
The Pennsylvania State University

The Graduate School

College of Engineering

ON THE DEVELOPMENT OF MODERN IONOSPHERIC

SENSORS USING SOFTWARE-DEFINED RADIO TECHNIQUES

A Thesis in

Electrical Engineering

by

Alexander L. Hackett

© 2013 Alexander L. Hackett

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Master of Science

August 2013



The thesis of Alexander L. Hackett was reviewed and approved* by the following:

Julio V. Urbina
Associate Professor of Electrical Engineering
Thesis Advisor

John D. Mathews
Professor of Electrical Engineering

Sven G. Bilén
Associate Professor of Engineering Design,
Electrical Engineering, and Aerospace Engineering

Kultegin Aydin
Professor of Electrical Engineering
Head of the Department of Electrical Engineering

*Signatures are on file in the Graduate School.

ii



Abstract

As the field of electronics continues its trend to becoming faster, smaller, and lower-powered,

opportunities continue to open up for digital systems, that rival, if not exceed, traditional

analog systems in performance, reliability, and affordability. Software-defined radio systems

add reconfigurability and flexibility into the mix, making use of high-speed analog-to-digital

converters, digital-to-analog converters, programmable logic devices, and advanced digital

signal processing techniques to extend the capabilities of radio transmitters and receivers.

Three remote sensor systems designed to study several upper atmospheric properties were

developed at The Pennsylvania State University, taking advantage of the benefits software-

defined systems have to offer through the use of the Universal Software Radio Peripheral

(USRP) platform. The design, implementation, and operation of each of these sensors are

presented, with preliminary results to validate their use and to encourage further develop-

ment of software-defined radio techniques in the field of ionospheric science.

iii



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of Code Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Chapter 1: Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Project Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2: Background 5

2.1 Ionospheric Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Ionospheric Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1.1 Sporadic-E . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1.2 Spread-F . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Meteors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Upper Atmospheric Neutral Winds . . . . . . . . . . . . . . . . . . . 9
2.1.4 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4.1 Coherent Scatter Radar . . . . . . . . . . . . . . . . . . . . 9
2.1.4.2 Ionosonde . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Software-Defined Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Universal Software Radio Peripheral . . . . . . . . . . . . . . . . . . 14

2.2.1.1 Tuning Frequency Errors . . . . . . . . . . . . . . . . . . . . 16
2.2.1.2 Dynamic Range and Noise Figure . . . . . . . . . . . . . . . 18

2.2.2 GNU Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Previous and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 SKiYMET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Cobra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 GCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Open Radar Initiative . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3: System Designs 22

3.1 PSU Ionospheric Sounder for Chirp Observations . . . . . . . . . . . . . . . 23
3.1.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



3.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2.1.1 Active Antennas . . . . . . . . . . . . . . . . . . . 26
3.1.2.1.2 USRP . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2.1.3 Direct Digital Synthesizer . . . . . . . . . . . . . . 29
3.1.2.1.4 General-Purpose Computer . . . . . . . . . . . . . 30

3.1.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2.2.1 Frequency Sweeping . . . . . . . . . . . . . . . . . 30
3.1.2.2.2 Data Capture . . . . . . . . . . . . . . . . . . . . . 35
3.1.2.2.3 Data Storage . . . . . . . . . . . . . . . . . . . . . 36
3.1.2.2.4 Data Processing . . . . . . . . . . . . . . . . . . . 38
3.1.2.2.5 Scheduling Software . . . . . . . . . . . . . . . . . 41
3.1.2.2.6 Scripting . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2.2.7 Remote Access . . . . . . . . . . . . . . . . . . . . 44

3.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 PSU All-sky Radar Interferometry System . . . . . . . . . . . . . . . . . . . 47

3.2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2.1.1 Antennas . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2.1.2 Radar Controller . . . . . . . . . . . . . . . . . . . 52
3.2.2.1.3 Receive RF Front End . . . . . . . . . . . . . . . . 53
3.2.2.1.4 USRP . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.2.1.5 Transmit RF Front End . . . . . . . . . . . . . . . 57
3.2.2.1.6 General-Purpose Computer . . . . . . . . . . . . . 58
3.2.2.1.7 Direct Digital Synthesizer . . . . . . . . . . . . . . 58
3.2.2.1.8 Transmitter . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.2.2.1 Radar Controller . . . . . . . . . . . . . . . . . . . 62
3.2.2.2.2 USRP FPGA . . . . . . . . . . . . . . . . . . . . . 64
3.2.2.2.3 Host Computer . . . . . . . . . . . . . . . . . . . . 67

3.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3 Cognitive Interferometry Radar Imager . . . . . . . . . . . . . . . . . . . . . 79

3.3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.2.1.1 Antennas . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.2.1.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . 83
3.3.2.1.3 Transmit RF Front End . . . . . . . . . . . . . . . 87
3.3.2.1.4 Receive RF Front End . . . . . . . . . . . . . . . . 88
3.3.2.1.5 USRP . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3.2.1.6 Radar Controller . . . . . . . . . . . . . . . . . . . 90

v



3.3.2.1.7 Direct Digital Synthesizer . . . . . . . . . . . . . . 91
3.3.2.1.8 General-Purpose Computer . . . . . . . . . . . . . 92

3.3.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3.2.2.1 Radar Controller . . . . . . . . . . . . . . . . . . . 93
3.3.2.2.2 Transmitter Interface . . . . . . . . . . . . . . . . . 93
3.3.2.2.3 Sauron . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.3.2.2.4 IRIS . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 4: Preliminary Results 99

4.1 PSU Ionospheric Sounder for Chirp Observations . . . . . . . . . . . . . . . 99
4.1.1 Positive Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1.1.1 Hop Reflections . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.1.2 Multiple F-region Layers . . . . . . . . . . . . . . . . . . . . 101
4.1.1.3 Spread-F Layer . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.1.4 O+X Mode Split . . . . . . . . . . . . . . . . . . . . . . . . 105
4.1.1.5 Sporadic-E Layer . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.2 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.1.2.1 Coding Sidelobes . . . . . . . . . . . . . . . . . . . . . . . . 107
4.1.2.2 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.1.2.3 Transmitter Timing Errors . . . . . . . . . . . . . . . . . . 109
4.1.2.4 Groundwave Slope Error . . . . . . . . . . . . . . . . . . . . 109
4.1.2.5 Groundwave Offset Error . . . . . . . . . . . . . . . . . . . 111
4.1.2.6 Error Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 PSU All-sky Radar Interferometry System . . . . . . . . . . . . . . . . . . . 115
4.2.1 Airplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2.2 Specular Meteors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.3 Non-specular Meteors . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.4 Meteor Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Cognitive Interferometry Radar Imager . . . . . . . . . . . . . . . . . . . . . 120
4.3.1 Specular Meteors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.2 Non-specular Meteors . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.3.3 Power Sweep Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 5: Conclusions 128

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.1 PSU Ionospheric Sounder for Chirp Observations . . . . . . . . . . . 130
5.2.1.1 More Robust Groundwave Detection . . . . . . . . . . . . . 130
5.2.1.2 Fixed-Frequency Meteor Radar Mode . . . . . . . . . . . . . 131
5.2.1.3 Ionosonde Transmitter . . . . . . . . . . . . . . . . . . . . . 131

5.2.2 PSU All-sky Radar Interferometry System . . . . . . . . . . . . . . . 132
5.2.2.1 Five-channel Receive RF Front End . . . . . . . . . . . . . . 132

vi



5.2.2.2 Operating Frequency Change . . . . . . . . . . . . . . . . . 132
5.2.2.3 Automated Meteor Detection . . . . . . . . . . . . . . . . . 133
5.2.2.4 Synchronization and Cooperation with CIRI@PSU . . . . . 134

5.2.3 Cognitive Interferometry Radar Imager . . . . . . . . . . . . . . . . . 134
5.2.3.1 Antenna Array Beam Pattern . . . . . . . . . . . . . . . . . 135
5.2.3.2 Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.3.3 Cognitive Functionality . . . . . . . . . . . . . . . . . . . . 136

5.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

References 138

Appendix A: Selected Code Listings 142

A.1 PISCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.2 PARIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.3 CIRI@PSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.4 General-purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Appendix B: Preliminary Procedures 199

B.1 Remote Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
B.2 PISCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

B.2.1 Important Directories and Files . . . . . . . . . . . . . . . . . . . . . 201
B.2.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
B.2.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B.3 PARIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
B.3.1 Important Directories and Files . . . . . . . . . . . . . . . . . . . . . 205
B.3.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
B.3.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

B.4 CIRI@PSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
B.4.1 Important Directories and Files . . . . . . . . . . . . . . . . . . . . . 211
B.4.2 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
B.4.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

vii



List of Figures

2.1 A generic representation of the different regions of the ionosphere. . . . . . . 6
2.2 Basic operation of a pulsed radar system. . . . . . . . . . . . . . . . . . . . . 10
2.3 Phase-coded pulse compression using the Barker-5 code. . . . . . . . . . . . 12
2.4 “Carpenter’s ruler” diagram illustrating signal aliasing used for digital down-

conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 The Ettus Research USRP1 device, fitted with a BasicRX daughterboard (left

side) and an RFX-400 daughterboard (right side). . . . . . . . . . . . . . . . 15

3.1 Overview of the PSU Ionospheric Sounder for Chirp Observations system used
with the Canadian Advanced Digital Ionosonde. . . . . . . . . . . . . . . . . 24

3.2 PISCO hardware diagram (power connections omitted). . . . . . . . . . . . . 26
3.3 Setup of the ARAH2-1P antennas for the PISCO system (not to scale). . . . 27
3.4 The ARAH2-1P antennas set up at Arecibo Observatory for PISCO, shown

from (a) far away and (b) below. . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Simplified architecture of PISCO FPGA design. . . . . . . . . . . . . . . . . 31
3.6 Simplified flow diagram for PISCO FPGA frequency retuning. . . . . . . . . 33
3.7 Screenshot of HDFView showing tabular and image data from the PISCO

receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8 Flow diagram of the high-precision scheduler developed for PISCO. . . . . . 42
3.9 Scheduling of CADI and PISCO software. . . . . . . . . . . . . . . . . . . . 43
3.10 Overview of the PSU All-sky Radar Interferometry System. . . . . . . . . . . 48
3.11 PARIS systems diagram (low-voltage DC and AC power connections omitted). 50
3.12 Top view of receive antenna array layout for PARIS, adapted from [36] (not

to scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.13 Hardware configuration of one receive antenna for PARIS. . . . . . . . . . . 51
3.14 Radar controller output signals timing used by PARIS. . . . . . . . . . . . . 53
3.15 One channel of the PARIS receive RF front end. . . . . . . . . . . . . . . . . 54
3.16 Grounding jumper positions on the BasicRX daughterboard for the master

(left) and slave (right) USRP configurations used by PARIS. . . . . . . . . . 56
3.17 PARIS transmit RF front end. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.18 Front view of the Tycho Technologies WPT-50 Pulse Transmitter. . . . . . . 60
3.19 Typical operational workflow with the Bit Pattern Generator software. . . . 63
3.20 Toplevel schematic view of the usrp trigger FPGA design used by PARIS/Gnu-

Radar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



3.21 Schematic view of the synchronizemodule used for triggering the usrp trigger

FPGA design in GnuRadar. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.22 Schematic view of the data tag module in GnuRadar. . . . . . . . . . . . . 67
3.23 Typical operational workflow with GnuRadar. . . . . . . . . . . . . . . . . . 68
3.24 Screenshot of the gradar-configure utility. . . . . . . . . . . . . . . . . . . 69
3.25 Class diagram of gradar-run-server backend [42]. . . . . . . . . . . . . . . 71
3.26 GnuRadarDevice constructor before (left) and after (right) multi-device mod-

ifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.27 GnuRadarDevice::RequestData() before (left) and after (right) multi-device

modifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.28 Screenshot of the gradar-run program. . . . . . . . . . . . . . . . . . . . . . 73
3.29 Screenshot of the gradar-plot program. . . . . . . . . . . . . . . . . . . . . 74
3.30 Example data plot from rti big.py showing reflections from several spec-

ular meteors (reflections above 100 km) and an airplane (curved reflection
appearing between 60 and 70 km). . . . . . . . . . . . . . . . . . . . . . . . 75

3.31 General flow diagram of the RTI processing plotter for HDF5 data taken with
GnuRadar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.32 Overview of the Cognitive Interferomtry Radar Imager. . . . . . . . . . . . . 80
3.33 CIRI systems diagram (low-voltage DC and AC power connections omitted). 82
3.34 COCO antenna arrays layout diagram used by CIRI (not to scale). . . . . . 83
3.35 East half of the East COCO array used by CIRI, viewed from the northwest. 84
3.36 Block diagram of the Genesis Pulse Transmitter System. . . . . . . . . . . . 85
3.37 Front view of the Genesis PTS. . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.38 Block diagram of the CIRI transmit RF front end. . . . . . . . . . . . . . . . 88
3.39 Block diagram of the CIRI receive RF front end. . . . . . . . . . . . . . . . . 88
3.40 Radar controller output signals timing. . . . . . . . . . . . . . . . . . . . . . 91
3.41 Overview of the CIRI software. . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Ionogram power map generated by PISCO on 3 June 2013 at 5:15 AST, with
12+ “hop” reflections are visible. . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Ionogram power map generated by PISCO on 4 July 2013 at 8:30 AST, show-
ing reflections from multiple F-region layers, F1 and F2. . . . . . . . . . . . . 103

4.3 Ionogram power map generated by PISCO on 29 June 2013 at 4:45 AST,
showing reflections from a Spread-F layer. . . . . . . . . . . . . . . . . . . . 104

4.4 Ionogram power map generated by PISCO on 5 July 2013 at 7:45 AST, show-
ing the ordinary and extraordinary mode split. . . . . . . . . . . . . . . . . . 105

4.5 Ionogram power map generated by PISCO on 22 June 2013 at 7:00 AST,
illustrating a Sporadic-E layer. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 Ionogram power map generated by PISCO on 2 July 2013 at 8:15 AST, illus-
trating phase coding sidelobes. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Ionogram power map generated by PISCO on 17 June 2013 at 4:15 AST,
illustrating the effect of transmitter timing errors on the output plot. . . . . 110

ix



4.8 Ionogram power map generated by PISCO on 18 June 2013 at 7:45 AST,
illustrating the effect of groundwave slope calculation error on the output plot. 111

4.9 Ionogram power map generated by PISCO on 19 June 2013 at 13:45 AST,
illustrating the effect of groundwave offset calculation error on the output plot.112

4.10 RTI from data captured by PARIS between 5–6 May 2013, showing at least
six airplanes (bottom traces) and several meteor events (top right, point-like). 116

4.11 RTI from data captured by PARIS between 5–6 May 2013, showing at least
six specular meteor events (point-like) between 100 and 130 km. . . . . . . . 117

4.12 RTI from data captured by PARIS between 5–6 May 2013, showing a very
strong non-specular meteor event at around 5:12:20 and 130 km in range. . . 118

4.13 Histogram showing meteor flux detected by PARIS between 5 and 6 May 2013.119
4.14 RTI plot generated by CIRI on 6 June 2013, showing nine specular meteor

events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.15 RTI plot generated by CIRI on 6 June 2013, showing six specular meteor events.122
4.16 Close-up of meteor-head and nonspecular meteor detected by CIRI on 15 June

2013 at 12:56:05 EDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.17 RTI plot generated by CIRI on 6 June 2013, showing a meteor-head and

non-specular meteor at 3:42:08 EDT. . . . . . . . . . . . . . . . . . . . . . . 124
4.18 RTI plot generated by CIRI on 6 June 2013, showing a meteor-head and

non-specular meteor at 5:19:22 EDT. . . . . . . . . . . . . . . . . . . . . . . 125
4.19 RTI plot generated by CIRI on 6 June 2013, showing several specular meteor

trails, and a meteor-head and non-specular meteor at 9:05:56 EDT. . . . . . 126
4.20 Meteor fluxes observed by CIRI during a week-long power sweep experiment

from 4 to 8 am (EST) each day (as denoted above). . . . . . . . . . . . . . . 127

B.1 Analog sensor board of the Tycho transmitter used with PARIS. Heater/fila-
ment voltage potentiometer circled in red. . . . . . . . . . . . . . . . . . . . 210

x



List of Tables

3.1 Design requirements for the PISCO receiver system. . . . . . . . . . . . . . . 23
3.2 Basic Hardware Specifications of the PISCO Receiver GPC. . . . . . . . . . 30
3.3 Receive antenna components. . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Radar controller output signal descriptions, as used in PARIS. . . . . . . . . 52
3.5 Receive RF front-end components. . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Transmit RF front-end components. . . . . . . . . . . . . . . . . . . . . . . . 57
3.7 Basic hardware specifications of the PARIS receiver GPC. . . . . . . . . . . 58
3.8 DDS output signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.9 Transmit RF front-end components used by CIRI. . . . . . . . . . . . . . . . 88
3.10 Receive RF front-end components used by CIRI. . . . . . . . . . . . . . . . . 89
3.11 Radar controller output signal descriptions used by CIRI. . . . . . . . . . . . 91
3.12 DDS output signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.13 Basic hardware specifications of the CIRI receiver GPC. . . . . . . . . . . . 92
3.14 Most common GTS commands used for CIRI. . . . . . . . . . . . . . . . . . 95

4.1 Radar parameters of the PISCO/CADI ionosonde system. . . . . . . . . . . 100
4.2 Error counts by type for PISCO receiver data during the week of 21 June 2013

to 27 June 2013. Note, the host computer experienced a power disruption on
25 June and 27 June, resulting in a missed ionosonde sweep. . . . . . . . . . 114

4.3 Error percents by type for PISCO receiver data during the week of 21 June
2013 to 27 June 2013 (calculated from Table 4.2). Note, the averages sum to
>100% due to rounding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Radar parameters of PARIS used during the 5–6 May 2013 radar experiment. 115
4.5 Radar parameters of CIRI used from March 2013 through June 2013. . . . . 120

xi



List of Code Listings

3.1 Excerpt of frequency sweeping code added to usrp std.v. . . . . . . . . . . 34
3.2 ionorun script to coordinate PISCO receiver software. . . . . . . . . . . . . 45
3.3 Helpful ssh configuration entry for remote connection to the PISCO installa-

tion at Arecibo Observatory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.1 IonosondeRxRun.cpp – data capture program for PISCO. . . . . . . . . . . 142
A.2 IonosondeRxDevice.h – inherited ionosonde device for PISCO. . . . . . . . 145
A.3 Scheduler.h – high-precision scheduler for PISCO. . . . . . . . . . . . . . . 147
A.4 timer us.h – timer function used by high-precision scheduler for PISCO. . . 148
A.5 Makefile for building data capture program for PISCO. . . . . . . . . . . . 149
A.6 usrp std.v – FPGA design for PISCO. . . . . . . . . . . . . . . . . . . . . . 149
A.7 igram300.mif – memory initialization for frequency sweeping RAM on FPGA

for PISCO (1–20 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.8 main.py – Python data processing script for PISCO. . . . . . . . . . . . . . 160
A.9 hdf5 read.py – script for loading I/Q data from HDF5 data files for PISCO. 161
A.10 iono plotter multi.m for processing and plotting data for PISCO. . . . . . 163
A.11 hdf5 write.py for writing ionogram image back to HDF5 data file for PISCO.166
A.12 crontab for scheduling on PISCO. . . . . . . . . . . . . . . . . . . . . . . . 166
A.13 ionosched.cpp – program to use high-precision scheduler on CADI for use

with PISCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.14 Makefile for building high-precision scheduler for CADI. . . . . . . . . . . . 166
A.15 crontab for scheduling on CADI. . . . . . . . . . . . . . . . . . . . . . . . . 167
A.16 rti big.py – Python script for reading and plotting data from HDF5 files

taken with GnuRadar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.17 GnuRadarDevice.h – class for handling data transfer from multiple USRP1

devices with GnuRadar. Note, this multi-device mode is not fully functional! 173
A.18 GnuRadarSettings.h – class modified to support >4 channels (multiple de-

vices) with GnuRadar. Note, this multi-device mode is not fully functional! . 179
A.19 Start.hpp – command for beginning data collection with GnuRadar, modified

for multi-device operation. Note, this multi-device mode is not fully functional!180
A.20 Verify.hpp – command for beginning data collection with GnuRadar, mod-

ified for multi-device operation. Note, this multi-device mode is not fully
functional! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.21 GrHelper.hpp – class for multi-device data collection with GnuRadar. Note,
this multi-device mode is not fully functional! . . . . . . . . . . . . . . . . . 188

xii



A.22 DeviceDataInterleave.hpp – function for interleaving data streams between
multiple USRP devices for GnuRadar. Note, this multi-device mode is not
fully functional! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.23 crontab for CIRI@PSU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.24 rti updater.sh – script for automatically updating link to latest RTI image

and data run folder (used for basic website) for CIRI@PSU. . . . . . . . . . 193
A.25 index.html – webpage for displaying latest RTI image for CIRI@PSU. . . . 193
A.26 sysNF.m – MATLAB script to calculate cascaded noise figure and gain for RF

front ends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.27 s amp.m – simple amplifier model class for use with sysNF.m . . . . . . . . . 196
A.28 s att.m – simple attenuator model class for use with sysNF.m . . . . . . . . 197
A.29 s filt.m – simple filter model class for use with sysNF.m . . . . . . . . . . . 197
B.1 Full listing of ∼/.ssh/config for remote access of PISCO (coruscant and

cadi), PARIS (kessel), and CIRI@PSU (zeltros) machines. Note, <USER>
should be replaced with a valid Arecibo Observatory network username. . . . 199

xiii



Acronyms and Abbreviations

• 1PPS – One Pulse-per-Second

• AC – Alternating Current

• ADC – Analog-to-Digital Converter

• AM – Amplitude Modulation (broadcast radio)

• API – Application Programming Interface

• ASPIRL – Applied Signal Processing and Instrumentation Research Laboratory

• BPF – Band-pass Filter

• BPG – Bit Pattern Generator

• BPSK – Binary Phase-Shift Keying

• CADI – Canadian Advanced Digital Ionosonde

• CGI – Common Gateway Interface

• CIC – Cascaded Integrator-Comb

• CIRI – Cognitive Interferometry Radar Imager

• COCO – Coaxial-Colinear

• COTS – Commercial Off-the-Shelf

• CPLD – Complex Programmable Logic Device

• CPU – Central Processing Unit

• DAC – Digital-to-Analog Converter

• DC – Direct Current

xiv



• DDR2 – Double Data Rate, Type 2

• DDR3 – Double Data Rate, Type 3

• DDS – Direct Digital Synthesizer

• EDT – Eastern Daylight Time

• FFT – Fast Fourier Transform

• FIFO – First-In First-Out

• FM-CW – Frequency-Modulated Continuous Wave

• FPGA – Field Programmable Gate Array

• GB – Gigabyte

• GCS – GNU Chirp Sounder

• GMM – Gaussian Mixture Model

• GNU – GNU’s Not Unix

• GPC – General-Purpose Computer

• GPIO – General-Purpose Input/Output

• GPS – Global Positioning System

• GPSDO – GPS-Disciplined Oscillator

• GPU – Graphics Processing Unit

• GTC – Transmitter Control Module

• GTS – Transmitter Supervisor Module

• GUI – Graphical User Interface

• HDF5 – Hierarchical Data Format 5

• HF – High-frequency

• HIF – Human Interpretable Format

• I – In-phase

• I/O – Input/Output

• I/Q – In-phase and Quadrature

xv



• IEEE – Institute of Electrical and Electronics Engineers

• IF – Intermediate Frequency

• IIF – Instrument Interpretable Format

• IPP – Inter-pulse Period

• IRIS – Illinois Radar Interferometer System

• LAN – Local Area Network

• LPF – Low-pass Filter

• Mbps – Megabits per Second

• NCO – Numerically Controlled Oscillator

• NTP – Network Time Protocol

• O+X – Ordinary and Extraordinary

• OS – Operating System

• PARIS – PSU All-sky Radar Interferometry System

• PCB – Printed Circuit Board

• PISCO – PSU Ionospheric Sounder for Chirp Observations

• PSU – The Pennsylvania State University

• PTM – Pulse Transmitter Module

• PTS – Pulse Transmitter System

• PVC – Polyvinyl Chloride

• Q – Quadrature

• RAM – Random-Access Memory

• RF – Radio Frequency

• RPM – Revolutions per Minute

• RTI – Range-Time-Intensity

• RX – Receive

• SATA – Serial Advance Technology Attachment

xvi



• SDR – Software-defined Radio

• SKiYMET – Allsky Interferometric Meteor Radar

• SNR – Signal-to-Noise Ratio

• STL – Standard Template Library

• TB – Terabyte

• TR – Transmit/Receive

• TTL – Transistor–Transistor Logic

• TX – Transmit

• UHD – Universal Hardware Driver

• UIUC – University of Illinois Urbana–Champaign

• USB – Universal Serial Bus

• USRP – Universal Software Radio Peripheral

• VCTCXO – Voltage-Controlled Temperature-Compensated Crystal Oscillator

• VHF – Very High Frequency

• YAML – YAML Ain’t Markup Language

xvii



Acknowledgments

This work would not have been possible without the support and efforts of the following
people:

• Dr. Julio Urbina – for his support in every aspect of my academic career over the past
six years, including being my thesis advisor. From my very first year at Penn State,
he welcomed me into his research, provided tutoring years ahead of my coursework,
traveled around the world with me, and afforded me with opportunities beyond what
I ever imagined coming to college. Dr. Urbina has been and will continue to be a
lifelong mentor and friend.

• Dr. Sven Bilén – for his founding, support of, and dedication to the Student Space
Programs Laboratory, as well as support of my academic pursuits and being my thesis
reader. Through the hands-on, real-world spacecraft design projects in SSPL made
possible by Dr. Bilén, I have accumulated an enormous wealth of technical knowledge,
skills, and friendships that have and will continue to drive my success.

• Dr. John Mathews – for his support of the PISCO project efforts and for being my
thesis co-chair.

• Dr. Erhan Kudeki, Dr. Steven Franke, Pablo Reyes – for the development of the
IRIS system and the technical support during the deployments of CIRI@PSU and
CIRI@Andes.

• Ryan Seal – for design and implementation of the PARIS/GnuRadar and Radar Con-
troller systems. He has remained an excellent technical resource and role model
throughout my academic career.

• Robert Sorbello – for his support during the construction, deployment, and continued
operations of CIRI@PSU and other lab operations.

• Tejas Nagarmat – for his prior efforts and guidance on the PARIS/GnuRadar system.

• Zach Stephens – for his development of Sauron and support during the deployment
and initial operations of CIRI@PSU.

xviii



• Burak Tüysüz – for his technical support of CIRI@PSU and other lab operations.

• Freddy Galindo – for housing us during our trip to Peru and support of lab operations.

• Karim Kuyeng Ruiz – for her support with restoring the PARIS transmitter and con-
tinued operations of these systems.

• Salih Bostan – for his support of continued operations of these systems.

• Ben Young – for his efforts in implementation of multi-device operation with PARIS.

• My parents, David and Lise Hackett – for their endless encouragement and support
throughout the years. I cannot express enough how much they have and continue to
value my success, and for that I will always be grateful.

• My girlfriend, Danielle Snyder – for her encouragement and support throughout my
undergraduate and graduate studies, and for keeping me grounded and sane during
the difficult times.

xix



Chapter 1

Introduction

Shortly after the first demonstrations of radio signal communication in the late nineteenth

century, radio systems found application in the study of the Earth’s atmosphere, namely

the region named the ionosphere [1]. Since then, radio communications have exploded into

numerous other applications, present in nearly every facet of our modern lives, and continued

study of the ionosphere has never been more relevant. Deeply intertwined with space weather

phenomena, the behavior of the ionosphere affects signals passing through it (e.g., Global

Positioning System (GPS) signals, satellite television and radio signals, etc.), long-distance

ground communications that make use of the ionosphere’s reflective properties, and large

ground-based networks, such as electric power grids [2]. While this field of study has matured

significantly since its inception, many fundamental questions about ionospheric processes and

behavior persist even today.

1.1 Motivations

The motivations behind the research presented in this thesis represent technical interests

from both ionospheric sciences and the electrical/computer engineering disciplines. On the

ionospheric science side, the formation and behavior of several different types of ionospheric

1



layers, such as Sporadic-E and Spread-F, are not well understood and are an area of active

research. In addition, the Earth is constantly showered by micrometeors (most too small to

see with the naked eye), that, as they enter the atmosphere, excite the surrounding atoms and

create localized regions of ionospheric plasma. Besides understanding the physical processes

behind these meteor trails, the mass and velocities of the meteors can provide insight into

the deposition of extraterrestrial matter on the surface of the Earth, as well as to indirectly

study other atmospheric processes, such as neutrally charged upper atmospheric winds.

From an engineering point of view, this field of study represents an excellent opportunity

to apply new digital signal processing techniques to a full suite of different ionospheric sens-

ing instruments. The relatively low cost and flexibility afforded by software-defined systems

allows for hardware reuse in different sensor applications, lowering costs and reducing hard-

ware development time. Additionally, hybrid, multi-purpose sensors can be developed that

share common hardware components. The modular design of software to control these flexi-

ble platforms and process incoming or outgoing signals enables rapid instrument prototyping,

further reducing development costs. Furthermore, the software-defined approach encourages

development of a flexible software framework for these types of sensor systems, promoting

the development of advanced processing features previously impractical (or impossible) to

realize in hardware.

1.2 Project Scope

This thesis discusses the application of software-defined radio technologies to ionospheric sci-

ence in the context of three ionospheric sensor projects developed at The Pennsylvania State

University (PSU), in collaboration with partners at Arecibo Observatory and University of

Illinois Urbana–Champaign (UIUC), over the past few years. The PSU Ionospheric Sounder

for Chirp Observations (PISCO) is a Universal Software Radio Peripheral (USRP)–based

2



ionosonde receiver system developed using a commercial ionosonde transmitter system at

Arecibo Observatory as a testbed. The project was funded for development of a low-cost,

flexible high frequency (HF) radar receiver to be used with the HF ionospheric heating facil-

ity under development at Arecibo Observatory. However, because construction of the heater

was delayed and operations of the facility have not yet begun, the commercial ionosonde

system in place at Arecibo Observatory was used in the mean time, with basic hardware and

software requirements expected to be similar for the two applications (although some details

between the two systems differ significantly). Except for the GnuRadar software libraries

used for USRP interface and raw data collection, all of the presented content relating to the

PISCO receiver is entirely original work by the author.

The second ionospheric sensor presented is the PSU All-sky Radar Interferometry System

(PARIS), a radar system designed to study the specular meteors by using a software-defined

receiver. The project was begun several years prior to the author’s experience with it.1

Although relatively undocumented, the system-level architecture and hardware and software

designs and implementations were to the level of basic functionality. The author’s work

with the system primarily involved system integration and basic testing and operations

and,throughout the process, documenting the system for future efforts. Additionally, some

hardware redesigns were made in an attempt to improve receiver sensitivity, and a framework

for extending the data capture software to 5+ channels was implemented.

This thesis also discusses the Cognitive Interferometry Radar Imager (CIRI), another

software-defined radar system designed to study a range of ionospheric phenomena, especially

non-specular meteors and ionospheric layers. The CIRI project grew out of the Illinois Radar

Interferometer System (IRIS), with the aim of extending the system to include “cognitive”

features through a development and operations partnership between researchers at both

The Pennsylvania State University and the University of Illinois. In order to develop and

1See references [3] and [4].

3



improve the various software components of the system, CIRI was deployed at the Rock

Springs Radio Space Observatory, near The Pennsylvania State University (University Park)

campus, involving set up of the antenna arrays, set up and integration of the transmitter

and receiver hardware and software, and preliminary system operations. As was the case

with PARIS, system documentation of CIRI/IRIS was limited, so this document attempts

to provide a comprehensive reference of the system.

1.3 Thesis Overview

A brief overview of both the motivating ionospheric science and crucial software-defined

radio technologies are discussed in Chapter 2. This chapter is intended to provide a reader

with a basic understanding of the key concepts used in the work presented. The reader is

encouraged to consult the References for more information as this thesis is certainly not an

exhaustive resource on these topics.

Chapter 3 presents and details the system architecture, as well as the hardware and

software designs and implementations for the PISCO, PARIS, and CIRI software-defined

ionospheric sensor systems previously mentioned.

Some preliminary results from data taken by each of these systems are presented in

Chapter 4. The results presented both validate the efforts on these projects hitherto and

help to identify issues and missing features in each of these systems.

Finally, the work presented is summarized in Chapter 5. Additionally, suggestions for

future work and improvements on these projects are outlined.

Appendix A presents a more extended reference of important code sections than available

in the text of Chapter 3.

Preliminary procedures for various modes of operation in these different sensor systems,

as well as some suggestions for system debugging, are listed in Appendix B.

4



Chapter 2

Background

This chapter aims to provide the reader with a basic background of some of the science and

engineering concepts that lay the foundation for the three ionospheric sensors discussed in

Chapter 3. Additionally, several previous and related software-defined ionospheric sensor

efforts are discussed. Many of the details of these subjects have been omitted for brevity, as

countless volumes have been published on each individual subject.

2.1 Ionospheric Science

Many important discoveries about the behavior of the ionosphere have been made since the

field’s inception, and this knowledge is relied upon by terrestrial and space-based systems

around the world. Despite this, the proverbial “rabbit hole” of the ionosphere inevitably

goes deeper than the past and present generations of scientists can imagine, so continued

study is necessary to better understand the physical processes behind different ionospheric

phenomena. The following sections briefly examine several topics of ionospheric science that

the three sensor systems are designed to study, whether by answering the science questions

directly or by paving the way for new generations of modern ionospheric sensors to continue

the study. The operation of several typical instrument classes used for remote ionospheric

5



F2

E

F1

D
E

Day Night

Altitude (km)

F

50

100

150

200

250

300

Figure 2.1: A generic representation of the different regions of the ionosphere.

sensing (under which the presented sensors fall) is also discussed.

2.1.1 Ionospheric Layers

The ionosphere is a region of Earth’s upper atmosphere extending from about 75 km to

beyond 500 km in altitude, markedly defined by the ionization of atmospheric constituents

within this region [5]. It is subdivided into several regions based on electron density prop-

erties, namely the D, E, and F regions. Figure 2.1 shows a representation of these regions

according to typical altitude ranges, both during the day and at night. Within these regions,

layers of high localized ionization form, including the less common Sporadic-E and Spread-F

events (discussed in the following sections), that can drastically affect radio-frequency (RF)

communications.

The ionosphere’s D region (i.e., “daytime” region) is typically defined to exist between 75

and 90 km, where ionization of atmospheric components occurs due to ultraviolet rays from

the Sun, explaining its disappearance at night [1, 5, 7]. Although the region is ionized during

the day, the relatively high neutral molecular density results in a fairly low net ionization

6



and high absorption of RF energy.1

As illustrated by Figure 2.1, the E region of the ionosphere exists both during the day

and at night, extending from around 100 km to 120 km in altitude [1, 5]. This region has

a significantly higher electron density (several orders of magnitude) than the D region, but

lower neutral density. RF signal absorption in this region is low, and, except during the

presence of layers, RF signals, especially HF and very high frequency (VHF), can penetrate

this region with little absorption.

The top-most region of the ionosphere, the F region, on average has a comparable elec-

tron density to the E region, although this can vary significantly with altitude, geographic

location, and season [1, 5]. Typically the F region extends from around 200 to 300 km in

altitude, although occasionally effects can be seen up to and beyond 500 km. Neutral density

in this region is lower than both the D and E regions. During the day, the region consists of

the F1 and F2 regions, supporting the formation of multiple F-region layers. At night, the

two regions merge into a single F region, and usually only one layer is present.

2.1.1.1 Sporadic-E

As the name suggests, Sporadic-E layers (also called Es layers) occur rather infrequently

(although more during the summer months), and the causes behind and the formation mech-

anisms of these layers are not well understood. Forming within the E region, these layers are

typically small and highly ionized, persisting on the timescale of minutes to hours [1, 6]. The

very high electron density within Sporadic-E layers often permits HF and VHF radio signals

to be reflected off these layers for very long distance, over-the-horizon communications, often

utilized by amateur radio operators.

1The high absorption of the D region during the day is reason why distant amplitude modulation (AM)
radio signals (and other HF communications) are typically stronger at night.

7



2.1.1.2 Spread-F

Besides Sporadic-E, another fairly infrequent ionospheric layer, Spread-F, is not well under-

stood and is a current topic of several research efforts. Spread-F events appear as a thick (in

altitude) F-region layer, “spread” across a large portion of the F region [6, 7, 8]. This type

of event mainly at night, when the F1 and F2 regions have merged into a single F region.

More studies have been conducted on Spread-F at (magnetic) equatorial regions and low

latitudes, where its physical processes appear to be simpler, than at higher latitudes.

2.1.2 Meteors

Another topic of interest in ionospheric science is meteors. As Earth travels through space,

it is constantly bombarded by dust particles and debris from a variety of extraterrestrial

sources, including comets and remnants of meteor impacts with the Moon. As these particles

(termed micrometeoroids) enter and accelerate through the Earth’s atmosphere, atmospheric

friction causes them to heat up and ablate [9]. During this process, a small disturbed region

of ionospheric plasma forms around the meteor event.

When using radar systems to probe the ionosphere for these events (see Section 2.1.4.1),

there are three main classes of reflections from these plasma regions that can be observed:

specular trails, non-specular trails, and head echoes. Specular reflections occur when a

meteor’s trajectory passes through the radar beam perpendicular to the direction of the

radar beam itself [10]. The resulting echo is a “mirror-like” reflection from the disturbed

plasma, with an exponential power decay as the excited electrons recombine with ions.

Non-specular meteor trails and head echoes, resulting from magnetic field interactions

with the plasma generated by meteor ablation, have only been more recently observed [10].

These reflections may require higher power radar systems for observation, as most of the

reflected power is not scattered back to the observing radar system.

8



The properties of reflections from meteor events can be studied individually in order to

gain a better understanding of the physics behind the meteor ablation process. They can also

be studied statistically, in order to gain a better understanding of the larger scale properties,

including diurnal, seasonal, and geospatial variables and total mass deposit due to meteors.

2.1.3 Upper Atmospheric Neutral Winds

In order to study wind patterns and neutral molecular composition in the upper atmosphere

with ground-based remote sensing instruments, indirect methods must be used, as RF energy

does not reflect and scatter off the neutral content of the ionosphere the same way it does

off ionized regions [11]. One of these methods involves observing the statistical properties

of meteors. By monitoring the position and velocity vectors of meteors over time, neutral

wind properties can be inferred.

2.1.4 Instruments

In order to study the terrestrial ionosphere, a vast suite of different types of instruments

can be used, including in situ measurements made by rocket, satellite, and balloon payloads,

as well as ground-based remote sensing instruments. The scope of this discussion is limited

to the latter, and specifically, the two classes under which the three sensor instruments

presented fall.

2.1.4.1 Coherent Scatter Radar

The basic principle that governs the operation a pulsed radar system is that distance is

directly related to time delay, through the propagation speed of a wave in a medium [12].

In the case of ionospheric radar systems, a transmitter sends pulsed RF energy through the

atmosphere, where the signal reflects and scatters off any target in its path (e.g., meteor

9



Time

Range

TX Pulse RX Echo

Target

(Meteor Trail)

Transmitter Receiver
Synchronization

Radar System

Figure 2.2: Basic operation of a pulsed radar system.

trails, ionospheric layers, airplanes, etc.). Some of this energy returns to the ground and is

captured by the receiver, where a time delay between the transmitted pulse and the received

echo is measured, which is proportional to the distance to the target. Figure 2.2 graphically

illustrates this basic operation. The “coherent” descriptor refers to the receiver detecting the

strong reflection that occurs at the target, representative of the transmitted pulse, without

detecting the small “incoherent” effects on the signal caused motion of the ions and electrons

within the plasma, a phenomenon that requires a high-power transmitter and very sensitive

receiver.

The behavior of a particular radar can be summarized by a few key parameters, namely:

• Inter-pulse Period (IPP) – the regular time interval spacing between transmitted

pulses. This parameter defines the maximum range that the radar system can detect

without range aliasing effects. This parameter is sometimes called pulse-repetition

interval (PRI).

10



• TX Pulse Length – the time length of the transmitted pulse. This parameter defines

the range resolution, or the smallest range unit for target reflections.

• Duty Cycle – the ratio of TX pulse length to IPP. Some transmitters are limited to a

maximum duty cycle for hardware protection.

• TX Peak Power – the peak transmitted power. This the signal power during the

transmit pulse, ignoring the rest of the IPP.

• TX Average Power – the average transmitted power. This is the signal power averaged

over a single IPP.

One of the basic trade-offs when selecting radar parameters involves the transmitted

pulse length. A shorter pulse length gives the radar the ability to resolve smaller details, but

it also reduces average power transmitted, reducing the power of the reflections (potentially

below the system noise floor). Additionally, a shorter pulse length increases the spectral

bandwidth (by properties of the Fourier Transform), which could be an issue, depending on

operating conditions.

One technique commonly used to overcome the pulse length/average power trade-off

is called phase-coded pulse compression [13, 14]. By phase-modulating the pulsed RF at

subdivisions of the TX pulse length, known as bauds, with special binary codes, it is possible

to obtain the range resolution of the shorter baud length, but retain the full power of the

longer TX pulse. This binary phase modulation of the TX pulse is illustrated in Figure 2.3.

The use of phase coding adds a few more radar parameters to the list:

• Baud Length – time length of one subdivision in the phase-coded TX pulse signal.

• Phase Code – the binary phase modulation signal. There are many different types of

coding signals that can be used, but a key feature is a strong peak in the autocorrelation

function of the code, and very small sidelobes.

11



+ -+ + +Code

Coded Pulse

Uncoded Pulse

Figure 2.3: Phase-coded pulse compression using the Barker-5 code.

When the target reflection echo is received, the signal is still phase-coded, and must be

decoded with a matched filter to take advantage of the applied coding [14]. In some cases,

such as with meteor-head echoes, the use of phase coding can distort the reflection, so special

care and additional processing must be used to correctly obtain the true reflection.

2.1.4.2 Ionosonde

An ionosonde is essentially a coherent scatter radar system that sweeps through a range

of carrier frequencies during its operation, rather than just using a single fixed-frequency

carrier2 [5]. The different carrier frequencies penetrate or reflect off ionospheric layers, and

the reflection frequency, amplitude, and altitude information is used to determine electron

density information in the E and F regions of the ionosphere. The data taken by an ionosonde

is used to generate an ionogram, a special radar graph that shows ionospheric layer reflections

on a range-vs.-frequency plot. These ionograms can be studied independently or be used to

provide auxiliary measurements about ionospheric conditions for other instruments.

2.2 Software-Defined Radio

The emergence of high-precision and (more importantly) low-cost analog-to-digital converters

(ADCs) has fueled the explosive growth of a relatively new technology called software-defined

2There is also a type of ionosonde that uses a frequency-modulated continuous wave (FM-CW) instead
of pulsed operation. The details are not discussed here, but the reader is referred to [15].

12



fs/2

fs

3fs/2

0

...

Images

True

Signals

Figure 2.4: “Carpenter’s ruler” diagram illustrating signal aliasing used for digital downcon-
version.

radio (SDR) [16]. The fundamental principle behind software-defined radio systems is the

shift of signal processing elements that are traditionally realized in the analog domain (e.g.,

mixers, demodulators, filters, etc.) into the digital domain, with high-speed ADCs and

digital-to-analog converters (DACs) providing the interfaces between the two domains. Once

digitized, these signals can be processed on high-speed programmable logic devices, including

field-programmable gate arrays (FPGAs) and complex programmable logic devices (CPLDs);

in software on a host computer’s central processing unit (CPU) or graphics processing unit

(GPU); or, more commonly, a combination of both high-speed logic and host computer

software.

There are many important concepts and tools that can be used in software-defined radio

systems, and [17] provides an excellent reference on the subject. Only one of these instru-

mental tools is discussed here, and that is the concept of digital downconversion, which

takes advantage of signal aliasing caused by sampling at a rate below the twice the Nyquist

frequency (see [17]). Figure 2.4 shows a “carpenter’s ruler” diagram that illustrates aliasing

effects. Each leg of the ruler represents a frequency range of half the value of the sampling

frequency (fs). The green signal (right side) on the first leg of the ruler represents a sig-

nal that can be perfectly reconstructed as predicted by Nyquist. The red signal (middle),

13



however, has spectral content between the sampling and Nyquist frequencies, resulting in

a frequency-inverted image of the true signal to be aliased into the 0-to-Nyquist-frequency

band (as well as all other legs of the ruler, though not shown on Figure 2.4 for clarity). Fi-

nally, the blue signal (left) lies above the sampling frequency, resulting in two lower-frequency

images, with the baseband image having undergone frequency inversion twice, returning it

to normal. In order to avoid image content overlapping with true signals in the baseband,

external analog band-pass filters, called anti-aliasing filters, around the desired signal must

be used.

Software-defined radio systems are advantageous over traditional hardware-defined sys-

tems in several ways, mentioned in Section 1.1, each of which is intertwined with the others.

The system flexibility added by software-defined techniques is unparalleled in the hardware

domain [16]. Instead of replacing physical hardware components to use a different frequency

or modulation scheme, the system can simply be reprogrammed to incorporate this new

operational mode.3 That flexibility also directly translates into cost savings, allowing, if not

encouraging, the same physical hardware to be used for multiple applications. In a similar

vein, rapid instrument development and prototyping can occur on these software-defined

platforms, drastically reducing the number of hardware revisions necessary before a final

product is ready to be released. Software patches can be applied to systems operating in the

field, introducing another level of cost savings. This list of advantages continues to grow as

the software-defined technology field is developed further.

2.2.1 Universal Software Radio Peripheral

The Universal Software Radio Peripheral (USRP) is a family of extremely flexible, low-

cost commercial software-defined radio hardware platforms developed and sold by Ettus

Research (now owned by National Instruments) [18]. The systems use a modular design,

3This is within certain device limits, of course.

14



Figure 2.5: The Ettus Research USRP1 device, fitted with a BasicRX daughterboard (left
side) and an RFX-400 daughterboard (right side).

with a single motherboard that contains the common processing elements, and a number of

pluggable daughterboards, designed to cover a wide spectrum of frequency ranges and target

applications. The motherboard uses high-speed ADCs and DACs to interface “real-world”

analog signals with the high-speed, programmable digital signal processor, the consumer-

grade FPGA. The digital signals are transmitted to and/or received from a host computer,

where device control and lower bandwidth signal processing can occur.

USRP devices have been used for a very wide spectrum of applications, including, but

certainly not limited to, hobbyist projects, academic and scientific research, and military

communications systems. The systems presented in this thesis utilize the USRP as a receiver

device for ionospheric science applications; however,the flexible, modular design of the USRP

family allows these device to be re-purposed for vastly different applications within minutes,

simply by swapping daughterboards and running different software.

There are a several different USRP platforms offered by Ettus Research (in addition to

several sold by National Instruments). The original USRP device produced, the USRP1,

pictured in Figure 2.5, has four 12-bit ADCs, two 14-bit DACs,4 an Altera Cyclone-series

4There is a four channel maximum, e.g., two RX channels and two TX channels, or four RX channels.

15



FPGA, and a USB 2.0 interface to the host computer [18]. The device is clocked by an

onboard 64-MHz crystal oscillator, although a few simple hardware modifications enable the

use of an external clock.

The other devices offered by Ettus Research are a part of the USRP2 class of devices

(as successors to the USRP1), including the N-series (networked – uses a Gigabit Ether-

net interface for host communication), the B-series (bus – uses a USB 2.0 interface for

host communication), and the E-series (embedded – features embedded Linux on an on-

board microcontroller) [18]. The sampling rates and hardware specifications vary by device;

however, all USRP2 devices uses a Xilinx Spartan 3A-series FPGA and support two RX

channels, two TX channels, or one TX and one RX channel. Additionally, these devices sup-

port external clock and pulse-per-second (PPS) synchronization natively (without hardware

modifications).

2.2.1.1 Tuning Frequency Errors

The USRP devices are tuned to a specific operating frequency by using a numerically con-

trolled oscillator (NCO) within the FPGA design. The following analysis discusses timing

and frequency errors due to the limited resolution (32 bits) of the NCO [19].

The frequency resolution, δf , of the USRP’s NCO is:

δf =
fs
2ltw

, (2.1)

where fs is the sampling rate of the USRP device and ltw is the length of the tuning word

(32 bits). In the case of the USRP1, where fs = 64 MHz, the frequency resolution is ≈

0.0149012 Hz. For the USRP2 devices, where fs = 100 MHz, the frequency resolution is ≈

0.023283 Hz. For most frequencies, the USRP devices cannot be tuned exactly and a residual

16



frequency error results,

ǫ = fd −

⌊

fd
δf

⌋

δf = fd −

⌊

fd
fs
2ltw
⌋

fs
2ltw

, (2.2)

where fd is the desired tuning frequency and ⌊·⌋ takes the integer part of the argument (floor

rounding). For a desired frequency of 21.4 MHz on the USRP1, the frequency error is ≈

0.00894 Hz. Similarly, on the USRP2, the frequency error is ≈ 0.00800 Hz. These frequency

errors can be eliminated by accounting for the error in software or by choosing an exact

tuning frequency.

Frequencies that can be tuned exactly on the USRP, with no frequency error, must

be integer multiples of δf that result in integer (in Hz) frequencies. The smallest integer

multiple that fits this criterion can be found by taking the prime factorizations of the divisor

and dividend in Equation 2.1 and simplifying the resulting fraction. The numerator of the

result is the smallest tuning interval, in Hz, and the denominator is the digital count that

corresponds this frequency. For example, in the case of the USRP1,

64 MHz

232
=

212 · 56

232
=

56

220
=

15625

1048576
, (2.3)

resulting in a minimum exact tuning interval of 15.625 kHz, corresponding to a digital count

(tuning word) of 1048576. In the case of the USRP2,

100 MHz

232
=

28 · 58

232
=

58

224
=

390625

16777216
, (2.4)

resulting in a minimum exact tuning interval of 390.625 kHz, corresponding to a digital count

of 16777216.

17



2.2.1.2 Dynamic Range and Noise Figure

Using the analysis in [19] as an example, the theoretical dynamic range and noise figure of

the USRP devices can be calculated, which is necessary for determining the required receive

RF front-end gains and noise figures for both PARIS and CIRI.

The maximum input voltage (without ADC saturation) to a USRP device is 2 Vpp (0.707

VRMS), which, in a 50-Ω environment, corresponds to a maximum input power +10 dBm.

The peak-to-peak value can be divided by the number of quantization values (212 for the

USRP1, 214 for the USRP2) to obtain quantization step sizes (δ) of 488.3 µV and 122.1 µV,

for the USRP1 and USRP2, respectively. Assuming that quantization errors can be modeled

as uniform random distributions over ± δ
2
, the root mean square (RMS) quantization noise

is:

σq =

(

1

δ

∫ δ/2

−δ/2

x2dx

)
1

2

=

(

δ2

12

)
1

2

. (2.5)

This evaluates to 141.0 µVRMS and 35.24 µVRMS for the USRP1 and USRP2, respectively.

Maximum theoretical dynamic range can then be calculated as the ratio of maximum to

minimum input signal levels, i.e.,

DR = 20 log10

(

Vmax

σq

)

= 20 log10

(

0.707 V

σq

)

. (2.6)

So, for the USRP1, the dynamic range is 74 dB, and for the USRP2, the dynamic range is

86 dB. The minimum noise floor can also be calculated from the quantization noise level:

Pfloor = 10 log10

(

Pq

1 mW

)

= 10 log10

(

σ2
q

(50 Ω)(1 mW)

)

, (2.7)

resulting in −64.0 dBm for the USRP1 and −76.0 dBm for the USRP2. Finally, under

the assumption that the quantization noise is uncorrelated and uniformly spread over the

Nyquist bandwidth, the noise figure of the ADCs can be calculated using the power spectral

18



density and standard noise temperature of (290 K → −174 dBm/Hz) as

NFADC = Pfloor − 10 log10

(

fs
2

)

− 174 dBm/Hz. (2.8)

This expression evaluates to 34.9 dB and 21.0 dB for the USRP1 and USRP2 devices,

respectively.

2.2.2 GNU Radio

USRP devices are commonly used with a software package called GNU Radio. It is a pow-

erful open-source signal processing framework for developing digital (and software-defined)

radio systems [20]. Analogous to analog RF hardware design, high-speed signal processing

blocks, such as mixers, demodulators, digital filters, amplifiers, signal visualization tools,

etc., are connected together to form a complete signal flowgraph. Each flowgraph has one

or more signal “sources” and one or more signal “sinks,” both of which could be data file

interfaces, sound card interfaces, or USRP device interfaces through the Universal Hardware

Driver (UHD) software provided by Ettus Research. The high-speed signal processing blocks

are written in C++, and they can be connected up in C++, Python (through a software

wrapper interface), or using a drag-and-drop graphical user interface (GUI), called GNU

Radio Companion (front end for generating Python flowgraphs). As an open-source soft-

ware package, there is a very active and helpful online community of GNU Radio users with

a large knowledge base on both GNU Radio and the USRP devices, providing support for

beginners and advanced users alike.

19



2.3 Previous and Related Work

This chapter concludes by briefly reviewing some of the previous and concurrent work done

on applications of software-defined radio to ionospheric science.

2.3.1 SKiYMET

The All-sky Interferometric Meteor Radar (SKiYMET) is an advanced meteor radar devel-

oped by Genesis Software5 and MARDOC Inc. [21]. The system is a fully-integrated radar

system, providing a solid-state transmitter, five-channel receiver, frequency synthesizer, syn-

chronous radar timing generator, and control and data analysis software necessary for a

operating a meteor radar system. SKiYMET is a commercially available system intended

for rapid deployment and both short- and long-term operations.

2.3.2 Cobra

Cobra is all-sky interferometric meteor radar system developed by researchers at the Uni-

versity of Colorado at Boulder [12]. The system uses five Yagi antennas for interferometric

reception, in the same configuration as PARIS (see Section 3.2.2.1.1), and four Yagi antennas

for transmission. The system has been successfully deployed and operated at various VHF

frequencies in Colorado, Alaska, and at the South Pole.

2.3.3 GCS

The GNU Chirp Sounder (GCS) is a USRP-based ionosonde receiver, similar to the PISCO

project (see Section 3.1), developed at the Sodankylä Geophysical Observatory in Fin-

land [22]. The system listens for ionospheric reflections from nearby frequency-modulated

5This is the same company that designed and built the transmitter for CIRI (see Section 3.3.2.1.2)

20



continuous-wave (FM-CW) ionosonde systems, and generates amplitude and phase iono-

gram plots, making use of the dual polarization antenna. The system can track and process

multiple ionosonde transmitters simultaneously.

2.3.4 Open Radar Initiative

In the spirit of open-source software, the Open Radar Initiative is a community of scientists

and engineers developing radar systems for ionospheric studies, who release the hardware

and software designs of parts or all of their systems online freely [23]. The goal of the group

is to reuse and build upon each other’s work in order to reduce the amount of duplicated

efforts and freely collaborate with others in the community.

21



Chapter 3

System Designs

Several different ionospheric sensor systems have been developed at The Pennsylvania State

University (PSU) by the Applied Signal Processing and Instrumentation Research Labo-

ratory (ASPIRL) using varying levels of software-defined radio techniques. Three of these

projects are presented in the subsequent sections of this chapter. Each of these systems

utilizes a USRP as the central digital receiver device, with additional supporting hardware

and software specific to the application.

22



3.1 PSU Ionospheric Sounder for Chirp Observations

The PSU Ionospheric Sounder for Chirp Observations (PISCO) receiver is a USRP-based

ionosonde receiver system developed at The Pennsylvania State University and tested and

currently operating at Arecibo Observatory. The system uses commercial off-the-shelf (COTS)

hardware and open-source software to provide receiver control, digital signal processing, and

data collection, display, and storage for listening to ionospheric reflections from ionosonde

transmitters (also called sounders and chirpers). Table 3.1 lists the design requirements for

the PISCO receiver system. The design presented herein was carefully developed to meet

these design requirements.

Table 3.1: Design requirements for the PISCO receiver system.
ID Requirement
1 Develop the system from low-cost, COTS components
2 Minimize necessary hardware by taking advantage of SDR techniques
3 Design the system to be flexible for different deployment configurations

3.1.1 System Overview

Figure 3.1 shows a high-level systems diagram of both the ionosonde receiver and how it

interacts with the Canadian Advanced Digital Ionosonde (CADI) system at Arecibo Obser-

vatory. The CADI system is a standalone ionosonde system, complete with a synchronized

transmitter, receiver, and host computer software for data storage, processing, and display.

It uses two co-located antennas, one for transmission and one for reception.

The PISCO receiver system is composed of four main hardware elements: 1) the active

antennas responsible for transducing the RF energy to electrical signals; 2) the USRP1

responsible for digitization and preliminary signal processing of the received signals; 3) the

direct digital synthesizer that provides a stable reference clock for the USRP1; and 4) the host

computer responsible for controlling the USRP1 device, as well as data collection, processing,

23



Ionosonde Receiver

USRP1 Receiver

RF

A/D

Sampling

Digital

Down-

Conversion

Filtering

and

Decimation

Automatic

Retuning

Host Computer

Data Collection

Data Processing

and Display

Data Storage

Receiver Control

Direct Digital

Synthesizer

USB

64 MHz

NTP

Sync.

Active Antennas CADI Ionosonde

Transmitter

RF Receiver

Data Storage

Data Processing

and Display

TX Antenna RX Antenna

Ionosphere

Pulsed RF

Ionospheric Reflections
Ionospheric Reflections

Ground wave

Figure 3.1: Overview of the PSU Ionospheric Sounder for Chirp Observations system used
with the Canadian Advanced Digital Ionosonde.

display and storage. The hardware and software for these components are discussed further

in Section 3.1.2.

When the CADI system pulses RF energy straight up into the ionosphere, some energy is

reflected back to CADI, as well as in other directions due to scattering of the electromagnetic

waves by ionospheric plasma. Some of this energy is captured by the antennas of the PISCO

system, allowing it to “listen in” during CADI operation. Additionally, some of the pulsed

RF energy from CADI propagates parallel to the ground (i.e., direct- or groundwave), and

some of this energy, too, is captured by the PISCO antennas. Detection of this groundwave

is critical for resolving reflection distance and is discussed further in Section 3.1.2.2.4.

It is important to note that the only electrical connection between the two systems is an

Ethernet (IEEE 802.3) connection to the Arecibo Observatory local area network (LAN).

Other than remote access, the sole purpose of this connection is for host computer clock

synchronization via the Network Time Protocol (NTP), and even this could be replaced by

24



some form of wireless time synchronization, such as GPS. In order to address Requirement

3, one of the major design goals of the PISCO receiver was to isolate the system from CADI

as much as possible, thereby facilitating flexible operation of the system 1) at sufficiently

distant locations from CADI, such that electrical delays in hard-wired cables prevent proper

synchronization; 2) at distant locations from CADI where hard-wired cables between the

systems would not be feasible; and 3) with transmitters other than CADI, which may not

have a compatible electrical interface. While hardware synchronization (i.e., the use of dis-

crete timing signals) between the two systems may be the simplest and most straightforward

solution conceptually, it could be very difficult to implement in practice, depending on the

setup of the two systems. Fortunately, modern computing power and signal processing tech-

niques enable an offline “reconstructive” synchronization in software that rivals hardware

synchronization in accuracy, without the need for a physical electrical connection, thereby

addressing one aspect of Requirement 2.

3.1.2 Implementation

The following sections detail the hardware and software components from which the PISCO

receiver is constructed.

3.1.2.1 Hardware

As per Requirement 2, by taking a software-defined approach to the PISCO receiver system

design, very little hardware was necessary to accomplish an ionosonde receiver with com-

parable performance to the CADI system in place at Arecibo Observatory. The following

sections detail each of the different hardware components shown in Figure 3.2, all of which

are COTS parts (see Requirement 1).

25



USRP1

Ch. 1

Ch. 2

Ext Clk

USB

Linux Host Computer

USBEthernet

Active

Ant. 1

Preamp

Active

Ant. 2

Preamp
NTP Syncronization

with Transmitter

Novatech 409B

Ch. 2

Ch. 3

Ch. 0

Ch. 1

Figure 3.2: PISCO hardware diagram (power connections omitted).

3.1.2.1.1 Active Antennas The PISCO receiver uses two wideband active antennas

for capturing the groundwave and ionospheric reflections from pulsed RF signal transmitted

by CADI. The DX Engineering ARAH2-1P Active Horizontal Antenna (now replaced by

the ARAH3-1P) is a dual-whip antenna with a built-in preamplifier, suitable for receiving

between 100 kHz and 30 MHz [24]. Although advertised as ideal for amateur radio and

shortwave listening, due to its sensitivity over the wide bandwidth that many ionosonde

systems typically sweep, it turns out to be a useful antenna for an ionosonde receiver as well.

The active antennas are set up in cross pattern, with one aligned to the magnetic North–

South direction and the other aligned to the East–West direction, as illustrated in Figure

3.3. Figure 3.4 shows the antennas as they are set up near the ionospheric heating facility

at Arecibo Observatory.

3.1.2.1.2 USRP The core of the receiver hardware is the USRP1 device, which digitizes

the incoming RF signals from the active antennas. A BasicRX daughterboard fitted into the

USRP’s RXA slot provides the two signal inputs to which the active antennas are connected.

While these inputs are 50-Ω terminated and transformer coupled, they provide no signal

conditioning and are virtually direct inputs to the USRP1’s ADCs.

The sampling rate of the on-board ADCs is 64 MHz, which, by the Nyquist-Shannon

Sampling Theorem, yields a sampling bandwidth of 32 MHz [17]. The usable frequency

26



N

...

Channel 1

Channel 2

Figure 3.3: Setup of the ARAH2-1P antennas for the PISCO system (not to scale).

range for the BasicRX daughterboard is 1–250 MHz [18], limited on the low end by the

transformer coupling of the input signal. Thus, the USRP system is capable of directly

digitizing (with no downconversion) signals in the range of 1–32 MHz, which adequately

covers the range of most ionosonde systems (typically 1–20 MHz) [5]. However, because the

USB 2.0 bus, over which the USRP is connected, has a bandwidth limitation of 480 Mbps

[25], the maximum sampling bandwidth that could theoretically be streamed continuously

from the USRP is

BWmax =
BWUSB

Sample Size
=

(480 Mbps)

(32 bits)
−→ BWmax = 15 MHz . (3.1)

The USRP sampling rate is 64 MHz, so data decimation must be performed on the FPGA

in order to meet the USB 2.0 bandwidth requirement. However, only powers of two in the

range [4,256] may be used for decimation in the usrp1 fpga.rbf FPGA image, resulting in

27



(a) (b)

Figure 3.4: The ARAH2-1P antennas set up at Arecibo Observatory for PISCO, shown from
(a) far away and (b) below.

28



a maximum bandwidth of 8 MHz. As long as the signal bandwidth does not exceed 8 MHz,

the USRP center frequency can simply be tuned to the center frequency of interest, allowing

the full 1–20 MHz band to be covered, albeit not all at once.

Although the USRP has an on-board 64-MHz crystal oscillator, it is prone to temperature

and age drifting, and is bypassed in this application. Instead, an external clock source, the

Novatech 409B Benchtop Signal Generator supplies the 64-MHz clock to the USRP (discussed

further in Section 3.1.2.1.3). In order to configure the USRP to accept an external clock,

several minor hardware modifications need to be made, as outlined in [26].

The PISCO receiver uses the usrp1 fpga.rbf FPGA image, provided with the UHD

software package (and formerly with GNU Radio), modified to retune the device according

to the predefined ionosonde transmitter behavior (frequency list and dwell time). The im-

plementation of this is discussed further in Section 3.1.2.2.1. The standard FPGA image

provide a programmable NCO and complex multiplier to produce a complex (in-phase and

quadrature) data stream from the output of the each of the four ADCs [27]. Additionally,

it provides cascaded integrator-comb (CIC) decimation and a half-band filter to reduce the

effective sampling bandwidth to a rate that can be accommodated by the USB 2.0 interface

to the host computer, over which data transfer and device configuration occur.

3.1.2.1.3 Direct Digital Synthesizer Because the USRP’s 64-MHz crystal oscillator

is prone to temperature drift and aging effects, the system uses an external direct digital

synthesizer (DDS) to provide a stable clock source for the device. The Novatech 409B is a

programmable oscillator with four independent outputs featuring programmable frequency,

phase, and amplitude, an external reference input, and is accurate to ±1.5 ppm over 10 to

40 ◦C [28]. The device is programmed over a serial interface, either by writing directly to

the raw serial device (e.g., /dev/ttyS0, or /dev/ttyUSB0 for a USB/serial interface under

Linux), or by using terminal emulator such as minicom.

29



Table 3.2: Basic Hardware Specifications of the PISCO Receiver GPC.
Processor Family Intel Core-i7 960, 3.2 GHz
RAM 12 GB DDR3 (3×4 GB)
Hard Drive 1 TB, 7200 RPM SATA
Network Interface 1000 Mbps Ethernet

3.1.2.1.4 General-Purpose Computer The general-purpose computer (GPC) is re-

sponsible for data storage and processing, as well as control of the USRP device, discussed

further in Section 3.1.2.2. In terms of hardware, any modern desktop or laptop computer

with a USB 2.0 and Ethernet interface should be suitable for the GPC. The basic hardware

specifications for the data storage and processing desktop computer on which the system

was tested are listed in Table 3.2.

3.1.2.2 Software

The following sections discuss the operation of the various software components that work

together in the PISCO system. This includes the automatic receiver retuning, data collec-

tion, processing, and storage, much of which has been moved from the traditional hardware

domain to the software domain, in accordance with Requirement 2. Additionally, the flexible

scheduling and scripting (see Requirement 3) that tie these components together are also

discussed.

3.1.2.2.1 Frequency Sweeping The automatic frequency retuning of the USRP’s FPGA

is a critical process that enables practical sampling bandwidths while covering the entire band

swept by the transmitter. Initially, the retuning process was implemented in software on the

host computer, but the imprecise timing of the user space software (compared to an FPGA

hardware implementation, for example) resulted in discontinuous data during the period

when the retuning command was sent to the USRP over USB. A more accurate and robust

FPGA-based solution was implemented to ensure continuous data (no gaps in the data), at

30



USRP

Frequency Sweeping

To/from ADCs adc_interface

uC SPI serial_io

uC Parallel

rx_chain_[0:3] rx_buffer bustri

freq_sweep freq_list_ram

Figure 3.5: Simplified architecture of PISCO FPGA design.

the cost of a slight reduction in flexibility (hard-coded frequency tuning list).

The FPGA image used in the PISCO system is the usrp1 fpga.rbf, provided with

the UHD software package (and formerly with GnuRadio), modified to retune the device

according to the predefined ionosonde transmitter behavior (frequency list and dwell time).

Figure 3.5 shows a simplified top-level architecture of the FPGA design.1 The blocks boxed

in green represent the modules provided in the standard FPGA design, and the blocks boxed

in red represent the modules added for the frequency retuning functionality.

The FPGA receives data samples from the USRP’s ADCs through the adc interface

module. This module is a driver that handles configuration, handshaking, and data transfer

from the ADCs. The data output of the adc interface module is wired to one or more

rx chain modules, depending on the configured number of receiver channels. Each instance

of the rx chain module contains a complex multiplier to generate in-phase (I) and quadra-

ture (Q), a decimation stage, and a filter [27], conditioning the received signal to a usable

bandwidth. The output of each of these rx chain modules is wired into a single rx buffer

module, which prepares the data for streaming to the host computer by interleaving the

1There are several additional modules for control and input/output (I/O) not shown in Figure 3.5 and
not discussed here. Refer to the UHD documentation for more information.

31



one or more channels into a single data stream. Finally, this data stream is wired to the

bustri module, a tri-state logic module that acts as a driver to communicate with and trans-

fer data to the USRP’s USB microcontroller. Additionally, the standard design contains a

serial io module that enables live reconfiguration of many settings in the FPGA from the

host computer.

The rx chain module contains an NCO used for tuning the USRP. In the standard

FPGA design, the frequency of the NCO outputs is determined by a frequency tuning word,

set by the host computer through the serial io module. In order to accomplish auto-

matic retuning of the device, this tuning word connection was replaced with the output

of a random-access memory (RAM) block (the freq list ram module) containing tuning

words corresponding to the carrier frequencies of the transmitter. This RAM is addressed

using some simple clock divider logic (discussed below) in the freq sweep module. The

frequency sweeping logic is controlled by several settings registers (one for resetting the logic

and one for enabling the frequency sweeping operation), set by the host computer through

the serial io module.

Figure 3.6 shows a simplified flow diagram of the logic governing the access of the fre-

quency tuning RAM, included in Listing 3.1. During each clock cycle, the flowchart is

followed through the decision logic from the red “always” start block to one of the blue

“action” blocks. After checking the reset (sweep reset) and enable (freq sweep) registers,

a simple clock divider is used to control the frequency list address (freq list addr) that

points to a tuning word in the freq list ram. The master clock is divided down using a

counter (switch counter) that counts up to the number of clock cycles spent at each fre-

quency (i.e., the frequency dwell time), incrementing each clock cycle. This is calculated as

SWEEP COUNTER MAX =
Sampling Rate× Total Sweep Time

Number of Frequencies
− 1. (3.2)

32



always @( posedge clk64 )

sweep_reset?

freq_sweep?

 0

freq_list_addr = 0
switch_counter = 0

1

switch_counter value?

 1

no change
0

freq_list_addr value?

 >= SWEEP_COUNTER_MAX

switch_counter++
else

freq_list_addr++
switch_counter = 0

else

freq_list_addr = 0
switch_counter = 0

 >= NUM_FREQ

Figure 3.6: Simplified flow diagram for PISCO FPGA frequency retuning.

When the value of switch counter reaches SWEEP COUNTER MAX, freq list addr is incre-

mented, pointing to the next tuning frequency in the list, and the counter is reset. This

behavior continues until the end of the frequency list is reached, at which point, both

switch counter and freq list addr are reset.

In the current configuration of the CADI system at Arecibo Observatory, 300 frequencies

logarithmically spaced between 1 MHz and 20 MHz are transmitted, with a total sweep time

lasting one minute. Thus, by Equation 3.2, SWEEP COUNTER MAX = 12799999, or equivalently,

the frequency dwell time is 0.2 s.

It is important to note that the predefined tuning word values in the freq list ram

module are not equivalent to the desired tuning frequencies. Rather, they can be calculated

33



Listing 3.1: Excerpt of frequency sweeping code added to usrp std.v.

1 freq_list_ram arecibo (

2 .address ( freq_list_addr ),

3 .clock ( master_clk ),

4 .data ( 32’d0 ),

5 .wren ( 1’b0 ),

6 .q ( ddc_tuning_freq )

7 )

8
9 always @( posedge clk64 )

10 begin

11 if( sweep_reset )

12 begin

13 switch_counter <= #1 32’d0;

14 freq_list_addr <= #1 9’d0;

15 sweep_strobe <= #1 1’b0;

16 end

17 else if( freq_sweep )

18 begin

19 if( switch_counter == 32’d0 )

20 begin

21 sweep_strobe <= #1 1’b1;

22 update <= #1 ~update;

23 switch_counter <= #1 switch_counter + 1’b’1;

24 end

25 else if( switch_counter >= SWEEP_COUNT_MAX )

26 begin

27 if( freq_list_addr >= NUM_FREQ )

28 freq_list_addr <= #1 9’d0;

29 else

30 freq_list_addr <= #1 freq_list_addr + 1’b1;

31 switch_counter <= #1 32’d0;

32 sweep_strobe <= #1 1’b0;

33 end

34 else

35 begin

36 switch_counter <= #1 switch_counter + 1’b1;

37 sweep_strobe <= #1 1’b0;

38 end

39 end

40 end

34



by the following relationship [29]:

Tuning Word =
Tuning Frequency

Sampling Rate
× 2Tuning Word Width, (3.3)

where the tuning word width is 32 bits. For example, for a tuning frequency of 1 MHz, the

tuning word would be 67108864.

3.1.2.2.2 Data Capture The data capture software (IonosondeRxRun) is based heavily

on the GnuRadar software libraries developed for the PARIS project (see Section 3.2.2.2),

which provides the all the necessary framework for implementing a software radar receiver.

IonosondeRxRun mimics the basic data collection and storage functionality of the GnuRadar

program gradar-run-server without a network interface or data synchronization.

Following the object-oriented nature of the GnuRadar project, the IonosondeRxDevice

class representing the receiver device is a child class of GnuRadarDevice and SThread, in-

heriting the important USRP interface functionality and multi-threading capabilities, while

also adding member functions specific to the ionosonde application. The GnuRadarDevice::

RequestData() inherited member function handles the USRP device interface, both sending

configuration commands to the device and receiving data packets from the device. Although

GnuRadarDevice expects to be receiving synchronized data, the modified usrp1 fpga.rbf

image does not include a synchronization module (see Section 3.2.2.2.2), and the USRP

freely transfers the continuous, unsynchronized data to the GPC.

When called, the virtual function IonosondeRxDevice::Run() writes a value to a register

on the FPGA that sets the freq sweep Boolean to logic high, starting the frequency sweeping

mechanism. The function then calls the SThread::Sleep() function from its base class for a

duration of the total sweep time (in the case of the installation at Arecibo Observatory, this

is 60 s). Because of the multi-threaded implementation of SThread, the function does not

put any load on the CPU, and other processes, such as the data collection, can be run simul-

35



taneously. After the timer expires, the thread is woken up and IonosondeRxDevice::Run()

sets the freq sweep Boolean to logic low, concluding the frequency sweeping.

3.1.2.2.3 Data Storage The raw in-phase and quadrature (I/Q) data from each iono-

sonde sweep is stored in a single Hierarchical Data Format 5 (HDF5) file (see [30]). This

is a commonly used standard file format within the atmospheric sciences community. The

metadata structure allows any number of arbitrary data tags to be stored alongside the

data, which itself can be of mixed data structures (e.g., multi-dimensional tabular, image,

and plain text). Numerous software application programming interfaces (APIs) exist for

accessing HDF5 files, including C++, FORTRAN 90, Java, Python, and MATLAB [30, 31,

32]. Additionally, the program HDFView allows easy inspection of data structures, data tags,

and data information itself for any HDF5 file. A screenshot of the program is shown in

Figure 3.7.

The PISCO software stores the data as 32-bit complex integer (16 bits in-phase, 16 bits

quadrature) in tabular form within the HDF5 file structure, with data from multiple channels

interleaved at the sample granularity. The data tags stored include the following:

• Baud length, in seconds

• Number of channels

• Phase code

• Name of the USRP FPGA bitstream used for data collection

• The specific receiver device

• Inter-pulse period length, in seconds

• USRP sampling bandwidth, in hertz

• Data format of each sample

• Frequency dwell time, in seconds

36



Figure 3.7: Screenshot of HDFView showing tabular and image data from the PISCO re-
ceiver.

37



These data tags provide important information for proper analysis and understanding of

the data, for both the data plotting software and users of the data.

3.1.2.2.4 Data Processing The asynchronous nature of this receiver design necessitates

added complexity in processing the data and generating meaningful plots of the I/Q data.

Fortunately, modern computing systems have adequate processing power for these extra steps

and to reconstruct the data in software. The ionoplotter program, consisting of Python

and Octave code, takes these general steps to produce ionogram plots:

1. Load the radar parameters and I/Q data from the HDF5 data file – The h5py Python

module is used to read the tabular I/Q data from the HDF5 data file into a single

complex numpy array to pass to the plotter function. The array has dimensions of

sample number × IPP, where sample number maps to range and IPP maps to carrier

frequency. Additionally, the data tags containing the radar parameters (see Section

3.1.2.2.3) are stored into a Python dictionary structure, which is also passed to the

plotter.

2. Generate power map from I/Q data – Because the receiver is not synchronized to the

transmitter, the groundwave pulse needs to be detected and used as a ground reference.

The I/Q data is read into the Octave plotter function (with the help of the oct2py

Python module) and a power map is computed from the complex data samples as

P 2 = I2 +Q2. (3.4)

At this point, the groundwave pulse is apparent and can be used to align the I/Q data.

3. Use the Hough Transform to find the groundwave pulse – The Hough Transform is an

image processing technique that facilitates feature extraction in images, e.g., straight

38



lines or circles, by mapping points in the original image into an accumulated transform

space of parameters r and θ [33]. In this case, the feature of interest is a straight line

with a relatively shallow angle from horizontal2 (i.e., < 10◦). It is important to search

only for lines close to horizontal to avoid the vertical lines that result from background

interference. Before performing the Hough Transform from the Octave image package,

an edge filter is to reduce the power map to a binary image highlighting only sharp

edges. The edged image is mapped into the accumulated transform space, and peaks

appear corresponding to the most likely near-horizontal lines in the image.

4. Shift I/Q data to align groundwave pulse to 0 km – The strongest “line” candidate

from the maximum peak in the accumulated transform space is assumed to be the

groundwave pulse. Because the transform space is specified in polar coordinates, the

slope and y-intercept of the groundwave pulse can easily be found by rearranging the

following relationship

r = x cos(θ) + y sin(θ) (3.5)

into slope–intercept form:

y = − cot(θ)x+ r csc(θ) =⇒ m = − cot(θ), b = r csc(θ), (3.6)

where r and θ are the peak coordinates in the accumulated transform space. With

the slope and intercept information, the I/Q data is circularly shifted to align the

groundwave pulse to 0 km in range.

5. Find frequency offset in each IPP, combine multi-channel data, and bring down to

baseband – Due to the lack of precise synchronization to the first pulse of the transmit-

ter, some residual frequency offset between the transmitted carrier signal and receiver

2This slight slope arises from a constant frequency offset in either the Novatech signal generator or the
equivalent sampling clock in the CADI system.

39



tuning frequency remains, manifesting as a slight amplitude modulation of the I/Q

data that must be eliminated for proper signal decoding. For each IPP, the spectrum

is calculated using the Fast Fourier Transform (FFT). Only a small range within the

groundwave pulse is used for this in order to mitigate the background interference. The

spectral peak for each IPP is used to generate a complex exponential for demodulation

of that IPP, for each channel of data. Additionally, the complex exponential for one of

the two channels contains a 90◦ phase shift term that is applied before the data from

the two channels is summed. This results in the desired baseband information, with

a 3-dB enhancement in signal-to-noise ratio (SNR) due to the combined channel data

[34].

6. Use a finite impulse response (FIR) filter to decode the Barker phase-coded signal –

The transmitted pulse is modulated using binary phase-shift keying (BPSK). This is

a common technique used in radar systems to attain high range resolution without

reducing signal power due to shorter pulses [13]. The CADI system uses a Barker-

13 code, which gives excellent range resolution with minimal sidelobes. In order to

decode the I/Q data, an FIR filter is used. The taps for this filter correspond to the

elements in the Barker code, each with a multiplicity equal to the transmitted baud

length multiplied by the receiver sampling rate.

7. Generate final RTI power map and plot – At this point, the I/Q data has been fully

corrected and decoded, and a final power map is generated according to Equation 3.4.

The IPP number axis is replaced by a logarithmically spaced frequency axis, as the

two are synonymous in this system, and the range axis is calculated using the speed

of light in free space (c = 3 × 105 km/s) and the sampling rate. The resulting plot is

saved as an image file to the hard disk.

40



8. Save the plot back in the HDF5 file – Again using h5py, the previously plotted ionogram

image is stored back into the original HDF5 data file, as shown in Figure 3.7. This

allows future users of the data to quickly preview the I/Q data content without the

need to reprocess using the steps described above.

3.1.2.2.5 Scheduling Software In order for the PISCO system to properly listen for

ionospheric reflections from an ionosonde transmitter, such as the CADI system, it must

have a priori knowledge of precisely when the transmitter will begin pulsing. In the case

of the CADI installation at Arecibo Observatory, ionosonde operation is scheduled to occur

every 15 minutes, on the 15, 30, 45, and top of every hour.

Two tiers of schedulers are used for proper temporal alignment: the standard UNIX

cron and a custom high-precision scheduler. cron provides an easy to use, very flexible, and

robust scheduler system through the use of a plain-text configuration file, called a crontab

(i.e., cron table) [35]. The crontab allows the user to schedule tasks arbitrarily, by month,

day of month, day of week, hour, and minute, which is perfect for scheduling the 15-minute

operation intervals, but it does not provide or guarantee a time resolution finer than one-

minute intervals. This necessitates the use of a scheduler with better than one-second time

resolution.

The high-precision scheduler (Scheduler) is a simple class containing only one member

function, Scheduler::Run(), which is called immediately upon construction. Figure 3.8

illustrates the operation of Scheduler::Run(). This member function makes use of a timer

function with microsecond resolution to schedule tasks to the top of the second. It does

so by calculating the time difference (with microsecond resolution) between the scheduled

execution time and the current time, halting execution of the program3 with the nanosleep()

function for exactly half of the calculated time difference. This process is repeated in a loop

3Note that Scheduler is not multi-threaded, contrasting the operation of IonosondeRxRun, discussed in
Section 3.1.2.2.2. It is this single-threaded halting of execution that enables Scheduler to work properly.

41



Run() called

Get current time

Is current time past
target time?

Calculate time
difference

 No

Exit schduler,
Resume execution

 Yes
Sleep half of
the wait time

Is current time
within threshold?

 No

 Yes

Figure 3.8: Flow diagram of the high-precision scheduler developed for PISCO.

42



2:59 3:01:00.00

3:00:00.00

Scheduler Operation RX Sampling

CADI

PISCO

CADI TX, RX 

Data Processing/Plotting

Time

Figure 3.9: Scheduling of CADI and PISCO software.

until the time difference is within an acceptable threshold of the scheduled execution time.

As a failsafe, the Scheduler will resume execution of the scheduled task immediately if the

time difference is negative (i.e., if the scheduled execution time has already passed).

Both the PISCO and CADI host computers use the high-precision scheduler; how-

ever, in the case of PISCO, Scheduler is incorporated directly into the main program,

IonosondeRxRun, whereas, because CADI is closed-source, a simple wrapper program was

written to execute the CADI software upon completion of Scheduler.

Figure 3.9 pictorially represents the scheduling of CADI and PISCO operations. With

time on the horizontal axis, the top half of the diagram shows CADI operations and the

bottom half shows PISCO operations for a given ionosonde run, e.g., at 3:00 am. The

crontab on both CADI and PISCO host computers schedules the high-precision scheduler

for operation one minute prior to the ionosonde run. Due to the one-minute time resolution

of cron this could potentially occur anywhere between 2:59:00 and 2:59:59. Once the high-

precision scheduler is called on the CADI system, it schedules the CADI software to begin

operation with approximately 10-ms precision. Because the CADI software includes some

sort of short initialization before pulsing,4 a “fudge factor” time constant (experimentally

determined to be about 1.75 s) was introduced to account for this delay, thus beginning the

4This is an assumption based on the observable delay between calling the CADI software and when the
groundwave pulse was visible on a spectrum analyzer.

43



ionosonde run at 3:00:00.00. Simultaneously, the receiver software on the PISCO system

starts the receiver data collection from the USRP. Because the receiver software framework

(GnuRadar) is open-source, the high-precision scheduler is able to be built into the receiver

software (occurring after initialization), eliminating the need for a “fudge factor” time con-

stant. After one minute, the CADI system finishes pulsing and the PISCO system stops

data collection from the USRP. Finally, the PISCO data processing and plotting software is

called, producing the range-time-intensity (RTI) plot discussed in Section 3.1.2.2.4.

3.1.2.2.6 Scripting Because there are many different pieces of software, each with their

own specific function, that comprise the PISCO receiver, there is a need to tie everything

together so that each program does not need to be run separately and manually. Fortunately,

scripting languages are designed exactly for this purpose. Listing 3.2 shows the ionorun

script used by the PISCO system to coordinate all the different software components on the

GPC. The script begins by initializing and setting some time-based variables for filenames.

After collecting data into /data/IonosondeRx.h5 with the IonosondeRxRun data collection

program, the script renames the data file to include a datestamp for easy cataloging. Then

the data plotter (ionoplotter) software is run, generating the /data/Ionogram.png image

file, which is renamed with a datestamp matching its corresponding data file. The data file is

then compressed using the bzip2 compression algorithm to save disk space. Finally, several

symbolic links are created to the latest data file and plot, allowing easy access to the most

recent data run.

3.1.2.2.7 Remote Access The general-purpose computer for this receiver system is

set up to be accessible through ssh on TCP port 22 as the user radar. At the time of

writing, the machine has been given a fixed IP address of 192.231.95.182. In order to access

the machine, the connecting host should either be inside the Arecibo Observatory LAN or

remotely connected via ssh to remoto.naic.edu. Note that an Arecibo Observatory user

44



Listing 3.2: ionorun script to coordinate PISCO receiver software.

1 #!/bin/bash

2
3 # Load the bash environment settings

4 source /home/radar /. cronenv

5
6 # Set a couple variables that are used for filenames

7 TIME=‘date -d "next minute" +%F-%R‘

8 DATA="/data/data_"$TIME".h5"

9 IMAGE="/data/rti_"$TIME".png"

10
11 # Run the IonosondeRxRun (the data collection program)

12 /usr/local/bin/IonosondeRxRun

13
14 # Rename the output file to a datestamped filename

15 mv /data/IonosondeRx.h5 $DATA

16
17 # Run the ionogram/RTI plotter

18 python /usr/local/bin/ionoplotter $DATA -m

19
20 # Rename image to a datestamped filename

21 mv /data/Ionogram.png $IMAGE

22
23 # Compress the data file

24 pbzip2 $DATA

25
26 # Create a symbolic link to the most recent ionogram/RTI image

27 unlink /data/rti_latest.png

28 ln -s $IMAGE /data/rti_latest.png

29
30 # Create a symbolic link to the most recent data file

31 unlink /data/data_latest.h5.bz2

32 ln -s $DATA".bz2" /data/data_latest.h5.bz2

45



Listing 3.3: Helpful ssh configuration entry for remote connection to the PISCO installation
at Arecibo Observatory.

1 Host coruscant

2 User radar

3 Hostname 192.231.95.182

4 ProxyCommand ssh <USER >@remoto.naic.edu nc %h %p 2> /dev/null

account is required in order to make the connection.

A simple way to automate the connection through remoto.naic.edu is to use it as an ssh

proxy. By adding the configuration in Listing 3.3 to the connecting host’s ~/.ssh/config

file, connection to the remote machine can be made simply by running the command

$ ssh -Y coruscant

Data files and ionogram images are stored in /data. The ionogram plot from the most

recent data run can be viewed using the command

$ eog /data/rti_latest.png

3.1.3 Summary

This section has presented the overall hardware and software architecture of the PISCO

receiver system, in addition to many of the critical details that enable proper functionality

of the system. Additional, more extensive code listings for the software powering PISCO

can be found in Appendix A.

46



3.2 PSU All-sky Radar Interferometry System

The PSU All-sky Radar Interferometry System (PARIS) is a 50-MHz digital radar designed

to study specular meteor trails. The first deployment of the system is located near The

Pennsylvania State University (University Park) campus, at the Rock Springs Radio Space

Observatory (magnetic mid-latitude). The system is a traditional radar in the sense that the

transmitter and receivers are colocated and the system is fully synchronized by logic-level

signals in hardware. COTS hardware components and open-source software comprise the

radar system, providing transmit pulse control and conditioning, as well as receiver control;

digital signal processing; and data collection, display, and storage. Ryan Seal is largely

responsible for the system-level, hardware, and software designs [3], while the receive RF

front-end design, system integration and documentation, preliminary data analysis software,

and extension of the receiver software to support the five channels necessary for interferom-

etry described by [36] were the primary duties of the author.

3.2.1 System Overview

Figure 3.10 shows a high-level systems diagram of PARIS, comprised of the transmit and

receive segments. The transmit segment (outlined in gold) of this radar system is composed

of five main high-level components: 1) the direct digital synthesizer responsible for generat-

ing the RF carrier signal, as well as several clock signals for other components; 2) the radar

controller responsible for generating a variety of logic-level pulses necessary for radar oper-

ation, including the transmit pulse gate signal; 3) the transmit RF front end responsible for

gating the RF carrier, as well as signal conditioning prior to transmission; 4) the transmitter

responsible for power amplifying the pulsed RF carrier in preparation for transmission; and

5) the antenna responsible for transducing the electrical signal to RF energy. The pulsed RF

signal propagates into the ionosphere from the transmit antenna, and reflects and scatters

47



Receive Segment

Transmit Segment

P
u
lse

d
 R

F

Meteor R
eflections

Host Computer

Data Collection

Data Processing

and Display

Data Storage

Receiver Control

Radar

Controller

USRP1 Receivers

RF A/D Sampling

Filtering and

Decimation

Digital Down-

Conversion

RX RF Front End

Filtering

Amplification

TX Blanking

Direct Digital

Synthesizer

TX RF Front End

RF Gating

Filtering

Amplification

Phase Coding

Transmitter

TX Antenna

RX Antennas

USB

Clock

RF

Carrier

TX Gate

Trigger

TX Blank

Clock

Ionosphere

Figure 3.10: Overview of the PSU All-sky Radar Interferometry System.

48



off any available targets (e.g., meteor events, ionospheric layers, airplanes, etc.). Some of

this reflected energy is captured by the receive antennas, the beginning of the signal path in

the receive segment.

The six main components of the receive segment (outlined in pink in Figure 3.10) are:

1) the array of receive antennas responsible for transducing the captured RF energy from

target reflections into electrical signals; 2) the receive RF front end responsible for some basic

hardware signal conditioning; 3) the USRP1 receiver devices responsible for digitization and

preliminary signal processing of the received signals; 4) the host computer responsible for

controlling the USRP1 devices, as well as data collection, processing, display, and storage;

5) the radar controller responsible for generating logic-level signals for receiver triggering

and protection; and 6) the direct digital synthesizer responsible for providing a stable clock

source for the USRP1 devices. All of the components in both the transmit and receive

segments are further detailed in Section 3.2.2.

3.2.2 Implementation

The following sections detail the hardware and software components from which PARIS is

comprised.

3.2.2.1 Hardware

A systems diagram of the different hardware components and their interconnects is presented

in Figure 3.11. These components are detailed in the following sections.

3.2.2.1.1 Antennas PARIS uses six five-element Yagi antennas: one for signal transmis-

sion, and five for interferometric signal reception. Each antenna is mounted on the ground

vertically, illuminating the region of the sky directly above the antenna, with a beamwidth

49



Direct Digtal

Synthesizer

64 MHz

20 MHz

64 MHz

49.8 MHz

Linux Host

Computer

USB

USB

Transmit RF

Front End

RF In

RF OutTX Gate

Code

Tycho Pulse Transmitter 

RF OutRF Drive

Radar Controller

TX BlankClock

TX Gate

Code

RX1 Trig.

RX0 Trig.

Receive RF Front End

TX Blank

RF In 1

RF In 0

RF In 2

RF In 3

RF In 4

RF Out 1

RF Out 0

RF Out 2

RF Out 3

RF Out 4

USRP1 (master)

Ch. 0

Ch. 1CLK

USB Ch. 2

Ch. 3

Trigger

USRP1 (slave)

Ch. 0

Ch. 1CLK

USB Ch. 2

Ch. 3

Trigger

RX

Ant. 0

RX

Ant. 2

RX

Ant. 1

RX

Ant. 3

RX

Ant. 4

TX

Ant.

Figure 3.11: PARIS systems diagram (low-voltage DC and AC power connections omitted).

of approximately 60◦ [3].5

The physical layout of the five receive antennas is shown in Figure 3.12, based on the

classical cross pattern for interferometry, as described in [36], with three antennas aligned

along the magnetic North–South line and three aligned along the magnetic East–West, shar-

ing the common central antenna. The antennas are oriented such that the Yagi elements

are aligned to the magnetic East–West line (for consistency), and inter-antenna spacing is

either 2λ or 2.5λ, where λ is the wavelength of the system RF carrier. The physical location

of the transmit antenna with respect to the receive antenna array is unimportant as long as

it is in the radiative far-field of the receive antennas [37].

Each of the five Yagi antennas used by the PARIS receive segment includes a preampli-

fier mounted directly on the antenna itself. Figure 3.13 shows the electrical configuration

5The descriptor “all-sky” is derived from the fact that the antennas used illuminate such a large region
of the sky.

50



2 λ

2 λ

2.5 λ

2.5 λ

N

Figure 3.12: Top view of receive antenna array layout for PARIS, adapted from [36] (not to
scale).

+26 dB

Bias Tee

Yagi

To RF

RX Chain
DC

Power

Receive Antenna

Figure 3.13: Hardware configuration of one receive antenna for PARIS.

of this preamplifier on the antenna, and Table 3.3 lists the individual components. The

preamplifier’s purpose is to amplify the received signal prior to sending it through the an-

tenna transmission line, over which several decibels of attenuation will occur. Without this

preamplifier, very low-amplitude signals could potentially drop below the system noise floor,

at which point the signals are unrecoverable, regardless of receiver front-end hardware (dis-

cussed in Section 3.2.2.1.3). The preamplifier not only alleviates this issue, but also provides

some preliminary filtering, as it is a tuned preamplifier, reducing out-of-band noise.

In order to power the preamplifiers on each of the antennas, a DC voltage is injected

onto the antenna transmission line at the receive RF front end (see Section 3.2.2.1.3). This

Table 3.3: Receive antenna components.
Manufacturer Part Number Description
— — Yagi Antenna
Advanced Receiver Research P50VDG +26-dB RF Amplifier
MiniCircuits ZFBT-282-1.5A+ Bias Tee

51



Table 3.4: Radar controller output signal descriptions, as used in PARIS.
Name Description Destination
TX Gate Transmit pulse window RF TX Chain
Code BPSK phase code for pulse compression RF TX Chain
TX Blanking Receiver disable for protection from groundwave RF RX Chain
RX0 Trigger Receiver window USRP1 (master)
RX1 Trigger Receiver window USRP1 (slave)

DC voltage is separated from the RF output of the preamplifier through the use of a bias

tee. This device is functionally equivalent to a capacitor and inductor sharing a node, with

high-frequency (i.e., RF) signals passing through the capacitor and low-frequency (i.e., DC)

signals passing through the inductor.

3.2.2.1.2 Radar Controller Because the fundamental operation of a radar system is

dependent on translating time intervals into physical distances, it is crucial for the differ-

ent components of both the transmit and receive segments to operate synchronously and

consistently. The radar controller (also called radar pulse generator) is the master device

that generates the radar timing signals necessary for operating the rest of the system syn-

chronously. The waveforms of these signals are defined by a number of radar parameters

including, but not limited to, IPP, baud length, phase code, transmit pulse width, receiver

window pulse width, and several delays. These digital signals are distributed throughout the

radar system as illustrated in Figure 3.11.

The radar timing signals that are used in PARIS are listed in Table 3.4, and graphically

illustrated in Figure 3.14. The TX Gate signal is used to limit the RF carrier (generated

by the direct digital synthesizer) to just a small time window to transmit, defining the

basic range-resolution of the radar (although this is improved through the use of pulse

compression). The Code signal is the same length as the TX Gate, and controls the phase of

the RF carrier (either 0◦ or 180◦ for BPSK). The TX Blanking pulse disables the receive RF

front end for protection by using an active-low signal slightly wider than the TX Gate signal

52



...
TX Gate

Code

TX Blank

RX[0..1] Trigger

Time

Figure 3.14: Radar controller output signals timing used by PARIS.

to account for transient effects from the transmitter outside the TX Gate window. Finally,

two trigger signals (RX0 and RX1 Triggers) are used to enable sampling on the two USRP1

devices.

The radar controller used by PARIS uses an FPGA for accurate, stable, and reconfig-

urable radar pulse timing. Sixteen front-panel transistor–transistor logic (TTL) compatible,

50-Ω outputs are fully software programmable from the PicoITX form-factor computer inside

the radar controller 2U rack-mount chassis. Additionally, an LCD screen on the front panel

displays real-time information about the radar controller. The system can be synchronized

to one of three different clock signals (one internal and two external), as well as several exter-

nal timing triggers. Two open-source programs on the radar controller, bpg-generate and

bpg-shell, are used to configure and operate the device6 (discussed in Section 3.2.2.2.1).

3.2.2.1.3 Receive RF Front End After the antennas convert the captured RF energy

into electrical signals, the receive RF front end provides important analog signal conditioning

prior to digitization by the USRP1 receiver device. Figure 3.15 shows the configuration of

one of the five signal chains in the receive RF front end, with each of the components listed

in Table 3.5.

The receive RF front end begins with a bias tee at the input from the antenna cable in

order to perform the DC power injection for biasing the antenna preamplifiers, as discussed

in Section 3.2.2.1.1. The output of the bias tee is followed immediately by a diode-based

6See [39] for more information about both the hardware and software of the radar controller.

53



BPF

50 MHzRF

Limiter

+26 dB

Tx Blanking

-6 dB
BPF

50 MHz
+26 dB +11 dB-6 dB

RF

Limiter

Bias Tee
RF Ch. 1 from

Antenna 1 

TX Blanking from

Radar Controller

RF Ch. 1

to USRP

Receive RF Front End

DC

Power

Figure 3.15: One channel of the PARIS receive RF front end.

Table 3.5: Receive RF front-end components.
Manufacturer Part Number Description
MiniCircuits ZFBT-282-1.5A+ Bias Tee
Ryan Seal — RF Limiter
KR Electronics KR-2867 Band-pass Filter
MiniCircuits ZYSW-2-50DR RF Gating Switch
Advanced Receiver Research P50VDG +26-dB RF Amplifier
KR Electronics KR-2867 Band-pass Filter
MiniCircuits VAT-6+ 6-dB Attenuator
Advanced Receiver Research P50VDG +26-dB RF Amplifier
MiniCircuits VAT-6+ 6-dB Attenuator
Advanced Receiver Research P30-1000/11VD +11-dB RF Amplifier
MiniCircuits VLM-33+ RF Limiter

RF limiter circuit, designed to clip the input signal if it exceeds one diode threshold voltage,

protecting components further down the chain from input overvoltage conditions. Following

the RF limiter is a 50-MHz band-pass filter, with a bandwidth of approximately 9 MHz and

very steep passband rolloff edges, effectively removing any out-of-band signals that may have

been picked up between the antenna and this filter. This device also serves as the important

anti-aliasing filter, enabling the USRP1 receiver to use digital down-conversion to demodulate

the carrier, without introducing out-of-band information. Next is the RF gating switch used

for blanking the receiver during transmitter operation, protecting the components further

down the chain from input overvoltage. The logic-level signal that controls operation of

this device is the TX Blanking signal from the radar controller (see Section 3.2.2.1.2). Next

is the same low-noise, tuned preamplifier that is used on the antenna, providing a gain

of approximately +26 dB. Another 50-MHz band-pass filter follows the amplifier, further

54



reducing out-of-band noise. A 6-dB attenuator is then used for two purposes: first, to reduce

the signal to a level within the linear range of the amplifiers further down the chain (i.e.,

avoiding output clipping); and second, to reduce all frequency content equally, potentially

pushing some out-of-band noise below the system noise floor. Another tuned preamplifier

and attenuator are then used for the same reasons previously discussed, increasing the desired

signal level and reducing noise level. Next, a wideband +11-dB amplifier is used, further

increasing signal level. Finally, just before the receive RF front-end output, an RF limiter

is used to clip any large input signals to the USRP1’s maximum input range (2 Vpp or +10

dBm), avoiding saturation and damage to the USRP1 device.

Utilizing the Friis formula for cascaded noise figure analysis [38], a basic MATLAB script

was written to calculate noise figure and overall system gain for RF front-end signal chains

(code listed in Appendix A). For PARIS’s receive RF front end, the calculated system noise

figure is 0.6 dB with a gain of 59.3 dB, including the USRP1’s ADC (see Section 2.2.1.2),

but excluding the antenna (as the antenna’s noise temperature/noise figure are unknown).

3.2.2.1.4 USRP Like the PISCO system (discussed in Section 3.1), PARIS also uses the

USRP1 device as the central unit in the receiver. However, because each USRP1 device is

limited to a maximum of four receive channels, two devices are needed for the five-channel

setup of PARIS. The “master” device is fixed with two BasicRX daughter boards (in the

USRP’s RXA and RXB slots), each providing two channels to connect the output of a

receive RF front end. The “slave” device is fitted with just a single BasicRX daughterboard

in the RXA slot, providing the fifth channel needed for interferometry. The daughterboards

provide 50-Ω termination and transformer coupling of the input signal to the USRP’s ADCs.

Also like the PISCO system, the USRP1 devices of PARIS use a sampling clock of 64 MHz

from the external direct digital synthesizer (Section 3.2.2.1.7). A discussion of the sampling

frequency, system bandwidth, and the USRP1 internal oscillator issues is presented in Section

55



Jumper on io_rx_a[0]

Figure 3.16: Grounding jumper positions on the BasicRX daughterboard for the master
(left) and slave (right) USRP configurations used by PARIS.

3.1.2.1.2.

The master and slave USRP1 devices are configured as such through the use of the ex-

ternal general-purpose input/output (GPIO) lines from the FPGA. In addition to providing

two signal inputs, the BasicRX daughterboard also features several break-out headers that

give access to sixteen digital GPIO connections to the FPGA. The usrp trigger.rbf FPGA

image used by PARIS is configured to pull up the first fifteen GPIO lines on the BasicRX

daughter board in the RXA slot (io rx a[0:14]). The use of grounding jumpers allows

these first fifteen GPIO lines to form a binary address7 used by the host software to differ-

entiate between USRP devices and allow them to be correctly ordered in software. Because

the GPIO lines are pulled high and grounding jumpers are used, the address is actually

counted backwards from 0x7FFF. This means the master device uses no grounding jumpers

on io rx a[0:14] with the address 0x7FFF, and the slave device uses a grounding jumper

on io rx a[0] with the address 0x7FFE. Figure 3.16 shows the BasicRX daughterboards in

both the master and slave configurations.

7This addressing technique is actually expandable to 215 = 32768 USRP1 devices, even though only two
are used in PARIS.

56



RF Gating

RF In from DDS
Gated RF to

Transmitter

RF Gate from

Radar Controller

Transmit RF Front End

BPF

50 MHz
+40 dB

BPSK
coding

BPSK Code from

Radar Controller

+20 dBm

Figure 3.17: PARIS transmit RF front end.

Table 3.6: Transmit RF front-end components.
Manufacturer Part Number Description
MiniCircuits ZYSW-2-50DR RF Gating Switch
MiniCircuits SIF-50+ Band-pass Filter
Julio Urbina — Phase-Coding Circuit
MiniCircuits ZHL-5W-1 +40-dB RF Amplifier

The sixteenth GPIO signal on the RXA BasicRX daughterboard (io rx a[15]) is used

as the trigger signal input from the radar controller that enables sampling on the USRP

during the receive trigger window (see Section 3.2.2.1.2). A custom-built 50-Ω terminated

cable is used to connect between the USRP’s chassis and the GPIO and ground pins.

The triggering implementation in usrp trigger.rbf on the FPGA is discussed further in

Section 3.2.2.2.2, but generally the structure is similar to the standard usrp1 fpga.rbf de-

sign provided by the UHD software package. A programmable NCO and complex multiplier

produce a complex data stream from the USRP’s ADCs, and also provides CIC decimation

and filtering of the signal. The USRP1 device transfers a channel-interleaved data stream

to the host computer over a USB 2.0 interface.

3.2.2.1.5 Transmit RF Front End In order to generate the pulsed RF signal to be

amplified and sent to the transmit antenna by the transmitter, several stages of analog signal

conditioning need to be applied to the RF carrier signal from the DDS. The transmit RF

front end consists of four stages, as illustrated in Figure 3.17 and listed in Table 3.6. The

first component in the chain is an RF gating switch, limiting the RF carrier to the width of

57



Table 3.7: Basic hardware specifications of the PARIS receiver GPC.
Processor Family Intel Core-i7 960, 3.2 GHz
RAM 12 GB DDR3 (3×4 GB)
Hard Drive 1 TB, 7200 RPM SATA
USB Interfaces 8×USB 2.0

the TX Gate signal from the radar controller, as described in Section 3.2.2.1.2. The output

of the RF gating switch is connected to a 50-MHz band-pass filter in order to reduce the

high-frequency harmonic content that appears on the gated RF carrier due to the RF gating

switch itself. The next component in the transmit RF front end is the phase-coding circuit.

Given the logic-level Code signal generated by the radar controller, it applies a phase shift

of 0◦ or 180◦ to the input signal, BPSK-encoding the pulsed RF used for pulse compression

radar operation. Finally, the signal is amplified with a high-gain (+40-dB) amplifier in order

to bring the signal level up to the 6-Vpp (+20-dBm) level required by the RF input of the

transmitter.

3.2.2.1.6 General-Purpose Computer The host general-purpose computer used by

PARIS is responsible for data capture and processing from the two USRP1 devices. Most

modern desktop or laptop computers with at least two USB 2.0 interfaces should be capable

of acting as the GPC for PARIS.8 Table 3.7 lists the basic hardware specifications of the

GPC tested and used with PARIS.

3.2.2.1.7 Direct Digital Synthesizer In order to properly synchronize the different

components of the radar system, a single master clock reference from which all other clock

signals are derived is necessary. The Novatech DDS9m is a 170-MHz, four-channel pro-

grammable oscillator that synthesizes the output waveforms from either the internal Voltage-

Controlled Temperature-Compensated Crystal Oscillator (VCTCXO) or an external clock

8The sum total USB bandwidth on the GPC is a possible limiting factor of channel bandwidth on the
USRP1 devices, although this has not been fully investigated.

58



Table 3.8: DDS output signals.

Channel
Frequency
(MHz)

Amplitude
(Counts)

Destination

0 20.000000 1023 Radar Controller Std. Clock
1 49.796875 60 RF Input to Transmit RF Front End
2 64.000000 1023 USRP1 (slave) clock
3 64.000000 1023 USRP1 (master) clock

source [40]. Each of the four independent outputs can be programmed with frequency, am-

plitude, and phase over a serial interface.

Table 3.8 lists the output configuration of the Novatech DDS9m as used in PARIS. Note

that the phase of all four channels is set to 0◦. The radar controller uses a 20-MHz clock for

pulse generation, while the USRP1 devices each use a clock of 64 MHz, all with maximum

amplitude count, as the exact amplitude of these signals is not critical for proper operation.

The RF carrier’s amplitude, however, is calibrated such that the output of the transmit RF

front end meets the 6-Vpp (+20-dBm) input level required by the transmitter.

This device is nearly identical in performance to the Novatech 409B used by PISCO (see

Section 3.1.2.1.3); however, it is sold at the printed circuit board (PCB) level, without its

own chassis, thus requiring a custom housing.

3.2.2.1.8 Transmitter In order for the receiver to detect the weak signal returns from

meteor events and other ionospheric phenomena, the pulsed RF signal to be transmitted

must be amplified significantly before it is applied to the transmit antenna. The transmitter

is designed specifically for this purpose, while also providing control and safety mechanisms

necessary for high-power electronics.

PARIS uses the Tycho Technologies WPT-50 Pulse Transmitter (shown in Figure 3.18),

a 50-MHz (tunable) pulse transmitter developed for wind profiling radar applications. The

transmitter uses three amplifier stages in the RF signal path: a solid state amplifier followed

by two vacuum tube amplifier stages (driver and final) [41]. The transmitter is controllable

59



Figure 3.18: Front view of the Tycho Technologies WPT-50 Pulse Transmitter.

60



via a number-pad and seven-segment display on the front panel, as well as through a remote

serial interface. A number of analog sensors monitor the status of various parameters of

the transmitter (voltages, currents, temperatures, etc.), and an on-board microcontroller

uses these sensor measurements to determine if the transmitter is operating within expected

bounds. If so, the user is permitted to advance the transmitter through states 1 (warm-up

period), 3 (high-voltage biasing of the tubes), and 4 (input signal applied and transmission).

If any sensor value is out of range, the transmitter disables the amplifiers for safety and

displays an error code. Additionally, six standard and two high-voltage fuses are used to

protect both the internal electronics and operator in the case of a failed component or unsafe

external operating condition.

The transmitter requires a pulsed RF input signal, with amplitude of approximately 6

Vpp (+20 dBm) and a duty-cycle of no greater than 2%, to be applied to the “RF Input” port

(BNC-type) on the rear of the transmitter [41]. The transmit antenna feedline is connected

to the “RF Output” port (HN-type) also on the rear of the transmitter. Several signal

“sense” ports are available to monitor the pulsed RF signal at different stages.

Experience operating the transmitter has shown high sensitivity to the final stage filament

voltage sensor measurement, which is an AC voltage derived from the 220–250 VAC mains

power input. Because the mains voltage varies daily and over the course of the year, it

is sometimes necessary to adjust the filament voltage sensor potentiometer, such that the

filament voltage measurement stays within the 9.8- to 10.7-V operational range.

3.2.2.2 Software

Being a software-defined radar system, a large portion of the PARIS’s flexibility is in the

software. The following sections provide a high-level overview of the software run by the

radar controller and host GPC; however, the reader is encouraged to see [3, 4, 39, 42, 43, 44]

for further details.

61



3.2.2.2.1 Radar Controller As previously mentioned, the radar controller contains

a PicoITX computer (running Gentoo Linux) for both radar controller configuration and

operation. The software that governs the radar controller operation is part of a project called

Bit Pattern Generator (BPG), designed for a general class of digital waveform generator

systems [43, 44]. Operating the radar controller is typically a three-step process, illustrated

in Figure 3.19. The user begins by writing a plain-text configuration file (or modifying an

existing configuration), called a human-interpretable file (HIF), that defines the behavior of

the Bit Pattern Generator device. The user then calls the bpg-generate program to translate

the HIF into an instrument-interpretable file (IIF) for the radar controller hardware. Then,

the user runs bpg-shell, an interactive console-type interface that allows the user to control

the radar controller’s hardware (see Section 3.2.2.1.2 for more details), during the course of

which the radar experiment takes place.

3.2.2.2.1.1 bpg-generate After the user or experiment designer has defined a mode

in the HIF, the defined parameters and signal outputs must be translated into a format

understood by the radar controller hardware, namely the FPGA. The bpg-generate pro-

gram is responsible for this task, provided the syntax of the HIF is correct. Additionally,

the configuration parameters are validated against a predefined list of rules specific to the

hardware of radar setup. For instance, when operating with the Tycho WPT-50 transmitter,

the program will throw an error if a transmit pulse duty cycle of >2% is detected. Finally,

if the configuration passes the ruleset, an IIF is generated.

The command to generate an IIF from an HIF is as follows:

$ bpg-generate -o mymode.iif mymode.hif

where mymode.hif is the plain-text HIF defined by the user and mymode.iif is the output

IIF generated by bpg-generate. Any number of modes can be generated and saved for

immediate or future use.

62



Plain-text editor

bpg-generate (automated)

bpg-shell (interactive)

                 (Experiment Operation)

Define experiment
mode in HIF file

 n modes

Check syntax

Parse parameters

Validate against
predefined

instrument rules

Generate IIF
mode file

   n modes

  

Set clock,
sync options

Add mode  n modes

Enable signal
output

Disable signal
output

Switch modes  n modes

Figure 3.19: Typical operational workflow with the Bit Pattern Generator software.

63



3.2.2.2.1.2 bpg-shell After generating one or more IIF configuration modes, the

bpg-shell program may be used to control the radar controller hardware outputs. bpg-shell

accepts around fifteen different commands; however, during normal operation of systems like

PARIS, only a few are used. Because the FPGA can connected to multiple clock sources,

the user must specify which clock source to use (internal, standard external, or drifted ex-

ternal), with the clock command. Additionally, a synchronization source (e.g., 1PPS) can

be selected if desired. Next, the user can add any number of previously defined IIF modes

to the shell’s mode list, via the add command. After at least one mode is added, the radar

controller’s signal outputs can be enabled with the start command (additional modes can

be added or removed (remove) from the mode list after the output has been started if nec-

essary). At this point, radar experiment operations may begin, assuming all other hardware

is properly configured and operating, of course. While the output is enabled, the user can

synchronously switch (switch) between operating modes, traversing the mode list linearly.

At the conclusion of the radar experiment, the signal outputs should be disabled with the

stop command.

The command to start the interactive shell programs is as follows:

$ bpg-shell

bpg-shell is typically left running for the duration of the experiment. It is important to note

that although the FPGA is configured by and receives commands from the radar controller

computer, it operates independently. This means it is possible for the radar controller to

be outputting signals even after the user has exited bpg-shell. Upon running bpg-shell

again, the FPGA will be reset and all signal outputs will cease.

3.2.2.2.2 USRP FPGA The FPGA design used by PARIS (and in general, the Gnu-

Radar software package) is usrp trigger.rbf, modeled after the standard FPGA design

provided by UHD, but with special modifications for triggering capabilities. Figure 3.20

64



e
n

a
b

le
d

t

d
a
ta

[1
5
..

0
]

tr
id

a
ta

[1
5
..

0
]

a
re

s
e
t

in
c
lk

0
c
0

0

a
re

s
e
t

in
c
lk

0
c
0

0

c
lo

c
k

e
n

a
b

le

re
s
e
t

s
e
ri

a
l_

s
tr

o
b

e

s
e
ri

a
l_

a
d

d
r[

6
..

0
]

s
e
ri

a
l_

d
a
ta

[3
1
..

0
]

rx
_
a
_
a
[1

1
..

0
]

rx
_
b

_
a
[1

1
..

0
]

rx
_
a
_
b

[1
1
..

0
]

rx
_
b

_
b

[1
1
..

0
]

d
d

c
0
_
in

_
i[

1
5
..

0
]

d
d

c
0
_
in

_
q

[1
5
..

0
]

d
d

c
1
_
in

_
i[

1
5
..

0
]

d
d

c
1
_
in

_
q

[1
5
..

0
]

d
d

c
2
_
in

_
i[

1
5
..

0
]

d
d

c
2
_
in

_
q

[1
5
..

0
]

d
d

c
3
_
in

_
i[

1
5
..

0
]

d
d

c
3
_
in

_
q

[1
5
..

0
]

rx
_
n

u
m

c
h

a
n

[3
..

0
]

1

b
u

s
_
re

s
e
t

c
le

a
r_

s
ta

tu
s

g
a
te

_
e
n

a
b

le

rd
_
c
lk

rd
_
re

q

re
s
e
t

s
tr

o
b

e

w
r_

c
lk

c
h

a
n

n
e
ls

[3
..

0
]

d
in

0
[1

5
..

0
]

d
in

1
[1

5
..

0
]

d
in

2
[1

5
..

0
]

d
in

3
[1

5
..

0
]

d
in

4
[1

5
..

0
]

d
in

5
[1

5
..

0
]

d
in

6
[1

5
..

0
]

d
in

7
[1

5
..

0
]

o
v
e
rf

lo
w

p
a
c
k
e
t_

rd
y

d
o

u
t[
1
5
..

0
]

d
e
b

u
g

b
u

s
[1

5
..

0
]

c
lo

c
k

d
e
c
im

a
to

r_
s
tr

o
b

e

e
n

a
b

le

re
s
e
t

s
a
m

p
le

_
s
tr

o
b

e

s
e
ri

a
l_

s
tr

o
b

e

d
e
c
im

_
ra

te
[7

..
0
]

s
e
ri

a
l_

a
d

d
r[

6
..

0
]

s
e
ri

a
l_

d
a
ta

[3
1
..

0
]

i_
in

[1
5
..

0
]

q
_
in

[1
5
..

0
]

i_
o

u
t[
1
5
..

0
]

q
_
o

u
t[
1
5
..

0
]

c
lo

c
k

d
e
c
im

a
to

r_
s
tr

o
b

e

e
n

a
b

le

re
s
e
t

s
a
m

p
le

_
s
tr

o
b

e

s
e
ri

a
l_

s
tr

o
b

e

d
e
c
im

_
ra

te
[7

..
0
]

s
e
ri

a
l_

a
d

d
r[

6
..

0
]

s
e
ri

a
l_

d
a
ta

[3
1
..

0
]

i_
in

[1
5
..

0
]

q
_
in

[1
5
..

0
]

i_
o

u
t[
1
5
..

0
]

q
_
o

u
t[
1
5
..

0
]

c
lo

c
k

d
e
c
im

a
to

r_
s
tr

o
b

e

e
n

a
b

le

re
s
e
t

s
a
m

p
le

_
s
tr

o
b

e

s
e
ri

a
l_

s
tr

o
b

e

d
e
c
im

_
ra

te
[7

..
0
]

s
e
ri

a
l_

a
d

d
r[

6
..

0
]

s
e
ri

a
l_

d
a
ta

[3
1
..

0
]

i_
in

[1
5
..

0
]

q
_
in

[1
5
..

0
]

i_
o

u
t[
1
5
..

0
]

q
_
o

u
t[
1
5
..

0
]

c
lo

c
k

d
e
c
im

a
to

r_
s
tr

o
b

e

e
n

a
b

le

re
s
e
t

s
a
m

p
le

_
s
tr

o
b

e

s
e
ri

a
l_

s
tr

o
b

e

d
e
c
im

_
ra

te
[7

..
0
]

s
e
ri

a
l_

a
d

d
r[

6
..

0
]

s
e
ri

a
l_

d
a
ta

[3
1
..

0
]

i_
in

[1
5
..

0
]

q
_
in

[1
5
..

0
]

i_
o

u
t[
1
5
..

0
]

q
_
o

u
t[
1
5
..

0
]

e
n

a
b

le

m
a
s
te

r_
c
lk

re
s
e
t

s
e
ri

a
l_

c
lo

c
k

s
e
ri

a
l_

d
a
ta

_
in

re
a
d

b
a
c
k
_
0
[3

1
..

0
]

re
a
d

b
a
c
k
_
2
[3

1
..

0
]

re
a
d

b
a
c
k
_
3
[3

1
..

0
]

s
e
ri

a
l_

d
a
ta

_
o

u
t

s
e
ri

a
l_

s
tr

o
b

e

s
e
ri

a
l_

a
d

d
r[

6
..

0
]

s
e
ri

a
l_

d
a
ta

[3
1
..

0
]

0

m
a
s
te

r_
c
lk

s
e
ri

a
l_

s
tr

o
b

e

u
s
b

c
lk

s
e
ri

a
l_

a
d

d
r[

6
..

0
]

s
e
ri

a
l_

d
a
ta

[3
1
..

0
]

e
n

a
b

le
_
rx

rx
_
b

u
s
_
re

s
e
t 
(G

N
D

)

rx
_
d

s
p

_
re

s
e
t

rx
_
s
a
m

p
le

_
s
tr

o
b

e
 (

V
C

C
)

s
tr

o
b

e
_
d

e
c
im

d
e
c
im

_
ra

te
[7

..
0
]

rc
v
_
c
lk

s
n

d
_
c
lk

s
n

d
_
s
ig

n
a
l

rc
v
_
s
ig

n
a
l2

c
lo

c
k

re
s
e
t

s
tr

o
b

e

a
d

d
r[

6
..

0
]

in
[3

1
..

0
]

0 0 0 0

b
u
st

ri
:b

u
st

ri
p
ll
6
4
:p

ll

p
ll
4
8
:p

ll
2

a
d
c
_
in

te
rf
a
c
e
:a

d
c
i

fi
fo

:f
n
e
w

rx
_
c
h
a
in

:r
x
c
_
0

rx
_
c
h
a
in

:r
x
c
_
1

rx
_
c
h
a
in

:r
x
c
_
2

rx
_
c
h
a
in

:r
x
c
_
3

se
ri
a
l_

io
:s

io

1
6
' 
h
0
0
0
0
 -
-

3
2
' 
h
F
F
F
F
F
F
0
4
 -
-

3
2
' 
h
F
0
F
0
9
3
1
A
 -
-

m
a
st

e
r_

c
n
tr
l:
m

c
m

sy
n
c
h
ro

n
iz

e
r:
sy

n
c

se
tt
in

g
_
re

g
:s

r_
m

is
c

M
Y

S
T

E
R

Y
_
S

IG
N

A
L

m
a
st

e
r_

c
lk

S
C

L
K

S
D

I

S
D

O

S
E

N
_
F
P

G
A

F
X

2
_
1

F
X

2
_
2

F
X

2
_
3

T
X

S
Y

N
C

_
A

T
X

S
Y

N
C

_
B

u
sb

c
lk

rx
_
a
_
a
[1

1
..
0
]

rx
_
b
_
a
[1

1
..
0
]

rx
_
a
_
b
[1

1
..
0
]

rx
_
b
_
b
[1

1
..
0
]

tx
_
a
[1

3
..
0
]

1
4
' 
h
0
0
0
0
 -
-

tx
_
b
[1

3
..
0
]

1
4
' 
h
0
0
0
0
 -
-

u
sb

c
tl
[2

..
0
]

u
sb

rd
y
[1

..
0
]

1
' 
h
0
 -
-

io
_
tx

_
a
[1

5
..
0
]

1
6
' 
h
0
0
0
0
 -
-

io
_
tx

_
b
[1

5
..
0
]

1
6
' 
h
0
0
0
0
 -
-

io
_
rx

_
a
[1

5
..
0
]

io
_
rx

_
b
[1

5
..
0
]

u
sb

d
a
ta

[1
5
..
0
]

Figure 3.20: Toplevel schematic view of the usrp trigger FPGA design used by
PARIS/GnuRadar.

65



D

ENA

Q

PRE

CLR

D

ENA

Q

PRE

CLR

D

ENA

Q

PRE

CLR

rcv_signal2~reg0 rcv_signal3~reg0

rcv_clk

snd_signal

rcv_signal1

rcv_signal2

rcv_signal3

rcv_signal1~reg0

snd_clk

Figure 3.21: Schematic view of the synchronize module used for triggering the
usrp trigger FPGA design in GnuRadar.

shows a schematic representation of the top-level module of the usrp trigger design.

The main signal path begins with the rx a a[15:0], rx a b[15:0], rx b a[15:0], and

rx b b[15:0] signals that are received by the adc interface module. The signals are then

distributed out to the four rx chain modules, which provide logic for I/Q generation, fre-

quency tuning via the internal NCO, signal decimation, and filtering. The output signals

from the rx chain modules are sent to a first-in first-out (FIFO) memory with some ad-

ditional logic to interleave the I and Q signals from each of the four channels. Finally,

the output signal is sent to a tri-state buffer module, responsible for interfacing with the

USB microcontroller on the USRP. Additionally, there are several control modules that han-

dle generating control signals and managing settings registers, as well as clock modules for

managing the FPGA input clock signals.

The synchronize module was added to the top-level module for the triggering function-

ality, enabling sampling only during the logic-high receive window (signal io rx a[15]) from

the radar controller. A schematic representation of the synchronize module logic is shown

in Figure 3.21. Several D-type flip-flops are used to buffer the trigger signal and then apply

it to the fifo module, where the processed signals are synchronized.

In addition to interleaving the I and Q signals from the output of the four rx chain

66



D

ENA

Q

PRE

CLR

D

ENA

Q

PRE

CLR

D

ENA

Q

PRE

CLR

reset_ intreset_ int~1
reset_ int~2

strobe_en_neg~0

tag

clock

reset

enable
tag

strobe

strobe_en~0

Figure 3.22: Schematic view of the data tag module in GnuRadar.

modules, the fifo module also includes the logic for injecting the data tag into the each of

the processed data streams, added specifically for GnuRadar. Figure 3.22 shows a schematic

representation of the logic for generating the tagging control signal, implemented in hardware

as several D-type flip-flops and a few logic gates.

3.2.2.2.3 Host Computer As illustrated in Figure 3.10, the host GPC is responsible

for several tasks including data collection, storage, processing, and display, as well as receiver

control. The following sections describe the different software pieces of GnuRadar involved in

data collection and display, as well as receiver control. The received data is stored in tabular

format within HDF5 files, in the same way the PISCO data files are stored (as PISCO

also uses the GnuRadar software package), so the reader is referred to Section 3.1.2.2.3 for

further details. Figure 3.23 shows the typical operational workflow of the different GnuRadar

software components, discussed in the following sections.

3.2.2.2.3.1 Configuration Being a software-defined radar software package, many

different radar configuration options are available to allow the user to tailor the system to

their needs. The GnuRadar configuration file is used to collect many of these parameters into

a single location for two purposes. First, some of the parameters are important to configure

the USRP1 receiver device during the radar experiment (e.g., IPP length, sampling rate,

67



gradar-configure (interactive)

gradar-run-server (automated)

(Experiment Operation)

gradar-run (interactive)

(Experiment Operation)      

Define system config-
uration in YAML file

Start server

    

Load configuration
file from disk

    

Listen for
network requests

Stop server

Execute network
requests

Verify receive windows
match RC trigger

Collect data

Stop data collection

Figure 3.23: Typical operational workflow with GnuRadar.

68



Figure 3.24: Screenshot of the gradar-configure utility.

number of channels, etc.). Second, some of the parameters are important to describe the

experiment to data users (e.g., radar name, receiver device, RF carrier frequency, etc.) for

both processing and results analysis. All of these parameters (as well as several others) are

stored in a YAML file, which is parsed by GnuRadar during runtime.

The GnuRadar software package provides a GUI for simplifying the creation and mod-

ification of configuration files. A screenshot of the interface is shown Figure 3.24. The use

of dropdown menus and dynamically added channel window options not only speeds up the

process of configuration file creation, but it also helps prevent invalid configuration options

from ending up in the configuration file.

3.2.2.2.3.2 Data Capture The gradar-run-server program is a network-based

listener that waits to receive control command packets from gradar-run (or any other pro-

gram capable of sending the control packets). These commands and brief descriptions are

listed below; however, the reader is referred to [4, 42] for a more detailed description of their

69



implementation and operation.

• Verify – Verifies that the receive window defined in the GnuRadar configuration file

matches the receive window detected by the USRP

• Start – Initiates data collection from the USRP device

• Stop – Terminates data collection and closes out the data file

Upon receipt of any of the commands, the gradar-run-server back end executes the com-

mand while the network interface continues to listen for the next command packet. Figure

3.25 illustrates the fundamental software architecture of the gradar-run-server back end,

the backbone of which is the ProducerConsumerModel. This is a multi-threaded object class

that manages the ProducerThread and ConsumerThread object classes, which generate and

store data, respectively. ProducerThread is a parent class of Device, which provides a

generalized interface for data source hardware. Device itself is a parent of the object class

GnuRadarDevice (not shown in Figure 3.25), which provides a specialized interface for data

collection from the USRP1, using the low-level application programming interface (API) for-

merly provided by GnuRadio. It is within GnuRadarDevice that most of the modifications

for multi-device operation were made.

Before discussing the implementation details, it is important to note that the design

philosophy taken when modifying GnuRadar for multi-device operation, the main goal was

to minimize overall code impact, taking advantage of the abstraction layers provided by the

object-oriented design. By taking this approach, coding efforts were minimized, reducing

time to market (so to speak).

Two major components of GnuRadarDevice were modified for multi-device operation,

the first of which being the constructor (GnuRadarDevice::GnuRadarDevice()). Figure 3.26

illustrates the constructor operation process, both before and after mutli-device modifications

were made. Instead of creating only one USRP device object, the constructor now creates

70



ProducerConsumerModel

+Initialize()

+Start()

+Stop()

+Head()

+Tail()

+Depth()

+NumBuffers()

+BytesPerBuffer()

+Overf low()

SThread

+Start()

+Wai t ( )

+Detach()

+Destroy()

+Lock()

+Unlock()

+Pause()

BaseThread

+Status()

+Error()

+Stop()

+RequestData()

+Mutex()

+Condition()
ProducerThread

+Run()

+Stop()

+RequestData()

ConsumerThread

+Run()

+Stop()

+RequestData()

Device

+Run()

+Stop()

+RequestData()

SynchronizedBufferManager

SharedBufferHeader

ConsumerThread reads data from the

shared buffer, formats, and writes to

disk.

ProducerThread reads data from the

device and writes to the synchronized 

buffer manager.

Figure 3.25: Class diagram of gradar-run-server backend [42].

Old Constructor
New Constructor

Make USRP device
with n channels

Set phase, freq-
uency, and gain

 n channels

Calculate # of
devices (m) based
on # of channels

Make USRP device
and add to vector

 m devices

Re-order devices based
on daughterboard addresses

Set phase, freq-
uency, and gain

 m x n channels

Figure 3.26: GnuRadarDevice constructor before (left) and after (right) multi-device modi-
fications.

71



multiple devices, based on the number of channels set in the GnuRadar configuration file,

and adds them to a standard template library (STL) vector. Because of the uncertainty in

USB device ordering by the operating system, the USRP device vector must be sorted based

on the hardware addressing scheme described in Section 3.2.2.1.4. Finally, the frequency,

phase, and gain for each channel is set; however, some code accommodations were made to

select the correct device for each channel.

The second component of GnuRadarDevice that was modified for multi-device op-

eration is the GnuRadarDevice::RequestData() member function, inherited from the

ProducerThread object class (through Device). As illustrated in Figure 3.27, instead of

reading data from the USRP device into a single buffer, an STL vector of buffers is created

to store a buffer for each device. At this point, the buffers are sample-interleaved in the

same fashion that the USRP channel data streams are interleaved (I0 Q0 I1 Q1 I2 Q2 I3

Q3 ...), and then placed into shared memory, where ConsumerThread can store the data to

disk. This approach takes advantage of the abstraction of the GnuRadarDevice class, hiding

the number of devices from the rest of the system, and eliminating the need for higher-level

architecture modifications.

Many of the finer details have been omitted, but the reader is encouraged to reference

[3, 4, 42] for a more thorough understanding.

3.2.2.2.3.3 Receiver Control As described in Section 3.2.2.2.3.2, a network-

based command system is used for controlling data collection with GnuRadar. While

gradar-run-server is a network listener, gradar-run generates and sends the command

packets over the network to the data collection GPC. Figure 3.28 shows a screenshot of the

gradar-run program during data collection (after the configuration has been loaded and

verified).

In the current PARIS implementation, both gradar-run-server and gradar-run are

72



Old RequestData() New RequestData()

Read data from USRP
into buffer

Copy data to shared
memory

Increment shared
memory pointers

Read data from USRP
into vector of buffers

 m devices

Interleave data
from each device

Copy interleaved
data to shared memory

Increment shared
memory pointers

Figure 3.27: GnuRadarDevice::RequestData() before (left) and after (right) multi-device
modifications.

Figure 3.28: Screenshot of the gradar-run program.

73



Figure 3.29: Screenshot of the gradar-plot program.

executed on the same GPC, although the system was designed to support separate control

and server machines if desired.

3.2.2.2.3.4 Data Display GnuRadar also features a basic realtime data plotter,

gradar-plot, for preliminary data display prior to post-processing routines. The plotter

grabs the raw data from the buffers written to host GPC memory by gradar-run-server,

prior to writing to the data file, and makes it available for display. Both oscilloscope-type

(I/Q Plot) and range-time-intensity (RTI) plots are currently supported, and Figure 3.29

shows a screenshot of gradar-plot running in the I/Q Plot view.

3.2.2.2.3.5 Data Processing A preliminary data processing program, rti big.py,

was developed for batch offline processing and plotting data files taken by the PARIS system.

Two different plotting modes are available: a single image showing data for entire specified

range, or multiple images, each showing a regular time interval within the specified range.

74



Figure 3.30: Example data plot from rti big.py showing reflections from several specular
meteors (reflections above 100 km) and an airplane (curved reflection appearing between 60
and 70 km).

75



There are many configuration options listed in both the script and configurable via the

command line, including integration time,9 integration type, data channel to plot, phase

code, range window, and program verbosity. When operating in multi-image mode, the

output images are named according to the start time of the data plotted in each image.

Figure 3.30 shows an example output image from rti big.py.

Figure 3.31 shows the general software process taken by the rti big.py script. The

program begins by collecting all the options from both the command line and parameters

defined within the script. In multi-image mode, the plotter runs two functions — reader()

(shown in blue) and rti plotter() (shown in pink) — within a loop that checks if all images

within the defined range have been plotted. Assuming this has not occurred, reader() first

gathers several radar parameters from the HDF5 data file, including IPP, sampling rate, and

start time. An indexing variable is used to traverse through the different tables in the data

file. If the table index is within the calculated table index range, reader() then checks if

enough tables have been read to integrate (if desired). Assuming more tables are needed, a

data table is read from the HDF5 file. An FIR filter is applied to the data table for decoding

the BPSK-coded data. This decoded data is then appended to a large array containing the

decoded I and Q samples for one integration period. The table index is then incremented

and the process repeats until enough tables have been read to integrate, at which point, the

big IQ array is time integrated and added to the final IQ array. This integration process is

then repeated until the final IQ array is full, indicating that the entire specified data range

has been read, integrated, and added to the final IQ array. At this point, the table index is

now beyond the table index range, and a power map from the final IQ array is generated.

The power map is returned and then passed to rti plotter(). After basic denoising, the

power map is plotted in decibel units and saved to disk. At this point, reader() is called

again and the process repeats until all images have been plotted.

9Integration time is currently limited to a minimum of 1 s.

76



Start
Parse command
line arguments

End

Read plotting
parameters

Done all
images?

yes

Get radar para-
meters from HDF5

 no

Table index
within plot range?

Enough tables
to integrate?

 yes

Computer power
map

no

Read data
Table

Decode with
FIR filter

Append data to
big IQ array

Increment table
index

no

Integrate in
IPP direction

 yes

Add integrated
data to final IQ

Calculate and
subtract noise

Plot data

Save data to
image file

Figure 3.31: General flow diagram of the RTI processing plotter for HDF5 data taken with
GnuRadar.

77



3.2.3 Summary

This section has presented the overall hardware architecture of the PARIS software-defined

radar system, in addition to many of the critical details. Additionally the basic software

architecture of GnuRadar, used for data capture and control, was discussed. Preliminary

operating procedures of PARIS and basic troubleshooting can be found in Appendix B.

78



3.3 Cognitive Interferometry Radar Imager

The Cognitive Interferometry Radar Imager (CIRI) is an advanced 50-MHz digital radar

system designed for study of ionospheric phenomena, including ionospheric layers, specular

and non-specular meteor trails, and other ionospheric plasma instabilities, using reconfig-

urable hardware and cognitive radio techniques to adapt to the various radar targets of

interest. The system was developed out of the Illinois Radar Interferometer System (IRIS),

designed at the University of Illinois (Urbana–Champaign), and is now a joint design and

operations effort between students and faculty at The Pennsylvania State University and the

University of Illinois. CIRI@PSU has been deployed and is currently in operation near The

Pennsylvania State University (University Park) campus, at the Rock Springs Radio Space

Observatory, both providing important magnetic mid-latitude ionospheric data and acting

as a testbed for enhancements and upgrades to the CIRI system. A second deployment of

the system, CIRI@Andes, is currently under construction at Observatorio de Huancayo in

the Peruvian Andes. Deployment of CIRI@PSU, including set up of antenna arrays, receiver

hardware, and transmitter hardware, integration of software, and preliminary operations, as

well as system documentation, were the primary duties of the author.

3.3.1 System Overview

Unlike PARIS (discussed in Section 3.2), CIRI is not a traditional radar with full transmitter

and receiver synchronization through logic-level signals in hardware. However, the transmit-

ter and receiver are colocated and share two coaxial–colinear (COCO) antenna arrays, and

like PISCO (discussed in Section 3.1), it uses a “reconstructive” synchronization technique in

the receiver software. Figure 3.32 shows a high-level systems diagram of CIRI. The transmit

segment (outlined in gold) of this radar system is composed of five main high-level compo-

nents: 1) the direct digital synthesizer responsible for generating the RF carrier signal, as

79



Receive Segment Transmit Segment

P
u
ls

e
d
 R

F

M
e
te

o
r 

R
e
fle

c
ti

o
n
s

Trigger

Ionosphere

RX RF Front End

Filtering

TX Blanking

Downconversion

Amplification

USRP N210

Receiver

IF A/D Sampling

Filtering and

Decimation

Digital Down-

Conversion

Host Computer

Data Collection

Data Processing

and Display

Data Storage

TX/RX Control

Radar

Controller

Direct Digital

Synthesizer

TX RF Front End

RF Gating

Filtering

Transmitter

Power

Amplification

Phase Coding

TR Switch

Ethernet

West

Array

East

Array

Clock

RS-485

Clock

RF

Carrier
LO

TX Gate

TX Blank

M
e
te

o
r 

R
e
fle

c
ti

o
n
s

Figure 3.32: Overview of the Cognitive Interferomtry Radar Imager.

80



well as several clock signals for other components; 2) the radar controller responsible for gen-

erating several logic-level pulses necessary for radar operation, including the transmit trigger

signal; 3) the transmit RF front end responsible for gating the RF carrier, as well as signal

conditioning prior to transmission; 4) the transmitter responsible for power amplifying the

pulsed RF carrier in preparation for transmission, as well as housing the transmit–receive

(TR) switch; and 5) the antenna arrays responsible for transducing the electrical signal to

RF energy. The antenna arrays radiate the pulsed RF signal through the atmosphere, where

it then reflects and scatters off various targets, including meteor trails, ionospheric layers,

and airplanes. Some of this reflected energy is captured by the antenna arrays, beginning

the signal of the receive segment.

The six main components of the receive segment (outlined in pink in Figure 3.32) are:

1) the antenna arrays responsible for transducing the captured RF energy from target reflec-

tions into electrical signals; 2) the receive RF front end responsible for some basic hardware

signal conditioning and downconversion to intermediate frequency (IF); 3) the USRP N210

receiver device responsible for digitization and preliminary signal processing of the received

signals; 4) the host computer responsible for controlling the USRP N210 device and trans-

mitter, as well as data collection, processing, display, and storage; 5) the radar controller

responsible for generating a logic-level signal for receiver protection; and 6) the direct digital

synthesizer responsible for providing a stable clock source for the USRP N210 device and a

local oscillator for IF downconversion in the receive RF front end. All of the components in

both the transmit and receive segments are further detailed in Section 3.3.2.

3.3.2 Implementation

The following sections discuss the various hardware and software components of CIRI in

detail.

81



Transmit RF

Front End

RF Gate
RF In

RF Out

Receive RF Front End

RF In 2

RF In 1

TX Blank

LO

RF Out 1

RF Out 2

Genesis Pulse Transmitter 

Controller

Trigger

HV Power

Supply

Ant. Array 1

Ant. Array 2

RX Out 1

RX Out 2

Gated RF In RF Gate Out

Enable

Radar Controller

TX Blank

Std.

Clock

TX Trigger

TX Enable

Direct Digital

Synthesizer

49.8 MHz

20 MHz

71.3 MHz

10 MHz

Linux Host

Computer

USB

USB

Ethernet

USRP N210

Ch. 1

Ch. 2CLK

Ethernet

USB/RS485

Converter

USB/RS485

Converter

East

Array

West

Array

Figure 3.33: CIRI systems diagram (low-voltage DC and AC power connections omitted).

3.3.2.1 Hardware

A systems diagram of the different hardware components used by CIRI is shown in Figure

3.33. The following sections detail each of these components and discuss their interactions

with the others.

3.3.2.1.1 Antennas As previously mentioned, CIRI uses two COCO antenna arrays

(east and west) for both pulse transmission and interferometric reception. Each array consists

of four individual COCO antennas suspended above the ground on polyvinyl chloride (PVC)

pipe and steel masts, as illustrated in Figure 3.34 and shown partially in Figure 3.35. The

coaxial cable segments of each antenna are fastened to a high-tension mounting cable with

cable ties, so as to eliminate (potentially damaging) horizontal tension on the antennas

themselves. The end of each mounting cable is attached to a hoisting rope, and wound

around a pulley attached to a vertically mounted steel mast. Additionally, similar hoisting

ropes are attached to the mounting cable at one-quarter length intervals, and threaded

through eye bolts (acting as make-shift pulleys) attached to vertically mounted PVC pipes.

82



~50 m
N

3
 m

3
 m

6
 m

East Array West Array

Figure 3.34: COCO antenna arrays layout diagram used by CIRI (not to scale).

Horizontal leveling of the antenna is accomplished by pulling all of the hoisting ropes tight

and wrapping them around rope cleats on each of the steel masts and PVC pipes.

Viewed end-on from the east or west, the antennas are arranged in a square pattern, at

heights of 3 and 6 m above the ground (corresponding to free-space electrical distances of

λ/2 and λ, respectively), and separated by 3 m (λ/2) in the North–South direction. The two

arrays are stationed next to each other in the East–West direction. When each of the four

antennas of each array are combined10 through the use of a quarter-wave (λ/4) transformer,

this arrangement results in steering of the array’s radiation pattern, such that the main

lobe is directed to approximately a 16◦ elevation angle [37]. This specific elevation angle is

important to ensure that the pulsed RF signals transmitted intersect Earth’s magnetic field

lines at right angles, which enables a host of ionospheric plasma phenomena to be visible

to the radar system. In the azimuth direction, the antenna arrays’ beamwidths are fairly

narrow (due to the large azimuth aperture of the arrays), on the order of 2–5◦, whereas in

the elevation direction, the radiation patterns are much wider, approximately 20◦ [37].

3.3.2.1.2 Transmitter The transmitter used by CIRI is a custom-designed system from

the Genesis Software PTS (Pulse Transmitter System) family, tuned specifically for the

10The north-most pair each have an extra λ/4 phasing cable on their feedlines.

83



Figure 3.35: East half of the East COCO array used by CIRI, viewed from the northwest.

84



Genesis Pulse Transmitter

PTM2

PTM3

HV DC Power

Supply

140 V

PTM0

PTM1

Power

Comb.

TR

Switch
To/From Ant. Array 1

Power

Comb.

TR

Switch

Controller

RS-485

PKT-1 Multidrop
To/From Host PC

RS-485
From Host PC

Gated RF from RF

Transmit Chain

PKT-1

RF

Splitter

To/From Ant. Array 2

RF Ch. 1 to RF

Receive Chain

RF Ch. 2 to RF

Receive Chain

Trigger from

Radar Controller

RF Gate to RF

Transmit Chain

Figure 3.36: Block diagram of the Genesis Pulse Transmitter System.

49.8-MHz RF carrier used by CIRI. It is a solid-state transmitter that uses four software-

controllable, 7.5-kW Pulse Transmitter Modules (PTMs), as shown in the transmitter block

diagram (Figure 3.36). Additionally, a number of passive RF components (e.g., RF splitter,

power combiners, and TR switches) and a high-voltage DC power supply are also housed in

the rack-mount chassis of the transmitter, shown in Figure 3.37.

Using a multidrop communications protocol designed by Genesis Software (PKT-1) over

an RS-485 interface, a host computer can issue commands to and listen for responses from the

transmitter’s interface controller module, called the Transmitter Supervisor Module (GTS).

These commands include functions such as enabling transmitter output, defining the param-

eters of the transmitter pulse, and reading back diagnostic information from the system. The

same PKT-1 multidrop protocol is used internally for the GTS to issue a slightly altered set

of commands and control the four PTMs via their Transmitter Controller Modules (GTCs).

The entire command listing for the PKT-1 protocol can be found in the Genesis PTS User

Manual [45].

The pulsed RF signal path begins with the transmit trigger, generated by an external

system, such as the radar controller. From the transmit pulse length stored in memory,

the GTS generates and outputs the RF Gate signal, aligned to the beginning of the trigger

signal. The external transmit RF front end uses this signal to gate the RF carrier (discussed

85



Figure 3.37: Front view of the Genesis PTS.

86



in Section 3.3.2.1.3). The Gated RF signal is then returned to the transmitter11 and split

out to each of the PTMs. Each of the GTCs uses the other transmit pulse parameters (e.g.,

pulse amplitude, BPSK coding, baud length, and pulse shape) to modify the Gated RF

signal prior to power amplification and output by each of the PTMs. The PTM outputs are

paired and summed by two power combiners, and the output of each power combiner is fed

into a TR switch. During transmission, the TR switch connects the antenna array feedlines

to the pulsed RF output, isolating the receive port on the TR switch in order to protect the

sensitive receiver equipment.

The high-voltage power supply included with the transmitter supplies each of the solid-

state power amplifiers in the PTMs with a ∼140-V bias in order to amplify gated RF signal

up to 7.5 kW. Like GTS, this power supply can be remotely programmed via an RS-485

serial interface, although the only command used in normal operation of CIRI is the output

enable command. A full command listing for this power supply can be found in the unit’s

manual [46].

3.3.2.1.3 Transmit RF Front End As previously mentioned, the transmit RF front

end is responsible for gating the RF carrier signal in order to supply the transmitter with

a pulsed RF signal. Figure 3.38 illustrates how this is accomplished, with the individual

components listed in Table 3.9. The RF carrier signal generated by the direct-digital syn-

thesizer is supplied to a gating switch, controlled by the RF Gate signal generated by the

transmitter. This results in a Gated RF signal, which is then amplified and filtered to reduce

out-of-band spurs and harmonics generated as a result of the gating operation. The signal

amplitude of the RF carrier input was experimentally adjusted in order for the Gated RF

output to meet the +10-dBm signal level input required by the transmitter.

11The required signal level for the Gated RF signal is +10 dBm for proper operation of the transmitter.

87



RF Gating

+10 dBRF In from DDS
Gated RF to

Transmitter

RF Gate from

Transmitter

+10 dBm

Transmit RF Front End

BPF

50 MHz

Figure 3.38: Block diagram of the CIRI transmit RF front end.

Table 3.9: Transmit RF front-end components used by CIRI.
Manufacturer Part Number Description
MiniCircuits ZX80-DR230-S+ RF Gating Switch
MiniCircuits ZX60-43-S+ RF Amplifier
MiniCircuits SIF-50+ 50-MHz Band-pass Filter

3.3.2.1.4 Receive RF Front End After the antenna arrays capture signal reflections

from the ionosphere (and airplanes), the TR switches on the transmitter connect the antenna

arrays to the two signal inputs of the receive RF front end, which provides preliminary

signal conditioning and analog downconversion of the signal to IF. Figure 3.39 illustrates the

configuration of the receive RF front end, with the individual components listed in Table

3.10.

The input signals from the antenna arrays begin by each passing through two band-

pass filters, reducing the amplitude of out-of-band signals from the desired 49.8-MHz signal

reflections. The first filter is a high-quality, high-order Butterworth band-pass filter, with

a 5-MHz bandwidth and very steep rolloff. The second filter is a lower order filter with a

slightly wider bandwidth of approximately 17 MHz. As second layer of receiver protection

BPF

49.8 MHz

BPF

50 MHz RF

Limiter

+24 dB
LPF

70 MHz

BPF

21.4 MHz

BPF

21.4 MHzTx Blanking

Splitter

BPF

49.8 MHz

BPF

50 MHz RF

Limiter

+24 dB
LPF

70 MHz

BPF

21.4 MHz

BPF

21.4 MHz

Tx Blanking

RF Ch. 1 from

Transmitter 

Local Oscillator

from DDS

TX Blanking from

Radar Controller

RF Ch. 1

to USRP

RF Ch. 2

to USRP

RF Ch. 2 from

Transmitter 

Receive RF Front End

+24 dB

+24 dB

Figure 3.39: Block diagram of the CIRI receive RF front end.

88



Table 3.10: Receive RF front-end components used by CIRI.
Manufacturer Part Number Description
TTE, Inc. KB8-49.8M-5M-50-720A 49.8-MHz Band-pass Filter
MiniCircuits SIF-50+ 50-MHz Band-pass Filter
MiniCircuits ZX80-DR230-S+ RF Gating Switch
MiniCircuits VLM-33-S+ RF Limiter
MiniCircuits ZFL-500LN+ +24-dB RF Amplifier
MiniCircuits SLP-70+ 70-MHz Low-pass Filter
MiniCircuits ZX05-1L-S+ RF Mixer
MiniCircuits SIF-21.4+ 21.4-MHz Band-pass Filter
MiniCircuits SBP-21.4+ 21.4-MHz Band-pass Filter
MiniCircuits ZFL-500LN+ +24-dB RF Amplifier

(in addition to the transmitter’s TR switches), an RF blanking switch is used to isolate the

input from the remainder of the receive RF front end during the transmit pulse, controlled

by a transmitter blanking signal generated by the radar controller. Following the blanking

switch is an RF limiter, clamping the input signal to a maximum of +10 dBm, in the

event that any large-amplitude signal spikes make it through both the TR switch and TX

blanking switch. Following the RF Limiter is a +24-dB wideband amplifier, used to increase

the in-band return signal level. A 70-MHz low-pass filter is then used to reduce any high-

frequency signal content that may have made it through the signal chain, prior to the IF

downconversion in order to avoid adding mixing products into the desired signal band. Using

the ∼71.3-MHz local oscillator signal generated by the direct-digital synthesizer, a mixer is

used to demodulate the RF signal to the 21.4-MHz IF, with the output filtered by two 21.4-

MHz band-pass filters to remove the ∼121-MHz mixer product content from the IF signal.

Finally, the output of the two band-pass filters is passed through another +24-dB amplifier,

further increasing the in-band signal content. The output of each channel’s final amplifier

is each connected one input channel of the USRP device for digitization and further signal

processing.

Using the same MATLAB script noise figure and overall system gain as used with PARIS

89



(Appendix A), the noise figure and gain calculated to be 10.4 dB and 32.2 dB, respectively,

for CIRI’s receive RF front end, including the USRP N210’s ADC (see Section 2.2.1.2), but

excluding the antenna array (as the noise temperature/noise figure for the COCO arrays are

unknown).

3.3.2.1.5 USRP The core of the receiver hardware is the USRP N210 device, which

digitizes the incoming RF signals from the receive RF front end. Like the PISCO (Section

3.1) and PARIS (Section 3.2) USRP receivers, the USRP also uses a BasicRX daughterboard

that provides 50-Ω termination and transformer coupling of the signal to the USRP’s ADCs.

Unlike the USRP1 devices used with PISCO and PARIS, the USRP N210 has a sampling

rate of 100 MHz, yielding a total sampling bandwidth of 50 MHz. This 100-MHz clock is

generated by an onboard oscillator locked to the external 10-MHz input with a phase-locked

loop (PLL). Instead of using the USB 2.0 interface used by the USRP1 device for data transfer

and configuration, the USRP N210 uses a gigabit Ethernet interface, allowing a much higher

signal bandwidth to be transferred to the host computer. Also unlike the USRP1, the USRP

N210 has a non-volatile memory for storing the FPGA bitstream, allowing the device to run

without downloading the FPGA configuration every time it is powered up.

In the configuration currently used by CIRI (400-kHz sampling rate), a USRP1 device

could easily be substituted for the USRP N210 with minimal software impact, due to the

common UHD software interface provided by Ettus Research. However, such a substitution

could potentially result in a lower overall system dynamic range, as the USRP1 samples with

a 12-bit ADC, whereas the USRP N210 samples with a 14-bit ADC.

3.3.2.1.6 Radar Controller The radar controller used by CIRI is the same system

used in PARIS (see Section 3.2.2.1.2 for more details). It is responsible for generating the

synchronized timing pulses used to control both the transmitter and the receive RF front

end in CIRI. Table 3.11 lists the radar controller output signals and Figure 3.40 graphically

90



Table 3.11: Radar controller output signal descriptions used by CIRI.
Name Description Destination
TX Trigger Transmit pulse trigger Transmitter
TX Enable Transmitter enable signal Transmitter
TX Blanking Receiver disable for protection from transmitter RF RX Chain

...
TX Trigger

TX Blank

TX Enable

Time

Figure 3.40: Radar controller output signals timing.

illustrates the timing relationship between the different output signals.

The TX Trigger signal is used to signal the transmitter to begin a new gate pulse, and

repeats at the specified inter-pulse period (IPP) interval. The pulse width of the TX Trigger

signal has no effect on transmitted pulse, as the transmitter only detects the rising edge of

the pulse to generate and align the TX Gate signal.12 The TX Enable signal is normally

set to logic high for all time, as it is one of the three necessary enable signals for the

transmitter (discussed further in Section 3.3.2.2.2). The TX Blanking signal is similar to

the corresponding signal used in PARIS; it disables a portion of the receive RF front end

using an active-low logic signal slightly wider than the width of the transmitted RF pulse

(accounting for transient effects).

3.3.2.1.7 Direct Digital Synthesizer For proper operation of the radar system, all

of the components must be fully synchronized, with all clock signals derived from a single

master clock. The Novatech 409B (the same device used in PISCO — see Section 3.1.2.1.3)

is a four-channel programmable oscillator that is used by CIRI to provide stable and phase-

locked clock signals for the various components of the radar system. Table 3.12 lists the

output signals of the Novatech 409B device, all with a programmed phase of 0◦.

12The minimum recommended TX Trigger pulse width is 1 µs in order to ensure the transmitter properly
recognizes pulse as a true trigger signal.

91



Table 3.12: DDS output signals.

Channel
Frequency
(MHz)

Amplitude
(Counts)

Destination

0 20.000000 1023 Radar Controller Std. Clock
1 10.000000 1023 USRP Reference Clock
2 49.800000 160 RF Input to Transmit RF Front End
3 71.284375 1023 Local Oscillator Input to Receive RF Front

End

Table 3.13: Basic hardware specifications of the CIRI receiver GPC.
Processor Family AMD Phenom 9950, 2.6 GHz
RAM 8 GB DDR2 (4×2 GB)
Hard Drive (OS + Software) 250 GB SATA
Removable Hard Drive (Data) 4 GB SATA via USB 2.0 dock
Network Interface (USRP) 1000 Mbps Ethernet
Network Interface (Internet) 100 Mbps Ethernet

As is the case with PARIS, the only output signal with an amplitude dependence is

the RF carrier input signal, whose amplitude was experimentally adjusted such that the

amplitude of pulsed RF output for the transmit RF front end meets the +10-dBm level

requirement. All other DDS output signals (20 MHz for the radar controller, 10 MHz for the

USRP, and ∼71.3 MHz for the local oscillator) are set to the maximum amplitude count, as

their exact signal amplitude is not critical.

3.3.2.1.8 General-Purpose Computer The host general-purpose computer used by

CIRI is responsible for data capture, processing, and storage, as well as control of the trans-

mitter. The basic hardware specifications of the GPC are listed in Table 3.13, although

most modern laptop or desktop computers (with >6 GB of RAM) should be suitable for

acting as the CIRI GPC. The minimum RAM limitation stems from the fact that raw data

files are stored in system RAM prior to data processing (discussed in Sections 3.3.2.2.3 and

3.3.2.2.4).

92



Radar Controller

Host GPC

Transmitter InterfaceSauronIRIS

bpg-generate

bpg-shell

High-Voltage
Power Supply

Transmitter Supervisor
Module

Data Collection

RTI Image
Generation

Meteor Detection

Data Reduction

Data Reduction

Interactive Data
Viewer Website

Figure 3.41: Overview of the CIRI software.

3.3.2.2 Software

As a software-defined radar system, much of the flexibility of CIRI lies within the host

software that runs the CIRI system. The following sections discuss the operation of each of

the various software components (overviewed in Figure 3.41) that are used for transmitter

and receiver control, as well as data collection, processing, and display for CIRI.

3.3.2.2.1 Radar Controller As previously mentioned, the radar controller used in CIRI

is the same system used by PARIS. Thus, the software interface for defining and generating

output modes (bpg generate) and controlling the signal outputs (bpg shell) are the same,

and the reader is referred to Section 3.2.2.2.1 for a detailed discussion of this software.

3.3.2.2.2 Transmitter Interface In order to control the Genesis transmitter, the host

computer must communicate with two different devices on the transmitter: the high-voltage

power supply and the GTS. Both devices use an RS-485 interface for communication, which

is a differential hardware interface, eliminating unwanted common-mode interference (e.g.,

60-Hz mains hum) that could potentially interfere with proper communications and put the

93



transmitter in an unwanted operational mode. The software used to communicate with these

devices is discussed in the following sections.

3.3.2.2.2.1 High-Voltage Power Supply The Genesis transmitter rack houses a

high-voltage DC power supply, which is used by the power amplifiers in each of the PTMs.

Two simple Python scripts are used to enable and disable the output of the high-voltage DC

power supply in the Genesis PTS: hv enable and hv disable. In order for the transmitter

to transmit, the high-voltage power supply outputs must be enabled. When the transmitter

is not in use, it is recommended that the high-voltage power supply output be disabled as

well for safety.

3.3.2.2.2.2 Transmitter Supervisor Module In order to control the behavior of

the transmitter (e.g., output enable, transmit pulse parameter definition, etc.), the host

computer must relay commands over the GTS RS-485 interface. While the PKT-1 packet

structure developed by Genesis is fairly simple (defined in [45]), manually constructing the

command packets is tedious and an inefficient method of transmitter control. To allevi-

ate this, a Python script, txcli.py, was written to issue transmitter commands by name,

automatically forming the correct PKT-1 packet for each command.

This program uses a Python dictionary structure as a command database (TxRxDefs.py),

storing all of the commands listed in the Genesis PTS User Manual [45]. The txcli.py script

parses the command line arguments and attempts to find the requested command in the

command database. If successful, txcli.py opens the serial port and sends the command to

the transmitter, along with any data bytes required by the command. The script then waits

and listens for a command response from the GTS, parsing and displaying the responses on

the host GPC, as defined in TxRxDefs.py.

Table 3.14 lists the most commonly used GTS commands (along with a short description)

in the current CIRI configuration. Typically, the user defines a pulse configuration, saves

94



Table 3.14: Most common GTS commands used for CIRI.
Command Name Description
GTS ENABLE Enable or disable RF output.
GTS SETPULSE Set the transmit pulse parameters (amplitude, phase code, baud

length, pulse shape, etc.)
GTS SAVPULSE Save the defined transmit pulse parameters to non-volatile memory
RESET Reset the transmitter GTS and PTMs

it to non-volatile memory, and then resets the transmitter, at which point the new pulse

configuration is loaded by default and the signal output can be enabled as desired.

3.3.2.2.3 Sauron “One program to rule them all” is the philosophy behind the nam-

ing of the Sauron program, and indeed it does accomplish many different software tasks

necessary for CIRI (but not quite all of them — see Section 3.3.2.2.4). Sauron provides

functionality to capture data from the USRP device, plot RTI power map images in real-

time, use image-processing techniques to detect a variety of meteor events, and perform data

reduction. The data capture functionality of the program is implemented through the use

of a GnuRadio flowgraph. Two channels of I/Q data are streamed from the USRP device

using the uhd.usrp source signal block, which in turn is passed through a matched filter

for BPSK decoding. The taps used by this filter are simply the BPSK code coefficients (+1

or −1) with the correct multiplicity for the specific sampling rate and baud length. Finally,

the samples from each channel are interleaved into the output binary data file, stored in the

host GPC’s RAM (making use of shared memory).

Sauron’s RTI plotter functionality then reads these raw data files and produces RTI

power maps in realtime, allowing the user to view the data as they are streamed in from

the USRP device. Based on the power map that is generated, the transmitter pulse is

detected (averaging across several time bins and looking for the peak power amplitude)

and the data are realigned with the transmitter pulse at a range of 0 km. Additionally, a

noise level estimate is made and used for calculating SNR, which is plotted and saved to

95



image files at regular time intervals. These RTI power maps are also used for meteor echo

detection, one of the most distinguishing features of Sauron. The meteor detection code

utilizes a Gaussian Mixture Model (GMM) algorithm that employs image-processing and

machine learning techniques in order to identify and classify several different types of meteor

event echos captured by CIRI. Further information on the theory and implementation behind

Sauron’s meteor detection can be found in [47, 48].

Additionally, several different data reduction techniques can be used with the data cap-

tured by Sauron. The simplest form of data reduction implemented by Sauron uses thresh-

olding on the RTI power map. A data mask is created from the power map, assigning a ‘1’

only to pixels with an SNR above a specified threshold, with ‘0’s elsewhere. The mask is

multiplied by the raw I/Q data array, preserving only the significant data samples. This ar-

ray is written to a data file of the same format as the raw I/Q samples, resulting in the same

overall data file size. However, an external compression utility (e.g., bzip2) can take advan-

tage of the large number of 0’s and significantly reduce the file size. Typical compression

ratios seen when operating the system in this mode have been >9:1, although this figure is

dependent on the number of ionospheric reflections as well as any type of interference above

the power threshold.

A second, more involved data reduction technique is also available for use with Sauron.

This method makes use of the meteor detection and classification capabilities. For each

event detected, a rectangular “window” around the event is created, from which the classi-

fier determines the type of event (e.g., specular, non-specular, interference, etc.) and saves

event statistics. The window generated is the key for this method of data reduction. If the

classifier determines the event is not interference, the bounding coordinates of the window

are saved and applied to the raw I/Q data array, and a MATLAB/Octave workspace (*.mat)

file is generated containing the event I/Q channel data, start time, duration, and range infor-

mation, allowing full reconstruction of the event for further processing. After all processing

96



of the raw I/Q data file has been completed, it is removed, leaving only the *.mat event in-

formation, which is on the order of several hundred kilobytes. Like the previously described

data compression technique, this method is also dependent on the number of ionospheric

reflections; however, during typical operation, a 1.8-GB data file has been shown to reduce

to around 5 MB.

3.3.2.2.4 IRIS As used by CIRI, the IRIS software provides two important functions:

data reduction and an interactive data viewing website.13 In order to reduce the raw I and

Q data files sampled from the USRP (by Sauron), the IRIS software computes a power

map (synchronized using the transmitter pulse, as in Sauron), Doppler periodogram, and

magnitude and phase coherence between the two receive data channels for interferometry, and

stores these results in MATLAB/Octave workspace (*.mat) files. Each of these workspace

files contain one second of the aforementioned computed data products, used for further

processing by the interactive website tools.

Several interactive tools (developed by researchers at UIUC) are available to explore the

data taken by CIRI, using the previously discussed *.mat workspace files. realtime allows

users to view a power map of the most recent five minutes of data, as well as plot range slices

of the power map for more detailed inspection. datascope is a more advanced tool, allowing

the user to zoom in on specific regions of interest, as well as view phase coherence and

spectrogram plots in addition to the standard power map. The archive tool is used to view

static images of previously generated power maps (eliminating the need to recompute these

for old data sets). Finally, rtitool allows the user to concatenate and display power maps

from multiple data files, which is useful for viewing a complete picture of longer duration

events, such as ionospheric layers.

13The IRIS software also provides a data collection feature, but it is not used in the CIRI configuration,
as Sauron is responsible for data collection.

97



3.3.3 Summary

In this section, the hardware design and basic data collection, processing, and control pro-

grams of CIRI has been presented. Preliminary operating procedures and basic troubleshoot-

ing checklists can be found in Appendix B.

98



Chapter 4

Preliminary Results

This chapter presents a brief overview of some of the key results from preliminary operations

of the three modern ionospheric sensor systems discussed in Chapter 3. The data products

(i.e., RTI power map images, event statistics, etc.) generated by each of these systems in

their early stages of operation are two-fold in purpose. First, they help to validate system

functionality within typical expected operating parameters and environments. Second, these

results help to discover and diagnose bugs, limitations, and failure situations of these systems.

The results from all three systems validate functionality; however, in each case, there are

multiple issues to be resolved before reliable and meaningful science operations should begin.

These issues are discussed both in this chapter and in Section 5.2.

4.1 PSU Ionospheric Sounder for Chirp Observations

As mentioned in Section 3.1, the first deployment of the PISCO receiver is located at Arecibo

Observatory in Puerto Rico, operating in conjunction with the previously installed CADI

system. At the time of writing, the system has been operating continuously for several

months, storing both an ionogram image and compressed HDF5 data file for each ionosonde

sweep by CADI. For the reader’s convenience, the radar parameters of the two systems are

99



Table 4.1: Radar parameters of the PISCO/CADI ionosonde system.
Parameter Value Units
IPP 25 ms
Baud Length 40 µs
Phase Code Barker 13 —
Start Frequency 1 MHz
Stop Frequency 20 MHz
Number of Frequencies 300 —
Frequency Dwell 200 ms
Repetition Interval 15 min
Transmit Power (peak) ∼600 W
PISCO Sampling Rate 500 kSps

repeated in Table 4.1.

The following sections present a few of the ionogram plots generated by the system,

specifically highlighting the sensitivity of the PISCO receiver by demonstrating its ability to

resolve several ionospheric structures typically detected by ionosondes. Additionally, several

of the challenges and shortcomings of the system are discussed with the aid of ionogram

plots in which the reconstructive synchronization technique failed.

4.1.1 Positive Results

Since PISCO has been collecting and processing data, many correctly synchronized ionogram

plots have been generated. As expected, these plots show slowly time-varying ionospheric

structures and phenomena familiar to ionosonde users, including hop reflections, single and

multiple F-region layers, Spread-F layers, the ordinary and extraordinary (O+X) mode split,

and Sporadic-E layers. The following sections show and discuss examples of each of these,

as recorded by PISCO.

100



4.1.1.1 Hop Reflections

Often, especially when D-region absorption is low (e.g., at night), multiple “hop” reflections

can be seen on the ionogram plots generated by PISCO. This phenomenon occurs when

ionospheric reflections bounce off the Earth and ionospheric regions one or more times before

being attenuated below the noise floor, appearing on the ionogram at intervals of the original

reflection height [5, 6]. In a sense, this phenomenon is similar to range aliasing, except that

it is visible because a longer IPP is used, rather than too short of an IPP. Figure 4.1 shows

an example of at least 12 hop reflections, not only showing low ionospheric absorption, but

also demonstrating the high sensitivity of the receiver.

4.1.1.2 Multiple F-region Layers

Sometimes, multiple layers within the F region of the ionosphere appear, and both can be

seen on ionogram plots, with F2 appearing at higher range and frequency than F1 [6]. This

can be illustrated by Figure 4.2, where the first layer appears between around 3.3 MHz and

4.5 MHz, and the second layer extends from 4.5 MHz beyond 6 MHz. Both layers are thin

in nature.

4.1.1.3 Spread-F Layer

Spread-F layers are a rarer ionospheric phenomenon whose occurrence and physical process

is still under active research today, particularly by the CIRI@Andes system. In ionogram

plots, Spread-F can be observed as an F-region layer that appears “smeared” across many

ranges, with a thickness much greater than the typically observed thin F-region layers [6].

Figure 4.3 illustrates a Spread-F layer observed by PISCO, ranging from approximately 350

km to 500 km.

101



Figure 4.1: Ionogram power map generated by PISCO on 3 June 2013 at 5:15 AST, with
12+ “hop” reflections are visible.

102



Figure 4.2: Ionogram power map generated by PISCO on 4 July 2013 at 8:30 AST, showing
reflections from multiple F-region layers, F1 and F2.

103



Figure 4.3: Ionogram power map generated by PISCO on 29 June 2013 at 4:45 AST, showing
reflections from a Spread-F layer.

104



Figure 4.4: Ionogram power map generated by PISCO on 5 July 2013 at 7:45 AST, showing
the ordinary and extraordinary mode split.

4.1.1.4 O+X Mode Split

Under the right conditions, interaction of the Earth’s magnetic field with the ionosphere can

increase ionospheric reflection, resulting in a second reflection trace (called the extraordinary

(X) mode) that “splits” out of the typical F-region reflection trace (called the ordinary (O)

mode) [49]. This phenomenon can be seen in Figure 4.4, with the O+X mode split occurring

at approximately 5 MHz.

105



Figure 4.5: Ionogram power map generated by PISCO on 22 June 2013 at 7:00 AST, illus-
trating a Sporadic-E layer.

4.1.1.5 Sporadic-E Layer

Sporadic-E layers, layers that form occasionally in the E region, are typically limited to

around 100 km in range and appear as thin, flat reflection traces on ionogram plots [6].

Figure 4.5 illustrates a Sporadic-E layer with characteristic thin, flat appearance, spanning

from about 2 MHz to 4 MHz, in addition to the upper F-region layer.

106



4.1.2 Issues

While many correctly synchronized ionogram plots have been generated by PISCO, there

are still a few issues with the system that range from a being a minor nuisance in correctly

synchronized plots to completely rendering the output plot useless. The following sections

detail these issues loosely in order of increasing severity. Finally, some error statistics from

the collected data are presented.

4.1.2.1 Coding Sidelobes

Like the PARIS and CIRI systems, CADI uses binary phase encoding (i.e., BPSK modu-

lation) as a pulse compression radar technique to retain good range resolution while trans-

mitting a high power RF pulse. The decoding technique used by PISCO involves applying

a matched filter to the baseband data, ideally resulting in the autocorrelation function of

the code for perfect reflections. However, for large amplitude reflections, the code sidelobes

begin to appear above the background noise level. Figure 4.6 shows these sidelobes on the

strong reflection between around 5 and 6 MHz, and it appears to widen the reflection in

range by several times. Although these sidelobes are easy to identify, there is the possibility

of masking weak reflections behind strong sidelobes.

4.1.2.2 Interference

Background interference is a pronounced feature common to all of the ionogram plots gener-

ated by PISCO. It tends to appear as vertical lines (often with striations) within the plotted

data, as these radio signals are generally not pulsed as radar signals are, but rather more

continuous in nature (at least on the timescale of the radar IPP). The background interfer-

ence certainly varies over the course of the day, as different radio operators and services use

different parts of the radio spectrum. Additionally, as ionospheric absorption varies with the

time of day, so do the propagation of radio waves.

107



Figure 4.6: Ionogram power map generated by PISCO on 2 July 2013 at 8:15 AST, illus-
trating phase coding sidelobes.

108



Fortunately, the most prominent interference resides in the 1.0-to-1.6-MHz AM radio

broadcast band, which is typically well below the frequencies at which ionospheric reflections

tend to occur. However, several amateur radio, broadcast, fixed, and mobile communication

bands are located above the AM radio band [50], and well within the typical reflection

frequency range. In most cases, the background interference is not enough to fully mask

even medium to low amplitude reflections, although the denser and wider the bandwidth of

the interference, the more difficult it could be to discern reflection features.

4.1.2.3 Transmitter Timing Errors

Occasionally, the groundwave pulse from the CADI transmitter does not form the simple

sloped line that the PISCO processing software is expecting (see Section 3.1.2.2.4), but rather

it appears scattered around, as shown in Figure 4.7. This was confirmed to be due to timing

errors within the transmitter, and the erratic and often seemingly random transmitter pulse

position (within the IPP) results when there is too heavy of a CPU load on the CADI host

computer. The frequency of this type of error occurring has been drastically reduced after

a failing process on the CADI host (rsync) was identified and corrected; however, it still

does occur, though infrequently. Often, the processing software cannot correctly identify the

groundwave pulse line in these situations (i.e., a groundwave slope or offset error occurs),

but in the case of Figure 4.7 it has, and the ionospheric reflections can be seen from 2.5 MHz

to just past 6 MHz.

4.1.2.4 Groundwave Slope Error

On occasion, the line detected by the data processing software does not have the correct

slope (i.e., it chooses a line that runs diagonally through the groundwave pulse). When

this occurs, the alignment, downconversion, and decoding steps cannot properly operate, as

illustrated by Figure 4.8. This error can be easily identified because the groundwave pulse

109



Figure 4.7: Ionogram power map generated by PISCO on 17 June 2013 at 4:15 AST, illus-
trating the effect of transmitter timing errors on the output plot.

110



Figure 4.8: Ionogram power map generated by PISCO on 18 June 2013 at 7:45 AST, illus-
trating the effect of groundwave slope calculation error on the output plot.

seen at the top and bottom of the image has a non-zero slope. The resulting ionospheric

reflection that is visible was improperly downconverted and decoded, causing the triplicated

appearance.

4.1.2.5 Groundwave Offset Error

Similar to the slope error discussed in Section 4.1.2.4, the groundwave offset error results from

an improperly detected groundwave. However, in this case the processing software detects the

line on the “wrong” (i.e., bottom) edge of the groundwave pulse instead of the “correct” (i.e.,

111



Figure 4.9: Ionogram power map generated by PISCO on 19 June 2013 at 13:45 AST,
illustrating the effect of groundwave offset calculation error on the output plot.

top) edge. Since the alignment algorithm relies on the top edge being detected, the alignment

is performed improperly, likely resulting in improper downconversion and decoding of the

signal. Figure 4.9 shows an ionogram plot resulting from an offset error. The asymmetric

split of the groundwave between the top and bottom of the image1 is indicative of this type

of error.

1The symmetric split is actually caused by coding sidelobes.

112



4.1.2.6 Error Statistics

In order to understand the frequency of the different types of errors discussed, a one-week

data set (6/21/13 through 6/27/13) was manually analyzed, with each ionogram plot labeled

as one of the following:

• Correct – No errors, plot can be trusted for correctness

• Slope Error – Groundwave slope error occurred, plot should not be trusted

• Offset Error – Groundwave offset error occurred, plot should not be trusted

• TX Error, Correct – Transmitter timing error occurred, but processing occurred cor-
rectly, plot can be trusted with discretion

• TX Error, Slope Error – Transmitter timing and groundwave slope errors occurred,
plot should not be trusted

• TX Error, Offset Error – Transmitter timing and groundwave offset errors occurred,
plot should not be trusted

The results from this analysis are tabulated in Table 4.2 (raw counts) and Table 4.3

(percents). The most common type of error was the groundwave offset error, accounting for

6% of the data files processed, closely followed by the groundwave slope error, accounting for

5%. Approximately 89% of the data files were processed correctly, a substantial percentage

of the entire data set. It also can be seen that, in many cases, transmitter timing errors

result in a secondary processing type of error.

113



Table 4.2: Error counts by type for PISCO receiver data during the week of 21 June 2013
to 27 June 2013. Note, the host computer experienced a power disruption on 25 June and
27 June, resulting in a missed ionosonde sweep.

Date # of
RTIs

Correct Slope
Error

Offset
Error

TX Error,
Correct

TX Error,
Slope Error

TX Error,
Offset Error

6/21/13 96 82 5 8 0 0 1
6/22/13 96 78 5 12 1 0 0
6/23/13 96 83 4 8 0 0 1
6/24/13 96 88 4 3 0 0 1
6/25/13 95 89 3 2 0 0 1
6/26/13 96 86 7 3 0 0 0
6/27/13 95 89 3 3 0 0 0
Totals 670 595 31 39 1 0 4
Average 96 85 4 6 0 0 1
Std. Dev. 0 4 1 4 0 0 1

Table 4.3: Error percents by type for PISCO receiver data during the week of 21 June 2013
to 27 June 2013 (calculated from Table 4.2). Note, the averages sum to >100% due to
rounding.

Date Correct Slope
Error

Offset
Error

TX Error,
Correct

TX Error,
Slope Error

TX Error,
Offset Error

6/21/13 85 5 8 0 0 1
6/22/13 81 5 13 1 0 0
6/23/13 86 4 8 0 0 1
6/24/13 92 4 3 0 0 1
6/25/13 94 3 2 0 0 1
6/26/13 90 7 3 0 0 0
6/27/13 94 3 3 0 0 0
Average 89 5 6 0 0 1
Std. Dev. 5 1 4 0 0 1

114



4.2 PSU All-sky Radar Interferometry System

The first deployment of PARIS is located at the Rock Springs Radio Space Observatory, near

The Pennsylvania State University (University Park) campus. The system is still actively

under development; however, some preliminary radar experiments have been run (with one

receive channel), mainly for testing and verification of the system hardware and software

components. Table 4.4 lists the radar parameters used for the radar experiment with PARIS

during 5–6 May 2013. This section presents several RTI plots from this experiment. It

should be noted that, during this experiment, the receive antennas were configured to connect

directly to the first RF limiter on the receive RF front end (bypassing the bias tee), without

the use of the preamplifier and bias tee as discussed in Section 3.2.2.1.1. Additionally, the

+26-dB preamplifier was moved into the receive RF chain, just prior to the final +11-dB

wideband amplifier (see Section 3.2.2.1.3 for details). The system has only been tested with

the antenna preamplifier configuration for short durations (although initial results are very

promising), so those results are not presented here.

During the PARIS radar experiment run on 5–6 May 2013, approximately 24 hours of

data were collected in order to provide an understanding of the system’s sensitivity, as well

as assess, based on the meteor count, if modifications to the receive RF front end should

be made. The subsequent sections present several of the commonly seen targets by PARIS,

including airplanes, specular meteors, and non-specular meteors. Additionally, a meteor flux

histogram is also presented illustrating the hourly meteor count.

Table 4.4: Radar parameters of PARIS used during the 5–6 May 2013 radar experiment.
Parameter Value Units
IPP 2 ms
Baud length 1 µs
Phase Code 28 bit —
Carrier Frequency 49.8107 MHz
Transmit Power (peak) ∼15 kW

115



Figure 4.10: RTI from data captured by PARIS between 5–6 May 2013, showing at least six
airplanes (bottom traces) and several meteor events (top right, point-like).

4.2.1 Airplanes

As large, metal moving objects in the sky, airplanes can help to provide a good first order

test of a radar system. They tend to appear at low ranges (possibly picked up by antenna

sidelobes) as thin, straight or slightly curved lines, lasting from tens of seconds up to several

minutes in duration. Figure 4.10 shows reflections from at least six airplanes between a

range of 40 km to 75 km.

116



Figure 4.11: RTI from data captured by PARIS between 5–6 May 2013, showing at least six
specular meteor events (point-like) between 100 and 130 km.

4.2.2 Specular Meteors

Echoes from the plasma created by specular meteors are what PARIS was designed to ob-

serve. These reflections can be seen at all times of the day, are very short in duration (< 1

second), and are usually visible on a timescale of seconds to tens of seconds, depending on

time of day, time of year, transmitter power, and receiver sensitivity [37]. Figure 4.11 shows

at least six specular meteor trails (yellow and red dots) in the range of 100 to 130 km.

117



Figure 4.12: RTI from data captured by PARIS between 5–6 May 2013, showing a very
strong non-specular meteor event at around 5:12:20 and 130 km in range.

4.2.3 Non-specular Meteors

Unlike specular meteors, plasma trails created by non-specular meteor events can last much

longer and do not necessarily appear point-like in RTI plots and are most typically observed

with radar trajectories orthogonal to Earth’s magnetic field [37]. Figure 4.12 shows a very

strong non-specular meteor event detected by PARIS at around 5:12:20 and 130 km in range.

118



Figure 4.13: Histogram showing meteor flux detected by PARIS between 5 and 6 May 2013.

4.2.4 Meteor Flux

One of the goals of PARIS is to study specular meteors statistically, in terms of count varia-

tion diurnally and annually. A histogram with 1-hour bins showing total meteor count over

the course of the radar experiment performed by PARIS is shown in Figure 4.13. As ex-

pected, the histogram shows a general increase in the number of meteors during the morning

hours before and during sunrise. Although not shown here, preliminary tests have shown

around a 40% increase in meteor count during the early morning hours with the antenna

preamplifier configuration discussed in Section 3.2.2.1.1.

119



4.3 Cognitive Interferometry Radar Imager

As discussed in Section 3.3, the first deployment of CIRI (CIRI@PSU) is located at the Rock

Springs Radio Space Observatory, along with PARIS. The system ran nearly continuously

from March 2013 through June 2013, and a very large data set is available for viewing (RTI

images) or further processing. Table 4.5 lists the radar parameters of CIRI@PSU during this

time frame. The following sections present a few of the typical and more interesting results

from data obtained by CIRI@PSU, including specular and non-specular meteor targets, and

results from a power sweep experiment run between 28 April and 4 May 2013.

Table 4.5: Radar parameters of CIRI used from March 2013 through June 2013.
Parameter Value Units
IPP 4 ms
Baud length 5 µs
Phase Code 28 bit —
Carrier Frequency 49.800 MHz
Transmit Power (peak) 30 kW
Pulse Shape Square —

4.3.1 Specular Meteors

The short-duration specular meteor trails are detected by CIRI@PSU in quantities of hun-

dreds daily, providing many data points for the mass and velocity statistics that CIRI was

designed in part to study. Figure 4.14 shows reflections from nine specular meteor events

over the course of 30 seconds, ranging from 140 km to 350 km,2 and Figure 4.15 shows six

additional specular meteors ranging from 150 km to 400 km. Note, the vertical strips sur-

rounding several of the meteor echos in Figure 4.14 are due to sidelobes from phase coding

used for pulse compression radar, and do not represent physical ionospheric phenomena.

2Because of the low elevation angle of the antenna arrays, these ranges correspond to approximately 40
to 100 km in altitude. The low end of this range is very low to observe meteors, so several of these meteors
are likely range aliased.

120



S
N

R
 (

d
B

)

Figure 4.14: RTI plot generated by CIRI on 6 June 2013, showing nine specular meteor
events.

121



S
N

R
 (

d
B

)

Figure 4.15: RTI plot generated by CIRI on 6 June 2013, showing six specular meteor events.

122



Figure 4.16: Close-up of meteor-head and nonspecular meteor detected by CIRI on 15 June
2013 at 12:56:05 EDT.

4.3.2 Non-specular Meteors

In addition to specular meteors, CIRI is also capable of detecting the larger and longer

duration non-specular events, as well as meteor-head echos. Figure 4.16 shows a close-up

view of a meteor-head and non-specular meteor event from 15 June 2013. This image was

plotted from the event data saved by Sauron using the meteor detection/event windowing

data compression technique, discussed in Section 3.3.2.2.3. Figures 4.17, 4.18, and 4.19 also

show several interesting reflections from meteor-heads and non-specular meteor trails, all

captured on 6 June 2013.

4.3.3 Power Sweep Experiment

In an attempt to test the different power levels of the transmitter, as well as provide prelim-

inary proof-of-concept meteor flux results for future, more extensive experiments, a power

123



S
N

R
 (

d
B

)

Figure 4.17: RTI plot generated by CIRI on 6 June 2013, showing a meteor-head and non-
specular meteor at 3:42:08 EDT.

124



S
N

R
 (

d
B

)

Figure 4.18: RTI plot generated by CIRI on 6 June 2013, showing a meteor-head and non-
specular meteor at 5:19:22 EDT.

125



S
N

R
 (

d
B

)

Figure 4.19: RTI plot generated by CIRI on 6 June 2013, showing several specular meteor
trails, and a meteor-head and non-specular meteor at 9:05:56 EDT.

126



4 ms IPP, 5 μs baud, 28-bit code, 30 kW peak during normal operation
Radar Parameters:

1 kW

2 kW
4 kW

8 kW

16 kW 30 kW
Trend Line

Figure 4.20: Meteor fluxes observed by CIRI during a week-long power sweep experiment
from 4 to 8 am (EST) each day (as denoted above).

sweep experiment was performed from 28 April through 4 May 2013. During this experi-

ment, the peak transmitter power was progressively increased from 1 kW to 30 kW over the

course of the week, but only between the hours of 4 to 8 am each day. During the rest of the

day, the system resumed normal operation (30-kW peak power). A histogram of the hourly

meteor fluxes during this experiment are shown in Figure 4.20. As expected, the number

of meteor events detected increased with increasing power levels. The relationship between

meteor count and transmitted power appears to be potentially logarithmic, although the

unknown flux variation from day to day makes it difficult to assess error bar size. The ex-

periment will need to be run multiple times with better knowledge of flux variation to draw

any significant conclusions; however, these preliminary results certainly appear promising.

127



Chapter 5

Conclusions

A wide spectrum of material relating to the three software-defined ionospheric sensors dis-

cussed has been examined up to this point. This chapter briefly recaps the content presented,

and provides direction for continued and future efforts on unresolved issues and new features

for each of these projects.

5.1 Summary

In this thesis, a variety of topics have been discussed, beginning with the foundations. In

Chapter 1, some of the the scientific and engineering motivations behind the development

of these different ionospheric sensor systems were examined. Additionally, because the com-

plexities involved with each project could fill volumes, the extents of the author’s efforts and

of the information provided in this document was limited to a reasonable scope.

Despite limiting the scope of these projects, there is still a large amount of information

from multiple domains with which the reader must be familiar in order to grasp the full

essence of the project designs. Chapter 2 attempted to shed some light in many of the

different science and engineering disciplines and topics covered by these projects, placing

readers of all backgrounds on common ground. The motivational ionospheric science topics

128



were briefly discussed, followed by an overview of several classes of instruments used to

make observations in this field. Then, the emerging topic of software-defined radio was

examined, exploring both the fundamental philosophy and principles behind its operation.

The USRP, as a software-defined radio platform, was presented and some of its basic features,

especially those relevant to the projects in this thesis, were reviewed. Finally, the science

and technology topics were united through a brief survey of previous efforts in the software-

defined ionospheric sensor arena.

Chapter 3 sequentially presented the design of the PISCO, PARIS, and CIRI projects

to a moderate level of detail. Each system was overviewed at a high level for context, both

in operation and in the science results expected to be observed, followed by an organized

breakdown of the various hardware and software components that comprise each sensor sys-

tem. PISCO was presented as a software-defined ionosonde receiver with minimal hardware

components and a number of external challenges to overcome in software. On the larger

scale, PARIS was presented as part of an ongoing effort to construct a traditional-style me-

teor radar system, with software-defined elements. Also on the larger scale, the CIRI system

was detailed, a radar system utilizing some different aspects of software-defined radio than

PARIS.

Preliminary testing of each of the systems has validated at least the concept of software-

defined ionospheric sensors, if not already provided important scientific results. During

PISCO’s operation, a number of ionosonde-familiar phenomena have been observed, includ-

ing hop reflections, multiple F-region layers, Spread-F, the ordinary and extraordinary mode

split, and Sporadic-E. In their initial deployments at the Rock Springs Radio Space Ob-

servatory, both PARIS and CIRI@PSU have successfully detected reflections from specular

and non-specular meteor trails. These results demonstrate the validity of applying software-

defined radio technologies to ionospheric science and will hopefully motivate and inspire new,

innovative solutions both within field and outside of this field of study.

129



5.2 Future Work

Although each of the three systems presented have shown positive preliminary results, none of

the systems are completely ready for long-term, reliable, and user-friendly operation (despite

some parts being very close). The following sections provide a brief overview of some of the

design work still ahead for PISCO, PARIS, and CIRI. Additionally, some potential, alternate

applications for these systems are suggested and discussed.

5.2.1 PSU Ionospheric Sounder for Chirp Observations

As illustrated by the results presented in Section 4.1, the PISCO receiver has been fairly

successful in observing several ionospheric layers; however, there are still a few issues with

the system that should be resolved before the system is ready to provide reliable scientific

results. The following sections discuss a potential solution to the groundwave offset and

slope errors that occasionally affect the PISCO receiver, as well as present several ideas for

future efforts with this system.

5.2.1.1 More Robust Groundwave Detection

Several of the issues discussed in Section 4.1.2 (i.e., groundwave slope error and groundwave

offset error) potentially could be solved by the implementation of a more robust groundwave

detection algorithm. Currently, the PISCO data processing program identifies the strongest

line candidate within a given range of angles in an attempt to find the groundwave pulse.

The software makes the assumption that this line lies along a specific edge of the groundwave

pulse, which, according to the error statistics presented in Section 4.1.2.6, works fairly well

for basic operation of the system. However, the software processing is essentially operating

open loop, without the ability to identify that the groundwave has not been found correctly

and recover.

130



A smarter algorithm might attempt to identify both edges of the groundwave pulse,

instead of just one. The “thickness” of the pulse (in range) could then be checked to be

relatively constant (for the duration of the pulse), matching an expected value based on the

radar parameters. If not, further attempts could be made to find the groundwave by even

more robust image processing algorithms, based on the a priori knowledge of the shape of

the groundwave pulse.

5.2.1.2 Fixed-Frequency Meteor Radar Mode

While both the PISCO receiver and the CADI system were designed as and intended to

operate in an ionosonde configuration, some preliminary work has been started on using the

PISCO/CADI system as a fixed-frequency radar system to search for meteor reflections. Be-

cause the carrier frequency is software programmable (to some extent) on both systems, only

a few minor changes are necessary for the two systems to operate in a basic fixed-frequency

mode, although current implementations of both the CADI software and PISCO software

prohibit continuous radar operation (like PARIS and CIRI). Instead, radar operation is con-

strained to one-minute intervals, scheduled as often as every other minute.1 Results so far

have been inconclusive as to the feasibility of such a system, and further analysis and testing

are required.

5.2.1.3 Ionosonde Transmitter

The PISCO receiver presented only represents one half of a complete ionosonde system, and

thus, an appropriate future effort would be to design and construct the PISCO transmitter.

The flexibility of the USRP platform enables, and even invites, development of a transmitter

using the same platform, even the same physical device.2 The automatic frequency sweeping

1Even this requires offline data processing on PISCO, as the processing software cannot keep up with
such a high data rate.

2The USRP1 platform supports two transmit and two receive channels simultaneously.

131



capability added for the receiver design is also applicable for the transmitter, which needs

to generate the RF carrier for transmission. An added benefit of using a single device

for both receiver and transmitter is perfect frequency synchronization between the two,

eliminating the need for the frequency offset detection and downconversion processing step

(step 5 described in Section 3.1.2.2.4). Additionally, if using an external clock source that

also provides a clock to the radar controller (or other device that provides radar timing

signals), the reconstructive groundwave synchronization can be drastically simplified, as it

should have a slope of zero.

5.2.2 PSU All-sky Radar Interferometry System

As a system that is still actively under development, there are a few features that have not

been fully implemented, affecting both the hardware and software of PARIS. The following

sections discuss these features and describe the potential steps towards realizing them.

5.2.2.1 Five-channel Receive RF Front End

At the time of writing, only one channel of the receive RF front end has been constructed

and tested, mainly due to the frequency change issue discussed in Section 5.2.2.2. Before

interferometry operation can occur, all five RF signal chains will need to be constructed,

tested, and integrated into the PARIS receive segment.

5.2.2.2 Operating Frequency Change

The wideband spectral content that results from narrow, square pulsed, and phase-coded

radar signals is problematic when operating with a carrier close to frequency bands of other

services, as the transmitted signals can radiate unwanted spectral content and cause inter-

ference within other bands. In fact, recent operations of both PARIS and CIRI have caused

interference in the 6-m amateur radio band (whose lower end starts at 50.000 MHz), which

132



led to a congress and discussions between ASPIRL researchers and active amateur radio

users. The decision was made to move the carrier frequency of PARIS away from this band

to 40.2 MHz; however, not without consequences: retuning of the transmitter, purchase/con-

struction of new antennas, and modification of the receive RF front end will all be necessary

for operation at the new frequency.

5.2.2.3 Automated Meteor Detection

The meteor flux counts shown in Figure 4.13 were performed manually, cataloging the time

of each of the events in a spreadsheet and totaling the results. Not only is this a tedious

process for large data sets, but it introduces the potential for biases and error, especially

when multiple or poorly trained people catalog independently. The problem will be only

escalated when PARIS begins operating continuously for months at a time.

In CIRI, this issue is solved by using the automated meteor detection and classification

routines built into the Sauron software; however, PARIS/GnuRadar does not have an equiv-

alent functionality. Although the two systems use different data file types, it may still be

possible to modify and utilize the meteor detection and classification portion of Sauron with

GnuRadar. If this is the approach taken, it would likely need to work from the data files

written to disk and already closed out by GnuRadar,3 introducing a significant delay between

the time of data collection and detected meteors within that data. If a separate detection

and classification algorithm was written (in C/C++) it could potentially be injected into

GnuRadar’s ConsumerThread, processing data from shared memory before writing to the

HDF5 file on disk.

3HDF5 files cannot easily be simultaneously written to and read from [51].

133



5.2.2.4 Synchronization and Cooperation with CIRI@PSU

In order to operate the Rock Springs Radio Space Observatory to its full potential, both

PARIS and CIRI@PSU will need to be operated simultaneously, a non-trivial task that will

require careful planning and implementation. The large distance between the two systems’

operating facilities (∼125 m) and site layout makes hard-wired synchronization between the

two systems difficult and impractical. However, the use of GPS timing appears to provide a

viable synchronization solution. Both systems use Novatech oscillators as the master system

clock, which can be synchronized to an external input clock. This external clock signal

could be supplied by a GPS-disciplined oscillator (GPSDO), such as the work presented in

[52], which generates a standard clock signal that is phase- or frequency-locked to the one

pulse-per-second (1PPS) provided by GPS receivers. Additionally, the same radar controller

is used by both PARIS and CIRI, and it features a PPS input signal for synchronization,

which could be provided by the same GPS receiver’s output PPS. There are undoubtedly

other details to consider; however, this basic approach, if carefully implemented, should be

successful.

5.2.3 Cognitive Interferometry Radar Imager

Although the CIRI@PSU system has been operating continuously for several months, with

minimum operator interaction, there are still a few tasks that need to be completed before the

system is ready for basic science operations. The following sections provide a brief overview

of these tasks and suggestions on how to complete them. Additionally, a brief preview of

some of the “cognitive” features are presented.

134



5.2.3.1 Antenna Array Beam Pattern

Although the COCO antenna arrays were constructed as closely as possible to the de-

sign shown in Section 3.3.2.1.1, there invariably are differences between the design and the

constructed arrays, namely cable droop between the support poles and mismatched array

heights. It is unknown how much the shape and direction of the arrays’ beam pattern is

distorted from these differences, and this could have a large impact on experimental results

if the arrays are misaligned.

Because the setup is so large (∼100 m in length) beam pattern measurement is chal-

lenging; however, one method has been discussed that should provide a first-order of beam

pattern of the arrays. This method involves the use of a mobile receiver in a car driving ap-

proximately perpendicular to and within the expected main lobe of the antenna arrays. The

receiver would listen to the transmitted pulse from CIRI@PSU, recording signal strength and

GPS location as the car drives through the main lobe. Using the recorded data, an approx-

imate 2-D beam pattern could be estimated, ensuring that the arrays are indeed pointing

towards magnetic north. Because the antenna arrays are expected to have a fairly large

beamwidth in the elevation direction, the mobile receiver should not have difficulty picking

up the transmitted pulsed RF.

5.2.3.2 Pulse Shaping

As mentioned in Section 5.2.2.2, interference issues with the amateur radio community

(caused by CIRI@PSU) have led to discussions and examination of the radar signals’ spectra.

Previously operated with a short baud length (5 µs), long code (28-bit), and a square pulse

envelope severely disrupted amateur radio operations in the 6-m band. The very low end

of this band is used exclusively by the amateur radio community for transmitting very long

distances and recovering very weak signals.

After working on-site with several amateur radio operators, along with others at remote

135



stations, it was determined that, due to the close proximity of the 49.8-MHz carrier to

the 6-m radio band, only the Gaussian shaped pulse may be used with pulse lengths of 10

µs or longer, as long as any phase-coding used for pulse compression does not widen the

spectrum beyond 50.000 MHz. These radar signal restrictions will affect data quality for

future experiments, increasing the minimum discernible range (i.e., range resolution) and

significantly lowering average power output of the transmitter.

5.2.3.3 Cognitive Functionality

Even though most of the components of the system are software-configurable, CIRI@PSU

still operates as a “dumb” radar system, with no “cognitive” functionalities. After the system

has proven itself with valuable science data in the dumb radar mode, development attention

will be focused on adding functionality to reconfigure the radar system automatically and on

the fly. Upon detecting and identifying different ionospheric layers and events, the system

will automatically reconfigure itself for the best radar parameters for that target (within

predefined limited sets) and hone in on specific details about the target.

The Genesis transmitter has many different features designed to enable cognitive radar

applications. These include programmable pulse shaping (e.g., ramp, triangle, etc. in addi-

tion to square and Gaussian) and switching between four user-programmable pulse configu-

rations on an IPP by IPP basis, suggesting alternation between multiple pulse configurations

each IPP. These features could potentially result in a broader scope of data on a particular

event, although much study and analysis will need to accompany these advanced experi-

ments.

136



5.3 Final Remarks

Software-defined radio is an exciting technology that is constantly finding applications in new

fields as engineers and scientists around the world continue to innovate. With the amount

of big picture scientific questions about the ionosphere still unanswered, the low cost and

reconfigurability of software-defined radio platforms (such as the USRP) provide an excellent

tool to build and deploy widespread sensor networks, enabling previously impractical (or even

impossible) experiments to be performed. These systems can make use of emerging signal

processing algorithms to analyze and piece together data sets in ways never done before. It

is hoped that the utilization of software-defined radio continues to permeate throughout the

ionospheric sciences community, as well as throughout other scientific communities to better

explain the unsolved mysteries of the Universe.

137



References

[1] M. Greenman. “An Introduction to HF Propagation and the Ionosphere.” (1999). http:
//www.qsl.net/zl1bpu/IONO/iono101.htm

[2] “Space Weather and the Ionosphere.” http://www2.naic.edu/aogeo/frames/

weather_info.htm

[3] R. Seal. VHF Software Defined Radar for Atmospheric Research at The Pennsylvania
State University. (2013). M.S. Thesis. The Pennsylvania State University.

[4] R. Seal and J. Urbina. VHF Radar Design Using Software Defined Radio Receiver Plat-
form. (2013).

[5] R. D. Hunsucker. (1991). Radio Techniques for Probing the Terrestrial Ionosphere.
Springer-Verlag, Berlin.

[6] C. Davis. (1996). “Interpreting an ionogram.” http://www.wdc.rl.ac.uk/

ionosondes/ionogram_interpretation.html

[7] W. R. Piggott and K. Rawer. (1961). URSI Handbook of Ionogram Interpretation and
Reduction. Elsevier Publishing Company, Amsterdam.

[8] J. K. Shi, et al. (2011). “Properties of Spread-F in High and Low Latitude Ionospheres.”
PIERS Proceedings, Marrakesh.

[9] P. Colestock, S. Close, and J. Zinn. “Theoretical and Observational Studies of Meteor
Interactions with the Ionosphere.” Los Alamos National Laboratory, Los Alamos.

[10] L. Dyrud, et al. (2007). “Plasma and Electromagnetic Simulations of Meteor Head Echo
Radar Reflections.” Earth, Moon, and Planets, Vol. 102.

138

http://www.qsl.net/zl1bpu/IONO/iono101.htm
http://www.qsl.net/zl1bpu/IONO/iono101.htm
http://www2.naic.edu/aogeo/frames/weather_info.htm
http://www2.naic.edu/aogeo/frames/weather_info.htm
http://www.wdc.rl.ac.uk/ionosondes/ionogram_interpretation.html
http://www.wdc.rl.ac.uk/ionosondes/ionogram_interpretation.html


[11] M. Tsutsumi, et al. (1999). “Meteor Observations with an MF Radar.” Earth Planets
Space, Vol. 51.

[12] S. Palo. (2007) “Meteors, Meteor Radar and Mesospheric Winds.” CEDAR Workshop,
Santa Fe. http://sisko.colorado.edu/palo/CEDAR-2007/PALO_CEDAR%20meteor%

20radar.pdf

[13] C. Wolff. “Radar Basics – Pulse Compression.” http://www.radartutorial.eu/08.

transmitters/tx17.en.html

[14] V. C. Ramasami. (2006). “Principle of the Pulse Compression Radar.” https://www.

cresis.ku.edu/~rvc/documents/pulsecomp.pdf

[15] K. Nozaki. “Application of FM/CW Techniques to Ionosondes.” http://www.ursi.

org/files/CommissionWebsites/INAG/uag-104/text/nozaki1.html

[16] S. Bilén. (2009). “SDR: The Future of Radio.” Class Lecture, EE 497E, The Pennsyl-
vania State University.

[17] C. R. Johnson and W. A. Sethares. (2003). Telecommunication Breakdown: Concepts of
Communication Transmitted via Software-Defined Radio. Prentice Hall, Upper Saddle
River.

[18] (2013). “Ettus Research.” Ettus Research. http://ettus.com/

[19] S. Franke. (2011). Unpublished Manuscript. University of Illinois.

[20] “GNU Radio.” http://gnuradio.org/redmine/projects/gnuradio/wiki

[21] (2009). “SKiYMET Meteor Radar.” Genesis Software. http://www.gsoft.com.au/

productsandservices/skiymet

[22] J. Vierinen. “GNU Chirp Sounder.” Sodankylä Geophysical Observatory. http://www.
sgo.fi/~j/gnu_chirp_sounder/

[23] F. Lind. “OpenRadar - The Open Radar Initiative.” http://www.openradar.org/

[24] “DX Engineering Active Horizontal Receive Antennas DXE-ARAH3-1P.” DX Engineer-
ing. http://www.dxengineering.com/parts/dxe-arah3-1p

[25] “Universal Serial Bus Specification Revision 2.0.” USB Implementers Forum, Inc. http:
//www.usb.org/developers/docs/usb_20_070113.zip

[26] “Hardware Setup Notes: External Clock Modification.” http://files.ettus.com/

uhd_docs/manual/html/usrp1.html

[27] “FPGA.” GNU Radio. http://gnuradio.org/redmine/projects/gnuradio/wiki/

UsrpFAQIntroFPGA

139

http://sisko.colorado.edu/palo/CEDAR-2007/PALO_CEDAR%20meteor%20radar.pdf
http://sisko.colorado.edu/palo/CEDAR-2007/PALO_CEDAR%20meteor%20radar.pdf
http://www.radartutorial.eu/08.transmitters/tx17.en.html
http://www.radartutorial.eu/08.transmitters/tx17.en.html
https://www.cresis.ku.edu/~rvc/documents/pulsecomp.pdf
https://www.cresis.ku.edu/~rvc/documents/pulsecomp.pdf
http://www.ursi.org/files/CommissionWebsites/INAG/uag-104/text/nozaki1.html
http://www.ursi.org/files/CommissionWebsites/INAG/uag-104/text/nozaki1.html
http://ettus.com/
http://gnuradio.org/redmine/projects/gnuradio/wiki
http://www.gsoft.com.au/productsandservices/skiymet
http://www.gsoft.com.au/productsandservices/skiymet
http://www.sgo.fi/~j/gnu_chirp_sounder/
http://www.sgo.fi/~j/gnu_chirp_sounder/
http://www.openradar.org/
http://www.dxengineering.com/parts/dxe-arah3-1p
http://www.usb.org/developers/docs/usb_20_070113.zip
http://www.usb.org/developers/docs/usb_20_070113.zip
http://files.ettus.com/uhd_docs/manual/html/usrp1.html
http://files.ettus.com/uhd_docs/manual/html/usrp1.html
http://gnuradio.org/redmine/projects/gnuradio/wiki/UsrpFAQIntroFPGA
http://gnuradio.org/redmine/projects/gnuradio/wiki/UsrpFAQIntroFPGA


[28] “Bench Top Direct Digital Synthesized (DDS) Signal Generators.” Novatech Instru-
ments, Inc. http://www.novatechsales.com/Bench-Signal-Generator.html

[29] GNU Radio Source Code. http://gnuradio.org/redmine/projects/gnuradio/

repository/revisions/b5709abe52928f0b701cd5f5eedefc2c1665123e/entry/

usrp/host/lib/usrp_standard.cc

[30] “HDF5.” The HDF Group. http://www.hdfgroup.org/HDF5/

[31] “h5py.” https://code.google.com/p/h5py/

[32] “HDF5 Files – MATLAB & Simulink.” The Mathworks, Inc. http://www.mathworks.
com/help/matlab/hdf5-files.html

[33] “Hough transform.” Planetmath.org. http://planetmath.org/HoughTransform

[34] J. D. Mathews. (2013). Personal Communication. The Pennsylvania State University.

[35] P. Vixie. (1996). “CRON.” System Manager’s Manual. 4th Berkley Distribution.

[36] J. Jones, et al. (1998). “An improved interferometer design for use with meteor radars.”
Radio Science, Vol 33.

[37] J. Urbina. (2013). Personal Communication. The Pennsylvania State University.

[38] (2012). “Noise Figure.” Microwaves101.com. http://www.microwaves101.com/

encyclopedia/noisefigure.cfm

[39] A. Hackett, et al. (2013). “Assembly and Operation Manual for the Bit Pattern Gener-
ator.” The Pennsylvania State University.

[40] “Board Signal Generators, Clock Generators, & Locking Programmable Oscilla-
tors.” Novatech Instruments, Inc. http://www.novatechsales.com/Bench-Signal-

Generator.html

[41] “VHF Pulse Transmitter Manual.” Manual for WPT-50 Transmitter. Tycho Technolo-
gies.

[42] R. Seal. “GnuRadar.” Source Code Repository. https://github.com/rseal/GnuRadar

[43] R. Seal and J. Urbina. (2010). “Reconfigurable Virtual Instrumentation Design
for Radar using Object-Oriented Techniques and Open-Source Tools.” Radar
Technology, Chapter 18. InTech. http://www.intechopen.com/books/radar-

technology/reconfigurable-virtual-instrumentation-design-for-radar-

using-object-oriented-techniques-and-open-so

[44] R. Seal. “BitPatternGenerator.” Source Code Repository. https://github.com/

rseal/BitPatternGenerator

140

http://www.novatechsales.com/Bench-Signal-Generator.html
http://gnuradio.org/redmine/projects/gnuradio/repository/revisions/b5709abe52928f0b701cd5f5eedefc2c1665123e/entry/usrp/host/lib/usrp_standard.cc
http://gnuradio.org/redmine/projects/gnuradio/repository/revisions/b5709abe52928f0b701cd5f5eedefc2c1665123e/entry/usrp/host/lib/usrp_standard.cc
http://gnuradio.org/redmine/projects/gnuradio/repository/revisions/b5709abe52928f0b701cd5f5eedefc2c1665123e/entry/usrp/host/lib/usrp_standard.cc
http://www.hdfgroup.org/HDF5/
https://code.google.com/p/h5py/
http://www.mathworks.com/help/matlab/hdf5-files.html
http://www.mathworks.com/help/matlab/hdf5-files.html
http://planetmath.org/HoughTransform
http://www.microwaves101.com/encyclopedia/noisefigure.cfm
http://www.microwaves101.com/encyclopedia/noisefigure.cfm
http://www.novatechsales.com/Bench-Signal-Generator.html
http://www.novatechsales.com/Bench-Signal-Generator.html
https://github.com/rseal/GnuRadar
http://www.intechopen.com/books/radar-technology/reconfigurable-virtual-instrumentation-design-for-radar-using-object-oriented-techniques-and-open-so
http://www.intechopen.com/books/radar-technology/reconfigurable-virtual-instrumentation-design-for-radar-using-object-oriented-techniques-and-open-so
http://www.intechopen.com/books/radar-technology/reconfigurable-virtual-instrumentation-design-for-radar-using-object-oriented-techniques-and-open-so
https://github.com/rseal/BitPatternGenerator
https://github.com/rseal/BitPatternGenerator


[45] “Pulse Transmitter System User Manual PTS Series.” Genesis Software. Rev. 1.02.

[46] “Technical Manual for 2U GENESYS 3.3 kW Programmable DC Power Supplies.” TDK-
Lambda Americas Inc. Rev. E. http://www.us.tdk-lambda.com/hp/pdfs/Product_
manuals/83503001.pdf

[47] Z. Stephens, et al. (2012). “Automated Classification of Meteor Reflections.” Conference
Poster. Coupling, Energetics, and Dynamics of Atmospheric Regions, Santa Fe.

[48] Z. Stephens. (2012). “Some Mild Sauron Documentation.” The Pennsylvania State Uni-
versity.

[49] “Ionosonde.” (2012). HF Underground. http://www.hfunderground.com/wiki/

Ionosonde

[50] “United States Frequency Allocations: The Radio Spectrum.” (2003). National
Telecommunications and Information Administration, Office of Spectrum Management.
http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf

[51] (2013). “HDF5 FAQ – Questions About the Software.” The HDF5 Group. http://www.
hdfgroup.org/hdf5-quest.html#grdwt

[52] T. Boehmer. (2013). “Design and Verification of a Low-Power GPS-Disciplined Oscil-
lator For Use In Distributed Sensor Arrays.” Master’s Thesis. The Pennsylvania State
University.

[53] A. Hackett, et al. (2012). “A 50-MHz Digital Radar System for Ionospheric Studies.”
Conference Poster. Coupling, Energetics, and Dynamics of Atmospheric Regions, Santa
Fe.

[54] R. Sorbello, et al. (2012). “An Overview of a Cognitive Radar System to Study Plasma
Irregularities near the Peruvian Andes.” Conference Poster. Coupling, Energetics, and
Dynamics of Atmospheric Regions, Santa Fe.

[55] A. Hackett, et al. (2013). “Development of a Reconfigurable Ionosonde Receiver Using a
Software-defined Radio Hardware Platform.” Conference Poster. Coupling, Energetics,
and Dynamics of Atmospheric Regions, Boulder.

[56] A. Hackett, et al. (2013). “Development of an Advanced Digital Radar Network for Mid-
latitude Ionospheric Studies.” Conference Poster. Coupling, Energetics, and Dynamics
of Atmospheric Regions, Boulder.

[57] R. Sorbello, et al. (2013). “First steps towards the implementation of a cognitive radar
to study plasma instabilities near the Peruvian Andes.” Conference Poster. Coupling,
Energetics, and Dynamics of Atmospheric Regions, Boulder.

141

http://www.us.tdk-lambda.com/hp/pdfs/Product_manuals/83503001.pdf
http://www.us.tdk-lambda.com/hp/pdfs/Product_manuals/83503001.pdf
http://www.hfunderground.com/wiki/Ionosonde
http://www.hfunderground.com/wiki/Ionosonde
http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf
http://www.hdfgroup.org/hdf5-quest.html#grdwt
http://www.hdfgroup.org/hdf5-quest.html#grdwt


Appendix A

Selected Code Listings

This appendix provides listings of original and modified code and utility configurations (e.g.,

cron) for PISCO, PARIS, and CIRI@PSU, as well as general-purpose tools.

A.1 PISCO

Listing A.1: IonosondeRxRun.cpp – data capture program for PISCO.
1 #include <iostream >

2 #include <sys/time.h>

3

4 #include <boost/shared_ptr.hpp >

5 #include <boost/lexical_cast.hpp >

6

7 #include <usrp/usrp/standard.h>

8

9 #include <gnuradar/GnuRadarDevice.h>

10 #include <gnuradar/GnuRadarTypes.hpp >

11 #include <gnuradar/GnuRadarSettings.h>

12 #include <gnuradar/SynchronizedBufferManager.hpp >

13 #include <gnuradar/SharedMemory.h>

14 #include <gnuradar/ProducerThread.h>

15 #include <gnuradar/ConsumerThread.h>

16 #include <gnuradar/ProducerConsumerModel.h>

17 #include <gnuradar/yaml/SharedBufferHeader.hpp >

18

19 #include <hdf5r/HDF5.hpp >

20 #include <hdf5r/Complex.hpp >

21 #include <hdf5r/Time.hpp >

22 #include <hdf5r/Complex.hpp >

23

24 #include "IonosondeRxDevice.h"

25 #include "Scheduler.h"

26 #include "timer_us.h"

142



27

28 using namespace boost;

29 using namespace gnuradar;

30

31

32 int main( int argc , char** argv ) {

33

34 typedef boost :: shared_ptr <gnuradar :: IonosondeRxDevice >

35 IonosondeRxDevicePtr;

36 typedef boost :: shared_ptr <SynchronizedBufferManager >

37 SynchronizedBufferManagerPtr;

38 typedef boost :: shared_ptr <SharedMemory >

39 SharedBufferPtr;

40 typedef std::vector <SharedBufferPtr >

41 SharedArray;

42 typedef boost :: shared_ptr <HDF5 >

43 Hdf5Ptr;

44 typedef boost :: shared_ptr <ProducerThread >

45 ProducerThreadPtr;

46 typedef boost :: shared_ptr <ConsumerThread >

47 ConsumerThreadPtr;

48 typedef boost :: shared_ptr <ProducerConsumerModel >

49 PCModelPtr;

50 typedef boost :: shared_ptr < ::yml:: SharedBufferHeader >

51 SharedBufferHeaderPtr;

52

53 // FIXME Ionosonde parameters -- should be changed to a config file

54 const int CLKRATE = 64000000;

55 const int SAMPRATE = 500000;

56 const int CHANNELS = 2;

57 const int PRF = 40;

58 const int SAMPBYTES = 4;

59 const int NUMBUFFERS = 10;

60 const int BYTESPERBUF = SAMPRATE*SAMPBYTES*CHANNELS;

61 const int NUMFREQ = 300;

62 const float BAUD = 40e-6;

63 const std:: string CODE = "1111100110101";

64

65 // GnuRadar Settings

66 gnuradar :: GnuRadarSettingsPtr grSettings( new gnuradar :: GnuRadarSettings () );

67 grSettings ->numChannels = CHANNELS;

68 grSettings ->decimationRate = CLKRATE / SAMPRATE;

69 grSettings ->fpgaFileName = "usrp1_iono_rx_300.rbf";

70 grSettings ->fUsbBlockSize = 0;

71 grSettings ->fUsbNblocks = 0;

72 grSettings ->mux = 0xf3f2f1f0;

73 grSettings ->firmwareFileName = "std.ihx";

74

75 // Set up the HDF5 data tags -- These should come from the config file

76 Hdf5Ptr h5File = Hdf5Ptr ( new HDF5 ( "/data/IonosondeRx", hdf5:: WRITE ) );

77 h5File ->Description( "USRP Ionosonde Receiver" );

78 h5File ->WriteStrAttrib( "INSTRUMENT", "USRP Rev4.5" );

79 h5File ->WriteStrAttrib( "IPP_s", boost :: lexical_cast <std::string >( 1.0/ float(PRF) ) );

80 h5File ->WriteStrAttrib( "SAMP_BW_Hz", boost :: lexical_cast <std::string >( SAMPRATE ) );

81 h5File ->WriteStrAttrib( "SAMP_FORMAT", "Complex 32-bit Integer" );

82 h5File ->WriteStrAttrib( "CHANNELS", boost :: lexical_cast <std::string >( grSettings ->

numChannels ) );

83 h5File ->WriteStrAttrib( "SWEEP_TIME_s", "0.2" );

84 h5File ->WriteStrAttrib( "FPGA_BITSTREAM", grSettings ->fpgaFileName );

85 h5File ->WriteStrAttrib( "BAUD_s", boost :: lexical_cast <std::string >( BAUD ) );

86 h5File ->WriteStrAttrib( "CODE", CODE );

87

88 // The receiver device (inherits from GnuRadarDevice )

89 IonosondeRxDevicePtr myUSRP( new gnuradar :: IonosondeRxDevice( grSettings , "/home/radar/

pisco/config/igram300.txt" ) );

143



90

91 // Create the 1-s data buffers in /dev/shm

92 SharedArray array;

93

94 for ( int i = 0; i < NUMBUFFERS; ++i ) {

95 std:: string bufferName = "GnuRadar" + boost :: lexical_cast <std::string >(i) + ".buf";

96

97 SharedBufferPtr myBufPtr (

98 new SharedMemory (

99 bufferName ,

100 BYTESPERBUF ,

101 SHM:: CreateShared ,

102 0666 )

103 );

104

105 array.push_back( myBufPtr );

106 }

107

108 // Set up the buffer manager

109 SynchronizedBufferManagerPtr bufferManager = SynchronizedBufferManagerPtr(

110 new SynchronizedBufferManager( array , NUMBUFFERS , BYTESPERBUF ) );

111

112 std::vector <hsize_t > dimVector;

113 dimVector.push_back( static_cast <int > ( PRF ) );

114 dimVector.push_back( static_cast <int > ( SAMPRATE / PRF * CHANNELS ) );

115

116 SharedBufferHeaderPtr header = SharedBufferHeaderPtr (

117 new ::yml:: SharedBufferHeader (

118 NUMBUFFERS , // # of buffers

119 BYTESPERBUF , // bytes per buffer

120 SAMPRATE , // sample rate

121 CHANNELS , // # of channels

122 PRF , // ipps per buffer

123 SAMPRATE/PRF*CHANNELS // samples per buffer

124 )

125 );

126

127

128 // Set up the producer/consumer model

129 ProducerThreadPtr producer = ProducerThreadPtr (

130 new ProducerThread ( bufferManager , myUSRP )

131 );

132

133 header ->Write( 0, 0, 0 );

134

135 ConsumerThreadPtr consumer = ConsumerThreadPtr (

136 new ConsumerThread ( bufferManager , header , h5File , dimVector )

137 );

138

139 PCModelPtr pcModel ( new ProducerConsumerModel () );

140 pcModel ->Initialize( bufferManager , producer , consumer );

141

142

143 // Wait until the system time ( synchronized via NTP) is at the next minute

144 // --> This will be scheduled with cron

145 Scheduler myScheduler (60);

146

147 uint64_t tic , toc;

148

149 // Start the ionosonde data collection and retuning

150 std::cout << ">>> Starting ionosonde receiver ... " << std::endl;

151 myUSRP ->Start ();

152 pcModel ->Start ();

153

154 tic = timer_us ();

144



155 myUSRP ->Wait();

156 toc = timer_us ();

157

158 // Finish and clean up

159 std::cout << ">>> Ionosonde finished." << std::endl;

160 std::cout << ">>> Total elapsed time: " << toc -tic << " us." << std::endl;

161 pcModel ->Stop();

162 myUSRP ->Stop();

163

164 return 0;

165 };

Listing A.2: IonosondeRxDevice.h – inherited ionosonde device for PISCO.
1 #ifndef IONOSONDERXDEVICE_H

2 #define IONOSONDERXDEVICE_H

3

4 #include <fstream >

5 #include <iostream >

6

7 #include <gnuradar/GnuRadarDevice.h>

8 #include <gnuradar/SThread.h>

9

10 #include <boost/lexical_cast.hpp >

11 #include <usrp/usrp/basic.h>

12 #include <usrp/fpga/fpga_regs_standard.h>

13

14 #include "timer_us.h"

15

16 namespace gnuradar{

17

18 const double DEFAULT_START_FREQ = 2000000;

19 const double DEFAULT_END_FREQ = 20000000;

20 const double DEFAULT_FREQ_STEP = 2000000;

21 const int DEFAULT_STEP_TIME_US = 200000;

22

23 // FIXME: No longer doing frequency retuning on the host computer , hence

24 // the the commented code. It should all be removed at some point to

25 // simplify the code.

26

27 class IonosondeRxDevice: public GnuRadarDevice , public thread :: SThread {

28

29 std::vector <double > freqList_;

30 std:: string freqListFilename_;

31 std::vector <double >:: iterator freqPos_;

32 bool fixedTimeStep_; // not used currently , but planned for variable step operation

33

34 void ResetFreqSweep_ (){

35

36 usrp_ ->_write_fpga_reg( FR_USER_1 , 1 ); // Pull reset high

37 usrp_ ->_write_fpga_reg( FR_USER_0 , 0 ); // Make sure frequency sweep is disabled

38 usrp_ ->_write_fpga_reg( FR_USER_1 , 0 ); // Bring reset low again

39 }

40

41 void InitFreqList_ (){

42

43 if ( !freqListFilename_.compare("") ) {

44 // Load a default (linearly spaced) frequency list

45 for( double i=DEFAULT_START_FREQ; i < DEFAULT_END_FREQ; i+= DEFAULT_FREQ_STEP )

46 freqList_.push_back( i );

47

48 // std :: cout << "Default frequency list loaded ." << std :: endl;

49 }

50 else {

145



51 // Load a frequency list from a file

52 std:: ifstream f_file;

53 f_file.open( freqListFilename_.c_str (), std::ios::in );

54

55 if( f_file.good() ) {

56 std:: string currFreq;

57

58 while( !f_file.eof() ) {

59 getline( f_file , currFreq );

60 freqList_.push_back( atof( currFreq.c_str () ) );

61 }

62 // std :: cout << "Loaded frequency list from " << freqListFilename_ << std ::

endl;

63 }

64 else {

65 // If there ’s a problem loading the file , load the default list

66 // std :: cout << "Error loading " << freqListFilename_ <<

67 // ". Loading default frequency list ..." << std :: endl;

68 freqListFilename_ = "";

69 InitFreqList_ ();

70 }

71 }

72

73 freqPos_ = freqList_.begin ();

74

75 for( int i=0; i < grSettings_ ->numChannels; ++i ) {

76 Retune( i, freqList_ [0] );

77 // std :: cout << "### Channel " << i << " initialized to " << freqList_ [0] <<

78 // " Hz." << std :: endl;

79 }

80

81 };

82

83 public:

84

85 IonosondeRxDevice( GnuRadarSettingsPtr grSettings ) :

86 GnuRadarDevice ( grSettings ),

87 fixedTimeStep_ ( true ),

88 freqListFilename_ ( "" ) {

89

90 std::cout << "### Instantiating IonosondeRxDevice ... ";

91 InitFreqList_ ();

92 ResetFreqSweep_ ();

93 for( int i=0; i < 4; ++i )

94 usrp_ ->set_pga( i, 20 );

95 }

96

97 IonosondeRxDevice( GnuRadarSettingsPtr grSettings , std:: string freqListFilename ) :

98 GnuRadarDevice( grSettings ),

99 fixedTimeStep_ ( true ),

100 freqListFilename_ ( freqListFilename ) {

101

102 std::cout << "### Instantiating IonosondeRxDevice ... ";

103 InitFreqList_ ();

104 ResetFreqSweep_ ();

105 for( int i=0; i < 4; ++i )

106 usrp_ ->set_pga( i, 20 );

107 }

108

109 void Retune( const int channel , const double newFreq ) {

110

111 grSettings_ ->Tune( channel , newFreq );

112 //usrp_ -> set_rx_freq ( channel , grSettings_ -> tuningFrequency [channel] );

113 }

114

146



115 void SetFreqList( std:: string freqListFilename ) {

116 freqListFilename_ = freqListFilename;

117 InitFreqList_ ();

118 }

119

120 virtual void Run() {

121 uint64_t t1 , t2;

122

123 // Enable frequency sweeping on the FPGA

124 usrp_ ->_write_fpga_reg( FR_USER_0 , 1 );

125

126 // The end () -1 is so we don ’t retune to baseband at the end

127 while ( freqPos_ != freqList_.end() -1 ) {

128

129 t1 = timer_us ();

130 for( int i=0; i < grSettings_ ->numChannels; ++i )

131 Retune( i, *freqPos_ );

132 freqPos_ ++;

133 t2 = timer_us ();

134 Sleep(thread ::USEC , DEFAULT_STEP_TIME_US - (t2 -t1) );

135 }

136

137 // Disable frequency sweeping on the FPGA

138 usrp_ ->_write_fpga_reg( FR_USER_0 , 0 );

139

140 }

141

142 };

143

144 };

145

146 #endif

Listing A.3: Scheduler.h – high-precision scheduler for PISCO.
1 #ifndef SCHEULDER_H

2 #define SCHEDULER_H

3

4 #include <iostream >

5 #include <stdint.h>

6 #include <sys/time.h>

7 #include <gnuradar/SThread.h>

8 #include "timer_us.h"

9 using namespace thread;

10

11 #define NS_THRES_DEFAULT 1* ONE_E6; // default of 1 ms seems to be okay for our system

12 //#define NS_THRES_DEFAULT 10* ONE_E6; // default of 10 ms seems to be okay for CADI

system

13

14 class Scheduler {

15

16 long interval_us_; // time interval in us

17 int ns_thres_; // "close enough" threshold in ns to complete the run

18 bool debug_; // debugging messages enabled?

19

20 public:

21

22 Scheduler () :

23 interval_us_( 15/60* ONE_E6 ), debug_( false ) { Run(); };

24

25 Scheduler( int interval_s ) :

26 interval_us_( interval_s*ONE_E6 ), debug_( false ) { Run(); };

27

28 Scheduler( int interval_s , bool debug ) :

147



29 interval_us_( interval_s*ONE_E6 ), debug_( debug ) { Run(); };

30

31 void Run () {

32

33 bool end = false;

34 ns_thres_ = NS_THRES_DEFAULT;

35 uint64_t target = 0;

36

37 timeval tv;

38 timespec te;

39

40 // The idea here is that we get the current time and the target time (at multiples

of

41 // interval_s ), find the difference , and then wait half that time and repeat. Once

this

42 // "waiting" time is below the threshold (ns_thres_ ), we go ahead and let the

scheduler

43 // finish and the calling program can execute whatever it needs to.

44

45 while (!end) {

46 gettimeofday( &tv , NULL );

47

48 uint64_t startTime = tv.tv_usec + (uint64_t)(tv.tv_sec)*ONE_E6;

49

50 if( startTime > target && target > 0 ) // failsafe end condition - sometimes the

51 break; // threshold isn ’t really enough

52

53 uint64_t waitTime = interval_us_ - (startTime % interval_us_);

54 // uint64_t waitTime = interval_us_ - ( startTime % interval_us_ ) - 2.0* ONE_E6; //

Fudge factor tacked on here for CADI

55

56 if(target == 0)

57 target = startTime + waitTime;

58

59 if(debug_) std::cout << "waitTime: " << waitTime << "us" << std::endl;

60

61 waitTime /= 2;

62 te.tv_sec = waitTime / ONE_E6;

63 te.tv_nsec = waitTime*ONE_E3 % ONE_E9;

64

65 nanosleep( &te , NULL );

66

67 if( (te.tv_sec < 1 && te.tv_nsec < ns_thres_) ) end = true; // desired end

condition

68 }

69

70 if(debug_) {

71 if(!end)

72 std::cout << "Scheduler started late ... :-(" << std::endl;

73 else

74 std::cout << "Scheduler finished. Now back to your regularly scheduled

program. :-)" << std::endl;

75 }

76 }

77 };

78 #endif

Listing A.4: timer us.h – timer function used by high-precision scheduler for PISCO.
1 #ifndef TIMER_US_H

2 #define TIMER_US_H

3

4 #include <sys/time.h>

5

148



6 uint64_t timer_us ()

7 {

8 timeval tv;

9 gettimeofday (&tv , NULL);

10

11 uint64_t ret = tv.tv_usec;

12 ret += (tv.tv_sec * 1000000);

13

14 return ret;

15 }

16 #endif

Listing A.5: Makefile for building data capture program for PISCO.
1 all:

2 g++ src/IonosondeRxRun.cpp -o bin/IonosondeRxRun deps/GnuRadar/usrp/src/

usrp_standard.cc deps/GnuRadar/usrp/src/usrp_basic.cc deps/GnuRadar/programs/Run

/ProducerThread.cxx deps/GnuRadar/programs/Run/ConsumerThread.cxx -fpermissive -

lusb -1.0 -L./deps/GnuRadar/build/usrp/ -lgnuradar -lpthread -lrt -lhdf5_hl_cpp -

lboost_system -lboost_filesystem -lyaml -cpp -lhdf5_cp

Listing A.6: usrp std.v – FPGA design for PISCO.
1 // -*- verilog -*-

2 //

3 // USRP - Universal Software Radio Peripheral

4 //

5 // Copyright (C) 2003 ,2004 Matt Ettus

6 //

7 // This program is free software; you can redistribute it and/or modify

8 // it under the terms of the GNU General Public License as published by

9 // the Free Software Foundation ; either version 2 of the License , or

10 // (at your option) any later version.

11 //

12 // This program is distributed in the hope that it will be useful ,

13 // but WITHOUT ANY WARRANTY; without even the implied warranty of

14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 // GNU General Public License for more details.

16 //

17 // You should have received a copy of the GNU General Public License

18 // along with this program; if not , write to the Free Software

19 // Foundation , Inc., 51 Franklin Street , Boston , MA 02110 -1301 USA

20 //

21

22 // Top level module for a full setup with DUCs and DDCs

23

24 // Define DEBUG_OWNS_IO_PINS if we ’re using the daughterboard i/o pins

25 // for debugging info. NB , This can kill the m’board and/or d’board if you

26 // have anything except basic d’boards installed .

27

28 // Uncomment the following to include optional circuitry

29

30 ‘include "config.vh"

31 ‘include "../../ common/fpga_regs_common.v"

32 ‘include "../../ common/fpga_regs_standard.v"

33

34 module usrp_std

35 (output MYSTERY_SIGNAL ,

36 input master_clk ,

37 input SCLK ,

38 input SDI ,

39 inout SDO ,

40 input SEN_FPGA ,

149



41

42 input FX2_1 ,

43 output FX2_2 ,

44 output FX2_3 ,

45

46 input wire [11:0] rx_a_a ,

47 input wire [11:0] rx_b_a ,

48 input wire [11:0] rx_a_b ,

49 input wire [11:0] rx_b_b ,

50

51 output wire [13:0] tx_a ,

52 output wire [13:0] tx_b ,

53

54 output wire TXSYNC_A ,

55 output wire TXSYNC_B ,

56

57 // USB interface

58 input usbclk ,

59 input wire [2:0] usbctl ,

60 output wire [1:0] usbrdy ,

61 inout [15:0] usbdata , // NB Careful , inout

62

63 // These are the general purpose i/o’s that go to the daughterboard slots

64 inout wire [15:0] io_tx_a ,

65 inout wire [15:0] io_tx_b ,

66 inout wire [15:0] io_rx_a ,

67 output wire [15:0] io_rx_b

68 // inout wire [15:0] io_rx_b

69 );

70 wire [15:0] debugdata ,debugctrl;

71 assign MYSTERY_SIGNAL = 1’b0;

72

73 wire clk64 ,clk128;

74

75 wire WR = usbctl [0];

76 wire RD = usbctl [1];

77 wire OE = usbctl [2];

78

79 wire have_space , have_pkt_rdy;

80 assign usbrdy [0] = have_space;

81 assign usbrdy [1] = have_pkt_rdy;

82

83 wire tx_underrun , rx_overrun;

84 wire clear_status = FX2_1;

85 assign FX2_2 = rx_overrun;

86 assign FX2_3 = tx_underrun;

87

88 wire [15:0] usbdata_out;

89

90 wire [3:0] dac0mux ,dac1mux ,dac2mux ,dac3mux;

91

92 wire tx_realsignals;

93 wire [3:0] rx_numchan;

94 wire [2:0] tx_numchan;

95

96 wire [7:0] interp_rate , decim_rate;

97 wire [31:0] tx_debugbus , rx_debugbus;

98

99 wire enable_tx , enable_rx;

100 wire tx_dsp_reset , rx_dsp_reset , tx_bus_reset , rx_bus_reset;

101 wire [7:0] settings;

102

103 // Tri -state bus macro

104 bustri bustri( .data(usbdata_out) ,.enabledt(OE) ,.tridata(usbdata) );

105

150



106 assign clk64 = master_clk;

107

108 wire [15:0] ch0tx ,ch1tx ,ch2tx ,ch3tx; //,ch4tx ,ch5tx ,ch6tx ,ch7tx;

109 wire [15:0] ch0rx ,ch1rx ,ch2rx ,ch3rx ,ch4rx ,ch5rx ,ch6rx ,ch7rx;

110

111 // TX

112 wire [15:0] i_out_0 ,i_out_1 ,q_out_0 ,q_out_1;

113 wire [15:0] bb_tx_i0 ,bb_tx_q0 ,bb_tx_i1 ,bb_tx_q1; // bb_tx_i2 ,bb_tx_q2 ,bb_tx_i3 ,bb_tx_q3;

114

115 wire strobe_interp , tx_sample_strobe;

116 wire tx_empty;

117

118 wire serial_strobe;

119 wire [6:0] serial_addr;

120 wire [31:0] serial_data;

121

122 reg [15:0] debug_counter;

123 reg [15:0] loopback_i_0 ,loopback_q_0;

124

125 // ///////////////////////////////////////////////////////

126 // Transmit Side

127 ‘ifdef TX_ON

128 assign bb_tx_i0 = ch0tx;

129 assign bb_tx_q0 = ch1tx;

130 assign bb_tx_i1 = ch2tx;

131 assign bb_tx_q1 = ch3tx;

132

133 tx_buffer tx_buffer

134 ( .usbclk(usbclk), .bus_reset(tx_bus_reset),

135 .usbdata(usbdata) ,.WR(WR), .have_space(have_space),

136 .tx_underrun(tx_underrun), .clear_status(clear_status),

137 .txclk(clk64), .reset(tx_dsp_reset),

138 .channels ({ tx_numchan ,1’b0}),

139 .tx_i_0(ch0tx) ,.tx_q_0(ch1tx),

140 .tx_i_1(ch2tx) ,.tx_q_1(ch3tx),

141 .txstrobe(strobe_interp),

142 .tx_empty(tx_empty),

143 .debugbus(tx_debugbus) );

144

145 ‘ifdef TX_EN_0

146 tx_chain tx_chain_0

147 ( .clock(clk64) ,.reset(tx_dsp_reset) ,.enable(enable_tx),

148 .interp_rate(interp_rate) ,.sample_strobe(tx_sample_strobe),

149 .interpolator_strobe(strobe_interp) ,.freq(),

150 .i_in(bb_tx_i0) ,.q_in(bb_tx_q0) ,.i_out(i_out_0) ,.q_out(q_out_0) );

151 ‘else

152 assign i_out_0 =16’d0;

153 assign q_out_0 =16’d0;

154 ‘endif

155

156 ‘ifdef TX_EN_1

157 tx_chain tx_chain_1

158 ( .clock(clk64) ,.reset(tx_dsp_reset) ,.enable(enable_tx),

159 .interp_rate(interp_rate) ,.sample_strobe(tx_sample_strobe),

160 .interpolator_strobe(strobe_interp) ,.freq(),

161 .i_in(bb_tx_i1) ,.q_in(bb_tx_q1) ,.i_out(i_out_1) ,.q_out(q_out_1) );

162 ‘else

163 assign i_out_1 =16’d0;

164 assign q_out_1 =16’d0;

165 ‘endif

166

167 setting_reg #( ‘FR_TX_MUX)

168 sr_txmux (. clock(clk64) ,.reset(tx_dsp_reset) ,.strobe(serial_strobe) ,.addr(serial_addr) ,.

in(serial_data),

169 .out({dac3mux ,dac2mux ,dac1mux ,dac0mux ,tx_realsignals ,tx_numchan }));

151



170

171 wire [15:0] tx_a_a = dac0mux [3] ? (dac0mux [1] ? (dac0mux [0] ? q_out_1 : i_out_1) : (

dac0mux [0] ? q_out_0 : i_out_0)) : 16’b0;

172 wire [15:0] tx_b_a = dac1mux [3] ? (dac1mux [1] ? (dac1mux [0] ? q_out_1 : i_out_1) : (

dac1mux [0] ? q_out_0 : i_out_0)) : 16’b0;

173 wire [15:0] tx_a_b = dac2mux [3] ? (dac2mux [1] ? (dac2mux [0] ? q_out_1 : i_out_1) : (

dac2mux [0] ? q_out_0 : i_out_0)) : 16’b0;

174 wire [15:0] tx_b_b = dac3mux [3] ? (dac3mux [1] ? (dac3mux [0] ? q_out_1 : i_out_1) : (

dac3mux [0] ? q_out_0 : i_out_0)) : 16’b0;

175

176 wire txsync = tx_sample_strobe;

177 assign TXSYNC_A = txsync;

178 assign TXSYNC_B = txsync;

179

180 assign tx_a = txsync ? tx_b_a [15:2] : tx_a_a [15:2];

181 assign tx_b = txsync ? tx_b_b [15:2] : tx_a_b [15:2];

182 ‘endif // ‘ifdef TX_ON

183

184 // ////////////////////////////////////////////////////

185 // Receive Side

186 ‘ifdef RX_ON

187 wire rx_sample_strobe ,strobe_decim ,hb_strobe;

188 wire [15:0] bb_rx_i0 ,bb_rx_q0 ,bb_rx_i1 ,bb_rx_q1 ,

189 bb_rx_i2 ,bb_rx_q2 ,bb_rx_i3 ,bb_rx_q3;

190

191 wire loopback = settings [0];

192 wire counter = settings [1];

193

194 always @(posedge clk64)

195 if(rx_dsp_reset)

196 debug_counter <= #1 16’d0;

197 else if(~ enable_rx)

198 debug_counter <= #1 16’d0;

199 else if(hb_strobe)

200 debug_counter <=#1 debug_counter + 16’d2;

201

202 always @(posedge clk64)

203 if(strobe_interp)

204 begin

205 loopback_i_0 <= #1 ch0tx;

206 loopback_q_0 <= #1 ch1tx;

207 end

208

209 assign ch0rx = counter ? debug_counter : loopback ? loopback_i_0 : bb_rx_i0;

210 assign ch1rx = counter ? debug_counter + 16’d1 : loopback ? loopback_q_0 : bb_rx_q0;

211 assign ch2rx = bb_rx_i1;

212 assign ch3rx = bb_rx_q1;

213 assign ch4rx = bb_rx_i2;

214 assign ch5rx = bb_rx_q2;

215 assign ch6rx = bb_rx_i3;

216 assign ch7rx = bb_rx_q3;

217

218 wire [15:0] ddc0_in_i ,ddc0_in_q ,ddc1_in_i ,ddc1_in_q ,ddc2_in_i ,ddc2_in_q ,ddc3_in_i ,

ddc3_in_q;

219 wire [31:0] rssi_0 ,rssi_1 ,rssi_2 ,rssi_3;

220

221 adc_interface adc_interface (. clock(clk64) ,.reset(rx_dsp_reset) ,.enable(1’b1),

222 .serial_addr(serial_addr) ,.serial_data(serial_data) ,.serial_strobe(

serial_strobe),

223 .rx_a_a(rx_a_a) ,.rx_b_a(rx_b_a) ,.rx_a_b(rx_a_b) ,.rx_b_b(rx_b_b),

224 .rssi_0(rssi_0) ,.rssi_1(rssi_1) ,.rssi_2(rssi_2) ,.rssi_3(rssi_3),

225 .ddc0_in_i(ddc0_in_i) ,.ddc0_in_q(ddc0_in_q),

226 .ddc1_in_i(ddc1_in_i) ,.ddc1_in_q(ddc1_in_q),

227 .ddc2_in_i(ddc2_in_i) ,.ddc2_in_q(ddc2_in_q),

228 .ddc3_in_i(ddc3_in_i) ,.ddc3_in_q(ddc3_in_q) ,.rx_numchan(rx_numchan) );

152



229

230 rx_buffer rx_buffer

231 ( .usbclk(usbclk) ,.bus_reset(rx_bus_reset) ,.reset(rx_dsp_reset),

232 .reset_regs(rx_dsp_reset),

233 .usbdata(usbdata_out) ,.RD(RD) ,.have_pkt_rdy(have_pkt_rdy) ,.rx_overrun(rx_overrun),

234 .channels(rx_numchan),

235 .ch_0(ch0rx) ,.ch_1(ch1rx),

236 .ch_2(ch2rx) ,.ch_3(ch3rx),

237 .ch_4(ch4rx) ,.ch_5(ch5rx),

238 .ch_6(ch6rx) ,.ch_7(ch7rx),

239 .rxclk(clk64) ,.rxstrobe(hb_strobe),

240 .clear_status(clear_status),

241 .serial_addr(serial_addr) ,.serial_data(serial_data) ,.serial_strobe(serial_strobe),

242 .debugbus(rx_debugbus) );

243

244 ‘ifdef RX_EN_0

245 rx_chain #( ‘FR_RX_FREQ_0 ,‘FR_RX_PHASE_0) rx_chain_0

246 ( .clock(clk64) ,.reset(1’b0) ,.enable(enable_rx),

247 .decim_rate(decim_rate) ,.sample_strobe(rx_sample_strobe) ,.decimator_strobe(

strobe_decim) ,.hb_strobe(hb_strobe),

248 .serial_addr(‘FR_RX_FREQ_0) ,.serial_data(ddc_tuning_freq) ,.serial_strobe(sweep_strobe

),

249 .i_in(ddc0_in_i) ,.q_in(ddc0_in_q) ,.i_out(bb_rx_i0) ,.q_out(bb_rx_q0) ,.debugdata(

debugdata) ,.debugctrl(debugctrl));

250 ‘else

251 assign bb_rx_i0 =16’d0;

252 assign bb_rx_q0 =16’d0;

253 ‘endif

254

255 ‘ifdef RX_EN_1

256 rx_chain #( ‘FR_RX_FREQ_1 ,‘FR_RX_PHASE_1) rx_chain_1

257 ( .clock(clk64) ,.reset(1’b0) ,.enable(enable_rx),

258 .decim_rate(decim_rate) ,.sample_strobe(rx_sample_strobe) ,.decimator_strobe(

strobe_decim) ,.hb_strobe (),

259 .serial_addr(‘FR_RX_FREQ_1) ,.serial_data(ddc_tuning_freq) ,.serial_strobe(sweep_strobe

),

260 .i_in(ddc1_in_i) ,.q_in(ddc1_in_q) ,.i_out(bb_rx_i1) ,.q_out(bb_rx_q1));

261 ‘else

262 assign bb_rx_i1 =16’d0;

263 assign bb_rx_q1 =16’d0;

264 ‘endif

265

266 ‘ifdef RX_EN_2

267 rx_chain #( ‘FR_RX_FREQ_2 ,‘FR_RX_PHASE_2) rx_chain_2

268 ( .clock(clk64) ,.reset(1’b0) ,.enable(enable_rx),

269 .decim_rate(decim_rate) ,.sample_strobe(rx_sample_strobe) ,.decimator_strobe(

strobe_decim) ,.hb_strobe (),

270 .serial_addr(‘FR_RX_FREQ_2) ,.serial_data(ddc_tuning_freq) ,.serial_strobe(sweep_strobe

),

271 .i_in(ddc2_in_i) ,.q_in(ddc2_in_q) ,.i_out(bb_rx_i2) ,.q_out(bb_rx_q2));

272 ‘else

273 assign bb_rx_i2 =16’d0;

274 assign bb_rx_q2 =16’d0;

275 ‘endif

276

277 ‘ifdef RX_EN_3

278 rx_chain #( ‘FR_RX_FREQ_3 ,‘FR_RX_PHASE_3) rx_chain_3

279 ( .clock(clk64) ,.reset(1’b0) ,.enable(enable_rx),

280 .decim_rate(decim_rate) ,.sample_strobe(rx_sample_strobe) ,.decimator_strobe(

strobe_decim) ,.hb_strobe (),

281 .serial_addr(‘FR_RX_FREQ_3) ,.serial_data(ddc_tuning_freq) ,.serial_strobe(sweep_strobe

),

282 .i_in(ddc3_in_i) ,.q_in(ddc3_in_q) ,.i_out(bb_rx_i3) ,.q_out(bb_rx_q3));

283 ‘else

284 assign bb_rx_i3 =16’d0;

153



285 assign bb_rx_q3 =16’d0;

286 ‘endif

287

288 ‘endif // ‘ifdef RX_ON

289

290 // //////////////////////////////////////////////////////

291 // Control Functions

292

293 wire [31:0] capabilities;

294 assign capabilities [7] = ‘TX_CAP_HB;

295 assign capabilities [6:4] = ‘TX_CAP_NCHAN;

296 assign capabilities [3] = ‘RX_CAP_HB;

297 assign capabilities [2:0] = ‘RX_CAP_NCHAN;

298

299

300 serial_io serial_io

301 ( .master_clk(clk64) ,.serial_clock(SCLK) ,.serial_data_in(SDI),

302 .enable(SEN_FPGA) ,.reset(1’b0) ,.serial_data_out(SDO),

303 .serial_addr(serial_addr) ,.serial_data(serial_data) ,.serial_strobe(serial_strobe),

304 //. readback_0 ({ io_rx_a ,io_tx_a }) ,. readback_1 ({ io_rx_b ,io_tx_b }) ,. readback_2 (

capabilities ) ,. readback_3 (32’ hf0f0931a ),

305 .readback_0 ({io_rx_a ,io_tx_a }) ,.readback_1 ({16’d0 ,io_tx_b }) ,.readback_2(

capabilities) ,.readback_3 (32’ hf0f0931a),

306 .readback_4(rssi_0) ,.readback_5(rssi_1) ,.readback_6(rssi_2) ,.readback_7(rssi_3)

307 );

308

309 wire [15:0] reg_0 ,reg_1 ,reg_2 ,reg_3;

310 master_control master_control

311 ( .master_clk(clk64) ,.usbclk(usbclk),

312 .serial_addr(serial_addr) ,.serial_data(serial_data) ,.serial_strobe(serial_strobe),

313 .tx_bus_reset(tx_bus_reset) ,.rx_bus_reset(rx_bus_reset),

314 .tx_dsp_reset(tx_dsp_reset) ,.rx_dsp_reset(rx_dsp_reset),

315 .enable_tx(enable_tx) ,.enable_rx(enable_rx),

316 .interp_rate(interp_rate) ,.decim_rate(decim_rate),

317 .tx_sample_strobe(tx_sample_strobe) ,.strobe_interp(strobe_interp),

318 .rx_sample_strobe(rx_sample_strobe) ,.strobe_decim(strobe_decim),

319 .tx_empty(tx_empty),

320 //.debug_0(rx_a_a) ,.debug_1( ddc0_in_i),

321 .debug_0(tx_debugbus [15:0]) ,.debug_1(tx_debugbus [31:16]) ,

322 .debug_2(rx_debugbus [15:0]) ,.debug_3(rx_debugbus [31:16]) ,

323 .reg_0(reg_0) ,.reg_1(reg_1) ,.reg_2(reg_2) ,.reg_3(reg_3) );

324

325 io_pins io_pins

326 (//.io_0(io_tx_a) ,.io_1(io_rx_a) ,.io_2(io_tx_b) ,.io_3(io_rx_b),

327 .io_0(io_tx_a) ,.io_1(io_rx_a) ,.io_2(io_tx_b) ,.io_3(),

328 .reg_0(reg_0) ,.reg_1(reg_1) ,.reg_2(reg_2) ,.reg_3(reg_3),

329 .clock(clk64) ,.rx_reset(rx_dsp_reset) ,.tx_reset(tx_dsp_reset),

330 .serial_addr(serial_addr) ,.serial_data(serial_data) ,.serial_strobe(serial_strobe));

331

332 // ///////////////////////////////////////////

333 // Misc Settings

334 setting_reg #( ‘FR_MODE) sr_misc (. clock(clk64) ,.reset(rx_dsp_reset) ,.strobe(serial_strobe)

,.addr(serial_addr) ,.in(serial_data) ,.out(settings));

335

336 // //////////////////////////////////////////

337 // Frequency Sweeping

338

339 localparam SWEEP_COUNT_MAX = 32’ d12799999;

340 localparam NUM_FREQ = 9’d300;

341

342 wire [31:0] ddc_tuning_freq; // The frequency we want to tune the DDS to

343 reg [8:0] freq_list_addr = 9’d0; // Address of the frquency we want in the

freq_list_ram

344 reg [31:0] switch_counter = 32’d0; // Just a counter to get frequency switching

every 1 s

154



345 wire freq_sweep; // Enable frequency sweeping if high

346 wire [31:0] freq_sweep_long;

347 reg sweep_strobe; // This replaces the serial_strobe

348 reg update;

349 wire sweep_reset;

350 wire [31:0] sweep_reset_long;

351

352 // assign io_rx_b [7:0] = 7’d0; // Debugging only

353 // assign io_rx_b [15:8] = ddc_tuning_freq [7:0]; // Debugging only

354

355 // Frequency sweep enable line

356 setting_reg #( ‘FR_USER_0)

357 sr_freq_sweep (. clock(clk64) ,.reset(sweep_reset) ,.strobe(serial_strobe) ,.addr(

serial_addr) ,.in(serial_data),

358 .out(freq_sweep_long));

359

360 // Reset line

361 setting_reg #( ‘FR_USER_1)

362 sr_sweep_reset (. clock(clk64) ,.reset(1’b0) ,.strobe(serial_strobe) ,.addr(serial_addr) ,.in

(serial_data),

363 .out(sweep_reset_long));

364

365 assign freq_sweep = freq_sweep_long [0]; // Temporary hack until I figure out a

more elegant way to do this

366 assign sweep_reset = sweep_reset_long [0];

367

368 freq_list_ram arecibo (

369 .address ( freq_list_addr ),

370 .clock ( master_clk ),

371 .data ( 32’d0 ),

372 .wren ( 1’b0 ),

373 .q ( ddc_tuning_freq )

374 );

375

376 always @( posedge clk64 )

377 begin

378 if( sweep_reset )

379 begin

380 switch_counter <= #1 32’d0;

381 freq_list_addr <= #1 9’d0;

382 sweep_strobe <= #1 1’b0;

383 end

384 else if( freq_sweep )

385 begin

386 if( switch_counter == 32’d0 )

387 begin

388 sweep_strobe <= #1 1’b1;

389 update <= #1 ~update;

390 switch_counter <= #1 switch_counter + 1’b1;

391 end

392 else if( switch_counter >= SWEEP_COUNT_MAX )

393 begin

394 if( freq_list_addr >= NUM_FREQ )

395 freq_list_addr <= #1 9’d0;

396 else

397 freq_list_addr <= #1 freq_list_addr + 1’b1;

398 switch_counter <= #1 32’d0;

399 sweep_strobe <= #1 1’b0;

400 end

401 else

402 begin

403 switch_counter <= #1 switch_counter + 1’b1;

404 sweep_strobe <= #1 1’b0;

405 end

406 end

155



407 end

408

409 endmodule // usrp_std

Listing A.7: igram300.mif – memory initialization for frequency sweeping RAM on FPGA
for PISCO (1–20 MHz).

1 DEPTH = 512; -- The size of data in bits

2 WIDTH = 32; --The size of memory in words

3 ADDRESS_RADIX = DEC; --The radix for address values

4 DATA_RADIX = DEC; --The radix for data values

5 CONTENT --start of( address : data pairs )

6 BEGIN

7

8 0 : 67108864;

9 1 : 67784583;

10 2 : 68467147;

11 3 : 69156557;

12 4 : 69852945;

13 5 : 70556313;

14 6 : 71266795;

15 7 : 71984457;

16 8 : 72709300;

17 9 : 73441458;

18 10 : 74180930;

19 11 : 74927919;

20 12 : 75682424;

21 13 : 76444512;

22 14 : 77214251;

23 15 : 77991774;

24 16 : 78777082;

25 17 : 79570376;

26 18 : 80371589;

27 19 : 81180922;

28 20 : 81998375;

29 21 : 82824015;

30 22 : 83658044;

31 23 : 84500462;

32 24 : 85351335;

33 25 : 86210731;

34 26 : 87078851;

35 27 : 87955696;

36 28 : 88841399;

37 29 : 89735960;

38 30 : 90639581;

39 31 : 91552261;

40 32 : 92474136;

41 33 : 93405338;

42 34 : 94345869;

43 35 : 95295929;

44 36 : 96255519;

45 37 : 97224705;

46 38 : 98203756;

47 39 : 99192605;

48 40 : 100191454;

49 41 : 101200301;

50 42 : 102219349;

51 43 : 103248665;

52 44 : 104288316;

53 45 : 105338435;

54 46 : 106399158;

55 47 : 107470551;

56 48 : 108552748;

57 49 : 109645817;

156



58 50 : 110749892;

59 51 : 111865108;

60 52 : 112991530;

61 53 : 114129294;

62 54 : 115278533;

63 55 : 116439315;

64 56 : 117611841;

65 57 : 118796111;

66 58 : 119992327;

67 59 : 121200622;

68 60 : 122420996;

69 61 : 123653719;

70 62 : 124898857;

71 63 : 126156544;

72 64 : 127426915;

73 65 : 128710036;

74 66 : 130006110;

75 67 : 131315203;

76 68 : 132637448;

77 69 : 133973049;

78 70 : 135322071;

79 71 : 136684717;

80 72 : 138061053;

81 73 : 139451280;

82 74 : 140855533;

83 75 : 142273879;

84 76 : 143706519;

85 77 : 145153520;

86 78 : 146615151;

87 79 : 148091546;

88 80 : 149582705;

89 81 : 151088964;

90 82 : 152610389;

91 83 : 154147047;

92 84 : 155699275;

93 85 : 157267073;

94 86 : 158850708;

95 87 : 160450247;

96 88 : 162065893;

97 89 : 163697847;

98 90 : 165346175;

99 91 : 167011145;

100 92 : 168692894;

101 93 : 170391553;

102 94 : 172107258;

103 95 : 173840345;

104 96 : 175590812;

105 97 : 177358930;

106 98 : 179144831;

107 99 : 180948784;

108 100 : 182770857;

109 101 : 184611250;

110 102 : 186470233;

111 103 : 188347872;

112 104 : 190244436;

113 105 : 192160125;

114 106 : 194095075;

115 107 : 196049554;

116 108 : 198023628;

117 109 : 200017634;

118 110 : 202031772;

119 111 : 204066110;

120 112 : 206120983;

121 113 : 208196526;

122 114 : 210292940;

157



123 115 : 212410493;

124 116 : 214549387;

125 117 : 216709756;

126 118 : 218891934;

127 119 : 221096058;

128 120 : 223322395;

129 121 : 225571146;

130 122 : 227842579;

131 123 : 230136830;

132 124 : 232454233;

133 125 : 234794923;

134 126 : 237159169;

135 127 : 239547305;

136 128 : 241959399;

137 129 : 244395786;

138 130 : 246856802;

139 131 : 249342514;

140 132 : 251853258;

141 133 : 254389302;

142 134 : 256950915;

143 135 : 259538297;

144 136 : 262151718;

145 137 : 264791445;

146 138 : 267457747;

147 139 : 270150960;

148 140 : 272871218;

149 141 : 275618923;

150 142 : 278394277;

151 143 : 281197549;

152 144 : 284029073;

153 145 : 286889119;

154 146 : 289777954;

155 147 : 292695914;

156 148 : 295643201;

157 149 : 298620218;

158 150 : 301627165;

159 151 : 304664445;

160 152 : 307732259;

161 153 : 310830944;

162 154 : 313960901;

163 155 : 317122333;

164 156 : 320315641;

165 157 : 323541027;

166 158 : 326798961;

167 159 : 330089644;

168 160 : 333413479;

169 161 : 336770802;

170 162 : 340161947;

171 163 : 343587250;

172 164 : 347046981;

173 165 : 350541608;

174 166 : 354071400;

175 167 : 357636692;

176 168 : 361237955;

177 169 : 364875457;

178 170 : 368549533;

179 171 : 372260653;

180 172 : 376009153;

181 173 : 379795435;

182 174 : 383619768;

183 175 : 387482621;

184 176 : 391384398;

185 177 : 395325500;

186 178 : 399306197;

187 179 : 403327024;

158



188 180 : 407388385;

189 181 : 411490549;

190 182 : 415634052;

191 183 : 419819296;

192 184 : 424046685;

193 185 : 428316687;

194 186 : 432629640;

195 187 : 436986012;

196 188 : 441386206;

197 189 : 445830759;

198 190 : 450320073;

199 191 : 454854619;

200 192 : 459434799;

201 193 : 464061083;

202 194 : 468733940;

203 195 : 473453908;

204 196 : 478221322;

205 197 : 483036785;

206 198 : 487900769;

207 199 : 492813674;

208 200 : 497776106;

209 201 : 502788467;

210 202 : 507851294;

211 203 : 512965124;

212 204 : 518130426;

213 205 : 523347805;

214 206 : 528617663;

215 207 : 533940603;

216 208 : 539317097;

217 209 : 544747815;

218 210 : 550233159;

219 211 : 555773734;

220 212 : 561370144;

221 213 : 567022857;

222 214 : 572732480;

223 215 : 578499681;

224 216 : 584324865;

225 217 : 590208769;

226 218 : 596151863;

227 219 : 602154818;

228 220 : 608218238;

229 221 : 614342727;

230 222 : 620528889;

231 223 : 626777328;

232 224 : 633088648;

233 225 : 639463588;

234 226 : 645902683;

235 227 : 652406606;

236 228 : 658976027;

237 229 : 665611617;

238 230 : 672314048;

239 231 : 679083923;

240 232 : 685921981;

241 233 : 692828892;

242 234 : 699805328;

243 235 : 706852027;

244 236 : 713969728;

245 237 : 721159033;

246 238 : 728420816;

247 239 : 735755681;

248 240 : 743164365;

249 241 : 750647675;

250 242 : 758206347;

251 243 : 765841121;

252 244 : 773552802;

159



253 245 : 781342128;

254 246 : 789209837;

255 247 : 797156869;

256 248 : 805183827;

257 249 : 813291652;

258 250 : 821481148;

259 251 : 829753053;

260 252 : 838108308;

261 253 : 846547651;

262 254 : 855071953;

263 255 : 863682154;

264 256 : 872379060;

265 257 : 881163476;

266 258 : 890036409;

267 259 : 898998664;

268 260 : 908051113;

269 261 : 917194762;

270 262 : 926430486;

271 263 : 935759222;

272 264 : 945181910;

273 265 : 954699423;

274 266 : 964312768;

275 267 : 974022951;

276 268 : 983830912;

277 269 : 993737656;

278 270 : 1003744125;

279 271 : 1013851324;

280 272 : 1024060327;

281 273 : 1034372140;

282 274 : 1044787839;

283 275 : 1055308361;

284 276 : 1065934781;

285 277 : 1076668240;

286 278 : 1087509811;

287 279 : 1098460502;

288 280 : 1109521519;

289 281 : 1120693870;

290 282 : 1131978695;

291 283 : 1143377203;

292 284 : 1154890466;

293 285 : 1166519694;

294 286 : 1178266027;

295 287 : 1190130606;

296 288 : 1202114638;

297 289 : 1214219400;

298 290 : 1226446031;

299 291 : 1238795739;

300 292 : 1251269868;

301 293 : 1263869557;

302 294 : 1276596082;

303 295 : 1289450852;

304 296 : 1302435008;

305 297 : 1315549892;

306 298 : 1328796913;

307 299 : 1342177280;

308 [300..511] : 0;

309

310 END

Listing A.8: main.py – Python data processing script for PISCO.
1 #!/ usr/bin/env python

2 #

3 # USRP -based Ionosonde Receiver Data Plotter

160



4 # Alex Hackett , Tejas Nagarmat

5 # Penn State University , Arecibo Observatory

6 # Spring 2013

7

8 import argparse

9 import numpy as np

10 import matplotlib as mp

11 from oct2py import octave

12 import scipy.io as sio

13

14 from hdf5_read import *

15 from hdf5_write import *

16

17

18 def main():

19

20 # CLP

21 parser = argparse.ArgumentParser( description=’Process and plot USRP -based Ionosonde

receiver data’ )

22 parser.add_argument( ’filename ’, metavar=’datafile.h5’, type=str , nargs=’+’, default=’/

data/data_latest.h5’,

23 help=’the HDF5 file to process and plot’ )

24 parser.add_argument( ’-m’, ’--multi_channel ’, action=’store_true ’, help=’process

multiple channels together ’, dest=’multi ’, default=False )

25 parser.add_argument( ’-c’, ’--channel ’, type=int , default=0, help=’channel number to

plot (indexed starting with 0) -- not valid with -m’ )

26 parser.add_argument( ’-v’, ’--verbose ’, action=’store_true ’, help=’be verbose ’, dest=’

verbose ’, default=False )

27 parser.add_argument( ’--mat’, action=’store_true ’, help=’store *.mat datafile ’, dest=’

mat’, default=False )

28 parser.add_argument( ’--snr’, action=’store_true ’, help=’calculate SNR instead of just

power ’, dest=’snr’, default=False )

29 parser.add_argument( ’-r’, ’--radar ’, action=’store_true ’, help=’assume fixed -frequency

radar mode’, dest=’fixed ’, default=False )

30 args = parser.parse_args ()

31

32 args.filename = ’’.join( args.filename )

33 params = { ’chan’: args.channel , ’filename ’: args.filename , ’multi ’: args.multi , ’mat’:

args.mat , ’snr’: args.snr , ’fixed ’:args.fixed }

34

35 # Read the specified HDF5 and spit out the I/Q data and parameters

36 iq ,params = hdf5_read( params , args.verbose )

37

38 # Call Octave script to shift , downconvert , decode , and plot data

39 octave.addpath(’/usr/local/bin/’)

40 print ’Running Octave plotter ...’

41 if params[’multi ’]:

42 print ’Running multi channel plotter ...’

43 octave.iono_plotter_multi( iq , params )

44 else:

45 octave.iono_plotter_single( iq , params )

46 print ’Done plotting.’

47

48 # Write the image plot back to the HDF5 file

49 hdf5_write( params , args.verbose )

50

51 if __name__ == ’__main__ ’:

52 main()

Listing A.9: hdf5 read.py – script for loading I/Q data from HDF5 data files for PISCO.
1 #!/ usr/bin/env python

2

3 import numpy as np

161



4 import matplotlib as mp

5 import h5py

6 import re

7 import scipy.io as sio

8

9 def hdf5_read( params , verbose ):

10

11 if( verbose ):

12 print ’Opening file: ’, params[’filename ’]

13

14 # FIXME put a try/catch here

15 fid = h5py.File( params[’filename ’], mode=’r’, memb_size =1<<30 )

16 keys = [ key for key in fid.keys() if re.match( ’T\d{8,8}’, key ) ]

17 ntabs = len( keys )

18 toff = 0

19

20 for x in np.arange( ntabs ):

21 # Generate table name

22 tname = ’T’ + str(x+toff).zfill (8)

23

24 if( verbose ):

25 print ’Reading Table ’, tname

26

27 if( x == 0 ):

28 # Read dataset parameters from HDF5 file

29 nchans = fid.attrs[ ’CHANNELS ’ ]

30 ipp = fid.attrs[ ’IPP_s ’ ]

31 bw = fid.attrs[ ’SAMP_BW_Hz ’ ]

32 tsweep = fid.attrs[ ’SWEEP_TIME_s ’ ]

33 baud = fid.attrs[ ’BAUD_s ’ ]

34 code = fid.attrs[ ’CODE’ ]

35

36 # Put parameters into a dictionary structure

37 params[’nchans ’] = int(nchans)

38 params[’ipp’] = float(ipp)

39 params[’bw’] = float(bw)

40 params[’tsweep ’] = float(tsweep)

41 params[’baud’] = float(baud)

42 params[’code’] = code

43

44 # Read tabular data

45 tdata = fid[ tname ];

46 tx = tdata.shape [0]

47 if params[’multi ’]:

48 ty = tdata.shape [1]

49 else:

50 ty = tdata.shape [1] #/params[’nchans ’]

51

52

53 if( x == 0 ):

54 # Instantiate a big numpy array to hold all the data

55 if params[’multi ’]:

56 iq = np.zeros( ( ntabs*tx , ty ), dtype=np.complex64 )

57 else:

58 iq = np.zeros( ( ntabs*tx , ty/params[’nchans ’] ), dtype=np.complex64 )

59

60 # Read the I/Q data from the HDF5 file

61 if params[’multi ’]:

62 i = tdata[’real’]*1.0

63 q = tdata[’imag’]*1.0

64 else:

65 i = tdata[’real’][:, params[’chan’]:: params[’nchans ’]]*1.0

66 q = tdata[’imag’][:, params[’chan’]:: params[’nchans ’]]*1.0

67

68 # Throw the I/Q data into the big array

162



69 iq[ x*tx:((x+1)*tx), : ] = i[:,:] + 1J*q[:,:]

70

71 fid.close ()

72

73 print iq.shape

74

75 return iq , params

Listing A.10: iono plotter multi.m for processing and plotting data for PISCO.
1 %% USRP Ionogram Plotter Octave Function

2 % Alex Hackett

3 % Penn State University

4

5 function x = iono_plotter_multi( iq , params )

6

7 pkg load image

8

9 % Use wxt backend for gnuplot

10 setenv( ’GNUTERM ’, ’wxt’ )

11

12 % Load data and set up workspace

13 %load( ’/home/alex/two_chan.dat.mat ’ )

14

15 % Radar parameters

16 bw = params.bw;

17 ipp_t = params.ipp;

18 baud = params.baud;

19 code = params.code;

20 nchans = params.nchans;

21 chan = params.chan;

22

23 % Transpose the raw data to get IPP on x-axis and range on y-axis

24 iq = double(iq) ’;

25

26 i_0 = reshape( real( iq(1: nchans:end) ), [ size(iq ,1)/nchans , size(iq ,2) ] );

27 q_0 = reshape( imag( iq(1: nchans:end) ), [ size(iq ,1)/nchans , size(iq ,2) ] );

28 i_1 = reshape( real( iq(2: nchans:end) ), [ size(iq ,1)/nchans , size(iq ,2) ] );

29 q_1 = reshape( imag( iq(2: nchans:end) ), [ size(iq ,1)/nchans , size(iq ,2) ] );

30

31 %i = double( real(iq) ) ’;

32 %q = double( imag(iq) ) ’;

33 clear iq

34

35 % Deinterlace channels , rotate by +/ -90 degrees and sum them

36 %i = reshape( real( iq (1:2: end)*exp(j*pi /2) + iq (2:2: end)*exp(-j*pi /2) ), [ size(iq ,1)

/2, size(iq ,2) ] );

37 %q = reshape( imag( iq (1:2: end)*exp(j*pi /2) + iq (2:2: end)*exp(-j*pi /2) ), [ size(iq ,1)

/2, size(iq ,2) ] );

38 %clear iq

39

40 % Generate a power map

41 pmap = 10* log10( i_0 .^2 + q_0 .^2 );

42

43 % Zero out low amplitude data and scale to [0 ,1] to help edge detection

44 pmap( pmap <30 ) = 0;

45 pmap = pmap / max( pmap (:) );

46

47 % Do edge detection on the image

48 e = edge( pmap );

49 clear pmap

50

51 % Use the Hough transform to look for straight lines that are close to horizontal

52 theta = pi /180* linspace( 170, 180, 100 );

163



53 [h,r] = houghtf( e, ’line’, theta );

54 clear e

55

56 %keyboard

57

58 % Find the peak in the parameter space to give us the best line

59 [rh ,ch] = ind2sub( size(h), find( h==max(max(h)) ) );

60 phi = pi/2 - theta(ch);

61 rho = r(rh);

62 clear h

63

64 % Calculate slope and y-intercept from

65 % rho = x*cos(phi) + y*sin(phi) ==> y = -cot(phi)*x + rho*csc(phi)

66 % ==> y = m*x + b

67 m = -cot( phi );

68 b = rho * csc( phi );

69

70 %keyboard

71

72 % Shift the data to bring the groundwave to 0 km ( technically not quite correct)

73 is_0 = zeros( size(i_0) );

74 qs_0 = zeros( size(q_0) );

75 is_1 = zeros( size(i_1) );

76 qs_1 = zeros( size(q_1) );

77 for ipp = 1:size(i_0 ,2)

78 shiftAmt = -round( b + m*ipp );

79 is_0(:,ipp) = circshift( i_0(:,ipp), shiftAmt );

80 qs_0(:,ipp) = circshift( q_0(:,ipp), shiftAmt );

81 is_1(:,ipp) = circshift( i_1(:,ipp), shiftAmt );

82 qs_1(:,ipp) = circshift( q_1(:,ipp), shiftAmt );

83 end

84

85 clear i_0 i_1 q_0 q_1

86

87 % Look for frequency offset from baseband in groundwave

88 fftRange = 5:255; % Range to get accurate freq offset

89 %fpeaks = zeros( 1, size(iq ,2) ); % Vector to store freq offsets

90 time = linspace( 0, ipp_t , size(is_0 ,1) ); % Time vector , length of 1 IPP

91 frange = linspace( -bw/2, bw/2, length(fftRange) ); % Proper freq vector for FFT

92

93 i = zeros( size(is_0) );

94 q = zeros( size(qs_0) );

95 % Loop through each IPP of the dataset and bring the signal down to baseband

96 for ipp = 1:size(is_0 ,2)

97 sig_0 = is_0(:,ipp) + j*qs_0(:,ipp); % Get current

IPP

98 sig_1 = is_1(:,ipp) + j*qs_1(:,ipp); % Get current

IPP

99 spec = abs( fftshift( fft( sig_0(fftRange) ) ) ); % Find spectrum

100 fpeak = frange( find( spec==max(spec) ) ); % Find frequency offset

101 %fpeaks (:,ipp) = fpeak; % Store frequency offset in list

102 x = exp( j*2*pi*fpeak*time ); % Complex exponential "LO"

103 i(:,ipp) = real( (x’ .* sig_0)*exp(j*pi/2) + (x’ .* sig_1) );

% Mix signals to bring down to baseband

104 q(:,ipp) = imag( (x’ .* sig_0)*exp(j*pi/2) + (x’ .* sig_1) );

% Mix signals to bring down to baseband

105 end

106

107 clear sig spec x time is qs

108

109 % Phase decoding filter taps

110 b = round(baud*bw);

111 b = 20;

112 fir = fliplr ([ ones(1,b*5), ... % FIXME hardcoded for Barker 13

113 -ones(1,b*2), ...

164



114 ones(1,b*2), ...

115 -ones(1,b*1), ...

116 ones(1,b*1), ...

117 -ones(1,b*1), ...

118 ones(1,b*1) ]);

119

120 % Use FIR filter to decode the signal

121 iq = filter( fir , 1, i+j*q, [], 1 );

122 clear i q

123

124 % Shift data to set the ACF of the groundwave at 0 km

125 a = -length(code)*round(baud*bw);

126 iq = circshift( iq , a );

127

128 % Generate baseband decoded power map

129 pmap = real(iq).^2 + imag(iq).^2;

130 clear iq

131

132 % Do some basic denoising

133 % clip_lower = 1e -3;

134 %snr = clip_lower *ones( size(pmap) );

135 %for ipp = 1: size(pmap ,2)

136 % z = sort( pmap (:,ipp) );

137 % nl = mean( z(1: length(z)/2) );

138 % snr(:,ipp) = ( pmap (:,ipp) - nl ) / nl;

139 %end

140 %snr(snr <1e -3) = 1e -3;

141 %snr = 10* log10( snr );

142 %clear z pmap

143

144 snr = 10* log10(pmap)

145 clear pmap

146

147 % Resize array down to a reasonable size for plotting

148 w = 1000; h = 1000;

149 snr = imresize( snr , [h, w] );

150

151 % Finally , plot everything nicely

152 out_size = [ 1024, 768 ]; % FIXME make this adjustable at top

level

153 px = size(snr ,1);

154 py = size(snr ,2);

155 f = figure(1, ’Position ’, [0, 0, out_size], ’Visible ’, ’on’);

156 image( 1:py , linspace( 0, 1.5e5*ipp_t , px ), snr , ’CDataMapping ’, ’scaled ’ )

157 xlim([1, py])

158 ylim([0, 1.5e5*ipp_t ])

159 set(gca ,’XTick ’, linspace( 1, py , 11 ) )

160 xlabels = [ ’ 1.0’; ’ 1.3’; ’ 1.8’; ’ 2.5’; ’ 3.3’; ’ 4.5’; ’ 6.0’; ’ 8.1’; ’11.0’; ’

14.8’; ’20.0’ ];

161 set(gca ,’XTickLabel ’, xlabels , ’FontSize ’, 8 );

162 caxis( [40 80] )

163 xlabel( ’Frequency [MHz]’, ’FontSize ’, 10 )

164 ylabel( ’Range [km]’, ’FontSize ’, 10 )

165 title( ’USRP Ionosonde Receiver Ionogram ’, ’FontSize ’, 16 )

166 h = colorbar;

167 ylabel ( h, ’S+N [dB]’, ’FontSize ’, 10 )

168 set( h, ’FontSize ’, 8 )

169 axis xy;

170

171 print( f, ’/data/Ionogram.png’, ’-dpng’, ’-S1024 ,768’ ) % FIXME make output size based

on out_size

172 x = 0; % Dummy return output

173

174 endfunction

165



Listing A.11: hdf5 write.py for writing ionogram image back to HDF5 data file for PISCO.
1 #!/ usr/bin/env python

2

3 import numpy as np

4 import matplotlib as mp

5 import scipy as sci

6 import h5py

7 import Image

8

9 def hdf5_write( params , verbose ):

10

11 if( verbose ):

12 print ’Writing to file: ’, params[’filename ’]

13

14 #im = sci.misc.imread( ’rti_latest .png ’ )

15 im = Image.open( ’/data/Ionogram.png’ )

16

17 fid = h5py.File( params[’filename ’], mode=’a’ )

18 keys = fid.keys()

19

20 if ’Ionogram ’ in keys:

21 if( verbose ):

22 print ’Ionogram already added , skipping ...’

23 else:

24 dset = fid.create_dataset( ’Ionogram ’, data=im )

25 dset.attrs.create( ’CLASS ’, ’IMAGE ’ )

26 dset.attrs.create( ’IMAGE_SUBCLASS ’, ’IMAGE_TRUECOLOR ’ )

27 dset.attrs.create( ’IMAGE_VERSION ’, ’1.2’ )

28

29 fid.close ()

Listing A.12: crontab for scheduling on PISCO.
1 # uncomment me for normal operation

2 14,29,44,59 * * * * /usr/local/bin/ionorun

Listing A.13: ionosched.cpp – program to use high-precision scheduler on CADI for use
with PISCO.

1 #include <unistd.h>

2 #include <ionoscheduler/IonoScheduler.h>

3

4 void main( int argc , char* argv[] ) {

5

6 int pid = fork();

7

8 if( pid == 0 ) {

9 // kill existing cadirun if it’s still running

10 execl( "/usr/bin/killall", "/usr/bin/killall", "-q", "cadirun", NULL );

11 }

12 else {

13 IonoScheduler myScheduler (60,true);

14 // IonoScheduler myScheduler (30, true);

15 execl( "/usr/sbin/cadirun", "/usr/sbin/cadirun", argv[1], NULL );

16 }

17

18 }

Listing A.14: Makefile for building high-precision scheduler for CADI.
1 all:

166



2 @if g++ src/ionosched.cpp -o bin/ionosched -lpthread -lrt ; then echo ">>> Ionosonde

Scheduler compiled successfully." ; else echo "!!! Ionosonde Scheduler

compilation failed." ; fi

Listing A.15: crontab for scheduling on CADI.
1 # uncomment us for normal operation

2 14,29,44,59 * * * * /usr/sbin/ionosched igram300.def

3 4,19,34,49 * * * * /usr/bin/perl /home/cadi/cadiserver.pl

167



A.2 PARIS

Listing A.16: rti big.py – Python script for reading and plotting data from HDF5 files
taken with GnuRadar.

1 #!/ usr/bin/env python

2

3 import numpy as np

4 import matplotlib as mp

5 mp.interactive (1)

6 mp.use(’Agg’)

7 import matplotlib.pyplot as pp

8 import h5py

9 import sys

10 import datetime

11 from datetime import datetime as dt

12 import dateutil.parser as dup

13 from scipy.ndimage.filters import convolve1d

14 from matplotlib import rcParams

15 rcParams[’xtick.direction ’] = ’out’

16 rcParams[’ytick.direction ’] = ’out’

17 import re

18 import scipy.io as sio

19 import argparse

20

21 C = 3e5 # Speed of light constant (km/s)

22

23 def reader( d_params , p_params , verbose=False ):

24

25 # Read the first data file to get the radar parameters

26 if( verbose):

27 print ’Getting radar parameters ...’

28 fid = h5py.File( d_params[’base_name ’]+str (1).zfill (8)+’.h5’, mode=’r’, memb_size =1<<30 )

29 nchans = fid.attrs[ ’CHANNELS ’ ]

30 ipp = fid.attrs[ ’IPP’ ]

31 bw = fid.attrs[ ’BANDWIDTH ’ ]

32 t_start = fid.attrs[ ’START_TIME ’ ]

33

34 # Put parameters into a dictionary structure

35 d_params[’nchans ’] = int(nchans)

36 d_params[’ipp’] = int(round(float(ipp)*1e6 ,-1))/1e6

37 d_params[’bw’] = float(bw)

38 d_params[’t_start ’] = t_start

39

40 # Get the number of tables per file

41 if( verbose ):

42 print ’Finding number of tables per file ...’

43 keys = [ key for key in fid.keys() if re.match( ’T\d{8,8}’, key ) ]

44 tpf = len( keys ) # Number of tables per file

45

46 fid.close ()

47

48 ## Find the numbers of the tables we want to plot

49 # FIXME this assumes you start plotting the morning after you start collecting data

50 if( verbose ):

51 print ’Calculating required table numbers ...’

52 T_start = int((dup.parse(p_params[’t_start ’])-dup.parse(d_params[’t_start ’])+datetime.

timedelta(days =1)).total_seconds ())

53 T_end = int((dup.parse(p_params[’t_end ’])-dup.parse(d_params[’t_start ’])+datetime.

timedelta(days =1)).total_seconds ())

54 T_num = T_end - T_start + 1

55 T_offset = 0

168



56

57 # Find the numbers of the files we want to plot from

58 if( verbose ):

59 print ’Calculating file numbers needed ...’

60 F_start = T_start / tpf + 1

61 F_end = T_end / tpf + 1

62 F_num = F_end - F_start

63

64 if( verbose ):

65 print ’Reading data tables ’, T_start , ’through ’, T_end , ’from files ’, F_start , ’

through ’, F_end

66

67 Tx = 0

68 Ty = 0

69

70 if( verbose ):

71 print ’Caclulating decoding filter coefficients ...’

72 fir = [i for s in [[2*( d_params[’code’][n]==’1’) -1]*int(bw*d_params[’baud’]) for n in

range(len(d_params[’code’]) -1,-1,-1)] for i in s]

73

74 r_off = 0

75

76 # Loop through each table

77 y = F_start

78 x = T_start

79 fid = -1234

80 while ( x >= T_start and x <= T_end ):

81

82 # This is the case where we don ’t have an open file yet

83 if( fid == -1234):

84 # Open data file

85 fname = d_params[’base_name ’]+str(y).zfill (8)+’.h5’

86 print ’Opening ’, fname , ’...’

87 fid = h5py.File( fname , mode=’r’, memb_size =1<<30 )

88

89 # Get list of table entries in data files

90 keys = [ key for key in fid.keys() if re.match( ’T\d{8,8}’, key ) ]

91

92 # This is the data table we want to grab

93 T_name = ’T’+str(x).zfill (8)

94 if( verbose ):

95 print ’Loading ’, T_name

96

97 # Check to see if we need to jump to the next file

98 while T_name not in keys:

99 # Close the old file

100 fid.close ()

101

102 # Open the next file FIXME make sure this doesn ’t go beyond F_end

103 y += 1

104 fname = d_params[’base_name ’]+str(y).zfill (8)+’.h5’

105 print ’Opening ’, fname , ’...’

106 fid = h5py.File( fname , mode=’r’, memb_size =1<<30 )

107

108 # Regenerate the keys list for the loop to check

109 keys = [ key for key in fid.keys() if re.match( ’T\d{8,8}’, key ) ]

110

111 T_data = fid[T_name]

112

113 if( x == T_start ):

114 n = x - T_start

115 Tx = T_data.shape [0]

116 Ty = T_data.shape [1]/ d_params[’nchans ’] - p_params[’hide_dtag ’]

117

118 # Coherent integration of data

169



119 if( p_params[’int_mode ’] == ’c’ ):

120 # Instantiate a numpy array to hold all the data before integration

121 iq = np.zeros( ( np.ceil(p_params[’t_int ’])*Tx , Ty ), dtype=np.complex64 )

122

123 # Instantiate a big numpy array to hold all the integrated data

124 iq_big = np.zeros( (T_num/p_params[’t_int ’], Ty), dtype=np.complex64 )

125

126 elif( p_params[’int_mode ’] == ’n’ ):

127 iq = np.zeros( ( T_num*Tx , Ty ), dtype=np.complex64 )

128 else:

129 iq = np.zeros( ( np.ceil(p_params[’t_int ’])*Tx , Ty ), dtype=np.complex64 )

130 if( p_params[’int_mode ’] == ’i’ ):

131 pmap = np.zeros( (T_num/p_params[’t_int ’], Ty) )

132

133 # Read the I/Q data from the HDF5 file

134 i = T_data[’real’][:, p_params[’hide_dtag ’]+ p_params[’channel ’]:: d_params[’nchans ’]]*1.0

135 q = T_data[’imag’][:, p_params[’hide_dtag ’]+ p_params[’channel ’]:: d_params[’nchans ’]]*1.0

136

137 # Apply the decoding filter

138 i_d = convolve1d( i, fir , axis=1 )

139 q_d = convolve1d( q, fir , axis=1 )

140

141 # This loop is to support integration times less than 1 s

142 m = 0

143 while( m*p_params[’t_int ’]*Tx < Tx ):

144 # Throw the I/Q data into the big array

145 #print ’m:’, m

146 #print ’iq indexes:’, (n+m)*p_params[’t_int ’]*Tx , ’to ’, ((n+m+1)*p_params[’t_int ’]*Tx)

147 #print ’i_d indexes:’, m*p_params[’t_int ’]*Tx , ’to ’, (m+1)*p_params[’t_int ’]*Tx

148 #print ’iq shape:’, iq.shape

149 iq[ (n+m)*p_params[’t_int ’]*Tx:((n+m+1)*p_params[’t_int ’]*Tx) ,: ] =

\

150 i_d[m*p_params[’t_int ’]*Tx:(m+1)*p_params[’t_int ’]*Tx ,:] +

\

151 1J*q_d[m*p_params[’t_int ’]*Tx:(m+1)*p_params[’t_int ’]*Tx ,:]

152 m += 1

153

154 # Have we reached enough tables to integrate ?

155 if( (n+1) % p_params[’t_int ’] == 0 and p_params[’int_mode ’] != ’n’):

156

157 if( p_params[’int_mode ’] == ’c’ ):

158 if( verbose ):

159 print ’Integrating coherently ...’

160

161 # Integrate in the time direction

162 for c in xrange( iq.shape [1] ):

163 for r in xrange( int(iq.shape [0]* d_params[’ipp’]/ p_params[’t_int ’]) ):

164 iq_big[r+r_off ,c] = np.sum( iq[r*p_params[’t_int ’]/ d_params[’ipp’]:(r+1)*

p_params[’t_int ’]/ d_params[’ipp’]-1,c] )

165

166 # Reset the IQ array

167 iq = np.zeros( ( p_params[’t_int ’]*Tx , Ty ), dtype=np.complex64 )

168

169 elif( p_params[’int_mode ’] == ’i’ ):

170 if( verbose ):

171 print ’Integrating incoherently ...’

172

173 p = iq.real **2 + iq.imag **2

174 for c in xrange( iq.shape [1] ):

175 for r in xrange( int(iq.shape [0]* d_params[’ipp’]/ p_params[’t_int ’]) ):

176 pmap[r+r_off ,c] = np.sum( p[r*p_params[’t_int ’]/ d_params[’ipp’]:(r+1)*p_params[’

t_int ’]/ d_params[’ipp’]-1,c] )

177

178 n = 0

179 r_off += 1

170



180 else:

181 n += 1

182

183 x += 1

184

185 fid.close ()

186

187 if( p_params[’int_mode ’] == ’c’ ):

188 pmap = iq_big.real **2 + iq_big.imag **2

189 elif( p_params[’int_mode ’] == ’n’ ):

190 pmap = iq.real **2 + iq.imag **2

191

192 return pmap , d_params

193

194

195 def rti_plotter( pmap , d_params , p_params , index=1, verbose=False ):

196

197 ir_min = int(d_params[’bw’]/(C/2)*p_params[’rmin’])

198 ir_max = int(d_params[’bw’]/(C/2)*p_params[’rmax’])

199

200 pmap = pmap[:,ir_min:ir_max]

201

202 nl = np.sort( pmap.flatten () )[round(pmap.shape [0]* pmap.shape [1]/2)]

203 s = np.transpose( np.clip( pmap -nl , 1e-3, (pmap -nl).max() ) )

204 snr = 10*np.log10( s/nl )

205

206 fig = pp.figure( num=1 , figsize =(12 ,9) )

207 if( p_params[’int_mode ’] == ’c’ or p_params[’int_mode ’] == ’i’):

208 lims = ( 0, snr.shape [1]* p_params[’t_int ’], p_params[’rmin’], p_params[’rmax’] )

209 elif( p_params[’int_mode ’] == ’n’ ):

210 lims = ( 0, snr.shape [1], p_params[’rmin’], p_params[’rmax’] )

211 im = pp.imshow( snr ,

212 aspect=’auto’,

213 origin=’lower ’,

214 extent=lims ,

215 vmin=p_params[’vmin’],

216 vmax=p_params[’vmax’],

217 interpolation=’nearest ’ )

218 im.set_cmap( ’gnuplot ’ )

219

220 ax = pp.gca()

221

222 n_cticks = 11

223 n_xticks = 10

224 n_yticks = 12

225

226 if( p_params[’int_mode ’] == ’n’ ):

227 int_string = ’No integration ’

228 else:

229 int_string = str(p_params[’t_int ’]) + ’-s ’

230 if( p_params[’int_mode ’] == ’c’ ):

231 int_string += ’Coherent ’

232 elif( p_params[’int_mode ’] == ’i’ ):

233 int_string += ’Incoherent ’

234 else:

235 in_string += ’Unknown ’

236 int_string += ’integration ’

237

238 rp_string = str(d_params[’ipp’]*1e3) + ’-ms IPP , ’ + \

239 str(d_params[’baud’]*1e6) + ’-us baud , ’ + \

240 str(len(d_params[’code’])) + ’-bit code , ’ + \

241 str(d_params[’bw’]/1e6) + ’-MHz BW , ’ + \

242 int_string

243

244 pp.title( ’PSU All -Sky Radar: 15 June 2013’ )

171



245 pp.xlabel( rp_string )

246 pp.ylabel( ’Range [km]’ )

247

248 snr_sec = int((dup.parse(p_params[’t_end ’])-dup.parse(p_params[’t_start ’])+datetime.

timedelta(seconds =0)).total_seconds ())

249

250 xticks = []

251 for i in xrange( n_xticks +1 ):

252 xticks.append( str((dup.parse(p_params[’t_start ’]) + datetime.timedelta(seconds =(i*

snr_sec/n_xticks))).time()) )

253

254 ax.xaxis.set_major_locator( mp.ticker.MaxNLocator( n_xticks +1 ) )

255 ax.set_xticklabels( xticks , rotation =20 )

256

257

258 yticks = ( p_params[’rmin’] + np.arange(n_yticks)*( p_params[’rmax’]-p_params[’rmin’])

/(1.0* n_yticks -1) )

259 ax.set_yticks( yticks )

260

261 cticks = ( p_params[’vmin’] + np.arange(n_cticks)*( p_params[’vmax’]-p_params[’vmin’])

/(1.0* n_cticks -1) )

262 cb = pp.colorbar( im , ticks=cticks )

263

264 cb.ax.set_ylabel( ’SNR [dB]’ )

265

266

267 print ’Plotting ...’

268 if( not p_params[’batch ’] ):

269 pp.savefig( ’rti_big.png’ )

270 else:

271 outfile = d_params[’base_name ’]+str(xticks [0]).zfill (8)+’.png’

272 print ’Saving to’, outfile , ’...’

273 pp.savefig( outfile )

274

275 pp.close(’all’)

276

277

278 def main():

279

280 # CLP

281 parser = argparse.ArgumentParser( description=’Process and plot USRP -based Ionosonde

receiver data’ )

282 parser.add_argument( ’-f’, ’--base_filename ’, type=str , default=’/data/data0/rock_springs_

’,

283 help=’the HDF5 -family base filename to process and plot’ )

284 parser.add_argument( ’-v’, ’--verbose ’, action=’store_true ’, help=’be verbose ’, dest=’

verbose ’, default=False )

285 parser.add_argument( ’-b’, ’--batch ’, action=’store_true ’, help=’batch process data (multi

RTI output)’, dest=’batch ’, default=False )

286 parser.add_argument( ’-s’, ’--seconds ’, type=int , default =5*60 , help=’number of seconds to

batch process -- only valid with -b’ )

287 args = parser.parse_args ()

288

289 #base_name = ’/data/data0/ rock_springs_ ’ # Base filename for HDF5 family

290 t_start = ’02:00:00 ’ # Time to start plotting

291 t_end = ’07:59:59 ’ # Time to stop plotting

292 t_int = 1 # Integration time (seconds) -- only integers for

now

293 channel = 0

294 code = ’1101101001000100010001111000 ’

295 vmin = -10

296 vmax = 10

297 baud = 5e-6

298 rmin = 40 # Minimum range to plot in km

299 rmax = 150 # Maximum range to plot in km

172



300 hide_dtag = 1 # 1: hide data tag in plot

301 # 0: show data tag in plot

302 int_mode = ’i’ # c: coherent

303 # i: incoherent

304 # n: none

305

306 d_params = { ’base_name ’: args.base_filename , # Data parameters

307 ’code’: code ,

308 ’baud’: baud }

309 p_params = { ’t_start ’: t_start , # Plotting parameters

310 ’t_end ’: t_end ,

311 ’t_int ’: t_int ,

312 ’channel ’: channel ,

313 ’vmin’: vmin ,

314 ’vmax’: vmax ,

315 ’rmin’: rmin ,

316 ’rmax’: rmax ,

317 ’hide_dtag ’: hide_dtag ,

318 ’int_mode ’: int_mode ,

319 ’batch ’: args.batch }

320

321 if( not args.batch ):

322 print ’>>> Entering reader ...’

323 pmap , d_params = reader( d_params , p_params , args.verbose )

324

325 print ’>>> Entering plotter ...’

326 rti_plotter( pmap , d_params , p_params , args.verbose )

327 else:

328 n = 0

329 done = False

330 while( not done ):

331 print ’>>> Entering reader ...’

332 p_params[’t_end ’] = str( ( dup.parse(p_params[’t_start ’]) + datetime.timedelta(seconds

=args.seconds) ).time() )

333 pmap , d_params = reader( d_params , p_params , args.verbose )

334

335 print ’>>> Entering plotter ...’

336 rti_plotter( pmap , d_params , p_params , n, args.verbose )

337

338 if( dup.parse(p_params[’t_end ’]) >= dup.parse(t_end) ):

339 done = True

340

341 #p_params[’t_start ’] = str( ( dup.parse(p_params[’t_end ’]) + datetime. timedelta (

seconds =1) ).time () )

342 p_params[’t_start ’] = p_params[’t_end ’]

343 n += 1

344

345 if __name__ == ’__main__ ’:

346 main()

Listing A.17: GnuRadarDevice.h – class for handling data transfer from multiple USRP1
devices with GnuRadar. Note, this multi-device mode is not fully functional!

1 // Copyright (c) 2010 Ryan Seal <rlseal -at - gmail.com >

2 //

3 // This file is part of GnuRadar Software.

4 //

5 // GnuRadar is free software: you can redistribute it and/or modify

6 // it under the terms of the GNU General Public License as published by

7 // the Free Software Foundation , either version 3 of the License , or

8 // (at your option) any later version.

9 //

10 // GnuRadar is distributed in the hope that it will be useful ,

11 // but WITHOUT ANY WARRANTY; without even the implied warranty of

173



12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

13 // GNU General Public License for more details.

14 //

15 // You should have received a copy of the GNU General Public License

16 // along with GnuRadar. If not , see <http :// www.gnu.org/licenses />.

17 #ifndef GNURADARDEVICE_H

18 #define GNURADARDEVICE_H

19

20 #include <gnuradar/GnuRadarSettings.h>

21 #include <gnuradar/Device.h>

22 #include <gnuradar/StreamBuffer.hpp >

23 #include <gnuradar/DeviceDataInterleave.hpp >

24 #include <boost/lexical_cast.hpp >

25

26 #include <boost/cstdint.hpp >

27 #include <boost/shared_ptr.hpp >

28 #include <usrp/usrp/standard.h>

29

30 #include <iostream >

31 #include <vector >

32 #include <cstring >

33 #include <fstream >

34 #include <stdexcept >

35 #include <math.h>

36 #include <sstream >

37

38 namespace gnuradar{

39

40 /// Device class providing access to the USRP data stream.

41 class GnuRadarDevice: public Device {

42

43 // define width of I/Q components

44 typedef int16_t iq_t;

45

46 // define synchro buffer

47 typedef StreamBuffer < iq_t > SynchronizationBuffer;

48 typedef boost :: shared_ptr < SynchronizationBuffer >

49

50 SynchronizationBufferPtr;

51 std::vector <SynchronizationBufferPtr > synchroBuffer_;

52

53 // define constants

54 const int ALIGNMENT_SIZE_BYTES;

55 const int ALIGNMENT_SIZE;

56 const int FX2_FLUSH_FIFO_SIZE_BYTES;

57

58 // this is a gnuradio pointer of some sort.

59 // older versions did not use this.

60 std::vector <usrp_standard_rx_sptr > usrp_;

61

62 // configuration settings class

63 GnuRadarSettingsPtr grSettings_;

64

65 // define flags

66 bool overFlow_;

67 bool isFirstDataRequest_;

68

69 // StreamBuffer <int16_t > stBuf_;

70 std::vector <int > sequence_;

71

72 // Number of USRP devices

73 int nBoards_;

74

75 // number of channels each device has

76 std::vector <int > chan;

174



77

78 public:

79

80 /// Constructor .

81 GnuRadarDevice ( GnuRadarSettingsPtr grSettings ) :

82 ALIGNMENT_SIZE ( 256 ),

83 ALIGNMENT_SIZE_BYTES ( ALIGNMENT_SIZE*sizeof ( iq_t ) ),

84 FX2_FLUSH_FIFO_SIZE_BYTES ( 2048 ),

85 grSettings_ ( grSettings ),

86 overFlow_ ( false ),

87 isFirstDataRequest_ ( true ),

88 sequence_ ( grSettings ->Channels (), 16384 ) {

89

90

91 // FIXME hard -coded 4 channels per board

92 nBoards_ = int( ceil( float(grSettings_ ->Channels ()) / 4.0 ) );

93

94 int chans = 0;

95 for( int i = 0; i < nBoards_; ++i) {

96 if( nBoards_ - i == 1 ){

97 chans = grSettings_ ->Channels () % 4;

98 if(chans == 0) chans = 4; // 4%4=0 , so set channels to 4

99 }

100 else

101 chans = 4;

102

103 usrp_.push_back(

104 usrp_standard_rx ::make (

105 i,

106 grSettings_ ->decimationRate ,

107 chans ,

108 grSettings_ ->mux ,

109 grSettings_ ->mode ,

110 grSettings_ ->fUsbBlockSize ,

111 grSettings_ ->fUsbNblocks ,

112 grSettings_ ->fpgaFileName ,

113 grSettings_ ->firmwareFileName

114 )

115 );

116

117 }

118

119 // check to see if devices are connected

120 std::cout <<"GnuRadarDevice: checking to see if devices are connected"<<std::endl;

121 for( int i = 0; i < nBoards_; ++i ) {

122 if ( usrp_[i].get() == 0 ) {

123 std:: stringstream msg;

124 msg << "USRP #" << i << " missing -- check your connections";

125 throw std:: runtime_error( msg.str() );

126 // exit ( 0 );

127 }

128 }

129 std::cout <<"GnuRadarDevice: all devices must be connected"<<std::endl;

130

131 // check to see if we picked up the master and slaves correctly (if not , sort)

132 // --> devices have binary " addresses" set by jumpers from io_rx_a [0 -14] to GND

133 // --> master has no jumpers

134 // --> these pins are pulled high in the fpga by default

135 // ----> the address counter is actually counting backwards from 0x7FFF

136 // --> FIXME no error checking so we have to trust the user right now

137 uint16_t address = 0xFFFF;

138 uint16_t mask = 0x8000; // bit 15 here is the trigger signal so we ignore it

by using a mask

139

140 for( uint16_t i = 0; i < usrp_.size(); ++i ) {

175



141 address = ~( usrp_[i]->read_io( 0 ) | 0x8000 );

142

143 while( address != i ) {

144 std::swap( usrp_[address], usrp_[i] );

145 address = ~( usrp_[i]->read_io( 0 ) );

146 }

147 }

148

149 // setup frequency and phase for each ddc , set all gains to 0 dB by default

150 for ( int i = 0; i < nBoards_; ++i ) {

151 if( nBoards_ - i == 1 )

152 chans = grSettings_ ->Channels () % 4;

153 else

154 chans = 4;

155 for( int j = 0; j < chans; ++j) {

156 usrp_[i]->set_rx_freq ( j, grSettings_ ->Tune ( i*4+j-1 ) );

157 usrp_[i]->set_ddc_phase ( j, 0 );

158 usrp_[i]->set_pga ( j, 0 );

159 }

160 }

161 }

162

163 /// This method is called from the Producer thread and transfers

164 /// data from the hardware device to a specified buffer given

165 /// by the address and bytes parameters .

166 ///

167 ///\ param address shared memory write address.

168 ///\ param bytes number of bytes to write.

169 virtual void RequestData ( void* address , const int bytes ) {

170

171 std::vector <int > bytesRead (usrp_.size(), 0);

172 bool overrun;

173 int readRequestSizeSamples = bytes / sizeof ( iq_t );

174 int bytesPerChannel = readRequestSizeSamples / grSettings_ ->Channels ();

175

176 // start data collection and flush fx2 buffer

177 if ( isFirstDataRequest_ ) {

178

179

180 int bufferSamples = 0;

181 int TotNumChan = grSettings_ ->Channels ();

182 // select how many channels to designate to each device since they

cannot handle more than

183 //4 channels. The current method below is not the best approach as it

hardcodes 4 channels

184 // for each device as long as it is not the last device.

185 for( int i = 0; i < nBoards_; ++i ) {

186 if( nBoards_ - i == 1 ) { // last device

187 bufferSamples = (bytesPerChannel * (grSettings_ ->Channels () % 4));

188 if(( grSettings_ ->Channels () % 4) == 0) bufferSamples =

bytesPerChannel * 4; // 4%4=0

189 chan.push_back (TotNumChan - ((nBoards_ -1) *4));

190 std::cout <<"GnuRadarDevice: bufferSample: "<<bufferSamples <<std::

endl;

191 }

192 else {

193 bufferSamples = bytesPerChannel * 4;

194 chan.push_back (4);

195 std::cout <<"GnuRadarDevice: bufferSample: "<<bufferSamples <<std::

endl;

196 }

197 std::vector <int > subSequence(

198 sequence_.begin () + i*(chan[i]),

199 sequence_.begin () + i*(chan[i]) + chan[i]

200 );

176



201

202 // Initialize stream buffers

203 synchroBuffer_.push_back(

204 SynchronizationBufferPtr (

205 new SynchronizationBuffer (

206 bufferSamples ,

207 ALIGNMENT_SIZE ,

208 subSequence

209 )

210 )

211 );

212

213 // create temporary buffer to sync data

214 iq_t buf[FX2_FLUSH_FIFO_SIZE_BYTES/sizeof ( iq_t ) ];

215

216 // Read some data to flush the FX2 buffers in the USRP.

217 // This data is discarded.

218 usrp_[i]->start ();

219 usrp_[i]->read ( buf , FX2_FLUSH_FIFO_SIZE_BYTES , &overFlow_ );

220

221 // write aligned data into the synchro buffer

222 usrp_[i]->read (

223 synchroBuffer_[i]->WritePtr (),

224 synchroBuffer_[i]->WriteSizeBytes (),

225 &overrun

226 );

227

228 // synchronize the data stream

229 synchroBuffer_[i]->Sync();

230

231 // write a another buffer after synchronizing .

232 // This is a requirement of the StreamBuffer class.

233 usrp_[i]->read (

234 synchroBuffer_[i]->WritePtr (),

235 synchroBuffer_[i]->WriteSizeBytes (),

236 &overrun

237 );

238 }

239

240 /* ***************************************

241 * FIXME Data Interleaver goes here

242 *************************************** */

243

244 for(int z=0;z<2;z++){

245 std::cout <<"GnuRadarDevice: RequestData (): synchroBuffer["<<z<<"] size: "

246 <<synchroBuffer_[z]->ReadSize ()<<std::endl;

247 }

248

249 // TODO : make Data1/Data2 as void* and then rewrite interleave to accept void*

250 void *CompleteDataPtr = NULL;

251 void *Data1 = synchroBuffer_ [0]-> ReadPtr ();

252 void *Data2 = synchroBuffer_ [1]-> ReadPtr ();

253

254 std::vector <int > BufferSize;

255 BufferSize.push_back(synchroBuffer_ [0]-> ReadSize ());

256 BufferSize.push_back(synchroBuffer_ [1]-> ReadSize ());

257 std::cout <<"GnuRadarDevice: BufferSize: "<<BufferSize [0]<<" & "<<BufferSize [1]<<

std::endl;

258

259 CompleteDataPtr = DeviceDataInterleave(Data1 , Data2 , BufferSize , chan);

260

261 // copy 1 second of data from synchro buffer

262 memcpy (

263 address ,

264 CompleteDataPtr ,

177



265 bytesPerChannel * grSettings_ ->Channels ()

266 );

267

268 // update read and write pointers

269 for( int i = 0; i < synchroBuffer_.size(); ++i )

270 synchroBuffer_[i]->Update ();

271

272 isFirstDataRequest_ = false;

273

274 } else {

275

276 for( int i = 0; i < usrp_.size(); ++i ) {

277 std::cout <<"device.h: for loop: i = "<<i<<std::endl;

278 bool overFlow = false;

279 // read data from USRP

280 bytesRead[i] = usrp_[i]->read (

281 synchroBuffer_[i]->WritePtr (),

282 synchroBuffer_[i]->WriteSizeBytes (),

283 &overFlow

284 );

285 std::cout <<"device.h: bytesRead (): "<<bytesRead[i]<<std::endl;

286 overFlow_ |= overFlow;

287 }

288

289 /* **************************************

290 * FIXME Data Interleaver goes here

291 ************************************** */

292

293 void *CompleteDataPtr = NULL;

294 void *Data1 = synchroBuffer_ [0]-> ReadPtr ();

295 void *Data2 = synchroBuffer_ [1]-> ReadPtr ();

296 std::vector <int > BufferSize;

297 BufferSize.push_back(synchroBuffer_ [0]-> ReadSize ());

298 BufferSize.push_back(synchroBuffer_ [1]-> ReadSize ());

299

300 CompleteDataPtr = DeviceDataInterleave(Data1 , Data2 , BufferSize , chan);

301

302 int16_t* dataprint = reinterpret_cast <int16_t*>( CompleteDataPtr);

303 int16_t* dataprint1 = reinterpret_cast <int16_t*>(Data1);

304 int16_t* dataprint2 = reinterpret_cast <int16_t*>(Data2);

305 // for(int d=0;d <30;d++){

306 // std ::cout <<*( dataprint +d) <<"\t"<<*( dataprint1 +d) <<"\t"<<*( dataprint2

+d)<<std :: endl;

307 //}

308

309 // Transfer data to shared memory buffer

310 memcpy (

311 address ,

312 CompleteDataPtr ,

313 bytesPerChannel * grSettings_ ->Channels ()

314 );

315

316 // update read and write pointers

317 for( int i = 0; i < synchroBuffer_.size(); ++i )

318 synchroBuffer_ [0]->Update ();

319

320 if ( overFlow_ ) {

321 // TODO: throw exception here

322 std::cerr << "GnuRadarDevice: Data overflow detected !!!"

323 << std::endl;

324 }

325 }

326 }

327

328 /// Stops data collection .

178



329 virtual void Stop() {

330 for(int i=0; i<usrp_.size(); i++)

331 usrp_[i]->stop();

332 }

333 };

334 };

335 #endif

Listing A.18: GnuRadarSettings.h – class modified to support >4 channels (multiple de-
vices) with GnuRadar. Note, this multi-device mode is not fully functional!

1 // Copyright (c) 2010 Ryan Seal <rlseal -at - gmail.com >

2 //

3 // This file is part of GnuRadar Software.

4 //

5 // GnuRadar is free software: you can redistribute it and/or modify

6 // it under the terms of the GNU General Public License as published by

7 // the Free Software Foundation , either version 3 of the License , or

8 // (at your option) any later version.

9 //

10 // GnuRadar is distributed in the hope that it will be useful ,

11 // but WITHOUT ANY WARRANTY; without even the implied warranty of

12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

13 // GNU General Public License for more details.

14 //

15 // You should have received a copy of the GNU General Public License

16 // along with GnuRadar. If not , see <http :// www.gnu.org/licenses />.

17 #ifndef GNURADAR_SETTINGS_H

18 #define GNURADAR_SETTINGS_H

19

20 #include <iostream >

21 #include <vector >

22

23 namespace gnuradar{

24

25 struct GnuRadarSettings {

26 private:

27 int numChannels;

28

29 bool ValidChannel ( int channel ) {

30 return ! ( channel < 0 || channel >= numChannels );

31 }

32

33 public:

34 GnuRadarSettings () :

35 whichBoard ( 0 ), decimationRate ( 8 ), numChannels ( 1 ), mux ( -1 ),

36 mode ( 0 ), fUsbBlockSize ( 0 ), fUsbNblocks ( 0 ), fpgaFileName ( "" ),

37 firmwareFileName ( "" ), tuningFrequency ( 4, 0.0 ), ddcPhase ( 4, 0.0 ),

38 clockRate ( 64e6 ) {}

39

40 int whichBoard;

41 int decimationRate;

42 int mux;

43 int mode;

44 int fUsbBlockSize;

45 int fUsbNblocks;

46 std:: string fpgaFileName;

47 std:: string firmwareFileName;

48 std::vector <double > tuningFrequency;

49 int fpgaMode;

50 std::vector <double > ddcPhase;

51 int format;

52 double clockRate;

53

179



54 void Channels( int channels ) {

55 numChannels = channels;

56 if( tuningFrequency.size() < numChannels )

57 tuningFrequency.resize ( numChannels );

58 if( ddcPhase.size() < numChannels )

59 ddcPhase.resize ( numChannels );

60 }

61

62 void Tune ( int channel , double frequency ) {

63 if ( ValidChannel ( channel ) ) tuningFrequency[channel] = frequency;

64 else std::cout << "GnuRadarSettings: Tune Error - invalid channel number " << std::

endl;

65 }

66

67 void Phase ( int channel , double phase ) {

68 if ( ValidChannel ( channel ) ) ddcPhase[channel] = phase;

69 else std::cout << "GnuRadarSettings: Phase Error - invalid channel number " << std

::endl;

70 }

71

72 const int& Channels () {

73 return numChannels;

74 }

75

76 const double& Tune ( int channel ) {

77 return ValidChannel ( channel ) ? tuningFrequency[channel] : 0;

78 }

79

80 const double& Phase ( int channel ) {

81 return ValidChannel ( channel ) ? ddcPhase[channel] : 0;

82 }

83

84 };

85 typedef boost :: shared_ptr <GnuRadarSettings > GnuRadarSettingsPtr;

86 };

87

88 #endif

Listing A.19: Start.hpp – command for beginning data collection with GnuRadar, modified
for multi-device operation. Note, this multi-device mode is not fully functional!

1 // Copyright (c) 2010 Ryan Seal <rlseal -at - gmail.com >

2 //

3 // This file is part of GnuRadar Software.

4 //

5 // GnuRadar is free software: you can redistribute it and/or modify

6 // it under the terms of the GNU General Public License as published by

7 // the Free Software Foundation , either version 3 of the License , or

8 // (at your option) any later version.

9 //

10 // GnuRadar is distributed in the hope that it will be useful ,

11 // but WITHOUT ANY WARRANTY; without even the implied warranty of

12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

13 // GNU General Public License for more details.

14 //

15 // You should have received a copy of the GNU General Public License

16 // along with GnuRadar. If not , see <http :// www.gnu.org/licenses />.

17 #ifndef START_HPP

18 #define START_HPP

19

20 #include <vector >

21

22 #include <boost/shared_ptr.hpp >

23 #include <boost/scoped_ptr.hpp >

180



24 #include <boost/filesystem.hpp >

25 #include <boost/asio.hpp >

26 #include <boost/lexical_cast.hpp >

27

28 #include <hdf5r/HDF5.hpp >

29

30 #include <gnuradar/GnuRadarCommand.hpp >

31 #include <gnuradar/ProducerConsumerModel.h>

32 #include <gnuradar/Device.h>

33 #include <gnuradar/GnuRadarDevice.h>

34 #include <gnuradar/SynchronizedBufferManager.hpp >

35 #include <gnuradar/yaml/SharedBufferHeader.hpp >

36 #include <gnuradar/SharedMemory.h>

37 #include <gnuradar/Constants.hpp >

38 #include <gnuradar/Units.h>

39 #include <gnuradar/network/StatusServer.hpp >

40 #include <gnuradar/commands/Response.pb.h>

41 #include <gnuradar/commands/Control.pb.h>

42 #include <gnuradar/utils/GrHelper.hpp >

43

44

45

46 namespace gnuradar {

47 namespace command {

48

49 class Start : public GnuRadarCommand {

50

51 typedef boost ::asio:: io_service IoService;

52 typedef boost :: shared_ptr <SharedMemory > SharedBufferPtr;

53 typedef std::vector <SharedBufferPtr > SharedArray;

54 typedef boost :: shared_ptr <HDF5 > Hdf5Ptr;

55 typedef boost :: shared_ptr <SynchronizedBufferManager > SynchronizedBufferManagerPtr;

56 typedef boost :: shared_ptr < ProducerConsumerModel > PCModelPtr;

57 typedef boost :: shared_ptr < ProducerThread > ProducerThreadPtr;

58 typedef boost :: shared_ptr < ConsumerThread > ConsumerThreadPtr;

59 typedef boost :: shared_ptr < GnuRadarDevice > GnuRadarDevicePtr;

60 typedef boost :: shared_ptr < GnuRadarSettings > GnuRadarSettingsPtr;

61 typedef boost :: shared_ptr < Device > DevicePtr;

62 typedef boost :: shared_ptr < ::yml:: SharedBufferHeader > SharedBufferHeaderPtr;

63 typedef boost :: shared_ptr < network :: StatusServer > StatusServerPtr;

64

65

66 // setup shared pointers to extend life beyond this call

67 PCModelPtr pcModel_;

68 ProducerThreadPtr producer_;

69 ConsumerThreadPtr consumer_;

70 SynchronizedBufferManagerPtr bufferManager_;

71 Hdf5Ptr hdf5_;

72 SharedArray array_;

73 SharedBufferHeaderPtr header_;

74 StatusServerPtr statusServer_;

75

76 // ///////////////////////////

77 // ///////////////////////////

78 void CreateSharedBuffers( const int bytesPerBuffer ) {

79

80 // setup shared memory buffers

81 for ( int i = 0; i < constants :: NUM_BUFFERS; ++i ) {

82

83 // create unique buffer file names

84 std:: string bufferName = constants :: BUFFER_BASE_NAME +

85 boost :: lexical_cast <string > ( i ) + ".buf";

86

87 // create shared buffers

88 SharedBufferPtr bufPtr (

181



89 new SharedMemory (

90 bufferName ,

91 bytesPerBuffer ,

92 SHM:: CreateShared ,

93 0666 )

94 );

95

96 // store buffer in a vector

97 array_.push_back ( bufPtr );

98 }

99 }

100

101 // /////////////////////////////

102 // pull settings from the configuration file

103 // /////////////////////////////

104 GnuRadarSettingsPtr GetSettings( gnuradar ::File* file ) {

105

106 GnuRadarSettingsPtr settings( new GnuRadarSettings () );

107

108 settings ->Channels( file ->numchannels () );

109 settings ->decimationRate = file ->decimation ();

110 settings ->fpgaFileName = file ->fpgaimage ();

111

112 // Program GNURadio

113 for ( int i = 0; i < file ->numchannels (); ++i ) {

114 settings ->Tune ( i, file ->channel(i).frequency () );

115 settings ->Phase( i, file ->channel(i).phase () );

116 }

117

118 // change these as needed

119 settings ->fUsbBlockSize = 0;

120 settings ->fUsbNblocks = 0;

121 settings ->mux = 0xf3f2f1f0;

122

123 return settings;

124 }

125

126 // //////////////////////////////////////////

127 // //////////////////////////////////////////

128 Hdf5Ptr SetupHDF5( gnuradar ::File* file ) throw( H5:: Exception )

129 {

130

131 Hdf5Ptr h5File_( new HDF5 ( file ->basefilename () , hdf5:: WRITE ) );

132

133 h5File_ ->Description ( "GnuRadar Software" + file ->version () );

134 h5File_ ->WriteStrAttrib ( "START_TIME", currentTime.GetTime () );

135 h5File_ ->WriteStrAttrib ( "INSTRUMENT", file ->receiver () );

136 h5File_ ->WriteAttrib <int > ( "CHANNELS", file ->numchannels (),

137 H5:: PredType :: NATIVE_INT , H5:: DataSpace () );

138 h5File_ ->WriteAttrib <double > ( "SAMPLE_RATE", file ->samplerate (),

139 H5:: PredType :: NATIVE_DOUBLE , H5:: DataSpace () );

140 h5File_ ->WriteAttrib <double > ( "BANDWIDTH", file ->bandwidth (),

141 H5:: PredType :: NATIVE_DOUBLE , H5:: DataSpace () );

142 h5File_ ->WriteAttrib <int > ( "DECIMATION", file ->decimation (),

143 H5:: PredType :: NATIVE_INT , H5:: DataSpace () );

144 h5File_ ->WriteAttrib <double > ( "OUTPUT_RATE", file ->outputrate (),

145 H5:: PredType :: NATIVE_DOUBLE , H5:: DataSpace () );

146 h5File_ ->WriteAttrib <double > ( "IPP", file ->ipp(),

147 H5:: PredType :: NATIVE_DOUBLE , H5:: DataSpace () );

148 h5File_ ->WriteAttrib <double > ( "RF", file ->txcarrier () ,

149 H5:: PredType :: NATIVE_DOUBLE , H5:: DataSpace () );

150

151 for ( int i = 0; i < file ->numchannels (); ++i ) {

152

153 h5File_ ->WriteAttrib <double > (

182



154 "DDC" + lexical_cast <string > ( i ),

155 file ->channel(i).frequency (),

156 H5:: PredType :: NATIVE_DOUBLE ,

157 H5:: DataSpace ()

158 );

159

160 h5File_ ->WriteAttrib <double > (

161 "PHASE" + lexical_cast <string > ( i ),

162 file ->channel(i).phase (),

163 H5:: PredType :: NATIVE_DOUBLE ,

164 H5:: DataSpace ()

165 );

166 }

167

168 h5File_ ->WriteAttrib <int > (

169 "SAMPLE_WINDOWS", file ->window_size (),

170 H5:: PredType :: NATIVE_INT , H5:: DataSpace ()

171 );

172

173 for ( int i = 0; i < file ->window_size (); ++i ) {

174

175 // TODO: Window Renaming scheme - 10/19/2010

176 // Standardize window naming and add the user -defined

177 // window name as a separate attribute .

178 string idx = boost :: lexical_cast <string > ( i );

179

180 h5File_ ->WriteAttrib <int > (

181 "RxWin"+ idx + "_START",

182 file ->window(i).start (),

183 H5:: PredType :: NATIVE_INT , H5:: DataSpace ()

184 );

185

186 h5File_ ->WriteAttrib <int > (

187 "RxWin" + idx + "_STOP",

188 file ->window(i).stop(),

189 H5:: PredType :: NATIVE_INT , H5:: DataSpace ()

190 );

191

192 // update gnuradar shared buffer header

193 header_ ->AddWindow( file ->window(i).name(), file ->window(i).start (), file ->

window(i).stop() );

194 }

195

196 return h5File_;

197 }

198

199 public:

200

201 // ////////////////////////////////////

202 // ////////////////////////////////////

203 Start( zmq:: context_t& ctx , PCModelPtr pcModel): GnuRadarCommand( "start" ),

pcModel_( pcModel )

204 {

205 std:: string ipaddr = gr_helper :: GetIpAddress("status");

206 statusServer_ = StatusServerPtr( new network :: StatusServer( ctx , ipaddr , pcModel

) );

207 }

208

209 // ////////////////////////////////////

210 // ////////////////////////////////////

211 virtual const gnuradar :: ResponseMessage Execute( gnuradar :: ControlMessage& msg ){

212

213 std::cout << "GNURADAR: RUN CALLED" << std::endl;

214

215 gnuradar :: ResponseMessage response_msg;

183



216

217 try{

218 // reset any existing configuration

219 producer_.reset ();

220 consumer_.reset ();

221 bufferManager_.reset ();

222 hdf5_.reset ();

223 array_.clear ();

224

225 gnuradar ::File* file = msg.mutable_file ();

226

227 // standardizes units of input file.

228 gr_helper :: FormatFileFromMessage( file );

229

230 gnuradar :: RadarParameters* rp = file ->mutable_radarparameters ();

231

232 // setup shared buffer header to assist in real -time processing

233 std::cout <<"Start.hpp: rp.bytesperbuffer: "<<rp ->bytesperbuffer ()<<std::endl;

234 std::cout <<"Start.hpp: rp.samplesperbuffer "<<rp ->samplesperbuffer ()<<std::

endl;

235 header_ = SharedBufferHeaderPtr

236 (

237 new ::yml:: SharedBufferHeader

238 (

239 constants :: NUM_BUFFERS ,

240 rp ->bytesperbuffer (),

241 file ->samplerate (),

242 file ->numchannels (),

243 rp ->prisperbuffer (),

244 rp ->samplesperbuffer ()

245 )

246 );

247

248 // read and parse configuration file ->

249 GnuRadarSettingsPtr settings = GetSettings( file );

250

251 // create a device to communicate with hardware

252 GnuRadarDevicePtr gnuRadarDevice( new GnuRadarDevice( settings ) );

253

254 // make sure we don ’t have an existing data set

255 if( gr_helper :: HdfFileExists( file ->basefilename () ))

256 {

257 throw std:: runtime_error( "HDF5 File set " + fileName +

258 " exists and cannot be overwritten. Change your "

259 "base file set name and try again");

260 }

261

262 // setup HDF5 attributes and file ->set.

263 hdf5_ = SetupHDF5( file );

264

265 // setup shared memory buffers

266 CreateSharedBuffers( rp ->bytesperbuffer () );

267

268 // setup the buffer manager

269 bufferManager_ = SynchronizedBufferManagerPtr(

270 new SynchronizedBufferManager(

271 array_ , constants :: NUM_BUFFERS , rp ->bytesperbuffer ()) );

272

273 // setup table dimensions column = samples per ipp , row = IPP number

274 std::vector <hsize_t > dims;

275 dims.push_back( rp ->prisperbuffer () );

276 dims.push_back ( static_cast <int > ( rp ->samplesperpri () * file ->numchannels ()

) );

277

278 // setup producer thread

184



279 producer_ = gnuradar :: ProducerThreadPtr (

280 new ProducerThread ( bufferManager_ , gnuRadarDevice ) );

281

282 // flush header information

283 header_ ->Write (0,0,0);

284

285 // setup consumer thread

286 consumer_ = gnuradar :: ConsumerThreadPtr(

287 new ConsumerThread ( bufferManager_ , header_ , hdf5_ , dims ) );

288

289 // new model

290 pcModel_ ->Initialize( bufferManager_ , producer_ , consumer_);

291

292 // start producer thread

293 pcModel_ ->Start ();

294

295 response_msg.set_value(gnuradar :: ResponseMessage ::OK);

296 response_msg.set_message("Data collection successfully started.");

297

298 // Start status thread to broadcast status packets to any subscribers .

299 if( statusServer_ ->IsActive () == false )

300 {

301 statusServer_ ->Start ();

302 }

303

304 }

305 catch( std:: runtime_error& e ){

306

307 response_msg.set_value(gnuradar :: ResponseMessage :: ERROR);

308 response_msg.set_message(e.what());

309

310 }

311 catch( H5:: Exception& e ){

312 response_msg.set_value(gnuradar :: ResponseMessage :: ERROR);

313 response_msg.set_message(e.getDetailMsg ());

314 }

315

316 return response_msg;

317 }

318 };

319 };

320 };

321

322 #endif

Listing A.20: Verify.hpp – command for beginning data collection with GnuRadar, modified
for multi-device operation. Note, this multi-device mode is not fully functional!

1 // Copyright (c) 2010 Ryan Seal <rlseal -at - gmail.com >

2 //

3 // This file is part of GnuRadar Software.

4 //

5 // GnuRadar is free software: you can redistribute it and/or modify

6 // it under the terms of the GNU General Public License as published by

7 // the Free Software Foundation , either version 3 of the License , or

8 // (at your option) any later version.

9 //

10 // GnuRadar is distributed in the hope that it will be useful ,

11 // but WITHOUT ANY WARRANTY; without even the implied warranty of

12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

13 // GNU General Public License for more details.

14 //

15 // You should have received a copy of the GNU General Public License

16 // along with GnuRadar. If not , see <http :// www.gnu.org/licenses />.

185



17 #ifndef VERIFY_HPP

18 #define VERIFY_HPP

19

20 #include <vector >

21 #include <gnuradar/utils/GrHelper.hpp >

22 #include <gnuradar/GnuRadarCommand.hpp >

23 #include <gnuradar/commands/Response.pb.h>

24 #include <gnuradar/SystemValidation.hpp >

25 #include <boost/shared_ptr.hpp >

26 #include <gnuradar/GnuRadarSettings.h>

27

28 namespace gnuradar {

29 namespace command {

30

31 class Verify : public GnuRadarCommand {

32

33 typedef std::vector <gnuradar ::iq_t > Buffer;

34 typedef Buffer :: iterator BufferIterator;

35

36 public:

37

38 Verify (): GnuRadarCommand( "verify" ){ }

39

40 virtual const gnuradar :: ResponseMessage Execute( gnuradar :: ControlMessage& msg )

41 {

42

43 Buffer buffer;

44

45 gnuradar :: ResponseMessage response_msg;

46

47 gnuradar ::File* file = msg.mutable_file ();

48

49 // standardizes units of input file.

50 gr_helper :: FormatFileFromMessage( file );

51

52 gnuradar :: RadarParameters* rp = file ->mutable_radarparameters ();

53

54 // buffer one second ’s worth of data

55 std::cout << "rp ->Bps: " << rp ->bytespersecond () << std::endl;

56 buffer.resize ( rp ->bytespersecond () / sizeof ( gnuradar ::iq_t ) );

57 void* bufferPtr = &buffer [0];

58

59 try

60 {

61

62 // set require gnuradar settings.

63 GnuRadarSettings settings;

64 settings.Channels( file ->numchannels () );

65 settings.decimationRate = file ->decimation ();

66 settings.fpgaFileName = file ->fpgaimage ();

67 settings.fUsbBlockSize = 0;

68 settings.fUsbNblocks = 0;

69 settings.mux = 0xf3f2f1f0;

70

71 for ( int i = 0; i < settings.Channels (); ++i ) {

72

73 gnuradar :: Channel* channel = file ->mutable_channel(i);

74 settings.Tune ( i, channel ->frequency () );

75 settings.Phase ( i, channel ->phase () );

76 }

77

78 // create a vector of USRP objects.

79 std::vector <usrp_standard_rx_sptr > usrp;

80 GnuRadarSettingsPtr grsettings_;

81 int nBoards = int(ceil(float(settings.Channels ())/USRP_MAX_CHANNELS));

186



82 int nChan;

83 int TotalNumChannels = settings.Channels ();

84 for( int i = 0; i < nBoards; ++i ) {

85 if(nBoards - i == 1) nChan = TotalNumChannels -(( nBoards -1)*

USRP_MAX_CHANNELS);

86 else nChan = USRP_MAX_CHANNELS;

87

88 // create each USRP device object

89 usrp.push_back(

90 usrp_standard_rx ::make (

91 i,

92 settings.decimationRate ,

93 nChan ,

94 settings.mux ,

95 settings.mode ,

96 settings.fUsbBlockSize ,

97 settings.fUsbNblocks ,

98 settings.fpgaFileName ,

99 settings.firmwareFileName

100 )

101 );

102

103 // quickly see which device is master

104 if( i == 0 ) usrp[i]->_set_led (1,1);

105

106 // check to see if device is connected

107 if ( usrp[i].get() == 0 ) {

108 throw std:: runtime_error (

109 "GnuRadarVerify: One or more USRP devices could not be

detected."

110 );

111 }

112

113 // setup frequency and phase for each ddc

114 // set all gain to 0dB by default

115 for ( int j = 0; j < nChan; ++j ) {

116 usrp[i]->set_rx_freq ( j, settings.Tune ( i*4+j ) );

117 usrp[i]->set_ddc_phase ( j, settings.Phase( i*4+j) );

118 usrp[i]->set_pga ( j, 0 );

119 }

120

121 // initialize data collection and flush FX2 buffer.

122 usrp[i]->start ();

123 bool over_flow;

124 usrp[i]->read ( bufferPtr , gnuradar :: FX2_FLUSH_FIFO_SIZE_BYTES , &

over_flow );

125

126 // resize buffer aligned on required byte boundary - 512 bytes

127 int byteRequest = rp ->bytespersecond ();

128 int alignedBytes = byteRequest % gnuradar :: BUFFER_ALIGNMENT_SIZE_BYTES;

129 int alignedByteRequest = byteRequest - alignedBytes;

130 buffer.resize ( alignedByteRequest / sizeof ( gnuradar ::iq_t ) );

131

132 // read data from USRP

133 int bytesRead = usrp[i]->read ( bufferPtr , alignedByteRequest , &

over_flow);

134

135 usrp[i]->stop();

136

137 if ( bytesRead != alignedByteRequest ) {

138 throw std:: runtime_error (

139 "GnuRadarVerify: Number of bytes read is not equal to the "

140 "number of requested bytes .\n Expected " +

141 lexical_cast <string > ( alignedByteRequest ) + " Found " +

142 lexical_cast <string > ( bytesRead ) + "\n"

187



143 );

144 }

145

146 int stride = nChan * sizeof( gnuradar ::iq_t );

147 std::cout <<"Verify.hpp: setting stride to " << stride <<std::endl;

148

149 std::cout << "buffer.size(): " << buffer.size() << std::endl;

150

151 Buffer channelBuffer ( buffer.size() / stride );

152 BufferIterator bufferIter = buffer.begin ();

153 BufferIterator channelBufferIter = channelBuffer.begin ();

154

155 while ( bufferIter != buffer.end() ) {

156 *channelBufferIter = *bufferIter;

157 bufferIter += stride;

158 if( bufferIter != buffer.end() )

159 ++ channelBufferIter;

160 }

161 std::cout << "chBufIter pos: " << channelBufferIter - channelBuffer.

begin () << std::endl;

162 // validate collected window sizes with those in configuration file.

163 SystemValidation validator;

164 bool valid = validator.Validate ( channelBuffer , file );

165

166 if( !valid )

167 {

168 throw std:: runtime_error( validator.GetResults () );

169 }

170

171

172 // create a response packet and return to requester

173 response_msg.set_value(gnuradar :: ResponseMessage ::OK);

174 response_msg.set_message("Configuration Verified.");

175

176

177 }// end for loop for nBoards

178

179 }// end try

180 catch( std:: runtime_error& e ){

181

182 response_msg.set_value(gnuradar :: ResponseMessage :: ERROR);

183 response_msg.set_message(e.what());

184

185 }

186

187 return response_msg;

188 }

189 };

190 };

191 };

192

193 #endif

Listing A.21: GrHelper.hpp – class for multi-device data collection with GnuRadar. Note,
this multi-device mode is not fully functional!

1 #ifndef GR_HELPER_HPP

2 #define GR_HELPER_HPP

3

4 #include <fstream >

5 #include <boost/filesystem.hpp >

6 #include <yaml -cpp/yaml.h>

7 #include <gnuradar/Constants.hpp >

8 #include <gnuradar/commands/Control.pb.h>

188



9 #include <hdf5r/HDF5.hpp >

10

11 namespace gr_helper{

12

13 // ////////////////////////////////////

14 // ////////////////////////////////////

15 std:: string GetIpAddress(const std:: string& networkType )

16 {

17 std:: string ip_addr;

18

19 try{

20 std:: ifstream fin( gnuradar :: constants :: SERVER_CONFIGURATION_FILE.c_str () );

21 YAML:: Parser parser(fin);

22 YAML::Node doc;

23 parser.GetNextDocument(doc);

24 doc[networkType] >> ip_addr;

25 }

26 catch( YAML:: ParserException& e )

27 {

28 std::cerr << e.what();

29 }

30

31 return ip_addr;

32 };

33

34

35 // ////////////////////////////////////

36 // ////////////////////////////////////

37 bool HdfFileExists ( const std:: string& fileSet )

38 {

39 std:: string fileName = fileSet + "." + hdf5:: FILE_EXT;

40 boost :: filesystem ::path file ( fileName );

41 return boost :: filesystem :: exists ( file );

42 }

43

44 int Round( double x)

45 {

46 return static_cast <int >( floor( x + 0.5 ));

47 }

48

49 void FormatFileFromMessage( gnuradar ::File* file )

50 {

51 const int BYTES_PER_SAMPLE =4;

52 const double SECONDS_PER_BUFFER =1.0;

53 int sum =0;

54

55 Units units;

56

57 // convert units

58 file ->set_samplerate( file ->samplerate () * 1e6);

59 file ->set_outputrate( file ->samplerate () / file ->decimation ());

60 file ->set_ipp( file ->ipp() * units(file ->ippunits ()).multiplier);

61 file ->set_bandwidth( file ->bandwidth () * units(file ->bandwidthunits ()).multiplier);

62 file ->set_txcarrier( file ->txcarrier () * 1e6);

63

64 for ( int i = 0; i < file ->channel_size (); ++i ) {

65 gnuradar :: Channel* channel = file ->mutable_channel(i);

66 channel ->set_frequency( channel ->frequency () *

67 units(channel ->frequencyunits ()).multiplier);

68 channel ->set_phase( channel ->phase () *

69 units(channel ->phaseunits ()).multiplier);

70 }

71

72 for ( int i = 0; i < file ->window_size (); ++i ) {

73 gnuradar :: Window* window = file ->mutable_window(i);

189



74 UnitType u = units(window ->units ());

75 double multiplier = u.units == "samples" ? 1e0 : u.multiplier*file ->outputrate ();

76 window ->set_start( window ->start () * multiplier);

77 window ->set_stop( window ->stop() * multiplier);

78 sum += ceil(window ->stop()-window ->start ());

79 }

80

81 gnuradar :: RadarParameters* rp = file ->mutable_radarparameters ();

82 rp ->set_samplesperpri( sum );

83 rp ->set_pri( file ->ipp() );

84 rp ->set_prf( 1.0/rp ->pri() );

85 rp ->set_bytespersample( BYTES_PER_SAMPLE );

86 rp ->set_secondsperbuffer( SECONDS_PER_BUFFER );

87 // edited secondsperbuffer so that a 2 second buffer doesnt throw an error

88 rp ->set_samplesperbuffer( Round(rp ->prf()*rp ->samplesperpri ()*rp ->secondsperbuffer ())

);

89 rp ->set_prisperbuffer( Round(rp ->samplesperbuffer ()/rp ->samplesperpri ()) );

90 rp ->set_bytesperbuffer( Round(rp ->samplesperbuffer ()*rp ->bytespersample ()*file ->

numchannels ()) );

91 rp ->set_bytespersecond( Round(rp ->bytesperbuffer ()/rp ->secondsperbuffer ()) );

92

93 }

94 };

95

96 #endif

Listing A.22: DeviceDataInterleave.hpp – function for interleaving data streams between
multiple USRP devices for GnuRadar. Note, this multi-device mode is not fully functional!

1 /* ****************************************************

2 * Author: Ben Young (EEREU Summer 2013)

3 * Date Created: 6/5/13

4 * FileName: DeviceDataInterleave .cpp

5 *

6 * Summary: This file interleaves the elements of multiple separate

7 * vectors containing the same number of elements in the

8 * following pattern:

9 *

10 * (Vector 1) Device 1: I1 Q1 I2 Q2 ... I1 Q1 ...

11 * (Vector 2) Device 2: I5 Q5 I6 Q6 ... I5 Q5 ...

12 *

13 * Output Vector: I1 Q1 I2 Q2 ... I5 Q5 I6 Q6 ... I1 Q1 ...

14 *

15 * Where the numbers following I and Q are channels.

16 * Each device can support four (4) channels max and one (1)

17 * channel min. A device cycles sequentially through its

18 * channels (I1 Q1 I2 Q2 ...) until it reaches its highest

19 * operating channel and then starts over.

20 *

21 * Note: Currently this file only supports the interleavnig of a

22 * fixed number of devices (two (2) , no more and no less).

23 *

24 * If the file needs to be upgraded , the addition of

25 * NumChanDx , Datax , and Tposx variables is necessary ,

26 * as well as some slight modifications to the state

27 * machine that interleaves the data.

28 *

29 * The object of this file was to interleave 8 channels

30 * worth of data , where each channel contains 1000

31 * samples. Furthermore , the function must open , operate ,

32 * and close , having returned the proper vector in under

33 * one (1) second.

34 *

35 * The Boost cpu timer was inserted to make sure that this

190



36 * function can run at least 8 channels in less than one (1)

37 * second. To use the timer , uncomment the include and the

38 * boost :: timer :: auto_cpu_timer line and run. The output

39 * is automatic. To compile the code with the timer , the

40 * proper boost library must be linked in the command line.

41 * use: g++ -lboost_timer <program name > -o <output name >

42 *

43 ****************************************************** */

44

45 #include <stdio.h>

46 #include <vector >

47 #include <stdint.h>

48 #include <stdlib.h>

49 #include <iostream >

50 #include <gnuradar/StreamBuffer.hpp >

51 #include <boost/shared_ptr.hpp >

52

53 //#include <boost/timer/timer.hpp >

54

55 #define DEVICE1 1

56 #define DEVICE2 2

57

58 typedef int16_t iq_t;

59

60 void* DeviceDataInterleave(void* Data1 ,

61 void* Data2 ,

62 std::vector <int > & BufferSize ,

63 std::vector <int > & chans){

64

65 // code to benchmark the time it takes to complete this func.

66 // FIXME: if this function is to be used then the boost_timer library is going to

need to be linked.

67 //In g++ this can be done with -lboost_timer but I am not sure how to do that in WAF

68 // boost :: timer :: auto_cpu_timer t;

69

70 int16_t* DataTemp1 = reinterpret_cast <int16_t*>(Data1);

71 int16_t* DataTemp2 = reinterpret_cast <int16_t*>(Data2);

72

73 int i; // counter

74 int Tpos1 = 0, Tpos2 = 0, TposOut = 0; // iterator positions

75

76 // state machine to handle merging the data vectors

77 // together properly for a max of 8 channels. If

78 // ever more devices are needed then the state machine

79 // can be upgraded by simply creating more states and

80 // then modifing the current states to accept the new ones.

81

82 int DataStream = DEVICE1; // used to denote which state is the current state

83 int VECT_SIZE = 0; // size of all the data combined

84 int NumSampleBitsD1 = (chans [0]) *2;

85 int NumSampleBitsD2 = (chans [1]) *2;

86

87 for(int i=0;i<BufferSize.size();i++)

88 VECT_SIZE += BufferSize[i];

89

90 std::cout <<"DeviceDataInterleave: VECT_SIZE = "<<VECT_SIZE <<std::endl;

91

92 // create output data

93 int16_t DataOut[VECT_SIZE ]; // initialinze output array to 0

94

95 std::cout <<"DeviceDataInterleave: DataOut: size: "<<sizeof(DataOut)<<std::endl;

96

97 do{

98 switch(DataStream){

99 case DEVICE1:

191



100 for(i=0;i<( NumSampleBitsD1);i++)

101 DataOut[i+TposOut] = (DataTemp1)[Tpos1+i];

102

103 // increase position in vector so as to not

104 // overwrite data just entered. Move 2* NumChanDx

105 // elements because there are 2 samples per channel

106 TposOut += NumSampleBitsD1;

107 Tpos1 += NumSampleBitsD1;

108 DataStream = DEVICE2; //go to next state

109 break;

110

111 case DEVICE2:

112 for(i=0;i<( NumSampleBitsD2);i++)

113 DataOut[i+TposOut] = (DataTemp2)[Tpos2+i];

114

115 TposOut += NumSampleBitsD2;

116 Tpos2 += NumSampleBitsD2;

117 DataStream = DEVICE1;

118 break;

119

120 }

121 }while(TposOut <VECT_SIZE);

122

123 std::cout <<"Sample Data Stream From Device 1:"<<std::endl;

124 for(int16_t i=0;i<10;i++)

125 std::cout <<*( DataTemp1+i)<< " ";

126 std::cout <<"\n"<<std::endl;

127 std::cout <<"Sample Data Stream From Device 2:"<<std::endl;

128 for(int16_t i=0;i<10;i++)

129 std::cout <<*( DataTemp2+i)<< " ";

130 std::cout <<"\n"<<std::endl;

131 std::cout <<"Sample Interleaved Data Stream:"<<std::endl;

132 for(int16_t i=0;i<10;i++)

133 std::cout <<*( DataOut+i)<< " ";

134 std::cout <<"\n"<<std::endl;

135

136 return (reinterpret_cast <void*>(DataOut));

137

138 }// end DeviceDataInterleave ()

192



A.3 CIRI@PSU

Listing A.23: crontab for CIRI@PSU.
1 * * * * * /home/radar/bin/rti_updater.sh

Listing A.24: rti updater.sh – script for automatically updating link to latest RTI image
and data run folder (used for basic website) for CIRI@PSU.

1 #!/ bin/bash

2

3 IMFORMAT=".png"

4 DATADIR="/media/dataswap"

5 LINKDIR="/home/radar/public_html"

6 #EXCLUDE=$DATADIR /!( rtis|trash| processed|rawdata|events)

7

8 # 1. Enable extglob in the shell (this allows us to use ! as negation)

9 # 2. List the contents of ’output ’ folders in media dataswap (that aren ’t used by UIUC code)

10 # --> These are the folders that contain the RTI images and associated text files

11 # --> This list is time sorted with most recent file listed at the top

12 # 3. Pipe this to grep and get just the files that are images

13 # 4. Pipe this to head to get just the most recently modified image filename

14 # 5. Use ’find ’ to get the full path of this image file (this is kludgy and I don ’t like it)

15 shopt -s extglob

16 RTINAME=‘ls -t $DATADIR /!( rti|trash|processed|rawdata|events)/output | grep $IMFORMAT | head

-1‘

17 RTI=‘find $DATADIR /!( rti|trash|processed|rawdata|events)/output -name $RTINAME ‘

18 RTIDIR=‘dirname $RTI ‘

19

20 echo ">>> Linking" $RTI "to "$LINKDIR"/rti_latest.png ..."

21 unlink $LINKDIR/rti_latest.png

22 ln -s $RTI $LINKDIR/rti_latest.png

23

24 echo ">>> Linking" $RTIDIR "to "$LINKDIR"/rtis ..."

25 unlink $LINKDIR/rti

26 ln -s $RTIDIR/ $LINKDIR/rti

Listing A.25: index.html – webpage for displaying latest RTI image for CIRI@PSU.
1 <html>

2 <script type="text/javascript">

3 var GB_ROOT_DIR = "http :// aspirl.eradio.ee/~ radar/greybox/";

4 </script >

5 <script type="text/javascript" src="greybox/AJS.js"></script >

6 <script type="text/javascript" src="greybox/AJS_fx.js"></script >

7 <script type="text/javascript" src="greybox/gb_scripts.js"></script >

8 <link href="greybox/gb_styles.css" rel="stylesheet" type="text/css" />

9

10 <head>

11 <title >CIRI@PSU Realtime RTI</title >

12 </head>

13

14 <body bgcolor="black" text="white">

15 <h1><font color="yellow">CIRI@PSU Realtime RTI</font></h1>

16 <b><font color="lightblue">Applied Signal Processing and Instrumentation Research

Laboratory at Penn State </font></b>

17 <hr>

18 <p>The following range -time -intensity (RTI) plot shows a power map of the most recent

data taken by the Cognitive Interferometry Radar Imager at The Pennsylvania State

University (CIRI@PSU). An archive of all of the RTIs from the most recent data run

193



can be found <a href="./rti/">here</a>. The current radar parameters are as follows

:

19 <ul>

20 <li>49.8 MHz carrier

21 <li>4 ms IPP

22 <li>5 us baud

23 <li>28 baud BPSK coding

24 <li>30 kW peak power

25 </ul>

26 <p> CIRI Realtime <a href="http :// aspirl.eradio.ee :8000" rel="gb_page_fs []" >Temperature

Monitor </a></p>

27 <p>(refresh the page to update the plot below)</p>

28 <p> <img src="./ rti_latest.png"> </p>

29

30 </body>

31

32 </html>

194



A.4 General-purpose

Listing A.26: sysNF.m – MATLAB script to calculate cascaded noise figure and gain for RF
front ends.

1 %% System Noise Figure Calculator

2 % Alex Hackett

3 % Fall 2011

4

5 % This script calculates system noise figure (and gain) using

6 % s_filt , s_att , and , s_amp objects.

7

8 close all; clear all; clc

9

10 %% Create system objects -- These are parameters to change!

11

12 % Theoretical values

13 % Filters

14 filt1 = s_filt( 1.8 ); % KR Electronics 2867

15 filt2 = s_filt( .2 ); % Minicircuits SIF -50+

16 filt3 = s_filt( .43 ); % Minicircuits SLP -70+

17 filt4 = s_filt( .01 ); % Minicircuits SIF -21.4+

18 filt5 = s_filt( .86 ); % Minicircuits SBP -21.4+

19 filt6 = s_filt( 4.3 ); % TTE KB8 -49.8M-5M -50 -720A

20

21 % Attenuators

22 sw1 = s_att( 1.1 ); % Minicircuits ZYSWA -2 -50DR

23 att1 = s_att( 12 ); % Various Minicircuits attenuators

24 att2 = s_att( 18 ); % Various Minicircuits attenuators

25 att3 = s_att( 6 ); % Various Minicircuits attenuators

26 rflim1 = s_att( .04 ); % Minicircuits VLM -33-S+

27 mix1 = s_att( 6 ); % Minicircuits ZX05 -1L-S+

28

29 % Amplifiers

30 amp1 = s_amp( 17, 2.9 ); % Minicircuits ZFL -1000 LN+

31 amp2 = s_amp( 11, 3.5 ); % Advanced Receiver Research Broadband

32 amp3 = s_amp( 26, .5 ); % Advanced Receiver Research P49 .92 VDG

33 amp4 = s_amp( 22, .5 ); % Advanced Receiver Research P45VDG

34 amp5 = s_amp( 22, 5.7 ); % Minicircuits ZFL -500 LN+

35

36 % ADC

37 adc1 = s_amp( 0, 34.9 ); % AD9862

38 adc2 = s_amp( 0, 21.0 ); % ADS64P44

39

40 % Bias Tee

41 tee1 = s_att( 0.5 ); % Minicircuits ZFBT -282 -1.5A+

42

43 %% Define chain (input to output) as a cell array

44 % -- These are parameters to change!

45

46 paris = {

47 amp4;

48 tee1;

49 tee1;

50 filt1;

51 sw1;

52 amp4;

53 filt1;

54 att3;

55 amp4;

56 att3;

57 amp2;

195



58 adc1

59 };

60

61 ciri = {

62 filt6;

63 filt2;

64 rflim1;

65 amp5;

66 filt3;

67 mix1;

68 filt4;

69 filt5;

70 amp5;

71 adc2;

72 };

73

74 % Change me to select the system

75 system = ciri;

76

77 %% Calculate system noise figure and gain

78 % Ftot = F1 + (F2 - 1)/G1 + (F3 - 1)/(G1*G2) + ...

79 % Gtot = G1*G2*G3*G4 ...

80 % NF = 10* log(Ftot) [dB]

81 % G = 10* log(Gtot) [dB]

82

83 F_tot = 0;

84 G_tot = 1;

85

86 % Loop through and calculate cumulative noise factor and gain

87 for i = 1: length(system)

88

89 if ( i == 1)

90 % First F doesn ’t have -1 term

91 F_tot = F_tot + system{i}.f;

92 else

93 % Calculate cumulative gain and noise factor

94 G_tot = G_tot * system{i-1}. gain;

95 F_tot = F_tot + ( system{i}.f - 1 ) / G_tot;

96

97 if( i == length(system) )

98 % Make sure to get the final gain

99 G_tot = G_tot * system{i}.gain;

100 end

101 end

102 end

103

104 % Find the dB equivalents

105 NF = 10* log10(F_tot);

106 G = 10* log10(G_tot);

107

108 %% Display results

109 disp( ’*** RESULTS ***’ )

110 disp( [ ’Noise Figure : ’, num2str( NF ), ’ [dB] ’ ] );

111 disp( [ ’Noise Factor : ’, num2str( F_tot ) ] );

112 disp( [ ’ Gain : ’, num2str( G ), ’ [dB] ’ ] );

113 disp( [ ’ Gain : ’, num2str( G_tot ) ] );

Listing A.27: s amp.m – simple amplifier model class for use with sysNF.m

1 %% S_AMP.M

2 % Alex Hackett

3 % Fall 2011

4

5 classdef s_amp

196



6 % S_AMP Simple amplifier model.

7 % my_amp = S_AMP( gaindB , nf ), where gaindB is the gain

8 % of the amplifier in dB and nf is the noise figure in dB ,

9 % creates an amplifier object to be used for system noise

10 % figure calculation .

11

12 properties

13 gaindB = 0; % Gain in dB

14 gain = 0; % Gain as ratio

15 nf = 0; % Noise figure in dB

16 f = 0; % Noise factor as ratio

17 end

18 methods

19 % Default constructor

20 function amp = s_amp( gaindB , nf )

21 % Copy attdB and calculate other properties

22 amp.gaindB = gaindB;

23 amp.nf = nf;

24 amp.gain = 10^( amp.gaindB / 10 );

25 amp.f = 10^( amp.nf / 10 );

26 end

27 end

28 end

Listing A.28: s att.m – simple attenuator model class for use with sysNF.m

1 %% S_ATT.M

2 % Alex Hackett

3 % Fall 2011

4

5 classdef s_att

6 % S_ATT Simple attenuator model.

7 % my_att = S_ATT( attdB ), where attdB is the attenuation

8 % ( insertion loss) of the attenuator , creates an attenuator

9 % object to be used for system noise figure calculation .

10

11 properties

12 attdB = 0; % Attenuation ( insertion loss) in dB

13 att = 0; % Attenuation ( insertion loss) as ratio

14 gaindB = 0; % Gain in dB

15 gain = 0; % Gain as ratio

16 nf = 0; % Noise figure in dB

17 f = 0; % Noise factor as ratio

18 end

19 methods

20 % Default constructor

21 function my_att = s_att( attdB )

22 % Copy attdB and calculate other properties

23 my_att.attdB = attdB;

24 my_att.gaindB = -attdB;

25 my_att.att = 10^( attdB / 10 );

26 my_att.gain = 10^( my_att.gaindB / 10 );

27 my_att.nf = my_att.attdB;

28 my_att.f = my_att.att;

29 end

30 end

31 end

Listing A.29: s filt.m – simple filter model class for use with sysNF.m

1 %% S_FILT.M

2 % Alex Hackett

3 % Fall 2011

197



4

5 classdef s_filt

6 % S_FILT Simple filter model.

7 % my_filt = S_FILT( attdB ), where attdB is the attenuation

8 % ( insertion loss) of the filter , creates a filter object

9 % to be used for system noise figure calculation .

10

11 properties

12 attdB = 0; % Attenuation ( insertion loss) in dB

13 att = 0; % Attenuation ( insertion loss) as ratio

14 gaindB = 0; % Gain in dB

15 gain = 0; % Gain as ratio

16 nf = 0; % Noise figure in dB

17 f = 0; % Noise factor as ratio

18 end

19 methods

20 % Default constructor

21 function filt = s_filt( attdB )

22 % Copy attdB and calculate other properties

23 filt.attdB = attdB;

24 filt.gaindB = -attdB;

25 filt.att = 10^( attdB / 10 );

26 filt.gain = 10^( filt.gaindB / 10 );

27 filt.nf = filt.attdB;

28 filt.f = filt.att;

29 end

30 end

31 end

198



Appendix B

Preliminary Procedures

This appendix provides information on remote access, preliminary operations, and basic

debugging of the PISCO, PARIS, and CIRI@PSU systems.

B.1 Remote Access

Although other methods exist, the simplest method of remotely connecting to the host

machines for PISCO, PARIS, and CIRI@PSU is through the use of ssh. By adding the

configuration in Listing B.1 to the local host’s ∼/.ssh/config files, the remote hosts can

be accessed simply by:

$ ssh -Y <remote hostname>

and then entering the appropriate passwords.

Listing B.1: Full listing of ∼/.ssh/config for remote access of PISCO (coruscant and
cadi), PARIS (kessel), and CIRI@PSU (zeltros) machines. Note, <USER> should be
replaced with a valid Arecibo Observatory network username.

1 Host coruscant

2 User radar

3 Hostname 192.231.95.182

199



4 ProxyCommand ssh <USER >@remoto.naic.edu nc %h %p 2> /dev

/null

5
6 Host cadi

7 User cadi

8 Hostname 192.65.176.23

9 ProxyCommand ssh <USER >@remoto.naic.edu nc %h %p 2> /dev

/null

10
11 Host kessel

12 User radar

13 Hostname aspirl.eradio.ee

14 Port 33333

15
16 Host zeltros

17 User radar

18 Hostname aspirl.eradio.ee

19 Port 55555

200



B.2 PISCO

This section describes the important directories and files, describes basic operation, and

offers potential debugging solutions for PISCO.

B.2.1 Important Directories and Files

The following list explains the important directories and files on coruscant for running

PISCO. Note, “∼” under Linux/Unix is equivalent to /home/<user>/, and in this case,

specifically /home/radar/. The user is encouraged to be very familiar with system operations

before making modifications.

• ∼/pisco/ – Contains all the PISCO software.

• ∼/pisco/Makefile – Script to build PISCO software, using the command make.

• ∼/pisco/bin/ – Contains executable programs.

• ∼/pisco/bin/IonosondeRxRun – Data collection program.

• ∼/ionorun – Script for automated operation of data collection, processing, and file
renaming.

• ∼/pisco/bin/plotter/ – Contains plotter scripts.

• ∼/pisco/bin/plotter/main.py – Main plotter program.

• ∼/pisco/bin/plotter/hdf5 read.py – Function to read tabular I/Q data from HDF5
files.

• ∼/pisco/bin/plotter/iono plotter multi.m – The bulk of the data processing,
including groundwave detection, downconversion, decoding, and plotting.

• ∼/pisco/bin/plotter/hdf5 write.py –Writes the ionogram image back to the HDF5
data file.

• ∼/pisco/config/ – Configurations directory. Contains a configuration file that lists
the frequencies used by CADI, although this information isn’t important anymore (relic
from the host frequency adjustment configuration). All that’s important is the number
of frequencies listed in this file.

• ∼/pisco/deps/ – Dependencies directory. Contains symbolic link to GnuRadar project.

201



• ∼/pisco/fpga/ – Contains FPGA project files and bitstream image.

• ∼/pisco/fpga/usrp1 iono rx 300.rbf – Symbolic link to the FPGA image modified
for frequency sweeping operation.

• ∼/pisco/fpga/usrp1/ – Directory containing all the project files for generating the
FPGA image. Note, coruscant does not have the Altera Quartus II software to build
the FPGA image – it must be installed on a local computer.

• ∼/pisco/include/ – Contains header files for data collection program.

• ∼/pisco/src/ – Contains code for data collection program.

• /usr/local/bin/ – Contains symbolic links to the software necessary to run PISCO.

• /usr/local/gnuradar/firmware/rev4/ – Directory in which GnuRadar looks for
FPGA images and microcontroller firmware files.

• crontab – Schedule file for cron that allows automated operation of PISCO. Editable
with the command crontab -e.

• /data/ – Contains all HDF5 data files and generated ionogram images.

• /data/rti latest.png – Symbolic link to the most recently generated ionogram (man-
aged by ionorun script).

• /data/data latest.h5.bz2 – Symbolic link to the most recently collected compressed
data file (managed by ionorun script).

The following list explains the important directories and files on cadi for running PISCO.

Again, the user is encouraged to be very familiar with system operations before making

modifications. WARNING: This system is relied upon for science operations, so consult

with Arecibo Observatory staff before making ANY modifications, and avoid interrupting

normal operations.

• /root/ionoscheduler/ – Contains all the high-precision scheduling software for use
of CADI with PISCO.

• /root/ionoscheduler/Makefile – Script to build scheduling software, using the com-
mand make.

• /root/ionoscheduler/bin/ – Contains executable scheduler.

202



• /root/ionoscheduler/bin/ionosched – High-precision scheduler program that exe-
cutes CADI so that operation is aligned with the top, 15, 30, and 45 minutes of every
hour.

• /root/ionoscheduler/deps/ – Contains dependencies for high-precision scheduler.
Currently, only SThreads (https://github.com/rseal/SThreads) with some minor
modifications for use with the very old version of gcc on CADI.

• /root/ionoscheduler/include/ – Contains header files for high-precision scheduler.

• /root/ionoscheduler/src/ – Contains code for high-precision scheduler.

• crontab – Schedule file for cron that operates CADI with high-precision scheduler for
use with PISCO. Editable with the command crontab -e (as root user).

B.2.2 Operation

Nothing needs to be done to operate the system, as it is scheduled to automatically run with

cron. To view the most recently generated ionogram, log into coruscant as described in

Section B.1 and run the following command:

$ eog /data/rti_latest.png

Data files are date- and timestamped for convenience and can be transferred to another

machine using the rsync or scp commands.

B.2.3 Debugging

The following list contains several potential solutions in the event of improper operation of

PISCO.

• Data files aren’t being written to disk. – Check to make sure the disk isn’t full – at the

current data rate of continued operation (∼ 6.5 GB/day), the disk is expected to be

full by the end of September 2013 (two months from the time of writing). If the disk

is full, back up the data and ionograms on a separate disk and then remove them from

203

https://github.com/rseal/SThreads


/data/. Alternatively, add a second “data” hard drive and mount under the mount

point /data/.

• Ionograms seem to be missing groundwave pulse, and thus aren’t showing any iono-

spheric traces. – Ensure that CADI is operational.

204



B.3 PARIS

This section describes the important directories and files, describes basic operation, and

offers potential debugging solutions for PARIS.

B.3.1 Important Directories and Files

The following list explains the important directories and files on kessel for running PARIS.

Note, “∼” under Linux/Unix is equivalent to /home/<user>/, and in this case, specifically

/home/radar/. The user is encouraged to be very familiar with system operations before

making modifications.

• ∼/bin/rti big.py – Program to read and plot data from HDF5 files taken with
GnuRadar.

• ∼/sandbox/GnuRadar/ – Project directory for GnuRadar software package.

• ∼/sandbox/uhd/ – Project directory for UHD software.

• ∼/sandbox/gnuradio/ – Project directory for GNU Radio software.

• ∼/gnuradar configs/ – Directory containing GnuRadar configuration files.

• /data/ – Directory containing mount point directories for “data” hard drives. At the
time of writing, only data0 is mounted.

• /data/data0/ – Directory containing HDF5 data files written by GnuRadar.

• /dev/shm/ – Shared memory directory (gives filesystem-type access to system RAM).
Buffer files generated by GnuRadar’s ProducerThread are stored here before the
Consumer writes them to disk.

• /usr/local/bin/ – Contains symbolic links to run GnuRadar software.

• /usr/local/bin/gradar-configure – GUI interface for generating GnuRadar con-
figuration files.

• /usr/local/bin/gradar-replay – Program to emulate streaming data from USRP.
Used for testing when a USRP and radar controller are not physically available.

• /usr/local/bin/gradar-run – Client GUI interface for sending command packets to
server.

205



• /usr/local/bin/gradar-run-server – Server listener that receives and executes com-
mands sent from gradar-run. This program handles all the USRP configuration, data
collection, and data storage.

• /usr/local/bin/gradar-verify – Program to verify that the USRP trigger signal
(generated by the radar controller) matches the GnuRadar configuration file. Note,
this functionality is now built into gradar-run so there is no need to run this program
separately.

• /usr/local/bin/hdfview – Third-party software for viewing HDF5 file contents. This
program is useful in debugging of GnuRadar and the plotter.

B.3.2 Operation

The following steps describe the operation of PARIS:

1. Set up the radar controller

(a) On the radar controller (not the host GPC), follow the on-screen instructions
displayed after issuing the command helpme.

(b) Define a new mode or modify an existing mode (*.hif file) using a text editor (e.g.,
nano) with the desired radar parameters. Generate the *.iif mode file.

(c) Within the bpg-shell program, set the clock to standard input with the command
clock std.

(d) Add the mode defined using the add mymode, where mymode should be replaced
by the previously generated mode, excluding the file extension.

(e) Enable the outputs on the radar controller using the start a command.

(f) Verify that the front-panel signal outputs are as expected using an oscilloscope.

2. Verify the pulsed RF signal is correct

(a) Disconnect the cable attached to the “RF Input” port on the rear of the trans-
mitter. Verify that the signal is indeed a gated RF signal, with peak-to-peak
amplitude of ∼6 Vpp.

(b) Replace the cable on the back of the transmitter.

3. Start up the transmitter

(a) Ensure that the transmitter’s chassis is closed. There are sensors that will prevent
operation if any panels have been removed. NEVER attempt to operate the
transmitter with any panel removed.

206



(b) Flip the “Radar TX” breaker switch on the wall to enable power to the transmit-
ter.

(c) Flip the transmitter’s power switch at the bottom of its front panel.

(d) Key in the code “F1E” to request state 1. Wait five minutes for the transmitter
to warm-up. There is an internal timer that will not allow the transmitter to
progress past state 1 until it has warmed up for five minutes.

(e) Key in the code “F3E” to request state 3. At this point, the amplifiers are biased
with high-voltage, but the input signal is not applied.

(f) Key in the code “F4E” to request state 4. At this point, the input signal is applied
to the amplifiers and the transmitter is transmitting. There should be an audible
buzzing noise to indicate transmission (although for very low duty cycles or power
levels, it may be difficult to hear over the sound of the fans and AC unit).

4. Start data collection

(a) On the host computer, open a terminal and run the command gradar-configure.
This will open up the configuration GUI. Load a previously created configuration
or start a new configuration, with radar parameters as desired (matching those
defined on the radar controller, of course). Ensure that the usrp trigger.rbf

FPGA bit image is selected. Save this file in /home/radar/gnuradar configs/

and quit the configuration GUI.

(b) In the same terminal, run gradar-run-server to start the data collection server.

(c) In a new terminal, run gradar-run to start the client GUI. Click “Load” and
select the previously defined configuration file. Click “Verify” to ensure all settings
match radar controller operation. Click “Run” to start the data collection

(d) Optional: If desired, a basic realtime plotter (gradar-plot) can be run during
data collection. In a new terminal, run gradar-plot. From the “File” menu,
select “Connect” to begin plotting.

5. Stop data collection

(a) When the experiment is done, stop data collection with the “Stop” button on
the gradar-run GUI. If data collection is stopped any other way, data corruption
WILL occur.

(b) When the GUI indicates that data collection is complete, close the GUI.

(c) Stop the server by issuing <CTRL>+C in the server’s terminal.

6. Turn off the transmitter

(a) Disable output on the transmitter by keying in the code “F3E” on the front panel.

(b) Disable the transmitter’s high-voltage power supply by keying in the code “F1E”.

207



(c) Flip the power switch on the transmitter’s front panel.

(d) Flip the “Radar TX” breaker switch on the wall to the OFF position.

7. Plot the collected data

(a) Edit the parameters within the “EDITABLE PARAMETERS” section of the
main() function of the Python script ∼/bin/rti big.py as desired with a text
editor. Choose a plotting start time, plotting end time, integration time and
integration mode (if desired), channel index to plot (if multiple channels have
been collected), and colorbar and range ranges. Close the file.

(b) Run the script as follows, ensuring that the base filename specified after the
--base filename does not contain the HDF5 file index or “.h5” extension.

$ python ~/rti_big.py --base_filename /data/data0/mydataset_

(c) Add the following flags to the command to modify the plotter’s behavior:

• --verbose – Output verbosely

• --batch – Process the data in batch mode and output multiple images, each
with a time length specified by the --seconds flag

• --seconds – If running in batch mode, specify the number of seconds of data
each output RTI image contains

(d) For single-plot mode operation, the file will be outputted to an image called
rti big.png.

(e) For batch mode plots, the plots will be named using the base filename of the data
files along with the start time of each plot.

B.3.3 Debugging

The following list contains several potential solutions in the event of improper operation of

PARIS.

• Analog parameter error on transmitter (error code 4, 6, or 7) – Check the heater/fil-

ament voltage (analog parameter 12 – key in “A12E”) on the transmitter and ensure

it is within the 9.8- to 10.7-V range, as this is the most common cause of error. If the

voltage is out of range, turn off the transmitter and remove the power source. Open

remove the left side panel, then adjust the potentiometer marked with white tape on

the analog sensor PCB of the transmitter (when viewed from the front, top board on

208



the left side of the transmitter – see Figure B.1). Clockwise rotation reduces the fila-

ment voltage, at a rate of around 0.5 V/turn (however, this appears highly nonlinear).

Replace the side panel, start up the transmitter, and check the heater/filament voltage

again.

• High-voltage fuse error on transmitter (error code 5) – Replace the high-voltage fuse

wires found in rear of transmitter, according to the procedure described in the Tycho

WPT-50 manual.

• “Verify” step in gradar-run fails, with an error related to the number of samples,

but the configuration matches what is defined on the radar controller. – If the receive

window defined in the GnuRadar configuration file (through gradar-configure) has

been defined in units of “km” or “usec,” sometimes a rounding error will trigger a

failure in verify. The safest bet is to convert the receive window(s) to “samples” using

the sampling rate, window ranges, and speed of light.

• gradar-run opens up, but the “Verify” or “Run” stages don’t work. – Make sure that

gradar-run-server is running in a separate terminal.

• gradar-run opens up, but the “Run” stage produces an HDF5 access error. – Either

the data directory specified in the configuration file doesn’t exist, or there is already a

file with the base filename specified in the configuration file. Change the filename (or

data directory) in the configuration file and reload the configuration file in gradar-run.

209



Figure B.1: Analog sensor board of the Tycho transmitter used with PARIS. Heater/filament
voltage potentiometer circled in red.

210



B.4 CIRI@PSU

This section describes the important directories and files, describes basic operation, and

offers potential debugging solutions for CIRI@PSU.

B.4.1 Important Directories and Files

The following list explains the important directories and files on zeltros for running CIRI@PSU.

Note, “∼” under Linux/Unix is equivalent to /home/<user>/, and in this case, specifically

/home/radar/. The user is encouraged to be very familiar with system operations before

making modifications.

• /bin/ – Contains several executable programs.

• /bin/txcli.py – Transmitter control interface program.

• /bin/hv enable – Enables the output on the transmitter’s high-voltage power supply.

• /bin/hv disable – Disables the output on the transmitter’s high-voltage power sup-
ply.

• /bin/rti updater.sh – Script to automatically update ∼/public html/rti and
∼/public html/rti latest.png

• /Sauron v1.7/ – Contains all Sauron-related code and basic documentation.

• /Sauron v1.7/Sauron.py – Main Sauron executable program. Data collection pa-
rameters are configured within this file.

• /public html/index.html – Basic webpage that shows the latest RTI image and has
a link to the folder containing all RTI images from the most recent data run. Accessible
from anywhere at http://aspirl.eradio.ee/~radar/.

• /public html/rti – Symbolic link to the folder containing all RTI images from the
most recent data run.

• /public html/rti latest.png – Symbolic link to the latest RTI image.1

1This technically isn’t correct. The symbolic link is only updated once per minute. If Sauron is configured
to display RTI plots shorter than one minute (default is 30 seconds), this symbolic link won’t link to every
image along the way. However, it’s close enough for basic operation.

211

http://aspirl.eradio.ee/~radar/


• crontab – Schedule file for cron that calls∼/bin/rti updater.sh script every minute.
Editable with the command crontab -e.

• /dev/shm/input/ – Directory containing raw data files captured by Sauron.

• /dev/shm/processed/ – Directory containing *.mat files for each second of data for
most recent 5 minutes, processed by the IRIS software.

• /home/iris/IRIS/process4.py – IRIS software data processor. Currently hard-coded
for 4-ms IPP operation.

• /home/iris/IRIS/imports.py – Contains global directory variables for IRIS software.
This file should be updated every time a new data run is made by Sauron.

• /home/iris/public html/realtime – Python CGI for displaying the most recent five
minutes of data processed by IRIS.

• /home/iris/public html/datascope – Python CGI for displaying any five minute
data set from the most recent data run.

• /home/iris/public html/index.html – IRIS website that gives access to the realtime
and datascope programs. Accessible from anywhere at http://aspirl.eradio.ee/

~iris/.

• /media/dataswap/ – Mount point for data hard drives.

• /media/dataswap/<DATARUN>/ – Contains processed data (both Sauron and IRIS)
from a particular data run (e.g., June10 4ms 5us 28baud gaussian/) .

• /media/dataswap/<DATARUN>/events/ – Contains *.mat files for each event detected
by Sauron.

• /media/dataswap/<DATARUN>/output/ – Contains RTI images and meteor detection
text logs generated by Sauron.

• /media/dataswap/<DATARUN>/processed/ – Contains *.mat files for each second of
data generated by IRIS software.

B.4.2 Operation

The following steps describe the operation of CIRI@PSU:

1. Set up the radar controller

(a) On the radar controller (not the host GPC), follow the on-screen instructions
displayed after issuing the command helpme.

212

http://aspirl.eradio.ee/~iris/
http://aspirl.eradio.ee/~iris/


(b) Define a new mode or modify an existing mode (*.hif file) using a text editor (e.g.,
nano) with the desired radar parameters. Generate the *.iif mode file.

(c) Within the bpg-shell program, set the clock to standard input with the command
clock std.

(d) Add the mode defined using the add mymode, where mymode should be replaced
by the previously generated mode, excluding the file extension.

(e) Enable the outputs on the radar controller using the start a command.

(f) Verify that the front-panel signal outputs are as expected using an oscilloscope.

2. Start up the transmitter

(a) Turn off the enable switch on the GTS. Turn on the power switches for both the
high-voltage power supply and the GTS.

(b) From the GPC, issue the following commands to turn on the HV power supply,
disable transmitter output, set a pulse configuration, reset the transmitter, and
enable the transmitter output (in software). Note, the pulse configuration spec-
ified below is for a 20-ms baud, Barker-7 coding, Gaussian shaped pulse, and
maximum power output (see [45] for a full command description).

$ cd ~/bin/

$ ./hv_enable

$ python ./txcli.py -P /dev/iris_tx -c GTS_ENABLE 0

$ python ./txcli.py -P /dev/iris_tx -c GTS_SETPULSE 0x00 0x00 0x28

0x01 0xFF 0x07 0xE4

$ python ./txcli.py -P /dev/iris_tx -c GTS_SAVPULSE

$ python ./txcli.py -P /dev/iris_tx -c RESET

$ python ./txcli.py -P /dev/iris_tx -c GTS_ENABLE 1

(c) Fully enable the transmitter output by flipping the enable switch on the GTS. If
transmitting, the pulse count should be rising on the LCD displays of each PTM.

3. Start data collection

(a) Create a new data collection directory on the data hard drive. Within it, create
three subdirectories, output, events, and processed. Change the permissions of
processed to allow for group writing (i.e., chmod -R g+w processed).

(b) Create an input directory in /dev/shm/.

(c) Create a processed directory in /dev/shm/. Change the owner of this folder to
the “iris” user (i.e., chown -R iris:iris processed as root).

(d) Change entries in /home/iris/IRIS/imports.py to match the new data run
directory.

213



(e) Open up ∼/Sauron v1.7/Sauron.py in a text editor. Change the OUT DIR vari-
able to match the new data run directory. Change the BAUD and CODE parameters
to match those defined in the transmitter pulse configuration. Close the file when
finished.

(f) Run Sauron with the command ./Sauron.py. Wait until data collection has
started and the plotting window appears with streaming data.

(g) Open up another terminal and log in as the “iris” user. Start the IRIS processing
software with the command ∼/IRIS/process4.py.

(h) Keep both terminals open for the duration of the experiment.

4. Stop data collection

(a) In the terminal running the IRIS software, issue the <CTRL>+C command to
terminate the program.

(b) Close all Figure windows associated with Sauron by clicking the “X” in the upper
right corner. The Sauron software will close out the data files nicely and exit after
a few seconds.

5. Turn off the transmitter

(a) Flip the enable switch on the GTS to the off position.

(b) From the GPC, issue the following commands to disable transmitter output and
turn off the high-voltage power supply:

$ cd ~/bin/

$ python ./txcli.py -P /dev/iris_tx -c GTS_ENABLE 0

$ ./hv_disable

(c) Flip the power switches for the GTS and high-voltage power supplies to the off
position.

B.4.3 Debugging

The following list contains several potential solutions in the event of improper operation of

CIRI@PSU.

• The transmitter is not outputting even though the GTS enable switch is on and the

GTS ENABLE command has been sent. – Check to make sure the TX Enable signal is

connected and is logic high. The transmitter won’t operate without all three conditions

enabled.

214



• Communications with either the high-voltage power supply or GTS failed. – Repeat

the command – sometimes there’s some sort of hiccup that causes this. If that doesn’t

work, unplug both USB/RS-485 converters from the back of the host GPC, then wait

fifteen seconds or so, and re-plug both. The delay is required to prevent Linux from

reading the converters as new devices and allocating a higher device index for them.

• Sauron is complaining about the disk being full but there’s plenty of space left on the

hard drive. – Stop both Sauron and the IRIS processing software. Remove all files in

/dev/shm/input/ and /dev/shm/processed/. After several data runs, these partially

completed raw and processed files can accumulate in /dev/shm/ (where Sauron writes

the raw data files to) and fill up the RAM. Upon restart of the computer, the directory

will be cleared as well.

• Some updates were applied to zeltros and now Sauron is not collecting data. – This

is most likely to due to updating a dependency of UHD or GNU Radio. Rebuild the

UHD and GNU Radio packages (in that order) found in /home/radar/ according to

the instructions on the on their respective project websites (at the time of writing,

these are http://code.ettus.com/redmine/ettus/projects/uhd/wiki and http:

//gnuradio.org/redmine/projects/gnuradio/wiki, respectively). If this still isn’t

working, ensure boost hasn’t been upgraded to a “bad” version, according to GNU

Radio.

215

http://code.ettus.com/redmine/ettus/projects/uhd/wiki
http://gnuradio.org/redmine/projects/gnuradio/wiki
http://gnuradio.org/redmine/projects/gnuradio/wiki

	Title Page
	Committee
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Code Listings
	Acronyms and Abbreviations
	Acknowledgments

	Introduction
	Motivations
	Project Scope
	Thesis Overview

	Background
	Ionospheric Science
	Ionospheric Layers
	Sporadic-E
	Spread-F

	Meteors
	Upper Atmospheric Neutral Winds
	Instruments
	Coherent Scatter Radar
	Ionosonde


	Software-Defined Radio
	Universal Software Radio Peripheral
	Tuning Frequency Errors
	Dynamic Range and Noise Figure

	GNU Radio

	Previous and Related Work
	SKiYMET
	Cobra
	GCS
	Open Radar Initiative


	System Designs
	PSU Ionospheric Sounder for Chirp Observations
	System Overview
	Implementation
	Hardware
	Active Antennas
	USRP
	Direct Digital Synthesizer
	General-Purpose Computer

	Software
	Frequency Sweeping
	Data Capture
	Data Storage
	Data Processing
	Scheduling Software
	Scripting
	Remote Access


	Summary

	PSU All-sky Radar Interferometry System
	System Overview
	Implementation
	Hardware
	Antennas
	Radar Controller
	Receive RF Front End
	USRP
	Transmit RF Front End
	General-Purpose Computer
	Direct Digital Synthesizer
	Transmitter

	Software
	Radar Controller
	USRP FPGA
	Host Computer


	Summary

	Cognitive Interferometry Radar Imager
	System Overview
	Implementation
	Hardware
	Antennas
	Transmitter
	Transmit RF Front End
	Receive RF Front End
	USRP
	Radar Controller
	Direct Digital Synthesizer
	General-Purpose Computer

	Software
	Radar Controller
	Transmitter Interface
	Sauron
	IRIS


	Summary


	Preliminary Results
	PSU Ionospheric Sounder for Chirp Observations
	Positive Results
	Hop Reflections
	Multiple F-region Layers
	Spread-F Layer
	O+X Mode Split
	Sporadic-E Layer

	Issues
	Coding Sidelobes
	Interference
	Transmitter Timing Errors
	Groundwave Slope Error
	Groundwave Offset Error
	Error Statistics


	PSU All-sky Radar Interferometry System
	Airplanes
	Specular Meteors
	Non-specular Meteors
	Meteor Flux

	Cognitive Interferometry Radar Imager
	Specular Meteors
	Non-specular Meteors
	Power Sweep Experiment


	Conclusions
	Summary
	Future Work
	PSU Ionospheric Sounder for Chirp Observations
	More Robust Groundwave Detection
	Fixed-Frequency Meteor Radar Mode
	Ionosonde Transmitter

	PSU All-sky Radar Interferometry System
	Five-channel Receive RF Front End
	Operating Frequency Change
	Automated Meteor Detection
	Synchronization and Cooperation with CIRI@PSU

	Cognitive Interferometry Radar Imager
	Antenna Array Beam Pattern
	Pulse Shaping
	Cognitive Functionality


	Final Remarks

	References
	Selected Code Listings
	PISCO
	PARIS
	CIRI@PSU
	General-purpose

	Preliminary Procedures
	Remote Access
	PISCO
	Important Directories and Files
	Operation
	Debugging

	PARIS
	Important Directories and Files
	Operation
	Debugging

	CIRI@PSU
	Important Directories and Files
	Operation
	Debugging



