
The Pennsylvania State University

The Graduate School

Department of Computer Science and Engineering

DESIGN OF A SMART NON-VOLATILE MEMORY CONTROLLER:

ARCHITECTURE MODELING, SYSTEMS ANALYSIS, PARALLEL

I/O PROCESSING AND SCHEDULING ALGORITHMS

A Dissertation in

Computer Science and Engineering

by

Myoungsoo Jung

c⃝ 2013 Myoungsoo Jung

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2013

The dissertation of Myoungsoo Jung was reviewed and approved1 by the following:

Mahmut T. Kandemir
Professor of Computer Science and Engineering
Dissertation Adviser
Chair of Committee

Padma Raghavan
Professor of Computer Science and Engineering

Chita R. Das
Professor of Computer Science and Engineering

Long-Qing Chen
Professor of Material Science and Engineering

Raj Acharya
Head of the Department of Computer Science and Engineering

1Signatures are on file in the Graduate School.

iii

Abstract

State-of-the-art Solid State Disks (SSDs) and Non-Volatile Memory (NVM) systems

have undergone severe technology shift and architectural changes in the last couple of years,

and, in parallel, SSD internal architecture has dramatically changed; modern SSDs now em-

ploy multiple internal resources such as NVM chips and I/O buses in an attempt to achieve high

internal parallelism in processing I/O requests. In addition, to reduce intrinsic NVM system

management overheads, SSD firmware employs advanced memory control strategies such as

finer-granular address mapping algorithms and concurrency methods. As a result of complex

interactions among these different mechanisms, modern SSDs can be plagued by enormous per-

formance variations depending on whether the underlying architectural complexities and NVM

management overheads can be hidden or not.

Designing a smart NVM controller is key hiding the architectural complexities and re-

ducing the internal firmware overheads. To this end, we first model a multi-plane and multi-die

NVM architecture, which is highly reconfigurable and aware of intrinsic latency variation im-

posed by diverse state-of-the-art NVM systems. This NVM model has been implemented as

a high fidelity open-source simulator, capable of capturing cycle-level interactions between the

many components in an SSD, which can be used for various high-level and low-level NVM

performance analyses. Based on this architecture model, we then explore twenty four different

concurrency methods implemented in NVM controllers, geared toward exploiting both system-

level and NVM-level parallelism. Further, we quantitatively analyze the challenges, faced by

iv

PCI Express-based (PCIe) SSDs in getting NVM closer to CPU and question popular assump-

tions and expectations regarding storage-class SSDs through an extensive experimental analysis.

Next, we present and discuss the significance of read performance degradations and write

performance variations by performing comprehensive empirical experiments using a diverse set

of commercial SSDs and propose two novel schedulers in order to address these read/write per-

formance challenges that modern SSDs face: 1) Physical Address Queuing (PAQ) scheduler

and 2) NVM garbage collection scheduling algorithm. PAQ is a novel I/O request scheduling

method that avoids resource contention resultant from shared SSD resources. Our proposed PAQ

significantly improves read performance by exposing the physical addresses of requests to the

scheduler and selecting groups of operations that can be simultaneously executed without major

resource conflict. In comparison, the novel garbage collection scheduler is an approach that re-

moves garbage collection overheads of underlying flash firmware and provides stable write per-

formance in SSDs during the I/O congestion periods. Our proposed garbage collection scheduler

tries to secure free blocks and remove on-demand garbage collections from the critical path in

advance or delay them to future idle periods, so that users do not experience garbage-collection-

induced latencies during the I/O-intensive periods. Overall, this thesis (1) presents a simulation

infrastructure to conduct SSD/NVM research, (2) characterizes both system-level and device-

level challenges faced by state-of-the-art SSDs, (3) presents a set of novel storage optimizations

including various concurrency methods and scheduling algorithms design, and (4) points out

future research directions.

v

Table of Contents

List of Tables . ix

List of Figures . x

Acknowledgments . xv

Chapter 1. Introduction . 1

Chapter 2. NAND Flash Memory System Modeling and Simulation 6
2.1 Introduction . 6
2.2 NAND Flash Microarchitecture . 11
2.3 NAND Flash Operations . 13

2.3.1 Cache Mode Operation . 14
2.3.2 Internal Data Move Mode Operation 14
2.3.3 Multi-plane Mode Operation . 15
2.3.4 Interleaved Die Mode Operation 15

2.4 Intrinsic Latency Variation of NAND Flash 18
2.5 Related Work . 19
2.6 High Level View Of NANDFlashSim . 22

2.6.1 Software Architecture . 22
2.6.2 Clock Domains and Lifetime of Transaction 23

2.7 Implementation Details . 25
2.7.1 NAND Command Set Architecture 25
2.7.2 Awareness of Latency Variation 26
2.7.3 Enforcing Reliability Parameters 28

2.8 Evaluation . 28
2.8.1 Validation of NANDFlashSim . 31
2.8.2 Individual Cycle Analysis . 34
2.8.3 Performance and Power Consumption Comparison: Page Migra-

tion Test . 37
2.8.4 Breakdown of Read and Write Cycles 39
2.8.5 Performance on Multi-plane and Multi-die Architectures 39
2.8.6 Performance Sensitivity to Page Size 45
2.8.7 Resource Contention . 45
2.8.8 Scheduling Strategy . 46

2.9 Simulation Speed and Download . 46
2.10 Conclusion . 46

vi

Chapter 3. Page Allocation Strategies for Parallelizing Data Accesses 48
3.1 Introduction . 48
3.2 SSD Internals and Parallelisms . 51
3.3 Page Allocation Strategies . 53
3.4 Experimental Methodology . 56
3.5 Results . 56

3.5.1 Finding Overall Optimal Palloc scheme 57
3.5.2 Parallelism Interference . 59
3.5.3 Resource Utilization . 61
3.5.4 Optimization Potential for Parallelism 64
3.5.5 Discussion . 65

3.6 Conclusion . 66

Chapter 4. Challenges in Getting Flash Drives Closer to CPU 67
4.1 Introduction . 67
4.2 Bringing SSDs Closer to CPU . 70

4.2.1 PCIe Architecture . 70
4.2.2 Flash Software Stack . 72

4.3 Experimental Setup . 74
4.4 Challenges in Resource Management . 75

4.4.1 Memory Usage . 75
4.4.2 CPU Usage . 78
4.4.3 Challenges in System Performance 79

4.5 System Implication . 84

Chapter 5. Revisiting Widely Held SSD Expectations and Rethinking System Level Im-
plications . 86

5.1 Introduction . 86
5.1.1 Rethinking Read Performance . 88
5.1.2 Examining Reliability on Reads 89
5.1.3 Reconsidering Write Performance 89
5.1.4 OS Support . 90

5.2 Preliminaries . 90
5.2.1 SSD and NAND Flash Internals 90
5.2.2 Flash Firmware . 91
5.2.3 Reliability Challenges on Reads 93
5.2.4 Storage Interfaces, TRIM and SMART 95

5.3 Evaluation Setup . 95
5.4 Testing Expectations on Reads . 98

5.4.1 Are SSDs good for applications that exhibit mostly random reads? . 98
5.4.2 Can we achieve sustained read performance with sequential accesses? 101
5.4.3 What is the relationship between read performance and previous

writes accesses? . 103
5.4.4 Do program/erase (PE) cycles of SSDs increase during read only

operations? . 107

vii

5.4.5 Is there any performance impact of the reliability management on
reads? . 108

5.5 Testing Expectations on Writes . 110
5.5.1 How much impact does the worst-case latency have on modern SSDs? 111
5.5.2 What is the correlation between the worst-case latency and system

throughput? . 112
5.5.3 Could DRAM buffer help the firmware to reduce garbage collection

overheads? . 114
5.6 Testing Expectations on Advanced Schemes 117

5.6.1 Can TRIM command reduce GC overheads? 117
5.6.2 Does a TRIM command incur any overheads? 119

5.7 Rethinking SSD Systems . 123
5.7.1 Reads . 125
5.7.2 Writes . 126
5.7.3 Advanced Schemes . 127

5.8 Related Work . 127
5.9 Conclusion . 128

Chapter 6. Memory Request Scheduling: Improving Parallelism in Solid State Drives 130
6.1 Introduction . 130

6.1.1 Contributions . 132
6.2 Background . 134

6.2.1 High-Level Architecture of SSD 134
6.2.2 Multi-Plane Mode Operation . 136

6.3 Random Write vs. Random Read Performance 137
6.4 Physically Addressed Queuing . 141

6.4.1 QBM Migration . 141
6.4.2 Conflict Classification . 142
6.4.3 Clump Composition . 144
6.4.4 Plane Packing . 147
6.4.5 Implementation of PAQ Scheduling 148

6.5 Experimental Setup . 152
6.5.1 NAND Flash SSD Simulator . 152
6.5.2 SSD Configuration and Schedulers Tested 152
6.5.3 Traces . 153

6.6 Experimental Results . 155
6.6.1 Aggregate Performance: Bandwidth, IOPs, and Latency 156
6.6.2 Quantifying Parallelism: Idle Time and Contention 159
6.6.3 Overheads of PAQ . 160
6.6.4 Time Series: In-Depth Analysis of a Database Trace 160
6.6.5 Sensitivity Analysis . 161

6.7 Related Work . 162
6.8 Conclusion . 167

viii

Chapter 7. Garbage Collection Scheduling . 169
7.1 Introduction . 169
7.2 Background and Related work . 173

7.2.1 Flash Translation Layer . 173
7.2.2 Garbage Collection . 174

7.3 Impact of Garbage Collection in Commercial SSDs 175
7.4 High Level View of GC Scheduling . 177

7.4.1 Idle Period Classification . 177
7.4.2 Shifting Garbage Collection Overheads to Idle Periods 180

7.5 Implementation of our GC strategies . 181
7.5.1 Details of Advanced GC Strategy (AGC) 181

7.5.1.1 Look-ahead Garbage Collection 181
7.5.1.2 Proactive Block Compaction 184
7.5.1.3 Incremental Garbage Collection 185

7.5.2 Details of Delayed GC Strategy (DGC) 186
7.5.2.1 Update Block Replacement 186
7.5.2.2 Retroactive Block Compaction 189

7.5.3 Putting the Two Schemes Together 190
7.6 Experimental Evaluation . 190

7.6.1 Performance Comparison . 194
7.6.2 Worst Case Response Time . 196
7.6.3 Excess Waiting Time . 198
7.6.4 Performance Compariosn of 3SSDs-RAID 200
7.6.5 Side-Effects of AGC and DGC . 200

7.7 Conclusions . 202

Chapter 8. Future Work . 203
8.1 Near Term Future Research Directions 203

8.1.1 QoS-aware and GC-aware Host Interface Scheduler 203
8.1.2 Out-of-Order Non-Volatile Memory Execution 203
8.1.3 NVM Power Modeling . 204
8.1.4 High-speed Non-Volatile Memory Interface 205

8.2 Long Term Future Research Directions 205
8.2.1 SSD Redesign . 205
8.2.2 Exposing NVM to Computational Resources 206
8.2.3 On-Chip NVM Systems . 206

References . 207

ix

List of Tables

2.1 NAND Flash Device Characterization . 31
2.2 Workloads Characterization . 31

3.1 Important characteristics of our traces. 58

4.1 Important characteristics of the tested PCIe SSDs. 73

5.1 Device characteristics of SSDs used in our study. 96

6.1 Trace decomposition into the number of writes and reads, and the percentage
of random-reads and random-writes issued. 153

7.1 Important characteristics of our traces. The last column gives % of I/O requests
containing sufficiently long idle (> 1 sec) periods. 192

x

List of Figures

1.1 Design and optimization goal of a smart NVM controller. Modern SSDs can be
plagued by enormous performance variations depending on whether underlying
architectural complexities and NVM firmware overheads can be hidden or not.
Designing a smart NVM controller is key hiding the architectural complexities
and reducing the internal firmware overheads. 2

2.1 Concept of a µarch-level NAND flash simulation model (NANDFlashSim).
While existing SSD simulators are highly coupled to flash firmware emulation
with simplified latency model, NANDFlashSim simulates NAND flash mem-
ory system itself with independently synchronous clock domains and detailed
NAND operation timing models aware of latency variation. 7

2.2 Intrinsic Latency Variation Example. 9
2.3 NAND flash memory system internals. 12
2.4 A timing diagram of interleaved die with four legacy writes. While an existing

simulation model simplifies bus activities and assumes that latencies are per-
fectly overlapped and interleaved with constant time, NANDFlashSim employs
fine-grain bus activities and is aware of intrinsic latency variations. 16

2.5 NAND flash memory cell organization. MLC NAND flash memory has multi-
ple states in a cell, which causes intrinsic latency variation [65]. 19

2.6 NANDFlashSim architecture. NANDFlashSim is a reconfigurable µ-level multi-
plane and multi-die architecture. The number of registers, blocks, planes and
dies can be reorganized, and each entity has independent synchronized clock
domain. 21

2.7 The process of NAND flash memory transactions and examples of NAND
command chains. NANDFlashSim handles fine-grain NAND transactions by
NAND command set architecture . 24

2.8 State machine for multiple NAND stages. Each state is identified by different
type of stages and states of the machine are transited by different type of NAND
commands. Since each die has their own state machine, NANDFlashSim pro-
vides an independent clock cycle domain per die. 25

2.9 Implemented evaluation hardware prototype (MSIS). MSIS is used to extract
the LSB and MSB page address and to evaluate performance for NANDFlash-
Sim validation. 29

2.10 Cumulative Distribution Function (CDF) of Latency. Latencies of NANDFlash-
Sim are mostly overlapped with real NAND flash product latencies. 30

2.11 Performance comparison on SDP. Typical-case/worst-case time parameter based
latency models show unreasonable performance gap from real product ones. . 33

2.12 Performance comparison on DDP. While typical-based latency model show
more discrepant performance than that of multi-plane tests, the variation-aware
NANDFlashSim provides performances close to the real product ones. 34

xi

2.13 Cycle analysis for write operations (NANDFlashSim). Note that the command
sequence is a chronological oder based on a set of NAND commands that host
commits, and one cycle takes 1 nanosecond. 35

2.14 Cycle analysis for read operations (NANDFlashSim). Since handling 2x mode
is fancy more than other operation modes, it requires more commands to read
data. Note that system designers is able to get these microscopic cycle analysis
for diverse NAND flash operations from outputs of NANDFlashSim. 36

2.15 Block migration performance comparison and energy consumption. While en-
ergy consumption are similar to different NAND operation modes, 2x cache
mode and internal data move mode operations have great impact on enhancing
performance in the page migration test. 38

2.16 Breakdown of cycles. Note that, in reads, TOR operations are the performance
bottleneck while TIN operations are on the critical path in writes. 40

2.17 Cycle analysis for page migration. Internal data move modes removes the most
NAND I/O bus activities thereby improving throughputs. 40

2.18 multi-plane architecture performance with varying page unit sizes. While write
throughputs of many plane architecture are enhanced by 360.9% to single plane
architecture, read throughputs are enhanced by 75.5%. 41

2.19 Multi-die architecture performance. While many dies architecture with the swr
workload enjoys linear enhancement (ODP improves throughput 541.1% to the
SDP ones), it saturates read throughputs with eight dies (76.3% enhancement
compared to SDP ones). 42

2.20 Performance sensitivity to the number of plane and die with actual application
workloads. the performance of many-die architecture is 54.5 % better than the
performance of many-plane architecture in terms of IOPS. 43

2.21 Resource contention comparison between SLC NAND and MLC NAND de-
vices. The resource contentions of MLC NAND flash have less impact on SLC
NAND flash, but the contention problem is still problematic and become more
serious as the number of die increases. 43

2.22 Sensitivity to page organization (2x, DDP). Most read performance are bounded
because of TOR times and NAND flash I/O bus competition. 44

2.23 Effects of different NAND command scheduling policies. Based on different
transfer sizes and scheduling policies, performance enhancement with multi-die
and plane architecture show different performance. 44

3.1 Internals of SSD and NAND flash and illustration of different level data access-
ing methods. 50

3.2 Request-level parallelism. 53
3.3 Different page allocation strategies. 55
3.4 Throughput comparison. IOPS numbers are normalized with respect to corre-

sponding CDPW IOPS. 57
3.5 Latency comparison. Latency values are normalized with respect to corre-

sponding CDPW values. 57
3.6 The number of flash-transactions executed. 60
3.7 Waiting time required to resolve resource conflicts. 60

xii

3.8 Parallelism breakdown for sql1. 62
3.9 Average channel utilization. 62
3.10 Execution breakdown (msnfs, write-intensive). 63
3.11 Execution breakdown (web, read-intensive). 63
3.12 Performance map with optimizations points. 64

4.1 Bandwidth trends over time for the thin interfaces versus SSDs (a), and flash
storage integration into a place closer to CPU (b). 68

4.2 High-level views of our PCIe SSD architectures and their software stacks. . . . 71
4.3 Memory usage. 76
4.4 Time series comparison for host resources usage between FSSD (top) and BSSD

(bottom) with the default 512B block-size access operation. 77
4.5 CPU usage. 78
4.6 Latency and throughput comparison. Note that all the latency and throughput

of BSSD values are normalized to corresponding values of FSSD. 79
4.7 FSSD performance characteristics on the multi-core environment. 81
4.8 BSSD performance characteristics on the multi-core environment. 82
4.9 Queueing latency comparison observed by FSSD (a) and BSSD (b). 83

5.1 Modern SSD internal architecture. Note that an I/O request can be simultane-
ously served by many internal resources, which is one of the important charac-
teristics of SSDs. 92

5.2 Read/write performance comparison under varying data transfer sizes and ac-
cess patterns. In these comparisons, RND and SEQ denote the random access
pattern and sequential access pattern respectively, and RD and WR stand for
read and write. 99

5.3 Cumulative distribution function (CDF) of latency variance in sequential reads
for “pristine” SSDs and “aged” SSDs (i.e., writing data with a random access
pattern to the entire storage space of SSDs). Note that all the curves presented
in the CDFs are shifted from left to right as SSDs get older. 102

5.4 Bandwidths with different physical data layouts. SEQ and RND denote se-
quential writes and random writes, used for the physical data (PDT) layout
construction. Observe that throughput significantly varies based on the physi-
cal data layout, constructed by previous writes, even under same read request
patterns. 104

5.5 Latencies with different physical data layouts. These latency comparison ex-
plains how the physical data layout is related to internal parallelism in two as-
pects. First, the read latency performed on RND-PDT is 2.3 times higher than
that of SEQ-PDT that induces lower resource conflicts. Second, as the data
movement size of reads increases, the magnitude of the latency improvement
with SEQ-PDT is shorter than the improvement with RND-PDT that has many
resource conflicts potential. 106

5.6 PE-cycle comparison between reads and writes. Note that PE cycles increase
under read-only workloads. Further, with random accesses, the maximum PE
cycles on reads are 12 times greater than that on writes. 109

xiii

5.7 Latency comparison between reads with reliability management (RMR) and
ordinary reads (i.e., reads without RMR). When RMR is employed, the latency
is at least 5 times higher than the latency of reads without RMR. 110

5.8 SSD and HDD latency comparison. While SSDs overall outperform HDDs, the
worst-case latencies of SSDs are much higher than the worst-case latencies of
HDDs. 111

5.9 Impact of write cliff. Initially, SSDs provide reasonable performance even
though GCs are invoked. However, once write cliff begins, the performance
significantly degrades and is not recovered later. 113

5.10 Worst-case latency correlation between the DRAM buffer cache and GC. The
DRAM buffer provides excellent latency, but after the write cliff, it makes la-
tencies even worse. 115

5.11 Bandwidth impact of TRIM. While SEQ-TRIM (the order of target addresses
is ascending) can effectively remove GCs, RND-TRIM (the order of targets is
random) has no impact on GC overheads. 116

5.12 Latency impact with TRIM. Similar to bandwidth impact, there is no latency
gain with RND-TRIMs. 118

5.13 E-TRIM overheads. Since E-TRIM performs block erasure on demand and do
not return control to the storage system, the host can be disabled until the TRIM
process finishes. 120

5.14 I-TRIM overheads. I-TRIM is more efficient in controlling the TRIM com-
mands, but the latency overheads are still about 6 ∼ 153 times worse than a
4KB write-latency. 121

5.15 Performance sustainability of the background tasks. Even though BFLUSH and
BGC almost recover the performance on write cliff, they sustain the recovered
performance for very short time (just a few seconds). 124

6.1 Physical internal architecture of SSD. 133
6.2 Software stack of an SSD. 135
6.3 Average response times and bandwidth results as transfer sizes varies under two

commercial SSDs. 139
6.4 Firmware layers within a solid state disk. 142
6.5 An example that shows PAQ conflict classification. CH, P and D denote chan-

nel, package, and die, respectively. 143
6.6 An example that shows PAQ conflict classification and the associated clumps. . 145
6.7 Plane packing in PAQ. 148
6.8 Average bandwidth comparison between VAQ and PAQ. 154
6.9 Average I/Os per second (IOPS) comparison between VAQ and PAQ. 154
6.10 Average latency comparison between VAQ and PAQ. 154
6.11 Idle times for VAQ and PAQ. 154
6.12 Normalized total contention time comparison between VAQ and PAQ. 154
6.13 All latencies incurred for requests from trace sql3 for VAQ and PAQ. Note that

average latencies are shown using a horizontal line in each case. 157
6.14 IOPs sensitivity to varying queue and channel sizes. 158
6.15 Waiting time sensitivity to varying queue and channel sizes. 163

xiv

7.1 Overview and comparison of SSD latencies with/without our proposed GC
strategies (AGC and DGC), tested by random write pattern with 2048KB re-
quest size. Note that AGC and DGC shift GC overheads to idle periods (as
shown in the real view), thereby providing stable I/O performance like a pris-
tine state (as shown in the user view). 172

7.2 Latency comparison for a random write access pattern with 1MB request size
using a real MLC-based SSD. 176

7.3 System throughput for four state-of-the-art SSDs (different vendors and NAND
types). Note that all SSDs tested suffer from significant performance degrada-
tion once garbage collections begin. 177

7.4 A high-level view of our proposed GC strategy and idle time utilization. 179
7.5 An example of the look-ahead GC with a hybrid mapping scheme. By inquiring

the mapping information, our AGC scheme figures out that the GC for LBN 1
will be invoked soon. 183

7.6 Job lists for AGC and DGC. 184
7.7 Checkpointing for incremental GC. At each checkpoint, by checking the device-

level queue, the garbage collector can decide whether it can perform further
collections or not. 185

7.8 Performance of AGC with relatively low I/O intensive workloads (SSD 0 of
6SSDs-RAID). 193

7.9 Performance comparison of different garbage collection strategies (SSD5 of
6SSDs-RAID with high I/O intensive workloads). 195

7.10 Worst-case response time (WCRT) analysis for 6SSDs-RAID. (a) With low
I/O intensive workloads, P-FTL and AGC+DGC show deterministic behaviors
while the performances of L-FTL and H-FTL fluctuate over time. (b) With
high I/O intensive workloads, P-FTL experiences very high WCRT, whereas
AGC+DGC continues to provide stable I/O performance. 196

7.11 Response times for a write intensive section (where the fraction of I/O execu-
tions with no idle time is account for about 90%). While H-FTL removes about
40% of the GC related overheads, AGC+DGC hides all on-demand GC latencies. 197

7.12 Excess waiting time (EWT). The x-axis represents the upper bound on EWT.
(a) L-FTL and H-FTL experience I/O blocking problem stemming from GCs
while P-FTL and AGC+DGC have no such problem. (b) With heavy writes,
even though P-FTL results in fewer GC invocations, its GC latencies are much
longer than others . 199

7.13 Worst-case response time (WCRT) analysis for the 3SSDs-RAID. 199
7.14 Excess waiting time (EWT) analysis for the 3SSDs-RAID. 199
7.15 (a) Garbage collection type breakdown of total collection. (b) Block erase im-

pact by free block threshold. 201

xv

Acknowledgments

Chapters 1 and 5, in part, are a reprint of the introduction as it appears in “Revisiting

Widely-held Expectations of SSD and Rethinking Implications for Systems,” Myoungsoo Jung

and Mahmut Kandemir, in Proceedings of the ACM international Conference on Measurements

and Modeling of Computer Systems (SIGMETRICS), 2013. The dissertation author was the

primary investigator and the first author of this paper.

Chapters 1 and 2, in part, are a reprint of the material as it appears in “NANDFlashSim:

Intrinsic Latency Variation Aware NAND Flash Memory System Modeling and Simulation at

Microarchitecture level,” Myoungsoo Jung, Ellis Herbert Wilson III, David Donofrio, John Shalf

and Mahmut Kandemir, in Proceedings of the 28th IEEE Conference on Massive Data Storage

(MSST), 2012. The dissertation author was the primary investigator and the first author of this

paper.

Chapters 1, 2, and 3, in part, are a reprint of the material as it appears in “An Evaluation

of Different Page Allocation Strategies on High-Speed SSDs,” Myoungsoo Jung and Mahmut

Kandemir, in Proceedings of the 4th USENIX Workshop on Hot Topics in Storage and File

Systems (HotStorage), 2012. The dissertation author was the primary investigator and the first

author of this paper.

Chapters 1, and 4, in part, are a reprint of the material as it appears in “Challenges in

Getting Flash Drives Closer to CPU,” Myoungsoo Jung and Mahmut Kandemir, in Proceedings

of the 5th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage), 2013.

The dissertation author was the primary investigator and the first author of this paper.

xvi

Chapters 1, 2, and 6, in part, are a reprint of the material as it appears in “Physically

Addressed Queueing (PAQ): Improving Parallelism in Solid State Disks,” Myoungsoo Jung, Ellis

Herbert Wilson III and Mahmut Kandemir, in Proceedings of the 39th International Symposium

on Computer Architecture (ISCA), 2012. The dissertation author was the primary investigator

and the first author of this paper.

Chapters 1, and 7, in part, are a reprint of the material as it appears in “Taking Garbage

Collection Overheads off the Critical Path in SSDs,” Myoungsoo Jung, Ramya Prabhakar and

Mahmut Kandemir, in Proceedings of the 13th ACM/IFIP/USENIX 13th International Confer-

ence on Middleware (Middleware), 2012. The dissertation author was the primary investigator

and the first author of this paper.

1

Chapter 1

Introduction

Non-Volatile Memory (NVM) based Solid State Disks (SSDs) have recently become im-

mensely popular and been employed in different types of environments ranging from embedded

systems to personal computers to high performance computing (HPC) systems. Moreover, var-

ious memory and storage systems have been proposed to take advantage of the performance

benefits of SSDs over conventional block devices. For example, to reap up the benefits of high

bandwidth on writes, prior HPC studies consider SSDs as a burst buffer [68], which can absorb

heavy write traffic caused by check-pointing [83]. There also exist many applications developed

under the expectation that NVM is biased toward reads in terms of performance and reliability.

Enterprise servers, for example, consider employing SSDs for applications that exhibit many ran-

dom reads [69, 92, 95] or use them as read caches [54, 7, 61, 82], sitting between main memory

and hard disk drive (HDD). Similarly, SSDs are also introduced as a main memory replacement,

memory extension, and a part of existing virtual memory systems [24, 23, 25, 92].

While many SSD applications and usage scenarios have been proposed and developed

by prior research, modern SSDs and MVM systems have undergone severe technology shift

and architectural changes. For instance, NAND flash cells have shrunk from 5x nm to 2x nm

in the past four years, and now fewer electrons are stored per floating gate. These cell-level

characteristics make NAND flash devices less reliable and introduce extra operations (e.g., multi-

step I/O, verification, error correction processes) to successfully complete I/O requests, which

2

in turn imposes longer latencies. State-of-the-art NAND flash packaging technologies employ

an increased number of planes and dies within a single flash chip, a command queue, ECC

engines, and faster data movement interfaces [17, 81]. In parallel, SSD internal architecture

has dramatically changed; modern SSDs now employ multiple internal resources such as flash

chips, I/O buses, and cores in an attempt to achieve high internal parallelism. In addition, to

reduce garbage collection overheads, NVM firmware employs advanced strategies such as finer-

granular address mapping algorithm. As a result of complex interactions among these different

mechanisms, modern SSDs can be plagued by enormous performance variations depending on

whether underlying architectural complexities and NVM firmware overheads can be hidden or

not.

System-level and flash-level
parallelism improvement

Better utilization
Software stack optimization

Hiding garbage collection overheads

Low
 Latency

H
ig

h
R

ea
d

C
om

pl
ex

ity

High Write Complexity

High Througput

Low resource contention/
Better I/O scheduling

High speed interface/
Data movement optmization

Modern SSDs

Fig. 1.1 Design and optimization goal of a smart NVM controller. Modern SSDs can be plagued
by enormous performance variations depending on whether underlying architectural complexi-
ties and NVM firmware overheads can be hidden or not. Designing a smart NVM controller is
key hiding the architectural complexities and reducing the internal firmware overheads.

3

As shown in Figure 1.1, designing a smart NVM controller is key to hiding the architec-

tural complexities and reducing the internal firmware overheads; hiding complexity of writes,

such as garbage collection overheads and low resource utilization, is crucial for achieving higher

throughputs, and alleviating complexity on reads such data movement overheads and resource

contention is key to offering lower latencies of modern SSDs. To this end, we first model a

multi-plane and multi-die NVM architecture, which is highly reconfigurable and aware of in-

trinsic latency variation imposed by various state-of-the-art NVM systems. This NVM model

has been implemented as a high fidelity open-source simulator, capable of capturing cycle-level

interactions between the many components in an SSD, which can be used for various NVM

performance analyses. Based on this architecture model, we then explore twenty four different

concurrency methods implemented in NVM controllers, geared toward exploiting both system-

level and NVM-level parallelism with a variety of design parameters. Further, we quantitatively

analyze the challenges faced by PCI Express-based (PCIe) SSDs in getting NVM closer to CPU,

conduct a comprehensive data analysis and uncover critical storage-class SSD/flash characteris-

tics, which are not reported, to the best of our knowledge, in the literature so far, and are opposite

to the widely held expectations on SSDs.

In this dissertation, we also perform a comprehensive set of experiments using diverse

commercial SSDs (e.g., drawn from different SSD makers, NVM types, SSD internal archi-

tectures) and analyze them in an attempt to show practical significance of read performance

degradations and write performance variations. Specifically, in cases where read access patterns

are mainly random, the read performance can be worse than that of writes due to architectural

complexities; internal resource conflicts and contentions occur among multiple incoming I/O

requests, which can in turn introduce long system-level I/O pending times. In contrast, write

4

performance significantly varies based on patterns exhibited by garbage collections, which are

an essential device-level activity, performed by an NVM firmware module in SSDs. The biggest

challenge with existing garbage collectors is that their worst-case latency can be 64 ∼ 128 times

higher than that of normal write operations. Our experiments show that garbage collectors in-

troduce numerous blocking I/Os, and once a garbage collection operation begins, the response

time of write operations on SSD increases substantially. Further, garbage collection overheads

significantly reduce available bandwidth in most recent commercial SSDs.

To address these challenges behind reads and writes that state-of-the-art SSDs face, we

propose two different types of schedulers, which can be implemented in NVM controllers: (1)

Physical Address Queuing (PAQ) scheduler (tacking the read performance degradation issue)

and (2) NVM garbage collection scheduling algorithm (geared toward addressing the write per-

formance variation issue). Specifically, PAQ is a novel I/O request scheduler that avoids resource

contention resulting from shared SSD resources. Our proposed PAQ dramatically improves read

performance by exposing the physical addresses of requests to the SSD controllers/schedulers

and selecting groups of I/O operations that can be simultaneously executed without major re-

source conflict. In parallel, our proposed NVM garbage collection scheduler that removes

garbage collection overhead and provides stable I/O performance in SSDs during the I/O con-

gestion periods. Our proposed garbage collection scheduler consists of two garbage collec-

tion strategies, namely, Advanced Garbage Collection (AGC) and Delayed Garbage Collection

(DGC). AGC tries to secure free blocks and removes on-demand garbage collections from the

critical path in advance, so that users do not experience garbage-collection-induced latencies

during the I/O-intensive periods, whereas DGC handles the collections that AGC could not han-

dle, by delaying them to future idle periods. While the PAQ scheduler mainly targets to improve

5

read performance by avoiding resource conflicts, this garbage collection scheduler alleviates the

write amplification factors posed by modern SSDs, thereby improving write performances and

making them stable.

The rest of this dissertation proposal is organized as follows. In Chapter 2, we model

a modern multi-die and multi-plane NAND flash architecture at a cycle-level. In Chapter 3,

we study twenty four concurrency methods to understand details of internal parallelism. In

Chapter 4, we quantitatively characterize the challenges faced by PCI Express-based (PCIe)

SSDs in getting NVM closer to CPU, and in Chapter 5, we question popular assumptions and

expectations regarding storage-class SSDs through an extensive experimental analysis. We then

analyze the performance degradation in reads using different experiments and propose a novel

I/O request scheduling strategy (PAQ) with the goal of removing this performance degradation

in Chapter6. In addition, we show the significance of garbage collection overheads in modern

SSDs and propose a garbage collection scheduler in order to make garbage collection overheads

invisible to users by exploiting device-level idleness in Chapter 7. We finalize by discussing

potential near-term and long-term future directions.

6

Chapter 2

NAND Flash Memory System Modeling and Simulation

2.1 Introduction

While processors have enjoyed doubled performance every 18 months, and main mem-

ory performance increases roughly 7% in the same time frame, non-volatile storage media has

been stuck at a standstill for nearly a decade [86]. Many efforts have been made to remedy such

a great gap, and NAND flash has positioned itself at the forefront of such efforts. Since NAND

flash is hundreds to thousands of times faster than conventional storage media and has a small

form factor, it has been employed in the construction of devices such as Solid State Disks (SSD),

Compact Flash, and Flash Cards. NAND flash density is increasing by two to four times every

two years [66], which is in turn decreasing its cost and enabling wide-spread deployment in

arenas as diverse as embedded systems and high-performance computing. In addition, by intro-

ducing multiple planes and dies, the NAND flash memory is expected to continue in this trend

as it experiences the same ease of scaling multiprocessors currently enjoy. As a result of such

proliferation, performance, energy consumption, and reliability of NAND flash memory are be-

coming increasingly important [100]. Further, this proliferation also results in a diversification of

target system configurations, such as additional Flash Translation Layer (FTL) logic positioned

atop flash, which is often tailored to the demands of various NAND-flash based applications.

However, because NAND flash is very sensitive to a large number of parameters, and some la-

tency parameters fluctuate between best-case and worst-case [27], deciding on an optimal NAND

7

flash memory system’s configuration is non-trivial. Furthermore, NAND flash memory can have

many different parameters depending on what memory system types are employed (e.g., single

level cells (SLC), multi level cells (MLC), diverse node technologies (fabrication processes),

page sizes, register management policy, memory density, and pin configurations). Consequently,

this large parameter space and sensitivity of NAND flash to such parameters results in memory

systems exhibiting significantly different behaviors.
Fl

a
sh

 F
ir

m
w

a
re

La
te

n
cy

A
p

p
ro

x
im

a
ti

o
n

SSD Simulator
I/O

Subsystem

(a) Existing SSD simulations

Host

Model
V-NAND

V-NAND
V-NAND

NAND

simulator

F
la

sh
 F

ir
m

w
a

re

• CPU

• I/O Subsystem

• SSD

• NAND-flash

based

applications

(b) The proposed NAND simulation

Fig. 2.1 Concept of a µarch-level NAND flash simulation model (NANDFlashSim). While ex-
isting SSD simulators are highly coupled to flash firmware emulation with simplified latency
model, NANDFlashSim simulates NAND flash memory system itself with independently syn-
chronous clock domains and detailed NAND operation timing models aware of latency variation.

Unfortunately, a comparison between different types of NAND flash memory systems

becomes even harder when multi-die and multi-plane architectures are considered [22]. In these

architectures, scheduling methods and arbitration [85] among multiple dies and planes are im-

portant factors in determining I/O performance [22]. However, incorporation of these methods

and arbiters results in a greatly increased complexity of flash firmware and controllers. Even

8

though simulation-based prior research [32, 60, 70, 1] reveals performance tradeoffs in an ap-

plication level, the main focus of such studies has been on SSD rather than the NAND flash

memory system itself; this difference is pictorially shown in Figure 2.1(a). Such simulations

make several assumptions that ignore, to varying extents, the fluctuating timing behaviors of

the diverse I/O operations supported by state-of-the-art NAND flash memory. These assump-

tions range from extremely widespread, where the SSD is modelled as having constant time

and energy per I/O request, to more confined but still overly simplified, where dies and planes

are modelled but the interactions between various NAND commands and components are still

represented with constants. This implies that the existing simulation models used in those prior

studies are strongly coupled to particular flash firmware and policies – performing the exact

same study using slightly different firmware or policy-set has the potential to result in wildly

different performances and conclusions. Using such imprecise timing models of NAND flash

and NAND operations, hardware and system designers may overlook opportunities to improve

memory system performance. Furthermore, as shown in Figure 2.2, since such prior studies are

oblivious of intrinsic latency variation of NAND flash, they are not be able to properly model

diverse node technologies. Also, simplified latency models ignore the substantial contributions

of the flash firmware to memory system performance. This may result in these designers over-

looking research potential regarding new algorithms in/on NAND flash memory systems, such

as those involved in internal parallelism handling, wear-leveling, garbage collection, the flash

translation layer, flash-aware file systems, flash controllers, and so on.

To address heretofore mentioned drawbacks, the introduction of a microarchitecture

(µarch) level NAND flash memory system simulation model that is decoupled from specific

flash firmware and supports detailed NAND operations with cycle-accuracy is required. This

9

0 20 40 60 80 100 120
0

1200
2400
3600
4800

La
te

nc
y

(u
s)

Page Address Space

 Typical Timing based Simulation Model
 Low-level NAND Flash Latency Worst Timing based Simulation Model

Most simulation models latencies

Fig. 2.2 Intrinsic Latency Variation Example.

low-level simulation model can enable research on the NAND flash memory system itself as

well as many NAND flash-based devices, as illustrated in Figure 2.1(b). Specifically, in this

Chapter, we propose NANDFlashSim; a latency variation-aware, detailed and highly reconfig-

urable µarch-level NAND flash memory system based on multi-die and multi-plane architec-

tures. To the best of our knowledge, NANDFlashSim is the first simulation model to target the

NAND flash memory system itself at µarch-level, and the first model to provide sixteen latency

variation-aware NAND flash operations with NAND command set architecture.

From our comprehensive experiments using NANDFlashSim, we found that 1) most read

cases were unable to leverage the highly-parallel internal architecture of NAND flash regardless

of the NAND flash operation mode. Specifically, the read throughputs improvements between

quad dies and octal dies, between four-plane and eight-plane, and between 4KB and 8KB page

size are 10.9%, 10.8%, and 10.9%, respectively, while the write throughputs are improved by

91.2% on average. 2) the main contributor of performance bottleneck is I/O bus activity, not

NAND flash activity itself. 50.5% cycles of total I/O execution cycles are consumed by op-

erations related to such I/O bus activity. The bottleneck is more problematic when advance

NAND flash commands (e.g., cache and multi-plane mode) are applied. 3) MLC NAND flash

provides lower I/O bus resource contention than SLC NAND flash, but such resource contention

10

becomes a serious problem as the number of dies increases, and 4) preference of employing

many dies rather than employing many planes provides average 54.5% better performance in

terms of throughput in disk-friendly workloads [88]. This Chapter makes the following main

contributions:

• Detailed Timing Model: NANDFlashSim presents a µarch-level flash simulation

model for many NAND flash-based applications. The memory system, controller and NAND

flash memory cells have independent synchronous clock domains. In addition, by employing

multi-stage operations and command chains for each die, NANDFlashSim provides a set of tim-

ing details for a large array of NAND flash operation modes including: legacy mode, cache

mode, internal data move mode, multi-plane mode, multi-plane cache mode, interleaved-die

mode, interleaved-die cache mode, interleaved-die multi-plane mode, and interleaved-die multi-

plane cache mode. These detailed NAND operation modes and their associated timings expose

performance optimization points to NAND flash-based application designers and developers.

• Intrinsic Latency Variation-Aware Simulation Model: NAND flash memory, espe-

cially MLC, suffers from intrinsic performance variations when accessing a block. In our

observations, write latency of [75] and [34] varies between 250µs to 2,200µs and 440µs to

5,000µs, respectively (maximum latencies are 8.8 ∼ 11.3 times higher than minimum latencies).

Therefore, NANDFlashSim, a cycle-accurate simulation model, is designed to be performance

variation-aware and employs different page offsets in a physical block. To collect statistics re-

lated to the performance variation and validate our simulation model accuracy, we prototype

a NAND flash hardware platform, called Memory Statistic Information System (MSIS). We

present a comprehensive evaluation considering different types of NAND flash and NAND op-

eration on both NANDFlashSim and MSIS.

11

• Reconfigurable Micoarchitecture: NANDFlashSim supports highly reconfigurable

architectures in terms of multiple dies and planes. This architecture allows a researcher to ex-

plore true internal parallelism in such an architecture by exposing the intrinsic latency variations

in NAND flash. In contrast to prior simulation models, NANDFlashSim removes the dependency

on a particular flash firmware, which enables memory system designers and architects to develop

and optimize diverse algorithms targeting NAND flash such as buffer replacement algorithms,

wear-leveling algorithms, flash file systems, flash translation layers, and I/O schedulers.

2.2 NAND Flash Microarchitecture

Figure 2.3(a) illustrates the NAND flash microarchitecture [75], and Figure 2.3(b) depicts

the physical NAND memory cell microphotograph [94]. Energy consumption and interface

complexity are important factors in NAND flash memory system design. Therefore, interfaces

for data, commands, and addresses are multiplexed onto the same I/O bus, which helps to reduce

pin counts, interface complexity, and energy consumption [75]. Because of this, a host model

must first inform the NAND flash package that it wishes to use the I/O bus through control

logic before acquiring it. This information is provided via control signals like command latch

enable (CLE) and address latch enable (ALE). Similarly, NAND commands are responsible for

signalling usage of the I/O bus in addition to classifying following NAND operation types.

• Page/Block. A page is a set of NAND memory cells, and a block is a set of pages

(typically 32∼256 pages). A physical NAND block makes up a plane.

• Register. Registers are adopted to provide collection and buffering for delayed write-

back of small writes and to fill the performance gap between the NAND flash interface and flash

12

memory cells. Supporting multiple registers is a common trend to boost NAND flash memory

performance. NAND flash is typically composed of a set of cache and data registers.

• Plane. A plane is the smallest unit that serves an I/O request in a parallel fashion. In

practice, physical planes share one or more word-lines for accessing NAND flash cells, which

enables the memory system to serve multiple I/O requests simultaneously [65].

• Die. A die contains an even number of planes and constitutes a NAND flash package.

Depending on how many dies are placed into a package, a NAND flash memory is classified

as a single die package (SDP), dual die package (DDP), quad die package (QDP), or octal die

package (ODP).

• Logical Unit. A logical unit consists of multiple dies, and is the minimum unit that

can independently execute commands and report its status. Multiple dies in a logical unit are

interlaced by a chip enable (CE) pin, leading to a reduction in I/O bus complexity and total pin

counts.

I/O Control

Control

Logic

Address

Register
Status

Register

Command

Register

Memory Cells

Column Decoder

R
o

w
 D

e
c

o
d

e
r

Data Register

Cache Register

Data Path

Control Path

(a) NAND flash microarchitecture

Logical Unit

DIE
PLANE

Registers

(b) Die microphotograph [94]

Fig. 2.3 NAND flash memory system internals.

13

Since the number of dies sharing the I/O bus and CE pins is determined at packaging

time, different numbers of logical units are used in DDP, QDP and ODP. Although state-of-the-

art NAND flash provides at most four planes [94] and eight dies, our proposed simulation model

can be configured to simulate a much larger number of planes and dies in a logical unit.

2.3 NAND Flash Operations

Legacy NAND operations can be classified into three types: read, write (also referred to

as program), and erase. While reads and writes operate at a page granularity, erase operation

executes on an entire block. To operate NAND flash memory, the first task is to load a command

into the command register by raising the CLE signal, which informs what operation will be

executed. After that, a start address for the operations is loaded into an internal address register

by raising the ALE signal. Once the address is loaded, the NAND operation can be issued

by loading the initiate command. Each of the NAND operations has different timings for data

movement. For reads, a page of data is loaded from specific NAND memory cells into the data

register. This data movement stage is called transfer-out of NAND memory cells (TON). Then,

data are sequentially output from the register, byte by byte, which is a process termed transfer-

out of register (TOR). In the case of a write operation, after the address is loaded, the data can be

stored in the data register. This data movement stage, called transfer-in of register (TIR), should

be processed before loading the initiate NAND command. Following TIR, the NAND flash

memory system starts to write data from the register to NAND memory cells, called transfer-in

of NAND cell (TIN) stage. In addition to these basic operations, state-of-the-art NAND flash

memories support more complex operations to improve system performance [22]. Below, we

explain different I/O modes, which are used in concert with these legacy commands.

14

2.3.1 Cache Mode Operation

In cache mode operation, data are first transferred to a cache register and then copied to a

data register. After that the NAND flash memory system enters the TIN stage. In the meantime,

the memory system is available again for TIR stage operations using the cache register because

only the data register and memory cells are involved in writing. This cache mode operation

overlaps the process of putting data into register and that of writing data into the NAND memory

cells, thereby hiding the TIR time. Just like writes, read operations can also take advantage of

the cache register. However, in our observations, cache mode operations demonstrate slightly

different performances between reads and writes. This is due to the latency-dominating NAND

operation differing between, which will be further discussed in Section 2.8.

2.3.2 Internal Data Move Mode Operation

Flash applications may need to copy data from a source page to a destination page on

the same NAND flash memory. Since data movement from one location to another within flash

memory requires external memory space and cycles, a data copy is suprisingly expensive and

time consuming. To reduce the time required to copy data, state-of-the-art NAND flash memory

support internal data move operations. In these operations, a host is not involved in managing

the data copy process. Instead, the host only has to load the source and destination address

for copying data into the address registers, and commit the internal data move mode NAND

command. Then, the NAND flash memory reads data from the source using the data register and

directly writes it to its destination, without any data transfer involving the host model. That is, in

internal data movement operation mode, data in one page of NAND memory destined for another

page can be copied without any external memory cycles. This specialized operation alleviates

15

the overheads of data copying, which notably results in greatly enhanced garbage collection

performance [11], a critical task of flash firmware.

2.3.3 Multi-plane Mode Operation

Multi-plane mode operations serve I/O requests using several planes at a time that are

connected by word-line(s). Specifically, these operations can enhance performance up to n

times, where n is the number of planes in a word-line. However, the multi-plane architecture

carries with it limitations for addressing planes. Specifically, in multi-plane mode operations,

I/O requests should indicate the same page offset in a block, same die address, and should have

different plane addresses [75, 80]. These constraints are collectively referred to as the plane

addressing rule. Therefore, performance enhancement using a multi-plane architecture may

be limited based on user access patterns (we will discuss this issue in Section 2.8.5). Regu-

lating plane addressing rules is required to obtain realistic performance with the multi-plane

mode of operation. Using such rules, NANDFlashSim provides an accurate implementation of

multi-plane mode operations, which may be used in any combination with other NAND flash

operations.

2.3.4 Interleaved Die Mode Operation

State-of-the-art flash memory share between one and four I/O buses among multiple dies

in order to reduce the number of pins. While sharing the I/O bus reduces energy consumption

and complexity, I/O bandwidth of the system also reduces. This is because all NAND operations

except those related to NAND memory cells (e.g., TON, TIN) should acquire permission to use

the I/O bus before they start executing. Thus, efficient bus arbitration and NAND command

16

No I/O Bus Arbitration

Timings are simplified with the assumption that such timings are perfectly overlapped

Unified I/O timing

ALE&TIR ALE&TIR ALE&TIR ALE&TIR

No I/O Bus Arbitration

ALE&TIRALE&TIRALE&TIRALE&TIR TIN

TIN (250 microsec)

TIN

TIN

TIN

I/O Bus

DIE 0

DIE 1

DIE 2

Time line

(a) A typical-case timing parameter based simulation model

TIR TIR

TIN (MSB, 2200 microsec)

I/O Bus Arbitration with fine-grain bus activities

Tansfer Delay
ALE ALE ALE TIR

TIN (MSB, 2200 microsec)

TIN (LSB, 250 microsec)

ALE TIR ALE TIR ALE TIR

Transfer Delay

ALE TIR TINTIN

Transfer Delay

I/O Bus

DIE 0

DIE 1

DIE 2

Time line

(b) Latency-aware NANDFlashSim

Fig. 2.4 A timing diagram of interleaved die with four legacy writes. While an existing sim-
ulation model simplifies bus activities and assumes that latencies are perfectly overlapped and
interleaved with constant time, NANDFlashSim employs fine-grain bus activities and is aware
of intrinsic latency variations.

17

scheduling policies are critical determinants of memory system performance. Interleaved die

mode operations provide a way to share the I/O bus and take advantage of internal parallelism

by interleaving NAND operations among multiple dies. Unlike multi-plane mode operations,

interleaved-die mode operations have no addressing restrictions.

It should be noted that all NAND operations discussed above can be used in any combi-

nation with interleaved-die operations. For example, a host model can issue an interleaved-die

multi-plane mode operation, which stripes a set of multi-plane mode operations across multiple

dies. Similarly, interleaved-die multi-plane cache mode operations are possible, which are oper-

ations that have the properties of operating in cache mode, being striped over multiple dies and

being applied to multiple planes. A simplified and approximated latency circulation model with

constant times is unable to capture the behavior of and interactions between these different types

of operations. Furthermore, intrinsic latency variations exhibited by the NAND flash make it

difficult for a latency model with constant time to mimic elaborate bus arbitration or scheduling

NAND commands.

Consider the comparison, shown in Figure 2.4, between the existing simulation model

(with constant time) and variation-aware NANDFlashSim. In the figure, four I/O requests are

striped over three dies with interleaved-die legacy write mode. Existing simulation models will

calculate the latency under the assumption that timings are perfectly overlapped and interleaved.

Let tio denote execution time for I/O activities, and tprog denote programing (write) time. Suppose

that nio denotes the number of the write requests, and t interleaved
resp legacy denotes the response time for

nio requests, In existing simulation models, t interleaved
resp legacy is simply calculated by nio ∗ tio + tprog as

shown in the time line of Figure 2.4(a). However, in practice, t interleaved
resp legacy varies significantly based

on system configurations. This is because tprog fluctuates based on the access address and the

18

transfer delay time is also varied by the service order. In contrast, NANDFlashSim is aware of

latency variation and provides a method for scheduling NAND commands and activities with

fine granularity.

2.4 Intrinsic Latency Variation of NAND Flash

NAND flash memory has the interesting characteristic of performance variation [27, 63,

65], which results in the latencies of the NAND flash memory system to fluctuate significantly

depending on the address of the pages in a block. Typically, this variation is not specified in

the datasheets of NAND flash memory. NAND flash memory puts electrons, which represents

cell states, into a NAND flash floating gate. To achieve this, NAND flash memory selects the

NAND flash memory cells, and makes an electron channel between a source and drain (see

Figure 2.5(a)). Once the channel is built and voltage is applied over a certain threshold voltage,

electrons can be moved from the channel to the floating gate. This process is called Fowler-

Nordheim tunneling (FN-tunneling) [65], which is a well-known programming (write) operation.

As illustrated in Figure 2.5(b), based on differing cell distributions, a MLC NAND flash memory

system can identify bit states like ’11’, ’10’, ’00’ and ’01’ in a cell1. According to the specific

bit states for programming, therefore, a MLC NAND flash memory system will end up spending

different amounts of time and power. Specifically, MLC NAND flash is able to store multiple

bits on a cell using incremental step pulse programming (ISPP) [63, 65].

For example, in the first phase, MLC NAND flash programs a cell from ’11’ to ’10’

or ’11’ state. This phase represents the least significant bit (LSB) of an MLC cell. In the

second phase, the NAND flash reprograms the cell from the ’11’ or ’10’ state to a ’01’/’11’ or

1The ’0’ bit in a NAND flash cell represents programed (written) state.

19

’00’/’10’ state, respectively, so that the memory cell represents the most significant bit (MSB).

Since MLC devices utilize four states using this ISPP, FN-tunneling for MSB pages requires

more energy and takes a longer time when compared to LSB pages [27, 64, 90]. Due to these

NAND flash memory characteristics, one may observe performance variations between worst-

case and typical-case programming time parameters. Since there is no need for ISPP to a specific

cell in SLC flash, this latency variation characteristic is more pronounced in MLC NAND flash

memory.

Gate

Floating Gate

Source DrainChannel

Electro
ns

stored here

(a) NAND transistor cell

D
is

tr
ib

u
ti

o
n

 o
f

C
e

ll
s

-2.0V 0V 1.1V 2.3V 5.5V
11 10 01 00

Reference Points

Second program (MSB)

First program (LSB)

(b) Example of cell distribution

Fig. 2.5 NAND flash memory cell organization. MLC NAND flash memory has multiple states
in a cell, which causes intrinsic latency variation [65].

2.5 Related Work

There are several prior studies for simulating a NAND flash-based SSD. The SSD add-on

[1] to DiskSim [5] is a popular simulator that models idealized flash firmware. FlashSim [60] is

another simulator, implemented using object-oriented code for programmatic ease and extensi-

bility. This simulator supports several types of flash software algorithms. While these simulation

models compute performance by calculating latency for each of the basic NAND operations,

20

SSDSim [32] accommodates latency calculation models for cache, multi-plane, interleaved-die

operations of SLC devices at application-level.

Even though these simulation models can enable researchers to explore the design trade-

offs of SSDs, they have limitations in simulating the µarch-level NAND flash memory since

they highly simplify NAND flash characteristics, latencies, and energies from a flash firmware

perspective. Also, these studies are appropriate to simulate only SLC NAND flash type.

•Unaware of latency variations. These existing simulation models are ignorant of

NAND flash memory’s latency variations; they implement the flash memory system based on

constant times and energies of worst-case or typical-case time parameters. However, as men-

tioned in Section 2.3, the state-of-the-art memory systems are very complex and support diverse

NAND I/O operations for high performance I/O, which results in latency varying immensely

even between executions of operations of the same type. In contrast, our proposed NANDFlash-

Sim is aware of the latency variations based on most significant bit (MSB) and least significant

bit (LSB) page addresses in a block and provides legacy mode operations as well as a number

of state-of-the-art modes for more complex operations at µarch-level. As consequence, NAND-

FlashSim is able to simulate both MLC and SLC NAND flash.

•Coarse-grain NAND command handling. Moreover, these past studies mimic multi-

die and multi-plane architecture using coarse-grain I/O operations, which means that NAND op-

eration and control are simplified by host-level I/O requests. Even though they consider basic I/O

timing based on time parameter statistics and internal parallelism of NAND flash memory, the

evaluation of accurate memory system latencies is non-trivial. Using multi-stage and command

chains for each of the NAND flash operations , our proposed NANDFlashSim, reconfigurable

21

for multi-die and plane architectures, provides detailed timing models for NAND operations and

manages bus arbitration based on different latencies at µarch-level.

•Weak model of NAND flash memory constraints. The memory system’s performance

and energy consumption can exhibit a variety of patterns due to NAND flash memory constraints.

For example, as mentioned in Section 2.3, multi-plane I/O operations should satisfy plane ad-

dressing rules. This constraint results in different performance characteristics depending on I/O

patterns. Even though the past studies consider these kinds of constraints, their simulation is

tightly coupled with specific firmware. This problem makes it very difficult to explore new mem-

ory systems that can be built using NAND flash memory. As opposed to these prior efforts, our

NANDFlashSim regulates NAND flash memory constraints in µarch-level, and is not tied to any

specific flash firmware, algorithm or NAND flash applications like SSDs.

N
A

N
D

 F
la

sh
 I

/O
 B

u
s Die

Interfaces

k
*

j
B

lo
c

ks

Controller

Multiplexed

Interface

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

1 Block 1 Block

DIE 0

PLANE 0 PLANE j
k Blocks k Blocks

DIE 0

DIE 1

DIE n

ADDR REGISTER

CMD REGISTER

ADDR REGISTER

CMD REGISTER

ADDR REGISTER

CMD REGISTER

L
o

g
ic

a
l

U
n

it

Host models/

System-level

Simulation

models

Fig. 2.6 NANDFlashSim architecture. NANDFlashSim is a reconfigurable µ-level multi-plane
and multi-die architecture. The number of registers, blocks, planes and dies can be reorganized,
and each entity has independent synchronized clock domain.

22

2.6 High Level View Of NANDFlashSim

NANDFlashSim employs a highly reconfigurable and detailed timing model for vari-

ous state-of-the-art NAND flash memory systems. NANDFlashSim removes the specific flash

firmware and algorithm from the NAND flash simulation model so that memory system de-

signers and architects can employ NAND flash memory systems for various NAND flash-based

applications and research/develop flash software for their specific purposes. To achieve its design

goals, instead of employing underlying simplified latency calculation models, NANDFlashSim

uses a NAND command set architecture and individual state machines associated to the com-

mand sets, which results in independent synchronous clock domains. These mechanisms enable

designers and architects to closely study the NAND flash performance and optimization points

at a cycle-level by exposing the details of NAND flash.

2.6.1 Software Architecture

Figure 2.6 illustrates the software architecture of our proposed simulation model. NAND-

FlashSim is comprised of a logical unit, NAND flash I/O bus model, several registers, a con-

troller module, die modules, plane modules, and virtual NAND blocks. A host model can issue

any type of NAND flash operations through the NAND I/O bus when the memory system is

not busy. NANDFlashSim provides two interfaces to manage NAND flash memory. The first is

a low-level command interface, which is compliant with Open NAND Flash Interface (ONFI)

[80]. In this case, the host model fully handles the set of NAND commands for addressing, mov-

ing data, and operating NAND flash memory cells. Since a wrong command or inappropriate

NAND command sequence can make the NAND memory system malfunction, NANDFlashSim

23

verifies the correctness of command uses by checking the command/address registers and its

own state machines every cycle. If it detects a wrong command sequence, it enforces a system

fail and notifies the host model. The host model is able to identify the type of failure that oc-

curred using read-status commands or return codes. The second is a memory transaction based

interface. In this case, the host model is not required to manage the set of NAND commands,

command sequences, or data movement. Figure 2.7 visualizes how NANDFlashSim supports

such interface logic. When the logical unit of NANDFlashSim receives a request from the host

model, it creates a memory transaction (discussed in the next subsection), which is a data struc-

ture that includes the command, address, and data. It then places the memory transaction into

the internal NAND I/O bus. Once the controller module detects a memory transaction on the

NAND flash I/O bus, it starts to handle the command sequence based on the command chain

associated with the memory transaction. Note that this is handled by NANDFlashSim instead of

the host model. In the meantime, the logical unit arbitrates NAND flash internal resources (e.g.,

the NAND I/O buses) and also manages I/O requests across multiple dies and planes. The set

of NAND commands generated by the command chain handles the command/address latch and

data movement processes such as TOR, TIR, TON, and TIN, called stages (we will discuss this

shortly). It should be noted that using these two interfaces, other simulator models can be easily

integrated into NANDFlashSim.

2.6.2 Clock Domains and Lifetime of Transaction

Our simulation model assumes that the logical unit, controller, die, and plane form a

module working as an independently-clocked synchronous state machine. Many such state ma-

chines can be executed on separate clock domains. In general, there are two separate clock

24

TIR

I/O

request

FETCH

Memory
Transactions

BUILD

CLE

TON

TIN

STAGE

M
u

lt
ip

le
 D

ie
s

Plane

Plane

Plane

Plane

CHAIN ARBI. EXE.
Arbitration Execution

REL.
Release

N
A

N
D

 I
/O

 B
u

s

READ INIT CONFREAD INIT

PAGE READ PAGE READ (CACHE MODE)

Cache

PROG INIT

PAGE PROGRAM(WRITE)

READ

STATUS
PROG INIT CONF

Cache

READ

STATUS

PAGE PROGRAM (INTERLEAVED DIE CACHE MODE)

Update

A
 S

e
t

o
f

C
o

m
m

a
n

d
 C

h
a

in
s

Fig. 2.7 The process of NAND flash memory transactions and examples of NAND command
chains. NANDFlashSim handles fine-grain NAND transactions by NAND command set archi-
tecture

domains: 1) the host clock domain, and 2) NAND flash memory system’s clock domain. The

entities of NANDFlashSim are updated at every clock cycle, and the transaction lives until either

getting an I/O completion notification or NAND flash memory requires a system reset due to an

I/O failure. Since the time for a NAND operation can vary from a few cycles to a million cycles,

updating all components (e.g., planes, dies, and I/O bus) of NANDFlashSim using the default

update interface at every clock can be expensive and ineffective. Therefore, in addition to the

default update interface NANDFlashSim also supports a mechanism to skip cycles not worth

simulating. In this mechanism, NANDFlashSim looks over all modules in the logical unit, and

then finds out the minimum clock cycles to reach the next state among them at a given point.

NANDFlashSim updates system clocks for its own components based on the detected minimum

clock cycles, thereby skipping the meaningless cycles in the update process.

25

2.7 Implementation Details

2.7.1 NAND Command Set Architecture

The number of combinations of operations possible with a state-of-the-art NAND flash

memory is as high as sixteen, and each combination has varying timing behaviors. Therefore,

NANDFlashSim divides a NAND I/O request into several multiple NAND command sets based

on the information specified by ONFI and updates them at every cycle (as a default). To ap-

propriately operate the NAND flash memory system, this NAND command set architecture is

managed by multi-stage operations and command chains, as described next.

CLE

TIN

TIR

ALE

IDLE
TON

TOR
Write

Write

Write

Read Status/Write

Read

read

Basic, Random, Cache,

Multiplane,

Internal data movement mode

NAND I/O Bus Operations

NAND Flash Cell Operations

Registers Operations

BER

Erase

Read Status

Fig. 2.8 State machine for multiple NAND stages. Each state is identified by different type of
stages and states of the machine are transited by different type of NAND commands. Since each
die has their own state machine, NANDFlashSim provides an independent clock cycle domain
per die.

Multi-stage Operations. Stages are defined by common operations that NAND flash has to

serve. Specifically, all types of µarch-level NAND operations should have at least one stage,

which are classified by CLE, ALE, TIR, TOR, TIN, TON, and BER. CLE is a stage for a com-

mand by following command latch enable signal, and ALE a stage in which an address is loaded

into an address register, which is triggered by address latch enable. BER is a stage for erasing

block(s). Other stage names that NANDFlashSim employs are the same as the name described

26

earlier in Section 2.2. These stages comprise an independently clocked synchronous state ma-

chine, as illustrated in Figure 2.8. This state machine describes different stages for each NAND

I/O operations as visualized in the bottom of Figure 2.7. All dies have such state machines based

on stage and regulate/validate correctness of NAND commands and multi-stage sequence.

Command Chains. A command chain is a series of NAND commands, and each combination of

NAND operations has its own command chain. Even though the state machine with multi-stage

is capable of handling diverse depths of NAND command sets, the introduction of a command

chain is required, because many operations have different command requirements and sequences.

Also, the process of transitioning from one stage to another stage varies based on what command

is loaded into the command register. For example, as illustrated in Figure 2.7, the write operation

has a different sequence for data movement and a different number of commands compared to

the erase and read operations. When a combination of NAND operations with cache, multi-plane

or die-interleaved mode is applied, the differences are more striking. Therefore, NANDFlashSim

employs command chains, which are updated by the NANDFlashSim controller and logical unit.

Also, the command chains are used to verify whether the host model manages NAND operation

using a correct set of commands and command sequences or not. Using multi-stage operations

and command chains, NANDFlashSim defines a NAND command set architecture and provides

a cycle accurate NAND flash model.

2.7.2 Awareness of Latency Variation

NANDFlashSim is designed to be aware of intrinsic latency variations when it simu-

lates MLC NAND flash. To extract real performance and introduce variation characteristics into

27

NANDFlashSim, we implemented a hardware prototype called MSIS, which stands for Mem-

ory Statistics Information System. MSIS is able to evaluate various types of NAND flash based

on different memory sockets as illustrated in Figure 2.9. Suppose that npages is the number of

page per block, and λ is constant value related to a page offset. npages and λ are device spe-

cific value. Typically, npages is powers of two, and λ is 2 or 4. We assume that a set of page

addresses, which show relatively high latency, indicates the MSB pages referred as to msb(n),

where ∀n,0 ≤ n ≤ (npages/2). We also assume that another set of page addresses, which exhibit

low latencies, are the LSB pages referred as to lsb(n). With this assumption2 in place, NAND-

FlashSim generates different programming timing based on these two sets of page addresses,

which are extracted from MSIS. Even though these address sets of page addresses can be varied

based on NAND flash manufacturers, we found that these address sets can be classified by two

groups for diverse NAND flash devices (we tested eight devices from four manufacturers, and

technology nodes of them range from 24 nanometer to 32 nanometer). These two groups of such

page address sets indicated by different subscripts, α and β (e.g., msbα(n), lsbα(n), msbβ (n),

and lsbβ (n)). For lsbα(n), if n is zero or equal to npages − 1 then n and n+ 1 are LSB pages.

Otherwise, the lsbα(n) is generated by λn, and the msbα(n) is generated by λn−(λ +1). On the

other hand, for lsbβ (n), if n is less than λ or n is grater than npages−λ then n is LSB pages. Oth-

erwise, λn and λn+1 are elements of lsbβ (n), and λn− (λ +2) and λn− (λ +1) are elements

of msbβ (n). It should be noted that NAND flash parameters related to these sets of addresses

only affect NAND flash activity, especially transfer-in of NAND (TIN) stage. I/O bus activities

such as CLE, ALE, TIR, and TOR are not affected by such sets of addresses.

2This assumption is already widely used by both industry and academia [27, 64, 90].

28

2.7.3 Enforcing Reliability Parameters

NANDFlashSim enforces three constraints to guarantee reliability: 1) the Number-Of-

Program (NOP) constraint, 2) In-order update in a block, and 3) endurance. The NOP constraint

refers to the total number of contiguous programmings that the NAND flash memory allows for

a block before an erase is required. The plane model in NANDFlashSim records the number of

programs for each page. If a request tries to program a page over the NOP limit, NANDFlashSim

informs the host model of this violation. In addition, the plane model maintains the page address

which was most recently written. When a host model requests to program a page that has a lower

address than the most recently written page address, NANDFlashSim reports this as a violation

of the in-order update constraint to the host. To enforce the endurance limitation, each block in

the plane model tracks erase counts. When NANDFlashSim detects a request that would erase a

block over the number of erases that the memory system guarantees, it informs the host model of

this endurance violation. These reliability models provide an environment for system designers

and architects to study NAND flash reliability and explore future research directions such as

developing new wear-leveling, garbage collection and address mapping algorithms.

2.8 Evaluation

For the validation of NANDFlashSim compared to other real products, we utilize two

different types of MLC NAND flash packages [75] (i.e., Single Die Package (SDP) and Dual

Die Package (DDP), and two MLC devices came from two different manufacturers [75, 34]. In

addition, for evaluating NANDFlashSim, we also use SLC and MLC type NAND flash. The

29

TSOP type socket

for SLC/MLC NAND flash

Samsung S3C2440

Controller

DRAM/NOR Flash

(a) Our Hardware Prototype (MSIS)

100
0
200

0
300

0
400

0
500

0
600

0
700

0
800

0

10
20
30
40
50
60
70
80
90

100
110
120

Write/Program
Latency

MSB pages
(Red, 5000us)

Block Address

P
ag

e
A

dd
re

ss

80.00

800.0

1600

5000
microseconds

LSB pages
(Blue, 440us)

(b) A Contour Map of Latency Variation

Fig. 2.9 Implemented evaluation hardware prototype (MSIS). MSIS is used to extract the LSB
and MSB page address and to evaluate performance for NANDFlashSim validation.

main parameters for those devices such as block, page sizes and latency, are described in Table

2.1. Unless otherwise stated, we will use parameters of MLC1 as default.

Table 2.2 analyzes workloads that we tested. In addition to a number of disk-friendly

traces from actual enterprise applications (msnfs, fin, web, usr, and prn) [88], we also synthesized

write and read intensive workloads of which access pattern are fully optimized to NAND flash.

Specifically, in the swr and srd workloads, we perform reads and writes of data on different

block boundaries, and make the access pattern of the workload sequential in the block boundary.

With these synthesized flash-friendly workloads, the ideal performance of NAND flash can be

evaluated with less restrictions. Access patterns of all workloads tested are used by both the

hardware prototype (MSIS) and NANDFlashSim.

30

(a) msnfs (b) fin

(c) web (d) usr

(e) prn

Fig. 2.10 Cumulative Distribution Function (CDF) of Latency. Latencies of NANDFlashSim are
mostly overlapped with real NAND flash product latencies.

31

Device Type Feature Value
Single Level Cell Page Size(Byte) 2048

of Page Per Block 64
of Block 4096
Write Latency(us) 250
Read Latency(us) 25
Erase Latency(us) 1500

Multi Leve Cell 1 Page Size(Byte) 2048
(MLC1) # of Page Per Block 128

of Block 8196
Write Latency(us) 250∼2200
Read Latency(us) 50
Erase Latency(us) 2500

Multi Leve Cell 2 Page Size(Byte) 8192
(MLC2) # of Page Per Block 256

of Block 8196
Write Latency(us) 440∼5000
Read Latency(us) 200
Erase Latency(us) 2500

Table 2.1 NAND Flash Device Characterization

Workloads Write (%) Write Req. Size (KB) Read Req. Size (KB)
Synthesized Write Intensive (swr) 100 2 -
Synthesized Read Intensive (srd) 0 - 2
MSN File Storage Server (msnfs) 93.9 20.7 47.1
Online Transaction (fin) 84.6 3.7 0.4
Search Engine (web) 0.01 99.1 15.1
Shared Home Directories (usr) 2.6 96.2 52.6
Printing Serving (prn) 14.5 97.1 15.1

Table 2.2 Workloads Characterization

2.8.1 Validation of NANDFlashSim

Latency Validation. Figure 2.10 pictorially illustrates cumulative distribution function (CDF)

of latency for both NANDFlashSim and MSIS on enterprise application workloads. In this vali-

dation, interleaved die mode and multiplane mode NAND commands are interplayed with legacy

mode NAND operations, and a queue (32 entries) [37] is applied for handling incoming I/O re-

quests. The microscopic illustration of inflections for each CDF are also pictorially embedded.

In the figures, the red line represents MSIS latency with MLC2 [34] and the blue line represents

latency of variation-aware NANDFlashSim. As shown in the figures, latencies of NANDFlash-

Sim are almost completely overlapped with the real product latencies. Since NANDFlashSim

32

employs a variation-aware timing model as default, it exhibits very close performance to the real

product of MSIS.

System Performance Validation. In these performance validation tests, we evaluate perfor-

mance for our variation-aware based NANDFlashSim, worst-case timing based simulation model

[51], typical-case timing based simulation model [1, 60, 32] and MSIS in terms of bandwidth.

In this test, we scheduled NAND I/O commands in plane-first fashion, which means the requests

are served with write/read two-plane mode first rather than striping them across multiple dies.

Figure 2.11 compares the SDP [75] read/write performance on NANDFlashSim and

MSIS. The throughput values obtained using NANDFlashSim (with variance-aware latency

model) are close to the real product performance of MSIS. In the read cases, NANDFlashSim

is no more accurate relative to MSIS than the other timing models. This is because variation

for reads of NAND flash memory is negligible. In contrast, write operations show different

performances according to the type of latency models employed. Since write performances are

seriously varied between the minimum to maximum latency, there is a performance gap between

performance of MSIS and that of both worst-case timing parameter and typical-timing parameter

based latency models.

These plots also depict bars of the percentage of deviation between MSIS performances

and NANDFlashSim performances among different latency models. Specifically, variation-

aware NANDFlashSim provides around 12.9%, 2.1%, 1.6% and 3.8% deviation in performance

for the legacy, cache mode, 2x mode, and 2x cache mode operation, respectively. This is a signif-

icant improvement from the deviation range of 48.7% to 79.6% in typical-case timing parameter

based simulation and from 44.4% to 53.5% in the worst-case timing parameter based simulation.

33

Figure 2.12 illustrates read/write performance results with DDP [75] on the same test

set. Typical-timing parameter based latency model shows highly errant performance compared

to MSIS ones (deviation range is 83.1% to 170.9%). Even though this latency model is the most

popular one among SSD simulators, it mimics the ideal performance, which can be achieved if

and only if the time spent in TIN can perfectly be overlapped with other operations stages, and

the NAND bus I/O utilization is reasonably high across multiple dies. Although the worst-case

parameter based latency model provide closer performance (deviation range is 7.3% ∼ 42.0%), it

still shows unrealistic performance. In contrast, the performance deviation range of our current

variation-aware NANDFlashSim is between 5.3% and 9.4%. This is because the detailed bus

arbitrations across multiple dies, which are based on the intrinsic latency variations are captured

by NANDFlashSim.

Legacy Cache Two-plane (2x)
0

5

10

15

20

25

30

35

40

B
an

dw
id

th
 (M

B
/s

)

 Worst-case based
 Typical-case based
 Variation-aware based
 MSIS

(a) Read performance (srd)

Legacy Cache Two-plane(2x)2x Cache
0
1
2
3
4
5
6
7
8

Ba
nd

w
id

th
 (M

B/
s)

 Worst-case based
 Typical-case based
 Variation-aware based
 MSIS

(b) Write performance (swr)

Fig. 2.11 Performance comparison on SDP. Typical-case/worst-case time parameter based la-
tency models show unreasonable performance gap from real product ones.

34

Legacy Cache Two-plane (2x)
0
5

10
15
20
25
30
35
40
45

B
an

dw
id

th
 (M

B
/s

)
 Worst-case based
 Typical-case based
 Variation-aware based
 MSIS

(a) Read performance (srd)

Legacy Cache Two-plane(2x)2x Cache
0

2

4

6

8

10

12

14

16

Ba
nd

w
id

th
 (M

B/
s)

 Worst-case based
 Typical-case based
 Variation-aware based
 MSIS

(b) Write performance (swr)

Fig. 2.12 Performance comparison on DDP. While typical-based latency model show more dis-
crepant performance than that of multi-plane tests, the variation-aware NANDFlashSim provides
performances close to the real product ones.

2.8.2 Individual Cycle Analysis

Figures 2.13 and 2.14 illustrate an individual cycle comparison among legacy, cache

mode, and 2x mode operations. In this evaluation, we request 8 pages read or write for two

blocks, and the size of the requests is 2KB.

Write Cycles. Cycle analysis for legacy mode writes is illustrated in Figure 2.13(a). In the

write operations, the performances of TINs fluctuate from 650 thousand cycles to 5 million cy-

cles. This intrinsic latency variation is one of the reasons why NANDFlashSim demonstrates

performance closer to reality. Figure 2.13(b) illustrates write cycle analysis of cache mode oper-

ations. Since latencies for ALE, CLE, and TIR operations (related to operating the NAND flash

I/O bus) can be overlapped with latency of the TIN operation, latencies for sixteen TIN stages

consecutively occur without latencies spent to operate the I/O bus.

Figure 2.13(c) depicts cycle analysis for 2x mode write operations. While cache mode

operations save cycles for the I/O bus, 2x mode operation reduces the number of TIN operations

35

0 20 40 60 80 100

0.0
5.0x105
1.0x106
1.5x106
2.0x106
2.5x106 TON from MSB pagesTON from LSB pages

C
yc
le

Command SequenceALE,CLE TIR

(a) Legacy write operation

0 20 40 60 80 100

0.0
5.0x105
1.0x106
1.5x106
2.0x106
2.5x106

TIR for the first access

ALE, CLE for the first access

Overlapped TIN to TOR, CLE and ALE (LSB)

C
yc
le

Command Sequence

(b) Cache mode write operation

0 20 40 60 80 100

0.0
5.0x105
1.0x106
1.5x106
2.0x106
2.5x106 TIN for both planes to MSB page

C
yc
le

Command Sequence

TIR for 1st plane

TOR for 2nd plane

TIN for both planes to LSB pages

ALE,CLE

(c) Two-plane mode (2x) write operation

Fig. 2.13 Cycle analysis for write operations (NANDFlashSim). Note that the command se-
quence is a chronological oder based on a set of NAND commands that host commits, and one
cycle takes 1 nanosecond.

36

0 20 40 60 80 100 120

0.0

5.0x104

1.0x105

C
yc

le
 (n

s)

Command Sequence

TORTON

ALE,CLE

(a) Legacy read operation

0 20 40 60 80 100 120

0.0

5.0x104

1.0x105

TOR TON with Cache RegisterTON

ALE,CLE

C
yc

le
 (n

s)

Command Sequence

(b) Cache mode read

0 20 40 60 80 100 120

0.0

5.0x104

1.0x105

TOR for 2nd plane

C
yc

le
 (n

s)

Command Sequence

TON for both planes
TOR for 1st plane

ALE,CLE

(c) Two-plane mode (2x) read operation

Fig. 2.14 Cycle analysis for read operations (NANDFlashSim). Since handling 2x mode is fancy
more than other operation modes, it requires more commands to read data. Note that system
designers is able to get these microscopic cycle analysis for diverse NAND flash operations
from outputs of NANDFlashSim.

37

itself by writing data to both planes at a time. This is because those planes share one word-line.

Since cycles spent in the TIN operation is much longer than the sum of cycles for ALE, CLE

and TIR operations, it doubles throughput as shown in Figure 2.11(b).

Read Cycles. Figure 2.14 illustrates read cycle analysis executed by NANDFlashSim. Read

operation behaviors for legacy, cache mode and 2x modes are similar to the writes, having only

two main differences: 1) latencies for the TON operation do not fluctuate like TIN of write

operations, and 2) the TOR cycle fraction of the total execution cycles (see Figure 2.14(a)) is

close to the TON ones. In Figure 2.14(b), one can see that cycles for TOR, which are related

to bus operations, are higher than TON related to operations for NAND memory cells, meaning

that reads spend many cycles on the I/O bus operations (we will discuss more detail in Section

2.8.4).

It should be noted that the reason one obtains accurate latency values from NANDFlash-

Sim is that it works at cycle-level and executes NAND operations through multi-stage operations,

which are defined by NAND command set architecture. In addition, NANDFlashSim reproduces

intrinsic latency variations based on different addresses for LSB and MSB pages.

2.8.3 Performance and Power Consumption Comparison: Page Migration Test

We also evaluate a page migration test, which is a series of tasks copying pages from

source block(s) to destination block(s) and erasing the block(s). This test mimics a very time

consuming job of a flash firmware occuring frequently during garbage collection. To evaluate

performance of page migration, we read whole pages in the source blocks and wrote them to

the destination blocks on NANDFlashSim for various block sizes. In this process, we erased the

38

2 blocks 4 blocks 8 blocks 16 blocks 32 blocks

0

1x109

2x109

3x109

4x109

5x109

6x109

7x109

To
ta

l C
yc

le
s

(n
s)

Block Migration Size

 Legacy
 Cache Mode
 Internal
 2x
 2x cache mode
 2x internal

(a) Bandwidth

2 blocks 4 blocks 8 blocks 16 blocks 32 blocks
0

1x1011

2x1011

3x1011

4x1011

5x1011

6x1011

7x1011

E
ne

rg
y

(u
J)

Migration Block Size

 Legacy
 Cache mode
 Internal
 2x
 2x cache mode
 2x internal

(b) Energy

Fig. 2.15 Block migration performance comparison and energy consumption. While energy
consumption are similar to different NAND operation modes, 2x cache mode and internal data
move mode operations have great impact on enhancing performance in the page migration test.

destination blocks before migrating pages, and erased the source blocks after the page migra-

tion tasks are done. These page migration tasks are performed by legacy, cache, internal, 2x,

2x cache, and 2x internal mode operations. As shown in Figure 2.15(a), there is little perfor-

mance difference at page migrations of 2 blocks, but as the number of blocks for the migration

increases, latencies for 2x cache mode, internal data move, and 2x internal data move mode

operations are about two times smaller than legacy, cache mode and 2x mode operations. Impor-

tantly, the 2x internal data move mode operation outperforms all other operations. In contrast,

energy consumptions for each NAND I/O operation are not much different between them as

shown in Figure 2.15(b). This is because even though the latency benefits come from internal

parallelism, the same amounts of power for operating I/O requests are required by all memory

system components.

39

Figure 2.17 shows cycle analysis for each NAND operation type. One can see that in-

ternal data move mode operations (including 2x internal) eliminate operations associated with

registers (TOR and TIR), thereby improving migration performance.

2.8.4 Breakdown of Read and Write Cycles

In the write cases shown in Figure 2.16(a), most cycles are consumed by operations

related to NAND flash itself (93%∼96.5%). While write operations spend at most 7.0% of the

total time performing data movement (TOR/TIN), read operations spend at least 50.5% of the

total time doing so. Therefore, even though 2x or cache mode is applied to read operations (see

Figure 2.16(b), there is small benefit in terms of bandwidth. We believe that this is a reason

why much research in industry is directed towards enhancing bus bandwidth. However, do note

that the write performance cannot be enhanced by any kind of high speed interfaces because

the speed is dominated by the latency of the TIN stage. It also should be noted that since

NANDFlashSim allows us to count cycles dedicated to each NAND flash stage and command,

it helps us determine which operations are the performance bottleneck, or which operation is the

best operation for a specific access pattern to improve performance.

2.8.5 Performance on Multi-plane and Multi-die Architectures

Multi-plane. Figure 2.18 compares throughputs observed in NANDFlashSim for varying the

numbers of planes and transfer sizes. Performance of write operations is significantly enhanced

as the number of planes increases because most of TIN can be executed in parallel. In con-

trast, for the read operations, such benefits are much lower than for write operations. This is

because cycles for data movement (TOR) are a dominant factor in determining bandwidth, and

40

Le
ga

cy

Cac
he

 M
od

e

Tw
o-

pla
ne

 (2
x)2x
 C

ac
he

0.0 7.0x107 1.4x108 2.1x108 2.8x108 3.5x108

7.0%

6.8%

3.6%

3.5%3.5%

Cycles (ns)

 TIN TOR
 TIR CLE
 ALE

(a) Writes (swr)

Le
ga

cy

Cac
he

 M
od

e

Tw
o-

pla
ne

 (2
x)

0.0 5.0x106 1.0x107 1.5x107 2.0x107 2.5x107

66.9%

62.8%

Cycles (ns)

 TON TOR CLE ALE

50.5%

(b) Reads (srd)

Fig. 2.16 Breakdown of cycles. Note that, in reads, TOR operations are the performance bottle-
neck while TIN operations are on the critical path in writes.

Legacy
Cache Mode

Internal Data Move
Two-plane (2x)

2x cache
2x internal

0.0 5.0x107 1.0x108 1.5x108 2.0x108 2.5x108 3.0x108 3.5x108 4.0x108

Cycles (ns)

 ALE CLE TIR TOR TIN TON BER

Fig. 2.17 Cycle analysis for page migration. Internal data move modes removes the most NAND
I/O bus activities thereby improving throughputs.

41

it is unaffected by the number of planes. As shown in Figure 2.20(a), this performance bottle-

neck of a many-plane architecture becomes more problematic under disk-friendly workloads.

Specifically, the performance gains of the many-plane architecture become limited starting at a

four-plane architecture. The main reason is that most workloads are optimized for traditional

blocks without regard for the plane addressing rule. In other words, as the number of planes

increases, it becomes hard to build multi-plane mode operations with existing disk-friendly I/O

access patterns.

Legacy

Cache Mode
Two-plane

Four-plane
Six-plane

Eight-plane
0
5

10
15
20
25
30
35
40
45

B
an

dw
id

th
 (M

B
/s

)

 2048 Bytes 4096 Bytes 8192 Bytes

(a) Read performance (srd)

Legacy

Cache Mode
Two-plane

Four-plane
Six-plane

Eight-plane
0
2
4
6
8

10
12
14
16
18

B
an

dw
id

th
 (M

B
/s

)
 2048 Bytes 4096 Bytes 8192 Bytes

(b) Write performance (swr)

Fig. 2.18 multi-plane architecture performance with varying page unit sizes. While write
throughputs of many plane architecture are enhanced by 360.9% to single plane architecture,
read throughputs are enhanced by 75.5%.

Multi-die. Figure 2.19 illustrates performance improvement as the number of dies increase. In

this section, we tied multiple dies to one NAND flash I/O bus path and have them sharing one

CE pin. Similar to multi-plane operations, reads performance enhancement (as the number of

dies increases) is limited by latency of the TOR operation. Even though multiple dies are able to

serve I/O requests in parallel, performance is bounded by data movement again. This is because

42

1(SDP) 2(DDP) 4(QDP) 8(ODP)
0

5

10

15

20

25

30

35

40
B

an
dw

id
th

 (M
B

/s
)

Package Type

 Legacy
 Cache Mode
 Two-plane

(a) Read performance (srd)

1(SDP) 2(DDP) 4(QDP) 8(ODP)
0

2

4

6

8

10

12

14

16

B
an

dw
id

th
 (M

B
/s

)

Package Type

 Legacy
 Cache Mode
 Two-plane
 Two-plane Cache Mode

(b) Write performance (swr)

Fig. 2.19 Multi-die architecture performance. While many dies architecture with the swr work-
load enjoys linear enhancement (ODP improves throughput 541.1% to the SDP ones), it saturates
read throughputs with eight dies (76.3% enhancement compared to SDP ones).

during execution of a TOR operation, the NAND flash I/O bus is not capable of handing another

TOR one. Therefore, regardless of the fact that 2x or cache mode are applied, TOR operations

are the performance bottleneck in read case.

In contrast, as shown in Figure 2.19(b), throughputs of write operations are significantly

improved by increasing the number of dies. The reason behind this benefit is interleaving TIN,

which is the dominant factor in determining write bandwidths with small bus resource conflicts.

It should be noted that NANDFlashSim is able to reproduce/simulate resource (NAND flash I/O

bus and dies) conflicts by employing multi-stage operations and being aware of intrinsic latency

variations at µarch-level. As shown in Figure 2.20(b), unlike many-plane architecture, many-die

architecture enjoys performance gains under even disk-friendly real workloads. This is because

data can be parallelized across multiple dies with fewer restrictions.

43

1 2 4 8 16
0

5000
10000
15000
20000
25000
30000
35000

IO
P
S

The Number of Plane

 msnfs
 web
 fin
 usr
 prn

(a) Sensitivity to number of plane

1 2 4 8 16
0

5000
10000
15000
20000
25000
30000
35000

IO
P
S

The Number of Die

 msnfs
 web
 fin
 usr
 prn

(b) Sensitivity to number of die

Fig. 2.20 Performance sensitivity to the number of plane and die with actual application work-
loads. the performance of many-die architecture is 54.5 % better than the performance of many-
plane architecture in terms of IOPS.

1 2 4 8 16
0

5

10

15

20

25

30

C
on

te
nt

io
n

Ti
m

e
to

 T
ot

al
 C

yc
le

s
(%

)

The Number of Die

 msnfs
 fin
 web
 usr
 prn

(a) Single level cell (SLC)

1 2 4 8 16
0

5

10

15

20

25

30

C
on

te
nt

io
n

Ti
m

e
to

 T
ot

al
 C

yc
le

s
(%

)

The Number of Die

 msnfs
 fin
 web
 usr
 prn

(b) Multi level cell (MLC)

Fig. 2.21 Resource contention comparison between SLC NAND and MLC NAND devices. The
resource contentions of MLC NAND flash have less impact on SLC NAND flash, but the con-
tention problem is still problematic and become more serious as the number of die increases.

44

2048 4096 8192 16384

10

20

30

40

50

B
an

dw
id

th
 (M

B
/s

)

Page Size (Bytes)

 Legacy
 Cache
 Two-plane(2x)

(a) Read (srd)

2048 4096 8192 16384
2
4
6
8

10
12
14
16
18
20
22
24

B
an

dw
id

th
 (M

B
/s

)
Page Size (Bytes)

 Legacy
 Cache
 Two-plane(2x)
 2x Cache

(b) Write (swr)

Fig. 2.22 Sensitivity to page organization (2x, DDP). Most read performance are bounded be-
cause of TOR times and NAND flash I/O bus competition.

1 2 4 8 16 32 64 128 256
18
20
22
24
26
28
30
32
34
36
38

B
an

dw
id

th
 (M

B
/s

)

Tansfer Size (KB)

 Die-first
 Plane-first(Two-plane)

(a) Read performance (srd)

1 2 4 8 16 32 64 128 256

1
2
3
4
5
6
7
8
9
10
11
12

B
an

dw
id

th
 (M

B
/s

)

Tansfer Size (KB)

 Die-first
 Plane-first(Two-plane)

(b) Write performance (swr)

Fig. 2.23 Effects of different NAND command scheduling policies. Based on different transfer
sizes and scheduling policies, performance enhancement with multi-die and plane architecture
show different performance.

45

2.8.6 Performance Sensitivity to Page Size

Intuitively, large page sizes can be a good choice to achieve high bandwidth because

many bytes can be programmed or read within the same amount of cycles. However, this in-

tuition is only true for writes. Figure 2.22 plots performance sensitivity to different page sizes

on diverse read and write operations. While the bandwidth of writes for most operation modes

increases as the page size increases, read performances saturate. As explained in Section 2.8.5,

the small enhancements for read operations are due to bus resource conflicts and the large time

spent in data movement.

2.8.7 Resource Contention

Since multiple dies share the flash interface, I/O bus activities such as ALE, CLE, TOR

and TIR should be serialized, which means they cannot execute simultaneously. Instead, this I/O

bus activities can be interleaved across multiple dies at µarch level. During the interleaving time,

I/O requests related to such activities suffer from internal NAND I/O bus resource contention.

Figure 6.12 visualizes the fraction of internal NAND I/O bus resource contention to total I/O

execution time using disk-friendly workloads. As shown in the figure, interleaving I/O bus

activities in SLC is 45.2% more competitive than MLC’s ones. The reason is that since the

latencies of MLC activities are much longer than the latencies of SLC activities, it has more

chances to be executed with I/O bus activities at the same time. However, as the number of die

increases, for both SLC and MLC throughput, the fraction of the I/O bus resource contention

to total I/O execution time increases, which is a reason of performance limitation in many dies

architecture.

46

2.8.8 Scheduling Strategy

To test the potential research on NAND command scheduling strategies, we implemented

two simple command schedulers in the logical unit of NANDFlashSim: 1) Die-first and 2) Plane-

first schedulers. The die-first scheduler simply stripes I/O requests as they arrive over multiple

dies rather than planes. In the plane-first scheduler, I/O requests are collected into two pages

upon arrival and served to multiple planes rather than striping them across dies. As illustrated

in Figure 2.23, since multiple dies share one I/O bus, performances saturate faster than with the

plane-first scheduler. Even though plane-first operation provides better performance, the die-first

scheduler is more flexible in serving I/O requests of a smaller size. This is because multi-plane

operation performance is limited by plane addressing rules (see Section 2.3.3), whereas multiple

dies can be interleaved to serve I/O requests without any addressing constraints.

2.9 Simulation Speed and Download

The current version of NANDFlashSim is capable of executing 824 I/O requests (2KB)

per second for DDP and 295 I/O requests per second for ODP with MLC1. The simulator

performances were measured on a machine with virtualized dual core, 1GB memory, and 200GB

disk. The source code can be downloaded from http://www.cse.psu.edu/∼mqj5086/nfs.

2.10 Conclusion

Since NAND flash memory is sensitive to a large number of parameters, and some per-

formance parameters have significant latency variation, making decisions on how to configure

NAND flash memory for optimal performance is non-trivial. A comparison of various NAND

47

flash memory architectures become even harder when considering multi-die and multi-plane

architectures, latency variations, energy consumption costs, reliability issues, and addressing

restrictions. Therefore in this Chapter we propose NANDFlashSim, a detailed and highly con-

figurable low-level NAND flash simulation model. NANDFlashSim supports detailed timing

models for sixteen I/O operations by being aware of intrinsic latency variations. Our ongoing

work includes incorporating a 400MHz high speed NAND interface (not published yet) and

implementing a multiple logical unit on chip architecture. In addition, we plan to apply our sim-

ulation model to cycle accurate Green Flash [93] and Tensilica Xtensa simulation model [98] of

hardware/software co-design platform for exascale computing [73].

Chapter Acknowledgements Chapter 2, in part, is a reprint of the material as it appears in

”NANDFlashSim: Intrinsic Latency Variation Aware NAND Flash Memory System Modeling

and Simulation at Microarchitecture level,” Myoungsoo Jung, Ellis Herbert Wilson III, David

Donofrio, John Shalf, Mahmut Kandemir, in Proceedings of the 28th IEEE Conference on Mas-

sive Data Storage (MSST), 2012. The dissertation proposal author was the primary investigator

and the first author of this paper.

48

Chapter 3

Page Allocation Strategies for Parallelizing Data Accesses

3.1 Introduction

NAND flash-based Solid State Disks (SSDs) are being increasingly used in enterprise,

personal and high performance computing systems, due to their performance advantage over

spinning devices. While high-performance interfaces with transfer rates ranging from 6Gb/sec

to 16GT/sec are being adopted by modern SSD architectures, the speed of NAND flash mem-

ory (i.e., flash) is still limited by about 40MB/sec [20]. This performance gap between SSD

interfaces and flash chips has driven the research that target internal parallelism in SSDs, which

can have a great impact on improving system performance. From an architecture perspective,

SSD systems and flash devices expose parallelism at different levels. More specifically, SSD

systems employ multiple flash chips over multiple channel I/O buses and multiplexed flash in-

terfaces, which means that multiple SSD components can be simultaneously activated to serve

incoming I/O requests. In parallel, flash technologies are being developed to extract maximum

parallelism. A single flash chip consists of multiple dies, each of which accommodating multiple

planes. Obviously, performance characteristics of modern SSDs are varied based on what strate-

gies are employed for parallelizing data accesses across hundreds or thousands of flash dies and

planes. A key design issue behind exploiting parallel data accesses is how to efficiently exploit

internal parallelism and how to organize parallelism-friendly physical data layout for both the

SSD system and flash levels.

49

As exploiting internal parallelism is key to improving performance and filling the per-

formance gap between flash and high-speed interfaces, parallel data access methods are getting

attention from both academia and industry [10, 13, 84, 101]. Architectural approaches to system-

level parallelism using multiple I/O buses and flash chips such as ganging/superblock have been

explored, and flash-level concurrency mechanisms utilizing multiple dies and planes within a

flash chip like interleaving/banking have been already studied [1, 20]. However, page allocation

(palloc) strategies enabling both system- and flash-level parallelism by determining physical

data layout, have received little attention so far. A few palloc schemes in favor of the channel

striping based data access method have been investigated [42], and the interplay between flash-

level parallelism and these channel-first palloc schemes have been studied [31]. In addition, very

little has been published on understanding the interactions between system-level and flash-level

parallelism.

In this Chapter, we explore different page allocation strategies, geared toward exploiting

both system-level and flash-level parallelism – we study a full design space siting on system and

flash-level organizations with a variety of parameters such as a standard queue, multiple buses,

chips, and diverse advance flash operations. Specifically, we evaluate twenty four palloc strate-

gies including the flash-level resource-first and way-first strategies we defend. The questions we

are interested in answering include 1) which palloc scheme would be globally optimal for paral-

lelizing data accesses when both system- and flash-level parallelisms are considered?, 2) what

are the relationship between different level concurrency methods?, and 3) what are the resource

utilizations of different palloc schemes? To the best of our knowledge, this is the first report

that explores all possible combinations of palloc strategies considering all levels of parallelism

in SSDs. Our main contributions can be summarized as follows:

50

M
ic

ro
p

ro
c
e

s
so

r(
s
) FBC

Flash Chip Flash Chip

FBC

Flash Chip Flash Chip

FBC

Flash Chip Flash Chip

FBC

Flash Chip Flash ChipChannel

H
o

s
t

In
te

fa
c
e

Way

Channel Striping

Way Pipelining

Flash Chip Flash Chip

Flash Chip Flash Chip

Flash Chip Flash Chip

Flash Chip Flash Chip

Flash Bus Controller

CH D

CH C

CH B

CH A

(a) SSD Internals (system-level)

C
h

a
n

n
e

l

NAND Flash

Memory Array

(Plane 1)

DATA REGISTER

M
u

lt
ip

le
x

In
te

rf
a

ce

DIE 0

DIE 1

DIE 2

DIE 3

CACHE REGISTER

NAND Flash

Memory Array

(Plane 0) w
o

rd
li

n
e

Die Interleaving

Plane Sharing

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

(Plane 3)

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

(Plane 2) w
o

rd
li

n
e

DATA REGISTER

CACHE REGISTER

w
o

rd
li

n
e

1 Page 1 Page 1 Page 1 Page

Data movement (40 MHz ~ 400 Mhz)

Odd Addressed

Block

Even Addressed

Block

(b) Flash Internals

Fig. 3.1 Internals of SSD and NAND flash and illustration of different level data accessing meth-
ods.

51

• Determining good page allocation schemes. We observe from our experiments that the channel-

and-way striping based palloc is not the best strategy from a performance perspective, despite

recent works [31, 42] claiming that. Our experiments in contrast reveal that, when advance flash

operations are considered, a flash-level resource-first palloc scheme results in better through-

put than the approach in [31, 42] (as much as 84.8% and on average 40.1% with very similar

response times).

• Addressing parallelism interference. As opposed to the common perception that system and

flash-level concurrency mechanisms are largely orthogonal, channel striping method in system-

level makes it hard to exploit flash-level parallelism under disk-friendly workloads. In fact, in

the worst case, flash-level parallelism extracted by the channel striping method shrinks as much

as 99% and on average 44% since it exhibits poor locality in flash chips.

• Addressing resource utilization. We observe from our experimental analysis that most parallel

data access methods and palloc schemes have room for performance improvement since many

internal resources with them are still underutilized. When considering all the cases tested, chan-

nel resources are 57.9% underutilized and the activate time for buses and flash memory cells

accounts for only 22.1% of the total execution time.

3.2 SSD Internals and Parallelisms

Since multiple flash chips are packaged in the form of an SSD, there are numerous hard-

ware components and buses that work in tandem to provide access to the internals of flash. In

this context, channels are I/O buses that are independently operated by microprocessors, and

ways are data paths, connected to flash chips in each channel. Within each flash chip are one

or more dies, sharing the single multiplexed interface. Lastly, the dies accommodate multiple

52

planes, the smallest unit to serve a request in parallel. Figures 3.1(a) and 3.1(b) depict SSD and

flash internals with corresponding parallel data access methods, respectively.

System-Level Parallelism. At a system-level, in the beginning of a data access process, an I/O

request can be striped over multiple channels, and this process is termed as channel striping.

Unlike channels, way-level activities should be serialized because the multiplexed interfaces of

each flash chip are shared within a channel. Individual chips can however work in parallel,

and a flash memory transaction consists of multiple phases; consequently, I/O requests can be

pipelined. Therefore, using way pipelining, multiple I/O requests can be simultaneously served

by multiple flash chips in a channel.

Flash-Level Parallelism. After I/O requests are striped over multiple flash chips, they can be

further interleaved across multiple dies in a flash chip. Similar to way pipelining, the data move-

ments and flash command controls in this die interleaving need to be serialized. Still, in an ideal

case, performance increases by about n times, where n is the number of dies. Plane sharing

concurrently activates flash operations on multiple planes, which can improve performance by

about m times, where m is the number of planes. Finally, these two parallel data access methods

can be combined when incoming I/O requests span all of the flash internal components. This

method is referred to as die interleaving with multiplane, and it can improve performance by

about n∗m times. It should be noted however that, unlike system-level parallelism, data access-

ing mechanisms in this level are only available via advance flash commands provided by flash

chip makers.

53

WAY 0

CHIP 0

CHIP 1

CHIP 2

CHIP 3

REQ 0 REQ 1 REQ 2 REQ 3

CHIP 4

CHIP 5

CHIP 6

CHIP 7

WAY 1

C
H

 A
C

H
 B

C
H

 C
C

H
 D

WAY 0

CHIP 0

CHIP 1

CHIP 2

CHIP 3

REQ 0 REQ 1 REQ 2 REQ 3

CHIP 4

CHIP 5

CHIP 6

CHIP 7

WAY 1

C
H

 A
C

H
 B

C
H

 C
C

H
 D

Flash-transactions

Device-level queue Device-level queue

In
tr

a
-r

e
q

u
e

s
t

 p
a

ra
ll

e
li

sm

In
te

r-
re

q
u

e
st

p

a
ra

ll
e

li
sm

Fig. 3.2 Request-level parallelism.

Request-Level Parallelism. Parallel data access methods can serve flash-transactions within

an I/O request or between the I/O requests sitting in a device-level queue (Figure 3.2). Gener-

ally speaking, Intra-request parallelism, referring the former reduces latency, and inter-request

parallelism indicating the latter, improves storage throughput.

3.3 Page Allocation Strategies

SSDs decide physical data layout by remapping logical and physical addresses. This data

layout within and between flash chips should be carefully determined so that one can exploit all

levels of parallelism mentioned in Section 3.2. Since page allocation (palloc) strategies are

directly related to the physical layout of data, the performance of an SSD can vary based on

which palloc scheme is employed.

Figure 3.3 illustrates twenty four different palloc strategies oriented toward exploiting

system-level and flash-level resources. At the top-left corner of Figure 3.3(a), we show how

to identify the internal resources in these different palloc strategies. In order to distinguish

among different palloc strategies, we use abbreviations composed of the initial letters of internal

54

resources based on their priority. The order of numbers in the figure indicates how each pal-

loc scheme allocates internal resources. For example, in the CWDP (Channel-Way-Die-Plane)

palloc scheme, requests are first striped across multiple channels and ways. Flash-transactions

corresponding to these requests are then assigned to multiple dies and planes.

Channel-first palloc strategies allocate internal resources in favor of the channel striping

method, which can maximize the benefits coming from intra-request parallelism. Therefore,

latencies experienced by these palloc strategies are expected to be lower when the requests span

all of channels. In comparison, way-first palloc strategies are oriented toward taking advantage

of the way pipelining, and can improve throughput by maximizing inter-request parallelism.

In contrast, die-first and plane-first palloc strategies allocate flash-level resources rather than

channels or ways in an attempt to reap up the benefits of die interleaving, plane sharing, or die

interleaving with multiplane methods.

These palloc strategies can be incorporated into an existing flash translation layer (FTL),

which is the internal software to perform mapping between logical and physical addresses. Even

under the situation that the FTL remaps addresses, page ordering performed by pallocs will still

have a great performance impact because pallocs determine the order in which coalesced data

pages are written to physical pages, which in turn influences the order in which the pages are

read.

55

1

2

5

6

3

4

7

8

9

10

13

14

11

12

15

16

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

CH1

CH2

WAY1

DIE1

WAY2

DIE2

CH : CHANNEL
PL : PLANE

CDPW

1

2

9

10

3

4

11

12

5

6

13

14

7

8

15

16
CDWP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
CPDW

1

2

3

4

9

10

11

12

5

6

7

8

13

14

15

16
CPWD

1

2

5

6

9

10

13

14

3

4

7

8

11

12

15

16
CWPD

1

2

9

10

5

6

13

14

3

4

11

12

7

8

15

16
CWDP WCDP

WCPD

WDCP

WDPC

WPCD

WPDC

1

3

9

10

5

6

11

12

2

4

13

14

7

8

15

16

1

3

5

7

9

11

13

14

2

4

6

8

10

12

15

16

1

5

9

13

3

7

11

15

2

6

10

14

4

8

12

16

1

9

5

13

3

11

7

15

2

10

6

14

4

12

8

16

1

5

3

7

9

13

11

15

2

6

4

8

10

14

12

16

1

9

3

11

5

13

7

15

2

10

4

12

6

14

8

16

PL1PL2 Physical Page

Remapped Page Order

Channel-first palloc strategies Way-first palloc strategies

(a) System-level resource-first allocation

DCPW

DCWP

DPCW

DPWC

DWCP

DWPC

1

3

5

7

2

4

6

8

9

11

13

15

10

12

14

16

1

3

9

11

2

4

10

12

5

7

13

15

6

8

14

16

1

5

3

7

2

6

4

8

9

13

11

15

10

14

12

16

1

9

3

11

2

10

4

12

5

13

7

15

6

14

8

16

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

1

9

5

13

2

10

6

14

3

11

7

15

4

12

8

16

PCDW

PCWD

PDCW

PDWC

PWCD

PWDC

1

3

2

4

5

7

6

8

9

11

10

12

13

15

14

16

1

3

2

4

9

11

10

12

5

7

6

8

13

15

14

16

1

5

2

6

3

7

4

8

9

13

10

14

11

15

12

16

1

9

2

10

3

11

4

12

5

13

6

14

7

15

8

16

1

5

2

6

9

11

10

12

3

7

4

8

13

15

14

16

1

9

2

10

5

13

6

14

3

11

4

12

7

15

8

16

Die-first palloc strategies Plane-first palloc strategies

(b) Flash-level resource-first allocation

Fig. 3.3 Different page allocation strategies.

56

3.4 Experimental Methodology

To evaluate each of the palloc schemes shown in Figure 3.3, we needed a high-fidelity

simulator that can capture cycle-level accuracy and interaction between internal resources. Mo-

tivated by this, we developed a cycle-accurate NAND flash simulator1, which is hardware-

validated, aware of intrinsic flash latency variation and support advance flash operations. Micron

multi-level cell (MLC) NAND flash2 is used for the NAND flash simulator. The package type

of this MLC flash is dual die, and it employs a two-plane architecture. We built a simulation

framework that combines multiple NAND flash simulator instances under a page level address

mapping flash translation layer and a garbage collector similar to the one employed in [1]. Eight

channels and eight ways are simulated with a FIFO-style NCQ (32 entries on virtual addresses

that the FTL provides) [37]. Each channel works at 50 MHz and the frequency of microproces-

sor used to parallelize data accesses is 800 MHz. For evaluating the effectiveness of our palloc

strategies, we chose real enterprise-scale workloads including MSN file storage server (msnfs),

shared home folder (usr), financial transaction processing (fin), database management system

(sql) [3, 78]. The important characteristics of these traces are given in Table 3.1.

3.5 Results

In order to quantify the performance of our palloc strategies, we used IOPS (as our

throughput metric) and average latency. In addition, to better understand the relationship be-

tween palloc performances and internal resource usages, we also measured the contribution of

1The source code of this simulator [49] can be downloaded from
http://www.cse.psu.edu/∼mqj5086/nfs.

22 KB page size, page read latency is 50 µsec, page write latencies are varied from 250 µsec to 2.2
msec, and erase time is 2.5 msec [75].

57

C
D
PW

C
D
W
P

C
PD

W

C
PW

D

C
W
PD

D
C
PW

D
C
W
P

D
PC

W

D
PW

C

D
W
C
P

D
W
PC

PC
D
W

PC
W
D

PD
C
W

PD
W
C

PW
C
D

PW
D
C

W
C
D
P

W
C
PD

W
D
C
P

W
D
PC

W
PC

D

W
PD

C

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 IO
PS

 to
 C

W
D

P
 msnfs
 usr
 fin1
 web
 fin2
 sql0
 sql1
 sql2
 sql3

Channel-first palloc Die-first palloc Plane-first palloc Way-first palloc

Fig. 3.4 Throughput comparison. IOPS numbers are normalized with respect to corresponding
CDPW IOPS.

C
D
PW

C
D
W
P

C
PD

W

C
PW

D

C
W
PD

D
C
PW

D
C
W
P

D
PC

W

D
PW

C

D
W
C
P

D
W
PC

PC
D
W

PC
W
D

PD
C
W

PD
W
C

PW
C
D

PW
D
C

W
C
D
P

W
C
PD

W
D
C
P

W
D
PC

W
PC

D

W
PD

C

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0 3.96.53.5

N
or

m
al

iz
ed

 A
vg

. L
at

en
cy

 to
 C

W
D

P

 msnfs
 usr
 fin1
 web
 fin2
 sql0
 sql1
 sql2
 sql3

Channel-first palloc Die-first palloc Plane-first palloc Way-first palloc

9.6 4.3 3.1

Fig. 3.5 Latency comparison. Latency values are normalized with respect to corresponding
CDPW values.

channel, way, die, and plane level parallelism to data accesses and the total number of transac-

tions for all palloc schemes. Finally, we studied the utilization of channels and the fraction of

the time spent on different internal resource activities.

3.5.1 Finding Overall Optimal Palloc scheme

Figures 3.4 and 3.5 plot, respectively, IOPS and average latency values for each palloc

scheme tested. To enable better comparisons, all IOPS and latency numbers are normalized

with respect to the corresponding CWDP value, which is reported as being the “optimal palloc

scheme” by prior research [31, 42]. We observe that CWDP, DPWC, PWCD, and WDCP exhibit

the best latency and throughput number among all channel-first, die-first, plane-first, and way-

first palloc strategies, respectively. When all the test cases are considered, one can conclude that

PWCD is the globally optimal palloc strategy from the performance angle.

58

Data
Size
(MB)

Write
Frac-
tion
(%)

Avg.
Write
Size
(KB)

Avg.
Read
Size(KB)

Random-
ness
(%)

fin1 18057 84.6 1.5 1 96.9
fin2 8846 21.5 1 1 97.4
msnfs 32490 93.9 10 23.5 87.2
usr 50727 27.0 5 20 92.2
web 15985 0.1 4 7.5 93.5
sql0 30433 40.2 4 14.5 89.9
sql1 4676 14.55 4.5 22.5 73.6
sql2 276407 0.3 10.5 26.5 71.9
sql3 1196 37.12 10 37 56.8

Table 3.1 Important characteristics of our traces.

From a throughput perspective, most die and plane-first palloc strategies provide about

29% better IOPS, compared to channel-first palloc schemes. One of the main reasons behind

the better throughput of such strategies is that they exhibit high levels of die and plane locality,

helping to build flash-transactions exploiting flash-level parallelism at on-line. Figure 3.6 picto-

rially shows the total number of flash-transactions measured at the flash chip level. Plane-first

and die-first palloc strategies dramatically reduce the number of flash-transactions compared to

the palloc strategies that target system-level parallelism. This is mainly because the flash-level

parallelism is achieved via advance flash operations, constructed by aggregating multiple incom-

ing requests at runtime. We observe from our experimental results that PWDC and DPWC are

able to achieve 82.7% and 81.6% more flash-level parallelism, respectively, than CWDP.

The flash-level resource-first palloc schemes may introduce more bus contention in a

channel when the lengths of I/O requests are not enough to span all the elements. Therefore,

their latency can be worse than that of the channel-first palloc schemes. As shown in Figure

3.5, most die-first and plane-first palloc schemes provide 11.1% worse latency (as compared to

CWDP), which are reasonable considering the significant throughput improvements they bring.

Interestingly, PDCW and PDWC show even slightly lower latency compared to CWDP. This is

59

because channel striping in some cases suffers from resource conflicts, between the committed

flash operations and the current flash operations. Figure 3.7 presents the waiting times taken to

resolve the resource conflicts. As shown in this graph, latencies for palloc schemes are as higher

as the waiting time due to longest flash-transactions time. In contrast, high die-interleaving-

with-multiplane operation rates (Figure 3.8) of PDCW and PDWC (12.9% ∼ 21.4%) result in

reduced the overall waiting times.

A comparison of writes vs. reads. Consider a write-intensive workload (msnfs) and a read-

intensive workload (fin2). For the write-intensive workload, the channel-first pallocs outperform

flash-level resource-first pallocs by 23% (on average), in terms of latency, while their throughputs

are on average 34.4% worse than that of the flash-level resource-first pallocs. In contrast, for the

read-intensive workload, both the latency and IOPS of the channel-first pallocs are on average

12.5% and 27.9% worse than that of the flash-level resource-first pallocs, respectively. Although

not presented here in detial, we believe that one of the reasons why the channel-first pallocs

show worse performance than that of a flash-level resource-first palloc in most read cases is that

the bus activity fraction of the total execution time for reads, which causes high system-level

resource contention, accounts for at least 50.5%, whereas that for writes is as much as 7%.

3.5.2 Parallelism Interference

In order to better understand the cross-interactions among parallelisms at different levels

and performance, we categorize all flash-transactions executed based on their operation types.

As opposed to the common perception that the system-level and flash-level concurrency mech-

anisms are largely orthogonal, we observe that channel striping method in system-level makes

it hard to exploit flash-level parallelism. Specifically, as shown in Figure 3.8, the percentage of

60

C
D
PW

C
D
W
P

C
PD

W
C
PW

D
C
W
D
P

C
W
PD

D
C
PW

D
C
W
P

D
PC

W
D
PW

C
D
W
C
P

D
W
PC

PC
D
W

PC
W
D

PD
C
W

PD
W
C

PW
C
D

PW
D
C

W
C
D
P

W
C
PD

W
D
C
P

W
D
PC

W
PC

D
W
PD

C

0

1000

15000

20000

25000

N
um

be
r o

f t
ra

ns
. (

m
ili

on
)

 Write flash-transactions Read flash-transactions

Fig. 3.6 The number of flash-transactions executed.

C
D
P
W

C
D
W
P

C
P
D
W

C
P
W
D

C
W
D
P

C
W
P
D

D
C
P
W

D
C
W
P

D
P
C
W

D
P
W
C

D
W
C
P

D
W
P
C

P
C
D
W

P
C
W
D

P
D
C
W

P
D
W
C

P
W
C
D

P
W
D
C

W
C
D
P

W
C
P
D

W
D
C
P

W
D
P
C

W
P
C
D

W
P
D
C

0.0
2.0x107
4.0x107
6.0x107
8.0x107
1.0x108
1.2x108
1.4x108
1.6x108
1.8x108
2.0x108

W
ai

tin
g

tim
e

(m
se

c)

Channel-first Die-first Plane-first Way-first

Fig. 3.7 Waiting time required to resolve resource conflicts.

61

flash-level parallelism exploited by the channel-first palloc schemes shrink as much as 99.8%

and on average 44.9%, compared to the plane-first palloc schemes. Even when the way-first

palloc schemes are employed, the percentage of flash-level parallelism still shrinks 40.7%. The

main reason behind this low flash-level parallelism is that channel and way-first palloc strategies

induce poor flash-level locality. With these palloc strategies, the transfer sizes of I/Os are insuf-

ficient to span all of dies and planes, and consequently, flash-level parallel data accesses cannot

be made at runtime.

3.5.3 Resource Utilization

Increasing resource utilization is another big concern for parallel data accesses. We ob-

serve that many internal resources are significantly underutilized. Figure 3.9 plots the average

channel utilizations under each palloc scheme tested. The channel resource utilization accounts

for 43.1% on average with most parallel data access methods. Especially, channel-first pal-

loc schemes exhibit poor channel utilization under disk-friendly workloads even though such

schemes are oriented toward taking advantage of channel-level parallelism. Since they cannot

commit flash-transactions until the previous requests are completed, when there is a conflict in a

flash or channel, these schemes would not be able to achieve high levels of channel utilization.

Figures 3.10 and 3.11 plot the execution time breakdown for the write and read intensive

workloads, respectively. One can observe from these results that about 80% of the total execution

time are spent idle.

62

C
D
P
W

C
D
W
P

C
P
D
W

C
P
W
D

C
W
D
P

C
W
P
D

D
C
P
W

D
C
W
P

D
P
C
W

D
P
W
C

D
W
C
P

D
W
P
C

P
C
D
W

P
C
W
D

P
D
C
W

P
D
W
C

P
W
C
D

P
W
D
C

W
C
D
P

W
C
P
D

W
D
C
P

W
D
P
C

W
P
C
D

W
P
D
C

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Th
e

fra
ct

io
n

of
 p

ra
lle

l d
at

a
ac

ce
s

m
et

ho
d

ty
pe

 (%
)

 Die interleaving with multiplane write
 Die interleaving with multiplane read
 Plane sharing write Plane sharing read
 Die interleaving write Die interleaving read
 Striped lagacy write Striped lagacy read

Channel-first Die-first Plane-first Way-first
Fig. 3.8 Parallelism breakdown for sql1.

C
D
PW

C
D
W
P

C
PD

W

C
PW

D

C
W
D
P

C
W
PD

D
C
PW

D
C
W
P

D
PC

W

D
PW

C

D
W
C
P

D
W
PC

PC
D
W

PC
W
D

PD
C
W

PD
W
C

PW
C
D

PW
D
C

W
C
D
P

W
C
PD

W
D
C
P

W
D
PC

W
PC

D

W
PD

C

0

20

40

60

80

100

C
ha

nn
el

 R
es

ou
rc

e
U

til
iz

at
io

n
(%

) msnfs
 usr
 fin1
 web
 fin2
 sql0
 sql1
 sql2
 sql3

Channel-first palloc Die-first palloc Plane-first palloc Way-first palloc

Fig. 3.9 Average channel utilization.

63

C
D
P
W

C
D
W
P

C
P
D
W

C
P
W
D

C
W
D
P

C
W
P
D

D
C
P
W

D
C
W
P

D
P
C
W

D
P
W
C

D
W
C
P

D
W
P
C

P
C
D
W

P
C
W
D

P
D
C
W

P
D
W
C

P
W
C
D

P
W
D
C

W
C
D
P

W
C
P
D

W
D
C
P

W
D
P
C

W
P
C
D

W
P
D
C

0
5
10
15
20
25

90
100

E
xe

. t
im

e
fra

ct
io

n
(%

)
 Idle Flash-level conflict Bus contention
 Bus activate Flash cell activate

Fig. 3.10 Execution breakdown (msnfs, write-intensive).

C
D
PW

C
D
W
P

C
PD

W
C
PW

D
C
W
D
P

C
W
PD

D
C
PW

D
C
W
P

D
PC

W
D
PW

C
D
W
C
P

D
W
PC

PC
D
W

PC
W
D

PD
C
W

PD
W
C

PW
C
D

PW
D
C

W
C
D
P

W
C
PD

W
D
C
P

W
D
PC

W
PC

D
W
PD

C

0
5
10
15
20
25
30
35

90

100

 Idle Flash-level conflict Bus contention
 Bus activate Flash cell activate

Ex
e.

 ti
m

e
fra

ct
io

n
(%

)

Fig. 3.11 Execution breakdown (web, read-intensive).

64

L
o

w
e

r
la

te
n

cy

Higher throughput

CWDP

PWCD

DPWC

WDCP

L
a

te
n

c
y

• Channel-level parallelism
• Avoiding resource conflicts
• Intra-request parallelism

• Flash-level parallelism

• Maximizing resource utilization
• Inter-request paralellism

IDEAL PALLOC

Fig. 3.12 Performance map with optimizations points.

3.5.4 Optimization Potential for Parallelism

Based on the I/O access patterns we studied, it can be observed that each palloc scheme

exhibits different performance characteristics and optimization points. Figure 3.12 pictorially

summarizes the potential of parallelism optimization from both the latency and throughput per-

spectives. For the latency sensitive applications, channel striping and channel-first palloc give

much better position to leverage architectural parallelism. Alleviating resource conflicts is a key

to reduce latency and improve inter-request parallelism. In comparison, way- and flash-level par-

allelism are more suitable for throughput sensitive applications. Maximizing resource utilization

is a major factor in exploiting these different levels of parallelisms.

65

3.5.5 Discussion

As our experimental results demonstrate, although flash-level resource-first palloc schemes

generally perform better, their relative performances can vary based on how system-level re-

sources are combined with flash-level resources and how well access patterns are suited to their

combination. For example, PDWC favors flash-level resources more than PWCD, but the aver-

age throughput of PDWC is slightly worse than that of PWCD. We believe that this is because

long data movement time of die-interleaving-with-multiplane of PDWC makes system-level re-

source contention a little bit more pronounced under certain workloads like usr. Similarly, the

performance of WPCD is as good as DPWC. Although WPCD favors the a system-level resource

(way), it allocates plane resources first among different ways within a channel, thereby achieving

high flash-level parallelism with the plane sharing. Note that, in most cases that we tested, the

way-first pallocs are better than the channel-first pallocs in terms of throughput. As mentioned in

Section 3.2, the way-first pallocs reap the benefits of inter-request parallelism, which has an im-

pact on improving bandwidth. One of the reasons behind this behavior is that flash-transactions

of each I/O request are served within a channel so that several requests in the device queue can

be issued over multiple channels in parallel. We however believe that the performance of the

way-first pallocs would be degraded when the sizes for each request are larger than the total

amount of contiguous physical pages in the channel.

We observe that, when access patterns are fully sequential, the I/O requests span all

internal resources, so there is no performance difference between different pallocs.

66

3.6 Conclusion

This Chapter evaluates all possible page allocation (palloc) strategies using a cycle-

accurate SSD simulator. Our experimental results reveal that the channel-first palloc strategies

are not the best from a performance perspective, when all levels of parallelism are considered.

Further, our results show that flash-level parallelism can be interfered by channel-first palloc

schemes, and internal resources are significantly underutilized with most data access methods.

We believe our results and observations can be used for selecting the ideal palloc schemes, given

a target workload.

Chapter Acknowledgements Chapter 3, in part, is a reprint of the material as it appears in

”An Evaluation of Different Page Allocation Strategies on High-Speed SSDs,” Myoungsoo Jung,

Mahmut Kandemir, in Proceedings of the 4th USENIX Workshop on Hot Topics in Storage and

File Systems (HotStorage), 2012. The dissertation proposal author was the primary investigator

and the first author of this paper.

67

Chapter 4

Challenges in Getting Flash Drives Closer to CPU

4.1 Introduction

Over the past few years, NAND Flash-based Solid State Disks (SSDs) are widely em-

ployed in various computing systems ranging from embedded systems to enterprise-scale servers

to high-performance computing systems, thanks to their high performance and low power con-

sumption. Even though SSDs were originally meant to be a block device replacement or a storage

cache that works along with slow spinning disks, their performance has bumped to standard thin

storage interfaces such as SATA 6Gpbs, which, at this point, blurs the distinction between block

and memory access semantic devices. Figure 4.1(a) plots the bandwidth trends for the thin inter-

faces versus various SSDs in real world. While the bandwidth of SATA interface has increased

from 150MB/s to 600MB/s over a decade, SSDs have improved their bandwidth by four times

at the same period. As a result of this remarkable performance improvement, as shown in Figure

4.1(b), both industry and academia started to consider taking SSDs out from the I/O controller

hub (i.e., Southbridge) and locate them as close to the CPU side as possible. Obviously, PCIe

SSDs are by far one of the easiest ways to integrate flash memory into the processor-memory

complex (i.e., Northbridge), which requires no cabling or connections to other I/O devices in-

volved in handling flash memory. By exploiting the benefits of the PCIe interface, latencies are

expected to be kept as close to DRAM levels as possible. However, since these SSD technolo-

gies consider the PCIe bus as a storage interface, their interfaces are different from conventional

68

memory interconnections at Northbridge as well as thin storage interfaces at Southbridge. The

data movement management and underlying flash storage management behind this new SSD in-

terface makes PCIe SSDs a pivotal milestone in the evolution of SSD architecture and software

stack designs. Unfortunately, the system characteristics of these new emerging PCIe SSD plat-

forms has received, so far, little attention in the literature, and challenges behind these SSDs and

software technologies remain largely unexplored. Further, the public datasheets of SSDs give

very little information.

1998 2001 2004 2007 2010 2013 2016

0.02

0.03

0.06

0.13

0.25

0.50

1.00

2.00

4.00

8.00

16.00
Future PCIe SSD (expectation)

FusionIO ioDrive Octal
 ioDrive2

Z-Drive R4
FusionIO ioDrive

SF-1000
Intel-X25

ST-Zeus
A25FBWinchester

B
an

dw
id

th
 (G

B
/s

ec
)

Year

 SATA
 PATA
 SSD

(a)

Northbridge

IDE
SATA

USB

Southbridge

I/O controller hub

Memory controller hub

core core core

Flash Flash Flash

core

Flash

High-speed
I/O slots

(PCI Express)

PCI Slots

Memory Slots

Cables and ports leading off-board

30 GIPS/core

400 MHz/flash chip

600MB/s
physical limit

(b)

Fig. 4.1 Bandwidth trends over time for the thin interfaces versus SSDs (a), and flash storage
integration into a place closer to CPU (b).

In this chapter, we quantitatively analyze the challenges PCIe SSDs face in getting flash

memory closer to the CPU side and study two representative PCIe SSD architectures and flash

software stacks therein: 1) from-scratch PCIe SSD architecture and 2) bridge-based PCIe SSD

architecture. The from-scratch PCIe SSD is built from bottom to top by employing FPGA- or

ASIC-based native PCIe controller(s). In contrast, the bridge-based PCIe SSD leverages the

69

conventional high-performance SSD controller(s) by employing an on-board PCIe-to-SAS (or

-SATA) bridge controller. Unlike the latter, the from-scratch SSD further optimizes the flash

software stack in order to maximize the storage and data processing efficiency. To characterize

these two different architectures, we performed a comprehensive set of experiments using two

state-of-the-art PCIe SSDs from two different vendors. To the best of our knowledge, our data

analysis and presented resource management characteristics on PCIe SSDs are not reported in

the literature so far and not studied well in the past. Our main contributions can be summarized

as follows:

• Characterizing the performance of the emerging PCIe SSD architectures. We observe that the

latency and throughput of the from-scratch PCIe SSD outperforms the bridge-based PCIe SSD,

which is opposite to the information one can get from the datasheets of these SSDs. Specifically,

the from-scratch SSD offers on average 29% and 39% shorter latency, and provides 21% and

81% better throughput on reads and writes, respectively. In addition, the from-scratch SSD

offers stable write performance in terms of both latency and throughput under a heavy write-

intensive workload, while the bridge-based SSD exhibits some sort of write cliff [47], which is

a significant performance drop caused by garbage collections.

• Analyzing host-side resource usages on different flash memory storage stacks. Even though

the from-scratch SSD offers better and sustained performance, it overly consumes host-side

resources in terms of memory and computation power, which might be unacceptable in many

applications. Specifically, the from-scratch SSD needs about 10 GB host-side memory space for

I/O services, whereas the bridge-based PCIe SSD requires only 0.6 GB at most. In addition, it

consumes 80% of CPU cycles in completing I/O requests, whereas the latter only needs 23%

computation power for the same I/O services.

70

• Addressing the challenges brought by PCIe SSDs as shared resources. We observed that the

performance of both bridged-based SSD and from-scratch SSD significantly degrades as we

increase the number of I/O processing workers. While host-side resources consumption of the

bridge-based SSD is not impacted by the number of workers, the from-scratch SSD requires

more host-side memory space and more CPU cycles (32% and 160%, respectively). We also

found that these emerging SSDs exhibit about 100 times longer latency with device-level queue

method compared to the one with the legacy mode.

4.2 Bringing SSDs Closer to CPU

To bring flash drivers closer to the process-memory complex, one needs to achieve shorter

latency values with higher throughput than conventional SSD devices. Because of the adapter

form-factor of PCIe SSD platforms, which allows them to allot more space in employing mul-

tiple flash packages and SSD controllers, PCIe SSDs are in the much better position to reap

the benefits of higher parallelism compared to conventional SAS/SATA SSDs. In addition to

high PCIe bus capacity, this advantage of parallelism enables PCIe SSDs reduce latency while

increasing throughput, as compared to single SAS/SATA SSDs. Further, they also improve the

performance of the flash software stack. In this section, we explain two representative PCIe SSD

architectures and corresponding flash software stacks.

4.2.1 PCIe Architecture

Bridge-based PCIe SSD. As shown on the left side of Figure 4.2(a), the bridge-based SSD em-

ploys multiple traditional SSD controllers, each of which handling the underlying flash packages

like a single SAS/SATA SSD. These SSD controllers are also connected to a PCIe-to-SAS (and

71

PCIe RC

PCIe EP

S
A

S
 C

T
R

L

corecore

PCIe HOST

F
la

sh
F

la
sh

F
la

sh
F

la
sh

F
la

sh
S

A
S

 C
T

R
L

S
A

S
 C

T
R

L
S

A
S

 C
T

R
L

S
A

S
 C

T
R

L

DRAM

BRIDGE

Bridged SSD architecture

Hardware Abstract Layer

Flash Software

Host Interface Layer

HBA Device Driver

Block Storage Layer

File System Database

PCI Express Lane(s)

1
6

G
T

/
s

Storage-side Flash
Software Approach

RC = Root Complex, CTRL = Controller
EP = Endpoint, HPA = Host Block Adapter

(a) Bridge-based SSD

PCIe RC

Switch

P
C

Ie
 E

P
-C

T
R

L
F

la
sh

F
la

sh
F

la
sh

F
la

sh

F
la

sh
P

C
Ie

 E
P

-C
T

R
L

P
C

Ie
 E

P
-C

T
R

L
P

C
Ie

 E
P

-C
T

R
L

P
C

Ie
 E

P
-C

T
R

L

corecore

PCIe HOST

DRAM

From-scratch SSD architecture

Hardware Abstract Layer

Flash Software

Host Interface Layer

HBA Device Driver

Block Storage Layer

File System Database

PCI Express Lane(s)

1
6

G
T

/s

Host-side Flash
Software Approach

RC = Root Complex, CTRL = Controller
EP = Endpoint, HPA = Host Block Adapter

(b) From-scratch SSD

Fig. 4.2 High-level views of our PCIe SSD architectures and their software stacks.

-SATA) bridge controller, which interconnects upper external PCIe link and under internal SAS

link. The bridge controller internally converts the PCIe protocol to the SAS protocol (or vice

versa) so that it can leverage existing SSD technologies and offer high compatibility. In addition,

the bridge controller stripes the incoming I/O requests over multiple SSD controllers, which is

similar to what RAID controllers do to improve storage-level parallelism. Consequently, the

bridge-based SSD architecture can expose an aggregated SAS/SATA SSD performance to the

PCIe root complex (RC) device, which connects the internal PCIe fabric, composed of one or

multiple bridge controllers, to the processor-memory complex.

From-scratch PCIe SSD. One of challenges behind the bridge-based SSD architecture is the

high performance overheads in internally converting different protocols and in processing I/Os,

using the indirect control logic, from CPU to flash memory. Motivated by this, the from-scratch

PCIe SSDs have been built from bottom to top by directly interconnecting the NAND flash

72

interface and the external PCIe link, as shown in Figure 4.2(b). Since PCIe is a set of point-

to-point links, the connection between the PCIe RC and the flash interface is implemented by

one or more switch devices, each internally handling multiple PCIe endpoints (EPs). The PCIe

EP has independent upstream and downstream buffers, which control the in-bound or out-bound

I/O requests in front of the flash memory. This scalable architecture can easily expand the

storage capacity by putting more flash chips into its PCIe network topology and straightforwardly

expose true NAND flash memory performance to the upper processor-memory subsystem. These

PCIe EPs and switches are typically implemented by FPGA or ASIC as a form of native PCIe

controller, and the flash software can be optimized to reduce latency and offer better throughput,

as discussed below.

4.2.2 Flash Software Stack

Storage-side Flash Firmware. Typically, the flash control modules are implemented in the

storage side for most conventional SSDs and bridge-based PCIe SSDs as “flash firmware”. In

this storage-side flash software stack, a hardware abstract layer (HAL) handles low-level NAND

flash commands and manages the I/O bus for moving data between SSD controller and internal

registers of individual flash memories, as depicted on the right side of Figure 4.2(a). On top of

the HAL, the main flash software modules are built, which include the flash translation layer

(FTL), buffer cache, wear-leveler and garbage collector. Among the flash software modules,

the FTL is the core logic in managing flash memory, and translates addresses from virtual to

physical. Finally, a host interface logic atop the flash software is mainly responsible for the

protocol conversion, parsing requests, and scheduling them. This conventional flash software

73

From-scratch SSD Bridge-based SSD
Code-name (FSSD) (BSSD)

Interface PCIe 2.0 x8 PCIe 2.0 x8
Flash Software Module Host-side kernel driver Storage-side firmware

Price $2490 $2152
Controller Type Xilinx FPGA SAS-to-PCIe Bridge
Storage capacity 430GB 400GB
Write Bandwidth 700MB/sec 750MB/sec
Read Bandwidth 1GB/sec 1.4GB/sec

512B I/O Latency 45µsec 65µsec
Flash Type QDP MLC eMMC

Internal DRAM Publicly N/A 2GB
Debut 2012 Q2 2012 Q3

Table 4.1 Important characteristics of the tested PCIe SSDs.

stack lets SSDs expose the underlying flash memory to the processor-memory complex without

any host-side storage stack modification.

Host-side Flash Software Module. Flash software could manage the underlying flash memory

more efficiently if it is possible to access the host-level resources such as file system and incom-

ing I/O request information. Consequently, there exist several prior proposals to migrate the flash

software to the host-side, as illustrated on the right side of Figure 4.2(b). In addition, by imple-

menting the flash software modules on the host side, we can 1) unify indirect flash software logic

[2, 103, 41] and 2) overlap storage and data processing times by exploiting abundant host-side

computation and memory resources [95, 46]. Specifically, [41] proposes virtual storage layer

(VSL) and direct file system (DFS) by migrating the flash software module from the storage side

to the host side (especially FTL), so that it can optimize data accesses as well as offer extensive

OS support. [103] unified FTL and the host-side file system to remove indirect address mapping,

and [95] moved the internal buffer cache to the host-side to improve performance when targeting

write-intensive workloads. [46] migrated garbage collector and page allocator [45] from SSD

to the host-side software stack. Thanks to this flash software module migration, a from-scratch

SSD can maximize throughput while reducing latency.

74

4.3 Experimental Setup

PCIe SSDs. We chose two most-recently-released, cutting edge PCIe SSDs from two different

vendors. Since our goal is not to perform reverse engineering of these commercial products,

we refer to each of them using a code-name – FSSD refers the from-scratch SSD, and BSSD

refers to the bridge-based SSD. Our SSDs and their important characteristics are listed in Table

4.1. It should be noted that, even though these two architectures have been built based on very

different deign concepts, both PCIe SSDs are geared toward offering shorter latency and better

throughput, and designed for workstations.

System Configuration. Our experimental system is equipped with an Intel Quad Core i7 Sandy

Bridge 2600 3.4 GHz processor and “16GB” memory (four 4GB DDR3-1333Mhz memory).

In this system, all of the functions of the Northbridge reside on the CPU, and all SSDs we

tested are connected to Sandy Bridge through the PCIe 2.0 interface. We executed all our tests

in NTFS, and stored logs and output results into separate block devices in a full asynchronous

fashion; neither a system partition nor a file system is created on our SSD test-beds. Note

that this configuration allows each SSD test-bed to be completely separated from the evaluation

scenarios and tools.

Measurement Tool. We modified an Intel open source storage tool, called Iometer [35], to

capture time series of performance characteristics and host-side memory usage. To measure

accurate memory usage at a given time, we added a module in calling GlobalMemoryStatusEx

into Iomoter, which is an Window system function that allows users to retrieve the current state

of both physical and virtual memory. In addition, to minimize interference between successive

75

evaluations, our modified Iometer physically erased whole region of underlying device though

secure erase command in SMART, in every evaluation step.

4.4 Challenges in Resource Management

4.4.1 Memory Usage

Overall memory usage evaluation. One can see from Figure 4.3 that FSSD needs at least 2GB

memory for writes and 1.5GB memory space for reads while BSSD requires only 0.6GB mem-

ory space regardless of the I/O type and size. As a result of flash software migration, the host

side kernel drivers require memory space in loading their image and containing their in-memory

structures. In addition, we believe that there are two main reasons why FSSD consumes on

average sixteen times more memory space than BSSD. First, the unified file system [41] and

migrated flash software [2, 103, 46] require host-side memory to maintain huge mapping tables.

Second, the host-side write buffer cache consumes memory space in hiding the underlying flash

memory complexity, such as garbage collections, endurance [4] and intrinsic latency variation

[47]. For instance, as shown in Figure 4.3, FSSD’s memory usage varies based on access granu-

larity and pattern, whereas the BSSD’s memory usage is not different by them. This is because,

in the bridge-based SSD architecture, the table is implemented in the SSD, and data processing

is only performed at the storage side.

Time series analysis. Figure 4.4(a) plots memory usage of FSSD (top) and BSSD (bottom)

over time. In this test, we evaluated them with a 512B block access granularity since all the

system-level operations are block-based, and the default block-size is 512B. In addition, we

performed the memory usage test based on two different I/O access scenarios: 1) queue mode

76

512B 4KB 16KB 128KB 1MB
0

1

2

3

6
7
8
9
10

M
em

or
y

U
sa

ge
 (G

B)

Access Granularity

 FSSD Seq.
 FSSD Rand.
 BSSD Seq.
 BSSD Rand.

(a) Write

512B 4KB 16KB 128KB 1MB

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
em

or
y

U
sa

ge
 (G

B)

Access Granularity

 FSSD Seq.
 FSSD Rand.
 BSSD Seq.
 BSSD Rand.

(b) Read

Fig. 4.3 Memory usage.

operation (using 128 queue entries) and legacy mode operation (submitting the request whenever

the device is available to serve an I/O request). One can see from the figure that FSSD requires

about 2GB memory space at the very beginning of the I/O process for both queue and legacy

mode operations. Interestingly, as the I/O process progresses, the amount of memory usage keeps

increasing in a logarithmic fashion and reaches about 10GB. It should be noted that, considering

that the target system is a workstation, we believe that 10GB memory usage to manage only

the underlying SSDs may not be acceptable in many applications. In contrast, as shown in the

bottom part of the figure, BSSD keeps memory usage around 0.6GB over time. We believe

that the reason why the memory usage of FSSD keep increasing over time is because of the

host-side address mapping and caching. In particular, DFS/VFS [41] uses a B-tree structure to

map addresses between the physical and virtual spaces, which tends to increase the memory

requirements of the mapping information by adding more node entries to serve incoming I/O

requests. We also believe that the huge memory usage is primarily caused by host-side buffer

caching.

77

0 2500 5000 7500 10000 12500
0.63
0.64
0.65
0.66
0.67 BSSD-Legacy BSSD-Queue

Time Flow (Second)

0.00

2.00

4.00

6.00

8.00

10.00

 FSSD-Legacy FSSD-Queue
M

em
or

y
U

sa
ge

 (G
B

)

(a) Memory usage comparison

0 400 800 1200 1600 2000 2400 2800 3200
15
30
45
60
75
90

Time Flow (Second)

 BSSD-Legacy BSSD-Queue
0 400 800 1200 1600 2000 2400 2800 3200

15
30
45
60
75
90

 FSSD-Legacy FSSD-Queue

C
PU

 U
sa

ge
 (%

)

(b) CPU usage comparison

Fig. 4.4 Time series comparison for host resources usage between FSSD (top) and BSSD (bot-
tom) with the default 512B block-size access operation.

78

512B 4KB 16KB 128KB 1MB
0
10
20
30
40
50
60
70
80
90
100

C
PU

 U
sa

ge
 (%

)

Access Granularity

 FSSD Seq.
 FSSD Rand.
 BSSD Seq.
 BSSD Rand.

(a) Write

512B 4KB 16KB 128KB 1MB
0

10

20

30

40

50

60

C
PU

 U
sa

ge
 (%

)

Access Granularity

 FSSD Seq.
 FSSD Rand.
 BSSD Seq.
 BSSD Rand.

(b) Read

Fig. 4.5 CPU usage.

4.4.2 CPU Usage

Overall CPU usage evaluation. Figures 4.5(a) and 4.5(b) give CPU usage on the host-side

in serving reads and writes, respectively. Similar to memory usage analysis, FSSD requires

computation power about three times more than BSSD, except for cases where access granularity

is larger than 16KB. We conjecture that one of main reasons why FSSD requires higher CPU

usage (52%∼87%) for finer granular I/O accesses is that smaller size I/O requests leads to an

increase in the size of the address mapping table lookup and update (or cache lines of host-side

buffer). In contrast, BSSD only consumes 20%∼30% for the same I/O services. This is because

the mapping table lookup and update processing are performed on the storage-side.

Time series analysis. Figure 4.4(b) compares the CPU usage of FSSD (top) and BSSD (bottom)

under the workloads that exhibit high number of default block size accesses. As before, we eval-

uated our PCIe SSD test-beds with both legacy and queue mode operations. FSSD consistently

consumes 60% of the cycles on the host-side CPU with legacy mode operations, and I/O service

with queue mode operation requires 50% more CPU cycles than the legacy mode. We believe

79

that a CPU usage over 60% for just I/O processing can degrade overall system performance. In

contrast, BSSD only uses about 20% CPU cycles irrespective of the I/O operation mode.

4.4.3 Challenges in System Performance

512B 4KB 16KB 128KB 1MB
0.0

0.6

1.2

1.8

N
or

m
al

iz
ed

 L
at

en
cy

 Write Seq. Write Rand.
 Read Seq. Read Rand.

(a) Latency

512B 4KB 16KB 128KB 1MB
0.0
0.6
1.2
1.8
2.4
3.0
3.6

N
or

m
al

iz
ed

 IO
PS

 Write Seq. Write Rand.
 Read Seq. Read Rand.

(b) IOPS

Fig. 4.6 Latency and throughput comparison. Note that all the latency and throughput of BSSD
values are normalized to corresponding values of FSSD.

Overall performance comparison. It is hard to directly compare the microscopic performance

characteristics on the two different SSD architectures since their flash software and platforms

have different optimization techniques. For example, we observed that BSSD’s random writes

with default block-size accesses exhibit 7.2 times better performance compared to sequential

writes, which is opposite to common expectation on most modern SSDs. We believe that this

is because BSSD puts incoming default-block size I/O requests into its internal 2GB DRAM

buffer and additional non-volatile SRAM [18], but forwards the large sized I/O requests to the

underlying flash memory, which in turn shows the unexpected performance. Consequently, we

compare the overall performances of BSSD and FSSD. Figures 4.6(a) and 4.6(b) compare the

latency and IOPS between FSSD and BSSD. We see that most latency values observed with

BSSD are on average 39% worse than FSSD, which is opposite to the information one could

obtain from the datasheets of these SSDs (see Table 4.1). We think that multiple controllers,

80

indirect address mapping modules, and protocol conversion overheads of BSSD on data path

from CPU to flash memory contribute to this longer latency.

Multi-core system environment. To evaluate the performance impact in a multi-core system

environment, we executed one to eight I/O processing workers on FSSD and BSSD in parallel.

The results considering FSSD and BSSD as a shared resource are plotted in Figures 4.7 and

4.8. The latency of both FSSD and BSSD increases as we increase the number of workers.

Specifically, latency values with eight workers on FSSD and BSSD are worse than four workers

by 118 % and 108%, respectively and worse than single worker by 289% and 704%, respectively.

Throughput trends are a bit different compared to latency trends. While BSSD has no IOPS

benefits by increasing the number of workers, the IOPS of FSSD increases. The IOPS of four

workers are 2.2 times better than single worker evaluation. However, the advantage of many

workers decreases because of the higher memory and CPU usages. In contrast, BSSD shows

similar IOPS and host-side resource usages irrespective of the number of workers employed.

Queuing latency. Device-level queueing mechanisms are one of the crucial components, which

can improve storage throughput. For example, NVMe offers 64K queue entries [36]. SAS/SATA

[96, 37] also provides a device-driven queue mechanism, which allows the storage devices to de-

termine the order of I/O request executions without any host-side software interrupts. However,

we observed that the latency values with a queuing method significantly drop irrespective of the

SSD architecture. As shown in Figure 4.9, the random and sequential write latencies of FSSD

are longer than legacy mode latencies by about 106 times. Similarly, BSSD resulted in 99 times

worse latency with the queue mode operation than the one with legacy mode. We believe that

these significant latency drops with the queue mode operation would be a problematic obstacle

to bring flash memory closer to the memory-processor subsystem.

81

0
1
2
3
4
5

0 250 500 750 1000
0

200000

400000

La
te

nc
y

(m
s)

 1 worker 4 workers 8 workers

IO
PS

Time Flow (Second)
(a) Performance

0.0
0.8
1.6
2.4
3.2
4.0

0 250 500 750 10000
20
40
60
80

100

M
em

or
y

(G
B)

 1 worker 4 workers 8 workers

C
PU

 U
sa

ge
 (%

)

Time Flow (Second)
(b) Resource

Fig. 4.7 FSSD performance characteristics on the multi-core environment.

82

2
8
32
128
512

0 250 500 750 1000
0

7000
14000
21000
28000
35000

La
te

nc
y

(m
s)

 1 worker 4 workers 8 workers
IO

PS

Time Flow (Second)
(a) Performance

600
620
640
660
680
700

0 250 500 750 10000
20
40
60
80
100

M
em

or
y

(M
B)

 1 worker 4 workers 8 workers

C
PU

 U
sa

ge
 (%

)

Time Flow (Second)
(b) Resource

Fig. 4.8 BSSD performance characteristics on the multi-core environment.

83

0.03
2.4
3.2
4.0

0 200 400 600 800 1000
0.00
0.07
1.6
2.4
3.2
4.0 Sequential

Queue Legacy
Random

La
te

nc
y

(m
s)

Time Flow (Second)
(a) FSSD

01
2
20
40
60
80

0 250 500 750 1000
0
6

200
400
600
800
1000

Sequential

Random
Queue Legacy

La
te

nc
y

(m
s)

Time Flow (Second)
(b) BSSD

Fig. 4.9 Queueing latency comparison observed by FSSD (a) and BSSD (b).

84

Garbage collections. Figures 4.7(a), and 4.8(a) also tell us the difference between FSSD and

BSSD in managing underlying garbage collections (GCs). While FSSD offers very sustained

performance, the latency and throughput values of BSSD drop starting with the half of I/O

execution. This is mainly because of GCs, which are a series of SSD internal tasks reading

data from old flash block(s), writing them to new block(s), and erasing the old block(s). This

performance drop caused by GCs is also referred to as write cliff [47]. One of the reasons

behind the sustained performance of FSSD is the ample host-side buffer and the optimized flash

software stack. It should be noted that BSSD also employs a 2GB internal memory as buffer, but

it cannot hide the GC overheads, which means that the sustained performance of FSSD does not

solely come from the available buffer.

4.5 System Implication

Co-operative approach. In summary, we observed that, while the performance of from-scratch

SSD is better than the bridge-based SSD, the former requires huge host-side resources, which

may not be acceptable in many cases. We believe that an approach that partially migrates flash

software functionalities from SSD to the host-side can be a promising mid-way option in achiev-

ing higher performance and lower host-side resource consumption. For example, FTL partition-

ing [43] moves only the address mapping module rather than moving the whole FTL cores (e.g.,

buffer cache, wear-leveler). Similarly the middleware and firmwmare cooperative approaches

[46] only move the garbage collector, and I/O scheduler [50] is aware of internal parallelism

from the storage-side to the host-side, which requires less system memory resources.

85

All-flash storage arrays. PCIe SSD based all-flash arrays or SSD RAID systems can directly

experience the host-side resource challenges we demonstrated so far. For example, if system de-

signers build a 5-RAID system based on FSSD, it requires approximately 50GB memory space,

and they have to carefully design the processors to manage the underlying five FSSDs. If the

designers build the RAID with BSSD and intend to improve performance by striping all incom-

ing I/O requests over the five BSSDs, they need to carefully manage GCs globally because the

probability that the system could suffer from a straggler performing GCs significantly increases.

Chapter Acknowledgements Chapter 4, in part, is a reprint of the material as it appears in

”Challenges in Getting Flash Drives Closer to CPU,” Myoungsoo Jung, Mahmut Kandemir, in

Proceedings of the 5th USENIX Workshop on Hot Topics in Storage and File Systems (HotStor-

age), 2013. The dissertation proposal author was the primary investigator and the first author of

this paper.

86

Chapter 5

Revisiting Widely Held SSD Expectations
and Rethinking System Level Implications

5.1 Introduction

NAND Flash-based Solid State Disks (SSDs) have recently become immensely popular

and been employed in different types of environments ranging from embedded systems to per-

sonal computers to high performance computing (HPC) systems. Moreover, various memory

and storage systems have been proposed to take advantage of the performance benefits of SSDs

over conventional block devices. For example, to reap the benefits of high bandwidth on writes,

prior HPC studies consider SSDs as a burst buffer [68], which can absorb heavy write traffic

caused by check-pointing [83]. There also exist many applications developed under the expecta-

tion that NAND flash is biased toward reads in terms of performance and reliability. Enterprise

servers, for example, consider employing SSDs for applications that exhibit many random reads

[69, 92, 95] or use them as read caches [54, 7, 61, 82], sitting between main memory and hard

disk drive (HDD). Similarly, SSDs are also introduced as a main memory replacement, memory

extension, and a part of existing virtual memory systems [24, 23, 25, 92].

While many of these SSD applications and usage scenarios are proposed and developed

based on common expectations from SSDs, modern SSDs and NAND flash systems have under-

gone severe technology shift and architectural changes in the last couple of years. Specifically,

NAND flash cells have shrunk from 5x nm to 2x nm in the past four years, and now fewer elec-

trons are stored per floating gate. These cell-level characteristics make flash devices less reliable

87

and introduce extra operations (e.g., multi-step I/O, verification, error correction processes) to

successfully complete I/O requests, which in turn imposes longer latencies. State-of-the-art

NAND flash packaging technologies employ an increased number of planes and dies within a

single flash chip, a command queue, ECC engines, and faster data movement interfaces [17, 81].

These technological changes led in turn to modulations in SSD behavior and performance char-

acteristics. In parallel, SSD internal architecture has dramatically changed; modern SSDs now

employ multiple internal resources such as flash chips, I/O buses, controllers and cores in an

attempt to achieve high internal parallelism. In addition, to reduce performance variations and

garbage collection overheads, flash firmware employs advanced strategies such as finer-granular

address mappings, DRAM buffer and background tasks. Finally, thin storage interfaces of mod-

ern SSDs define command feature sets, which provide a way to efficiently expose underlying

SSD characteristics to operating systems (OS). Consequently, OS can manage SSD internal re-

sources more efficiently by utilizing system level information.

Unfortunately, most prior works study SSD behavior and performance characteristics

based on limited information, or evaluate them based on select I/O access patterns to under-

stand SSD-level parallelism and performance implications. In our opinion, these studies do not

help OS and system designers in understanding critical SSD features, and integrating SSDs into

existing storage stacks and efficiently optimizing them. Further, a more problematic issue is

that, even though SSD NAND flash technology has changed dramatically over the last couple of

years, many research groups still employ SSDs based on assumptions that do no hold anymore.

In this chapter, we conduct an extensive experimental evaluation with six state-of-the-art

SSDs carefully selected by considering different types of flash fabric technologies, manufactur-

ers, cores, chips, and over-provisioning strategies. Based on our empirical evaluations, we next

88

perform a comprehensive data analysis and uncover critical SSD/flash characteristics, which are

not reported, to the best of our knowledge, in the literature so far, and are opposite to the widely

held expectations on SSDs. Our main goal is to correct common misconceptions on SSDs using

new data, which greatly effect performance as well as reliability of modern SSDs, but have not

been studied well in the past. We hope to motivate both academia and industry to rethink SSD

system design, management and optimization based on our evaluations and data analysis. In this

chapter, we answer, either directly or indirectly, several questions described in the following sub-

sections, and reveal some critical data regarding state-of-the-art SSDs, which should be, in our

opinion, taken into account by both OS and SSD designers. The questions we want to address

can be categorized into five groups.

5.1.1 Rethinking Read Performance

A well-known intrinsic characteristic of NAND flash is that their read performance is

tens to hundreds times better than their write performance [1]. In addition, since SSDs have no

moving parts, they are expected to provide fast random read accesses [92]. Motivated by these,

many platform designers consider SSDs for the applications that contain mostly random reads.

1. Are SSDs biased toward reads at a system level? Why do random reads constitute a per-

formance bottleneck in modern SSDs?

2. For the sequential read accesses, could SSDs support sustained performance? Is there

any performance degradation on reads? How could a system achieve a sustained read perfor-

mance?

3. What is the relationship between read performance and internal SSD parallelism? Can

users characterize read performance by examining different I/O access patterns?

89

5.1.2 Examining Reliability on Reads

Unlike writes, reads require no erase operation or content-update on NAND flash. Con-

sequently, many computing domains exploit SSDs as a read cache or an intermediate layer when

targeting read-intensive workloads to extend SSD lifetime and avoid heavy write penalties.

1. Do program/erase (PE) cycles of SSDs increase during read-only access periods? If it is,

why do reads need a block erasure?

2. Are there performance impacts caused by internal I/O operations on reads?

3. What parameters do system-level designers need to control in order to extend SSD lifetime?

5.1.3 Reconsidering Write Performance

Many schemes have been proposed by prior SSD research to reduce garbage collection

(GC) overheads such as over-provisioning [30], DRAM buffer [56, 40, 44], and finer-granular

address mappings [52, 28, 1]. Based on this, it is expected that long GC operations can be

reordered and deferred, and therefore, they do not cause severe throughput degradation at a

system level.

1. How much impact do GC latencies have on system performance in practice?

2. Is there any relationship between the worst-case latency of GCs and system throughput?

Could we quantify this relationship?

3. Could DRAM buffer help firmware in reducing the GC overheads? If not, why?

90

5.1.4 OS Support

TRIM commands enable OS to invalidate deleted system-level data contents, which can

in turn reduce GC overheads significantly. Motivated by this, many emerging SSD platforms

(e.g., flash virtual memory, file system, database) are expected to send TRIM commands to

underlying SSDs as much as they can.

1. In theory, OS and users can eliminate unnecessary GC operations through TRIMs. How

much of GC overheads can be eliminated using TRIM commands?

2. Does TRIM command request pattern matter?

3. Do TRIM commands themselves impose any overheads?

5.2 Preliminaries

State-of-the-art SSDs are composed of multiple cores, memory modules, data buses, and

storage media. In the following, we provide a quick overview of SSDs and NAND flash, basic

flash firmware features, storage interfaces, and reliability issues.

5.2.1 SSD and NAND Flash Internals

Modern SSDs and NAND flash chips employ several components to scale their perfor-

mance under a given technology. As shown in Figure 5.1, an SSD employs multiple internal

resources described below.

Controllers. For physical layer (PHY) management, SSDs have two different controllers: 1)

non-volatile memory host controller (NVMHC) and 2) flash channel controller (FCC). NVMHC

manages the front-end PHY layer to communicate with outside through a conventional thin

91

interface/bus. FCC, in contrast, handles the back-end PHY layer to control underlying flash

packages and corresponding interfaces.

Multicore. While the controllers are responsible for handling the PHY layer, the embedded

processor is dedicated to running the flash firmware, which is composed of multiple software

layers. Since each layer of the firmware has a different goal and some of their functionalities can

be parallelized, modern SSDs employ multiple cores (or processors) in an attempt to minimize

computation overheads [50, 45].

Multiple Channels. The flash package interconnection design is very important from a par-

allelism angle. In general, considering hardware complexity and signal integrity, several flash

packages are connected to a single data bus, referred to as channel, and multiple channel are

used in SSDs.

Flash Package. A flash die is composed of multiple planes, and multiple dies are stacked in

a single flash package, which helps one improve storage capacity and flash-level parallelism.

Multiple requests can be interleaved through a limited number of CE (chip enable) and I/O pins.

In addition, modern flash packages employ a queue and an ECC engine to offload system level

overheads imposed by flash commands management and error code checking, respectively.

5.2.2 Flash Firmware

Depending on the specifics of the underlying hardware configuration, the role of flash

firmware can be quite diverse. We now explain the common tasks of the firmware, which have

an impact on system performance.

92

NAND

Flash

NAND

Flash

CTRL

C
H

A
N

N
E
L1

NAND

Flash

NAND

Flash

CTRL

C
H

A
N

N
E

L2
NAND

Flash

NAND

Flash

CTRL

C
H

A
N

N
E

L3

NAND

Flash

NAND

Flash

CTRL

C
H

A
N

N
E

L4

Fl
as

h
 C

h
a

n
n

e
l C

o
n

tr
o

lle
r

SSD Internals
N

o
n

-v
o

la
ti

le
 M

e
m

o
ry

 H
o

st
 C

o
n

tr
o

lle
r

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

1 Block 1 Block

DIE 1

PLANE 0 PLANE j

k Blocks k Blocks

Die 0 Die 1 Die 2 Die 3

Multiplexed Interface

Flash Chip Internals

Die Internals

DRAM/SRAM

Embedded

Processors

ECC Engine / Flash Queue

SSD Queue

Fig. 5.1 Modern SSD internal architecture. Note that an I/O request can be simultaneously served
by many internal resources, which is one of the important characteristics of SSDs.

Parallelism. Flash firmware can strip an I/O request over multiple channels, flash packages,

and dies therein, in order to improve system performance in terms of both latency and through-

put [50, 45, 1, 31]. Since internal parallelism is key to boosting SSD performance, efficient

parallelization of data accesses is one of the crucial tasks of the firmware.

Address Mapping. Since NAND flash allows no in-place updates in a block, when a write

arrives, flash firmware stores data in a temporal block (which is prepared in advance), and remaps

the original address of the request (virtual address) and the actual location (physical address)

of the corresponding data for future reads. In some cases, flash firmware can also remap the

addresses in order to improve internal parallelism on writes [45, 20].

Garbage Collection. When the prepared blocks run out, flash firmware needs to reclaim phys-

ical block(s) so that it can serve an incoming update request. Since this block reclaiming task,

called garbage collection (GC), is basically a series of extra internal operations, which include

93

reading/writing live data from the target blocks to new block, erasing the old blocks and up-

dating the mapping information, it can introduce long latencies and degrade performance. To

reduce GC overheads as much as possible, modern SSDs employ more elaborate address map-

ping schemes, including some proposals that perform GC in the background.

Endurance. Flash blocks have limits in terms of the number of program (write) and erase cycles,

referred to as PE cycle. Typically, a block that experiences higher PE cycles also experiences

more errors and worse memory characteristics. Further, once a block reaches its PE cycle limit,

it is not available anymore for storage. Since guaranteed PE cycles get smaller as technology

shrinks, flash firmware needs to consider endurance related issues.

Wear Leveling. Since not all the information stored within the same location changes with the

same frequency, it is important to keep the aging of each block as minimum and as uniform as

possible. Flash firmware is also responsible for ensuring that all physical blocks are evenly used

(to the maximum extent possible) and keeping the aging under a reasonable value. These tasks

are collectively referred to as wear leveling.

Disturbance. Since a flash block is composed of multiple NAND strings to which the memory

cells are connected in series (in groups of 64, 128, or 256), a memory operation on a specific

flash cell may influence the charge contents on a different cell. This is referred to as disturbance,

which can occur on any flash operation and lead to errors in undesignated memory cells.

5.2.3 Reliability Challenges on Reads

A read operation may fail because of 1) read disturbance, 2) retention error (leakage

problem), and 3) noise (e.g., at the power rails). We now explain what SSDs do to address read

failures.

94

ECC Recovery. To avoid failure on reads, error-correcting codes (ECC) are widely employed

[14]. ECC can correct certain bit errors but typically introduces extra computation cycles on

both reads and writes. More specifically, while the encoding takes a few cycles (on writes), the

decoding requires lots of cycles. This cycle disparity between encoding and decoding imposes

extra overheads on reads, which in turn degrades system performance. Since wider ECCs are

required as flash technology shrinks, ECC overheads become more pronounced in modern SSDs.

Read Disturbance Management. Read disturbance can occur when reading the same target

cell multiple times without any erase operation. When reading data from a specific cell, Vread

(0 V) is applied to that cell, and all other cells are biased at Vpass (4∼5 V), which makes them

behave as pass-transistors. As a result, the cells on successive read operations can gain charge,

which has similar impact on unintended writes. Since read disturbance can be corrected if the

corresponding block is physically erased, it is necessary to erase the block associated with tar-

get page address causing the read disturbance. In general, to preserve data consistency, flash

firmware reads all live data pages, erases the block, and writes down live pages to the erased

block. Some flash firmware migrates live data to new block and remaps the address information

between the old and new blocks [6]. This process, called read block reclaiming, introduces long

latencies and degrades performance.

Runtime Bad Block Management. Even though ECC can correct certain bit errors and flash

firmware keeps aging under control, endurance characteristics of flash storage get worse over

time. In particular, raw bit error rate increases exponentially with PE cycles [17, 6], which

leads to uncorrectable ECC (UECC) errors. To avoid UECC errors, flash firmware marks the

blocks whose raw error rates have reached the error recovery coverage limit as “bad blocks”. It

then replaces each bad block with a new block by remapping addresses, in an attempt to avoid

95

future UECC errors. Similar to read block reclaiming and GCs, this bad block management also

degrades system performance.

5.2.4 Storage Interfaces, TRIM and SMART

Conventional storage interfaces hinder the scalability of modern SSDs and make efficient

SSD management difficult. To help with this, high-speed interfaces such as SATA 6.0Gbps and

PCI Express are employed. Further, the most recent version of SATA provides SSD-specific

command feature sets, which enable underlying SSDs to expose their internal characteristics

to the OS. Specifically, TRIM, one of these command feature sets, allows the OS to invalidate

data blocks that are no longer considered in use and delete the obsolete data at a system level.

TRIM commands are expected to significantly reduce GC overheads and alleviate potential write

degradation in many SSD applications. SMART is another command feature set, which enables

self-monitoring, analysis, and state-reporting. Using it, OS designers can effectively manage

SSDs by retrieving internal SSD information such as PE cycles and the number of channels and

physical blocks.

5.3 Evaluation Setup

Solid State Disks. Today, there exist many different SSDs on the market, with quite differ-

ent performance characteristics based on the vendor and system configurations, in terms of the

DRAM buffer size, the number of cores, and the number of flash chips. For our experiments,

we chose six representative products shipped by five different SSD-makers. All these SSDs are

manufactured between 2011 and 2012, and their firmware are updated with the latest available

96

version for our evaluations. Since our goal is not to perform reverse engineering or make perfor-

mance comparison across these commercial products, we refer to each of them using a different

postfix character, instead of giving its full name. Our SSDs and their important characteristics

are listed in Table 5.1. Since the runtime information provided by different vendors varies a lot,

in each of our evaluations, we select an appropriate subset of our SSDs and use them, and also

mention the reason behind our selection. In general, SSD-L, -C, and -Z are evaluated for all

basic tests, and SSD-A, -X, -P are used for more specific evaluations.

Basic Test Specific Test
Postfix Name → -L -C -Z -A -X -P
Storage (GB) 120 256 256 256 240 240
DRAM (MB) 128 256 0 256 0 0
Numbers of Chips 16 16 8 8 16 16
Technology (nm) 34 25 25-32 32 25 25
Numbers of Cores 2 3 1 3 1 1
Over-provision (%) 15 7.3 14.5 9.5 14.4 14.4

Table 5.1 Device characteristics of SSDs used in our study.

Measurement and Characterization Tools. In order to uncover hidden performance character-

istics and examine widely held expectations on our SSDs, we need well-defined I/O access pat-

terns, which can be controlled and reproduced irrespective of the underlying test platform. Con-

sequently, we use Intel open source based storage tool, Iometer [35], as our default measurement

and characterization tool. Iometer can generate various I/O workloads parameterized in terms of

read/write ratio, sequential access/random access ratio, request sizes and the number of queue

entries. However, Iometer reports performance results in terms of only average/min/max values

at the end of the entire evaluation process. Therefore, for some of our evaluations that require

a more microscopic view with finer resolution than what Iometer provides, we use a modified

97

Iometer, which captures the latency per individual I/O requests and performance characteristics

on a second-basis without any underlying software intervention. Lastly, to evaluate the PHY

level latencies, especially for the TRIM command overhead characterization, we use the com-

mercial LeCroy SATA protocol analyzer (Sierra M6-1) [62] and double check the protocol status

with this analyzer.

Protocol Controls. To accurately evaluate different technologies employed by modern SSDs,

we also need a clean evaluation chamber under our control. For example, even though an ap-

plication tool can mimic system idleness to evaluate background tasks by injecting artificial idle

periods, the advanced host controller interface (AHCI) driver/controller can periodically send

commands like SMART to examine the underlying system, which can make SSDs continuously

busy. To the best of our knowledge, there exist no public tool, which can generate a specific ATA

command, check its PHY level latency, and directly handle the AHCI. This is why, for some

of our investigations that require the management of ATA commands (e.g., TRIM, SMART)

and the control of the AHCI, we needed an in-house driver. Therefore, we also developed an

AHCI miniport driver, as a part of WDM (windows driver model, which can generate TRIM

commands by filling target addresses for the deleted contents with different access patterns (ran-

dom/sequential), handle SMART commands to check the PE cycles of the SSDs, and manually

control specific power modes to examine background tasks.

Experimental System. Our experimental system is equipped with an Intel Quad Core i7 Sandy

Bridge 2600 3.4 GHz processor and 4GB DDR3-1333Mhz memory. Intel Z64 chipset is em-

ployed as the I/O controller hub in southbridge, and all SSDs we tested are connected to Z64

through the SATA 6.0Gbps interface. We execute all our scenarios in Microsoft NTFS, store

logs and output results into separate block devices in a full asynchronous fashion; and neither

98

a system partition nor a file system is created on our SSD test-beds. This configuration allows

each SSD test-bed to be completely separated from the evaluation scenarios and tools.

5.4 Testing Expectations on Reads

The most remarkable performance characteristic shifts on modern SSDs are observed in

reads, since they are vulnerable to changes in internal SSD architecture. In this section, we first

examine overall performance, comparing reads with other types of operations, and then analyze

the challenges on reads in terms of performance sustainability and performance dependency on

internal parallelism. Lastly, we uncover reliability problems on read-intensive workloads, which

is one of the most critical issues, in our opinion, for both the OS and SSD designers.

5.4.1 Are SSDs good for applications that exhibit mostly random reads?

To compare read performance with the performance of other types of operations, we ex-

ecuted different workloads composed of sequential accesses and random accesses with varying

data transfer sizes (ranging from 1 sector to 128 sectors) on SSD-L, -C and -Z; we observed that

SSD-A exhibits similar performance characteristics to SSD-C, and SSD-P and -X achieve sim-

ilar performance results to SSD-Z in this test. Performance comparison across our three SSDs

is plotted in Figure 5.2. Specifically, Figures 5.2(a), 5.2(c) and 5.2(e) show variance in overall

bandwidth, and Figures 5.2(b), 5.2(d), and 5.2(f) plot variance in latency for SSD-L, -C and -Z,

respectively.

Our first observation is that the performance values with random read accesses (denoted

using RND-RD) are worse than other types of access patterns and operations, including even

99

512B 1K 2K 4K 8K 16K 32K 64K

0

50

100

150

200

250

300

350

400
B

an
dw

id
th

 (M
B

/s
ec

)

Data Size

 RND-RD
 RND-WR
 SEQ-RD
 SEQ-WR

(a) SSD-L Bandwidth.

512B 1K 2K 4K 8K 16K 32K 64K
0

100

200

300

400

500

A
ve

ra
ge

 L
at

en
cy

 (u
s)

Data Size

 RND-RD
 RND-WR
 SEQ-RD
 SEQ-WR

(b) SSD-L Latency.

512B 1K 2K 4K 8K 16K 32K 64K

0

50

100

150

200

250

300

350

400

B
an

dw
id

th
 (M

B
/s

ec
)

Data Size

 RND-RD
 RND-WR
 SEQ-RD
 SEQ-WR

(c) SSD-C Bandwidth.

512B 1K 2K 4K 8K 16K 32K 64K
0

100

200

300

400

500

A
ve

ra
ge

 L
at

en
cy

 (u
s)

Data Size

 RND-RD
 RND-WR
 SEQ-RD
 SEQ-WR

(d) SSD-C Latency.

512B 1K 2K 4K 8K 16K 32K 64K

0

50

100

150

200

250

300

B
an

dw
id

th
 (M

B
/s

ec
)

Data Size

 RND-RD
 RND-WR
 SEQ-RD
 SEQ-WR

(e) SSD-Z Bandwidth.

512B 1K 2K 4K 8K 16K 32K 64K
0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 L
at

en
cy

 (u
s)

Data Size

 RND-RD
 RND-WR
 SEQ-RD
 SEQ-WR

(f) SSD-Z Latency.

Fig. 5.2 Read/write performance comparison under varying data transfer sizes and access pat-
terns. In these comparisons, RND and SEQ denote the random access pattern and sequential
access pattern respectively, and RD and WR stand for read and write.

100

random write accesses, which is in direct contrast with the widely held expectation on read per-

formance of SSDs in the literature. Specifically, the bandwidth values with random read accesses

of SSD-L, -C, and -Z account for 59.7%, 39.4% and 23.7% of the corresponding values with ran-

dom writes, respectively. Read latency characteristics are not much different from bandwidth;

the latency values observed with sequential writes, random writes, and sequential reads only

account for 41.3%, 35.2%, and 35.9% of the latencies observed with random reads, respectively

(on average).

We believe that the main reason why SSDs can experience opposite performance charac-

teristics at a flash level (reads are much faster than writes at a memory cell level) is the lack of

internal parallelism on random reads. Note that, sequential accesses can be striped over multiple

channels in a round-robin fashion, and the striped sub-requests can be interleaved across multi-

ple flash dies in each channel. In contrast, random read accesses can potentially create a scenario

where multiple requests end up contending for the same internal resources (e.g., channel, pack-

age, die, plane), referred to as resource conflicts. A request experiencing resource conflict has

to wait for the completion of the other request(s) heading to the same resources. Therefore, the

resource conflict on random reads causes low parallelism and thus degrades both bandwidth and

latency. Unlike reads, flash firmware can easily forward the incoming write requests to a target

sitting in idle by remapping addresses, which leads to low resource conflicts and high levels of

parallelism.

One potential concern on this read-write comparison would be the impact of the internal

DRAM buffer. Since writes can be buffered in DRAM, if the internal DRAM does not flush the

in-memory data to the flash medium, write performance would be much better than reads. How-

ever, as shown in Figures 5.2(e) and 5.2(f), we observed that DRAM-less SSDs, namely SSD-P,

101

-X, and -Z, exhibit very similar performance characteristics to 128MB and 256MB DRAM-

equipped SSDs. Further, the amount of data written into those SSDs is over 200GB, which

cannot be buffered by a small size DRAM; in fact, the DRAM capacity accounts for under 1%

of the total amount of data we wrote in these experiments.

5.4.2 Can we achieve sustained read performance with sequential accesses?

As demonstrated in the previous section, all the SSDs tested generate their best perfor-

mance on sequential read accesses. In this section, we further examine whether the sequential

read performance can be sustained over time or not, which might have a significant impact on

read-intensive SSD applications. For this set of experiments, we executed sequential read ac-

cesses with transfer sizes ranging from 1 to 16 sectors on two different SSD sets; “pristine”

SSDs and “aged” SSDs, and measured their latencies per request with the modified Iometer. The

results are presented in Figure 5.3. Specifically, Figures 5.3(a), 5.3(c) and 5.3(e) plot cumulative

distributed function (CDF) of latency for pristine SSD-L, -C and -Z, and Figures 5.3(b), 5.3(d)

and 5.3(f) plot the same for aged SSD-L, -C and -Z, respectively.

One can observe from these results that most of the read requests on all pristine SSDs

are served within 300 ∼ 400 µsec. However, when SSDs get order, CDF curves shift from left

to right exhibiting worse performance characteristics. The aged SSDs take over 600 µsec for

serving all the I/O requests, which is two to three times worse than our pristine SSDs. One can

conclude from this analysis that, sequential read performance characteristics get worse with ag-

ing and as I/O requests are being processed, which are unfortunately captured neither by NAND

flash data sheets or nor by SSD specifications. We believe that this performance degradation on

reads is mainly caused by fragmented physical data layout and reliability management overheads

102

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0
C
D
F

1 Sector
4 Sectors
8 Sectors
16 Sectors

1 Sector
4 Sectors
8 Sectors
16 Sectors

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

Response Time (us)

(a) Reads on pristine SSD-L.

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

Response Time (us)Response Time (us)

C
D
F

1 Sector
4 Sectors
8 Sectors
16 Sectors

1 Sector
4 Sectors
8 Sectors
16 Sectors

(b) Reads on aged SSD-L.

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

Response Time (us)

1 Sector
4 Sectors
8 Sectors
16 Sectors

1 Sector
4 Sectors
8 Sectors

C
D
F

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

(c) Reads on pristine SSD-C.

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

1 Sector
4 Sectors
8 Sectors
16 Sectors

1 Sector
4 Sectors
8 Sectors
16 Sectors

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

Response Time (us)

(d) Reads on aged SSD-C.

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

Response Time (us)

1 Sector
4 Sectors
8 Sectors
16 Sectors

1 Sector
4 Sectors
8 Sectors
16 Sectors

(e) Reads on pristine SSD-Z.

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

Response Time (us)

C
D
F

1 Sector
4 Sectors
8 Sectors
16 Sectors

1 Sector
4 Sectors
8 Sectors
16 Sectors

(f) Reads on aged SSD-Z.

Fig. 5.3 Cumulative distribution function (CDF) of latency variance in sequential reads for “pris-
tine” SSDs and “aged” SSDs (i.e., writing data with a random access pattern to the entire storage
space of SSDs). Note that all the curves presented in the CDFs are shifted from left to right as
SSDs get older.

103

on reads. This read performance degradation also implies that the read behavior of an SSD can-

not be easily characterized by the OS by examining only the current I/O request patterns despite

recent works [13, 12] claiming that. We will provide a deeper evaluation and more evidence on

this read performance characteristic in the following sections.

5.4.3 What is the relationship between read performance and previous writes accesses?

In this section, we analyze read performance of SSDs by building 14 different physical

layouts, in an attempt to reveal the relationship between read performance and previous writes

accesses as well as internal SSD parallelism. The insight behind this evaluation is that the or-

der of random writes can be transformed into a kind of sequential pattern by the underlying

flash firmware, which may have performance impact on current writes as well as future reads.

Specifically, the address remapping process allows the flash firmware to easily strip the write

requests over multiple internal resources irrespective of the access pattern, which leads to high

levels of parallelism as well as improved performance on random writes. However, this physical

data layout construction on writes may also introduce different performance behavior for future

reads. Unlike writes, for a read to occur, the data to be read should exist and it must reside in

a particular location. As a result, the degree of parallelism and performance on reads depends

highly on the underlying data layout, which is constructed during the previous writes.

To quantify this impact, we chose SSDs that have no DRAM, to minimize any potential

side effects of buffering on both read and writes. We then randomly wrote data into the entire

address space of the DRAM-less SSDs, SSD-P, -X and Z, with seven different data transfer sizes

ranging from 4 sectors to 256 sectors. As a control group, we also wrote data into the same

type of SSDs but different devices, using sequential access patterns composed of the same data

104

2K 4K 8K 16K 32K 64K 128K
0

15

30

45

60

75

R
ea

d
B

an
dw

di
th

 (M
B

/s
ec

)

Data Tansfer Size for Physical Layout Construction

 [SEQ] SSD-Z [SEQ] SSD-P [SEQ] SSD-X
 [RND] SSD-Z [RND] SSD-P [RND] SSD-X

(a) 4KB Sequential Reads.

2K 4K 8K 16K 32K 64K 128K

30

45

60

75

90

105

120

R
ea

d
B

an
dw

di
th

 (M
B

/s
ec

)

Data Transfer Size for Physical Layout Construction

 [SEQ] SSD-Z [SEQ] SSD-P [SEQ] SSD-X
 [RND] SSD-Z [RND] SSD-P [RND] SSD-X

(b) 8KB Sequential Reads.

2K 4K 8K 16K 32K 64K 128K
30
45
60
75
90
105
120
135
150
165
180

R
ea

d
B

an
dw

di
th

 (M
B

/s
ec

)

Data Tansfer Size for Physical Layout Construction

 [SEQ] SSD-Z [SEQ] SSD-P [SEQ] SSD-X
 [RND] SSD-Z [RND] SSD-P [RND] SSD-X

(c) 16KB Sequential Reads.

2K 4K 8K 16K 32K 64K 128K

60
75
90
105
120
135
150
165
180
195
210
225
240

R
ea

d
B

an
dw

di
th

 (M
B

/s
ec

)

Data Transfer Size for Data Layout Construction

 [SEQ] SSD-Z [SEQ] SSD-P [SEQ] SSD-X
 [RND] SSD-Z [RND] SSD-P [RND] SSD-X

(d) 32KB Sequential Reads.

Fig. 5.4 Bandwidths with different physical data layouts. SEQ and RND denote sequential writes
and random writes, used for the physical data (PDT) layout construction. Observe that through-
put significantly varies based on the physical data layout, constructed by previous writes, even
under same read request patterns.

105

transfer sizes used in the random writes. We then read the entire space of those SSDs with

varying data sizes ranging from 4KB to 32KB, and measured the bandwidth and latency. The

results are plotted in Figures 5.4 and 5.5.

To make our discussion easier to follow, let RND-PDT denote the physical data layout

resulting from random writes, and SEQ-PDT denote the physical data layout resulting from

sequential writes. In Figures 5.4 and 5.5, the dashed-lines and solid-lines indicate the read per-

formance on RND-PDT and SEQ-PDT, respectively. One can observe that, read performance

significantly varies based on the physical data layout organization even though current I/O re-

quest access patterns are exactly the same. More specifically, bandwidth values for all the eval-

uations on RND-PDT (Figure 5.4) are under 80 MB/s, whereas bandwidth values on SEQ-PDT

reach up to 220 MB/s. As the data transfer size used during the physical data layout construction

increases, the performance gains are more pronounced since this allows the flash firmware to

more easily build a physical data layout by sequentially writing data back-to-back. This perfor-

mance impact is also observed in our latency characterization plotted in Figure 5.5. While the

minimum latency with RND-PDT is 210 µsec, the latency with SEQ-PDT is around 80 µsec.

Based on these evaluations, one can conclude that, since the virtual address space that

the flash firmware provides on RND-PDT has been constructed during previous writes, the order

of sequential read accesses on the virtual address space are jumbled. Consequently, the read

accesses can suffer from multiple resource conflicts at a specific channel, chip and die, even

though the access pattern itself is sequential. This in turn can degrade read performance due to

low internal SSD parallelism. In contrast, sequential accesses on SEQ-PDT can be simultane-

ously served from multiple internal resources in different locations without any major resource

conflict since there are no changes in the order of virtual addresses.

106

2K 4K 8K 16K 32K 64K 128K

50

100

150

200

250

300

A
ve

ra
ge

 L
at

en
cy

 (u
s)

Data Transfer Size for Physical Layout Construction

 [SEQ] SSD-Z [SEQ] SSD-P [SEQ] SSD-X
 [RND] SSD-Z [RND] SSD-P [RND] SSD-X

(a) 4KB Sequential Reads.

2K 4K 8K 16K 32K 64K 128K
50

100

150

200

250

300

A
ve

ra
ge

 L
at

en
cy

 (u
s)

Data Transfer Size for Physical Layout Construction

 [SEQ] SSD-Z [SEQ] SSD-P [SEQ] SSD-X
 [RND] SSD-Z [RND] SSD-P [RND] SSD-X

(b) 8KB Sequential Reads.

2K 4K 8K 16K 32K 64K 128K
50

100

150

200

250

300

350

A
ve

ra
ge

 L
at

en
cy

 (u
s)

Data Transfer Size for Physical Layout Construction

 [SEQ] SSD-Z [SEQ] SSD-P [SEQ] SSD-X
 [RND] SSD-Z [RND] SSD-P [RND] SSD-X

(c) 16KB Sequential Reads.

2K 4K 8K 16K 32K 64K 128K
50

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 L
at

en
cy

 (u
s)

Data Transfer Size for Physical Layout Construction

 [SEQ] SSD-Z [SEQ] SSD-P [SEQ] SSD-X
 [RND] SSD-Z [RND] SSD-P [RND] SSD-X

(d) 32KB Sequential Reads.

Fig. 5.5 Latencies with different physical data layouts. These latency comparison explains how
the physical data layout is related to internal parallelism in two aspects. First, the read latency
performed on RND-PDT is 2.3 times higher than that of SEQ-PDT that induces lower resource
conflicts. Second, as the data movement size of reads increases, the magnitude of the latency
improvement with SEQ-PDT is shorter than the improvement with RND-PDT that has many
resource conflicts potential.

107

5.4.4 Do program/erase (PE) cycles of SSDs increase during read only operations?

To study the PE cycle characteristics on reads, we executed Iometer with two different

read-only workloads, composed of sequential and random access patterns, about 200 rounds,

each with a running time of 1 hour (total 200 hours). In each round, we sent a SMART command

using our in-house AHCI minport driver and measured PE cycles by decoding return codes based

on the SMART attribute table [97]. To compare the PE cycles between reads and writes, we also

measured the PE cycles on write-only workloads with the same access patterns and measurement

method used in the read-only workload evaluations. We observed that unfortunately all the SSDs

tested provide insufficient information to understand SSD internal characteristics; in particular,

all the data are normalized or provided as percentage based on their lifespan expectations, and

some SSDs do not even report their PE cycles on reads. Therefore, we present the reliability

evaluation results of a specific version of SSD-A, which is used in Apple MacBook Air; unlike

other SSDs we tested, SSD-A provides absolute maximum/average PE cycles on both reads and

writes.

Figures 5.6(a) and 5.6(b) give the variance in PE cycles on two different SSD-A instances

under sequential and random access patterns, respectively. One can see from these plots that PE

cycles increase in every evaluation round, in a direct contrast to what the current literature on

systems exploiting SSDs would lead one to believe. In sequential reads, the maximum PE cycles

reach the half of PE cycles on writes, as shown in Figure 5.6(a). Ironically, the maximum PE

cycles with the random read-only workload are higher than that of writes by about 12x (Figure

5.6(b)). We believe that the reason behind this PE cycle increase on read-only workloads is

the read disturbance and runtime bad block management. Since these activities require erasing

108

block(s) and live-data migration to the target block(s), read requests can shorten the SSD lifespan

and significantly degrade overall performance. Further, the disparity between the maximum

and average PE cycles tell us another story; wear leveling strategies employed by current flash

firmware mainly focus on writes, not on reads. While SSD-A firmware keeps reducing the gap

between the maximum and average PE cycles on writes, the maximum PE cycles on reads is

247 times higher than the average PE cycles in each round, which makes certain blocks wear out

faster and worsen SSD endurance characteristics.

5.4.5 Is there any performance impact of the reliability management on reads?

All the activities for handling read disturbance management, runtime bad block man-

agement, and ECC, referred collectively to as reliability management on reads (RMR), require

additional I/O operations and compute cycles. These overheads are not revealed to users, but

can contribute to long latencies on normal operations. In this section, we examine the latency

variation between reads with RMR and reads without RMR, which is veiled by most SSD manu-

factures. For our evaluation, we executed the random read-only workload, used in Section 5.4.4,

on three devices, SSD-L, -C, and -Z, and the results are given in Figure 5.7.

As indicated by these plots, the read latency with RMR is at least 5 times higher than the

latency of reads without RMR, which would be unacceptable for latency-sensitive SSD applica-

tions. Further, RMR overheads are more pronounced with small size random access patterns (1

sector ∼ 64 sectors), which is the dominant request size in many file systems. Considering 8

sector (4KB) requests as an example, while the read latencies without RMR on SSD-L, -C, and

-Z are 75, 60, and 47 µsec, respectively, the increased read latencies with RMR are 685, 1787,

and 4944 µsec, in the same order. Even though the latency disparity between ordinary reads and

109

0 20 40 60 80 100 120 140 160 180 200
1
2
4
8
16
32
64
128
256
512

P
E

 c
yc

le
s

Evaluation Rounds

 Avg. on Reads
 Max. on Reads
 Avg. on Writes
 Max. on Writes

(a) Sequential Patterns.

0 20 40 60 80 100 120 140 160 180 200
1
2
4
8
16
32
64
128
256
512
1024
2048
4096

P
E

 c
yc

le
s

Evaluation Rounds

 Avg. on Reads
 Max. on Reads
 Avg. on Writes
 Max. on Writes

0 2 4 6 8 10

(b) Random Patterns.

Fig. 5.6 PE-cycle comparison between reads and writes. Note that PE cycles increase under
read-only workloads. Further, with random accesses, the maximum PE cycles on reads are 12
times greater than that on writes.

110

reads with RMR tends to decrease as the transfer size increases, high RMR-induced latencies

with large data sizes (1MB ∼ 32MB) still seem to be problematic.
0.
5 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

0.03125

0.125

0.5

2

8

32

128

512

0.
5 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

0.
5 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

SSD-ZSSD-C

La
te

nc
y

(m
s)

Tansfer Size (KB)

 Read with RMR
 Normal Read

SSD-L

Tansfer Size (KB)

 Read with RMR
 Normal Read

Tansfer Size (KB)

 Read with RMR
 Normal Read

Fig. 5.7 Latency comparison between reads with reliability management (RMR) and ordinary
reads (i.e., reads without RMR). When RMR is employed, the latency is at least 5 times higher
than the latency of reads without RMR.

5.5 Testing Expectations on Writes

Modern SSD firmware and architecture are well optimized to improve write performance,

but the worst-case performance on writes is still a problematic challenge. In this section, we

examine the worst-case write latencies, analyze their correlation with system throughput, and

investigate the impact of the internal DRAM buffer on latency. To evaluate the worst-case write

latency, we prepared a set of fully-utilized devices by writing data (with sequential access pat-

tern) that covers the entire storage space of SSDs. This makes SSDs reclaim block(s) for new

incoming requests so that we can easily capture the worst-case latency and system throughput

imposed by GCs.

111

Streaming Workstation Database fileserver
0

20
40
60
80

100
120
140
160
180

A
ve

ra
ge

 L
at

en
cy

 (m
s)

 SSD-C SSD-A SSD-X
 SSD-P SSD-Z SSD-L
 HDD-H-7K-RPM HDD-S-7K-RPM
 HDD-W-10K-RPM HDD-H-10K-RPM

(a) Average Latency.

Streaming Workstation Database fileserver
0

200

400

600

800

1000

1200

1400

W
or

st
-c

as
e

La
te

nc
y

(m
s)

 SSD-C SSD-A SSD-X
 SSD-P SSD-Z SSD-L
 HDD-H-7K-RPM HDD-S-7K-RPM
 HDD-W-10K-RPM HDD-H-10K-RPM

(b) Worst-case Latency.

Fig. 5.8 SSD and HDD latency comparison. While SSDs overall outperform HDDs, the worst-
case latencies of SSDs are much higher than the worst-case latencies of HDDs.

5.5.1 How much impact does the worst-case latency have on modern SSDs?

We compare all the SSDs tested and two types of enterprise-scale HDDs (7K RPM and

10K RPM) in terms of both the average latency and the worst-case latency. To quantify the

average latency, we use pristine devices, and for the worst-case latency evaluation, we employ

the fully-utilized devices for SSD and HDD. We run Iometer with its enterprise open-workloads

including streaming, workstation, database and filesever applications, with the fraction of writes

being 99%, 20%, 33% and 20% (of total I/Os), respectively.

Figures 5.8(a) and 5.8(b) plot the average latency and worst-case latency of our SSDs and

HDDs. We see that, the average latencies of all the SSDs are better than HDDs, irrespective of the

workload type used. Especially, compared to the 7K RPM HDDs, SSDs provide 2 ∼ 173 times

shorter latency. However, the worst-case latencies on fully-utilized SSDs are much worse than

that of HDDs, which is problematic for many write-intensive SSD applications. Specifically, the

worst-case latencies of all the SSDs tested are 12 and 17 times worse than that of 10K RPM

HDD-H and HDD-W, respectively, on an average. This is mainly because NAND flash in SSDs

112

allows no in-place update with overwrites, which leads to GC invocations that contribute to

overall latency.

5.5.2 What is the correlation between the worst-case latency and system throughput?

To study the correlation between GC and the worst-case latencies, we prepared two sets

of fully-utilized devices, each consisting of SSD-L and -C. We then executed our modified Iome-

ter with write-intensive workloads composed of 100% random accesses and sequential accesses

for an hour on these SSDs, and measured the latency and throughput values.

Figures 5.9(a) (SSD-L) and 5.9(c) (SSD-C) plot the time series for both latency and

system throughput along with GCs under the sequential access pattern. For both SSD-L and

SSD-C, GCs are infrequently invoked, occasionally imposing long latencies but not impacting

system throughput much. The execution in this case recovers performance immediately after

the GC. In contrast, with the random write workloads, the worst-case latencies imposed by GCs

significantly increase, which in turn dramatically drop the system throughput as shown in Figures

5.9(b) and 5.9(d). This performance characteristic caused by GCs under random write workloads

is referred to as write cliff. Specifically, once the write cliff begins, SSD latencies (bandwidth)

become 11x (3x) worse than the normal case. Further, more problematic challenge of modern

SSDs is that the performance degradation on the write cliff is not recovered even after many GCs

are executed. We believe that this is because the range of random access addresses is not covered

by the reclaimed block(s). Consequently, block reclaims performed by GC are required for each

access, which in turn leads to successive GC invocations. Even though we focused on two SSDs

in this section (due to space concerns), we observed write cliffs in all the SSDs tested.

113

0 500100
0
150

0
200

0
250

0
300

0
350

0
400

0

0

100

200

300

400

500

600

W
or

st
-c

as
e

la
te

nc
y

(m
s)

Time Flow (sec)

0

50

100

150

200

250

300

350

400

B
andw

idth (M
B

/sec)

Bandwidth

Latency

(a) SSD-L non write cliff.

0 500100
0
150

0
200

0
250

0
300

0
350

0
400

0

0

100

200

300

400

500

600

B
andw

idth (M
B

/sec)

W
or

st
-c

as
e

la
te

nc
y

(m
s)

Time Flow (sec)

0

50

100

150

200

250

300

350

400

Latency

Bandwidth

(b) SSD-L write cliff.

0 500100
0
150

0
200

0
250

0
300

0
350

0
400

0

0

100

200

300

W
or

st
-c

as
e

la
te

nc
y

(m
s)

Time Flow (sec)

Latency

Bandwidth

0
50
100
150
200
250
300
350
400
450
500

B
andw

idth (M
B

/sec)

(c) SSD-C non write cliff.

0 500100
0
150

0
200

0
250

0
300

0
350

0
400

0

0

100

200

300

LatencyW
or

st
-c

as
e

la
te

nc
y

(m
s)

Time Flow (sec)

Bandwidth

0
50
100
150
200
250
300
350
400
450
500

B
andw

idth (M
B

/sec)

(d) SSD-C write cliff.

Fig. 5.9 Impact of write cliff. Initially, SSDs provide reasonable performance even though GCs
are invoked. However, once write cliff begins, the performance significantly degrades and is not
recovered later.

114

5.5.3 Could DRAM buffer help the firmware to reduce garbage collection overheads?

Since writes can be buffered using internal the DRAM, modern SSDs are somewhat

expected to hide GC overheads. In this section, to examine the DRAM impact on GCs, we

setup two fully-utilized device sets and write data with a sequential access pattern. In these

experiments, one of these two sets are evaluated under the disabled (DRAM) cache (cache-off),

and the other set is evaluated under the cache (cache-on). To make device status cache-off, we

submit cache-disabled command, which brings the force access unit (FAU) tag of SATA 3.0 [97]

for every I/O requests.

Figures 5.10(a) and 5.10(b) illustrate the time series comparison between the cache-on

and cache-off status devices, SSD-L and -C, respectively. The worst-case latencies of SSD-L are

hidden by the DRAM buffer before the write cliff begins. However, once GCs start to be invoked

in a series, the latency of the cache-on SSD-L becomes two times worse than that of the cache-

off SSD-L. In the case of SSD-C, the performance disparity between the cache-on and cache-off

status are more pronounced. While the DRAM buffer provides four times shorter latency com-

pared to cache-off SSD-C before the write cliff begins, it introduces four times worse latencies

when the write cliff kicks in. Even though a system can react before the data is written into the

actual flash device, the DRAM buffer needs to flush the in-memory data to the flash medium

periodically. Since target addresses of the buffered data are fully random, this flushing of data

introduces a large number of random accesses, which can in turn accelerate GC invocations of

SSDs and introduce write cliffs.

115

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

1
2
4
8

16
32
64

128
256
512

W
or

st
-c

as
e

La
te

nc
y

(m
s)

Time Flow (second)

 Cache-off
 Cache-on

(a) SSD-L.

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

0.25
0.5
1
2
4
8

16
32
64

128
256
512

W
or

st
-c

as
e

La
te

nc
y

(m
s)

Time Flow (second)

 Cache-off
 Cache-on

(b) SSD-C.

Fig. 5.10 Worst-case latency correlation between the DRAM buffer cache and GC. The DRAM
buffer provides excellent latency, but after the write cliff, it makes latencies even worse.

116

51
2B 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

0

50

100

150

200

250

300

350
B

an
dw

id
th

 (M
B

/s
ec

)

Data Transfer Size

 Pristine
 SEQ-TRIM
 NON-TRIM
 RND-TRIM

0 2 4 6 8 10

(a) SSD-C.

51
2B 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

0

50

100

150

200

250

300

350

B
an

dw
id

th
 (M

B
/s

ec
)

Data Transfer Size

 Pristine
 SEQ-TRIM
 NON-TRIM
 RND-TRIM

0 2 4 6 8 10

(b) SSD-Z.

Fig. 5.11 Bandwidth impact of TRIM. While SEQ-TRIM (the order of target addresses is ascend-
ing) can effectively remove GCs, RND-TRIM (the order of targets is random) has no impact on
GC overheads.

117

5.6 Testing Expectations on Advanced Schemes

In this section, we evaluate two advanced SSD schemes, TRIM OS support and back-

ground tasks, which recently received a lot of attention.

5.6.1 Can TRIM command reduce GC overheads?

To quantify the performance impact of TRIM commands, we first wrote data over the

entire storage space of SSD-C and -Z using sequential and random access patterns, respectively.

Then, at a system level, we deleted all the data written using TRIM commands, which consists

of two command-composition steps. The first step is to setup the TRIM field of the DATA-SET-

MANAGEMENT command and send it to the SSD to let it know that the host wants to delete

data, which is specified target addresses by following the TRIM request data (TRD) frames.

Next, we need to configure the logical block address (LBA) range entries in the TRD frames

and submit them to the SSD. Using multiple TRIM commands and TRD frames that cover the

entire SSD address space, we wiped out all the written data in the previous step. If the order of

the target LBAs in the TRD frames is ascending, we refer to the corresponding TRIM command

pattern as SEQ-TRIM. On the other hand, if the order of the target addresses in the TRD frames

form a random access pattern, which has been used for writing data in the previous step, we

denote this TRIM pattern as RND-TRIM.

We measured performance by writing data of different sizes trimmed using SEQ-TRIM

and RND-TRIM. In addition, we also evaluated the performance of our pristine-state SSDs, de-

noted by Pristine, and SSDs that have no TRIM command management, called NON-TRIM. The

118

51
2B 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

0
30
60
90
120
150
180
210
240
270
300
330
360
390
420

La
te

nc
y

(m
s)

Data Transfer Size

 Pristine
 SEQ-TRIM
 NON-TRIM
 RND-TRIM

51
2B 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

0.03125

0.0625

0.125

0.25

0.5

1

(a) SSD-C.

51
2B 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

0
40
80
120
160
200
240
280
320
360
400
440
480
520

La
te

nc
y

(m
s)

Data Transfer Size

 Pristine
 SEQ-TRIM
 NON-TRIM
 RND-TRIM

51
2B 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

0.03125

0.0625

0.125

0.25

0.5

1

(b) SSD-Z.

Fig. 5.12 Latency impact with TRIM. Similar to bandwidth impact, there is no latency gain with
RND-TRIMs.

119

main insight from this evaluation is that, if SSDs tested handle the TRIM commands appropri-

ately, all the written data should be successfully deleted, irrespective of which TRIM pattern is

employed. As a result, the trimmed SSDs are expected to exhibit the same performance as our

pristine state SSDs. As shown in Figure 5.11, SEQ-TRIM works very well for deleting data in

both SSD-C and -Z. As expected, the bandwidth of the SSDs trimmed by SEQ-TRIM is similar

to that of Pristine. In contrast, RND-TRIM shows no success in alleviating the GC overheads

in both SSD-C and -Z. Our latency evaluation results also show similar performance character-

istics. To better understand the execution-time impact of TRIM, we also studied performance

at a finer-level, focusing on small data transfer sizes, ranging from 1 sectors to 256 sectors, in

Figures 5.12(a) and 5.12(b). As can be observed, the latencies of the SSDs trimmed by RND-

TRIM are longer than those of the SSDs trimmed by SEQ-TRIM by about 3x on average. One

can conclude from this analysis that, SSDs do not trim all the data, and their behavior is strongly

related to the TRIM command submission patterns. In our evaluation, only SEQ-TRIM could

successfully delete data, providing a similar latency to pristine SSDs.

5.6.2 Does a TRIM command incur any overheads?

One concern that OS designers might have is the potential overheads that can be expe-

rienced by an SSD in processing the TRIM command itself. In this section, we measure the

latency incurred when processing a TRIM command, using our in-house AHCI miniport driver

and the LeCroy protocol analyzer, Sierra M6-1. To do this, we wrote data varying from 512B to

2GB, which has the same address-range coverage as a TRD frame, and sent a TRIM command

by filling the corresponding LBAs into the TRD frame. We then captured the time duration from

120

0 500 1000 1500 2000 2500

0

100000

200000

300000

400000

500000

600000

E
xe

cu
tio

n
La

te
nc

y
(u

s)

Length of TRIM Target Address (MB)
(a) SSD-L.

0 500 1000 1500 2000 2500

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

E
xe

cu
tio

n
La

te
nc

y
(u

s)

Length of TRIM Target Address (MB)
(b) SSD-Z.

Fig. 5.13 E-TRIM overheads. Since E-TRIM performs block erasure on demand and do not
return control to the storage system, the host can be disabled until the TRIM process finishes.

121

0 500 1000 1500 2000 2500

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000

E
xe

cu
tio

n
La

te
nc

y
(u

s)

Length of TRIM Target Address (MB)
(a) SSD-A.

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

700

800

900

E
xe

cu
tio

n
La

te
nc

y
(u

s)

Length of TRIM Target Address (MB)
(b) SSD-C.

Fig. 5.14 I-TRIM overheads. I-TRIM is more efficient in controlling the TRIM commands, but
the latency overheads are still about 6 ∼ 153 times worse than a 4KB write-latency.

122

the DATA-SET-MANAGEMENT command submission to the end of the response of the fol-

lowing TRD frames as TRIM-latency. Since Sierra M6-1 [62] provides a detailed protocol-level

timing model for the command issue and completion, we are able to capture TRIM-latency for

each TRIM process. As shown in the previous section, since SSDs do not get any benefit from

RND-TRIM, in this test, we focus on measuring TRIM-latency on SEQ-TRIM.

Based on our observations and experience, we can classify existing TRIM command

management strategies into two types: 1) block erasure in real-time, called E-TRIM, and 2)

data invalidation based on address and prompt response, referred to as I-TRIM. As shown in

Figure 5.13, E-TRIM requires long processing times to erase physical blocks based on the target

addresses specified by TRIM. For example, to process a single TRIM command covering a

storage space of 2GB, SSD-L and SSD-Z take 754 msec and 550 msec, respectively. Note that

the TRIM-latency increases linearly with the amount data that LBAs in the TRD frames aim to

delete due to physical block erasures.

In contrast, SSDs with I-TRIM just mark flags into a mapping table indicating that the

contents are not valid anymore and return response immediately. This TRIM strategy can al-

leviate the time consuming activities of GCs such as the live-data lookup and relocation, even

though it does not erase actual blocks. Although I-TRIM has some downsides (e.g., extra DRAM

requirement, the possibility of losing in-memory TRIM data in the case of power failure), it is

expected to improve SSD reliability to some extent. Specifically, 2x nm technology flash chips

are much less reliable than larger feature size (3x∼5x nm) flash chips, mainly because their

memory array suffers considerably more from disturbance and has lower endurance character-

istics. Further, the industry observed that such disturbances occur even when erasing a block

and the endurance gets worse as PE cycles increase [17, 6]. Consequently, lower technology

123

flash-equipped SSDs employ I-TRIM rather than E-TRIM in an attempt to reduce the number of

block erasures as much as possible and improve reliability. From a performance perspective, the

latency of I-TRIM is much shorter than the latency of E-TRIM since the former requires only a

few cycles to update the underlying mapping table, as shown in Figure 5.14. However, I-TRIM

still takes 400 µs ∼10000 µs to handle individual TRIM commands. This I-TRIM latency is

longer than an 8 sector write latency by 6 times ∼ 153 times. We believe that this is because the

flash firmware cannot maintain all the mapping information in the internal DRAM, which leads

to extra I/Os on the flash medium to load/store the mapping table on demand. As a result, it

takes some cycles to manage the mapping table and update the TRIM information in the appro-

priate entries of the table. One can conclude from this analysis that modern SSDs require much

longer latencies to trim data than normal I/Os would take, which may put extra pressure on host

systems.

Note that, unlike the other devices tested, SSD-L employs more reliable flash chips with

35 nm technology and the highest degree of over-provisioning. These two factors make the write

amplification factor of SSD-L lower and thus make the device reliable [30] even though BGC

introduces more block erasures. Also, SSD-L needs more power to perform BGC more than

SSD-C and SSD-Z, by about 270% and 78%, respectively, in idle periods.

5.7 Rethinking SSD Systems

Based on our experimental results and observations, we now provide a summary of our

answers to the questions we raised at the beginning of this chapter.

124

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

0

500

1000

1500

2000

2500

3000

Th
ro
ug

hp
ut

Time Flow (sec)

 IOPS
 Bandwidth

(a) SSD-C BFLUSH.

0
50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

0

500

1000

1500

Th
ro
ug

hp
ut

Time Flow (sec)

 IOPS
 Bandwidth

(b) SSD-L BGC.

Fig. 5.15 Performance sustainability of the background tasks. Even though BFLUSH and BGC
almost recover the performance on write cliff, they sustain the recovered performance for very
short time (just a few seconds).

125

5.7.1 Reads

As against the common expectation, the random read performance of SSDs, in terms of

both latency and bandwidth, is worse than the other types of operations even including writes.

Further, sequential read performance is degraded over time because of two factors: 1) physical

data layout changes on writes, which lead to modulations in internal parallelism, and 2) reliabil-

ity management overheads on reads.

Read Request Reordering. A flash-aware I/O scheduler can transform the random order of

addresses on reads to a sequential order, or schedule them by being aware of the internal par-

allelism, in order to avoid the poor random read performance. There are several studies in the

literature that schedule write addresses [56, 40, 44]; in comparison, reordering read requests has

received considerably less attention.

Read Frequency Control. Since block erasures are also involved in reads, reads may shorten the

SSD lifespan. This means SSD applications need to be aware of the underlying read disturbances

and runtime bad block management characteristics. Read frequency control can potentially im-

prove SSD lifespan as well as the read performance. For example, it can remove the hot read

spot regions, or reorganize file system blocks to ensure that the underlying physical blocks are

accessed as evenly as possible.

De-indirection Interface. De-indirection interface [2, 103] is a promising approach to effi-

ciently manage an SSD by removing the firmware level indirection (address remapping) [41].

Through the de-indirection interface (nameless write), a file system manages the returned phys-

ical address as a result of write, and keep updating the physical space changed by the weal-

leveling scheme through a callback. In practice, a nameless write interface has to be aware of

126

the underlying read reliability issues like read disturbances and UECC. This is because the ad-

dress space can be reconstructed even on reads due to such reliability issues, which can in turn

corrupt the data consistency of the file system using nameless-writes.

5.7.2 Writes

Modern SSDs are well optimized to hide GCs, but the throughput of writes significantly

drops and the worse-case latency sharply increases when the write cliff is reached. Further, the

worst-case latency of SSDs is much higher than HDDs, which implies that it needs to be paid

much more attention especially in the context of latency-sensitive applications. Interestingly, the

internal DRAM buffer would make the latency imposed by GCs on the write cliff much longer.

This implies that the DRAM buffer management is in need of being aware of GCs in order to

avoid making the worst-case latency even worse.

Background Task Scheduling. To alleviate the performance overheads on the write cliff, sys-

tems may utilize the background tasks by artificially injecting idle times. Since the recovered

performance by background tasks is not sustained, the scheduler needs to periodically inject idle

periods even under the I/O congestion periods [46]. In addition, considering the fact that the

background tasks require long idle periods to fully recover the performance loss on the write

cliff, the scheduler can inject idle times in an interleaving fashion and hide potential GC over-

heads over multiple SSD resources (e.g., flash array storage systems, and SSD RAID systems).

Exposing SSD Firmware API. A more promising approach to handle the background tasks

would be exposing APIs that allow a host explicitly to handle flash firmware tasks. For example,

similar to the TRIM mechanism, a host can explicitly call GCs or flush data through the DATA-

SET MANAGEMENT command on idle times so that the host CPU-burst time can be overlapped

127

with the SSD internal tasks. Based on our experiments, we believe that directly handling SSD

internal tasks is much better approach to handle the write cliff than implicitly scheduling the

background tasks.

5.7.3 Advanced Schemes

The magnitude of performance gains with the TRIM commands significantly varies de-

pending on the TRIM request pattern. While SEQ-TRIM can effectively eliminate GC over-

heads, RND-TRIM has no positive impact on performance. In addition, SSDs require quite long

execution times to process TRIMs, which can lead to unexpected performance degradation. To

address this, a file system can consider new TRIM management strategies that are aware of the

TRIM-process characteristics.

TRIM Buffer and Scheduler. From the beginning of the TRIM process, the host can send

TRIM commands by composing target addresses in an increasing order. Similarly, a host mod-

ule can buffer TRIMs and merge the delete information under the file system in order to trans-

form RND-TRIM to SEQ-TRIM. In addition, it is better to utilize idle times to submit TRIM

commands at a system level to avoid potentiol TRIM-latency overheads. A TRIM scheduler can

blend legacy I/Os with TRIMs by utilizing system idle periods, thereby hiding the long TRIM

execution times.

5.8 Related Work

A lot of prior work focused on improving SSD performance and overcoming flash-

intrinsic limitations such as the erase-before-write problem. Flash translation layers (FTL) have

128

been developed to alleviate the write performance degradation by employing different granu-

lar address mappings [15, 52, 28, 1]. In addition to FTL, various buffer management schemes

[56, 40, 44] have been investigated to improve write performance. Recently, GC schedulers

utilizing idle periods have been proposed to avoid heavy performance penalties on write cliff

[48, 51]. There also exist several efforts on SSD architecture. For example,[20, 1, 13, 12, 9, 10]

revealed internal SSD architecture in detail. In addition, [45, 31] proposed different page allo-

cation strategies to take advantage of the internal parallelism on writes. There exists a scheduler

[50] that explicitly handles I/Os by avoiding resource conflicts, thereby improving the degree

of parallelism. FlashVM [92] is a flash virtual memory to reap the benefits of random read

performance superiority of SSDs, and Facebook flashcache [54] is a read cache leveraging read

performance superiority of SSDs to improve MySQL. [7, 61, 82] also proposed SSD cache, fill-

ing the I/O gap between main memory and disks in data centers. In general, these SSD-oriented

prior studies have been performed based on common expectations. In our experiments and data

analyses, we observed many unexpected performance characteristics and reliability issues, which

should be addressed by both academia and industry.

5.9 Conclusion

In this chapter, we examined widely held expectations and conceptions on modern SSDs

using six different commercial SSDs and a series of experiments. Our experimental results

revealed many previously-unreported SSD characteristics from both performance and reliability

angles. We also discussed what these characteristics mean to both SSD designers and system

designers. Our ongoing work includes designing and implementing system support that can take

into account our newly-discovered facts on SSDs, and evaluate this support using a diverse set

129

of workloads drawn from embedded computing, enterprise computing and high-performance

computing domains.

Chapter Acknowledgements Chapter 4, in part, is a reprint of the material as it appears in

”Revisiting Widely-held Expectations of SSD and Rethinking Implications for Systems,” My-

oungsoo Jung, Mahmut Kandemir, in Proceedings of SIGMETRICS, 2013. The dissertation

proposal author was the primary investigator and the first author of this paper.

130

Chapter 6

Memory Request Scheduling:
Improving Parallelism in Solid State Drives

6.1 Introduction

NAND flash-based devices such as Solid-State Disks (SSDs) are becoming increasingly

popular in a number of markets. Flash has already become the dominant storage technology

in mobile devices for its low-power, density, and resilience to shock. Moreover, flash-based

SSDs are making significant inroads into consumer computers such as laptops as well as enter-

prise applications such as Storage-Area-Networks (SANs) and even high performance comput-

ing (HPC). Their lack of moving parts – perhaps the biggest problem with traditional spinning

magnetic disk – allows them to serve random requests at a far higher rate than disk. However,

care needs to be used when writing to these devices, as flash memory cells wear out with overuse.

Therefore, write-heavy workloads are not well-suited for these devices. For such reasons, enter-

prise and HPC areas have strongly considered SSDs for workloads rife with reads, especially for

applications that demonstrate mainly random access patterns.

Such use-cases make sense when considering individual flash memory cells, which are

biased towards reading, showing typically between ten and forty times better performance for

reads than writes. This is due to a significant duration disparity for the three basic operations

in flash: read, write, and erase. Perhaps more importantly, this disparity is exacerbated by the

requirement that if a block to be written upon is not already free, an erase must precede the

write. Specifically, while reads operate on the tens of microseconds, a write takes hundreds of

131

microseconds, and an erase requires thousands of microseconds. Therefore, if a write occurs to

an occupied block, an erase latency plus the write latency is incurred. Moreover, this problem

becomes worse for writing to a subset of a block such that existing data therein will be kept.

These situations require all three operations: first perform a read, then an erase, and finally write

the block down with a mix of new and old data. For the latter two situations – erase/write and

read/erase/write – the latency of writing to an SSD approaches that of spinning disk.

Due to this vast disparity in latencies, internal research on SSDs (mostly on the flash

translation layer such as in [1]) has been concentrated on avoiding the costs of doing such writes.

However, since flash cannot yet match the density-to-cost ratio spinning disk excels at, external

research considering the use of SSDs rather than the development of them has focused on their

use as a cache to alleviate the I/O-latency gap between memory and disk [69][7][54]. As a

cache, researchers capitalize on the presumed efficacy in serving random reads when compared

to spinning disk, and often the caching algorithms employed avoid performing large numbers of

writes in order to extend the SSDs lifetime and to avoid the high penalties of writes. These two

divergent research directions – internal research working to improve writes and external research

developing mechanisms to capitalize on improved performance for reads versus writes – have

resulted in an under-performing research landscape.

Ironically, when one examines the random-read versus random-write performance for

SSDs, what is witnessed is often a performance benefit for random writes instead of random

reads, due to great difficulty experienced in achieving parallelism for reads, but ease in doing

so for writes. This particularly strange reversal of expected performance tends to be glossed

over or completely ignored in many works. However, it is a critical issue that deserves attention

132

especially for enterprise applications seeking to utilize these devices as caches for their presumed

efficacy for random-reads.

6.1.1 Contributions

First, we identify areas where resource contention may exist in an SSD that cause de-

graded random-read performance. We then develop and present a new request scheduling algo-

rithm that maximizes performance by avoiding internal resource conflicts. We propose Physi-

cally Addressed Queuing (PAQ), a request scheduler that is in part inspired by physical address-

based memory scheduling techniques [29, 58, 59, 71, 76] and improves random-read perfor-

mance by identifying and avoiding conflicts for I/O requests. To our knowledge, there is no

published work that proposes a scheduler that utilizes physical addresses to optimize random-

read performance for SSDs. We summarize our major contributions below:

• QBM Relocation: In order to identify and avoid contention for shared SSD resources,

we propose to move the queue and buffer management (QBM) functionalities, typically located

within the host interface logic, beneath the flash translation layer (FTL). This exposes physical

addresses to PAQ, instead of relegating it to work solely with logical block addresses (LBAs).

• I/O Clumping: We classify conflicts into groups based on the physical SSD compo-

nent(s) they share, which provides a framework we use when performing conflict avoidance and

improving parallelism within the SSD.

• I/O Request Rescheduling: With the ability to identify a request’s physical addresses

and a framework to “clump” groups of sub-requests together that do not conflict, we present

our new queuing algorithm, PAQ, that reschedules requests such that conflicts are avoided to

133

the fullest extent possible. This results in greatly improved random read latency and bandwidth

without imposing significant performance degradation for other types of requests.

• Plane Packing: The last level of parallelism within the SSD – plane-level parallelism

(see Section 6.2.1) – requires a number of constraints to be satisfied. Specifically, we show that

given access to the physical addresses of a request’s accesses, PAQ can identify more accesses

between requests that can benefit from multi-plane mode to improve parallelism.

Using our modified SSD architecture and our proposed PAQ algorithm, we seek to demon-

strate greatly improved read latency for random accesses. Our experimental analyses indicate

improvements over traditional scheduling in bandwidth, IOPS, and average latency. Specifically,

for bandwidth, we see as high as 62.7% and in the average case 32.6% improvements. For IOPS

PAQ demonstrates as high as 62.6% and in the average case 32.7% improvement. And for la-

tency, we witness as high as 41.6% and in the average case 25.1% improvement. Further, in all

cases tested, PAQ results in performances at least as good as those for traditional scheduling.

NAND

Flash

NAND

Flash

CTRL

C
H

A
N

N
E

L1

NAND

Flash

NAND

Flash

CTRL

C
H

A
N

N
E

L2

NAND

Flash

NAND

Flash

CTRL

C
H

A
N

N
E

L3

NAND

Flash

NAND

Flash

CTRL

C
H

A
N

N
E

L4

E
m

b
e

d
d

e
d

 P
ro

ce
ss

o
rs

SSD Internals

H
o

st
 I

n
te

rf
a

ce
 C

o
n

tr
o

ll
e

r

k
*

j
B

lo
ck

s

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

DATA REGISTER

CACHE REGISTER

NAND Flash

Memory Array

1 Block 1 Block

DIE 1

PLANE 0 PLANE j

k Blocks k Blocks

Die 0 Die 1 Die 2 Die 3

Multiplexed Interface

Flash Package Internals

Die Internals

Fig. 6.1 Physical internal architecture of SSD.

134

6.2 Background

Flash storage presents the first serious departure from the magnetic storage character-

istics that were studied for decades. With it come a host of new characteristics and nuances;

considerably more than were present in rotational magnetic disk. While many prior studies have

already explored the finer details of flash characteristics, it is critical to at least have a basic back-

ground on the medium to appreciate the benefits of our proposed Physically Addressed Queuing.

To that end, in the following subsections we present a cursory overview of NAND flash archi-

tecture and details of one particularly high-potential but underutilized access mode available in

SSDs.

6.2.1 High-Level Architecture of SSD

While flash is a powerful storage medium for its fast random access speeds, low power

consumption, and lack of moving parts, it requires a number of mechanisms to enable it to

work efficiently. Being packaged most commonly in the form of Solid State Disk (SSD), there

are numerous hardware components and software layers within an SSD that work in tandem to

provide access to the flash medium within.

A subset of the physical internals relevant to our work are shown in Figure 6.1, and

represent typical hardware used in commercial SSDs [75, 1, 20]. There are four main levels that

increase parallelism in an SSD:

• Channels. At the highest level, there exist multiple channels that are operated by em-

bedded processors; each can be operated in a completely independent fashion.

135

• Flash Packages. Each channel is shared by NAND flash packages for transmitting data

and operation messages.

• Dies. Within each NAND flash package are one or more dies, each sharing one or

more buses upon which their communication is interlaced. Communication is interlaced using a

chip enable (CE) pin, leading to a reduction in I/O bus complexity but also adding potential for

contention over the CE pin by requests.

• Planes. Finally, within each die exist one or more planes, the smallest unit to serve an

I/O request in a parallel manner. Each plane shares a wordline for accessing the flash memory

cells, which leads to the important consequence that multiple requests can be served simultane-

ously in a single wordline access. However, in order to do so, the requests must adhere to the

plane-addressing rule, a constraint we expand upon in the following section. Resource sharing

occurs at each level, which was intended to decrease the complexity and therefore cost to design

and manufacture SSDs.

A subset of the relevant software layers are shown in Figure 6.2, and are described below:

PHY

QBM

FTL

HAL

HIL VIRTUAL

ADDRESS

PHYSICAL

ADDRESS

ADDRESS

SPACE

Fig. 6.2 Software stack of an SSD.

• Host Interface Layer (HIL): The HIL is responsible for communication between the

host system and underlying layers within the SSD. Specifically, the HIL performs parsing of I/O

136

commands, hand-shaking based on the interface protocols, initiating data transfer, and commit-

ting NAND transactions to underlying layers. The raw communication protocol portion of the

responsibilities are handled by the Physical layer (PHY), whereas responsibilities related to I/O

scheduling and buffering are dealt with by the Queue and Buffer Management layer (QBM).

• Flash Translation Layer (FTL): The FTL is responsible for address translation between

the host address space, which contains virtual or logical addresses, and the physical address

space, which fully specifies the channel, flash package, and flash die where the data is located.

The FTL separates the logical from the physical address space to allow for higher levels to treat

the logical addresses as they have historically been treated for conventional block devices, and to

allow the lower levels to handle the complicated nuances of NAND flash memory (e.g., in-place

updates are not possible without preceding read and erase operations).

• Hardware Abstraction Layer (HAL): The HAL is a device driver, which manages phys-

ical NAND flash memory. Specifically, it is charged with committing NAND transactions using

the physical address provided to it from the FTL to underlying flash memory, and periodically

checking each NAND flash package to monitor transaction statuses (using the ready/busy pins).

6.2.2 Multi-Plane Mode Operation

Besides the three basic NAND operations we mention earlier – read, write and erase –

there exist a number of advanced modes and operations that seek to improve NAND parallelism

but come with constraints that must be adhered to in order to achieve such performance. In this

work one mode is particularly amenable to our proposed clumping strategy where we examine

accesses between distinct requests in the hope of improving performance. In that mode, multi-

plane mode, operations serve multiple requests simultaneously by sending them together down

137

the same wordline. This mode has the potential to improve performance n times the number of

planes attached to a particular wordline, but comes with the caveat that these requests must target

the exact same page offset in a block, the exact same die address, and indicate different plane

addresses.

Therefore, there is a very limited field of requests that can be served in this mode when

one considers requests individually. However, by examining a number of transactions in separate

requests, which are all waiting in the queue, and intelligently selecting those which can be packed

together for expedited service down a single wordline, the likelihood of executing transactions

that fulfill multi-plane mode constraints is increased. This is the foundational idea behind our

plane-packing optimization, which we show can improve performance immensely, especially for

larger queues where the pool of available requests is increased.

6.3 Random Write vs. Random Read Performance

While the objective to simplify SSD design is achieved via resource sharing, what is not

readily expressible through the physical diagram is the potential for conflicts between requests

that end up contending for such a shared resource. However, these conflicts are relatively small

for sequential and random writes. At first blush, this appears contradictory since flash memory

cells perform poorly for writes, but upon further inspection the independence from data layout

that writes enjoy leads to massive increases in internal parallelism. For instance, when a write

request is issued, whether it is random or sequential, the FTL of the SSD will work to split

up and stripe that sequential request or simply will send the random requests down separate

channels. These requests are destined for packages and dies that are the least busy, which results

in resources in the SSD being utilized in a fairly balanced manner without “hotspots” arising

138

in particular areas that bottleneck performance. Moreover, writes can easily utilize multi-plane

mode since there is no data layout that must be adhered to; the writes can simply be packed

together in any manner.

Such parallelism is not as easily achieved for reads. Specifically, in order for a read

to occur, there must be some data to be read, and that data must reside in a particular block,

on a particular die, within a particular flash package, and along a particular channel within the

SSD. These particularities result in a very rigid performance dependence upon data layout and

access sequence, which in turn results in requests queuing up behind each other and sequentiality

sprouting up that strangles parallelism. In addition, the QBM, in its current position above

the FTL, is helpless to do anything about such performance dependence because it solely has

knowledge of the virtual address – there is no way for it to intelligently reorder accesses to

decrease conflicts.

To validate our concerns regarding random read performance, we performed tests on

two commercial Samsung 470 series SSDs manufactured in 2010, which we hereafter refer to

simply as “SSD-A” and “SSD-B.” In these tests, we used the IOmeter characterization tool [35]

to perform sequential writes, sequential reads, random writes and random reads, each for nine

separate transfer sizes ranging from 512 bytes to 128 kilobytes for both drives, and allow at most

16 outstanding I/Os to exist at any given time. The amount of data moved by the tool fills about

80% of both SSDs.

Both SSD-A and SSD-B utilize 32 nm fabrication process NAND flash memory pack-

ages, employ a DDR2 flash interface (144Mbs), and utilize Samsung’s second generation S3C29MAX01

controller. ARM-based multi-core processors with dual-cache chips manage the SSD internals,

and the host interface is connected via Serial ATA Generation 2 (3Gbps). The size of DRAM

139

512B1K 2K 4K 8K 16K32K64K128K

0

2

4

6

8

10

12

14

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

Transfer Size

 SSD-A Rand. Read
 SSD-A Seq. Read
 SSD-A Rand. Write
 SSD-A Seq. Write

(a) Latency (SSD A)

512B1K 2K 4K 8K 16K32K64K128K

0

2

4

6

8

10

12

14

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

Transfer Size

 SSD-B Rand.Read
 SSD-B Seq. Read
 SSD-B Rand.Write
 SSD-B Seq. Write

(b) Latency (SSD B)

512B1K 2K 4K 8K 16K32K64K128K
0
20
40
60
80
100
120
140
160
180
200
220
240
260

Ba
nd

w
id

th
 (M

B/
s)

Transfer Size

 SSD-A Rand. Read
 SSD-A Seq. Read
 SSD-A Rand. Write
 SSD-A Seq. Write

(c) Bandwidth (SSD A)

512B1K 2K 4K 8K 16K32K64K128K
0
20
40
60
80
100
120
140
160
180
200
220
240
260

Ba
nd

w
id

th
 (M

B/
s)

Transfer Size

 SSD-B Rand.Read
 SSD-B Seq. Read
 SSD-B Rand.Write
 SSD-B Seq. Write

(d) Bandwidth (SSD B)

Fig. 6.3 Average response times and bandwidth results as transfer sizes varies under two com-
mercial SSDs.

140

cache employed in both devices is 256MB, comprised of two DRAM chips having 667Mbps data

rate. The first drive, marked “SSD A,” has a capacity of 64GB and operates using 4 channels and

16 packages. The second drive, marked “SSD B,” has a capacity of 256GB and operates using

8 channels and 64 packages. While manufacturers do not publicize exactly how many dies are

in each package, single-, dual-, quad-, and octal-die package are all possibilities in production.

We suggest that for these devices dual-die package is most likely based on the price point and

the date manufactured. The results of our tests are shown in Figure 6.3. Specifically, Figures

6.3(a) and 6.3(b) plot variances in latency as transfer size is increased for SSD A and SSD B

respectively, and Figures 6.3(c) and 6.3(d) show variance as transfer size increases in terms of

overall bandwidth.

In the latency results, for SSD A, random reads and sequential reads perform similarly,

but both are still far worse than either types of the writes by at least 25% and as high as 361%.

For SSD B, there exists a clear case that while all other operations incur approximately the same

latencies, random reads suffer by at least 56% to at most 319% in comparison. The bandwidth

results tell a very similar story, but bring to light the increasing gap as transfer size increases. In

all cases tested, random writes outperform random reads, in direct contrast to what a majority of

the literature on flash memory would lead one to believe. It should be noted that, read operations

tested are not affected by any transactions related to garbage collection activities because read

and write tests for both latency and throughput are performed in an entirely separate fashion.

Also, note that the fraction of DRAM that might be used for buffering I/Os is about 0.48%

(SSD-A) and 0.12% (SSD-B) in our tests. In practice, the fraction of DRAM for buffering I/Os

is even smaller because it is concurrently used for maintaining metadata and in-memory data

structures of the FTL.

141

6.4 Physically Addressed Queuing

In order to improve the poor random-read performance we demonstrated above, we pro-

pose a new request scheduling scheme named Physically Addressed Queueing (PAQ). Unlike

previous schedulers who do not have access to the physical addresses of requests, with PAQ we

propose moving the QBM layer out from the HIL and beneath the FTL to provide such cru-

cial functionality. With exposure of the physical layout to our PAQ scheduler, we are able to

positively identify requests that will cause conflicts as they concurrently contend for the same

resources. Using these physical addresses, we present a classification system for conflicts, and

describe how PAQ can aggregate groups of requests together that do not share conflicts. Such

groups of requests without interdependence we term a clump1, and we show that PAQ works

to build clumps in a conflict-first bottom-up fashion such that total contention is reduced and

SSD performance is improved. Last, we discuss how PAQ can improve multi-plane mode per-

formance immensely given the physical layout of requests, which is an optimization that can

orthogonally improve overall performance.

6.4.1 QBM Migration

Since the QBM layer must be exposed to physical addresses of requests in order to make

intelligent decisions that decrease conflict, we propose migrating the QBM out of the HIL and

positioning it directly beneath the FTL. This migration is visually depicted in Figure 6.4. As is

indicated by the virtual and physical address spaces and the horizontal line separating the two,

1While related, clumping differs from memory request coalescing in that clumping does not combine
multiple requests into one, nor does it remove duplicate requests [19]. The main purpose of clumping is
to avoid conflicts between requests.

142

moving the QBM out of the HIL and down below the FTL provides physical address exposure

to the QBM layer and therefore PAQ.

PHY

QBM

FTL

HAL

HIL VIRTUAL

ADDRESS

PHYSICAL

ADDRESS

ADDRESS

SPACE

Fig. 6.4 Firmware layers within a solid state disk.

This change is achievable in practice because the PHY and QBM layers operate within

distinct protocols. Specifically, in the SATA interface, while the PHY layer resides in the phys-

ical, link and transport layers defined in the SATA protocol, the QBM resides in the application

layer, allowing for migration of the QBM without necessitating changes to existing manufactur-

ing processes or established protocols.

6.4.2 Conflict Classification

To build a queuing mechanism that can identify and properly schedule around contention,

we first propose the following conflict classification framework:

• Domain: a set of requests that require access to the same channel. Concurrently

scheduling requests in a domain increases the potential to cause channel I/O bus contention,

but also has the potential to exploit parallelism by interleaving requests across multiple flash

packages and dies.

• Cluster: a set of requests requiring access to the same flash package. A cluster may

contend for the same NAND I/O bus in accessing a flash package, which incurs domain-level

143

conflicts. However, the requests in a cluster enjoy die-level interleaving parallelism if no node-

level conflict exists.

• Node: a set of requests that require access to the same flash die. A node always incurs

resource conflicts, and it also has the potential for a number of resource contentions among

the requests in same domain and cluster, including NAND flash register, NAND I/O bus, and

channel I/O bus.

71615141312121

CH 1 CH 1 CH 1 CH 1 CH 1 CH 2 CH 3 CH 4

P1 P1 P1 P2 P2 P2 P1 P1

D1 D1 D2 D1 D2 D1 D4 D1

DOMAIN

CLUSTER

NODE

8281

CH 4

P1

D4

CH 4

P1

D4

654321

Physical Address

Tag ID

4131232221131211Virtual Address 6151

Fig. 6.5 An example that shows PAQ conflict classification. CH, P and D denote channel, pack-
age, and die, respectively.

The fact that each level incurs conflicts at its level and all levels above it is a critical part

of conflict classification. To visualize this inclusive hierarchy, Figure 6.5 provides an example of

requests in the command queue, along with the virtual and physical addresses of the transactions

within those requests. Beneath the transactions, we show what channels, packages and dies the

transactions require access to. We also demarcate potential conflicts using rounded rectangles

surrounding all transaction targets that are the same physical component. Domains are indicated

using a solid-rounded rectangle, clusters using a dotted-rounded rectangle, and nodes using a

dot-dashed-rounded rectangle. The resulting set of clumps PAQ constructs is shown in 6.6(a).

144

In the simplest case, for request ID #3, it requires access to LBA 31, physical address 51,

channel 2, package 2 and die 1. As it is the only request in the queue seeking to access channel

2 (no node-, cluster- or domain-level conflicts exist), it is free from conflict and may be executed

immediately. However, if we look at a more complicated scenario resultant from request ID

#2, we see that it is attempting to access physical addresses that exist along two channels, two

packages, and two dies. This request causes domain- and cluster-level conflicts with request ID

#1, and also results in domain-, cluster- and node-level conflicts with other transactions in the

same request. Therefore, even for a command queue with solely a single request, there may exist

conflicts between multiple transactions in that request.

While conflicts occur for accesses to the same channel, package, or die, it is important

to note that the window of conflict is wider for lower levels due to a pipelining of each transac-

tion through the architecture, resulting in a slightly more complex landscape for conflicts. For

instance, it would be highly inefficient to conclude that a channel and package is unavailable just

because a single die on that path is busy. Luckily, two simple intuitions prove effective in solv-

ing this complexity and are the foundation of our scheduling algorithm to build low-contention

clumps.

6.4.3 Clump Composition

With the physical addresses available to the QBM layer, and a classification scheme that

allows us to identify conflicts and their location, we construct our PAQ scheduling algorithm

around the following two intuitions: (i) Lower-level conflicts are most costly – PAQ should avoid

them if possible, and (ii) if PAQ can schedule a single transaction from an area of conflict while

doing other work and only later execute the other contentious operation, it can avoid contention

145

311 51 61 81
1221 13 71 41
12 3 2 4

4121 71

82

1311 61

41

11 6

4

2
22
2

CLUMP1

CLUMP2

CLUMP3

Requests are Interleaved in die-level

Tag ID
Virtual Address
Physical Address

T
im

e
 f

lo
w

(a) Constructed PAQ clumps

T
im

e
 f

lo
w

21
11
1

31
12
1

41
13
1

1
21
2

Die-level block

2
22
2

61
23
2

51
31
3

Package-level block

71
61
6

81
41
4

82
51
5

Die-level blockR
e

q
u

e
st

s
a

re
 I

n
te

rl
e

a
v

e
d

 i
n

 d
ie

-l
e

v
e

l
Parallelizing requests (concurrently served)

Tag ID
Virtual Address
Physical Address

(b) VAQ-style scheduling

Fig. 6.6 An example that shows PAQ conflict classification and the associated clumps.

while achieving parallelism. These intuitions lead us to establish the following goals on how

PAQ should perform clump composition, the most critical contribution of our work: (Goal 1)

Add transactions incurring conflicts in the lowest levels first. (Goal 2) For node- and cluster-

level conflicts, never schedule a clump such that either would have greater than one transaction

issued concurrently from it. (Goal 3) Continue adding transactions to the clump, prioritizing

for low-level conflicts, until no more can be added without breaking Goal #2. Succinctly, PAQ

attempts to build clumps in a bottom-up, conflict-first fashion such that the lowest level with

contention does not have conflicting transactions in the clump. To properly compare our PAQ

clumping strategy, let us consider how the requests in Figure 6.5 would be handled by the default

(traditional) scheduling scheme, which we name Virtually Addressed Queuing (VAQ). As shown

in Figure 6.6(b), request #1 would be sent to the FTL for execution first, since VAQ performs

FIFO scheduling from the command queue.

146

There would be brief intra-request contention for channel #1 and package #2, but this

time is relatively small compared to the time spent at the die. Since there was no intra-request

contention for any dies, the FTL would return stating that the request was being handled, and

VAQ could then move on to attempt to issue request #2. Request #2 will experience intra-request

contention for its first two requests, whom both attempt to access die 1 in package 1 on channel

1, which stall the FTL and prevent VAQ from proceeding to request #3 despite the fact that it

has no contention with any transactions. Fast-forwarding to requests #4 and #5, we can also see

that these two requests compete for die 4 on package 1 on channel 4, stalling request #6 for little

good reason since it is targeting a separate die. This greedy, FIFO nature of request serving is a

necessity for VAQ; because it has no idea where the actual transactions are destined (since it can

only see virtual addresses, which tell it nothing), FIFO is the best it can hope to do.

PAQ, on the other hand, attempts to leverage its knowledge of transaction destinations by

constructing groups of transactions that can run concurrently without contending for resources in

a significant way. As mentioned previously, we term such groups of low-contention transactions

“clumps.” To do so, PAQ examines the physical addresses of transactions in the command queue

and schedules such transactions in a “conflict-first, bottom-to-top” manner. Specifically, the

lowest level in the hierarchy contains node-level conflicts, of which we only have two (indicated

by the dash-dot-rounded rectangles): between physical address 1 and 2 and between physical

address 81 and 82. Therefore, PAQ chooses to place transactions on physical address 1 and

81 in clump 1. Then, examining one level up, PAQ again identifies and prioritizes requests

from areas of conflict (i.e., clusters), which are not already serving a transaction (e.g., PAQ

would never add addresses 2 or 21 since they both share package 1, whom is already serving a

transaction for this clump from physical address 1). Specifically, PAQ then adds the transaction

147

on physical address 31 to the clump as it is the only transaction with a cluster-level conflict but

who is not already serving a request for the previously selected transactions in clump 1. Third,

PAQ performs the same process for the channel level: find all domain-level conflicts not already

serving requests for previously selected transactions in the clump and add them. However, no

transactions meet this criteria. Last, PAQ selects transactions having no conflicts at any level (it

is always safe to schedule them), and adds them to the clump. This will add physical address 51

and 61, completing clump 1 to include all of: 1, 31, 51, 61, and 81.

While there may be very brief pauses (on the order of tens of nanoseconds) for domain-

level conflict between physical addresses 1 and 31, once the request is passed to the package

and then die, PAQ will enable all dies in the example to operate concurrently. This concurrency

allows for interleaving between transactions that use the same package but separate dies, which

we demarcate using dotted-vertical-rounded rectangles in Figure 6.6(a). As can be seen in that

figure, all requests can be served in just three clumps whom all enable interleaving of dies in the

same package, whereas VAQ scheduling (see Figure 6.6(b)) requires six request sets with only

two requests interleaved.

6.4.4 Plane Packing

In theory, multi-plane mode operation should allow SSDs to achieve nx speedup (where

n is the number of planes in a NAND flash), because n pages can be served simultaneously.

However, such speedup is generally not reached because traditional VAQ is ignorant of physi-

cal addresses, which is a prerequisite to intelligently constructing multi-plane-mode operations.

Moreover, since traditionally the underlying FTL is oblivious of the device-level queue and re-

quests therein, it is not possible for the FTL and HIL to collaborate to construct multi-plane mode

148

Even Odd Even Odd

Even Odd Even Odd

Die 0 Die 1

C
H

 1
C

H
 2

7372356742Physical Address

Die 0 Die 1

Package 2

Package 1

4321Tag ID

5141333231232221Virtual Address

Fig. 6.7 Plane packing in PAQ.

requests. For example, in Figure 6.7, even though a VAQ scheduler will reorder commands in at-

tempt to satisfy the plane-addressing rule, the order of transactions associated with the reordered

commands is still not sufficient to build multi-plane-mode operations; without knowledge of the

physical addresses, it is purely luck for the FTL to be able to execute multi-plane mode trans-

actions. As a result, in our example in Figure 6.7, VAQ would only permit a multi-plane mode

operation to be built by the FTL: (72, 73). Overall, to complete the requests of the VAQ sched-

uler, the FTL would commit and the HAL should handle six separate transactions. In contrast,

since the physical addresses are visible to our PAQ scheduler, the transactions in the queue are

built with respect to plane addresses by packing them. In the example, PAQ commits solely four

transaction pairs to the HAL, all executing in multi-plane mode: (2, 3), (6,7), (4,5), and (72, 73).

6.4.5 Implementation of PAQ Scheduling

149

Algorithm 1 adding io request(tag). Note that address translation for read requests occurs before the
actual data transfer starts in PHY.

1: head lpn := tag.lsn % the size of page
2: tail lpn := (tag.lsn + tag.length) % the size of page
3: {get physical address info and record}
4: while head lpn != tail lpn do
5: if tag.req type = read then
6: ppn := ftl.translate physical address(head lpn)
7: pair(ch id, flash id) := ftl.parse channel and way(ppn) pair(die id, plane addr) :=

ftl.parse die and plane(ppn)
8: nand trans := build trans(ppn)
9: add(nand trans, clump table[ch id][flash id])

10: device queue.push back(tag)
11: send ack(tag)
12: else
13: device queue.push back(tag)
14: send ack(tag)
15: ftl.page basis commit(head lpn)
16: end if
17: head lpn += 1
18: end while

Algorithms 1 and 2 describe how our approach is implemented and manages PHY and

QBM, respectively, of the HIL. First, for the PHY management, address translation occurs be-

tween the time pre-information (called a tag, which includes information like logical block ad-

dress and request size) is received, and the time acknowledgment is sent (if the request type is

read). For requests that are not a read, the PHY sends acknowledgment first and bypasses the

request to the underlying FTL. The reason behind these two different strategies is that the ad-

dresses of read are decided at write time, for quick translation. In contrast, in the write case, the

decision of the physical target has not yet been determined by the FTL.

Once the PHY translates the physical address for the read request, it adds information

along with the physical address into a table, called the clump table. The clump table is a tool

for communication between the PHY and the QBM, which tracks the physical addresses (plane

150

and die) per flash package. It should be noted that the latency incurred from the computation

overhead in address translation can be hidden by overlapping it with the process of receiving the

tag and sending an acknowledgment. Once a tag is added to the device-level queue, the physical

address information associated with it is preserved in the clump table until the request is served

by the QBM. When the device-level queue is not empty, from the front of the queue, the QBM

commits NAND transactions to the underlying HAL by visiting each entry of the clump table

associated with the target tag. As described in the previous section, the QBM first checks whether

a node-level conflict related to the tag exists or not. If no request is found in the node level, it

then checks the cluster level. The QBM commits the transaction if it is found in the cluster level.

If not, the QBM checks the domain level in a similar fashion as it did for the cluster-level. As

previously alluded to, the QBM must maintain information regarding distinct transactions that

have previously been issued to a particular cluster. Otherwise, the possibility exists that two

transactions in a cluster might get simultaneously issued (and cause conflict). In the case that

there are no requests found having node- or cluster- or domain-level conflicts, the QBM will

simply issue any transaction headed for the currently selected NAND flash by identifying one

in the clump table. Once the QBM commits the transaction, it moves on to perform the same

process for the next NAND flash and its associated entries. It should be noted that even though

the QBM does not physically reorder transactions in the device-level queue, the order in which

these transactions are actually issued is changed.

151

Algorithm 2 read data transfer(tag). Serving I/O request and managing QBM.

1: for ch id := 0...n do
2: for flash id := 0...m do
3: {build clump}
4: prev tag := check and wait(ch id, flash id)
5: if prev tag.committed trans = 0 then
6: device queue.release(prev tag)
7: end if
8: trans := get trans f rom node(tag, clump table[ch id][flash id])
9: if trans is not assigned then

10: trans := get trans f rom cluster(tag, clump table[ch id][flash id])
11: end if
12: if trans is not assigned then
13: trans := get trans f rom domain(tag, clump table[ch id][flash id])
14: end if
15: if trans is not assigned then
16: pair(tag, trans) := get another req(clump table[ch id][flash id])
17: end if
18: {packing}
19: assoc trans := get associate plane trans(tag, clump table[ch id][flash id])
20: trans := packing(trans, assoc trans)
21: hal.commit(ch id, flash id, trans)
22: tag.committed trans += 1
23: end for
24: end for

152

6.5 Experimental Setup

6.5.1 NAND Flash SSD Simulator

To implement and evaluate PAQ, we required a high-fidelity simulator that was capable

of capturing cycle-level interactions between the many components in an SSD. While there ex-

ist a few well-known SSD simulators such as Microsoft Research Lab’s SSD extension [1] to

DiskSim [5] and FlashSim [60], neither of these nor most others deliver the high-fidelity results

we require. In order to experimentally evaluate PAQ, we developed a cycle-accurate NAND flash

simulator 2 that provides: (i) Fine-grained NAND command handling, so that conflicts between

competing commands are made evident (ii) Advanced command implementation with mainte-

nance of strong constraints (i.e., to properly evaluate our multi-plane mode optimization) (iii)

Awareness of intrinsic latency variations for diverse NAND I/O operations based on the current

state of the memory cells. In addition, we built a simulation framework that performs all of the

high-level tasks of an SSD, which builds and issues requests to many concurrent instances of the

NAND flash simulator. This provides us with a cycle-accurate SSD simulator.

6.5.2 SSD Configuration and Schedulers Tested

In this work we configure our simulation environment as having 8 channels, 8 flash pack-

ages per channel (64 total), double-die package format (128 total) and a queue size of 32, which

is the standard for SATA-based SSDs, with a page-level mapping FTL similar to the one ex-

plained in [1, 10]. We believe this represents the typical modern SATA SSD, but we experiment

with varying queue and channel counts in the sensitivity section to provide further insight into

2The source code of this simulator [49] can be downloaded from
http://www.cse.psu.edu/∼mqj5086/nfs.

153

Write instructions Read instructions Percent of random-writes Percent of random-reads
fin1 4,099,354 1,235,633 97.86 96.98
fin2 653,082 3,046,112 99.2 97.49
web1 212 1,055,236 99.06 93.53
web2 990 4,578,819 100 93.33
web3 1,260 4,260,449 99.84 91.25
usr1 1,333,406 904,483 94.23 92.2
usr2 3,857,714 41,426,266 96.24 88.97
usr3 1,994,612 8,575,434 97.02 82.77
prn1 4,983,406 602,480 76.4 88.6
prn2 2,769,610 8,463,801 97.16 90.5
sql1 1,423,458 606,487 93.5 89.91
sql2 73,833 87,058 16.07 73.66
sql3 38,963 5,136,405 92.95 71.96
sql4 21,330 10,050 46.89 86.95
msnfs1 1,467,625 41,772 87.23 99.79
msnfs2 2,100,032 121,697 66.71 88.8
msnfs3 500 0 0 99
msnfs4 4,014 338 22.52 64.79
msnfs5 3,003,205 9,624,191 97.86 96.98
msnfs6 3,040,098 9,941,612 100 97.51

Table 6.1 Trace decomposition into the number of writes and reads, and the percentage of
random-reads and random-writes issued.

how our scheme would behave under varying protocols and future SSDs. We evaluate the fol-

lowing queuing strategies:

• VAQ: The default virtually addressed queuing scheme.

• PAQ0: Physically addressed queuing, only using our plane-packing optimization.

• PAQ1: Physically addressed queuing, only using our clumping optimization.

• PAQ2: Physically addressed queuing, using both plane-packing and clumping optimiza-

tions.

6.5.3 Traces

We wanted to validate performance across a number of traces from actual enterprise

applications. To that end, we collected traces of workloads representative of the following en-

terprise areas (with the corresponding abbreviation we use afterwards in parentheses): online

154

fin
1

fin
2

we
b1

we
b2

we
b3 us

r1
us
r2

us
r3

prn
1

prn
2

sq
l1

sq
l2

sq
l3

sq
l4

ms
nfs
1

ms
nfs
2

ms
nfs
3

ms
nfs
4

ms
nfs
5

ms
nfs
6

0.0
5.0x1041.0x1051.5x1052.0x1052.5x1053.0x1053.5x105

Ba
nd

w
id

th
 (K

B/
s) VAQ PAQ0 PAQ1

 PAQ2

Fig. 6.8 Average bandwidth comparison between VAQ and PAQ.

fin
1

fin
2

we
b1

we
b2

we
b3 us

r1
us
r2

us
r3

prn
1

prn
2

sq
l1

sq
l2

sq
l3

sq
l4

ms
nfs
1

ms
nfs
2

ms
nfs
3

ms
nfs
4

ms
nfs
5

ms
nfs
6

0.0
4.0x101
5.0x103
1.0x104
1.5x104
2.0x104
2.5x104

IO
PS

 VAQ PAQ0 PAQ1 PAQ2

Fig. 6.9 Average I/Os per second (IOPS) comparison between VAQ and PAQ.

fin
1

fin
2

we
b1

we
b2

we
b3 us

r1
us
r2

us
r3

prn
1

prn
2

sq
l1

sq
l2

sq
l3

sq
l4

ms
nfs
1

ms
nfs
2

ms
nfs
3

ms
nfs
4

ms
nfs
5

ms
nfs
6

0.0
3.0x106
6.0x106
9.0x106
1.2x107
1.8x108

La
te

nc
y

(n
s) VAQ PAQ0 PAQ1 PAQ2

Fig. 6.10 Average latency comparison between VAQ and PAQ.

T

Fig. 6.11 Idle times for VAQ and PAQ.

we
b1

we
b2

we
b3 fin

1
fin
2

sq
l1

sq
l2

sq
l3

sq
l4

ms
nfs
1

ms
nfs
2

ms
nfs
3

ms
nfs
4

ms
nfs
5

ms
nfs
6

prn
0

prn
1

us
r0

us
r1

us
r2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

 VAQ PAQ0 PAQ1 PAQ2

N
om

al
iz

ed

R
es

ou
rc

e
C

on
te

nt
io

n

Fig. 6.12 Normalized total contention time comparison between VAQ and PAQ.

155

transaction processing (fin), search engines (web), shared home directories (usr), print serving

(prn), relational database management systems (sql), and remote file storage servers (msnfs).

There exist multiple traces with the same prefix but varying numeric extensions; some of these

are traces of different points in the lifetime of the application, and others are from distinct appli-

cations that happen to fall into the same category. These traces are available at [3] and [88], and

the latter was originally detailed and presented in [78]. In order to provide the reader insight on

the high-level nature of the traces and the overall landscape of our trace selection, we have char-

acterized each traces total number of I/O instructions and proportion of access type and pattern

in Table 6.1.

6.6 Experimental Results

In evaluating PAQ we quantify its impact on overall performance relative to VAQ. Specif-

ically, for performance, we measure total bandwidth, I/Os per second (IOPS), and average la-

tency for all of the traces we discussed earlier. To connect those performance improvements

to our original goal of improving parallelism and utilization, we also measure and report con-

tention time and idle time for each trace for the default scheme versus PAQ. Moreover, to give a

low-level idea on the impact of different queuing schemes, we show the exact latencies of each

I/O request for a series of requests in one of the traces for PAQ versus VAQ. Finally, we present

sensitivity analysis along the axes of queue size and channel count to demonstrate PAQ’s im-

pact on flash storage devices having various interconnection protocols (e.g., PCI-E, SATA, SAS,

etc) and how it will impact future devices, presumably having higher channel counts and larger

queues.

156

6.6.1 Aggregate Performance: Bandwidth, IOPs, and Latency

As can be seen in Figure 6.8, PAQ improves bandwidth for read-intensive workloads

immensely; five of the twenty workloads exceeding a 100MB/s improvement. Furthermore, for

all of the web workloads the improvement is greater than 100MB/s and such workloads are

comprised of greater than 90% of random reads (see Table 6.1).

Lastly, PAQ2 never hurts the performance for any workload, regardless of whether it is

read- or write-oriented or has mostly random or sequential requests. PAQ0 occasionally hurts

performance because with solely the default SATA queue size of 32 there is a limited window of

requests with which to consider packing. Later, in performance sensitivity analysis we demon-

strate that with increased queue sizes this degradation disappears. The IOPS measurements

shown in Figure 6.9 tell the other side of our story; those traces that showed particularly low

bandwidth were generally dominated by much larger numbers of requests whom had smaller

sizes than those with high bandwidth (a good example is fin2). Just as with bandwidth, for

random-read intensive workloads, PAQ2 does a great job improving performance and never per-

forms worse than VAQ. However, for our worst performing trace, msnfs4, the IOPS are so few

that they appear to be missing from the figure. In that case, despite Table 6.1 describing it as

mainly issuing sequential-writes, we find that these sequential writes are intermixed with very

small random-read requests.

This write-performance degradation occurs for all schedulers as a result of the great

disparity between read and write latency and these random reads undermining the parallelism of

the sequential-write requests. Even in the face of such random-read interference, PAQ delivers

1.41 times the IOPS and bandwidth of VAQ.

157

0 1000 2000 3000 4000 5000

0.0

2.0x107

4.0x107

6.0x107

8.0x107

1.0x108

1.2x108

La
te

nc
y

(n
s)

I/O Request Sequence

average
latency

(a) Latency (VAQ)

0 1000 2000 3000 4000 5000

0.0

2.0x107

4.0x107

6.0x107

8.0x107

1.0x108

1.2x108

La
te

nc
y

(n
s)

I/O Request Sequence

average
latency

(b) Latency (PAQ)

Fig. 6.13 All latencies incurred for requests from trace sql3 for VAQ and PAQ. Note that average
latencies are shown using a horizontal line in each case.

158

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

6000

8000

10000

12000

14000

16000

18000

IO
P
S

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(a) 4 Channels

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

20000

22000

24000

26000

28000

30000

32000

34000

36000

IO
P
S

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(b) 8 Channels

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

12000

14000

16000

18000

20000

22000

24000

IO
P
S

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(c) 16 Channels

Fig. 6.14 IOPs sensitivity to varying queue and channel sizes.

159

6.6.2 Quantifying Parallelism: Idle Time and Contention

While raw throughput and total I/Os completed per second are important metrics, it is

still critical that individual transactions from operations are not delayed so long that average

latency increases a great deal. Interestingly, what we find as shown in Figure 6.10 is that, in the

average case, PAQ2 actually decreases latency fairly significantly. Moreover, PAQ2 improves

performance in a similar proportion across nearly all workloads, regardless of their access type

breakdown. Last, we see that while in bandwidth and IOPS PAQ1 and PAQ2 performed very

similarly, in the case of msnfs4, using just plane-packing or clumping alone did not improve

performance as much as together, giving credence to our belief that both are needed for best

performance.

We originally conjectured that the poor performance we observed in real SSDs in Section

6.3 for random reads was a direct result of difficulty achieving parallelism in the device. While

we have demonstrated aggregate performance improvements using PAQ2, we further seek to

directly demonstrate that these improvements were correlated to increasing utilization of the

individual dies (thereby reducing idle time) and reducing total contention time. Idle time is

measured as the total time each die spent without serving any transaction, and is shown again

for each trace in Figure 6.11. It has been normalized to 1 so that all improvements can be

clearly seen. Decreases in total idle time for PAQ2 around 20% are witnessed on average, with a

few read-oriented traces reaching improvements as high as approximately 60% and a few write-

oriented traces experiencing almost no improvements. Contention time is somewhat harder to

measure than idle time, but we formalize it as the amount of time a NAND transaction spends

waiting on the I/O bus within a flash package to get to a specific die. As the results in Figure

160

6.12 reflect, contention time does not directly reflect idle time. While PAQ2 does not always

result in a great reduction of idle time, it does result in a very significant reduction in contention

time across all traces.

6.6.3 Overheads of PAQ

As PAQ involves advanced scheduling to improve performance, it is worthwhile to con-

sider the overheads such scheduling might cause. The process of checking the clump table

described in Section 6.4.5 is theoretically bounded by O(n∗m) for each read transfer, where n is

channel count (state-of-the-art is 4∼16) and m is flash package count (state-of-the-art is 4∼16).

This results in a search space of approximately a few thousand choices, which is inexpensive to

iterate through. Our estimations show this overhead to be approximately 1% (on an SSD with

72MHz microprocessor and 64 dual-die flash packages), which does not affect our conclusions.

Specifically, while a read operation takes 180 µs (including NAND flash I/O bus activities), we

estimate iterating through the search space to take 1.77 µs. Furthermore, modern SSDs are in-

creasingly using multi-core processors, which are often underutilized and could be employed for

queue management with even less impact on performance.

6.6.4 Time Series: In-Depth Analysis of a

Database Trace

Next, we examine the differences in latencies between VAQ and PAQ2 in greater detail

since that was the area of most uncertainty. For this, we focus on the sql3 trace, and present

latencies incurred for its first 5000 I/O requests (about the first 10% of its execution) in Figure

6.13 for both VAQ and PAQ. It can be observed that, while VAQ demonstrates very consistent

161

but moderately high latencies, PAQ is able to decrease latencies a great deal for a majority of the

requests. However, there do exist some requests PAQ has delayed due to their conflicting nature;

in a small subset of cases their response times exceed twice the latency of VAQ. We believe this

characteristic is a natural side-effect of PAQ’s performance-enhancing optimizations, but suggest

that a balance can be struck and a bound on such spikes set by giving priority to those requests

approaching a defined Quality-of-Service (QoS) threshold. Such examination is deferred for

future work.

6.6.5 Sensitivity Analysis

We wanted to expose how PAQ’s performance might be impacted by varying current

protocols and flash devices such as flash connected via not only our examined SATA protocol,

but also SAS, PCI-Express and other emerging connecting protocols. Moreover, we wanted to

determine whether PAQ would still offer benefits for future drives that will undoubtedly have

higher component counts and queue sizes. Therefore, we performed an IOPS and waiting time

sensitivity analysis for VAQ and our PAQ varieties on varying channel counts and queue sizes,

two parameters we believe will fluctuate the most in upcoming devices and between different

protocols respectively.

While the IOPS sensitivity analyses shown in Figure 6.14 demonstrates a predictable

increase in IOPS as the numbers of components increases and as queue size increases, there

are two less obvious take-aways: First, VAQ shows almost no improvements in performance

as queue size increases, whereas all versions of PAQ demonstrate significant gains. Since VAQ

does not utilize the queue for anything but FIFO storage, whereas PAQ utilizes the entire queue in

performing its optimizations, this observation is expected. Second, while we saw little evidence

162

that plane-packing by itself in the earlier results gave benefits, as we increase queue size in this

analysis we see rapidly increasing performance for greater queue sizes. Such improvements are

a result of an increased space for the optimization to search through and select packable blocks

from.

Figure 6.15 illustrates an Average Waiting Time (AWT) sensitivity test. AWT means the

average time an incoming request must wait for a spot in the device-level queue, when that queue

is full. Interestingly, in contrast to the IOPS sensitivity test, as we increase the number of queue

entries, AWT of PAQ0 slightly increases, worse than VAQ at some points. This phenomenon

occurs as a result of a delay experienced prior to PAQ0 taking advantage of multi-plane-mode

operations. Even though multi-plane-mode operations can boost system throughput 1.53 times

when compared to VAQ, it requires data movement between the HIL and the target NAND flash,

which preempts channel I/O bus while transferring data and therefore imposes a delay. PAQ2

also employs the plane packing scheme, but, AWT of PAQ2 is better than VAQ’s. This is because

the benefits of I/O clumping covers the channel source preemption time of plane packing. As a

result, PAQ2 improves both system throughput and average access waiting time.

6.7 Related Work

In [102], the authors attempt to uncover the specific resource contention that occurs in

SSDs, the areas where parallelism is far below optimal, and present a dynamic request reschedul-

ing scheme to supposedly improve results. However, in their work they fail to account for the

reality that the addresses which correspond to the requests they “reschedule” are virtual. That is,

while they propose that their scheme increases parallelism by avoiding conflict and capitalizing

163

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600

A
ve

ra
ge

 w
ai

tin
g

tim
e

pe
r r

eq
ue

st
 (n

s)

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(a) 4 Channels

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600

A
ve

ra
ge

 w
ai

tin
g

tim
e

pe
r r

eq
ue

st
 (n

s)

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(b) 8 Channels

1 2 4 8 16 32 6412
8
25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600

A
ve

ra
ge

 w
ai

tin
g

tim
e

pe
r r

eq
ue

st
 (n

s)

The number of queue entry

 VAQ PAQ0 PAQ1 PAQ2

(c) 16 Channels

Fig. 6.15 Waiting time sensitivity to varying queue and channel sizes.

164

on multi-plane mode in flash dies, they actually do not have knowledge of where those addresses

point to since physical addresses are not available except beneath the FTL.

[102] actually is one paper in a larger body of works that have attempted to improve the

read performance of SSDs without grappling with the key issue we point out in our work: the

disparity between virtual and physical addresses. Another work suffering from similar oversim-

plification is [10], where the researchers observe suboptimal access trends in their traces and

claim improvements are possible via the coalescing of read requests. The problem here is again

that these traces are of LBAs, not of the physical addresses, and therefore coalescing may or may

not end up improving performance internally within the SSD. Any improvements observed are

likely the result of a clean-room testing environment leading to artificial alignment of LBAs and

physical addresses; in a real installation performance improvements may or may not result from

such coalescing.

It is also critical to emphasize major differences between flash-based SSDs and other

flash mediums. As we discussed, SSDs are subjected to the very distinct nuances of operat-

ing through traditional storage interfaces such as SATA and SAS. Because of this, work aimed

at optimizing flash-based storage connected via PCI buses or otherwise operating in a byte-

addressable manner will likely not work when such optimizations are applied to flash-based

SSDs. Therefore, while works such as [9] may appear to tackle a similar problem to what we

target, assumptions they make, such as “the memory technology has performance. . . to that of

DRAM and that it presents a DRAM-like interface,” pour a foundation that is entirely distinct

from the base of assumptions we work from to improve flash-based SSDs.

In [13], the authors demonstrate that modern SSD performance is less dependent upon

access patterns than interference between and within accesses and how the data is physically laid

165

out on the dies. They also demonstrate that write access is faster than for reads in some cases

and is far less dependent on access pattern and data layout than reads are. These realizations

serve as an important foundation for our work. Using our PAQ scheme, we are able to decrease

the impacts of the two major performance limiting factors they identify: interference and data

layout.

In [53] and [20], the authors recognize the dire need to exploit parallelism in flash-based

SSDs and propose three techniques for doing so over multiple independent channels: striping,

interleaving and pipelining. Other, similar strategies have been presented to increase the paral-

lelism of accesses over multiple NAND-flash packages, such as ganging [1], superpaging [20],

and multi-plane mode, among others. While these schemes are capable of achieving significant

performance improvements for higher parallelism than more serial alternatives, it is important

to recognize that all such strategies only achieve parallelism for certain types of accesses. As

such, while they work well for writes, since these may go anywhere and therefore achieving

parallelism is trivial, these schemes often fail to improve the performance for reads since many

reads do not perform accesses to strictly sequential physical addresses. We present and quan-

tify the shortcomings of these advanced operations in our VAQ results, which utilizes 8 chan-

nels (superpage-based striping), 8 flash packages-per-channel (ganging), and 2 dies-per-package

utilizing interleaved-die and multi-plane-mode operations, and yet fails to achieve peak perfor-

mance. Therefore, the novelty of our work is not akin to the previously discussed strategies,

which provide complex mechanisms to improve performance only for certain access patterns.

PAQ’s novelty lies mainly in reordering and reorganizing the accesses to enable mechanisms

such as striping and ganging to perform their best.

166

While scheduling using physical addresses is novel in the context of SSDs, DRAM con-

trollers already employ physical-address-based scheduling. Static as well as hardware-assisted

dynamic-memory-access-reordering strategies [29, 71], and various other DRAM scheduling al-

gorithms [33, 89] have been investigated in order to maximize DRAM bandwidth. Zuravleff

and Robinson [104] also proposed a DRAM controller that improves data throughput in DRAM

by reordering requests coming to a memory controller without changing the actual outcomes.

Examples of QoS-aware controllers are fair-queuing memory systems [79], stall-time fair queu-

ing [76], and start-time fair queuing [87]. These controllers were designed to be fair to appli-

cations that share a limited memory bandwidth and provide QoS guarantees if needed. With

the increase in on-chip memory controllers, the idea of coordinated control of memory channels

emerged. In [58], a method that achieves fairness by keeping track of attained service informa-

tion for applications running simultaneously is proposed. By prioritizing threads with the least

attained service, a fair memory scheduling scheme is obtained. In [59], fairness and throughput

are considered simultaneously. The proposed thread cluster memory scheduling scheme isolates

latency sensitive and bandwidth sensitive applications.

These DRAM scheduling works are motivated by parallel memory architecture, which

has similarities to modern SSDs. However, there are three important differences: First, unlike

DRAM, SSD schedulers must adhere to idiosyncrasies of NAND flash such as erase-before-

write, endurance, asymmetric I/O speeds, and diverse NAND flash command protocols. Second,

SSDs are connected through thin interfaces, which introduce more limitations in I/O schedul-

ing than DRAM controllers, including different levels of queue management, I/O handshaking,

host-device data movement for various I/O lengths, and I/O completion protocol. Lastly, an SSD

scheduler should also be aware of underlying flash firmware features such as page- or block-level

167

address remapping and garbage collection. These differences in medium characteristics, inter-

face nuances, and the responsibilities schedulers must carry out drive research on scheduling

mechanisms in each domain in separate directions.

6.8 Conclusion

As NAND flash-based storage devices, such as SSDs, becomes increasingly considered

as caching mediums for their ability to serve random-reads at a high rate, extracting full perfor-

mance for such workloads is only possible if barriers to parallelism are overcome. Our presented

scheme to improve performance on random reads, PAQ, demonstrates the need for the queuing

scheduler to have access to physical addresses of requests, and we discuss how moving the QBM

beneath the FTL would achieve such. Further, we design and present a conflict classification

methodology, I/O clumping, which PAQ utilizes to effect efficient and low-contention I/O re-

quest scheduling. Lastly, PAQ uses knowledge of the physical addresses of I/O requests to better

enable multi-plane mode commands via our plane-packing optimization. In this work we im-

plement PAQ in a cycle-accurate SSD simulator and evaluate its performance on a diverse set of

traces taken from actual enterprise workloads. On those traces we demonstrate bandwidth and

IOPS improvements exceeding 62% and decreases in latency as far as 41.6% on random reads

when compared to the traditional queue scheduler, without slowing writes or sequential accesses.

Chapter Acknowledgements Chapter 6, in part, is a reprint of the material as it appears in

”Physically Addressed Queueing (PAQ): Improving Parallelism in Solid State Disks,” Myoung-

soo Jung, Ellis Herbert Wilson III, Mahmut Kandemir, in Proceedings of the 39th International

168

Symposium on Computer Architecture (ISCA), 2012. The dissertation proposal author was the

primary investigator and the first author of this paper.

169

Chapter 7

Garbage Collection Scheduling

7.1 Introduction

Over the past decade, different computing domains, ranging from high performance com-

puting to enterprise server platforms to embedded systems, are adopting SSDs [8] [55], due to

their technical merits such as good random access performance, low power consumption, higher

robustness to vibrations and temperature, and higher read/write bandwidth than hard disks [10].

NAND flash capacity is increasing by two to four times every two years [66] and SSD prices are

expected to continue to fall to the extent of becoming cheaper than high-speed hard disk [21],

which can in turn enable widespread deployment in diverse computing domains.

Modern SSDs internally employ a flash translation layer (FTL), managing two intrinsic

properties of NAND flash memory to emulate it as a block device: first, no write is allowed

before erasing a block, called the erase-before-write property. Second, NAND flash makers

adopt a write sequence in a block due to the page-level program disturbance behavior [74] [27],

which has a deep relationship with modern NAND flash memory reliability and data integrity. In

addition to the erase-before-write property, this in-order-update property in a block necessitates

out-of-place updates for write operations. To enable such out-of-place updates in the SSD, FTL

remaps the logical addresses that conventional block devices provide to the physical addresses

presented by the NAND flash memory. In addition, the FTL employs a garbage collector, which

reclaims the invalid pages, incurred during the out-of-place update process. At a high-level, the

170

garbage collector relocates valid pages in certain blocks to new blocks, which are prepared in

advance, and erases them in order to make rooms for new writes. This operation is referred to as

garbage collection (GC).

The biggest problem with existing garbage collectors is that their worst-case latency can

be as high as 64∼128 times than that of normal write operations [52] [67]. Our own experiments

show that GCs introduce numerous blocking I/Os, and once a GC operation begins, the response

time of write operations on SSD increases substantially. Further, GC overheads significantly

reduce available bandwidth in most recent commercial SSDs. Unfortunately, this interaction

between the GC and writes introduces significant performance variations/degradations during

I/O, which may not be acceptable in many I/O-intensive computing environments.

Motivated by this, most current FTLs optimize mapping policies to minimize the number

of GC invocations and hide their undesired latency. For example, existing buffer management

schemes are specialized to reduce the number of writes to NAND flash. Also, some SSDs em-

ploy partial block cleaning techniques [11] [15] that attempt to provide stable GC performance

by balancing the number pages/blocks between production and consumption of them using an

extra non-volatile buffer. However, there is yet another dimension to avoiding GC overheads.

Specifically, the presence of idle I/O times in workloads can be exploited by shifting garbage

collections from busy periods to other periods where they can be accommodated with minimum

performance penalty.

In this Chapter, we propose a novel GC strategy, an approach that removes GC overheads

and provides stable I/O performance in SSDs during the I/O congestion periods. Our proposed

GC strategy consists of two components, called Advanced Garbage Collection (AGC) and De-

layed Garbage Collection (DGC). More specifically, AGC tries to secure free blocks and remove

171

on-demand GCs from the critical path in advance, so that users do not experience GC-induced

latencies during the I/O-intensive periods, whereas DGC handles the collections that AGC could

not handle, by delaying them to future idle periods. Since our approach mainly reschedules

garbage collections, it can work with any existing FTL.

Shifting GC operations however can increase program/erase (PE) cycles, which makes

the life time of SSDs shorter. For example, if a garbage collector heedlessly reclaim blocks,

which have the potential to be further utilized or used for new writes, it can introduce unneces-

sary PE cycles in relocating valid pages within them. To prevent this problem, we propose two

different implementations for AGC, called look-ahead garbage collection and proactive block

compaction, based on the duration of the idle period under consideration and the style of GC

detection. Specifically, the look-ahead GC utilizes short idle periods and reclaims block based

on the online information extracted from a device-level queue, whereas the proactive block com-

paction targets long idle periods and perform GCs only related to fully utilized blocks.

As shown in Figure 7.1, the main goal behind our strategies is to perform as many GCs

as possible in the idle periods. Our contributions in this Chapter can be summarized as follows:

• Eliminating GC overheads: When using our garbage collection strategies, applications

do not experience GC overheads. This is because our strategies successfully migrate on-demand

GCs from busy periods to idle periods. Experimental results show that our proposed GC strate-

gies result in stable I/O performance under various types of workloads.

• Avoiding additional GC operations: The proposed schemes (AGC and DGC), when

applied together, do not increase the original number of GC operations. They only reschedule

the GC operations that would be invoked soon by speculating their GC activities and identifying

appropriate idle periods based on their durations (short or long). If the frequency with which

172

0 200 400 600 800 1000
0

30000

60000

90000

120000

0 200 400 600 800 1000
0

30000

60000

90000

120000

0 200 400 600 800 1000
0

30000

60000

90000

120000

0 200 400 600
0

120000

0 200 400 600
0

120000

0 200 400 600
0

120000

La
te

nc
y

w
ith

 G
C

s
(u

s)
La

te
nc

y
w

ith

P
ris

tin
e

S
ta

te
 (u

s)
La

te
nc

y
w

ith
A

G
C

 &
 D

G
C

 (u
s)

Command Sequence

idle periods

Real View

Real View

Real View User View

User View

User View

Fig. 7.1 Overview and comparison of SSD latencies with/without our proposed GC strategies
(AGC and DGC), tested by random write pattern with 2048KB request size. Note that AGC and
DGC shift GC overheads to idle periods (as shown in the real view), thereby providing stable
I/O performance like a pristine state (as shown in the user view).

idleness occurs is not high enough, then the GC invocations are postponed to future idle periods

without affecting latency of I/O operations. As a result, we do not incur any additional GC

operations.

• Compatibility with underlying FTL schemes: Most optimized garbage collectors pro-

posed in the literature need additional non-volatile (NV) blocks on the SSD and/or require cus-

tomized FTLs for successful execution. In contrast, our proposed schemes do not require any

extra NV blocks or modifications to the existing data structures, and can therefore work with any

FTL.

173

To test the effectiveness of our GC schemes, we implemented them in a simulator that

models bus-level transactions and collected statistics using a variety of workloads. Our exper-

imental results show that the proposed schemes reduce GC overheads (without causing addi-

tional write/erase operations) between 66.7% and 98.2%, in terms of the worst-case response

time. Further, our schemes prepare free blocks in advance to help prevent the block thrashing

problem. Consequently, they reduce the number of block erase operations by 16.6%, compared

to a conventional FTL.

7.2 Background and Related work

7.2.1 Flash Translation Layer

The NAND-based flash consists of physical blocks; a physical block is the erase unit

and is composed of several pages, which are the read/write units in the NAND flash. One

of the drawbacks of the NAND flash is that a page needs to be updated in-place within the

block. In addition, writes to a formerly written page are not allowed before erasing the entire

block corresponding to it. Since a block is much larger than a page and an erase operation

is more expensive than a write operation, the NAND flash alone is not sufficient to build an

SSD. Therefore, a Flash Translation Layer (FTL) is required within the SSD to prepare physical

blocks ahead of time. Whenever an SSD receives write requests, it forwards them to a temporal

block called an update block. The FTL then serves requests by physically (in-place) writing

them into a block. This allows logical out-of-order update by mapping addresses between the

in-place and out-of-place update sequences.

174

The FTL also hides the latency of block erase and unnecessary read/write operations in

copying valid pages that are live in a block [52] [57]. Similarly, to provide data consistency

and coherence between the original block (also called the data block) and the update block, the

FTL internally maintains mapping information and address translations. In this way, by inter-

nally managing the flash specific characteristics, the FTL provides compatibility with commodity

storage systems. Typically, based on the number of the data block(s) and update block(s) in a

logical block, FTLs are classified into three types. Block-mapping FTL manages a logical block

by combining one data and one update block (1:1 mapping). Hybrid mapping FTLs manage

a logical block by composing n data block(s) and m update block(s) (n : m mapping). Finally,

pure-page mapping FTLs leverage only update blocks for serving I/Os, and can allocate them in

any physical page location.

7.2.2 Garbage Collection

If the FTL does not have enough free pages in its update block, it has to perform GC in

an attempt to reclaim available blocks to which write request, can be forwarded. This type of GC

is referred to as update block reclaiming GC. Similarly, in cases where the FTL has insufficient

free blocks, it should secure free blocks by evicting some other logical blocks, called free block

reclaiming GC. These processes require migrating all valid pages from the update and original

blocks to a new free block (called page migration) and erasing these two blocks. Thus, the GC

latencies are typically much larger than that of normal I/O operations. In addition, the FTL

carries out these GC operations during runtime on a need-basis, meaning that the collections

are postponed as long as the SSD can accept new data and are only performed when required.

The reason why GCs are executed on demand is that a block erase operation, which is part of

175

the garbage collection activity, can significantly affect the SSD’s lifetime and reliability [52].

For example, if a garbage collector heedlessly reclaim blocks, which have the potential to be

further utilized or used for new writes, it can introduce unnecessary program/erase (P/E) cycles

for relocating valid pages within them. Due to this property, GC latencies typically piggyback

on ordinary I/O requests, leading potentially to very high I/O latencies. Several FTL based stud-

ies [67] [52] attempted to reduce GC overheads and hide their latencies. Other approaches like

the real-time GC [11] and the partial block cleaning [15] aimed to provide stable GC perfor-

mance by balancing the number pages/blocks between the production and consumption of them

using an extra non-volatile buffer.

7.3 Impact of Garbage Collection in Commercial SSDs

To measure the impact of GCs in state-of-the-art SSDs, we evaluated their latencies and

bandwidth with/without GCs.

Latency impact: Figures 7.2(a) and 7.2(b) plot normal latencies and extra latencies due to

GCs, respectively. In this empirical test, we used a 256GB MLC-based SSD which employs

two 128MB internal DRAM buffers and measure latencies of individual I/O operations us-

ing ULINK’s DriveMaster [99]. The DriverMaster is a commercial tool that captures detailed

storage-level latencies and tests SSDs in a physical level. We wrote data with 1MB transfer size

into the SSD using a random pattern. While a pristine SSD was used for the normal latency

test, we later filled the SSD completely and introduced a one hour period before evaluating the

GC latencies. As illustrated in Figure 7.2, GCs introduce numerous blocking I/Os, and once

a GC operation begins, the response time for write operations increases substantially. Further,

176

irrespective of the large amount of idleness that we artificially introduced, high latencies of GC

are observed from the beginning of the GC latency test.

0 2000 4000 6000

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105
La

te
nc

y
(u

s)

Write Sequence

(a) Normal Latencies

0 2000 4000 6000

5.0x104

1.0x105

1.5x105

2.0x105

2.5x105

3.0x105

3.5x105

La
te

nc
y

(u
s)

Write Sequence

La
te

ci
es

 d
ue

 to
 G

C
Ex

pe
ct

ed
La

te
nc

ie
s

(b) Latencies with GCs

Fig. 7.2 Latency comparison for a random write access pattern with 1MB request size using a
real MLC-based SSD.

Bandwidth impact: From a system designer viewpoint, throughput might be a more important

performance metric. In this test, we measured performance with/without GCs of four commer-

cial SSDs (three 64GB, 256GB and 160GB MLC-based SSDs and one 120GB SLC-based SSD)

using Intel Iometer [35]. Figures 7.3(a) and 7.3(b) plot bandwidth with the pristine state and

bandwidth with fragmented state, respectively. To make an SSD fragmented, we first wrote 4KB

data in random order and fully utilized its storage space. Similar to the latency impact test, we ar-

tificially introduced a one hour idle time before evaluating this bandwidth impact test. As shown

in Figure 7.3, GC overheads significantly reduce available bandwidth in all four commercial

SSDs tested, regardless of the idle time introduced.

177

512B 1K 2K 4K 8K 16K 32K 64K128K
0
20
40
60
80
100
120
140
160
180
200
220
240
260

B
an

dw
id

th
 (M

B
/s

)

Request Size

 MLC-SSD-S-64G
 MLC-SSD-S-256G
 SLC-SSD-M-120G
 MLC-SSD-I-160G

(a) Normal Bandwidth (Pristine)

512B 1K 2K 4K 8K 16K 32K 64K128K
0
20
40
60
80
100
120
140
160
180
200
220
240
260

B
an

dw
id

th
 (M

B
/s

)

Request Size

 MLC-SSD-S-64G
 MLC-SSD-S-256G
 SLC-SSD-M-120G
 MLC-SSD-I-160G

(b) Bandwidth with GCs (Fragmented)

Fig. 7.3 System throughput for four state-of-the-art SSDs (different vendors and NAND types).
Note that all SSDs tested suffer from significant performance degradation once garbage collec-
tions begin.

7.4 High Level View of GC Scheduling

To avoid performance degradation and variations caused by GCs, we propose novel

garbage collection strategies. Unlike previous GC strategies that reduce the number of GC in-

vocations or GC overheads at runtime, our proposed GC strategies fully utilize device-level idle

times, which are invisible to the user, to perform GC activities. To efficiently exploit such idle

times, we classify them into two groups based on their lengths. Using our idle period classifi-

cation, we then invoke different types of GCs to ensure that the user does not experience long

GC-induced latencies. Our approach allows the other components of FTL to work without any

modification, making our approach highly portable.

7.4.1 Idle Period Classification

Short idle periods: Several applications exhibit short idle intervals interleaved with parallel

I/O requests in a device-level command queue [38], which allows a storage system to determine

actual data transfer times and implement out-of-order execution of I/O commands. To enable

178

this, most host interface protocols bring I/O commands, along with preinformation including

request type, addresses and request size, to the storage system before the actual data transfer

begins.

To measure how many commands with their preinformation are available at a given time

and the duration of idle periods, we executed Intel Iometer workloads [35] and employed a

265GB MLC-based SSD that used in Figure 2. The LeCroy protocol analyzer [62] is used

for analyzing the SATA protocol at the physical layer. We observed that 3-17 commands are

delivered to the device-level command queue in parallel before the actual data communication

starts, and the storage-level idle times experienced by the I/O requests vary between 1.8 µs and

15.2 ms, based on the operation type and transfer size.

This storage-level short idle periods that we measured can be detected by looking through

the I/O commands with their preinformation. Specifically, one can preview I/O commands in the

queue before they get executed, and identify the short idle intervals between successive I/O

commands. Even though this interval is short, one benefit gained from utilizing these short

idle intervals is that it allows one to investigate a request through preinformation and accurately

predict what will happen to the request during the idle time. Each short idle period can be

expressed as follows:

Tshort−idle = tstarti+1 − (tstarti + texei ∗ li) (7.1)

: ∀i,1 < i ≤ n,

where i+1 denotes the index of the I/O command following the ith I/O command in the queue,

tstarti denotes actual transfer start time, texei is the execution time based on a page, and li is the

179

page length of I/O command i. Clearly, short idle periods exist only if Tshort−idle is larger than

zero and there are I/O commands sitting in the queue (i.e., at least two commands). Here, n

depends on the queue size accommodated by the host interface nuance. For example, NCQ [38]

provides 32 entries, whereas TCQ [96] typically provides 256 entries. AGC exploits just two

entries for previewing the I/O commands.

Long idle periods: We also observed that many applications exhibit relatively long idle periods

with no enqueued I/O commands. We classify an idle period as a long idle period if its length

is larger than a certain threshold [16] [72] [26]. The fraction of I/O instructions that experience

these long idle periods ranges between 38% and 83% under various workloads tested [78] [88]

when the threshold is set to 1 sec. Note that, to detect these idle periods, we cannot take advan-

tage of the device-level command queue and preinformation since it is empty most of the time.

Consequently, long idle periods should be handled differently.

Depending on whether idle periods are short, long or none, our proposed strategies sched-

ule GC operations and secure free blocks differently.

AGC AGC

Wasted idle time

On-demand GC On-demand GC

Block compaction

DGC

Retroactive

AGC

Proactive

TIME

Wasted idle time

Preinformation arrival

(a) short idle utilization (b) long idle utilization

Fig. 7.4 A high-level view of our proposed GC strategy and idle time utilization.

180

7.4.2 Shifting Garbage Collection Overheads to Idle Periods

We start by observing that scheduling a GC on an arbitrary idle period can introduce

extra block reclaimings (P/E cycles) and reduce opportunities for block reuse. This can in turn

potentially shorten SSD lifetime and affect its reliability. Therefore, in our proposed schemes,

we migrate the GC operations to carefully-chosen idle periods without increasing the original

number of GC operations. We also minimize the overheads incurred by on-demand GC invo-

cations by securing the available free blocks as much as possible in advance during the idle

periods.

We explore two different strategies for shifting GC overheads, depending on the amount

of idleness and on-demand GC needs, as shown in Figure 7.4. First, short idle periods are mainly

exploited by shifting on-demand GCs that will be invoked during busy periods (Figure 7.4a). In

this case, the garbage collector monitors upcoming device-level I/O tasks to determine when a

collection will be needed and performs the necessary tasks proactively. If there is no on-demand

GC need, the garbage collector performs block compactions to reclaim fully-occupied blocks

thereby retrieving free blocks in advance (Figure 7.4b). We refer to this strategy as the Advanced

GC (AGC). Second, if the amount of short idleness is not sufficient to avoid on-demand GC

invocations at a certain point, our proposed GC strategies prevent them from being invoked

on the critical path by delaying the GC execution (Figure 7.4b); we refer to this strategy as

the Delayed GC (DGC). In other words, AGC shifts GC activities to idle periods in advance,

whereas DGC handles the on-demand collections that AGC could not handle, by delaying the

GC invocations to future idle periods.

181

These different GC strategies based on the type of idle periods and GC needs allow our

strategies to shift GCs from busy periods to idle periods, as illustrated in Figure 7.1. At the same

time, they help us minimize the potential side effects on SSD reliability and eliminate the extra

storage space requirement in the SSD for the operation of the proposed schemes.

7.5 Implementation of our GC strategies

Recall that we quantified the impact of garbage collection on commercial SSDs in Sec-

tion 7.3. To alleviate the overheads caused by garbage collections, we classified the types of

idle periods in Section 7.4 and presented a high-level view of our proposed approach. We next

describe the technical details of AGC and DGC in Sections 7.5.1 and 7.5.2, respectively. Section

7.5.3 discusses how AGC and DGC works together.

7.5.1 Details of Advanced GC Strategy (AGC)

AGC tries to remove the on-demand GCs from the critical path and secure free blocks

in advance so that users do not experience long GC-induced latencies during the I/O congestion

periods. Depending on the type of the idle period we are dealing with, one can implement AGC

in two different ways. The look-ahead garbage collection (Section 7.5.1.1) is a type of AGC

that targets on-demand collections by utilizing short idle periods, whereas the proactive block

compaction (Section 7.5.1.2) secures free blocks by utilizing long idle periods.

7.5.1.1 Look-ahead Garbage Collection

To shift GC invocations to earlier idle periods, this scheme exploits the device-level com-

mand queue and short idle periods. It starts by calculating the number of GC operations that can

182

be executed in short idle periods. In this step, the look-ahead GC checks the queue entries and

extracts I/O request information such as the length of I/O request and the Logical Sector Number

(LSN) and associated Logical Block Number (LBN). It then finds the Physical Block Numbers

(PBNs) corresponding to the LBN by looking up the mapping table of the underlying FTL. The

look-ahead garbage collector then checks whether the available space, especially the number of

free pages, is sufficient to service the I/O request of the specified size (length). If not, an update

block reclaiming GC is required.

Once the need for GC is identified, our scheme next calculates a GC latency in order

to accurately perform on-demand GC in advance. Let κ denote the number of physical blocks

per logical block (e.g., in a block mapping scheme, the value of κ is one. On the other hand, if

the system employs a 2:8 hybrid mapping scheme, κ can be up to ten). Further, let tload , twrite,

and terase denote execution latencies for page load (read), page write and block erase operation,

respectively, and let t ′write represent the time for writing metadata to confirm the fact that a cer-

tain physical block was erased after GC (this helps to ensure mapping consistency in the FTL).

Since the look-ahead GC knows PBN(s) for the logical block and has all the relevant mapping

information, it can determine the number of valid pages for the PBN(s); say, nvalid
page . In this way,

for each I/O command i that is involved in the GC, its GC latency (Tgci) can be calculated using

the following expression:

Tgci = (tload + twrite)∗nvalid
page︸ ︷︷ ︸

page migration

+

block cleaning︷ ︸︸ ︷
(terase + t ′write)∗κ . (7.2)

This expression captures the page migration latency for each valid page from the update/data

block to a free block, as well as the block cleaning latency for these blocks. Typically, t ′write

183

is approximately the same as the latency it takes to write one page (twrite). This is because the

metadata is designed to fit in a single page to reduce the overhead of storing the metadata itself.

The total amount of time taken by the look-ahead GC to perform collections over n blocks is

given by (∑n
i=1 Tgci). Using the GC latencies of individual blocks, we determine the number of

blocks (n) that can be reclaimed at runtime, under the constraint that the total GC time for the

determined number of blocks is less than or equal to the short idle time given by Equation (7.1).

Once AGC determines the number of blocks, n, to be claimed, it performs look-ahead GCs for

these n blocks in advance.

Data Blocks

Update Blocks

PBN 3 PBN 4

PBN 7 PBN 10 PBN 15 PBN 21

valid
valid
valid
free

invalid
invalid
invalid
invalid

10
8
8

10

11
12
8
8

invalid
valid
valid

invalid

14
12
10
8

invalid
valid

invalid
valid

12
13
14
15

8
9

10
11

11
14
8
.

LBN 1

invalid
invalid
invalid
invalid

invalid
valid

invalid
invalid

Device-level command queue

....1211

write(136, 8) LPN:34, 1Page

write(32, 8) LPN: 8, 2Pages

8

9

10

11

12

13

14

15

2

1

2

0

1

1

1

3

21

3

15

21

15

4

21

4

LBN 1

PBN PPN LPN

Requests from the host side

Pre-info

(TAGS)

Metadata

Logical Block

Fig. 7.5 An example of the look-ahead GC with a hybrid mapping scheme. By inquiring the
mapping information, our AGC scheme figures out that the GC for LBN 1 will be invoked soon.

For instance, in Figure 7.5, the look-ahead GC identifies the request with an LSN of 32

and I/O size of eight sectors. Since the logical block corresponding to that request has only one

free page, our scheme executes the GC operation in the short idle time. In addition to providing

stable and better SSD performance, this implementation performs GCs only when an on-demand

184

GC is about to occur and the short idle periods are suitable to perform GC. Therefore, it ensures

a similar level of reliability compared to a standard FTL.

7.5.1.2 Proactive Block Compaction

In order to exploit long idle times that could not be exploited by the look-ahead GC,

we propose a proactive block compaction mechanism strategy. In this strategy, we detect the

blocks (in a logical block) that are fully occupied with valid/invalid pages, and compact them in

advance during the long idle periods. Compacting blocks involves enforcing all valid pages from

the fully-occupied physical block to a new, clean block, and removing the invalid pages in the

former by erasing them. Consider as an example Figure 7.6 where we have two fully-occupied

blocks, namely, LBN 5 and LBN 32768. AGC can compact these two blocks in advance during

long idle periods. In order to avoid the scanning penalty required to identify the fully-occupied

blocks, we add the LBN of the fully-occupied block to the AGC job list, while the FTL is

serving the I/O requests so that the blocks can be compacted proactively without scanning the

entire storage address space.

LBN 1 LBN 2 LBN 3 LBN 4 LBN 32768 LBN 32769

85% 20 % 95 % 15 % 100 % 15 %

LBN 5

100 %

Logical Block Address Space

..327685

.1.1

The AGC Job List

The DGC Job List

..

..

Advance Garbage Collector

Delay Garbage Collector

.32.20PBN

LBN

LBN

Fig. 7.6 Job lists for AGC and DGC.

185

Even though proactive block compaction is relatively simple, it can be very effective

in practice as far as enhancing idle time utilization and securing free blocks are concerned. It

should be noted that the proactive block compaction mechanism is executed only if the number

of free blocks is less than the free block threshold (i.e., an on-demand GC would be invoked very

soon). Therefore, similar to the look-ahead GC mechanism discussed earlier, this proactive block

compaction mechanism also minimizes the number of unnecessary erase operations, which in

turn helps to improve SSD endurance and reliability.

7.5.1.3 Incremental Garbage Collection

One concern regarding AGC is that it could lead to undesired performance degradations

and prevent the GC latencies from being hidden, if idle periods are too short or do not occur

frequently enough. To avoid this, our implementation of AGC splits GC activities into smaller

ones delimited by checkpoints, and performs the GCs step-by-step based on the checkpoints.

As illustrated in Figure 7.7, the checkpoints are inserted at the end of every NAND I/O com-

pletion point and constitute the boundaries across the neighboring GC steps. Inspired by the

checkpointing strategy described by [39], AGC incrementally performs a given GC operation

one step at a time; this is referred to as the Incremental Garbage Collection (Incremental GC) in

the remainder of this Chapte.

Page Load Page Write Page Load Page Write Block Erase Block Erase

.. Meta WriteMeta Write

The i
th

Garbage Collection Workload

������ + �	
��� ∗ ������
�����

 ���
��� + �	
���
′ ∗ � ����

Incremental GC Checkpoints for Idle Time Breakup

Fig. 7.7 Checkpointing for incremental GC. At each checkpoint, by checking the device-level
queue, the garbage collector can decide whether it can perform further collections or not.

186

Whenever AGC reaches a checkpoint, the incremental GC determines whether further

collections can be performed or not by checking the device-level queue. If there are no I/O re-

quests until the next checkpoint, it goes ahead and executes the next step of the GC operation.

The same procedure is repeated as long as there are no I/O requests. If on the other hand AGC

detects an I/O request at a particular checkpoint, it postpones the remaining GC steps to the next

idle period. To do this, it marks the current GC job status and inserts this marked status infor-

mation into another job list that is managed by DGC (this will be revisited in Section 7.5.2.1).

This incremental GC operation allows AGC to avoid the potential drawbacks of very short idle

periods, and smoothly pass the control of GC operations to DGC. As a result, the SSD is able to

serve the bursty I/O requests that can potentially create very short idle periods.

7.5.2 Details of Delayed GC Strategy (DGC)

Even though idle periods are typically long enough [72] [78] [77] for AGC to prepare

available free blocks ahead of time and execute GC in advance, in cases where idleness does not

occur frequently, AGC may not be very successful. The main goal behind our Delayed Garbage

Collection Strategy (DGC) is to address this situation by delaying GC invocations. Its operation

can be divided into two steps as explained below.

7.5.2.1 Update Block Replacement

As stated earlier, the main reason why GCs degrade system performance is page migra-

tions. To avoid this degradation, DGC defers the page migration activity to future idle periods.

Whenever an on-demand GC occurs in a busy period, DGC allocates free block(s) as update

block(s). Normally, commodity FTLs migrate valid pages from the update and data blocks to

187

an allocated free block. In contrast, DGC skips this process and serves the urgent I/O requests.

Rather than migrating pages, DGC adds the LBN and PBN(s) corresponding to the migration

into a job list it maintains (called the DGC job list). This delayed page migration activity is later

resumed in a future idle period by the DGC’s retroactive block compaction (see Section 7.5.2.2).

The free block allocation carried out by DGC is similar to what a standard FTL would

do during GC. The only difference is that DGC allocates the block as an update block (not a

free block). Since the FTL already has an update block (but it is garbage), DGC intercepts

the update block information and replaces the PBN of the update block with the allocated free

block’s PBN in the FTL mapping table. In this way, the FTL treats the allocated free block

(called the delay block) as an update block, and is not required to manage the block mapping

information. It explicitly manages replacing/updating a block for preserving consistency during

information mapping. Further, DGC maintains this information using the DGC job list and hides

this information from the FTL until the page migration process completes. In the meantime, if

there is an I/O request, the FTL serves that request based on the available mapping information.

This replacement and interception procedure is called the Update Block Replacement.

The main advantage of the update block replacement is that, as soon as the SSD receives

an I/O request, it can serve the request without migrating the valid pages, even when AGC

could not handle on-demand GCs in advance. Another benefit is that DGC does not require any

additional NV memory space for delaying on-demand GCs, which is essential resources of prior

works [15] [51]. This is because it replaces the update block with free blocks that belong to the

FTL address space. Note that the mappings employed by the FTL and DGC do not interfere with

each other, and this allows DGC to work with various other mapping schemes used in current

FTLs.

188

Algorithm 3
IssueCommands(IoRequestPacket irp) of our proposed AGC+DGC algorithm. Note that the
SSD just forwards I/O requests to the underlying FTL without performing any GC during the
busy periods.

1: if irp.command != empty then
2: if ftl.checkOnDemandGc(irp) then
3: {delay the on-demand GC}
4: UpdateBlockReplacement(irp)
5: insertEntry(DgcJobList, irp.getLbn())
6: end if
7: {call the FTL service}
8: ftl.ServeIo(irp.command, irp.lsn, irp.sectors)
9: else

10: targetLbn := getDgcLbn(DgcJobList) {DGC}
11: if targetLbn != nullblock then
12: consumed = RetroactiveBlockCompaction(targetLbn)
13: end if
14: {AGC}
15: idleType := checkIdleType(CommandQueue, consumed)
16: if idleType = short then
17: {Calculate GC latency using Equation 1 & 2}
18: idletimes := getIdleTime(CommandQueue, consumed)
19: requiredTimes := speculateExecutionTime()
20: while idletimes ≥ requiredTimes do
21: LookaheadGc(irp)
22: end while
23: else if idleType = long then
24: ProactiveBlockCompaction(irp)
25: end if
26: end if

189

7.5.2.2 Retroactive Block Compaction

When there is no I/O congestion, DGC performs page migrations and returns the relevant

delay block and update/replace block to the free block space. The blocks returned DGC can be

recycled as normal free blocks. To return a block, DGC first extracts the LBN and PBN for

a replace/update block from the DGC job list. It then queries the PBN for the data and delay

blocks by using FTL’s block-level mapping table. That is, it looks up the mapping table entry

for the LBN extracted from the DGC job list and gets the corresponding PBN from the table.

Once DGC collects all PBN(s) for the blocks related to the delayed logical block, it

retroactively compacts the blocks and returns them to the original state (i.e., as free blocks).

While compacting, DGC migrates valid pages deferred from all PBNs for each delay, replace/update,

and data block. This page migration is simply executed by reading and writing pages in an as-

cending order. We want to point out that the number of pages requiring migration is less than

or equal to the number of pages in a logical block, independent of the number of delay and data

blocks involved. Thus, the migration cost of DGC is the same as that of original GC. During

busy periods, DGC preferentially reads and writes pages to the delay block rather than the re-

place/update block to guarantee data consistency. The reason behind this order is that the delay

block contains the latest data when compared to the data in the replace/update block(s). This

also helps DGC to improve block utilization and reduce the amount of I/O activity while per-

forming the collections since the replace/update block(s) can be erased without any read or write

operation in the ideal case.

190

7.5.3 Putting the Two Schemes Together

When our two schemes, AGC and DGC, are applied together we expect that most GCs are

invoked by AGC; DGC will be invoked only if the idleness at hand is insufficient or the number

of free blocks secured by AGC is not enough. In fact, we observed during our experiments that

the fraction of idle periods DGC handles accounts for at most 20%, and AGC manages the rest.

Algorithm 3 describes the steps involved in integrating DGC and AGC (called the AGC+DGC

scheme). In summary, if an I/O request triggers an on-demand GC, DGC delays page migration

to future idle periods using the update block replacement mechanism. During idle periods, DGC

first performs retroactive block compaction only if a delayed GC block exists. And, AGC is

invoked based on the type of idle period at hand. Specifically, if the idle period is short (just

enough to perform the required GC), look-ahead garbage collection is invoked. Finally, proac-

tive block compaction is invoked when the idle period is long. In each implementation, GC is

performed incrementally, as explained in Section 7.5.1.3.

7.6 Experimental Evaluation

To evaluate the effectiveness of our AGC and DGC, we implemented them in a simulator-

based platform. The original event-driven simulator [51] was modified to model multiple chan-

nels and ways with a bus transaction-level clock accuracy.

SSD configuration. We implemented two different SSD-based disk arrays;

• 6SSDs-RAID: the first disk array was setup based on the original MSN file server storage

configuration [78], which consists of 6 disks (Disk0 ∼ Disk5). In this default array, we intro-

duced six of 64GB SSDs and each SSD, which replaces each disk of MSN storage server, has 4

191

channels and 4 ways architecture. Further, we categorize this SSD array based on each disk of

write-intensity.

• 6SSDs-RAID-LO is the group of SSD0, 1, 2, and 3 with low I/O intensive workloads of

which the fraction of write amount is under 20% of total I/Os.

• 6SSDs-RAID-HI is another SSD group, consisting SSD4 and 5 with high I/O intensive

workloads of which the write fraction of total I/Os is 80%.

• 3SSDs-RAID: Another disk array leverages three SSDs, in which each individual SSD com-

poses of 8 channels and 8 ways (128GB). This disk array was configured to measure performance

impacts on a different SSD configuration. In this 3SSDs-RAID, disk0 and disk1 (of the MSN

server) are replaced by SSD0, disk2 and disk5 are replaced by SSD1, and disk3 and disk4 are

replaced by SSD2.

Both SSD arrays in RAID-0 configuration are viewed by the OS as a single device. Even

though we model a Samsung K9KGA0B0M MLC NAND flash1 [91] in our simulations, our

proposed GC strategies can be applied to other NAND flash device models as well.

FTL implementation. We implemented a log-structured FTL (L-FTL) and a 2:8 hybrid mapped

FTL (H-FTL) on the SSD-based disk array models [57] [52]. We also implemented a partial

GC scheme based FTL (P-FTL) [15] [51] [11]. After some initial experiments, the percentage

of free blocks and GC threshold are set to 3% and 1%, respectively, of the total SSD address

space2. We also introduced a 14 GB extra space to P-FTL for each SSD in the 6SSDs-RAID and

1This has 128 pages per a block. Based on a 4 KB page size, read, write and block erase latencies are
183.2 us, 860.36 us, and 2 ms, respectively.

2Some industries employ even higher GC thresholds with more free blocks, which renders SSDs
expensive. Since there is a variety of configurations for GC threshold, we choose a lower bound value
for our evaluation. We believe that alleviating GC overheads in our configuration (more complex) can be
reduced the GC problem in such expensive SSDs configuration.

192

The num-
ber of I/O
requests

Total amount
of requests
(KB)

Total amount
of writes (KB)

Idle
Periods
(%)

Disk0 1,509,397 32,490,240 3,051,918 38.6
Disk1 2,221,728 35,383,340 17,722,159 81.3
Disk2 500 1,958 1,958 56.6
Disk3 4,352 2,392,445 2,387,767 83.0
Disk4 12,627,396 117,607,983 24,835,283 42.4
Disk5 12,981,710 130,033,924 31,777,436 41.3
Total 29,345,083 317,909,889 79,776,520 64.1

Table 7.1 Important characteristics of our traces. The last column gives % of I/O requests con-
taining sufficiently long idle (> 1 sec) periods.

28GB extra spaces to it for each SSD in the 3SSDs-RAID based on the results from the write

buffer analysis [15]; these extra spaces are used as the non-volatile write buffer in an attempt to

serve urgent I/Os and provide real-time support, and managed through the page-level mapping

scheme in P-FTL, instead of employing a block-level mapping scheme.

Workloads. Enterprise traces tested are collected from the MSN file storage server over 5 days

[78] [88]. The total I/O traffic studied was up to 1.8TB. Important characteristics of our traces

are given in Table 7.1. In the traces used, 34.6% of idle intervals were long (larger than 1 sec)

and less than 29.5% were short, and 35.9% of the requests were back-to-back with no idle time

in between.

It should be mentioned that each I/O request of any trace we simulate has a time stamp

associated with it, and all the different approaches we tested (for reducing GC overheads) take

advantage of scheduling the I/O requests based on the corresponding time stamps (using NCQ).

Our bus-transaction level simulator extracts access time information from the I/O commands,

using which we synchronize the global timer of the simulator and check the I/O latencies at the

end of every I/O completion. This enables us to accurately record idle/busy periods on the SSDs.

193

0e+00

1e+05

2e+05

3e+05

4e+05

 0 300000 600000

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequences

SSD0

(a) Baseline GC

0e+00

1e+05

2e+05

3e+05

4e+05

 0 300000 600000

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequences

SSD0

(b) AGC only

Fig. 7.8 Performance of AGC with relatively low I/O intensive workloads (SSD 0 of 6SSDs-
RAID).

194

7.6.1 Performance Comparison

We first evaluate the performance of our two GC strategies (AGC and DGC) using

6SSDs-RAID in isolation. Figures 7.8 and 7.9 plot the response times of SSD0 of 6SSDs-

RAID-LO and SSD5 of 6SSDs-RAID-HI, respectively. As illustrated in Figure 7.8, AGC alone

successfully hides almost all on-demand GCs in SSD0, leaving nothing for DGC. We see from

Figure 7.9(b), however, that AGC alone is not very successful with the high I/O intensive work-

loads. During the high write-intensive periods, a few on-demand GCs are invoked due to the very

small amount of short idle periods in SSD5. Even though the number of these on-demand GC

invocations is small, the FTL uses up available free blocks for new requests, which introduces

more on-demand GC invocation. In a worst-case scenario, AGC suffers from both increased

amount of GC invocations and short idle periods as the execution progresses. This is the rea-

son why AGC requires DGC to handle such on-demand GCs. One can see from Figure 7.9(c)

that DGC alone successfully hides the GC latencies until four million write requests are served.

However, as soon as the available free blocks run out, DGC starts performing on-demand GCs.

One can also see from this result that DGC needs AGC, which supplies free blocks, enabling

the former to defer on-demand GCs. Both AGC and DGC, when applied individually, increase

the number of GCs compared to the baseline GC, which is used to perform on-demand GC of

L-FTL (see Figure 7.9(a)). However, when they are applied together, they successfully hide GC

latencies, as illustrated in Figure 7.9(d), and the total number of GCs does not exceed the base-

line case (Section 7.6.5). In the rest of our experiments, we focus on this integrated AGC+DGC

scheme.

195

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequence

SSD5

(a) Baseline GC

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06
R

es
po

ns
e

T
im

e
(u

s)
Write Request Sequence

SSD5

(b) AGC only

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequence

SSD5

(c) DGC only

0e+00

1e+05

2e+05

3e+05

4e+05

 0 2e+06 4e+06 6e+06

R
es

po
ns

e
T

im
e

(u
s)

Write Request Sequence

SSD5

(d) AGC+DGC

Fig. 7.9 Performance comparison of different garbage collection strategies (SSD5 of 6SSDs-
RAID with high I/O intensive workloads).

196

7.6.2 Worst Case Response Time

Figure 7.10 plot the worst-case response times (WCRTs) 6SSDs-RAID. We see from

these graphs that, WCRT ranges from 131 ms to 311 ms in 6SSDs-RAID-LO, under both the

L-FTL and H-FTL schemes. However, in both P-FTL and AGC+DGC we observe negligible

WCRTs, which results in completely hiding the GC latencies from the I/O operations. We further

observe that AGC+DGC reduces the WCRT by 65.2%, 98.6% and 96.4%, on average, over P-

FTL, L-FTL and H-FTL, respectively. This is because AGC+DGC performs on-demand GCs

only during the idle periods, and consequently, users experience no GC overheads during their

I/O services.

SSD
0
SSD

1
SSD

2
SSD

3
SSD

0
SSD

1
SSD

2
SSD

3
SSD

0
SSD

1
SSD

2
SSD

3
SSD

0
SSD

1
SSD

2
SSD

3
0

50000
100000
150000
200000
250000
300000

W
C

R
T

(u
s)

 Day 1
 Day 2
 Day 3
 Day 4
 Day 5

AGC+DGCP-FTLH-FTLL-FTL

(a) 6SSDs-RAID-LO

SSD4 SSD5 SSD4 SSD5 SSD4 SSD5 SSD4 SSD5
0

1000000
2000000
3000000
4000000
5000000
6000000

AGC+DGCP-FTLH-FTL

W
C

R
T

(u
s) Day 1
 Day 2
 Day 3
 Day 4
 Day 5

L-FTL AGC+DGCP-FTLH-FTLL-FTL

(b) 6SSDs-RAID-HI

Fig. 7.10 Worst-case response time (WCRT) analysis for 6SSDs-RAID. (a) With low I/O inten-
sive workloads, P-FTL and AGC+DGC show deterministic behaviors while the performances of
L-FTL and H-FTL fluctuate over time. (b) With high I/O intensive workloads, P-FTL experi-
ences very high WCRT, whereas AGC+DGC continues to provide stable I/O performance.

However, in 6SSDs-RAID-HI, P-FTL’s WCRT behavior fluctuates due to the write buffer

block thrashing problem.3 This causes P-FTL to perform out of order writes for a while and, as a

result, WCRTs become ten times worse as compared to the L-FTL case. In contrast, AGC+DGC

3This problem arises when the free pages in the write buffer (NV buffer) to which P-FTL writes urgent
data are no longer available.

197

still serves I/O requests within the predefined latencies, and achieves about 53 ms latency, in-

cluding the theoretic minimum for I/O processing, while the other approaches suffer from the

performance fluctuations and experience long WCRT under heavy I/O requests. Further, SSDs

supported by our AGC+DGC do not incur any GC latencies during busy periods, even in execu-

tion phases with very low idle times (≤ 10%). This is because AGC eliminates on-demand GCs

using idle times, and DGC postpones the GC latencies by shifting them to future idle periods,

as plotted in Figure 7.11(c). Figure 7.11 also explains how our proposed GC strategies collec-

tively take GC overheads off the critical path. While L-FTL and H-FTL (see Figures 7.11(a)

and 7.11(b)) incur GC latencies during the busy periods, AGC+DGC incurs (see Figure 7.11(d))

GC latencies only during the idle periods, which are not perceived by applications. This clearly

shows that AGC+DGC provides stable and better SSD performance with no on-demand GCs

taking place during the busy periods.

 0
 50

 100
 150

0 6e+04 1e+05 2e+05 2e+05R
e

sp
.T

im
e

 (
m

s)

Write Request Sequence

(a) L-FTL

 0
 50

 100
 150

0 6e+04 1e+05 2e+05 2e+05R
e

sp
.T

im
e

 (
m

s)

Write Request Sequence

(b) H-FTL

 0
 50

 100
 150

0 6e+04 1e+05 2e+05 2e+05R
e

sp
.T

im
e

 (
m

s)

Write Request Sequence

(c) AGC+DGC Visible

0

600

900

0 2e+05 3e+05 4e+05R
e

sp
.T

im
e

 (
m

s)

Detecting Idle Periods Sequence

Invisible Latency

(d) AGC+DGC Invisible

Fig. 7.11 Response times for a write intensive section (where the fraction of I/O executions with
no idle time is account for about 90%). While H-FTL removes about 40% of the GC related
overheads, AGC+DGC hides all on-demand GC latencies.

198

7.6.3 Excess Waiting Time

Figure 7.12 plots the amount of excess waiting time (EWT)4 in 6SSDs-RAID. One can

observe from Figure 7.12(a) that H-FTL significantly cuts down the GCs by maximizing the

block-level locality. It also dramatically reduces the number of page migrations introduced by

GCs. However, it can also be seen that, as the execution progresses (from day 1 to day 5), oc-

currences of EWTs increase, due to the shortage of available free blocks. To secure free blocks,

H-FTL had to merge up to ten blocks into two logical blocks, and merge approximately fifteen

thousand times a day, generating significant overheads. In contrast, P-FTL and AGC+DGC suc-

cessfully hide GC overheads at runtime (and thereby All EWT of them is zero). However, the

frequency of EWTs in H-FTL is less than that in P-FTL with high write intensive workloads (see

Figure 7.12(b)). In this case, P-FTL could not fully hide GC latencies when the NV buffer was

completely used by the large amount of I/O requests. This is because P-FTL incurs much longer

latencies than H-FTL, due to the write buffer thrashing problem, which is the same as the one

causing high WCRT.

On the other hand, our scheme successfully hides GC latencies because AGC can ahead

secure available blocks (delay blocks) to DGC even under high write intensive workloads. Fur-

ther, because of update block replacement scheme, the delay blocks are the same as the free

blocks, thereby not requiring any extra blocks to manage different mapping schemes. Our pro-

posed strategy essentially eliminates on-demand GCs by exploiting different types of idle periods

and thus leads to stable GC latencies.

4EWT is defined as the difference between the actual wait time and the marginal response time (in this
work, it is assumed to be 30 ms).

199

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

00
2x104
4x104
6x104
8x104
1x105
1x105

Latency(ms)

Fr
eq

ue
nc
y

L-FTL H-FTL

S
S
D
0

S
S
D
1

S
S
D
2

S
S
D
3

S
S
D
0

S
S
D
1

S
S
D
2

S
S
D
3

 Day 5 Day 4
 Day 3 Day 2 Day 1

(a) 6SSDs-RAID-LO

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

00
5x104

2x105
4x105
6x105
8x105
1x106

Latency(ms)

S
S
D
4

AGC+DGCP-FTLH-FTL

Fr
eq
ue
nc
y

 Day 5 Day 4 Day 3 Day 2 Day 1

L-FTL

S
S
D
5

S
S
D
4

S
S
D
5

S
S
D
4

S
S
D
5

S
S
D
5

S
S
D
4

(b) 6SSDs-RAID-HI

Fig. 7.12 Excess waiting time (EWT). The x-axis represents the upper bound on EWT. (a) L-FTL
and H-FTL experience I/O blocking problem stemming from GCs while P-FTL and AGC+DGC
have no such problem. (b) With heavy writes, even though P-FTL results in fewer GC invoca-
tions, its GC latencies are much longer than others

SSD0 SSD1 SSD2 SSD0 SSD1 SSD2 SSD0 SSD1 SSD2 SSD0 SSD1 SSD20
200000
400000
1000000
2000000
3000000

W
C

R
T

(u
s)

 Day 1
 Day 2
 Day 3
 Day 4
 Day 5

L-FTL H-FTL P-FTL AGC+DGC

Fig. 7.13 Worst-case response time (WCRT) analysis for the 3SSDs-RAID.

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

10
m
s

10
0m

s
10
00
m
s

50000

100000

150000

200000

250000

Fr
eq

ue
nc
y

Latency

 Day 5 Day 4 Day 3 Day 2 Day 1

SS
D
2

SS
D
1

L-FTL H-FTL

SS
D
0

AGC+DGCP-FTL

SS
D
2

SS
D
1

SS
D
0

SS
D
0

SS
D
1

SS
D
2

SS
D
2

SS
D
1

SS
D
0

Fig. 7.14 Excess waiting time (EWT) analysis for the 3SSDs-RAID.

200

7.6.4 Performance Compariosn of 3SSDs-RAID

Figure 7.13 and Figure 7.14 illustrate, respectively, WCRTs and EWTs for 3SSDs-RAID.

In both WCRT and EWT analyses, performance of the 3SSDs-RAID is similar to 6SSDs-RAID

except for P-FTL. Specifically, in day 1, P-FTL guarantees deterministic performance with the

zero EWT value on even high write-intensive workloads (SSD1 and SSD2 of 3SSDs-RAID)

because each SSD of 3SSDs-RAID has a larger storage capacity than an SSD in the 6SSDs-

RAID configuration. In other words, P-FTL is more tolerant to update block reclaiming GC

overheads as its NV buffer has more physical pages. However, as the amount of writes increases,

the available physical pages also run out. As a result, P-FTL could not satisfy the deadline

requirements again. 3SSDs-RAID with P-FTL has about 50% less impact on the write block

thrashing problem compared to 6SSDs-RAID, mainly because, in addition to the larger physical

pages on the NV buffer, P-FTL itself can secure abundant free block resource as well, thereby

reducing potential GC overheads during free block reclaiming. However, due to reasons similar

to the case of 6SSDs-RAID, over the time, P-FTL makes 3SSDs-RAID performance worse than

L-FTL and H-FTL. While the performance of P-FTL depends mainly on the size of NV buffer

and are not able to essentially take GC overheads off the critical path of SSDs, AGC+DGC

satisfies the performance requirements irrespective of different SSD configuration chosen and

the I/O traffics tested.

7.6.5 Side-Effects of AGC and DGC

Figure 7.15(a) plots the breakdown of GCs across different collection schemes. Since

AGC is responsible for preparing the free blocks, it is desired that the contribution of the AGC

be larger than that of the DGC. We see that, as expected, AGC executes for at least 80% of the

201

0%

20%

40%

60%

80%

100%

SSD0 SSD1 SSD2 SSD3 SSD4 SSD5

P
er
ce
n
ta
g
e
o
f
to
ta
l
G
C
s

Proactive Block Compactoin

Retroactive Block Compaction

Look-ahead GC

(a)

16
18

16
20

22
24 27

0

5

10

15

20

25

30

A
v
er
a
g
e
E
ra
se
 C
o
u
n
t

Free Block Thresholds

Better than L-FTL Worse than L-FTL

(b)

Fig. 7.15 (a) Garbage collection type breakdown of total collection. (b) Block erase impact by
free block threshold.
total number of GCs. As a result, DGC is able to secure enough free blocks when it performs

update block replacement to delay GCs. We want to point out that the proactive block com-

paction is applied in a majority of the AGC operations. The proactive block compaction does

not execute until the number of free blocks is less than the free block threshold (even though it is

under the underlying FTL’s GC threshold (3%)). Therefore, our scheme does not introduce any

unnecessary erases, and thus reduces the potential side-effects of GC.

Figure 7.15(b) presents the average block erase counts under different free block thresh-

olds when executing AGC. In this figure, the dotted vertical line indicates L-FTL’s average erase

count per block, which is twenty one. Since AGC is performed only if the target GC block is

fully occupied or if an on-demand GC is to be invoked very soon, it only migrates necessary GC

activities from busy period, thereby minimizing side effect in terms of SSD reliability.

We observed that the free block threshold should be less than 71% for the average erase

count of the proactive block compaction in AGC to be comparable to L-FTL. If the proactive

block compaction shifts on-demand GCs beyond this threshold, it makes wear-leveling charac-

teristics worse than L-FTL. Interestingly, the erase counts with low free block thresholds are

better than L-FTL. This is because preparing free blocks using fully-occupied blocks in advance

202

helps to prevent the log block thrashing problem (in L-FTL), which can introduce improper erase

operations. In our experiments, the best free block threshold for satisfying the wear-leveling re-

quirement was found to be less than 43% of the original GC threshold.

7.7 Conclusions

We proposed novel a garbage collection strategy consisting of two main components,

called Advanced Garbage Collection (AGC) and Delayed Garbage Collection (DGC), that co-

operate in hiding GC overheads in SSDs. AGC tries to secure free blocks in advance and remove

on-demand GCs from the critical path so that users do not experience GC latencies during I/O

congestion. In comparison, DGC handles GC invocations that could not be handled by AGC by

differing them to future idle periods. Our experimental analysis using both enterprise workloads

and high performance I/O workloads indicate that the proposed strategies (AGC and DGC) pro-

vide stable I/O performance. Compared to three state-of-the-art GC strategies, P-FTL, L-FTL

and H-FTL, our integrated scheme (AGC+DGC) reduces GC overheads dramatically.

Chapter Acknowledgements Chapter 7, in part, is a reprint of the material as it appears in

”Taking Garbage Collection Overheads off the Critical Path in SSDs,” Myoungsoo Jung, Ramya

Prabhakar, Mahmut Kandemir, in Proceedings of the 13th ACM/IFIP/USENIX 13th Interna-

tional Conference on Middleware (Middleware), 2012. The dissertation proposal author was the

primary investigator and the first author of this paper.

203

Chapter 8

Future Work

In this chapter, we discuss future work in two categories: near term and long term.

8.1 Near Term Future Research Directions

8.1.1 QoS-aware and GC-aware Host Interface Scheduler

Most existing I/O scheduling algorithms are optimized to reduce the impact of random

accesses and are ignorant of the internal details of an SSD architecture. As a result, SSDs

may violate quality of service (QoS) requirements by not being able to meet the deadlines of I/O

requests. As one of our on-going projects, we are developing a novel host interface I/O scheduler

that is both garbage collection aware and QoS aware. More specifically, this QoS-aware and GC-

aware host interface scheduler can guarantee for underlying SSDs to satisfy all the deadlines of

I/O requests by redistributing the garbage collection overheads across non-critical I/O requests

and reducing channel resource contention even under the situation that there exists no idle period.

8.1.2 Out-of-Order Non-Volatile Memory Execution

As stated earlier in this thesis, SSDs are undergoing dramatic technological and archi-

tectural changes by employing hundreds of NAND flash chips, multiple I/O channels, multiple

cores, and high speed interfaces such as PCI Express. These many-chip SSD architectures en-

joy significant performance improvements by parallelizing data accesses across their internal

204

resources. However, we believe that the performance of many-chip SSDs will not be much im-

proved as the amount of internal resources increases (i.e., when more NAND flash chips are

added). Main challenges in this context include high device-level idleness and poor resource

utilization, caused by parallelism dependency and low flash-level transactional-locality. As one

of our on-going projects, we are working on a novel device-level SSD controller, which targets

maximizing resource utilization and achieving high performance without additional NAND flash

chips. Specifically, this controller can relax parallelism dependency by scheduling I/O requests

based on internal resource layout rather than the order imposed by the device-level queue. In ad-

dition, this novel controller is expected to improve flash-level parallelism and reduce the number

of transactions (i.e., improves transactional-locality) by over-committing flash memory requests

to specific resources.

8.1.3 NVM Power Modeling

While multi-channel SSD architecture and many-chip SSDs can offer better performance

by taking advantage of internal parallelism, the multiple internal resources such as NVM arrays,

cores, busses and controllers can require more power to operate and exhibit unpredictable energy

performance behavior. To characterize the energy requirements and understand power dynamics

of modern SSDs, our current plan includes extending our cycle-accurate NAND flash simulation

model with a high-fidelity power model. This extended simulation framework will be able to

capture detailed information related to various types of memory interfaces, data movements,

memory island accesses on emerging NVM technologies by modeling power on memory cores,

I/O peripherals, drivers, and diverse internal registers (composed by multiple latch circuits).

205

8.1.4 High-speed Non-Volatile Memory Interface

As NVM performance begins to exceed the maximum bandwidth conventional storage

interfaces, we believe that designing a high-speed interface is one of core research topics to

expose true performance of underlying NVM systems to user applications or computing cores.

Our on-going research includes incorporating a high-speed NVM interface (e.g., SDR 400MHz

∼ DDR 800MHz) and designing a specific NVM protocol for SSD to ride the high-speed inter-

face. In addition, we will also study various queuing methodologies and buffer managements,

which are mainly optimized for the new NVM protocol that we will demonstrate.

8.2 Long Term Future Research Directions

8.2.1 SSD Redesign

Redesigning SSDs from scratch is aimed at enhancing the NAND flash memory perfor-

mance by optimizing the storage software stack irrespective of the hardware interface between

computing cores and storage. This SSD redesign work will directly tackle performance bot-

tleneck caused by the hardware interface and physical separation between computing cores and

storage in order to let SSD and NVM systems realize the full potential of peripheral interface line

speeds. Our plans in the context of this redesign work include alleviating such bottleneck with

better cooperation between flash firmware (stack) and host stack by modifying interfaces to pass

hints/status information between different layers in these software stacks and provisioning com-

pute engines within flash drives, where such additional intelligence and processing bandwidth

can considerably boost performance.

206

8.2.2 Exposing NVM to Computational Resources

One of our long term future plans is elevating NAND flash memory systems to directly

connect to the host processor through a dedicated interface, similar to main memory DIMMs

interfacing directly to the on-chip cores. This NVM migration (from SSD to computational

resources) also transforms recent active SSDs (i.e., SSDs with on-board processor cores) into

passive devices similar to main memory. We expect that, in addition to performance improve-

ment, this passive SSD approach will be able to make SSDs “more maintainable” with reasonable

economic costs by eliminating costly SSD firmware and extra hardware components from them.

8.2.3 On-Chip NVM Systems

We will also develop an aggressive revolutionary approach to bring NAND-flash on-

chip, and explore different placement options for tighter physical integration with the processing

cores. The main goal behind this work is removing all the overheads stemming from circuit-

level data movement and system-level interface, so that computing cores can fully enjoy the true

performance of emerging NVM technologies with much higher memory capacities, compared

to existing SRAM/DRAM technologies. We also expect that these on-chip NVM systems will

be able to eliminate the needs for refreshing memory cells in an existing DRAM array and

reduce the frequency of off-chip memory accesses, which can in turn significantly reduce power

consumption in diverse computing domains.

207

References

[1] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS, J. D., MANASSE, M. S.,
AND PANIGRAHY, R. Design tradeoffs for SSD performance. In Proceedings of USENIX
ATC (2008).

[2] ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND PRABHAKARAN, V. Re-
moving the costs of indirection in flash-based ssds with namelesswrites. In Proceedings
of HotStorage (2010).

[3] BATES, K., AND MCNUTT, B. http://traces.cs.umass.edu/index.php/main/traces. In
UMASS Trace Repository.

[4] BOBOILA, S., AND DESNOYERS, P. Write endurance in flash drives: Measurements and
analysis. In Proceedings of FAST (2010).

[5] BUCY, J. S., SCHINDLER, J., SCHLOSSER, S. W., AND GANGER, G. R. The disksim
simulation environment version 4.0 reference manual.

[6] CAI, Y., YALCIN, G., MUTLU, O., HARATSCH, E. F., CRISTAL, A., UNSAL, O. S.,
AND MAI, K. Flash correct-and-refresh: Retention-aware error management. In Pro-
ceedings of ICCD (2012).

[7] CANIM, M., MIHAILA, G. A., BHATTACHARJEE, B., ROSS, K. A., AND LANG, C. A.
SSD bufferpool extensions for database systems. Proceedings of VLDB (2010).

[8] CAULFIELD, A. M., COBURN, J., MOLLOV, T., DE, A., AKEL, A., HE, J., JAGATH-
EESAN, A., GUPTA, R. K., SNAVELY, A., AND SWANSON, S. Understanding the im-
pact of emerging non-volatile memories on high-performance, IO-intensive computing.
In Proceedings of SC (2010).

[9] CAULFIELD, A. M., DE, A., COBURN, J., MOLLOW, T. I., GUPTA, R. K., AND SWAN-
SON, S. Moneta: A high-performance storage array architecture for next-generation,
non-volatile memories. In Proceedings of MICRO (2010).

[10] CAULFIELD, A. M., GRUPP, L. M., AND SWANSON, S. Gordon: Using flash memory
to build fast, power-efficient clusters for data-intensive applications. In Proceedings of
ASPLOS (2009).

[11] CHANG, L.-P., AND KUO, T.-W. Real-time garbage collection for flash-memory storage
systems of real-time embedded systems. ACM Transactions on Embedded Computing
Systems 3, 4 (November 2004).

[12] CHEN, F., KOUFATY, D. A., AND ZHANG, X. Understanding intrinsic characteristics
and system implications of flash memory based solid state drives. In Proceedings of
SIGMETRICS (2009).

208

[13] CHEN, F., LEE, R., AND ZHANG, X. Essential roles of exploiting internal parallelism
of flash memory based solid state drives in high-speed data processing. In Proceedings of
HPCA (2011).

[14] CHOI, H., LIU, W., AND SUNG, W. VLSI implementation of BCH error correction for
multilevel cell nand flash memory. In Proceedings of VLSI (2010).

[15] CHOUDHURI, S., AND GIVARGIS, T. Deterministic service guarantees for NAND flash
using partial block cleaning. In Proceedings of CODES+ISSS (2008).

[16] COLARELLI, D., AND GRUNWALD, D. Massive arrays of idle disks for storage archives.
In Proceedings of the ACM/IEEE Conference on Supercomputing (2002).

[17] COOKE, J. How ClearNAND flash simplifies and enhances system designs. In Micron
White Paper (2011).

[18] CYPRESS. CY14B256LA nvSRAM. 2012.

[19] DAVIDSON, J. W., AND JINTURKAR, S. Memory access coalescing: a technique for
eliminating redundant memory accesses. Proceedings of PLDI (1994).

[20] DIRIK, C., AND JACOB, B. The performance of PC solid-state disks (SSDs) as a function
of bandwidth, concurrency, device architecture, and system organization. In Proceedings
of ISCA (2009).

[21] EMC. Raw drive capacity cost trends http://wikibon.org/w/images/a/a4/
emcrawdrivecapacitycosttrends.jpg.

[22] FISHER, R. Optimizing nand flash performance. In Proceedings of FlashMemory Summit
(August 2008).

[23] FUSION-IO. ioCache. In datasheet (2012).

[24] FUSION-IO. ioMemory. In datasheet (2012).

[25] FUSION-IO. ioTurbine. In datasheet (2012).

[26] GOLDING, R., BOSCH, P., STAELIN, C., SULLIVAN, T., AND WILKES, J. Idleness is
not sloth. In Proceedings of the USENIX Annual Technical Conference (1995), pp. 201–
212.

[27] GRUPP, L. M., CAULFIELD, A. M., COBURN, J., SWANSON, S., YAAKOBI, E.,
SIEGEL, P. H., AND WOLF, J. K. Characterizing flash memory: Anomalies, obser-
vations,and applications. In Proceedings of SC (2009).

[28] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: A flash translation layer employ-
ing demand-based selective caching of page-level address mappings. In Proceedings of
ASPLOS (2009).

[29] HONG, S. I., MCKEE, S. A., SALINAS, M. H., KLENKE, R. H., AYLOR, J. H., AND

WULF, W. A. Access order and effective bandwidth for streams on a direct rambus
memory. In Proceedings of HPCA (1999).

209

[30] HU, X.-Y., ELEFTHERIOU, E., HAAS, R., ILIADIS, I., AND PLETKA, R. Write ampli-
fication analysis in flash-based solid state drives. In Proceedings of SYSTOR (2009).

[31] HU, Y., JIANG, H., FENG, D., TIAN, L., LUO, H., AND ZHANG, S. Performance
impact and interplay of ssd parallelism through advanced commands, allocation strategy
and data granularity. In Proceedings of ISC (2011).

[32] HU, Y., JIANG, H., FENG, D., TIAN, L., LUO, H., AND ZHANG, S. Performance
impact and interplay of SSD parallelism through advanced commands,allocation strategy
and data granularity. In Proceedings of ICS (2011).

[33] HUR, I., AND LIN, C. Adaptive history-based memory schedulers for modern processors.

[34] HYNIX, INC. NAND flash memory MLC datasheet, H27UBG8T2A. In
http://www.hynix.com/ (2009).

[35] INTEL. http://www.iometer.org/. In Iometer User’s Guide (2003), Intel.

[36] INTEL. NVM Express Revision 1.0. Intel, March, 2011.

[37] INTEL, AND SEAGATE. Serial ATA Native Command Queuing: An Exciting New Perfor-
mance Feature for Serial ATA. Intel and Seagate, July, 2003.

[38] INTEL, AND SEAGATE. Serial ATA Native Command Queuing: An Exciting New Perfor-
mance Feature for Serial ATA. Intel and Seagate, July, 2003.

[39] J. H. KIM ET AL. Incremental Merge Methods and Memory Systems Using the Same.
U.S. Patent #2006004971A1, Jan. 5, 2006.

[40] JO, H., KANG, J.-U., PARK, S.-Y., KIM, J.-S., AND LEE, J. FAB: flash-aware buffer
management policy for portable media players. In Proceedings of Consumer Electronics,
IEEE Transactions on (May 2006).

[41] JOSEPHSON, W. K., ET AL. Dfs: A file system for virtualized flash storage. In Proceed-
ings of FAST (2010).

[42] JUNG, J.-Y. S., ET AL. FTL design exploration in reconfigurable high-performance SSD
for server applications. In Proceedings of ICS (2009).

[43] JUNG, M., ET AL. Cooperative memory management.

[44] JUNG, M., ET AL. Memory system and data storing method thereof. U.S. Patent
20090248987 (2009).

[45] JUNG, M., AND KANDEMIR, M. An evaluation of different page allocation strategies on
high-speed SSDs. In Proceedings of HotStorage (2012).

[46] JUNG, M., AND KANDEMIR, M. Middleware - firmware cooperation for high-speed
solid state drives. In Proceedings of Middleware D&P (2012).

[47] JUNG, M., AND KANDEMIR, M. Revisiting widely held ssd expectations and rethinking
system-level implications. In Proceedings of SIGMETRICS (2013).

210

[48] JUNG, M., PRABHAKAR, R., AND KANDEMIR, M. T. Taking garbage collection over-
heads off the critical path in ssds. In Proceedings of Middleware (2012).

[49] JUNG, M., WILSON, E. H., DONOFRIO, D., SHALF, J., AND KANDEMIR, M. NAND-
FlashSim: Intrinsic latency variation aware NAND flash memory system modeling and
simulation at microarchitecture level. In Proceedings of MSST (2012).

[50] JUNG, M., WILSON III, E. H., AND KANDEMIR, M. Physically addressed queueing
(PAQ): Improving parallelism in solid state disks. In Proceedings of ISCA (2012).

[51] JUNG, M., AND YOO, J. Scheduling garbage collection opportunistically to reduce worst-
case I/O performance in solid state disks. In Proceedings of IWSSPS (2009).

[52] KANG, J.-U., JO, H., KIM, J.-S., AND LEE, J. A superblock-based flash translation
layer for NAND flash memory. In Proceedings of the ACM International Conference on
Embedded Software (October 2006).

[53] KANG, J.-U., KIM, J.-S., PARK, C., PARK, H., AND LEE, J. A multi-channel ar-
chitecture for high performance NAND flash-based storage system. Journal of Systems
Architecture (2007).

[54] KGIL, T., ROBERTS, D., AND MUDGE, T. Improving NAND flash based disk caches.
In Proceedings of ISCA (2008).

[55] KGIL, T., ROBERTS, D., AND MUDGE, T. Improving NAND flash based disk caches.
In Proceedings of the 35th Annual International Symposium on Computer Architecture
(2008).

[56] KIM, H., AND AHN, S. BPLRU: A buffer management scheme for improving random
writes in flash storage. In Proceedings of USENIX Conference on File and Storage Tech-
nologies (2008).

[57] KIM, J., KIM, J. M., NOH, S. H., MIN, S. L., AND CHO, Y. A space-efficient flash
translation layer for Compact Flash systems. In Proceedings of IEEE Transactions on
Consumer Electronics (2002).

[58] KIM, Y., HAN, D., MUTLU, O., AND HARCHOL-BALTER, M. Atlas: A scalable and
high-performance scheduling algorithm for multiple memory controllers. In Proceedings
of HPCA (2010).

[59] KIM, Y., PAPAMICHAEL, M., MUTLU, O., AND HARCHOL-BALTER, M. Thread cluster
memory scheduling: Exploiting differences in memory access behavior. In Proceedings
of MICRO (2010).

[60] KIM, Y., TAURAS, B., GUPTA, A., AND URGAONKAR, B. Flashsim: A simulator for
NAND flash-based solid-state drives. In Proceedings of SIMUL (2009).

[61] KOLTSIDAS, I., AND VIGLAS, S. The case for flash-aware multi level caching.

[62] LECROY. http://www.lecroy.com/.

211

[63] LEE, J., ET AL. Memory system and method of accessing a semiconductor memory
device. In US2009/0310408A1 (December 2009).

[64] LEE, S., HA, K., ZHANG, K., KIM, J., AND KIM, J. Flexfs: A flexible flash file system
for MLC NAND flash memory. In Proceedings of ATC (2009).

[65] LEE, S., LEE, Y.-T., HAN, W.-K., KIM, D.-H., KIM, M.-S., MOON, S.-H., CHO,
H. C., LEE, J.-W., BYEON, D.-S., LIM, Y.-H., ET AL. A 3.3v 4gb four-level NAND
flash memory with 90nm cmos technology. In Proceedings of IEEE International Solid-
State Circuits Conference (2004).

[66] LEE, S.-W., MOON, B., PARK, C., KIM, J.-M., AND KIM, S.-W. A case for flash mem-
ory SSD in enterprise database applications. In Proceedings of SIGMOD (June 2008),
pp. 9–12.

[67] LEE, S.-W., PARK, D.-J., CHUNG, T.-S., LEE, D.-H., PARK, S., AND SONG, H.-J.
A log buffer-based flash translation layer using fully-associative sector translation. ACM
Transactions on Embedded Computing Systems 6, 3 (2007).

[68] LIU, N., COPE, J., CARNS, P., CAROTHERS, C., ROSS, R., GRIDER, G., CRUME, A.,
AND MALTZAHN, C. On the role of burst buffers in leadership-class storage systems. In
Proceedings of MSST (2012).

[69] LIU, Y., HUANG, J., XIE, C., AND CAO, Q. Raf: A random access first cache manage-
ment to improve SSD-based disk cache. NAS (2010).

[70] MAGHRAOUI, K. E., ET AL. Modeling and simulating flash based solid-state disks for
operating systems. In Proceedings of WOSP/SIPEW (2010).

[71] MCKEE, S., AND WULF, W. Access ordering and memory-conscious cache utilization.
In Proceedings of HPCA (1995).

[72] MI, N., RISKA, A., ZHANG, Q., SMIRNI, E., AND RIEDEL, E. Efficient management of
idleness in storage systems. In Proceedings of the ACM Transactions on Storage Journal
(June 2009).

[73] MICHAEL F. WEHNER AND OTHERS. Hardware/software co-design of global cloud sys-
tem resolving models. JAMES (2011).

[74] MICHELONI, RINO ET AL. Inside NAND Flash Memories. Springer, 2010.

[75] MICRON TECHNOLOGY, INC. NAND flash memory MLC datasheet,
MT29F8G08MAAWC, MT29F16G08QASWC. In http://www.micron.com/ (2004).

[76] MUTLU, O., AND MOSCIBRODA, T. Stall-time fair memory access scheduling for chip
multiprocessors. In Proceedings of MICRO (2007).

[77] NARAYANAN, D., DONNELLY, A., THERESKA, E., AND ELNIKETY, S. Everest: Scal-
ing down peak loads through I/O off-loading. In Proceedings of EuroSys Conference
(2008).

212

[78] NARAYANAN, D., THERESKA, E., DONNELLY, A., ELNIKETY, S., AND ROWSTRON,
A. Migrating server storage to ssds: analysis of tradeoffs. In Proceedings of EuroSys
(2009).

[79] NESBIT, K. J., AGGARWAL, N., LAUDON, J., AND SMITH, J. E. Fair queuing memory
systems. In Proceedings of MICRO (2006).

[80] ONFI WORKING GROUP. Open nand flash interface. In http://onfi.org/.

[81] ONFI WORKING GROUP. Open nand flash interface 3.0. In http://onfi.org/ (2012).

[82] OU, Y., HÄRDER, T., AND JIN, P. Cfdc: a flash-aware replacement policy for database
buffer management. In Proceedings of the Fifth International Workshop on Data Man-
agement on New Hardware (2009).

[83] OUYANG, X., MARCARELLI, S., AND PANDA, D. K. Enhancing checkpoint perfor-
mance with staging I/O and SSD. In Proceedings of International Workshop on Storage
Network Architecture and Parallel I/O (2010).

[84] PARK, S.-H., HA, S.-H., BANG, K., AND CHUNG, E.-Y. Design and analysis of flash
translation layers for multi-channel NAND flash-based storage devices. In Proceedings
of TCE (2009).

[85] PARK, S.-Y., ET AL. Exploiting internal parallelism of flash-based ssds. In Proceedings
of Computer Architecture Letters (January 2010), p. 9.

[86] PATTERSON, D. A. Latency lags bandwidth. In Proceedings of Communication of The
ACM (October 2004), p. 71.

[87] RAFIQUE, N., LIM, W.-T., AND THOTTETHODI, M. Effective management of DRAM
bandwidth in multicore processors. In Proceedings of PACT (2007).

[88] REPOSITORY, S. http://iotta.snia.org/.

[89] RIXNER, S., DALLY, W. J., KAPASI, U. J., MATTSON, P., AND OWENS, J. D. Memory
access scheduling. In Proceedings of ISCA (2000).

[90] ROOHPARVAR, F. F. Single level cell programming in a multiple level cell non-volatile
memory device. In U.S. Patent 7529129 (2007).

[91] SAMSUNG. K9GAG0B0M http://www.samsung.com/global/business/semiconductor/. In
Data Sheet (March 2008).

[92] SAXENA, M., AND SWIFT, M. M. FlashVM: Virtual memory management on flash. In
Proceedings of USENIX ATC (2010).

[93] SHALF, J., ET AL. http://www.lbl.gov/cs/html/greenflash.html. In A New Breed of Super-
computers for Improving Global Climate Predictions.

213

[94] SHIBATA, N., KANDA, K., HISADA, T., ISOBE, K., SATO, M., SHIMIZU, Y., SHIMIZU,
T., SUGIMOTO, T., KOBAYASHI, T., INUZUKA, K., ET AL. A 19nm 112.8 mm¡ sup¿
2¡/sup¿ 64gb multi-level flash memory with 400mb/s/pin 1.8 v toggle mode interface. In
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE Interna-
tional (2012).

[95] SRINIVASAN, M., AND CALLAGHAN, M. Flashcache at facebook. In Facebook White
Paper (2010).

[96] T10. http://www.t10.org/. In SCSI Storage Interfaces (September 2009), Technical Com-
mittee T10.

[97] T13. Serial ATA Specification 3.1. 2012.

[98] TENSILICA. http://www.tensilica.com/products/hw-sw-dev-tools/. In Hardware and Soft-
ware Development Tools.

[99] ULINK TECHNOLOGY. http://www.ulinktech.com/.

[100] WEI, M. Y. C., GRUPP, L. M., SPADA, F. E., AND SWANSON, S. Reliably erasing data
from flash-based solid state drives. In Proceedings of FAST (2011).

[101] WON, B. Y. Y., KANG, S. C. S., CHOI, J., AND YOON, S. SSD characterization: From
energy consumption’s perspective. In Proceedings of HotStorage (2011).

[102] YEONG PARK, S., SEO, E., SHIN, J.-Y., MAENG, S., AND LEE, J. Exploiting internal
parallelism of flash-based ssds. IEEE CAL. (2010).

[103] ZHANG, Y., ARULRAJ, L. P., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. De-indirection for flash-based ssds with namelesswrites. In Proceedings of FAST
(2012).

[104] ZURAVLEFF, W. K., AND ROBINSON, T. Controller for a synchronous DRAM that
maximizes throughput by allowing memory requests and commands to be issued out of
order. U.S. Patent No: 5,630,096 (1997).

214

Curriculum Vitae

Brief Biography.

I earned Ph.D. in computer science at Pennsylvania State University (Advisor: Mahmut Kan-
demir) and master of science in computer science from Georgia Institute of Technology (Mentor:
Sung Kyu Lim and Hsien-Hsin S. Lee). As a guest research scientist, I am also co-working with
Lawrence Berkeley National Laboratory in modeling and simulating diverse memory technolo-
gies on scientific applications (Mentor: John Shalf). In addition to these academic activities,
I have 6+ years industry experience, several U.S. patents related to multi-channel SSDs, and
approximately thirty technical papers regarding flash firmware and kernel-level file systems.

Selected Publications.

• Myoungsoo Jung, Mahmut Kandemir, “Challenges in Getting Flash Drives Closer to CPU,”
Proceedings of the USENIX Workshop on Hot Topics in Storage and File Systems, 2013.
• Myoungsoo Jung, Mahmut Kandemir, “Design of a Large-Scale Storage-Class RRAM Sys-
tem,” Proceedings of the International Conference on Supercomputing, 2013.
• Myoungsoo Jung, Mahmut Kandemir, “Revisiting Widely-held Expectations of SSD and Re-
thinking Implications for Systems,” Proceedings of the ACM SIGMETRICS, 2013.
• Myoungsoo Jung, Mahmut Kandemir, “Middleware - Firmware Cooperation for High-Speed
Solid State Drives,” Proceedings of the ACM/IFIP/USENIX International Conference on Mid-
dleware (D&P), 2012.
• Myoungsoo Jung, Ramya Prabhakar, Mahmut Kandemir, “Taking Garbage Collection Over-
heads off the Critical Path in SSDs,” Proceedings of the ACM/IFIP/USENIX International Con-
ference on Middleware, 2012.
• Myoungsoo Jung, Mahmut Kandemir, “An Evaluation of Different Page Allocation Strategies
on High-Speed SSDs,” Proceedings of the USENIX Workshop on Hot Topics in Storage and File
Systems, 2012.
• Myoungsoo Jung, Ellis Herbert Wilson III, Mahmut Kandemir, “Physically Addressed Queue-
ing (PAQ): Improving Parallelism in Solid State Disks,” Proceedings of the International Sym-
posium on Computer Architecture, 2012.
• Myoungsoo Jung, Ellis Herbert Wilson III, David Donofrio, John Shalf, Mahmut Kandemir,
“NANDFlashSim: Intrinsic Latency Variation Aware NAND Flash Memory System Modeling
and Simulation at Microarchitecture level,” Proceedings of the IEEE Conference on Massive
Data Storage, 2012.
• Myoungsoo Jung, Joonhyuk Yoo, ”A Re-configurable Flash Translation Layer Architecture
for NAND Flash based Applications,”, Proceedings of the International Workshop on Software
Support for Portable Storage, 2009.

