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ABSTRACT 

High speed communication channels, including backplanes, always have distorting effects on 

signals being transmitted through them. This is mainly a result of the frequency dependent nature 

of such channels.  In order to address this issue two common techniques exist: either carefully 

selecting the materials used in the backplane design or modifying the signal to suit characteristics 

of the communication channel/backplane by employing different line coding schemes and 

equalization. The most common line coding method is NRZ; however, as speed further increases, 

duobinary and PAM-4 are also promising techniques being investigated. 

Most of the past research in duobinary and PAM-4 was concentrated on simulations of the 

performance of coding and equalization techniques to compensate for the channel distortion. 

This proposed work focuses on rapid prototyping, using FPGAs and/or ASIC, of NRZ and 

duobinary coding and channel equalization. NRZ and duobinary coding are chosen because they 

are generally less complex than PAM-4, which makes them a good choice for higher data rates. 

A typical duobinary transceiver system comprises of an encoder at the transmitter and the 

corresponding decoder at the receiver. The complete encoderconsists of a duobinary pre-coder, 

which in turn includes a unit delay and an XOR gate to prevent error propagation, and a delay 

and add filter that converts the two level NRZ signal into a three level duobinary signal. The 

duobinary signal is then transmitted to the communication channel. At the receiver side, the 

duobinary decoder is implemented using a signal splitter, two comparators, and an XNOR gate. 

The duobinary signal generated is a three level signal which current commercial FPGAs are not 

capable of handling. In order to solve this problem, a simple new architecture of a duobinary 

system to be used with the commercial, off-the-shelf FPGAs is proposed. 

The standard duobinary system architecture is modified by placing the duobinary encoder after 

the transmit equalization, before the channel, while the duobinary decoder is placed immediately 

after the channel, before receiver equalization is performed. This scheme offers the advantage of 

allowing us to use the FPGA equalizers in the NRZ coding without having to modify them to 

support the three-level duobinary signal. Hence, this modified architecture takes advantage of the 

well-developed digital signal processing blocks in commercial FPGAs while allowing faster 

development times. The duobinary encoder and decoder can be built in an ASIC and interfaced 
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with the FPGA. Simulation of this architecture is performed in Simulink, and results obtained 

show that hardware implementation of such architecture is feasible as the transmitted data is 

reliably recovered at the receiver.  

To accomplish this research, two software tools were used, MATLAB Simulink and Altera’s 

Quartus. The FPGA board used was a Stratix IV GT SI Development board with the 

EP4SG210040I1 chip. Simulink was used for the NRZ simulation and Quartus for hardware 

implementation. Two real-world channels were used: a 29 in Megtron-6 Caltrace board and a 32 

inch backplane both provided by FCI electronics. Eye diagram scopes in Simulink are used to 

view the simulation results. The transceivers of the Stratix IV GT SI board were run at 5.65 Gbps 

and 11.3 Gbps using both channels to verify proper operation and also to demonstrate the 

equalization features within the transceivers. NRZ measurements were taken with the DSA 8200 

Tektronix Time Domain Reflectometer.  A correlation between the simulated and measured NRZ 

data is made and the results show a high degree of correlation. The BER for NRZ and duobinary 

were also computed for both channels the results were comparable; however, the duobinary uses 

half of the bandwidth.  
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Chapter 1 

Introduction 

1.1 Research Motivation 

The need for higher data capacity among electronic devices today implies the 

requirement for faster transmission rates between them. There is so much data today that 

needs to be transmitted from one point to another, be it from servers or multi service 

switches to hosts or even among portable devices in our homes and offices. These include 

data from computers to printers, fax machines, and scanners. This puts a great burden on 

current backplanes and connectors to support the required bandwidth necessary for such 

high speed data transmissions. Consequently, different techniques are investigated for 

improving the integrity of the signal being transmitted to allow for faster transmission 

speeds. Typically, two approaches exist: the passive and active [1]. The passive approach 

involves the use of high quality microwave substrate materials and new connector 

technologies. In other words, it is concerned with improving the properties of the channel 

itself by investing in new board designs and improved via hole technologies to mention a 

few. This approach, however, tends to be expensive as much research effort and time is 

needed in the study and selection of such materials. Furthermore, replacing the backplane 

will result in a lot of downtime [1, 2, 3]. The active approach, on the other hand, is 

concerned with the signal transmitted through the channel. It involves a form of 

processing on the signal to give it certain properties which aid in overcoming the poor 

response of the channel. The latter method is arguably easier, faster and cheaper to 
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implement than the former [1].  When working on implementing new and improved 

systems, it is always recommended to utilize fast and easy methods. This will help to 

make design changes that will arise much quicker and hence helps reduce the time to 

market the final device. Current Computer Aided Design (CAD) tools make design and 

prototyping systems much quicker and less cumbersome. It is also possible to use more 

than one CAD tool in a design. This thesis aims to explore this property by using 

Simulink and Quartus to prototype a duobinary transceiver system for high speed 

backplane applications and also propose architecture for integration with Field 

Programmable Gate Array (FPGA) transceivers with an ASIC. 

1.2 The Need for Simulation in Simulink 

Work on duobinary simulation has been carried out in [1, 2, 4, 5, 6]. In [2], a duobinary 

transceiver system for multi-gigabit backplane applications for data rates from 10 to 40 

Gbps was simulated using the Advanced Design Software (ADS) software. However, it 

had no direct link to hardware. As this thesis is geared more towards hardware 

implementation, Simulink is chosen as the tool for simulation because Hardware 

Description Language (HDL) code for programming the hardware, the FPGA in this case, 

can easily be generated and exported to Quartus from where it can be used to directly 

program the board or instantiated as part of a larger design. This reduces the time 

required to learn HDL coding and hence allows us to focus more on the implementation 

aspect of the design. 
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1.3 The role of the FPGA 

Duobinary signaling was first proposed by Lender [3]. A method to encode a two level 

binary data into a three level duobinary signal was proposed. The encoder was simply an 

AND gate logic and a flip flop. The AND gate complements the input to the flip flop 

which then sends the data out on the channel. At the receiving end, a rectifier and slicer 

are used to recover the transmitted binary signals from the duobinary signal. The 

duobinary system as mentioned had little difference with the NRZ in terms of 

components required for coding and encoding of data.  The spectral characteristics of 

both straight binary and duobinary techniques were also compared, and it was found that 

the duobinary system had half the bandwidth of the straight binary, and hence, data could 

be transmitted -at least theoretically- at twice the data rate of the straight binary. The 

duobinary system is mainly used in optical communications because of the wide 

bandwidths involved. 

 With multigigabit transmissions now possible in the electrical domain and the low 

bandwidth of backplanes, simple line coding methods are needed. As a result of its 

simplicity and low bandwidth requirements, duobinary signaling is making a comeback 

in the field of high speed electrical backplane applications. Studies are being carried out 

in the field and various ways of implementing the encoder and decoder are springing up. 

In [4], Sinsky et. al. ran a simulation of high speed electrical backplane transmission 

using duobinary signaling. A pseudo random generator of 10 Gbps was used to generate 

the test signal input. The duobinary encoder was implemented as a simple two tap Finite 
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Impulse Response (FIR) pre-emphasis filter cascaded with the channel to generate the 

required duobinary signal. The decoder was implemented using a splitter which splits the 

incoming duobinary signal and feeds it to two comparators whose outputs are then fed to 

an XOR gate for final decoding. Tyco Quadroute traces with lengths of 6, 20, and 34 

inches were used for the experiments. Eye diagrams for these trace lengths were viewed 

and the Bit Error Rate (BER) also measured. BERs of less than 10
-13

 were achieved. The 

eye diagrams and BER comparisons for duobinary were also made with those of Non-

Return to Zero NRZ and Pulse Amplitude Modulation PAM-4.  

A. Adamiecki et. al. in [5] demonstrate for the first time 25 Gbps electrical duobinary 

transmission over FR-4 backplanes. A 25 Gbps Non-Return to Zero (NRZ) Pseudo-

Random Bit Sequence (PRBS) data source is used, and an FIR filter implements the 

duobinary encoding while a BERT is used at the receiver to study the BERs for 14 and 24 

inch channel lengths. The eye diagrams at the input and output of the backplane were also 

viewed.  

Yamaguchi et. al. [6] also studied duobinary signaling at speeds of 12 Gbps with two 

times oversampled edge equalization. The work compared transfer functions of the 

duobinary, PAM-2 and PAM-4 signaling.  

In [7], a 10 Gbps duobinary signaling was implemented. Backplanes used for the 

experiment were the 20 and 34 inch Quadroute and XAUI. A two tap FIR filter was used 

for pre-emphasis, and PRBS 23 and 31 patterns were used. In both cases, bit error rates of 

less than 10
-13

 were observed with zero errors in a 20 minute measurement period. 
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An Altera white paper, [8] states the possibility of using 28 nm FPGAs for backplane 

applications. Such FPGAs have built-in transmit and receive equalization capabilities. 

The white paper begins by stating the common mechanisms for signal loss in backplanes 

and then going on to discuss in detail the various transmit and receive equalizers present 

in the 28 nm FPGAs. An example application also shows an eye diagram with and 

without equalization. A similar white paper, [9] discusses the various serial transceiver 

protocols that could be implemented in FPGAs. The 28 nm transceiver architecture is 

reviewed; the various clocking methods for the transceivers are also discussed. An 

important parameter, the power efficiency of the transceivers is compared at various data 

rates. The authors also discuss the equalization schemes that could be implemented with 

the FPGAs. The jitter and BER were also discussed. The information discussed in [8] and 

[9] present FPGAs as suitable devices for prototyping and subsequently implementing 

duobinary transceivers for high speed backplane applications. 

All the research mentioned above did not use an FPGA. This research aims to make rapid 

prototyping of a duobinary transceiver  using FPGAs and multi-vendor CAD tools like 

Simulink from MATLAB and Quartus from Altera. The idea is to reduce writing codes as 

much as possible as this will make the design and troubleshooting as well as time to 

market devices quicker. The duobinary scheme is expected to be incorporated into the 

FPGA transceiver architecture as the FPGA has built-in transceivers with pattern 

generators and checkers as well as equalization capabilities. These make setting up and 

studying communication links easier and quicker. Also, as stated in Section 1.2, 

Hardware Description Language (HDL) code for programming the FPGA can be 
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generated directly from Simulink. This makes verification of the design in hardware 

faster. Interestingly, duobinary implementation with FPGAs has not been attempted 

before; previous work concentrates on equalization with the FPGA while this work aims 

to incorporate line coding using FPGAs. Duobinary is chosen because it has half the 

bandwidth of NRZ line coding and hence offers a potential for doubling the present data 

rates with less channel equalization requirements. Throughout this research, two real-

world channels were used: a 29 in Megtron-6 Caltrace board and a 32 inch backplane 

both provided by FCI electronics. Eye diagram scopes in Simulink are used to view the 

simulation results. The transceivers of the Stratix IV GT SI board were run at 5.65 Gbps 

and 11.3 Gbps using both channels to verify proper operation and also to demonstrate the 

equalization features within the transceivers. Measurements were taken with the DSA 

8200 Tektronix Time Domain Reflectometer.  A correlation between the simulated and 

measured NRZ data is made and the results show a high degree of correlation. The BER 

was also computed for both channels for both channels and the results were similar. 

1.4 Project Outline 

This thesis comprises five chapters. Chapter 1 contains a general introduction about the 

work and the tools used. Chapter 2 has the theoretical background about FPGAs, issues in 

high speed signal transmission and duobinary signaling. Chapter 3 deals with the NRZ 

simulation and demonstration of the operation of the transceivers, with real world 

channels, in the FPGA. Chapter 4 discusses a duobinary architecture using ASICs for 

integration with the FPGA transceivers and the simulation of such architecture while 
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Chapter 5 concludes the work by stating the results obtained, limitations encountered in 

the course of the work, as well as the recommendations for further study. 
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Chapter 2  

Theoretical Background 

2.1 Field Programmable Gate Array 

Since the invention of transistors for amplification and switching, a lot has been going on 

in the field of electronics. Notable is the issue of miniaturization. Transistors used to be 

bulky. However, with its abundance and the improvement in technology, silicon has been 

utilized to produce Integrated Circuits (ICs) which have significantly scaled down the 

size of present day electronic devices. In addition, the development of CAD tools has 

allowed for easier and faster ways to implement complex designs comprising many 

transistors. 

Designs implemented in the ICs were normally Application Specific, where the operation 

of the system is defined during manufacture. Hence, they are called Application Specific 

Integrated Circuits (ASICs). However, this architecture does not allow for flexibility as 

the design is hardwired from the factory. There is also the issue of long time to market 

and increased cost of production as any mistakes made during production normally 

renders that piece of hardware useless. 

Programmable Logic Devices (PLDs) were introduced as a means of achieving flexibility 

so that users have the ability to program the device after manufacture. One of such PLDs 

is the Programmable Logic Array (PLA). This consists of a matrix of programmable 

AND planes followed by a matrix of programmable OR planes. Basic logic functions are 
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then implemented by connecting the gates together usually after reducing the design to 

the Sum of Products form. Another similar PLD architecture called the Programmable 

Array Logic (PAL) also exists which consists of a matrix of programmable AND plane 

followed by a fixed OR plane. Designs are also implemented by programming the AND 

planes which allow connections between the AND gates and the OR gates. The fixed 

architecture of the OR planes in the PAL allows them to run faster than the PLAs because 

the fixed connections switch faster than the programmable connections. The PLAs on the 

other hand are more flexible than the PALs because of the ability to program both the 

AND and OR planes [10]. Figure 2-1 shows a PAL and PLA architecture. 

 

Figure 2-1. PAL and PLA architecture [10]. 

Complex Programmable Logic Devices (CPLDs) have an architecture based on the PAL. 

They consist of multiple PAL logic blocks that are connected with a programmable 

switch matrix. CPLDs can be reprogrammed several times and can include storage 

devices and feedback lines. 
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A Field Programmable Array (FPGA) is simply a Programmable Logic Device, (PLD) 

that comprises a collection of Configurable Logic Blocks, (CLB) which could be logic 

gates, memory devices or almost any other element arranged in an array with interspersed 

switches [11]. This is different from the architecture of the devices discussed earlier 

which comprised of a combination of AND and OR gates. From the architecture of the 

FPGA, at least two things should be obvious. One is that of flexibility. Since the FPGA is 

programmed to connect various switches, it means that it can be used to achieve almost 

any design by rearranging the connection between the switches.  The second is the fact 

that the logic blocks can be programmed independently of each other, and this implies 

that multiple designs can be implemented at the same time on a single FPGA to achieve 

parallel computing. The FPGA is usually programmed by connecting the CLBs together 

with the aid of the switches between them to achieve virtually any desired function. The 

CLBs are seen in white with the switches that enable connections between these blocks in 

grey. Note that the I/O blocks are also incorporated into the FPGA that allow 

communication with the outside world. Figure 2-1 shows the schematic of a typical 

FPGA. 
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Figure 2-2. Schematic of an FPGA [10]. 

The CLB in an FPGA normally consists of a Look Up Table (LUT), a memory element 

which is usually a flip flop and a multiplexer that selects which of the registered or 

unregistered outputs of the LUT are to be used as the output of the CLB. Figure 2-3 

shows the structure of a CLB in an FPGA. 

 

Figure 2-3. Structure of a CLB in an FPGA [11]. 
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FPGA Programming is normally done using HDLs of which the most common are the 

Very High Speed Integrated Circuit Hardware Description Language (VHDL) and 

Verilog. VHDL was initially developed by the United States Department of Defense for 

the modeling and simulation of electronic devices. In 1987, however, it became an IEEE 

standard 1076 and found its way out of the military circles. Other standards have since 

followed. They include the 1076 of 1993 and the 1076 of 2001 [11]. 

Verilog on the other hand was developed by Philip Moorby of Gateway Design 

Automation. In 1989, Cadence Design Systems acquired Gateway and put Verilog in the 

public domain and it eventually became an IEEE standard in 1995 with another standard 

following in 2001 [11]. VHDL and Verilog can both be used for system design, 

simulation and synthesis and are also supported by most EDA vendors. VHDL, however, 

supports system level modeling and has a more comprehensive simulation than Verilog. 

In terms of use, Verilog is normally easier to learn as it is weakly typed as compared to 

VHDL. A key advantage of VHDL over Verilog, however, is the concept of packages. 

These are simply procedures and functions that can be used by any design unit. This does 

not exist in Verilog. Verilog is similar to C while VHDL has its roots in Ada. Most times, 

it is a matter of personal convenience that determines which of the languages to use. 

Verilog is used in this thesis because component instantiation in a hierarchical design is 

easier to implement than it is in VHDL. 
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2.2 Quartus II  

A very important component of this work is the Quartus II software. It is within this 

program the transceiver is defined, compilation is done and device programming is 

achieved. Quartus II is a complete Integrated Development Environment IDE from Altera 

that allows for system design and testing. Design entry in VHDL, Verilog and schematic 

can be done, compilation of generated code, analysis and synthesis, placing and routing, 

programming file generation as well as device programming can all be achieved with the 

Quartus II. Simulation is normally performed with Modelsim. The Quartus II also has 

other tools like the Signal Tap logic analyzer for probing FPGA pins, the transceiver 

toolkit for transceiver testing, and the Qsys for defining and implementing systems that 

include processors among others. A 64 bit Quartus II Version 12.0 environment is shown 

in Figure 2-4. 

 

Figure 2-4. Quartus environment 
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Project Compilation in Quartus deals with checking the syntax of the code to verify its 

correctness. Other issues include steps like analysis and synthesis, fitting and 

programming file generation. It consists of some basic functions which include: Analysis 

and Synthesis which is a process that brings together all files within the design to create a 

single file that describes the operation of the complete system; Fitting (Place and Route) - 

As the FPGA comprises many logic blocks, the fitter determines which of these blocks 

are to be used in implementing the design (fitting) and also how these blocks should be 

connected (routing).  This process is basically an optimization process and typically takes 

a longer time in FPGAs with more logic elements; Programming File Generation - Here, 

the actual bit file used in programming the FPGA is generated. When this step completes, 

it produces a static ram object file (sof) to be used in device programming and this is 

usually done with the aid of the device programmer; Pin Placement - Up to this stage, we 

have not stated which pins serve what function on the FPGA. This is done using the pin 

planner in Quartus. One way to run it is to click on Pin Planner from the Assignments 

menu in Quartus. The I/Os in the design are then assigned physical pins on the device. 

After this step, it is sometimes necessary to re-compile the design to update it before 

device programming is done.  An easier and faster way though is to run Analysis and 

Elaboration then performing pin assignment before running the complete compilation.  

2.3 Stratix IV GT SI Board 

The Stratix IV GT Signal Integrity (SI) board is a high-speed Altera device widely used 

for signal processing and SI applications. It has built-in integrated transceivers capable of 

running at speeds of up to 11.3 Gbps. Transmit and Receive equalization can also be 
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performed with the board as it has built-in equalizers with programmable taps. A couple 

of user LEDs, push buttons, switches and seven segment displays also exist on the board 

to allow for the implementation of basic digital logic designs. The board comes with the 

EP4S100G2F40I1 FPGA chip that has the Fine-Line Ball Grid Array (FBGA) 

architecture with 1517 pins.  

Two common ways of programming the chip are the embedded Universal Serial Bus 

(USB) blaster and the MAX II Fast Passive Parallel (FPP) method. The embedded USB-

blaster method allows for direct programming of the chip by using a USB cable to 

connect the board and computer directly. The Quartus programmer in Joint Test Action 

Group (JTAG) mode is then used to download the programming file to the FPGA chip. 

The FPP method on the other hand, allows for automatic loading of the configuration to 

the FPGA on reset or power-up. This method is helpful because the FPGA is volatile, and 

any configuration downloaded to it is lost on reset or power-up. However, with the FPP 

configuration, the programming file is stored in flash memory and automatically loaded 

into the FPGA chip whenever the board is reset or powered up. Figure 2-5 shows the 

Stratix IV GT SI board.  
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Figure 2-5. The Stratix IV GT SI board. 

2.4 Stratix IV GT Transceivers 

Up until now, our discussion has been on logic devices and implementation. An 

interesting feature of FPGAs is that they can also be used for high-speed data 

transmission. The FPGA chip on the Stratix IV GT SI board is equipped with 36 high 

speed transceivers. These transceivers are placed in two sides of the device with three 

blocks on each of the two sides. Each transceiver bank consists of four data channels and 

two Clock Multiplier Unit (CMU) channels for providing reference clocks to the 

transceiver channels. The Auxiliary Transmit Phase Locked Loops (ATX PLLs) also 

exist within the transceiver block, and can be used to generate the required reference 

clock required for transceiver operation.  Figure 2-6 shows the architecture of the 
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transceivers on the Stratix IV GT SI board. 

 

Figure 2-6. Transceiver architecture in the Stratix IV GT SI board 

The transceiver channels allow for transmit (pre-emphasis), receive equalization such as 

Decision Feedback Equalization (DFE), and dynamic reconfiguration. Dynamic 

Reconfiguration refers to the ability to change the properties of the transceiver such as the 

equalizer tap settings and the differential output voltage levels as needed without having 

to first power down the device. Furthermore, oscillators exist for providing the required 

triggers needed to view eye diagrams on external scopes. These triggers are sent out 

through dedicated SMA ports available on the board. This makes the board a complete 
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tool for the analysis and study of high-speed transmission links. The transceivers on the 

Stratix IV GT board can run at speeds of up to 11.3 Gbps and can support multiple serial 

protocols. In addition, custom protocols at different speeds can also be implemented on 

the board. Table 2-1 shows the serial protocols supported by the board.  

Table 2-1. Serial Protocols supported by the Stratix IV GT board [12] 

 

Figure 2-7, shows one transceiver channel of the Stratix IV GT SI board  

 

Figure 2-7. One channel of the Stratix IV GT transceiver 

 The transceiver has two main components: the Physical Coding Sublayer (PCS), and the 

Physical Medium Attachment (PMA).  These components exist both in the transmitter 
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and receiver sections of a transceiver channel. The next few sections briefly outline each 

of the blocks, starting from the transmitter channel PCS. 

2.4.1Transmit Phase Compensation FIFO 

The transmit phase compensation FIFO serves as an interface between the fabric of the 

FPGA and the PCS of the transmitter. It also compensates for any phase difference that 

might arise between the FPGA fabric interface clock and the low-speed parallel clock 

generated by the clock dividers.  

2.4.2 Byte Serializer 

There is normally a maximum frequency at which the FPGA is able to run. Sometimes 

when the data rate of the transceivers is high, this maximum frequency is exceeded. To 

address this issue, the byte serializer allows the FPGA to run at half the frequency and 

double the bit width. For example, clocking a 20-bit parallel data source at 100 MHz at 

the input of the byte serializer, we can have two 10-bit parallel data sources clocked at 

200 MHz at the serializer output. 

2.4.3 8B/10B Encoder 

The 8B/10B encoder allows for the conversion of an 8-bit data word into a 10-bit word 

by encoding the lower 5 bits into 6 bits, and the upper 3 bits into 4 bits. This ensures a 

running disparity between ones and zeroes in the data stream which allows for Direct 

Current (DC) balance and easier clock recovery. 
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2.4.4 Serializer 

The serializer converts the incoming parallel data from the PCS of the transmitter into 

serial data, and sends it to the transmit buffer, allowing for pre-emphasis and 

modification of the differential output voltage before the data is transmitted serially on 

the channel. Output termination which could be off or on-chip is also performed at the 

transmit buffer. To perform off-chip termination, resistors have to be soldered on the 

board while on-chip termination is enabled from the Assignment Editor tool within the 

Quartus II software and no external resistors are required. 

The next few sections review the blocks in the receiver section of the transceiver, starting 

with the receiver input buffer. 

2.5.1 Receiver Input Buffer 

The receiver input buffer receives the serial data from the channel and forwards it to the 

Clock and Data Recovery (CDR) unit. Just like the transmit buffer, a number of functions 

can be achieved, among which are equalization, DC gain and On-Chip Terminations 

(OCT). The equalizers in the transceivers of the Stratix IV GT board support 16 

equalization settings that provide up to 16 dB boost of the attenuated high frequencies. 

DC gain is also performed here, whereby the signal is boosted across its frequency 

spectrum. Gain values range from 0 dB to 12 dB in increments of 3 dB. 

The receiver input buffer also allows for adaptive equalization which is necessary for 

different data rates and varying channel conditions. It is normally challenging to 

determine the optimum equalizer tap settings for these varying channel conditions. There 
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are three modes of operation for the Adaptive Equalizer (AEQ): continuous, powerdown 

and one-time. The first two modes are not supported in the Stratix IV GT device. The 

one-time mode determines the optimum tap settings for the equalizer and then locks these 

setting preventing further changes even if channel conditions vary. 

The PMA channel of the receiver also contains what is known as the EyeQ block. When 

enabled, the EyeQ hardware allows the CDR to sample the incoming data at 32 different 

positions within a Unit Interval (UI) of a data eye. At the center of the eye, which 

corresponds to the optimum sampling point, the BER is zero. Moving away from the 

center toward any of the edges increases the BER, and with these values, the eye width 

can be indirectly measured. 

2.5.2 Clock and Data Recovery Unit 

This unit is mainly concerned with recovering the clock from the incoming serial data 

stream. The CDR can operate in either of two modes: the Lock to Reference (LTR), or 

Lock to Data (LTD). In the LTR mode, the CDR tracks the input reference clock which is 

normally sourced from the dedicated reference clocks (REFCLK) of the transceiver. On 

the other hand, the CDR tracks the incoming serial data in the LTD mode. 

2.5.3 Deserializer 

The deserializer performs the opposite function of the serializer, converting the incoming 

serial data back to parallel, and feeding it to the receiver PCS. Clocks utilized include the 

high-speed recovered serial clock and the low-speed recovered parallel clock. 
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2.5.4 Word Aligner 

The process of data conversion from parallel to serial (and vice versa) tends to result in 

misalignment of the data stream. This is addressed by the word aligner which operates in 

one of two modes: manual alignment, and bit-slip. In the manual mode, an input port is 

used to trigger the word aligner to look for a specified word pattern. When alignment is 

lost, the trigger has to be asserted again for the word aligner to function. The bit-slip 

mode is achieved by slipping a bit into the incoming data stream on every rising edge of a 

bit-slip input signal until the word alignment pattern is found. Within the word aligner is 

a Programmable Run Length Violation Detector which is used to determine if the number 

of consecutive ones or zeros in a data stream has exceeded a specified maximum. 

2.5.5 Deskew FIFO 

Imperfections in the physical transmission medium can result in skew between lanes of 

transmitted data. The deskew FIFO takes care of this by aligning the data in the lanes. 

This feature is only supported in XAUI mode. 

2.5.6 Rate Match FIFO 

The rate match FIFO is used to compensate for differences between the transmitter and 

receiver clocks. It inserts SKP symbols when the receiver reference clock frequency is 

greater than that of the transmitter reference clock frequency, and does the opposite when 

the transmitter reference clock frequency is greater than the receive clock. 
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2.5.7 8B/10B Decoder 

The 8B/10B decoder performs the reverse operation of the 8B/10B encoder by converting 

a received 10-bit data stream back to an 8-bit data stream with a 1-bit control identifier. 

2.5.8 Byte Deserializer 

Just as in the transmitter side, the byte deserializer is needed to resolve issues with 

maximum FPGA clock speed. In high-speed systems, the clock speed of the receiver PCS 

might be greater than the maximum supported clock speed of the FPGA. In such cases, 

the byte deserializer is used to halve the clock rate by deserializing the data stream before 

forwarding it to the FPGA core for error checking. 

2.5.9 Receiver Phase Compensation FIFO 

This block ensures reliable data transfer between the receiver PCS and the FPGA fabric. 

It also compensates for the phase difference between the receiver PCS clock and the 

FPGA fabric clock. The transceivers are extremely flexible as it is possible to 

include/remove certain blocks in the PCS of both the transmitter and receiver. In fact, the 

whole PCS can be bypassed to implement what is known as the PMA-only channel. 

2.6 Mechanisms for Signal Degradation in Backplanes 

The next few sections briefly discuss degradation issues involved in high-speed digital 

data transmission. Whenever a signal is transmitted through a channel, be it wireline or 

wireless, it suffers from some sort of degradation as a result of the channel 

characteristics, or some other unwanted external signal in the form of noise. As a result, 
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what leaves the transmitter is not always the same as what reaches the receiver. Some of 

the mechanisms for signal degradation are outlined in the following subsections. 

2.6.1 Cross Talk 

Crosstalk is simply the coupling of energy from one transmission line to another. This 

could be as a result of inductive or capacitive coupling. Inductive coupling occurs when 

changing electric current flows through a conductor. This gives rise to a magnetic field 

that induces another current in the adjacent transmission line. Capacitive coupling on the 

other hand occurs due to the capacitor formed when two conductors are separated by a 

distance. Crosstalk could be Near End Crosstalk (FEXT) or Far End Crosstalk (FEXT). 

NEXT is crosstalk measured at the same side of the conductor while FEXT is crosstalk 

taken at opposite ends of the conductor.  

2.6.2 Return Loss 

Return loss is a ratio of the signal reflected from a Device Under Test (DUT) to the signal 

launched into the DUT. This occurs as a result of discontinuities in the link or impedance 

mismatches. Return loss is measured in decibels and because the logarithm of a number 

less than one is negative, the return loss is usually a negative number.   

2.6.3 Reflection 

Similar to return loss, reflection occurs as a result of impedance mismatch along the 

channel. As a result, not all the energy transmitted from the transmitter reaches the 

receiver and this makes detecting the signal difficult resulting in errors. Also, if multiple 
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discontinuities exist, multiple reflections will occur leading to an even worse channel 

performance. 

2.6.4 Skin Effect 

At high frequencies, current tends to flow on the surface of a conductor rather than its 

whole cross-section. This reduces the effective cross sectional area for conduction 

thereby increasing resistance and causing attenuation. 

2.6.5 Dielectric Loss 

The dielectric constant is a property of Printed Circuit Boards which affects the 

impedance of a transmission line. It is normally determined by comparing its effect on a 

conductor pair to that of a conductive pair in vacuum. Materials with lower dielectric 

constants offer less degradation to signals passing through them meaning they can 

support transmission over longer distances than those materials with high dielectric 

constants [13]. 
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Figure 2-8. Loss curve versus frequency for a typical backplane. [20] 

Table 2-2. Some materials with their dielectric constants [20]. 

 

 

At high frequencies, the dielectric loss is more dominant than skin effect as it varies in 

proportion with frequency, while skin effect varies with the square root of the frequency. 

This can be seen in Figure 2-8 [20]. 
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2.7 Effects of Signal Degradation 

The mechanisms for signal degradation mentioned above lead to the following 

detrimental effects on the signal being transmitted: 

2.7.1 Attenuation 

This is simply the decrease in the energy of the signal being transmitted making signal 

detection at the receiver end especially difficult when there is a significant amount of 

noise in the channel. Attenuation can be caused by skin effect and reflection. 

2.7.2 Inter-Symbol Interference 

Due to the loss mechanisms discussed above, backplane frequency responses are usually 

low- pass in nature. The attenuation of the high frequency components in the frequency 

domain tends to spread out the transmitted signal in time, thereby leading to Intersymbol 

Interference ISI.  Two methods generally exist to mitigate this detrimental effect. The 

first is to design bandlimited pulses (i.e Nyquist pulses) by pulse-shaping. The ideal 

Nyquist pulse in the time domain is the sinc pulse which is non-causal in the time domain 

and therefore not realizable. Approximations to this, such as the raised cosine and root 

raised cosine pulse, are used instead.  A second approach used to tackle the effects of ISI 

is that of equalization which can loosely be defined as the process of flattening out the 

frequency response of the channel by incorporating certain filters in cascade with the 

channel. 
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2.8 Duobinary Signaling 

Most of the mechanisms for signal degradation mentioned above are frequency 

dependent. This implies the need for a solution to the frequency dependent data loss 

present in the channel. One of such solutions is the use of multilevel signaling schemes 

like duobinary signaling.  Duobinary signaling is a three level partial response signaling 

that is generated by delaying and adding two subsequent bits. Duobinary coding should 

not be confused with other line coding techniques that utilize three levels like ternary and 

pseudo-ternary. These techniques use independent bit levels where transitioning from one 

level to any other is possible, as opposed to the duobinary system where certain 

transitions are not allowed. Ternary and pseudo-ternary codes both occupy the same 

bandwidth as the NRZ signaling [3]. Figure 2-9 shows a comparison between the 

bandwidth of NRZ and duobinary signaling techniques. 

 

Figure 2-9. Bandwidth Comparison between NRZ and Duobinary signaling [14]. 
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Although duobinary coding leads to ISI, it is done in a controlled manner such that no ISI 

is present at the sampling instances. As a result, it is now possible to transmit at speeds 

faster than the Nyquist rate [22].  

The duobinary bandwidth is half that of NRZ. This means performing equalization over a 

narrower frequency range, thereby making equalizers less complex. In addition, nulls that 

occur in the transfer function of the backplane do so towards the higher end of the 

frequency spectrum, so that having a reduced bandwidth helps mitigate this null effect. 

Duobinary has built-in error checking ability because certain transitions are not allowed 

[19, 24]. For the same reason, duobinary has better immunity to crosstalk/reflection than 

PAM-4, and the effects of crosstalk/reflection are proportional to maximum transitions in 

a signal [3]. A duobinary signal can be generated by using delay and add logic, 

backplanes that create the proper ISI or the use of filters and backplanes among other 

methods [4]. Duobinary has an advantage over NRZ in terms of bandwidth and over 

PAM-4 in terms of complexity and power [1]. It requires two decision threshold levels as 

opposed three for PAM-4 thereby making receiver design less complex and provides only 

a 2.1 dB SNR penalty over NRZ, while that of PAM-4 over NRZ is around 7 dB. So even 

though duobinary has the same bandwidth as PAM-4, it has a 5 dB SNR advantage. In 

addition, duobinary has just two decision thresholds as opposed to three for PAM-4 [1]. 

So for all the reasons mentioned above, duobinary has been chosen as the proposed 

solution to the high frequency problem in this research. 
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2.9 Equalizers 

As discussed earlier, the channels tend to attenuate the high-frequency components of the 

signal being transmitted. A natural line of thought to address this would be to increase the 

signal power. However, this does not solve the problem as the attenuation is frequency-

dependent. Moreover, noise is not considered in this case, as any increase in signal power 

leads to a corresponding increase in noise power. Most importantly, however, will be the 

overall increase in the power requirements of the system, which is not desirable. 

Equalizers are electronic circuits that are used to aid in flattening out the frequency 

response of backplanes by amplifying or boosting only the high- frequency contents of 

signal that suffer from attenuation. The equalizers normally have an inverted response of 

the channel, so that when cascaded with a channel, a flat response is produced. When 

considered in the time domain, equalizers are used to prevent ISI, since they practically 

restore the high frequency components of the signal which aids in better detection at the 

receiver. Equalization, which can be performed at both the transmitter and receiver, 

basically fall into two categories as discussed in the following subsections. 

2.9.1 Linear Equalizer 

 The linear equalizers include the zero-forcing equalizers and adaptive types. Linear 

equalizers simply invert the backplane response which is usually a problem whenever 

nulls exist in the frequency response, as an inverted null is undefined. This leads to the 

need for higher order networks for equalization. Furthermore, the zero forcing equalizer 

does not account for the noise in the system, and hence could worsen the system’s noise 
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performance.  As boards are of different lengths, materials, and data rates of operation, it 

is unlikely that a single set of equalizer taps will be adequate for efficient equalization; 

these taps need to be adjusted for varying conditions, thereby requiring the need for 

equalizers whose taps are changed based on channel conditions and other factors. 

Adaptive equalizers adjust their coefficients in response to a channel whose properties 

vary with time. An identified stream of data known as the training sequence is 

transmitted to the receiver. The transmitted and received sequences are then compared, 

and based on the error at the receiver, the coefficients are adjusted. This adjustment is 

normally done based on the principle of optimization by minimizing a metric, usually the 

Mean Square Error (MSE), Least Mean Square (LMS), and Recursive Least Square 

(RLS), etc. After coefficient computation, the equalizer taps are adjusted and data 

transmission continues.  Although, adaptive equalization provides better equalization 

than the zero forcing equalizers, the price paid is increased complexity and power 

requirements. Moreover, because the adaptive equalizers use training sequences for tap 

adjustment, a significant amount of overhead is incurred.  

2.9.2 Decision Feedback Equalizer 

Previous equalizers discussed do not consider noise, and therefore have a poor 

performance in the presence of noise. A DFE equalizes a signal without corresponding 

noise amplification. The DFE, which is non-linear, performs equalization by feeding back 

a weighted sum of previously detected samples to remove their ISI contribution on the 

incoming sample. A major drawback to the DFE, however, is the tendency for error 



 

32 
 

propagation, because the DFE assumes the past decisions are correct, and this is not 

always the case. The DFE basically consists of two filters: the feedforward, and the 

feedback. Figure 2-10 shows the block diagram of the DFE. 

 

Figure 2-10. DFE Block Diagram 

2.10 Eye Diagrams 

Eye diagrams (also called eye patterns) are used to evaluate the performance of a digital 

communication link. They are generated by overlaying several successive symbol 

intervals of the transmitted signal. The eye height gives information about the noise 

margin of the system, while the eye width gives information about jitter in the system. 

The eye diagram can also be used to determine the best time to sample the signal which is 

normally in the middle of the eye.  Figure 2-11 shows a typical eye diagram. 
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Figure 2-11. A typical eye diagram 
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Chapter 3  

NRZ Simulation and Transceiver Demonstration 

3.1 NRZ Simulation 

This chapter discusses a simulation in Simulink of a high speed NRZ transceiver system 

running at 11.3 Gbps and then a replication of the same performance in hardware. This is 

to ensure that the transceivers in the FPGA are configured correctly as the same method 

is employed for the duobinary system prototyped in subsequent chapters. The channels 

used for the simulation and measurement are 29-inch Megtron 6 calibration trace and an 

FCI backplane with a total length of 32-inches. The transfer characteristic (insertion loss) 

of the boards was taken with the Vector Network Analyzer (VNA) 5227 from Agilent 

and the characterization frequency ranged from 10 MHz to 50 GHz with 5000 sampling 

points and a frequency spacing of 1 kHz. The channel responses are as shown in Figure 

3-1. 

 

Figure 3-1. (a) Megtron-6 caltrace board                      (b) FCI backplane response 
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Figure 3-2. NRZ link design in Simulink 

The complete system is shown in Figure 3-2. Starting from the block at the left is the 

NRZ source. This is a PN sequence generator that generates a PRBS 7 pattern of ones 

and zeros at 11.3 Gbps. The next block is the raised cosine transmit filter which is used 

for pulse shaping of the incoming random data stream. The frequency domain equation 

for the pulse shaping filter is shown in equation 3.1 while its bandwidth equation is 

shown in equation 3.2 [16]. 

 
          

 

 
                      

 

 

                                                             

                                  (3.1) 
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          (3.2) 

Where    is the spectral bandwidth 

                is the rolloff factor and varies between 0 and 1 

                 is the bit rate 

            T is the symbol rate 

It is required to reduce the bandwidth of the signal to satisfy Nyquist criterion which 

states that to transmit data at R bits per second (bps), it is required to have at least R/2 Hz 

of bandwidth. It is a well-known fact that bandwidth is a limited or scarce resource and 

needs to be conserved, hence the need for the pulse shaping filter. The roll-off factor 

value for the filter used is 0.6. Figure 3-3 shows the settings window for the raised cosine 

filter. 
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Figure 3-3. Settings window for the raised cosine filter 

Next, after the raised cosine filter is the input buffer. This block serves to convert the 

incoming sample-based signal to a frame-based signal with 5000 samples per frame [21]. 

Within the MATLAB function block is an m-file that converts the incoming data into the 

frequency domain using the Fast Fourier Transform (FFT). The result is then multiplied 

by the insertion loss parameter of the channel used for the simulation after which the 

result is converted back to the time domain for onward transmission to the receiver. The 

operation simulates the data passing through the channel. At the output of the MATLAB 

function block is the output buffer. This performs the reverse operation of the input 

buffer block. It converts the parallel data back to serial. The final block is the DFE. This 
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block is used to perform receive equalization and compensate for signal distortion as it 

propagates through the channel. The DFE uses the Least Mean Square (LMS) algorithm 

to compute its taps. A two-tap DFE is used in the simulation, and Figure 3-4 shows a 

window with the DFE settings.

 

Figure 3-4. DFE settings 
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The other blocks in the design are eye scopes that are utilized for viewing the eye 

diagrams. The results are observed in the figures that follow.   

 

                      (a)                                                                   (b) 

Figure 3-5.(a) Transmitted eye diagram before passing through megtron-6 channel, (b) 

Eye diagram after passing through megtron-6 channel at 11.3 Gbps before equalization. 

 

 

Figure 3-6. Received eye diagram after DFE at 11.3 Gbps 
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Figure 3-7. (a) Eye diagram after passing through megtron-6 channel at 28 Gbps (b) 

Equalized eye 

After the data passes through the megtron-6 channel, there is significant reduction in the 

size of the eye as observed by comparing Figure 3-5 (a) and Figure 3-6. After 

equalization is performed, the eye is open again, this time looking similar to the 

transmitted data before passing through the channel. This is observed by comparing 

Figure 3-5 (a) and Figure 3-5 (b). Results obtained indicate the simulation is running 

correctly.  
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Table 3-1. NRZ simulation results for 11.3 Gbps and 28 Gbps for the megtron-6 channel 

Data Rate (Gbps) 

 

11.3 

 

28  

Before Eq. After Eq. Before Eq. After Eq. 

Eye Height (V) 0.3 1 0.3 1 

Eye Width (ps) 60 80 20 30 

 

Table 3-1 shows simulation results for data rates of 11.3 Gbps and 28 Gbps. The eye 

heights remain almost the same while the eye widths significantly decrease. Measurement 

at 28 Gbps is not performed because the maximum data rate supported by the FPGA used 

is 11.3 Gbps. 

3.2 Transceiver Demonstration  

The next few sections explain how to use the MegaWizard and Qsys to parameterize the 

transceivers in the FPGA, and then an example reference design [15] is used to operate 

the transceivers at 11.3 Gbps using a PRBS 7 data pattern. The implemented architecture 

is shown in Figure 3-8. The pattern is transmitted through the channel and the eye 

diagram viewed using the Digital Serial Analyzer (DSA) 8200 sampling scope from 

Tektronix. The eye height, eye width, RMS and peak jitter are observed. Trigger for the 

scope is supplied by a dedicated SMA pin on the FPGA. The transceiver toolkit is also 

run to demonstrate dynamic reconfiguration of some parameters such as pre-emphasis 
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and DC equalization gain of the transceivers. The protocol demonstrated is the basic 

double width mode with a parallel data size of 40 bits. Quartus II software is used for 

compilation and programming of the FPGA.  

 

Figure 3-8. Design architecture demonstrated with the transceiver toolkit  

The transceiver architecture is shown in Figure 3-8. It comprises of a JTAG to Avalon 

master bridge which allows for manipulating the reconfiguration controller and by 

extension the equalizers in the FPGA. There is also a data pattern generator and checker 

as well as timing adapters to take care of any timing delays within the system.  

The next step is to initiate the transceiver. The on-board loopback feature is turned off 

and the data pattern is transmitted directly to a scope for viewing the eye diagram.  

The first step is to start the MegaWizard Plug-In Manager from the Tools menu of the 

Quartus software to create a new custom megafunction variation. The device to be used 
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and output file language are then specified in the dialog box that appears next. The 

transceiver Megawizard function, ALTGX, is also chosen from the tab on the left. This is 

as seen in Figure 3-9. 

 

Figure 3-9. Transceiver definition window 

The window that appears next allows for specifying what device to use, the intended data 

rate and protocol, among other settings. The EP4S100G2F40I1 chip on the Stratix IV GT 

board used is the fastest with a speed grade of 1 [17]. The protocol implemented is basic 

double width mode with no sub-protocol. This means there is no PCS functionality 

incorporated in the design [12]. The sub-protocols allow for lane bonding which enables 

multiple transceiver channels to be connected together but this is not used in this design. 

The transceivers can be configured for transmitter-only operation, receiver-only operation 
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and then, the receiver and transmitter configuration. This design uses the receiver and 

transmitter configuration with a single channel. The transceiver is run in double width 

mode with a channel width of 40 bits. This is also set in the window. The data rate is set 

to 11.3 Gbps, for comparison with simulations, with a clock frequency of 706.25 MHz. 

The same clock frequency is used for 5.65 Gbps. A summary of these settings is shown in 

Figure 3-10. 

 

Figure 3-10. Data Rate settings for transceiver 
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The next step in the settings window is used to specify whether to train the CDR from the 

PLL input clock. This block is checked to avoid supplying an external clock. Optional 

ports for controlling and monitoring the transceiver operation are also specified at this 

stage.  

The next window is a continuation of the optional ports. They are retained with the 

default settings. Moving on to the next page, a termination resistance of 100 Ohms is 

specified with a receiver common mode voltage of 0.82 V. The DC gain setting is set to 1 

which corresponds to a gain of 3 dB [18] across the whole frequency spectrum of the 

signal (note that in this case a DC gain setting of 1 is doubling the gain). These settings 

are as illustrated in Figure 3-11. 

 

 

Figure 3-11. DC gain setting 
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The transmitter analog settings and the dynamic reconfiguration settings remain 

unchanged, and so are the next few windows. The finish button is clicked to generate the 

transceiver instance just created. The final window is shown in Figure 3-12. 

 

 

Figure 3-12. Final page for transceiver settings 

Now that the code for the transceiver has been generated, Qsys is started and the 

transceiver is incorporated into the complete architecture of the system. The architecture 

consists of a data pattern generator, a data pattern checker, the designed transceiver and 

clocks that enable proper functioning of the complete design. Just like the MegaWizard 

manager, Qsys is also started from the tools menu of the Quartus software. When the 

Qsys window opens, New Component is clicked to define the earlier created transceiver 
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instance. The interfaces with no signals are removed and then the remaining interfaces 

are renamed. This is reflected in the Signals tab as shown in Figure 3-13.  
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Figure 3-13. Signals tab in component editor 
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The component is then saved. Other components of the design such as the PLL reference 

clock source, the reconfiguration clock, the data pattern generator and checker, as well as 

timing adaptors and JTAG-to-Avalon Master Bridge are added. The final design with the 

associated connections is shown in Figure 3-14. 

 

Figure 3-14. Complete NRZ system architecture implemented in Qsys 

From the generation tab, the complete system is generated and saved in the job folder. 

Qsys is closed and a top level Verilog file is written to instantiate the whole system, after 

which compilation, programming and testing can be performed. After making all 

necessary settings and modifications in Qsys, the system is generated and instantiated in 

the top level Verilog file in Quartus. Compilation and device programming is done with 

the aid of the Quartus software. Figures 3-13 shows a successfully compiled system.  
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Figure 3-15. Compiled system 

3.3 System Testing 

To test the transceivers, the reference design example is compiled to generate a 

programming file that is downloaded to the FPGA. After programming the FPGA, correct 

operation of the link can be verified with the help of the transceiver toolkit. This can be 

started from the Tools menu on the Quartus software. Figure 3-16 shows a typical 

transceiver toolkit window and Figure 3-17 shows the hardware setup for the 

measurement.  
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Figure 3-16. Transceiver toolkit Window 

 

 

Figure 3-17. Hardware setup 

Output from FPGA 

transmitter and input to 

channel 

Output from channel and 

input to scope 

706.25 MHz clock from 

FPGA to trigger scope 
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The USB blaster cable is used to connect the FPGA and the computer for programming, 

and to send dynamic reconfiguration commands from the computer to the FPGA 

transceivers. SMA cables from the output of the transceivers are connected to the channel 

at one end. At the other end of the connector, another set of cables are used to connect to 

the scope. The two channels are tested at data rates of 5.65 and 11.3 Gbps and the 

obtained eye diagrams are observed using the same scale to show the effect of 

equalization. Eye diagrams results for the Megtron 6 caltrace at 5.65 and 11.3 Gbps are 

shown in Figure 3-18 and Figure 3-19, respectively.  

 

Figure 3-18. Results for Megtron 6 caltrace before and after equalization at 5.65 Gbps 

  

Figure 3-19. Results for Megtron 6 caltrace before and after equalization at 11.3 Gbps  
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Figure 3-20. Results for FCI backplane before and after equalization at 5.65 Gbps  

Results for FCI backplane before and after equalization at 5.65 are shown in Figure 3-20. 

Comparison between the simulated data in Simulink and the actual measurement for the 

Megtron 6 board at 5.65 and 11.3 Gbps is shown in Figure 3-21 and 3-22, respectively. 

At 5.65 Gbps, the eye height and width for simulation are 0.3V and 130 ps, respectively 

while for measurement they are 0.06 V and 128 ps. As the data rate is increased to 11.3 

Gbps, the eye height and eye width for simulation are 0.3V and 60 ps respectively and 0V 

and 29 ps for measurement. The simulation is slightly better because of the absence of the 

effects of the cables used for measurement and possible noise within the system. Table 3-

2 summarizes these results. 
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Table 3-2. NRZ simulation and measurement comparison results  

Data Rate (Gbps) 

 

5.65 

 

11.3  

Simulation Measurement Simulation Measurement 

Eye Height (V) 0.3 0.06 0.3 0.25 

Eye Width (ps) 130 128 60 29 

 

  

Figure 3-21. NRZ Simulation and measurement eye diagrams at 5.65 Gbps 

  

Figure 3-22. NRZ Simulation and measurement eye diagrams at 11.3 Gbps 
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Table 3-3 illustrates the effect of using the equalizers in the FPGA at data rates of 5.65 

Gbps and 11.3 Gbps. It is seen in the table that summarizes the result for the 

measurements taken on the Megtron 6 channel. 

Table 3-3. Summary of NRZ measurement results for the Megtron 6 channel 

Data Rate 

(Gbps) 

 

5.65 

 

11.3  

Before Eq After Eq Before Eq After Eq 

 Sim.  Meas. Sim. Meas. Sim. Meas. Sim. Meas. 

Eye Height (mV) 60 53.9 200 179.32 30 20 200 25 

Eye Width (ps) 130 128.53 135 122.69 60 26 80 29 

 

In Table 3-3, it is seen that at a lower data rate of 5.65 Gbps, before equalization, the eye 

height and width are 53.9 mV and 128.5 ps respectively. However, after equalization is 

performed, the eye height significantly increases to 179.3 mV while the eye width 

decreases to 122.7 ps. As the data rate is increased, however, both eye height and eye 

width degrade; at 11.3 Gbps, the eye height and width are 25 mV and 26 ps respectively 

before equalization. After equalization, there is no improvement in the eye height and 

only a slight improvement in the eye width to 29 ps. This is because no receive 

equalization is performed. Transmit equalization can be implemented for both 5.65 Gbps 

and 11.3 Gbps while receive equalization can be only performed at 5.65 Gbps as the 
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Stratix IV GT FPGA is designed to run receive equalization at a maximum data rate of 

6.5 Gbps [26]. 
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Chapter 4 

Duobinary Simulation and Proposed ASIC architecture 

4.1 Duobinary Precoder 

The duobinary signal is generated by the addition of two subsequent bits and hence, when 

decoding the signal from duobinary back to binary there is the tendency for a decoding 

error in a single bit to propagate through the system. The duobinary precoder circuit is 

used to prevent such error propagation in the system. This works by modifying the data in 

such a way that when the data is to be decoded, the error in a given bit does not depend 

on the previous bits.  As a result, not only do we achieve better error performance, 

decoding the data also becomes much easier.  The duobinary precoder consists of a unit 

delay and an XOR gate as given in equation (4.1) 

                                                                                                               (4.1) 

Figure 4-1. shows the structure of a duobinary precoder. 

 

Figure 4-1. Duobinary Precoder 

Tables 4-1 and 4-2 use a simple example to illustrate the importance of the duobinary 

precoder. In Table 4-1, the data stream is converted from bipolar straight to duobinary, in 
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which case there is no precoding, and a single error can be seen propagating from the 

fourth down to the seventh bit position.  

In Table 4-2 however, where precoding is implemented, the same error remains at bit 

position four and doesn't propagate any further. 

Table 4-1. Duobinary Decoding without a precoder. 

Binary 0 1 1 0 1 0 1 1 1 0 0 0  

Bipolar -1 -1 1 1 -1 1 -1 1 1 1 -1 -1 -1 

Duobinary  -2 0 2 2 0 0 0 2 2 0 -2 -2 

Decoded  0 1 1 1 0 1 0 1 1 0 0 0 

 

Table 4-2. Duobinary Decoding with a precoder. 

Binary  0 1 1 0 1 0 1 1 1 0 0 0 

Precoded 0 0 1 0 0 1 1 0 1 0 0 0 0 

Bipolar -1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 

Duobinary   -2 0 0 0 0 2 0 0 0 -2 -2 -2 

Decoded  0 1 1 1 1 0 1 1 1 0 0 0 

 

 

 



 

59 
 

4.2 Duobinary Encoder 

The duobinary decoder converts the two-level NRZ signal to a three-level duobinary 

signal. This can be achieved in a number of ways [7].  In this work, however, the delay 

and add filter approach is chosen for its simplicity. The duobinary encoding process is as 

shown in equation (4.2). 

                                                                                                             (4.2) 

A block diagram representing the duobinary encoder is as shown in Figure 4-2. 

 

Figure 4-2. Duobinary Encoder. 

4.3 Pre-Emphasis Filter 

As previously discussed in Chapter 2, backplane channels usually have low pass 

characteristics leading to the attenuation of the high frequency components of the signal 

being transmitted. As a result, sometimes before signal transmission, the high frequency 

components of the signal are boosted. This is done with a filter called a pre-emphasis 

filter. The pre-emphasis filter used for simulation in this work is a simple two-tap FIR 
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filter whose taps were determined using the Filter Design and Analysis (FDA) tool in 

Simulink. 

4.4 Channels 

Two channels are used in this research. The first is a 29-inch Megtron 6 Backplane 

channel which has been characterized up to a frequency of 50 GHz and the second is an 

FCI backplane with a total length of 32 inches. The response of these channels is saved in 

a touchstone (snp) format and MATLAB is used to extract the data. Figure 4-3 and 

Figure 4-4 shows these channels and their corresponding responses. 

 

 

Figure 4-3. (a)Megtron 6 Cal Trace board and (b) channel response 
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Figure 4-4. (a). Backplane Channel and  (b) channel response  

4.5 Receive Equalizer 

Sometimes in addition to the transmit equalization, a receive equalizer is required at the 

receiver end. A DFE utilizing the LMS algorithm is used in the simulation of the design. 

It has two feedforward taps and one feedback tap with a step size of 0.1. 
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4.6 Duobinary Decoder 

At the receiver, it is necessary to recover the original binary signal from the duobinary 

signal. The duobinary decoder is used for that purpose and it comprises two comparators, 

two threshold voltage levels and an XNOR gate [1]. The duobinary decoder is shown in 

 

Figure 4-5. Duobinary Decoder  

The high speed duobinary signal is fed into both comparators and compared with the 

given thresholds. The resulting outputs are then passed on to the XNOR gate. When the 

duobinary input is greater than both reference levels at the comparators, the output is a 1. 

The output is a 0 when the duobinary input is greater than the reference at “Comparator" 

and less than that at "Comparator 1". Finally, the output is a 1 when the duobinary input 

is less than the reference levels at both comparator inputs. Table 4-3 summarizes these 

results in a truth table.  
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Table 4-3. Truth table showing result of duobinary decoding

 Comparator Comparator 1 Output 

V>V2 0 0 1 

V1<V<V2 0 1 0 

V<V1 1 1 1 

 

4.7 Model Simulation 

This section first discusses the model simulation without the channel and equalizers. The 

next simulation is done with the channel and transmit filter only and the final simulation 

is done for the complete system including the transmitter, channel and receiver. 

4.7.1 Without Channel 

Figure 4-6, illustrates the complete system model without the channel and equalizers 

present. This is simulated to verify the correct operation of the duobinary encoder/ 

decoder system without the channel included. It comprises of an 11.3 Gbps Bernoulli 

binary generator followed by a duobinary precoder. Next, it is the unipolar to bipolar 

converter and the duobinary decoder. At the receiving end is the duobinary decoder 

which basically consists of comparators and an XNOR gate.  
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Figure 4-6. System model without channel. 

Figure 4-7 shows the simulation results. The signal in the first row is the 11.3 Gbps NRZ 

signal generated by the Bernoulli Random Number Generator, while the second indicates 

the delayed NRZ signal. Moving on to the third row is the precoded binary sequence 

followed by the bipolar signal in the fourth row. In the fifth row is the three-level 

duobinary signal. In the last row is the recovered binary signal which is the same as the 

initially transmitted NRZ sequence in the first row. This indicates proper decoding of the 

transmitted signal, and; hence correct operation of the model. 
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Figure 4-7. Simulation results without channel. 

4.7.2 With Channel 

Here, all other components of the design such as the channel and the equalizers are 

included to complete the model. A simulation is then performed and this time, eye 

diagrams instead of time scopes are used to view the results. Just as in Section 4.7.1, the 

binary source, precoder, and duobinary precoder are present. However, in addition to that 

are the channel, and equalizers as well as a couple of other supporting blocks. The 

complete system with the channel and equalizers is as depicted in Figure 4-8. 
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Figure 4-8. Complete duobinary transmitter model including channel. 

The data source used for this simulation is a PN sequence generator that generates a 

PRBS 7 pattern at the desired data rate. The pattern is then passed to the duobinary 

decoder where it is converted from a two –level NRZ to a three-level duobinary signal. 

The raised cosine filter with an excess bandwidth of 0.6 and an upsampling factor of 20 is 

used to shape the duobinary pulse before transmission to the channel. The input buffer 

converts sample based signal to a frame based signal at a rate of 5000 samples a frame. 

This is because the number of samples in the S-parameters of the channel is 5000. The 

MATLAB function block simulates the given channel. Within this block, the Fourier 

Transform of the samples is computed, after which it is multiplied by the channel 

frequency response. The result is then converted back to the time domain by taking the 

Inverse Fast Fourier Transform (IFFT). Equalization is next performed using the receive 

equalizer. Comparing the resulting eye diagrams before and after the equalizer, shows a 
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remarkable improvement. After passing through the channel, the duobinary eye is 

severely attenuated but after equalization, the three level duobinary signal comes out 

clean. These results are as shown in Figure 4-9 for the Megtron 6 caltrace board and 

Figure 4-10 for the FCI backplane. 

  

               (a) Before Equalization                                        (b) After Equalization 

Figure 4-9. Eye diagrams for transmitter simulation with Megtron 6 board at 11.3 Gbps 

  

               (a) Before Equalization                                        (b) After Equalization 

Figure 4-10. Eye diagrams for transmitter simulation with FCI backplane at 11.3 Gbps 
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4.8 Proposed ASIC Implementation 

Because the FPGA is inherently a binary device, implementing a three-level signal is not 

feasible at the moment. The author tried to have access to the internal fabric of the 

transceivers from Altera but it was not possible. Therefore, an ASIC implementation of 

the duobinary encoder/decoder section is proposed with the FPGA still serving as the 

device for data generation, checking and channel equalization. The ASIC would be 

placed on the FPGA board such that when the NRZ data is transmitted from the FPGA 

chip and it passes from the transmitter PCS and PMA, it goes to the duobinary encoder 

on the board before getting transmitted on the channel. At the receiver, the duobinary 

signal is converted back to NRZ before CDR takes place. A block diagram for the 

complete proposed architecture is shown in Figure 4-11. 

 

 

Figure 4-11. Proposed ASIC implementation of FPGA transceiver 
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The above architecture offers several advantages. The primary one being that the whole 

structure of the FPGA transceivers is not distorted. All NRZ operations can still be 

carried out as usual. Secondly, other line coding methods or operations can also be easily 

integrated into the transceivers. Subsequent sections demonstrate how HDL code (not 

synthesizable at the moment for reasons discussed at the beginning of this sub-section) 

for the system is generated and also the proposed architecture in Simulink. Also, 

simulation of the architecture in Simulink is shown.  

 

Figure 4-12. Duobinary encoder architecture for ASIC implementation 

 

 

Figure 4-13. Duobinary decoder architecture for ASIC implementation 
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4.9 HDL Code generation for duobinary encoder/decoder 

The HDL coder from within Simulink is used to generate the HDL code required to 

implement the duobinary encoder/decoder. It is started from the Simulation tab of the 

menu bar in simulink. The settings window is shown in Figure 4-14. 

 

Figure 4-14. Settings window for generating HDL code for duobinary encoder 

In Figure 4-15, we see a successful HDL code generation for the duobinary encoder 

while Figure 4-16 shows the architecture connection in Quartus. The duobinary 

encoder/decoder blocks were created in Quartus from the code generated by Simulink. 
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Figure 4-15. Successful HDL code generation

 

Figure 4-16. Proposed Architecture in Quartus 
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4.10 Simulation of Proposed Architecture 

This section has the simulation of the complete system from end to end including the 

transmitter section, the channel and the receiver. The model is shown in Fig 4.17 

 

Figure 4-17. Proposed end to end architecture model. 

The performance of the duobinary system depends on the threshold values of the decoder. 

One approach would be to pick these values at simulation time and then use them value 

for hardware implementation. The simulation results shown in Figure 4-18(b) and Figure 

4-19(b) indicate that the duobinary signal is attenuated to about half its magnitude. This 

means the signal level has dropped to between -0.5V and 0.5V. Sampling is normally 

done in the middle of the eye which corresponds to 0.25V and -0.25V in this case. For 

that reason, the threshold levels of the duobinary decoder are set to -0.25V and 0.25V, 
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respectively. Lower values of -0.1V and 0.1V can also be used. If however, the channel 

attenuation is not known, the optimum threshold values might have to be determined by 

an adaptive algorithm. The system is simulated and the resulting eye diagrams into and 

out of both channels are compared. It is observed that the eye diagrams for the FCI 

backplane suffer more attenuation because of the longer trace length and also the effect of 

the connectors. Notwithstanding the attenuation; however, the duobinary decoder 

successfully decodes the eye back to binary. Eye diagrams at the transmitter closely 

resemble those at the receiver for both channels. Figure 4-18 and Figure 4-19 show these 

results. 

 

                 (a)Before Channel                                               (b) After channel 
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                                                     (c)After equalization 

Figure 4-18. Duobinary results for the Megtron 6 board at 5.65 Gbps 
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                 (a)Before Channel                                               (b) After channel 

 

                                                          (c)After equalization 

Figure 4-19. Duobinary results for the FCI backplane at 5.65 Gbps 

Notice that there is improvement of the eye opening. Details will be explained in section 

4.12. 

4.11 Duobinary decoding with channel 

Figure 4-17 shows a complete duobinary system which includes the encoder, channel and 

decoder. This section views the original NRZ eye diagram transmitted to the duobinary 

encoder and through the channel and then compares it to the eye diagram at the receiver 

without and with receive equalization. Figure 4-20 illustrates these results. 
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       (a) Transmitted NRZ                 (b) Decoded NRZ                   (c) Received NRZ 

Figure 4-20.  Significance of receive equalization  

Figure 4-20 (a) shows the eye pattern transmitted to the channel while Figure 4-20 (b) 

shows the eye pattern for the decoded duobinary signal before it is equalized by the DFE. 

It is seen that even though it is a two level NRZ signal, it is not neat and can lead to errors 

in signal detection. Figure 4-20 (c) shows a decoded and equalized signal. This is a clear 

signal. It is therefore important to have the equalizer to clean up the signal after it must 

have been corrupted by the channel impairments and noise. 

4.12 Comparison of NRZ and Duobinary Simulation Results 

This section compares the eye diagram results for both NRZ and duobinary signaling in 

terms of the eye diagrams obtained. No settings were changed in moving from NRZ to 

duobinary except for the inclusion of the duobinary encoder and duobinary decoder 

blocks. Results for both channels are viewed with data rates of 5.65 Gbps and 11.3 Gbps.  
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(a) Transmitted NRZ              (b) NRZ through channel             (c) Received NRZ

 

(a) Transmitted duobinary        (b) Duobinary through channel   (c) Received duobinary 

Figure 4-21.  NRZ and duobinary comparison, FCI backplane at 5.65 Gbps 

           

(a) Transmitted NRZ              (b) NRZ through channel             (c) Received NRZ

    

(a) Transmitted duobinary      (b) Duobinary through channel   (c) Received duobinary 
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Figure 4-22.  NRZ and duobinary comparison, megtron-6 board at 5.65 Gbps 

    

(a) Transmitted NRZ              (b) NRZ through channel             (c) Received NRZ

  

(a) Transmitted duobinary      (b) Duobinary through channel   (c) Received duobinary 

Figure 4-23.  NRZ and duobinary comparison, FCI  backplane at 11.3 Gbps. 
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  (a) Transmitted NRZ              (b) NRZ through channel             (c) Received NRZ 

   

(a) Transmitted duobinary        (b) Duobinary through channel   (c) Received duobinary 

Figure 4-24.  NRZ and duobinary comparison, megtron-6 board at 11.3 Gbps 

Table 4-4. Comparison simulation results at 5.65 Gbps 

 Megtron 6 board FCI backplane 

 NRZ Duobinary NRZ Duobinary 

Eye height (V) 0.3 0.45 0.3 0.4 

Eye width (ps) 130 140 130 130 
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Table 4-5. Comparison simulation results at 11.3 Gbps 

 Megtron 6 board FCI backplane 

 NRZ Duobinary NRZ Duobinary 

Eye height (V) 0.3 0.3 0.25 0.4 

Eye width (ps) 60 65 60 65 

 

Table 4.4 and 4.5 summarize the results in Figures 4-21 to 4-24. A careful observation 

indicates that in general, the duobinary signal has a better eye height and eye width than 

the NRZ for both channels and data rates and as such a more suitable choice when 

moving up to higher data transmission rates.  The duobinary scheme has a 30% 

improvement over the NRZ scheme. 

4.13 End-to-End NRZ and duobinary comparison 

This section compares the recovered eye diagrams for both the NRZ and duobinary 

systems. The eye diagrams for both systems are identical except for some little noise in 

the duobinary system. This implies correct operation of the duobinary encoder and 

decoder subsystems. Figure 4-25 shows the transmitted and received NRZ eye in the 

NRZ scheme while Figure 4-26 shows the transmitted and recovered NRZ eye 

transmitted in the duobinary system.   
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                            (a) Transmitted eye                           (b) Recovered eye 

Figure 4-25. NRZ system for 11.3 Gbps for backplane 

 

                    (a) Transmitted eye                                              (b) Recovered eye 

Figure 4-26. Duobinary system for 11.3 Gbps for backplane 
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                            (a) Transmitted eye                           (b) Recovered eye 

Figure 4-27. NRZ system at 5.65 Gbps for backplane 

 

 

                    (a) Transmitted eye                                              (b) Recovered eye 

Figure 4-28. Duobinary system at 5.65 Gbps for backplane 
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4.14 Bit Error Rate Results 

In this section, the BER for NRZ and duobinary signaling of the architecture running at 

5.65 Gbps for both channels are obtained and compared using Simulink. The model is the 

same as in previous sections except for the addition of the “Align Signals” block which is 

included to compensate for delay the signal encounters as it propagates through the 

channel and the “Error Calculation” block which computes the BER. “Rounding 

Function” blocks are also included within the model to reduce errors in the system 

because Simulink only compares exact values, if they are off even one decimal place, an 

error results. The simulink model for the NRZ BER calculation is as shown in Figure 4-

20 while the model for the duobinary BER calculation is shown in Figure 4-21. 
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Figure 4-29. Simulink model for NRZ BER calculation 
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Figure 4-30. Simulink model for Duobinary BER calculation 
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The BER for the megtron-6 caltrace board at a data rate of 5.65 Gbps is 4.082 x10
-6   

when 

NRZ signaling is used and 3.675 x10
-6  

 for duobinary. The BER of the backplane using 

NRZ, however, is 5.351 x10
-6  

  while it is 4.72 x10
-6  

 for duobinary signaling. The BER 

for the backplane is worse than the BER of the megtron-6 caltrace because of the 

connectors and daughter cards present on the backplane. In both cases, it is seen that the 

duobinary BER is better than that of the NRZ. The BERs are relatively high and this can 

be attributed to truncations, padding and real to complex operations that take place during 

FFT and IFFT operations performed within the MATLAB function block. In addition, 

care must be taken with the LMS block since the convergence rate contributes to error 

rate at the beginning of the simulation while the filter taps are adjusting. The BER 

improves as the simulation progresses, and therefore, a better BER is expected if the 

simulation time is increased. Table 4-6 shows these results BER results at 5.65 Gbps 

while Table 4-7 shows BER results at 11.3 Gbps. 

Table 4-6. BER results at 5.65 Gbps 

 Megtron 6 board FCI backplane 

Signaling NRZ Duobinary NRZ Duobinary 

BER(x10
-6

) 4.082 3.675 5.351 4.72 
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Table 4-7. BER results at 11.3 Gbps 

 Megtron 6 board FCI backplane 

Signaling NRZ Duobinary NRZ Duobinary 

BER(x10
-6

) 4.4 3.139 6.854 3.902 
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Chapter 5 

Conclusions and Recommendations for Future Studies 

5.1 Conclusions 

 

This thesis demonstrates the ability to model and run a complete high speed transceiver 

system on an FPGA board using the FPGAs using the NRZ line coding scheme. Eye 

diagram results were used to compare the NRZ simulation and measurement results at data 

rates of 5.65 Gbps and 11.3 Gbps using two different channels. The transceivers in the 

FPGA were also run to demonstrate the equalization features of the FPGA for both channels 

and data rates. Simulation and measurement results matched indicating a correct simulation. 

A proposed duobinary ASIC scheme for integration with the FPGA transceivers was 

designed and simulated in Simulink. Two different channels were used at data rates of 5.65 

and 11.3 Gbps. The transmitted duobinary eye was correctly recovered at the receiver and 

the eye heights and widths were better than those for the system. The BER for both systems 

was also compared and it was found out that the duobinary system is better than the NRZ 

hence it is a good choice for high data rates. FPGAs were chosen for this research work 

because it is easy to make design changes and also because of the FPGA’s built-in features 

such as equalizer and transceivers. Through a feature called dynamic reconfiguration, both 

transmit and receive equalization can be performed on the transceiver links as the device is 

running.  
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5.2 Recommendations for Further Study 

It is expected that the work done in this thesis will allow for quick and easy implementation 

of the proposed architecture as major issues such as data generation, equalization etc have 

been addressed. The next step will be implementing this architecture for duobinary as well 

as for PAM-4. If carried out, it will go a long way in simplifying high speed analysis of 

digital transmission systems as all needed components are integrated on a single board. 

Boards that support higher speeds and more equalization features such as the Stratix V GT 

FPGAs should be used for future work. Higher speeds of up to 40 Gbps can also be studied 

and explored by operating the transceivers in bonded mode. Comparative studies can also be 

carried out between hardware implementation of NRZ, duobinary and PAM-4 signaling 

schemes. More accurate BER methods for simulation could also be explored as the FFT, 

IFFT, and LMS operations performed in the simulation cause rounding errors and worsen 

the BER performance. 
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Appendix 

/* Matlab script for extracting s-parameters from measurement*/ 

a = read(rfdata.data,'LY4 29inch All 10mil.s4p'); 

[SP,freq] = extract(a,'S_Parameters',50); 

thru = SP(1,2,:); 

thru = squeeze(thru); 

 

/* Matlab script for characterizing channel behavior*/ 

function y = fcnn(u) 

  

y=ones(5000,1); 

eml.extrinsic('importdata') 

eml.extrinsic('fft') 

eml.extrinsic('ifft') 

eml.extrinsic('times') 

  

  

s12=importdata('thru.mat'); 

  

input_freq_domain=fft(u,5000); 

u_freq=input_freq_domain; 

  

channel_sim=times(u_freq,s12); 

output=ifft(channel_sim); 

  

y = real(output); 

 

 

 

 

/* Generated Verilog code for duobinary encoder*/ 

 
// ------------------------------------------------------------- 
//  
// File Name: 

C:\Users\Ashraf\Documents\Thesis\References\Verilog_Code\Duobinary_Enco

der\DUOBINARY_ENCODER.v 
// Created: 2014-02-12 09:11:13 
//  
// Generated by MATLAB 7.14 and HDL Coder 3.0 
//  
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//  
// -- ------------------------------------------------------------- 
// -- Rate and Clocking Details 
// -- ------------------------------------------------------------- 
// Model base rate: 4e+07 
// Target subsystem base rate: 4e+07 
//  
//  
// Clock Enable  Sample Time 
// -- ------------------------------------------------------------- 
// ce_out        4e+07 
// -- ------------------------------------------------------------- 
//  
//  
// Output Signal                 Clock Enable  Sample Time 
// -- ------------------------------------------------------------- 
// Duobinary_Signal              ce_out        4e+07 
// -- ------------------------------------------------------------- 
//  
// ------------------------------------------------------------- 

  

  
// ------------------------------------------------------------- 
//  
// Module: DUOBINARY_ENCODER 
// Source Path: DUOBINARY_ENCODER 
// Hierarchy Level: 0 
//  
// ------------------------------------------------------------- 

  
`timescale 1 ns / 1 ns 

  
module DUOBINARY_ENCODER 
          ( 
           clk, 
           reset, 
           clk_enable, 
           Bipolar_Signal, 
           ce_out, 
              Sum_out1, 
           Duobinary_Signal 
          ); 

  

  
  input   clk; 
  input   reset; 
  input   clk_enable; 
  input   [0:0] Bipolar_Signal;  // double 
  output  ce_out; 
  output  [0:0] Duobinary_Signal;  // double 
  output  Sum_out1;  

  
  wire enb; 
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  wire Bipolar_Signal_double;  // double 
  wire alphaDelay_out1;  // double 
  wire Sum_out1;  // double 

  

  
  //always @* Bipolar_Signal_double = $bitstoreal(Bipolar_Signal); 

  
  assign enb = clk_enable; 

  
 // always @(posedge clk or posedge reset) 
  //  begin : alphaDelay_process 
  //    if (reset == 1'b1) begin 
   //     alphaDelay_out1 <= 0.0; 
   //   end 
   //   else begin 
    //    if (enb) begin 
    //      alphaDelay_out1 <= Bipolar_Signal_double; 
    //    end 
   ////   end 
   // end 

  

  

  
  assign Sum_out1 = Bipolar_Signal_double + alphaDelay_out1; 

  

  

  
  //assign Duobinary_Signal = $realtobits(Sum_out1); 

  
  assign ce_out = clk_enable; 

  
endmodule  // DUOBINARY_ENCODER 

  

 

/* Generated Verilog code for duobinary decoder*/ 

// ------------------------------------------------------------- 
//  
// File Name: 

C:\Users\Ashraf\Documents\Thesis\References\Verilog_Code\Duobinary_Deco

der\DUOBINARY_DECODER.v 
// Created: 2013-09-29 13:04:47 
//  
// Generated by MATLAB 7.12 and Simulink HDL Coder 2.1 
//  
//  
// -- ------------------------------------------------------------- 
// -- Rate and Clocking Details 
// -- ------------------------------------------------------------- 
// Model base rate: 4e-011 
// Target subsystem base rate: 4e-011 
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//  
// ------------------------------------------------------------- 

  

  
// ------------------------------------------------------------- 
//  
// Module: DUOBINARY_DECODER 
// Source Path: DUOBINARY_DECODER 
// Hierarchy Level: 0 
//  
// ------------------------------------------------------------- 

  
`timescale 1 ns / 1 ns 

  
module DUOBINARY_DECODER 
          ( 
           Duobinary_Signal, 
           Binary_Signal 
          ); 

  

  
  input   [0:0] Duobinary_Signal;  // double 
  output  Binary_Signal; 

  

  
  real Duobinary_Signal_double;  // double 
  real Constant_out1;  // double 
  wire Comparator_relop1; 
  real Constant1_out1;  // double 
  wire Comaparator1_relop1; 
  wire Comparator_out1; 

  

  
  always @* Duobinary_Signal_double = $bitstoreal(Duobinary_Signal); 

  
  initial Constant_out1 = -1.0; 

  

  

  
  assign Comparator_relop1 = (Duobinary_Signal_double < Constant_out1 ? 

1'b1 : 
              1'b0); 

  

  
  initial Constant1_out1 = 1.0; 

  

   
  assign Comaparator1_relop1 = (Constant1_out1 < 

Duobinary_Signal_double ? 1'b1 : 
              1'b0); 
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  assign Comparator_out1 =  ~ (Comparator_relop1 ^ 

Comaparator1_relop1); 

  

  

  
  assign Binary_Signal = Comparator_out1; 

  
endmodule  // DUOBINARY_DECODER 

  

 

 

/* Top level Verilog Code for Transceiver */ 

 
module gx_link_test_example 
( 
    S4GX_50M_CLK4P, 
    REFCLK3P_GXB1_706M25, 
    GXB1_RX0, 
    GXB1_TX0, 
); 

  
    input  S4GX_50M_CLK4P; 
    input  REFCLK3P_GXB1_706M25; 
    input  GXB1_RX0; 
    output GXB1_TX0; 

  
    wire clk_50Mhz; 
    wire pll_inclk; 

  
    assign clk_50Mhz = S4GX_50M_CLK4P; 
    assign pll_inclk = REFCLK3P_GXB1_706M25; 

  

     

      
    link_test_sopc_sys_10g link_test_sopc_sys_10g_inst ( 
        .clk_clk_in_clk                                 (clk_50Mhz),     

//          clk_clk_in.clk 
        .clk_clk_in_reset_reset_n                       (system_reset),                  

//    clk_clk_in_reset.reset_n 
        .pllclk_clk_in_clk                              (pll_inclk),        

//       pllclk_clk_in.clk 
        .pllclk_clk_in_reset_reset_n                    (system_reset),   

// pllclk_clk_in_reset.reset_n 
        .xcvr_low_latency_phy_0_tx_serial_data_export   (GXB1_TX0),     

// xcvr_tx_serial_data.export 
        .xcvr_low_latency_phy_0_rx_serial_data_export   (GXB1_RX0)  // 

xcvr_rx_serial_data.export 
    );   
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Endmodule 

 

 

/* Synopsis Design Constraint file for clocking */ 

 

create_clock -period 50MHz [get_ports {S4GX_50M_CLK4P}] 
create_clock -period 706.25MHz [get_ports {REFCLK3P_GXB1_706M25}] 
derive_pll_clocks 
derive_clock_uncertainty 

  
set_input_delay -clock {altera_reserved_tck} 20 [get_ports 

altera_reserved_tdi] 
set_input_delay -clock {altera_reserved_tck} 20 [get_ports 

altera_reserved_tms] 
set_input_delay -clock {altera_reserved_tck} 20 [get_ports 

altera_reserved_ntrst] 
set_output_delay -clock {altera_reserved_tck} 20 [get_ports 

altera_reserved_tdo] 

  
set_clock_groups -asynchronous \ 
-group {S4GX_50M_CLK4P} \ 
-group {REFCLK3P_GXB1_706M25} \ 
-group [get_clocks {*|receive_pcs0|clkout }]\ 
-group [get_clocks {*|transmit_pcs0|clkout }]\ 
-group [get_clocks {*|receive_pma0|deserclock* }]\ 
-group [get_clocks {*|transmit_pma0|refclk0in* }] 
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