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ABSTRACT

Contrails aremportant in local to regional scale climate change. Various studies
to date have found circumstantial evidence linking contrails with modifications in surface
temperature (e.g., in the eastern U.S. and parts of Europe). It is clearly important to
understad what a contrail is and where and when contrails occur to more definitively
relate their occurrence to surface climate. The use of surface observations for developing
contrail climatology is problematic, owing to the occurrence of intervening cloudlayer

Accordingly, satellite images have been used to identify and map contrails,
mostly from manual (subjective) interpretation of images, although some automated
(quantitative) approaches have been developed but whose success is variable and
dependent on aumber of fators (Cirrus clouds, curvedontrails, complexity of
algorithm, etc.) Detecting contrails, therefore, is critical in understanding the atmospheric
effects of aviation.

This researchnvolves the automatic detection of jet contrails in Adezhvery
High Resolution Radiometer (AVHRR) imagery with a high degree of confidence and its
segmentation written in MATLAB programming language. Contrails are characterized as
thin, nearly straight linear features of higher intensity than the backgroGodtrails
possess another highly characteristic feature; they tend to create straight lines in satellite
images Due to the large volume of satellite imagery, selecting contrail images for study
by hand is impractical and highly subject to human erras. fir better to have a system
in place that will automatically eduate an image to determimnehether it contains
contrails and whereThis research develops and tests two new and easier quantitative
approaches to find contrails in satellite image dataafvariety of atmospheric and cloud

conditions (e.g., cleaskies, partly cloudy skies; cloudy skies).
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Chapter 1

Introduction

Contrails are important in local to regional scale climate change. Various studies to date
have found circumstantial evidence linkinghtrails with modifications in surface temperature
(e.g., in the eastern U.S. and parts of Europe). It is clearly important to understand what a contrail
is and where and when contrails occur to more definitively relate their occurrence to surface
climate.The use of surface observations for developing contrail climatology is problematic,
owing to the occurrence of intervening cloud layers. Accordingly, satellite images have been used
to identify and map contrails, mostly from manual (subjective) interprataf images, although
some automated (quantitative) approaches have been developed but whose success is variable and
dependent on a number of factarsr(s clouds, noslinear contrais, complexity of algorithm,
etg). Detecting contrails, therefore,dsitical in understanding the atmospheric effects of aviation.
This research develops and tests two new and easier quantitative approaches to find contrails in
satellite image data, for a variety of atmospheric and cloud conditions (e.gsléE=arparty

cloudy skies; cloudy skies). This is the research problem undertaken in this thesis.

1.1What is a Contrail?

Contrails arethinlins haped i ce c¢clouds that can devel orp
engines. These artificial clouds are the visgielimate of water vapor around combustion
produds, primarily sootigure 11, 1-2). Contrails were first observed duringyhialtitude
flights in the 1928, and the national air forces developed interest in not causing them because
they enhanced the Vislity of their planes. The formation of contrails underlies many physical

processes, such as chemical reactions in the aircraft plume, aircraft wake dynamics, ice
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microphysics, the state of the atmosphere within the flight corridors, atmospheric dispaiss

and engine technology.

Figurel-1. Ground based photograph of contrails of different ages.
(NASA-The Contrail Education Projedtftp://scienceadu.larc.nasa.gov/contrail
edu/contrailsmixed.php)

Figurel1-2. Ground based photograph of contrail cirrus cloud



1.2Why scientifically study Contrails?

Contrails can add a significaamount of higHevel thin cloudiness over highaffic
areas (Seaver and L&887), and this additionalrrostratuamay lead to highesurface
temperatures on a diurnalveraged basis (Liou, 1986) as the overnight minimum temperature is
raised higher thn the daytime maximum temperature is reduced (i.e., the diurnal temperature
rang® DTR-- is suppressed). Thus, contrails may influence recent climate change in regions
characterized by considerable jet air traffic.

Depending on the ambient atmospheric ¢ioaks, contrails can either evaporate shortly
after formation, or persist for time periods of up to several hours. These persisting contrails
spread laterally and thin vertically, enhancing their potential effects on surface climate. On
average, thebaskc at t ering of terrestri al radiation by
than the reflection of solar radiation, creating a net positive radiative forcing. First concerns
regarding aitraffic effects on thelimate were made by Applemat©63. The announced
introduction of a large fleet of supersonic transport airnattie 1970swhich never eventuated,
initiated first studies of the effect of anaffic on cirrus formation and clouds. Later, thopit
was picked up by Changnoh98]). This author concluded that an increase in cloudiness and
decrease in sunshine duration for the Midwest U.S.A. provided circumstantial evidence-for a jet
induced cirrus influence.

The potential effects of contrails on the climate subsequently weresdeby
Schumann and Wendling (1990Who identified that the infrared heating or cooling rate
magnitude within the cirrus clouds was typically a factor of two larger than that induced by water

vaporin a 5 km thick layer near the tropopause.
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The emissionsrbm subsonic aircraft, which fly at an altitude between 8 and 1akdh,
include NOx , CO2, CO, HC, soot, and water vapor , lead to contrail and aerosol formation.
Pitchford et al. (1991) argue that if the upper tropospheric and lower stratospheri€YUT/L
buildup of exhaust emissions continues to increase, photochemical reactions and surface changes
of these particles could enhance the cloud condensation nuclei (CCN) formation. This would lead
to enhanced opacity of cirrus clouds formed from such comgditHowever, Pitchford et ao
not goasfar in their statementegarding h e ¢ opoténtiahto Iéad t0 increased
precipitation.

Sausen et al. (1998)esentedirst estimates regarding global contrail coverée
global potential contratoverage was calculated to be 16%hd these estimategere included
in an Intergovernmental Panel on Climate Change ( IPCC) special report on aviation impacts on
the atmosphere. They concluded that the global and annual mean potential contrail ceasrage
16% for the layer between 100 and 500hPa. The maximum cover was about 5% over Eastern
USA, with the annual global mean value being 0.09%. Since then, a relatively large number of
studies have been performed to understand formation mechanisms afsanttaheir potential

impact on the global climai@enner et al., 1999)



-
- o
J

—_
O

@ %)

| .

2T S

© = 05

8—.29-
©

'ch

<82

@

55 O-

S& 8

-

0"5205

~17 8-11Sept. 11-14 Sept. 14-17 Sept.

Figurel-3. Departure of average diurnal temperature ranges from the normal falties
periods 811, 1114 and 1417 Septerber 2001

(adopted from Travis et al., 2002).

Following the tragic events of 11 September 2001, the airspace over the USA was closed
to commercial and personal iaffic for about 72 hours, resulting in the absence of contrails
over the USA. Although aurails likely have a heating effect on the atmosphere on a global
scale, as noted earlier they lower ngarface temperatures during daytime aage nighttime
temperaturesRonater et al., 2002thereby reducinghe average DTR. Travis et al. ()0
determined the U.Saverage DTR for the periodsid, 1114 and 1417 September 2001, and
calculated its departure from the clitoiagical values for 1972000 (Figure 13) The increase in
the average departure of DTR duringIdl September 2001 is larger than at any comparable time

in the previous 30 years, and suggested the influence of contrails. Subsequently, Travis et al.
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(2004) determined the regional dependence obifle anomalies for the 114 September 2001

aviation grounding, and showed that these were greatest in areas typically seeing high frequencies
of contrails. Model simulations were carried out by Minnis et24l03 to explain the

temperature anomaly cadsbycoverage of linear contrails and also taking into accthait
lateralspreading. The surfadgsed cloud data consist of qualityntrolled surface synoptic

weather reportdom land stations and ships. Minmisggested to improve the calculation f

more accurate results. Better measurements of UTH, cloud distributions, and contrail properties,
and more precise specification of flight paths and improved parameterizations of cirrus and
contrail formation in GCMs were needed to more rigorously déterthe contrail climate

impactsMi n nsfudy éhdicated that contrails already have substantial regional effects where air
traffic is heavy. As air travel continues growing in other areas, the impact may become globally
significant.

Results of general mulation model simulations suggest that the annually and globally
averaged total contrail cover and the associated radiative forcing should approximately quadruple
during the next six decades due to the increasddadiic, especially in AsigMarquartet al
2002. If these predictions are realized, contrail impacts on climate will increase from being a
largely regional to hemispherscale phenomenon.

The radiation and energy budgets of the eatthosphere system are in balance between
the incoming slar energy (insolation) and the outgoing longwave radiation. The insolation is
attenuated by clouds, aerosols, and other particles in the atmosphere, and the outgoing longwave
radiation is absorbed and reemitted by gases and these particulates. Wiingdraae gas
emissions from anthropogenic sources, especially CO2 andtldtd is a growing concern
about greenhouse warming and possible climate change implications. As contrails become a
largerscale phenomenon in the coming decades, their influsriigely to exacerbate the

warming due to greenhouse gases.
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Lee et al2009 show that the radiative forcing of surface temperature is about 30 times
more sensitive to aircraft emissions of nitrous oxides than to surface emissions alone. As an
importantsubset of thin cirrus clouds, jet contrails are considered to enhance the greenhouse
effect due to their semitransparent nature.

It is clear that the study of jet contrails is of major importance to a wide range of
disciplines, from military planners toiclate researchers. Contrails act as tracers that may serve
as potential intelligence to military planners. In terms of atmospheric effects, climate researchers
are interested in contrail radiative effects and their role in trends of cloud cover (Catlaton
2013) and neasurface temperature.

Contrails are clearly a very importggshenomenon. It is critical that their occurrence
(when and where) be known and determined accurately. -Bpaed (i.e., satellite) detection of
contrails is considered nmereliable than surfadeased observations, owing to the spatially
inhomogeneous observing network of the latter, and the impact of intervening layers of cloud that

biases contrail detection towards partly cloudy or clear skies.



Chapter 2

Background

2.1 Detection and Analysis of Contrails

In addition to their climatic significance, contrails may mask important landscape
information in a satellite image. The optically thin character of persisting contrails complicates
their detection, yet they may stillflnence the satellitbased retrieval of upwelling longwave
radiation, thereby biasing determination of surface temperature. Also, it is difficult to detect a
single contrdiin a satellite image becauiés thin and the associated gregale pixel vales are
similar to the background. Moreover, as a contrail ages, the change in shape due to the
influences of wind and atmospheric dissipation, further complicates its detection in satellite data.

Ealy work on contrail detectiomostly involved their sual identification from pattern
recognition of lineshaped, cold cloud signatures in satellite thermal infrared (TIR) images. For
example, DeGrandt al. (1991) applied hardcopyages of higkresolution Defense
Meteorological Satellite Progra(@MSP)data to identify contrails. Their study built upon that of
Carleton and Lamb (1986), which utilized DMER.S with a spatial resolution of 600 x 600 m,
to detect contrails manually. Bakan (1994) usedrdlai visual inspection method fétwvHRR
images to rap contrail coverage over Europe and the North Atlantic. Degrand et al. (2000)
applied the manualyinterpreted contrails on e a r s 6/9) DNISPTIR satellite images
over the United States to develop a spatial climatology of contrail occurrences ('@96)
determined statistics on the width and length of contrails using visual interpreitégion.
determined an average width of 2.9 km and an average length of 137km. Theseisadgiéte

manual inspection methods for contrails, while superior to sailfased observations, are
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subjective, time consuming, and mostly consider contrails in partly cloudy or otherwisskglear
conditions.

To overcome the limitations of manual detection methods for contrails, researchers
attempted to develop automatic (cargr-based) algorithms to detect contrails in satellite image
data. Leeb6s (1989) method, applied to AVHRR
difference in channels 4 and 5. Building upon this radiance differencing method, Engelstad et al
(1992) cveloped pattern recognition algorithm to detect linear (i.e., relatively young) contrails.
The algorithms made use of ridge detection and Hough transform. Ridge detection differentiates
ridge pixel of the contrail from background pixels, and Hough tramsi® applied to detect
straight lines among these ridge pixels. The Engelstad et al. algorithms gave some inaccurate
results because of the spurious contrail detection arising from linear streaks of natural cirrus
which are also often associated. Forletral. (1993) used a similar approach, but their method
could sometimes misinterpret linear features such as coastlines, valleys and cloud edges as
contrails. Weiss (1998) improved the ridge detection and Hough transform algorithms with the
help of widthrelated searches, to create cortemihanced imagebataid in the detection
process. When contrails are young, they are also quite narrow, thus the Weiss (1998) searching
method proved to be efficient and largely overcame the false detection problenasithor,
however did not attempt the method on aged and wider contrails.

More recently, neural networks have been applied to contrail detection by Meinert et al.
(1994,1997). In information technology, a neural network is a system of programs and data
structures that approximates the operation of the human brain. A neural network usually involves
a large number of processors operating in parallel, each with its own small sphere of knowledge
and access to data in its local memory. Typically, a neunatomnlets initially "trained"” or fed
large amounts of data and rules about data. A program can then tell the network how to behave in

response to an external stimulus or can initiate activity on its own (within the limits of its access
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to the external world)in making determinations, neural networks use several principles,
including gradienbased trainingiuzzy logig genetic algorithms, and Bayesian methods.
Meinertet al(1994) trained aeural network to classify contrails by use of the AVHRR thermal
splitwindow channels. However, the application of this method was too titheffort intensive

to acquiresuitable samples and involved substantial amounts of data. Moreover, the neural
network model required a large computational time for acceptable detection resutsairo

good results a huge set of weliosen, pixeprecise training samples was needed. These had to
represent the full variability of contrail occurrences in AVHRR datae operational.
Furthermore, good contrail detection needs a large number of input neurons resulting in long
training cycles. Finally, the amount of the needed training was estimated to be beyond the limits
of feasibility (Meinert et al. 1997).

Mannsein et al. (1999) introduced a contrail detection method to detect linear (i.e.,
young) contrail features by using sceéneariant threshold and binary masks. Fixed thresholds
could be usedhecausehe images were normalized. Their algorithm was capdltleedast
operational detection of persistent and roughly linesinlgped contrails from the AVHRR
channels 4 and 5. The scheme was relatively robust to misdetections of other linear structures in
thermal images such as coastlines, mountain ridges degs/ak sensor line failures. However,

a drawback of this method was that the masks were sometimes insufficient to remove all non
contrail edge features, leading to underestimation of contrail occurrence. Recent studies have
i ncorpor at ed s adomated algerithm toad¢tectacdntrads and develop regional
shortperiod climatology of contrails. For example, Palikonda et al. (2001) identified contrails
over various regions of the United Statee®\VHRR and MODIS images using this approach
indicatinga maximum value of 2.0% over southeastern states, New Mexico, west Texas, and

Alberta, Canada with minima or 0.2% over western Colorado and the Atlantic Ocean.


http://whatis.techtarget.com/definition/fuzzy-logic
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Meyer et al. (2007) detected contraiker Thailand and Japan using 400 NOAA

satellite senes from four months of the year 1998. Hetzheim (2007) proposed a complex

approach to detect contrails using mathematical methods of texture or contrail stochastic

behaviors. The solutions obtained were given as sequential procedures using grey values of
neighboringpixels, though it was very time consuming. Although these mathematical methods

may better distinguish contrails from the surface and lower cloud background of the satellite

images, they are very time consuming with respect to the creatiompfbae s t o Atr ai no t
algorithm and the time it takes to rtlhremon a computer. More recently, Zhang e{24112

proposed an objedtased classification method, which tries to overcome the limitations of the
pixel-based methods by combining both spatn apectral information into the classification

process. The method takes advantage of using other supplemental information besides spectral
brightness to differentiate contrail pixels from raontrail pixels. However, the classifier used in
thispaperiaf uzzy nearest neighbor cbaxéi fGevenwhheh
number of the dimensions in the feature space, though the feature space could be optimized, users

do not know the mechanism that differentiates an object into a certainariasannot control

the classification process. In addition, the choices of the training samples usually have to be

repeated many times to be decided. This restricts the automation of contrail detection using the
objectbased method. It is also difficult ppevent overfitting.Overfitting occurs when

astatistical modetlescribegsandom erroor noise instead of the underlying relationship.

Overfitting generally occurs when a model is excessively complex, such as having too many
parameters relative to the number of observations. A model which has been overfit will generally

have pooipredictiveperformance, as it can exaggerate minor fluctuations in the data.


http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Random_error
http://en.wikipedia.org/wiki/Predictive_inference
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2.2 Thesis Overview

Accordingly, in this research | develapd testwo pixetbased métods to detect
contrails from satellite images. The advantage of these methods is that they offer simple, quick
and efficient ways to detect contrails, to obtain their coordinates in latdndéude formatand
identify characteristics of the contraitcluding but not restricted to its width, length, and age.

The first method makes use of phase congruency to detect edges and Hough transform to
detect straight line contrails. Curvedntrails can be detecteah shorter (less than 10 pixels)
contrails.This is an improvement over previous Hough transform based methods. The second
method makes use of spatial derivatives alony k@nd y axeto identify possible contrail
candidates and then use binary morphological operations to detectisodsigspatial

derivativeseliminates most cirrus clouds and poontrail background details.
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Chapter 3

Data Type and Format

_3.1 Data Type and Format NOAA Advanced Very High Resolution Radiometer (AVHRR)
images

The AVHRR is a multispectralradiationdetection imager that can be used for remotely
determining cloud cover and the surface temperature. Thestefatecan mean the surface of
the Earth, the upper surfaces of clouds, or the surface of a body of water. This scanning
radiometer use8 detectors that collect bands of radiation wavelengths ranging from the visible to

the hermal infrared, as shown below (TablE3

Table 3-1. AVHRR/3 Channel CharacteristicdOAA Satellite Information Sysim Website
(http://noaasis.noaa.gov/INOAASIS/mi/avhrr.html)

AVHRR/3 Channel Characteristics

CN:B;nbneerl ﬁzz?rlutlon at \(/l\Jllz;\]\;elength Typical Use

1 1.09 km 0.58-0.68 Daytime cloud and surface mapping

2 1.09 km 0.725-1.00 Landwaterboundaries

3A 1.09 km 1.58-1.64 Snow and ice detection

3B 1.09 km 3.55-3.93 Night cloud mapping, sea surface temperati
4 1.09 km 10.30-11.30 | Night cloud mapping, sea surface temperat

5 1.09 km 11.50-12.50 Sea surface temperature
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Although AVHRR/3 is a six channel radiometer, only five channels are transmitted to the ground
at any given time. AVHRR images have 1.1km nadir point pixel resolution, and are the primary
input used for contrail detection in this study. | obtained tha flain the online Comprehensive
Large ArrayData Stewardship System (CLASS) of the National Oceanic and Atmospheric
Administration (NOAA) (www.nsof.class.noaa.gov). To ensure maximum resolution, only the
High Resolution Picture Transmission (HRPT) dataewebtained from within the broader

AVHRR archive.

3.2 Image Preprocessing

The AVHRR/3 provides thresolar channels; in the visible andar infrared regigrand
three thermal infrared channels. Jet contrails are the most difficult to detect in b#ride3 o
thermal infrared band). Due to smaller crystal sizes, especially young contrails (Gayet et al. 1996)
tend to show higher transmissivity in the AVHRRannel 4 (10.3+ 11.3 mm) than in channel 5
(11.5+ 12.5 mm)compared to natural cirrus (Betangdothe and Grassl 1993). This often
causes contrails to appear brighter on channetiannel 5 temperature difference images. The
contrail features become indistinct in the visible red band (band one) anthfneiaad band
(band two), having similar radiaeccharacteristics to the background in these two bands.
Contrails exhibit the most difference in radiance characteristics from the background in thermal
infrared bands four and five.

In the AVHRR/3 an instantaneous field of view (1.3 milliradians by lilBradians) is
scanned across the earth from one horizon to the other by continuous 360 degree rotation of a flat
scanning mirror. The scan lines are perpendicular to the spacecraft orbit track (i.e., image swath),
and the speed of rotation of the scamramiis selected so that adjacent scan lines are contiguous

at the subsatellite (nadir) position. Complete strip maps of the earth from pole to pole are thus
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obtained as the spacecraft travels at an altitude of approximately 833 km (450 n. miles)ofA total
2048 samples are obtained per channel per Earth scan, each of which spans an angle of +55.4
degrees from the nadir (subpoint vieWwhe six spectral channels of the AVHRR/3 are registered

so that they all measure energy simultaneously (i.e., from the spot on the earth at the same

time). All six channels are calibrated so that the signal amplitude in each channel is a measure of

the scene radiance.

3.3 AVHRR images and subsamples used

AVHRR images from April and October 2007 have been ugbe. list of imagesis
shown in Table 2. The date/time details and the extent of each image in longtitiele
format is also shown in th@able. Each of these images are sampled into smalleimagdes.
These sudimages are chosen such that they contain weisdantrails, ranging from one to
multiple contrails in each sampl&ource:NOAA KLM User's Guide.

(http://www.ncdc.noaa.gov/oa/podguide/ncdc/docs/kim/html/c3/4ewBn)



Table3-2. List of theAVHRR images
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ID Date and Time Extent Scenario Description

8484 | 04/01/2007 53° 52" N-120° 7" W to 3 subsamples, eac
S : 23 hours 20 mins 21° 41" N-90° 34" W with one long contrail
E : 23 hours 10 mins

4040 | 04/05/2007 55°30" N-110° 3" W to 6 subsamples, a
S : 16 hours 07 mins 21° 44" N-76° 40" W containing many shor
E : 16 hours 19 mins contrails

8585 | 04/14/2007 56° 32" N - 135° 41" W to 1 subsample
S : 09 hours 20 mins 21° 04" N - 103° 45 W interconnected
E : 09 hours 30 mins contrail

3939 | 04/19/2007 51° 29" N -98° 21" W to 3 subsamples
S : 15 hours 45 mins 21° 13" N-70°54 W
E : 15 hours 56 mins

5454 | 04/20/2007 56° 52" N - 119° 40" W to 2 subsamples, eac
S : 17 hours 00 mins 24° 52" N -89° 05" W with many contrails
E : 17 hours 11 mins

8282 | 10/15/2007 53°32" N-118° 16" W to 4 subsamples, eac
S : 12 hours 03 mins 25° 49" N-89° 13" W with many contrails
E : 12 hours 13 mins

2424 | 10/18/2007 50° 35" N - 103° 26" W to 4 subsamples, eac
S : 10 hours 50 mins 14° 42" N - 74° 45 W with many contrails
E : 11 hours 04 mins (partly cloudy)

4444 | 10/26/2007 53°00" N - 132° 21" W to 4 subsamples, eac

S : 17 hours 39 mins
E : 17 hours 51 mins

15° 03" N - 103° 18" W

with many contrails

Si Start Time, B End Time

cloudy skies; cloudy skies) and various contrail frequencies (no contrail, one contrail, multiple

contrails). Various parameters and thresholds were set based on the outputs from these test cases.

These samples were initially used to test the different c@sgs cleaiskies, paity

The final algorithm was later tested on all 30 sammae,sample per day for the month of April

2007. Each image of size roughly 3500 x 2000 pixels were divided into-3386x256 and

840 512x512 size images and were tested for different cases (Se&jion
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The samples used in the thesis cover most parts of North America, mostly USA. The lengitude

latitude details shown (Figure13 indicate the areas covered by eaample
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Chapter 4

Phasei Hough Method

First Method of contrail id entification and classification Phase congruency and Hough
transform

This chapter discusses the first method | useccdortrail detection. In Section 4the
phase congruency method to deteedges is discussed. Section 4discussesbinary
morphological operations used to clean out the image. This includes removing noise, small non
linear clouds, etc. Nex8ection 4.3discusses the Hough transform which is used to detect the
linear contrailsLast, Section 4.4xplains the method to identify tle@dpoint of each contrail and
retrieveits coordinates in latitudengitude formatas well as ways to detecontrail length and

width.

Section 4.1 Phase Congruency edge detection

Phase congruencysian illumination and contrast invariant measure of feature
significance. Unlike gradienbased feature detectors, which can only detect step features having
a phase angle of 0 or 180 degrees, phase congruency codetettys features over ghase
andes. Phase congruency reflects the behavior of the image ifreligency domainPhase
congruency is a dimensionless quantity that is invariant to changes in image dssglm
contrast; hence, it provides an absolute measure of the significance of feature points, thus
allowing the use of universal threshold values that can be applied over wide classes of Itnages
has been noted that edijee features have many of thdrequency components in the same
phase(Kovesi 1991, 1999 Hence its significance in satellite images, as it can be used to detect

edges irrespective of the background.


http://en.wikipedia.org/wiki/Frequency_domain
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Phase congruency provides a way of identifying features within images. By combining
phase congruency information over multiple orientations into a covariance matrix, and calculating
the minimum and maximum moments a highly localized operator that can be used to identify
both edges and corners in a contrast invariant way is produced (Ki8&3. The contrast
invariance facilitates the tracking of features over extended image sequences under varying
lighting conditions. An additional advantage of the operator is that the phase congruency corner
map is a strict subset of the phase congrpeuge map. This simplifies the integration of data
computed from edge and corner information.

Phase congruency is derived by frequency domain considerations operating on the
considerations of phase (i.e. time). It is illustrated detecting some 1D feaiuFégure 4-1,
where the features are the solid lines: aiqy) step function in Figure-#(a), anda peak (or
impulse) in Figure4-1 (b). By Fourier transform analysis, any function is made up from the
controlled addition ofine wave®f differing frequencies. For the step function to océine solid
line in Figure4-1 a), the constituent frequencies (the dotted lines in Figudra) must all change
at the same time, so they add up to give the edge. This means that to find the feature in which we
are interested, we can determine points where events happen at the same time: this is phase
congruency. By way of generalization, a triangle wave is made of peaks and troughs: phase

congruency implies that the peaks and troughs of the constituent signadtscsiincide.



(a) Step edge

(b) Peak

Figure4-1. Low level feature extraction by phase congruency.
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The constituensine waves plotted in Figurel (a) were derived by taking the Fourier

transform of a step and then determinihgsine wavesaccording to their magnitude and phase.

The Fourier transform in Equation 2.15 delivers the complex Fourier components Fp. These can

be used to show the constituent signals xc by

xc (f) =sons

whereFp i s again t hbe FourgegconmponerdndFpo fi ¢ hteh e

(4.1)

argument

The (dotted) fregencies displayed in Figu#el are the first four odd components (the

even components for this fation are zerph The addition of these components isdéed the

inverse Fourier transform which reconstructs the step feature. The advantages are that detection

of congruency is invariant with local contrast: the sine waves still add up so the changes are still

in the same place, even if the magnitude of thp stlge is much smaller. In images, this implies

that we can change the contrast and still detect edges.
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Essentially, we seek to determine features by detection of points at which Fourier
components are maximally in phase. By extension of the Fouriensiuaction functionsn

Equation 4.1Morrone and Owend 987)defined a measure of phase congrudPCyas

PCOX) =G Gm g =22 R .2)

where G (x) represents HRpheat opas$i phasexof the
Essentially, this computes the ratio of the sum of projections onto a vector (the sum in the

numer at or) to the total vector l ength (the

maximizes this equation is the amplitude weighted mean local @rage of all the Fourier

terms at the point being considered. In Figdr2 the resulting vector is made up of four

components, illustrating the projection of the second onto the resulting vector. Clearly, the value

of PCranges from 0 to 1, the maximum occurring when all elements point along the resulting

vector. As such, the resulting phase congruencydisnansionless normalized measwigich is

thresholded for image analysis.

Imaginary
A

Hearl

Figure4-2. Summation in phase congruency
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In this way, we have calculated the phase congruencyhéoistep function in Figure
4-3(a), which is shown in Figure-3(b). Here, the position of the step is at time step 40; this is the
position ofthe peak in phase congruency, as required. Note that the noise can be seen to affect the

result, although the phase congruency is largest at the right place.

a 50 100
0 50 100
(a) (Moisy) step function (b) Phase congruency of

step function

Figure4-3. Onei dimensional phase congruency

One interpretation of the measufnel|]jsthbat
Equation 4.2expresses the ratio of the magnitudes weighted by the variance of the difference to
the summed magnitude of the components. There is certainly difficithiytivs measure, apart
from difficulty in implementation: it is sensitive tooise as is any phase measure; it is not
conditionedby the magnitude of a response (small responses are not discounted); and it is not
well localized (the measure varies witthé cosine of the difference in phase, not with the
difference itself, although it does avoid discontinuity problems with direct use of angles). In
effect, the phase congruency is directly proportional to the local energy (Venkatesh and Owens,

1989).
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For tese reasons, Kovesi developed a wavmsed measure which improved
performance, while accommodating noise. In basic form, phase congruency can be determined by
convolving a set of wavelet filters with an image, and calculating the difference between the
average filter response and the individual filter responses. The response of a (1D) signal | to a set
of wavelets at scale n is derived from the convolutiothefcosine and sine waveletsnoted

0 andd respectively
(Q G 0)=>1X)*0 ,1)*0 ) 4.3
to deliver the even and odd components at the nth €ale and ¢ o , respectively. The

amplitude of the transform result at this scale is the local energy

©

0 W Q wo6 ¢ wo (4.4)

At each point x we will have an array of vectors which correspond to each scale of the
filter. Given that we are only interested in phase congruency that occurs over a wide range of
frequencies (rather than just at a couple of scales), thaf satvelet filters needs to be designed

so that adjacent components overlap. By summing the even and odd components we obtain
F(X)=B Q &
H(X)=B ¢ ® (4.5

and a measure of the total energy A as

BOo wo B Q wo €& wo (4.6)
Then a measure of phase congruency is

) )

PC (x) = .7

wher e t he addi ti on of a smal l factor O in

potential result when values of the numerator are sesl.

t
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This gives a measure of phase congruency, which is essentially a measure of the local
energy. Kovesi (1999)improved on this, improving on the response to noise, developing a
measure which reflects the confidence that the signal is signifidativeeto the noise. Further,
he considers in detail the frequency domain considerations, and its extension to two dimensions
(Kovesi, 1999). For 2D (image) analysis, phase congruency can be determined by convolving a
set of wavelet filters with an imagand calculating the difference between the average filter
response and the individual filter responses. The filters are constructed in the frequency domain
by using complementary spreading functions; the filters must be constructed in the Fourier
domain beause the logsabor function has a singularity at
appropriate properties, a filter is constructed in a manner similar to the Gabor wavelet, but here in
the frequency domain and usi ndnpldmehtdtienrtleerdirst f unct
filter is a lowpass filter, here a Gaussian filter g with L different orientations

0

Q o (4.8

9(.—=

=
where d i s } hcentratsrthe spretdaabautahat, orientation ands the angle is
local orientation focus.

The other spreading function is a bagyabs filter, here a leGabor filterlg with M

different scales.

| , )= i 4.9
g(“zr)m_'Q F 1w (4.9

where ¥ is the scal e, b 7Jconsttheocensre fleguandyweit that h at
scale. The combination of these functions provides a & f2Dg which can act at different

scales and orientations.
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| 2Dgl ffe)=g( e | g1 (), (4.10
One measure of phase congruency based on the convolution of this filter with the image
P is derived by inverse Fouridransformation of the filter Rg (to yield a spatial domain
operator) which is convolved as
Y& 5 O &0 Q h hbh— {205 (4.11)
to deliver the convolution result S at the mth scale. The measure of phase conguasribgM

scales is then

0 6 . : (4.12

where the addition of a smal/l factor U num
potential result when values of S are very small. This giveseasure of @secongruencyAs
described above, local frequency information is calculated by convolving the image with banks of
guadrature pairs of leGabor wavelets. Local frequency information is obtained by applying
guadrature pairs of leGabor filters typically over six orientatis and 2} scales. For each point
in the signal the responses from the quadrature pairs of filters at different scales will form
response vectors that encode phase and amplitude. Phase Congruency values are hence calculated
for every orientation.
At eachpoint in the image compute the Phase Congruency covariance matrix:
_ B 06 B06 06
" BUS 06 BOS (443
where06 and06 are the x and y components of Phase Congruency for each orientation. The
minimum and maximum singular es correspond to the minimum and maximum moments of
Phase Congruency. The magnitude of the maximum moment, M, gives an indication of the

significance of the feature. A large maximum moment, m, indicates that the feature has a strong
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2D component and oabe classified as an edge. The principal axis, about which the moment is
minimized, provides information about the orientation of the feature. This Phase congruency
method is accomplished using the phasecong.m, a Métiaftionav ai | abl e on Ko
Resarch website(http://www.csse.uwa.edu.au/~pk/Research/research.html

The above mentioned Matlab functiproduces aedge image, as shown in Figurd.4

Figure4-4.Phase Congruency output.

Channel 45 difference image (top). Phase congruency edge image (bottom)
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Figure 44 shows part of a channeli4channel 5 difference image on ttog. The image
on thebottomshows the possible contrail candidates, after applying the phase congruency edge
detectionalgorithm. The possible candidates are shown in a brighter color while the background

is black.

Section4.2 Binary morphological operations

The edge image shown above contains possible contrails but aldiaeanrcirrus clouds
and other nowtontrails.When natural cirrus is present, these wispy features often contaminate
the ridge image ; the artificially produced contrails are much more likely to form straight lines.
Contrails are defined by their linearitye., the contrails being straight lines. drkfore, this
method detects straight lines in the edge image. The computationally efficient Hough transform
(Hough 1962) is used for this purpose.

Prior to using Hough transform, binary morphological operationslger spur and
skeletonization see biow) are used to clean up the imagdéis means making use of these
operations to remove ngipixels, regions of small size (less than 10 pixels), and deformations,
which could be falsely identified as contrail candidates by the phase congruency méikod. T
can aid in eliminating false positives (iaald linear featurethat are not contrails, such as small
cirrus cloudy Because contrails are longer thavout 1615 pixels €ach pixel in the image is
1.1km3 we use this crakéesi bengbohdi ol the dmapdobl
length is a scalar specifying the length (in pixels) of the major axis of the ellipse that has the same

normalized second central moments as there(Figure 45).
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Major Axis Length

Figure4-5. Major axis length
(Source: Matlab documentation)

All potential contrailcandidates with an axis length greater than tleeifipd threshold
are retained. Nexbinary morphological operations to-deiset he i mage ar e used.
operator is used first. This operator bridges unconnected pixels; that is, ivsdted pixels to 1
if they have two nonzero neighbors that are not connected. This operator connects candidates
which are closely spaceliut have been separated due to errors in the infdge.can include
sensor problems, transmission issuesltainingthe AVHRR image, to errors in calculating

phase congruenciror example:

1/0]|0 11110
1] 0|1 )’ 111
0|01 011

Figure4-6. Bridge Operator
(Source : Matlab documentation)

The next operation removes the spurious pixels (i.e., removes small irregularities). For

example:
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oo o|o0 ojof0]0
o|jojo0o|1 o)jof0]1
o|joj1]0 ) o)pof1]0
o1 1]0 o)1 {0]0
1|0 0|0 1 )0f(0]0

Figure4-7. Spurious pixel removal
(Source : Matlalllocumentation)

Next, the image skeleton is extracted. The operation removes pixels on the boundaries of
objects but does not allow objects to break apart. The remaining pixels make up the image
skeleton. The skeletdjor topological skeleton) of shapes a thin version of that shape that
is equidistanto its boundaries The skeleton usually emphasizes geometrical and topological
properties of the shape, such asdanectivity topology length directionandwidth. Together
with the distance of its points to the shape boundary, the skeleton can also serve as
arepresentatioof the shape (i.e., they contain all the information necessary to reconkguct t
shape). For example (Figure8¥, the thinredline represens t he skel eton of
STAT.EG.

Figure4-8. Example of skeletonization

t

h


http://en.wikipedia.org/wiki/Shape
http://en.wikipedia.org/wiki/Equidistant
http://en.wikipedia.org/wiki/Boundary_(topology)
http://en.wikipedia.org/wiki/Connectedness
http://en.wikipedia.org/wiki/Topology
http://en.wikipedia.org/wiki/Length
http://en.wikipedia.org/wiki/Direction_(geometry)
http://en.wikipedia.org/wiki/Width
http://en.wikipedia.org/w/index.php?title=Image_representation&action=edit&redlink=1
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Section4.3: Line detection using Hough transform

The smplest case of Hough transforior detecting straight lineis the linear transform
for detecting straight lines. In thémage space, the straight line can be described
asy = mx + b where the parametenis the slope of the line, ars the intercept (yntercept).
This is called the slopimtercept model of a straight line. The Hough transform considers the
characterists of the straight line not as discrete image pointsyk},(x2,y2), etc., but in terms
of its parameters according to the slapercept model; i.e., the slope paramateand the
intercept parametdr. In general, the straight lie= mx + b can ke represented as a point (i)
in the parameter space. However, vertical lines pose a problem. They are more naturally
described ax = aand would give rise to unbounded values of the slope parameter m. Thus, for
computational reasons, Duda and HaA71) proposed the use of a different pair of parameters,
denoted and d (theta), for the lines in the Hough transform. These two values, taken in

conjunction, define polarcoordinate

Figure4-9.| -d | i ne parametri zati on

The parametdr represents the algebraic distance between the line anorigive
while dis the angle of the vector from the origin to this closest point. Using this parameterization,

the equation of the line can be written as


http://en.wikipedia.org/wiki/Polar_coordinate
http://en.wikipedia.org/wiki/Origin_(mathematics)
http://en.wikipedia.org/wiki/File:R_theta_line.GIF
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W —n — (4.14)

which can be rearrangedfo @A 1[/O UO g1 (Shapiro and Stockman, 2001).

The range ofhetais -9 0 A <  (f is theredofe ossible to associate with each line of the
image a pair|(, d) .

The linear Hough transforadgorithmuses a twalimensional array, called an accumulator, to
detect the existence of a line described Hy @A TfO UOHI The dimensiorof the
accumulator equals the number of unknown parameters, i.e., two, considering quantized values of
land d in,thklée . p&ior (x@amdhts neighkoehbod, dhe Hough transform
algorithm determines if there is @mh evidence of a straight line at that pixel. If so, it will
calculate the parametes,( d) of that | ine, and then | ook fo
parameters fall, and increment the value of that bin. By finding the bins with the highe=t,v
typically by looking for local maxima in the accumulator space, the most likely lines can be
extracted, and their geometric definitions approximated. (Shapiro and Stockman, 2001) The
simplest way of finding thegeeaksis by applying some form of thshold, but other techniques

may yield better ragts in different circumstancesletermining which lines are found as well as

how many. Because the lines returned do not contain any length information, it is often necessary

(next step) to find which pts of the image match up with which lines.

The final result of the linear Hough transform is a-tlimensional array (matrix) similar
to the accumul ator ; one di mension of this matr
is the quantized distae r. Each element of the matrix has a value equal to the number of points
or pixels that are positioned on the line represented by quantized parametersd() . Thus,
element with the highest value indicates the straight line that is most represettiedinput

image.


http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Dimension
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Running the algorithm results in eachx  being transformed into a discretizgd
d rurve, and the accumulator cells which lie along this curve are incremented. Resulting peaks
in the accumulator array represent stremgience that a corresponding straight line exists in the

image.

The advantage of the Hough transform technique is that it is unaffected by gaps in the
line and relatively robust in the presence of noise. THriith Matlab functions to detect the

Hough tansform and the lines are us€bable 41)

Table4-1. In-built Matlab functions used to detect Hough transform and lines

(Source: Matlab Documentation, Matlab 2012a)

Function Description
hough The hough function implements the Standard Hough Transform (SHT). The Hough transform is designed

to detect lines, using the parametric representation of a line:

rho = x*cos(theta) + y*3in(theta)

The variable cho is the distance from the origin to the line along a vector perpendicular to the line. theta
is the angle between the x-axis and this vector. The hough function generates a parameter space matrix
whose rows and columns correspond to these rho and thetea values, respectively.

houghpeaks After you compute the Hough transform, you can use the houghpealks function to find peak values in the
parameter space. These peaks represent potential lines in the input image.

houghlines After you identify the peaks in the Hough transform, you can use the houghlines function to find the
endpoints of the line segments corresponding to peaks in the Hough transform. This function
automatically fills in small gaps in the line segments.

Peaks irtheaccumulator arragire chosen such that their values are 0.05 to 0.20 times the

maximum value (based on trialsconductedoptimum outputs). Lines within a 5 to 10 pixel
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distance are automatically connectadthe algorithmand lines less than a certain pixel length

are detted (20 to 30 pixels based on trials).

Section4.4: Identifying contrail endpoints and their coordinates in latitude-longitude
format.

The latitudelongitude(lat-long) details of the togeft and the bottonnight corner of the
AVHRR image are also inpunito the algorithnto identify the(lat-long) details of each detected
contrail. These values are first converted into longitpeex-pixel and latitudepery-pixel
values, which arealculated by dividing the total longitude value by the numberafiy pixels,
and by dividing the total latitude value by the number-akis pixels.

TheMat | ab fhaughknesi(Talle 4d) identifies the lines and their endpoints.
Each (x,y) coordinatextracted from this functiors multiplied with the longitudger-x-pixel
and latitudepery-pixel values, to yield longitudititude details of the endpoints of each
detected contrail in degrees, minutes forn&e functionalso assigns each line with aortiheta
value pair. Each such pair is compared to finthéf detected contrails are part of the same longer

contrail.
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Chapter 5

Derivative Method

Second Method of contrail identification and classification: Using Derivatives and binary
morphological processes

This chapter discusses trsecond methodf contrail detection. In section 5.the
derivative of the image and the search mask asediscussedSection 5.2xplains the different
binary morphological operations used to remove the unwanted compon#mesmuige and clear
the results. This includes removing remismall norinear clouds, etcSection 5.3explains the
method to identify the endpoint of each contrail and to retrieve its coordinates in fatitude

longitude format, and ways to determine its kargnd width.

Section 5.1 Spatial Derivative

The first step in this method is to calculate differences between adjacent rows (Berivati
along xdirection).In the thermal channel £hannel 5 difference imageontrails have a higher
pixel value than tbé background (Earéh surface) producing a zero crossing. The top edge of the
contrail produces a ne@at change. This is adjacent ¢o within very close proximity (1 or 2
pixels), followed by the bottom edge of the contrail whigroduces a positive chge (Fgure

5-1).
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Zero \ L
) |

Zero line

Figure5-1. Representation of a zeovossing

The negative change is darker than the background and the positive change is brighter
than the background. This image is further thresholded to remove small cliarthespixel
brightnesgThe value of threshold varies from 800 to 1000). These small changes are assigned a
value of zero.

In the next step, all positive changes are assigned 1 and all negative changes are assigned
-1, tofacilitate creating a mask and searching for the cohtfagure 52). The mask (Figure-3)
is run across the entire image, centeredloand searches for a +1. The mask retussgyas the
center pixel value of +1 (+1 being TRUE and 0 being False in a binary logical imagay, of

the shown positionsonitains a +1.
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Figure5-2. Zero crossings in the image

+1 | +1 | +#1 | +1 | +1

+1 | +1 | +#1 | +1 | +1

Figure5-3. Mask along ydirection

This mask produces a BW (Black and White) image, with potertidrail canlidates

shown in whitgFigure 54).
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Figure5-4. Potential contrail candidates after differentiation and running the mask.
This mask, however, fails to detect vertical or close to vertioatrails, (ie, contrails
oriented nortksouth on an imageTo overcome this shedoming, the derivative along columns

(x - direction) is taken and the following mask is used to d@mtentialcontrail candidates.

x | x | x | 41| +1

X | x [ x | +1]+1

X X -1 ] 41| +1

¥ |x | x | +1]|+1

¥ | x [x [ +1]+1

Figure5-5. Mask along xdirection
Figure 56 shows a Channel-5 difference image, and thmotential contrail candidates
after using mask alongdirection and along-gdirection. Theimage shows why the use of both

masksis necessarin detecting alpotentialcandidates.
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Figure5-6. Spatial derivatives in x and y directions.

(Clockwise from tofi Channel 45 difference image ; after using mask alondirection ; after

using maskalong ydirection)

Section5.2: Binary Morphological operations and contrail detection

As in the previous section, binary operations are used to clean up the mlagenave
small (fewer than % unwanted pixels. These operatienbridge, spur andkeletonization--
remove most norcontrail pixels from the candidate image. Next, all the connected components

pixelsare labeled (each with a different integer value) and the length {etgf@iength) of each
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such region is calculated. Small regiofesMer than BLO pixels) are discarded iteratively,
increasing the threshold size from 10 to 30 pixels. This procedure is done for boiffirdetinn

and ydirection masked image, and the results are combined to give the final output.

Section5.3: Identifying contrail endpoints and their coordinates in latitude-longitude
format.

The latitudelongitude (lationg) detailsod the detected contrails are calculated as
explained before (Section 4.4)he endpoints of each detected contagd calculated usingn in
built Matlab function (bwmorph) and each (x,y) coordinate is multiplied with the longjiese
pixel and latitudepery-pixel values, to yield longitudiatitude details of the endpoints of each
detected contrail in degrees, minutes forraeir slopes are then calculated and compared to

identify same but disconnected contrails.



40
Chapter 6

Results

The previous sections described the two methods used to identify contrails, viz. the first
method, consisting of thehase congruency and Hough transfgghaseHough) and the second
consisting of spatial derivatives. Thixden describes the resultsabplying hese methods on
varioustest imagesBoth methods were tested on images with a variety of atmospheritoadd ¢
conditions (e.g., cleaskies, partly cloudy skies; cloudy skies) and different contrail types (no
contrail, single contrail, multiple contrail§oth methods were tested on a total of 27 images.
Section 6.1discusses the results of contrail detattising method Aand Section 6.8iscusses
the resuk when using Method B. Section @li3cusses the performance and compares the two

methods based on these test results.

Section 6.1 Phase Congruency and Hough transform method:

In this section the fitanethod consisting of applying phase congruency edge detection
and following this by a Hough transform based line detection algorithm, is applied to various test
case satellite image§he algorithm detects contrails and calculates the endpoints on each

detected contrail. It shows the longituld¢itude coordinates of the detected contrails.
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6.1.1Image containing no contrail

Figure6-1. No contrail usinghaseHough

(Clockwise from topeft) Theoriginal image (channel 4), Channeb4lifference image,

Final output, intermediate image showing phase congruency.

The test image is partly cloudy, but contains no contrails. The initial phase congruency

test reveals many edges, including very faintsathat are not easily visible. However, these
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edges are not very bright (pixel value < 200). These false positive edges are later deleted by the

algorithm, and the final output imaghows no contrails, as expected.

6.1.2Image containing one contrail (patly cloudy)

Figure6-2. One contrail usingPhaseHough
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Top image shows the partly cloudy channel 4 image. Bottom image shows the detected

contrail (in blue). The yellow and red points are the start adgeimts of the contrail.

The test image is partly cloudy and contains a single contrail. The contrail is disjoint, and
has a few gaps in between. The algorithm not only detects the contrail but also classifies the
disjoint segments as the same contnadl displays the end pointBhus theoccurrencef natural
clouds does not affect the detection and classification of the coifitraicoordinates of the

contrail are also calculated in degrees and minutes, as shown if-fiable

Table6-1.Contrail coordinates famage withone contrail usindPhaseHough

Longitude Latitude

Start 135 28 56 26

End 133 27 55 41




6.1.3Image containing more than one contrail (cloudy)

Figure6-3. More than one contrail usirghaseHough
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The frst imagein Figure 63 shows the original channel 4 image. The second image
shows the detected contrails superimposed on the chabrdifférence image, and the last
image shows the detected contrails on the original image (channel 4)

This tes image has two contrailé. major part of both the contisiis hidden by clouds.
All contrails, including the hidden ones are detected. The algorithm also differentiates between
different contrails as shown by assiggthe different cabr used in displaying them. Figure36
shows the two contrails (green and blue contréejneregionsof the contras which fadeaway
are not detected. Howevéhe discontinuous contrail (bluis) detected as the same contrail and
the correct endpoints are detegtadd as suctio not cause an error or problem in the detec

and classification. Table-Bshows the coordinates (degrees® minutes”).

Table6-2. Contrail coordinates fdmage containing more than one contrail ugthgseHough

Start End
Longitude Latitude Longitude Latitude
Green Contrail | 11001 54°54° 109°4° 55°15

Blue Contrall 109°39° 53°57° 105°20° 55°25
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6.1.4Image containing an intersecting contrail (partly cloudy)

Figure6-4. Intersecting Contrail usinghaseHough

Top image shows the original channel 4 image. Bottom image shows the detected contrails



47

Thistest image has two intersecting contrails. The algorithm detects both cofitede
detects a hidden third one. It correctly classifies each of the contrails as a thstine The fact
that two contrailsntersect does not affect the behaviothaf algorithm. It succeeds in classifying
them as different contrail¥he blue contrail is seen to start spreading laterally in the original
image. The algorithm detects it nonethel&ane of these contrails are shown as a collection of
lines rather tha just one. This helps in detecting curved contrails as well. Minor curvature is

depcted using short lines. Tablexshows the coordinates of the contrails.

Table6-3. Contrail coordinate®or image contaiing intersecting contrails usiithaseHough

Start End

Longitude Latitude Longitude Latitude
Green Contrail | 135°2° 56°18" 135°38" 55°36"
Blue Contrail 134°29° 56°30° 134°53° 55°42°
Red Contrail 134°32" 55°47 134°47 55°35"




6.1.5Image containing multiple contrails (cloudy)

Figure 65 a. Qiginal channel 4 imagenultiple contrails
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Figure6-5 b. Multiple Contraik using Phasélough

Top image shows the original channel 4 image. Bottom image shows the detected
contrails

This test image has multiple contrails, some of taeenembedded withiclouds. The
contrails vary in size and orientation (vertical and horizontal). The algop#forms well in this
case alsoAs seen in igure6-5, various contrails are detected amassified as the sancentrail.
The presence of clouds does not affect the output, except in making the contrails discoimected.
spiteof the fact that some of tle@ntrails are disconnected due to the presence of clouds, the
algorithm correctly identifies parts afcontrail as the same contrais showrby thecolor

coding. The black ellipse in the image shows regions not classified as contrails.
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Section 6.2 Spatial Derivatives Method:

In this section, the second methapplying bidirectional spatial derivatives is used to
detect the contrails. The saffioeir test images as the previous section are Udedesulting

images and the contrail coordinates that are output are shown below.

6.2.1Image containing no contrail

Figure6-6. No Contrail using Derivative Method

(Clockwise from todeft) The original image (charel 4), Channel % difference image, Final

output, intermediate image showing no contrail candidates.
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The test image is partly cloudy, but contains no contrails. The initial spatial derivative
and contrail search method, shows a blank output. No cocdradidates exist and the final

output image also shows no existence of contrails, as expected.

6.2.2Image containing one contrail (partly cloudy)
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Figure6-7. One contrail using derivative method

Top image shows the partly cloudy channel 4 image. The center image shows the
detected contrail (in blue). The red points are the end points of the contrail. The bottom image

shows a zoomeith part of the detected contrail.

This test image is partly cloyéind contains a single contrail. The contrail is disjoint, and
has a few gaps in between. The algorithm detects the contrail and also classifies the disjoint
contrail as the same contrail and displays the end points. The coordinates of the contsail are al
calculated in degreemd minutes, as shown irable 64. Figure 67 also shows a zooméd
view of a part of the output imagk is seen that this method does not produce straight lines and

follows the exact path of the contrail.
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Table6-4. Contrail coordinates for image containiogecontrail usingDerivative method

Start End
Longitude Latitude Longitude Latitude
Green Contrail | 135°34° 56°54" 134°6° 55°27°

6.2.3Image containing morethan one contrail (cloudy)

Figure6-8. More than one contrail using derivative method
Top image shows the original channel 4 image. The bottom image shows the detected

contrails superimposed on the chankél difference image




































