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Abstract

In estuaries, salinity has a strong influence on both the physical properties of the estuary

and the health of the estuarine ecosystem. In this work, statistical models are applied to

establish the response of salinity in the Delaware Estuary to environmental and climatic in-

fluences including streamflow, sea level, and wind stress. Unlike some statistical approaches,

the models used here are semi-parametric and are robust against autocorrelated and het-

eroscedastic errors. After using the models to adjust for the influence of streamflow and

seasonal effects on salinity, several locations in the estuary show significant upwards trends

in salinity. Replacing time with sea level in the models produces salinity-sea level relation-

ships that match those predicted by dynamical models, which suggests that sea-level rise

is causing increased salinity in the estuary. Alongshore wind stress also appears to play

some role in driving salinity variations, consistent with the associated Ekman transport

between the estuary and the ocean. Future changes in streamflow and the associated effects

on salinity are uncertain. However, the results suggest that continued sea-level rise in the

future will cause salinity to increase regardless of any change in streamflow.
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Chapter 1

Introduction

Many estuaries are homes to rich, diverse, and productive ecosystems. Salinity influences

both the physical properties of an estuary and the characteristics of the estuarine ecosystem.

Even small changes in the salinity of an estuary can have a significant impact on the estuary’s

ecosystem; for example, salinity levels are often implicated in in oyster disease (Powell

et al., 1992), ammonia-oxidizing bacteria (Bernhard et al., 2005), and phytoplankton blooms

(Gallegos and Jordan, 2002). Understanding and mitigating the impacts of changing salinity

is particularly important because many estuarine ecosystems have already been stressed by

climate change and other human activities (Kennish, 2002).

A number of climatic and oceanic factors, including streamflow, sea level, oceanic salin-

ity, and wind stress, have an influence on the salinity and water quality of an estuary.

Streamflow determines the amount of fresh water entering the estuary; elevated stream-

flows are typically associated with fresher water in the estuary, and lower streamflows are

associated with increased salinity in the estuary. Higher sea levels increase salinity by bring-
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ing more salt water into the estuary. The effect of sea level on salt intrusion is expected to

be proportional to the square of water depth (Savenĳe, 1993; Hilton et al., 2008). Varia-

tions in oceanic salinity alter the salinity of water circulating into the estuary. For example,

Lee and Lwiza (2008) found that quasi-decadal oscillations in oceanic salinity were linked

to similar oscillations in bottom salinity in the Chesapeake Bay. Finally, wind stress may

influence salinity through a variety of mechanisms including vertical mixing and Ekman

transport.

Changes in climate have the potential to cause changes in all of these variables. Precip-

itation amounts, frequencies, and intensities are expected to change in many areas, and the

associated effects on streamflow may be complicated by land use and evaporation changes

(Krakauer and Fung, 2008). Global mean sea level has risen significantly during the twen-

tieth century, and this increase is expected to continue through the twenty-first century

(Rahmstorf, 2007; Vermeer and Rahmstorf, 2009; Meehl et al., 2007). Meanwhile, wind

speeds have been declining over many regions in the Northern Hemisphere as a result of

land use changes and slowing large-scale circulations (Jiang et al., 2009; Vautard et al.,

2010).

Regardless of the cause, salinity change could be detrimental to many estuaries. This

study focuses on the salinity of the Delaware Estuary in the Eastern United States. Over 8

million people live within the Delaware River basin (Sanchez et al., 2012), and the Delaware

River and Estuary provide a significant amount of freshwater to nearby areas including

New York City and Philadelphia. High salinities are associated with salt intrusion into the

Philadelphia area water supply (Hull and Titus, 1986). In addition, a number of species
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in the estuary are sensitive to salinity. Oysters, for example, cannot tolerate low salinities;

however, the oyster disease MSX (Haplosporidium nelsoni) becomes widespread in more

saline water (Haskin and Ford, 1982; Ford, 1985). The estuary is also the largest freshwater

port in the United States (Kauffman et al., 2011).

Because of the importance of the estuary and river for shipping, freshwater, and fishing,

a number of studies have examined the dynamic properties of the estuary. Tides in the

estuary are dominated by the M2 component (Wong, 1995). Sea level varies significantly

on the subtidal time scale primarily as a result of wind forcing, and winds can influence

subtidal fluctuations in circulation (Wong and Garvine, 1984). Salinity is higher in the

center of the estuary and lower near the shores; this lateral salinity difference is typically

larger than the vertical difference, which makes the estuary weakly to partially stratified

(Wong and Münchow, 1995; Wong, 1995).

The potential effects of climate change and sea-level rise on the the salinity of the

Delaware Estuary are significant both because of the importance of the estuary and because

of the large influence of sea level on the estuary. Garvine et al. (1992) found that the change

in salinity in the estuary produced by tidal advection was larger than the change in salinity

caused by streamflow. The response of salinity to sea-level rise has been examined in several

modeling studies (Hull and Tortoriello, 1979; U.S. Army Corps of Engineers, 1997; Kim and

Johnson, 2007), which generally found that salinity increases in response to sea-level rise.

This result has also been identified in other estuaries, including the Chesapeake Bay (Hilton

et al., 2008) and San Francisco Bay (Cloern et al., 2011).

Although numerical model simulations can be informative, they are subject to error as
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a result of the numerous assumptions they make. For example, all studies to date assume

that sea-level rise has no influence on bottom topography, even though it is likely that sea-

level rise causes increased shoreline erosion, which increases sediment deposition (Cronin

et al., 2003). Thus, independent and empirical methods are essential for determining the

effects of climate change and sea-level rise on salinity. The Delaware Estuary is an ideal

site for applying empirical methods because salinity has been measured extensively in the

estuary. Previous efforts to model salinity in the Delaware Estuary and elsewhere focused

on least squares linear regression; for example, Garvine et al. (1992) and Wong (1995) used

linear regression with salinity and streamflow data to model the response of salt intrusion

length to streamflow in the Delaware Estuary. Marshall et al. (2011) used multiple linear

regression to build predictive models of salinity in the Florida Everglades. Other efforts

have focused on two different techniques: autoregressive models and generalized additive

models. Autoregressive models are an improvement over traditional linear regression models

because they take advantage of the highly autocorrelated nature of most water quality data.

Using autoregressive models, Gibson and Najjar (2000) predicted the response of salinity in

the Chesapeake Bay to future changes in streamflow, and Hilton et al. (2008) used similar

models to test whether sea-level rise has caused significant changes in Chesapeake Bay

salinity. Saenger et al. (2006) used autoregressive models to predict river discharge from

salinity observations and to reconstruct Holocene discharge and precipitation conditions.

A generalized additive model (GAM) is a different statistical model that has recently

become popular in many fields including water quality and hydrology. GAMs expand on

the traditional linear regression model by enabling the response variable to be a smooth,
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nonparametric function of one or more predictor variables. The smooth functions can

include cubic splines, thin plate splines, loess smooths, or any number of other smoothing

functions. GAMs can also accommodate any error distribution in the exponential family

including the Poisson and gamma distributions. Both of these features are advantageous

over autoregressive models, which assume Gaussian errors and are fully parametric.

Several authors have recently applied generalized additive models to studies of salinity

and other water quality measures. For example, Jolly et al. (2001) and Morton and Hender-

son (2008) used GAMs to model changes in river salinity. Letcher et al. (2001) used GAMs

to model the response of catchment streamflow to precipitation. Autin and Edwards (2010)

showed how GAMs can be used to extract tidal variations from salinity, dissolved oxygen,

and temperature data and found that GAMs performed better than traditional harmonic

regression.

Although the nonparametric smoothing functions and the ability to handle multiple dis-

tributions makes GAMs advantageous over many other regression models, GAMs are not

typically robust against correlated or heteroscedastic errors. Generalized additive mixed

models (GAMMs) are a modification that enable GAMs to handle correlated and het-

eroscedastic errors. In this work, GAMMs are applied to perform a data-driven analysis of

the effects of streamflow, sea level, wind stress, and oceanic salinity on the salinity of the

Delaware Estuary and to predict future changes in salinity.
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Chapter 2

Methods

2.1 Study Area and Data

Salinity in the Delaware Estuary has been measured through a number of different moni-

toring programs including surveys, automated sensors, and boat sensors. The goal of the

analysis was to determine which variables have an influence on salinity over long time peri-

ods. In addition, the statistical models that were applied perform significantly better with

larger amounts of data. As a result, of the many salinity datasets that are available, the

automated sensor data from the United States Geological Survey (USGS) and bottom salin-

ity measurements from the Haskin Shellfish Research Laboratory (HSRL) were selected for

statistical modeling. Both datasets include a large number of measurements and together

cover the period from the 1950s to the present.

The United States Geological Survey has measured salinity at five locations in the

Delaware Estuary since the 1960s (Table 1, Figure 1). The measurements from Reedy
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Figure 1: Map of the Delaware Estuary. Salinity was measured at Ship John Shoal, Reedy
Island, Chester, Fort Mifflin, and Ben Franklin Bridge (Philadelphia). Sea level was mea-
sured at Atlantic City, NJ. Streamflow was measured at Trenton, NJ and near Philadelphia.

Island Jetty are the primary focus of the analysis because this series contains the least

amount of missing data. Measurements at Ship John Shoal were discontinued in 1986.

Chester, Fort Mifflin, and Ben Franklin Bridge contain a large amount of missing data.

Furthermore, the data from these three stations are not necessarily missing randomly; in

some cases, data recording was discontinued during winter months.

The USGS has officially approved the accuracy of salinity measurements through 2011,

so values from the earliest possible date through 2011 were used. To relate the salinity

measurements with other variables, any available data were used (in other words, pairwise

deletion of missing values was applied). The accuracy of the USGS measurements should be

sufficient for statistical analysis. The earlier USGS measurements were made with a flow-
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through monitor. The accuracy stated by the official USGS documentation for electrical

conductivity (salinity) measurements from the flow-through monitor is ±3% of the full scale

(Gordon and Katzenbach, 1983). The USGS also issues an annual water data report for

each location, which classifies the measurements into four accuracy categories. During recent

years, the measurements have typically been rated good or fair, which indicates an accuracy

of ±3− 10% and ±10− 15% respectively. As a simple example, if the error in the electrical

conductivity measurements is assumed to be ±10% of the mean daily electrical conductivity

value at Reedy Island, this results in a salinity error of ±0.47 relative to a mean salinity

of 4.5. A ±3% error in electrical conductivity is equivalent to a ±0.14 error in salinity.

Even ±3% may be too large of an estimate, however, as Katzenbach (1990) determined

that the flow-through monitor was more accurate than the alternative mini-monitor and

packaged-sensor systems and that the flow-through monitor performed better than the

stated USGS accuracy. Furthermore, some USGS locations, including Reedy Island, have

recently switched to a YSI Incorporated sonde that has a stated salinity accuracy of 0.1 or

1%, whichever is greater (Mark R. Beaver, personal communication, March 5, 2007).

Although the measurement error is not explicitly included in the statistical models in

this study, it should be a random error that is generally absorbed in the variance of the

residual term without otherwise affecting the analysis. The analysis could be affected by

relocations. The USGS station at Chester moved 0.8 km upstream in April 1981. The Ben

Franklin Bridge station moved 0.09 km upstream in July 1988. Despite the relocations,

these data have been approved for use by the USGS, so no attempt was made to correct for

the effects of the relocations.
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Salinity measurements from all locations were converted from electrical conductivity

to practical salinity units using the algorithm introduced by Lewis and Perkin (1981) and

simplified by Schemel (2001). To reduce the computational time and resources needed to

fit the statistical models, the salinity data were converted from daily means to monthly

means by averaging any month with at least 15 days of data. This also has the advantage

of smoothing out most of the tidal variations in salinity.

Name Distance (km) Mean salinity Data coverage (%)
Ben Franklin Bridge 60 0.12 77
Fort Mifflin 87 0.15 31
Chester 134 0.22 74
Reedy Island 147 4.5 87
Ship John Shoal 161 13 29

Table 1: Name, river kilometer (distance from Trenton, NJ), mean salinity, and percent
of non-missing monthly means during 1964-2011 for the five USGS salinity stations in the
estuary. Mean salinity was calculated from all available monthly means.

Salinity was also measured at various oyster beds in the Delaware Bay by the Haskin

Shellfish Research Laboratory (HSRL). Some results from this measurement program are

reported in Haskin (1972) and Haskin and Ford (1982). The locations of the oyster beds

are shown in Figure 2, and river distances and mean salinities are provided in Table 2.

Whereas the USGS measures surface salinity, the HSRL measured bottom salinity. Because

the measurements were made intermittently from about 1950 to 1990, they were not re-

duced to monthly averages. The accuracy of the data is not known, and there is a possibility

that errors are present in the data, particularly since the data were read from punch cards.

To eliminate potential outliers, the local outlier factor method (Breunig et al., 2000) was
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Figure 2: Map of the approximate locations of the oyster beds where the Haskin Shellfish
Research Lab made salinity measurements.

applied. This algorithm works by calculating an outlier factor, which represents the extent

to which an observation is an outlier, for each observation in a dataset based on the obser-

vation’s isolation from nearby points. Here, the outlier factor is based on how isolated an

observation’s salinity, streamflow, and sea-level values are compared to a minimum of the

15 nearest points in the three dimensional salinity-streamflow-sea-level space. The 1% of

the data (43 observations) with the worst outlier factors were discarded. Although remov-

ing these outliers did improve the error distributions obtained after applying the statistical

models later in the analysis, the end results of the analysis were not significantly different.

Daily averages of streamflow in the Delaware River at Trenton, NJ were obtained from
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ID Axial distance (km) Lateral distance (km) Number of observations Mean salinity
ARN 31.34 -1.82 409 11.50
MID 25.18 -0.93 303 13.57
COH 24.08 -2.98 643 13.85
SHJ 22.56 -0.44 178 14.82
SHR 18.76 -1.07 596 14.95
BEN 14.94 -2.82 491 17.01
NPT 13.70 -5.11 120 16.33
HGS 12.29 -3.45 193 16.95
BDP 11.86 -0.50 105 17.45
NWB 11.58 -2.91 572 17.48
BDN 8.95 -5.91 240 17.85
LDG 7.16 0.41 226 19.64
EIS 6.73 -3.89 316 19.11

Table 2: ID, approximate axial and lateral distance, and mean of all available bottom
salinity measurements for each oyster bed. Axial and lateral distances are approximated
based on distances from a line from 39.182923, -75.139872 to 39.099661, -75.395070 and
from 39.348973, -75.428746 to 39.283887, -75.347674 respectively.

the USGS. At this location, the flow is approximately 58% of the total discharge into

the estuary from land (Sharp et al., 1986). Measurements were also obtained from the

Schuylkill River near Philadelphia, PA, which accounts for an additional 15% of the total

flow. The Schuylkill River gauge is upstream of the entrance of the river into the Delaware

River; the Schuylkill gauge drains 4903 km2 of the total 4952 km2 in the watershed. To

approximate the actual flow into the Delaware River, the Schuylkill gauge measurements

were multiplied by the ratio of the total drainage area to the gauged drainage area. This

estimate was then added to the corresponding day’s average streamflow at Trenton (except

when analyzing the salinity at the Ben Franklin Bridge, which is upstream of the Schuylkill

River). No other river or stream contributes more than 1% to the total discharge (Sharp

et al., 1986). To relate monthly mean salinity at the five USGS stations to streamflow,
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the daily total streamflows were converted to monthly means for any month with at least

15 days of streamflow data. To relate the instantaneous oyster bed salinity measurements

to streamflow, an exponential moving average of the form Qt = KQt + (1 − K)Qt−1 was

applied (where t is in days). Using the root mean square error in the resulting model fits,

the optimal K was determined to be 1/15. The exponential moving average accounts for

the slower response of the downstream estuary to the streamflow upstream at Trenton and

Schuylkill. The exponential moving average produced better results than other methods

such as a simple lag.

Monthly averages of sea level at Atlantic City, NJ were obtained from the Permanent

Service for Mean Sea Level (Woodworth and Player, 2003). Atlantic City was selected

because it is near but not in the Delaware River and therefore should not be influenced by

the flow in the river. Monthly averages of sea level at Philadelphia were also obtained to

supplement the results. To relate the oyster bed salinities to sea level, the long-term trend

was extracted from the Atlantic City sea level record using seasonal-trend decomposition

with loess (Cleveland et al., 1990). The resulting trend was then interpolated to the day of

each oyster bed salinity measurement.

The trend component accounts for long-term fluctuations in sea level. Because the oyster

bed salinities were measured instantaneously near high and low tide, it is also necessary to

also account for tidal fluctuations in sea level. However, measurements of sea level with

sufficient temporal resolution are not available for most of the time period of the oyster bed

salinity measurements. Instead, predicted sea levels for Ship John Shoal were obtained from

the National Ocean Service. Although the time difference between a high or low tide and
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the corresponding salinity measurement is provided in the HSRL data, the actual time of

measurement is not included. Therefore, to match the salinity measurements with a water

level, the sea level predictions were offset by the provided time difference. Then it was

assumed that salinity measurements would have only taken place during the day (8AM-

8PM), so the appropriate offset high or low water level in this range was selected. In the

event that measurements could have occurred at either 8AM or 8PM, the two water levels

were averaged.

The Gulf Stream Index (Taylor, 1995), which represents the first principal component

of the latitude of the north wall of the Gulf Stream, was used as a proxy for oceanic

salinity. Lee and Lwiza (2008) determined that the use of the index as a proxy for salinity

in the Mid-Atlantic Bight is appropriate. The monthly data were obtained from http:

//www.pml-gulfstream.org.uk/. The data cover 1966 through 2011.

Wind speed and direction were obtained from the North American Regional Reanalysis

(Mesinger et al., 2006). Reanalysis data are advantageous because they contain no missing

data or instrument biases and because they provide complete coverage over water (although

the data may be based on parameterizations). 3-hourly wind speed and direction from the

reanalysis were converted to wind stress using the equation τ = C10ρU
2
10, where C10 is a

drag coefficient, ρ is the density of air, and U10 is the wind speed or component at 10 m. C10

was calculated using the equation from Wu (1982) with constant density. After calculating

the wind stress, the data were averaged over space and time to produce a time series of

monthly mean wind stress magnitudes and meridional and zonal components. Finally,

alongshore and cross-shore wind stresses were calculated using an alongshore direction of
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south-southwest to north-northeast and a cross-shore direction of east-southeast to west-

northwest. The alongshore component should be associated with Ekman transport and sea

level fluctuations over the shelf near the Delaware Bay. The cross-shore component should

be associated with setup and setdown directly in the bay and estuary. The reanalysis data

only cover 1979 through the present. When relating salinity to wind stress, any salinity

measurements before 1979 were dropped.

Wind data were taken from all of the reanalysis grid points that are over water in two

regions: over the Delaware Bay between 38.8− 39.6◦, 74.9− 75.6◦ (the “local” region) and

over the shelf between 37.5− 39.8◦, 73.0− 75.0◦ (the “remote” region). At the monthly

time scale, these data are almost identical (aside from larger magnitudes in the remote

region), so the remote region was discarded and only the effects of winds in the local region

were considered.

2.2 Statistical models

Generalized additive mixed models can be derived by beginning with a traditional, linear

model and expanding the model to incorporate features such as non-Gaussian distributions,

correlated errors, random effects, and smooth functions of covariates. A traditional linear

model with n observations predicts the ith value of the n× 1 vector of response variables y

as

yi = Xiβ + εi (1)
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where β is a p×1 vector of parameters associated with the n×p matrix of predictor variables

X (often called the model matrix or design matrix). Xi indicates the ith row of the matrix.

In this model, εi is typically assumed to be an independent, Gaussian random error with

mean 0 and variance σ2, i.e., εi ∼ N(0, σ2). As a result, the model can also be written as

E(yi) = Xiβ, yi ∼ N(Xiβ, σ
2) (2)

Additive models are an extension of the linear model that include additive, smooth

terms in the model formula. The smooth terms can be cubic regression splines, thin plate

regression splines, loess smooths, or any number of other smooth functions. With one

smooth term f of a covariate x included, Equation 2 becomes

E(yi) = Xiβ + f(xi), yi ∼ N(Xiβ, σ
2) (3)

To make the model algebraically possible to fit, the mean value of any smoothing function is

set to 0 (Wood, 2006); therefore, the distribution for yi is unchanged. Additional smoothing

terms can be added to this model. Smooths of multiple variables, such as f(x1i, x2i), can

also be included in the model.

Additive models can be easily modified to handle any distribution for yi that is in the

exponential family including the Gaussian, gamma, and Poisson distributions. With this

modification, Equation 3 becomes

g(E(yi)) = Xiβ + f(xi), yi ∼ an exponential family distribution. (4)
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where g is known as a link function such as the identity, inverse, or natural logarithm

function. This model is known as a generalized additive model (GAM). Equation 3 is

a special case of this model where g is the identity function and yi follows a Gaussian

distribution.

One problem with applying any of the previous regression models to time series data is

that the errors are assumed to be independent and identically distributed. This is often an

invalid assumption for many hydrological and climatological variables (Hirsch and Slack,

1984). A modification known as a linear mixed model enables Equation 2 to handle serial

correlation and heteroscedasticity. A linear mixed model also includes both fixed and ran-

dom effects. Fixed effects are model parameters that apply to the entire population being

sampled. The previous models have been composed entirely of fixed effects. Random effects

are model parameters that apply to an individual unit or group that was randomly taken

from the population.

Assuming the simple case of one level of grouping, the random effects for group i are

represented with a parameter vector bi similar to how fixed effects are represented with a

parameter vector β. However, unlike the fixed effects, the random effects bi are assumed to

have a mean of zero and some simple variance structure ψ, so that bi ∼ N(0, ψ). The linear

mixed model is therefore

yi = Xiβ + Zibi + εi (5)

The convention for mixed models is to use the subscript i to denote the ith group rather

than the ith observation. If the number of observations in group i is ni, yi = yij =

(yi1, yi2, . . . , yini)ᵀ. As in the ordinary linear model, β is the p × 1 vector of fixed effects

16



associated with the ni × p model matrix Xi. The new random effects bi are a k × 1 vector

unique for group i and with an associated ni × k model matrix Zi. In the absence of

autocorrelation and heteroscedasticity, the within-group errors εi ∼ N(0, σ2I). To handle

autocorrelation and heteroscedasticity, the errors can be generalized to εi ∼ N(0, σ2Λi),

where Λi is positive definite and typically determined by a small set of parameters (Pinheiro

and Bates, 2000).

Finally, a generalized additive mixed model (GAMM) is a combination of the linear

mixed model and the generalized additive model that retains all of the unique advantages

of both models. GAMMs are derived by inserting the smooth functions and generalization

from the GAM into the linear mixed model. This is accomplished by splitting the smooth

functions into fixed and random effects (Lin and Zhang, 1999; Wood, 2004). The final model

structure then resembles

g(E(yi|bi)) = Xiβ + Zi1bi1 + Zi2bi2 + . . . (6)

Xiβ includes the intercept and any parametric component of the model as before; now, it

also includes the smooth portions of the smoothing functions. Each smooth term in the

model has an additional, separate random effect Zibi ∼ N(0, Iτ), where τ is the reciprocal

of the smoothing parameter λ, which controls the smoothness of the smooth (Wood, 2006).

These random effects represent the wiggly portions of the smooths. For convenience, the

models can also be written before splitting the smoothing functions:

g(E(yi|bi)) = Xiβ + f(x1i) + f(x2i) + . . .+ Zibi (7)
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where the random effects terms that are not associated with smoothing functions Zibi are

optional.

2.2.1 Distributions

Two possible distributions could be assumed to apply to the salinity data: the normal

distribution and the gamma distribution. The gamma distribution may seem like the best

option since it only supports values greater than zero and salinity has a lower bound of

zero. However, tests comparing the distribution of the residuals indicated that the normal

distribution was by far the best choice for modeling salinity. Of the possible link functions

(identity, log, and inverse), the identity function produced the best results. Thus, the models

that were applied do not take advantage of the generalized modifications and are technically

additive mixed models, although they will continue to be referred to as generalized additive

mixed models. One consequence of this choice is that the models can predict negative

salinities. In practice, however, this rarely occurred, and the superior fits obtained using

the normal distribution and identity link make this issue negligible.

For the Gaussian and identity link case of Equation 7, the distribution for the residuals

in group i is εi ∼ N(0, σ2Λi). Any autocorrelation or heteroscedasticity is included in the

within-group error covariance matrix Λi. To do so, following Pinheiro and Bates (2000), Λi

is decomposed into

Λi = ViCiVi (8)

where Vi is diagonal and Ci is positive definite. Given this formulation, the variance of the

jth residual in the ith group is σ2[Vi]2jj and the correlation between two residuals j and k in
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the same group i is [Ci]ijk. In other words, Vi determines the within-group error variance

and Ci determines the within-group error correlation. For both the USGS and HSRL

salinity data, the variance was assumed to depend on a power function of streamflow such

that var(εij) = σ2|Qij |2δ (Pinheiro and Bates, 2000). Other variance structures including

homoscedastic errors and variances proportional to power and exponential functions of the

fitted values were considered. Experiments indicated that the power function of streamflow

produced the highest likelihoods for most models. Furthermore, not including the fitted

values in the variance function allows the use of exact procedures to find the parameter δ

(Pinheiro and Bates, 2000).

In addition to heteroscedasticity, temporal autocorrelation is also present in the USGS

data. A first-order autoregressive (AR1) error process was assumed for the USGS data such

that the correlation between two errors spaced k months apart is φk (Pinheiro and Bates,

2000). φ is the lag-1 correlation and was also estimated by the model fitting algorithm.

There was typically enough time between successive observations in the HSRL data that

both spatial and temporal autocorrelation were assumed negligible.

2.2.2 Smoothing functions

The functions f in GAMs and GAMMs can be any number of smoothing functions. Among

those typically used are cubic regression splines, thin plate regression splines, and loess

smooths. In this work, thin plate regression splines (Wood, 2003) were applied to model

salinity as a smooth function of streamflow. These splines are considered optimal for use

in GAMs and GAMMs (Wood, 2006). A thin plate spline has a basis dimension k, which
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is typically chosen as part of the model specification. In the GAMM fitting algorithm, the

specified basis dimension is considered an upper bound on the final basis dimension. Wood

(2006) provides recommendations on specifying the basis dimension. Because it is expected

that the relationship between salinity to streamflow is not overly complicated, the maximum

basis dimension for the streamflow smooth was set to 10 for all of the models in this work.

Instead of thin plate regression splines, cyclic cubic regression splines were used to model

seasonal effects. Any cubic spline consists of a number of knots and is continuous to the

second derivative at each knot. To make a cubic spline a cyclic cubic spline, the value,

first derivative, and second derivative of the spline at the first and last knots must also be

equal. This makes the cyclic spline useful for modeling data where the response should be

similar at the boundaries of the predictor variable. For example, a cyclic cubic spline could

be used to smooth a variable as a function of hour by placing knots at hours 0 and 24. In

the models used here, a cyclic cubic spline was used to model the response of salinity to

the current month (for the USGS monthly averages) or to the decimal day of the year (for

the HSRL instantaneous measurements). To do so, knots were placed at months 1 and 13

or decimal days 0 and 1, which causes the spline to smooth continuously from December to

January. The remaining knots were automatically placed with even spacing by the model

fitting algorithm.

Finally, tensor product smooths were used to relate the combined influence of axial

position in the estuary and streamflow to salinity in the oyster beds. These smooths are

appropriate for smoothing two variables with different units (Wood, 2006).
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2.2.3 Fitting and testing

The models can be fit using maximum likelihood estimation (MLE) methods provided that

the Gaussian distribution and identity link are used (Wood, 2006). However, MLE produces

biased estimates of variance in many situations. A modification to MLE known as restricted

maximum likelihood estimation (REML) solves this problem. However, REML makes model

selection difficult because two models that have been fit with REML can only be compared

based on likelihood (for example, by comparing the Akaike information criterion or applying

a likelihood ratio test) when the fixed effects in both models are identical (Pinheiro and

Bates, 2000; Wood, 2006). To resolve this issue, the significance of the fixed effects was

tested using models fit with MLE. The resulting best model was then re-fit with REML to

produce the final results.

Likelihood ratio tests were applied to determine the significance of the fixed effects.

The likelihood ratio test works under the assumption that twice the difference of the log-

likelihoods of two nested models is χ2-distributed:

LRT ≡ 2 (la − l0) ∼ χ2
k (9)

where la is the log-likelihood of the alternative model (which includes the fixed effects being

tested), l0 is the model under the null hypothesis which does not included the fixed effects

being tested, and the degrees of freedom k for the χ2 distribution is equal to the number of

fixed effects being tested in the alternative model (Wilks, 1938; Pinheiro and Bates, 2000).

The models for bottom salinity in the oyster beds also include random effects. REML
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is necessary to obtain accurate estimates of the variance of the random effects. Model

selection for the random effects was performed by including all possible fixed effects terms,

fitting with REML, and using likelihood ratio tests to determine which random effects to

include. Finally, the fixed effects were tested using MLE as above and the final best model

is re-fit using REML. These methods indicated that including a random intercept for each

oyster bed significantly improved the model. However, including other random effects, such

as a separate trend for each oyster bed, did not significantly improve the model.

2.2.4 Final models

The final, basic model used to test the influence of sea level, oceanic salinity, and wind

stress on surface salinity at each USGS station is

Si = β0 + fQ(Qi) + fM (Monthi) + εi (10)

where Si is the ith salinity value, β0 is a constant intercept equal to the mean salinity

value, fQ(Qi) is a thin plate spline that relates salinity to streamflow and is evaluated at

the streamflow value Qi, and fM (Monthi) is a cyclic cubic spline that relates salinity to

calendar month and is evaluated at the ith month. fM captures seasonality in salinity that

is not explained by the other independent variables. It is assumed that εi ∼ N(0, σ2Λi),

where Λi includes autocorrelation and heteroscedasticity as previously discussed. For the

oyster bed bottom salinity data, the basic model is

Si = bi + β0 + β1Hi + β2xi + β3yi + fQ(Qi) + fDD(DDi) + εi (11)

22



where Si = Sij = (Si1, Si2, . . . , Sini)ᵀ and ni is the number of measurements at oyster bed

i, bi is a random effect with an expected value of zero that represents a unique intercept for

each oyster bed, β0 is a constant intercept that applies to every location, β1 gives the slope

of the response of salinity to sea level and Hi is the National Ocean Service predicted sea

level, β2 is equivalent to the axial salinity gradient and xi is the relative axial distance for

the ith oyster bed, β3yi is the same for the lateral gradient and distance, fQ(Qi) is a smooth

function of exponential moving averaged streamflow, and fDD(DDi) is a cyclic cubic spline

that relates salinity to decimal day. It is assumed that εi ∼ N(0, σ2Λi), where Λi includes

only heteroscedasticity.

To test the influence of sea level, oceanic salinity, and wind stress on the salinity measure-

ments, additional terms representing these variables were added to these two basic models.

For example, to test the influence of sea level on the USGS salinity data, an additional term

β1Hi was added to Equation 10.
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Chapter 3

Results

Before analyzing the response of salinity to various factors, the monthly mean salinity data

were tested for trends in the raw data. This was done with a simple generalized additive

mixed model of the form Si = β0 + β1t+ s(Monthi) + εi. This model includes only a time

trend and seasonal cycle. In addition to testing the significance of the trend component

β1 with a likelihood ratio test, the raw salinity data were also evaluated with a Mann-

Kendall test for trend (Mann, 1945; Kendall, 1938) including autocorrelation (Hamed and

Rao, 1998). Whereas the GAMM test assumes AR(1) autocorrelation, the Mann-Kendall

test is more flexible and includes as many orders as are significant. Using these methods,

significant trends in salinity were found at Ship John Shoal (Table 3). Ship John Shoal has

a shorter record than the other time series, and it appears that the record coincidentally

covers a period when salinity was increasing (Figure 3). Significant trends were not found

at any of the remaining locations.

Streamflow is often one of the primary influences on estuarine salinity. The effect of
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Location Trend (decade−1) Mixed model p Mann-Kendall p
Ben Franklin Bridge -8.2×10−3 8.5×10−3 0.45
Fort Mifflin 7.1×10−3 0.13 5.3×10−2

Chester -3.9×10−2 2.9×10−2 0.77
Reedy Island -5.5×10−2 0.72 0.97
Ship John Shoal 2.2 4.2×10−2 3.4×10−3

Table 3: Location, trend in salinity per decade determined using a GAMM, p-value for the
trend component of the mixed model, and p-value for the trend using a non-parametric
Mann-Kendall test with autocorrelation (Hamed and Rao, 1998). Note that the different
between the tests is likely due to the different autocorrelation orders included in the models.
Bold indicates locations where both tests are significant at the 95% confidence level.

streamflow on the salinity of the Delaware Estuary can immediately be seen in Figure 3,

which plots the five monthly mean salinity time series and the time series of streamflow

for comparison. Salinity values hit record highs during the period of drought and low

streamflows in the mid 1960s. During the following period of increased precipitation and

streamflow in the 1970s, salinities dropped dramatically.

The basic relationships between salinity and streamflow, plus residual seasonal varia-

tions, are included in Equations 10 and 11. These models relate salinity to smooth functions

of streamflow and time of year. The fitted smooth functions fQ are shown in Figure 4. As

expected, salinity and streamflow are negatively correlated. The magnitude of the marginal

response of salinity to streamflow is larger under low-flow conditions. The benefit of using

a GAM or GAMM is also shown here, as a linear regression model is clearly inappropriate

and even a log transform or log linear model may not be valid.
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Figure 3: Time series of monthly mean salinity (first five panels) and time series of monthly
mean streamflow (bottom right panel).
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Figure 4: Relationship between streamflow and salinity (term fQ in Equations 10 and 11).
The shaded gray regions indicate ±2 standard errors. Black ticks above the x axis indicate
individual observations.
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The seasonal variation appears similar at all locations (Figure 5). Some of this similarity

may be due to the use of cyclic cubic repression splines, which place knots at equally-spaced

intervals. In general, after accounting for the influence of streamflow, salinity is lowest in

May and June and highest in October and November. Because there is a seasonal cycle in

streamflow, there is the potential for some concurvity issues when including both streamflow

and month as predictors in the model. However, the month term significantly improves the

model fits, and excluding it from the models results in a seasonal pattern in the residuals.

The adjusted R2 value for the model fit to Reedy Island salinity is 0.74. Farther down

the estuary, the adjusted R2 value for the fit to salinity is 0.57 at Ship John Shoal and

0.81 at the oyster beds. Upstream at Chester, Fort Mifflin, and Ben Franklin bridge, the

adjusted R2 values are 0.18, 0.60, and 0.54 respectively. The reduced performance at these

upstream locations is a result of difficulty in determining the salinity-streamflow relation-

ship under low-flow conditions (particularly during the 1960s drought). At all locations, the

models often, but not always, underpredict when salinity is high. This can be seen in Figure

6, which plots the relationship between the observed and modeled salinity values at Reedy

Island. One concern was that these difficulties may be caused by the use of smoothing

splines to approximate the sharply nonlinear response to streamflow under low-flow condi-

tions. However, experimental results not shown indicated that the modeling methods were

reasonable even when approximating exponentials. Furthermore, other smoothing methods

did not perform better at correctly predicting low salinities.
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Figure 5: Seasonal variations in salinity. For the oyster beds, the smooth plots the relation-
ship between salinity and decimal day of year (term fDD in Equation 11). For the USGS
data, the smooths show the relationships between salinity and month of year (term fM in
Equation 10). The gray shaded regions indicate ±2 standard errors.
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Figure 6: Observed salinity values versus modeled salinity at Reedy Island. The blue line
indicates a 1:1 relationship between observed and modeled values. The red line is a loess
smooth of the actual relationship between observed and modeled values.
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At all locations, the addition of other terms to the model such as sea level and wind

stress often improved the fit and the R2 values, but any improvements were typically mi-

nor. As a result, this indicates that streamflow and an additional unknown seasonal effect

predominantly influence salinity.

In addition to influencing salinity values, streamflow may also influence the axial salinity

gradient in the estuary. Because the oyster beds cover a number of locations within a small

region of the estuary, the oyster bed data can be used to test the effect of streamflow on the

salinity gradient. To do so, the separate flow and distance terms in Equation 11 are replaced

with one tensor product smooth that models salinity as a 3D surface that smooths over

both streamflow and distance. The result is shown in Figure 7. This result has two similar

physical interpretations: first, the axial salinity gradient in the oyster beds is slightly larger

during high-flow conditions than during low-flow conditions. Second, locations upstream

in the estuary have a larger range of salinity in response to streamflow than downstream

locations except during very high flows. This result contradicts Wong (1995), who found

that streamflow and the axial salinity gradient of the Delaware Estuary were inversely

correlated. However, Wong (1995) studied the gradient between Reedy Island and Ship

John Shoal, whereas the majority of the oyster beds are located downstream of Ship John

Shoal. Wong (1995) proposed that the inverse correlation between streamflow and axial

salinity gradient may be a result of the salt intrusion ending downstream of Reedy Island

during low flow conditions. The salt intrusion limit is consistently upstream of the oyster

beds, which may explain why an inverse correlation was not found there.

Studies of water quality typically look for trends in variables after adjusting for the
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Figure 7: Tensor product smooth of the combined effect of streamflow and axial distance on
salinity in the oyster beds. The contours and color shading indicate salinity. Points closer
to the top of the plot are farther upstream.

influence of streamflow. To check for trends in salinity after adjusting for streamflow, a

parametric time term can be added to Equations 10 and 11. The resulting trends, likeli-

hood ratio test statistics, and p-values are provided in Table 4. Significant upwards trends

in streamflow-adjusted salinity are found at the oyster beds and Reedy Island. Upwards
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Figure 8: Raw residuals (observed minus fitted) for the model in Equation 10 at Reedy
Island (black dots) and the trend that results when a term for time is added to this model
(blue line).

trends are also found at all of the remaining locations; however, none of these trends are

significantly different from zero at the 95% confidence level. It should also be noted that

each location covers slightly different time periods. These trends can also be found in the

residuals of the previous models with only streamflow and residual seasonal effects (Figure

8).

Despite the insignificant trends in raw salinity, statistically significant trends in streamflow-

adjusted salinity were detected. In addition, streamflow increased at a rate of 36 m3s−1/decade

during the study period (p =1.4×10−3 and 3.1×10−2 using likelihood ratio and Mann-

Kendall tests respectively). This suggests that another factor, such as sea-level rise, is

acting to negate any salinity decreases caused by increasing streamflow.

The influence of sea-level rise can be tested by including a parametric term for sea level
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Location Trend (decade−1) p-value
Ben Franklin Bridge 8.3×10−4 0.35
Fort Mifflin 2.5×10−3 0.31
Chester 2.2×10−4 0.92
Reedy Island 0.19 8.7×10−3

Ship John Shoal 1.6 6.3×10−2

Oyster beds 0.38 <1.0×10−5

Table 4: Location, trend in streamflow-adjusted salinity per decade, and p-value. Bold
indicates locations where the results are significant at the 95% confidence level.

in Equation 10. Due to the significant multicollinearity between sea level and time, the

time term that was previously inserted is now excluded. Note that sea level (high and low

tide water level, without sea-level rise) is already included in the oyster bed model to allow

observations from both high and low tide to be combined.

The resulting coefficients for the response of salinity to sea level are provided in Table

5. Due to the significant upwards trends in streamflow-adjusted salinity already detected,

any time series with a significant trend would likely be modeled as having a significant

effect on salinity. However, the results here are reasonable, as there is a physical reason to

expect increasing salinity with increasing sea level. Furthermore, the sea level term generally

improves the models more than the time term as evidenced by the higher likelihood ratio

test statistics. Finally, using numerical models, several studies examined in the discussion

have arrived at similar responses of salinity to sea level.

Theoretically, the response of salinity to sea level should not be a simple linear function

but rather a power function (Savenĳe, 1993; Hilton et al., 2008). A simple way of testing

this non-parametrically is to replace the parametric relationship between salinity and sea
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Location Slope (m−1) p-value
Ben Franklin Bridge 5.2×10−3 0.60
Fort Mifflin 3.3×10−2 0.17
Chester 3.0×10−2 0.23
Reedy Island 3.5 3.0×10−5

Ship John Shoal 4.6 2.5×10−2

Oyster beds 5.8 <1.0×10−5

Table 5: Location, slope of the response of salinity to sea level, and p-value. Bold indicates
locations where the results are significant at the 95% confidence level.

level with a smooth term. Using likelihood ratios to test the null models with parametric

sea level versus the models with smoothed sea level terms indicated that the null model was

never rejected. This does not necessarily mean that the response of salinity to sea level can

be represented by a straight line; however, it does indicate that any other form of response

is not detected in the current data.

The effects of wind stress may interact with sea level and circulation to affect the salinity

of the estuary. Because of the potential interaction between wind stress and sea level, the

sea level terms in the previous models are dropped and replaced with a term for wind stress.

The individual wind stress components (alongshore, cross-shore, and magnitude) are also

tested separately to avoid any potential multicollinearity. Parametric terms are used to

represent all of the wind stress terms because, like sea level, smooth relationships between

salinity and wind stress were never significantly better.

Alongshore wind stress from the south-southwest to the north-northeast should induce

Ekman transport away from the Estuary and lower sea level and salinity. Alongshore wind

stress from the north-northeast to the south-southwest should have the opposite effect. The
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effect of alongshore wind stress anomalies on sea level anomalies can be detected at both

Atlantic City and Philadelphia (Figure 9). Using generalized least squares (Pinheiro and

Bates, 2000) with an AR(2) error covariance, the linear fits are −4.0 m/N m−2 at Atlantic

City and −2.3 m/N m−2 at Philadelphia (p < 1×10−5). The resulting effects of wind stress

on salinity were detected at Reedy Island and Ship John Shoal(Table 6). The values at the

remaining locations were not significantly different from zero.

Location Slope (N−1m2) p-value
Ben Franklin Bridge 8.5×10−2 0.53
Fort Mifflin 9.2×10−4 1.0
Chester -0.42 0.41
Reedy Island -31 1.2×10−3

Ship John Shoal -64 3.0×10−2

Table 6: Location, slope of the response of salinity to alongshore wind stress, and p-value.
Alongshore wind stress is defined as positive when it has a south-southwest to north-
northeast component. Negative slopes indicate that salinity is lowered when the alongshore
wind stress is from this direction. Bold indicates locations where the results are significant
at the 95% confidence level.

Cross-shore wind stress may also affect salinity and sea level by directly inducing set-

up in the estuary. This effect is seen at both Atlantic City and Philadelphia, although the

effect on Atlantic City sea level is relatively small (Figure 9). Using the same methods as for

alongshore wind stress, the coefficients are 1.8 m/N m−2 at Atlantic City and 4.5 m/N m−2

at Philadelphia (p <1×10−5). With the alongshore component in the previous regression

models replaced by the cross-shore component, the effects of cross-shore wind stress are only

detected at Fort Mifflin (Table 7). As expected, the slope of the relationship indicates that

wind stress from the east-southeast to west-northwest is associated with higher salinities.
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Figure 9: Atlantic City, NJ sea level anomaly (top) and Philadelphia, PA sea level anomaly
(bottom) versus alongshore wind stress anomaly in the Delaware Bay area (left) and cross-
shore wind stress in the bay area (right). Black lines indicate a linear fit; gray lines are
loess smooths.

The expected sign for this relationship is also found at all of the remaining locations;

however, the results at these locations are not significantly different from zero.

The magnitude of wind stress may also have an effect on salinity, for example by increas-
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Location Slope (N−1m2) p-value
Ben Franklin Bridge 0.21 0.10
Fort Mifflin 0.93 4.7×10−4

Chester 0.74 0.14
Reedy Island 12 0.21
Ship John Shoal 1.9 0.98

Table 7: Location, slope of the response of salinity to cross-shore wind stress, and p-value.
Cross-shore wind stress is defined as positive when it is from the east-southeast to west-
northwest. Positive slopes indicate that salinity is increased when the cross-shore wind
stress is from this direction. Bold indicates locations where the results are significant at the
95% confidence level.

ing or decreasing vertical mixing in the estuary. To test this, the cross-shore component in

the previous regression model was replaced with a component for wind stress magnitude.

A statistically-significant positive relationship between salinity and the magnitude of wind

stress was only found at Ben Franklin Bridge (Table 8). This result indicates that stronger

winds are associated with higher salinities. This would be expected in a stratified system.

Similar signs are found at Reedy Island, Chester, and Fort Mifflin; however, these results

are not significantly different from zero.

Location Slope (N−1m2) p-value
Ben Franklin Bridge 0.25 2.6×10−2

Fort Mifflin 0.43 7.7×10−2

Chester 0.34 0.40
Reedy Island 16 7.7×10−2

Ship John Shoal -7.2 0.89

Table 8: Location, slope of the response of salinity to wind stress magnitude, and p-value.
Bold indicates locations where the results are significant at the 95% confidence level.

Finally, variability in oceanic salinity may also influence the salinity of the estuary. How-
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ever, when a parametric term for the Gulf Stream Index is included in Equation 10, there is

no detectable relationship between surface salinity in the estuary and oceanic salinity (Table

9). It is possible that oceanic salinity may have an influence on bottom salinity. However,

the Gulf Stream Index is a relatively noisy monthly time series, so it was not regressed with

the instantaneous bottom salinity measurements at the oyster beds. Furthermore, vertical

salinity variations in the Delaware Estuary are typically small, so any influence of oceanic

salinity should propagate to the surface.

Location Slope p-value
Ben Franklin Bridge -4.0×10−4 0.44
Fort Mifflin 1.9×10−4 0.90
Chester 3.4×10−4 0.82
Reedy Island 6.8×10−2 8.6×10−2

Ship John Shoal -9.0×10−4 0.96

Table 9: Location, slope of the response of salinity to the Gulf Stream Index, and p-value.
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Chapter 4

Discussion

Although the statistical models generally performed well and produced reasonable results,

there were several possible issues. One issue is that the models often underpredicted ex-

tremely high salinities. One hypothesis was that this issue may have been caused by the

use of smoothing splines to fit the roughly exponential salinity-streamflow relationship.

However, the smoothing spline method appears to work reasonably well. Several simula-

tions were conducted in which exponential functions were first fit to the observed salinity-

streamflow relationship. Next, various levels of random noise were added to the exponential

fits. Finally, the ability of the GAMM smoothing splines to accurately capture the exponen-

tial salinity-streamflow relationships was tested. In all cases, the splines were remarkably

close to the actual exponentials. In addition, trying other smoothing splines, increasing

the maximum degrees of freedom in the splines, and manually setting the spline knots did

not improve the model fits. Since it otherwise appears to work well, fitting splines to the

raw quasi-exponential relationship is advantageous over applying a log transform to salinity
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because it preserves the additive nature of the model. An additional issue with that results

from assuming a Gaussian distribution with identity link and not applying a log transform

is that it is possible for the model to predict negative salinity values. In practice, however,

this rarely occurred.

Assuming that the statistical models are reliable, the results demonstrate that after

accounting for the effects of streamflow, a long-term upward trend in salinity is present.

This upward trend provides evidence that rising sea level may be causing salinity to also

rise. Firmly establishing causation is difficult, however, since any time series with an upward

trend would appear to be significantly related to the increasing salinity in the Estuary.

Additional evidence for causation can be extracted from other studies that have modeled

the response of salinity in Mid-Atlantic estuaries to sea-level rise.

Using numerical models, Hull and Tortoriello (1979) determined that a sea-level rise of

0.13 m resulted in a maximum increase in salinity of 0.38 near Reedy Island. This translates

to a 2.9 m−1 sensitivity of salinity to sea level, which is slightly less than the 3.5 m−1

determined using the statistical models in this study. At a location 23 km upstream of

Reedy Island, the U.S. Army Corps of Engineers found that a 0.3 m increase in sea level

resulted in a 0.3 increase in surface salinity, which translates to a sensitivity of 1 m−1 (U.S.

Army Corps of Engineers, 1997). However, they also found that bottom salinity in the lower

oyster bed area would actually decrease by 0.2 for a 0.3 m sea-level rise (a sensitivity of

−0.7 m−1), which contradicts the 5.8 m−1 sensitivity determined by the statistical models

in this study. The Army Corps hypothesized that the negative sensitivity of salinity may

be a result of flow diversions such as the C&D canal linking the Chesapeake and Delaware
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Bays; flow diversions may have been introduced in the model by their approximation of

sea-level rise in the Chesapeake. In the area upstream of Reedy Island, Kim and Johnson

(2007) used numerical models to simulate the response of salinity under 1965 flow conditions

and 1996 consumptive use (a worst-case scenario) to a 0.1667 m sea-level rise. They found

that chlorinity would increase by 0.1377 ppt at Chester and 7 ppm at Ben Franklin Bridge.

When converted to salinity in parts per thousand, this results in a sensitivity of 1.5 ppt m−1

at Chester and 7.1× 10−2 ppt m−1 at Ben Franklin Bridge. This is much larger than the

sensitivities identified by the statistical models in this study, which may be a result of the

imposed low-flow conditions.

Recent studies have also identified the implications of sea-level rise for salinity in other

estuaries. In the nearby Chesapeake Bay, Hilton et al. (2008) applied statistical and nu-

merical models and found that salinity has a sensitivity to sea level of 2− 7 m−1, which is

similar to the 3.5− 5.8 m−1 sensitivity identified in this study (albeit for a different loca-

tion). Similarly, using a 3D numerical model, Hong and Shen (2012) determined that the

salt content of the Chesapeake Bay will increase by 1.2-2.0 if sea level rises by 1 m. With

the same numerical model, Rice et al. (2012) found that, during typical flow conditions, a

1 m sea-level rise caused salinity to increase by nearly 10 in the James River at the mouth of

the Chickahominy River. During a simulated dry year, a 1-m sea-level rise causes a salinity

increase of slightly more than 4, which is more in line with the estimates by Hilton et al.

(2008).

Given that sea level and streamflow both influence the salinity of the estuary, how will

future changes in sea level and streamflow affect salinity? Streamflow is the dominant
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influence on the salinity; however, changes in streamflow are difficult to project. In the

Eastern United States, streamflow is primarily determined by precipitation. Many studies

have projected that precipitation amounts will increase, both globally (Meehl et al., 2007)

and over the Eastern United States (Najjar et al., 2009). However, any change in streamflow

will also be determined by land use changes, increased plant water use efficiency as a result of

increased CO2, and increased evaporation as a result of higher temperatures (Krakauer and

Fung, 2008). Using global climate models, Najjar et al. (2009) projected that precipitation

changes will cause streamflows in the Mid-Atlantic region to change by 15±20% by the

end of the twenty-first century under the A2 emissions scenario. However, Najjar et al.

(2009) also found that warming-induced evapotranspiration changes could cause a 15-40%

decrease in streamflows in the region. If sea level is held constant at the 1964-2011 mean,

the statistical model for Reedy Island predicts that salinity will change from the 1964-2011

mean value of 4.5 to 5.7 for a -40% decrease in mean streamflow or to 3.5 for a 35% increase

in mean streamflow.

Rising sea levels should drive a significant increase in salinity. The Intergovernmental

Panel on Climate Changes’s Fourth Assessment Report (AR4) predicts that global mean

sea level will rise by 0.23− 0.51 m during the twenty-first century under the moderately-

high A2 emissions scenario (Meehl et al., 2007). Recent studies suggest that the AR4

may severely underestimate sea-level rise, with global average sea level possibly rising 1 m

or more above the 1990 mean by 2100 (Rahmstorf, 2007; Vermeer and Rahmstorf, 2009).

The East Coast of the United States is an area of particular concern because sea-level rise

there has been accelerating (Sallenger et al., 2012). Using statistical models, Vermeer and
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Rahmstorf (2009) project that global mean sea level will increase 1.24 m above the 1990

mean level by the end of the twenty-first century under the A2 emissions scenario (the

models range from 0.98− 1.55 m). Using the modeled sensitivity to sea level of 3.5 m−1 at

Reedy Island, this amounts to a 4.3 increase in mean salinity by the end of the twenty-first

century with a range of 3.4-5.4. If streamflow is unchanged, this will raise the mean salinity

at Reedy Island to 8.8 (7.9-9.8). Using the possibly conservative IPCC estimates of sea-level

rise still results in an increase of 0.80-1.8, bringing the mean salinity at Reedy Island to

5.3-6.2. Thus, only the extreme range of a 35% increase in mean streamflow due to warming

will be able to offset the salinity increase caused by a conservative amount of sea-level rise.

Although streamflow, sea level, and wind stress probably account for most of the ob-

served variability in streamflow, other factors that are difficult to model, such as the deep-

ening of the navigation channel, may also influence the salinity of the Delaware Estuary. In

numerical model simulations performed by Kim and Johnson (2007), a increase in channel

depth from 40 feet to 45 feet would have caused a 4.03% increase in mean salinity at the

Delaware Memorial Bridge (near Wilmington, DE) and a 6.33% increase at Chester under

1965 drought conditions. From 1910 to the 1990s, the actual channel depth increased from

20 feet to 40 feet, which may have significantly increased salinity (DiLorenzo et al., 1993).

However, most of this increase occurred before the 1950s, so the effects on salinity during

the period of this study were likely negligible.
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Chapter 5

Conclusion

The statistical models show that salinity in many areas of the estuary is actually increasing

after removing the effects of streamflow and seasonal variations. This increase in streamflow-

adjusted salinity may be caused by sea-level rise or other factors including the deepening of

the navigation channel. If the trend in streamflow-adjusted salinity is in fact being caused

by sea-level rise, the models project that salinity will increase significantly in the future as

sea level continues to rise. Any increase in streamflow caused by warming will likely be

unable to balance the increase in salinity caused by sea-level rise.

Although the statistical models used in this study appear to have worked well, additional

investigation into the ability of the methods to handle the salinity-streamflow relationship

may be beneficial. In addition, the comparison of the statistical model results with results

from numerical models would benefit from modern numerical model simulations forced with

the full range of possible streamflow conditions (rather than only low-flow conditions).
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