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ABSTRACT 

Hexagonal boron nitride (h-BN) has attracted increased interest as a dielectric material to 

graphene electronics. Traditional dielectrics, such as SiO2 or various high-k materials, can 

introduce scattering from charged surface states, impurities, surface optical phonons, and 

substrate roughness; significantly degrading the transport properties of graphene. Hexagonal 

boron nitride boasts several key advantages over SiO2 and high-k dielectrics. Most notably, it 

exhibits an atomically smooth surface that is expected to be free of dangling bonds, leading to an 

interface that is relatively free of surface charge traps and adsorbed impurities. Additionally, h-

BNôs high energy surface optical phonon modes lead to reduced phonon scattering from the 

dielectric. Using h-BN (grown via CVD on copper foil) as a gate dielectric to quasi-freestanding 

epitaxial graphene (QFEG) devices, a >2.5x increase in intrinsic current gain cut-off frequency 

and a >3x increase in mobility over HfO2 gated devices is obtained. 

In addition, this thesis presents the transfer-free deposition of boron nitride on sapphire 

and silicon for use as a supporting substrate to CVD-grown graphene. This is accomplished via a 

polymer-to-ceramic conversion process involving the deposition of polyborazylene at low 

temperature (Ò400ÁC) and subsequent annealing at 1000ÁC to BN. Atomic force microscopy 

(AFM) confirms the deposition of an ultra smooth (RMS roughness <130pm) h-BN film without 

the need for a solution-based transfer process. However, x-ray photoelectron spectroscopy (XPS) 

shows that the stoichiometry is dependent on the initial polyborazylene deposition temperature. 

Despite a turbostratic structure and a boron-rich stoichiometry, CVD graphene transferred to 

boron nitride films deposited on Al2O3 at a polyborazylene deposition temperature of 400°C is 

nearly strain-free and results in an improvement in mobility of >1.5x and >2.5x compared to 

CVD graphene transferred to bare Al2O3 and SiO2, respectively, due to a low impurity density 

and reduced surface optical phonon scattering. 
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Chapter 1 

 

Introdu ction / Literature Review 

1.1: Fundamental Properties and Characterization of Hexagonal Boron Nitride  

 

Boron nitride (BN) is a III-V compound that can exist in hexagonal, cubic, or wurtzite 

crystalline structures, as well as in amorphous form.
1
 Of particular interest for this thesis is 

hexagonal boron nitride (h-BN), which is an insulating isomorph to graphite, which consists of 

sp
2
 hybridized bonding resulting in layered hexagonal basal planes with lattice constants of 

a0=b0=2.50-2.51Å and c0=2.66-2.67Å, and having a space group of P63/mmc.
2
 In contrast to 

graphite, which displays an AB Bernal stacking, the stacking of h-BN sequence is AAǋ, where B 

atoms of one plane are directly above the N atoms of the underlying plane.
1
 h-BN has been 

synthesized through various methods, such as metalorganic vapor phase epitaxy (MOVPE),
3
 

pulsed laser deposition,
4
 atomic layer deposition (ALD),

5
 plasma enhanced chemical vapor 

deposition (PECVD),
6
 and various other thermal chemical vapor deposition (CVD) methods.

7ï10
 

Contrary to graphite, which is conductive, h-BN is electrically insulating with dielectric 

properties similar to SiO2. Various electrical properties of interest for h-BN are shown in Table 

1.1.1.  

 

Table 1.1.1: Various properties of hexagonal boron nitride films prepared by 

CVD.
11

 

Property Value 

Refractive Index 1.7-1.8 

Band gap (eV) 5.8 

Dielectric constant 3.7 

Electrical resistivity (ɋ-cm) 10
14

 - 10
17

 

Dielectric Breakdown Strength (V/cm) 5x10
6
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In addition to its insulating properties, h-BN is chemically inert in a wide variety of acids, 

solvents, and oxidizers. In fact, only heated phosphoric acid has been consistently shown to etch 

h-BN, where etch rates of ~8nm/min have been reported for a solution of 1:1 deionized (DI) 

water : phosphoric acid at 130°C.
11

 Additionally, dry etching with a CF4/O2 plasma has been 

demonstrated.
12

 Owing to its high chemical resistance and thermal stability, h-BN is an attractive 

material for use as a chemically inert coating in hazardous environments.
13

 In-plane thermal 

conductivity has been reported as high as 390 W/m-K at room temperature, 280 times higher than 

SiO2, making h-BN an attractive dielectric material for heat generating electronic devices.
13

 

Perhaps its most common application is as a dry lubricant, as with graphite, due to its weak inter-

planar van der Waals bonds. 

Similarly to graphite, h-BN has a strongly anisotropic coefficient of thermal expansion 

(CTE) due to its anisotropic bond strength. The CTE in the a-direction (in-plane) is negative (-

2.90x10
-6
K

-1
 at room temperature), while the CTE in the c-direction (inter-plane) is over ten times 

larger and positive (4.05x10
-5
K

-1
 at room temperature).

14
 The change in lattice parameters as a 

function of temperature has been studied in detail by Paszkowics et al.
15

 The large positive 

thermal expansion in the c-direction is due to weak van der Waals bonding between planes, and 

leads to the potential use of h-BN as a temperature calibrant.
15

 

The most commonly accepted phase diagram of boron nitride was calculated from 

thermodynamic properties of boron nitride phases by Solozhenko et al in 1999 after refining their 

original work from 1988.
16

 It was found that the cubic phase of boron nitride (c-BN), rather than 

h-BN, is thermodynamically stable at ambient conditions.
16

 This is in contrast to the carbon phase 

diagram, where the hexagonal phase (graphite) is the stable phase at ambient conditions.
17

 The 

phase diagram of boron nitride is shown in Figure 1.1.1, where the dashed lines indicate the 

original calculations by Solozhenko et al in 1988 and the solid lines indicate the refined diagram. 
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The h-BN/c-BN/liquid triple point occurs at 3480±10K at 5.9±0.1GPa while the h-

BN/liquid/vapor triple point occurs at 3400±20K and 400±20Pa.
16

 

 

 

 

Figure 1.1.1: Pressure-Temperature phase diagram of boron nitride.
16

 

 

 

 Interestingly, the above phase diagram indicates that c-BN is favorable at temperatures 

below ~1600K (~1327°C). However, as detailed subsequently in Section 2, the growth 

temperature of h-BN on transition metals has been reported extensively well below the stability 

region of h-BN, typically between 750 and 1050°C. This may be explained by the sensitivity of 

the transition temperature with slight variations in the Gibbs free energy of the system, where 

Kern et al demonstrated significant shifting of the h-BN/c-BN transition temperature as a 

function of Gibbs free energy.
18

 Figure 1.1.2 shows the range of the transition temperature when a 

shift in free energy of ±10meV/atom is implemented. When this change of free energy is 

considered, the transition temperature can vary between 1200-1800K (927-1527°C), where the 
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lower value is in range of typical h-BN growth temperatures.
18

 Small variations of the free energy 

may be caused by grain size, defects, or contamination or interaction with other elements (such as 

interaction with a transition metal substrate).
18,19

  

 

 

Figure 1.1.2: Pressure-Temperature phase diagram of boron nitride at low 

pressure and temperature. The shaded region indicates the range over which the 

transition temperature varies depending on the shift in free energy of the phase.
18

 

 

 

 Additionally, experimental attempts to grow c-BN on non-transition metals substrates at 

low temperatures (<1000°C) and pressures have been difficult, where boron nitride either forms 

exclusively as h-BN or as a mixture of h-BN and c-BN.
20

 This observation has been explained 

qualitatively by two empirical chemical rules known as the Ostwald and Ostwald-Volmer rules.
20

 

The Ostwald rule proposes that when energy is withdrawn from a system with multiple energy 

states, the system will not reach the stable ground state directly, but instead must first pass 

through all intermediate states.
20

 Therefore, for the case of BN, the metastable hexagonal phase 

will often form despite the fact that the cubic phase is thermodynamically preferred. This rule is 

also apparent in the low pressure CVD synthesis of diamond, where the metastable cubic 
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(diamond) phase forms despite the fact that the hexagonal (graphitic) phase is thermodynamically 

preferred. Even further, the Ostwald-Volmer rule states that the less-dense phase (i.e. ï h-BN) is 

formed first.
20

 For the case of diamond however, where the hexagonal (graphitic) phase is less 

dense, this rule is circumvented due to the preferential etching of non-diamond carbon phases by 

hydrogen and the Ostwald rule (rather than the Ostwald-Volmer rule) dominates. For boron 

nitride however, both rules are satisfied, leading often to the formation of the metastable 

hexagonal phase over the stable cubic phase. In addition, c-BN growth may be complicated by 

differences in the atomic attachment kinetics during growth along the (111) direction due to 

anisotropy of the (111) planes; where they are either N-terminated nor B-terminated, in contrast 

to diamond which is always C-terminated.
20

 Also, the bonding energies and bond lengths of B-N, 

B-B, and N-N bonds are dissimilar in the cubic phase of boron nitride, further complicating CVD 

synthesis.
20

  

 Therefore, many factors come into play that can influence the experimentally obtained 

phase of boron nitride. Determination of the boron nitride phase can be easily accomplished 

through Raman spectroscopy. Typical first-order Raman spectra for cubic and hexagonal boron 

nitride are shown in Figure 1.1.3. Cubic boron nitride has one optical phonon mode that is Raman 

active. This mode splits into a transverse (TO) and longitudinal (LO) optical phonon due to the 

ionic character of BN, where the TO mode is located at ~1055cm
-1
 and the LO at ~1304cm

-1
.
21

 

Hexagonal boron nitride, on the other hand, has one Raman active phonon that is mode located at 

~1364cm
-1
. This optical phonon mode is an in-plane, doubly degenerate (TO/LO) mode with a 

E2G symmetry where the B and N atoms move in opposite directions.
21
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Figure 1.1.3: First-order Raman spectra of (a) cubic and (b) hexagonal boron 

nitride.
21

 

 

 

 In summary, hexagonal boron nitride has dielectric properties similar to SiO2, is 

chemically inert, and has a high thermal conductivity. Therefore, h-BN appears to be a suitable 

material for dielectric integration with microelectronics. Despite the fact that widely accepted 

phase diagrams indicate that c-BN is the stable phase at ambient conditions, c-BN has proven to 

be difficult to attain experimentally due to variation of the Gibbs free energy of BN synthesis. 

This therefore leads to the potential to easily synthesis the metastable hexagonal phase. Finally, 

Raman spectroscopy can be easily employed to determine the deposited phase. 
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1.2: CVD Growth of h-BN on Transition Metals 

 

 1.2.1: Bonding of h-BN to Transition Metal Surfaces  

 

 It has been well documented that ultra-thin (often monolayer) films of h-BN readily bind 

in a hexagonal structure to transition metals such as Rh,
22

 Ru,
23

 Pt,
23

 Ni,
24

 Pd,
25

 and Cu,
26

 through 

a catalytic thermal CVD growth process. One of the first examples was by Nagashima et al,
24

 

who demonstrated h-BN layers on Ni(111), Pd(111), and Pt(111) substrates through the thermal 

decomposition of borazine.
24

 They found through angle-resolved ultraviolet photoelectron 

spectroscopy (ARUPS) that the bonding for h-BN fil ms on Ni was stronger than for the other two 

substrates. This same group later realized through high resolution electron energy loss 

spectroscopy (EELS) that there was a level of hybridization between transition metal d and BN ́  

states that was responsible for the differences in binding strength.
27

 Through X-ray photoelectron 

diffraction (XPD) and scanning tunneling microscopy (STM), Auwarter et al showed that the 

structure of the h-BN film on Ni(111) surface is a commensurate (1x1) structure that is most 

stable when N atoms are bound directly over  Ni atoms and B atoms over fcc hollow sites, 

leading to a slightly compressed film.
28

 This same structure was also found to be the case for h-

BN on Cu(111).
26

 Through core-level spectroscopies, Preobrajenski et al studied the role of 3d 

states of Ni(111) and Cu(111) and found that the bonding strength of the h-BN/metal interface is 

dependent mainly on the strength of the metal 3d ï h-BN ˊ orbital hybridization.
26

 It was found 

that h-BN is strongly chemisorbed on Ni(111) while only weakly chemisorbed on Cu(111).
26

 

Through density functional theory (DFT) calculations, Laskowski et al investigated binding 

energies of h-BN on various transition metals, as shown in Table 1.2.1, and found a trend across 

the periodic table.
29

 Going across the 3d, 4d, and 5d rows of the periodic table, the binding energy 

of h-BN on transition metal surfaces decreases from left to right, with noble metals having the 
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lowest binding energies. Additionally, it was found that the highest binding energies were 

obtained for the 4d elements and the lowest for the 3d elements.
29

 It was found that for all cases a 

repulsive force acted on the N atoms while an attractive force acted on the B atoms, leading to 

vertical buckling of the h-BN lattice that is dependent on the binding energy.
29

 

 

Table 1.2.1: Local density approximation (LDA) of binding energies (ȹE) of h-

BN on various transition metals, vertical metal-to-nitrogen distance (ZM-N), and 

vertical boron-to-nitrogen distance (ZB-N).
29

 

 Element ȹE ZM-N (Å) ZB-N (Å) 

3d Co 0.32 2.14 0.11 

Ni 0.27 2.12 0.11 

Cu 0.19 3.10 0.02 

4d Ru 0.98 2.13 0.14 

Rh 0.61 2.16 0.13 

Pd 0.47 2.21 0.11 

Ag 0.19 2.55 0.04 

5d Ir 0.49 2.20 0.14 

Pt 0.34 2.26 0.12 

Au 0.16 2.95 0.02 

 

  

 Therefore, the binding energy of h-BN on transition metals decreases with the filling of 

the valence d-band of the metal. This binding energy was found to play a critical role on the 

structure of h-BN films on various transition metals. High binding strength on transition metals 

with close lattice matches, such as on Ni (0.4%), has been shown to result in a commensurate 

(1x1) h-BN structure, often with large h-BN domains.
30,31

 However, a high binding strength can 

complicate the h-BN structure when the lattice mismatch between film and substrate is 

significant. For example, strong 3d-ˊ hybridization was found for Rh and Ru leading to high 

binding strengths, but the lattice mismatch between h-BN and these substrates is ~7%.
22,32

 To 

compensate for the induced strain, the h-BN film forms a highly ordered corrugated bilayer 
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structure consisting of an array of 2nm diameter holes with a periodicity of 3nm, called a ñBN 

nanomeshò, due to a strong splitting of the h-BN ů bands.
22,32

 Interestingly, other metals with 

large lattice mismatches, such as Pt(10.8%)
33

 and Pd(~9%),
34

 resulted in complete h-BN films 

rather than a nanomesh. In these cases, the h-BN film on these substrates accounted for the 

induced strain by forming two distinct structures; a 10x10 commensurate structure and an 

incommensurate structure rotated by 30°, where the rotated structure allowed for a reduced lattice 

mismatch.
34

 On the contrary, a low binding energy has different effects on the h-BN structure. 

Growth of h-BN films on Ag(111) substrates led to arbitrarily oriented nanocrystalline h-BN 

domains.
35

 This is due to the increased filling of the 4d band of Ag and is expected for other 

noble metals. Therefore, both the binding energy and lattice mismatch must be taken into account 

when choosing a suitable substrate for h-BN deposition. 

 

 

 1.2.2: CVD Growth of h-BN on Cu 

 

 Copper, having a lattice mismatch with h-BN of only 0.9%,
26

 is one of the most common 

transition metal substrates for CVD synthesis of h-BN and, like Ni, forms strictly 1x1 

commensurate h-BN layers. In this thesis, Cu substrates are used almost exclusively for synthesis 

of h-BN via CVD. Therefore, current results for CVD h-BN on Cu will be presented in detail in 

this section. Table 1.2.2 details the growth parameters used in several examples from literature.  
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Table 1.2.2: Growth parameters for CVD h-BN on Cu substrates from various 

references. 

Reference Precursor 
Growth 
Temperature (°C) 

Growth 
Pressure 

Growth 
Time (min) 

Additional 
Treatment 

Song et al36 
Ammonia 
Borane 1000 N/A 30-60 N/A 

Preobranjenski 
et al26 Borazine 750 

2000L 
(exposure) N/A N/A 

Kim et al37  Borazine 750 Ambient 10-60 
Post-Anneal at 
1000°C 

Kim et al38  
Ammonia 
Borane 1000 350mTorr 10-120 

AB sublimation at 
60-90°C 

Lee et al39 
Ammonia 
Borane 1000 Ambient 30 

Chemical polish 
of Cu foils 

Guo et al40 
Ammonia 
Borane 1000 675mTorr 120 

Varied AB weight, 
Cu foils in quartz 
enclosure 

 

 

 Growth of h-BN on Cu generally results in a polycrystalline film with domain sizes 

<10nm.
36,37,40

 Therefore, the crystallinity is not as high as h-BN films grown on Ni, where 

domains >1µm have been obtained.
31

 However, it was found that h-BN films grown on Ni foils 

are generally more leaky as a dielectric layer due to incomplete regions present at Ni grain 

boundaries.
41

 Therefore, growth of h-BN on Cu foils represents a more realistic and suitable 

approach for large scale device development. Additionally, growth of h-BN on Cu is not a self-

limited growth process, unlike graphene growth on Cu, where the film thickness of h-BN grown 

on Cu can be easily controlled through tailoring of the growth parameters.
36ï38

 The control of 

layer thickness is critical for gate dielectric applications, where the tunneling currents were found 

to be excessive for h-BN films less than four layers thick.
42,43

 

 Kim et al revealed the nucleation behavior of h-BN on Cu foils through varying the 

ammonia borane (AB) sublimation temperature and growth time.
38

 At an AB sublimation 

temperature of 60°C, h-BN formed as small triangular domains that were randomly oriented due 
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to the weak chemisorption (low binding energy) of h-BN on Cu. Unlike graphene, which forms as 

hexagonal domains, triangles are more energetically favorable for h-BN growth as nitrogen-

terminated edges have lower edge energy than boron-terminated edges and hexagon formation 

would ultimately lead to B-terminated edges.
38

 At higher AB sublimation temperatures, the 

domains became more asymmetric, presumably due to the increased concentration of gas-phase 

precursors at higher sublimation temperatures. Additionally, by studying the effects of growth 

time, it was found that monolayers form through the coalescence of triangular domains, as shown 

in Figure 1.2.1. Here, a complete monolayer is formed after ~40 minutes, as evidenced by the 

formation of wrinkling, as shown in Figure 1.2.1c. Wrinkling naturally occurs in CVD grown h-

BN (and graphene) on Cu due to h-BNôs negative coefficient of thermal expansion, causing h-BN 

to expand upon cooling.
14

 After the initial monolayer is complete, additional (smaller) ad-layers 

nucleate over the original monolayer, as shown in Figure 1.2.1f. This indicates a growth 

mechanism similar to Stranski-Krastanov growth, where growth proceeds via a surface mediated 

layer-to-layer mechanism before changing to an island-like growth. This is most likely due to the 

strong adatom-surface interaction on the Cu surface and sharp decrease in the surface reactivity 

after the first h-BN layer.
38

 This also verifies that, unlike similar graphene growth on Cu, the 

growth of h-BN on Cu is not a self-limiting process. 
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Figure 1.2.1: (a-e) Nucleation behavior of h-BN film on Cu substrate as a 

function of growth time from 10-120 minutes. (f) Higher magnification image of 

(e).
38

 

 

 

 The surface morphology of the copper foil also plays a significant role in the nucleation 

and growth of h-BN. Often, impurity particles and unwanted cubic BN and amorphous BN 

allotropes can form as 3D particulates in the h-BN film, possibly forming through a Volmer-

Weber nucleation along defects (such as vacancies, dislocations, and grain boundaries) on the Cu 

surface.
39

 Lee et al demonstrated a significant reduction in the density of such 3D particulates 

through the use of an extended pre-growth anneal and a pre-growth chemical polish, as shown in 

Figure 1.2.2.
39

 Thermal annealing was performed at 1020°C for 2 hours in an Ar atmosphere and 

resulted in an increase in the starting Cu grain size from ~30µm to ~120µm and a reduction in the 

RMS roughness from 2.42nm to 1.57nm.
39

 Chemical polishing was performed by rubbing the 
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copper foil with Cu etchant (Transcene, Type 1) following thermal annealing and resulted in a 

further improvement in RMS roughness (from 1.57nm to 1.10nm) over the thermally annealed 

samples.
39

 These results show that the starting Cu foil surface is essential for the suppression of 

3D nanoparticles that form on surface defects. 

 

 

Figure 1.2.2: Optical images of (a) untreated, (b) thermally annealed, and (c) 

thermally annealed and chemically polished Cu foils. (d-f) Optical images of h-

BN films grown on the respective Cu foil and transferred to SiO2 substrates.
39

 

 

  

 To further elucidate the improvement in h-BN growth when using an enhanced starting 

Cu morphology, Raman spectroscopy was used and showed a suppression of defect peaks arising 

from boron carbon nitride (1304cm
-1
) and amorphous BN ñsootò (1336cm

-1
) when the thermal 

anneal and chemical polishing steps were employed.
39

 Additionally, a reduction in the full width 

at half maximum (FWHM) of the E2G peak (1367cm
-1
) from 22.9cm

-1
 to 14.8cm

-1
 was observed 
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for the untreated and thermally annealed/chemically polished sample, respectively. This indicates 

improved crystallinity and increased domain size, which was verified with transmission electron 

microscopy (TEM).
39

 

 Similar 3D nanoparticles were also observed on h-BN films grown on Cu foil by Kim et 

al.
38

 However, here the nanoparticles were postulated to form in the gas phase upon sublimation 

of ammonia borane. It was found that when a carrier gas flowed through the sublimator, a high 

density of nanoparticles (up to 50-100nm in diameter) were formed on the surface. The density of 

these nanoparticles increased with sublimation temperatures above 100°C. Therefore, the 

sublimation temperature was reduced to 60-90°C and no carrier gas was used (allowing the 

precursor to naturally diffuse into the growth zone).
38

 Again, using an electrochemical polishing 

(ECP) step improved the nucleation of h-BN on Cu foils, where nucleation was found on 

unpolished samples to occur preferentially on rolling lines (induced during manufacturing) of the 

Cu foil. The ECP step resulted in a more uniform nucleation over the Cu surface and a reduced 

density of nucleation sites. This ultimately led to an increase in h-BN domain size.
38

 

 Despite the well documented research on h-BN growth on Cu substrates, the growth 

mechanisms of CVD grown h-BN are not fully understood and several growth-related issues exist 

which can impact graphene device performance such as: 1) impurity scattering from dangling 

bonds of 3D nanoparticles, 2) surface roughness scattering from wrinkles induced during growth, 

and 3) current leakage through nanocrystalline domain boundaries.  

 

 

1.3: Sublimation Properties of Ammonia Borane 

 

 Ammonia borane (BH3NH3) is a white solid that is isoelectronic to ethane and contains a 

highly polarized electron-pair dative bond.
44

 The B-N bond results from a donation of the lone 
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pair electrons of ammonia to the 2pz orbital of borane and has a dissociation energy of 

130kJ/mol.
44,45

 Ammonia borane (AB), being non-flammable and non-explosive under ambient 

conditions, has attracted considerable interest as a potential hydrogen (H2) storage material for 

automotive applications due to its high hydrogen content, having a gravimetric hydrogen density 

of 19.6 wt% and a volumetric hydrogen density of 145 Kg/m
3
, which can be extracted through 

various processes, such as thermolysis, hydrolysis,
 
hydrothermolysis, and methanolysis.

45
 Of 

these, thermolysis (thermal decomposition) is the most common and practical method for 

generating hydrogen from AB, which can result in a generation of >9 wt% hydrogen at moderate 

temperatures.
45

 The thermal decomposition of AB proceeds via multiple exothermic 

decomposition steps that correspond to both a weight loss and a release of hydrogen and/or 

various boron-nitrogen species. Preceeding the exothermic decomposition steps, an endothermic 

process occurs near 101°C that can be attributed to the melting of AB.
46

 As shown in Figure 

1.3.1, the exothermic decomposition steps occur at ~110°C, ~130°C, and ~1170°C.
47

 The first 

weight loss step at ~110°C results primarily in the release of H2 with small traces of monomeric 

aminoborane (BH2NH2), leaving behind a solid polyaminoborane (PAB). This is followed by a 

second weight loss step at ~130°C, which results in a second hydrogen release from the PAB 

accompanied by a release of borazine (B3N3H6), which is a boron-nitrogen analog of benzene.
48

 

Other reports have shown that additional boron-nitrogen species are released at the 130°C weight 

loss step as well, including monomeric aminoborane and diborane (B2H6).
48ï50

 The second weight 

loss step results in residual solid polyiminoborane (PIB) that remains stable until further 

hydrogen abstraction begins at temperatures above 1170°C, which ultimately result in the 

formation of a semi-crystalline P63/mmc (hexagonal) boron nitride phase.
47
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Figure 1.3.1: Experimentally observed decomposition pathways for the thermal 

decomposition of ammonia borane to boron nitride. Labelled species are: [1] 

Ammonia Borane; [2] Molecular aminoborane; [3] Polyaminoborane (PAB); [4] 

Borazine; [5] Polyiminoborane (PIB); [6] Semi-crystalline hexagonal boron 

nitride; [7] Hydrogen abstraction by the evolution of molecular hydrogen at high 

temperature, is assumed, but other possible pathways exist. **Reversible reaction 

between molecular aminoborane, [2], and PAB, [3].
47

 

 

 

 Mass spectrometry results corroberate well with the above thermal decomposition model. 

As shown in Figure 1.3.2, the intial weight loss at ~110°C (Figure 1.3.2A) shows a large release 

of hydrogen (m/z = 2) accompanied by additional m/z values located at 27, 28, and 29 

corresponding to aminoborane fragments. The second weight loss step (Figure 1.3.2B) also 

results in a hydrogen release but is accompanied by several additional species at higher m/z 

values.
47

 When compared to the mass spectrum of pure borazine (Figure 1.3.2C), which has 

distinct m/z peaks at 81, 80, 67, 63, 53, and 28, many similarities are observed indicating the 

generation of borazine at the second AB decomposition step.
47

 The complete mass spectrum is 

given in Table 1.3.1.
48
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Figure 1.3.2: Mass Spectrum: (A) pyrolysis gases generated at 114°C scaled to 

impurity levels; (B) pyrolysis gases generated at 135°C scaled to impurity levels; 

(C) pure borazine. The m/z = 2 signal intensities in A and B are each about 2 

orders of magnitude above their respective y-axis scales.
47
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Table 1.3.1: Mass spectrum of the gas phase above BH3NH3 at elevated 

temperatures.
48

 

Mass Number Assignment Mass Number Assignment 

2 H2
+
 27 

11
BNH2

+
, 

10
BNH3

+
, 

11
B2H5

+
 

11 
11

B
+
, 

10
BH

+
 28 

11
BNH3

+
, 

10
BNH4

+
 

12 
11

BH
+
, 

10
BH2

+
 42 

11
BH2NH2, 

11
BH2

+
 

13 
11

BH2
+
, 

10
BH3

+
 53 

11
B2N2H3

+
 

14 
11

BH3
+
, N

+
 62 

11
B3N2H

+
 

24 
10

BN
+
, 

11
B2H2

+
, 

11
B

10
BH3

+
 63 

11
B3N2H2

+
 

25 
11

BN
+
, 

10
BNH+, 

11
B2H3

+
 78 

11
B3N3H3

+
 

26 
11

BNH
+
, 

10
BNH2

+
, 

11
B2H4

+
 80 

11
B3N3H5

+
 

 

 

 Additionally, it was found by several groups that the decomposition of AB is strongly 

dependent on the thermal history and heating conditions.
48ï50

 It was found that the onset 

temperature for the first decomposition step is a function of the heating rate, where the starting 

temperature of decomposition increases from 82-107°C as heating rate increases from 0.05-

1°C/min.
46

 Additionally, the weight loss of the solid phase of AB is dependent on the heating 

rate. It was found that the first and second decomposition steps corresponded to an 8 and 15wt% 

loss, respectively, for a heating rate of 1°C/min. However, when the heating rate is increased to 

5°C/min, the weight loss increases to 10 and 23wt% for the first and second decomposition steps, 

respectively.
48

 Interestingly, it was observed through mass spectrometry that the evolution of 

hydrogen is independent of heating rate.
48

 Instead, the increased weight loss was found to be due 

to the increased yield of boron-nitrogen species such as borazine, monomeric aminoborane, and 

diborane.
48

  Table 1.3.2 shows the increase in product yield of these boron-nitrogen species with 

increasing heating rate. 
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Table 1.3.2: Yield of gaseous products of the thermal decomposition of ammonia 

borane at temperatures up to 500K calculated on the basis of thermogravimetric 

and mass spectrometric data for different runs.
48

 

Heating Rate Product Yield (mol product/mol AB) 

H2 BH2NH2 Borazine Diborane 

0.5 K/min 2.2 0.12 0.035 0.020 

1.5 K/min 2.2 0.16 0.050 0.025 

5.0 K/min 2.2 0.21 0.065 0.040 

Iso 363 K-1 K/min 2.2 0.12 0.040 0.020 

 

 

 Pressure was also found to be an important factor in the decomposition of AB. 

Sublimation of AB at ~90°C under an Ar background pressure ranging from ~35 Torr to 

atmospheric pressure resulted in an increase in the total weight loss (from 7 to 24wt%) with 

decreased pressure.
49

 The induction period of hydrogen evolution was also found to decrease with 

decreasing pressure, from 7 hours at atmospheric pressure down to 4 hours at low pressure.
49

 

Additionally, mass spectrometry shows a dependence of the evolved species with pressure. Near 

ambient pressure, the primary emission was hydrogen (m/z = 2) with little detectable nitrogen-

boron species. However, when the Ar background pressure was reduced to < 650 Torr, additional 

m/z values began to appear at 78 and 80 (borazine), 27-29 (aminoborane), 10-13 and 23-26 

(diborane), and 42 (aminodiborane). It was found that the intensity of these boron-nitrogen 

species increases with decreasing pressure, as shown in Figure 1.3.3.
49

 It is reported that the 

increase in the boron-nitrogen species upon sublimation of AB at sub-ambient pressures may be a 

result of the increased breaking of dihydrogen bonding networks at higher sublimation rates.
49
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Figure 1.3.3: Mass spectrometry results as a function of time during thermal 

aging at 363K at pressures ranging from 52-1039 mbar. Mass spectrometry data 

is given for hydrogen (H2), m/z = 2; unknown, m/z = 41; borazine (B3N3H6), m/z 

= 78 and m/z = 80; monomeric aminoborane (BH2NH2), m/z between 27 and 29; 

diborane (B2H6), m/z between 10 and 13, and m/z between 23 and 26; 

aminodiborane (BH2NH2BH3), m/z = 42; and boron (B
+
) m/z = 11.

49
 

 

 

 The mechanism for the thermal decomposition of AB was studied via an in-situ 
11

B 

magic angel spinning-nuclear magnetic resonance (MAS-NMR) technique at a decomposition 



21 

 

temperature of 88°C and external fields of 7.1T and 18.8T.
51

 The decomposition pathway can be 

described by induction, nucleation, and growth mechanisms, as shown in Figure 1.3.4.  

 

 

 

Figure 1.3.4: The proposed dehydrogenation pathway of ammonia borane 

proceeds via induction, nucleation, and growth steps.
51

 

 

 

 The induction period results in little to no hydrogen release but yields a mobile AB phase 

that is caused by disruptions of the dihydrogen bonding network, which are composed of bonds 

between amine protons and boron hydrides of adjacent AB molecules.
51

 Additionally, it was 

found that preheating of AB can result in a decreased induction period.
50,51

 The nucleation step 

then yields a reactive species from the mobile AB phase, identified as diammoniate of diborane 

[(NH3)2BH2]
+
[BH4]

-
 (DADB).

51
 Growth then proceeds via a bimolecular reaction between DADB 

and AB to release the stored hydrogen and additional gas phase boron-nitrogen species. In other 
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words, hydrogen bonding is disrupted upon heating that allows for increased motion of AB 

groups during the ñinductionò step. The mobile phase converts into a new species, DADB, during 

ñnucleationò. Once the DADB phase is formed, it reacts with the remaining AB during the 

ñgrowthò step, which yields hydrogen and aminoborane.
51

 This study however, only examines the 

time-resolved hydrogen evolution at temperatures below the melting point of AB. However, these 

mechanisms give insight into the possible pathways for formation of boron-nitrogen species at 

higher temperatures, which may include additional breaking of the dihydrogen bonding network. 

 Sublimation of ammonia borane has been shown to occur in two distinct weight loss 

steps, where the first step results in evolution of hydrogen and the second results in additional 

hydrogen along with various boron-nitrogen species, such as borazine. Therefore, ammonia 

borane appears to be an excellent source for production of precursors for BN growth. However, 

the sublimation behavior of ammonia borane is highly sensitive to parameters such as heating rate 

and sublimation pressure. Therefore, significant attention must be placed on a maintaining a 

consistent control of the ammonia borane sublimation process. 

 

 

1.4: Polyborazylene as a Precursor to Boron Nitride 

 

 It was discussed in the previous section that ammonia borane can readily decompose to 

yield, among other gas-phase species, borazine (B3N3H6). Fazen et al has shown that borazine can 

dehydropolymerize to a yield a soluble polymer, polyborazylene (B3N3H~4)x, in yields of 81-91% 

at temperatures as low as 70-110°C.
52

 Polyborazylene, which is soluble in ethers such as glyme 

and tetrahydrofuran (THF), can be thermally converted to boron nitride in yields of 89-99% 

through a two-dimensional cross-linking reaction.
52

 Polyborazylene is composed of linked 

borazine rings, as shown in Figure 1.4.1 in two configurations.  
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Figure 1.4.1: Chemical structure of Polyborazylene consists of linked borazine 

rings in the ɟ or ů configuration 
52

 

 

 

 The chemical composition (hydrogen content) was found to be dependent on the 

temperature that borazine was heated to, as well as the reaction time. Hydrogen content was 

found to decrease with increased reaction times and temperature. At a maximum temperature of 

500°C, an insoluble white powder was obtained with a chemical formula of BNHx (xҒ1).
52

 The 

general thermal conversion reaction at 70°C is shown in Equation 1.4.1. 

 

●║╝╗  ᴼ(║╝╗ )●+  ●╗  

Equation 1.4.1
53

 

 

 

 Polyborazylene was produced from liquid borazine at 70°C for 48-60 hours. The 

remaining polymer was soluble in ethers such as glyme and THF and was found to be moisture 

sensitive, readily decomposing in air.
52

 The average chemical formula for the polyborazylene 

made this way was B3.0N3.1H3.6.
52

 Diffuse reflectance infrared fourier transform (DRIFT) 

spectroscopy was used to identify the presence of the B-N stretch mode near 1460cm
-1
 and B-N-B 
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bending mode at ~900cm
-1
, characteristic of borazine rings. Additionally, 

11
B nuclear magnetic 

resonance (NMR) was used to identify that a diborazine structure was responsible for the B-N 

bonds connecting adjacent borazine rings, indicating that the polymer proceeds via a 

dehydropolymerization reaction that forms a linked borazine ring structure.
52

  

 Polyborazylene is expected to be an ideal chemical precursor to boron nitride, only 

having to lose hydrogen to form boron nitride. Fazen et al found that through pyrolysis of 

polyborazylene at 900-1450°C in argon or ammonia, boron nitride powder could be obtained at 

chemical yields of 89-99% with B:N ratios near 1:1.
52

 Equation 1.4.2 shows the ultimate 

conversion of polyborazylene to BN through pyrolysis at temperatures >900°C. 

 

(║╝╗ )●ᴼ ║╝+ ╗  

Equation 1.4.2
53

 

 

 

 X-ray powder diffraction (XRD) showed the presence of turbostratic BN. Increasing the 

pyrolysis temperature resulted in an improvement in the crystallinity, as shown in Figure 1.4.2, 

where a temperature of 1450ÁC led to a sharp XRD peak near 26Á 2ɗ for the (002) orientation and 

a d-spacing approaching 3.33Å, consistent with bulk h-BN.
54

 Additionally, peaks near 42Á 2ɗ and 

54Á 2ɗ indicate reflections associated with the (001) and (004) orientations, respectively.
52

 Not 

only did the increased pyrolysis temperature lead to enhanced crystallinity; the density of the BN 

films increased from 1.7 to 2.0 g/cm
3
 for pyrolysis temperatures of 900 and 1450°C, 

respectively.
52
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Figure 1.4.2: XRD spectra of boron nitride pyrolyzed from polyborazylene 

under an Ar environment at various temperatures.
52

 

 

 

 The conversion of polyborazylene to boron nitride proceeds via two-step weight loss 

process, as shown with thermogravimetric analysis (TGA) in Figure 1.4.3. The first weight loss 

occurs between 125 and 300°C and corresponds to a 2% weight loss. Over the range of 300-

700°C, little weight loss is observed. From 700°C up to 1100°C weight loss continues, 

corresponding to an additional 4% weight loss.
52

 Combining mass spectrometry with TGA shows 

that hydrogen is the primary species evolved at both steps. However, small concentrations of 

boron-nitrogen species were found to evolve from the polyborazylene in the first weight loss 

regime below 300°C.
52
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Figure 1.4.3: Thermogravimetric analysis (TGA) of the polyborazylene to boron 

nitride conversion.
52

 

 

 

 One sample was heated to a temperature of 400°C, which lies just outside of the first 

weight loss step. Elemental analysis of this sample showed a empirical formula of B3N3H~2. The 

1:1 B:N stoichiometry and reduced hydrogen content from polyborazylene indicates that 

hydrogen loss is primarily responsible for the observed weight loss.
52

   

 Figure 1.4.4 shows the possible polyborazylene to boron nitride conversion process. 

Following the formation of polyborazylene thermally from borazine at 70°C, two algined 

(idealized) linear structures may then undergo an interchain dehydrocoupling at intermediate 

temperatures which results in the loss of hydrogen through the formation of a B-N cross-linked 

structure.
52

 The second hydrogen loss occurs only at higher temperatures from un-aligned (non-

idealized) chain branched structures, forming boron nitride.
52
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Figure 1.4.4: Proposed polyborazylene to boron nitride conversion process.
52

 

 

 

 Indeed, polyborazylene has been shown in literature to be an excellent candidate for 

boron nitride coatings. BN has been produced from spin coating polyborazylene on a variety of 

substrates,
53,55

 dip-coating on metallic substrates,
56

 and through CVD on transition metal 

substrates.
31

 Spin coating polyborazylene on silicon substrates and subsequent pyrolysis at 900-

1250°C was performed by Chan et al.
53

 The thickness of the spin coated polyborazylene was 

found through optical ellipsometry to be ~950Å with a refractive index of ~1.67.
53

 It was found 

that the pyrolysis temperature played a significant role in the stoichiometry and morphology of 

the obtained BN films. Table 1.4.1 details the chemical composition (obtained through 

Rutherford backscattering  spectrometry (RBS)) of the films studied by Chan et al. Samples 

prepared at 900°C resulted in a uniform and smooth morphology, but were boron-rich. In fact, the 

samples prepared at 900°C were more boron-rich than the starting polyborazylene film. 
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Unfortunately, no explanation for the observed differences in B/N ratios between samples is 

provided by Chan et al. When the pyrolysis temperature was increased to 1250°C, the B/N ratio 

became closer to unity and the hydrogen and oxygen content decreased compared to the sample 

prepared at 900°C. The pyrolysis step led to the incorporation of oxygen, which was not observed 

in the original polyborazylene film, for both pyrolysis temperatures. This was attributed to 

possible contamination during transfer to the annealing furnace, or from incorporation during 

annealing due to oxygen impurities in the furnace. 

 

Table 1.4.1: Composition and thickness of spin coated polyborazylene on silicon 

and boron nitride prepared from pyrolysis of polyborazylene.
53

 

Sample Description B/N O/B Atomic fraction of H  Thickness (Å) 

Polyborazylene 1.18 N/A 0.33 1500 

BN prepared at 900°C 1.37 0.21 0.10 800 

BN prepared at 1250°C 1.09 0.14 0.09 900 

 

 

  Interestingly, the samples prepared at 1250°C showed the presence of surface features, 

unlike the samples prepared at 900°C which were visually smooth. The surface features were pits 

covering ~15% of the film surface and were ~0.5µm in diameter and 2-7nm deep.
53

 Figure 1.4.5 

shows an SEM image of the surface features resulting from the 1250°C pyrolysis of 

polyborazylene on silicon. Cross-sectional SEM revealed that the surface pits did not correspond 

to a void in the BN film, as the BN was found to be present at the bottom of the pits. The surface 

pitting was attributed to the decomposition of the native silicon oxide at high temperatures.
53

 

Upon removal of the native oxide via a hydrofluoric (HF) acid solution prior to polyborazylene 

deposition, the pitting was reduced by nearly 75%.  

 

 



29 

 

 

Figure 1.4.5: Top-view SEM image of a boron nitride film prepared on a silicon 

substrate through pyrolysis of polyborazylene at 1250°C showing the presence of 

surface features.
53

 

 

 

 In another study, boron-rich films were obtained by pyrolysis of spin-coated 

polyborazylene on Si and SiO2/Si by Kho et al.
55

 These films were produced by pyrolysis at 

5°C/min in a quartz tube furnace in vacuum or an Ar atmosphere up to 900 or 1100°C, where the 

final pyrolysis temperature was held for 2hrs, resulting in BN films with thicknesses of 0.15-

2.0µm.
55

 The morphology of the films pyrolyzed at 900°C, studied by AFM, indicated RMS 

surface roughness values of 0.213 and 0.415nm for films pyrolyzed under an Ar atmosphere or 

under vacuum, respectively.
55

 The increased roughness under vacuum was attributed to a more 

aggressive evaporation of volatile species during pyrolysis. Increasing the pyrolysis temperature 

to 1100°C resulted in rougher surface and pyrolysis above 1200°C resulted in the formation of 

pitting, due to the vaporization of the native silicon oxide at high temperatures, similarly to those 

observed by Chan et al.  
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 X-ray diffraction (XRD) was used to investigate the crystallinity of the films prepared by 

pyrolysis of polyborazylene and is shown in Figure 1.4.6. It was found that at 900°C, the BN 

(002) peak near 26° 2ɗ was very broad, indicating a nearly amorphous structure. At 1100°C 

however, the BN (002) peak became narrower and stronger in intensity, indicating that the film 

pyrolyzed at 1100°C is more crystalline than the film pyrolyzed at 900°C. A d-spacing of 3.48Å 

was found, which is slightly larger than the d-spacing of well ordered hexagonal boron nitride 

reported at 3.33Å,
54

 indicating a turbostratic structure. 

 

 

 

Figure 1.4.6: XRD pattern of BN film pyrolyzed from spin-coated 

polyborazylene indicate an improvement in crystallinity upon increasing 

pyrolysis temperatuers from (a) 900°C to (b) 1100°C.
55
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 Secondary ion mass spectrometry (SIMS) was used to study the chemical composition of 

these films. For the samples pyrolyzed at 900°C, N/B ratios of ~0.75 were obtained, showing a 

boron-rich stoichiometry. Additionally, it was found that the silicon and boron atoms were inter-

diffused in a region of thickness ~0.15µm for the 900°C samples, and a very broad region of 

thickness ~0.90µm for the 1000°C films.
55

 It was found that films deposited on the SiO2/Si 

substrates did not have the inter-diffusion region. Figure 1.4.7 shows the SIMS depth profile of a 

900°C sample and the cross-sectional TEM image of an 1100°C sample. From the electron 

diffraction patterns obtained during cross-sectional TEM, the film was verified to be 

turbostratic.
55

 

 

 

Figure 1.4.7: (a) SIMS depth profile of BN film prepared from spin coated 

polyborazylene film at 900°C on Si shows a boron-rich stoichiometry and inter-

diffusion of Si and B atoms. (b) Cross-sectional TEM image of BN film prepared 

from spin coated polyborazylene film at 1100°C on Si showing inter-diffusion of 

Si and B atoms over a ~0.9µm thick region.
55
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 Growth of boron nitride from a polyborazylene precursor was also demonstrated on 

nickel substrates by Shi et al.
31

  Here, borazine was used as the precursor to polyborazylene 

deposition at 400°C on polycrystalline Ni foils in an ambient background pressure of N2.
31

 

Following deposition of polyborazylene at 400°C, a post-growth anneal was performed to 

facilitate dehydrogenation of the polyborazylene to yield h-BN. The samples were heated at a rate 

of 5°C/min to a temperature of 1000°C and maintained at this temperature for 1 hr. Thickness 

was dependent on the polyborazylene deposition time and the flow rate of borazine into the tube 

furnace, where a borazine flow rate of 1 sccm for 30 minutes and 10 sccm for 1 hour resulted in a 

final h-BN thickness of 5nm and 50nm, respectively.
31

 Figure 1.4.8 shows the XRD and TEM 

results from a 50nm and 5nm, respectively, h-BN film prepared by polyborazylene deposition and 

subsequent annealing.  

 

 

Figure 1.4.8: (a) XRD spectra of an h-BN film grown on a nickel substrate 

showing a sharp (002) peak indicating high crystallinity. (b) Plan-view TEM of a 

wrinkle shows a cross-sectional view, providing the d-spacing and layer 

thickness. (c) Plan-view TEM showing h-BN surface and crystallinity.
31
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 XRD analysis shows a sharp (002) peak with high intensity, indicating that the h-BN 

films are highly crystalline. Some areas of the h-BN film transferred to the holey carbon grid had 

tears or wrinkles which folded upwards to reveal the cross-section of the film. Here, a d-spacing 

of 3.50Å was found, which is slightly greater than that reported for bulk h-BN (3.33Å), although 

the d-spacing found from the XRD analysis was 3.30Å. Plan-view TEM shows a single crystal h-

BN domain with a high degree of order and an in-plane lattice spacing of 2.50Å, in good 

agreement with the reported bulk value for h-BN.
54

 XPS was used to characterize the 

stoichiometry of the 5nm thick sample and indicates a B/N ratio of 1.12. A large oxygen peak 

was present in the XPS spectra, indicating high oxygen content, although the exact concentration 

was not reported. Fourier transfer infrared (FTIR) and Raman spectroscopy of the 50nm thick 

sample (used for a stronger signal) also show indicative peaks associated with h-BN.
31

 

 In summary, through a dehydropolymerization process, polyborazylene has been shown 

to be a suitable precursor to boron nitride films on various substrates. Growth has been 

demonstrated to proceed from spin coating substrates with polyborazylene directly as well as 

through CVD methods where polyborazylene is deposited from a borazine vapor source. In both 

cases, boron nitride films of excellent chemical yield have been obtained. However, inter-

diffusion of silicon and boron remains an issue for growth on Si substrates, and B-rich films 

appear to be a common problem in synthesis of h-BN from polyborazylene. 

 

 

1.5: Fundamental Properties and Snythesis of Graphene 

 

 Graphene is a zero-gap semiconductor composed of a single monolayer of sp
2
 bonded 

carbon and is a material of increasing interest to the scientific and technical communities. Due to 

its linear electronic band structure, charge carriers behave as relativistic particles having zero 
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effective mass.
57,58

 Consequently, graphene demonstrates many exceptional properties including 

high electron and hole mobilities (theoretically >200,000 cm
2
V

-1
s

-1
),

59,60
 high thermal 

conductivity (>5x10
3
 Wm

-1
K

-1
),

61
 and high saturation current/velocity (>3x10

7
cm/s).

62
 Proven 

applications include radio-frequency (RF) field-effect transistors (FETs) and transparent 

conductors.
63,64

 Additionally, graphene exhibits a symmetric, ambipolar field effect that makes it 

attractive for use as an RF mixer.
65

 Table 1.5.1 details various electronic properties of graphene 

compared to several commonly used semiconductors. 

 

Table 1.5.1: Comparison of various electronic properties of graphene and 

common semiconductors.
60

 

Property Si Ge GaAs AlGaN/GaN 2DEG Graphene 

Eg at 300K (eV) 1.1 0.67 1.43 3.3 0 

m*/me 1.08 0.55 0.067 0.19 0 

µe at 300K (cm
2
/V-s) 1350 3900 4600 1500-2000 ~200,000 

vsat (x10
7
 cm/s) 1 0.6 2 3 ~4 

 

 

 Synthesis of graphene is accomplished by several methods. The earliest report of isolated 

graphene was obtained by Geim and Novoselov in 2004 through the mechanical exfoliation of 

highly oriented pyrolitic graphite (HOPG).
57

 This technique produces the highest quality 

graphene, resulting in the highest reported mobilities. However, due to the size limitations of 

these flakes (usually no more than 10µm across), this technique is not suitable for large scale 

industrial applications. Large area graphene of high quality has also been achieved through 

chemical vapor deposition (CVD) on transition metals such as Ni(111) and Cu(111).
66,67

 

However, the interaction with graphene and the conductive substrate results in a high level of n-

type doping and degradation of grapheneôs electronic properties. Therefore, a solution based 

transfer of the graphene film from the transition metal to an insulating substrate is required and 
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can induce pinholes, tears, and wrinkling into the final graphene film. Chemical vapor deposition 

of graphene onto sapphire has also been demonstrated.
68

 This method however usually results in 

thick graphitic films. Finally, graphene can be formed on silicon carbide (SiC) via the sublimation 

of silicon at high temperatures and the subsequent rearrangement of the remaining carbon atoms 

into graphene. Known as ñepitaxial grapheneò (EG), this technique has been shown to produce 

uniform, large area, and high quality graphene for high frequency applications with an intrinsic 

current gain cutoff frequency (fT) approaching 300GHz.
69

 However, degradation of epitaxial 

grapheneôs electronic properties is induced from step-edges of the SiC substrate. For this thesis, 

h-BN integration with graphene is confined to quasi-freestanding epitaxial graphene (QFEG) and 

CVD graphene transferred from transition metals. Therefore, this literature review will only focus 

on these two synthesis methods. 

 

 

 1.5.1: Growth of Epitaxial Graphene 

 

Graphene growth via sublimation proceeds through the thermal desorption of silicon 

atoms and the subsequent rearrangement of the residual carbon atoms. The carbon required to 

produce one layer of graphene is equivalent to approximately three bi-layers of SiC.
70

 

Sublimation is generally performed at high vacuum or in a background of inert gas at 

temperatures between 1200-1800°C. Graphene ů-states begin to appear in photoemission spectra 

at growth temperatures as low as 1100ÁC, though ˊ-bands do not appear until 1250-1300°C.
70

 

Epitaxial graphene synthesis via the thermal desorption of silicon from SiC is generally 

performed in either an ultra-high vacuum (UHV) chamber via direct current resistive heating, or 

in a RF induction furnace. The benefit of the UHV chamber is that in-situ characterization 

techniques, such as LEED and scanning tunneling microscopy (STM) can be easily incorporated 
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with the system to monitor graphene formation.
71

 The RF furnace, on the other hand, is useful 

because hydrogen etching (which is universally used prior to graphene synthesis to remove 

polishing damage) can be performed in the same chamber without the need for a second system.
71

 

In addition, van der Pauw Hall effect measurements indicate that graphene produced in the RF 

furnace generally show higher carrier mobilities than UHV produced material.
71

 Typically, SiC is 

etched at atmospheric pressure for 5-30 minutes at 1500-1600°C under 5-10% hydrogen and 90-

95% argon.
71,72

 Similar basic growth mechanisms are observed from group to group. Synthesis of 

graphene from the sublimation of SiC can be done on either the silicon terminated face 

(SiC(0001)) or the carbon terminated face (SiC(0001)) of SiC. The mechanisms of graphene 

formation on these two polar faces are significantly different.
70,71,73

  

Graphene growth on the Si-face is much slower compared to the C-face, and is 

considered to limit itself to one to a few layers.
70,73

 The number of graphene layers grown on the 

Si-face is sensitive to the growth temperature and relatively independent of the growth time.
70

 In 

addition, graphene grown on the Si-face is rotated 30° relative to the substrate while C-face 

grown graphene may have multiple orientational phases.
70,73

 According to Tromp et al,
74

 when 

heating the SiC substrate, the Si-face goes through a sequence of surface reconstructions as 

shown in Equation 1.5.1.  

 

● ᴼ ●
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Equation 1.5.1
74 

 

 

These surface transitions have been verified through STM and LEED.
70,73

 Upon heating 

above 1200ÁC, the (6ã3x6ã3)R30 reconstruction phase (which will be abbreviated as (6ã3)) 

appears. This layer is believed to contain a mixture of sp
2
 and sp

3
 bonded carbon (and up to 30% 
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Si adatoms) and is the precursor to graphene formation on the Si-face
70,73,75,76

 Graphene grows 

epitaxially, rotated 30Á and commensurate to the (6ã3) periodicity.
70

 Subsequent graphene layers 

then follow a regular AB Bernal stacking sequence, i.e. two graphene sheets on top of each other 

with one rotated 60° about the z-axis, which is the most common stacking arrangement of 

graphite.
70

 

The interaction between the substrate and the (6ã3) reconstruction results in a distortion 

of the ˊ-bands that induce a band gap.
70,75

 As a result, this 6ã3 ñbufferò layer grown on the Si-

face does not show the relativistic properties of graphene. The linear dispersion of the band 

structure (characteristic of isolated graphene) only appears when the second layer is formed. It is 

believed that the silicon atoms bound to the (6ã3) reconstruction have unsatisfied dangling bonds 

which influences and degrades the electronic properties of the initial graphene layer and also 

explains the high degree of order between the substrate and graphene.
75,77

 This layer is covalently 

bonded to the SiC substrate and induces charge into the subsequent graphene layers, which 

become heavily n-doped (nҒ1x10
13

cm
-2
).

76
 Therefore, graphene on the Si-face tends to have lower 

mobilities compared to C-face growth, where the graphene layers are weakly bound to the 

substrate and do not exhibit Bernal stacking (discussed later).
70,75

  

There is significant evidence that suggests that graphene nucleation on the Si-face occurs 

along the (1100) plane, which is the terrace step edge on the SiC(0001) face.
78,79

 The amount of 

carbon required to produce one layer of graphene is contained in approximately three bi-layers of 

SiC.
70,78

 In addition, different steps of SiC have different desorption rates, leading to a ñstep 

bunchingò effect that results in a roughened SiC surface, and thus a rough graphene film.
78

 The 

receding step mechanism is shown in Figure 1.5.1.  
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Figure 1.5.1: Formation process (from left to right) of graphene via the retraction 

of 3 bi-layer SiC steps. Steps having different retraction speeds lead to step 

bunching and consequent graphene islands and ñfingersò.
78

 

 

 

Robinson et al showed through TEM analysis that graphene grows significantly thicker 

on the (1100) step edges and does not seem to have a thickness limit, as shown in Figure 1.5.2.
79

 

The graphitic Bernal stacking at these locations would compromise the 2D properties of 

graphene, causing local areas of decreased mobility. In addition, these areas are believed to 

contain a higher density of structural defects compared to growth on the (0001) plane. Therefore, 

these local areas of thicker material degrade the electronic properties of the entire film.
79
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Figure 1.5.2: TEM micrographs of graphene on the (1100) step edge of SiC at 

1425°C. a) Layer thickness appears to not be self-limiting from this face. b) 

Graphene layer termination suggests that the formation of graphene from step 

edges is the result of step erosion. c) Growth defects which produce 

discontinuous regions within a graphene layer.
79

 

 

 

Unlike graphene growth on the Si-face, C-face (SiC(0001)) sublimation is not self-

limiting and occurs at much faster rates where the thickness increases with both time and 

temperature.
70

 C-face surface reconstruction is not well understood and the surface is believed to 

contain a mixture of domains (such as (2x2), (3x3), and (ã3xã3)) prior to graphene production.
70

 

Above 1200°C, the hexagonal graphene LEED pattern is fully developed, and like Si-face 

growth, is rotated 30° relative to the SiC surface.
70

 However, there is no evidence of a 

(6ã3x6ã3)R30 diffraction pattern.
70,75

 Due to the lack of the (6ã3) surface reconstruction, the 

interaction between the graphene and the SiC(0001) face is much weaker than the respective 

interaction on the Si-face.
75

 In addition, the stacking between graphene layers does not follow the 


