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ABSTRACT 

Contrails are important in local to regional scale climate change. Various studies 

to date have found circumstantial evidence linking contrails with modifications in surface 

temperature (e.g., in the eastern U.S. and parts of Europe). It is clearly important to 

understand what a contrail is and where and when contrails occur to more definitively 

relate their occurrence to surface climate. The use of surface observations for developing 

contrail climatology is problematic, owing to the occurrence of intervening cloud layers.  

Accordingly, satellite images have been used to identify and map contrails, 

mostly from manual (subjective) interpretation of images, although some automated 

(quantitative) approaches have been developed but whose success is variable and 

dependent on a number of factors (Cirrus clouds, curved contrails, complexity of 

algorithm, etc.) Detecting contrails, therefore, is critical in understanding the atmospheric 

effects of aviation.  

This research involves the automatic detection of jet contrails in Advanced Very 

High Resolution Radiometer (AVHRR) imagery with a high degree of confidence and its 

segmentation written in MATLAB programming language. Contrails are characterized as 

thin, nearly straight linear features of higher intensity than the background.  Contrails 

possess another highly characteristic feature; they tend to create straight lines in satellite 

images. Due to the large volume of satellite imagery, selecting contrail images for study 

by hand is impractical and highly subject to human error. It is far better to have a system 

in place that will automatically evaluate an image to determine whether it contains 

contrails and where. This research develops and tests two new and easier quantitative 

approaches to find contrails in satellite image data, for a variety of atmospheric and cloud 

conditions (e.g., clear-skies, partly cloudy skies; cloudy skies).   
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Chapter 1 

 

Introduction  

Contrails are important in local to regional scale climate change. Various studies to date 

have found circumstantial evidence linking contrails with modifications in surface temperature 

(e.g., in the eastern U.S. and parts of Europe). It is clearly important to understand what a contrail 

is and where and when contrails occur to more definitively relate their occurrence to surface 

climate. The use of surface observations for developing contrail climatology is problematic, 

owing to the occurrence of intervening cloud layers. Accordingly, satellite images have been used 

to identify and map contrails, mostly from manual (subjective) interpretation of images, although 

some automated (quantitative) approaches have been developed but whose success is variable and 

dependent on a number of factors (cirrus clouds, non-linear contrails, complexity of algorithm, 

etc). Detecting contrails, therefore, is critical in understanding the atmospheric effects of aviation. 

This research develops and tests two new and easier quantitative approaches to find contrails in 

satellite image data, for a variety of atmospheric and cloud conditions (e.g., clear-skies, partly 

cloudy skies; cloudy skies). This is the research problem undertaken in this thesis. 

1.1 What is a Contrail? 

Contrails are thin line-shaped ice clouds that can develop in the wake of an aircraftôs 

engines. These artificial clouds are the visible sublimate of water vapor around combustion 

products, primarily soot (Figure 1-1, 1-2). Contrails were first observed during high-altitude 

flights in the 1920s, and the national air forces developed interest in not causing them because 

they enhanced the visibility of their planes. The formation of contrails underlies many physical 

processes, such as chemical reactions in the aircraft plume, aircraft wake dynamics, ice 
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microphysics, the state of the atmosphere within the flight corridors, atmospheric dispersion rates 

and engine technology.  

 

 
 

 

Figure 1-1. Ground based photograph of contrails of different ages. 

(NASA-The Contrail Education Project; http://science-edu.larc.nasa.gov/contrail-

edu/contrails-mixed.php) 

 

 
Figure 1-2. Ground based photograph of contrail cirrus cloud 
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1.2 Why scientifically study Contrails? 

Contrails can add a significant amount of high-level thin cloudiness over high-traffic 

areas (Seaver and Lee,1987), and this additional cirrostratus may lead to higher surface 

temperatures on a diurnally-averaged basis (Liou, 1986) as the overnight minimum temperature is 

raised higher than the daytime maximum temperature is reduced (i.e., the diurnal temperature 

rangeðDTR-- is suppressed). Thus, contrails may influence recent climate change in regions 

characterized by considerable jet air traffic. 

Depending on the ambient atmospheric conditions, contrails can either evaporate shortly 

after formation, or persist for time periods of up to several hours. These persisting contrails 

spread laterally and thin vertically, enhancing their potential effects on surface climate.  On 

average, the backscattering of terrestrial radiation by the contrailôs ice crystals is more effective 

than the reflection of solar radiation, creating a net positive radiative forcing. First concerns 

regarding air-traffic effects on the climate were made by Appleman (1953). The announced 

introduction of a large fleet of supersonic transport aircraft in the 1970s, which never eventuated, 

initiated first studies of the effect of air-traffic on cirrus formation and clouds. Later, this topic 

was picked up by Changnon (1981). This author concluded that an increase in cloudiness and 

decrease in sunshine duration for the Midwest U.S.A. provided circumstantial evidence for a jet-

induced cirrus influence. 

The potential effects of contrails on the climate subsequently were discussed by 

Schumann and Wendling (1990),  who identified that the infrared heating or cooling rate 

magnitude within the cirrus clouds was typically a factor of two larger than that induced by water 

vapor in a 5 km thick layer near the tropopause.  
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The emissions from subsonic aircraft, which fly at an altitude between 8 and 13 km, and 

include NOx , CO2 , CO, HC, soot, and water vapor , lead to contrail and aerosol formation. 

Pitchford et al.  (1991) argue that if the upper tropospheric and lower stratospheric (UT/LS) 

buildup of exhaust emissions continues to increase, photochemical reactions and surface changes 

of these particles could enhance the cloud condensation nuclei (CCN) formation. This would lead 

to enhanced opacity of cirrus clouds formed from such conditions. However, Pitchford et al. do 

not go as far in their statements regarding the contrailsô potential to lead to increased 

precipitation. 

Sausen et al. (1998) presented first estimates regarding global contrail coverage (the 

global potential contrail coverage was calculated to be 16%.),  and these estimates were included 

in an Intergovernmental Panel on Climate Change ( IPCC) special report on aviation impacts on 

the atmosphere. They concluded that the global and annual mean potential contrail coverage was 

16% for the layer between 100 and 500hPa. The maximum cover was about 5% over Eastern 

USA, with the annual global mean value being 0.09%. Since then, a relatively large number of 

studies have been performed to understand formation mechanisms of contrails and their potential 

impact on the global climate (Penner et al., 1999). 

. 
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Figure 1-3. Departure of average diurnal temperature ranges from the normal values for the 

periods 8-11, 11-14 and 14-17 September 2001. 

(adopted from Travis et al., 2002). 

 

Following the tragic events of 11 September 2001, the airspace over the USA was closed 

to commercial and personal air-traffic for about 72 hours, resulting in the absence of contrails 

over the USA. Although contrails likely  have a heating effect on the atmosphere on a global 

scale, as noted earlier they lower near-surface temperatures during daytime and  raise nighttime 

temperatures (Ponater et al., 2002), thereby reducing  the average  DTR. Travis et al. (2002) 

determined the U.S.-average DTR for the periods 8-11, 11-14 and 14-17 September 2001, and 

calculated its departure from the climatological values for 1971-2000 (Figure 1-3) The increase in 

the average departure of DTR during 11-14 September 2001 is larger than at any comparable time 

in the previous 30 years, and suggested the influence of contrails. Subsequently, Travis et al. 
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(2004) determined the regional dependence of the DTR anomalies for the 11-14 September 2001 

aviation grounding, and showed that these were greatest in areas typically seeing high frequencies 

of contrails.  Model simulations were carried out by Minnis et al. (2003) to explain the 

temperature anomaly caused by coverage of linear contrails and also taking into account their 

lateral spreading. The surface-based cloud data consist of quality-controlled surface synoptic 

weather reports from land stations and ships. Minnis suggested to improve the calculation for 

more accurate results. Better measurements of UTH, cloud distributions, and contrail properties, 

and more precise specification of flight paths and improved parameterizations of cirrus and 

contrail formation in GCMs were needed to more rigorously determine the contrail climate 

impacts. Minnisô study indicated that contrails already have substantial regional effects where air 

traffic is heavy. As air travel continues growing in other areas, the impact may become globally 

significant. 

Results of general circulation model simulations suggest that the annually and globally 

averaged total contrail cover and the associated radiative forcing should approximately quadruple 

during the next six decades due to the increased air-traffic, especially in Asia (Marquart et al, 

2002). If these predictions are realized, contrail impacts on climate will increase from being a 

largely regional to hemispheric-scale phenomenon. 

The radiation and energy budgets of the earth-atmosphere system are in balance between 

the incoming solar energy (insolation) and the outgoing longwave radiation. The insolation is 

attenuated by clouds, aerosols, and other particles in the atmosphere, and the outgoing longwave 

radiation is absorbed and reemitted by gases and these particulates. With increasing trace gas 

emissions from anthropogenic sources, especially CO2 and CH4, there is a growing concern 

about greenhouse warming and possible climate change implications. As contrails become a 

larger-scale phenomenon in the coming decades, their influence is likely to exacerbate the 

warming due to greenhouse gases. 
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Lee et al (2009) show that the radiative forcing of surface temperature is about 30 times 

more sensitive to aircraft emissions of nitrous oxides than to surface emissions alone.  As an 

important subset of thin cirrus clouds, jet contrails are considered to enhance the greenhouse 

effect due to their semitransparent nature. 

It is clear that the study of jet contrails is of major importance to a wide range of 

disciplines, from military planners to climate researchers.  Contrails act as tracers that may serve 

as potential intelligence to military planners. In terms of atmospheric effects, climate researchers 

are interested in contrail radiative effects and their role in trends of cloud cover (Carleton et al. 

2013) and near-surface temperature.  

Contrails are clearly a very important phenomenon. It is critical that their occurrence 

(when and where) be known and determined accurately.  Space-based (i.e., satellite) detection of 

contrails is considered more reliable than surface-based observations, owing to the spatially 

inhomogeneous observing network of the latter, and the impact of intervening layers of cloud that 

biases contrail detection towards partly cloudy or clear skies. 
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Chapter 2 

 

Background 

2.1 Detection and Analysis of Contrails 

In addition to their climatic significance, contrails may mask important landscape 

information in a satellite image. The optically thin character of persisting contrails complicates 

their detection, yet they may still influence the satellite-based retrieval of upwelling longwave 

radiation, thereby biasing determination of surface temperature.   Also, it is difficult to detect a 

single contrail in a satellite image because it is thin and the associated grey-scale pixel values are 

similar to the background.   Moreover, as a contrail ages, the change in shape due to the 

influences of wind and atmospheric dissipation, further complicates its detection in satellite data. 

Early work on contrail detection mostly involved their  visual  identification from pattern 

recognition of line-shaped, cold cloud signatures in satellite thermal infrared (TIR) images. For 

example, DeGrand et al. (1991) applied hardcopy images of high-resolution Defense 

Meteorological Satellite Program (DMSP) data to identify contrails. Their study built upon that of 

Carleton and Lamb (1986), which utilized DMSP-OLS with a spatial resolution of 600 x 600 m, 

to detect contrails manually. Bakan (1994) used a similar visual inspection method for AVHRR 

images to  map contrail coverage over Europe and the North Atlantic. Degrand et al. (2000) 

applied the manually- interpreted contrails on 3-yearsô (1977-79) DMSP TIR satellite images 

over the United States to develop a spatial climatology of contrail occurrence. Travis (1996) 

determined statistics on the width and length of contrails using visual interpretation. He 

determined an average width of 2.9 km and an average length of 137km. These satellite-image 

manual inspection methods for contrails, while superior to surface-based observations, are 
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subjective, time consuming, and mostly consider contrails in partly cloudy or otherwise clear-sky 

conditions. 

To overcome the limitations of manual detection methods for contrails, researchers 

attempted to develop automatic (computer-based) algorithms to detect contrails in satellite image 

data. Leeôs (1989) method, applied to AVHRR images, used the TIR brightness temperature 

difference in channels 4 and 5.  Building upon this radiance differencing method, Engelstad et al 

(1992) developed pattern recognition algorithm to detect linear (i.e., relatively young) contrails. 

The algorithms made use of ridge detection and Hough transform. Ridge detection differentiates 

ridge pixel of the contrail from background pixels, and Hough transform is applied to detect 

straight lines among these ridge pixels. The Engelstad et al. algorithms gave some inaccurate 

results because of the spurious contrail detection arising from linear streaks of natural cirrus 

which are also often associated. Forkert et al. (1993) used a similar approach, but their method 

could sometimes misinterpret linear features such as coastlines, valleys and cloud edges as 

contrails. Weiss (1998) improved the ridge detection and Hough transform algorithms with the 

help of width-related searches, to create contrail-enhanced images that aid in the detection 

process. When contrails are young, they are also quite narrow, thus the Weiss (1998) searching 

method proved to be efficient and largely overcame the false detection problems. The author, 

however, did not attempt the method on aged and wider contrails.  

More recently, neural networks have been applied to contrail detection by Meinert et al. 

(1994, 1997). In information technology, a neural network is a system of programs and data 

structures that approximates the operation of the human brain. A neural network usually involves 

a large number of processors operating in parallel, each with its own small sphere of knowledge 

and access to data in its local memory. Typically, a neural network is initially "trained" or fed 

large amounts of data and rules about data. A program can then tell the network how to behave in 

response to an external stimulus or can initiate activity on its own (within the limits of its access 
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to the external world). In making determinations, neural networks use several principles, 

including gradient-based training, fuzzy logic, genetic algorithms, and Bayesian methods. 

Meinert et al (1994) trained a neural network to classify contrails by use of the AVHRR thermal 

split-window channels. However, the application of this method was too time and effort intensive 

to acquire suitable samples and involved substantial amounts of data. Moreover, the neural 

network model required a large computational time for acceptable detection results. To obtain 

good results a huge set of well-chosen, pixel-precise training samples was needed. These had to 

represent the full variability of contrail occurrences in AVHRR data to be operational. 

Furthermore, good contrail detection needs a large number of input neurons resulting in long 

training cycles. Finally, the amount of the needed training was estimated to be beyond the limits 

of feasibility (Meinert et al. 1997).  

Mannstein et al. (1999) introduced a contrail detection method to detect linear (i.e., 

young) contrail features by using scene-invariant threshold and binary masks. Fixed thresholds 

could be used, because the images were normalized. Their algorithm was capable of the fast 

operational detection of persistent and roughly linearly-shaped contrails from the AVHRR 

channels 4 and 5. The scheme was relatively robust to misdetections of other linear structures in 

thermal images such as coastlines, mountain ridges and valleys, or sensor line failures. However, 

a drawback of this method was that the masks were sometimes insufficient to remove all non-

contrail edge features, leading to underestimation of contrail occurrence. Recent studies have 

incorporated Mannstein et al.ôs automated algorithm to detect contrails and develop regional 

short-period climatology of contrails. For example, Palikonda et al. (2001) identified contrails 

over various regions of the United States in AVHRR and MODIS images using this approach 

indicating a maximum value of 2.0% over southeastern states, New Mexico, west Texas, and 

Alberta, Canada with minima or 0.2% over western Colorado and the Atlantic Ocean. 

http://whatis.techtarget.com/definition/fuzzy-logic
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Meyer et al. (2007) detected contrails over Thailand and Japan using 400 NOAA-14 

satellite scenes from four months of the year 1998. Hetzheim (2007) proposed a complex 

approach to detect contrails using mathematical methods of texture or contrail stochastic 

behaviors. The solutions obtained were given as sequential procedures using grey values of 

neighboring pixels, though it was very time consuming. Although these mathematical methods 

may better distinguish contrails from the surface and lower cloud background of the satellite 

images, they are very time consuming with respect to the creation of samples to ñtrainò the 

algorithm and the time it takes to run them on a computer. More recently, Zhang et al (2012) 

proposed an object-based classification method, which tries to overcome the limitations of the 

pixel-based methods by combining both spatial and spectral information into the classification 

process. The method takes advantage of using other supplemental information besides spectral 

brightness to differentiate contrail pixels from non-contrail pixels. However, the classifier used in 

this paper is a fuzzy nearest neighbor classifier, which looks like a ñblack-boxò. Given the 

number of the dimensions in the feature space, though the feature space could be optimized, users 

do not know the mechanism that differentiates an object into a certain class; one cannot control 

the classification process. In addition, the choices of the training samples usually have to be 

repeated many times to be decided. This restricts the automation of contrail detection using the 

object-based method. It is also difficult to prevent overfitting.  Overfitting occurs when 

a statistical model describes random error or noise instead of the underlying relationship. 

Overfitting generally occurs when a model is excessively complex, such as having too many 

parameters relative to the number of observations. A model which has been overfit will generally 

have poor predictive performance, as it can exaggerate minor fluctuations in the data. 

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Random_error
http://en.wikipedia.org/wiki/Predictive_inference
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2.2 Thesis Overview 

 Accordingly, in this research I develop and test two pixel-based methods to detect 

contrails from satellite images. The advantage of these methods is that they offer simple, quick 

and efficient ways to detect contrails, to obtain their coordinates in latitude-longitude format, and 

identify characteristics of the contrail, including but not restricted to its width, length, and age. 

The first method makes use of phase congruency to detect edges and Hough transform to 

detect straight line contrails. Curved-contrails can be detected, on shorter (less than 10 pixels) 

contrails. This is an improvement over previous Hough transform based methods. The second 

method makes use of spatial derivatives along both x and y axes to identify possible contrail 

candidates and then use binary morphological operations to detect contrails. Using spatial 

derivatives eliminates most cirrus clouds and non-contrail background details.   
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Chapter 3 

 

Data Type and Format 

3.1 Data Type and Format: NOAA Advanced Very High Resolution Radiometer (AVHRR) 

images 

The AVHRR is a multi-spectral radiation-detection imager that can be used for remotely 

determining cloud cover and the surface temperature. The term surface can mean the surface of 

the Earth, the upper surfaces of clouds, or the surface of a body of water. This scanning 

radiometer uses 6 detectors that collect bands of radiation wavelengths ranging from the visible to 

the thermal infrared, as shown below (Table3-1). 

 

Table 3-1. AVHRR/3 Channel Characteristics NOAA Satellite Information System Website 

(http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html) 

 

AVHRR/3 Channel Characteristics 

Channel 

Number 

Resolution at 

Nadir 

Wavelength 

(um) 
Typical Use 

1 1.09 km 0.58 - 0.68 Daytime cloud and surface mapping 

2 1.09 km 0.725 - 1.00 Land-water boundaries 

3A 1.09 km 1.58 - 1.64 Snow and ice detection 

3B 1.09 km 3.55 - 3.93 Night cloud mapping, sea surface temperature 

4 1.09 km 10.30 - 11.30 Night cloud mapping, sea surface temperature 

5 1.09 km 11.50 - 12.50 Sea surface temperature 
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Although AVHRR/3 is a six channel radiometer, only five channels are transmitted to the ground 

at any given time. AVHRR images have 1.1km nadir point pixel resolution, and are the primary 

input used for contrail detection in this study.  I obtained the data from the online Comprehensive 

Large Array-Data Stewardship System (CLASS) of the National Oceanic and Atmospheric 

Administration (NOAA) (www.nsof.class.noaa.gov). To ensure maximum resolution, only the 

High Resolution Picture Transmission (HRPT) data were obtained from within the broader 

AVHRR archive.  

3.2 Image Pre-processing 

The AVHRR/3 provides three solar channels; in the visible and near infrared region; and 

three thermal infrared channels.  Jet contrails are the most difficult to detect in band 3 of the 

thermal infrared band). Due to smaller crystal sizes, especially young contrails (Gayet et al. 1996) 

tend to show higher transmissivity in the AVHRR-channel 4 (10.3± 11.3 mm) than in channel 5 

(11.5± 12.5 mm), compared to natural cirrus (Betancor-Gothe and Grassl 1993). This often 

causes contrails to appear brighter on channel 4 - channel 5 temperature difference images. The 

contrail features become indistinct in the visible red band (band one) and near-infrared band 

(band two), having similar radiance characteristics to the background in these two bands. 

Contrails exhibit the most difference in radiance characteristics from the background in thermal 

infrared bands four and five.  

In the AVHRR/3 an instantaneous field of view (1.3 milliradians by 1.3 milliradians) is 

scanned across the earth from one horizon to the other by continuous 360 degree rotation of a flat 

scanning mirror. The scan lines are perpendicular to the spacecraft orbit track (i.e., image swath), 

and the speed of rotation of the scan mirror is selected so that adjacent scan lines are contiguous 

at the subsatellite (nadir) position. Complete strip maps of the earth from pole to pole are thus 
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obtained as the spacecraft travels at an altitude of approximately 833 km (450 n. miles). A total of 

2048 samples are obtained per channel per Earth scan, each of which spans an angle of ±55.4 

degrees from the nadir (subpoint view). The six spectral channels of the AVHRR/3 are registered 

so that they all measure energy simultaneously (i.e., from the same spot on the earth at the same 

time). All six channels are calibrated so that the signal amplitude in each channel is a measure of 

the scene radiance. 

3.3 AVHRR images and subsamples used 

AVHRR images from April and October 2007 have been used. The list of images is 

shown in Table 3-2. The date/time details and the extent of each image in longitude-latitude 

format is also shown in the Table. Each of these images are sampled into smaller sub-images. 

These sub-images are chosen such that they contain visible contrails, ranging from one to 

multiple contrails in each sample. (Source: NOAA KLM User's Guide. 

(http://www.ncdc.noaa.gov/oa/podguide/ncdc/docs/klm/html/c3/sec3-1.htm)) 
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Table 3-2. List of the AVHRR images 

 

ID Date and Time Extent Scenario Description 

8484 04/01/2007 
S : 23 hours 20 mins 
E : 23 hours 10 mins 

53° 52´ N - 120° 7´ W to 
21° 41´ N - 90° 34´ W 
 

3 subsamples, each 
with  one long contrail 

4040 04/05/2007 
S : 16 hours 07 mins 
E : 16 hours 19 mins 

55° 30´ N - 110° 3´ W to 
21° 44´ N - 76° 40´ W 
 

6 subsamples, all 
containing many short 
contrails 

8585 04/14/2007 
S : 09 hours 20 mins 
E : 09 hours 30 mins 

56° 32´ N - 135° 41´ W to 
21° 04´ N - 103° 45´ W 
 

1 subsample, 
interconnected 
contrail 

3939 04/19/2007 
S : 15 hours 45 mins 
E : 15 hours 56 mins 

51° 29´ N - 98° 21´ W to 
21° 13´ N - 70° 54´ W 
 

3 subsamples 

5454 04/20/2007 
S : 17 hours 00 mins 
E : 17 hours 11 mins 

56° 52´ N - 119° 40´ W to 
24° 52´ N - 89° 05´ W 
 

2 subsamples, each 
with many contrails 

8282 10/15/2007 
S : 12 hours 03 mins 
E : 12 hours 13 mins 

53° 32´ N - 118° 16´ W to 
25° 49´ N - 89° 13´ W 
 

4 subsamples, each 
with many contrails 

2424 10/18/2007 
S : 10 hours 50 mins 
E : 11 hours 04 mins 

50° 35´ N - 103° 26´ W to 
14° 42´ N - 74° 45´ W 
 

4 subsamples, each 
with many contrails 
(partly cloudy) 

4444 10/26/2007 
S : 17 hours 39 mins 
E : 17 hours 51 mins 

53° 00´ N - 132° 21´ W to 
15° 03´ N - 103° 18´ W 
 

4 subsamples, each 
with many contrails 

 

S ï Start Time, E ï End Time 

 These samples were initially used to test the different cases (e.g., clear-skies, partly 

cloudy skies; cloudy skies) and various contrail frequencies (no contrail, one contrail, multiple 

contrails). Various parameters and thresholds were set based on the outputs from these test cases. 

The final algorithm was later tested on all 30 samples, one sample per day for the month of April 

2007. Each image of size roughly 3500 x 2000 pixels were divided into 3360- 256x256 and    

840- 512x512 size images and were tested for different cases (Section 6.3) 
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Figure 3-1. Longitude ï Latitude coordinates of part of North America. 

 

The samples used in the thesis cover most parts of North America, mostly USA. The longitude-

latitude details shown (Figure 3-1) indicate the areas covered by each sample. 
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Chapter 4 

 

Phase ï Hough Method 

First Method of contrail id entification and classification: Phase congruency and Hough 

transform 

This chapter discusses the first method I used for contrail detection. In Section 4.1 the 

phase congruency method to detect edges is discussed. Section 4.2 discusses binary 

morphological operations used to clean out the image. This includes removing noise, small non-

linear clouds, etc. Next, Section 4.3 discusses the Hough transform which is used to detect the 

linear contrails. Last, Section 4.4 explains the method to identify the endpoint of each contrail and 

retrieve its coordinates in latitude-longitude format, as well as ways to detect contrail length and 

width. 

Section 4.1: Phase Congruency edge detection 

Phase congruency is an illumination and contrast invariant measure of feature 

significance. Unlike gradient- based feature detectors, which can only detect step features having 

a phase angle of 0 or 180 degrees, phase congruency correctly detects features over all phase 

angles. Phase congruency reflects the behavior of the image in the frequency domain. Phase 

congruency is a dimensionless quantity that is invariant to changes in image brightness or 

contrast; hence, it provides an absolute measure of the significance of feature points, thus 

allowing the use of universal threshold values that can be applied over wide classes of images.  It 

has been noted that edge-like features have many of their frequency components in the same 

phase (Kovesi 1991, 1999). Hence its significance in satellite images, as it can be used to detect 

edges irrespective of the background. 

http://en.wikipedia.org/wiki/Frequency_domain
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Phase congruency provides a way of identifying features within images. By combining 

phase congruency information over multiple orientations into a covariance matrix, and calculating 

the minimum and maximum moments a highly localized operator that can be used to identify 

both edges and corners in a contrast invariant way is produced (Kovesi 1999). The contrast 

invariance facilitates the tracking of features over extended image sequences under varying 

lighting conditions. An additional advantage of the operator is that the phase congruency corner 

map is a strict subset of the phase congruency edge map. This simplifies the integration of data 

computed from edge and corner information. 

Phase congruency is derived by frequency domain considerations operating on the 

considerations of phase (i.e. time). It is illustrated detecting some 1D features in Figure 4-1, 

where the features are the solid lines: a (noisy) step function in Figure 4-1(a), and a peak (or 

impulse) in Figure 4-1 (b). By Fourier transform analysis, any function is made up from the 

controlled addition of sine waves of differing frequencies. For the step function to occur (the solid 

line in Figure 4-1 a), the constituent frequencies (the dotted lines in Figure 4-1 a) must all change 

at the same time, so they add up to give the edge.  This means that to find the feature in which we 

are interested, we can determine points where events happen at the same time: this is phase 

congruency. By way of generalization, a triangle wave is made of peaks and troughs: phase 

congruency implies that the peaks and troughs of the constituent signals should coincide. 
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Figure 4-1. Low level feature extraction by phase congruency. 

 

The constituent sine waves plotted in Figure 4-1 (a) were derived by taking the Fourier 

transform of a step and then determining the sine waves according to their magnitude and phase. 

The Fourier transform in Equation 2.15 delivers the complex Fourier components Fp. These can 

be used to show the constituent signals xc by 

xc (t) = ȿὊὴȿὩ
 

              (4.1) 

where Fp  is again the magnitude of the ό  Fourier component and Fp  is the argument.  

The (dotted) frequencies displayed in Figure 4-1 are the first four odd components (the 

even components for this function are zero). The addition of these components is indeed the 

inverse Fourier transform which reconstructs the step feature. The advantages are that detection 

of congruency is invariant with local contrast: the sine waves still add up so the changes are still 

in the same place, even if the magnitude of the step edge is much smaller. In images, this implies 

that we can change the contrast and still detect edges. 
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Essentially, we seek to determine features by detection of points at which Fourier 

components are maximally in phase. By extension of the Fourier reconstruction functions in 

Equation 4.1, Morrone and Owens (1987) defined a measure of phase congruency PC as 

PC (x) = άὥὼ Ȣ  
Вȿ ȿ  

Вȿ ȿ
          (4.2) 

where ű (x) represents the local phase of the component Fp  at position x.  

 Essentially, this computes the ratio of the sum of projections onto a vector (the sum in the 

numerator) to the total vector length (the sum in the denominator). The value of ű (x) that 

maximizes this equation is the amplitude weighted mean local phase angle of all the Fourier 

terms at the point being considered. In Figure 4-2 the resulting vector is made up of four 

components, illustrating the projection of the second onto the resulting vector. Clearly, the value 

of PC ranges from 0 to 1, the maximum occurring when all elements point along the resulting 

vector. As such, the resulting phase congruency is a dimensionless normalized measure which is 

thresholded for image analysis. 

 

Figure 4-2. Summation in phase congruency 
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 In this way, we have calculated the phase congruency for the step function in Figure       

4-3(a), which is shown in Figure 4-3(b). Here, the position of the step is at time step 40; this is the 

position of the peak in phase congruency, as required. Note that the noise can be seen to affect the 

result, although the phase congruency is largest at the right place. 

 

 

Figure 4-3. One ïdimensional phase congruency 

 

One interpretation of the measure is that since for small angles, cos ɗ = 1 ī ɗĮ, then 

Equation 4.2 expresses the ratio of the magnitudes weighted by the variance of the difference to 

the summed magnitude of the components. There is certainly difficulty with this measure, apart 

from difficulty in implementation: it is sensitive to noise, as is any phase measure; it is not 

conditioned by the magnitude of a response (small responses are not discounted); and it is not 

well localized (the measure varies with the cosine of the difference in phase, not with the 

difference itself, although it does avoid discontinuity problems with direct use of angles). In 

effect, the phase congruency is directly proportional to the local energy (Venkatesh and Owens, 

1989). 
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 For these reasons, Kovesi developed a wavelet-based measure which improved 

performance, while accommodating noise. In basic form, phase congruency can be determined by 

convolving a set of wavelet filters with an image, and calculating the difference between the 

average filter response and the individual filter responses. The response of a (1D) signal I to a set 

of wavelets at scale n is derived from the convolution of the cosine and sine wavelets denoted  

ὓ  and ὓ  respectively 

(Ὡ ὼȟέ ὼ) = (I(x) * ὓ  , I(x) * ὓ  )             (4.3) 

to deliver the even and odd components at the nth scale Ὡ ὼ and  έ ὼ , respectively. The 

amplitude of the transform result at this scale is the local energy  

 ὃ ὼ  Ὡ ὼό  έ ὼό               (4.4) 

At each point x we will have an array of vectors which correspond to each scale of the 

filter. Given that we are only interested in phase congruency that occurs over a wide range of 

frequencies (rather than just at a couple of scales), the set of wavelet filters needs to be designed 

so that adjacent components overlap. By summing the even and odd components we obtain 

F (x) = В Ὡ ὼ 

H (x) = В έ ὼ                 (4.5) 

and a measure of the total energy A as 

В ὃ ὼ  В Ὡ ὼό  έ ὼό               (4.6) 

Then a measure of phase congruency is 

PC (x) = 
ό ό

В  
              (4.7) 

where the addition of a small factor Ů in the denominator avoids division by zero and any 

potential result when values of the numerator are very small.  
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 This gives a measure of phase congruency, which is essentially a measure of the local 

energy. Kovesi (1999) improved on this, improving on the response to noise, developing a 

measure which reflects the confidence that the signal is significant relative to the noise. Further, 

he considers in detail the frequency domain considerations, and its extension to two dimensions 

(Kovesi, 1999). For 2D (image) analysis, phase congruency can be determined by convolving a 

set of wavelet filters with an image, and calculating the difference between the average filter 

response and the individual filter responses. The filters are constructed in the frequency domain 

by using complementary spreading functions; the filters must be constructed in the Fourier 

domain because the log-Gabor function has a singularity at ɤ = 0. To construct a filter with 

appropriate properties, a filter is constructed in a manner similar to the Gabor wavelet, but here in 

the frequency domain and using different functions. Following Kovesiôs implementation, the first 

filter is a low-pass filter, here a Gaussian filter g with L different orientations 

  g (ʃ, —) = 
Ѝ

 Ὡ
ό

ό                (4.8) 

where ɗ is the orientation, „  controls the spread about that orientation and —  is the angle is 

local orientation focus.  

 The other spreading function is a band-pass filter, here a log-Gabor filter lg with M 

different scales. 

   lg (ɤ, ‫ ) = 

π                                    ‫ π

Ѝ
 Ὡ
 

ό

ό     ‫ π
         (4.9) 

where ɤ is the scale, ɓ controls bandwidth at that scale and ‫   is the centre frequency at that 

scale. The combination of these functions provides a 2D filter l2Dg which can act at different 

scales and orientations. 
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  l2Dg (ɤ, ‫ ȟ ɗ,—) = g (ɗ,—)  lg (ɤ,‫ )          (4.10) 

One measure of phase congruency based on the convolution of this filter with the image 

P is derived by inverse Fourier transformation of the filter l2Dg (to yield a spatial domain 

operator) which is convolved as 

Ὓ ά ȟ  Ὂ ὰςὈὫ ‫ȟ‫ ȟ—ȟ— ȟ  zὖȟ       (4.11) 

to deliver the convolution result S at the mth scale. The measure of phase congruency over the M 

scales is then 

ὖὅȟ  
В ȟ

В ȟ  
           (4.12) 

where the addition of a small factor Ů numerator again avoids division by zero and any 

potential result when values of S are very small. This gives a measure of phase congruency. As 

described above, local frequency information is calculated by convolving the image with banks of 

quadrature pairs of log-Gabor wavelets. Local frequency information is obtained by applying 

quadrature pairs of log-Gabor filters typically over six orientations and 3-4 scales. For each point 

in the signal the responses from the quadrature pairs of filters at different scales will form 

response vectors that encode phase and amplitude. Phase Congruency values are hence calculated 

for every orientation. 

At each point in the image compute the Phase Congruency covariance matrix: 

G = 
Вὖὅ Вὖὅὖὅ

Вὖὅὖὅ Вὖὅ
            (4.13) 

where ὖὅ and ὖὅ are the x and y components of Phase Congruency for each orientation. The 

minimum and maximum singular values correspond to the minimum and maximum moments of 

Phase Congruency. The magnitude of the maximum moment, M, gives an indication of the 

significance of the feature.  A large maximum moment, m, indicates  that the feature has a strong 
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2D component and can be classified as an edge. The principal axis, about which the moment is 

minimized, provides information about the orientation of the feature. This Phase congruency 

method is accomplished using the phasecong.m, a Matlab function available on Kovesiôs 

Research website. (http://www.csse.uwa.edu.au/~pk/Research/research.html) 

The above mentioned Matlab function produces an edge image, as shown in Figure 4-4.  

 

 

Figure 4-4.Phase Congruency output. 

 Channel 4-5 difference image (top). Phase congruency edge image (bottom) 
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Figure 4-4 shows part of a channel 4 ï channel 5 difference image on the top. The image 

on the bottom shows the possible contrail candidates, after applying the phase congruency edge 

detection algorithm.  The possible candidates are shown in a brighter color while the background 

is black. 

Section 4.2: Binary morphological operations 

The edge image shown above contains possible contrails but also non-linear cirrus clouds 

and other non-contrails. When natural cirrus is present, these wispy features often contaminate 

the ridge image ; the artificially produced contrails are much more likely to form straight lines. 

Contrails are defined by their linearity, i.e., the contrails being straight lines. Therefore, this 

method detects straight lines in the edge image. The computationally efficient Hough transform 

(Hough 1962) is used for this purpose.  

 Prior to using Hough transform, binary morphological operations (bridge, spur and 

skeletonization - see below) are used to clean up the image. This means making use of these 

operations to remove noisy pixels, regions of small size (less than 10 pixels), and deformations, 

which could be falsely identified as contrail candidates by the phase congruency method. This 

can aid in eliminating false positives (i.e. cold linear features that are not contrails, such as small 

cirrus clouds). Because contrails are longer than about 10-15 pixels (each pixel in the image is 

1.1km²), we use this criterion to find the ñmajor axis lengthò of the candidates. The major axis 

length is a scalar specifying the length (in pixels) of the major axis of the ellipse that has the same 

normalized second central moments as the region (Figure 4-5). 
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Figure 4-5. Major axis length 

(Source: Matlab documentation) 

All potential contrail candidates with an axis length greater than the specified threshold 

are retained. Next, binary morphological operations to de-noise the image are used. The óbridgeô 

operator is used first. This operator bridges unconnected pixels; that is, it sets 0-valued pixels to 1 

if they have two nonzero neighbors that are not connected. This operator connects candidates 

which are closely spaced, but have been separated due to errors in the image. This can include 

sensor problems, transmission issues in obtaining the AVHRR image, to errors in calculating 

phase congruency. For example: 

 

Figure 4-6. Bridge Operator 

(Source : Matlab documentation) 

The next operation removes the spurious pixels (i.e., removes small irregularities). For 

example: 

Major Axis Length 
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Figure 4-7. Spurious pixel removal 

(Source : Matlab documentation) 

Next, the image skeleton is extracted. The operation removes pixels on the boundaries of 

objects but does not allow objects to break apart. The remaining pixels make up the image 

skeleton. The skeleton (or topological skeleton) of a shape is a thin version of that shape that 

is equidistant to its boundaries. The skeleton usually emphasizes geometrical and topological 

properties of the shape, such as its connectivity, topology,  length, direction and width. Together 

with the distance of its points to the shape boundary, the skeleton can also serve as 

a representation of the shape (i.e., they contain all the information necessary to reconstruct the 

shape). For example (Figure 4-8), the thin red line represents the skeleton of the white óPENN 

STATEô.. 

. 

 

Figure 4-8. Example of skeletonization 

http://en.wikipedia.org/wiki/Shape
http://en.wikipedia.org/wiki/Equidistant
http://en.wikipedia.org/wiki/Boundary_(topology)
http://en.wikipedia.org/wiki/Connectedness
http://en.wikipedia.org/wiki/Topology
http://en.wikipedia.org/wiki/Length
http://en.wikipedia.org/wiki/Direction_(geometry)
http://en.wikipedia.org/wiki/Width
http://en.wikipedia.org/w/index.php?title=Image_representation&action=edit&redlink=1
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Section 4.3: Line detection using Hough transform 

The simplest case of Hough transform for detecting straight lines is the linear transform 

for detecting straight lines. In the image space, the straight line can be described 

as y = mx + b where the parameter m is the slope of the line, and b is the intercept (y-intercept). 

This is called the slope-intercept model of a straight line. The Hough transform considers the 

characteristics of the straight line not as discrete image points (x1, y1), (x2, y2), etc., but in terms 

of its parameters according to the slope-intercept model; i.e., the slope parameter m and the 

intercept parameter b. In general, the straight line y = mx + b can be represented as a point (b, m) 

in the parameter space. However, vertical lines pose a problem. They are more naturally 

described as x = a and would give rise to unbounded values of the slope parameter m. Thus, for 

computational reasons, Duda and Hart (1971) proposed the use of a different pair of parameters, 

denoted ɭ and ɗ (theta), for the lines in the Hough transform. These two values, taken in 

conjunction, define a polar coordinate. 

 

Figure 4-9. ɭ - ɗ line parametrization 

The parameter ɭ represents the algebraic distance between the line and the origin, 

while ɗ is the angle of the vector from the origin to this closest point. Using this parameterization, 

the equation of the line can be written as 

http://en.wikipedia.org/wiki/Polar_coordinate
http://en.wikipedia.org/wiki/Origin_(mathematics)
http://en.wikipedia.org/wiki/File:R_theta_line.GIF
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ώ  ὼ            (4.14) 

which can be rearranged to  ɭ ØÃÏÓʃ Ù ÓÉÎʃ   (Shapiro and Stockman, 2001). 

The range of theta is   -90Á < ɗ < 90Á. It is therefore possible to associate with each line of the 

image a pair (ɭ,ɗ). 

The linear Hough transform algorithm uses a two-dimensional array, called an accumulator, to 

detect the existence of a line described by  ɭ ØÃÏÓʃ Ù ÓÉÎʃ . The dimension of the 

accumulator equals the number of unknown parameters, i.e., two, considering quantized values of 

ɭ and ɗ in the pair (ɭ, ɗ). For each pixel at (x,y) and its neighborhood, the Hough transform 

algorithm determines if there is enough evidence of a straight line at that pixel. If so, it will 

calculate the parameters (ɭ, ɗ) of that line, and then look for the accumulator's bin into which the 

parameters fall, and increment the value of that bin. By finding the bins with the highest values, 

typically by looking for local maxima in the accumulator space, the most likely lines can be 

extracted, and their geometric definitions approximated. (Shapiro and Stockman, 2001) The 

simplest way of finding these peaks is by applying some form of threshold, but other techniques 

may yield better results in different circumstances: determining which lines are found as well as 

how many.  Because the lines returned do not contain any length information, it is often necessary 

(next step) to find which parts of the image match up with which lines.  

The final result of the linear Hough transform is a two-dimensional array (matrix) similar 

to the accumulator; one dimension of this matrix is the quantized angle ɗ and the other dimension 

is the quantized distance r. Each element of the matrix has a value equal to the number of points 

or pixels that are positioned on the line represented by quantized parameters (ɭ, ɗ).  Thus, the 

element with the highest value indicates the straight line that is most represented in the input 

image.  

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Dimension
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Running the algorithm results in each (x , y )  being  transformed into a discretized (ɭ, 

ɗ) curve,  and the accumulator cells which lie along this curve are incremented. Resulting peaks 

in the accumulator array represent strong evidence that a corresponding straight line exists in the 

image. 

The advantage of the Hough transform technique is that it is unaffected by gaps in the 

line and relatively robust in the presence of noise. The in-built Matlab functions to detect the 

Hough transform and the lines are used. (Table 4-1) 

 

Table 4-1. In-built Matlab functions used to detect Hough transform and lines 

 (Source: Matlab Documentation, Matlab 2012a) 

 

 

 

Peaks in the accumulator array are chosen such that their values are 0.05 to 0.20 times the 

maximum value (based on trials I conducted optimum outputs). Lines within a 5 to 10 pixel 



33 

 

distance are automatically connected by the algorithm and lines less than a certain pixel length 

are deleted (20 to 30 pixels based on trials).  

Section 4.4: Identifying contrail endpoints and their coordinates in latitude-longitude 

format. 

The latitude-longitude (lat-long) details of the top-left and the bottom-right corner of the 

AVHRR image are also input into the algorithm to identify the (lat-long) details of each detected 

contrail. These values are first converted into longitude-per-x-pixel and latitude-per-y-pixel 

values, which are calculated by dividing the total longitude value by the number of y-axis pixels,  

and by dividing the total latitude value by the number of x-axis pixels. 

The Matlab function óhoughlinesô (Table 4-1) identifies the lines and their endpoints. 

Each (x,y) coordinate extracted from this function is multiplied with the longitude-per-x-pixel 

and latitude-per-y-pixel values, to yield longitude-latitude details of the endpoints of each 

detected contrail in degrees, minutes format. The function also assigns each line with a rho, theta 

value pair. Each such pair is compared to find if the detected contrails are part of the same longer 

contrail. 
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Chapter 5 

 

Derivative Method 

Second Method of contrail identification and classification: Using Derivatives and binary 

morphological processes 

This chapter discusses the second method of contrail detection. In section 5.1 the 

derivative of the image and the search mask used are discussed. Section 5.2 explains the different 

binary morphological operations used to remove the unwanted components of the image and clear 

the results. This includes removing noise, small non-linear clouds, etc. Section 5.3 explains the 

method to identify the endpoint of each contrail and to retrieve its coordinates in latitude-

longitude format, and ways to determine its length and width.  

Section 5.1: Spatial Derivative 

The first step in this method is to calculate differences between adjacent rows (Derivative 

along x-direction). In the thermal channel 4- channel 5 difference image, contrails have a higher 

pixel value than the background (Earthôs surface) producing a zero crossing. The top edge of the 

contrail produces a negative change. This is adjacent to or within very close proximity (1 or 2 

pixels), followed by the bottom edge of the contrail which produces a positive change (Figure    

5-1). 
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Figure 5-1. Representation of a zero-crossing 

The negative change is darker than the background and the positive change is brighter 

than the background. This image is further thresholded to remove small changes in the pixel 

brightness (The value of threshold varies from 800 to 1000). These small changes are assigned a 

value of zero. 

In the next step, all positive changes are assigned 1 and all negative changes are assigned 

-1, to facilitate creating a mask and searching for the contrail (Figure 5-2). The mask (Figure 5-3) 

is run across the entire image, centered on -1 and searches for a +1. The mask returns assigns the 

center pixel a value of +1 (+1 being TRUE and 0 being False in a binary logical image), if any of 

the shown positions contains a +1.  

 

Zero line 

Zero 

crossing 
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Figure 5-2. Zero crossings in the image 

 

 

 

Figure 5-3. Mask along y-direction 

 

This mask produces a BW (Black and White) image, with potential contrail candidates  

shown in white (Figure 5-4).  
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Figure 5-4. Potential contrail candidates after differentiation and running the mask. 

This mask, however, fails to detect vertical or close to vertical contrails, (ie, contrails 

oriented north-south on an image). To overcome this short-coming, the derivative along columns 

(x - direction) is taken and the following mask is used to detect potential contrail candidates. 

 

Figure 5-5. Mask along x-direction 

Figure 5-6 shows a Channel 4-5 difference image, and the potential  contrail candidates 

after using mask along x-direction and along y-direction. The image shows why the use of both 

masks is necessary in detecting all potential candidates. 
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Figure 5-6. Spatial derivatives in x and y directions. 

(Clockwise from top ï Channel 4-5 difference image ; after using mask along x-direction ; after 

using mask along y-direction) 

Section 5.2: Binary Morphological operations and contrail detection 

As in the previous section, binary operations are used to clean up the image and remove 

small (fewer  than 5 ) unwanted pixels. These operations--  bridge, spur and skeletonization  -- 

remove most non- contrail pixels from the candidate image. Next, all the connected components 

pixels are labeled (each with a different integer value) and the length (Major-axis length) of each 
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such region is calculated. Small regions (fewer  than 5-10 pixels) are discarded iteratively, 

increasing the threshold size from 10 to 30 pixels. This procedure is done for both the x-direction 

and y-direction masked image,  and the results are combined to give the final output. 

Section 5.3: Identifying contrail endpoints and their coordinates in latitude-longitude 

format. 

The latitude-longitude (lat-long) details od the detected contrails are calculated as 

explained before (Section 4.4). The endpoints of each detected contrail are calculated using an in-

built Matlab function (bwmorph) and each (x,y) coordinate is multiplied with the longitude-per-x-

pixel and latitude-per-y-pixel values, to yield longitude-latitude details of the endpoints of each 

detected contrail in degrees, minutes format. Their slopes are then calculated and compared to 

identify same but disconnected contrails. 
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Chapter 6 

 

Results 

 

 

The previous sections described the two methods used to identify contrails, viz. the first 

method, consisting of the Phase congruency and Hough transform (Phase-Hough), and the second 

consisting of spatial derivatives. This section describes the results of applying these methods on 

various test images. Both methods were tested on images with a variety of atmospheric and cloud 

conditions (e.g., clear-skies, partly cloudy skies; cloudy skies) and different contrail types (no 

contrail, single contrail, multiple contrails). Both methods were tested on a total of 27 images. 

Section 6.1 discusses the results of contrail detection using method A, and Section 6.2 discusses 

the results when using Method B. Section 6.3 discusses the performance and compares the two 

methods based on these test results. 

Section 6.1: Phase Congruency and Hough transform method: 

 In this section the first method consisting of applying phase congruency edge detection 

and following this by a Hough transform based line detection algorithm, is applied to various test 

case satellite images. The algorithm detects contrails and calculates the endpoints on each 

detected contrail. It shows the longitude-latitude coordinates of the detected contrails. 
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6.1.1 Image containing no contrail 

 

 

 

Figure 6-1. No contrail using Phase-Hough 

(Clockwise from top-left) The original image (channel 4), Channel 4-5 difference image, 

Final output, intermediate image showing phase congruency. 

 

The test image is partly cloudy, but contains no contrails. The initial phase congruency 

test reveals many edges, including very faint ones that are not easily visible. However, these 
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edges are not very bright (pixel value < 200). These false positive edges are later deleted by the 

algorithm, and the final output image shows no contrails, as expected. 

6.1.2 Image containing one contrail (partly cloudy) 

 

 

Figure 6-2. One contrail using Phase-Hough 
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Top image shows the partly cloudy channel 4 image. Bottom image shows the detected 

contrail (in blue). The yellow and red points are the start and end points of the contrail. 

 

The test image is partly cloudy and contains a single contrail. The contrail is disjoint, and 

has a few gaps in between. The algorithm not only detects the contrail but also classifies the 

disjoint segments as the same contrail and displays the end points. Thus the occurrence of natural 

clouds does not affect the detection and classification of the contrail. The coordinates of the 

contrail are also calculated in degrees and minutes, as shown in table 6-1 

Table 6-1.Contrail coordinates for image with one contrail using Phase-Hough 

 

 Longitude Latitude 

Start 135  28́  56  26́  

End 133  27́  55  41́  
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6.1.3 Image containing more than one contrail (cloudy) 

 

Figure 6-3. More than one contrail using Phase-Hough 
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The first image in Figure 6-3 shows the original channel 4 image. The second image 

shows the detected contrails superimposed on the channel 4-5 difference image, and the last 

image shows the detected contrails on the original image (channel 4) 

This test image has two contrails. A major part of both the contrails is hidden by clouds. 

All contrails, including the hidden ones are detected. The algorithm also differentiates between 

different contrails as shown by assigning the different color used in displaying them. Figure 6-3 

shows the two contrails (green and blue contrails). Some regions of the contrails which fade away 

are not detected. However, the discontinuous contrail (blue) is detected as the same contrail and 

the correct endpoints are detected, and as such, do not cause an error or problem in the detection 

and classification. Table 6-2 shows the coordinates (degrees° minutes´). 

 

 

Table 6-2. Contrail coordinates for image containing more than one contrail using Phase-Hough 

 

 Start End 

 Longitude Latitude Longitude Latitude 

Green Contrail 110°01  ́ 54°54  ́ 109°4  ́ 55°15  ́

Blue Contrail 109°39 ́ 53°57  ́ 105°20 ́ 55°25  ́
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6.1.4 Image containing an intersecting contrail (partly cloudy) 

 

 

Figure 6-4. Intersecting Contrail using Phase-Hough 

Top image shows the original channel 4 image. Bottom image shows the detected contrails.   
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 This test image has two intersecting contrails. The algorithm detects both contrails. It also 

detects a hidden third one. It correctly classifies each of the contrails as a distinct feature. The fact 

that two contrails intersect does not affect the behavior of the algorithm. It succeeds in classifying 

them as different contrails. The blue contrail is seen to start spreading laterally in the original 

image. The algorithm detects it nonetheless. Some of these contrails are shown as a collection of 

lines rather than just one. This helps in detecting curved contrails as well. Minor curvature is 

depicted using short lines. Table 6-3 shows the coordinates of the contrails.  

 

Table 6-3. Contrail coordinates for image containing intersecting contrails using Phase-Hough 

 Start End 

 Longitude Latitude Longitude Latitude 

Green Contrail 135°2  ́ 56°18  ́ 135°38 ́ 55°36  ́

Blue Contrail 134°29 ́ 56°30  ́ 134°53 ́ 55°42  ́

Red Contrail 134°32 ́ 55°47  ́ 134°47 ́ 55°35  ́
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6.1.5 Image containing multiple contrails (cloudy) 

 

 

Figure 6-5 a. Original channel 4 image, multiple contrails 
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Figure 6-5 b. Multiple Contrails using Phase-Hough 

Top image shows the original channel 4 image. Bottom image shows the detected 

contrails  

This test image has multiple contrails, some of them are embedded within clouds. The 

contrails vary in size and orientation (vertical and horizontal). The algorithm performs well in this 

case also. As seen in Figure 6-5, various contrails are detected and classified as the same contrail. 

The presence of clouds does not affect the output, except in making the contrails disconnected. In 

spite of the fact that some of the contrails are disconnected due to the presence of clouds, the 

algorithm correctly identifies parts of a contrail as the same contrail, as shown by the color 

coding. The black ellipse in the image shows regions not classified as contrails. 



50 

 

Section 6.2: Spatial Derivatives Method:  

In this section, the second method: applying bi-directional spatial derivatives is used to 

detect the contrails. The same four test images as the previous section are used. All resulting 

images and the contrail coordinates that are output are shown below. 

6.2.1 Image containing no contrail 

 

Figure 6-6. No Contrail using Derivative Method 

(Clockwise from top-left) The original image (channel 4), Channel 4-5 difference image, Final 

output, intermediate image showing no contrail candidates. 
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The test image is partly cloudy, but contains no contrails. The initial spatial derivative 

and contrail search method, shows a blank output. No contrail candidates exist and the final 

output image also shows no existence of contrails, as expected. 

6.2.2 Image containing one contrail (partly cloudy) 
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Figure 6-7. One contrail using derivative method 

Top image shows the partly cloudy channel 4 image. The center image shows the 

detected contrail (in blue). The red points are the end points of the contrail. The bottom image 

shows a zoomed in part of the detected contrail. 

 

This test image is partly cloudy and contains a single contrail. The contrail is disjoint, and 

has a few gaps in between. The algorithm detects the contrail and also classifies the disjoint 

contrail as the same contrail and displays the end points. The coordinates of the contrail are also 

calculated in degrees and minutes, as shown in Table 6-4.  Figure 6-7 also shows a zoomed in 

view of a part of the output image. It is seen that this method does not produce straight lines and 

follows the exact path of the contrail. 
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Table 6-4. Contrail coordinates for image containing one contrail using Derivative method 

 Start End 

 Longitude Latitude Longitude Latitude 

Green Contrail 135°34 ́ 56°54  ́ 134°6  ́ 55°27  ́

6.2.3 Image containing more than one contrail (cloudy) 

 

Figure 6-8. More than one contrail using derivative method 

Top image shows the original channel 4 image. The bottom image shows the detected 

contrails superimposed on the channel 4-5 difference image 
























