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Abstract

Compressive sensing (also referred to as compressed sensing) refers to the theory and prac-

tice of exploiting sparsity in physical measurements to acquire fewer samples than dictated

by the conventional Shannon-Nyquist-Kotelnikov sampling theorem. In this thesis, we ex-

plore the utility of compressive sensing in radar imaging problems. In order to achieve good

imaging resolution, we seek to build radar systems with hardware and algorithms intended

for processing signals of high bandwidth. Traditionally, radar systems utilized analog pro-

cessing systems. Over the last few years, with advances in computing, it has been possible

to process ultra-wideband (UWB) signals digitally. The current state of analog-to-digital

converter (ADC) technology limits our ability to effectively acquire UWB radio-frequency

(RF) signals in the context of radar imaging. However, radar signals that are scattered from

common target scenes are sparse when represented in appropriate basis functions. We can

thus apply the theory of compressive sensing to circumvent the limitations of ADC technol-

ogy and design radar systems capable of imaging at higher resolutions than conventionally

thought possible.

In this thesis, we study the utility of random, noise-like transmit waveforms in com-

pressive radar imaging. Our focus is on developing the theory and methods for the basic

radar signal processing tasks of imaging, detection, and waveform design in the framework

of compressive sensing. Compressive radar signal processing systems are more complex and

less robust to noise and perturbations than conventional systems. We demonstrate using

phase-transition diagrams that compressive noise radar is a feasible technology. Further,

phase transition diagrams can be used for calibrating radar systems in real applications.

The original contributions of this thesis are in developing the theory of compressive radar
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imaging using random stochastic waveforms. We demonstrate that compressive sensing

works in real scenarios by applying it to experimental ultra-wideband noise radar signals.

Hypothesis testing for target detection in the context of compressive radar imaging is dif-

ferent than the conventional setting since signal recovery is iterative and non-linear. We

propose a method based on extreme value statistics to characterize the detection perfor-

mance and determine thresholds for target detection in compressive radar imaging. We

validate the effectiveness of this approach by applying it to experimental noise-radar imag-

ing data. Radar systems often require designing waveforms that are optimally suited for

specific applications and target scenarios. However, optimizing the transmit waveform can

make the system matrix unsuitable for compressive signal recovery. In our work, we pro-

pose a waveform design algorithm that optimizes the waveform while keeping the system

matrix suitable for compressive sensing. We analyze its performance and demonstrate its

effectiveness through numerical simulations.
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Chapter 1

Introduction

A desirable goal of research in imaging is to design systems that can do more with less.

In more concrete terms, our objective is to maximize the information we can extract from

physical signals while minimizing the cost of measurement, acquisition, and processing. Be-

fore we embark on a review of the state of the art, we address the question of whether

measurement, acquisition, and processing represent different paradigms. Measurement of

physical signals involves understanding the underlying physical phenomena and construct-

ing hardware to measure physical quantities. Optical imaging involves measuring using

optical sensors, the intensity of light at different points in space and time. Radio-frequency

(RF) signal acquisition involves measuring surface currents induced in antennas by elec-

tromagnetic fields. Magnetic resonance imaging involves measuring radio-frequency signals

emitted by excited water molecules returning to their ground states. These signals are then

sampled and quantized for discrete operations. The final step in modern systems is to store

and process these data to extract meaningful information and context about the real world.

The conventional approach to imaging involves treating the problem of improving system

performance as two distinct sub-problems: (1) designing efficient hardware for measurement

and acquisition and (2) designing efficient algorithms for processing the discrete data. Over

the last two decades, new results in electrical engineering have made this distinction less

clear.

Compressive sensing [2] refers to the idea of making use of the mathematical structure
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of a signal to reduce the burden on the hardware used for measurement and acquisition.

Traditional sensing systems worked by first sampling a sensed physical signal, storing the

entire record, and then utilizing the mathematical structure for efficient processing, storage,

transmission, and visualization. The primary reason why we can do this efficiently is that

signals are structured. Mathematically speaking, the data acquired by such sensors are

highly redundant. We refer to this concept as sparsity. The useful information contained in

a signal is much smaller in dimension compared to the apparent dimension of the signal itself.

Compressive sensing provides the theoretical and algorithmic framework for simultaneously

compressing and sensing the signal. It opens up the possibility of non-adaptively acquiring

fewer data than before, while not compromising on the amount of useful information that

we can extract. The hope is that by efficiently implementing compressive sensing, one can

reduce the expensive burden of acquisition and measurement.

What are the specific challenges in modern systems that necessitate the deployment of

compressive sensing? Commentators in news media and elsewhere call our times the era of

‘Big Data’. In the context of signal processing, this ‘data deluge’ [3] is largely due to the

ubiquity of sensor systems that measure electromagnetic and physical waves. The burden on

acquisition and processing systems is also proportionally larger. In some imaging problems,

the information relevant to the application lies in a sub-space of smaller dimension than

the acquired data [3]. In compressive sensing, the amount of data measured by sensors is

decided by the information content, rather than the frequency content. In this context of

data deluge, we can hope to do more with our signal processing systems without necessarily

increasing the burden on sensors. The idea of shifting the burden from physical sensors to

computational algorithms has exciting implications for modern systems. We can potentially

design portable and energy efficient sensor systems and sampling schemes for applications

in radar imaging, digital communications, infrared imaging, acoustic imaging, and optical

sensing.

In our work, we present new results on compressive sensing for signal processing in the

context of linear inverse problems that occur in radar imaging. Specifically we propose to

use noise radar technology for compressive radar imaging. We outline the specific prop-
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erties of noise radar systems that makes them suitable for building compressively sensed

radar. While we can reduce the burden on sensors, deploying compressive sensing remains a

computationally expensive prospect. The important problem of characterizing the effect of

noisy signals in compressive sensing also remains open. In this thesis, we attempt to tackle

the first problem by proposing an efficient approach based on extreme value statistics for

formalizing the task of target detection (binary decision). We then explore the possibility

of using compressive sensing principles to enhance the performance of radars in typical ap-

plications. Based on redundant dictionaries, we develop models to leverage supplementary

information to improve the performance of radar imaging. The algorithms we propose en-

able significant improvements to the system performance at little extra cost. Our research

opens up new possibilities for exploiting sparsity in practical sensor systems to ‘do more

with less’.

1.1 Radar Imaging

In this thesis, we look at radar imaging as a linear inverse problem. The idea of using di-

rected radio frequency electromagnetic radiation for imaging applications was first proposed

during World War Two. In a typical radar system, an electromagnetic wave is transmitted

into free space using a transmitting antenna and the reflections are measured by a receiv-

ing antenna. In this thesis, we use the terms ‘target scene’ and ‘target environment’ to

refer to the region of space in which unknown targets are present. The terms ‘transmitted

waveform’ and ‘received’ or ‘reflected’ waveform refer to the time series represented by the

transmitted and reflected fields respectively. The received and transmitted waveforms are

discretized for processing, and the discrete locations of targets in each scene are referred to

as ‘cells’.

The most basic and widespread use of radar systems is in estimating range profiles of the

target scene, velocity of targets, and in performing target detection tasks. Conventional sys-

tems have employed techniques such as matched filtering, synthetic aperture radar, inverse

synthetic aperture radar, and threshold detection [4] for these tasks. These approaches to

radar imaging have proved quite effective for basic tasks. Conventional radar systems used
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Figure 1.1: Figure showing trends in the progress of ADC technology since 1975 to 2010,
borrowed from Jonsson [1]. ENOB stands for effective number of bits and refers to the
achievable number of quantization levels.

analog processing systems for the most part. One of the main reasons for this is the desire

to maximize the bandwidth of the transmit signals. In this thesis, we concern ourselves

primarily with imaging problems that involve building range profiles. A high bandwidth

signal is crucial to achieving a high range resolution. For most of the last six decades, the

absence of efficient sampling hardware and digital processing limited the adoption of digital

processing for radar systems. Since the 1990s [5], digital radar receivers are slowly becom-

ing pervasive in radar imaging applications. This is largely thanks to the development of

efficient high-rate analog-to-digital convertors (ADCs) and digital signal processing hard-

ware. However, ADC technology has advanced at a much slower pace than the growth in

computational capabilities. The move to digital systems has enabled us to incorporate ever

more advanced signal processing techniques at the receivers to improve the functionality of

radar systems. The trends in the evolution of analog-to-digital converter technology from

1975 to 2010 is shown in Figure 1.1 (the figure has been borrowed from a 2010 survey by

Jonsson [1]). For example, the best 12-bit quantization ADCs available today can sample

at a rate of around 2 gigasamples per second. The development of high resolution radar

technology is hindered by the cost of sampling the analog signal.
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Noise radar technology involves transmitting random-noise like continuous waveforms.

The received signals are incoherently processed using a matched filter for range detection.

Noise radar imaging was first proposed around fifty years ago in [6]. Over the years [7],

the trend has been towards the adoption of ultra-wideband signals for noise radar. Ultra-

wideband waveforms are defined as signals that have a bandwidth of either 500MHz or

higher or 20% of the center frequency. In our applications, we use waveforms of 500MHz

bandwidth. The ultrawideband nature of the waveform enables us to achieve a high range

resolution. The basic ranging problem involves modeling the target scene as a linear filter

with transfer function, s(t), so that, for a given transmit signal x(t) and additive noise η(t),

the reflected signal is simply given by

y(t) = x(t) ∗ s(t) + η(t), (1.1)

where ∗ represents the operation of linear convolution. In the past, noise radar signals have

mainly been processed using a matched filter. Matched filtering based target recovery is

premised on the fact that delayed versions of the transmitted signal are orthogonal to each

other. If we discretize the signal model, we obtain,

y = Xs+ η, (1.2)

where y, s,η ∈ RN and X ∈ RN×N . With the orthogonality assumption the recovered

target is given by

s = X−1y = XTy. (1.3)

The advantage of using the matched filter is that its implementation is efficient in terms

of cost and processing latency. In order to extract the target image, all we need to do

is to compute the cross-correlation between the reflected waveform and the transmitted

waveform.

In this thesis, we propose to use a least-squares based approach to noise radar imag-

ing. We extend the signal model such that, X ∈ RM×N and we cast the problem as one
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of minimizing a least squares-based cost function such as mins ||z − Xs||l2. While least

squares processing can potentially be more expensive computationally than correlation pro-

cessing and more difficult to process in real time, such a model enables us to improve the

functionality of the radar system. As we show in Chapter 2, with the least-squares for-

mulation, we can utilize sparsity to more efficiently sample the signals. Least-squares and

sparsity-based approach are harder to analyze and target recovery involves significant com-

putational cost. In Chapter 3, we propose to overcome these problems with the help of

an efficient data-driven detection algorithm. We strengthen our theoretical and empirical

claims in Chapter 2 and 3 by testing them on experimental noise-radar data. In Chapter

4, we leverage the least-squares formulation for designing an algorithm that enables us to

build a knowledge-based radar system.

1.2 Introduction to Compressive Sensing

Compressive sensing enables us to recover signals from asymptotically fewer samples than

traditional approaches mandate. This assertion has interesting consequences to solving

estimation problems. The compressive sensing problem that we consider in this thesis

involves solving the linear system given by

z = As+ η, (1.4)

where, we assume z ∈ RM , A ∈ RM×N , and s ∈ RN . In the absence of any information

about the vector s, for a unique solution to exist, the matrix A should have at least as

many rows as the dimension of s. In other words, the system should be fully determined or

overdetermined, with M ≥ N . An important question in many applications is whether we

can find a unique solution when M ≤ N . Compressive sensing asserts that when s is sparse,

underdetermined systems have unique and stable solutions, under certain conditions. The

basic approach to reconstruction involves looking for the sparsest solution to this linear

system. We follow the convention used in signal processing to represent the sparsity of a

vector as the so-called l0 norm (which is not technically a norm). ||u||l0 = #{i : ui (= 0}.
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We can then cast the inversion problem as one of minimizing the l0-norm

ŝ = argmin ||s||l0 s.t. ||z −As||l2 ≤ σ. (1.5)

While this formulation is theoretically correct, it is of little practical use. Minimizing the

l0 norm is an NP-hard combinatorial optimization problem. The main theoretical result

that enables the application of compressive sensing is that we can replace the l0-norm cost

function with the tractable l1-norm. This results in the following optimization problem

ŝ = argmin ||s||l1 s.t. ||z −As||l2 ≤ σ. (1.6)

The intuitive reason behind using the l1 norm is that it better approximates the attribute

of sparsity than other cost functions. Further, l1 optimization problems are easy to solve

using techniques from the mature fields of linear programming and convex optimization.

There are three important factors that decide whether this l1-optimization problem results

in the sparsest solution. The first is the sparsity, S of the solution as defined by the number

of non-zero elements in the vector s. Secondly, the stability and accuracy of the solution

is dependent on the noise, η and our estimate of the noise content, as represented by the

parameter, σ. The third and arguably, the most important criterion from a systems-design

perspective, are certain properties of the system matrix A. These properties are in some

sense surrogates for the much desirable property of orthogonality which applies for square

matrices. A discussion of two such properties follows.

1.2.1 Restricted Isometry Property

For each S, the isometry constant δS of a matrix A, is defined as the smallest number that

satisfies the property that for all vectors u with sparsity S [2],

(1− δS)||u||l2 ≤ ||Au||l2 ≤ (1 + δS)||u||l2. (1.7)
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This condition is referred to as the restricted isometry property (RIP). For different values

of the constant δS , it has been shown that the solution to the optimization problem coincides

with the actual solution of the problem. If δS ≤
√
2− 1, then, Candes, et al. [2] derived the

bound for the error to be, ||ŝ − s||l2 ≤ C0||ŝ − sS ||l1/
√
S + C1 for some constants C0, C1.

We present an exposition of this result in Appendix A.1.

1.2.2 Mutual Coherence

If ai represent the columns of the matrix A, then the mutual coherence of the matrix A is

defined as,

µ(A) ! max
i $=j

〈ai,aj〉
||ai||l2||aj ||l2

. (1.8)

This property is more intuitive and easier to visualize and compute than restricted isometry.

µ is a measure of the correlations between the different basis functions that comprise the

matrix. For compressive signal recovery, we desire the mutual coherence to be as low as

possible. In general [8], the solution to the optimization problem is exact with a high

probability if for some positive constant, the dimension M satisfies, M ≥ Cµ2(A)S logN .

The use of mutual coherence predates the restricted isometry constant and compressive

sensing. The mutual coherence is also indicative of whether a linear inverse problem is

amenable to greedy pursuit methods [9].

Transform Point Spread Functions (TPSF) is a computationally feasible surrogate

to the concept of mutual coherence [10]. We define the matrix Å by normalizing each

column with its l2 norm. Then, the TPSF of a linear system is defined simply as the Gram

matrix G = ÅT Å.

1.2.3 Phase Transitions

The concept of phase transitions was first introduced by Donoho and Tanner [11] in 2009.

In the context of compressive sensing, the term phase refers to the phase space mapped

out by δ and ρ, which are defined as δ = M/N and ρ = S/M . The transitions refer to the
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fact that for certain pairs of (δ, ρ), the system is solvable while for others it is not. This

transition indicates whether the dimension of a system is sufficient for recovering vectors of

given sparsity. The phase transition approach, however provides us an empirical post hoc

approach to validating the suitability of compressive sensing for our linear system. The

one advantage of using phase transtions comes from the fact that they are universal [11]

across different system matrices, particularly random matrices drawn from sub-Gaussian

distributions. This universality provides us with a standard to compare against. We know

that the a system matrix that is a Gaussian random matrix permits compressive signal

recovery. Thus, we can use the phase transition map for random matrices as a benchmark

to characterize the performance of our signal model and recovery algorithms.

1.2.4 Recovery Algorithms

Compressive signal recovery algorithms can be classified to be of five types: greedy pursuit

methods, convex optimization algorithms [12], message passing algorithms [13], Bayesian

methods [14], and non-convex optimization algorithms [15]. The first and second types of

algorithms are currently the most widely used. In general, convex optimization methods

result in more exact solutions and are more robust to noise than other methods. Message

passing approaches, specifically, the approximate message passing algorithm has been theo-

retically proved to converge for systems with random matrices. They have been shown to be

equivalent in performance with convex optimization approaches. Bayesian and non-convex

optimization techniques do not currently come with theoretical guarantees of recovery and

convergence. Non-convex approaches, which are characterized by non-convex cost functions,

are harder to analyze and slower than convex optimization and greedy algorithms. In their

survey paper from 2011, Tropp and Wright [12] present a thorough review of the different

algorithms in literature.

Greedy pursuit methods include matching pursuit [16], orthogonal matching pursuit [17],

compressive sampling orthogonal matching pursuit [18]. These methods work by searching,

in an algorithmically greedy manner, through a set of basis functions looking for that set

of basis functions that best models the vector z. The presence of perturbations in linear
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systems adversely affects the performance of greedy pursuit methods.

Convex optimization approaches are an exact formulation of the compressive signal

recovery problem. The basic approach is to solve variants of the l1-norm minimization

problem given by mins ||s||l1 subject to z = As. The following formulations of the convex

optimization problem are equivalent for some constants σ,λ, τ [19]:

min
s

||z −As||l2 + λ||s||l1 (1.9)

min
s

||z −As||l2 s.t. ||s||l1 ≤ τ (1.10)

min
s

||s||l1 s.t. ||z −As||l2 ≤ σ. (1.11)

There are several approachs for solving the above problems. In convex optimization,

these formulations fall under the well-studied classes of linearly constrained quadratic pro-

gram (LCPQ) and quadratically constrained linear program (QCLP) problems [20]. There

are several numerical algorithms for solving such problems. In our thesis we use the spec-

tral projected gradient l1 (SPGL1) [19] algorithm for solving the optimization problem.

There are two advantages to using the SPGL1 algorithm. Firstly, the SPGL1 algorithm

is computationally efficient since its iterations do not involve matrix-matrix products, but

only matrix-vector products. As a result, SPGL1 scales well. Secondly, the formulation of

the problem is natural for electrical engineering applications since the parameter σ simply

represents the signal to noise ratio. In practical systems, the signal-to-noise ratio and hence

the parameter σ be chosen using any of the several blind SNR estimation techniques in

literature [21].

1.2.5 Applications

This dissertation looks at one of the applications of compressive sensing, in radar imaging.

Successful recovery is defined as the ability of the algorithm to solve the underdetermined

linear system to arrive at a stable and accurate sparse solution. We were successful in

testing compressive sensing in a real scenario using experimental data. Since around 2006,
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there have been about a couple of thousand papers on compressive sensing. The earliest

application to be developed was the single-pixel camera [22]. The single pixel camera

utilized spatial sparsity to reduce the number of sensors required for capturing images. The

incoherence and randomness that are crucial for compressive sensing were implemented by

randomly modulating acquired light intensity. This has potentially important applications

in infrared imaging, where sensors are expensive. The problem of magnetic resonance

imaging (MRI) involves acquiring images which are sparse in the frequency domain. Time

domain undersampling is easy to implement, and hence compressive sensing can prove

inexpensive for deployment [10].

Compressive sensing is particularly applicable in applications involving linear inverse

problems. In seismic imaging, compressive sensing has been applied to reduce problem

dimensions in large-scale inverse problems [23]. Random probes were employed for com-

pressive channel separation in seismic imaging applications by Romberg and Neelamani [24].

Inverse problems also occur in digital communications in the context of channel estimation.

The problem of estimating a communications channel is equivalent mathematically to the

problem of radar imaging. Paredes, et al. [25] proposed a compressive sensing-based ap-

proach for using UWB pulses in channel estimation. Haupt, et al. [26] derived results for

the restricted isometry constant of random Toeplitz matrices in the contex of channel sens-

ing. Berger, et al. [27] examined the problem of sparse channel estimation in the context

of underwater acoustic channels and proposed sparsifying representations and acquisition

schemes based on compressive sensing. Since the publication of these three important pa-

pers, there have been several new papers proposing novel techniques for improving channel

estimation [28, 29, 30, 31].

1.3 Structure of the Thesis and Summary of Contributions

The principal contributions of this thesis are as follows:

1. We formulate compressive sensing as a problem involving the inversion of a linear

system with circulant random matrices. In Chapter 2, we use this linear system

model to develop the theory of compressive noise radar imaging. We justify the
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circulant-matrix model by applying it to experimental noise radar data. We analyze

the performance of compressive sensing through theoretical and empirical arguments.

For the first time in literature, we experimentally verify the possibility of recovering

targets from compressively sampled UWB noise radar. We conducted experiments

using a milimeter-wave radar to validate the practicality of compressive noise radar.

2. In compressive noise radar systems, target recovery is achieved by using non-linear

convex optimization solvers. This complicates the task of target detection. Under

nonlinear recovery, it is difficult to derive theoretical closed form expressions for prob-

abilities of detection and false alarm. The probability of false alarm and the statistics

of the recovered vector are necessary determine detection thresholds. In Chapter 4,

we propose a data-driven tail estimation algorithm based on the theory of extreme

value statistics. We fit a generalized Pareto distribution to the tail distribution of the

detection variables to efficiently derive empirical expressions relating the probability

of false alarm and the detection threshold. We test our algorithms on data acquired

from experiments with real noise radar systems.

3. In Chapter 4, we consider the problem of incorporating a priori, general models of

radar target scenes. We propose a knowledge-based waveform design algorithm for

adaptive systems. Information about radar target scenes are modeled using redun-

dant dictionaries. Signal models involving redundant dictionaries can be inverted

using principles from compressive sensing. However, the redundancy in the signal

models may, in general, degrade the performance of compressive signal recovery. We

compensate for this degradation by proposing a radar waveform design algorithm that

makes the system matrix more suitable for compressive signal recovery.
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Chapter 2

Compressive Sensing for Radar

Imaging

2.1 State of the Art in Compressive Radar Imaging

Radar systems can be classified to be of two types [32]: (i) those employing an analog system

for detecting the targets using an analog matched filter, and (ii) systems that sample and

quantize the reflected radar signal and process it digitally. The latter type of radars offer

operational flexibility and can be used to acquire a variety of information about target

scenes. The resolution of digital radar systems is limited by the ADC technology.

Random noise radar [6] involves transmitting waveforms that are generated as stochastic

processes. The technology is headed towards utilizing ultra-wideband transmit waveforms

[7] with which, high range resolutions can be obtained. The use of randomly generated

waveforms in noise radar makes signals immune to interception and jamming to an extent.

Early stochastic waveform radars used analog processing to detect targets [7]. Increasingly

noise radar systems are using digital processing [33] for imaging in real time. Digital noise

radar systems use high rate analog to digital converters (ADC). The sampling rates of the

ADC limits the maximum achievable range resolution of the system. In order to circumvent

this bottleneck, we employ compressive sensing principles. Practical compressive noise radar

systems have been implemented for ground penetrating radar applications using stepped
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frequency waveforms [34, 35]. Bar-Ilan, et al. [36] applied the Xampling [37] framework to

develop a pulse radar prototype for joint range-velocity radar imaging using Doppler fo-

cusing. Ender [38] presented results on compressive radar imaging performed pulsed chirp

waveforms. Our experimental work differs from these in that we use incoherent ultraw-

ideband continuous wave noise radar waveforms for imaging. Continuous wave noise-like

waveforms have the advantage of being instantaneous wideband. Further, the waveforms

are robust to additive noise, jamming, and interception [7].

The use of random transmit waveforms makes noise radar particularly suitable for com-

pressive sensing. Random waveforms in compressive radar imaging were first suggested by

Baraniuk and Steeghs [32] in the context of random demodulators. The recovery perfor-

mance of compressive sensing estimators depends on the system matrix satisfying certain

properties. The two most commonly studied properties are the restricted isometry prop-

erty (RIP) and mutual coherence [2, 39]. The compressive noise radar imaging problem, as

described in this chapter, involves a circulant random system matrix. The suitability of cir-

culant random matrices for compressive sensing is less well studied than the standard case of

the random matrix. In the context of random demodulators, Romberg [40] showed that with

specially designed circulant random system matrices recovery with probability 1−O(n−1) is

possible with O(S log3N) measurements. Bernoulli random circulant matrices were consid-

ered by Haupt, et al [26] in the context of compressive channel estimation. They showed that

based on the restricted isometry property of the system matrix, O(S2 logN) measurements

of the Toeplitz random matrix are sufficient for stable recovery using the Dantzig selector [2]

recovery algorithm. Rauhut, et al [41] derived the restricted isometry property for circulant

matrices, suggesting that O
(
max

(
(S logN)1.5, S log2 S log2N

))
measurements guarantee

stable recovery. Herman and Strohmer derived mutual coherence results for high-resolution

radar imaging in [42], and proposed the use of Alltop sequences as transmit waveforms,

under the narrowband approximation. They also alluded to the effectiveness of random

waveforms in high-resolution radar imaging. Our work extends the state of the art in con-

sidering ultrawideband random waveform radar systems which are primarily used for range

imaging. An advantage of practical noise radar systems is their simplicity. Our analyses of
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practical issues relating to compressive radar imaging are intended to push the field towards

real world applications.

Simulations indicate that the number of measurements follows the optimal compressive

sensing asymptotics of O(S logN). In this chapter, we use the phase transitions formalism

developed by Donoho, et al. [13] to analyze the behavior of compressive sensing. This

chapter is structured to reflect the approach we propose for analyzing general ultrawideband

compressive radar systems. In Section 2.2, we formulate the compressive radar imaging

problem, and state assumptions and approximations we make to mimic real systems. The

convex optimization approaches to compressive signal recovery involve certain assumptions

about the sparsity and the SNR to decide on the number of acquisitions required for stable

recovery. In this chapter, we use experimental data to validate our results. The main

contributions of this chapter as follows:

1. In Section 2.3, we approach basis pursuit denoising as a problem in model selection

and study its sensitivity to the accuracy of prior information about the signal-to-noise

ratio (SNR) of the system.

2. In Section 2.4, we follow the phase transition formalism to show that in various sig-

nal to noise ratio regimes, the behavior of compressive noise radar imaging follows

the standard case of compressive sensing with random matrices. We propose using

phase transition diagrams as calibration charts for guiding the operation of practical

compressive radar systems.

3. In Section 2.7, we outline the experimental set up that we used for testing the theory

and methods we developed.

4. In Section2.8, we analyze the performance of a typical compressively sampled noise

radar. We work on an extensive set of experimental data collected using UWB mil-

limeter wave and S band radar systems.

Some results in this chapter have been published in the following papers, (1) Shastry, M.

C., Narayanan, R. M., Rangaswamy, M. Compressive radar imaging using white stochastic

waveforms, In Proc. 5th Int’l Waveform Diversity Design Conf (pp. 90-94), (2) Shastry,
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M. C., Kwon, Y., Narayanan, R. M., Rangaswamy, M, Analysis and design of algorithms

for compressive sensing based noise radar systems, In The 7th IEEE Sensor Array and

Multichannel Signal Processing Workshop (SAM) 2012, pp. 333-336.

2.2 Basics of Compressive Stochastic Waveform Radar

2.2.1 Compressive Radar

The range estimation problem in radar imaging involves the inversion of a linear system.

Let x(t) be the transmit waveform, s(t) denote a target scene, and η(t) the additive noise

in the system. The reflected waveform y(t) can be modeled as

y(t) =

∫ ∞

−∞
x(τ − t)s(τ)dτ + η(t). (2.1)

The discrete form of this linear convolution problem results in the expression

yn =
∑

k

xn−ksk + ηn, (2.2)

where, y, s ∈ RN and X ∈ RN×N . In real situations, the vector, s is typically highly sparse.

For signals of finite duration, this equation is represented exactly by a linear system with a

Toeplitz system matrix X̂, so that ŷ = X̂s+η. We invoke the sparsity of s to approximate

this as a linear system with a circulant system matrix X, in order to simplify computation

and analysis. We use xk to denote the kth row of X and x̂k to denote the kth row of X̂.

We define εcirc = ŷ − y to be the vector representing the error of approximating the linear

convolution problem by the circulant matrix system. Let kj denote the indices where s is
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non-zero. Then, we have

εcirc =
N∑

k=1

skx̂k − skxk (2.3)

εcircn =
N∑

k=1

x̂n−ksk − xn−ksk (2.4)

=
S∑

j=1

(
x̂n−kj − xn−kj

)
skj . (2.5)

We note that S << N . In addition, for some values of n, we have that x̂n−kj = xn−kj , so

that e ≈ 0. Alternatively, one can derive the bound on the approximation by considering

the matrix-norm of the matrix E = X̂ −X, so that:

εcirc =
(
X̂ −X

)
s (2.6)

= Es (2.7)

||εcirc||2 ≤ ||E||2||s||2. (2.8)

In sparse problems, ||s||2 ≈ 0. Further, the error is larger for non-zero elements that

are situated towards the end of the row. In our experiments the approximation remains

accurate because the non-zero elements occur close to the beginning. Physically, this is

due to the fact that we use ultra-wideband waveforms, so that even a few microseconds of

acquisition results in information related to a much larger range than required. The error

in recovering accurately at the ends of the signal is intrinsic to processing signals of finite

time duration [43]. However, this type of error can only be overcome only by increasing

the dimensionality of our problem. Experimental justification for this approximation is

illustrated by the accuracy of the experimental results described in Chapter 2.

In sparse target scenarios, compressive sensing theory allows us the luxury to under-

sample y(t). We model this operation of under-sampling as a premultiplication by the

matrix RΩ ∈ RM×N , where RΩ consists of the rows of the identity matrix indexed by the
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set Ω ⊂ [N ]. Thus, we have

z = RΩ(y + η) = RΩXs+RΩη, (2.9)

with z ∈ RM . The performance of the compressive radar ranging problem depends on the

properties of the matrix RΩX ! A ∈ RM×N . We assume that the continuous target scene

is discretized into N grid points, with only a small percentage of the cells occupied by

scattering targets. We justify this assumption with experimental results. The sparsity of

the anticipated solution is characterized by the assumption that ||s||l0 ≤ S with S . N . We

define the quantities ρ ! S/M and δ ! M/N . If the matrix A satisfies certain properties for

vectors of given sparsity, then, the problem above can be inverted by solving the following

convex optimization problem, called basis pursuit de-noising (BPDN):

BPDN(ρ, δ;σ) : min
s∈RN

||s||l1 subject to ||z −As||l2 ≤ σ (2.10)

This specific formulation of the problem is chosen over other formulations [44] of compressive

sensing because it is useful for practical implementations. Specifically, the value σ has a

natural association with the signal to noise ratio of the system. Practical radar systems

can measure this either by aiming the radar signal at an area where targets are absent and

noting the energy. When there is no opportunity to measure reflected signals in the absence

of targets, this can be done by employing an SNR estimation approach [21]. In either case,

the radar operator has access to an approximate estimate of the value σ.

2.2.2 Performance of Compressive Sensing

The RIP and mutual-coherence approaches to analyzing compressive sensing offer no exact

results about the behavior of the residue of compressive estimation. The properties of the

residue of compressive estimation are inferred via inequalities [2] that estimate the upper

bound of residual error. Practical applications of compressive sensing require more detailed

analyses of the residual error. Analyzing the sensitivity of the estimation error to various

non-idealities typical of practical compressive radar imaging is the main motivation of this
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chapter.

The state evolution approach [13, 45, 46] offers an empirical and theoretical framework

for analyzing the behavior of compressive sensing algorithms in an exact manner. Donoho

and Tanner [11] empirically studied the universality of phase transitions in compressive

sensing. The basic idea of phase transitions is to derive the exact asymptotics of various

compressive sensing models in the phase space of the parameters (ρ, δ) and the signal-

to-noise ratio [47]. Bayati and Montanari [45] provide a way to compute norms of the

estimation error when using the approximate message passing algorithm [13] for random

measurement matrices. The equivalence between solutions to the approximate message

passing algorithm and convex optimization approaches was proved for random Gaussian

matrices in [46]. This equivalence provides the theoretical justification for studying the

performance of the basis pursuit denoising problem using phase transitions. We show that

the phase transitions for circulant matrices are similar to the phase transitions for basis

pursuit denoising. The empirical results suggest that the results of [45, 46] also hold when

the system matrix is random circulant. The sensitivity of phase transitions to additive noise

was studied empirically in [47]. The contributions of our thesis are in presenting phase tran-

sition simulations for noisy compressive sensing using circulant matrices for various error

metrics. Our use of phase transitions is motivated by their potential application to guide

radar engineers in operating real systems. The AMP approach has been applied in a recent

paper [48] for determining detection thresholds for consant false alarm rate applications.

However, no theoretical guarantees exist for the optimality of the AMP algorithm for circu-

lant and Toeplitz system matrices. We propose a new approach to relating the false alarm

probability to the threshold.

The uniform norm for a vector u is defined as as ||u||l∞ = maxk |uk|. The uniform

norm of the compressive estimation error is particularly useful to understanding system

performance. There are two reasons for studying uniform norm: (i) the uniform norm is

given by extreme value statistics which converge to known distributions in the large system

limit, (ii) estimates for the distribution of the uniform norm via extreme value theory

can be used as a benchmark for setting thresholds used in determining the presence of
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targets in multiple-target scenarios. The literature on the uniform norm of compressive

sensing residues is limited. In [49], the authors propose a computable fitness measure for

compressive sensing that enables the analysis of the l∞ norm of the residue. The limit

theorems of [45] provide a way to compute the asymptotic behavior of the l∞ norm in the

phase transition/state evolution formalism. We adopt an empirical approach for analyzing

the uniform norm in compressive radar imaging.

2.3 Sensitivity of the BPDN algorithm

In practical radar systems, the value of σ is known with some uncertainty. This can be

viewed as the uncertainty in prior information possessed by the radar operator concerning

the model describing the system. In this section, we examine the sensitivity and dependence

of the solution to of BPDN(.) to the mismatch in the estimated and real values of σ. Let

σ̂ represent the estimated value, and σ∗, the actual value. Our goal is to characterize the

errors

p(ρ, δ;σ) = ||s∗(ρ,δ,σ) − s||l2 and (2.11)

q(ρ, δ;σ) = ||s∗(ρ,δ;σ) − s||l∞. (2.12)

In order to study the sensitivity of q(.;σ), we run the SPGL1 algorithm at all points on a

discretized (σ, ||z − As||l2). On each point on the discretized grid, we compute the error

metrics p(.) and q(.). This is a characterization of the mismatch in the assumed model for

the signal and the . The line σ = ||z − As||l2 divides the phase space of (σ, ||z − As||l2)

into two parts to reflect the practical problems of over- and under- estimating the values

for σ. Clearly, the optimal solution occurs when σ = ||z −As||l2. This is reflected in the

occurrence of a minima along the line σ = ||z−As||l2 in Figure 2.1. The interesting results

in the simulations of Figure 2.2 concern the sensitivity of q(.;σ) to σ. It is clear that the

uniform norm of the residue is more sensitive to the accuracy of the estimate of σ than the

l2-norm. Particularly when the value σ is an overestimate of the actual noise variance, ∂q
∂σ

is large.
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Theorem 1. Let s̃ and ŝ be the solutions to the problems, BPDN(ρ, δ; σ̃) and BPDN(ρ, δ; σ̂).

Further let us assume that the algorithm converges to vectors s̃ and ŝ such that ||z−As̃||l2 =

σ̃ and ||z−Aŝ||l2 = σ̂, and that the matrix A satisfies RIP. Then, for RIP constants δS̃+Ŝ

the estimation error satisfies,

|σ̃ − σ̂|
1 + δS̃+Ŝ

≤ ||s̃− ŝ||l2 ≤
√
N ||s̃− ŝ||l∞. (2.13)

Proof. Let the support of s̃ and ŝ be S̃ and Ŝ respectively. The vector s̃− ŝ then has the

property ||s̃ − ŝ||l0 ≤ S̃ + Ŝ. Using the restricted isometry criterion for the matrix A we

have,

(1 + δS̃+Ŝ)||s̃− ŝ||l2 ≥ ||A(s̃− ŝ)||l2

= || (z −Aŝ)− (z −As̃) ||l2

= ||| (z −Aŝ) ||l2 − || (z −As̃) ||l2|

= |σ̂ − σ̃| ≤ (1 + δS̃+Ŝ)||s̃− ŝ||l2.

The above result follows from the reverse triangle inequality. Further we have for any vector,

u ∈ RN , ||u||l2 ≤
√
N ||u||l∞.

As a consequence of Theorem 1, we have that a lower bound of the estimation error is

determined by the optimization constraint σ in the BPDN problem. Since exact information

about the noise estimate σ provides us with the best results for estimation error, any

deviation from this value increases the lower bound of the estimation error. This result

suggests that it is important to use accurate information about the noise estimate.

The standard approach to solving BPDN(ρ, δ;σ) is to cast it as the unconstrained

quadratic optimization problem, mins∈RN ||z −As||l2 + λ||s||l1. The correspondence be-

tween the parameters σ and λ has been argued [19] to be λ = σ
√
2 logN in the case where the

system matrix is orthogonal. However, in our case, A is a circulant random matrix, is rect-

angular, and does not satisfy orthogonality. We use the SPGL1 algorithm, which is designed

to solve convex optimization problem of the form given by BPDN(.). The SPGL1 algorithm
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Figure 2.1: Sensitivity of the l2 norm of the estimation error to mismatch in σ for δ = 25%
and ρ = 10%.

is a spectral projected gradient algorithm that was proposed to solve the BPDN problem in

an efficient manner. SPGL1 involves finding the solution BPDN(ρ, δ;σ) by repeatedly solv-

ing the related optimization problem given by Lasso(ρ, δ; τ) : mins∈RN ||z −As||l2 subject

to ||s||l1 < τ . The goal is to find τ∗(σ), such that the solution of this problem is identical

to BPDN(.;σ). The motivation for recasting the problem is that the dual of Lasso(.) has

useful properties. The solution is arrived at by inverting using Newton’s method, the scalar

equation given by, φ(τ) = σ where φ(τ) = ||z − Asτ ||l2. The evaluation of the function

φ(τ) and its derivatve φ(τ) is done using a spectral projected gradient algorithm.

2.4 Phase Transitions in Radar Imaging

We first demonstrate simple simulations concerning the probability of detection for different

rates of under-sampling, and the receiver operating characteristics. In our simulations, we

used discrete sequences of arbitrary lengths to simulate the performance of the compressive

detector, and compressive estimator. Numerically, the difference between the compressive

radar imaging system proposed above and other applications of compressive sensing arises

due to the fact that the matrix that maps the target scene to the under-sampled reflected

signal is a random circulant matrix. The receiver operating characteristics (ROC) resulting
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Figure 2.2: Sensitivity of the l∞ norm of the estimation error to mismatch in σ with for
δ = 25% and ρ = 10%.

from using circulant random matrices in compressive sensing is analyzed in Chapter 3.

In this section, we examine the behavior of p(ρ, δ;σ∗) and q(ρ, δ;σ∗), where σ∗ is the ex-

act estimate of the noise contained in the signal z. The approach of using phase transitions

for studying compressive sensing is well understood for random measurement matrices. In

the past, it was postulated that a phase transition structure similar to random measure-

ments also exists for other matrices. In this section, we study phase transition diagrams

[11] in the context of compressive sensing to characterize the performance of random cir-

culant matrices. The two sampling schemes we consider are: (1) random undersampling,

i.e., choosing the sampling distance in a random manner, (2) uniform undersampling. The

uniform undersampling case is more useful for practical systems because of the ease of im-

plementation. Phase transition diagrams present a numerical study of the l1−l0 equivalence

that forms the basis of compressive sensing. In our simulations, we discretized the (δ, ρ)

subspace, and at each point, we computed the error metric averaged over several realiza-

tions. The recovery was performed using SPGL1. The signal-to-noise ratio is defined prior

to undersampling so that

SNR = 10 log
||Xs||l2

||z −Xs||l2
. (2.14)
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The phase transition diagram of Figure 2.3 was generated by acquiring at random inter-

vals, samples of the reflected signal. The suitability of stochastic waveforms for compressive

radar systems is indicated by the fact that the phase transition diagrams are close to the

phase transition diagrams that arise from the general compressive sensing setting of acqui-

sition using random measurements [11]. The boundary line between the red and blue areas

indicates that as with random measurement matrices, O(M logN) measurements guarantee

good recovery. Similar, desirable phase transitions are seen in Figure 2.4 when the reflected

signal is uniformly undersampled. In the context of compressive sensing, phase transition

diagrams are a representation of the success of compressive recovery in terms of the frac-

tion of samples correctly recovered as plotted in the phase space of the pair (δ, ρ) where,

δ = M/N corresponds to the number of samples acquired and ρ = S/M , is a ratio of the

sparsity of the signal and the number of samples acquired.

From a radar systems perspective, phase transition diagrams provide a way of calibrating

compressive radar systems. Compressive radar imaging is only non-blind in the sense that

the operator of the system needs to have an approximate idea of the sparsity of the target

scene. The uncertainty in the knowledge of the approximate sparsity of the target scene

can be quantified in terms of the phase transition diagrams. For instance, if a radar system

is intended to operate in an environment with 20% of the range cells populated by point

scatterers and an ambient SNR is 20 dB, then the radar system can operate with 90%

accuracy (as defined by the number of samples of s recovered accurated) by acquiring 10%

to 30% of the total samples, as can be inferred from Figure 2.3. The phase transitions at

high SNR are identical to the sharp boundaries reported and shown theoretically for random

measurement matrices. The performance of compressive estimation is seen to deteriorate

for low SNRs in Figure 2.5 for SNR = 10 dB and SNR = 0 dB. As the noise content in

the signal increases, the transition boundary becomes fuzzy. At 0 dB SNR, recovery is only

possible when a large number of samples are acquired and that too only for very sparse

target scenes.
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Figure 2.3: Phase transition diagram for a Gaussian random circulant matrix with signal
to noise ratio of 20 dB and random under-sampling.
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Figure 2.4: Phase transition diagram for a Gaussian random circulant matrix with signal
to noise ratio of 20 dB and uniform under-sampling.

2.4.1 Uniform Norm of Estimation Error in Radar Imaging

The l∞ norm on function spaces is defined as the supremum, i.e., for a function, f : X /→ Y ,

||f ||l∞ = supx∈X |f(x)|, for a discrete vector which can be treated as a function s : N /→ R,

this becomes, ||s||l∞ = maxn∈N |s(n)|. To estimate s, we need to invert the linear system,

z = As+ηΩ in the relevant paradigm of least squares (LS) or compressive sensing (CS) as
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Figure 2.5: Phase transitions at low SNRs. (a) SNR = 10 dB, and (b) SNR = 0 dB
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follows:

LS: s∗ls = argmin
s

||z−As||l2 (2.15)

CS: s∗cs = argmin ||s||l1 s.t. ||z−As||l2 ≤ τ (2.16)

We define the error in each case as, rls = s− s∗ls and rcs = s− s∗cs.

Claim: When s is sparse, the theoretical maximum value of the estimation error is

important to radar imaging.

Justification: We express in probabilistic terms, the fact that sparse target scenes contain

very few targets. If s is sparse, then the probability of a target being absent at any target cell

is high. We can formalize this with the statement: for some n, ∃ω ∈ (0, 1) : P[s[n] = 0] > ω.

On recovery using an unbiased estimator, the cells where the target is absent will contain

only random noise. Thus ∃ω∗ ∈ (0, 1) : P[s∗(n) < |r|l∞|s[n] = 0] > ω∗. Since the recovery

does not assume any specific knowledge about the location of the target, the two events

given by [s(n) = 0] and [s∗(n) < |r|l∞] are independent and hence, ∃0 ≤ ω∗ ≤ 1 : P[s∗(n) <

|r|l∞] > ω∗. Since, by the hypothesis of sparsity, ω∗ is close to 1, it is nearly impossible to

recover any target that has reflectivity lower than the theoretical computed l∞ norm of the

estimation residue.

2.4.2 l∞ Norm in Radar Imaging via Least Squares Estimation

Theorem 2 (Uniform norm of rls). The uniform norm of the least squares residue is a

function of the sum of rows of the system matrix A.

Proof. We first consider the case where z = As + η is a fully determined (but ill-posed)

system of linear equations. The optimal solution to this problem is given by the standard

least squares solution, s∗ls = A†−1z, where A† = (A′A)−1A′ is the Moore-Penrose pseu-

doinverse. The estimation error is given by, rls = s∗ − s = A†−1η. For convenience, we

define B ! A†−1. Then, rls ∼ N (0,σ2B′B). The uniform norm of the error is given by the
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Figure 2.6: Least squares uniform norm of estimation residue for different matrices of
comparable conditioning number at 20 dB SNR.

random variable

Q ! ||rls||l∞ = max
k

|rls(k)| (2.17)

P[Q < q] = P [|rls(1)| < q, . . . , |rls(N)| < q] (2.18)

= P

[
⋂

k

{|(Bη)(k)| < q}
]

(2.19)

= P

[
⋂

k

{|η(k)| < (A1)(k)q}
]
, (2.20)

where 1 = (1, . . . , 1)′ is the column vector of 1s. Let us define ck = (A1)(k). Since

{|η(k)| < ckq} are mutually exclusive,

FQ(q) =
∏

k

F|η|(ckq) (2.21)

pQ(q) =
∑

k




∏

j∈[N ]\k

F|η|(ckq)



 ckp|n|(ckq). (2.22)

Note that Theorem 2 disregards the numerical properties of the algorithm used to solve

the least squares problem. Thus, in a sense, the theorem should be verified numerically for

matrices A with similar conditioning numbers. In Figure 2.6 we demonstrate this effect for

noise radar systems, where the system matrix is a random Toeplitz matrix. We denote by
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Figure 2.7: Compressive sensing simulations showing the dependence of the uniform norm
error on the row-wise sum of elements of the system matrix. 20 dB SNR.

T(x), the Toeplitz matrix generated from the random standard normal vector x. The effect

of Theorem 2 is illustrated in the fact that the Toeplitz random matrix shows the least

||rls||l∞ since ck → 0 unlike in the other two cases. If we consider the hypothetical oracle-

estimator, where we subsample based on the assumption that we possess full knowledge of

the right samples to acquire, then the same results from Theorem 2 hold since the number of

columns remains unchanged. Among all under-determined estimator problems, the oracle-

estimator presents a the best-case scenario and is used as a benchmark.

2.5 l∞ Norm in Compressive Radar Imaging

Compressive sensing algorithms are, in general, iterative algorithms or convex solvers. The

analysis of the estimation residue is much harder compared to linear least squares estimation.

Current literature on uniform norm analysis [49] provides upper bounds that are determined

up to multiplicative scalar constants. Such error estimates cannot be directly applied to the

task of building and operating radar systems. The phase transition-state evolution approach

[45] is a more useful approach to derive readily usable approximations of the residue. The

approach of phase transitions and state evolution reduce the analysis of compressive sensing

to the task of understanding the behavior of a single scalar recursion. However, the state

evolution formalism has been proven theoretically only for problems where A is a random

matrix. The theoretical results (Proposition 1, [45]) do not directly generalize to the uniform

norm.
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radar imaging, with A as partial random Toeplitz.

The state evolution recursion is intimately related to the phenomenon of phase tran-

sitions [13]. Phase transition plots show the transition from regions of recovery to non-

recovery on the plane of (ρ, δ), where ρ = K/N and δ = M/N . It is seen in Figures 2.8, that

the phase transition plots are similar to that obtained for l2 residues and by using random

A, for which convergence has been shown theoretically [45]. This comparison demonstrates

empirically that the state evolution formalism is valid for studying the uniform norm in the

radar imaging scenario. The phase transition provides general values for the l∞ norm for

different combinations of ρ and δ, thus providing a direct way for radar operators to decide

thresholds for distinguishing cells containing targets.

Similar to the least squares analysis, we consider four matrices with similar restricted

isometries, but different values of ck. The matrices considered were: Toeplitz random T(x),

T(x + 1), |T(x)|, and the random standard normal matrix Φ. Figure 2.7 demonstrates

the dependence on ck. This suggests that compressive sensing residue behaves in a manner

similar to Theorem 2.

2.6 Correlations in the Circulant Matrix

In practical compressive sensing systems, as we shall see in 2.8, transmit waveforms are

not ideal. The assumption that transmit waveforms can be discretized into i.i.d random

process is convenient for theoretical analysis of compressive recovery. In real systems how-
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ever, without employing the kind of adaptive processing outlined in Chapter 4, we need

to characterize the effect of correlations that exist due to hardware-related nonidealities.

We model the transmit waveform as the correlation of an i.i.d random process x̃(t) and a

transfer function h(t) that represents the bandlimiting non-idealities so that

x(t) = x̃(t) ∗ h(t) (2.23)

X = X̃H. (2.24)

In order to quantify the effect of correlations, we look at the transform point spread

function (TPSF) of the system matrix. Ideally, for effective compressive signal recovery, we

desire the non-diagonal diagonal elements of the normalized Gram matrix G to be as low

as possible. We look at the error metric given by

χ(G) =
∑

i $=j

|Gi,j |2. (2.25)

In Figure 2.9, we plot the values of χ(G) for various values of G = XHl, where l denotes

the support of the power spectrum of the filters. We characterize the matrix Hl with the

parameter l = ||Ph(f)||l0, where Ph(f) refers to the power spectrum. Large values of l

indicate that the waveform is highly uncorrelated. Lower values of l correspond to narrowly

filtered random processes. The narrow power spectrum corresponds to highly correlated

waveforms. The interesting result from this simulation is actually that compressive sensing

is fairly robust to correlations in the transmit waveform. This conform with the experimental

observations that we outline in 2.8. Even with a low-pass filter that only allows about 70%

of the spectrum of the transmit waveform, we see in Figure 2.9 that χ is almost as good as

the uncorrelated case.

2.7 Experiments

We used a millimeter wave radar system to test the possibility of using compressive sensing

for noise radar. The bandwidth of the signal used in this system is 500 MHz. We operated
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Figure 2.9: The effect of filtering on the TPSF. On the y-axis is χG. It is seen that
the performance of compressive sensing is expected to deterioriate if the random transmit
waveforms are highly correlated (narrow filters).

the ADC at a rate of 1 gigasamples per second. The antenna has a half power beam-width

of about 1◦ The system consists of two conical antennas that are used for transmitting and

receiving signals. The antennas have a half-power beam width of 1◦. The conical antennas

are connected to a high-power amplifier. The experiments were conducted in an outdoor

setting. A photograph of the experimental set-up is shown in Figure 2.10. A typical target

scenario is shown in Figure 2.11. We tested the imaging capability of the system at distances

ranging from 40 ft to around 100 ft. We used tetrahedral corner reflectors and cylindrical

scatterers as targets.

2.8 Analysis of Experimental Data

2.8.1 Characterization of Waveforms

Compressive sensing recovery with circulant matrices is possible when the waveform that

generates the circulant system matrix is i.i.d random variables. Further, theoretically, it

is unclear whether the distribution of the waveform affects the performance of compressive

signal recovery. Our experiments indicate that, (a) waveforms in real systems are correlated

as seen in Figure 2.12, (b) compressive signal recovery is tolerant to some extent to the
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Figure 2.10: Photograph of experimental setup.
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Figure 2.11: Close-up photograph of the corner reflector target.
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Figure 2.12: Power spectrum estimates (using a covariance estimator) of (a) mm wave
transmit waveform, (b) S-band transmit waveform.

correlations in the system matrix. The correlations in the hardware are expected to worsen

the performance of compressive signal recovery. However, as we saw in Figure 2.9 the

degradation may not be significant as long as the autocorrelation is reasonably close to

ideal. This is affirmed by the accuracy of recovery seen in Figures 2.15, 2.18, 2.19, 2.16,

and 2.17.
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Figure 2.13: (a) QQ-plot of the normalized transmit waveform for mm wave radar in com-
parison with standard normal, (b) QQ-plot of the normalized transmit waveform for an
s-band radar in comparison with standard normal

2.8.2 Measure of Performance

In order to measure the performance of the system, we adapted the standard peak-to-

sidelobe ratio for compressive sensing. Peak-to-sidelobe ratio in the context of conventional

radar imaging is defined as the ratio of the peak of the ambiguity function to the sidelobes.

Since the ambiguity function does not have the same interpretation in the context of com-

pressive radar imaging, we use a modified error metric. Rather than measuring the energies

of the peak and sidelobe, we compared the uniform norm of the recovered vector within an
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interval defined to contain the target and the rest of the signal. The uniform norm is directly

related to the task of choosing thresholds to determining the significance of each pixel. We

call this error metric the relative peak-to-sidelobe norm ratio (rPSN). Working within the

universality of the phase transition framework, this error metric is specific to the matrix A,

the sparsity ρ, and the undersampling rate, δ. The reason for modifying the definition is

that the corner reflector is not exactly a point target, but is actually represented by a few

non-zero target cells. The traditional peak-to-sidelobe ratio is determined by the shape and

spectrum of the transmit waveform. However, in this section that is not our objective. We

wish to characterize the performance of real systems for different rates of under-sampling.

Let us define the interval that contains the target as the set Γ. By considering the uniform

norm, we can characterize the effect of thresholding and significance testing on each pixel.

This metric is also appropriate because ensemble measures such as the l2 norm are biased

by the sparsity of the vector. The sparsity of a recovery vector doesn’t necessarily indicate

accurate recovery from a radar imaging perspective. Yet, for sparse vectors, the l2 norm

would show up as a low value. We write the relative complement as Γc ! [N ]\Γ, where \

represents set-differences. Formally, we can then define the performance measure as

rPSN(A, ρ, δ) =
||ŝΓ||l∞
||ŝΓc ||l∞

. (2.26)

We demonstrate the stability of compressive noise radar imaging with respect to this error

metric. We see that as we acquire fewer samples, rPSN goes down. However, if the number

of samples is too few, in this case < 10%, the signal recovery fails. For the analysis shown

in Figure 2.14, we considered the case of a single target. We plot the result of a number of

experiments by indicating the lowest and highest errors that were seen across the different

sets of experimental data. The error metric becomes worse as we perform recovery with

around 90% or more of the samples. We surmise that this is because of two reasons, (i)

approximating the continuous time problem with the discrete finite time convolution, (ii) as

we increase the number of samples acquired, we also sample the noise more finely, resulting

in more perturbations. Theoretical analysis of this phenomenon remains an open problem.
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Figure 2.14: The error metric rPSN for different sampling rates. An indication of the
phenomenon of phase transition is seen in this plot. Up to a sampling rate of around 10%,
recovery is near impossible. However with more than 10% of the samples we can fully
recovery the target information.

2.8.3 Imaging Performance

In this section, we compare the performance of compressive sensing recovery with traditional

correlation processing and least squares. We see evidence for the fact that the performance

of compressive recovery even with just 25% of the samples compares favorably with least

squares and correlation processing. We repeated the experiment for different scenarios as

described in the Figures 2.15, 2.18, 2.19, 2.16, and 2.17. The scenarios and the related

experimental analyses are described below. In the descriptions, target scene refers to the

sum total of all electromagnetic effects within the antenna beam.

1. The recovery of a target scene with one corner reflector placed at a distance of 100 ft

from the antennas is illustrated in Figure 2.15. We chose a corner reflector because

most of the energy backscatter is guaranteed to be along the antenna line of sight
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of the antenna. This scenario was intended to demonstrate the feasability of model-

ing compressive noise radar imaging as the problem of inverting a circulant random

matrix.

2. Two cylindrical reflectors with the first placed at around 40 ft in the scenarios pre-

sented in Figures 2.16 and 2.17. The other is placed at different distances from the

the first one, at locations from 40 - 45 ft. We see that the resolving capabilities of

compressively sampled noise radar are comparable with that of conventional cross-

correlation based processing. This favorable result is also seen in the case of a target

scene consisting of two corner reflectors placed at 100 ft and separated by distances

of 7 feet and 3 feet in Figures 2.18 and 2.19, respectively.
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Figure 2.15: Corner reflector at a distance of 100 ft (millimeter wave radar)
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Figure 2.16: Two cylindrical targets at a distance of about 40 feet from the radar, and
separated from each other by 2 foot.
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Figure 2.17: Two cylindrical targets at a distance of about 40 feet from the radar, and
separated from each other by 1 foot.
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Figure 2.18: Two corner reflectors separated by a distance of 7 feet, located at a distance
of 100 ft from the radar.
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Figure 2.19: Two corner reflectors separated by a distance of 3 feet, located at a distance
of 100 ft from the radar.
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Chapter 3

Detection Strategies for

Compressive Noise Radar

3.1 Compressive Sensing Detection

Target detection is a fundamental task in radar imaging systems. There are well established

approaches to target detection in conventional radar imaging [4]. In conventional radar

systems, with the exception of space-time adaptive processing (STAP), radar detection

theory has largely been amenable to theoretical analysis. Threshold detection has proved

particularly powerful in radar imaging. Improvements in the detection have primarily been

achieved by optimizing objective functions constructed from expressions for the signal-to-

noise ratio. We consider here, the problem of detecting each element of the recovered vector

in compressive radar imaging. We continue with the signal model discussed in Chapter 1

and 2. We model the reflected signal as a convolution of the transmit waveform and the

target (channel) impulse response. The fully determined system is given by

y = Xs+ η. (3.1)

In order to simplify the acquisition hardware, we propose to just acquire a subset of the

waveform y. Thus, the linear system representing the target imaging process for compressive
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noise radar imaging is given by

z = RΩXs+RΩη. (3.2)

We define A = RΩ and ηΩ = RΩη so that we have the system equation,

z = As+ η. (3.3)

We leverage the sparsity of s to invert this linear system using l1 optimization-based algo-

rithms. The recovered signal is given by

ŝ = argmin
s∈RN

||s||l1 s.t. ||z −As||l2 ≤ σ. (3.4)

Our detection problem seeks the significance of each recovered pixel of the vector s. The

null hypothesis is the absence of a target at that pixel.

H(k)
0 : s(k) = 0 (3.5)

H(k)
0 : s(k) (= 0. (3.6)

Relating this ground truth hypothesis with the recovered target ŝ, we get the probabilities,

P (k)
D = P[ŝ(k) > ξ|H(k)

1 ] (3.7)

P (k)
FA = P[ŝ(k) > ξ|H(k)

0 ]. (3.8)

P (k)
D and P (k)

FA henceforth refer to the probabilities of detection and false alarm, respectively,

for each pixel indexed by k.

Detection of radar targets is accomplished by comparing different attributes of signals

and images with thresholds. In our case, we look at the problem of determining the sig-

nificance of each recovered pixel of the target scene. The important task of characterizing

the detector requires us to derive relationships between thresholds and their corresponding

probabilities of detection and false alarm. Thresholds are meaningless in the absence of
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their association with detection performance metrics.

As we have discussed earlier in this thesis, the theory and algorithms of compressive

sensing present interesting new possibilities for radar systems. However, there has been

precious little work in casting compressive radar imaging in the context of conventional

radar systems. The first paper to explore this problem from the perspective of signal

processing was the 2010 paper on compressive signal processing by Davenport, et al. [50].

Their proposal was to use a threshold detection approach based on the sufficient statistic

given by zT (XXT )−1Xŝ. This scalar detector is an ensemble quantity that is not useful for

pixel-wise thresholding. The asymptotic results concerning the detectors of Davenport, et

al. were derived with the assumption that the system matrix is Gaussian random. The most

recent work related to our thesis is the 2012 paper by Anitori et al. [48] on the design and

analysis of detectors for compressive sensing. Anitori et al. propose to apply the complex-

approximate message passing algorithm to arrive at a closed form for the distribution of the

recovery error. However, the approximate message passing algorithm has not been shown

to converge for problems with circulant random matrices. Thus, we develop a data-driven

approach to threshold detection in compressive noise radar.

3.1.1 Compressive Sensing Detection: An Empirical Examination

In order to demonstrate the effectiveness of compressive detection, we use a matching

pursuit-based algorithm for detection [51]. The algorithm is essentially the traditional

matching pursuit algorithm, with the modification that the matching pursuit iteration stops

when the l∞ norm, defined as the maximum element of the estimated vector is found to

be above a fixed threshold. We look at some simulations to verify the performance of

such an algorithm. Thus, a convergence to the solution would be seen in the presence of

a target, with the subsequently recovered vector lying above the detection threshold. Fig-

ure 3.1 shows the curves for the probability of error and false alarm for an arbitrarily fixed

threshold. In the absence of theoretical results, we study the application of this algorithm

using Monte-Carlo simulations for computing the probabilities of false alarm and detection.

The performance of the above compressive detector in the context of radar systems is seen
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Figure 3.2: The receiver operating curves for different values of signal to noise ratio, with
(δ = 25%,ρ = 10%).

in Figure 3.2 to be reasonably good at even low signal to noise ratios. The simulations

demonstrate that compressive sensing performs reasonably well in the context of threshold

detection.

3.2 Detection Algorithms

3.2.1 Thresholding Based on Extreme Value Theory

In the context of sparse radar imaging, fixing the threshold for detecting and defining sig-

nificant targets is an important task. With a large percentage of the target cells being zero,

the cost of false alarms is proportionally higher. The choice of the threshold is decided by
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desired probabilities of detection and false alarm. In particular, radar imaging applications

often require setting variable thresholds to maintain fase alarm rates.

3.3 Statistics of the Error of Compressive Signal Recovery

There are no theoretical guarantees for the distribution of the residue of compressive sensing

recovery when the system matrix is circulant random. In this section, we perform some

empirical tests to study whether it is reasonable to approximate compressive signal recovery

using normal distribution. We looked at those points of ŝ that are characterized by the

indices i : si = 0. This is equivalent to the instances of falsely detecting targets. In

order to test the ’Gaussianity’ we use the Kolmogorov-Smirnov (KS) test and quantile-

quantile (QQ) plots. The Kolmogorov-Smirnov test involves testing the null hypothesis

that the distribution underlying the data is standard normal. We normalized the data by

subtracting the mean and dividing by the standard deviation. Following this normalization,

the empirical cdf of data is comapared the standard normal distribution. The results of the

KS test are given in Table 3.1. The quantile-quantile plots (qq-plot) in Figures 3.3 and 3.4

compare the quantiles of empirical data with that of theoretical estimates. Deviations

of the empirical data from the straight line indicate non-Gaussianity. These two tests

provide evidence that it is unreasonable to model the recovery residue as being drawn from

Gaussian distribution. This precludes using sample mean and sample variance as estimates

in computing detection thresholds and probabilities of false alarm and detection. In order

to completely characterize threshold detection for compressive sensing, we need to have a

fairly accurate idea of the underlying distributions.

3.4 Algorithm for Estimating the Thresholds for Compres-

sive Detection

When convex optimization recovery schemes such as SPGL1 are used, the nonlinear and

iterative nature of the estimator algorithm, and the arbitrary evolution of the iterates rule

out the possibility of deriving theoretical expressions for the distribution of the residue. The

49



−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

6

Standard Normal Quantiles
Q

ua
nt

ile
s o

f I
np

ut
 S

am
pl

e

QQ Plot of Sample Data versus Standard Normal

Figure 3.3: Quantile-quantile plot of synthetic normalized data. Blue markers represent
the statistics of the points that satisfy ŝi with i such that si = 0. Since the blue markers
deviate significantly from the red line, the data cannot be modeled as Gaussian.

Data Type Null Hypothesis: Standard Normal p-value
Synthetic Reject 0

Experimental 1 Reject 0
Experimental 2 Reject 0
Experimental 3 Reject 0
Experimental 4 Reject 0

Table 3.1: Table summarizing the Kolmogorov-Smirnov test comparing a few instances of
the normalized data with the standard normal distribution.

computational cost of convex optimization solvers presents a significant barrier to employing

a brute force Monte Carlo approach to determining the threshold. For a desired probability

of false alarm, Pfa, the number of instances of BPDN(.) should be at least of the order of

100/Pfa to compute the threshold. This becomes a problem when the desired Pfa is lower

than values achieved in conventional detection schemes which is usually 10−4 or lesser.

This is because each instance of running a convex optimization BPDN(.)-solver such as the

SPGL1 algorithm, takes several seconds (run without parallelization on an Intel i7, 8 GB

RAM PC) to converge, even for vectors as small as N = 1000.

There have been extensions to Monte Carlo simulations in the past to accommodate

the occurrence of rare events [52]. One such approach involves estimating probabilities

using extreme value theory [53, 52]. We propose an approach based on limit theorems from

extreme value theory to overcome this problem. Extreme value theory refers to the study

of probabilities of rare events in stochastic systems. The basic results concern the statistics
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Figure 3.4: Quantile-quantile plots of real normalized data. Blue markers represent the
statistics of the points that satisfy ŝi with i such that si = 0. If the data are distributed
according to the standard normal distribution, then the blue markers coincide with the red
line.
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of the extremes of ordered random variables. In the past, it has been applied to problems

in finance, climate sciences, and geophysical modeling. In electrical engineering, the utility

of extreme value theory was first proposed for problems in detection theory by Ozturk

et al. [53]. In the context of compressive sensing, our basic proposal is to extrapolate the

probabilities of rare events from a few instances of solving the convex optimization problem.

A manageable number of iterations of convex optimization problem are used to generate the

statistics of compressive sensing for various values of (ρ, δ) and these are used to compute

thresholds for small values of Pfa (< 10−4).

3.4.1 Threshold Estimation for Compressive Detection

We adopt a data-driven approach to estimate thresholds for compressive detection. From

the sparsity assumption, it follows that a large proportion of the recovered vector will be

zeros. Thus, we start with the assumption that we have access to the oracle knowledge

about the location of a few zeros in the recovered vector. In a real radar system, this may,

for example, be knowledge acquired by visual examination of the target scene, and the

realization that some locations consist of zeros. Let Z ! {k : s(k) = 0} denote the subset

of [N ] about which we have knowledge that targets are absent. If for each individual pixel,

we consider a simple threshold test with the two hypotheses given by,

H(k)
0 : s(k) = 0 (3.9)

H(k)
0 : s(k) (= 0 (3.10)

(3.11)

To determine the presence and absence of targets at each target cell, we adopt an approach

of comparing each pixel with a threshold, ξ. Then, the probability of detection and false

alarm for each pixel will be

PD = P[s∗(k) > ξ|H(k)
1 ] (3.12)

PFA = P[s∗(k) > ξ|H(k)
0 ] (3.13)
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By observing the statistics of members of the set Z, across different realizations of the

convex optimization solver for different ξ, we can determine the false alarm rate. Let k(i)z

denote elements of sub-sequence of [N ], such that, for each kz ∈ Z,

PFA = P[s∗(k(i)z ) > ξ]. (3.14)

Let us assume that the random variable s∗(k(i)z ) has the pdf pz(x); then we can compute

PFA as

PFA(ξ) =

∫ ∞

ξ
pz(x)dx. (3.15)

If we employ Monte Carlo simulations to estimate p̂MC
z , the result will be

PMC
FA (ξ) =

1

Q

Q∑

1

η(s∗(k(i)z ); ξ) (3.16)

For a given PFA, we thus require Q >> 1/PFA, which is computationally intractable when

each s∗(k(i)z ) is being generated from a convex optimization solver. Following past re-

search [52, 53] in this area, we use the Generalized Pareto Distribution (GPD) to estimate

the tail distribution and thus the PFA. The cumulative distribution function of GPD is

given by,

G(x) ! 1− (1 +
γx

ζ
)−

1
γ , (3.17)

with

−∞ < γ < ∞, ζ > 0, γx > −ζ. (3.18)

GPD parametrizes numerous other distributions such as the exponential distribution when

γ = 0 and the uniform distribution when γ = −1. As proved by Pickands [54], the following

53



result relates the GPD to the tails of general, unspecified distributions;

lim
n→∞

P
[

sup
0≥x<∞

|P[Y > y + u|Y ≥ u]− 1 +G(y)| > ε

]
= 0, (3.19)

∀ε > 0. (3.20)

Now, we note that the conditional expectation given by,

Fu(y) = P[Y ≤ y + u|Y > u] =
F (u+ y)− F (u)

1− F (u)
. (3.21)

Setting z = u+ y, we get

F (z) = Fu(z − u)(1− F (u)) + F (u). (3.22)

Further, we can define α ! 1− F (u), so that

F (z) = αFu(z − u) + (1− α). (3.23)

We proceed by estimating the limit of Fu(z − u) based on Equation (3.19), so that,

Fu(z − u) = G(z) = 1−
(
1 +

γ

ζ
(z − u)

)− 1
γ

(3.24)

and

F (z) = α

(
1−

(
1 +

γ

ζ
(z − u)

)− 1
γ

)
+ (1− α) (3.25)

= 1− α

{
1 +

γ

ζ
(z − u)

}− 1
γ

. (3.26)

Thus, the general strategy for applying GPD to estimate rare-event probabilities is to first

set a particular α and then estimate the tail of the unknown distribution using 3.25. A

typically used value is α = 0.1, for which the value of u can be computed using Monte Carlo

simulations to be the value of the threshold representing the 100× (1− α))th percentile of
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the data. The parametric function is then fitted to the given data to arrive at values for

γ and ζ. We follow the proposal of [53] and employ the Nelder-Mead algorithm [53] for

solving the maximum-likelihood formulation given by

(
ζ̂, γ̂
)
= argmin

γ,ζ

(
αQ log ζ +

(
1 +

1

γ

) αQ∑

i=1

log

(
1 +

γzi
ζ

))
. (3.27)

Subsequently, the relationship between the probability of false alarm and the threshold can

be derived based on the GPD estimate as follows:

PFA = α

{
1 +

γ̂

ζ̂
(τ − u)

}− 1
γ

, (3.28)

τ = u+
ζ̂

γ̂

((
PFA

α

)−γ̂

− 1

)
. (3.29)

3.4.2 GPD and Compressive Sensing

With the above results about GPD established, we now proceed to apply it to compressive

sensing. We treat the convex optimization solver as an experiment whose reconstruction

error has an unknown distribution. We wish to estimate accurate thresholds for low PFA.

The advantage of using the approach based on GPD is that the results so derived are to

a large extent, independent of the type of distributions of the target scene, s, the noise η,

and residue s− ŝ. Our methodology for deriving the thresholds for compressive sensing is

as follows:
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Algorithm 1 GPD-based tail, PFA, and threshold estimation.
Estimation of PFA as a function of threshold for compressive sensing using GPD.
Input: X, s.
Output: GPD parameters, γ̂(CS), ζ̂.

for j ∈ Z do
for i = 1 → Q do

Solve the convex optimization problem given by BPDN(ρ, δ,σ);
Use the entire recovered vector ŝ as a training set, i.e., T = {1, 2, ..., N} OR

if available, choose a set of points for which the truth of the hypothesis is known, i.e.
T = {i : si = 0};

end for
Using the points r(j) : j ∈ T , construct the distribution p̂r(j)(x) =

∑Q
t=1 1

r(k(t)z )
(x);

end for
Set α = 0.1, and select u = r(b) such that #{t : r(t) > r(b)} = 5αQ6, and let T ! {t :
r(t) > r(b)};
Let z(u) be a sequence such that ∀j, z(u)j ∈ T ;
Estimate GPD parameters µ and ζ by applying the Nelder-Mead solver
to solve the maximum likelihood function optimization problem given by

minγ,ζ αQ log ζ +
(
1 + 1

γ

)∑αQ
i=1 log

(
1 + γ

ζ (z
(u)
i − u)

)
. Call this solution γ̂(CS) and

ζ̂(CS);

The threshold is computed from the probability of false alarm as

τ (CS)(PFA) = u+
ζ̂

γ̂

((
PFA

α

)−γ̂

− 1

)
(3.30)

With the relationship between PFA and τ established, we can proceed to derive the prob-

ability of detection from the statistics of the non-zero values and establish the receiver

operating characteristics.

3.4.3 Performance of GPD-based Threshold Estimation

We demonstrate the effectiveness of Algorithm 1 to data generated from applying the SPGL1

convex optimization solver to synthesized compressive noise radar problems. In Figure 3.5,

we plot the complete real CDF of the absolute value of the residual data with the relatively

small value of Q = 5 × 104 for the training data. The parameters for the GPD-based

estimate of the PFA are derived from the data. The value of α has to be chosen carefully
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Figure 3.5: Plot showing application of Algorithm 1 for GPD-based extrapolation of the
cumulative distribution of empirical residue data. Compressive recovery with N = 1024.

based on the number of reliable non-zero values in the training data. A high value of α will

mean that the training data contain too many samples too far from the tail. If α is too low,

then the there will be too few samples in the training data. This GPD-based extrapolation

is seen to conform with both training and test data.

The GPD estimates are obtained for 50 independent realizations of Algorithm 1. From

these estimates, the threshold is computed for various values of the probability of false

alarm from equation 3.30. The 50 realizations are plotted as smoothed probability density

function in 3.6, estimated as

pτ (x) =
50∑

i=1

1τ̂ (x),

where τ̂ is the estimated threshold value. In the simulations, we used the ksdensity

function in matlab. The median threshold for each PFA is indicated in the plots. As the

desired PFA is lower, the unknown threshold values are farther away from the training

data. Thus, the uncertainty in the estimated threshold value increases, as indicated by

the increasing spread in the pdf of the data. The reliable median allows us to extract a

meaningful estimate even when the desired probability of false alarm is as low as 10−8.
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Figure 3.6: The probability distribution of the estimates of the threshold value for various
desired values of PFA. Compressive recovery was performed with S = 10,M = 256, N =
1024 and SNR = 10 dB. The estimate of the PFA was done using α = 0.01. The pdf of the
threshold estimation itself was generated using 50 instances of algorithm 1.

3.4.4 Performance of Algorithm on Experimental Data

We applied our threshold estimation algorithm on experimental data that was acquired as

described in Chapter 2. The fully sampled (1 gigasamples per second) received waveform

and transmitted waveform were a record of 105 data samples. We divided the entire record

into smaller sets of length N = 4096. For one of these sets, we solved the l1-minimization

based compressive recovery algorithm to extract the radar target image. We then utilized

partial knowledge of the locations of the non-zero values to construct a set that represented

the points ŝi : si = 0. For the subset of locations where targets are absent, we estimated

the tail using Algorithm 1. We verify the performance of this algorithm by comparing it

with the estimated cumulative distribution functions of the empirical data. We combined

the results of several such experiments to empirically construct the extended cumulative
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distribution function. The accurate reconstruction of these values is seen in Figure 3.7.
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Figure 3.7: Tail estimation for real data. We observe that the empirical CDF corresponds
closely with the GPD estimate for the tail. The target scenario involved one corner reflector
target at 100 ft imaged multiple times using the millimeter wave radar described in Chapter
3.

3.5 Computational Complexity

In our work, we use convex optimization to solve the compressive signal recovery problem.

While there are more computationally efficient algorithms for compressive recovery, convex

optimization provides the best performance in terms of recovery accuracy [12]. The recent

algorithm of Approximate Message Passing (AMP) [13] is an exception in that its perfor-

mance is theoretically identical to convex optimization. However, this theoretical guarantee

is only valid for Gaussian random system matrices. Compressive sensing is particularly sen-

sitive to the nature of the system matrix, and it is as yet unclear how AMP-based algorithms

behave for circulant matrices.

We use the spectral projected gradient algorithm-l1 (SPGL1) [19] for solving the basis

pursuit denoising problem. Each iteration of the SPGL1 algorithm involves a matrix-vector

product. In our problem, this corresponds to a computational complexity of O(MN),
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assuming that each scalar arithmetic operation can be accomplished with complexity of

O(1). Multiplying with circulant system matrices is an operation that takes O(N logN)

operations. While the exact estimate for the number of iterations for SPGL1 is unknown, the

similar ParNes algorithm [55] requires O(
√

1/σ) iterations to converge to a solution. So we

surmise that the most efficient convex-optimization based BPDN solvers have a complexity

of O(M logN
√
1/σ).

Let us assume that we use Nmc number of instances of SPGL1, then the cost of con-

structing the empirical CDF of the residue would be O(NmcN logN
√

1/σ). Our approach

to estimating the CDF seeks to achieve two objectives, computationally speaking: (a) re-

duce the number of instances Nmc, (b) solve smaller problems on each instance so that

we can lower the value of N . Let us assume that we desire a probability of false alarm of

P̃fa. In order to accurately estimate the threshold that achieves this probability, we would

require around Ñmc = 10/P̃fa instances. Thus the cost of Ñmc instances of the SPGL1

algorithm would be O(ÑmcN logN
√

1/σ).

Using the GPD approach for extrapolating tails allows us to estimate thresholds for low

values of Pfa without significantly increasing Nmc and N . In our experiments, we were

able to extrapolate accurately, the tail distribution up to events as rare as Pfa = 10−5

using around 103 samples. This implies that using extreme value theory to estimate the

tail probabilities means we can achieve a reduction of a couple of orders of magnitude in

the values of Nmc and N required to compute a given value Pfa. Let us assume that by

using extreme value theory, we can compute a required P̃fa with just γmcÑmc instances of

problems of γsN dimensions for some constants, γmc, γs << 1. Then the computational

cost of simulating the rare event reduces approximately by a factor of γmcγs. Based on

empirical evidence, γmc, γs ≈ 10−2 implies that we can achieve a reduction of 10−4 in the

cost of computing the threshold for low probabilities of false alarm. This improvement is

achieved at the relatively smaller additional cost of solving the GPD parameter estimation

problem, which is a two-dimensional maximum likelihood convex optimization problem.

In a real system, our goal is to compute detection thresholds with as little latency as

possible. An improvement of a factor of (1/γmcγs) ≈ 104 in the computational speed of
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estimating thresholds represents a significant advantage when each solution of the SPGL1

algorithm takes around 300 seconds for a 10000 dimensional problem, as we see in Figure 3.8.

Further in many instances, we may not have access to a training set that is sufficiently large

to empirically estimate thresholds corresponding to low probabilities of error. Thus, we

believe that an extreme-value theory based approach to threshold detection is useful for

practical compressive sensing systems.

The computational expense of convex optimization based signal recovery presents a

significant stumbling block in running extensive Monte Carlo simulations. We studied

the computational efficiency of running compressive recovery algorithms, specifically, the

spectral projected gradient l1 (SPGL1) algorithm [19] on a quad-core Intel i7 2.8 GHz

desktop with 8 GB of RAM. In Figure 3.8, we see that the there is a roughly exponential

increase in the computational cost as the dimension of the problem increases. We considered

the case of a single target being present in the target scene. This means that the solution we

seek is as highly sparse as it can get. Further, the computational efficiency is worse for real

data compared to simulated data. We believe that this is due to the non-idealities of real

systems. The bandlimiting properties of the filters used increases the number of non-zero

pixels. This worsening of the sparsity means that the convex optimization problem takes

longer to converge. Further, the rate of convergence worsens as the signal-to-noise ratio

decreases.

A single solution of a problem of dimension 10, 000 takes about five minutes. A problem

dimension of 10, 000 would provide sufficient opportunities to simulate events of likelihoods

of the order of 0.01. In summary, if we resort to brute-force Monte Carlo simulations, then it

would take us in excess of five minutes to even simulate events that occur with a probability

between 10−3 and 10−2. Thus computationally speaking it can get prohibitively expensive

to simulate events that occur with lower probabilities. The direct implication to detection

theory is that it becomes impractical to estimate thresholds which can yield low false alarm

rates using brute-force Monte Carlo methods.
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Figure 3.8: Computational complexity of SPGL 1 convex optimization signal recovery in
terms of running time of algorithm on an Intel i7 2.8 GHz with 8 GB of RAM.
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Chapter 4

Waveform Design and

Compressively Sampled Radar

4.1 The Need for Designing Waveforms

Historically, radar signal processing has focused on developing waveforms and systems that

maximize the signal-to-noise ratio. However, even as early as in the few years following

Shannon’s seminal paper on information theory, there was considerable interest in casting

radar imaging as a problem of maximizing the quality and quantity of information about the

target. This approach of applying general ideas from information theory to radar was first

articulated by Woodward [56] in the early 1950s. Due to constraints imposed by system-

level and algorithmic complexity limited the adoption of this idea in real systems. Bell [57]

extended the theory considerably in an important paper in 1993, where he formalized the

idea of maximizing the mutual information of the received waveform and the target by opti-

mizing the transmit waveforms. In the years since, there has been a considerable amount of

work in this area, as applied to multiple-input multiple-output (MIMO) radar [58], adaptive

radar [59], optimal detection [60], target classification [61], and knowledge-based radar [62].

Portions of this chapter were published in the paper “Waveform Design for Compres-

sively Sampled UWB Radar,” authored by MCS, Ram M. Narayanan, and Muralidhar

Rangaswamy that is to appear in the Journal of Electronic Imaging Special Issue on Com-
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pressive Sensing in April 2013 [63].

Of particular relevance to our work is the idea of knowledge-based radar. Knowledge-

based radar refers to the concept of incorporating knowledge or general information that we

possess about a target scene into the detection and imaging framework. The development of

knowledge-aided systems requires that we construct a framework for incorporating uncertain

information concerning the target into the radar signal processing system. We propose to

accomplish this task by expanding the signal in basis functions that reflect the target scene.

The main benefits of this kind of waveform design are in improving the quality of imaging

when extended targets are present in the scene. While waveforms with sharp autocorrelation

functions are adequate for imaging point targets, for extended targets, a more elaborate

approach for waveform design is necessary as we outline below.

The term redundant dictionaries refers to a set of basis functions that are general rather

than possess attributes such as orthogonality or frame conditions. For example, a basis set

that is composed as the union of the canonical basis set and the Fourier basis functions is re-

dundant, since canonical bases are not orthogonal to Fourier bases. The idea of representing

signals in such basis functions has been around since the early 1990s when they were used

in the context of time-frequency analysis [16]. The motivation for using redundant bases

functions was explained by Mallat and Zheng in their seminal 1993 paper, using natural

language as a metaphor,

We can express a wide range of ideas and at the same time easily communi-

cate subtle differences between close concepts, because natural languages have

large vocabularies that include words with close meanings. For information pro-

cessing, low level signal representations must also provide explicit information

on very different properties, while giving simple cues to differentiate close pat-

terns... Linear expansions in a single basis, whether it is a Fourier, wavelet or

any other basis, are not flexible enough.

While Mallat and Zhang allude to standard bases functions such as Fourier basis func-

tions and wavelets, we can ease this restriction as we show in this thesis. Most recently,

the use of such dictionaries has been proposed in the context of face recognition where the
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training sets for classifiers are used as dictionary elements[64, 65]. In their 2007 paper,

Wright et al. [64] model the pixels of photographs of unknown faces as a weighted linear

combination of a number of different faces from a database. If the unknown test photograph

is present in the database, then the weights would be zero for all mismatched images and

close to a normalized numerical value of 1 for the matching image. Here, the basis functions

are formed from the pixels drawn from an arbitrary image database. These in general do

not have any mathematical structure. Further, one may have many more images than the

number of pixels, with these two parameters being unrelated to each other. Since there is

one variable (weight) for each image, what arises is an underdetermined system of linear

equations. The authors bring in ideas from compressive sensing to leverage the fact that a

vector representing the unknown faces is bound to be sparse. They propose to pre-multiply

the linear system with a random matrix to make the system suitable for compressive re-

covery. The resulting inverse problem is solved using l1 optimization-based algoithms. In

the context of radar imaging, Varshney et al. [66] used redundant dictionaries of wavelets

to characterize anisotropy in wide-angle synthetic aperture radar (SAR). They propose a

graph-structured algorithm for improving SAR images based on the redundant dictionary

model of anisotropic scattering.

In a manner similar to the above, we propose to use redundant dictionaries to model

radar images. We then propose to use results from the theory of compressive sensing to solve

the imaging problem. Since it is impractical to implement random-matrix multiplication

in the temporal acquisition of radar signals, we leverage the occurrence of circulant system

matrices to make the system invertible. Circulant matrices occur naturally in linear systems

as they represent the operation of circular convolution. As we shall show, a practical

solution to the problem of including knowledge of the target scene would involve designing

appropriate waveforms matched to the targets. The basic assumption in our approach

is that we know about the existence of certain objects and radar scattering profiles in

the target scene. However, these are located at unknown distances and are of unknown

physical extents. We construct the dictionary from that the anticipated electromagnetic

scattering features of targets and clutter. For each such basis function, we also include in
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the dictionary, circularly time-shifted versions of itself. The received signal is essentially a

convolution of the target model and the transmit signal. The target is modeled as a weighted

linear combination of these basis functions. Radar imaging now becomes the problem of

inverting this linear system to solve for the unknown weights. The linear systems that

model the imaging problem are underdetermined. We leverage the occurrence of sparsity

in the solutions and use l1-norm based optimization techniques. The invertibility of the

system, in such a situation is dependent on certain properties of the system matrix. We try

to achieve this invertibility by designing suitable waveforms. The algorithm we propose is

agnostic to the mathematical properties of the basis set.

The basic model for the signal is based on linear convolution, as in the earlier chapters.

The reflected waveform is the convolution of the transmit waveform x(t) and the target s(t),

so that, y(t) =
∫
x(t− τ)s(τ)dτ + η(t). The resulting discrete linear system is y = Xs+ η.

We introduce additional information into the system in the form of a redundant basis set

ψi. Then, the system becomes y = AZs+η. To reflect to diversity of basis functions used

in the model, the dictionary can be written as

Ψ = [Ψ(1)|Ψ(2)|...|Ψ(D)], (4.1)

where each of Ψ(i) ∈ RN×N with i = 1, ..., D, as we argue later is a circulant matrix.

Our motivation for the ideas proposed in this chapter can be illustrated with the help

of the notion of information sparsity. If we incorporate more information into the imaging

problem in the form of the redundant dictionary of basis functions, we can reduce the

amount of information that we seek to recover. However, there is always a trade-off between

sparsity and uncertainty. In gaining higher sparsity, we are introducing uncertainty due to

the approximate nature of our model. Our efforts are directed towards reducing the effects

of this uncertainty and improving the invertibility of the system. As we outlined earlier,

the performance of compressive sensing depends on the sparsity of the recovered vector, the

number of linear equations, the additive noise in the syste, and mathematical properties of

the matrix. In Section 4.2.1 we present the theoretical basis for this argument by looking

at the restricted isometry constant for the two types of matrices.
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In our work, we look at radar waveform design in the context of compressive sensing.

There are two reasons to study radar waveform design from a compressive-sensing perspec-

tive. Firstly, when we expand a target scene in an arbitrary dictionary of bases, the resulting

linear system is highly underdetermined. The reason for this is our uncertainty regarding

the exact location and nature of the targets in the image. Secondly, with the advent of

digital radar systems, it has become possible to build agile and flexible radar systems which

enable us, with the use of arbitrary waveform generators and custom ASICs to efficiently

generate arbitrary ultra-wideband waveforms for transmission.

In earlier chapters and in recent papers on compressive radar imaging ignore correlations

and degradations in sparsity due to well-defined physical phenomena. These distortions are

deterministic as opposed to the additive and multiplicative random perturbations that arise

from ambient noise. In the idealized compressive radar imaging problem, the system ma-

trix is modeled as a sequence of random statistically independent and identically distributed

random variables and targets are modeled as consisting of point scatterers. We believe that

such idealizatons and approximations are overly restrictive in certain applications, which

we outline in this chapter. Further, some papers [42] approximate transmitted and reflected

waveforms as being narrowband. Our focus is on ultrawideband radar imaging, which is

preferrable due to the robustness and improved physical resolution that the large band-

width offers. Further, in real systems, due to physical effects, the transmit and received

waveforms are really bandlimited smoothed waveforms. The smoothing can be induced

by the presence of low-pass filters at various stages in the hardware, and by the electro-

magnetic scattering effects of nonideal targets [67]. Our answer to mitigating the effects

these deterministic nonidealities is to use waveform design algorithms to improve the in-

vertibility of the imaging system. In this chapter, working within the framework of discrete

systems, we propose specific models for nonideality, analyze signal recovery performance,

and propose approaches to mitigating the adverse effects. We propose modeling the ef-

fect of extended targets and correlated transmit waveforms by representing target scenes in

redundant dictionaries. We study how these nonidealities affect the performance of com-

pressive signal recovery in Section 4.2.1. Then, in Section 4.3, we propose an approach for
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designing optimal ultrawideband waveforms for compressive radar imaging using priors and

general dictionaries to represent target scenes. We analyze the behavior of these optimized

waveforms in the context of compressive signal recovery by using mutual coherence as a

metric. We verify the effectiveness of optimized waveforms by performing simulations for

target recovery using waveforms optimized for four types of dictionaries.

4.2 Deterministic Nonidealities in Compressive Radar

4.2.1 Partial Correlated Random Matrices

The absence of correlations among the different cells of the target scene can be represented

in the fact that our measurement matrix consists of a random square partial circulant matrix

with the target scene represented in the canonical basis. We use the term partial to denote

matrices formed by selecting a subset of the rows of the full square matrix. We enforce the

condition that the measurement matrix should be circulant, as it represents what we believe

is the simplest practical approach in terms of the hardware complexity to implement the

compressive sensing of ultra-wideband time-domain signals that have a dense support in the

frequency domain. We consider the compressive noise radar imaging problem in the presence

of two types of nonidealities: (i) when the transmit waveform is distorted by a bandlimiting

filter of known response, and (ii) when the target scene consists of extended scatterers.

Compared to the non-idealities caused by the presence of additive and multiplicative noise,

the above non-idealities allow us to utilize deterministic approaches to mitigate their effect.

Hardware non-idealities have the effect of making the random variables generating the

circulant matrix to be correlated. The presence of extended targets and clutter reduces

the sparsity of the target scene. As we show subsequently, mathematically, the two non-

idealities can be treated in a similar manner. We define the idealized received signal y0(t),

such that its recoverably sampled form can be represented sparsely in the canonical basis.

The transmit waveform x(t) then defines the measurement basis of the compressive sensing

problem, so that, Φ = X. The recoverability of the signal in the above idealized problem

has been theoretically and empirically shown in literature [68, 69, 70, 26].
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Bandlimited Waveforms

Let h(t) represent a known filter that models the bandlimiting characteristics of radar

hardware. Then, the transmitted signal will be

x̃(t) = x(t) ∗ h(t), (4.2)

where x(t) is a fully random transmit waveform, and ∗ represents convolution. The effect of

the bandlimiting filter is to smudge point targets. The smudged point targets however, can

be recovered by representing the signal x̃(t) in a more general dictionary than the canonical

basis. While the smudging worsens the sparsity of the target scene as represented in the

canonical domain, we can improve imaging by expanding the dictionary to include basis

functions which can represent smooth signals. We can then write

x̃(t) =
D∑

k=1

x(t) ∗ ψk(t) (4.3)

X̃ = XΨ. (4.4)

The matrix Ψ is a circulant matrix generated from the coefficients of the bandlimiting

filter ψ(t). For deriving restricted isometry property (RIP) results, we incorporate this

nonideality by modifying the system equation thus,

z = RΩX̃s+RΩη (4.5)

= RΩXΨs+RΩη. (4.6)

The recovery of the target scene and the solution to the convex optimization problem in

Equation (4.7) both depend upon the restricted isometry property of the matrix RΩXΨ.

Extended Targets

We can compensate for the correlations represented by the band-limiting filter and extended

targets by expanding the signal space to the dictionary given by the matrix Ψ. The matrix
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is designed to represent correlations in the system. Since correlations smudge the target-

scene vector, we synthesize a dictionary based on smooth wavelet-type bases functions.

These basis functions are not necessarily orthogonal. As we show, we can always design

waveforms that make the system matrix XΨ convenient for compressive sensing.

In the matrix Ψ = [Ψ(1)|Ψ(2)|...|Ψ(D)], each sub-matrix Ψ(k) has circulant structure and

is generated from the prior information of target profiles. The uncertainty is accounted for

by increasing D. High uncertainty would require us to search through a larger dictionary,

thus increasing the number of basis functions in our dictionary. The compressive radar

imaging problem can be written as

ŝ = argmin
s∈RDN

||s||l1 s.t. ||z −RΩXΨs||l2 ≤ σ. (4.7)

The matrix Ψ is designed to encode available information about the target scene. Since

we are dropping the requirement that the dictionary be orthogonal, we can include prior

information arising from a training set into the dictionary. In the context of radars, this

prior information may include the shape of the targets as given by an arbitrary function

f(r) where r is a variable representing the range. The variable spatial location of the radar

transmitter and receiver will result in uncertainty in fitting the received signal to this model.

The spatial location, as represented by the aspect angle and the variable distance to the

target will result in an expanded dictionary with basis functions given by σ(r) = f(cr+ a),

with parameters a and c representing the location and extent of the target, respectively.

The dictionary can thus be extended to include the parameters c and a. If we discretize

the parameter space defined by (c, a) into a grid of size D ×N , we then have a dictionary

that contains, ND elements to choose from. Thus, the general expression for the received

signal is

s(t) =
N∑

j=1

D∑

k=1

sjskf(ckt+ aj) (4.8)

Discretizing, we get that the dictionary vectors, ψ(k)(t) = f(ckt). Each matrix, Ψ(k) is

the circulant convolution matrix associated with the vector ψ(k). It is important to note
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that the function f(.) can be arbitrary without any requirement of orthogonality. This

flexibility allows us to include prior information based on target scene s. Since we are

allowing for a dictionary with no special properties, we need to make sure that the system

matrix XΨ is suitable for compressive sensing. The design of suitable system matrices

entails transmission of waveforms optimized for the dictionary. This problem of designing

waveforms is addressed in Section 4.3.

4.2.2 Degradation in Restricted Isometry Constants

The matrix RΩXΨ represents an underdetermined system. The existence of the solution to

the compressive sensing optimization problem in Equation (4.7) is decided by the restricted

isometry property. The matrix A is said to satisfy the restricted isometry property of order

S if for a small δS ,

(1− δS)||v||2l2 ≤ ||Av||2l2 ≤ (1 + δS)||v||2l2 ∀ v with ||v||l0 ≤ S. (4.9)

4.2.3 RIP for Circulant Matrices

In this section, we adopt the approach of Rauhut et al. [69] to understand the restricted

isometry behavior of correlated circulant matrices. The restricted isometry property can be

rewritten and simplified as

(1− δS)v
Hp ≤ vHAHAv ≤ (1 + δS)v

Hv (4.10)

−δS ≤ vH(AHA− I)v ≤ δS (4.11)

|vH(AHA− I)v| ≤ δS . (4.12)

Since A is a fixed matrix, the above expression can be equivalently written as

sup
v∈RN ,||v||l0≤S

|vH(AHA− I)v| = δS . (4.13)
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Thus, we proceed by considering the matrix A. In our problem, A = RΩXΨ. We introduce

the N ×N permutation matrix S,

S !





0 0 . . . 1

1 0 . . . 0
...

. . .
. . .

...

0 . . . 1 0




(4.14)

Permutation matrices Sk perform the operation of circularly shifting vectors by k places.

The matrices Sk are constructed from permutations of the identity matrix. Permutation

matrices satisfy the property that for any integer k,
(
Sk
)H

= S−k. With h representing

the bandlimiting filter characterizing the hardware, we set Ψ = H ∈ R(N×N), with D = 1.

Let Γ denote the set containing the indices of non-zero coefficients of the representation of

H. The matrix XH can be written as a power series as follows:

X =
N∑

k=1

xkS
k,H =

N∑

k=1

ψkS
k, (4.15)

A = RΩ

(
N∑

k=1

xkS
k

)(
N∑

k=1

ψkS
k

)
, (4.16)

AHA =
∑

k1,k2∈Γ×Γ

∑

l1,l2∈[N ]×[N ]

ψk1ψk2xl1xl2S
−k2−l2−k1−l1RH

ΩRΩS
k2+l2+k1+l1. (4.17)

Alternately, we can also write AHA as

AHA =
∑

k,l∈[N ]×[N ]

gkglS
−kRH

ΩRΩS
l, (4.18)

gi ! 〈xi,ψi〉, (4.19)

where, xi and ψi refer to rows of the X and Ψ matrices. Following the analysis and

notations of Rauhut et al. [69], the RIP analysis for correlated random matrices involves
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evaluating the mean and tail bounds on the process given by

δS = sup
v∈RN ,||v||l0≤S

|vH(AHA− I)v|. (4.20)

Rauhut et al. [69] showed that the expression for the restricted isometry constant of ran-

dom circulant matrices can be written as δ̃S = supv∈T |
∑

k,l gkg
′
lZv(k, l)|, where gk and g′l

represent independent identically distributed random processes indexed by the subscript.

We use the superscript ˜ to identify the restricted isometry constant for random circulant

matrices. For convenience, we define the set, T ! {v, such that v ∈ RN with ||v||l0 ≤ S}.

In order to study the restricted isometry property, we need to compare the following two

quantities with the circulant random case:

EδS = E sup
v∈T

|vH(AHA− I)v|, (4.21)

Prob [δS − EδS > λ] = Prob

[
sup
v∈T

|vH(AHA− I)v|− EδS > λ

]
. (4.22)

We proceed [69] by defining Zv(k, l) = vHS−kRH
ΩRΩSlv. We plug in the expressions from

(4.19) into (4.21) and (4.22) to get

EδS = E sup
v∈T

|
∑

k,l

gkglZv(k, l)| (4.23)

= E sup
v∈T

|
∑

k,l

〈xk,ψk〉〈xl,ψl〉Zv(k, l)| (4.24)

> C1E sup
v∈T

|
∑

k,l

xkx
′
lZv(k, l)|, (4.25)

We further have that the tail of the distribution of the restricted isometry constant for

correlated matrices will always be larger than the corresponding tail for uncorrelated random
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circulant matrices. We can formalize this as

Prob [δS − EδS > λ] > C2 Prob



sup
v∈T

|
∑

k,l

xkx
′
lZv(k, l)| > E sup

v∈T
|
∑

k,l

xkx
′
lZv(k, l)|+ λ



,

(4.26)

where x′l are independent copies of xl, and C1, C2 > 1 are constants. The above results

follow by expanding the terms 〈xi,ψi〉 and then applying decoupling inequalities [71]. The

right hand sides of Equations (4.25) and (4.26) are the estimates for RIP constants of partial

uncorrelated random circulant matrices [69]. The larger restricted isometry constants imply

that the recovery results with correlated random circulant system matrices will be worse

than the uncorrelated case, for a given level of sparsity and fixed number of measurements.

The above derivations show that the restricted isometry constants are probabilistically

larger. This suggests a degradation in the performance of compressive sensing. A more

accurate picture of the degradation in the performance due to bandlimited waveforms can

be derived in the following manner. We introduce the parameter γ < 1 such that the

support of the autocorrelation function is γN .

Proposition 1. Let the support of the autocorrelation function of the transmitted waveform

be Sac = 2γN , with γ < 1. Assume that compressive recovery is guaranteed for circulant

matrices generated from i.i.d random samples with the acquisition of M > C1S logN for

some constant C1 > 0. Then, in the presence of correlation, the lower limit on the number

of samples required for recovery increases to M = min (N,C1γSN logN).

Proof. Let h denote the filter that causes the correlation in the random waveform. We

can write the correlated waveform as x̃ = x ∗ h, where x is an i.i.d random process.

The convolution between the correlated waveform and the target scene can be written as

y = x ∗ h ∗ s = XHs, where X and H are circulant matrices associated with the vectors

x and h respectively. Then, y = Xs̃, where s̃ = Hs. We note that the support of h is

γN . It follows that supp (s̃) = supp (Hs) = γNS. If γSN logN is larger than N , then it

trivially follows that N equations will be sufficient for recovery.
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The existence of extended targets similarly implies that the support of the target scene

even in the absence of transmit waveform correlations is larger, leading to the requirement

of acquiring more samples. Fortunately, random variables comprising the system matrix are

correlated we can improve compressive sensing recovery by: (i) expanding the set of bases

in the dictionary representing the signal and (ii) optimizing the transmit waveform such

that the resulting system matrix is invertible based on the dictionary of basis functions. In

the following sections, we describe approaches to designing such optimal waveforms.

4.3 Waveform Design Algorithm

The problem of designing optimal circulant sensing matrices was considered in a recent

paper by Xu et al. [72]. The approach is to minimize the cost function that is constructed

to represent the mutual coherence [39]

X̂ = argmin
X circulant

||ΨHXHXΨ− I||F . (4.27)

We use F to denote the DFT matrix. Xu et al. define p = abs (x)2 and show that the

algebraic simplification [72] of the cost function results in

||ΨHXHXΨ− I||2F = pH abs (FHΨΨHF )
2
p− 2pH diag (FHΨΨHF )−N. (4.28)

Xu et al. [72] thus propose solving the following optimization problem to design circulant

matrices:

C(p) = pH abs (FHΨΨHF )p− 2pH diag (FHΨΨHF ), (4.29)

p̂ = argmin
p∈RN

C(p) (4.30)

subject to p ≥ 0. (4.31)

Following precedent in literature, we refer to a collection of basis functions (atoms) as

molecules. The structure of the molecules allows us to simplify the cost function, and con-
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sequently the computation involved in solving the optimization problem. The simplification

arises from the assumption that the molecules Ψi are circulant. We can write each molecule

as, Ψ(i) = FΛ(i)FH . We then have

B ! FH [Ψ(1)|Ψ(2)|...|Ψ(D)][Ψ(1)H |Ψ(2)H |....|Ψ(D)H ]HF (4.32)

= FH

(
D∑

i=1

Ψ(i)Ψ(i)H

)
F (4.33)

= FH

(
D∑

i=1

FΛ(i)FHFΛ(i)HFH

)
F (4.34)

=
D∑

i=1

FHFΛ(i)HΛ(i)FHF (4.35)

=
D∑

i=1

Λ(i)HΛ(i). (4.36)

The minimizer for the cost function will satisfy the following properties:

∇C(p̂) = 0 (4.37)

abs

(
D∑

k=1

Λ̂(k)HΛ̂(k)

)
p̂ = diag

D∑

k=1

Λ̂(k)HΛ̂(k) (4.38)

p̂i =
1

∑D
k=1 Λ̂

(k)H
i Λ̂(k)

i

. (4.39)

For reconstructing the waveform, we first modulate p̂ with a random phase, so that with ri

is a random variable drawn from an appropriate probability distribution,

ui =
√

p̂ie
jri . (4.40)

We wish the matrix X to be real. For enforcing this condition, it is required that the

eigenvalues must exist in conjugate pairs. Thus, we construct ûi such that ûi = ui, i ≤

5N/26, ûi = uHi−,N/2-, i > 5N/26. The complete algorithm is summarized as Algorithm 2.
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With the eigenvalues of X, thus constructed, the transmit signal itself is given by

X = F diag(ûi)F
H . (4.41)

Algorithm 2 Waveform design algorithm based on minimizing the Frobenius norm distance
between the Gram matrix and the identity matrix.
Waveform Design for Ultrawideband Radar Imaging
Input: Dictionary Ψ = [Ψ(1)|Ψ(2)|...|Ψ(D)] describing uncertain prior information about
the target scene.
Output: Optimized waveform x.

1: Normalize the dictionary such that for each column of Ψ, ||ψ(k)
j ||2 = 1.

2: for k = 1 → D do
3: Use FFT algorithm to compute the eigenvalues λ(k)i (1 ≤ k ≤ D and 1 ≤ i ≤ N) for

each matrix Ψ(k).
4: end for
5: for i = 1 → N do
6: Compute the vector p̂ with p̂i =

1∑D
k=1 Λ

(k)H
i Λ

(k)
i

.

7: Randomize the phase of
√
p̃i, such that ui =

√
p̂iejri where ri is a random number

and j =
√
−1.

8: Discard half of the values ui so as to enforce even symmetry, and define the vector
ũi such that ũi = ui for i < 5N/26 and ũi = u−i mod (,N/2-) for i > 5N/26. This is
necessary to ensure that the optimized transmit waveform is real [72] following the next
step.

9: end for
10: The optimized transmit waveform is given by xH = F ũ.

4.3.1 Performance of Compressive Recovery with Optimized Transmit

Waveform

We approach the analysis of the compressive sensing algorithm for optimized waveforms by

looking at the mutual coherence of the pair of bases given by X and Ψ. We continue to

use the property that the matrices X and Ψ are circulant. The system matrix A will be

the product of X and Ψ. Following our notation, we recall that x represents the transmit

waveform generating the matrix X and ψ(k) represents the vector generating the matrix

Ψ(k). The symbol λ represents the Fourier co-efficients of the vector x and λ(k) represent
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the Fourier coefficients of the matrix Ψ(k). The mutual coherence between the circulant

optimized waveform matrix X and Ψ(k) is

µ(k) =
|xHψ(k)|

||xH ||2||ψ(k)||2
(4.42)

=
|λHFHFλ(k)|

||Fλ||2||Fλ(k)||2
(4.43)

=

∑N
i=1

|λ(k)
i |√∑D

k=1 λ
(k)H
i λ

(k)
i

(√∑N
i=1 λ

(k)H
i λ(k)i

)(∑N
i=1

1√∑D
k=1 λ

(k)H
i λ

(k)
i

) (4.44)

4.4 Simulations

In order to validate the above theory, simulations were performed to solve the one-dimensional

radar imaging problem using optimized waveforms. The optimized waveform consists of

1024 samples. The target scene is represented in a redundant dictionary designed to encode

the presence of extended targets. We consider that the reflected signal has an SNR of 40 dB

and 25% of the samples (M = 0.25 × N = 256) were acquired. The dictionary consists of

eleven molecules. Ten of the molecules represent rectangular pulses of different extents. The

basis functions that comprise each molecule matrix are time-shifted and inverted copies of

the generating basis function, thus encoding the uncertainty in the locations of the targets.

The last molecule is the identity matrix. It is generated from the canonical basis, and is

used to represent point scatterers in the target scene. A few examples of the basis functions

used are plotted in Figure 4.1. The functions shown in Figure 4.1 represent shifted and

scaled copies, with no conditions of orthogonality imposed on the basis functions.

In order to quantify the improvement in compressive recovery using the waveform op-

timization approach, we look at the statistics of the intercolumn coherence of the system

matrix. Our approach to the analysis is to first define the matrix G = ÅHÅ, where Å

is constructed by normalizing each column of A with respect to its l2-norm. We then

observe the statistics of the coherence across different columns by plotting the empirical

cumulative distribution function (CDF) of the values. We follow precedent [73] for the
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Figure 4.1: Examples of specific basis functions used in Section 4.4. These are the columns
of the matrix Ψ. The index j refers to the index of the column of the basis within the
matrix Ψ(k).

statistical evaluation of the mutual coherence metric, and construct the CDF using the

formula, F (x) =
∑

i"=j 1G(i,j)<x

N×(N−1) . The plot of these CDFs for different bases functions are

shown in Figures 4.21, 4.22, and 4.23. It is observed that circulant random sensing matrices

are worse in terms of the mutual coherence than optimized circulant sensing matrices. The

intercolumn coherence is more likely to be higher in the case of random circulant matrices.

This conforms with the theoretical arguments of Section 4.2.2. Thus when sparsity occurs

in arbitrary bases functions, optimized waveforms will outperform random waveforms.

The target scene consisted of extended targets and point targets. Compressive sensing

recovery was performed using the spectral projected gradient algorithm for l1-norms [74] to

solve the optimization problem, mins∈RDN ||s||l1 subject to ||z−RΩXΨs||l2 < σ. Only 25%

of the samples of the reflected waveform were used for recovery. The reflected waveform was

sampled uniformly. Since the target is not sparse in the canonical basis, a naive compressive

sensing approach that does not use optimized waveforms fails to recover the target scene.

The recovery performance when we use a transmit waveform that is optimized for the
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Figure 4.2: CDF plots comparing the inter-column coherence of system matrices corre-
sponding to naive random and optimized waveforms.

redundant dictionary model is shown in Figure 4.4. It is seen that the naive Gaussian

random waveforms are unable to simultaneously recover extended and point targets. The

reconstructed target scene is shown in Figure 4.4 and the corresponding vectors ŝ are also

plotted. It is seen that optimized waveforms significantly outperform the naive approach.

We repeat the simulations for target scenes represented by two other dictionaries. We

looked at the dictionary comprised of molecules which are ciruclant matrices generated from

the Gaussian window basis function. This is useful in representing smooth extended targets.

The dictionary is appended with a molecule representing the canonical basis function. It

is seen in Figure 4.5 that in this case too, the optimized waveform outperforms the naive
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Figure 4.3: A typical transmit waveform, optimized in this simulation for a dictionary of
rectangular basis functions and the identity matrix, with D = 11.

transmit waveform. In Figure 4.6, we simulate the signal recovery results with the assump-

tion that the smooth target can be represented by the Gaussian-derivative wavelet function.

The Gaussian-derivative wavelet function comes endowed with useful properties that are

characteristic to wavelet functions- namely limited support and tightness of frames. We

see that for target scenes that are sparse in such a dictionary too, recovery performance

is better when optimized transmit waveforms are used. In all the above cases, we observe

that the naive transmit waveform fails to pick out point targets. The reason for this is

that point targets cannot be accurately represented by the continuous limited support basis

functions that are placed in the dictionary to pick out extended targets. This problem is

overcome by suitably designing the transmit waveform so that mutual coherence and RIP

properties are retained for the arbitrary medley of basis functions that the dictionary rep-

resents. Figure 4.3 shows a typical result of the waveform optimization algorithm designed

for a dictionary of rectangular basis fuctions and the identity matrix, with D = 11. For

a statistical validation of the performance gain, we define the miss-rate, as the fraction of

elements of ŝ that are recovered within ν = 10% of the actual value. We can write this as

ξ =
1

N
1|ŝ(k)−s(k)|≤(ν)|s(k)|(k). (4.45)
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Figure 4.4: Target recovery performance (left- Ψŝ, right- ŝ) with naively random waveforms
and waveforms optimized for the dictionary model generated from rectangular window basis
function.

The recovery is repeated for 20 realizations. Each realization of the experiment consists of

a target scene that is randomly generated using the modeling dictionary generated from the

rectangular basis function. The error metric ξ is computed for each trial. This is plotted in

Figure 4.7. It is seen that optimizing the waveform consistently yields an improvement in

the performance of compressive recovery.

We apply the waveform design algorithm to simulated images that mimic the mathemat-

ical structure of extended targets in radar imaging scenarios. The target recovery along each

point along the ‘crossrange’ represents an independent scene. Thus, the two dimensional

image can be viewed as representative of a variety of target scenes. Optimized waveforms

generated using Algorithm 1 work better than naive waveforms in each indpendent real-

ization of the imaging problem. The targets in the example are shown in Figure 4.8. The

imaging problem was simulated by performing target recovery along each of the 100 cross-

range locations. The recovery results for naive transmit waveforms are shown in Figures 4.9,

4.12, 4.15, 4.11, and 4.14. The enhancement in the target recovery performance is seen in

Figures 4.10, 4.13, and 4.16. While the solid targets represent mathematically smooth fea-

tures, the lines in the simulated target scene are characterized by the non-smooth transitions

they represent. The lines can be due to the presence of corner reflectors and sharp scatterers
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Figure 4.5: Target recovery performance (left- Ψŝ, right- ŝ) with naively random waveforms
and waveforms optimized for the dictionary model generated from a Gaussian window basis
function.
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Figure 4.6: Target recovery performance (left- Ψŝ, right- ŝ) with naively random waveforms
and waveforms optimized for the dictionary model generated from Gaussian derivative-
wavelet basis function.
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Figure 4.7: Error metric ξ for 20 realizations of the rectangular bases function case, ν = 0.1.

Figure 4.8: Ground truth for simulated target scene, targets representable in basis set of
rectangular functions.

in the target scene. Optimized waveforms enable us to recover jointly, smooth (extended

targets) as well as non-smooth (point and line scatterers) features in the target scene. We

note from Figures 4.9, 4.12, and 4.15 that point scatterers are not recovered as well with

naive waveforms. The optimized waveforms were designed for rectangular, Gaussian, and

Gaussian wavelet basis functions so as to mimic the expected target scenes.

84



Figure 4.9: Compressive imaging using naive random waveforms, targets representable in
basis set of rectangular functions.

Figure 4.10: Compressive imaging using optimized random waveforms, targets representable
in basis set of rectangular functions.
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Figure 4.11: Ground truth for simulated image, targets representable in basis set of Gaussian
functions.

Figure 4.12: Compressive imaging using naive random waveforms, targets representable in
basis set of Gaussian functions.
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Figure 4.13: Compressive imaging using optimized random waveforms, targets representable
in basis set of Gaussian functions.

Figure 4.14: Ground truth for simulated image, targets representable in basis set of Gaussian
wavelets.
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Figure 4.15: Compressive imaging using naive random waveforms, targets representable in
basis set of Gaussian wavelets.

Figure 4.16: Compressive imaging using optimized random waveforms, targets representable
in basis set of Gaussian wavelets.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

5.1.1 Compressive Noise Radar Imaging and Detection

In this thesis, we showed through theoretical arguments, numerical simulations, and ex-

periments, the suitability of stochastic waveforms for designing practical compressive radar

systems. We analyzed the performance of compressive noise radar systems using phase

transitions. Phase transitions are feasible tools for calibrating compressive radar systems.

We analyzed the importance of the uniform norm of residual error and proposed a measure

of performance based on this quantity. For the first time in literature, we experimentally

demonstrate the applicability of compressive sensing to ultrawideband noise radar imag-

ing. In spite of anticipated non-idealities, the performance of compessively sampled radar

compares favorably with conventional radar imaging systems. The ability of compressive

sensing to resolve two closely spaced targets is also comparable with that of conventional

matched-filter based radar imaging. We developed an approach based on extreme value

theory to estimate the tail of compressive sensing recovery residues. The closed form of

the distribution of the tail thus obtained belongs to the family of Generalized Pareto Dis-

tribution. We successfully tested our algorithms on experimental noise radar data proving

that compressive noise radar imaging is a feasible technology that could replace or augment

conventional noise radar systems.
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5.2 Open Problems

Circulant Random Matrices in Compressive Sensing: An important problem in

the area of compressive sensing as applied to radar imaging is the characterization of the

performance of circulant random system matrices. Consistently, in our simulations, we

observed that the performance of circulant random matrices is comparable to that of ran-

dom matrices. There is strong evidence to suggest that the number of samples required

for accurate compressive signal recovery with random circulant system matrices scales as

O(S logN). However, existing analyses of the RIP and mutual coherence properties of

circulant random matrices [26, 40, 69] only provide results that indicate suboptimal per-

formance. Phase-transition diagrams indicate the equivalence of the behavior of circulant

random and fully random matrices in the context of compressive sensing. This suggests

that a theoretical analysis that takes the route of phase transitions may be used to prove

optimal behavior. However, phase transitions have only been shown to theoretically work

for compressive sensing problems with random system matrices.

Theory of Compressive Detection for Noise Radar: The approximate message pass-

ing algorithm [45] provides an approach to derive the distribution of the residue of com-

pressive sensing recovery. The theoretical analyses proceeds by first showing the exact

equivalence of the approximate message passing algorithm with the convex optimization

formulation. The residue is hypothesized to be drawn from the normal distribution. Then,

the expectation and variance of the residue are derived for the non-linear recursion that

represents the approximate message passing algorithm. However, the key theorems in this

analysis use results about the asymptotic behavior of random matrices. The problem of

extending this theory to random circulant matrices remains open.

5.2.1 Waveform Design

In Chapter 4, we extended the theory of compressive radar imaging to account for cor-

related waveforms arising from extended targets and hardware non-idealities. We showed

analytically the extent to which correlations degrade the performance of compressive radar
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imaging. We proposed incorporating redundant dictionaries into recovering targets in the

context of ultra-wideband radar imaging. By suitably optimizing transmit waveforms, we

showed that it is possible to image targets that are sparsely represented in arbitrary basis.

In particular, waveform optimization was useful in accurately imaging scenarios where both

point and extended targets are present. Thus, the optimization of the waveforms mitigates

the correlations induced by the arbitrary dictionary representation. The waveform design al-

gorithm only involves algebraic operations on the eigenvalues of the molecule-matrices. This

attribute of computational efficiency makes it attractive for practical compressive sensing.

Simulation confirmed the theory in demonstrating that the optimization approach improves

signal recovery performance by compensating for nonidealities.

Clutter Suppression: A Redundant Dictionaries Perspective In radar imaging,

clutter refers to unwanted reflections occurring in an imaging problem. An example of radar

clutter is the unwanted reflections arising from the ground on which a target of interest is

located. An important area where our approach to knowledge-based compressive sensing

has potential application is in clutter suppression. Imaging with redundant dictionaries

opens up the possibility of including clutter models in the target imaging algorithm. In

the past, statistical models have been successfully developed for characterizing clutter. Re-

dundant dictionaries in conjunction with compressive signal recovery present an alternative

deterministic approach to clutter suppression. In conventional radar systems, the reflected

waveform is given by z = Xs. By using redundant dictionaries for imaging, we expand the

signal model to z = XΨs. Let T denote the subset of {1, 2, ..., N} that index the basis

functions associated with the target. Let C denote the subset of {1, 2, ..., N} that index

the basis functions associated with the target. We use the Ψ(T ) and Ψ(C) to denote the

matrix formed from basis functions indexed by T and C. The clutter and target models

are separated by writing Ψs = Ψ(T )s(T ) +Ψ(C)s(C) By dividing the coefficients to s into
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targets and clutter, we can write the equation as,

Ψs = Ψ(T )s(T ) +Ψ(C)s(C) (5.1)

z = XΨs = XΨ(T )s(T ) +XΨ(C)s(C) (5.2)

= X[Ψ(T ),Ψ(C)]



 s(T )

s(C)



 (5.3)

= XΨs. (5.4)

This gives us a way of separating features of the image resulting from the target and

the clutter. By associating the co-efficients with the respective subsets T and C, one

can separate targets and clutters based on arbitrary linear models. Clutter models are

often probabilistic in nature [4], reflecting the uncertain nature of prior knowledge about

the target scene. In the linear model we propose above, the uncertainty is quantified

by the number of bases functions. Such models are appropriate in applications where

the clutter does not dispaly extreme variability. For example, in through-the-wall sensing

applications [75], the main form of clutter is reflections from objects such as chairs and

from phenomena such as multi-path. Since the structures in the environment remain mostly

stationary, they show up as extended scatterers in radar images.

A note on basis mismatch: We expect the recovery performance of our algorithm to

be sensitive to mismatch in the assumed target models and actual target scene. A corpus

of training sets for target profiles in various scenarios can be generated from real world

experiments and electromagnetic modeling. Such a training set can be used to enhance the

imaging resolution by adopting the approach described in this Chapter 4. In the future we

thus intend to deploy a practical system that uses the proposed approach. In the general

context of compressive sensing, the robustness of such circulant-measurement-matrix design

approaches to additive noise and basis mismatch remain exciting open problems.
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5.2.2 Compressive Noise Radar Hardware

In our work, we collected fully sampled records of transmit and received waveforms and then

performed the undersampling in software. However, given the incoherent nature of random

noise waveforms, we believe that it should be convenient to design sampling hardware to

implement sub-Nyquist sampling. In such a scheme, the random transmit waveform would

be generated digitally and then converted to the analog domain for transmission. Records

of the digitally generated transmit waveform can be used for performing the signal recovery.

If we design a system with the ability to digitally generate UWB transmit waveforms, it

can also be used to realize the waveform design approach presented in Chapter 4.
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Appendix

Mathematical Derivations

A.1 Compressive Signal Recovery: A Model-Selection Per-

spective

Consider the problem of estimating the variable s ∈ Rn from its projections y ∈ Rm. In

our problem, s is the vector representing the radar target scene and y is the undersampled

reflected waveform. If η represents the uncorrelated noise corrupting the system,

z = As+ η (A.1)

Let the set D ⊂ {1, 2, ..., n} and cardinality(D) = d denote an optimal model for

estimating the signal. This means that the vector s is zero on Dc.

Further we will assume that the projection A preserves the energy of any vector v ∈ Rd

up to a factor of δ,

(1− δ)||v||l2 ≤ ||ADv||l2 ≤ (1 + δ)||v||l2 (A.2)

Note that A.2 is equivalently, a bound on the eigenvalues of AT
DA, i.e., 1 − δ ≤

λ(AT
DAD) ≤ 1 + δ.
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Best Model Known a priori : Let us now assume that somehow, we possess prior

knowledge of the best model, i.e., knowledge of the set D. In a practical system this would

imply that we measure only the subset D. Then,

y = ADsD +ADcsDc + η (A.3)

Let AD represent the m × d vector that measures only on the best model. Then, the

estimated vector s, optimal in the least square sense will be,

s∗D = (AT
DAD)

−1AT
Dy (A.4)

This estimated variable is non-zero only on the set of indices given by D. We can write

the estimation error as,

||e||l2 = E{||sD − s∗D||2}+
∑

i/∈D

s2i (A.5)

Now, let us consider the term sD − s∗D, we can write it as follows:

sD − s∗D = (AT
DAD)

−1AT
D(ADsD +ADcsDc + η −ADsD) (A.6)

= (AT
DAD)

−1AT
D(ADcsDc + η) (A.7)

By taking the auto-correlation, the mean square error can be written as,

E{||sD − s∗D||2l2} = (AT
DAD)

−1AT
D(ADcsDc + σ2Trace[(AT

DAD)
−1] (A.8)

≥ σ2Trace[(AT
DAD)

−1] (A.9)

≥ σ2
d

1 + δ
(A.10)

Thus, since δ < 1

||e||2l2 ≥
∑

i∈Dc

s2i +
1

2
dσ2 (A.11)
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When we choose the best model, D, we would have the bound on the error being the

minimum of the error over all sets D, i.e.,

||e||2l2 ≥
1

2
min
D

(||s− s∗||+ dσ2) (A.12)

||e||2l2 ≥
∑

i

min (s2i ,σ
2) (A.13)

Blind Reconstruction from Undersampled Points: Compressive sensing estimates

s blindly in the following way, by minimizing the l1 norm.

s∗ = argmin
s∈Rn

||s||l1 s.t. ||z −As|| ≤ λσ (A.14)

According to [76], if λ =
√
2 log p, with a high probability, the above minimization problem

results in an error bound of,

||e||2l2 ≤ O(log p)(
∑

i

min (s2i ,σ
2)) (A.15)

Therefore, comparing A.13 and A.15, the penalty of using the blind reconstruction

method characteristic of compressive sensing is that the error bound is scaled up by a

function that asymptotically varies as the logarithm of the noise level estimate.

103



Vita of Mahesh C. Shastry

My main interests are in the theory and applications of linear algebra, optimization, har-

monic analysis, electromagnetics, numerical methods, and probability theory in electrical

engineering. Secondarily, I am interested in discrete nonlinear dynamics, statistical infer-

ence, and statistical physics.

Select Publications:

1. MC Shastry, RM Narayanan, M Rangaswamy, Waveform Design for Compres-

sive Radar Imaging Using Redundant Dictionaries, accepted for publication

in Journal of Electronic Imaging (SPIE) Special Section on Compressive Sensing for

Imaging.

2. MC Shastry, RM Narayanan, M Rangaswamy, Performance Characterization of

Compressively Sampled Noise Radar, in preparation.

3. MC Shastry, RM Narayanan, M Rangaswamy, Compressively Sampled Noise

Radar, invited book chapter- in preparation.

4. S Jolad, A Roman, MC Shastry, A Bounded Divergence Measure Based on

The Bhattacharyya Coefficient, Arxiv pre-print

5. PH Chen, MC Shastry, CP Lai, RM Narayanan, Design and Analysis of Portable

Through-Wall Radar, IEEE Transactions on Geosciences and Remote Sensing, Vol.

50, No. 10, 4123-4134, Oct. 2012.

6. RM Narayanan, MC Shastry, PH Chen, M Levi, Through-the-Wall Detection of

Stationary Human Targets Using Doppler Radar, Progress in Electromagnetics

Research B, Vol. 20, pp. 147-166, 2010

7. N Nagaraj, MC Shastry, PG Vaidya, Increasing Average Period Lengths by

Switching of Robust Chaos Maps in Finite Precision, European Physical Jour-

nal Special Topics, Nonlinear Dynamics and Chaos: Selected Problems, Vol. 165, pp

73 - 83, 2008

104


