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Abstract

Given a formal deformation of an algebra, Getzler defined a connection on the
periodic cyclic homology of the deformation, which he called the Gauss-Manin
connection. We define and study this connection for smooth one-parameter defor-
mations. Our main example is the smooth noncommutative n-torus AΘ, viewed as
a deformation of the algebra C∞(Tn) of smooth functions on the n-torus. In this
case, we use the Gauss-Manin connection to give a parallel translation argument
that shows that the periodic cyclic homology groups HP•(AΘ) are independent of
the parameter Θ. As a consequence, we obtain differentiation formulas relating
various cyclic cocycles on AΘ.

We generalize this to a larger class of deformations, including nontrivial crossed
product algebras by the group R. The algebras of such a deformation extend nat-
urally to differential graded algebras, and we show that they are fiberwise isomor-
phic as A∞-algebras. In particular, periodic cyclic homology is preserved under
this type of deformation. This clarifies and strengthens the periodic cyclic ho-
mology isomorphism for noncommutative tori, and gives another proof of Connes’
Thom isomorphism in cyclic homology.
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Chapter 1
Introduction

1.1 Motivation and background

1.1.1 Noncommutative tori

The motivating examples for this work are noncommutative tori [30]. The non-

commutative 2-torus with parameter θ ∈ T = R/Z is the universal C∗-algebra Aθ

generated by two unitary elements u and v subject to the relation

vu = e2πiθuv.

When θ = 0, A0
∼= C(T2), the C∗-algebra of continuous functions on the 2-

torus. In this way, one views Aθ as the algebra of continuous functions on some

“noncommutative space,” as in the philosophy of Connes [6]. The algebra Aθ is

also called the rotation algebra with angle θ, because it can be expressed as a

crossed product

Aθ ∼= C(T) oRθ Z,

where Rθ is the automorphism of C(T) induced by a rotation of angle θ.

The noncommutative tori form an interesting family of algebras due to their

erratic dependence on θ. For example, Aθ1 is isomorphic to Aθ2 if and only if

θ1 = θ2 or θ1 = 1 − θ2. The C∗-algebra Aθ is simple if and only if θ is irrational,

and Aθ has a unique tracial state if and only if θ is irrational. Another striking

difference is the embeddability of Aθ into an AF -algebra when θ is irrational [27].
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Rieffel [29] proved that for every α ∈ (Z+Zθ)∩ [0, 1], there is a projection in Aθ of

canonical trace α. This is in stark constrast to the commutative torus A0
∼= C(T2),

which contains no nontrivial projections.

K-theory for C∗-algebras played a large role in the classification of noncommu-

tative tori. The six-term exact sequence of Pimsner and Voiculescu [26] allows one

to calculate the K-theory groups of Aθ by taking advantage of the crossed product

structure. For any θ, we have

Ki(Aθ) ∼= Z⊕ Z, i = 0, 1,

so that the K-theory of a noncommutative torus is the same as the K-theory of

the commutative torus T2.

So we know that the K-theory of Aθ is independent of θ because it has been

calculated separately for each θ. This is somewhat unsatisfactory, because the col-

lection of C∗-algebras {Aθ} vary continuously in θ in some sense, and one would

like to take advantage of this continuity to argue that K-theory is rigid as θ varies.

Indeed, the collection {Aθ} form a continuous field of C∗-algebras, and if AJ de-

notes the sections of this field over a contractible subset J ⊂ T, then the evaluation

homomorphisms AJ → Aθ induces isomorphisms at the level of K-theory [8]. This

is an improvement in the sense that it gives canonical isomorphisms

K•(Aθ1) ∼= K•(Aθ2),

for any θ1, θ2 ∈ T. However, the proof still relies on the crossed product structure,

and it is not clear how one could generalize to other deformations that lack this

structure.

Our investigation into a more satisfactory explanation of this rigidity shall

be in the context of cyclic homology, rather than K-theory. Cyclic homology

was discovered independently by Connes [5] and Tsygan [34], see also [22]. It

can be viewed as a noncommutative analogue of de Rham cohomology. As de

Rham cohomology is defined in terms of a smooth structure, one does not typically

consider a C∗-algebra here, but rather a certain dense subalgebra which is thought

of as the algebra of smooth functions on the noncommutative space. Periodic cyclic

homology is a variant of cyclic homology that assigns to an algebra A two vector
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spaces HP0(A) and HP1(A). Connes showed [5] that if one considers C∞(M), the

algebra of smooth functions on a smooth compact manifold M , then

HPi(C
∞(M)) ∼=

⊕
k≥0

H i+2k
dR (M), i = 0, 1,

where Hj
dR(M) is the j-th de Rham cohomology group of M . Here, one is con-

sidering C∞(M) with its natural Fréchet topology and using a version of periodic

cyclic homology for topological algebras.

For noncommutative tori, the appropriate dense subalgebra is a Schwarz com-

pletion Aθ of the subalgebra generated by u and v, as in [5] or [23]. In the com-

mutative case θ = 0, this is exactly the Fréchet algebra C∞(T2). As first shown

by Connes on the cohomology side [5],

HPi(Aθ) ∼= C⊕ C, i = 0, 1.

Thus by explicit calculation for each θ, we see that HP•(Aθ) does not depend on

θ. One goal of this thesis is to prove this independence of θ using deformation-

theoretic ideas.

1.1.2 Deformation theory

Let V be a vector space and let {mt : V ⊗ V → V } be a family of associative

multiplications depending on a parameter t. It is natural to ask what properties,

if any, the algebras {At := (V,mt)} have in common. We shall call such a family

{At} a deformation of algebras. To get some amount of control, we shall insist that

the family {mt} has some suitable dependence on the parameter t, for example

continuous, smooth, analytic, or polynomial. One way to make this rigorous is

to consider vector spaces V that have a topology compatible with their linear

structure.

1.1.2.1 Formal deformations

The first significant progress in the general study of deformations of algebras was

made in the pioneering work of Gerstenhaber [11]. Instead of actual families of



4

products, Gerstenhaber considered formal deformations. A formal deformation of

an algebra A is given by a formal power series

a ∗t b = ab+
∞∑
n=1

tnFn(a, b), a, b ∈ A,

where Fn ∈ Hom(A⊗A,A), such that ∗t is associative after extension by t-linearity.

Since there is no topology or assumption of convergence, one cannot specialize to

specific values of the parameter t, with the exception of t = 0, in which one recovers

the original product of A. Gerstenhaber showed that such deformations are “con-

trolled” by the Hochschild cohomology H•(A,A). For example, the “infinitesimal”

F1 is always a Hochschild 2-cocycle, and if [F1] = 0 ∈ H2(A,A), then the defor-

mation is equivalent to a deformation for which the infinitesimal vanishes (but not

the higher order terms.) By iterating this result, it follows that if H2(A,A) = 0,

then every formal deformation of A is equivalent to the trivial deformation

a ∗t b = ab.

Such an algebra that admits no nontrivial deformations is called (formally) rigid.

The deformation philosophy of Gerstenhaber extends to deformations of other

types of objects. For example, commutative deformations of commutative algebras

are controlled by the Harrison cohomology [20]. Lie algebra deformations are

controlled by the Lie algebra cohomology [25]. Deformations of a cochain complex

(C•, d) are controlled by the cohomology of the complex Hom(C•, C•).

1.1.2.2 Smooth deformations and connections

All the types of deformations we consider will be deformations of algebraic objects

in the category of vector spaces, e.g. algebras, chain complexes, and differential

graded (co)algebras. Instead of considering formal deformations, we shall consider

families of these structures on a single locally convex vector space X that depend

smoothly in some sense on a real parameter. For example, the underlying vector

space of the smooth noncommutative torus Aθ is the Schwartz space S(Z2), and

the map

θ 7→ mθ(x, y)
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is smooth for all x, y ∈ S(Z2), where mθ denotes the multiplication of Aθ.
Our approach to proving rigidity of a deformation (i.e. proving all objects in the

deformation are isomorphic) uses the tools of connections and parallel translation.

To be concrete, let us describe the case of deformations of algebras. Suppose

{At = (X,mt)}t∈J is a smooth one-parameter deformation of algebra structures

on X depending on t ∈ J , where J is an open subinterval of R. We can think of

this collection as a bundle of algebras over the parameter space J . As a bundle

of vector spaces, it is trivial, but the multiplication is changing smoothly as we

pass from one fiber to another. The central object of study will be the algebra of

smooth sections of this bundle A = C∞(J,X), with product given by

(a1a2)(t) = mt(a1(t), a2(t)), a1, a2 ∈ A.

The algebra A also has a C∞(J)-module structure given by pointwise scalar mul-

tiplication.

By a connection1 on A, we mean a C-linear map ∇ : A→ A such that

∇(f · a) = f ′ · a+ f · ∇(a), ∀f ∈ C∞(J), a ∈ A.

Notice that the definition only uses the C∞(J)-module structure, and not the

algebra structure. A connection allows us the possibility of linearly identifying the

fibers {At} of our bundle via parallel translation. To do this for all fibers, one

needs the existence and uniqueness of global solutions to the equations

∇a = 0, a(t0) = a0

for every t0 ∈ J and a0 ∈ At0 . As every connection has the form

∇ =
d

dt
+ F

for some C∞(J)-linear endomorphism F of A, this amounts to solving linear ordi-

nary differential equations with values in the locally convex vector space X. Once

1In more traditional language, this is the covariant derivative of a connection in the only
available direction of our one-dimensional base space J .
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one considers spaces more general than Banach spaces, this may not be possible

to do.

Now a priori, the parallel transport isomorphisms are only linear isomorphisms

because ∇ has no compatibility with the product of A. To ensure that they are

algebra isomorphisms, we need to choose a connection that interacts nicely with

the product. The appropriate type of connection turns out to be one that is a

derivation, so that

∇(a1a2) = ∇(a1)a2 + a1∇(a2), ∀a1, a2 ∈ A.

For this type of connection, the parallel transport maps are necessarily algebra

isomorphisms, provided they exist. Such connections do not always exist, as we

should expect because there are many nontrivial algebra deformations. The prob-

lem of the existence of such a connection is a problem in Hochschild cohomology

that is a smooth manifestation of Gerstenhaber’s formal results. Given any connec-

tion ∇ on A, for example ∇ = d
dt

, one can consider the bilinear map E : A×A→ A

defined by the equation

∇(a1a2) = ∇(a1)a2 + a1∇(a2) + E(a1, a2).

One can check that E is C∞(J)-bilinear Hochschild 2-cocycle, and moreover the

class [E] ∈ H2
C∞(J)(A,A) is independent of the choice of ∇. Using the classification

of all connections on A, it follows that A possesses a connection that is a derivation

if and only if [E] = 0. This element E can be thought of as a smooth family of

Hochschild 2-cocycles

Et : At ⊗ At → At,

each of which represents the “infinitesimal” of the deformation at t. To say [E] =

0 is to say all directions Et are cohomologically trivial in a way that smoothly

depends on t. Flowing along the t-dependent vector fields

Ft : At → At, δFt = Et,

if possible, identifies our deformation with the trivial deformation.

Now if {Bt}t∈J is a smooth one-parameter deformation of some other type of
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algebraic structure with the same underlying vector space X, we take the same

general approach. We “glue” the structures fiberwise to get a C∞(J)-linear struc-

ture of the same type on the C∞(J)-module B = C∞(J,X). Then we consider

a connection on B that is compatible with the additional structure, so that its

parallel transport maps respect that structure.

So we have two nontrivial steps in proving the triviality of a deformation:

(R1) Find a connection that is compatible with the additional structure of the

fibers {Bt}.

(R2) Prove the existence and uniqueness of solutions to the corresponding parallel

translation differential equations.

There is typically a cohomological obstruction to the existence of such a connection

that parallels Gerstenhaber’s formal deformation philosophy, as we saw in the case

of algebras. As we have already mentioned, it is a nontrivial problem to solve

the corresponding parallel translation differential equations. If this is possible, we

shall say the connection ∇ is integrable. So we have both analytic and algebraic

obstructions to this executing this method.

1.1.2.3 The Gauss-Manin connection

Suppose {At}t∈J is a smooth one-parameter deformation of algebras. Then the

corresponding periodic cyclic chain complexes {Cper(At)}t∈J form a smooth one-

parameter deformation of chain complexes. The appropriate notion of a compatible

connection here is a chain map. Using a calculus of Lie derivative and contraction

operators on the periodic cyclic chain complex, Getzler showed that there always

exists a connection ∇GM for the deformation {Cper(At)}t∈J that is a chain map

[12]. Thus, the obstruction to (R1) always vanishes for this deformation of chain

complexes. If one can prove∇GM is integrable, then one obtains parallel translation

isomorphisms

HP•(At1) ∼= HP•(At2), ∀t1, t2 ∈ J.

However, there are many deformations for which periodic cyclic homology is not

preserved. For example, any algebra can be smoothly deformed into a trivial



8

algebra by considering the deformed product

mt(a, b) = t(ab)

and letting t go to 0. Thus, one can expect to encounter analytic difficulties in

general from the resulting differential equations.

Even in somewhat simple examples, it seems rather unlikely that one could

integrate the Gauss-Manin connection at the level of complexes, due to the general

form that∇GM takes. Doing this would identify the periodic cyclic chain complexes

of any two fibers

Cper(At1) ∼= Cper(At2)

as isomorphic complexes, and this is a stronger result than we desire. Instead, we

could ask that ∇GM be integrable at the level of homology, in the following sense.

If A denotes the algebra of sections of {At}t∈J , then the periodic cyclic chain

complex C
C∞(J)
per (A) over the ground ring C∞(J) is the chain complex of sections

of the deformation {Cper(At)}t∈J . The Gauss-Manin connection is a chain map on

C
C∞(J)
per (A), and so descends to a connection on the C∞(J)-module HP

C∞(J)
• (A).

We’ll say ∇GM is integrable at the level of homology if for every t0 ∈ J and

[ω0] ∈ HP•(At0), there exists a unique solution [ω] ∈ HPC∞(J)
• (A) to

∇GM [ω] = 0, [ω(t0)] = [ω0].

Having this level of integrability is enough to construct parallel transport isomor-

phism

HP•(At1) ∼= HP•(At2).

1.2 Main results

1.2.1 Integrating ∇GM

In Chapter 4, we study the Gauss-Manin connection ∇GM for the deformation of

noncommutative tori, and prove the following result.

Theorem. The Gauss-Manin connection associated to the deformation {Aθ}θ∈R
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is integrable at the level of homology.

The proof is a little indirect. As the Gauss-Manin connection is difficult to

work with on the whole periodic cyclic chain complex, we first replace it with a

smaller chain equivalent complex.

Let A denote the algebra of sections of the deformation {Aθ}θ∈R of noncom-

mutative 2-tori. This deformation has the property that

d

dθ
(a1a2) =

d

dθ
(a1)a2 + a1

d

dθ
(a2) +

1

2πi
X(a1)Y (a2), ∀a1, a2 ∈ A,

where X, Y are commuting derivations on A. The obstruction class

[E] = [
1

2πi
X ^ Y ] ∈ H2

C∞(J)(A,A)

is nontrivial, though it has a specific form that we take advantage of.

Let g be the two-dimensional abelian Lie algebra spanned by X and Y . We

form a g-invariant periodic cyclic chain complex Cg
per(Aθ), which is easier to work

with. Using the fact that the action of g on Aθ is the infinitesimal of an action of

the Lie group T2 by automorphisms, we show that Cg
per(Aθ) is chain equivalent to

Cper(Aθ), so that it suffices to work in the g-invariant setting.

The collection of operators { d
dθ
, X, Y } on A generate a commutative Hopf al-

gebra H, which naturally acts on both Cper(A) and Cg
per(A). The action of the

element d
dθ

gives another connection ∇̃ on these complexes, and ∇̃ commutes with

the boundary map in the g-invariant case. It turns out to be fairly straightforward

to solve the differential equations to show that ∇̃ is integrable on the complex

Cg
per(A). Using certain homotopy formulas as in [12], we show that ∇̃ − ∇GM is

nilpotent as an operator on HP g
• (A) ∼= HP•(A). From this, we see that ∇GM is

integrable as well.

Now the integrability of ∇̃ is enough to prove that HP•(Aθ) is independent of θ,

so it may seem unnecessary to continue the argument for the integrability of ∇GM .

However, by doing so we gain some understanding of the deformation of the pairing

between K-theory and cyclic cohomology. Let A denote the algebra of sections of

any smooth one-parameter deformation of algebras {At}. An idempotent P ∈ A
determines a cycle chP ∈ HP0(A), and this gives a well-defined Chern character
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homomorphism

ch : K0(A)→ HP0(A),

where K0(A) denotes the algebraic K-theory group of A [21, Chapter 8]. The

pairing

〈·, ·〉 : HP 0(A)×K0(A)→ C

is defined in terms of the usual pairing HP 0(A)×HP0(A)→ C by

〈[ϕ], [P ]〉 = 〈[ϕ], [chP ]〉.

Now, there exists a cohomological Gauss-Manin connection ∇GM on HP •(A) sat-

isfying
d

dt
〈[ϕ], [ω]〉 = 〈∇GM [ϕ], [ω]〉+ 〈[ϕ],∇GM [ω]〉.

It is shown (Corollary 4.3.2) that

∇GM [chP ] = 0 ∈ HP0(A)

for any idempotent P . Thus we obtain the differentiation formula

d

dt
〈[ϕ], [P ]〉 = 〈∇GM [ϕ], [P ]〉.

In the case of noncommutative tori, where we can compute with ∇GM , this gives

information about the values of this pairing without any knowledge of the group

K0(Aθ).

1.2.2 An A∞-isomorphism

Consider any smooth one-parameter deformation {At}t∈J whose algebra of sections

A satisfies

d

dt
(a1a2) =

d

dt
(a1)a2 + a1

d

dt
(a2) +

1

2πi
X(a1)Y (a2), ∀a1, a2 ∈ A, (1.1)

where X and Y are commuting C∞(J)-linear derivations on A. This is the most

crucial feature of the deformation of noncommutative tori used in Chapter 4. Of
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secondary importance, in that case, is the fact that X and Y come from a group

action of T2. The proof of integrability of the Gauss-Manin connection could be

generalized to all deformations having these two features. In Chapter 5, we give

an improved argument that proves invariance of periodic cyclic homology under

such a deformation, where we need not assume that X and Y exponentiate to give

a T2-action.

An interesting example is when one has a Fréchet algebra B and an action

α : R → Aut(B) which is smooth in some sense. Then, as in [9], one can form

the smooth crossed product B oα R. For any t ∈ R, we can define a rescaled

action αt by αt(s) = α(ts). Letting At = B oαt R, one can check that {At}
is a smooth deformation of the trivial crossed product A0

∼= S(R)⊗̂B into the

nontrivial crossed product A1 = B oα R. Then this deformation has commuting

derivations X and Y for which (1.1) is satisfied, but X and Y do not come from

a T2-action.

For an arbitrary algebra A with two commuting derivations X and Y , we can

form the Chevalley-Eilenberg cochain complex

Ω•(A) := A⊗ ∧•g∗,

where g is the Lie algebra spanned by X and Y . Then Ω•(A) is a nonnega-

tively graded differential graded algebra (DGA) with the property that Ω0(A) =

A. Working in the context of a deformation satisfying (1.1), we can form this

DGA fiberwise, and so we obtain a smooth one-parameter deformation of DGAs

{Ω•(At)}t∈J . The DGA of sections Ω•(A) of this deformation satisfies

d

dt
(ωη) =

d

dt
(ω)η + ω

d

dt
(η) +

1

2πi
LX(ω)LY (η), ∀ω, η ∈ Ω•(A),

where LX and LY are Lie derivative operators coming from the natural extension

of the action of g to Ω•(A). On Ω•(A) there are also contraction operators ιZ for

all Z ∈ g satisfying the Cartan Homotopy Formula

[d, ιZ ] = LZ ,

where d is the differential on Ω•(A). It follows that LX and LY are chain homo-
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topic to zero, and so the connection d
dt

is a derivation “up to homotopy.” So one

could expect parallel translation maps induced by such a connection to be algebra

isomorphisms “up to homotopy.”

What is meant here can be made precise in the language of Stasheff’s A∞-

algebras [32], see also [13]. An A∞-algebra is a generalization of an algebra in

which associativity is only required to hold up to homotopy. Additionally, an A∞-

algebra satisfies a whole sequence of “higher homotopies.” A particular example

of an A∞-algebra is a DGA, and so we can view our deformation {Ω•(At)}t∈J as a

deformation of A∞-algebras. The main result of Chapter 5 is that this deformation

is trivial in the A∞-category.

Theorem. For any t1, t2 ∈ J , Ω•(At1) and Ω•(At2) are isomorphic as A∞-algebras.

This is remarkable because we cannot expect the fibers to be isomorphic as

DGAs, as we can see by considering the noncommutative tori example. The iso-

morphism is constructed by parallel transport along a suitable connection. By

adding to the connection d
dt

a suitable homotopy operator, we obtain a connec-

tion that is compatible with the A∞-structure. That this connection exists means

that the obstruction to (R1) vanishes in the A∞-category. It is easily seen to be

integrable, as it is a locally nilpotent perturbation of d
dt

.

Getzler and Jones extended the theory of cyclic homology to A∞-algebras in

[13]. This shows that the periodic cyclic homology groups HP•(Ω
•(At)) are inde-

pendent of t. As shown in [14], there is an isomorphism

HP•(Ω
0) ∼= HP•(Ω

•)

for any nonnegatively graded DGA Ω•.

Corollary. For any smooth one-parameter deformation {At}t∈J satisfying (1.1),

the periodic cyclic homology groups HP•(At) do not depend on t.

This gives another computation of periodic cyclic homology of noncommutative

tori. By considering the smooth crossed product example, it gives a proof of the

Thom isomorphism [9]

HP•(B) ∼= HP•+1(B oα R),
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when combined with the fact that HP•(B) ∼= HP•+1(S(R)⊗̂B).

It would be interesting to use the results to Chapter 5 to prove that K•(At)

is independent of t for these types of deformations. To do this, one would need a

suitable version of K-theory designed for A∞-algebras with the property that

K•(Ω
•) ∼= K•(Ω

0)

for any nonnegatively graded DGA Ω•. To our knowledge, no such theory has been

developed yet.



Chapter 2
Preliminaries

2.1 Locally convex topological vector spaces

We review standard facts about locally convex topological vector spaces. More

details and proofs of most facts asserted can be found in [33]. See [15] and [16] for

more details concerning projective and inductive tensor products.

2.1.1 Basics

All vector spaces in this thesis are over the ground field C. Recall that a seminorm

on a vector space X is a function p : X → [0,∞) such that

(i) p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X.

(ii) p(cx) = |c|p(x) for all c ∈ C and x ∈ X.

If it is the case that p(x) = 0 if and only if x = 0, then p is a norm. Given a

collection {pα}α∈I of seminorms on X, the locally convex topology on X determined

by {pα}α∈I is the coarsest translation-invariant topology for which all of the pα are

continuous. A basis of 0-neighborhoods is obtained by taking finite intersections

of sets of the form

p−1
α [0, ε), α ∈ I, ε > 0.

Such an intersection always contains an open set of the form p−1[0, 1) for some

continuous seminorm p, which need not be in the collection {pα}α∈I .



15

Given a locally convex topology on X, we can consider the set S of all continu-

ous seminorms on X. By definition, the set S contains the original defining family

of seminorms, but it may be larger. However, the locally convex topology deter-

mined by the set S is the same as the given topology on X. So when convenient,

we may replace a defining family of seminorms by the collection of all continuous

seminorms.

A linear map F : X → Y between two locally convex topological vector spaces

is continuous if and only if for every seminorm qβ defining the topology on Y , there

is some continuous seminorm p on X (not necessarily from the defining family) such

that

q(F (x)) ≤ p(x), ∀x ∈ X.

A locally convex topology on X is Hausdorff if and only if the generating family

of seminorms {pα}α∈I separates points in X. That is, for every x ∈ X, there is

some α ∈ I for which pα(x) > 0. A net (xλ)λ∈Λ in X converges to x if and only if

pα(x− xλ)→ 0, as λ→∞

for each seminorm pα that defines the topology. A net (xλ)λ∈Λ in X is Cauchy if

pα(xλ − xλ′)→ 0, as λ, λ′ →∞

for each seminorm pα. The space X is complete if every Cauchy net converges in

X.

Every Hausdorff locally convex vector space X embeds as a dense subspace into

a complete Hausdorff locally convex space X̂ with the universal property that any

continuous linear map F from X into a complete Hausdorff locally convex space

Y induces a unique continuous linear map F̂ : X̂ → Y such that the diagram

X //

F
��

X̂

F̂
��

Y

commutes. The space X̂ is called the completion of X.
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A complete locally convex vector space whose topology is generated by a single

norm is a Banach space. A complete Hausdorff locally convex vector space whose

topology is generated by a countable family {pn}∞n=0 of seminorms is a Fréchet

space. By replacing pn with pn
′ =

∑n
i=0 pi, we can always assume the topology

of a Fréchet space is generated by a countable family {pn}∞n=0 of seminorms with

pn ≤ pn+1. Fréchet spaces are metrizable.

Example 2.1.1. Every vector space V can be given the locally convex topology

generated by the family of all seminorms on V . Clearly, this is the finest locally

convex topology on V . Among the seminorms on V are those of the form

p(v) = |ϕ(v)|

for some linear functional ϕ : V → C. Since the algebraic dual V ∗ separates points

of V , this topology is Hausdorff. One can show that every Cauchy net is eventually

contained in a finite dimensional subspace of V . Thus, the completeness of V with

respect to this topology follows from the completeness of finite dimensional vector

spaces.

Any linear map F from V into another locally convex topological vector space

X is continuous with respect to this topology on V . Indeed, if q is a seminorm

defining the topology on X, then p := q ◦F is a seminorm on V , hence continuous,

and we have

q(F (v)) = p(v), ∀v ∈ V.

We shall primarily work in the category LCTVS of complete Hausdorff locally

convex topological vector spaces with continuous linear maps. We shall write

X ∈ LCTVS to mean that X is a complete Hausdorff locally convex topological

vector space. Example 2.1.1 shows that the category of vector spaces and linear

maps is a full subcategory of LCTVS.
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2.1.2 Constructions in LCTVS

2.1.2.1 Direct products and bilinear maps

Given a countable collection {Xn}n∈Z ⊂ LCTVS, we can form the cartesian prod-

uct vector space ∏
n∈Z

Xn

equipped with the product topology. This topology is Hausdorff and locally convex:

if {p(n)
α }α∈In is a defining system of seminorms for Xn, then the collection

{p(n)
α ◦ πn}

of seminorms where n ranges over all integers and α ranges over all elements of

In defines this topology. Here, πn is the canonical projection onto the factor Xn.

We see that a net in
∏

n∈ZXn converges (is Cauchy) if and only if its projection

onto each Xn converges (is Cauchy) in Xn. Thus, completeness of
∏

n∈ZXn follows

from the completeness of each Xn. If each Xn is Fréchet, then
∏

n∈ZXn is Fréchet.

Given X, Y, Z ∈ LCTVS, a bilinear map B : X × Y → Z is jointly continuous

if it is continuous with respect to the product topology. It follows that for every

continuous seminorm r on Z, there exist continuous seminorms p and q on X and

Y such that

r(B(x, y)) ≤ p(x)q(y), ∀x ∈ X, y ∈ Y.

The bilinear map B is separately continuous if for every x0 ∈ X and every y0 ∈ Y ,

the maps

y 7→ B(x0, y), x 7→ B(x, y0)

are both continuous. Separate continuity is strictly weaker than joint continuity.

However, these notions coincide in the case where X and Y are both Fréchet spaces

[33, Chapter 34.2].
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2.1.2.2 Direct sums

Given a countable collection {Xn}n∈Z ⊂ LCTVS, we can form the algebraic direct

sum ⊕
n∈Z

Xn.

We equip the direct sum
⊕

n∈ZXn with the finest locally convex topology such

that the natural inclusions

Xk →
⊕
n∈Z

Xn

are continuous. For any sequence {pn}n∈Z, where pn is a continuous seminorm on

Xn, we define a seminorm p on
⊕

n∈ZXn by

p(
∑
n∈Z

xn) =
∑
n∈Z

pn(xn).

Since the sum on the left is actually finite, so is the sum on the right. The topology

on
⊕

n∈ZXn is the locally convex topology generated by all such seminorms. One

can check that the inclusions

ιk : Xk →
⊕
n∈Z

Xn

are continuous.

Proposition 2.1.2. (i) Given a family of continuous linear maps Fn : Xn → Y

where Y ∈ LCTVS, there is a unique continuous linear map F :
⊕

n∈ZXn →
Y such that

Xn
ιn //

Fn
$$

⊕
n∈ZXn

F
��

Y

commutes.

(ii) A linear map F :
⊕

n∈ZXn → Y is continuous if and only if Fn = F ◦ ιn :

Xn → Y is continuous for each n.

(iii) The space
⊕

n∈ZXn is complete if and only if each Xn is complete.
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2.1.2.3 Quotient spaces

Let X ∈ LCTVS and let Y ⊂ X be a linear subspace. Then we equip the quotient

vector space X/Y with the quotient topology. That is, we give X/Y the finest

topology such that the quotient map

π : X → X/Y

is continuous. Then one can show that the topology on X/Y is locally convex.

Given a seminorm p on X, we can define a seminorm p̄ on X/Y by

p̄(π(x)) = inf
y∈Y

p(x+ y).

As p varies over all continuous seminorms on X (not just from a defining family,)

the locally convex topology generated by all the p̄ coincides with the quotient

topology. The space X/Y is Hausdorff if and only if Y is a closed subspace. In

general, X/Y may not be complete even when Y is a closed subspace. However,

if X is a Fréchet space and Y is closed, then X/Y is a Fréchet space.

So the operation of taking quotients may force us out of our category LCTVS.

This will be unavoidable, as we shall eventually consider homology groups of the

form

ker dn/ im dn−1

for which we cannot say a priori that the image of dn−1 is closed.

If a continuous linear map F : X → Z vanishes on Y , then the induced linear

map

F̄ : X/Y → Z

is continuous.

2.1.2.4 Spaces of linear maps

For X, Y ∈ LCTVS, we write Hom(X, Y ) for the vector space of all continuous

linear maps from X to Y . There are several ways to make Hom(X, Y ) a topological

vector space, but we shall only consider the topology of uniform convergence on

bounded sets. Recall that a subset B ⊂ X is bounded if and only if p(B) is
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a bounded set of real numbers for each continuous seminorm p on X. Given a

bounded subset B ⊂ X and a continuous seminorm q on Y , we define a seminorm

qB on Hom(X, Y ) by

qB(F ) = sup
x∈B

q(F (x)).

The locally convex topology defined by this collection of seminorms is Hausdorff. If

X has the additional property of being bornological, then Hom(X, Y ) is complete

[33, Chapter 32]. We shall not go into detail here, but roughly the space X is

bornological if one can recover its topology from the collection of bounded subsets

of X. Examples of spaces that are bornological include Fréchet spaces and LF-

spaces.

An important example is the case where Y = C. Here, we shall write

X∗ = Hom(X,C),

the space of continuous linear functionals on X. Equipped with the topology

described above, we shall refer to X∗ as the strong dual of X. A continuous linear

map F : X → Y induces a linear map

F ∗ : Y ∗ → X∗

in the usual way, and this map is continuous with respect to the strong dual

topologies.

If X and Y are Banach spaces, then Hom(X, Y ) is a Banach space under the

operator norm

‖F‖ = sup
‖x‖≤1

‖F (x)‖.

This is one of the nice features of Banach spaces. For contrast, the strong dual

X∗ of a Fréchet space X is typically not even metrizable; it is if and only if X is

a Banach space.

A subset H ⊂ Hom(X, Y ) is equicontinuous if for every seminorm q defining

the topology on Y , there is a continuous seminorm p on X such that

q(F (x)) ≤ p(x), ∀F ∈ H, x ∈ X.
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In order to state the Banach-Steinhaus theorem, we introduce the technical notion

of a barreled space. Recall that a barrel is a closed, balanced, absorbing, convex

subset of a topological vector space [33, Definition 7.1]. A topological vector space

X is barreled if every barrel in X contains a neighborhood of 0. Every Fréchet space

is barreled. Strict inductive limits of barreled spaces are barreled, e.g. countable

direct sums of Fréchet spaces are barreled. The importance of barreled spaces

comes from the following theorem [33, Theorem 33.1].

Theorem 2.1.3 (Banach-Steinhaus theorem). Let X, Y ∈ LCTVS and let H ⊂
Hom(X, Y ). The following are equivalent:

(i) For every x ∈ X, {F (x) | F ∈ H} is a bounded subset of Y .

(ii) H is a bounded subset of Hom(X, Y ).

(iii) H is equicontinuous.

2.1.2.5 Projective tensor products

Given X, Y ∈ LCTVS, the (completed) projective tensor product is a space X⊗̂Y ∈
LCTVS equipped with a jointly continuous bilinear map

ι : X × Y → X⊗̂Y

which is universal in the sense that if Z ∈ LCTVS and if B : X × Y → Z is

a jointly continuous bilinear map, then there is a unique continuous linear map

B̂ : X⊗̂Y → Z such that the diagram

X × Y ι //

B
%%

X⊗̂Y
B̂
��

Z

commutes.

The projective tensor product exists and is unique up to isomorphism. It can be

constructed as a completion of the algebraic tensor product X ⊗Y with a suitable

locally convex topology. Given continuous seminorms p on X and q on Y , define
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the seminorm p⊗ q on X ⊗ Y by

(p⊗ q)(θ) = inf
∑
i

p(xi)q(yi),

where the infimum is taken over all ways of writing θ =
∑

i xi ⊗ yi as a finite

sum of elementary tensors. Then the projective topology on X ⊗ Y is the locally

convex topology generated by the family {pα ⊗ qβ} of seminorms as pα and qβ

vary through generating families of seminorms for X and Y respectively. The

projective topology is the strongest locally convex topology on X ⊗ Y such that

the canonical bilinear map ι : X ×Y → X ⊗Y is jointly continuous. Define X⊗̂Y
to be the completion of X ⊗ Y with the projective topology. Then one can show

that X⊗̂Y has the required universal property. From the construction, we see

that the projective tensor product of Banach spaces is a Banach space, and the

projective tensor product of Fréchet spaces is a Fréchet space.

The projective tensor product is functorial in the sense that two continuous

linear maps F : X1 → X2 and G : Y1 → Y2 induce a continuous linear map

F ⊗G : X1⊗̂Y1 → X2⊗̂Y2

given on elementary tensors by

(F ⊗G)(x⊗ y) = F (x)⊗G(y).

2.1.2.6 Inductive tensor products

Given X, Y ∈ LCTVS, the (completed) inductive tensor product is a space X s⊗Y ∈
LCTVS equipped with a separately continuous bilinear map

ι : X × Y → X s⊗Y

which is universal in the sense that if Z ∈ LCTVS and if B : X × Y → Z is a

separately continuous bilinear map, then there is a unique continuous linear map
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sB : X s⊗Y → Z such that the diagram

X × Y ι //

B
%%

X s⊗Y
sB
��

Z

commutes.

The inductive tensor product exists and is unique up to isomorphism. It also

can be constructed as a completion of X ⊗ Y with respect to a particular locally

convex topology. Consider a seminorm p on X ⊗Y with the property that for any

x0 ∈ X and any y0 ∈ Y , the functions

y 7→ p(x0 ⊗ y), x 7→ p(x⊗ y0)

are continuous on Y and X respectively. The locally convex topology on X ⊗
Y generated by all such seminorms is called the inductive topology. This is a

nonempty family of seminorms, as it contains the seminorms defining the projective

topology. The inductive topology is the strongest topology for which the canonical

bilinear map ι : X × Y → X ⊗ Y is separately continuous. We define X s⊗Y to be

the completion of X ⊗ Y with respect to the inductive topology.

The inductive tensor product is also functorial in the sense that two continuous

linear maps

F : X1 → X2, G : Y1 → Y2

induce a continuous linear map

F ⊗G : X1s⊗Y1 → X2s⊗Y2

satisfying

(F ⊗G)(x⊗ y) = F (x)⊗G(y).

From the universal property, there is a canonical continuous linear map

X s⊗Y → X⊗̂Y.

If X and Y are Fréchet spaces, then this map is an isomorphism because in this
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case the notions of separate and joint continuity coincide.

Example 2.1.4. Let V and W be vector spaces equipped with their finest locally

convex topologies. If Z ∈ LCTVS, then any bilinear map B : V × W → Z is

separately continuous. Such a map induces a unique linear map sB : V ⊗W → Z,

which is continuous if we equip V ⊗W with its finest locally convex topology. We

conclude that V s⊗W is isomorphic to the algebraic tensor product V ⊗W with its

finest locally convex topology. Thus the algebraic tensor product is a special case

of the inductive tensor product.

The inductive tensor product is named so because it respects inductive limits

and so, in particular, direct sums.

Proposition 2.1.5. If X, Yn ∈ LCTVS, then

X s⊗(
⊕
n∈Z

Yn) ∼=
⊕
n∈Z

(X s⊗Yn).

Proof. We shall construct inverse isomorphisms using universal properties. For

any x ∈ X, the map

F x
n : Yn →

⊕
n∈Z

(X s⊗Yn)

given by

F x
n (yn) = x⊗ yn

is continuous. So it induces a continuous linear map

F x :
⊕
n∈Z

Yn →
⊕
n∈Z

(X s⊗Yn).

Define the map

F : X ×
⊕
n∈Z

Yn →
⊕
n∈Z

(X s⊗Yn)

by

F (x,
∑

yn) = F x(
∑

yn) = x⊗
∑

yn.

We see F is bilinear and we have shown it is continuous for a fixed x. It is

also continuous in x, if we fix a finite sum
∑
yn ∈

⊕
n∈Z Yn. As F is separately
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continuous, it induces a continuous linear map

F̄ : X s⊗(
⊕
n∈Z

Yn)→
⊕
n∈Z

(X s⊗Yn)

that satisfies

F̄ (x⊗ yn) = x⊗ yn

for x ∈ X and yn ∈ Yn.

Going the other direction, the map

Gn : X × Yn → X s⊗(
⊕
n∈Z

Yn)

given by

Gn(x, yn) = x⊗ yn

is separately continuous, so it induces a continuous linear map

Ḡn : X s⊗Yn → X s⊗(
⊕
n∈Z

Yn).

By the universal property of direct sum, we get a map

Ḡ :
⊕
n∈Z

(X s⊗Yn)→ X s⊗(
⊕
n∈Z

Yn)

that satisfies

Ḡ(x⊗ yn) = x⊗ yn

for x ∈ X and yn ∈ Yn. Thus, we see that F̄ and Ḡ are inverse to each other on a

dense subspace, and so they are isomorphisms by continuity.

2.1.3 Locally convex algebras and modules

The terms locally convex algebra and locally convex module do not have universally

accepted definitions. Both structures are defined by certain bilinear maps, and we

obtain different classes of objects depending on what type of continuity we insist for

the bilinear map. The only types of continuity we shall consider are joint continuity
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and separate continuity, which are directly related to the projective tensor product

and the inductive tensor product respectively. Here and in the future, we shall use

the symbol q⊗ as a placeholder for either ⊗̂ or s⊗.

2.1.3.1 Locally convex algebras

By a locally convex q⊗-algebra, we mean a space A ∈ LCTVS equipped with an

associative multiplication m that extends to continuous linear map

qm : Aq⊗A→ A.

So a locally convex ⊗̂-algebra has a jointly continuous multiplication, whereas the

multiplication of a locally convex s⊗-algebra is separately continuous. Joint conti-

nuity implies that for every defining seminorm p on A, there is another continuous

seminorm q such that

p(ab) ≤ q(a)q(b), ∀a, b ∈ A.

There may be no relationship between p and q in general. In the special case where

p(ab) ≤ p(a)p(b), ∀a, b ∈ A,

for a family of seminorms defining the topology, we say that the algebra is multi-

plicatively convex or m-convex.

If A is Fréchet, then there is no distinction between the choice of topological

tensor product, and we shall refer to A as a Fréchet algebra1.

2.1.3.2 Locally convex modules

Now suppose R is a unital commutative locally convex q⊗-algebra. By a locally

convex q⊗-module over R, we mean a (left) R-module M ∈ LCTVS for which the

module map µ : R×M →M extends to give a continuous linear map

qµ : Rq⊗M →M.

1We do not insist that our Fréchet algebras are m-convex, as some authors do.
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All modules will be assumed to be unital in the sense that 1 ·m = m for all m ∈M .

A locally convex q⊗-algebra over R is an R-algebra A which is simultaneously a

locally convex q⊗-algebra and a locally convex q⊗-module over R.

If R and M are both Fréchet, then we shall refer to M as a Fréchet R-module.

Similarly, we have Fréchet R-algebras.

Given two locally convex q⊗-modules M and N over R, we shall write

HomR(M,N)

for the space of all continuous R-linear maps from M to N . We topologize it as

a subspace of Hom(M,N). Continuity of the module action implies that it is a

closed subspace.

2.1.3.3 Topological tensor products of locally convex modules

We shall consider topological tensor products over an algebra different from C. As

with the scalar case, we shall consider projective and inductive tensor products. A

more detailed exposition can be found in [16, Chapter II].

Suppose R is a unital commutative locally convex ⊗̂-algebra and M and N

are locally convex ⊗̂-modules over R. The (completed) projective tensor product

over R of M and N is a locally convex ⊗̂-module M⊗̂RN over R equipped with

a jointly continuous R-bilinear map ι : M × N → M⊗̂RN which is universal in

the sense that any jointly continuous R-bilinear map B from M ×N into another

locally convex ⊗̂-module P over R induces a unique continuous R-linear map

B̂ : M⊗̂RN → P

making the diagram

M ×N ι //

B
&&

M⊗̂RN

B̂
��
p

commute. Similarly, if R is a locally convex s⊗-algebra, then we define the (com-

pleted) inductive tensor product over R to be a locally convex s⊗-module M s⊗RN
over R which is universal with respect to separately continuous R-bilinear maps.
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In both cases, the tensor product M q⊗RN exists and is unique up to isomor-

phism. One can explicitly construct M q⊗RN as the completion of the quotient

(M q⊗CN)/K, where K is the closure of the subspace spanned by elements of the

form

(r ·m)⊗ n−m⊗ (r · n), r ∈ R,m ∈M,n ∈ N.

Given an elementary tensor m⊗n ∈M q⊗CN , we shall denote its image in M q⊗RN
again by m⊗ n. The R-module action is given by

r · (m⊗ n) := (r ·m)⊗ n = m⊗ (r · n).

In particular, it follows from the construction that the topological tensor product

of Fréchet R-modules is a Fréchet R-module.

Both tensor products have the functorial property that two continuous R-linear

maps F : M1 → N1 and G : M2 → N2 induce a continuous R-linear map

F ⊗G : M1q⊗RN1 →M2q⊗RN2

in the usual way.

A locally convex q⊗-module over R is free if it is isomorphic to Rq⊗CX for some

X ∈ LCTVS. Here the R-module action is given by

r · (s⊗ x) = rs⊗ x.

As in the algebraic case, the free module functor is a left-adjoint to the forgetful

functor.

Proposition 2.1.6. Given X ∈ LCTVS and a locally convex q⊗-module M over

R, there is a linear isomorphism

Hom(X,M) ∼= HomR(Rq⊗X,M).

Moreover, if R,X and M are Fréchet, and either R or X is nuclear2, then this

isomorphism is topological.

2Nuclearity is a technical condition which we shall not describe. See [33, Chapter 50] for
details.
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Proof. Define

Φ : Hom(X,M)→ HomR(Rq⊗X,M), Ψ : HomR(Rq⊗X,M)→ Hom(X,M)

by

Φ(F ) = µ(1⊗ F ), Ψ(G)(x) = G(1⊗ x),

where µ : Rq⊗M →M is the module action. It is straightforward to verify that both

maps are well-defined and are inverses to each other. The map Ψ is continuous.

Indeed, let p be a continuous seminorm on M and let B ⊂ X be bounded. Then

the set 1⊗B ⊂ Rq⊗X is bounded and

pB(Ψ(G)) = sup
x∈B

p(Ψ(G)(x)) = sup
x∈B

p(G(1⊗ x)) ≤ p1⊗B(G).

The continuity of Φ is apparently more subtle. Assuming all spaces are Fréchet,

it suffices to consider the projective tensor product. The map Φ factors as

Φ : Hom(X,M)
Φ1 // Hom(R⊗̂X,R⊗̂M)

Φ2 // Hom(R⊗̂X,M) ,

where Φ1(F ) = 1⊗F and Φ2 is composition with the module action µ. Continuity

of Φ2 follows from continuity of µ. To show that Φ1 is continuous, we need to

understand the bounded subsets of R⊗̂X in terms of the bounded subsets of R

and X. The is related to the difficult “problème des topologies” of Grothendieck

[15]. If either R or X are nuclear, then for every bounded subset D ⊂ R⊗̂X, there

are bounded subsets A ⊂ R, B ⊂ X such that D is contained in the closed convex

hull of

A⊗B = {r ⊗ x | r ∈ A, x ∈ B},

see [17, Theorem 21.5.8]. Let p and q be continuous seminorms on R and X

respectively. Then there is a constant M such that

p(r) ≤M, ∀r ∈ A.
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For any finite convex combination

θ =
∑

λi(ri ⊗ xi), ri ∈ A, xi ∈ B, 0 ≤ λi ≤ 1,
∑

λi = 1,

we have

(p⊗ q)((1⊗ F )θ) ≤
∑

λip(ri)q(F (xi))

≤
∑

λiMqB(F )

= MqB(F ).

So (p⊗ q)((1⊗ F )θ) ≤MqB(F ) holds for all θ ∈ D. Thus,

(p⊗ q)D(Φ1(F )) ≤MqB(F ),

which completes the proof.

The next proposition shows that the topological tensor product of free modules

is free.

Proposition 2.1.7. Given two locally convex spaces X and Y ,

(Rq⊗CX)q⊗R(Rq⊗CY ) ∼= Rq⊗C(X q⊗CY )

as locally convex q⊗-modules over R via the correspondence

(r1 ⊗ x)⊗ (r2 ⊗ y)↔ r1r2 ⊗ (x⊗ y).

Proof. Once constructs inverse isomorphisms using the universal property of the

topological tensor products.

2.1.4 Spaces of smooth functions

2.1.4.1 The space C∞(J)q⊗X

Let J be a nonempty open interval of real numbers and let X ∈ LCTVS. Consider

the space C∞(J,X) of infinitely differentiable functions on J with values in X, see
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Appendix A for the definition of differentiability. Given x ∈ C∞(J,X), we shall

denote by x(n) the n-th derivative of x, which again is an element of C∞(J,X).

We equip C∞(J,X) with the topology of uniform convergence of functions and

all their derivatives on compact subsets of J . In terms of seminorms, for every

continuous seminorm p on X, every compact subset K ⊂ J , and ever nonnegative

integer n, define the seminorm

pK,n(x) =
n∑

m=0

1

m!
sup
t∈K

p(x(m)(t)).

The topology on C∞(J,X) is the locally convex topology generated by all such

seminorms. If X is a Fréchet space, then C∞(J,X) is a Fréchet space. We shall

write C∞(J) = C∞(J,C), which is a nuclear Fréchet algebra that is m-convex with

respect to this family of seminorms.

We shall be interested in free locally convex q⊗-modules C∞(J)q⊗X. As X is

complete, we have

C∞(J,X) ∼= C∞(J)⊗̂X,

see e.g. [33, Theorem 44.1]. If X is not Fréchet, then we may have

C∞(J)s⊗X 6∼= C∞(J)⊗̂X.

Using the canonical map

C∞(J)s⊗X → C∞(J)⊗̂X ∼= C∞(J,X),

we can identify C∞(J)s⊗X as a subspace of smooth functions, though not topolog-

ically, as the topology on C∞(J)s⊗X is stronger than the topology on C∞(J,X).

Example 2.1.8. If X =
⊕

n∈ZXn is a countable direct sum of Fréchet spaces,

then

C∞(J)s⊗X ∼=
⊕
n∈Z

(C∞(J)s⊗Xn) ∼=
⊕
n∈Z

C∞(J,Xn),

which is strictly a subspace of C∞(J,X) = C∞(J,
⊕

n∈ZXn). This example will

be relevant in Chapter 5.

Let evt : C∞(J) → C be the continuous linear map that evaluates a function
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at t ∈ J . More generally, we have continuous linear evaluation maps

evt⊗1 : C∞(J)q⊗X → X

for each t ∈ J , which we shall also denote by evt.

2.1.4.2 Smooth families of linear maps

We shall be interested in classifying continuous C∞(J)-linear maps

C∞(J)q⊗X → C∞(J)q⊗Y.

Definition 2.1.9. Given two locally convex spaces X and Y , a q⊗-smooth family

of continuous linear maps from X to Y is a collection of continuous linear maps

{Ft : X → Y }t∈J which vary smoothly in the sense that the formula

F (x)(t) = Ft(x)

defines a continuous map

F : X → C∞(J)q⊗Y.

Notice that a s⊗-smooth family is automatically a ⊗̂-smooth family, as can be

seen by composing with the canonical map C∞(J)s⊗Y → C∞(J)⊗̂Y . Proposi-

tion 2.1.6 implies the following result.

Proposition 2.1.10. Let X, Y ∈ LCTVS. There is one-to-one correspondece

between q⊗-smooth families of continuous linear maps from X to Y and continuous

C∞(J)-linear maps from C∞(J)q⊗X to C∞(J)q⊗Y .

For nicer spaces, we can give equivalent conditions for q⊗-smooth families of

maps which are easier to check in practice.

Given a ⊗̂-smooth family {Ft : X → Y }t∈J of continuous linear maps, it is

necessary that the map

t 7→ Ft(x)

is smooth for each x ∈ X. If X is barreled, e.g. if X is Fréchet, this is also

sufficient.
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Proposition 2.1.11. (i) If X ∈ LCTVS is barreled, then {Ft : X → Y }t∈J is a

⊗̂-smooth family of continuous linear maps if and only if the map

t 7→ Ft(x)

is smooth for every x ∈ X.

(ii) If X =
⊕

n∈ZXn and Y =
⊕

n∈Z Yn, where each Xn, Yn is Fréchet, then

{Ft : X → Y }t∈J is a s⊗-smooth family of continuous linear maps if and only

if the map

t 7→ Ft(x)

is smooth for every x ∈ X, and for every k ∈ Z, there a number Nk such that

Ft(Xk) ⊂
Nk⊕

n=−Nk

Yn, ∀t ∈ J.

Proof. By definition, if {Ft : X → Y }t∈J is a ⊗̂-smooth family of maps, then

t 7→ Ft(x)

is smooth for every x ∈ X. For the converse, we must show that the map

F : X → C∞(J, Y ), F (x)(t) = Ft(x),

which is well-defined by hypothesis, is continuous. For any compact K ⊂ J , any

natural number n, and any x ∈ X, the set

{F (n)
t (x)|t ∈ K}

is compact in Y , hence bounded. By the Banach-Steinhaus theorem, the set of

maps {F (n)
t }t∈K is equicontinuous. Thus for any continuous seminorm q on Y ,

there exists a continuous seminorm p on X such that

q(F
(n)
t (x)) ≤ p(x), ∀t ∈ K.
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Consequently,

sup
t∈K

q(F
(n)
t (x)) ≤ p(x),

which shows F is continuous.

For part (ii), a s⊗-smooth family {Ft : X → Y }t∈J is a ⊗̂-smooth family, so

t 7→ Ft(x) is smooth for all x ∈ X. Notice that any bounded subset A ⊂
⊕

n∈Z Yn

must be contained in a finite subdirect sum. A s⊗-smooth family {Ft} assembles

to give a continuous linear map

F : X → C∞(J)s⊗Y ∼=
⊕
n∈Z

C∞(J)s⊗Yn ∼=
⊕
n∈Z

C∞(J, Yn).

Let Bk ⊂ Xk denote the unit ball. Then F (Bk) is bounded in
⊕

n∈ZC
∞(J, Yn),

hence contained in a finite subdirect sum. Thus, the same is true for F (Xk) because

Bk is absorbing3 in Xk.

Conversely, suppose

Ft : Xk →
Nk⊕

n=−Nk

Yn

is such that t 7→ Ft(x) is smooth for all x ∈ Xk. Then by part (i) these give a

continuous linear map

F k : Xk → C∞(J)⊗̂(

Nk⊕
n=−Nk

Yn) ∼= C∞(J)s⊗(

Nk⊕
n=−Nk

Yn),

where the isomorphism is because
⊕Nk

n=−Nk Yn is Fréchet. Composing with the

inclusion gives

F k : Xk → C∞(J)s⊗Y.

By the universal property of the direct sum, there is a continuous linear map

F : X → C∞(J)s⊗Y

as desired.

3Recall that a subset A ⊂ X is absorbing if every element of X is a scalar multiple of some
element of A.
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2.2 Connections and parallel transport

Since we will only work with one-parameter deformations, we shall only treat con-

nections on C∞(J)-modules where the interval J represents the parameter space.

As there is only one direction to differentiate in, a connection is determined by its

covariant derivative. In what follows, we shall identify the two notions, and will

commonly refer to covariant differential operators as connections.

Let M be a locally convex q⊗-module over C∞(J). A connection on M is a

continuous C-linear map ∇ : M →M such that

∇(f ·m) = f · ∇m+ f ′ ·m ∀f ∈ C∞(J),m ∈M.

It is immediate from this Leibniz rule that the difference of two connections is a

continuous C∞(J)-linear map. Further, given any connection ∇ and continuous

C∞(J)-linear map F : M →M , the operator ∇−F is also a connection. So if the

space of connections is nonempty, then it is an affine space parametrized by the

space EndC∞(J)(M) of continuous C∞(J)-linear endomorphisms.

Example 2.2.1. The operator d
dt

(= d
dt
⊗ 1) is a connection on the free module

C∞(J)q⊗X. Thus any connection ∇ on C∞(J)q⊗X is of the form

∇ =
d

dt
− F

for some continuous C∞(J)-linear map F , which can be interpreted as a q⊗-smooth

family of continuous linear maps {Ft : X → X}t∈J as in Proposition 2.1.10.

An element in the kernel of a connection ∇ will be called a parallel section

for ∇. Suppose M and N are two locally convex q⊗-modules over C∞(J) with

connections ∇M and ∇N respectively. A parallel map is a continuous C∞(J)-

linear map F : M → N such that F ◦∇M = ∇N ◦F . In particular, a parallel map

sends parallel sections to parallel sections.

Proposition 2.2.2. Given locally convex q⊗-modules M and N over C∞(J) with

connections ∇M and ∇N ,

(i) the operator ∇M q⊗N : ∇M ⊗ 1 + 1⊗∇N is a connection on M q⊗C∞(J)N .
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(ii) the operator ∇M∗ on M∗ = HomC∞(J)(M,C∞(J)) given by

(∇M∗ϕ)(m) =
d

dt
ϕ(m)− ϕ(∇Mm)

is a connection.

The definition of ∇M∗ ensures that the canonical pairing

〈·, ·〉 : M∗
q⊗C∞(J)M → C∞(J)

is a parallel map, where we consider C∞(J) with the connection d
dt

. This is just

another way of saying that

d

dt
〈ϕ,m〉 = 〈∇M∗ϕ,m〉+ 〈ϕ,∇Mm〉.

2.2.1 Parallel transport in free modules

We will be interested in identifying when we can perform parallel transport along

a connection. Suppose M is a locally convex q⊗-module over C∞(J) of the form

M = C∞(J)q⊗X

for some X ∈ LCTVS. We will think of M as sections of bundle whose fiber over

t ∈ J is Mt
∼= X. Although all the fibers are the same topological vector space, we

introduce the notation Mt because we will eventually consider examples in which

each Mt will contain additional structure that will depend on t.

To perform parallel transport along a connection ∇ = d
dt
− F , one needs a

unique parallel section through each element of each fiber. That is, for each s ∈ J
and each x ∈Ms, we need a unique m ∈M satisfying the differential equation

∇m = 0, m(s) = x.

In this case, we can define a parallel transport operator

P∇s,t : Ms →Mt
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between any two fibers by

P∇s,t(x) = m(t),

where m is the unique parallel sections through x ∈ Ms. These operators are

linear isomorphisms, as the inverse of P∇s,t is P∇t,s. We would like them to be topo-

logical isomorphisms that vary smoothly in t and s. This motivates the following

definition.

Definition 2.2.3. We shall say that a connection ∇ on a free module M ∼=
C∞(J)q⊗X is integrable if

(i) for every s ∈ J and every x ∈Ms, there exists a unique m ∈M such that

∇m = 0, m(s) = x,

(ii) the parallel transport operators {P∇s,t : Ms → Mt}s,t∈J are continuous and

vary smoothly in the sense that the map P∇ : X → C∞(J × J)q⊗X given by

P∇(x)(s, t) = P∇s,t(x)

is well-defined and continuous.

Notice that the connection d
dt

on the free module C∞(J)q⊗X is always inte-

grable. In fact, every integrable connection can be trivialized to look like d
dt

1.

Proposition 2.2.4. If ∇ is an integrable connection on a free module M , then for

each s ∈ J there is a parallel isomorphism

(M,∇) ∼= (C∞(J)q⊗Ms,
d

dt
⊗ 1).

Proof. As above, let X denote the generic fiber of M , so that M ∼= C∞(J)q⊗X
as a C∞(J)-module. Let P∇s,t : Ms → Mt denote the parallel transport maps

induced by ∇. By definition of integrability, the collections {P∇s,t : Ms → X}t∈J
and {P∇t,s : X → Ms}t∈J are q⊗-smooth families of continuous linear maps, and

induce mutually inverse continuous C∞(J)-linear maps

F : C∞(J)q⊗Ms →M, F−1 : M → C∞(J)q⊗Ms
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by Proposition 2.1.10. To verify that F is parallel, it suffices to check

F ◦ d
dt

= ∇ ◦ F

on elements of the form 1⊗ms ∈ C∞(J)q⊗Ms by C∞(J)-linearity and continuity.

But this follows immediately by definition of parallel transport. That F−1 is

parallel is automatic because F is parallel.

Now suppose X and Y are locally convex spaces and M = C∞(J,X) and

N = C∞(J, Y ). Suppose F : M → N is a continuous C∞(J)-linear map and

{Ft : Mt → Nt}t∈J is the smooth family of continuous linear maps associated to F

as in Proposition 2.1.10.

Proposition 2.2.5. Let F : (M,∇M) → (N,∇N) be a parallel map between free

modules M and N .

(i) If ∇M and ∇N are integrable, then the diagram

Ms
Fs //

P
∇M
s,t
��

Ns

P
∇N
s,t
��

Mt Ft
// Nt

commutes for all s, t ∈ J .

(ii) If ∇M is integrable and F is a parallel isomorphism, then ∇N is integrable.

Proof. Let X and Y denote the generic fiber of M and N respectively. Suppose∇M

and ∇N are integrable. Given x ∈ Ms, let m ∈ M be the unique parallel section

through x. Then F (m) is the unique parallel section through F (m)(s) = Fs(x).

Consequently,

P∇Ns,t (Fs(x)) = F (m)(t) = Ft(m(t)) = Ft(P
∇M
s,t (x)).

If F is an invertible parallel map, then ∇N -parallel sections through y ∈ Ns

are in bijection with ∇M -parallel sections through F−1
s (y). Thus, integrability of
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∇M implies the existence and uniqueness of solutions to

∇Nn = 0, n(s) = y.

As shown in the first part of the proof,

P∇Ns,t = FtP
∇M
s,t F−1

s .

So we must show that

P∇N : Y → C∞(J × J)q⊗Y, P∇N (y)(s, t) = Ft(P
∇M
s,t (F−1

s (y)))

is well-defined and continuous. But P∇N is the composition of continuous maps

Y ι // N F−1
//M

Q∇M
// C∞(J × J)q⊗X F̃ // C∞(J × J)q⊗Y,

where ι is the inclusion as constant functions, Q∇M is the C∞(J)-linear map in-

duced by

P∇M : X → C∞(J × J)q⊗X,

and F̃ is defined by the commuting square

C∞(J × J)q⊗X F̃ //

∼=
��

C∞(J × J)q⊗Y
∼=
��

C∞(J)q⊗(C∞(J)q⊗X)
1⊗F

// C∞(J)q⊗(C∞(J)q⊗Y ).

Proposition 2.2.6. Suppose ∇M and ∇N are integrable connections on M ∼=
C∞(J)q⊗X and N ∼= C∞(J)q⊗Y .

(i) The tensor product connection ∇M q⊗N is integrable on M q⊗C∞(J)N .

(ii) If X is a nuclear Fréchet space, then the dual connection ∇M∗ is integrable

on M∗ = HomC∞(J)(M,C∞(J)).

Proof. Using Proposition 2.2.4, it suffices to consider the case where ∇M and ∇N
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are both given by d
dt
⊗ 1. In this case, we observe that the isomorphism

M q⊗C∞(J)N ∼= C∞(J)q⊗(X q⊗Y )

is parallel with respect to the connections ∇M q⊗N and d
dt
⊗ 1, the latter of which is

integrable. Thus, ∇M q⊗N is integrable.

If X is nuclear and Fréchet, then

M∗ ∼= Hom(X,C∞(J)) ∼= C∞(J)⊗̂X∗ ∼= C∞(J,X∗),

where X∗ = Hom(X,C) is the strong dual of X. The first isomorphism is from

Proposition 2.1.6, whereas the second can be found in [33, Proposition 50.5]. The

result follows because this isomorphism is parallel with respect to ∇M∗ on M∗ and
d
dt

on C∞(J,X∗), which is integrable.

2.2.2 Integrability for Banach spaces

We now consider the special case of M = C∞(J)q⊗X where X is a Banach space.

Here, both tensor products coincide, so that M ∼= C∞(J,X). In this case, any

connection∇ on M is integrable. Recall by Example 2.2.1 that∇ = d
dt
−F for some

continuous C∞(J)-linear map F : C∞(J,X)→ C∞(J,X). By Proposition 2.1.10,

F is given by a smooth family {Ft}t∈J of continuous linear maps on X. Thus, the

initial value problem we wish to solve is

x′(t) = Ft(x), x(t0) = x0.

The following well-known theorem from differential equations says that there are

always unique solutions.

Theorem 2.2.7 (Existence and uniqueness for linear ODE’s). If X is a Banach

space and {Ft}t∈J is a smooth family of continuous linear maps on X, then there

is a unique global solution x ∈ C∞(J,X) to the initial value problem

x′(t) = Ft(x(t)), x(t0) = x0,
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given by the absolutely convergent series

x(t) = x0 +
∞∑
n=1

∫ t

t0

∫ s1

t0

. . .

∫ sn−1

t0

(Fs1 ◦ . . . ◦ Fsn)(x0)dsn . . . ds1.

Moreover, using the explicit form of the solution x, one can show that∇ satisfies

the definition of integrability. Thus we obtain trivializations as in Proposition 2.2.4.

In particular, the parallel transport map

P∇s,t : Ms →Mt

exists for all s, t ∈ J and is an isomorphism of topological vector spaces.

A particular notable special case is when the differential equation has “constant

coefficients,” that is, Ft is independent of t. The initial value problem is then

x′(t) = F0(x(t)), x(t0) = x0

for some continuous linear map F0 : X → X. In this case, the explicit solution of

Theorem 2.2.7 becomes

x(t) =
∞∑
n=0

(t− t0)n

n!
F n

0 (x0) = exp((t− t0)F )(x0),

where the exponential is an absolutely convergent series in the Banach algebra of

continuous linear operators on X.

Remark 2.2.8. Once we start considering other classes of locally convex vector

spaces, the above existence and uniqueness theorem for linear ODE’s becomes false.

The issue is that the infinite sum in the formula for the solution need not converge.

Indeed, even in the case where X is a nuclear Fréchet space and F0 : X → X is a

continuous linear map, the infinite series exp(F0) need not converge in Hom(X,X).

Thus, it is not true in the Fréchet case that every connection is integrable.
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2.2.3 Nilpotent perturbations of integrable connections

Suppose ∇ is an integrable connection on the free module M ∼= C∞(J)q⊗X. Any

other connection ∇′ on M is of the form

∇′ = ∇− F

for some C∞(J)-linear endormorphism F of M .

Definition 2.2.9. We shall say ∇′ is a nilpotent perturbation of the integrable

connection ∇ if there is a positive integer k such that

FtkP
∇
tk−1,tk

Ftk−1
. . . P∇t2,t3Ft2P

∇
t1,t2

Ft1 = 0, ∀t1, t2, . . . , tk ∈ J,

where ∇′ = ∇− F .

As an example, ∇ = d
dt
− F is a nilpotent perturbation of d

dt
if and only if

FtkFtk−1
. . . Ft2Ft1 = 0, ∀t1, t2, . . . , tk ∈ J.

Proposition 2.2.10. A nilpotent perturbation ∇− F of an integrable connection

∇ is integrable.

Proof. By Proposition 2.2.4, we may assume ∇ = d
dt

. Indeed, there is a parallel

isomorphism

G : (C∞(J)q⊗X, d
dt

)→ (M,∇).

The same map gives a parallel isomorphism

G : (C∞(J)q⊗X, d
dt
−G−1FG)→ (M,∇− F ).

Using the equality

GtG
−1
s = P∇s,t

from Proposition 2.2.5, we see that d
dt
−G−1FG is a nilpotent perturbation of d

dt
.

So we need only consider a connection of the form ∇ = d
dt
− F on M =
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C∞(J)q⊗X where

FtkFtk−1
. . . Ft2Ft1 = 0, ∀t1, t2, . . . , tk ∈ J.

Given x0 ∈ X and s ∈ J , a solution x ∈ C∞(J)q⊗X to

dx

dt
= F (x), x(s) = x0

is the same as a fixed point of the function

Φ : C∞(J)q⊗X → C∞(J)q⊗X

given by

Φ(x)(t) = x0 +

∫ t

s

Fs(x(s))ds.

Using the nilpotence assumption of F , we have that for any y ∈ C∞(J)q⊗X,

Φk(y)(t) =
k−1∑
n=0

∫ t

s

∫ u1

s

. . .

∫ un−1

s

(Fu1 ◦ . . . ◦ Fun)(x0)dun . . . du1,

which is independent of y. It follows that Φk(y) is the unique fixed point of Φ.

By examing the dependence of the explicit solution on x0 and s, one sees that the

additional topological conditions are satisfied so that d
dt
− F is integrable.

Example 2.2.11. Consider the special case of a perturbation ∇′ = ∇− F of an

integrable connection ∇ where [∇, F ] = 0, so that F is ∇-parallel. Here, ∇′ is a

nilpotent perturbation if and only if F k = 0 for some k. One can be quite explicit

about how to construct ∇′-parallel sections in terms of ∇-parallel sections. Indeed,

if m is the unique ∇-parallel section through x ∈Ms, then

n(t) = exp((t− s)F )(m)(t) =
k−1∑
r=0

(t− s)r

r!
F r
t (m(t))

is the unique ∇′-parallel section through x ∈Ms.
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2.3 Algebraic objects in LCTVS

Fix a commutative, unital locally convex q⊗-algebra R as the ground ring. The two

cases we will consider are R = C and R = C∞(J) for an open subinterval J ⊂ R.

In dealing with graded objects, we shall tend to stick with the inductive tensor

product, as it behaves well with respect to direct sums.

2.3.1 Graded locally convex modules

We shall say that a locally convex q⊗-module X over R is a graded locally convex

module if

X =
⊕
n∈Z

Xn

for some sequence {Xn} of closed submodules. This is to be intepreted topolog-

ically, so that the topology on X coincides with the direct sum topology. An

element x ∈ Xn is called homogeneous of degree n. We say X is trivially graded

if X = X0. The ground ring R is considered as a graded module with the trivial

grading. An R-linear map F : X → Y between graded modules is called homo-

geneous of degree p if F (Xn) ⊂ Yn+p. Every R-linear map is a direct product of

its homogeneous components. We shall write |x| or |F | to indicate the degree of

a homogeneous element or map. Unless indicated otherwise, an isomorphism of

graded locally convex modules shall mean a degree 0 isomorphism of locally convex

modules. Given two homogeneous R-linear maps F and G on a graded module,

the commutator shall always mean graded commutator, so that

[F,G] = FG− (−1)|F ||G|GF.

The inductive tensor product over R of two graded locally convex modules is

naturally graded, with

(X s⊗RY )n =
⊕
m∈Z

(Xms⊗RYn−m).
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Indeed, by Proposition 2.1.5,

X s⊗RY ∼=
⊕
m,n∈Z

Xms⊗RYn ∼=
⊕
n∈Z

(⊕
m∈Z

Xms⊗RYn−m

)
.

Given two R-linear maps

F : X → X ′, G : Y → Y ′,

their tensor product is the map

F ⊗G : X q⊗RY → X ′q⊗RY ′

defined for homogeneous components, on homogeneous elements, by

(F ⊗G)(x⊗ y) = (−1)|G||x|F (x)⊗G(y).

To indicate that we are dealing with a graded module, we shall often write

X• (or X•) instead of just X. Given two graded locally convex modules X• and

Y•, the notation Hom(X•, Y•) shall mean the module algebraically spanned by the

homogeneous continuous R-linear maps. In general, this is a submodule of all

continuous R-linear maps from X to Y . So Hom(X•, Y•) is also a graded module,

with the grading given by the degree of homogeneity of maps.

2.3.2 Locally convex chain complexes

A locally convex cochain complex is a graded locally convex q⊗-module C• over R

equipped with a degree +1 continuous R-linear map

d : C• → C•+1

such that d2 = 0. Such a map decomposes as a sequence of maps

dn : Cn → Cn+1,
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and we define the n-th cohomology module to be

Hn(C) = ker dn/ im dn−1.

Elements of ker d are called cocycles and elements of im d are called coboundaries.

The cohomology H•(C) is a graded R-module, but it may not even be Hausdorff,

as we do not know if im d is closed. Similarly we can define locally convex chain

complexes and homology modules by changing d to have degree −1. If we reverse

the grading of a chain complex, that is declare the degree n elements to have degree

−n, then we obtain a cochain complex. We shall use the notation C−• to indicate

that we have reversed the grading of C•.

A degree 0 continuous R-linear map F : C• → D• between cochain complexes

is a chain map if

dDF = FdC .

Two chain maps F,G : C• → D• are continuously chain homotopic if there is a

continuous R-linear map h : C• → D•−1 such that

F −G = dDh+ hdC .

A chain map F : C• → D• induces a map of cohomology modules

F∗ : H•(C)→ H•(D),

and chain homotopic maps induce the same map on cohomology. Two complexes

are chain homotopy equivalent if there exist chain maps

F : C• → D•, G : D• → C•

such that GF is continuously chain homotopic to idC , and FG is continuously

chain homotopic to idD. In this case, the maps F and G are called chain homotopy

equivalences. Chain homotopy equivalences induce isomorphisms on cohomology.

A complex is contractible if it is chain homotopy equivalent to the zero complex.

In particular, the cohomology modules of a contractible complex are zero.

Given two cochain complexes C• and D•, the graded space Hom(C•, D•) is
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naturally a cochain complex with coboundary map

d(F ) = dDF − (−1)|F |FdC .

So the 0-cocycles in Hom(C•, D•) are exactly the chain maps. A chain map repre-

sents the zero class in cohomology if and only if it is continuously chain homotopic

to the zero map.

The tensor product C•s⊗RD• of two cochain complexes is a cochain complex

with coboundary dC ⊗ 1 + 1 ⊗ dD. We remark that the sign convention for the

tensor product of maps is in effect here:

(dC ⊗ 1 + 1⊗ dD)(x⊗ y) = dC(x)⊗ y + (−1)|x|x⊗ dD(y).

2.3.3 Locally convex differential graded algebras

A locally convex differential graded s⊗-algebra over R is a cochain complex (Ω•, d)

which is also a locally convex s⊗-algebra over R such that the product

m : Ω•s⊗RΩ• → Ω•

is a degree 0 chain map. In other words,

Ωp · Ωq ⊂ Ωp+q,

and d is a degree +1 derivation,

d(ω1ω2) = d(ω1)ω2 + (−1)|ω1|ω1d(ω2).

The cohomology H•(Ω) is a graded algebra.

A map of differential graded algebras is a chain map that is also an algebra

homomorphism. Such a map induces an algebra map at the level of cohomology.
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2.3.4 Locally convex differential graded Lie algebras

A locally convex graded Lie s⊗-algebra over R is a locally convex s⊗-module g• over

R equipped with a degree 0 continuous R-bilinear map

[·, ·] : g•s⊗Rg• → g•

satisfying

(i) (Graded skew-symmetry) [X, Y ] = −(−1)|X||Y |[Y,X],

(ii) (Graded Jacobi identity) [X, [Y, Z]] = [[X, Y ], Z] + (−1)|X||Y |[Y, [X,Z]]

for all homogeneous X, Y, Z ∈ g.

Example 2.3.1. If X• is a graded locally convex q⊗-module over R, then End(X•)

is a locally convex graded s⊗-Lie algebra under the graded commutator.

A locally convex graded Lie s⊗-algebra g• is a locally convex differential graded

Lie s⊗-algebra if g• is a cochain complex with a coboundary map δ that satisfies

δ[X, Y ] = [δX, Y ] + (−1)|X|[X, δY ]

for all homogeneous X, Y, Z ∈ g.

Example 2.3.2. If g• is a locally convex graded Lie s⊗-algebra and m ∈ g1 is an

element such that4 [m,m] = 0, then the formula

δ(X) = [m,X]

defines a coboundary map that makes g• into a locally convex differential graded

Lie s⊗-algebra. That δ2 = 0 and the Leibniz rule for δ follow from the graded

Jacobi identity.

4Note that this is not automatic in a graded Lie algebra.
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2.3.5 Locally convex differential graded coalgebras

A locally convex s⊗-coalgebra over R is a locally convex s⊗-module C over R

equipped with continuous R-linear maps

∆ : C → C s⊗RC, ε : C → R

satisfying

(∆⊗ 1)∆ = (1⊗∆)∆, (ε⊗ 1)∆ = 1 = (1⊗ ε)∆.

The maps ∆ and ε are called the coproduct and counit respectively. If C• is graded

and ∆ and ε are degree 0 maps, then C• is a locally convex graded s⊗-coalgebra. A

coalgebra homomorphism is a degree 0 continuous R-linear map

F : C• → D•

such that

∆DF = (F ⊗ F )∆C , εDF = εC .

A coaugmented coalgebra is equipped with a distinguished coalgebra homomor-

phism η : R → C• such that εη = 1. Here, R is a trivially graded locally convex

s⊗-coalgebra over R with the structure maps determined by

∆(1) = 1⊗ 1, ε(1) = 1.

Given a coagumentation, we can form the linear quotient space C•/R. A map

F : C• → D• of coaugmented graded coalgebras is required to additionally satisfy

FηC = ηD.

All coaugmented coalgebras we encounter will have the property of (topological)

cocompleteness, that is, C = lim−→Nn with the inductive limit topology, where Nn

is the kernel of the map

C ∆n−1
// C s⊗Rn // (C/R)s⊗Rn.
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That is, C =
⋃∞
n=2Nn and the topology on C is the strongest locally convex

topology induced by the inclusions Nn → C. Here,

∆n−1 = (∆⊗ 1⊗(n−2)) . . . (∆⊗ 1)∆

is the iterated coproduct.

A (graded) coderivation on C• is a cotinuous R-linear map D : C• → C• such

that

∆D = (D ⊗ 1 + 1⊗D)∆.

In general, we do not insist that a coderivation is homogeneous, but we shall insist

they are finite sums of homogeneous components. The linear space of all graded

coderivations on C• shall be denoted Coder(C•).

Proposition 2.3.3. The graded commutator of two graded coderivations is a

graded coderivations. Thus Coder(C•) is a graded Lie R-subalgebra of EndR(C•).

A locally convex graded s⊗-coaglebra equipped with a degree +1 coderivation

d such that d2 = 0 is a locally convex differential graded s⊗-coalgebra. Maps be-

tween differential graded coalgebras are additionally required to commute with the

boundary maps.

2.4 Hochschild and cyclic homology

A good reference for Hochschild and cyclic homology is [21].

Let R be a unital locally convex q⊗-algebra and let A be a (possibly nonunital)

locally convex q⊗-algebra over R. In this section, all q⊗-tensor products in this

section are over the ground ring R, and everything in sight is an R-module. All

homology theories that follow are the continuous versions of the usual algebraic

theories, in that they take into account the topology of the algebra A. They also

depend on the choice of topological tensor product q⊗. However, if we consider

algebras equipped with their finest locally convex topologies as locally convex s⊗-

algebras, then we recover the usual algebraic theory.

Recall that the unitization of the algebra A is the algebra

Ã = A⊕R
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with multiplication

(a1, r1)(a2, r2) = (a1a2 + r2 · a1 + r1 · a2, r1r2).

Then Ã is a unital locally convex q⊗-algebra over R with unit (0, 1), which contains

A as a closed ideal. We can, and will, form the unitization in the case where A is

already unital. We shall let e ∈ Ã denote the unit of Ã, to avoid possible confusion

with the unit of A, if it exists.

2.4.1 Hochschild cochains

The space of Hochschild k-cochains is

Ck(A,A) = HomR(A
q⊗Rk, A).

We shall identify Hochschild k-cochains with separately or jointly continuous, de-

pending on the context, R-multilinear maps from A×k into A. The coboundary

map δ : Ck(A,A)→ Ck+1(A,A) is given by

δD(a1, . . . , ak+1) = D(a1, . . . , ak)ak+1 + (−1)k+1a1D(a2, . . . , ak+1)

+
k∑
j=1

(−1)k+j−1D(a1, . . . , aj−1, ajaj+1, aj+2, . . . , ak+1).

One can check that δ2 = 0. The cohomology of (C•(A,A), δ) is the Hochschild

cohomology of A with coefficients in A, and is denoted by H•(A,A). If we wish to

emphasize the ground ring R, we shall write H•R(A,A).

An important example for us is that a cochain D ∈ C1(A,A) satisfies δD = 0

if and only if D is a derivation, i.e.

D(a1a2) = D(a1)a2 + a1D(a2) ∀a1, a2 ∈ A.

There is an associative product

^: Ck(A,A)⊗ C l(A,A)→ Ck+l(A,A)
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given by

(D ^ E)(a1, . . . , ak+l) = (−1)klD(a1, . . . , ak)E(ak+1, . . . , ak+l).

This product satisfies

δ(D ^ E) = δD ^ E + (−1)kD ^ δE,

so that (C•(A,A), δ,^) is a differential graded algebra. It is shown in [10] that

H•(A,A) is a graded commutative algebra with respect to this product. However,

the product ^ is not graded commutative in C•(A,A).

The complex C•(A,A) also admits the structure of a differential graded Lie

algebra, after a degree shift [10]. Let g•(A) = C•+1(A). We let |D| denote the

degree of an element of g•(A), so that if D is a k-cochain, then |D| = k− 1. Given

D,E ∈ g•(A), let

(D ◦ E)(a1, . . . , ak+l−1)

=
k∑
i=1

(−1)i|E|D(a1, . . . , ai−1, E(ai, . . . , ai+l−1), ai+l, . . . , ak+l−1).

Note that |D ◦ E| = |D|+ |E|. The Gerstenhaber bracket is defined as

[D,E] = D ◦ E − (−1)|D||E|E ◦D.

One can check that (g•(A), [·, ·]) is a graded Lie algebra and moreover,

δ[D,E] = [δD,E] + (−1)|D|[D, δE],

so that g•(A) is a differential graded Lie algebra.

Let m denote the multiplication map for A. The equation [m,m] = 0 says that

m is associative. The graded Jacobi identity then implies that taking a bracket

with m is a differential, and indeed it is a fact that

δD = [m,D], ∀D ∈ g•(A).



53

That δ is a graded Lie algebra derivation also follows from the graded Jacobi

identity.

2.4.2 Hochschild homology

For n ≥ 0, the space of Hochschild n-chains is defined to be

Cn(A) =

A, n = 0

Ãq⊗RAq⊗Rn, n ≥ 1

The boundary map b : Cn(A)→ Cn−1(A) is given on elementary tensors by

b(a0 ⊗ . . .⊗ an) =
n−1∑
j=0

(−1)ja0 ⊗ . . .⊗ aj−1 ⊗ ajaj+1 ⊗ aj+2 ⊗ . . .⊗ an

+ (−1)nana0 ⊗ a1 ⊗ . . .⊗ an−1.

More formally, b is induced by the functoriality property of the tensor product q⊗R
using the continuous multiplication map m : Ãq⊗RÃ → Ã. This shows that b is

continuous. One can check that b2 = 0, so that C•(A) is a locally convex cochain

complex over R. The homology of the complex (C•(A), b) is called the Hochschild

homology of A (with coefficients in A) and shall be denoted HH•(A) or HHR
• (A)

if we wish to emphasize R.

2.4.3 Cyclic homology

We only introduce the periodic cyclic theory. Let

Ceven(A) =
∞∏
n=0

C2n(A), Codd(A) =
∞∏
n=0

C2n+1(A),

with the product topologies. Consider the operator B : Cn(A) → Cn+1(A) given

on elementary tensors by

B(a0 ⊗ . . .⊗ an) =
n∑
j=0

(−1)jne⊗ aj ⊗ . . . an ⊗ a0 ⊗ . . .⊗ aj−1,
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if a0 ∈ A, and

B(e⊗ a1 ⊗ . . .⊗ an) = 0.

Then it is immediate that B2 = 0. Moreover, one can check that

bB +Bb = 0.

Extend the operators b and B to the periodic cyclic complex

Cper(A) = Ceven(A)⊕ Codd(A).

This is a Z/2-graded locally convex complex

Ceven(A) � Codd(A)

with differential b+B. The homology groups of this complex are called the even and

odd periodic cyclic homology groups of A, and are denoted HP0(A) and HP1(A)

respectively. As before, we will write HPR
• (A) if we wish to emphasize the ground

ring R.

2.4.4 Dual cohomology theories

To obtain periodic cyclic cohomology, we dualize the previous notions. Let

Cn(A) = Cn(A)∗ = HomR(Cn(A), R)

be the dual R-module of Cn(A). The maps

b : Cn(A)→ Cn+1(A), B : Cn(A)→ Cn−1(A)

are induced by duality, and are given explicitly by

bϕ(a0, . . . , an) =
n−1∑
j=0

(−1)jϕ(a0, . . . aj−1, ajaj+1, aj+2, . . . , an)

+ (−1)nϕ(ana0, a1, . . . , an−1),
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and

Bϕ(a0, . . . , an−1) =
n−1∑
j=0

(−1)j(n−1)ϕ(e, aj, . . . , an−1, a0, . . . aj−1), a0 ∈ A,

Bϕ(e, a1, . . . , an−1) = 0.

The cohomology of (C•(A), b) is called the Hochschild cohomology of A (with co-

efficients in A∗ = HomR(A,R)) and will be denoted by HH•(A). The periodic

cyclic cochain complex is Cper(A) = Ceven(A)⊕ Codd(A), where

Ceven(A) =
∞⊕
n=0

C2n(A), Codd(A) =
∞⊕
n=0

C2n+1(A).

Then Cper(A) is a Z/2-graded complex with differential b+B, and its cohomology

groups are the even and odd periodic cyclic cohomology of A, denoted HP 0(A)

and HP 1(A) respectively.

Since Cper(A) ∼= Cper(A)∗, there is a canonical pairing

〈·, ·〉 : Cper(A)× Cper(A)→ R

which descends to a bilinear map

〈·, ·〉 : HP •(A)×HP•(A)→ R.

2.4.5 Noncommutative geometry dictionary

In the case where A = C∞(M), the algebra of smooth functions on a closed

manifold M with its usual Fréchet topology, the above homology groups have

geometric interpretations. The Hochschild cohomology H•(A,A) is the graded

space of multivector fields on M . The cup product corresponds to the wedge

product of multivector fields, and the Gerstenhaber bracket corresponds to the

Schouten-Nijenhuis bracket. The Hochschild homology HH•(A) is the space of

differential forms on M . The differential B descends to a differential on HH•(A),

and this can be identified with the de Rham differential d up to a constant. The

even (respectively odd) periodic cyclic homology can be identified with the direct
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sum of the even (respectively odd) de Rham cohomology groups. In a dual fashion,

the Hochschild cohomology HH•(A) is the space of de Rham currents and the

periodic cyclic cohomology can be identified with de Rham homology.

Thus, for any, not necessarily commutative, algebra A, we can view C•(A,A)

and C•(A) as spaces of noncommutative multivector fields and noncommutative

differential forms respectively. Just as multivector fields act on differential forms by

Lie derivative and contraction operations, there are Lie derivative and contraction

operations

L, ι : C•(A,A)→ End(C•(A))

for any algebra A, which we shall explore in the next section.

2.5 Operations on the cyclic complex

The Cartan homotopy formula that follows was first observed by Rinehart in [31] in

the case where D is a derivation, and later in full generality by Getzler in [12], see

also [35], [24]. An elegant and conceptual proof of the Cartan homotopy formula

can be found in [18]. Our conventions vary slightly from [12], and are like those in

[35].

To simplify the notation of what follows, the elementary tensor a0⊗ a1⊗ . . .⊗
an ∈ Cn(A) will be written as (a0, a1, . . . , an). All operators that are defined in

this section are given algebraically on elementary tensors, and extend to continuous

linear operators on the corresponding completed topological tensor products.

All commutators of operators that follow are graded commutators. That is, if

S and T are homogenous operators of degree |S| and |T |, then

[S, T ] = ST − (−1)|S||T |TS.

Proofs of statements asserted in this section can be found in Appendix B.
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2.5.1 Lie derivatives, contractions, and the Cartan homo-

topy formula

Given a Hochschild cochain D ∈ Ck(A,A), the Lie derivative along D is the

operator LD ∈ End(C•(A)) of degree 1− k given by

LD(a0, . . . , an)

=
n−k+1∑
i=0

(−1)i(k−1)(a0, . . . , D(ai, . . . , ai+k−1), . . . , an)

+
k−1∑
i=1

(−1)in(D(an−i+1, . . . , an, a0, . . . , ak−1−i), ak−i, . . . , an−i).

The second sum is taken over all cyclic permutations of the ai such that a0 is

within D. In the case D ∈ C1(A,A), the above formula is just

LD(a0, . . . , an) =
n∑
i=0

(a0, . . . ai−1, D(ai), ai+1, . . . , an).

To be completely precise in the above formulas, we are identifying Ck(A,A) as a

subspace of Hom(Ãq⊗Rk, A) by extending by zero, so that

D(a1, . . . , ak) = 0, if ai = e for some i.

The one exception, where we do not wish to extend by zero, is for the multiplication

map m of the unitization Ã. Here, the formula for Lm still gives a well-defined

operator on C•(A), and Lm = b.

Proposition 2.5.1. If D,E ∈ C•(A,A), then

[LD, LE] = L[D,E], [b, LD] = LδD, [B,LD] = 0.

So C−•(A) and Cper(A) are differential graded modules over the differential

graded Lie algebra g•(A). In particular, the graded Lie algebra H•+1(A,A) acts

via Lie derivatives on both the Hochschild homology HH−•(A) and the periodic

cyclic homology HP•(A).

Given a k-cochain D ∈ Ck(A,A), the contraction with D is the operator ιD ∈
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End(C•(A)) of degree −k given by

ιD(a0, . . . , an) = (−1)k−1(a0D(a1, . . . , ak), ak+1, . . . , an).

Proposition 2.5.2. For any D ∈ C•(A,A), [b, ιD] = −ιδD.

Although ιD interacts well with b, it does not with the differential B, and

needs to be adjusted for the cyclic complex. Given D ∈ Ck(A,A), let SD denote

the operator on C•(A) of degree 2− k given by

SD(a0, . . . , an) =
n−k+1∑
i=1

n−i−k+1∑
j=0

(−1)i(k−1)+j(n−k+1)

(e, an−j+1, . . . , an, a0, . . . , ai−1, D(ai, . . . , ai+k−1), ai+k . . . , an−j),

if a0 ∈ A and

SD(e, a1, . . . , an) = 0.

The sum is over all cyclic permutations with D appearing to the right of a0. Given

D ∈ C•(A,A), the cyclic contraction with D is the operator

ID = ιD + SD.

Theorem 2.5.3 (Cartan homotopy formula). For any D ∈ C•(A,A),

[b+B, ID] = LD − IδD.

Theorem 2.5.3 implies that the Lie derivative along a Hochschild cocycle D ∈
C•(A,A) is continuously chain homotopic to zero in the periodic cyclic complex.

Thus, the action of H•+1(A,A) on HP•(A) by Lie derivatives is zero.

The results of this section can be summarized in another way. Consider the

endomorphism complex EndR(Cper(A)) whose coboundary map is given by the

graded commutator with b+B. Let

Op(A) = HomR(g•(A),EndR(Cper(A)),

and let ∂ denote the boundary map in Op(A). Given Φ ∈ Op(A) and D ∈ g•(A),
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we shall write ΦD := Φ(D). So

(∂Φ)D = [b+B,ΦD]− (−1)|Φ|ΦδD.

Note that the Lie derivative L and the cyclic contraction I are elements of Op(A)

of even and odd degrees respectively. Theorem 2.5.3 is exactly the statement

∂I = L.

So it follows from this that ∂L = 0, i.e.

[b+B,LD] = LδD,

which is roughly the content of Proposition 2.5.1.

2.5.2 Some higher operations

The Lie derivative and contraction operations of the previous section have multiple

generalizations, see e.g. [12] or [35]. We shall need just one of these. For X, Y ∈
C1(A,A), define the operators L{X, Y } and I{X, Y } on C•(A) by

L{X, Y }(a0, . . . , an) =
n−1∑
i=1

n∑
j=i+1

(a0, . . . , X(ai), . . . , Y (aj), . . . an)

+
n∑
i=1

(Y (a0), a1, . . . , X(ai), . . . , an).

and

I{X, Y }(a0, . . . , an) =
n−1∑
i=1

n∑
j=i+1

n−j∑
m=0

(−1)nm

(e, an−m+1, . . . , an, a0, . . . , X(ai), . . . , Y (aj), . . . , an−m),

if a0 ∈ A and

I{X, Y }(e, a1, . . . , an) = 0.

The following formula appears in [12], with slightly different conventions.
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Theorem 2.5.4. If X and Y are derivations, then

[b+B, I{X, Y }] = L{X, Y }+ IX^Y − IY IX .

Corollary 2.5.5. If X and Y are derivations, then

[b+B,L{X, Y }] = −LX^Y + LY IX − IYLX .

2.6 Cyclic homology of differential graded alge-

bras

Let (Ω•, d) be a (possibly nonunital) locally convex differential graded s⊗-algebra

over R. We define the unitization Ω̃• of Ω• to be the unitization as an algebra,

with the understanding that the adjoined unit e has degree 0 and satisfies de = 0.

Then Ω̃• is a unital locally convex differential graded s⊗-algebra that contains Ω•

as a closed differential graded ideal.

If ω ∈ Ωk, we shall write

degω = k.

More generally, for ω1 ⊗ . . .⊗ ωn ∈ Ωs⊗Rn, we write

deg(ω1 ⊗ . . .⊗ ωn) = degω1 + . . .+ degωn.

Let (Ωs⊗Rn)k denote the closed submodule generated by elementary degree k ten-

sors. We define the Hochschild chain groups to be

Cn(Ω) =

Ω0 ⊕ (
⊕∞

k=1(Ω̃s⊗RΩs⊗Rk)k), n = 0⊕∞
k=−n(Ω̃s⊗RΩs⊗R(n+k))k, n ≥ 1.

The Hochschild boundary b : C•(Ω)→ C•−1(Ω) is given by

b(ω0 ⊗ . . .⊗ ωn)

=
n−1∑
i=0

(−1)degω0+...+degωi−iω0 ⊗ . . .⊗ ωiωi+1 ⊗ . . .⊗ ωn
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+ (−1)(degω0+...+degωn−1−n)(degωn−1)+degωnωnω0 ⊗ ω1 ⊗ . . .⊗ ωn−1

+
n∑
i=0

(−1)degω0+...+degωi−1−iω0 ⊗ . . .⊗ dωi ⊗ . . .⊗ ωn.

The signs are explained in Appendix B, where we also show b2 = 0. The homology

groups of (C•(Ω), b) are the Hochschild homology groups HH•(Ω) of Ω•. Notice

that in the case where Ω• is concentrated in degree 0, so that d = 0 and Ω• is just

an ungraded algebra, we recover the usual Hochschild chain groups and homology.

Notice also that if Ω• has positive grading, then there are negative Hochschild

chain groups and homology groups.

Connes’ differential B : C•(Ω)→ C•+1(Ω) is modified to include signs:

B(ω0 ⊗ . . .⊗ ωn)

=
n∑
i=0

(−1)(degω0+...+degωn−i−n+i−1)(degωn−i+1+...+degωn−i)

e⊗ ωn−i+1 ⊗ . . .⊗ ωn ⊗ ω0 ⊗ . . .⊗ ωn−i,

if ω0 ∈ Ω•, and

B(e, ω1, . . . , ωn) = 0.

Then

B2 = 0, [b, B] = bB +Bb = 0.

The periodic cyclic chain complex is the Z/2-graded complex

Cper(Ω) = Cev(Ω)⊕ Codd(Ω)

with differential b+B, where

Cev(Ω) =
∏
k∈Z

C2k(Ω), Codd(Ω) =
∏
k∈Z

C2k+1(Ω).

We denote the even and odd periodic cyclic homology groups of Ω• by HP0(Ω)

and HP1(Ω) respectively.

Let Ck(Ω,Ω) = Hom(Ωs⊗Rk),Ω) be the space of Hochschild k-cochains as in the

algebra case. For a homogeneous D ∈ Ck(Ω,Ω), we write degD for the degree of
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D as a linear map, so that

D((Ω
s⊗k)n) ⊂ Ωn+degD

for all n. We shall write

|D| = degD + k − 1.

Let g•(Ω) denote the space of Hochschild cochains with the grading given by | · |.
As in the algebra case, it is a differential graded Lie algebra under the following

structure. Given homogeneous D ∈ Ck(Ω,Ω), E ∈ C l(Ω,Ω), let

(D ◦ E)(ω1, . . . , ωk+l−1)

=
k∑
i=1

(−1)|E|(degω1+...+degωi−1−(i−1))

D(a1, . . . , ai−1, E(ai, . . . , ai+l−1), ai+l1, . . . , ak+l−1),

and define the Gerstenhaber bracket to be

[D,E] = D ◦ E − (−1)|D||E|E ◦D.

One can check that g•(Ω) is a graded Lie algebra under the Gerstenhaber bracket.

Let m1 = d, the differential of Ω, and let

m2(ω1, ω2) = (−1)degω1ω1ω2

be the multiplication map twisted by a sign. Set m = m1 +m2. Then |m| = 1 and

[m,m] = 2(m ◦m) = 0

follows because Ω• is a differential graded algebra. It follows from Example 2.3.2

that

δD = [m,D]

defines a differential graded Lie algebra structure on g•(Ω), so that

δ[D,E] = [δD,E] + (−1)|D|[D, δE].
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Quite explicitly, if D ∈ Ck(Ω,Ω), then

δD = [m1, D] + [m2, D],

where

[m1, D](ω1, . . . , ωk) = d(D(ω1, . . . , ωk))

+
k∑
i=1

(−1)|D|+degω1+...+degωi−1+iD(ω1, . . . , dωi, . . . , ωk)

and

[m2, D](ω1, . . . , ωk+1)

= (−1)|D|+degω1+...+degωk−k+1D(ω1, . . . , ωk)ωk+1

+ (−1)|D|(degω1−1)+degω1ω1D(ω2, . . . , ωk+1)

+
k∑
i=1

(−1)|D|+degω1+...+degωi−iD(ω1, . . . , ωiωi+1, . . . , ωk+1).

Example 2.6.1. If D : Ω• → Ω•+degD is a homogenous linear map, then

[m1, D] = [d,D] = dD − (−1)degDDd = 0

if and only if d graded commutates with D. Also, [m2, D] = 0 if and only if D is

a graded derivation, that is

D(ω1ω2) = D(ω1)ω2 + (−1)(degD)(degω1)ω1D(ω2).

There is an associative cup product

^: Ck(Ω,Ω)⊗ C l(Ω,Ω)→ Ck+l(Ω,Ω)

given by

(D ^ E)(ω1, . . . , ωk+l)

= (−1)(|E|+1)(degω1+...+degωk−k)D(ω1, . . . , ωk)E(ωk+1, . . . , ωk+l)
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for which

δ(D ^ E) = (δD) ^ E + (−1)|D|+1D ^ (δE).

The differential graded Lie algebra g•(Ω) of Hochschild cochains acts on the

Hochschild chain groups C•(Ω) by Lie derivatives and contractions. Given a ho-

mogeneous D ∈ Ck(Ω,Ω), let

LD(ω0, . . . , ωn)

=
n−k+1∑
i=0

(−1)|D|(degω0+...+degωi−1−i)

(ω0, . . . ωi−1, D(ωi, . . . , ωi+k−1), ωi+k, . . . , ωn)

+
k−1∑
i=1

(−1)(degω0+...+degωn−i−n+i−1)(degωn−i+1+...+degωn−i)

(D(ωn−i+1, . . . , ωn, ω0, . . . , ωk−i−1), ωk−i, . . . , ωn−i).

As in the algebra case, the same remarks apply regarding extension by zero as it

pertains to D ∈ Ck(Ω,Ω) and the twisted multiplication map m2, see section 2.4.2.

Then

[LD, LE] = L[D,E], [LD, B] = 0.

Notice that b = Lm, from which we see

[b, LD] = LδD, b2 = 0.

The cyclic contraction is defined by

ID = ιD + SD,

where

ιD(ω0, . . . , ωn) = (−1)|D|(degω0−1)(ω0D(ω1, . . . , ωk), ωk+1, . . . , ωn)
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and

SD(ω0, . . . , ωn) =
n−k+1∑
i=0

n−k+1−i∑
j=0

(−1)|D|(degω0+...+degωi−1−i)+(|D|+degω0+...+degωn−j−n+j−1)(degωn−j+1+...+degωn−j)

(e, ωn−j+1, . . . , ωn, ω0, . . . , ωi−1, D(ωi, . . . , ωi+k−1), ωi+k . . . , ωn−j)

if ω0 ∈ Ω•, and

SD(e, ω1, . . . , ωn) = 0.

As in the algebra case, the Cartan homotopy formula

[b+B, ID] = LD − IδD

holds.

Now let’s make the assumption that Ω• =
⊕∞

n=0 Ωn is nonnegatively graded.

We shall view the subalgebra Ω0 as a differential graded algebra concentrated in

degree 0 with the zero differential. Then the canonical projection

p : (Ω•, d)→ (Ω0, 0)

is a map of differential graded algebras. The following result appears in [14],

although with different sign conventions.

Theorem 2.6.2 ([14]). If Ω• is a nonnegatively graded locally convex differential

graded s⊗-algebra, then the projection π : Ω• → Ω0 induces an isomorphism

p∗ : HP•(Ω)→ HP•(Ω
0).

Proof (sketch). First consider the case where d = 0. Define the degree 0 derivation

D : Ω• → Ω•

on homogeneous elements by

D(ω) = (degω)ω
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and extend linearly. Then for homogeneous α ∈ (Ω̃s⊗RΩs⊗Rn), one has

LDα = (degα)α.

As the differentials b and B preserve degree, the periodic cyclic complex decom-

poses by degree into subcomplexes which are exactly the eigenspaces of LD. But

the Cartan homotopy formula

[b+B, ID] = LD

implies that the subcomplexes of strictly positive degree are contractible. The

subcomplex of degree 0 is exactly the periodic cyclic complex of Ω0. Using a

homotopy operator constructed from ID, one can show that

p : Cper(Ω
•)→ Cper(Ω

0)

is a chain homotopy equivalence, whose homotopy inverse is the inclusion of com-

plexes

i : Cper(Ω
0)→ Cper(Ω

•).

In the case where d is nontrivial, we view the complex Cper(Ω
•, d) as a pertur-

bation of the complex Cper(Ω
•, 0). Using the Homotopy Perturbation Lemma, as

stated in [7], the chain homotopy equivalence

p∗ : Cper(Ω
•, 0)→ Cper(Ω

0)

can be perturbed to give a chain homotopy equivalence

p∗ : Cper(Ω
•, d)→ Cper(Ω

0).

We remark that the map p∗ does not change under the perturbation, but its ho-

motopy inverse, as well as the homotopy operator, do change drastically.
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2.7 A∞-algebras

An A∞-algebra is a generalization of a differential graded algebra, first introduced

by Stasheff [32]. Our interest in A∞-algebras lies not in this larger class of objects,

but rather in the larger, more flexible class of morphisms naturally associated to

them. The notion of A∞-isomorphism for differential graded algebras is strictly

weaker than the natural notion of differential graded algebra isomorphism. Our

treatment of A∞-algebras nearly follows Getzler and Jones [13].

2.7.1 Tensor coalgebra

If X• is a graded locally convex s⊗-module over R, then the locally convex tensor

coalgebra of X• is

T cX =
∞⊕
n=0

X
s⊗Rn

with the direct sum topology. The grading on T cX is internal, not external, in the

sense that

|x1 ⊗ . . .⊗ xn| = |x1|+ . . .+ |xn|.

The coproduct ∆ : T cX → T cX s⊗RT cX is determined by

∆(x1 ⊗ . . .⊗ xn) =
n∑
k=0

(x1 ⊗ . . .⊗ xk)⊗ (xk+1 ⊗ . . .⊗ xn).

The empty tensor in this expression is to be interpreted as 1 ∈ R ∼= X s⊗R0. The

counit ε : T cX → R is given by

ε(x1 ⊗ . . .⊗ xn) = 0, n ≥ 1,

and ε(r) = r if r ∈ R ∼= X s⊗R0. There is a coaugmentation

η : R→ T cX

given by mapping R isomorphically onto X s⊗R0.

Proposition 2.7.1. The tensor coalgebra T cX is a locally convex graded
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s⊗-coalgebra over R which is coaugmented and cocomplete.

Proof. The coproduct gives a separately continuous n-multilinear map

∆ : X×n → T cX s⊗RT cX,

and thus a continuous R-linear map

∆ : T cX → T cX s⊗RT cX

using the universal properties of the inductive tensor product and the direct sum.

The coassociativity and counit axioms, as well as continuity of the counit, are

routine verifications. Using the coaugmentation, we see that the kernel Nn of the

map

T cX
∆n−1

// (T cX)s⊗Rn // (T cX/R)s⊗Rn.

is exactly
⊕n−1

k=0 X
s⊗Rk. Thus, T cX is cocomplete, as

lim−→Nn
∼= T cX,

both linearly and topologically.

Remark 2.7.2. The tensor coalgebra T cX has the same underlying space as the

tensor algebra, so there is an obvious multiplication on T cX. However, these

structures should not be considered simultaneously, as they are not compatible in

the sense that T cX is not a bialgebra under these structures.

Let π : T cX → X denote the canonical projection ontoX. The tensor coalgebra

is not actually a cofree coalgebra on X with respect to this projection, however it

is in the category of coaugmented cocomplete coalgebras.

Proposition 2.7.3. Let C• be a coaugmented cocomplete locally convex graded

s⊗-coalgebra over R, and let F : C• → X be a degree 0 continuous R-linear map

such that FηC = 0. Then there is a unique continuous map of graded coaugmented
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coalgebras F̃ : C• → T cX such that

C• F̃ //

F
""

T cX

π
��

X

commutes.

Proof. Notice that the composition

T cX
∆n−1

// (T cX)s⊗Rn π⊗n // X s⊗Rn

is the projection onto X⊗Rn. This holds for all n ≥ 0 if we make the conventions

that ∆0 = id and ∆−1 = ηε. So we have

∞∑
n=0

π⊗n∆n−1 = id : T cX → T cX.

So if F̃ : C• → T cX is a map of coaugmented graded coalgebras with πF̃ = F ,

then

F̃ =
∞∑
n=0

π⊗n∆n−1F̃

=
∞∑
n=0

π⊗nF̃⊗n∆n−1

=
∞∑
n=0

F⊗n∆n−1.

This shows that such an F̃ is unique.

It remains to prove that such a formula gives a well-defined map of graded

coaugmented coalgebras. Let NC
n ⊂ C• be the submodules as in the definition of

cocompleteness. The maps

n∑
k=0

F⊗n∆n−1 : NC
n → T cX

are compatible with the inclusions NC
n → NC

n+1 because of the condition FηC = 0.
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The induced continuous linear map on C• ∼= lim−→Nn is given by

F̃ =
∞∑
n=0

F⊗n∆n−1 : C• → T cX,

as desired. So F̃ is well-defined and it respects the coaugmentation and counit.

One can check directly that ∆F̃ and (F̃ ⊗ F̃ )∆ are both equal to

∞∑
m=0

∞∑
n=0

(F⊗m ⊗ F⊗n)∆m+n−1,

where the sum is actually finite when applied to an element of C•.

It will be of interest to consider the possible ways to make T cX a differential

graded coalgebra. To do this, we first classify all possible coderivations. The fol-

lowing is dual to the fact that a derivation on the tensor algebra TaX is determined

by a linear map X → TaX.

Proposition 2.7.4. The map D 7→ πD gives a linear isomorphism

Coder(T cX)
∼= // HomR(T cX,X)

of graded vector spaces.

The inverse of this map sends the element F ∈ HomR(X s⊗Rk, X) to the coderiva-

tion
∞∏
n=k

n−k∑
j=0

1⊗j ⊗ F ⊗ 1n−k−j.

Using this isomorphism, we can transfer the Lie bracket from Coder(T cX) to

HomR(T cX,X). The bracket is given by

[F,G] = F ◦G− (−1)|F ||G|G ◦ F

where

F ◦G =
k−1∑
j=0

F (1⊗j ⊗G⊗ 1⊗(k−j−1)),
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where F ∈ HomR(X s⊗Rk, X). Notice that if F ∈ HomR(X s⊗Rk, X) and G ∈
HomR(X s⊗Rl, X), then [F,G] ∈ HomR(X s⊗R(k+l−1), X).

Corollary 2.7.5. The space HomR(T cX,X) is a graded Lie algebra over R.

2.7.2 Locally convex A∞-algebras

Given a graded locally convex s⊗-module X over R, suspension sX of X is the

same module as X, but with a shift in grading so that

(sX)n = Xn+1.

The bar coalgebra of X is defined to be

B(X) = T c(sX).

Elementary tensors in (sX)s⊗Rn shall be denoted [x1| . . . |xn] to differentiate them

from elements of X s⊗Rn. Notice that the grading shift from the suspension propa-

gates throughout the bar coalgebra, so that the degree of the element [x1| . . . |xn]

is
∑n

i=1 deg xi − n, where deg xi is the degree of xi viewed as an element of the

graded space X. In particular if X is trivially graded, the grading on B(X) is

nontrivial.

Definition 2.7.6. A locally convex A∞-algebra over R is a locally convex graded

s⊗-module A over R equipped with a degree +1 coderivation m on B(A) for which

m2 = 0 and mη = 0.

Thus, (B(A),m) is a locally convex differential graded s⊗-coalgebra over R.

For simplicity, we are only using inductive tensor products here due to their com-

patibility with direct sums, which are inherent to the discussion. If we consider a

vector space A with its finest locally convex topology, then we recover the algebraic

definition of an A∞-algebra.

To pull apart this definition, first recall that

Coder(B(A)) ∼= HomR(B(A), sA),
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so that m is given by a sequence of degree 1 maps5

mn : (sA)
s⊗Rn → sA, n ≥ 1.

The condition m2 = 0 decomposes as an infinite sequence of identities:

∑
i+j=n

i∑
k=0

mi(1
⊗k ⊗mj ⊗ 1⊗(i−k−1)) = 0, n ≥ 1.

The first three identities are

m1m1 = 0,

m1m2 +m2(m1 ⊗ 1) +m2(1⊗m1) = 0,

m2(m2 ⊗ 1) +m2(1⊗m2) +m1m3

+m3(m1 ⊗ 1⊗ 1) +m3(1⊗m1 ⊗ 1) +m3(1⊗ 1⊗m1) = 0.

To make things a little easier to digest, let µn : As⊗Rn → A be defined by

(sA)s⊗Rn
mn // sA

s−1

��

As⊗Rn

s⊗n

OO

µn
// A

Since s : A→ sA is a degree −1 map, µn has degree 2− n. Aside from superficial

differences due to a grading shift, mn and µn differ from a sign coming from

applying s⊗n:

µn(a1, . . . , an) = (−1)
∑n−1
k=1 k deg aksmn[a1| . . . |an].

The first three identities then become

µ1(µ1(a)) = 0,

µ1(µ2(a1, a2)) = µ2(µ1(a1), a2) + (−1)deg a1µ2(a1, µ1(a2)),

µ2(µ2(a1, a2), a3)− µ2(a1, µ2(a2, a3))

5If we remove the condition mη = 0, there will in addition be a map m0 : R → sA, and we
obtain the more general notion of a curved locally convex A∞-algebra.
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= µ1(µ3(a1, a2, a3)) + µ3(µ1(a1), a2, a3) + (−1)deg a1µ3(a1, µ1(a2), a3)

+ (−1)deg a1+deg a2µ3(a1, a2, µ1(a3)).

From the first condition, we see that (A, µ1) is a cochain complex. The second

condition is that µ1 is a derivation with respect to the bilinear map µ2. As the

third condition shows, the product µ2 is not in general associative, but is associative

up to a homotopy given by µ3. In fact, this condition implies that the cohomology

H•(A) with respect to µ1 is a graded associative algebra with product induced by

µ2. Here are some important classes of A∞-algebras.

• If A is trivially graded, then so is As⊗Rn. Then since

µn : A
s⊗Rn → A

has degree 2− n, we see that µn = 0 unless n = 2. The only identity which

is not vacuous is that µ2 is associative. Thus, locally convex A∞-structures

on a trivially graded space are the same thing as locally convex s⊗-algebra

structures on that space.

• If µn = 0 unless n = 1, then we have a cochain complex with coboundary

map µ1.

• If µn = 0 unless n = 2, then we have a graded associative algebra with

product µ2.

• If µn = 0 unless n = 1, 2, then we have a differential graded algebra with

differential µ1 and associative product µ2.

An A∞-morphism between two locally convex A∞-algebras A and A′ is a con-

tinuous R-linear map of coaugmented differential graded coalgebras

f : B(A)→ B(A′).

Thus, it is clear that locally convex A∞-algebras with A∞-morphisms form a cat-

egory. The A∞-morphism f : B(A)→ B(A′) is an A∞-isomorphism if f is an iso-

morphism of locally convex differential graded coalgebras. From Proposition 2.7.3,



74

an A∞-morphism f is determined by

πf ∈ Hom(B(A), sA′),

which gives a sequence of degree 0 maps

fn : (sA)
s⊗Rn → sA′, n ≥ 1.

Note that since fηB(A) = ηB(A′), there is no f0. We would like to express the

condition

fm−m′f = 0

in terms of the mn,m
′
n and fn. One can check that for coderivations m,m′ and a

coalgebra map f , the map fm−m′f is determined by the map

π(fm−m′f) : B(A)→ sA′.

When f is a map of differential graded coalgebras, this is the zero map. So we

obtain an infinite sequence of identities, of which the first few are

f1m1 = m′1f1,

f1m2 + f2(m1 ⊗ 1) + f2(1⊗m1) = m′1f2 +m′2(f1 ⊗ f1),

f1m3 + f2(m2 ⊗ 1) + f2(1⊗m2)

+ f3(m1 ⊗ 1⊗ 1) + f3(1⊗m1 ⊗ 1) + f3(1⊗ 1⊗m1)

= m′1f3 +m′2(f1 ⊗ f2) +m′2(f2 ⊗ f1) +m′3(f1 ⊗ f1 ⊗ f1).

In general, we have

∑
i+j=n+1

n−j∑
k=0

fi(1
⊗k ⊗mj ⊗ 1⊗n−k−j) =

n∑
r=1

∑
i1+...+ir=n

m′r(fi1 ⊗ . . .⊗ fir)

for all n ≥ 1. To understand these identities a little better, we define maps
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ϕn : As⊗Rn → A′ by

(sA)s⊗Rn
fn
// sA′

s−1

��

As⊗Rn

s⊗n

OO

ϕn
// A′

so that

ϕn(a1, . . . , an) = (−1)
∑n−1
k=1 k deg an−ksfn[a1| . . . |an].

Notice the ϕn has degree 1 − n. In terms of the µn and the ϕn, the first three of

these identities become

ϕ1(µ1(a)) = µ′1(ϕ1(a)),

ϕ1(µ2(a1, a2))

= µ′2(ϕ1(a1), ϕ1(a2)) + µ′1(ϕ2(a1, a2)) + ϕ2(µ1(a1), a2)

+ (−1)deg a1ϕ2(a1, µ1(a2)),

ϕ1(µ3(a1, a2, a3)) + ϕ2(µ2(a1, a2), a3)− ϕ2(a1, µ2(a2, a3))

= µ′3(ϕ1(a1), ϕ1(a2), ϕ1(a3))− µ′2(ϕ2(a1, a2), ϕ1(a3))

+ (−1)deg a1µ′2(ϕ1(a1), ϕ2(a2, a3)) + µ′1(ϕ3(a1, a2, a3))− ϕ3(µ1(a1), a2, a3)

− (−1)deg a1ϕ3(a1, µ1(a2), a3)− (−1)deg a1+deg a2ϕ3(a1, a2, µ1(a3)).

The first condition is that ϕ1 is a degree 0 chain map. The second condition is

that ϕ1 is a homomorphism with respect to the product µ2 up to a homotopy given

by ϕ2. The third and higher conditions are harder to make sense of. However, the

first two conditions are enough to ensure that ϕ1 induces a map of graded algebras

ϕ1 : H•(A)→ H•(A′).

The morphism f is an A∞-quasi-isomorphism if the map induced by ϕ1 on coho-

mology is an isomorphism. One can show that if

f : B(A)→ B(A′), f ′ : B(A′)→ B(A′′)
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are two A∞-morphisms, then6

(f ′f)1 = f ′1f1 : sA→ sA′′.

As a consequence, if f is an A∞-isomorphism, then ϕ1 : (A,m1) → (A′,m′1) is an

isomorphism of complexes. It follows that an A∞-isomorphism is an A∞-quasi-

isomorphism. Let us consider some special cases:

• If A,A′ are trivially graded, then locally convex A∞-structures are the same

as separately continuous associative multiplications, as discussed above.

Since an A∞-morphism decomposes into maps

ϕn : A
s⊗Rn → A′

of degree 1− n, we see that ϕn = 0 for n 6= 1. That f is an A∞-morphism is

equivalent to ϕ1 being an algebra morphism. Thus, we can view the category

of ungraded locally convex s⊗-algebras as a full subcategory of the category

of locally convex A∞-algebras.

• If µn, µ
′
n = 0 unless n = 1, so that A and A′ are just cochain complexes, then

an A∞-morphism

f : B(A)→ B(A′)

is given by a sequence of unrelated chain maps

fn : (sA)
s⊗Rn → sA′.

Here, (sA)s⊗Rn is a cochain complex as it is an iterated tensor product of

the complex (sA,m1). Then f is an A∞-quasi-isomorphism if and only if

f1 is a quasi-isomorphism of cochain complexes. Here, the notion of A∞-

morphism is more general than the usual notion of morphism of complexes.

Thus, complexes do not form a full subcategory of A∞-algebras. However,

one can show that two complexes are A∞-isomorphic if and only if they are

isomorphic as complexes, so we do not obtain a different notion of equivalence

by passing to A∞-algebras.

6We remark that the formula for (f ′f)n for n > 1 is more complicated.
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• If we are considered graded algebras, so that µn, µ
′
n = 0 unless n = 2, then an

A∞-morphism consists of an algebra map ϕ1 along with some higher maps

ϕn : As⊗Rn → A′ satisfying certain relations. However, two algebras are

isomorphic as algebras if and only if they are A∞-isomorphic if and only if

they are A∞-quasi-isomorphic.

• The case we shall most be interested in is when A and A′ are differential

graded algebras. If ϕn = 0 for n 6= 1, then ϕ1 is a differential graded

algebra morphism. But for a general A∞-morphism, ϕ1 is not necessarily

a differential graded algebra morphism, because it is only multiplicative up

to homotopy. So it may be the case that two differential graded algebras

A and A′ are A∞-isomorphic, but not isomorphic. This weakening of the

notion of equivalence of differential graded algebras is our main motivation

for considering A∞-algebras.

2.7.3 Cyclic homology of A∞-algebras

Cyclic homology was first introduced for A∞-algebras in [13].

An A∞-algebra A is unital if there is an element e ∈ A0 such that

m2(e, a) = a = (−1)deg am2(a, e),∀a ∈ A,

and

mn(a1, . . . , e, . . . , an) = 0, n 6= 2.

For any A∞-algebra A, we define the unitization Ã to be A with an element

e adjoined, such that the structure maps mn are extended to satisfy the above

relations.

The space of Hochschild cochains of a locally convex A∞-algebra over R is

g•(A) := HomR(B(A), sA) ∼= Coder(B(A)).

It is a graded Lie algebra, as described in the discussion of Corollary 2.7.5, and

its bracket is called the Gerstenhaber bracket. Care must be taken as it pertains

to the grading. A map D ∈ HomR(As⊗Rk, A) shall be called a k-cochain. If D is
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homogeneous, then we shall write degD to mean the integer such that

D((A
s⊗Rk)n) ⊂ An+degD.

The notation |D| shall refer to the degree of D as an element of g•(A). So for a

homogeneous k-cochain D, we have

|D| = degD + (k − 1).

The A∞-structure map m ∈ g1(A) satisfies

[m,m] = 2m2 = 0.

So as in Example 2.3.2, the operator

δD = [m,D]

defines a differential on g•(A) that makes it a differential graded Lie algebra.

Example 2.7.7. For a trivially graded algebra A, gk(A) is exactly the space of

(k + 1)-cochains. The differential graded Lie algebra g•(A) coincides with the one

defined in section 2.4.1. If A• is a differential graded algebra, the differential graded

Lie algebra g•(A) coincides with the one defined in section 2.6.

The Hochschild chain groups of a locally convex A∞-algebra over R are defined

as

Cn(A) =

A0 ⊕ (
⊕∞

k=1(Ãs⊗RAs⊗Rk)k), n = 0⊕∞
k=−n(Ãs⊗RAs⊗R(n+k))k, n ≥ 1.

as in the differential graded algebra case in section 2.6.

The graded Lie algebra g•(A) acts on the graded space C•(A) by Lie derivatives

exactly as given in section 2.6. Notice that the definition of the Lie derivative

operators does not use anything but the linear structure. Thus we have

[LD, LE] = L[D,E], ∀D,E ∈ g•(A).
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The Hochschild boundary map is defined to be b = Lm. Thus, it is immediate that

b2 =
1

2
[Lm, Lm] =

1

2
L[m,m] = 0

and

[b, LD] = L[m,D] = LδD.

Connes’ differential B : C•(A)→ C•+1(A) is defined exactly as in section 2.6. Just

as before

[LD, B] = 0,

in particular,

[b, B] = bB +Bb = 0.

The periodic cyclic chain complex is the Z/2-graded complex

Cper(A) = Cev(A)⊕ Codd(A)

with differential b+B, where

Cev(A) =
∏
k∈Z

C2k(A), Codd(A) =
∏
k∈Z

C2k+1(A).

We denote the even and odd periodic cyclic homology groups of the A∞-algebra A

by HP0(A) and HP1(A) respectively. In [13], the Hochschild and cyclic complexes

arise from a construction that is functorial in the bar coalgebra B(A). It follows

that periodic cyclic homology is functorial with respect to A∞-morphisms. Now

the periodic cyclic homology of a differential graded algebra, viewed as an A∞-

algebra, is the same as the periodic cyclic homology defined in section 2.6. Thus

we obtain the following.

Theorem 2.7.8. If Ω• and Ω′• are A∞-isomorphic differential graded algebras,

then HP•(Ω) ∼= HP•(Ω
′).



Chapter 3
Smooth one-parameter deformations

3.1 Smooth deformations of algebras

Let X ∈ LCTVS and let J denote an open subinterval of R.

Definition 3.1.1. A q⊗-smooth one-parameter deformation of algebras is a q⊗-

smooth family of continuous linear maps {mt : X q⊗X → X}t∈J for which each mt

is associative.

So for each t ∈ J , we have a locally convex q⊗-algebra At := (X,mt) whose

underlying space is X. We shall often refer to the deformation as {At}t∈J when

the multiplications are understood.

Given such a deformation {mt}t∈J of multiplications on X, consider the con-

tinuous C∞(J)-linear map

m : C∞(J)q⊗(X q⊗X)→ C∞(J)q⊗X

associated to {mt} as in Proposition 2.1.10. Set A = C∞(J)q⊗X, so that m can

be viewed as a map

m : Aq⊗C∞(J)A→ A

using Proposition 2.1.7. Associativity of m follows from associativity of the family

{mt}. Thus A is a locally convex q⊗-algebra over C∞(J), which we shall refer to as

the algebra of sections of the deformation {At}t∈J . Explicitly, the multiplication
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in A is given by

(a1a2)(t) = mt(a1(t), a2(t)).

Note that the “evaluation maps” εt : A→ At are algebra maps.

Proposition 3.1.2. Associating to a deformation its algebra of sections gives a

one-to-one correspondence between q⊗-smooth one-parameter deformations of alge-

bras with underlying space X and parameter space J , and locally convex q⊗-algebra

structures over C∞(J) on C∞(J)q⊗X.

In many deformations of interest to us, the underlying space X is a Fréchet

space. Here, we need not distinguish between topological tensor products, as

C∞(J)s⊗X ∼= C∞(J)⊗̂X ∼= C∞(J,X),

and we shall refer to such deformations simply as smooth deformations of Fréchet

algebras. In this case, it is easier to check in practice that a deformation satisfies

the smoothness condition.

Proposition 3.1.3. If X is a Fréchet space, then a set of continuous associative

multiplications {mt : X⊗̂X → X}t∈J is a smooth one-parameter deformation of

Fréchet algebras if and only if the map

t 7→ mt(x1, x2)

is smooth for each fixed x1, x2 ∈ X.

Proof. If {mt}t∈J is a smooth one-parameter deformation, then it is immediate

that t 7→ mt(x1, x2) is smooth for all x1, x2 ∈ X.

Conversely, if t 7→ mt(x1, x2) is smooth for each fixed x1, x2 ∈ X, then the map

m : X ×X → C∞(J,X)

given by

m(x1, x2)(t) = mt(x1, x2)

is separately continuous by Proposition 2.1.11, because Fréchet spaces are barreled.
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Thus, m induces a continuous linear map

m : X s⊗X → C∞(J,X),

which shows that {mt}t∈J is a s⊗-smooth family of continuous linear maps.

Now, suppose A and B are the algebras of sections of two q⊗-smooth one-

parameter deformations {At}t∈J and {Bt}t∈J with underlying spaces X and Y

respectively.

Definition 3.1.4. A morphism {Ft}t∈J between two q⊗-smooth one-parameter

deformations {At}t∈J and {Bt}t∈J is a q⊗-smooth family {Ft}t∈J of algebra homo-

morphisms. That is,

(i) for each t ∈ J , Ft is a continuous algebra map with respect to the algebra

structures of At and Bt.

(ii) the maps {Ft}t∈J form a q⊗-smooth family in the sense of Definition 2.1.9.

Proposition 3.1.5. There is a one-to-one correspondence between morphisms

from {At}t∈J to {Bt}t∈J and continuous C∞(J)-linear algebra maps from A to

B.

Proof. Apply Proposition 2.1.10.

Two q⊗-smooth one-parameter deformations {At}t∈J and {Bt}t∈J are isomor-

phic if there are morphisms

{Ft : At → Bt}t∈J , {Gt : Bt → At}t∈J

such that

GtFt = id, FtGt = id, ∀t ∈ J.

Thus, we see that two deformations are isomorphic if and only if their algebras

of sections are isomorphic as locally convex q⊗-modules over C∞(J). A constant

deformation is one for which the multiplications {mt}t∈J do not depend on t. The

algebra of sections of a constant deformation is of the form

A = C∞(J)q⊗B
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for some locally convex q⊗-algebra B, where the product of A is given by

(f1 ⊗ b1)(f2 ⊗ b2) = f1f2 ⊗ b1b2.

A deformation is trivial if it is isomorphic to a constant deformation.

3.1.1 Smooth noncommutative tori

Given an n × n skew-symmetric real valued matrix Θ, the noncommutative torus

AΘ is the universal C∗-algebra generated by n unitaries u1, . . . , un such that

ujuk = e2πiθjkukuj,

where Θ = (θjk), see [30]. In the case Θ = 0, all of the generating unitaries

commute, and we have A0
∼= C(Tn), the algebra of continuous functions on the

n-torus. It is for this reason why the algebra AΘ has earned its name, as it can

be philosophically viewed as functions on some “noncommutative torus” in the

spirit of Alain Connes’ noncommutative geometry [6]. We shall be interested in

a dense subalgebra AΘ ⊂ AΘ which plays the role of the smooth functions on

the noncommutative torus. As a topological vector space, AΘ is the Schwartz

space S(Zn) of complex-valued sequences indexed by Zn of rapid decay, defined as

follows. Given a multi-index α = (α1, . . . , αn) ∈ Zn, we shall write

|α| = |α1|+ . . .+ |αn|.

A sequence x = (xα)α∈Zn is of rapid decay if for every positive integer k,

pk(x) :=
∑
α∈Zn

(1 + |α|)k|xα| <∞.

The functions pk are seminorms, and the topology on AΘ is the locally convex

topology defined by these seminorms. Under this topology, AΘ is complete, and

in fact is a nuclear Fréchet space [33, Chapter 51]. The identification of AΘ as a
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subalgebra of AΘ is given by the map ι : AΘ → AΘ,

ι(x) =
∑
α∈Zn

xαu
α,

where uα = uα1
1 u

α2
2 . . . uαnn . Since uα is a unitary, it has norm 1 in the C∗-algebra

AΘ, and consequently

‖ι(x)‖ ≤
∑
α∈Zn
|xα| = p0(x) <∞.

This show that the series defining ι(x) is absolutely convergent, and also that the

inclusion ι is continuous. Then AΘ is a norm dense subalgebra of AΘ because

it contains the ∗-algebra generated by u1, . . . , un. The multiplication is therefore

given by the twisted convolution product

(xy)α =
∑
β∈Zn

e2πiBΘ(α−β,β)xα−βyβ,

where

BΘ(α, β) =
∑
j>k

αjβkθjk.

One can show that for any k,

pk(xy) ≤ pk(x)pk(y), ∀x, y ∈ AΘ,

and thus AΘ is an m-convex Fréchet algebra. In the case Θ = 0, an element in

A0 = S(Zn) represents the Fourier coefficients of a function on Tn. The rapid

decay condition implies that this function is smooth, and in fact

A0
∼= C∞(Tn)

as Fréchet algebras.

The algebra AΘ possesses n canonical continuous derivations

δ1, . . . , δn : AΘ → AΘ
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defined by

(δj(x))α = 2πiαj · xα.

Under the identification A0
∼= C∞(Tn), these are the usual partial differential

operators. There is also a canonical continuous trace τ : AΘ → C given by

τ(x) = x0, which corresponds to integration with respect to the normalized Haar

measure in the case Θ = 0.

We view the smooth noncommutative torus AΘ as a smooth one-parameter

deformation of C∞(Tn) ∼= A0 in the following way. For each t ∈ J = R, let

At = AtΘ. The product in At is given by

mt(x, y)α =
∑
β∈Zn

e2πiBΘ(α−β,β)txα−βyβ.

Proposition 3.1.6. Given an n×n skew-symmetric real matrix Θ, the deformation

{AtΘ}t∈R is a smooth one-parameter deformation of Fréchet algebras, and for x, y

in the underlying space S(Zn),

d

dt
mt(x, y) =

1

2πi

∑
j>k

θjkmt(δj(x), δk(y)).

Proof. By Proposition 3.1.3, it suffices to show that t 7→ mt(x, y) is smooth for

each fixed x, y ∈ S(Zn). First, we will show that it is continuous. Every element

x ∈ S(Zn) can be expressed as an absolutely convergent series in the natural basis

{uα | α ∈ Zn}. That is, given x =
∑

α∈Zn xαu
α, then

∑
α∈Zn

pk(xαu
α) = pk(x) <∞

for all k, which says that the series is absolutely convergent in S(Zn). So, for fixed

x, y ∈ S(Zn), the inequality

pk(mt(x, y)) ≤ pk(x)pk(y) <∞

says that the absolute convergence of the series defining mt(x, y) is uniform in

t. Since each partial sum in mt(x, y) is clearly continuous in t, the function t 7→
mt(x, y) is continuous.
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Next, note that for a fixed α,

∑
β∈Zn

∣∣∣∣∣ ddte2πiBΘ(α−β,β)txα−βyβ

∣∣∣∣∣ =
∑
β∈Zn
|2πiBΘ(α− β, β)||xα−β||yβ|

≤
∑
β∈Zn

q(β)|yβ| <∞

for some polynomial q(β). Here we have used the fact that |xα−β| is bounded and

BΘ(α− β, β) is a polynomial function of β. By Corollary A.2.4, we have that

d

dt
[mt(x, y)α] =

∑
β∈Zn

d

dt
e2πiBΘ(α−β,β)txα−βyβ

=
∑
β∈Zn

2πiBΘ(α− β, β)e2πiBΘ(α−β,β)txα−βyβ.

By iterating and using the same argument,

dr

dtr
[mt(x, y)α] =

∑
β∈Zn

(2πiBΘ(α− β, β))re2πiBΘ(α−β,β)txα−βyβ

for any positive integer r. Define the continuous linear map

Ẽ : S(Zn)⊗̂S(Zn)→ S(Zn)⊗̂S(Zn)

by

Ẽ(x⊗ y) =
1

2πi

∑
j>k

θjkδj(x)⊗ δk(y).

Then we see that
dr

dtr
[mt(x, y)α] = mt(Ẽ

r(x, y))α

for each α ∈ Zn. Now Ẽr(x, y) is a finite sum of elementary tensors, so the

series defining mt(Ẽ
r(x, y)) converges uniformly in t by the above result. But

mt(Ẽ
r(x, y)) is the series of r-th derivatives of the terms of the series for mt(x, y).

So by Corollary A.2.4, we have

dr

dtr
mt(x, y) = mt(Ẽ

r(x, y)) ∈ S(Zn).
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This shows the deformation is smooth.

3.1.2 Crossed products by R

Let B be a Fréchet-algebra equipped with a group action

α : R→ Aut(B)

such that

(i) the map s 7→ αs(b) is smooth for all b ∈ B,

(ii) for every number m and continuous seminorm p on B, there is a number k

and another continuous seminorm q on B such that

p(
dm

dsm
αs(b)) ≤ (1 + |s|)kq(b), ∀b ∈ B.

As in [9], we shall call such an action a smooth action. If additionally p(αs(b)) =

p(b) for each seminorm p defining the topology of B, then we shall call the action

isometric.

Example 3.1.7. Let A be a C∗-algebra equipped with a group action

α : R→ Aut(A)

by ∗-automorphisms. As in [4], let δ denote the densely defined derivation on A

given by

δ(a) = lim
h→0

αh(a)− a
h

,

and let B be the subalgebra of all a ∈ A for which δn(a) exists for all n. Then B

is an m-convex Fréchet algebra with respect to the family {pn}∞n=0 of seminorms

given by

pn(b) =
n∑
k=0

1

k!
‖δk(b)‖,

where ‖·‖ denotes the C∗-algebra norm of A. Then one can verify that the restric-

tion of α to B is an isometric smooth action.
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Following [9], given a smooth action α of R on B, define the smooth crossed

product to be

B oα R = {f ∈ C∞(R, B) | sup
s∈R

(1 + |s|)mf (n)(s) <∞, for all nonnegative m,n}.

For each defining seminorm p on B, and each m,n ≥ 0, define a seminorm on

B oα R by

pm,n(f) =
n∑
k=0

∫
R
(1 + |s|)mp(f (k)(s))ds.

Then B oα R is complete and Hausdorff with respect to the topology defined by

these seminorms, and so it is a Fréchet space. We make B oα R an algebra with

the twisted convolution product

(f ∗ g)(s) =

∫
R
f(u)αu(g(s− u))du,

which one can check is associative.

Proposition 3.1.8. If α is a smooth action of R on a Fréchet algebra B, then

B oα R is a Fréchet algebra. If B is m-convex and α is isometric, then B oα R is

m-convex.

Proof. If p is a defining seminorm, choose continuous seminorms q and r and a

number k such that

p(b1b2) ≤ q(b1)q(b2), ∀b1, b2 ∈ B

and

q(αs(b)) ≤ (1 + |s|)kr(b), ∀b ∈ B,

as in the definition of smooth action. Then we first calculate

pm,0(f ∗ g) =

∫
R
(1 + |s|)mp((f ∗ g)(s))ds

=

∫
R
(1 + |s|)mp(

∫
R
f(u)αu(g(s− u))du)ds

≤
∫
R

∫
R
(1 + |s|)mp(f(u)αu(g(s− u))duds
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≤
∫
R

∫
R
(1 + |s|)m+kq(f(u))r(g(s− u))duds

≤
∫
R

∫
R
(1 + |u|)m+k(1 + |s− u|)m+kq(f(u))r(g(s− u))duds

= qm+k,0(f)rm+k,0(g).

Combining d
ds

(f ∗ g) = f ∗ g′, and pm,n(f) =
∑n

l=0 pm,0(f (l)), we have

pm,n(f ∗ g) =
n∑
l=0

pm,0(f ∗ g(l))

≤
n∑
l=0

qm+k,0(f)rm+k,0(g(l))

= qm+k,0(f)rm+k,n(g),

which shows that product is jointly continuous. If B is m-convex and the action

is isometric, we can choose q = r = p and k = 0. Thus

pm,n(f ∗ g) ≤ pm,0(f)pm,n(g) ≤ pm,n(f)pm,n(g),

which shows that B oα R is m-convex.

Given a smooth action α on B, let δ : B → B be the derivation given by

δ(b) = lim
h→0

αh(b)− b
h

.

By the first condition of smooth action, this limit exists for each b ∈ B, and the

second condition for m = 1 and s = 0 implies δ is continuous. Moreover,

d

ds
αs(b) = αs(δ(b)) = δ(αs(b)), ∀b ∈ B.

Then δ gives a derivation on B oα R, which we shall also call δ, by the formula

(δf)(s) = δ(f(s)).
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Let ∂ be the operator on B oα R given by

(∂f)(s) = 2πis · f(s).

Then ∂ is a continuous derivation, and ∂ commutes with δ.

Given t ∈ R, let αt : R→ Aut(B) denote the rescaled action

αts = αts.

Then αt is also a smooth action, so we may form the family of crossed product

algebras {B oαt R}t∈R, all of which have the same underlying Fréchet space. We

shall write ∗t for the convolution product in B oαt R.

Proposition 3.1.9. Given a smooth action α on B,

d

dt
(f ∗t g) =

1

2πi
(∂f) ∗t (δg)

for all B-valued Schwartz functions f and g. Consequently, {B oαt R}t∈R is a

smooth one-parameter deformation of Fréchet algebras.

Proof. We shall use Corollary A.2.4, to justify differentiating under the integral

sign. Let hN ∈ C(R,S(R, B)) be given by

hN(t)(s) =

∫ N

−N
f(u)αtu(g(s− u))du.

Then for each t ∈ R, hN(t)→ f ∗t g as N →∞. Since hN is given by an integral

over a finite domain,

d

dt
hN(t)(s) =

∫ N

−N
f(u)

d

dt
(αtu(g(s− u)))du.

We claim that in the topology of C(R,S(R, B)) (uniform convergence on compact

subsets of R,) d
dt
hN converge to the function

K(t)(s) =

∫
R
f(u)

d

dt
(αtu(g(s− u)))du
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as N → ∞. Let M > 1 and consider t in the compact subset [−M,M ]. Then

for any continuous seminorm p on B and numbers m and n, there are continuous

seminorms q, r on B and number l such that

pm,n(K(t)− d

dt
hN(t))

=
n∑
k=0

∫
R
(1 + |s|)mp( d

k

dsk
(K(t)(s)− hN(t)(s))ds

=
n∑
k=0

∫
R
(1 + |s|)mp(

∫
|u|≥N

f(u)
d

dt
(αtu(g

(k)(s− u)))du)ds

≤
n∑
k=0

∫
R

∫
|u|≥N

(1 + |s|)mq(f(u))q(
d

dt
(αtu(g

(k)(s− u))))duds

≤
n∑
k=0

∫
R

∫
|u|≥N

(1 + |s|)mq(f(u))u(1 + |tu|)lr(g(k)(s− u))duds

≤M l

n∑
k=0

∫
R

∫
|u|≥N

(1 + |s|)m(1 + |u|)l+1q(f(u))r(g(k)(s− u))duds

≤M l

n∑
k=0

∫
R

∫
|u|≥N

(1 + |u|)m+l+1(1 + |s− u|)mq(f(u))r(g(k)(s− u))duds

= M l

n∑
k=0

∫
|u|≥N

∫
R
(1 + |u|)m+l+1(1 + |s|)mq(f(u))r(g(k)(s))dsdu

= M lrm,n(g)

∫
|u|≥N

(1 + |u|)m+l+1q(f(u))du,

which goes to 0 as N →∞. Thus by Corollary A.2.4,

d

dt
(f ∗t g)(s) = K(t)(s)

=

∫
R
f(u)

d

dt
(αtu(g(s− u)))du

=

∫
R
f(u)u(αtu(δ(g(s− u))))du

=

∫
R

1

2πi
(∂f)(u)(αtu(δ(g(s− u))))du

=
1

2πi
((∂f) ∗t (δg))(s).

By iteration, t 7→ f ∗t g is infinitely differentiable. Thus, {Boαt R}t∈R is a smooth
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one-parameter deformation by Proposition 3.1.3.

Of special interest is the case t = 0, where the action is trivial. Here, the

product is

(f ∗0 g)(s) =

∫
R
f(u)g(s− u)du.

So as an algebra,

B oα0 R ∼= S(R)⊗̂B,

where S(R) is the Fréchet algebra of complex-valued Schwartz functions with the

convolution product. In terms of definitions given above, S(R) = C o R with

the trivial action. We conclude that any smooth crossed product B oα R can be

deformed smoothly into the trivial crossed product S(R)⊗̂B.

3.1.3 Compatible connections

Let A be the algebra of sections of a q⊗-smooth one-parameter deformation of

algebras {At}t∈J , and let ∇ be a connection on A. Viewing ∇ as a Hochschild

cochain ∇ ∈ C1
C(A,A), let E = δ∇, so that

∇(a1a2) = ∇(a1)a2 + a1∇(a2)− E(a1, a2).

From it’s definition, it is clear that δE = 0, that is, E is a Hochschild 2-cocycle.

However, from the Leibniz rule for ∇, one can check that E is C∞(J)-bilinear. So

E defines a cohomology class in H2
C∞(J)(A,A). It may appear from its definition

that E is a coboundary, but this is not necessarily the case because ∇ is not a

C∞(J)-linear map.

Proposition 3.1.10. The cohomology class of E in H2
C∞(J)(A,A) is independent

of the choice of connection. Moreover, [E] = 0 if and only if A admits a connection

that is a derivation.

Proof. Let ∇ and ∇′ be two connections with corresponding cocycles E and E ′.

Then ∇′ = ∇− F for some F ∈ C1
C∞(J)(A,A), and so

E ′ = δ(∇− F ) = E − δF.
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Thus [E] = [E ′] as elements of H2
C∞(J)(A,A).

If ∇ is a connection that is a derivation, then E = δ∇ = 0. Conversely, if ∇
is any connection on A and [E] = 0, then δ∇ = δF for some F ∈ C1

C∞(J)(A,A).

Thus, δ(∇− F ) = 0, and so ∇− F is a connection that is a derivation.

Proposition 3.1.11. A q⊗-smooth one-parameter deformation of algebras {At}t∈J
is trivial if and only if the algebra of sections A admits an integrable connection that

is a derivation. For such a connection ∇, the parallel transport map P∇s,t : As → At

is an isomorphism of locally convex q⊗-algebras for all s, t ∈ J .

Proof. For a constant deformation, the algebra of sections is C∞(J)q⊗B, as an

algebra, for some locally convex q⊗-algebra B. Then d
dt

is an integrable connection

on C∞(J)q⊗B which is also a derivation. If A is the algebra of sections of another

deformation, and

F : A→ C∞(J)q⊗B

is an algebra isomorphism, then F is a parallel isomorphism

F : (A,F−1 d

dt
F )→ (C∞(J)q⊗B, d

dt
).

So F−1 d
dt
F is a connection and a derivation, and by Proposition 2.2.5, F−1 d

dt
F is

integrable. This shows that a trivial deformation admits an integrable connection

that is a derivation.

If ∇ is an integrable connection on A, then the connection ∇ ⊗ 1 + 1 ⊗ ∇
on A ⊗C∞(J) A is integrable with parallel transport maps of the form P∇s,t ⊗ P∇s,t

by Proposition 2.2.6. That ∇ is a derivation is equivalent to the multiplication

m : A⊗C∞(J) A→ A being a parallel map. Thus,

P∇s,tms = mt(P
∇
s,t ⊗ P∇s,t)

by Proposition 2.2.5, which shows P∇s,t is an algebra isomorphism. So any trivial-

ization

A ∼= C∞(J)q⊗As

constructed, as in Proposition 2.2.4 using the parallel transport maps, is an algebra

isomorphism.
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From this result, we see that the cohomology class [E] provides an obstruction

to the triviality of a deformation.

Example 3.1.12. Suppose the family of products {mt}t∈J of a deformation has

the property that

d

dt
mt(a1, a2) =

N∑
i=1

mt(Xi(a1), Yi(a2))

for all a1, a2 in the underlying space and some collection

{X1, . . . , XN , Y1, . . . , YN}

of commuting operators on the underlying space, which are derivations with respect

to each product mt. Notice that both the noncommutative tori deformation and

the smooth crossed product deformation both have this property. It follows that

if A denotes the algebra of sections of the deformation and ∇ = d
dt

, then

E = δ∇ =
N∑
i=1

Xi ^ Yi.

Indeed, both δ∇ and
∑N

i=1Xi ^ Yi are continuous and C∞(J)-bilinear, and the

equation

d

dt
mt(a1, a2) =

N∑
i=1

mt(Xi(a1), Yi(a2))

shows that they are equal on constant sections. Thus they are equal because the

C∞(J)-linear span of the constant sections is dense in A.

For the noncommutative tori deformation {AtΘ}t∈J , one can show that

E =
1

2πi

∑
j>k

θjk(δj ^ δk)

does not represent the zero class in H2
C∞(J)(A,A), provided Θ 6= 0. Consequently,

the deformation {AtΘ}t∈J is nontrivial. This is consistent with the fact that the

isomorphism class of the algebra AtΘ varies as t varies.
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3.2 Smooth deformations of cochain complexes

Let X• ∈ LCTVS be a graded space and let J denote an open subinterval of R.

Definition 3.2.1. A q⊗-smooth one-parameter deformation of cochain complexes is

a collection of q⊗-smooth families of continuous linear maps {dnt : Xn → Xn+1}t∈J
for which dn+1

t dnt = 0 for all n and all t ∈ J .

So for each t ∈ J , let C•t denote the complex which is X• equipped with the

coboundary map dt. Define the cochain complex of sections of the deformation

{C•t }t∈J to be the locally convex cochain complex C• over C∞(J) where

Cn = C∞(J)q⊗Xn

and the coboundary

d : Cn → Cn+1

is given by

(dc)(t) = dt(c(t)).

By Proposition 2.1.10, d is a continuous C∞(J)-linear map. The cohomology

H•(C) is a module over C∞(J). Of course, if we consider boundary maps of

degree −1, we obtain the notion of a q⊗-smooth one-parameter deformation of

chain complexes.

Example 3.2.2. If {At}t∈J is a q⊗-smooth one-parameter deformation of algebras,

then {(Cper(At), bt + B)}t∈J is a q⊗-smooth one-parameter deformation of chain

complexes. Notice that the Hochschild boundary bt depends on the multiplication

of At, whereas B does not. The complex of sections of {Cper(At)}t∈J is isomorphic

to the periodic cyclic complex C
C∞(J)
per (A), where A is the algebra of sections of

{At}t∈J .

A morphism between two q⊗-smooth one parameter deformations of cochain

complexes {C•t }t∈J and {D•t }t∈J is a q⊗-smooth family of continuous chain maps

{Ft : C•t → D•t }t∈J .
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A deformation {C•t , dt}t∈J is constant if dt does not depend on t, and trivial if it

is isomorphic to a constant deformation.

3.2.1 Compatible connections

Given a q⊗-smooth one-parameter deformation of complexes {C•t }t∈J , we shall be

interested in degree 0 connections on the complex of sections C• for which the

boundary map is parallel. Following the algebra case, let

H = [d,∇] : C• → C•+1.

It follows from the Leibniz rule that H is C∞(J)-linear. Recall that EndC∞(J)(C
•)

is a cochain complex whose coboundary map is given by the commutator with

d. By definition, it is clear that [d,H] = 0, so H defines a cohomology class in

H•(EndC∞(J)(C)). Similar to the algebra case, we need not have [H] = 0, because

∇ is not C∞(J)-linear.

Proposition 3.2.3. The cohomology class [H] ∈ H•(EndC∞(J)(C)) is independent

of the choice of connection ∇. Moreover, [H] = 0 if and only if C• possesses a

connection that is a chain map.

Proof. The proof is completely analogous to that of Proposition 3.1.10.

Proposition 3.2.4. A q⊗-smooth one-parameter deformation of cochain complexes

{C•t }t∈J is trivial if and only if the complex of sections C• admits an integrable

connection that is a chain map. For such a connection ∇, the parallel transport

map P∇s,t : C•s → C•t is an isomorphism of locally convex cochain complexes for all

s, t ∈ J . In particular, the parallel transport maps induce isomorphisms

(P∇s,t)∗ : H•(Cs)→ H•(Ct).

Proof. The proof is analogous to the proof of Proposition 3.1.11. Notice that ∇
is a chain map if and only if d is parallel with respect to ∇. So the fact that

P∇s,t : C•s → C•t is a chain map follows from Proposition 2.2.5.

So the cohomology class [H] is an obstruction to the triviality of a deformation

of complexes. Triviality of deformation of cochain complexes is often too strong
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of a result to ask for. It also lies outside of our interests, as our goal will be to

understand if the cohomology groups are preserved under deformation. If ∇ is a

connection on C• that is also a chain map, then ∇ descends to a connection ∇∗ on

the C∞(J)-module H•(C). Care must be taken here, as the cohomology module

H•(C) need not be free over C∞(J) or even Hausdorff. In particular, we must

specify what it means for ∇∗ to be integrable on H•(M). We will give a definition

that is enough to ensure our desired results. The evaluation maps evt : C• → C•t

induce maps evt∗ : H•(C)→ H•(Ct) in homology.

Definition 3.2.5. We shall say ∇∗ is integrable at the level of cohomology if for

every s ∈ J and for every cs ∈ H•(Cs), there is a unique c ∈ H•(C) such that

∇∗c = 0, (evs)∗c = cs,

and moreover the linear map

H•(Cs)→ H•(C), cs 7→ c

is continuous.

In this situation, we can define parallel transport maps

P∇∗s,t : H•(Cs)→ H•(Ct), P∇∗s,t (cs) = (evs)∗c

for all s, t ∈ J by, which are isomorphisms of topological vector spaces.

3.3 The Gauss-Manin connection

The Gauss-Manin connection in cyclic homology was first introduced by Getzler

in the context of formal deformations of A∞-algebras [12]. For simplicity, we shall

only work with associative algebra deformations here.

3.3.1 Gauss-Manin connection in periodic cyclic homology

Let A denote the algebra of sections of a q⊗-smooth one-parameter deformation

of algebras {At}t∈J . Our goal is to construct a connection on C
C∞(J)
per (A) that
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commutes with b + B. Let ∇ be a connection on A and let E = δ∇ as in section

3.1.3. Using Proposition 2.2.2, ∇ extends to a connection on C
C∞(J)
per (A), which is

given1 by L∇. As in section 3.2.1, let

H := [b+B,L∇] = LE.

By Proposition 3.2.3, C
C∞(J)
per (A) possesses a connection that is a chain map if

and only if H is a boundary in the complex EndC∞(J)(Cper(A)). But the Cartan

Homotopy formula of Theorem 2.5.3 implies exactly this. More specifically,

[b+B, IE] = LE.

As IE is a continuous C∞(J)-linear map, the Gauss-Manin connection

∇GM = L∇ − IE

is a connection on C
C∞(J)
per (A) and a chain map.

Proposition 3.3.1. The Gauss-Manin connection ∇GM commutes with the dif-

ferential b+B and hence induces a connection on the C∞(J)-module HP
C∞(J)
• (A).

Moreover, the induced connection is independent of the choice of connection ∇ on

A.

Proof. We have already established the first claim. For another connection ∇′, let

∇′GM = L∇′ − IE′

be the corresponding Gauss-Manin connection. Then

∇′ = ∇− F, E ′ = E − δF

for some C∞(J)-linear map F : A→ A Thus,

∇′GM −∇GM = −LF + IδF = −[b+B, IF ],

1Since ∇ is only C-linear, L∇ is an operator on CC
per(A). However by the Leibniz rule, L∇

descends to an operator on C
C∞(J)
per (A), which is a quotient complex of CC

per(A).
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by Theorem 2.5.3. We conclude that the Gauss-Manin connection is unique up to

continuous chain homotopy.

Corollary 3.3.2. If A admits a connection ∇ which is also a derivation, then the

Gauss-Manin connection on HP
C∞(J)
• (A) is given by

∇GM [ω] = [L∇ω].

Proof. In this case, E = δ∇ = 0.

The following naturality property of ∇GM says that morphisms of deformations

induce parallel maps at the level of periodic cyclic homology.

Proposition 3.3.3 (Naturality of ∇GM). Let A and B denote the algebras of

sections of two q⊗-smooth one-parameter deformations over the same parameter

space J , and let F : A→ B be a continuous C∞(J)-linear algebra map. Then the

following diagram commutes.

HP
C∞(J)
• (A)

F∗ //

∇AGM
��

HP
C∞(J)
• (B)

∇BGM
��

HP
C∞(J)
• (A)

F∗
// HP

C∞(J)
• (B)

Proof. Let∇A and∇B denote connections on A and B with respective cocycles EA

and EB, and let F∗ : C
C∞(J)
per (A) → C

C∞(J)
per (B) be the induced map of complexes.

For

h = F∗I∇A − I∇BF∗,

we have

[b+B, h] = F∗[b+B, I∇A ]− [b+B, I∇B ]F∗

= F∗(L∇A − IEA)− (L∇B − IEB)F∗

= F∗∇A
GM −∇B

GMF∗,

which shows that the diagram commutes up to continuous chain homotopy. The

problem is that I∇A and I∇B are not well-defined operators on the complexes
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C
C∞(J)
per (A) and C

C∞(J)
per (B) respectively. However, one can show that by the Leibniz

rule, h descends to a map of quotient complexes such that the following diagram

CC
per(A) h //

π
��

CC
per(B)

π
��

C
C∞(J)
per (A)

h̄
// C

C∞(J)
per (B)

commutes, and consequently [b+B, h̄] = F∗∇A
GM −∇B

GMF∗ as desired.

As a simple application of Proposition 3.3.3, we get a proof of the homotopy

invariance property of periodic cyclic homology by considering morphisms between

trivial deformations.

Corollary 3.3.4. (Homotopy Invariance) Let A0 and B0 be locally convex q⊗-

algebras and let {Ft : A0 → B0}t∈J be a q⊗-smooth family of algebra maps. Then

the induced map

(Ft)∗ : HP•(A0)→ HP•(B0)

does not depend on t.

Proof. Let A = C∞(J)q⊗A0 and B = C∞(J)q⊗B0 be the algebras of sections cor-

responding to the constant deformations of with fiber A0 and B0 respectively.

Then {Ft}t∈J is a morphism between these constant deformations, and by Propo-

sition 3.1.5 gives a continuous C∞(J)-linear algebra map F : A→ B such that

F (a)(t) = Ft(a(t)).

The complex C
C∞(J)
per (A) ∼= C∞(J)q⊗Cper(A0) is the complex of sections of the

constant deformation with fiber CC
per(A0). As the connection d

dt
is a derivation

on A, the Gauss-Manin connection for A is given by ∇A
GM = d

dt
, and similarly

∇B
GM = d

dt
. We view a cycle ω ∈ CC

per(A0) as a constant cycle in C
C∞(J)
per (A), and

then Proposition 3.3.3 implies that

d

dt
[Ftω] = Ft

d

dt
[ω] = 0.
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So there is η ∈ CC∞(J)
per (B) such that

d

dt
Ft(ω) = (b+B)(η(t)).

But, by the fundamental theorem of calculus,

Ft1(ω)− Ft0(ω) =

∫ t1

t0

(b+B)(η(s))ds = (b+B)

(∫ t1

t0

η(s)ds

)

for any t0, t1 ∈ J .

3.3.2 Dual Gauss-Manin connection

We define ∇GM on Cper
C∞(J)(A) to be the dual connection of ∇GM as in Proposi-

tion 2.2.2. In terms of the canonical pairing,

〈∇GMϕ, ω〉 =
d

dt
〈ϕ, ω〉 − 〈ϕ,∇GMω〉.

It is straightforward to verify that∇GM commutes with b+B and therefore induces

a connection on HP •C∞(J)(A). The connections∇GM and∇GM are compatible with

the canonical pairing in the sense that

d

dt
〈[ϕ], [ω]〉 = 〈∇GM [ϕ], [ω]〉+ 〈[ϕ],∇GM [ω]〉,

for all [ϕ] ∈ HP •C∞(J)(A) and [ω] ∈ HPC∞(J)
• (A).

3.3.3 Integrating ∇GM

The very fact that ∇GM exists for all smooth one-parameter deformations implies

that the problem of proving ∇GM is integrable cannot be attacked with methods

that are too general. Indeed, one cannot expect periodic cyclic homology to be

rigid for all deformations, as there are plenty of finite dimensional examples for

which it is not.

Example 3.3.5. For t ∈ R, let At be the two-dimensional algebra generated by

an element x and the unit 1 subject to the relation x2 = t · 1. Then At ∼= C⊕C as
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an algebra when t 6= 0, and A0 is the exterior algebra on a one dimensional vector

space. Consequently,

HP0(At) ∼=

C⊕ C, t 6= 0

C, t = 0.

From the point of view of differential equations, one issue is that the periodic

cyclic complex is never a Banach space. Even in the case where A is a Banach

algebra (e.g. finite dimensional,) the chain groups Cn(A) are also Banach spaces,

but the periodic cyclic complex

Cper(A) =
∞∏
n=0

Cn(A)

is a Fréchet space, as it is a countable product of Banach spaces. The operator

∇GM contains the degree −2 term ιE : Cn(A) → Cn−2(A). Thus unless E = 0,

one cannot reduce the problem to the individual Banach space factors, as the

differential equations are hopelessly coupled together.

One instance in which ∇GM is integrable is when the algebra of sections A can

be trivialized, as in Proposition 3.1.11.

Proposition 3.3.6. If the algebra of sections A has an integrable connection ∇
that is a derivation, then ∇GM = L∇ is integrable on C

C∞(J)
per (A), and P∇GMs,t :

Cper(As) → Cper(At) is the map of complexes induced by the algebra isomorphism

P∇s,t : As → At.

This is not surprising in this case, as the deformation is isomorphic to a trivial

one. What is interesting to note is that if we consider another connection ∇′

on A, the corresponding Gauss-Manin connection ∇′GM on Cper(A) need not be

integrable, and in general seems unlikely to be so. However the induced connection

∇′GM ∗ on HP•(A) is integrable at the level of homology by the uniqueness of the

Gauss-Manin connection up to chain homotopy.

As proving integrability of ∇GM at the level of the complex Cper(A) is both

too difficult and, in some cases, too strong of a result, our general approach will

be to find a different complex that computes HP•(A) equipped with a compatible

connection.
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3.4 Smooth deformations of A∞-algebras

Since we choose to only define locally convex A∞-algebras using the inductive

tensor product, we shall only use the inductive tensor product in this discussion.

Let X• ∈ LCTVS be a graded space and let J be an open subinterval of R. Then

C∞(J)s⊗X• is a graded locally convex s⊗-module over C∞(J). So we can form the

bar coalgebra B(C∞(J)s⊗X) over the ground ring C∞(J), and

B(C∞(J)s⊗X) ∼= C∞(J)s⊗B(X),

as locally convex graded s⊗-coalgebras over C∞(J). Indeed, using Proposition 2.1.5

and Proposition 2.1.7, we have

C∞(J)s⊗B(X) = C∞(J)s⊗

(
∞⊕
n=0

(sX)
s⊗n

)
∼=

∞⊕
n=0

C∞(J)s⊗(sX)
s⊗n

∼=
∞⊕
n=0

(C∞(J)s⊗sX)
s⊗C∞(J)n

= B(C∞(J)s⊗X).

Definition 3.4.1. A smooth one-parameter deformation of A∞-algebras is a s⊗-

smooth family {mt ∈ Coder(B(X))}t∈J of locally convex A∞-structures on X.

The smoothness condition implies that the {mt}t∈J give a continuous C∞(J)-

linear degree +1 codifferential

m : C∞(J)s⊗B(X)→ C∞(J)s⊗B(X).

Since C∞(J)s⊗B(X) ∼= B(C∞(J)s⊗X), a smooth deformation of locally convex

A∞-algebra structures on X is equivalent to a C∞(J)-linear locally convex A∞-

structre on C∞(J)s⊗X. As in section 2.7.2, the map m decomposes into continuous

C∞(J)-linear maps

mn : C∞(J)s⊗(sX)
s⊗n → C∞(J)s⊗sX
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So each mn is given by a s⊗-smooth family of degree 1 maps

{mn,t : (sX)
s⊗n → sX}t∈J .

Proposition 3.4.2. A collection {mt}t∈J of locally convex A∞-structures on X•

is a smooth one-parameter deformation of A∞-algebras if and only if the maps

{mn,t : (sX)
s⊗n → sX}t∈J

form a s⊗-smooth family of continuous linear maps for each n.

Proof. The forward implication is immediate. For the converse, recall that the

coderivation mt on B(X) determined by the family {mn,t}∞n=1 is given on (sX)s⊗k

by

mt =
k∑

n=1

k−n∑
j=0

1⊗j ⊗mn,t ⊗ 1k−n−j : (sX)
s⊗k → B(X).

So if each family {mn,t}t∈J is s⊗-smooth, then

{mt : (sX)
s⊗k → B(X)}t∈J

is a s⊗-smooth family, as it is a finite sum of s⊗-smooth families. Thus, the family

{mt}t∈J determine a continuous linear map

m : (sX)
s⊗k → C∞(J)s⊗B(X).

By the universal property of direct sums, there is a continuous linear map

m : B(X)→ C∞(J)s⊗B(X),

as desired. This shows that {mt : B(X) → B(X)}t∈J is a s⊗-smooth family of

continuous linear maps.

The case we shall be most interested in is where X• =
⊕

n∈ZX
n, and each Xn

is a Fréchet space. Here we can give a simpler form of the smoothness condition.

Proposition 3.4.3. Suppose X• =
⊕

n∈ZX
n, where each Xn is a Fréchet space.
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Then a collection {mt}t∈J of locally convex A∞-structures on X• is a smooth de-

formation if and only if for all n and all x1, . . . , xn ∈ X•, the map

J → X•, t 7→ mn,t(x1, . . . , xn)

is smooth.

Proof. By Proposition 3.4.2, we need only show that the given smoothness condi-

tion is equivalent to

{mn,t : (sX)
s⊗n → sX}t∈J

being a s⊗-smooth family for each n. We shall appeal to Proposition 2.1.11 part

(ii). First note that

(sX)
s⊗n =

⊕
k∈Z

⊕
i1+...+in=k

(sX)i1 s⊗ . . . s⊗(sX)in

decomposes as a direct sum of Fréchet spaces. Moreover we have

mn,t((sX)i1 s⊗ . . . s⊗(sX)in) ⊂ (sX)i1+...+in+1.

So each Fréchet direct summand maps into a Fréchet direct summand. Now if

{mn,t}t∈J is a s⊗-smooth family, then

t 7→ mn,t(x1, . . . , xn)

is smooth for any fixed x1, . . . , xn ∈ X•. Conversely, the n-multilinear map

mn : (sX)i1 × . . .× (sX)in → C∞(J)s⊗(sX)i1+...+in+1

given by

mn(x1, . . . , xn)(t) = mn,t(x1, . . . , xn)

is well-defined by hypothesis, and separately continuous by Proposition 2.1.11 part

(i). Thus it gives a continuous linear map

mn : (sX)i1 s⊗ . . . s⊗(sX)in → C∞(J)s⊗(sX)i1+...+in+1 ∼= C∞(J, (sX)i1+...+in+1),
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which shows that

t 7→ mn,t(θ)

is smooth for any θ ∈ (sX)s⊗n. Thus we are done by Proposition 2.1.11 part

(ii).

As in section 2.7.2, we can turn the {mn,t} into a collection of maps

{µn,t : X
s⊗n → X}, deg µn,t = 2− n.

The above smoothness conditions could be rephrased in terms of the {µn,t}t∈J
instead of the {mn,t}t∈J .

Let {mt}t∈J be a smooth one-parameter deformation of locally convex A∞-

algebra structures on X•. For each t ∈ J , we shall let At denote the locally convex

A∞-algebra whose underlying space is X• and whose A∞-structure is given by the

maps {mn,t}∞n=1. The C∞(J)-module

A = C∞(J)s⊗X•

equipped with the structure maps

mn(x1, . . . , xn)(t) = mn,t(x1(t), . . . , xn(t))

shall be called the A∞-algebra of sections of {At}t∈J .

3.4.1 Compatible connections

It is advantageous to think of a smooth one-parameter defomation of locally convex

A∞-algebras {At}t∈J as a smooth one-parameter deformation of locally convex dif-

ferential graded s⊗-coalgebras {B(At)}t∈J . The deformation {B(At)}t∈J is constant

as a deformation of coalgebras, as the coproduct of B(At) is always the coproduct

of the bar coalgebra. However, the A∞-structure is encapsulated entirely in the

coboundary map, which is changing as t varies. From that persepective, a defor-

mation of A∞-algebras is a certain type of deformation of cochain complexes. If

A denotes the A∞-algebra of sections of the deformation {At}t∈J , then the bar

coalgebra of sections of the deformation {B(At}t∈J is B(A), taken over the ground
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ring C∞(J). As remarked earlier,

B(A) ∼= C∞(J)s⊗B(X).

So we are interested in connections on B(A) that are compatible with the

differential graded coalgebra structure. Parallel transport maps induced from such

a connection will be differential graded coalgebra isomorphisms, which by definition

are A∞-algebra isomorphisms. Such a connection ∇ : B(A)→ B(A) must respect

both the (coaugmented) coalgebra structure and the cochain complex structure.

Thus, such a connection should be a degree 0 coderivation and a chain map. Recall

that the Hochschild differential graded Lie algebra (over the ground ring R) is

g•R(A) = CoderR(B(A)) ∼= HomR(B(A), sA),

with differential

δD = [m,D].

So the type of connection we seek satisfies,

∇ ∈ g0
C(A), δ∇ = 0,

that is, ∇ is a Hochschild 0-cocycle. Additionally, we insist that ∇η = 0 for the

coaugmentation map η. We shall refer to such a Hochschild 0-cocycle D ∈ g0(A)

as an A∞-derivation. An A∞-derivation is given by a sequence of degree 0 maps2

Dn : (sA)
s⊗n → sA, n ≥ 1.

That δD = [m,D] = 0 implies a sequence of identities involving Gerstenhaber

brackets of the A∞-structure maps {mn} with the {Dn}. By removing the suspen-

sions, we can view each Dn as a map

∂n : A
s⊗n → A, deg ∂n = 1− n.

Notice that an A∞-derivation on an ungraded associative algebra, viewed as an

2The compatibility Dη = 0 with the coaugmentation map η implies that there is no D0 map.
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A∞-algebra, is equivalent to a derivation.

Let ∇ ∈ g0
C(A) be a connection that is not necessarily a cocycle. Then let

E = δ∇ = [m,∇].

As an operator on B(A), E is C∞(J)-linear. Since

δE = δ2∇ = 0,

E is a Hochschild 1-cocycle in g1
C∞(J)(A). So E determines a cohomology class [E]

in the Hochschild cohomology module H1
C∞(J)(g(A)).

Proposition 3.4.4. The cohomology class [E] ∈ H1
C∞(J)(g(A)) is independent of

the choice of connection ∇ ∈ g0
C(A). Moreover, B(A) admits a connection that is

an A∞-derivation if and only if [E] = 0.

Proof. It is analogous to Proposition 3.1.10. Any other connection ∇′ ∈ g0
C(A) is

of the form

∇′ = ∇− F

for some F ∈ g0
C∞(J)(A). Thus,

E ′ = δ∇′ = E − δF,

which shows [E ′] = [E].

If ∇ is an A∞-derivation, then E = δ∇ = 0 exactly. Conversely, if

δ∇ = E = δF, F ∈ g0
C∞(J)(A),

then ∇− F is a connection and an A∞-derivation.

Proposition 3.4.5. The smooth deformation {B(At)}t∈J of coaugmented differen-

tial graded coalgebras is trivial if and only if B(A) admits an integrable connection

that is an A∞-derivation.

Proof. It is analogous to Proposition 3.1.11. A trivial deformation is isomorphic

to a constant deformation, and d
dt

is an integrable A∞-derivation on a constant
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deformation. Conversely, suppose ∇ is integrable and an A∞-derivation on B(A).

The tensor product connection ∇⊗ 1 + 1 ⊗∇ is integrable on B(A)s⊗C∞(J)B(A)

with parallel transport maps of the form

P∇s,t ⊗ P∇s,t : B(As)s⊗B(As)→ B(At)s⊗B(At),

by Proposition 2.2.6. That ∇ is a coderivation is equivalent to the coproduct

∆ : B(A)→ B(A)s⊗C∞(J)B(A)

being a parallel map. So by Proposition 2.2.5,

(P∇s,t ⊗ P∇s,t)∆ = ∆P∇s,t,

that is, P∇s,t is a coalgebra map. By Proposition 3.2.4, P∇s,t is a chain map. It is

automatic3 that ε∇ = 0 because ∇ is a coderivation. It follows that εP∇s,t = ε.

Additionally, ∇η = 0 implies P∇s,tη = η. Thus, P∇s,t is a coaugmented differential

graded coalgebra isomorphism for all s, t ∈ J . Using ∇ to construct a trivialization

as in Proposition 2.2.4 shows that B(A) is isomorphic to a constant deformation

of coaugmented differental graded coalgebras.

Consider a connection ∇ ∈ g0
C(A), not necessarily a cocycle, on the bar coalge-

bra B(A) that is given by a sequence of maps

∇n : (sA)
s⊗n → sA, n ≥ 1

as described above. It follows from the Leibniz rule for∇ that∇1 is a connection on

A, and ∇n is C∞(J)-linear for n ≥ 2. The remarkable fact about considering this

more flexible class of connections on the bar coalgebra is that no new difficulties

arise in showing they are integrable.

Proposition 3.4.6. Let ∇ ∈ g0
C(A) be a connection on the bar coalgebra given by

maps

∇n : (sA)
s⊗n → sA, n ≥ 1.

3For any coderivation D on a coalgebra with counit ε, it is always the case that εD = 0. This
is dual to the fact that if D is a derivation on a unital algebra, then D(1) = 0.
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Then ∇ is an integrable connection on B(A) if and only if ∇1 is an integrable

connection on A.

Proof. The forward direction follows because the restriction of ∇ to sA ⊂ B(A)

is exactly ∇1. Conversely, suppose ∇1 is integrable. Notice that each ∇n acts on

the submodule (sA)s⊗C∞(J)k by

k−n∑
j=0

1⊗j ⊗∇n ⊗ 1k−n−j : (sA)
s⊗C∞(J)k → (sA)

s⊗C∞(J)(k−n).

So ∇ restricts to a connection on the submodule
⊕N

k=0(sA)s⊗C∞(J)k given by

∇ = ∇1 + . . .+∇N .

Now ∇1 is an integrable connection on
⊕N

k=0(sA)s⊗C∞(J)k by Proposition 2.2.6. On

the other hand, the fact that ∇2 + . . .+∇N lowers the tensor power implies that

∇ is a nilpotent perturbation of ∇1 on the submodule
⊕N

k=0(sA)s⊗C∞(J)k. So by

Proposition 2.2.10, ∇ is integrable on
⊕N

k=0(sA)s⊗C∞(J)k. The fact that the parallel

transport maps are compatible with the inclusions

N⊕
k=0

(sA)
s⊗C∞(J)k →

N+1⊕
k=0

(sA)
s⊗C∞(J)k

implies that ∇ is integrable on B(A).



Chapter 4
Rigidity of periodic cyclic homology

of noncommutative tori

The two main examples of smooth deformations of algebras considered in Chap-

ter 3 were noncommutative tori and smooth crossed products by R. Let A denote

the algebra of sections of either of these deformations, and let ∇ be the canon-

ical connection d
dt

. As discussed in Example 3.1.12, both deformations have the

property that

E := δ∇ =
N∑
i=1

Xi ^ Yi,

where {X1, . . . , XN , Y1, . . . , YN} is some family of mutually commuting C∞(J)-

linear derivations on A that also commute with ∇. Written a different way,

∇(a1a2) = ∇(a1)a2 + a1∇(a2) +
N∑
i=1

Xi(a1)Yi(a2), ∀a1, a2 ∈ A.

It is this property that we shall take advantage of, so we shall abstractly study

smooth deformations which satisfy it. The abelian Lie algebra

g = Span{X1, . . . , XN , Y1, . . . , YN}

acts on A as derivations. We shall first modify our homology theories to take this

action into account.
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4.1 The g-invariant complex

4.1.1 g-invariant chains and cochains

Suppose that g ⊂ C1(A,A) is a Lie subalgebra of derivations on a locally convex

q⊗-algebra A. Then g also acts on C•(A) by Lie derivatives. Define the g-invariant

Hochschild chain group Cg
•(A) to be the space of coinvariants of this action, that

is

Cg
•(A) = C•(A)/g · C•(A).

We shall make the assumption that g ·C•(A) is a closed submodule, so that Cg
•(A)

is Hausdorff. For example, this holds in the noncommutative tori case. By Propo-

sition 2.5.1, the operators b and B descend to operators on Cg
•(A). One can define

the g-invariant periodic cyclic complex Cg
per(A) accordingly, and its homology is

the g-invariant periodic cyclic homology HP g
• (A).

Let C•g (A,A) denote the subspace of all Hochschild cochains D for which

[X,D] = 0 for all X ∈ g. If D ∈ C•g (A,A), then the formula

0 = δ[X,D] = [δX,D] + [X, δD]

shows that C•g (A,A) is a subcomplex because δX = 0. It’s cohomology is the

g-invariant Hochschild cohomology H•g (A,A).

Proposition 4.1.1. For any D ∈ C•g (A), the operators LD and ID descend to

operators on Cg
•(A).

Proof. If X ∈ C1(A,A) is a derivation and D ∈ C•(A,A), then one can verify

directly that

[LX , ID] = I[X,D], [LX , LD] = L[X,D],

from which the proposition follows, see Appendix B.

Proposition 4.1.2. If X, Y ∈ C1
g (A,A), then L{X, Y } and I{X, Y } descend to

operators on Cg
•(A).

Proof. For any X, Y, Z ∈ C1(A,A), one can verify directly the identities

[LZ , I{X, Y }] = I{[Z,X], Y }+ I{X, [Z, Y ]}
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and

[LZ , L{X, Y }] = L{[Z,X], Y }+ L{X, [Z, Y ]},

and the result follows, see Appendix B.

4.1.2 The abelian case

Consider the special case of an abelian Lie algebra g of derivations on A, so that

g ⊂ C•g (A,A). By definition of the invariant complex, the operator LX vanishes

on Cg
•(A) for any X ∈ g.

One benefit of working in the g-invariant complex is that the cyclic contraction

IX is now a chain map when X ∈ g. Indeed,

[b+B, IX ] = LX = 0

in Cg
•(A). These contraction operators obey the following algebra as operators on

homology.

Theorem 4.1.3. There is an algebra map χ : Λ•g→ End(HP g
• (A)) given by

χ(X1 ∧X2 ∧ . . . Xk) = IX1IX2 . . . IXk .

Proof. First observe that X 7→ IX is a linear mapping. Next, we shall show that

IXIX is chain homotopic to zero. Observe that

0 = LXLX = LX2 + 2L{X,X}

where X2 denotes the composition of X with itself. Thus,

L{X,X} = −L 1
2
X2 .

Next, notice that

δ(
1

2
X2) = X ^ X.

By Theorems 2.5.4 and 2.5.3,

−[b+B, I{X,X}] = −L{X,X} − IX^X + IXIX
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= L 1
2
X2 − Iδ( 1

2
X2) + IXIX

= [b+B, I 1
2
X2 ] + IXIX ,

proving that IXIX is continuously chain homotopic to zero. By the universal

property of the exterior algebra, the map χ exists as asserted.

There are some additional simplifications regarding the operator L{X, Y } once

we pass to Cg
•(A).

Proposition 4.1.4. For X, Y ∈ g, the operator L{X, Y } satisfies

L{X, Y }(a0, . . . , an) =
n−1∑
i=0

n∑
j=i+1

(a0, . . . , X(ai), . . . , Y (aj), . . . , an)

on Cg
•(A). Additionally,

[b+B,L{X, Y }] = −LX^Y

on Cg
•(A).

Proof. Notice that

LY (X(a0), a1, . . . , an)− LX(Y (a0), a1, . . . , an)

=
n∑
j=1

(X(a0), . . . , Y (aj), . . . , an)−
n∑
i=1

(Y (a0), . . . , X(ai), . . . , an),

using the fact that [X, Y ] = 0. So

L{X, Y }(a0, . . . , an) + LY (X(a0), a1, . . . , an)− LX(Y (a0), a1, . . . , an)

=
n−1∑
i=0

n∑
j=i+1

(a0, . . . , X(ai), . . . , Y (aj), . . . , an)

gives the desired conclusion.

The formula

[b+B,L{X, Y }] = −LX^Y
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follows from Corollary 2.5.5 in light of the fact that LX = LY = 0 on Cg
•(A).

4.1.3 Connections on the g-invariant complex

Now, we return to the scenario at the beginning of the chapter. Suppose A is the

algebra of sections of a q⊗-smooth one-parameter deformation of algebras over J ,

and ∇ is a connection on A for which

E = δ∇ =
N∑
i=1

Xi ^ Yi,

where Xi, Yi ∈ C1
C∞(J)(A,A) are derivations that mutually commute and satisfy

[∇, Xi] = [∇, Yi] = 0.

Let g denote the abelian Lie algebra Span{X1, . . . , XN , Y1, . . . , YN}.

Proposition 4.1.5. In the above situation, the Gauss-Manin Connection

∇GM = L∇ − IE

descends to the g-invariant complex Cg
•(A) and therefore to a connection on the

g-invariant periodic cyclic homology HP g
• (A).

Proof. If X, Y, Z ∈ C1(A,A) and X is a derivation, then

[X, Y ^ Z] = [X, Y ] ^ Z + Y ^ [X,Z].

Thus, E ∈ C2
g (A,A) and the result follows from Proposition 4.1.1.

Our main reason for working with the g-invariant complex is that we can define

another connection on HP g
• (A) which is easier to work with than ∇GM . The

connection L∇ satisfies

[b+B,L∇] = Lδ∇ =
N∑
i=1

LXi^Yi .
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Thus, by Proposition 4.1.4,

∇̃ = L∇ +
N∑
i=1

L{Xi, Yi}

is a connection on Cg
per that commutes with b + B and therefore descends to a

connection on HP g
• (A). We emphasize that ∇̃ does not commute with b + B on

the ordinary periodic cyclic complex Cper(A).

Remark 4.1.6. Let H be the Hopf algebra whose underlying algebra is the sym-

metric algebra S(g ⊕ Span{∇}). The coproduct ∆ : H → H ⊗ H is the unique

algebra map that satisfies

∆(Xi) = Xi ⊗ 1 + 1⊗Xi, ∆(Yi) = Yi ⊗ 1 + 1⊗ Yi,

∆(∇) = ∇⊗ 1 + 1⊗∇+
N∑
i=1

Xi ⊗ Yi.

In the case where N = 1, these are the defining relations of the Hopf algebra of

polynomial functions on the three-dimensional Heisenberg group. As an algebra,

H acts on A, and this action is a Hopf action in the sense that for all h ∈ H,

h(a1a2) =
∑

h(1)(a1)h(2)(a2),

where ∆(h) =
∑
h(1)⊗ h(2). When a Hopf algebra H acts (say, on the left) on two

spaces V and W , there is a canonical action, called the diagonal action, of H on

V ⊗W given by

h(v ⊗ w) =
∑

h(1)(v)⊗ h(2)(w).

The connection ∇̃ on Cg
n(A) is none other than the diagonal action of ∇ on Aq⊗(n+1)

after passing to the quotient.

Lemma 4.1.7. On the invariant complex Cg
•(A), [∇GM , ∇̃] = 0.

Proof. This is a straightforward, though tedious, computation, see Appendix B.
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Proposition 4.1.8. As operators on HP g
• (A),

∇GM = ∇̃+
N∑
i=1

χ(Xi ∧ Yi).

Proof. We have

∇GM − ∇̃ = −IE −
N∑
i=1

L{Xi, Yi}

= −
N∑
i=1

(
IXi^Yi + L{Xi, Yi}

)

= −[b+B,
N∑
i=1

I{Xi, Yi}]−
N∑
i=1

IYiIXi

= −[b+B,
N∑
i=1

I{Xi, Yi}]−
N∑
i=1

χ(Yi ∧Xi),

using Theorem 2.5.4. So at the level of homology,

∇GM = ∇̃+
N∑
i=1

χ(Xi ∧ Yi).

Theorem 4.1.9. As connections on HP g
• (A), ∇GM is integrable at the level of

homology if and only if ∇̃ is integrable at the level of homology.

Proof. By Theorem 4.1.3,
∑N

i=1 χ(Xi∧Yi) is a nilpotent operator on HP g
• (A). So ∇̃

is a nilpotent perturbation of ∇GM at the level of homology. As in Example 2.2.11,

∇̃-parallel sections are in bijection with ∇GM -parallel sections, and are related by

a finite exponential sum.

4.2 Integrating ∇GM for noncommutative tori

In this section, we specialize to the noncommutative tori deformation {AtΘ}t∈J
for a given n× n skew-symmetric real matrix Θ with entries (θjk) and some open

subinterval J of R, see section 3.1.1. Let A denote the algebra of sections of
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this deformation. We view the canonical derivations δ1, . . . , δn as C∞(J)-linear

derivations on A. Let ∇ = d
dt

on A, so that [∇, δj] = 0 for all j and

E = δ∇ =
1

2πi

∑
j>k

θjk(δj ^ δk)

as shown in Example 3.1.12. Thus the results of the previous section apply, where

g is the abelian Lie algebra spanned by δ1, . . . , δn.

We shall now show that we are not losing anything in passing to g-invariant

cyclic homology, in that the canonical map HP•(AΘ) → HP g
• (AΘ) is a chain

homotopy equivalence.

First, consider the chain map i :
⋂n
j=1 kerLδj → Cg

per(AΘ), which factors as the

inclusion followed by the quotient map

i :
n⋂
j=1

kerLδj → Cper(AΘ)→ Cg
per(AΘ).

Lemma 4.2.1. The map i :
⋂n
j=1 kerLδj → Cg

per(AΘ) is an isomorphism of locally

convex chain complexes.

Proof. It suffices to prove that each restriction

i : Cm(AΘ)
⋂(

n⋂
j=1

kerLδj

)
→ Cg

m(AΘ)

is an isomorphism.

Recall that for a multi-index α = (α1, . . . , αn), we write uα = uα1
1 ·. . .·uαnn ∈ AΘ.

If ω = uα
0 ⊗ . . . ⊗ uαm ∈ Cm(AΘ) for some collection α0, . . . , αm of multi-indices,

then

Lδjω = (degj ω)ω

where degj ω =
∑m

i=1 α
i
j. Thus, kerLδj is just the degree 0 part of Cper(AΘ) with

respect to the grading given by degj. Topologically, S(Zn)⊗̂m ∼= S(Znm), and so

Cm(AΘ) ∼= ÃΘ ⊗A⊗̂mΘ
∼= S(Zn(m+1))⊕ S(Znm).

The Schwartz spaces S(Zn(m+1)) and S(Znm) are completed direct sums, where
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each direct summand is an eigenspace for Lδj . Thus, Cm(AΘ) splits as a topological

direct sum of complexes

Cm(AΘ) =

(
n⋂
j=1

kerLδj

)⊕(
n∑
j=1

imLδj

)
.

So it follows that

Cg
m(AΘ) = Cm(AΘ)/g · Cm(AΘ) ∼=

n⋂
j=1

kerLδj .

Theorem 4.2.2. The canonical map Cper(AΘ) → Cg
per(AΘ) is a chain homotopy

equivalence and thus induces an isomorphism HP•(AΘ) ∼= HP g
• (AΘ)

Proof. Continuing with notation from the previous proof, define

Nj(ω) =

0 degj ω = 0

1
degj ω

ω degj ω 6= 0

for homogeneous ω ∈ Cper(AΘ). Then Nj extends to a continuous operator on

Cper(AΘ). Moreover, pj := 1−NjLδj : Cper(AΘ)→ kerLδj is the projection.

Let Mj =
⋂j
k=1 kerLδk , so that

M0 = Cper(AΘ), Mn =
n⋂
k=1

kerLδk
∼= Cg

per(AΘ).

Then for 1 ≤ j ≤ n, consider the inclusion ij : Mj → Mj−1 and projection

pj : Mj−1 → Mj. Both maps are chain maps, and we claim they are inverses up

to chain homotopy. It is immediate that pjij = 1. Let hj = NjIδj . For any k, Lδk

commutes with Nj and also with Iδj because

[Lδk , Iδj ] = I[δk,δj ] = 0.

Consequently, hj maps Mj−1 into Mj−1. Using Theorem 2.5.3 and the fact that
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[b+B,Nj] = 0, we have

[b+B, hj] = Nj[b+B, Iδj ] = NjLδj = 1− ijpj.

By composing these chain equivalences, we see that the inclusion

i :
n⋂
k=1

kerLδk = Mn →M0 = Cper(AΘ)

is a chain homotopy equivalences with homotopy inverse p = p1 . . . pn.

Remark 4.2.3. The above proof can be carried out because the action of g by

derivations on AΘ is the infinitesimal of an action of the Lie group Tn by algebra

automorphisms. By the theory of Fourier series, AΘ decomposes as a completed

direct sum of eigenspaces indexed by Zn for the action of g.

Note that the same proof shows that for the section algebra A of the noncommu-

tative tori deformation, the natural map Cper(A)→ Cg
per(A) is a chain equivalence,

where the theories are considered over the algebra C∞(J).

Our goal now is to show that the connection

∇̃ = L∇ +
1

2πi

∑
j>k

θjk · L{δj, δk},

defined in section 4.1.3, is integrable on the invariant complex Cg
per(A).

Theorem 4.2.4. For the the algebra of section A of the noncommutative tori

deformation {AtΘ}t∈J , the connection ∇̃ is integrable on Cper(A) and consequently

on Cg
per(A).

Proof. Since ∇̃ restricts to a connection on Cm(A) for each m, it suffices to prove

∇̃ is integrable on Cm(A). Given m+ 1 multi-indices α0, . . . , αm, each of length n,

we shall use the notation

uα = uα
0 ⊗ uα1 ⊗ . . .⊗ uαm ∈ A⊗̂(m+1)

Θ .
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Since S(Zn)⊗̂(m+1) ∼= S(Zn(m+1), every element of A⊗̂(m+1)
Θ is of the form

∑
α∈Λ

cαu
α

where Λ =
∏m

i=0 Zn and cα ∈ C are rapidly decaying coefficients. Likewise, an

element ω ∈ A⊗̂C∞(J)(m+1) is of the form

ω =
∑
α∈Λ

fαu
α

where fα ∈ C∞(J) are functions that are rapidly decreasing in the sense that

∑
α∈Λ

f
(k)
α (t)uα ∈ A⊗̂(m+1)

tΘ

for each k and each t ∈ J .

We shall prove that ∇̃ is integrable on A⊗̂C∞(J)(m+1) for each m, from which it

will follow that ∇̃ is integrable on

Cm(A) ∼= A⊗̂C∞(J)(m+1)
⊕

A⊗̂C∞(J)m.

For a fixed s ∈ J and fixed η ∈ A⊗̂C∞(J)(m+1), we must prove the existence and

uniqueness of solutions to the system of differential equations

∇̃ω = 0, ω(s) = η.

As above, let

η =
∑
α∈Z

cαu
α, ω =

∑
α∈Z

fαu
α.

The crucial point is that

1

2πi

∑
j>k

L{δj, δk}uα = 2πi ·R(α)uα,
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where R(α) is the real-valued polynomial in the multi-indices given by

R(α0, . . . , αm) =
∑
j>k

θjk

( ∑
1≤r<s≤m

αrjα
s
k +

m∑
r=1

α0
kα

r
j

)
.

Thus for each α, the subspace of elements of the form fαu
α are invariant under ∇̃.

So it suffices to solve

∇̃(fαu
α) = 0, fα(s) = cα

individually for each α. This is equivalent to solving the elementary initial value

problem

f ′α + 2πi ·R(α)fα = 0, fα(s) = cα,

which has the unique solution

fα(t) = exp(−2πi ·R(α)(t− s))cα.

If the (cα)α∈Λ are of rapid decay, then so are the numbers

(f
(k)
α (t))α∈Λ = ((−2πiR(α))k exp(−2πi ·R(α)(t− s))c(k)

α (t))α∈Λ

for each k and t ∈ J , because R(α) is a real-valued polynomial in α. This shows

that the solution

ω =
∑
α∈Λ

fαu
α ∈ A⊗̂C∞(J)(m+1).

By examining the dependence of the solution on t, s and the initial data (cα)α∈Λ,

we see that ∇̃ is integrable on Cper(A).

The fact that [Lδj , ∇̃] = 0 for all j shows that ∇̃ restricts to an integrable

connection on
⋂n
j=1 kerLδj . Moreover, the topological isomorphism

n⋂
j=1

kerLδj → Cg
per(A)

of Lemma 4.2.1 is parallel with respect to ∇̃ on each module. Thus ∇̃ is integrable

on Cg
per(A).



123

Corollary 4.2.5. For any n× n skew-symmetric matrix Θ, there is a continuous

chain homotopy equivalence

Cper(AΘ)→ Cper(C
∞(Tn))

and therefore an isomorphism

HP•(AΘ) ∼= HP•(C
∞(Tn)).

Consequently,

HP0(AΘ) ∼= C2n−1

, HP1(AΘ) ∼= C2n−1

.

Proof. The chain homotopy equivalence is the composition

Cper(AΘ) // Cg
per(AΘ)

P ∇̃1,0
// Cg

per(A0) // Cper(A0),

where the first and last arrows are the chain equivalences from Theorem 4.2.2.

Since ∇̃ is a chain map on Cper
g (A), the middle arrow is an isomorphism of com-

plexes by Proposition 3.2.4.

As shown in [5], if M is a compact smooth manifold, then

HP•(C
∞(M)) ∼=

⊕
k

H•+2k
dR (M,C),

where H•dR(M,C) is the de Rham cohomology of M with values in C. Now,

Hm
dR(Tn,C) is a vector space of dimension

(
n
m

)
, and this gives the result.

Corollary 4.2.6. The Gauss-Manin connection ∇GM is integrable at the level of

homology for the deformation {AtΘ}t∈J of noncommutative tori.

Proof. Apply Theorem 4.1.9.

We shall make explicit calculations in section 4.4 to identify the ∇GM -parallel

sections, however it is more interesting to do this on the cohomology side. The

dual of our argument can be carried out as follows. Let

Cper
g (A) = HomC∞(J)(C

g
per(A), C∞(J))
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be the g-invariant periodic cyclic cochain complex. It can be identified with the

subspace of ϕ ∈ Cper(A) such that ϕLδj = 0 for all j. The canonical inclusion

Cper
g (A)→ Cper(A)

is a chain homotopy equivalence, as it is the transpose of the chain homotopy

equivalence

Cper(A)→ Cg
per(A).

We can consider the dual connection to ∇̃ given by

(∇̃ϕ)(ω) =
d

dt
ϕ(ω)− ϕ(∇̃ω).

By Proposition 2.2.6, or by proving it directly, ∇̃ is integrable on Cper
g (A), and

so the periodic cyclic cohomology HP •(AΘ) does not depend on Θ. As in the

homology case, the dual Gauss-Manin connection ∇GM is a nilpotent perturbation

of ∇̃, and so is integrable at the level of cohomology.

We have proved the rigidity of periodic cyclic cohomology for the deformation

of noncommutative tori. It is interesting to note that the Hochschild cohomology

HH•(AΘ) and (non periodic) cyclic cohomology HC•(AΘ) are very far from rigid

in this deformation. As an example, HH0(A) = HC0(A) is the space of all traces

on the algebra A. Now in the simplest case where n = 2 and Θ =

(
0 −θ
θ 0

)
,

it is well-known that there is a unique (normalized) trace on AΘ when θ /∈ Q
and an infinite dimensional space of traces when θ ∈ Q. For example, every lin-

ear functional on the commutative algebra A0
∼= C∞(Tn) is a trace, and thus

HH0(C∞(Tn)) = C∞(Tn)∗ is the space of distributions on Tn. Moreover, Connes

showed in [5] that in the case θ /∈ Q, HH1(AΘ) and HH2(AΘ) are either finite di-

mensional or infinite dimensional and non-Hausdorff depending on the diophantine

properties of θ. Looking back, we conclude that there are no integrable connec-

tions on C•(A) that commute with b, as such a connection would imply rigidity of

Hochschild cohomology.

However, our connection ∇̃ does commute with b on the invariant complex

C•g (A). This shows that the invariant Hochschild cohomology HH•g (AΘ) is inde-
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pendent of Θ. For example, there is exactly one (normalized) g-invariant trace

on C∞(Tn), and that corresponds to integration with respect to the only (nor-

malized) translation invariant measure. Thus HH0
g (C∞(Tn)) = HH0

g (AΘ) = C.

Consequently, the canonical map HH•g (AΘ) → HH•(AΘ) is not, in general, an

isomorphism.

4.3 Interaction with the Chern character

4.3.1 Chern character

We shall review some basic facts about the Chern character in cyclic homology,

see [21, Chapter 8] for a more detailed account.

Let A be a unital locally convex q⊗-algebra over the ground ring R. Given an

idempotent P ∈ A, P 2 = P , we define the Chern character of P to be the element

chP ∈ Ceven(A) given by (chP )0 = P and for n ≥ 1,

(chP )2n = (−1)n
(2n)!

n!
(P⊗(2n+1) − 1

2
e⊗ P⊗(2n)).

Then a quick calculation shows that

b(chP2(n+1)) = −B(chP2n)

and this implies that (b+B) chP = 0.

More generally, we can define chP ∈ Ceven(A) when P is an idempotent in

the matrix algebra MN(A) ∼= MN(C) ⊗ A. Consider the generalized trace T :

C•(MN(A))→ C•(A) defined by

T ((u0 ⊗ a0)⊗ . . .⊗ (un ⊗ an)) = tr(u0 . . . un)a0 ⊗ . . .⊗ an,

where tr : MN(C) → C is the ordinary trace. As shown in [21, Chapter 1], T is

a chain homotopy equivalence, and so induces an isomorphism HP•(MN(A)) ∼=
HP•(A). So we define chP ∈ Ceven(A) to be the image of chP ∈ Ceven(MN(A))

under the map T .
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Given an invertible U ∈ A, consider the cycle chU ∈ Codd(A). For n ≥ 0, let

(chU)2n+1 = (−1)nn!U−1 ⊗ U ⊗ U−1 ⊗ . . .⊗ U−1 ⊗ U.

Then, one can check that

b(chU2n+1) = −B(chU2n−1),

so that (b + B) chU = 0. As in the case of idempotents, we can define chU ∈
Codd(A) for any invertible U ∈MN(A) by composing with T .

For the algebraic K-theory groups K0(A) and K1(A), there are pairings

HP 0(A)×K0(A)→ C, HP 1(A)×K1(A)→ C

given by

〈[ϕ], [P ]〉 = 〈[ϕ], [chP ]〉, 〈[ϕ], [U ]〉 = 〈[ϕ], [chU ]〉

for an idempotent P ∈MN(A) and an invertible U ∈MN(A).

4.3.2 Chern character and ∇GM

Now let A be the algebra of sections of a q⊗-smooth deformation {At}t∈J of algebras.

Then A is an algebra over both C and C∞(J), and there is a surjective morphism

of complexes

π : CC
per(A)→ CC∞(J)

per (A).

Proposition 4.3.1. If ω ∈ CC∞(J)
per (A) is a cycle that lifts to a cycle ω̃ ∈ CC

per(A),

then

∇GM [ω] = 0

in HP
C∞(J)
• (A).

Proof. Let ∇C
GM = L∇− IE, viewed as an operator on CC

per(A). By Theorem 2.5.3,

∇C
GM = L∇ − Iδ∇ = [b+B, I∇]

and so ∇C
GM is the zero operator on HPC

• (A). Thus, at the level of homology, we
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have

∇GM ◦ π = π ◦ ∇C
GM = 0

where π : HPC
• (A) → HP

C∞(J)
• (A) is the map induced by the quotient map. By

hypothesis, ω is in the image of π.

Note that the homotopy used in the previous proof does not imply that ∇GM

is zero on HP
C∞(J)
• (A). The reason is that the operator I∇ is not a well-defined

operator on the quotient complex C
C∞(J)
per (A).

Corollary 4.3.2. If P ∈MN(A) is an idempotent and U ∈MN(A) is an invertible,

then

∇GM [chP ] = 0, ∇GM [chU ] = 0

in HP•(A).

Proof. This is immediate from the previous proposition because the cycle chP ∈
CC

per(A) is a lift of the cycle chP ∈ CC∞(J)
per (A), and similarly for chU .

Combining this with the identity

d

dt
〈[ϕ], [ω]〉 = 〈∇GM [ϕ], [ω]〉+ 〈[ϕ],∇GM [ω]〉,

we obtain the following differentiation formula.

Corollary 4.3.3. If P ∈MN(A) is an idempotent and U ∈MN(A) is an invertible,

then
d

dt
〈[ϕ], [P ]〉 = 〈∇GM [ϕ], [P ]〉, d

dt
〈[ϕ], [U ]〉 = 〈∇GM [ϕ], [U ]〉.

Remark 4.3.4. Proposition 3.3.3 can be used to give an alternative proof that

∇GM [chP ] = 0

when P ∈ A is an idempotent. Indeed, an idempotent in A is given by a collection

of algebra maps

{Ft : C→ At}t∈J .

Smoothness of P is equivalent to {Ft}t∈J being a morphism from the trivial defor-

mation over J with fiber C to {At}t∈J . Thus by Proposition 3.1.5, it induces an
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C∞(J)-linear algebra map

F : C∞(J)→ A

which maps 1 to P . Applying Proposition 3.3.3, we see

∇GM [chP ] = ∇GMF [ch 1] = F
d

dt
[ch 1] = 0.

4.4 Differentiation formulas for cyclic cocycles in

noncommutative tori

4.4.1 Cyclic cocycles, characteristic maps, and cup prod-

ucts

Recall that a (normalized) cyclic cocycle ϕ ∈ Ck(A) is a Hochschild cocycle such

that

ϕ(a0, . . . , ak) = 0,

if ai = 1 for some 1 ≤ i ≤ k, and

ϕ(ak, a0, . . . , ak−1) = (−1)kϕ(a0, a1, . . . , ak).

Such a cyclic cocycle ϕ automatically satisfies Bϕ = 0, because

ϕ(1, a0, . . . , ak−1) = (−1)kϕ(ak−1, 1, a0, . . . , ak−2) = 0.

Thus, (b+B)ϕ = 0, and so ϕ determines a cohomology class in HP •(A).

Suppose that g is an abelian Lie algebra of derivations on an algebra A, and

suppose τ is a trace which is g-invariant in the sense that

τ ◦X = 0, ∀X ∈ g.

Define the characteristic map γ : Λ•g→ C•(A) by

γ(X1 ∧ . . . ∧Xk)(a0, . . . , ak) =
1

k!

∑
σ∈Sk

(−1)στ(a0Xσ(1)(a1)Xσ(2)(a2) . . . Xσ(k)(ak)).
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Proposition 4.4.1. The functional γ(X1∧. . .∧Xk) is a cyclic k-cocycle. Moreover,

it is invariant with respect to the action of g by Lie derivatives.

Remark 4.4.2. The map γ is a simple case of the Connes-Moscovici characteristic

map in Hopf cyclic cohomology [3]. In their work, H is a Hopf algebra equipped

with some extra structure called a modular pair, and A is an algebra equipped

with a Hopf action of H. Assuming A possesses a trace that is compatible with

the modular pair, they construct a map

γ : HP •Hopf (H)→ HP •(A)

from the Hopf periodic cyclic cohomology of H to the ordinary periodic cyclic

cohomology of A. In our situation, H = U(g), the universal enveloping algebra of

g. The fact that g acts on A by derivations implies that the action of U(g) on A

is a Hopf action. The compatibility condition for the trace follows from the fact

that our trace is g-invariant. As was shown in [3],

HP •Hopf (U(g)) ∼=
⊕

k=•mod2

HLie
k (g,C),

where HLie
k (g,C) is the Lie algebra homology of g with coefficients in the trivial

g-module C. As g is abelian, there is an isomorphism

HLie
k (g,C) ∼= Λk(g).

The obtained characteristic map

γ : Λ•(g)→ HP •(A)

is the map defined above.

The fact that γ(X1 ∧ . . . Xk) is invariant relies on the fact that g is abelian. In

this case, the characteristic map factors through the inclusion HP •g (A)→ HP •(A),

and we obtain a characteristic map

γ : Λ•(g)→ HP •g (A).
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Lemma 4.4.3. Let X1, . . . , Xn be derivations on an algebra A, and let τ be a trace

on A. There exists ψ ∈ Cn−1(A) such that Bψ = 0 and

τ(a0X1(a1) . . . Xn(an))

=
1

n

n∑
j=1

(−1)(j−1)(n+1)τ(a0Xj(a1) . . . Xn(an−j+1)X1(an−j+2) . . . Xj−1(an))

+ (bψ)(a0, . . . , an).

Proof. Given any n derivations Y1, . . . , Yn, the (n− 1)-cochain

ϕ(a0, . . . , an−1) = τ(Y1(a0)Y2(a1) . . . Yn(an−1))

satisfies

(bϕ)(a0, . . . , an) = τ(a0Y1(a1) . . . Yn(an) + (−1)na0Y2(a1) . . . Yn(an−1)Y1(an))

and Bϕ = 0. It follows that

ψ(a0, . . . , an−1)

=
1

n

n−1∑
j=1

(−1)(j−1)(n+1)(n− j)τ(Xj(a0)Xj+1(a1) . . . Xj−1(an))

satisfies the conclusions of the lemma.

Recall that for any Z ∈ g, the cyclic contraction IZ is a chain map on the

invariant complex Cper
g (A).

Proposition 4.4.4. For any Z ∈ g and ω ∈ Λ•g,

IZ [γ(ω)] = [γ(Z ∧ ω)]

in HP •g (A).

Proof. It suffices to consider ω = X1 ∧ . . . ∧ Xk for X1, . . . , Xk ∈ g. Let ϕ =

γ(X1 ∧ . . . ∧Xk). Since ϕ is cyclic and normalized,

ϕ(1, a1, . . . , ak) = 0, a1, . . . , ak ∈ A,
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and consequently SZϕ = 0. Thus, IZϕ = ιZϕ, and

(ιZϕ)(a0, . . . , ak+1) = ϕ(a0Z(a1), a2, . . . ak+1)

=
1

k!

∑
σ∈Sk

(−1)στ(a0Z(a1)Xσ(1)(a2)Xσ(2)(a3) . . . Xσ(k)(ak+1))

= γ(Z ∧X1 ∧ . . . ∧Xk)(a0, . . . , ak+1) + (bψ)(a0, . . . , ak+1)

for some ψ with Bψ = 0 by applying the previous lemma to each term in the sum.

Hence, IZγ(X1 ∧ . . . ∧Xk) = γ(Z ∧X1 ∧ . . . ∧Xk) + (b+B)ψ.

As in the homology case (Theorem 4.1.3,) there is an algebra map

χ : Λ•(g)→ End(HP •g (A))

given by

χ(X1 ∧ . . . ∧Xk) = IX1IX2 . . . IXk .

By induction, we obtain the following result.

Corollary 4.4.5. For any ω ∈ Λ•g,

[γ(ω)] = χ(ω)[τ ]

in HP •g (A).

Remark 4.4.6. A generalization of the Connes-Moscovici characteristic map was

constructed in [19]. A special case of this construction is a cup product

^: HP p
Hopf (H)⊗HP q

H(A)→ HP p+q(A),

where HP •H(A) is the periodic cyclic cohomology of A built out of cochains which

are invariant in some sense with respect to the action of H. In the Connes-

Moscovici picture, the properties of the trace τ ensures that it gives a cohomology

class in HP •H(A), and

[ω] ^ [τ ] = γ[ω]

for all [ω] ∈ HP •Hopf (H). In our situation where H = U(g), we have that
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HP •H(A) = HP •g (A) and the cup product will give a map

^: Λpg⊗HP q
g (A)→ HP p+q(A).

Our map χ : Λ•(A) → End(HP •g (A)) composed with the canonical inclusion

HP •g (A) → HP •(A) coincides with this cup product. The fact that the cup

product sends g-invariant cocycles to g-invariant cocycles is a consequence of the

fact that g is abelian.

4.4.2 Noncommutative tori

Now, let A be the section algebra of the noncommutative n-tori deformation

{AtΘ}t∈J . More generally, we shall consider the matrix algebra MN(A), which

is the section algebra of the deformation {MN(AtΘ)}t∈J . Using the isomorphism

MN(A) ∼= MN(C)⊗A, the operators tr⊗τ , 1⊗ δj, and 1⊗∇ shall be denoted by

τ, δj, and ∇. Then just as in the N = 1 case, one has

E := δ∇ =
1

2πi

∑
j>k

θjk · δj ^ δk.

The map T : C•(A)→ C•(MN(A)), which is the transpose of the generalized trace,

induces an isomorphism HP •(A) → HP •(MN(A)) which is parallel with respect

to the Gauss-Manin connections. Thus, ∇GM is integrable on HP •(MN(A)).

Proposition 4.4.7. For any ω ∈ Λ•g,

∇̃(γ(ω)) = 0.

Proof. Consider ω ∈ Λmg. Notice that d
dt
◦ τ = τ ◦ ∇ and

∇(a0 . . . am) =
k∑
j=0

a0 . . .∇(aj) . . . am

+
1

2πi

∑
j′<k′

∑
j>k

θjk · a0 . . . δj(aj′) . . . δk(ak′) . . . am.
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It follows that

d

dt
γ(ω)(a0, . . . , am) =

k∑
j=0

γ(ω)(a0, . . . ,∇(aj), . . . , am)

+
1

2πi

∑
j′<k′

∑
j>k

θjkγ(ω)(a0, . . . , δj(aj′), . . . , δk(ak′), . . . , am),

using the fact that g is abelian and commutes with∇. This shows ∇̃(γ(ω)) = 0.

Theorem 4.4.8. For every Θ, the map γ : Λ•(g)→ HP •(MN(AΘ)) is an isomor-

phism of Z/2-graded spaces.

Proof. It suffices to prove the N = 1 case as the general case follows by the fact

that the diagram

Λ•g
γ

//

γ
''

HP •(AΘ)

T
��

HP •(MN(AΘ))

commutes. By Theorem 4.2.4 and Proposition 4.4.7, is suffices to prove this for

A0
∼= C∞(Tn). Let s1, . . . , sn be the coordinates in Tn = Rn/Zn. Choosing a

subset of coordinates si1 , . . . , sim determines a subtorus T of dimension m. All

such subtori are in bijection with the homology classes of Tn. The de Rham cycle

corresponding to T is given by integration of a differential form over T . The

cochain in Cm(C∞(Tn)) corresponding to this cycle is

ϕT (f0, . . . , fm) =

∫
T

f0df1 ∧ . . . ∧ dfm,

and one can show ϕT = γ(δi1 ∧ . . . ∧ δim) up to a scalar multiple.

Now that we have an explicit basis for HP •(MN(A)), we can describe ∇GM as

an operator on HP •(MN(A)).

Theorem 4.4.9. For any ω ∈ Λ•g,

∇GM [γ(ω)] =
1

2πi

∑
j>k

θjk · [γ(δj ∧ δk ∧ ω)].
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Proof. The analogue of Proposition 4.1.8 in this setting is that

∇GM = ∇̃+
1

2πi

∑
j>k

θjk · χ(δj ∧ δk)

as operators on HP •g (A). The result is immediate from Proposition 4.4.7 and

Corollary 4.4.5.

Corollary 4.4.10. For any idempotent P ∈MN(A) and ω ∈ Λ2mg,

d

dt
γ(ω)(P, . . . , P )

= −(4m+ 2)

2πi

∑
j>k

θjk · γ(δj ∧ δk ∧ ω)(P, . . . , P ).

Corollary 4.4.11. For any invertible U ∈MN(A) and ω ∈ Λ2m+1g,

d

dt
γ(ω)(U−1, U, . . . , U−1, U)

= − m

2πi

∑
j>k

θjk · γ(δj ∧ δk ∧ ω)(U−1, U, . . . , U−1, U).

Proof. Use Corollary 4.3.3 and the explicit form of Chern characters.

Let us specialize to the case n = 2. Here, the noncommutative torus is deter-

mined by a single real parameter θ := θ21, and we shall denote the algebra by Aθ.
We shall consider {Aθ}θ∈J as a smooth one-parameter deformation, where J ⊂ R
is an open interval containing 0. Let A be the algebra of sections and let τ2 be the

cyclic 2-cocycle τ2 = 1
πi
· γ(δ1 ∧ δ2), which is given explicitly by

τ2(a0, a1, a2) =
1

2πi
τ(a0δ1(a1)δ2(a2)− a0δ2(a1)δ1(a2)).

Corollary 4.4.10 says that for any idempotent P ∈MN(A),

d

dθ
τ(P ) = τ2(P, P, P ),

and
d2

dθ2
τ(P ) =

d

dθ
τ2(P, P, P ) = 0
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because γ(δ2 ∧ δ1 ∧ δ2 ∧ δ1) = 0. Thus we have shown that for any idempotent

P ∈MN(A),

τ(P ) = τ(P )(0) + τ2(P, P, P )(0) · θ.

Now the idempotent P (0) ∈ MN(A0) ∼= MN(C∞(T2)) corresponds to a smooth

vector bundle over T2 and the value τ(P )(0) is the dimension of this bundle. The

number τ2(P, P, P )(0) is the first Chern number of the bundle, which is an integer.

So P satisfies

τ(P ) = C +Dθ

for integers C and D.

This result suggests that Aθ may contain an idempotent of trace θ, a fact

which is now well-known and was first shown in [29]. Let Pθ ∈ Aθ be such an

idempotent. One could ask about the possibility of extending Pθ to an idempotent

P ∈ A. This is not possible, because such an idempotent would necessarily satisfy

τ2(P, P, P ) 6= 0, and the only idempotents in A0, namely 0 and 1, do not. However,

this can be done in the situation where the parameter space J doesn’t contain any

integers.

One can show that there exists an idempotent P ∈ M2(A) of trace 1 + θ in

the case where J is a small enough interval containing 0. However, this type of

phenomenon cannot happen in the following two situations.

1. If the parameter space J = R, then for any idempotent P ∈ MN(A), we

necessarily have τ(P ) is a constant integer-valued function. If not,

τ(P ) = C +Dθ

for some nonzero D. This contradicts the fact that τ(P )(k) ≥ 0 for all

integers k because Ak ∼= C∞(T2).

2. Since the deformation is periodic with period 1, we can consider the param-

eter space to be T = R/Z. In this case, the algebra of sections has underly-

ing space C∞(T,S(Z2)), and the multiplication is defined in the usual way.

The trace is now a map τ : A → C∞(T). In this case, every idempotent

P ∈MN(A) has constant integer-valued trace. Indeed, by the above results,
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τ(P ) must be smooth and locally a linear polynomial in θ. The only such

functions in C∞(T) are constant.

In a similar fashion, one can consider the cyclic 1-cocycles

τ 1
1 = γ(δ1), τ 2

1 = γ(δ2).

For any invertible U ∈MN(A),

d

dθ
τ j1 (U−1, U) = 0, j = 1, 2

by Corollary 4.4.11, and one can show that τ j1 (U−1, U)(0) is integer-valued. Thus,

τ j1 (U−1, U) is a constant integer-valued function.



Chapter 5
Rigidity of A∞-algebras

We return to the general type of deformation considered in Chapter 4. Suppose

{At}t∈J is a s⊗-smooth one parameter deformation of algebras with algebra of

sections A, and

d

dt
(a1a2) =

da1

dt
a2 + a1

da2

dt
+

N∑
i=1

Xi(a1)Yi(a2), ∀a1, a2 ∈ A

for some commuting family {X1, . . . , XN , Y1, . . . , YN} of operators on the under-

lying space that are derivations on each At. The methods of the last chapter, as

applied to noncommutative tori, relied on this property and the fact that the ac-

tion of g = Span{X1, . . . , XN , Y1, . . . , YN} was the infinitesimal of a torus action.

The torus action provided a “Fourier series” decomposition that was used in the

proofs of Theorem 4.2.2 and Theorem 4.2.4.

In this chapter, we prove that the periodic cyclic homology of any such de-

formation {At}t∈J is preserved, where we need not assume that the action of g

integrates to a torus action. The proof appeals to the machinery of A∞-algebras

developed in sections 2.7 and 3.4.
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5.1 The Chevalley-Eilenberg differential graded

algebra

Suppose a finite dimensional abelian Lie algebra g over C acts on a locally convex

s⊗-algebra A by continuous derivations. Let

Ω•(A) = As⊗Λ•g∗

denote the Chevalley-Eilenberg cochain complex that computes the Lie algebra

cohomology of g with coefficients in the g-module A, see [1] or [36]. Notice that

since Λ•g∗ is finite dimensional,

As⊗Λ•g∗ = A⊗ Λ•g∗.

Then Ω• is a locally convex graded s⊗-algebra, as the tensor product of two algebras.

Explicitly,

(a1 ⊗ ω1)(a2 ⊗ ω2) = (a1a2)⊗ (ω1 ∧ ω2), ∀a1, a2 ∈ A, ω1, ω2 ∈ Λ•g∗.

To describe the differential d, choose a basis {X1, . . . , Xn} of g and denote the

corresponding dual basis of g∗ by {dX1, . . . , dXn}. Define

d : A→ Ω1(A), da =
n∑
i=1

Xi(a)⊗ dXi.

This expression is independent of the choice of basis. Then

d : Ω•(A)→ Ω•+1(A)

is given by

d(a⊗ ω) = (da)(1⊗ ω), ∀a ∈ A, ω ∈ Λ•g∗.

It is routine to verify that d is a degree +1 derivation on Ω•(A). To see that d2 = 0,

notice that

d2 =
1

2
[d, d]
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is a degree +2 derivation on Ω•(A), so it suffices to prove that d2 = 0 on elements

of the form a⊗ 1 and 1⊗ ω, which generate Ω•(A) as an algebra. But

d2(a⊗ 1) =
n∑
i=1

n∑
j=1

Xi(Xj(a))⊗ dXi ∧ dXj =
∑
i<j

[Xi, Xj](a)⊗ dXi ∧ dXj = 0

and

d2(1⊗ ω) = d(0) = 0.

Thus we have shown the following.

Proposition 5.1.1. If the abelian Lie algebra g acts on a locally convex s⊗-algebra

A by continuous derivations, then the Chevalley-Eilenberg cochain complex Ω•(A)

is a locally convex differential graded s⊗-algebra.

Given X ∈ g, define the contraction by X

ιX : Λ•g∗ → Λ•−1g∗

to be the operator

ιX(α1 ∧ . . . ∧ αk) =
k∑
i=1

(−1)i+1αi(X)α1 ∧ . . . ∧ α̂i ∧ . . . ∧ αk,

where α̂i indicates that αi is omitted from the wedge product. For each X ∈ g, the

contraction ιX is a degree −1 derivation. We shall also denote by ιX the operator

1⊗ ιX : Ω•(A)→ Ω•−1(A),

which is also a degree −1 derivation. The Lie derivative along X ∈ g is the

operator

LX = X ⊗ 1 : Ω•(A)→ Ω•(A).

It is a degree 0 derivation because X is a derivation. Then we have the following

classical Cartan Homotopy Formula.

Theorem 5.1.2 (Cartan Homotopy Formula). For any X ∈ g,

[d, ιX ] = LX .
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Proof. The commutator [d, ιX ] is a degree 0 derivation, so it suffices to prove

[d, ιX ] = LX on generators of the form a⊗ 1, 1⊗ ω ∈ Ω•(A). It is clear that

[d, ιX ](1⊗ ω) = 0 = LX(1⊗ ω), ∀ω ∈ Λ•g∗.

It is also clear if X = 0. Given a nonzero X ∈ g, extend to a basis {X, Y1, . . . , Yn−1}
of g. Then

[d, ιX ](a⊗ 1) = ιX(d(a⊗ 1))

= ιX

(
X(a)⊗ dX +

n−1∑
i=1

Yi(a)⊗ dYi

)
= X(a)⊗ 1

= LX(a⊗ 1).

In particular, it follows that [d, LX ] = 0 for all X ∈ g.

5.2 A∞-deformations and cyclic homology

Let {At}t∈J is a s⊗-smooth deformation of algebras equipped with commuting con-

tinuous linear maps X1, . . . , XN , Y1, . . . YN on the underlying space that are deriva-

tions with respect to each product in the deformation. Suppose additionally that

the algebra of sections satisfies

d

dt
(a1a2) =

da1

dt
a2 + a1

da2

dt
+

N∑
i=1

Xi(a1)Yi(a2)

Let g denote the abelian Lie algebra spanned by X1, . . . , XN , Y1, . . . , YN . Then

for each t ∈ J , we can form the Chevalley-Eilenberg differential graded algebra

Ω•(At). In this way we obtain a deformation {Ω•(At)}t∈J of differential graded

algebras, which we view as a deformation of A∞-algebras.

Proposition 5.2.1. The family {Ω•(At)}t∈J form a smooth deformation of locally

convex A∞-algebras.
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Proof. By Proposition 3.4.2, we need only check separately that {Ω•(At)}t∈J is

a s⊗-smooth deformation of complexes and a s⊗-smooth deformation of algebras.

It is constant as a deformation of complexes, because the family of derivations

X1, . . . , XN , Y1, . . . Yn do not depend on t. That {Ω•(At)}t∈J is a smooth de-

formation of algebras follows at once from the fact that {At}t∈J is a s⊗-smooth

deformation of algebras.

Theorem 5.2.2. The deformation {Ω•(At)}t∈J is trivial as a deformation of A∞-

algebras. Consequently, for each s, t ∈ J there is an A∞-isomorphism

Ω•(As) ∼= Ω•(At).

Proof. We shall construct an explicit integrable connection on the A∞-algebra

Ω•(A) of sections that is an A∞-derivation. In terms of the component maps

∇n : (sΩ(A))
s⊗n → sΩ(A)

as described in section 3.4.1, our connection is

∇ = ∇1 +∇2,

where

∇1 =
d

dt
, ∇2 = −

N∑
i=1

ιXi ^ LYi .

Recall that the Hochschild coboundary is given by

δD = [m1, D] + [m2, D],

where m1 = d and m2(ω1, ω2) = (−1)degω1ω1ω2, see section 2.6. On Ω•(A), we

have
d

dt
(ω1ω2) =

dω1

dt
ω2 + ω1

dω2

dt
+

N∑
i=1

LXi(ω1)LYi(a2),
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which follows naturally from the corresponding formula on A. This shows that

[m2,
d

dt
] =

N∑
i=1

LXi ^ LYi .

On the other hand, the differential in Ω•(At) does not depend on t, so

[m1,
d

dt
] = 0.

As in Example 2.6.1, we see that

[m2, ιXi ] = 0, [m2, LYi ] = 0

because contraction and Lie derivative operators are graded derivations. Thus,

δ(ιXi ^ LYi) = (διXi) ^ LYi + ιXi ^ (δLYi)

= [m1, ιXi ] ^ LYi + ιXi ^ [m1, LYi ]

= LXi ^ LYi

by the Cartan Homotopy Formula. We conclude that

δ∇ = δ∇1 + δ∇2 =
N∑
i=1

LXi ^ LYi −
N∑
i=1

LXi ^ LYi = 0.

Thus, ∇ is an A∞-derivation. By Proposition 3.4.6, ∇ is integrable because ∇1 =
d
dt

is integrable. By applying Proposition 3.4.5, we conclude that {Ω•(At)}t∈J is a

trivial deformation of A∞-algebras.

By applying Theorem 2.7.8, we obtain that periodic cyclic homology of the

deformation {At}t∈J is preserved. For all s, t ∈ J , there are isomorphisms

HP•(As) ∼= HP•(At).

Applying this to the noncommutative tori deformation {AtΘ}t∈R proves that

HP•(AΘ) ∼= HP•(C
∞(Tn)),
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so that HP•(AΘ) does not depend on Θ. Applying our result to the crossed product

deformation {B oαt R}t∈R, see section 3.1.2, proves that

HP•(B oα R) ∼= HP•(S(R)⊗̂B).

As HP•(S(R)⊗̂B) ∼= HP•+1(B), we obtain the Thom isomorphism

HP•(B oα R) ∼= HP•+1(B).



Appendix A
Single variable calculus in locally

convex vector spaces

A.1 Differentiation

In this appendix, let X be a complete, locally convex, Hausdorff vector space and

let J ⊆ R be an open interval. A function f : J → X is differentiable at t ∈ J if

f ′(t) := lim
h→0

f(t+ h)− f(t)

h

exists in X. We say f is differentiable if f ′(t) exists for all t ∈ J . So we have a new

function f ′ : J → X and we can ask if it is differentiable. The n-th derivative of f ,

if it exists, will be denoted f (n). The function f is smooth if f (n) exists for every

n. As it follows from the definition that differentiability implies continuity, the

n-th derivatives of a smooth function are, in particular, continuous. Let C∞(J,X)

denote the vector space of all smooth functions from J into X.

Proposition A.1.1. If f : J → X satisfies f ′ = 0, then f is constant.

Proof. For any continuous linear functional ϕ ∈ X∗, we have that ϕ ◦ f : J → C
is differentiable with derivative ϕ ◦ f ′ = 0. Thus, by calculus in finite dimensional

Euclidean space, ϕ(f(t)) = ϕ(f(s)) for all t, s ∈ J . The Hahn-Banach theorem

implies that X∗ separates points in X, and so f(t) = f(s) for all t, s ∈ J.
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A.2 Integration

We shall now develop the theory of the Riemann integral in X. We shall consider

various spaces of functions (not necessarily continuous) valued in X. Let K be a

compact interval and let F(K,X) be the vector space of all functions f : K → X

such that for each continuous seminorm p on X,

p∞(f) := sup
t∈K

p(f(t)) <∞.

We give F(K,X) the locally convex topology generated by the collection {p∞} of

seminorms as p varies through a generating family of seminorms for X. This is

the topology of uniform convergence on K. The completeness of X implies that

F(K,X) is complete. The space of all continuous functions C(K,X) is a closed

subspace of F(K,X).

Given an interval L ⊂ K, let 1L : K → C be the characteristic function of L,

so that

1L(t) =

1, t ∈ L

0, t /∈ L.

Here, L can be open, closed, or half-open. A step function g : K → X is a finite

sum

g =
N∑
i=1

xi · 1Li ,

for subintervals L1, . . . , LN and elements x1, . . . , xN ∈ X. The vector space of all

step functions will be denoted S(K,X). It is a linear subspace of F(K,X). Let

R(K,X) denote its closure in F(K,X). For our purposes, the following proposition

is the most important fact we need to know about R(K,X).

Proposition A.2.1. The space of continuous functions C(K,X) is a closed sub-

space of R(K,X).

Proof. Given f ∈ C(K,X) and a continuous seminorm p on X, we must show that

for every ε > 0, there is a step function g ∈ S(K,X) such that

p∞(f − g) < ε.
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As K is compact, f is uniformly continuous with respect to the seminorm p. That

is, there is δ > 0 such that if |s− t| < δ, then p(f(s)−f(t)) < ε. Choose an integer

N large enough so that ∆t := |b − a|/N < δ, where K = [a, b]. Let t0 = a and

ti = a+ i∆t for i = 1, . . . , N . For each i, let Li = [ti, ti+1), and let

g =
N−1∑
i=0

f(ti) · 1Li .

Then if t ∈ Li, we have |t− ti| < δ, and so

p(f(t)− g(t)) = p(f(t)− f(ti)) < ε.

Since the Li cover K, p∞(f − g) < ε. This shows that the continuous functions are

contained in the closure of the step functions.

Now, on to the integral. Given g ∈ S([a, b], X), g =
∑N

i=1 xi · 1[ai,bi], we define

∫
g =

N∑
i=0

|bi − ai|xi.

It is routine to check that this expression is independent of the presentation of g

as a step function. Thus we have a well-defined linear map∫
: S([a, b], X)→ X.

Rewriting the step function so that the intervals [ai, bi] are mutually disjoint, we

see that for any continuous seminorm p on X,

p(

∫
g) =

N∑
i=0

|bi − ai|p(xi) ≤ |b− a|p∞(g).

So
∫

is continuous and therefore extends to a continuous linear map∫
: R([a, b], X)→ X
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which satisfies

p(

∫
f) ≤ |b− a|p∞(f)

for all f ∈ R([a, b], X). In particular, we have defined the integral of a continuous

function f ∈ C([a, b], X). Now, for any f ∈ C(J,X) and [a, b] ⊂ J , we define∫ b

a

: C(J,X)→ X

as the composition

C(J,X) // C([a, b], X)
∫
// X

where the first map is the restriction map. Thus,
∫ b
a

is a continuous linear map,

and we have the estimate

p(

∫ b

a

f) ≤ |b− a| sup
t∈[a,b]

p(f(t)).

Theorem A.2.2 (Fundamental theorem of calculus). Given f ∈ C(J,X) and

t0 ∈ J , the function F : J → X given by

F (t) =

∫ t

t0

f

is differentiable and F ′(t) = f(t).

Proof. For any continuous seminorm p on X, we have

p(
1

h
(F (t+ h)− F (t))− f(t)) = p(

1

h
(

∫ t+h

t0

f −
∫ t

t0

f)− f(t))

= p(
1

h

∫ t+h

t

f − 1

h
f(t)

∫ t+h

t

1)

= p(
1

h

∫ t+h

t

(f(s)− f(t))ds)

≤ sup
s∈[t,t+h]

p(f(s)− f(t)),

which goes to 0 as h → 0 because f is continuous at t. As this holds for all

continuous seminorms p on X, we have F ′(t) = f(t) as desired.
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Corollary A.2.3. If f ′ is continuous, then∫ t

s

f ′(u)du = f(t)− f(s).

Proof. By Theorem A.2.2,

d

dt

[∫ t

s

f ′(u)du− f(t)

]
= 0,

so for every t,
∫ t
s
f ′(u)du − f(t) = x for some fixed x ∈ X by Proposition A.1.1.

Plugging in t = s shows that x = −f(s), which gives the result.

Corollary A.2.4. If fn ∈ C(J,X) are a sequence of continuously differentiable

functions that converge pointwise to f , and if f ′n converge uniformly on compact

sets to a function g, then f ′ = g. In particular, if the series h =
∑
hn is absolutely

convergent and
∑
h′n converges absolutely and uniformly on compact sets, then

h′ =
∑
h′n.

Proof. We will show that f ′ = g on an arbitrary subinterval [a, b] ⊂ J . Indeed,∫ t

s

g =

∫ t

s

lim
n→∞

f ′n

= lim
n→∞

∫ t

s

f ′n

= lim
n→∞

fn(t)− fn(s)

= f(t)− f(s),

where we have used the continuity of the integral as an operator with domain

C([s, t], X). Differentiating with respect to t gives the result.



Appendix B
Noncommutative calculus proofs

This appendix contains the algebraic proofs of identities involving operators on

the cyclic complex.

B.1 Lie derivatives

Suppose g is a graded Lie algebra that decomposes as a product

g =
∞∏
k=0

Ck,

where each Ck is a graded subspace. We emphasize that each Ck is graded in its

own right, and so the integer k does not give the grading of g. Additionally, we

assume,

[Ck, C l] ⊂ Ck+l−1

for all k, l.

Now suppose we have a collection of graded vector spaces {Xn}∞n=0, and suppose

the cyclic group Zn+1 acts on Xn by a degree 0 operator, which we shall denote

τ . Suppose g acts on this data in the following sense. For each D ∈ Ck of

homogeneous degree |D|, there are linear maps

Di : Xn → Xn−k+1, i = 0, . . . , n− k + 1
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of degree |D| such that

[D,E]i =
i+k−1∑
j=i

DiEj − (−1)|D||E|
i+l−1∑
j=i

EiDj

and

DiEj = (−1)|D||E|Ej−k+1Di if i < j − k + 1

τDi = Di+1τ if i < n− k + 1

τDn−k+1 = D0τ
k.

for all D ∈ Ck, E ∈ C l.

Definition B.1.1. We shall refer to the spaces {Xn}∞n=0 with this structure as a

∞-precyclic g-module.

Example B.1.2. A cyclic module consists of a collection {Xn}∞n=0 of vector spaces

equipped with a collection of face maps

di : Xn → Xn−1, i = 0, . . . , n,

degeneracies

si : Xn → Xn+1, i = 0, . . . , n,

and a cyclic map

t : Xn → Xn

satisfying the simplicial module relations

didj = dj−1di if i < j

sisj = sj+1si if i ≤ j

disj = sj−1di if i < j

disj = id if i = j, j + 1

disj = sjdi−1 if i > j + 1.
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and the additional relations

dit = tdi−1 if 1 ≤ i ≤ n

d0t = dn

sit = tsi−1 if 1 ≤ i ≤ n

s0t = t2sn

tn+1 = id .

Given any cyclic module, we can define an ∞-precyclic g-module as follows.

Define a graded Lie algebra g = C0 ⊕ C2, where C0 is spanned by a single degree

−1 element σ and C2 is spanned by a single degree 1 element m. All brackets in g

are zero. We define a grading on Xn by declaring it to be concentrated in degree

−n. The action of g is given by

mi = (−1)idi if i = 0, . . . n− 1

σ0 = tsn

σi = (−1)isi−1 if i = 1, . . . , n+ 1.

One can verify that the axioms of a cyclic module imply that this is a∞-precyclic

g-module. The converse nearly holds in that given any ∞-precyclic g-module of

the graded Lie algebra g defined above, if one defines operators

di = (−1)imi if i = 0, . . . n− 1

dn = m0t

si = (−1)i+1σi+1 if i = 0, . . . , n,

then all the axioms of a cyclic module are satisfied except for the condition

disj = id if i = j, j + 1.

Instead we have the weaker condition

disi−1 = disi.
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We shall return to this deficiency later.

Example B.1.3. Let V be a graded vector space and let Xn = V ⊗(n+1). The

cyclic action on Xn is given by the signed cyclic permutation

τ(v0 ⊗ . . .⊗ vn) = (−1)|vn|(|v0|+...+|vn−1|)vn ⊗ v0 ⊗ . . . vn−1.

For the graded Lie algebra, we shall take

g = Coder(T cV ) ∼= Hom(T cV, V ).

We have

g =
∞∏
k=0

Ck, Ck = Hom(V ⊗k, V ).

Given D ∈ Ck, we define

Di = 1⊗i ⊗D ⊗ 1⊗(n−i−k+1) : Xn → Xn−k+1.

It is straightforward to verify that this action gives an ∞-precyclic g-module.

Given an∞-precyclic g-module, and an element D ∈ Ck, define the Lie deriva-

tive along D to be the operator

LD : Xn → Xn−k+1

given by

LD =
n−k+1∑
i=0

Di +
k−1∑
i=1

D0τ
i.

Theorem B.1.4. For any D,E ∈ g,

[LD, LE] = L[D,E].

Thus L : g→ End(X•) is a homomorphism of graded Lie algebras.

Proof. Assume D ∈ Ck and E ∈ C l. We shall write

L′D =
n−k+1∑
i=0

Di, L′′D =
k−1∑
i=1

D0τ
i
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and similarly for E. The n refers to the index of the space Xn on which LD acts.

We shall write

(D ◦ E)i =
i−k+1∑
j=i

DiEj,

so that

[D,E]i = (D ◦ E)i − (−1)|D||E|(E ◦D)i,

though we remark that we do not assume that D ◦ E makes sense as an element

of g. We shall first verify that

[L′D, L
′
E] = L′[D,E].

We calculate directly

L′DL
′
E =

n−k−l+2∑
i=0

n−l+1∑
j=0

DiEj

=
n−k−l+2∑

i=0

(
i−1∑
j=0

DiEj +
i+k−1∑
j=i

DiEj +
n−l+1∑
j=i+k

DiEj

)

=
n−k−l+2∑

i=0

(
i−1∑
j=0

(−1)|D||E|EjDi+l−1 + (D ◦ E)i +
n−l+1∑
j=i+k

(−1)|D||E|Ej−k+1Di

)
.

We can reindex these sums, so that

n−k−l+2∑
i=0

i−1∑
j=0

(−1)|D||E|EjDi+l−1 =
n−l−k+1∑
j=0

n−l−k+2∑
i=j+1

(−1)|D||E|EjDi+l−1

=
n−l−k+1∑
j=0

n−k+1∑
i=j+l

(−1)|D||E|EjDi

and

n−k−l+2∑
i=0

n−l+1∑
j=i+k

(−1)|D||E|Ej−k+1Di =
n−k−l+2∑

i=0

n−k−l+2∑
j=i+1

(−1)|D||E|EjDi

=
n−k−l+1∑
j=1

j−1∑
i=0

(−1)|D||E|EjDi.
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Putting it together,

L′DL
′
E − L′[D,E] =

n−k−l+2∑
j=0

(−1)|D||E|(E ◦D)j +
n−l−k+1∑
j=0

n−k+1∑
i=j+l

(−1)|D||E|EjDi

+
n−k−l+1∑
j=1

j−1∑
i=0

(−1)|D||E|EjDi

=
n−k−l+2∑
j=0

j+l−1∑
i=j

(−1)|D||E|EjDi +
n−l−k+1∑
j=0

n−k+1∑
i=j+l

(−1)|D||E|EjDi

+
n−k−l+1∑
j=1

j−1∑
i=0

(−1)|D||E|EjDi

=
n−k−l+2∑
j=0

n−k+1∑
i=0

(−1)|D||E|EjDi

= (−1)|D||E|L′EL
′
D.

To finish, we must show

[L′D, L
′′
E] + [L′′D, L

′
E] + [L′′D, L

′′
E] = L′′[D,E].

We calculate

L′DL
′′
E =

n−k−l+2∑
i=0

l−1∑
j=1

DiE0τ
j

=
l−1∑
j=1

D0E0τ
j +

n−k−l+2∑
i=1

l−1∑
j=1

(−1)|D||E|E0Di+l−1τ
j

=
l−1∑
j=1

D0E0τ
j +

n−k+1∑
i=l

l−1∑
j=1

(−1)|D||E|E0Diτ
j.

Notice that the ∞-precyclic g-module relations imply

τ jDi =

Di+jτ
j if i ≤ n− j − k + 1,

Di+j−n+k−2τ
j+k−1 if i ≥ n− j − k + 2.
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Using this, we see

L′′EL
′
D =

l−1∑
j=1

n−k+1∑
i=0

E0τ
jDi

=
l−1∑
j=1

(
n−j−k+1∑

i=0

E0τ
jDi +

n−k+1∑
i=n−j−k+2

E0τ
jDi

)

=
l−1∑
j=1

(
n−j−k+1∑

i=0

E0Di+jτ
j +

n−k+1∑
i=n−j−k+2

E0Di+j−n+k−2τ
j+k−1

)

=
l−1∑
j=1

n−k+1∑
i=j

E0Diτ
j +

k+l−2∑
j=k

j−k∑
i=0

E0Diτ
j

=
l−1∑
i=1

i∑
j=1

E0Diτ
j +

n−k+1∑
i=l

l−1∑
j=1

E0Diτ
j +

l−2∑
i=0

k+l−2∑
j=k+i

E0Diτ
j.

after reindexing and changing the order of summation. Next,

L′′EL
′′
D =

l−1∑
i=1

k−1∑
j=1

E0τ
iD0τ

j

=
l−1∑
i=1

k−1∑
j=1

E0Diτ
i+j

=
l−1∑
i=1

i+k−1∑
j=i+1

E0Diτ
j.

Putting it all together, we have

L′DL
′′
E − (−1)|D||E|L′′EL

′
D − (−1)|D||E|L′′EL

′′
D

=
l−1∑
j=1

D0E0τ
j − (−1)|D||E|

l−1∑
i=1

i∑
j=1

E0Diτ
j − (−1)|D||E|

l−2∑
i=0

k+l−2∑
j=k+i

E0Diτ
j

− (−1)|D||E|
l−1∑
i=1

i+k−1∑
j=i+1

E0Diτ
j

=
l−1∑
j=1

D0E0τ
j − (−1)|D||E|

l−1∑
i=0

k+l−2∑
j=1

E0Diτ
j + (−1)|D||E|

k−1∑
j=1

E0D0τ
j
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=
l−1∑
j=1

D0E0τ
j − (−1)|D||E|

k+l−2∑
j=1

(E ◦D)0τ
j + (−1)|D||E|

k−1∑
j=1

E0D0τ
j.

Interchanging the roles of D and E, the same calculation gives

− (−1)|D||E|L′EL
′′
D + L′′DL

′
E + L′′DL

′′
E

= −(−1)|D||E|
k−1∑
j=1

E0D0τ
j +

k+l−2∑
j=1

(D ◦ E)0τ
j −

l−1∑
j=1

D0E0τ
j.

Adding the two equations gives

[L′D, L
′′
E] + [L′′D, L

′
E] + [L′′D, L

′′
E] = L′′[D,E]

as desired.

Next, we shall consider ∞-precyclic g-modules that have additional structure.

Suppose that the Lie algebra g has a distinguished element m of degree 1 such

that [m,m] = 0. Then g is a DGLA with coboundary map

δD = [m,D].

Let mk denote the component of m in Ck. Suppose also that there is another

distinguished element σ ∈ C0 of degree −1 with δσ = 0 such that

(mk)iσj =


id, k = 2, j = i

− id, k = 2, j = i+ 1

0, k 6= 2, j = i, . . . , i+ k − 1

for all D ∈ Ck.

Definition B.1.5. An ∞-cyclic g-module is an ∞-precyclic g-module with an m

and σ as above.

Example B.1.6. Let g be the two-dimensional differential graded Lie algebra

spanned by m ∈ C2 in degree 1 and σ ∈ C0 in degree −1. Then an ∞-cyclic

g-module is the same thing as a cyclic module.



157

Example B.1.7. If A is a unital A∞-algebra and

g = Coder(B(A)) ∼= Hom(B(A), sA)

is the Hochschild DGLA of A, then we can define an ∞-precyclic g-module where

D ∈ Ck = Hom((sA)k, sA) acts on Xn = (sA)n+1 via the operators

Di = 1⊗i ⊗D ⊗ 1⊗n−i−k+1

as in Example B.1.3. The element m ∈ g is the degree 1 coderivation that gives

the A∞-structure, and σ ∈ Hom(C, sA) ∼= sA is the unit of the A∞-algebra. It

follows that this data gives an ∞-cyclic g-module.

Given an∞-cyclic g-module, we define the Hochschild boundary to be the map

b = Lm on X•. Then it follows that

b2 =
1

2
[Lm, Lm] =

1

2
L[m,m] = 0

by Theorem B.1.4. We also have

[b, LD] = [Lm, LD] = L[m,D] = LδD.

Define the normalized subcomplex X• by

Xn = Xn/

(
n∑
i=1

σi(Xn−1)

)
.

We shall call D ∈ Ck normalized if

Diσj = 0, j = i, . . . , i+ k − 1.

Define g to be the set of all elements of g whose components are normalized.

Proposition B.1.8. Given an ∞-cyclic g-module,

1. the subspace g is a sub-DGLA of g.

2. the operator LD descends to an operator on X• for all D ∈ g.
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3. the Hochschild boundary b descends to an operator on X•.

Proof. We first show that g is closed under brackets. So for normalized D ∈ Ck

and E ∈ C l, we must show that

[D,E]iσj = 0, j = i, . . . , i+ k + l − 2.

It suffices to show

DiEpσj = 0,

where

i ≤ j ≤ i+ k + l − 2, i ≤ p ≤ i+ k − 1.

There are three cases, depending on the value of j. If i ≤ j ≤ p− 1, then

DiEpσj = (−1)|E|DiσjEp−1 = 0

because i ≤ j ≤ i + k − 2. If p ≤ j ≤ p + l − 1, then Epσj = 0, which completes

that case. Thirdly, if p+ l ≤ j ≤ i+ k + l − 2, then

DiEpσj = (−1)|E|Diσj−l+1Ep = 0

because i+ 1 ≤ j − l + 1 ≤ i+ k − 1.

Next, we shall show that δD = [m,D] ∈ g for all D ∈ Ck. By the previous

part, we can assume without loss of generality that m ∈ C2. We must show

[m,D]iσj = 0, j = i, . . . , i+ k.

Now

(m ◦D)iσj = miDiσj +miDi+1σj =


(−1)|D|Di, j = i

0, i+ 1 ≤ j ≤ i+ k − 1

−(−1)|D|Di, j = i+ k.
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On the other hand,

(D ◦m)iσi =
i+k−1∑
p=i

Dimpσi

= Dimiσi +
i+k−1∑
p=i+1

Dimpσi

= Di −
i+k−1∑
p=i+1

Diσimp−1

= Di,

(D ◦m)iσi+k =
i+k−1∑
p=i

Dimpσi+k

=
i+k−2∑
p=i

Dimpσi+k +Dimi+k−1σi+k

= −
i+k−2∑
p=i

Diσi+k−1mp −Di

= −Di,

and if i+ 1 ≤ j ≤ i+ k − 1,

(D ◦m)iσj =
i+k−1∑
p=i

Dimpσj

=

j−2∑
p=i

Dimpσj +Dimj−1σj +Dimjσj +
i+k−1∑
p=j+1

Dimpσj

= −
j−2∑
p=i

Diσj−1mp −Di +Di −
i+k−1∑
p=j+1

Diσjmp−1

= 0.

Thus,

(δD)iσj = (m ◦D)iσj − (−1)|D|(D ◦m)iσj = 0
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for j = i, . . . , i+ k, as required. So g is a sub-DGLA of g.

To show that LD descends to X•, we first introduce some notation. Let

Yn =
n∑
i=1

σi(Xn−1), Zn =
n∑
i=0

σi(Xn−1).

Each of the following is straightforward to verify for D ∈ Ck.

• D0(Zn) ⊂ Yn−k+1,

• Di(Yn) ⊂ Yn−k+1, i = 1, . . . , n− k + 1,

• τ(Yn) ⊂ Zn.

From these, it follows that

LD =
n−k+1∑
i=0

Di +
k−1∑
i=1

D0τ
i

maps Yn to Yn−k+1. Thus, LD descends to an operator on X• = X•/Y•.

To show that b = Lm descends to X, we may assume without loss of generality

that m ∈ C2 by the last part. Consider the operators σj : Xn−1 → Xn for

j = 1, . . . , n. If j = 1, . . . , n− 1, then

bσj =
n−1∑
i=0

miσj +m0τσj

=

j−2∑
i=0

miσj +mj−1σj +mjσj +
n−1∑
i=j+1

miσj +m0σj+1τ

= −
j−2∑
i=0

σj−1mi − id + id−
n−1∑
i=j+1

σjmi−1 + σjm0τ

= −
j−2∑
i=0

σj−1mi −
n−1∑
i=j+1

σjmi−1 + σjm0τ,

and

bσn =
n−1∑
i=0

miσn +m0τσn
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=
n−2∑
i=0

miσn +mn−1σn +m0σ0

= −
n−2∑
i=0

σn−1mi − id + id

= −
n−2∑
i=0

σn−1mi.

This shows b(Yn) ⊂ Yn−1, and we are done.

Next, we define the operator B : Xn → Xn+1 by

B =
n∑
i=0

σ0τ
i.

Since,

τσ0 = σ1τ = 0

on the normalized complex, it follows at once that B2 = 0.

Theorem B.1.9. 1. For any D ∈ g, [B,LD] = 0.

2. [b, B] = bB +Bb = 0.

Proof. We have that

LDB =
n−k+2∑
i=0

n∑
j=0

Diσ0τ
j +

k−1∑
i=1

n∑
j=0

D0τ
iσ0τ

j

=
n−k+2∑
i=1

n∑
j=0

Diσ0τ
j

because D0τ
iσ0 = D0σiτ

i = 0 for 0 ≤ j ≤ k − 1 and D0σ0 = 0. Hence,

LDB = (−1)|D|
n−k+1∑
i=0

n∑
j=0

σ0Diτ
j
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We also have

BLD =
n−k+1∑
j=0

(
n−k+1∑
i=0

σ0τ
jDi +

k−1∑
i=1

σ0τ
jD0τ

i

)
.

Now

n−k+1∑
j=0

n−k+1∑
i=0

σ0τ
jDi

=
n−k+1∑
j=0

(
n−j−k+1∑

i=0

σ0τ
jDi +

n−k+1∑
i=n−j−k+2

σ0τ
jDi

)

=
n−k+1∑
j=0

(
n−j−k+1∑

i=0

σ0Di+jτ
j +

n−k+1∑
i=n−j−k+2

σ0Di+j−n+k−2τ
j+k−1

)

=
n−k+1∑
j=0

n−k+1∑
i=j

σ0Diτ
j +

n∑
j=k−1

n−k+1∑
i=n−j+1

σ0Di+j−n−1τ
j

=
n−k+1∑
j=0

n−k+1∑
i=j

σ0Diτ
j +

n∑
j=k−1

j−k∑
i=0

σ0Diτ
j

=
n−k+1∑
i=0

i∑
j=0

σ0Diτ
j +

n−k∑
i=0

n∑
j=i+k

σ0Diτ
j

after changing the order of summation. Also,

n−k+1∑
j=0

k−1∑
i=1

σ0τ
jD0τ

i =
n−k+1∑
j=0

k−1∑
i=1

σ0Djτ
i+j

=
n−k+1∑
j=0

j+k−1∑
i=j+1

σ0Djτ
i

=
n−k+1∑
i=0

i+k−1∑
j=i+1

σ0Diτ
j

by relabeling i and j. Putting it together, we see that

BLD =
n−k+1∑
i=0

n∑
j=0

σ0Diτ
j = (−1)|D|LDB
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as desired.

To show [b, B] = [Lm, B] = 0, we can assume m ∈ C2 without loss of generality

by the last part. The exact same computation as above when D = m gives

BLm =
n−1∑
i=0

n∑
j=0

σ0miτ
j.

On the other hand,

LmB =
n∑
i=0

n∑
j=0

miσ0τ
j +

n∑
j=0

m0τσ0τ
j

=
n∑
j=0

m0σ0τ
j +

n∑
i=1

n∑
j=0

miσ0τ
j +

n∑
j=0

m0σ1τ
j+1

=
n∑
j=0

τ j −
n∑
i=1

n∑
j=0

σ0mi−1τ
j −

n∑
j=0

τ j+1

= −
n−1∑
i=0

n∑
j=0

σ0miτ
j

= −BLm.

Given an∞-cyclic g-module {Xn}n∈Z, let Xn,k denote the degree k component

of Xn. We define the Hochschild complex to be

C•(X) =
⊕
n∈Z

Xn,−(•+1)

with differential b. The homology of (C•(X), b) will be called the Hochschild ho-

mology and will be denoted HH•(X). For any homogeneous D ∈ g, we have shown

that the Lie derivative is a chain map

LD : C•(X)→ C•−|D|(X),
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and so induces a map on homology

LD : HH•(X)→ HH•−|D|(X).

Similarly, we define the normalized Hochschild complex to be

C•(X) =
⊕
n∈Z

Xn,−(•+1)

with differential b. Its homology is the normalized Hochschild homology HH•(X),

and any for any D ∈ g, there are Lie derivative operators

LD : C•(X)→ C•−|D|(X), LD : HH•(X)→ HH•−|D|(X).

The periodic cyclic chain complex is Cper(X) = Cev(X)
⊕

Codd(X), where

Cev(X) =
∏
n∈Z

C2n(X), Codd(X) =
∏
n∈Z

C2n+1(X).

Then Cper(X) is a Z/2-graded complex with differential b + B. It’s homology

is the periodic cyclic homology HP•(X). Similarly, we can define the normalized

periodic cyclic chain complex Cper(X) and the normalized periodic cyclic homology

HP •(X). As above, there are Lie derivative chain maps

LD : Cper(X)→ Cper(X), LD : Cper(X)→ Cper(X).

Example B.1.10 (Hochschild and cyclic homology of an A∞-algebra). Given an

A∞-algebra A, let X be the ∞-cyclic g-module, as in Example B.1.7, associated

to the unitization Ã ∼= A
⊕

Ce. Then we define

C0(A) := C0(X)/Ce, Cn(A) := Cn(X) (n 6= 0)

and

Cev(A) =
∏
n∈Z

C2n(A), Codd(A) =
∏
n∈Z

C2n+1(A)

to be the Hochschild and periodic cyclic chain complexes of A. We identify the
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DGLA g(A) := Coder(B(A)) as a sub-DGLA of g. Thus, g(A) acts on the com-

plexes C•(A) and Cper(A) by Lie derivatives.

B.2 Cartan homotopy formula

For our discussion of contractions and the Cartan homotopy formula, we shall

restrict to the case where m = m(1) +m(2) for m(1) ∈ C1 and m(2) ∈ C2. In terms

of Example B.1.7, this corresponds to restricting from arbitrary A∞-algebras to

differential graded algebras. This will simplify some of what follows, but it is not

a necessary restriction [12].

Definition B.2.1. Given a homogeneous D ∈ Ck, we define the contraction by D

to be the operator

ιD : Xn → Xn−k

of degree |D|+ 1 given by ιD = m
(2)
0 D1.

For a homogeneous D ∈ Ck, define the operator

SD : Xn → Xn−k+2

of degree |D| − 1 by

SD =
n−k+1∑
i=1

n−k+1−i∑
j=0

σ0τ
jDi.

Proposition B.2.2. If D ∈ g, then ιD and SD descend to operators on X•.

Proof. We assume D ∈ Ck
. If i = 1, . . . , k, then

ιDσi = m
(2)
0 D1σi = 0.

If i = k + 1, . . . , n+ 1, then

ιDσi = m
(2)
0 D1σi = (−1)|D|m

(2)
0 σi−k+1D1 = −(−1)|D|σi−km

(2)
0 D1.

This shows that ιD descends to X•.

In terms of the notation from the proof of Proposition B.1.8,
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• Di(Yn) ⊂ Yn−k+1, i = 1, . . . , n− k + 1,

• τ(Yn) ⊂ Zn,

• σ0(Zn) ⊂ Yn+1.

Thus we see that SD(Yn) ⊂ Yn−k+2, which gives the result.

Definition B.2.3. Given D ∈ g, the cyclic contraction by D is the operator

ID = ιD + SD.

Lemma B.2.4. If D ∈ C1 ⊂ g satisfies [m(2), D] = 0, then

[LD, IE] = (−1)|D|I[D,E]

for E ∈ g.

Proof. We claim that the following identities hold

(i) [LD, σ0] = 0.

(ii) [LD, τ ] = 0.

(iii) [LD, Ej] = [D,E]j, for E ∈ g

The identities

[LD, σ] = 0, [LD, τ ] = 0

are easy to see directly. For E ∈ C l,

LDEj =
n−l+1∑
i=0

DiEj

=

j−1∑
i=0

DiEj +DjEj +
n−l+1∑
i=j+1

DiEj

=

j−1∑
i=0

(−1)|D||E|EjDi + (D ◦ E)j +
n−l+1∑
i=j+1

(−1)|D||E|EjDi+l−1

=

j−1∑
i=0

(−1)|D||E|EjDi + [D,E]j + (−1)|D||E|(E ◦D)j
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+
n∑

i=j+l

(−1)|D||E|EjDi

= [D,E]j +
n∑
i=0

(−1)|D||E|EjDi

= [D,E]j + (−1)|D||E|EjLD.

So we have

[LD, ιE] = [LD,m
(2)
0 E1]

= [LD,m
(2)]E1 + (−1)|D|m

(2)
0 [LD, E1]

= (−1)|D|m
(2)
0 [D,E]1

= (−1)|D|ι[D,E]

and

[LD, SE] =
n−l+1∑
i=1

n−l+1−i∑
j=0

[LD, σ0τ
jEi]

=
n−l+1∑
i=1

n−l+1−i∑
j=0

(
[LD, σ0]τ jEi + (−1)|D|σ0[LD, τ

j]Ei

+ (−1)|D|σ0τ
j[LD, Ei]

)

= (−1)|D|
n−l+1∑
i=1

n−l+1−i∑
j=0

σ0τ
j[D,E]i

= (−1)|D|S[D,E].

Thus,

[LD, IE] = (−1)|D|I[D,E].

Proposition B.2.5. 1. For any D ∈ g, [b, ιD] = −ιδD.

2. For any D ∈ g, [B, ιD] + [b, SD] = LD − SδD.
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Proof. By the proof of the previous lemma, we have

[Lm(1) , ιD] = −ι[m(1),D].

Next, we compute

ιDLm(2) =
n−1∑
i=0

m
(2)
0 D1m

(2)
i +m

(2)
0 D1m

(2)
0 τ

= m
(2)
0 D1m

(2)
0 +

k∑
i=1

m
(2)
0 D1m

(2)
i +

n−1∑
i=k+1

m
(2)
0 D1m

(2)
i

+m
(2)
0 D1m

(2)
0 τ

= −(−1)|D|m
(2)
0 m

(2)
1 D2 +m

(2)
0 (D ◦m(2))1 + (−1)|D|

n−1∑
i=k+1

m
(2)
0 m

(2)
i−k+1D1

− (−1)|D|m
(2)
0 m

(2)
1 D2τ

= −(−1)|D|m
(2)
0 [m(2), D]1 + (−1)|D|m

(2)
0 m

(2)
1 D1 + (−1)|D|

n−k∑
i=2

m
(2)
0 m

(2)
i D1

− (−1)|D|m
(2)
0 τm

(2)
0 D1

= −(−1)|D|ι[m(2),D] + (−1)|D|
n−k∑
i=1

m
(2)
0 m

(2)
i D1 − (−1)|D|m

(2)
0 τιD

= −(−1)|D|ι[m(2),D] − (−1)|D|
n−k−1∑
i=0

m
(2)
i m

(2)
0 D1 − (−1)|D|m

(2)
0 τιD

= −(−1)|D|ι[m(2),D] − (−1)|D|Lm(2)ιD.

So [Lm(k) , ιD] = −ι[m(k),D] for k = 1, 2. Thus,

[b, ιD] = [Lm, ιD] = −ι[m,D] = −ιδD

because m = m(1) +m(2).

For the next part, we have

[Lm(1) , SD] = −S[m(1),D]



169

from the previous lemma. So it suffices to show

[B, ιD] + [Lm(2) , SD] = LD − S[m(2),D].

We first calculate

(−1)|D|ιDB = (−1)|D|
n∑
i=0

m
(2)
0 D1σ0τ

i

=
n∑
i=0

m
(2)
0 σ0D0τ

i

=
n∑
i=0

D0τ
i

=
k−1∑
i=0

D0τ
i +

n∑
i=k

τ i−k+1Dn−i+1

=
k−1∑
i=0

D0τ
i +

n−k+1∑
i=1

τn−i−k+2Di

and so

[B, ιD] =
n−k∑
i=0

σ0τ
im

(2)
0 D1 +

k−1∑
i=0

D0τ
i +

n−k+1∑
i=1

τn−i−k+2Di.

Next, we shall calculate Lm(2)SD. First, we have that

m
(2)
0 SD =

n−k+1∑
j=1

n−k+1−j∑
i=0

m
(2)
0 σ0τ

iDj =
n−k+1∑
j=1

n−k+1−j∑
i=0

τ iDj

and

m
(2)
0 τSD =

n−k+1∑
j=1

n−k+1−j∑
i=0

m
(2)
0 τσ0τ

iDj

=
n−k+1∑
j=1

n−k+1−j∑
i=0

m
(2)
0 σ1τ

i+1Dj

= −
n−k+1∑
j=1

n−k+2−j∑
i=1

τ iDj
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so that

m
(2)
0 SD +m(2)τSD =

n−k+1∑
j=1

Dj −
n−k+1∑
j=1

τn−k+2−jDj.

Now

n−k+1∑
l=1

m
(2)
l SD

=
n−k+1∑
l=1

n−k+1∑
j=1

n−k+1−j∑
i=0

m
(2)
l σ0τ

iDj

= −
n−k∑
l=0

n−k+1∑
j=1

n−k+1−j∑
i=0

σ0m
(2)
l τ iDj

= −
n−k−1∑
j=1

n−k+1−j∑
i=2

i−2∑
l=0

σ0m
(2)
l τ iDj −

n−k∑
j=1

n−k+1−j∑
i=1

σ0m
(2)
i−1τ

iDj

−
n−k+1∑
j=1

n−k+1−j∑
i=0

n−k∑
l=i

σ0m
(2)
l τ iDj

= −
n−k−1∑
j=1

n−k+1−j∑
i=2

i−2∑
l=0

σ0τ
i−1m

(2)
n−k+2+l−iDj −

n−k∑
j=1

n−k+1−j∑
i=1

σ0τ
i−1m

(2)
0 τDj

−
n−k+1∑
j=1

n−k+1−j∑
i=0

n−k∑
l=i

σ0τ
im

(2)
l−iDj

= −
n−k−1∑
j=1

n−k−j∑
i=1

n−k∑
l=n−i−k+1

σ0τ
im

(2)
l Dj −

n−k∑
j=1

n−k−j∑
i=0

σ0τ
im

(2)
0 τDj

−
n−k+1∑
j=1

n−k+1−j∑
i=0

n−i−k∑
l=0

σ0τ
im

(2)
l Dj.

Thus

[B, ιD] + Lm(2)SD − LD = −
n−k−1∑
j=1

n−k−j∑
i=1

n−k∑
l=n−i−k+1

σ0τ
im

(2)
l Dj

−
n−k+1∑
j=2

n−k+1−j∑
i=0

n−i−k∑
l=0

σ0τ
im

(2)
l Dj
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−
n−k−1∑
i=0

n−i−k∑
l=1

σ0τ
im

(2)
l D1

−
n−k∑
j=1

n−k−j∑
i=0

σ0τ
im

(2)
0 τDj

= −(F +G+H + J).

Notice that in the triple sum for F , we always have l > j, and so

F =
n−k−1∑
j=1

n−k−j∑
i=1

n−k∑
l=n−i−k+1

σ0τ
im

(2)
l Dj

= (−1)|D|
n−k−1∑
j=1

n−k−j∑
i=1

n−k∑
l=n−i−k+1

στ iDjm
(2)
l+k−1

= (−1)|D|
n−k−1∑
j=1

n−k−j∑
i=1

n−1∑
l=n−i

σ0τ
iDjm

(2)
l .

Also,

G =
n−k+1∑
j=2

n−k+1−j∑
i=0

(
j−2∑
l=0

σ0τ
im

(2)
l Dj +

n−i−k∑
l=j+1

σ0τ
im

(2)
l Dj

+ σ0τ
im

(2)
j−1Dj + σ0τ

im
(2)
j Dj

)

=
n−k+1∑
j=2

n−k+1−j∑
i=0

j−2∑
l=0

(−1)|D|σ0τ
iDj−1m

(2)
l

+
n−k+1∑
j=2

n−k−1−j∑
i=0

n−i−k∑
l=j+1

(−1)|D|σ0τ
iDjm

(2)
l+k−1 +

n−k∑
j=1

n−k−j∑
i=0

σ0τ
im

(2)
j Dj+1

+
n−k∑
j=2

n−k−j∑
i=0

σ0τ
im

(2)
j Dj

= (−1)|D|
n−k∑
j=1

n−k−j∑
i=0

j−1∑
l=0

σ0τ
iDjm

(2)
l + (−1)|D|

n−k−1∑
j=2

n−k−1−j∑
i=0

n−i−1∑
l=j+k

σ0τ
iDjm

(2)
l

+
n−k∑
j=1

n−k−j∑
i=0

σ0τ
i(m(2) ◦D)j −

n−k−1∑
i=0

σ0τ
im

(2)
1 D1.
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Next,

H =
n−k−1∑
i=0

σ0τ
im

(2)
1 D1 +

n−k−2∑
i=0

n−i−k∑
l=2

σ0τ
im

(2)
l D1

=
n−k−1∑
i=0

σ0τ
im

(2)
1 D1 + (−1)|D|

n−k−2∑
i=0

n−i−k∑
l=2

σ0τ
iD1m

(2)
l+k−1

=
n−k−1∑
i=0

σ0τ
im

(2)
1 D1 + (−1)|D|

n−k−2∑
i=0

n−i−1∑
l=k+1

σ0τ
iD1m

(2)
l ,

so that

G+H = (−1)|D|
n−k∑
j=1

n−k−j∑
i=0

j−1∑
l=0

σ0τ
iDjm

(2)
l

+ (−1)|D|
n−k−1∑
j=1

n−k−1−j∑
i=0

n−i−1∑
l=j+k

σ0τ
iDjm

(2)
l +

n−k∑
j=1

n−k−j∑
i=0

σ0τ
i(m(2) ◦D)j

= (−1)|D|
n−k∑
j=1

n−k−j∑
i=0

j−1∑
l=0

σ0τ
iDjm

(2)
l

+ (−1)|D|
n−k−1∑
j=1

n−k−1−j∑
i=0

n−i−1∑
l=j+k

σ0τ
iDjm

(2)
l +

n−k∑
j=1

n−k−j∑
i=0

σ0τ
i[m(2), D]j

+ (−1)|D|
n−k∑
j=1

n−k−j∑
i=0

j+k−1∑
l=j

σ0τ
iDjm

(2)
l

= (−1)|D|
n−k∑
j=1

n−k−j∑
i=0

n−i−1∑
l=0

σ0τ
iDjm

(2)
l + S[m(2),D].

and

F +G+H = (−1)|D|
n−k∑
j=1

n−k−j∑
i=0

n−1∑
l=0

σ0τ
iDjm

(2)
l + S[m(2),D]

= (−1)|D|
n−1∑
l=0

SDm
(2)
l + S[m(2),D].
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Also,

J =
n−k∑
j=1

n−k−j∑
i=0

σ0τ
im

(2)
0 τDj

=
n−k∑
j=1

n−k−j∑
i=0

σ0τ
im

(2)
0 Dj+1τ

= (−1)|D|
n−k∑
j=1

n−k−j∑
i=0

σ0τ
iDjm

(2)
0 τ

= (−1)|D|SDm0τ.

Putting it together gives

[B, ιD] + Lm(2)SD − LD = −(F +G+H + J)

= −(−1)|D|SDLm(2) − S[m(2),D],

which finishes the proof.

Theorem B.2.6. (Cartan homotopy formula) For any D ∈ g,

[b+B, ID] = LD − IδD.

Proof. We compute

[b+B, ID] = [b, ιD] + [B, ιD] + [b, SD] + [B, SD]

= −ιδD + LD − SδD
= LD − IδD,

using the fact that BSD = SDB = 0 on X•.

B.3 Some higher operations

Here, we specialize to the ∞-cyclic g-module associated to an ungraded unital

associative algebra A, viewed as an A∞-algebra concentrated in degree zero, to

prove the formulas asserted in section 2.5.2. Here m ∈ C2 is the multiplication
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map. We shall work with cochains D,E ∈ C1 satisfying

[m,D] = 0, [m,E] = 0.

In other words, D and E are derivations on A. Since the grading of A is trivial,

we have |D| = |E| = 0. So we have

DiEj = EjDi, i 6= j.

The cup product D ^ E ∈ C2 satisfies |D ^ E| = 1 and

(D ^ E)i = −miDiEi+1.

Define the operators

I{D,E} : Xn → Xn+1, L{D,E} : Xn → Xn

by

I{D,E} =
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

σ0τ
rDiEj, L{D,E} =

n−1∑
i=1

n∑
j=i+1

DiEj +
n∑
i=1

E0Di.

Theorem B.3.1. In the above situation,

[b+B, I{D,E}] = L{D,E}+ ID^E − IEID

Proof. First note that we trivially have

BI{X, Y } = I{X, Y }B = SY SX = 0

because we are working on the normalized complex X. It is straightforward to

verify that

ιD^E = ιEιD.
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Therefore, it suffices to prove

[b, I{D,E}] = L{D,E}+ SD^E − ιESD − SEιD.

To show this, we first see

m0I{D,E} =
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

m0σ0τ
rDiEj

=
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

τ rDiEj

and

m0τI{D,E} =
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

m0τσ0τ
rDiEj

= −
n−1∑
i=1

n∑
j=i+1

n−j+1∑
r=1

τ rDiEj

since m0τσ0 = −τ. Combining these,

(m0 +m0τ)I{D,E} =
n−1∑
i=1

n∑
j=i+1

(
DiEj − τn−j+1DiEj

)

= L{D,E} −
n∑
i=1

E0Di −
n−1∑
i=1

n∑
j=i+1

τn−j+1DiEj.

Next, notice that

ιESD =
n∑
i=1

n−i∑
j=0

m0E1σ0τ
jDi

=
n∑
i=1

n−i∑
j=0

m0σ0E0τ
jDi

=
n∑
i=1

n−i∑
j=0

E0τ
jDi
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=
n∑
i=1

E0Di +
n−1∑
i=1

n−i∑
j=1

τEnτ
j−1Di

=
n∑
i=1

E0Di +
n−1∑
i=1

n−i∑
j=1

τ jEn−j+1Di

=
n∑
i=1

E0Di +
n−1∑
i=1

n∑
j=i+1

τn−j+1EjDi

and consequently

(m0 +m0τ)I{D,E}+ ιESD = L{D,E}

because j > i implies DiEj = EjDi. Now

n∑
l=1

∂lI{D,E} =
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

n∑
l=1

mlσ0τ
rDiEj

= −
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

n−1∑
l=0

σ0mlτ
rDiEj

= −
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

(
r−2∑
l=0

σ0mlτ
rDiEj + σ0mr−1τ

rDiEj

+
n−1∑
l=r

σ0mlτ
rDiEj

)

= −
n−3∑
i=1

n−2∑
j=i+1

n−j∑
r=2

r−2∑
l=0

σ0τ
r−1mn+1+l−rDiEj

−
n−2∑
i=1

n−1∑
j=i+1

n−j∑
r=1

σ0τ
r−1m0τDiEj

−
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

n−1∑
l=r

σ0τ
rml−rDiEj

= −
n−3∑
i=1

n−2∑
j=i+1

n−j−1∑
r=1

n−1∑
l=n−r

σ0τ
rmlDiEj

−
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rm0τDiEj
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−
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

n−r−1∑
l=0

σ0τ
rmlDiEj

= −J −K − L.

Notice that in summation J , we always have l > j > i, and so

J =
n−3∑
i=1

n−2∑
j=i+1

n−j−1∑
r=1

n−1∑
l=n−r

σ0τ
rXiYjml.

Now,

K =
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rm0τDiEj

=
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rm0Di+1Ej+1τ

=
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rDiEjm0τ,

so

J +K =
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rDiEj

(
n−1∑
l=n−r

ml +m0τ

)
.

Next, we decompose L depending on how l compares to j:

L =
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

n−r−1∑
l=0

σ0τ
rmlEjDi

=
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

j−2∑
l=0

σ0τ
rmlEjDi

+
n−1∑
i=1

n∑
j=i+1

n−j∑
r=0

σ0τ
rmj−1EjDi +

n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rmjEjDi

+
n−3∑
i=1

n−2∑
j=i+1

n−j−2∑
r=0

n−r−1∑
l=j+1

σ0τ
rmlEjDi
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=
n−1∑
i=1

n−1∑
j=i

n−j−1∑
r=0

j−1∑
l=0

σ0τ
rEjmlDi

+
n−1∑
i=1

n−1∑
j=i

n−j−1∑
r=0

σ0τ
rmjEj+1Di +

n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rmjEjDi

+
n−3∑
i=1

n−2∑
j=i+1

n−j−2∑
r=0

n−r−1∑
l=j+1

σ0τ
rEjmlDi

= P +Q+R + T.

In the summation for T , we always have l > i, and so

T =
n−3∑
i=1

n−2∑
j=i+1

n−j−2∑
r=0

n−r−1∑
l=j+1

σ0τ
mDiEjml.

Notice that

Q =
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rmjEj+1Di +

n−1∑
i=1

n−i−1∑
r=0

σ0τ
rmiEi+1Di

=
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rmjEj+1Di − SD^E.

and so

Q+R =
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rmj(Ej + Ej+1)Di − SD^E

=
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rEjmjDi − SD^E

=
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rDiEjmj − SD^E

using the fact that [m,E] = 0 and that j > i. Combining these together gives

Q+R + T =
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

n−r−1∑
l=j

σ0τ
rDiEjml − SD^E
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and further

J +K +Q+R + T =
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rDiEj

(
n−1∑
l=j

ml +m0τ

)
− SD^E

= I{D,E}b− SD^E −
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

j−1∑
l=0

σ0τ
rDiEjml.

So to finish the proof, it suffices to show that

P = SEιD +
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

j−1∑
l=0

σ0τ
rDiEjml.

To show this, we decompose P depending on how l compares to i:

P =
n−1∑
i=1

n−1∑
j=i

n−j−1∑
r=0

j−1∑
l=0

σ0τ
rEjmlDi

=
n−1∑
i=2

n−1∑
j=i

n−j−1∑
r=0

i−2∑
l=0

σ0τ
rEjmlDi

+
n−1∑
i=1

n−1∑
j=i

n−j−1∑
r=0

σ0τ
rEjmi−1Di +

n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rEjmiDi

+
n−3∑
i=1

n−1∑
j=i+2

n−j−1∑
r=0

j−1∑
l=i+1

σ0τ
rEjmlDi

=
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

i−1∑
l=0

σ0τ
rDiEjml

+
n−2∑
i=0

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rEjmiDi+1 +

n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rEjmiDi

+
n−3∑
i=1

n−1∑
j=i+2

n−j−1∑
r=0

j−1∑
l=i+1

σ0τ
rDiEjml

= P1 + P2 + P3 + P4.
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We have

P2 + P3 =
n−1∑
j=1

n−j−1∑
r=0

σ0τ
rEjm0D1 +

n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rEjmi(Di +Di+1)

= SEιD +
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

σ0τ
rEjDimi,

using the fact that [m,D] = 0. Thus,

P = P1 + P2 + P3 + P4 = SEιD +
n−2∑
i=1

n−1∑
j=i+1

n−j−1∑
r=0

j−1∑
l=0

σ0τ
rDiEjml

as desired.

Corollary B.3.2. For D,E as above,

[b+B,L{D,E}] = −LD^E + LEID − IELD

Proof. We apply the commutator with b+B to Theorem B.3.1 to see

0 = [b+B, [b+B, I{D,E}]]

= [b+B,L{D,E}] + [b+B, ID^E]− [b+B, IEID]

= [b+B,L{D,E}] + LD^E − [b+B, IE]ID + IE[b+B, ID]

= [b+B,L{D,E}] + LD^E − LEID + IELD,

which gives the result.

B.4 Commuting connections

The purpose of this section is to prove the assertion of Lemma 4.1.7 that the two

connections

∇GM = L∇ −
N∑
i=1

LXi^Yi , ∇̃ = L∇ +
N∑
i=1

L{Xi, Yi}

commute on the invariant complex Cg
•(A).
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The notation from Chapter 4 conflicts with the notation of this appendix. The

family of derivations {X1, . . . , XN , Y1, . . . , YN} shall be written with superscripts

as {X1, . . . , XN , Y 1, . . . , Y N}, whereas a subscript shall refer to the operator on

the ∞-cyclic module, as in the notation of section B.1. For example,

L{X i, Y i} =
n−1∑
j=0

n∑
k=i+1

X i
jY

i
k

on Cg
n(A), using Proposition 4.1.4.

Now, because ∇ commutes with the X i and Y i,

[L∇, L{X i, Y i}] = 0.

Consequently,

[∇̃,∇GM ] = −[L∇,
N∑
i=1

IXi^Y i ]− [
N∑
i=1

L{X i, Y i},
N∑
i=1

IXi^Y i ],

therefore it suffices to show

[L∇,
N∑
i=1

ιXi^Y i ] + [
N∑
i=1

L{X i, Y i},
N∑
i=1

ιXi^Y i ] = 0

and

[L∇,
N∑
i=1

SXi^Y i ] + [
N∑
i=1

L{X i, Y i},
N∑
i=1

SXi^Y i ] = 0.

Now [L∇, ·] and [
∑N

i=1 L{X i, Y i}, ·] are both derivations on the algebra of endor-

morphisms of Cg
•(A). Since

ιXi^Y i = −m0m1X
i
1Y

i
2 , SXi^Y i = −

n−1∑
j=1

n−j−1∑
k=0

−σ0τ
kmjX

i
jY

i
j+1,

we consider these derivations applied to the elementary operators σ0, τ,mj, X
i
j, Y

i
j .
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As in the proof of Lemma B.2.4, we have

[L∇,mj] = [∇,m]j = −(δ∇)j = −
N∑
i=1

(X i ^ Y i)j,

and

[L∇, τ ] = 0, [L∇, σ0] = 0.

Since ∇ commutes with X i and Y i, we also have that for any j, k,

[L∇, X
j
k] = 0, [L∇, Y

j
k ] = 0.

We shall establish the identities

[
N∑
i=1

L{X i, Y i},mj] =
N∑
i=1

(X i ^ Y i)j

[
N∑
i=1

L{X i, Y i}, τ ] = [
N∑
i=1

L{X i, Y i}, σ0] = 0,

[
N∑
i=1

L{X i, Y i}, Xj
k] = [

N∑
i=1

L{X i, Y i}, Y j
k ] = 0.

From these relations, the desired result follows because the derivations [L∇, ·] and

[
∑N

i=1 L{X i, Y i}, ·] are negatives of each other on a subalgebra of End(Cg
•(A))

containing
∑N

i=1 IXi^Y i .

The identities [
∑N

i=1 L{X i, Y i}, Xj
k] = [

∑N
i=1 L{X i, Y i}, Y j

k ] = 0 follow at once

from the fact that theX i and Y i generate an abelian Lie algebra. SinceX i
0σ0 = 0, it

follows that [
∑N

i=1 L{X i, Y i}, σ0] = 0. We shall now show [
∑N

i=1 L{X i, Y i}, τ ] = 0,

which is an identity that only holds on the invariant complex Cg
•(A). We calculate

τL{X i, Y i} =
n−1∑
j=0

n∑
k=j+1

τX i
jY

i
k

=
n∑
j=1

n∑
k=j

X i
jτY

i
k
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=
n∑
j=1

(
n−1∑
k=j

X i
jτY

i
k +X i

jτY
i
n

)

=
n−1∑
j=1

n∑
k=j+1

X i
jY

i
k τ +

n∑
j=1

X i
jY

i
0 τ

= L{X i, Y i}τ −
n∑
k=1

X i
0Y

i
k τ +

n∑
j=1

X i
jY

i
0 τ

= L{X i, Y i}τ +X i
0Y

i
0 −X i

0Y
i

0

= L{X i, Y i}τ,

where the second to last equality holds because be are working on the g-invariant

complex, and LXi = LY i = 0.

Lastly, we calculate

mlL{X i, Y i}+ (X i ^ Y i)l

=
n−1∑
j=0

n∑
k=j+1

mlX
i
jY

i
k −mlX

i
lY

i
l+1

=
l−1∑
j=0

n∑
k=j+1

mlX
i
jY

i
k +

n∑
k=l+1

mlX
i
lY

i
k +

n∑
k=l+2

mlX
i
l+1Y

i
k

+
n−1∑
j=l+2

n∑
k=j+1

mlX
i
jY

i
k −mlX

i
lY

i
l+1

=
l−1∑
j=0

n∑
k=j+1

mlX
i
jY

i
k +

n∑
k=l+2

ml(X
i
l +X i

l+1)Y i
k +

n−1∑
j=l+2

n∑
k=j+1

mlX
i
jY

i
k

=
l−1∑
j=0

n∑
k=j+1

X i
jmlY

i
k +

n∑
k=l+2

X i
lmlY

i
k +

n−2∑
j=l+1

n∑
k=j+2

X i
jmlY

i
k

=
l−1∑
j=0

(
l−1∑

k=j+1

X i
jmlY

i
k +X i

jml(Y
i
l + Y i

l+1) +
n∑

k=l+2

X i
jmlY

i
k

)

+
n−2∑
j=l

n∑
k=j+2

X i
jmlY

i
k

=
l−1∑
j=0

(
l−1∑

k=j+1

X i
jY

i
kml +X i

jY
i
l ml +

n−1∑
k=l+1

X i
jY

i
kml

)
+

n−2∑
j=l

n−1∑
k=j+1

X i
jY

i
kml
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=
n−2∑
j=0

n−1∑
k=j+1

X i
jY

i
kml

= L{X i, Y i}ml,

where we have used the fact that [m,X i] = [m,Y i] = 0. This completes the proof

that

[∇̃,∇GM ] = 0.
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