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Abstract 

 

 Maintenance of goal activation is important to the successful completion of cognitive 

tasks.  However, it is still unclear how this activation is maintained.  The hypothesis that 

superordinate goals provide a source of activation for their subgoals was tested in two 

experiments.  Across experiments, the presence of task cues was manipulated as a way of 

measuring activation loss in subgoals.  A benefit of task cues would suggest activation loss.  In 

Experiment 1, participants completed a task with a superordinate goal - multi-step arithmetic 

problems.  Task cues did not impact performance, suggesting that superordinate goals may have 

been restoring subgoal activation.  In Experiment 2, the presence of a superordinate goal was 

manipulated.  Task cues improved accuracy regardless of goal condition.  However, task cues did 

not affect the rate of slowing within problems.  Therefore, the evidence for activation loss is 

mixed.  Overall, the results fail to provide clear evidence for or against the hypothesis. 
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Introduction 

Recent theories of cognitive control postulate that goals – representations of actions or 

action sets - have associated activation levels.  Activation refers to the strength of a given 

representation in memory and thus the likelihood that it will be retrieved during a search of 

memory.  The higher the activation level of a representation, the faster it will be retrieved 

(Anderson & Lebiere, 1998).  Activation also determines the ability of a goal to control behavior 

(Altmann & Trafton, 2002; Byrne & Bovair, 1997; Norman, 1981).  However, the way in which 

this activation is maintained over time is still very much an open question. 

Goals are often assumed to exist as part of a hierarchy, so a candidate mechanism for 

maintaining goal activation is the goal hierarchy itself.  Control flows from abstract, higher-level 

goals to basic actions at the bottom level (e.g. Norman & Shallice, 1986).  Because of this flow 

of control, it has been postulated that higher-level goals maintain activation in lower goals in the 

hierarchy.  Current theories differ regarding how higher-level goals affect activation levels in 

lower-level goals.  Some theories suggest that upper-level goals continuously strengthen lower-

level goals, shielding them from interference from other goals (Byrne & Bovair, 1997; Cooper & 

Shallice, 2000).  Others suggest that upper level goals merely initialize lower level goals, 

providing an activation boost during planning only (Altmann & Trafton, 2002; Altmann & Gray, 

2008).  The aim of this thesis is to elucidate this question and explore its implications for 

performance. 

Superordinate Goals and Subgoals 

According to several current theories, goals are organized hierarchically into layers of 

superordinate goals and subgoals (Altmann & Trafton, 2002; Byrne & Bovair, 1997; Norman, 

1981).  A superordinate goal represents a complex action or action sequence.  Each superordinate 
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goal has one or more subgoals that must be completed before it can be achieved.  For example, 

making coffee is a superordinate goal.  Its subgoals include adding coffee to the coffeemaker, 

adding water, and turning on the coffeemaker.  If these subgoals are not completed, the 

superordinate goal, making coffee, will not be achieved.   

The Interactive Activation Model 

Norman (1981) proposed the Activation-Trigger-Schema (ATS) theory.  According to this 

theory, goals are represented as a hierarchy of schemas.  Each goal in the hierarchy has an 

associated activation level.  This quantity determines whether the goal can be accessed and 

executed by the system.  If a goal is not active enough, the system will fail to execute it.  This 

activation has two main sources: the environment and other goals.  All superordinate goals 

(parent schemas) have associative links to their respective subgoals (child schemas). When 

selected, superordinate goals spread activation to their subgoals through these links (Norman, 

1981).   

The ATS framework was later implemented in a computational model known as the 

Interactive Activation (IAN) model (Cooper & Shallice, 2000; Cooper & Shallice, 2006).  

According to this model, when a superordinate goal reaches an activation threshold, it is selected 

by the system.  As long as the superordinate goal remains selected, it continuously spreads 

activation to its subgoals.   

A similar theory that also assumes continuous maintenance of subgoals is Byrne and 

Bovair's (1997) computational model of post-completion errors.  A post-completion error is the 

failure to complete a procedure after the superordinate goal of that procedure has been satisfied.  

An example of this type of error is forgetting one's keys in a door lock.  Here the superordinate 

goal of the procedure, opening the door, is complete.  Removing the keys is merely a "clean up" 
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step.  Like the IAN model, the Byrne and Bovair model assumes that, as long as they are still 

active, superordinate goals provide continuing activation for their subgoals.  However, once the 

superordinate goal is satisfied, it ceases to sustain the subgoals.  These subgoals then rapidly 

decline in activation.  As a result, there is an increased chance that the remaining subgoals will 

fall below threshold before they can be executed.   

The Memory for Goals Model 

A somewhat different approach to goal memory was taken by the ACT-R family of 

theories (Anderson & Lebiere, 1998).  Goals were assumed to be arranged in a stack.  In this 

framework, the system begins with one or more goals placed in the stack.  The system always 

executes the top goal on the stack.  Each new goal is placed on the top of the stack.  Once the top 

goal is completed, it is removed from the stack and the next goal is executed.  Thus goals are 

executed in a first-in last-out manner.  One weakness of this approach is that goal memory is 

assumed to be perfect.  Once a goal is placed on the stack, it remains there until it is executed 

and removed.  Although it eliminates the need to postulate a mechanism of goal maintenance, 

this assumption leads to difficulty in predicting certain serial order patterns in behavior, 

particularly sequence errors (Altmann & Trafton, 2002; Byrne & Bovair, 1997).  Anderson and 

Douglass (2001) later rejected the perfect goal memory assumption, demonstrating that 

retrieving suspended goals incurs a time cost.  They concluded that goals have associated 

activation levels that impact the likelihood of goal retrieval and the time cost associated with 

doing so.   

 Altmann and Trafton (2002) expanded on the findings of Anderson and Douglass (2001) 

by developing a theory of goal memory called the Memory for Goals (MFG) theory.  The theory 

is based primarily on two counterintuitive results from the task switching literature: within-run 
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slowing and within-run error increase (Altmann, 2002; Altmann & Gray, 2008).  When 

participants complete the same task repeatedly (i.e. a run of trials) their reaction times and error 

rates increase linearly with each repetition.  However when a task cue is presented, performance 

is improved.  The MFG theory argues that these results are caused by a loss of goal activation.  

The theory assumes that goals are representations in episodic memory.  During every processing 

cycle, the system selects and executes the most active goal in memory.  Over time, the activation 

level of each goal decays.  This makes goal retrieval more time-consuming and error-prone due 

to increased interference from old goals.  Information from the environment (e.g. a task 

instruction) raises the activation level of associated goals.   

Superordinate goals are also stored in episodic memory.  Unlike in the IAN model, 

superordinate goals raise activation levels of subgoals only during planning rather than 

continuously.   Here planning refers to a state in which the system is selecting and preparing to 

execute a superordinate goal.  Once a superordinate goal is selected, the system focuses attention 

on this goal to raise the activation level of its subgoals.  Once this process is complete, the focus 

of attention is moved away from the superordinate goal and the system relies on retrieval of the 

subgoals to direct behavior.   

 The MFG theory has been successful in predicting performance in several domains.  

Models based on the MFG theory have successfully simulated performance in the Tower of 

Hanoi task (Altmann & Trafton, 2002), sequence errors (Trafton, Altmann, & Ratwani, 2011), 

and recovery from interruption (Altmann & Trafton, 2007; Hodgetts & Jones, 2006).  Though 

these tasks all have hierarchical goal structures, they do not lend themselves to studying the 

temporal dynamics of individual subgoals because there are often many distinct subgoals for 

each superordinate goal and switching between these subgoals is frequent.  In the two-choice 



5 

 

task switching paradigms studied by Altmann (2002) and Altmann & Gray (2008), within-run 

slowing and within-run error increase can be used as indexes of the activation loss of individual 

subgoals, but these tasks lack a hierarchical structure.  The task reported in this thesis was 

developed to possess both a hierarchical structure while still allowing for measurements of 

activation loss.    

Superordinate Goals and Goal Maintenance 

 An important theoretical distinction between the MFG model and the IAN model is thus 

the role of superordinate goals in memory for subgoals.  In the MFG model, the system can focus 

attention on superordinate goals before task execution begins.  Focusing on a superordinate goal 

causes it to spread activation to its respective subgoals so that the subgoals can be retrieved at the 

correct time.  Once the person begins executing the task, behavior is guided solely by the 

subgoals.  Superordinate goals are then used only when the system fails to retrieve an appropriate 

subgoal and must infer the next step.  Conversely, the IAN model suggests that superordinate 

goals remain in working memory and keep their respective subgoals active.  Thus the two 

theories make diverging predictions regarding the effect of task structure on performance. 

 The IAN model predicts that superordinate goals should provide protection from 

activation loss in subgoals by supplying a continuous source of activation.  Although the model 

has not been applied to speed of performance, it can be extended to do so by assuming higher 

activation leads to faster execution of a goal.  Therefore, the model predicts that the presence of a 

superordinate goal should offset the effects of activation loss observed by Altmann (2002) and 

Altmann and Gray (2008).   

By contrast, the MFG model treats superordinate goals similarly to external task cues.  

That is, when attention is focused on a superordinate goal, it spreads activation to its subgoals.  
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However, as soon as attention is moved away from the superordinate goal, the subgoals begin to 

lose activation (Altmann & Trafton, 2002).  Consequently, according to the MFG model, 

activation loss should occur regardless of the presence of a superordinate goal. 

Experiment Overview and Hypotheses 

 The purpose of the following experiments was to clarify the way in which goal 

hierarchies direct the moment-to-moment control of cognition.  Specifically, do they serve as an 

ongoing source of activation (as in the IAN model) or do they simply activate subgoals during 

planning (as in the MFG model)?  To answer this question, the presence of a superordinate goal 

was manipulated in the context of a multiple-step arithmetic task.  The IAN model predicts that 

the superordinate goal should offset the subgoal‟s activation decay, and therefore slowing should 

be reduced.  Whereas the MFG model predicts that goal-activation decay should be evident to 

the same extent regardless of the presence of a superordinate goal.    

 Previous studies in task-switching indicate that task cues boost performance even if the 

participant already knows the goal (Altmann, 2002; Koch, 2003).  The putative reason for this is 

that the goal is losing activation, but remains above threshold.  If the subjects‟ goals are losing 

activation, then task cues should restore that activation and reduce slowing.  If the goals are 

already fully active, then task cues should have no effect.  Therefore, I manipulated the presence 

of these cues.  In each experiment, half of the participants saw task cues at every step and half 

did not.  Thus the IAN model would predict that task cues should reduce slowing only when 

there is no superordinate goal present.  Conversely, the MFG model predicts that task cues 

should reduce slowing in both conditions.  

Testing the predictions of the two models requires a manipulation of the goal structure of 

the experimental task.  A task is required in which a superordinate goal can be added without 
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changing the essential features of the task.  I chose a serial arithmetic task because of its flexible 

goal structure.  Individual operations can be done to solve a larger problem (i.e. to complete a 

superordinate goal) or they can stand alone (Carlson & Lundy, 1992; Lundy, Wenger, Schmidt, & 

Carlson, 1994). 

In this task, each trial consisted of combining two numbers through addition or 

subtraction to compute a result.  In the no superordinate goal condition, these trials were all 

independent.  Solving them did not contribute to the completion of a superordinate goal.  In the 

superordinate goal condition, the trials were combined into larger problems, so that solving each 

trial was necessary to solve the larger problem.  In this case, the subgoals were to solve the trials 

(e.g. compute-sum-trial1, compute-sum-trial2).  The superordinate goal was to compute the 

answer for the larger problem.   

 In Experiment 1, I tested the hypothesis that goals lose activation over time in the 

presence of superordinate goals.  The presence of this decay would suggest that superordinate 

goals do not sustain activation in their subgoals, consistent with the MFG model.  If this 

hypothesis is correct, then task cues should reduce the amount of slowing of performance.  

Alternatively, a lack of this effect would suggest that goals are not losing activation, consistent 

with the predictions of the IAN model.  Then, in Experiment 2, I performed a stronger test of the 

superordinate goal hypothesis by directly comparing tasks with a superordinate goal to those 

without one.  Further, I explored the possibility that the impact of goal structure may be affected 

by an individual‟s working memory capacity.   
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Experiment 1 

The aim of Experiment 1 was to determine whether goal activation decay occurs in a task 

with a superordinate goal.  In the task, participants solved a series of multi-step arithmetic 

problems.  Here, the superordinate goal was to provide the final answer to each problem.  

Completing an individual step constituted a subgoal.  Half of the participants saw task cues (+, -) 

and half did not.  Based on the MFG model, I expected that, without task cues, goal activation 

would decay and performance would slow down in later steps of each problem.  When task cues 

were present to boost goal activation, I expected the slowing to be reduced or even eliminated.  

Therefore I hypothesized an interaction effect between step and task cue such that response times 

should increase with step and that this increase should be sharper in the no task cue condition. 

Method 

 Design.  The experiment was a 2 x 5 mixed factorial with task cue (present, not present) 

as a between-subjects variable and step (2 – 6) as a within-subjects variable.  The dependent 

measures were proportion of problems correct and median response time for each step.   

 Participants.  Seventy Penn State University undergraduate students took part in the 

experiment in return for partial course credit.  All participants gave informed consent in 

accordance with Penn State procedures 

Procedure.  Participants were asked to solve a series of multiple-step arithmetic 

problems.  Each problem was either an addition problem or a subtraction problem.  After 

completing 2 blocks of practice problems, participants completed 9 blocks of 6 problems.  In 

each block, three problems were addition and three were subtraction.  Order of problem type was 

randomized within-blocks.   

Task.  Each problem consisted of 6-8 steps.  The purpose of the variable problem length 

was to reduce the participants‟ ability to anticipate the end of the problem as this might cause 
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them to slow down in anticipation of a possible task switch.  The addends or subtrahends were 

always 2, 3, or 4, selected randomly with the following constraints:  an addend or subtrahend 

could not be selected twice in a row, and the result of the step could never end in zero.  

Participants were instructed that the tens digit of the number was not important and were 

required to enter only the ones digit of the answer.  Participants were also instructed that the 

answers would always be positive. 

Figure 1 illustrates the task.  All stimuli were displayed on a computer screen in white 

font inside of a small black box in the center of an off-white screen.  In each problem, 

participants saw a two-digit starting number and were instructed to add or subtract a series of 

one-digit numbers starting with that number to compute a final result.  For half of the 

participants, task cues indicating the current problem type („+‟ for add and „-„ for subtract) were 

presented between steps.  After viewing the starting number for as long as they wished, 

participants pressed the spacebar to see the first addend.  Participants then saw either a blank 

screen or a task cue for 200 milliseconds, depending on their experimental condition.  This 

display was followed by a presentation of the addend or subtrahend (also 200 milliseconds).  

After the addend or subtrahend disappeared, the cue or blank screen returned and remained until 

the participant pressed the spacebar.  Once the spacebar was pressed the next addend was 

displayed for 200 milliseconds and then replaced once again with the cue or blank screen.  This 

cycle repeated until the end of the problem, at which time the participant was asked to enter the 

total. 
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Figure 1. Paradigm for Experiment 1. 

 

Results 

Accuracy.  The proportion correct scores (M = .893, SD = .007) were submitted to a 

repeated measures ANOVA with task cue (present, absent) as a between-subjects variable and 

problem type (addition, subtraction) as a within subjects variable.  This analysis yielded no 

significant effects (all ps > .1). 

Response Time.  Response times for each step were measured from the onset of the task 

cue to the spacebar press.  One subject was excluded from the response time analysis for failing 

to maintain an accuracy of at least 75 percent.  Once again, task cue and problem type were 

entered as variables in the ANOVA.  Step (2-6) was included as an additional within subjects 

variable.  Only steps 2-6 were included because no computations occurred on step 1 and steps 7 

and 8 were not present in every trial.  This analysis revealed a significant main effect of step 

(F(4, 268) = 6.2, p < .0005, ὴ
2
 = .475) and the linear contrast of step was significant (F(1, 67) = 

22.8, p < .0005, ὴ
2
 = .254).  Response times were significantly longer on subtraction problems 
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(M = 1403 ms, SE = 35.7) than on addition problems (M = 1243 ms, SE = 33) (F(1, 67) = 60.5,  

p < .0005, = .085).  This effect did not interact with any other variables (ps > .1).  The task cue 

by step interaction predicted by the MFG model was not significant (F(4, 268) = .324, p = .862, 

ὴ
2 

= .005).  Figure 2 illustrates this interaction.   

 

 
 

Figure 2.  Response times by problem step and task cue in Experiment 1. 

 

Discussion 

The MFG model‟s hypothesis of a steeper slowing curve in the task cue absent condition 

was not supported.  Although I did replicate the linear slowing effect observed previously in 

task-switching paradigms (Altmann & Gray, 2008), the lack of an effect of task cue suggests that 

this slowing was not due to decay of goal activation.  Consistent with the IAN model, these 

results suggest that the superordinate goals were restoring the activation lost by the subgoals due 

to decay.  

The main effect of step may be due to proactive interference of subtotals in working 

memory.  For example, research by Lustig, May, and Hasher (2001) indicates that old memories 

remain active in working memory, making the retrieval process slower and more error-prone.  
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According to the IAN model, schemas remain active after they are executed.  These lingering 

schemas can decrease the activation level of the current schemas by lateral inhibition (Cooper & 

Shallice, 2000).  Perhaps in this case older subtotals inhibited newer subtotals.  As a result, the 

new subtotals may have required more time to reach a selection threshold, causing slower 

performance.   

Additionally, the finding that participants were slower on subtraction problems seems 

likely to be due to lower resting activation levels of subtraction facts due to lower frequency of 

use.  A similar explanation has been offered for the problem size effect – that solving problems 

with larger numbers is slower than solving problems with smaller numbers (Ashcraft, 1992).   
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Experiment 2 

Consistent with the IAN model, Experiment 1 showed no evidence that task cues affected 

the rate of slowing, suggesting that a superordinate goal may have been restoring the activation 

lost by decay.  Experiment 2 provides a stronger test of the model‟s predictions by including a 

comparison with an arithmetic task with no superordinate goal.  If the predictions based on the 

IAN model are correct, there should be evidence of goal activation loss when superordinate goals 

are absent, but not when they are present. 

In addition, Experiment 2 addresses several alternative explanations of the results of 

Experiment 1.  First, it could be that the task cues provided too little activation to the goals to 

affect performance.  Miyake, Emerson, Padilla, and Ahn (2004) found that cue transparency is 

important to the effectiveness of a task cue.  Transparency refers to the strength of the 

relationship between the cue and the goal.  Because word reading is relatively automatic, word 

cues tend to be more transparent than symbolic cues (Miyake et al., 2004).  Therefore, word cues 

may provide sufficient activation to overcome decay in this paradigm.   

It is also possible that the way in which the task cues were displayed in Experiment 1 was 

the reason for the lack of an effect.  The task cue and digit were never on the screen at the same 

time.  Rather the display alternated between the two, which may have discouraged the 

participants from associating them together.  This alternating display may have also distracted 

participants.  In Experiment 2, these issues are addressed by displaying the task cue first, then 

adding the digit to the display so that both are present simultaneously.   

In order to make the display of the task cue condition more similar to the no task cue 

condition, I replaced the blank screen condition with an irrelevant cue condition.  The irrelevant 

cue - a set of pound signs - occurred at the same place and time on the display as the task cues in 
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the relevant cue condition.  This made it less likely that any observed effect of task cue could be 

due to the task cue functioning as a signal to orient attention to the digit. 

Another possible explanation of the lack of an effect of the task cues in Experiment 1 is 

that the effect was obscured by individual differences in working memory.  A variety of work 

indicates that goal maintenance is a crucial component of working memory capacity (Duncan, 

Emslie, Williams, Johnson, & Freer, 1996; Duncan et al., 2008; Kane & Engle, 2003; McVay & 

Kane, 2009).  This research suggests that individuals with low working memory capacity (i.e. 

low spans) should have a more difficult time keeping goals active across trials.  Further, these 

individuals should benefit more from the presence of task cues than those with high capacity (i.e. 

high spans).  To address this possibility, I included an operation span task (Turner & Engle, 

1989) as a measure of working memory capacity in Experiment 2. 

Previous research suggests that high spans are better able to manage goal sets than low 

spans (Duncan et al., 1996).  Thus it is possible that high spans are better able to utilize internal 

goal hierarchies to maintain subgoal activation than low spans.  If this is true, then working 

memory span scores should positively correlate with the benefit of superordinate goals on 

slowing.  

The IAN and MFG models make different predictions regarding the results of this 

experiment.  In terms of accuracy, the IAN model would predict an interaction between task cue 

and superordinate goal such that the absence of task cues results in lower accuracy when no 

superordinate goal is present.  By contrast, the MFG model predicts a benefit of task cues 

regardless of the presence of a superordinate goal. 

 As for response time, both models predict the same results for the no superordinate goal 

condition.  In this case, task cues should speed up response time and this benefit should increase 
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with step.  In the superordinate goal condition, the IAN model predicts no benefit of task cues.  

However, the MFG model predicts the same effect of task cues as in the no superordinate goal 

condition.  Overall, the IAN model predicts a three-way interaction between superordinate goal, 

task cue, and step where the benefit of task cue on slowing is present in the no superordinate goal 

condition but not in the superordinate goal condition.  By contrast, the MFG model predicts only 

a two-way interaction between task cue and step. 

Method 

 Design.  The design was a 2 x 2 x 5 mixed factorial with superordinate goal (present, 

absent) and task cues (present, absent) as between-subjects variables and step (2-6) as a within-

subjects variable.  Originally, Experiment 2 was planned as two separate experiments so the 

superordinate goal condition and the no superordinate goal condition were run sequentially rather 

than simultaneously.  The dependent measures were proportion of problems correct and median 

response time for each step. 

Participants.  One hundred sixty-seven undergraduate students from Penn State 

University participated in the experiment in exchange for partial course credit.  All participants 

gave informed consent in accordance with Penn State procedures. 

Procedure.  After giving informed consent, participants completed the experiment on a 

desktop PC running E-Prime software.  Participants first completed the serial arithmetic task and 

then the operation span task.  After completing both tasks, the participants were debriefed and 

dismissed.  The maximum length of the experimental session was 60 minutes. 

Serial Arithmetic Task.  The superordinate goal version of the task was very similar to 

that used in Experiment 1.  However, in this task, the symbolic cues (+, -) were replaced with 

verbal cues (plus, minus).  Moreover, in the cues-absent condition, pound signs (#####) were 
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displayed instead of a blank screen.  Finally, the cue/blank screen was not continuously present 

between steps.  Rather, it was displayed briefly (200 ms) before the digit for each step.  Once 

again, the superordinate goal was to provide the answer to the multiple step problem and the 

subgoals were to solve the steps of that problem.  Figures 3 and 4 illustrate the task. 

 

 
 

Figure 3.  Paradigm for superordinate goal condition of Experiment 2. 
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Figure 4.  Paradigm for no superordinate goal condition of Experiment 2.  

 

In the no superordinate goal condition, participants completed sets of 6-8 addition or 

subtraction problems instead of one addition or subtraction problem with 6-8 steps.  Thus the 

superordinate goal of completing the multi-step addition or subtraction problem was removed.  

Each set of problems began with an instruction indicating the type of problem (ADD, SUB).  

After the participant pressed the space bar, the program displayed a two-digit starting number for 

the first problem.  The participant then pressed the space bar to show the cue or blank screen 

followed by the digit screen.  Following the offset of the digit, the program prompted the 

participant for the ones-digit of the answer.  After entering the answer, the participant could 

change the answer if desired by pressing the backspace key.  To confirm the answer, the 

participant pressed the spacebar.  Doing so displayed the starting number for the next problem.  

The process repeated until all of the problems in the set were answered.  A feedback screen 
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indicating proportion correct for the set and for the experiment followed every set of problems. 

Operation Span Task.  To measure working memory capacity, I employed a 

computerized version of the operation span task (Turner & R. W. Engle, 1989).  In this task, 

participants must verify whether given mathematical equations are correct (e.g. 4/2 – 1 = 1).  

After verifying each equation participants are given a word to remember until the end of the 

block.  Participants reported words by typing them on the keyboard after being prompted by the 

program.  In order to offset recency effects, the program instructed the participants not to enter 

the final word first.  Blocks consist of 2 to 6 trials and grow increasingly longer until the end of 

the procedure.  Each participant‟s working memory score is defined as the total number of words 

recalled correctly throughout the experiment. 

Results 

 One subject was excluded from the analysis because he had participated in a pilot version 

of the experiment.  Subjects who failed to maintain an accuracy level of at least 75 percent, or 

who had average response times at least 3 standard deviations from the mean were excluded 

from all analyses.  This resulted in the exclusion of 6 participants.   

Accuracy.  Accuracy data (M = .936, SE = .004) were submitted to a 2 x 2 x 2 repeated 

measures ANOVA with problem type (addition, subtraction) as a within-subjects variable and 

superordinate goal (present, absent) and task cues (present, absent) as between-subjects factors.  

The analysis indicated that participants in the no superordinate goal condition (M = .964, SE = 

.005) were more accurate than those in the superordinate goal condition (M = .907, SE = .006) 

(F(1,156) = 53.5, p < .0005 ὴ
2
 = .255).  It should be noted, however, that the no superordinate 

goal condition was somewhat easier in terms of accuracy than the superordinate goal condition.  

In the superordinate goal condition, answering a problem correctly required computing the 



19 

 

correct answer for each step in the problem.  In the no superordinate goal condition participants 

could get the wrong answer for one step but still get the others correct.  Additionally, participants 

with task cues (M = .946, SE = .006) were more accurate than those without (M = .925, SE = 

.006) (F(1, 156) = 6.7, p = .01, ὴ
2
 = .042).  This effect is consistent with decay of goal activation 

when no task cues are present.  No other contrasts were significant (all ps > .1).   

If the task cues were preventing goal activation decay, then the participants who did not 

have task cues should have become gradually less accurate in later steps than in earlier steps 

(Altmann, 2002; Altmann & Gray, 2008).  To determine if this was the case, I performed a 

follow-up 2 x 5 repeated-measures ANOVA on the accuracy data in the no superordinate goal 

condition (These data were not available for the superordinate goal condition because answers 

were not collected at every step).  The analysis indicated that, although there is an overall main 

effect of task cue (F(1,86) = 9.5, p < .003, ὴ
2
 = .10), there was no main effect of step (p > .1) or 

interaction between step and task cue (p > .1).  Thus, Experiment 2 failed to replicate the within-

run error increase effect reported in previous work (Altmann, 2002; Altmann & Gray, 2008).  

These data are plotted in Figure 5. 
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Figure 5.  Accuracy data for the no superordinate goal condition in Experiment 2. 

 

 Response Time.  In the superordinate goal condition, response times for each problem 

step were measured from the offset of the previous digit until the spacebar press.  In the no 

superordinate goal condition, response times were measured from the onset of the starting 

number until the participant confirmed the trial answer with the spacebar press.  Response time 

data were analyzed using a 2 x 2 x 2 x 5 repeated measures ANOVA with problem type (addition, 

subtraction) and step (2-6) as within-subjects factors and superordinate goal (present, absent) and 

task cues (present, absent) as between-subjects factors.  The main effect of step was significant 

(F(4, 624) = 6.6, p < .0005, ὴ
2
 = .041) and once again, the linear contrast of step was significant 

(F(1,156) = 20.8, p < .0005, ὴ
2
 = .118).  The main effect of problem type was also significant 

(F(1,156) = 93.2, p < .0005, ὴ
2
 = .374), with subtraction (M = 1480 ms, SE = 29 ms) taking 

longer than addition (M = 1344, SE = 26 ms).  Response times were also significantly longer in 

the no superordinate goal condition (M = 1537 ms, SE = 36) than in the superordinate goal 

condition (M = 1287, SE = 39) (F(1, 156) = 22.4, p < .0005, ὴ
2
 = .125).  This may reflect the fact 

that participants had to enter an answer at every step only in the no superordinate goal condition. 
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 The ANOVA also revealed several significant interaction effects.  The step by 

superordinate goal interaction was marginally significant (F(4, 624) = 2.1, p = .086, ὴ
2
 = .013).  

This appears to reflect a larger overall rate of slowing in the superordinate goal condition, 

perhaps due to working memory load.  The superordinate goal by problem type interaction was 

also significant (F(1,156) = 14.7, p < .0005, ὴ
2
 = .086).  This interaction appears to be driven by 

a larger benefit of superordinate goal for addition than subtraction, as illustrated by Figure 6.  

Neither of the hypothesized interactions was significant.  Task cues did not interact with step 

(F(4, 624) = 1, p = .406, ὴ
2
 = .006) and the three-way interaction between task cues, step, and 

superordinate goal was not significant (F(4, 624) = .8, p = .553, ὴ
2
 = .005).  Figure 7 depicts 

response time as a function of these variables. 

 

 
 

Figure 6.  Response time by problem type and superordinate goal in Experiment 2. 

 

0

400

800

1,200

1,600

2,000

Addition Subtraction

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Problem Type

Superordinate Goal

No Superordinate Goal



22 

 

 
 

Figure 7.  Response time by problem step, superordinate goal, and task cue in Experiment 2. 
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intrusions. 

 Each participant‟s response time data were plotted as a function of step and fitted with a 

linear regression function.  The slopes of these lines were used as a measure of slowing (M = 5.8, 

SE = 4.6).  The response time slopes were then entered as a dependent variable in a linear 

regression analysis with working memory score (M = 53.6, SE = .4), task cue (-1 for absent, 1 

for present) and superordinate goal (-1 for absent, 1 for present), and all two and three-way 

interactions of these variables as predictors.  This regression was not significant (F(7,117) = .82, 

p = .574).  This suggests that, at least in this limited sample, differences in working memory 

capacity did not moderate the effects of superordinate goals. 

Discussion 

 Overall, the data do not provide clear support for either Altmann and Trafton‟s Memory 

for Goals (MFG) model or Norman and Shallice‟s Interactive Activation (IAN) model.  The 

finding that task cues boosted accuracy regardless of superordinate goal partially supports the 

MFG model because it suggests that the subgoals required additional activation.  However, the 

fact that this benefit was constant across steps is puzzling from the MFG perspective because 

goal activation should have been decaying with increasing step.  One possible explanation is that 

reading the task cues caused a speed-accuracy tradeoff.  Although there was a nonsignificant 

trend such that those with task cues (M = 1418 ms, SE = 38 ms) were slightly slower than those 

without task cues (M = 1406 ms, SE = 37 ms), the small size of the trend makes this explanation 

questionable. 

The response time data replicate the data of Experiment 1.  When a superordinate goal is 

present, no benefit of task cue was observed for response time.  However, the null effect of task 

cue in the no superordinate goal condition is puzzling and not predicted by either model.  In the 
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MFG model, activation levels are closely tied to response time, so the continuous activation 

provided by the task cues should have speeded performance.  A similar result can be expected 

from the IAN model because no superordinate goal is increasing goal activation levels.  One 

possible explanation is that the goal encoding process is time-consuming (which partially 

accounts for task-switching effects, see Altmann & Gray, 2008).  Therefore, on every step, the 

system must spend time encoding a new task cue when it already has an appropriate cue in 

memory.  However, this explanation does not account for the improvement in accuracy when 

task cues are present.  If task cues are slowing down processing then they should also be 

interfering with encoding the digit (which is presented for only 200 ms).   

Participants were faster and less accurate in the superordinate goal condition, but they 

also had to enter fewer answers in this condition.  So in this case, the effect of goal structure is 

confounded with task demands.  It is also possible that the difference is the result of a 

speed/accuracy tradeoff.  Perhaps participants were less inclined to closely monitor answer 

accuracy at each step when they did not have to report the answer. 

The superordinate goal variable interacted with problem type in an interesting and 

unexpected way.  Participants were faster in the superordinate goal condition for both problem 

types, and this benefit was larger for addition problems than subtraction problems.  People tend 

to be more skilled in addition than subtraction (Campbell & Xue, 2001), possibly due to higher 

levels of practice.  It is possible that this higher amount of practice resulted in streamlined sets of 

addition goals that can be more easily activated by superordinate goals. It is difficult to say for 

certain because the IAN model does not specify how organization in such schematic knowledge 

develops (Botvinick & Plaut, 2004).   

General Discussion 
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 The central question pursued in this thesis concerns whether loss of activation in subgoals 

is mitigated by superordinate goals.  The Interactive Activation (IAN) model, a hierarchical 

schema model, suggests that superordinate goals should restore lost activation in subgoals and 

thus offset the effects of decay (Cooper & Shallice, 2000).  By contrast, the Memory for Goals 

(MFG) model assumes that superordinate goals boost subgoal activation only during planning 

and therefore should not offset decay.  In both experiments, a task cue manipulation was 

employed as a measure of goal activation decay.  If subgoals were losing activation, then task 

cues should improve performance.  If no activation was being lost, then no task cue effect should 

be observed. 

The results do not provide a definitive answer to this question.  In Experiment 1, 

performance slowed down linearly with problem step.  However, there was no effect of task cue, 

suggesting slowing was not due to decay of goal activation.  Similarly, the response time data 

showed no evidence of goal activation loss, as task cue had no effect on slowing regardless of the 

goal structure.  In Experiment 2, task cues improved accuracy.  But the benefit to accuracy was 

constant across steps, which does not support the hypothesis that the task cues were restoring 

decayed activation.  Experiment 2 replicated the stepwise slowing observed in Experiment 1.  

Once again, no effect of task cue on response time was observed.  Problem type interacted with 

superordinate goal, suggesting that the superordinate goal provided a larger advantage to 

response time in addition problems than that of subtraction problems. 

The presence of a main effect of task cue on accuracy in Experiment 2 but not 

Experiment 1 conceptually replicates Miyake et al. (2004), which found that verbal cues are 

more effective at reducing task switching costs than symbolic cues.  It is somewhat puzzling that 

the benefit is not greater in later steps than in earlier steps.  If the subgoals are losing activation 
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with every step, then accuracy should become worse on later steps when task cues are not 

present.  However, this interaction was not present.  Therefore, this result is not consistent with 

Altmann and Trafton‟s Memory for Goals (MFG) model.  It is possible that the effect is due to a 

speed/accuracy tradeoff where those with task cues are performing slightly more slowly to 

maintain higher accuracy.  This could be caused by the additional cognitive resources required to 

process the verbal cues at every step. 

In terms of response time, the no superordinate goal condition in Experiment 2 failed to 

replicate previous studies of goal activation decay (Altmann, 2002; Altmann & Gray, 2008).  

That is, task cues did not mitigate within-run slowing.  There are several possible reasons for 

why this occurred.  One possibility is that participants were more focused on performing 

accurately than quickly.  It is possible that a strategy that emphasizes accuracy may diminish the 

effect of goal activation on response time.  However, there is evidence to suggest that 

participants will strive to reduce response time (even by milliseconds) in laboratory tasks (Gray 

& Boehm-Davis, 2000).  Additional work might rule out this possibility by placing a greater 

emphasis on response times in the instructions. 

An important difference between the reported task and those modeled by Altmann and 

Gray (2008) is the number of available response alternatives.  Increasing the number of response 

alternatives decreases the amount of activation received by each individual response from a 

given source – a phenomenon known as the fan effect (Anderson & Reder, 1999;  Anderson, 

1974).  The spreading activation mechanisms that underlie this effect are implemented in both 

the IAN and MFG models (Altmann & Trafton, 2002; Cooper & Shallice, 2000).  The task-

switching paradigms employed by Altmann and Gray (2008) required simple, two-choice 

decisions.  In the serial arithmetic task, by contrast, participants had to select one of ten choices 
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(1-9).  In this case, each goal (“Add” for instance) has a certain quantity of activation, N, that it 

can spread to its responses.  Since there are 10 possible responses, each response receives N/10 

units of activation in a given cycle.  Conversely, a parity judgment (Altmann & Gray, 2008) has 

only two responses, so each one receives N/2 units of activation per cycle.  This additional 

activation would decrease the probability that all of the responses are below threshold on a given 

cycle, thus reducing response time.  

Moreover, numbers, like words, may tend to automatically cue certain goals when 

perceived (Stroop, 1935).  Specifically, while words activate procedures for reading, numbers 

may activate mathematical operations or arithmetic facts.  In the experiments discussed in 

Altmann and Gray (2008), participants made semantic judgments about numbers.  However, 

there is evidence suggesting that numerical stimuli prime their associated arithmetic facts 

(Rusconi, Priftis, Rusconi, & Umilta, 2006).  Such automatic activation could interfere with 

processing the current task by activating facts associated with the competing task (e.g. addition 

facts primed during the execution of the subtraction task).  If this explanation is true, it would 

suggest possible boundary conditions on the within-run slowing and within-run error increase 

phenomena modeled in Altmann and Gray (2008). 

It may at first seem strange that task cue effects were observed for accuracy and not for 

response time.  This is perhaps due to the fact that accuracy and speed are determined by 

different mechanisms in both models.  In the MFG framework, slowing results when no goals are 

above threshold.  Accuracy errors, by contrast, result when the incorrect goal is selected.   In 

these experiments, the incorrect goal may be receiving activation from the stimulus, so it should 

be incorrectly retrieved more often.  These two mechanisms – low activation and faulty selection 

– occur in the IAN model as well.   
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The interaction between problem type and superordinate goal on response time is 

interesting and raises questions for further study.  This interaction appears to be driven by a 

larger benefit of superordinate goals for addition problems than for subtraction problems, 

suggesting that the benefits of superordinate goals may be limited to highly practiced skills.  

Perhaps the IAN model is more applicable to tasks in which a person is highly skilled.  This 

makes sense because it was originally applied to routine activities like making coffee (Cooper & 

Shallice, 2000).  Conversely, the MFG model may be more appropriate for tasks in which skill is 

low and no firm goal hierarchy has been established.  This result also suggests that the amount of 

activation that superordinate goals provide to subgoals is lower than I hypothesized.  Perhaps 

superordinate goals are providing only a small boost of activation rather than the large amount 

required to completely offset decay.  Alternatively, perhaps the fact that superordinate goals are 

themselves subject to decay is a limiting factor on the amount of activation they can provide.  As 

superordinate goals decay, they may spread less activation to their subgoals.   

The lack of any effect of task cue on response time suggests that the linear slowing 

observed in both experiments is not the result of goal activation decay.  Rather, it may have been 

due to proactive interference from previous subtotals.  This account explains why a reaction time 

interaction was observed between superordinate goal and step in Experiment 2.  In the 

superordinate goal condition, participants had to maintain subtotals from step to step.  Every time 

a new total was introduced, the older subtotals competed with it for selection.  In the no 

superordinate goal condition, subtotals would still interfere with later subtotals.  However, this 

interference was weaker because people did not have to maintain the subtotals after they give 

each response. 

Although it is possible that fatigue may have contributed to the slowing within problems, 
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this seems unlikely because the problems were relatively short.  Further, there was not a 

substantial break between problems, so fatigue that accumulated on one problem could have 

easily carried over to the next.  Another possible source of slowing is anticipation of an 

upcoming task switch.  Although steps were taken to reduce this, it was possible to predict the 

end of a problem because the probability that the problem would end on a given step increased in 

later steps.  Participants may have been slowing down in order to prepare for the beginning of the 

next problem.  They may have even been slowing down in preparation to report the final answer.  

One might argue that the failure to find support for the IAN model is because the task does not 

require a distinct superordinate goal for addition and subtraction.  Rather, both tasks may share a 

single superordinate goal (e.g. “compute total” rather than “compute sum”).  If this was true, 

then the activation from the superordinate goal would be divided among the two tasks, and 

would therefore provide no net benefit.  This shared-superordinate goal hypothesis is also 

inconsistent with the data.  If the currently irrelevant goal is receiving activation from the 

superordinate goal, then more interference between the subgoals should occur in the 

superordinate goal condition.  Therefore, this hypothesis would predict a larger task cue effect in 

the superordinate goal condition than in the no superordinate goal condition. 

 It may also appear that the superordinate goal and no superordinate goal tasks have too 

many differences in terms of timing and response requirements to be comparable.  This is an 

issue only insofar as it could “mask” the effect of task cues on slowing in one of the conditions 

and not the other.  If task cue effects had appeared in only one of the conditions, follow up 

experiments might have been necessary to ensure that one of these differences did not confound 

the results.  However, because task cues did not reduce slowing in either condition, the overall 

interpretation remains the same. 
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Future Directions 

A future task that could address the issues raised above is a binary logic task.  Previous 

work in our lab suggests that binary logic tasks behave similarly to arithmetic tasks in terms of 

goal activation (Sohn & Carlson, 1998).  The task would involve the application of simple 

logical operators with two possible outcomes, “0” and “1.”  For instance, given a starting digit 

and a new digit, the participant would have to apply a logical rule to obtain a new result.  The 

new result would then be immediately reported or carried over to the next step.  This task has 

fewer response options than the serial arithmetic task, which should reduce fan effects.  The 

binary logic task also solves the problem of automatic cuing of mathematical operators by 

numerical stimuli because the logical operators will be relatively unfamiliar to the participants.  

Similar to serial arithmetic, the binary logic task has a flexible goal structure, because each result 

can easily serve as input for an additional step.   

People rely on multiple types of cues to determine how goals should be organized within 

a hierarchy.  Both theories discussed here assume that goals which share a common purpose (e.g. 

making coffee) are grouped together under a superordinate goal.  However there are other ways 

in which this grouping can be achieved.  Lien and Ruthruff (2004) found that tasks that have 

close temporal or spatial proximity tend to be grouped together.  This is evidenced by group-

level switch costs which overshadow task-level switch costs.  Schneider and Logan (2006) 

demonstrated that performing tasks in a consistent sequence induces similar group-level switch 

costs, even without close temporal or spatial proximity.  Thus it is possible that the questions 

raised in this thesis could be answered using one of the methods reported in Lien and Ruthruff 

(2004) and Schneider and Logan (2006) to impose a hierarchy onto the tasks employed by 

Altmann (2002) and Altmann and Gray (2008).  This similarity would help to rule out many of 
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the extraneous factors (such as proactive interference of subtotals) present in the above data. 

Imposing hierarchical structure on the tasks modeled in Altmann and Gray (2008) might 

be achieved by simply arranging the tasks in two different sequences and training participants on 

those sequences.  In order to observe within-run effects, it would be necessary that these 

sequences contain runs of the same task at least four trials long (e.g. AAAABB) because this is 

the shortest run-length that has produced the effects (Altmann, 2002; Altmann & Gray 2008).  

Random task sequences would be used as a control.  In this paradigm, the IAN model would 

predict an absence of within-run effects in the sequence condition but not in the random 

condition, whereas the MFG model would predict within-run effects in both. 

If the results support the MFG model and not the IAN model, the possibility remains that 

a stronger hierarchy is necessary to offset subgoal activation decay.  This hypothesis could be 

addressed using a modified serial arithmetic task.  Each problem in this task would consist of 

two multiple step sub-problems.  At the end of each problem, participants would be required to 

combine the two answers to produce a final result.  For instance, sub-problems 1 and 2 would 

each require adding 4 separate numbers together.  At the end of the problem, participants would 

subtract the two subtotals and report the result.  The goal structure of this task better fits the 

definition of hierarchical tasks outlined in Carlson and Lundy (1992).  Perhaps the more explicit 

hierarchical structure of this task would be enough to cause a hierarchical goal structure to form.  

If these experiments still fail to produce a benefit of superordinate goal, then the activation 

dynamics of the IAN model may have to be reconsidered. 

Conclusion 

 The reported studies are inconclusive concerning the exact nature of the impact of 

superordinate goals on the maintenance of subgoals in cognitive tasks.  Although participants 
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slowed down in later steps of the arithmetic problems, this slowing was not mitigated by task 

cues, suggesting that goal activation decay was not the cause.  Task cues resulted in better 

accuracy in Experiment 2, but this effect was constant across steps.  This lack of interaction 

makes a goal activation interpretation questionable.  The results do not clearly support either the 

IAN model or the MFG model, as both models predicted a loss of goal activation in the no 

superordinate goal condition.  Follow-up studies are needed to clarify the results with respect to 

these two models.  One follow-up would be to use a simpler paradigm in order to isolate the 

effects of interest and remove the extraneous task features that may be obscuring the results.  In 

addition, a task with a more explicit hierarchical structure may be needed to cause the formation 

and use of superordinate goals.  Further experimentation is necessary to understand the function 

of goal hierarchies in the maintenance of goal activation. 
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APPENDIX 

                        Experiment 1 Accuracy 

Within-Subjects Effects 
     

Source 
Sum of 
Squares df 

Mean 
Square F p 

Partial Eta 
Squared 

ptype .006 1 .006 1.033 .313 .015 

ptype * Group .000 1 .000 .001 .977 .000 

Error .389 68 .006 
   

       

       
Between-Subjects Effects 

     

Source 
Sum of 

Squares df 
Mean 

Square F p 
Partial Eta 
Squared 

Intercept 111.493 1 111.493 12625.547 .000 .995 

Group .003 1 .003 .292 .591 .004 

Error .600 68 .009 
   

 

Experiment 1 Response Time 

Within-Subjects Effects 
      

Source 
Sum of 

Squares df 
Mean 

Square F p 

Partial 
Eta 

Squared 
 ptype 4410153 1 4410153 60.523 .000 .475  

ptype * Group 8326 1 8326 .114 .736 .002  

Error(ptype) 4882133 67 72868 
    

step 1038433 4 259608 6.236 .000 .085  

step * Group 53997 4 13499 .324 .862 .005  

Error(step) 11157584 268 41633 
    

ptype * step 223907 4 55977 1.801 .129 .026  

ptype * step * Group 143248 4 35812 1.152 .332 .017  

Error(ptype*step) 8329528 268 31080 
    

 
    

   

 
    

   
Within-Subjects Contrasts 

      

Source 
Contrast 

Type 
Sum of 

Squares df 
Mean 

Square F Sig. 
Partial Eta 
Squared 

step Linear 884787 1 884787 22.806 .000 .254 

 
Quadratic 65389 1 65389 1.343 .251 .020 

step * Group Linear 32406 1 32406 .835 .364 .012 

 
Quadratic 7290 1 7290 .150 .700 .002 

Error(step) Linear 2599367 67 38797 
   

 
Quadratic 3261246 67 48675 

   
ptype * step Linear 124614 1 124614 3.265 .075 .046 

 
Quadratic 23622 1 23622 .834 .365 .012 

ptype * step * Group Linear 54353 1 54353 1.424 .237 .021 

 
Quadratic 3903 1 3903 .138 .712 .002 

Error(ptype*step) Linear 2556798 67 38161 
   

 
Quadratic 1898638 67 28338 
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        Between-Subjects Effects 
      

Source 

Type III 
Sum of 

Squares df 
Mean 

Square F Sig. 

Partial 
Eta 

Squared 
 Intercept 1208267346 1 1208267346 1616.120 .000 .960  

Group 58908 1 58908 .079 .780 .001  

Error 50091517 67 747635 

   
 
 

 

        Experiment 2 Accuracy 
 

        Within-Subjects Effects       

Source Sum of Squares df 
Mean 

Square F p       

Partial 
Eta 

Squared 

 ptype .001 1 .001 .417 .519 .003  

ptype * Group .000 1 .000 .068 .795 .000  

Error(ptype) .361 158 .002 
   

 

       
 

       
 

Between-Subjects Effects       

Source Sum of Squares df 
Mean 

Square F p 

Partial 
Eta 

Squared 

 Intercept 281 1 281 43415.48
6 

.000 .996 

 Group < 1 1 < 1 4.305 .040 .027 
 

Error 1 158 < 1 
   

 

       

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 

        



38 

 

Experiment 2 Response Time 

 Within-Subjects Effects 
     

 

Source Sum of Squares df 
Mean 

Square F p 

Partial 
Eta 

Squared 
 

step 790789 4 197697 6.620 .000 .041 

 step * Group 119590 4 29898 1.001 .406 .006 

 step * Experiment 245099 4 61275 2.052 .086 .013 

 step * Group  *  
Experiment 

90542 4 22636 .758 .553 .005 

 Error(step) 18635302 624 29864 
   

 ptype 7323893 1 7323893 93.223 .000 .374 

 ptype * Group 41812 1 41812 .532 .467 .003 
 

ptype * Experiment 1153842 1 1153842 14.687 .000 .086 
 

ptype * Group  *  
Experiment 

99145 1 99145 1.262 .263 .008 

 Error(ptype) 12255796 156 78563 
   

 

step * ptype 44703 4 11176 .439 .781 .003  

step * ptype * 
Group 

70078 4 17520 .688 .601 .004  

step * ptype * 
Experiment 

163359 4 40840 1.603 .172 .010  

step * ptype * 
Group  *  
Experiment 

173900 4 43475 1.706 .147 .011  

Error(step*ptype) 15899503 624 25480 
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Within-Subjects Contrasts 

Source Contrast Type 
Sum of 

Squares df 
Mean 

Square F p 

Partial 
Eta 

Squared 

step Linear 696194 1 696194 20.80
3 

.000 .118 

 
Quadratic 4 1 4 .000 .991 .000 

step * Group Linear 6994 1 6994 .209 .648 .001 

 
Quadratic 79180 1 79180 2.982 .086 .019 

step * Experiment Linear 59762 1 59762 1.786 .183 .011 

 
Quadratic 119439 1 119439 4.498 .036 .028 

step * Group  *  
Experiment 

Linear 66425 1 66425 1.985 .161 .013 

 
Quadratic 6537 1 6537 .246 .620 .002 

Error(step) Linear 5220675 156 33466 
   

 
Quadratic 4142810 156 26556 

   
step * ptype Linear 5030 1 5030 .209 .648 .001 

 
Quadratic 16 1 16 .001 .977 .000 

step * ptype * 
Group 

Linear 5188 1 5188 .216 .643 .001 

 
Quadratic 4737 1 4737 .238 .626 .002 

step * ptype * 
Experiment 

Linear 19089 1 19089 .794 .374 .005 

 
Quadratic 131334 1 131334 6.595 .011 .041 

step * ptype * 
Group  *  
Experiment 

Linear 1723 1 1723 .072 .789 .000 

 
Quadratic 22484 1 22484 1.129 .290 .007 

Error(step*ptype) Linear 3749861 156 24038 
  

 
 

Quadratic 3106549 156 19914 
 

  

       
 

       
 

 
       

Between-Subjects Effects 
     

 

Source Sum of Squares df 
Mean 

Square F p 

Partial 
Eta 

Squared 

 Intercept 3167782369 1 316778236
9 

2838.145 .000 .948 

 
Group 51233 1 51233 .046 .831 .000 

 
Experiment 24949461 1 24949461 22.353 .000 .125 

 Group * 
Experiment 

129713 1 129713 .116 .734 .001  

Error 174118653 156 1116145 
   

 

 

 

 


