

[153] Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error lp-sampling with
applications. In SODA, pages 1143–1160, 2010.

[154] Anna Moss and Yuval Rabani. Approximation algorithms for constrained node
weighted steiner tree problems. SIAM J. Comput., 37(2):460–481, 2007.

[155] S. Muthukrishnan. Data streams: algorithms and applications. Found. Trends Theor.
Comput. Sci., 1(2):117–236, August 2005.

[156] Ilan Newman. Private vs. common random bits in communication complexity. Inf.
Process. Lett., 39(2):67–71, 1991.

[157] Noam Nisan and Ilya Segal. The communication requirements of efficient allocations
and supporting prices. J. Economic Theory, 129(1):192–224, 2006.

[158] Ryan O’Donnell. Analysis of Boolean Functions
(http://analysisofbooleanfunctions.org). 2012.

[159] Rafail Ostrovsky, editor. IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011. IEEE, 2011.

[160] Rasmus Pagh. Compressed matrix multiplication. In ITCS, pages 442–451, 2012.

[161] Itzhak Parnafes, Ran Raz, and Avi Wigderson. Direct product results and the gcd
problem, in old and new communication models. In STOC, pages 363–372, 1997.

[162] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. On testing convexity and submod-
ularity. SIAM J. Comput., 32(5):1158–1184, 2003.

http://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf
http://people.cs.umass.edu/~mcgregor/stocworkshop/mcgregor.pdf

136

[163] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. On testing convexity and submod-
ularity. SIAM J. Comput., 32(5):1158–1184, 2003.

[164] Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic boolean formulae.
SIAM J. Discrete Math., 16(1):20–46, 2002.

[165] David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory,
13(1):99–116, 1989.

[166] David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube.
SIAM J. Comput., 18(4):740–747, 1989.

[167] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing
tables. J. ACM, 36(3):510–530, 1989.

[168] Luis Rademacher and Santosh Vempala. Testing geometric convexity. In FSTTCS,
pages 469–480, 2004.

[169] Sofya Raskhodnikova. Approximate testing of visual properties. In RANDOM-
APPROX, pages 370–381, 2003.

[170] Sofya Raskhodnikova. Transitive-closure spanners: A survey. In Goldreich [104],
pages 167–196.

[171] Sofya Raskhodnikova and Grigory Yaroslavtsev. Learning pseudo-Boolean k-DNF
and submodular functions. In SODA, pages 1356–1368, 2013.

[172] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth.
J. ACM, 39(3):736–744, 1992.

[173] Alexander A. Razborov. On the distributional complexity of disjointness. Theor.
Comput. Sci., 106(2):385–390, 1992.

[174] Jan Remy and Angelika Steger. Approximation schemes for node-weighted geometric
Steiner tree problems. In Approximation, Randomization and Combinatorial Opti-
mization. Algorithms and Techniques, volume 3624 of LNCS, pages 642–642. Springer
Berlin / Heidelberg, 2005.

[175] Liam Roditty, Mikkel Thorup, and Uri Zwick. Roundtrip spanners and roundtrip
routing in directed graphs. In SODA, pages 844–851, 2002.

[176] Dana Ron. Algorithmic and analysis techniques in property testing. Foundations
and Trends in Theoretical Computer Science, 5(2):73–205, 2009.

[177] Ronitt Rubinfeld and Asaf Shapira. Sublinear time algorithms. Electronic Colloquium
on Computational Complexity (ECCC), 18:13, 2011.

[178] Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with
applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[179] Mert Saglam. Personal communication, 2013.

137

[180] Mert Saglam and Gábor Tardos. On the communication complexity of sparse set
disjointness and exists-equal problems. CoRR, abs/1304.1217, 2013.

[181] Michael E. Saks and C. Seshadhri. Local monotonicity reconstruction. SIAM J.
Comput., 39(7):2897–2926, 2010.

[182] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci. Efficient provably-secure
hierarchical key assignment schemes. In MFCS, pages 371–382, 2007.

[183] Tamás Sarlós. Improved approximation algorithms for large matrices via random
projections. In FOCS, pages 143–152, 2006.

[184] C. Seshadhri. Question 2: Testing submodularity. In P. Indyk, A. McGregor, I. New-
man, and K. Onak, editors, Open Problems in Data Streams, Property Testing, and
related topics, Bertinoro Workshop on Sublinear Algorithms (May 2011) and IITK
Workshop on Algorithms for Processing Massive Data Sets (December 2009), page 3,
2011. Downloaded July 2, 2012 from http://people.cs.umass.edu/~mcgregor/

papers/11-openproblems.pdf.

[185] C. Seshadhri and Jan Vondrák. Is submodularity testable? In ICS, pages 195–210,
2011.

[186] Ronen Shaltiel. Towards proving strong direct product theorems. Computational
Complexity, 12(1-2):1–22, 2003.

[187] Mikkel Thorup. On shortcutting digraphs. In WG, pages 205–211, 1992.

[188] Mikkel Thorup. Shortcutting planar digraphs. Combinatorics, Probability & Com-
puting, 4:287–315, 1995.

[189] Mikkel Thorup. Parallel shortcutting of rooted trees. J. Algorithms, 23(1):139–159,
1997.

[190] Mikkel Thorup and Uri Zwick. Compact routing schemes. In ACM Symposium on
Parallel Algorithms and Architectures, pages 1–10, 2001.

[191] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24,
2005.

[192] William T. Trotter and J.I. Moore. The dimension of planar posets. Journal of
Combinatorial Theory, Series B, 22:54–67, 1977.

[193] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142,
1984.

[194] Jan Vondrák. A note on concentration of submodular functions. CoRR,
abs/1005.2791, 2010.

[195] Mihalis Yannakakis. Node-and edge-deletion np-complete problems. In STOC’78,
pages 253–264, New York, 1978. ACM.

http://people.cs.umass.edu/~mcgregor/papers/11-openproblems.pdf
http://people.cs.umass.edu/~mcgregor/papers/11-openproblems.pdf

138

[196] Mihalis Yannakakis. The complexity of the partial order dimension problem.
3(3):351–358, 1982.

[197] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing
(preliminary report). In STOC, pages 209–213, 1979.

[198] Andrew Chi-Chih Yao. Space-time tradeoff for answering range queries (extended
abstract). In ACM STOC, pages 128–136, 1982.

Appendix A
Appendix

A.1 Concentration results

We use the following standard concentration result on Poisson random variables, giving
the proof for completeness.

Lemma A.1.1. Let P be a Poisson random variable with parameter λ ≥ 1. Then

Pr(P < bλ/ec) ≤ e−λ/4;

Pr(P > eλ) ≤ e−λ.

Proof. Let T = bλ/ec. Then

0P < λ/e =

T−1∑
t=0

λte−λ

t!
.

The terms in the sum increase exponentially: λt+1

(t+1)!

/
λt

(t)! = λ
t+1 ≥ e. Hence,

0P < λ/e ≤ λT e−λ

T !

∞∑
t=0

e−t ≤ λT e−λ√
2π(T/e)T

× 2 ≤ e−(λ−T)
(λ
T

)T
≤ e−(λ−T)

(λ

λ/e

)λ/e
≤ e−λ(1−2/e) ≤ e−λ/4.

To estimate T ! we use Stirling’s approximation.
Similarly, let T ′ = deλe. Then

0P > eλ =

∞∑
t=T ′

λte−λ

t!
.

140

The terms in the sum decrease exponentially: λt+1

(t+1)!

/
λt

(t)! = λ
t+1 ≤ 1/e. Hence,

0P > eλ ≤ 2λT
′
e−λ

T ′!
≤ 2λT

′
e−λ√

2π(T ′/e)T ′
≤ e−λ

(eλ
T ′

)T ′
≤ e−λ.

A.2 Omitted proofs

A.2.1 Lemma A.2.1

Lemma A.2.1. Assume that (V,E) is a connected triangulated planar graph, f is a proper
function and Γ ⊂ V has these properties: (a) f(A) = 0 for every A ⊆ Γ and (b) f(B) = 1
for some B that is a connected component of V \Γ. Then there exists C ⊆ Γ with properies
(a) and (b) such that C is a simple cycle.

Proof. We will show the existence of C by taking any minimal subset of Γ, which has
properties (a) and (b). The proof of the lemma follows from the Claim A.2.4, Claim A.2.5
and Claim A.2.6.

Claim A.2.2. There exist two active connected components in V \ C.

Proof. Let B0 be a connected component of V \ Γ such that f(B0) = 1 which exists by
property (b). By symmetry of f , we have f(V \B0) = 1, and by disjointness of f , we have
f(V \B0 \ Γ) = 1. By applying disjointness again, there exists a connected component B1

of V \B0 \ Γ such that f(B1) = 1.

We will denote two active components, whose existence is guaranteed by Claim A.2.2
as B0 and B1.

Claim A.2.3. Each c ∈ C is adjacent to both B0 and B1.

Proof. Otherwise, suppose that c is not adjacent to Bi and let C ′ = C \ {c}. Then Bi is a
connected component of V \C ′, hence C ′ has property (b). Because C ′ is a subset of C it
has property (a) and we get a contradiction with minimiality of C.

Claim A.2.4. Each c ∈ C has at most 2 neighbors in C.

Proof. Otherwise, let c1, c2, c3 be three distinct nodes of C that are neighbors of c. Contract
B0 and B1 to a single node, this allows to define a minor with nodes in two groups: c, B0,
B1 in one group, c1, c2, c3 in the second group, and this minor contains K3,3.

Claim A.2.5. Each c ∈ C has at least 2 neighbors in C, or C forms a cycle of length 2.

Proof. In triangulated planar graphs neighbors of a node form a (not necessarily simple)
cycle. Consider the cycle of neighbors of c ∈ C. On this cycle we can traverse a group of
nodes from B0, say b10, . . . , b

k
0. Because the cycle contains also nodes from other connected

components of V \C, this groups must be preceeded and followed by a node from C, say c0

and c1. If c0 6= c1, Claim A.2.5 is true. Otherwise (c, c0) and (c, c1) are two separate edges

141

from c to the same node, and the cycle C ′ = (c, c0 = c1, c) has in its interior the group of
nodes of B0 that we have discussed and no other neighbors of c. Thus the nodes from B1

that are neighbors of c must be in the exterior or C ′; consequently there are no nodes of
C in the interior of C ′, as they would violate Claim A.2.3. In the same way we can argue
that the are no nodes of C in the exterior of C ′ and thus we conclude that C = C ′.

Claim A.2.6. The subgraph C is connected.

Proof. This is obvious when C is a 2-cycle, so it remains to consider the case when each
node in C has exactly 2 neighbors in C. If C is not connected it forms a set of disjoint
simple cycles and nodes of different cycles are not adjacent. Each such cycle is adjacent
to exactly two connected components of V \ C and we can consider a cycle C ′ with the
minimal interior I. If f(I) = 1 then C ′ satisfies property (b), which is a contradiction with
the minimality of C. If f(I) = 0 then nodes of C ′ don’t satisfy Claim A.2.3, because they
are adjacent to at most one active connected component.

A.2.2 Analysis of the generic local-ratio algorithm

Here we give the proof of Theorem 3.2.1

Proof. When Algorithm 3.1 returns the hitting set H we have w̄(H) = 0. Thus the cost
of this hitting set w(H) is the sum of decreases of w̄(H) that are caused by Step 7, and
the same applies to an optimum solution H∗. To show approximation ratio γ it suffices to
show that anytime we decrease w̄(H) by some γx we also decrease w̄(H∗) by at least x.

The decrease of w̄(H∗) is αcM(H∗). We can estimate cM(H∗) it as follows: if u ∈ H∗
is responsible for hitting some m cycles inM then cM(u) ≥ m, thus cM(H∗) ≥ |M|. Thus
the decrease of w̄(H∗) is at least α|M|.

The decrease of w̄(H) is αcM(H). Thus to show the approximation ratio γ it suffices
to show that for every minimal hitting set H̆ we have cM(H̆) ≤ γ|M|.

A.2.3 Uncrossing proper sets (Lemma 3.1.2)

Here we give the proof of Lemma 3.1.2.

Proof. For a set S ⊆ V we use notation S̄ to denote V \ S, the complement of S in V .
We will show that if the second statement is false then the first one is true. There are two
cases.

Case 1. Suppose for the sake of contradiction that f(A1) = 0. Then because f(A) = 1
we have f(A \A1) = 1 by disjointness.

By symmetry we have f(B) = f(B̄) = 1. Because A1 ⊆ B̄ and f(A1) = 0 by disjoint-

ness we have f(B̄ \ A1) = 1. By symmetry this implies that f(B̄ \A1) = f(A1 ∪ B) = 1,

because B̄ \A1 = B ∪A1.
Case 2. Suppose for the sake of contradiction that f(B\(A\A1)) = f((A\A1)\B) = 0.
Note that A\ ((A\A1)\B) = A1∪ (A∩B). From f((A\A1)\B) = 0 and f(A) = 1 we

thus conclude by disjointness that f(A \ ((A \ A1) \ B)) = f(A1 ∪ (A ∩ B)) = 1. Because

142

A1∩B = ∅ the sets B \ (A\A1) and A1∪ (A∩B) are disjoint. Using this together with the
assumption that f(B\(A\A1)) = 0 by disjointess we have that f(B\(A\A1)∪A1∪(A∩B)) =
f(A1 ∪B) = 1.

From the assumption that f(B \ (A \ A1)) = 0 and f(B) = 1 by disjointness we have
f(B\(B\(A\A1))) = f(A∩B) = 1. Together with f((A\A1)\B) = 0 by complementarity
we have f(A \A1) = 1.

A.3 Proof of 12/5 approximation ratio with triple pocket
oracle

Theorem A.3.1. In every iteration of the generic local-ratio algorithm (Algorithm 3.1)
with oracle Minimal-3-Pocket-Violation for every minimal hitting set H̆ of C we have
cM(H̆) ≤ γ|M| for γ = 12/5.

Proof. We change the proof of Theorem 3.3.1 in only a few aspects.
We need to consider a triple pocket, with contact nodes c, d, e. The crossing witness

cycles contain paths between contact nodes, now we have 3 pairs of contact nodes rather
than one, hence 3 possible families of crossing paths. Thus we need to change the analysis
of subpockets. A subpocket defined by two crossing paths from the same family has two
contact nodes, as before. However, one subpocket can be defined by crossing paths from
different families and this subpocket may have 3 contact nodes.

The subpocket with 3 contact nodes can have a negative balance if it contains less
than two faces in M. Thus it is important that if we have such subpocket we must also
have nother subpockets that bring the total number of faces in M to at least 3, and those
subpockets have positive balance.

If the subpocket with 3 contact nodes contains exactly 1 face in M its balance is at
least 1− 3/γ, while the balance of the other pockets is at least 2(1− 2/γ), for the total of
3 − 7/γ = 1/12. If the subpocket with 3 contact nodes contains exactly 2 faces in M, its
balance is at least 2 − 5/γ while the other pockets have balance at least 1 − 2/γ and the
estimate of the total is the same.

The effects of pruning are estimated exactly as before.
The balance of envelopes is estimated similarly, but we can make assumptions based

on the fact that an envelope cannot be used to define a triple pocket. For a non-outer
envelope the critical cases are when nS ≤ 4. The case when nS ≤ 2 is excluded because we
would define a pocket. The case when nS = 3 and `S = 0 is excluded because we would
define a triple pocket. If nS = 3 and `S ≥ 1 the balance is at least (7/2− 9/γ) + 3/γ− 1 =
5/2− 6/γ = 5/2− 5/2 = 0. If nS ≥ 4 then the balance 3

2nS − 1− 3nS/γ = 5− 12/γ = 0.
The estimate of the balance of an outer envelope is similar to an estimate of a non-outer

envelope, so we just need to examine the differences to see that it cannot be lower. We
can increase the credit given to an outer envelope by 2, because of Euler formula applied
to the connected component of the debit graph that contains that envelope: one can see
that each outer envelope is in a separate component.

The impact of an outer node on the balance can occur in two ways. We can replace the
status of a hit node on the envelope from non-outer to outer. This decreases the credits
by 1, and debits by 1/γ, hence we subtract 7/12 from the balance. We can also add an

143

outer hit node that is not a contact node, this does not change credits but adds 1/γ to the
debit, hence we subtract 5/12 from the balance. Thus the worst case is that the balance
increases by 2− 3× 7/12 = 1/4.

A.4 Converting a learner into a proper learner

Let C be a class of discrete objects represented by functions over a domain of “size” n.

Proposition A.4.1. If there exists a learning algorithm L for a class C with query com-
plexity q(n, ε) and running time t(n, ε), then there exists a proper learning algorithm L′ for
C with query complexity q(n, ε/2) and running time t(n, ε/2) + |C|.

Proof. Given parameters n, ε and oracle access to a function f , the algorithm L′ first runs
L with parameters n, ε/2 to obtain a hypothesis g. Then it finds and outputs a function
h ∈ C, which is closest to g, namely h = argminh′∈Cdist(g, h

′). By our assumption that L
is a learning algorithm, dist(f, g) ≤ ε/2. Since f ∈ C, we have dist(g, h) ≤ dist(g, f) ≤ ε/2.
By the triangle inequality, dist(f, h) ≤ dist(f, g) + dist(g, h) ≤ ε.

A.5 Information Cost When Amplifying Success Probability

Consider a function f : X×Y → Z and let λ be a distribution over X×Y×D, with marginals
µ over X ×Y and ν over D. We show that ICµ,δΩ(r)(f |ν) ≤ r ICµ,δ(f |ν). For that, take a δ-
protocol Π for f which achieves I(Π;X,Y | D) = ICµ,δ(f |ν), where (X,Y,D) ∼ λ. Then let
Π̄ be the protocol on input (x, y) that runs r copies Π(x, y,R1),Π(x, y,R2), . . . ,Π(x, y,Rr)
with independent coins R1, R2, . . . , Rr and outputs the value obtained by the majority of
the runs.

It is easy to see that Π̄ outputs the correct answer with probability at least 1− δΩ(r).
Moreover, by the chain rule for mutual information, we have

ICµ,δΩ(r)(f |ν) ≤ I(Π̄;X,Y | D) = (A.1)
r∑
i=1

I [Π(X,Y,Ri);X,Y | D,Π(X,Y,R1), . . . ,Π(X,Y,Ri−1)] .

But we can expand the i-th term as

H [Π(X,Y,Ri) | D,Π(X,Y,R1), . . . ,Π(X,Y,Ri−1)]

−H [Π(X,Y,Ri) | D,Π(X,Y,R1), . . . ,Π(X,Y,Ri−1), X, Y]

≤ H [Π(X,Y,Ri) | D]

−H [Π(X,Y,Ri) | D,Π(X,Y,R1), . . . ,Π(X,Y,Ri−1), X, Y]

= H[Π(X,Y,Ri) | D]−H[Π(X,Y,Ri) | D,X, Y]

= I[Π(X,Y,Ri);X,Y | D] = ICµ,δ(f |ν),

144

where the first equality follows from the fact that, since the Rj ’s are independent, then con-
ditioned on (X,Y) we have Π(X,Y,Ri) independent from Π(X,Y,R1) . . . ,Π(X,Y,Ri−1).
Plugging this bound on equation (A.1) gives that ICµ,δΩ(r)(f |ν) ≤ r ICµ,δ(f |ν).

A.6 Auxiliary Results for Lower Bounding Applications

Before proving the lower bound for our applications, we need to spell out some (standard)
tools. In the next two subsections, we introduce the hard communication problem from
there the lower bounds will come from. This hard problem is essentially based on con-
structing the n-fold version of augmented indexing and then doing an extra indexing over
it. In the following subsection, we present, for completeness, an encoding of augmented
indexing into vectors whose inner product depends whether the instance is yes/no; this
was already present in the proof of Lemma 3.1 of [126].

A.6.1 Generic Indexing problems

A generic indexing problem can be defined as follows. Consider a function f : X ×Y → Z
and the associated (one-way) communication problem where Alice and Bob get respectively
an element of X and Y and want to compute the value of the f over this pair; we use f to
also denote this problem. Let Ind(f,N) denote the communication problem where Alice
has input x1, x2, . . . xN ∈ X and Bob has input j ∈ [N], x1, x2, . . . , xj−1 ∈ X and y ∈ Y,
and they want to compute f(xj , y). To simplify the notation, let X̃ = XN denote the space

of Alice’s input, let Ỹ =
⋃N−1
i=0 (N×X i × Y) denote the space of Bob’s input.

It is folklore that the information complexity of an indexing problem Ind(f,N) is typ-
ically Ω(N) times the complexity of the base problem of computing f .

Lemma A.6.1. Let λ be a probability distribution over X × Y × D with marginal µ on
X × Y and marginal ν on D, such that µ is partitioned by ν. Then there is a distribution
λ̃ over X̃ × Ỹ × D̃ (where D̃ = N × DN) with the following property. Let µ̃ denote the
marginal of λ̃ on X̃ × Ỹ and let ν̃ denote the marginal of λ̃ on D̃. Then for all δ ∈ [0, 1]

IC→µ̃,δ(Ind(f,N)|ν̃) ≥ N · IC→µ,δ(f |ν).

Moreover, ν̃ partitions µ̃.

To make the presentation self-contained, in the remaining part of this section we prove
the above lemma. For that, we start by constructing the distribution λ̃. First let J be the
uniform random variable over [N], and, to makes things formal, let D0 = J . Now let the
random variables X = (X1, X2, . . . , XN), Y and D = (D1, D2, . . . , DN) have the following
distribution: conditioned on J = j, we have (Xj , Y,Dj) ∼ λ and (Xi, Di) distributed
according to the marginal of λ on X × D for all i 6= j (so the conditioning on J only
specifies which variables will be correlated with Y). The distribution λ̃ is then defined as
the distribution of the random variable (X, (J,X<J , Y), (D0,D)). It is easy to see that ν̃
partitions µ̃.

Recall the notation for one-way protocols used in Section 7.3. Consider a private-
randomness one-way δ-protocol (M,B) for Ind(f,N) (with Alice’s and Bob’s private coins

145

respectively denoted by RA and RB) and attains IC→µ̃,δ(Ind(f,N)|ν̃); that is, for the random

variables above, we have I(M(X, RA); X | D0D) = IC→µ̃,δ(Ind(f,N)|ν̃). We start lower
bounding the left-hand side.

First notice that the random variable (X, RA,D) is independent of D0. Therefore, we
have

I(M(X, RA); X | D0D) = I(M(X, RA); X | D)

=

N∑
j=1

I(M(X, RA);Xj | D,X<j)

=

N∑
j=1

I(M(X, RA);Xj | D≥j ,X<j)

=

N∑
j=1

∑
d>j ,x<j

I(M(X, RA);Xj | Dj ,D>j = d>j ,X<j = x<j)·

Pr(D>j = d>j ,X<j = x<j)

=

N∑
j=1

∑
d>j ,x<j

I(M(x<jX≥j , R
A);Xj | Dj ,D>j = d>j)·

Pr(D>j = d>j ,X<j = x<j), (A.2)

where the second equality follows from the chain rule for conditional mutual information,
and the others follows from the product structure of D and X and independence from RA.
Now we lower bound each term in this expression using a standard simulation argument.

Claim A.6.2. For every index j ∈ [N] and fixing d>j and x<j, there is a private-
randomness one-way protocol (M̄, B̄) with domain X × Y satisfying the following (where
R̄A and R̄B denote Alice’s and Bob’s private coins respectively):

• (M̄, B̄) is a δ-protocol for f .

• For the random variable (X̄j , Ȳ , D̄j) ∼ λ, we have:

I(M̄(X̄j , R̄
A); X̄j | D̄j) = I(M(x<jX≥j , R

A);Xj | Dj ,D>j = d>j).

Proof. The desired protocol (M̄, B̄) is the following. Alice uses her private random-
ness R̄A to obtain the random variable R̃A with the same distribution as RA, and also
the random variable X̃>j with the same distribution as the conditioned random variable
X>j | (D>j = d>j); Bob uses his private randomness R̄B to obtain the random variable
R̃B with same distribution as RB. Then for every input (x, y) ∈ X × Y, we set Alice’s
message to be M̄(x, R̄A) = M(x<jxX̃>j , R̃

A) and Bob’s output upon receiving message m
is B̄(m, y, R̄B) = B(m, j,x<j , y, R̃

B).
For every input (x, y) ∈ X ×Y, we can use the fact (M,B) is a δ-protocol for Ind(f,N)

to obtain that

1− δ ≤ Pr
[
B(M(x<jxX̃>j , R

A), j,x<j , y, R
B) = f(x, y)

]
= Pr((M̄, B̄) outputs f(x, y)),

146

where the equality follows from the definition of our random variables. This gives the first
part of the claim.

For the second part, let (X̄j , Ȳj , D̄j) ∼ λ. By the definition of our random variables,

(X̄jX̃>j , D̄j , R̃
A) has the same distribution as (X≥j , Dj , R

A) | (D>j = d>j), so by substi-
tution we have

I(M̄(X̄j , R̄
A); X̄j | D̄j) = I(M(x<jX̄jX̃>j , R̃

A); X̄j | D̄j)

= I(M(x<jX≥j , R
A);Xj | Dj ,D>j = d>j),

which concludes the proof of the claim. �

Lemma A.6.1 then follows directly from the above claim and equation (A.2).

A.6.2 Encoding of Indexing Over Augmented Set Indexing

In this section we present the following encoding of Ind(SetInd(ε, η), r), which was al-
ready present in the proof of Lemma 3.1 in [126]. Notice that we consider the problem
Ind(SetInd(ε, η), r) and not the n-fold problem Ind(nSetInd(ε, η), r), but we can use this
encoding for each of the n copies present in the latter.

Lemma A.6.3. Given ε, η ∈ (0, 1], consider subsets S1, S2, . . . , Sr of [1/(ε2η)], each of
size 1/ε2 (assumed to be odd). Also consider an index j ∈ [r] and an element k ∈ [1/(ε2η)].
Then there is an encoding of these objects, based on a random variable R, into vectors
u = u(S1, S2, . . . , Sr, R), u = u(S1, S2, . . . , Sj−1, R) and v = v(j, k,R) with the following
properties:

1. The vectors u,u and v belong to {0, 1}2t·
10r−1

9 , where t = 72
ε2

log 1
η .

2. ‖u− u‖2 ≤ 2 · 10r−jt and ‖v‖2 = 10r−jt.

3. If k does not belong to the set Sj, then with probability at least 1 − η we have 〈u −
u,v〉 ≤ 10r−jt(1

2 + ε
12).

4. If k belongs to the set Sj, then with probability at least 1 − η we have 〈u − u,v〉 ≥
10r−jt(1

2 + 2ε
12).

To prove this lemma, we first define and analyze an encoding scheme for the case where
we only have one set, i.e., r = 1.

So consider a set S ⊆ [1/(ε2η)]. Let X be a uniform random vector in {−1,+1}1/(ε2η).
We define enc1(S,X) to be the majority of the set {Xi}i∈S ; this is well-defined since 1/ε2

is odd. We contrast this with the encoding enc2(k,X) which is just the k-th component of
X.

Notice that if k /∈ S, then the encodings are independent and hence

Pr[enc1(S,X) = enc2(k,X)] = 1
2 .

On the other hand, suppose k ∈ S. Then, using the fact that enc1(S,X) depends on
only 1/ε2 coordinates of X (since |S| = 1/ε2), standard arguments involving the binomial

147

coefficients give that

Pr[enc1(S,X) = enc2(k,X)] ≥ 1
2(1 + ε

2).

We repeat the above scheme to amplify the gap between the two cases. Let X =
(X1,X2, . . . ,Xt) be a collection of t = 72

ε2
log 1

η uniform i.i.d. random variables in

{−1,+1}1/(ε2η). Define

enc1(S,X) = (enc1(S,X1), enc1(S,X2), . . . , enc1(S,Xt)),

and
enc2(k,X) = (enc2(k,X1), enc2(k,X2), . . . , enc2(k,Xt)).

Fact A.6.4 (Chernoff bounds, [78]). Let Y1, Y2, . . . , Yt be a collection of i.i.d. 0-1 Bernoulli
random variables with success probability p. Set Ȳ =

∑t
i=1 Yi/t. Then,

Pr[X̄ < p− h] < exp(−2h2t), and

Pr[X̄ > p+ h] < exp(−2h2t).

In the above fact with t = 72
ε2

log 1
η and h = ε/12, we obtain that the tail probabilities

are at most η. In the case k /∈ S we use p = 1
2 to get

Pr[#(enc1(S,X), enc2(k,X)) > t(1
2 + ε

12)] ≤ η, (A.3)

where # denotes the number of coordinates where the vectors agree. In the case k ∈ S we
use p = 1

2(1 + ε
2) to get

Pr[#(enc1(S,X), enc2(k,X)) < t(1
2 + 2ε

12)] ≤ η. (A.4)

Finally, we convert the±1 vector enc1(S,X) (resp. enc2(k,X)) into the 0/1 vector enc′1(S,X)
(resp. enc′2(k,X)) by replacing the occurrence of each 1 by the pattern 01 and the oc-
currence of each −1 by 10; so the new vectors have exactly twice as many coordinates
as the original ones. Moreover, 〈enc′1(S,X), enc′2(k,X)〉 = #(enc1(S,X), enc2(k,X)) and
‖enc′1(S,X)‖ = ‖enc′2(k,X))‖ =

√
t. Setting u = enc′1(S,X), u = 0 and v = enc′2(k,X))

gives the desired encoding for the case where we have only one set S.
Now we adapt this encoding to handle multiple sets. For each i ∈ [r], define the vector

ui ∈ {0, 1}10r−i2t by appending 10r−i copies of enc′1(Si,X). Then define the vector u by
appending the vectors ui for i = 1, 2, . . . , r. Also define the vector u by appending the
vectors ui for i = 1, 2, . . . , j − 1 and the appending 0’s to obtain a vector with the same
number of coordinates as u.

Now for each i ∈ [r] define the vector vi to be equal to 0 ∈ {0, 1}10r−i2t if i 6= j, and to
be equal to 10r−j copies of enc′2(k,X) otherwise. Then define v by appending the vectors
vi for i = 1, 2, . . . , r.

It is easy to see that u, u and v have the desired properties. First, notice that these

148

vectors have exactly 2t
∑r

i=1 10r−i = 2t · 10r−1
9 coordinates. Also,

‖u− u‖2 =

r∑
i=j

‖ui‖2 =

r∑
i=j

10r−it ≤ 2 · 10r−jt

and ‖v‖2 = 10r−jt. Moreover,

〈u− u,v〉 = 〈uj ,vj〉 = 10r−j〈enc′1(Sj ,X), enc′2(k,X)〉.

Equations (A.3) and (A.4) conclude the proof of Lemma A.6.3.

A.7 Proof for Other Applications

A.7.1 Proof of Theorem 7.4.10

The proof follows the same line as the proof of Theorem 4.3 in [126], where we use a JL
transform to provide a solution for the (n/2)-fold `2 estimation.

Consider an instance of `2(n/2, d, 1, 4ε) where Alice has vectors u1,u2, . . . ,un/2 ∈
{−1, 0, 1}d and Bob has vectors v1,v2, . . . ,vn/2 ∈ {−1, 0, 1}d. We consider the follow-
ing shared-randomness protocol for this problem. Let (F , µ) be a JLT(ε, δ, n, d) transform
with dimension k as small as possible. The players use their shared randomness to agree
upon a matrix S sampled from F according to µ. Then Alice computes Su1, Su2, . . . , Sun/2

and stops if ‖Sui‖2 > (1 + ε)‖ui‖2 for some i; otherwise, she rounds each entry of these
vectors to the nearest additive multiple of ε/

√
k and sends the rounded vectors {ũi}i to

Bob. Bob then computes Sv1, Sv2, . . . , Svn/2 and rounds their entries just as Alice did to
obtain the vectors {ṽi}i. Finally Bob outputs ‖ũi − ṽi‖ for each i ∈ [n/2].

By the triangle inequality,

‖ũi − ṽi‖ = ‖Sui − Svi‖ ±
(
‖ũi − Sui‖+ ‖ṽi − Svi‖

)
,

or using the definition of ũi and ṽi, ‖ũi− ṽi‖ = ‖Sui−Svi‖± ε. But notice that whenever
ui = vi, we have exactly ‖ũi − ṽi‖ = ‖Sui − Svi‖ = 0, and ui 6= vi implies ‖ui − vi‖ ≥ 1
(because of the discrete domain {−1, 0, 1}d). This then gives that

‖ũi − ṽi‖ = (1± ε)‖Sui − Svi‖. (A.5)

Now suppose ‖S(ui − vi)‖ = (1± 3ε)‖ui − vi‖ for all i and also ‖Sui‖2 = (1± ε)‖ui‖2
for all i, which happens with probability at least 1−2δ. In this case, it follows directly from
equation (A.5) that Bob outputs the desired estimate (1± 4ε)‖ui−vi‖ for all i. Moreover,
Alice does not send too many bits: because the input vectors have entries in {−1, 0, 1},
‖Sui‖2 = (1± ε)‖ui‖2 ≤ 2d and so every entry of Sui (in absolute value) is upper bounded
by 2d; it then takes Alice O

(
nk log

(
dk
ε

))
bits to send all ũi’s.

Therefore, the above protocol solves `2(n/2, d, 1, 4ε) with probability at least 1−2δ and
communication O

(
nk log

(
dk
ε

))
, using shared randomness. But using the lower bound that

follows from Theorem 7.4.4 and equation (7.4) (and the fact that n is sufficiently large), we

get R→,pub
2δ (`2(n/2, d, 1, 4ε)) ≥ Ω

(
n 1
ε2

log n
δ log d

)
. The fact that k ≤ d and the assumption

149

that (in particular) d ≥ 1/ε give that k ≥ Ω(1
ε2

log n
δ) as desired.

A.7.2 Proof of Theorem 7.4.11

As in Section 7.4.2, we obtain the lower bound by analyzing the case of small and large
alphabet sizes separately, and we also assume without loss of generality that δ is at most
a sufficiently small constant.

Lower Bound For Small Alphabet Size. In this section we consider M = 1 and
obtain the following.

Lemma A.7.1. Assume that n is at least a sufficiently large constant and that δ and ε
are at most a sufficiently small constant. Also assume that there is a constant γ > 0 such
that d1−γ ≥ 1

ε2
log n

δ . Then Rsketch
δ (Ip(n, d, 1, ε)) ≥ Ω(n 1

ε2
log n

δ log d).

As in the problem of approximating the `2 norm, the lower bound is again based on
the problem Ind(nSetInd(ε, δ), log d), but now the main element in the reduction is the
encoding provided by Lemma A.6.3.

We show how to use the n-fold inner product problem Ip(n, d, 1, ε/25) to solve
Ind(nSetInd(ε, δ), c log d), for a constant c depending on γ. As in Section 7.4.2, let Alice’s
instance for Ind(nSetInd(ε, δ), c log d) be given by the sets {S`i }i∈[n],`∈[c log d] and let Bob’s

instance be given by the index j ∈ [c log d], the elements k1, k2, . . . , kn, the sets {S`i }i∈[n],`<j

and the sets S′1, S
′
2, . . . , S

′
n (although we will ignore the latter sets). They want to decide

whether ki ∈ Sji holds or not for each i ∈ [n].
To do so, independently for each i ∈ [n] the players use the reduction from Lemma

A.6.3 with success probability η = δ/n and r = c log d to make Alice obtain the vector

ui = ui(S
1
i , S

2
i , . . . , S

c log d
i , R) and Bob obtain the vectors ui = ui(S

1
i , S

2
i , . . . , S

j−1
i , R)

and vi = vi(j, ki, R), using their shared randomness to simulate R. Notice that these
vectors have at most O(dc 1

ε2
log n

δ) coordinates, which is at most O(d) for a sufficiently
small c depending only on γ. Then the players can use a sketching protocol that solves
Ip(n,O(d), 1, ε/25) with success probability 1 − δ to compute, for all i ∈ [n], vali = 〈ui −
ui,vi〉 ± ε

25‖ui − ui‖‖vi‖ = 〈ui − ui,vi〉 ± ε
2510r−jt, where t = 72

ε2
log n

δ ; they do so by
having Alice sending Bob the linear sketches of the vectors ui’s, then Bob updating these
sketches to obtain sketches of the vectors {ui − ui}i, and finally executing Bob’s part of
the protocol to approximate the values 〈ui−ui,vi〉. Having these approximations at hand,
for each i ∈ [n] Bob outputs that ki ∈ Sji iff vali ≥ 10r−jt(1

2 + 3ε
24).

Since the guarantees from Lemma A.6.3 hold for all triples (uiui,vi) for i ∈ [n] with
probability at least 1 − δ, it is easy to see that Bob outputs the correct answer with
probability at least 1− 2δ. This implies that:

Rsketch
δ (Ip(n,O(d), 1, ε/25)) ≥ R→,pub

2δ (Ind(nSetInd(ε, δ), c log d).

Corollary 7.4.3, equation (7.4) and the assumption that n is sufficiently large conclude the
proof of Lemma A.7.1.

Lower Bound for Small Dimension. In this section we obtain the following bound.

Lemma A.7.2. Assume that n is at least a sufficiently large constant and that δ and
ε are at most a sufficiently small constant. Also assume that d ≥ Ω(1

ε2
log n

δ) and that

150

there is a constant γ > 0 such that M1−γ ≥ 1
ε2

log n
δ . Then Rsketch

δ (Ip(n, d,M, ε)) ≥
Ω
(
n 1
ε2

log n
δ logM)

)
.

As observed, for instance, in [183], JL transforms also approximate inner products.

Proposition A.7.3. Let (F , µ) be a JLT(ε, δ, n, d). Consider S ∼ µ. Then for ev-
ery collection of n vectors u1,u2, . . . ,un in Rd, with probability at least 1 − δ we have
〈Sui, Suj〉 = 〈ui,uj〉 ± ε‖ui‖‖uj‖ for all i, j ∈ [n].

Lemma A.7.2 is then obtained from the previous reduction by applying the JL transform
of Theorem 7.4.8 to the vectors ui, ui and vi, just as done in the second part of Section
7.4.2.

A.7.3 Proof of Theorem 7.4.12

To prove the first part of the theorem, notice that (AB)i,i ± ε‖Ai‖‖Bi‖ = 〈Ai, Bi〉 ±
ε‖Ai‖‖Bi‖. Therefore, a sketch S that allows (with probability at least 1− δ) the approxi-
mation (AB)i,j±‖Ai‖‖Bj‖ for all i, j ∈ [n] can be used to solve the inner product problem
Ip(n, n,M, ε) with probability 1 − δ and communication equal to the bit size of AS; the
desired lower bound then follows directly from Theorem 7.4.11.

For the second part of the theorem, we can set B = AT to obtain (AAT)i,i ± ε‖Ai‖2 =
(1 ± ε)‖Ai‖2, and hence the sketch S is a JLT(ε, δ, n, n); the lower bound k ≥ Ω(1

ε2
log n

δ)
then follows from Theorem 7.4.10.

A.7.4 Proof of Theorem 7.4.13

The lower bound of Ω(n 1
ε2

log n
δ log |D|) follows directly from Lemma A.7.1 (notice that

the hard instances in this lemma are provided by {0, 1} vectors). However, the lower
bound Ω(n 1

ε2
log n

δ logM) does not follow directly from Lemma A.7.2, because there the
hard instances are given by vectors which can have negative coordinates. The latter lower
bound comes from the following modification of the hard instances for inner products.

Lemma A.7.4. Assume that n and M are at least a sufficiently large constant and assume
that δ and ε are at most a sufficiently small constant. Also assume that d ≥ n/(ε2δ). Then
Rsketch
δ (Ip(n, d,M, ε)) ≥ Ω

(
n 1
ε2

log n
δ logM)

)
. Moreover, this holds even if the protocol only

offers guarantees for vectors in {0, 1, . . . ,M}d.

Proof. Consider the problem Ind(nSetInd(ε, δ), logM). Let Alice’s instance for this prob-
lem be given by the sets {S`i }i∈[n],`∈[logM], and let Bob’s instance be given by the index

j ∈ [logM], the elements k1, k2, . . . , kn, the sets {S`i }i∈[n],`<j and the sets S′1, S
′
2, . . . , S

′
n.

They want to decide whether ki ∈ Sji holds or not for each i. A trivial but important ob-

servation is that ki ∈ Sji iff the inner product 〈χ
Sji
, eki〉 equals 1, where χ

Sji
∈ {0, 1}n/(ε2δ)

is the incidence vector of Sji and eki is the ki’th canonical vector.

To solve this problem, for each i ∈ [n] Alice makes the vector ui ,
∑logM

`=1 10logM−`χS`i
,

and for every i ∈ [n] Bob makes the vectors ui ,
∑j−1

`=1 10logM−`χS`i
and vi , 10logM−jeki .

Notice that the constructed vectors lie in {0, 1, . . . ,M ′}d, whereM ′ = M10 and d = n/(ε2δ).

151

Then using the shared randomness, Alice runs a sketching protocol for Ip(n, d,M ′, ε/4) to
send Bob sketches Su1,Su2, . . . ,un that allows computation of n-fold (ε/4)-approximations
for dot products with probability at least 1− δ. Then Bob updates the sketches to obtain
S(u1 − u1),S(u2 − u2), . . . ,S(un − un), and use them to compute the inner product ap-
proximations vali = 〈(ui−ui),vi〉± ε

4‖u
i−ui‖‖vi‖ for all i ∈ [n], with probability at least

1− δ. Finally, for each i Bob reports that ki ∈ Sji iff vali ≥ 102(logM−j)/2.

We claim that: (i) 〈(ui − ui),vi〉 = 102(logM−j)〈χ
Sji
, eki〉 ± 102(logM−j)

9 and (ii) ‖ui −

ui‖‖vi‖ ≤ 102(logM−j)+1

9ε ; since 〈χ
Sji
, eki〉 equals 1 if ki ∈ Sji and 0 otherwise, these bounds

show that the above protocol solves the instance of Ind(nSetInd(ε), logM) with probability
at least 1− δ. To prove (i), by bilinearity of inner products we have

〈(ui − ui),vi〉 =

logM∑
`=j

102 logM−`−j〈χS`i , eki〉

= 102(logM−j)〈χ
Sji
, eki〉 ±

102(logM−j)

9
,

where the inequality follows from the fact that 〈χS`i , eki〉 ≤ 1 for all i, `. To prove (ii),

notice that |S`i | = 1/ε2 and hence ‖χS`i ‖ = 1/ε for all i, `. Using triangle inequality, we

obtain that ‖ui − ui‖ ≤ (1/ε)
∑logM

`=j 10logM−` ≤ 10logM−j+1

9ε . Since ‖vi‖ = 10logM−j , part
(ii) directly follows.

The above protocol shows thatR→,pub
δ (Ind(nSetInd(ε), logM)) ≤ Rsketch

δ (Ip(n, d,M ′, ε/4)).
Then Corollary 7.4.3 together with equation (7.4) gives that Rsketch

δ (Ip(n, d,M, ε)) ≥
Ω(n 1

ε2
log n

δ logM) as desired. �

A.8 Lower bound

Theorem A.8.1. There exists a distribution on X × Y × D with marginals µ on X × Y
and ν on D, such that ν partitions µ and:

IC
(r)

µk,δ
(EQ

n/k
k |ν

k) = Ω(k ilogrk)

In the proof we will use the following modification of the strong direct sum theorem of
the Theorem 7.2.2. The simulation procedure used in the proof of this theorem in preserves
the number of rounds in the protocol, which allows us to state this theorem for bounded
round protocols:

Theorem A.8.2 (Strong Direct Sum). Let δ ≤ 1/3. Then for every function f : X×Y → Z
and distribution λ on X × Y × D with marginal µ on X × Y and marginal ν on D, such
that µ is partitioned by ν, it holds that ICr

µk,δ(f
k|νk) ≥ Ω(k) ICr

µ, 1
20
, 1
10
, δ
k

(f |ν).

Using the direct sum above it remains to show the following:

152

Lemma A.8.3. There exists a distribution on X ×Y ×D with marginals µ on X ×Y and
ν on D, such that ν partitions µ and:

IC
(r)
µ,1/20,1/10,δ/k(EQ

n/k|ν) = Ω(ilogrk)

Proof. In the proof we can use the same hard distribution as that used in [152]. Let
` = n/k. To construct µ and ν, let D0 be a random variable uniformly distributed on
{0, 1} and let D be a random variable uniformly distributed on {0, 1}`. Let (X,Y) be a
random variable supported on {0, 1}` × {0, 1}` such that, conditioned on D0 = 0 we have
X and Y distributed independently and uniformly on {0, 1}`, and conditioned on D0 = 1
we have X = Y = D. Let µ be the distribution of (X,Y) and let ν be the distribution of
(D0D). Note that ν partitions µ. Also, this distribution satisfies that Pr[X = Y] ≥ 1/3
and Pr[X 6= Y] ≥ 1/3.

Let W be a random variable distributed according to ν. Let E be an indicator variable
over the private randomness of Π which is equal to 1 if and only if conditioned on this private
randomness Π satisfies that it aborts with probability at most 1/10 and succeeds with
probability at least 1−δ/k conditioned on non-abortion. Given such protocol with abortion
Π we transform it into a protocol Π′ which never aborts, has almost the same information
complexity and gives correct output on non-equal instances with high probability, while
being correct on equal instances with constant probability. This is done by constructing
Π′ so that whenever Π outputs “abort”, the output of Π′ is X 6= Y , otherwise Π =
Π′. Under the distribution µ conditioned on the event E = 1 the protocol Π′ has the
property that if X 6= Y , then it outputs X = Y with probability at most (1/k)/Prµ[X 6=
Y] ≤ 3/k. However, if X = Y , then the protocol may output X 6= Y with probability
1/10 + (1/k)/Prµ′ [X = Y] ≤ 1/10 + 3/k ≤ 1/5, where the latter follows for k ≥ 30.
Thus, conditioned on E = 1, the protocol Π′ has failure probability ε = 1/k on non-equal
instances X 6= Y , and constant failure probability δ = 1/5 on equal instances X = Y , as
desired. In this regime we can use the following theorem from [44]:

Lemma A.8.4 (Information Complexity Lower Bound for Equality [44]). Let δ be the
error on equal instances and ε be the error on non-equal instances. Let ñ = min{n +
log(1 − δ), log((1 − δ)/ε)}. For δ ≤ 1 − 8(ilogr−2ñ)−1/8 and a uniform distributions over
the inputs µu it holds that:

ICr
µu,ε,δ(EQ

n) = Ω((1− δ)3 ilogr−1ñ)

We have:

IC
(r)
µ,1/20,1/10,δ/k(EQ

n/k|ν) ≥ I(Π;X,Y |W) = Ω(I(Π;X,Y |W,E = 1))− 1

= Ω(I(Π′;X,Y |W,E = 1))− 2.

Here the inequality is by definition of information compelxity and the equalities follows
from Proposition 7.2.1 together with the fact that H(E) ≤ 1, Pr[E = 1] = 19/20, and
the fact that the transcripts of the protocols Π and Π′ only differ in a single bit. The
right-hand side can be bounded using the following proposition.

153

Proposition A.8.5.

I(Π′;X,Y |W,E = 1)) = Ω(IC
(r)
µu,1/k,1/5

(EQn/k)).

Proof. This follows from the construction of the distributions µ and ν that we use. If
D0 = 0 then X = Y and the information revealed by Π is equal to zero. Otherwise,
if D0 = 1 then the distribution of (X,Y) is uniform. Because the latter happens with

probability 1/2 we have I(Π′;X,Y |W,E = 1)) ≥ 1/2 · IC(r)
µu,1/k,1/5

(EQn/k)) as desired.

Thus, we have IC
(r)
µ,1/20,1/10,δ/k(EQ

n/k|ν) = Ω(IC
(r)
µu,1/k,1/5

(EQn/k)). The proof is com-

pleted by noting that setting ε = 1/k and δ = 1/5 in Lemma A.8.4 gives IC
(r)
µu,1/k/1,5

(EQn/k) =

Ω(ilogrk).

A.9 O(
√
k)-round protocol with linear communication

Theorem A.9.1. There exists an O(
√
k)-round constructive randomized protocol for INTk

with success probability 1−1/poly(k). In the model of shared randomness the total expected
communication is O(k) and in the model of private randomness it is O(k + log log n)

Proof. Let m = kc for a constant c > 2. First, the parties pick a random hash function
H : [n]→ [m], which gives no collisions on the elements in S ∪ T with probability at least
1− 1/Ω(kc−2). Thus, for the rest of the analysis we can assume S, T ⊆ [m].

The parties pick a random hash function h : [m] → [k]. For a set U ⊆ [m] we use
notation Ui = h−1(i) ∩ U for the preimage of i in U . Using preimages Si and Ti the
parties construct a collection of instances of Equality, which contains an instance of
Equality(s, t) for every (s, t) ∈ Si × Ti for every i ∈ [k].

Formally, for two sets of instances of a communication problem C,

C1 = C(x1, y1), . . . , C(xi, yi)

C2 = C(x′1, y
′
1), . . . , C(x′j , y

′
j)

let’s denote their concatenation, which corresponds to solving C1 and C2 simultaneously as
C1tC2 = (x1, y1), . . . , (xi, yi), (x

′
1, y
′
1), . . . (x′j , y

′
j). Let’s denote as Ei =

⊔
(s,t)∈(Si×Ti) EQ(s, t)

the collection of instances of equality corresponding to hash value i. The collection of all
instances constructed by the parties is E =

⊔k
i=1Ei.

The expected number of instances E[|E|] is given as:

E[|E|] = E

[
k∑
i=1

|Si||Ti|

]
=

k∑
i=1

E[|Si||Ti|]

≤
k∑
i=1

E[|(S ∪ T)i|2] =

k∑
i=1

V ar[|(S ∪ T)i|] + E[|(S ∪ T)i|]2 (A.6)

Given that for a set Z, the random variable |Zi| is distributed according to a binomial
distribution B(|Z|, 1/k), for each i we have V ar[| (S ∪ T)i |] ≤ 2k · (1/k)(1− 1/k) ≤ 2 and

154

E[| (S ∪ T)i |] ≤ 2 so E[|E|] ≤ 6k.
We use the following result of [90]:

Theorem A.9.2 ([90]). There exists an O(
√
k)-round constructive randomized protocol

for EQn
k with success probability 2−Ω(

√
k). In the public randomness model the expected

total communication is O(k) and in the private randomness model it is O(k + log n).

In the shared randomness model the result now follows immediately. In the private
randomness model the parties need to construct two random hash functions H and h,
using Fact 8.1.2 with only O(log n) + O(log k) = O(log n) random bits. These bits are
exchanged through the channel in the first round of the protocol and are added to the total
communication, bringing it down to O(k+log n). To further reduce the communication we
can use the hashing scheme of Fredman, Komlos and Szemeredi [96] as the first step of the
protocol. In [96] it is shown that mapping elements [n] by taking a remainder modulo a
random prime q = Õ(k2 log n) gives no collisions on a subset of size O(k) with probability
1 − 1/poly(k). Applying this result to S ∪ T we can reduce the length of strings in the
instances of equality down to O(log k + log log n). Thus, we can now specify the pairwise
independent hash function using only O(log k+log log n) random bits. See Appendix A.1.1
in [132] for a detailed discussion.

A.10 Communication in the Set Intersection protocol

We analyze the total communication in the protocol. For a leaf u ∈ T let nu denote
the expected number of times the Basic-Set-Intersection protocol was run on the sets
assigned to u.

Lemma A.10.1. For every leaf u ∈ T it holds that E[nu] = O(1).

Proof. For a leaf u let’s denote it’s unique predecessor in level i as pi(u). Formally, pi(u) = v
if and only if v ∈ Li and u is in the subtree of v. We can express E[nu] as:

E[nu] =
r−1∑
i=0

Pr[pi(u) is failed] · (4 ilogr−ik)

≤ 1 +

r−1∑
i=1

di · Pr [v is an incorrect child of pi(u)] (4 ilogr−ik),

≤ 1 +

r−1∑
i=1

ilogr−ik

ilogr−i+1k
· 1

(ilogr−ik)3
· (4 ilogr−ik) = O(1)

where the first inequality holds by a union bound and the second by Corollary 8.2.6.

The total expected communication in the protocol can be expressed as the sum of the
total communication for Equality and Basic-Set-Intersection. The total communi-

155

cation for Equality is:

r−1∑
i=0

|Li|(4 ilogr−ik) = O(k ilogrk) +
r−1∑
i=1

(k/ ilogr−ik) · (4 ilogr−ik)

= O(k ilogrk) +O(rk) = O(k ilogrk).

The expected total communication for Basic-Set-Intersection is by Lemma 8.2.1 equal
to:

E

[
k∑
i=1

(|Si|+ |Ti|) log(|Si|+ |Ti|) · ni

]
=

k∑
i=1

E [(|Si|+ |Ti|) log(|Si|+ |Ti|)]E[ni],

where the equality follows from the independence of the random variables. Because for
every i we have E[ni] = O(1) by Lemma A.10.1, to complete the proof it is sufficient
to show that E[(|Si| + |Ti|) log(|Si| + |Ti|)] = O(1) and thus the total communication for
Basic-Set-Intersection is O(k). We have E[(|Si|+|Ti|) log(|Si|+|Ti|)] ≤ E[(|Si|+|Ti|)2],
where the right-hand side is constant by the same argument as used to bound each term
in (A.6).

Vita

Grigory Yaroslavtsev

Grigory Yaroslavtsev is a Ph.D. candidate at the Department fo Computer Science and
Enginnering at the Pennsylvania State University at University Park. Grigory joined Penn
State in 2010 after completing his M.S. degree in Applied Mathematics and Physics from
Academic University of the Russian Academy of Sciences, where he was the first student in
a pilot class in theoretical computer science. In 2008 he got his B.S. degree in Engineering
Physics from St. Petersburg State Polytechnical University. Grigory’s research interests
cover a broad spectrum of topics in large data processing, including but no limited to:
approximation, parallel and online algorithms, learning theory and property testing, com-
munication and information complexity, private data release. In 2012 he got the “Best
Graduate Research Assistant Award” at the department of Computer Science and Engi-
neering. During his time in graduate school he was supported by the University Graduate
Fellowship and the College of Engineering Scholarship.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Organization
	Overview

	I Approximate Sparse Network Design
	Approximate Sparsification of Directed Graphs
	Introduction
	Relation to Previous Work
	Our Techniques
	Directed Steiner Forest
	Organization

	An (n)-Approximation for Directed k-Spanner
	Sampling
	Randomized Rounding
	Antispanners
	LP, Separation Oracle and Overall Algorithm
	Separation Oracle
	Overall Algorithm for Directed k-Spanner

	LP and Rounding for Graphs with Unit-Length Edges
	An (n1/3)-Approximation for Directed 3-Spanner with Unit-Length Edges
	An O(n2/3+)-Approximation for Directed Steiner Forest
	Conclusion

	Sparsification of Node-Weighted Planar Graphs
	Preliminaries
	Uncrossable families of cycles and proper functions

	Algorithm
	Generic local-ratio algorithm
	Minimal pocket violation oracles

	Proof of 18/7 approximation ratio with pocket oracle
	Complex witness cycles and decomposition of the debit graph
	Pruning
	Envelopes
	Tight examples

	II Concise Representations of Real Functions in Property Testing
	Concise Representations of Submodular Functions
	Introduction
	Related work

	Structural result
	Generalized switching lemma for pseudo-Boolean DNFs
	Learning pseudo-Boolean DNFs

	Transitive-Closure Spanners and Testing Functions on Hypergrids
	Introduction
	Results
	Steiner 2-TC-spanners of Directed d-dimensional Grids.

	Applications

	Definitions and Observations
	Lower Bound for 2-TC-spanners of the Hypergrid
	Our Lower Bound for k-TC-spanners of d-dimensional Posets for k>2
	The Case of d=2
	The Case of Constant d

	III Communication Complexity Methods in Summarization
	Lower bounds for Testing of Functions on Hypergrids
	Introduction
	Preliminaries
	Lower bounds on the line
	Monotonicity
	Convexity
	The Lipschitz property

	Lower bounds on the hypergrid
	Monotonicity
	Convexity
	The Lipschitz property

	Beyond Direct-Sum with Application to Sketching
	Introduction
	The Direct Sum Theorem
	Lower Bounds for Protocols with Abortion
	Equality Problem
	Augmented Indexing

	Applications
	Hard Problem
	Estimating Multiple p Distances
	Other Applications

	Optimal Round-Complexity of the Set Intersection Problem
	Definitions and preliminaries
	Upper bound
	Auxiliary protocols
	Main protocol

	Bibliography
	Appendix
	Concentration results
	Omitted proofs
	Lemma A.2.1
	Analysis of the generic local-ratio algorithm
	Uncrossing proper sets (Lemma 3.1.2)

	Proof of 12/5 approximation ratio with triple pocket oracle
	Converting a learner into a proper learner
	Information Cost When Amplifying Success Probability
	Auxiliary Results for Lower Bounding Applications
	Generic Indexing problems
	Encoding of Indexing Over Augmented Set Indexing

	Proof for Other Applications
	Proof of Theorem 7.4.10
	Proof of Theorem 7.4.11
	Proof of Theorem 7.4.12
	Proof of Theorem 7.4.13

	Lower bound
	O(k)-round protocol with linear communication
	Communication in the Set Intersection protocol

