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Abstract

With the advent of sub-micron technologies and increasing awareness of Electromagnetic

Interference and Compatibility (EMI/EMC) issues, designers are often interested in full-

wave solutions of complete systems, taking to account a variety of environments in which

the system operates. However, attempts to do this substantially increase the complexities

involved in computing full-wave solutions, especially when the problems involve multi-

scale geometries with very fine features. For such problems, even the well-established

numerical methods, such as the time domain technique FDTD and the frequency domain

methods FEM and MoM, are often challenged to the limits of their capabilities. In an

attempt to address such challenges, three novel techniques have been introduced in this

work, namely Dipole Moment (DM) Approach, Recursive Update in Frequency Domain

(RUFD) and New Finite Difference Time Domain (νFDTD). Furthermore, the efficacy of

the above techniques has been illustrated, via several examples, and the results obtained

by proposed techniques have been compared with other existing numerical methods for

the purpose of validation.

The DM method is a new physics-based approach for formulating MoM problems,

which is based on the use of dipole moments (DMs), as opposed to the conventional

Green’s functions. The absence of the Green’s functions, as well as those of the vector

and scalar potentials, helps to eliminate two of the key sources of difficulties in the con-

ventional MoM formulation, namely the singularity and low-frequency problems. Specif-

ically, we show that there are no singularities that we need to be concerned with in the

DM formulation; hence, this obviates the need for special techniques for integrating these

singularities. Yet another salutary feature of the DM approach is its ability to handle

thin and lossy structures, or whether they are metallic, dielectric-type, or even combina-

tions thereof. We have found that the DM formulation can handle these types of objects
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with ease, without running into ill-conditioning problems, even for very thin wire-like or

surface-type structures, which lead to ill-conditioned MoM matrices when these problems

are formulated in the conventional manner. The technique is valid over the entire fre-

quency range, from low to high, and it does not require the use of loop-star type of basis

functions in order to mitigate the low frequency problem.

Next, we have introduced the RUFD, which is a general-purpose frequency domain

technique, and which still preserves the salutary features of the time domain methods.

RUFD is a frequency domain Maxwell-solver, which neither relies upon iterative nor on in-

version techniques. The algorithm also preserves the advantages of the parallelizability—

which is a highly desirable attribute of CEM solvers—by using the difference form of

Maxwell’s equations. Since RUFD solves the Maxwell’s equations in a recursive manner,

without using either iteration or inversion, the problems of dealing with ill-conditioned

matrices, or constructing robust pre-conditioners are totally avoided. Also, as a frequency

domain solver, it can handle dispersive media, including plasmonics, relatively easily.

The conventional time domain technique FDTD demands extensive computational

resources when solving low frequency problems, or when dealing with dispersive media.

The νFDTD (New FDTD) technique is a new general-purpose field solver, which is de-

signed to tackle the above issues using some novel approaches, which deviate significantly

from the legacy methods that only rely on minor modifications of the FDTD update algo-

rithm. The νFDTD solver is a hybridized version of the conformal FDTD (CFDTD), and

a novel frequency domain technique called the Dipole Moment Approach (DM Approach).

This blend of time domain and frequency domain techniques empowers the solver with

potential to solve problems that involve: (i) calculating low frequency response accurately

and numerically efficiently; (ii) handling non-Cartesian geometries such as curved surfaces

accurately without staircasing; (iii) handling thin structures, with or without finite losses;

and (iv) dealing with multi-scale geometries.
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1. Introduction

1.1 Electromagnetics

Electromagnetics is the branch of physics which describes the behavior of the EM field

and its interaction with matter. All the equations governing this behavior can be math-

ematically derived by using the well-known Maxwell’s Equations [1, 2]. The Maxwell’s

equation can be written down either in the differential form (1.1), or in integral form

(1.2), by using the Stoke’s theorem and the Divergence theorem [3].

∇× E = −
∂B

∂t
(1.1a)

∇×H = Js +
∂D

∂t
(1.1b)

∇ ·D = ρ (1.1c)

∇ ·B = 0 (1.1d)
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∮

E.dl = −
∂

∂t

∫∫

B.ds (1.2a)
∮

H.dl =

∫∫

Js.ds+
∂

∂t

∫∫

D.ds (1.2b)
∫

✞
✝

☎
✆

∫

D.ds =

∫∫∫

ρdv (1.2c)
∫

✞
✝

☎
✆

∫

B.ds = 0 (1.2d)

In the above equations (1.1) and (1.2),

• E(r, t) is electric field intensity in V/m;

• H(r, t) is magnetic field intensity in A/m;

• D(r, t) is electric flux density in C/m2;

• B(r, t) is magnetic flux density in Wb/m2;

• Js(r, t) is impressed electric surface current density in A/m2;

• ρ(r, t) is impressed electric charge density in C/m3;

1.2 Theoretical Methods of Analysis

Analysis of electromagnetic problems, often begins with the use of a suitable theoretical

method, instead of an experimental one, at least during the initial phase, since exper-

imental methods are more expensive and time-consuming. The methodologies used for

the theoretical or computational analyses of an electromagnetic problem can be broadly

classified into four types [1], namely:
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1. Analytical methods: These methods are accurate and efficient, but can be used

only for regular shaped geometries involving symmetry. Perturbation methods and

Variational techniques are some of the typical examples of analytical methods.

2. Model-based methods: Transmission line models and Cavity models are grouped

under Model based methods. These methods provide insight in to the problem, but

often involves simplifying assumptions to reduce the complexities involved.

3. Computational methods: Finite Difference Time Domain (FDTD), Finite El-

ement Method (FEM) and Method of Moments (MoM) are the most widely used

techniques. The computational methods, typically referred to as Computational

Electromagnetic (CEM), are highly versatile and accurate in nature, though they

are often computationally expensive.

4. Computational intelligence methods: These methods are used to predict values

from the existing database and also for optimization purposes. The techniques

that come under this category are Neural network and Neuro-fuzzy techniques, for

example.

1.3 Computational Methods

Computational methods are often the preferred choice because of their versatile nature.

Most of the commercial softwares in computational electromagnetics are based on the

following three techniques, namely:

1. FDTD: As the name suggests, FDTD algorithm solves the difference form of the

Maxwell’s differential equations, 1.1a and 1.1b. The most salient feature of this time

domain technique is that it is highly parallelizable and can be used to efficiently solve
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problems involving inhomogeneous media.

2. MoM: The MoM algorithm formulates the electromagnetic analysis problem in

terms of integral equations, via the use of Green’s function. Since MoM is a fre-

quency domain technique, it can easily handle dispersive media.

3. FEM: FEM algorithm is a finite method, solves the differential equations by using

the weighted residual method, which leads to a large sparse matrix. As in case

of the MoM, FEM is also a frequency domain technique and, hence, it can handle

dispersive media with ease.

1.4 Motivation

With the advent of sub-micron technologies and increasing awareness of Electromagnetic

Interference and Compatibility (EMI/EMC) issues, designers are often interested in full-

wave solutions of complete systems, taking to account a variety of environments in which

the system operates. However, attempts to do this increase the complexities involved in

computing full-wave solutions manifold, especially when the problems involve multi-scale

geometries with very fine features. For such problems, even the well-established numerical

methods, such as the time domain technique FDTD and the frequency domain methods

FEM and MoM, are often challenged to the limits of their capabilities. On the basis

of our experience with the conventional frequency domain methods, we can identify the

following areas of concern:

• Handling thin wires and/or sheets, with or without finite losses

• Deriving a universal approach for PEC, dielectric and inhomogeneous bodies

• Accurately modeling multi-scale geometries
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• Accurately integrating the Green’s function for curved geometries

• Dealing with singular and hypersingular behaviors of the Green’s function when

generating the MoM matrix

• Dealing with the low-frequency breakdown problem, which is introduced by the

dominance of the scalar potential term over the vector potential, as the frequency

approaches zero.

In addition, the conventional FDTD technique demands extensive computational re-

sources when solving low-frequency problems, or when dealing with dispersive media. To

tackle some of these challenges, conventional techniques are often modified, and tailored,

to solve a particular problem of interest. Even though this strategy helps to solve a par-

ticular problem, it is often computationally expensive, and numerically unstable as well.

Consequently, techniques that can overcome the above limitations without compromising

their advantages are very desirable additions to the CEM repertoire.

1.5 Outline of Research Methodology

The underlying theme of this study is to research into new approaches for meeting the

challenges listed in the Section 1.4. The proposed techniques are formulated for canonical

problems and are implemented using either Matlab or C++. The generated results are

compared against the conventional approach, and are then validated and benchmarked

by using commercial codes that are best suited for the problem at hand. Amplitude com-

parisons of the results have been shown for all the problems investigated, while the phase

comparison is included only for those problems for which there is a mismatch between

results derived by the proposed method, and those obtained by using the commercial

codes.
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1.6 Organization of the Thesis

In Chapter 2, we introduce a universal MoM-like formulation, called the Dipole Moment

Approach (DM Approach), which bypasses the use of the Green’s function, and over-

comes some of the disadvantages of the conventional frequency domain techniques. Then,

in Chapter 3, we propose techniques to improve the efficiency of the Dipole Moment Ap-

proach and also ways to handle lumped loads, apertures, slits and irregular geometries,

Non-Cartesian geometries and microstrip structures. In chapter 4, we introduce RUFD

(Recursive Update in Frequency Domain), which is a frequency domain technique uses

the difference form of Maxwell’s equations, and which preserves some of the desirable

properties of FDTD, the time domain method, such as generating the solution by using

a recursive approach, as opposed to matrix inversion or iteration, typically employed in

the frequency domain. Next, Chapter 5 introduces ways to hybridize the RUFD with

DM approach to solve a variety of multi-scale problems. Chapter 6 deals with techniques

to improve the performance of FDTD algorithm when solving low frequency problems,

handling non-Cartesian geometries, and dealing with multi-scale problems. It also intro-

duces signal processing techniques and new mesh truncation schemes to further improve

the efficiency of the FDTD algorithm. Chapter 7 discusses the results, summarizes the

contributions of this thesis and concludes with the identification of some possible avenues

of future research.
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2. Dipole Moment Approach

2.1 Introduction

Formulating integral equations via the use of Green’s functions is a well-established and

universally accepted method [2, 4, 5] in the context of MoM, and it has been a staple

for CEM problems in the past. But MoM requires special treatment at low frequencies

where it runs in to difficulties, and it switches to loop-star basis functions to mitigate the

problem. Furthermore, MoM needs to deal with the singular and/or hyper-singular behav-

iors of the Green’s functions, and designs special techniques for integrating them when

generating the matrix elements. Additionally, both the frequency domain techniques,

namely FEM and MoM, experience difficulties when handling multiscale geometries, be-

cause the associated matrices for these problems can become ill-conditioned. To mitigate

these problems, we introduce a universal MoM-type formulation, which bypasses the use

of Green’s function to overcome the disadvantages of the conventional frequency domain

techniques alluded to above.
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2.2 Dipole Moment Concept

The sphere, whose geometry is uniquely defined by its radius, has been extensively used as

a canonical object for validating various CEM algorithms, used to compute Radar Cross

Section(RCS) for instance. Here, we exploit the analytical tractability of the problem

of scattering by a sphere, and use the sphere as a building block for modeling arbitrary

geometries in a manner that generates the scattered electric field directly, rather than

using the Green’s function in conjunction with vector and scalar potentials.

For the case of a sphere illuminated by a plane wave, the scattered fields can be

determined analytically. Consider a PEC sphere of radius a, which is immersed in free

space, and is illuminated by a plane wave Ex = Eoe
−jkz. In the limit of ka → 0, the

scattered electric far fields can be written:

lim
ka→0

Es
θ = Eo

e−jkr

kr
(ka)3cosφ(cosθ − 1/2) (2.1a)

lim
ka→0

Es
φ = Eo

e−jkr

kr
(ka)3sinφ(

1

2
cosθ − 1) (2.1b)

The equations (2.1) have been derived by using the spherical wave functions [6]. A

close examination of ((2.1)) reveals the fact that the expressions in ((2.1)) resemble the

far fields radiated from a combination of an x-directed electric dipole and a y-directed

magnetic dipole, whose moments are given by:

Ilx = Eo

4πj

ηk2
(ka)3 (2.2a)

Kly = Eo

2π

jk2
(ka)3 (2.2b)

Along the same lines, we can show that the equivalent dipole moments for a lossless

dielectric sphere of radius a, whose relative permittivity and permeability are ǫr and µr

respectively, can be written as:
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Ilx = Eo

4πj

ηk2
(ka)3

ǫr − 1

ǫr + 2
(2.3a)

Kly = Eo

2π

jk2
(ka)3

µr − 1

µr + 2
(2.3b)

Equations (2.3) can be readily modified for a lossy medium by replacing the real

valued ǫr and µr, with their complex permittivity ǭ and permeability µ̄. It’s important to

note that the magnetic dipole moment goes to zero for non-magnetic media (µr = 1).

Hence the dipole moment representation of a scatterer generates the same far fields

as those scattered by the original object. However, what has not been realized in the past

– and what can be proven analytically [7] – is that for a sphere whose radius is electrically

small, the dipole moment fields exactly match the original ones scattered by the sphere,

all the way up to its surface, and not just in the far field.

2.3 Formulation for PEC Objects

2.3.1 Geometry Modeling

When formulating a problem that involves only PEC objects, the first step is to represent

the original scatterer by using a collection of PEC spheres. Next these spheres are replaced

by their corresponding Dipole Moments(DMs) and a set of them are used to form a suitable

set of macro-basis functions. We then evaluate the electric fields generated by these macro

basis functions and compute the reactions between them and the testing functions, which

are also the same as the basis functions (Galerkin method), to generate the elements of

the MoM matrix. The right-hand side of this matrix is obtained by applying the boundary

condition on the total tangential E-Field, by testing it with the same functions as those

used to generate the matrix elements.
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Etan

inc
+ Etan

scat
= 0 (2.4)

Hence, with the incident E-field polarized along ẑ, the matrix equation for a thin

PEC rod oriented along ẑ and modeled by using N macro basis functions, will have the

form: 
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(2.5)

In the above equation (2.5),

• Ilnz represents the effective dipole moment of the nth macro basis function - directed

along ẑ.

• En
z−inc represents the tangential incident field component at the location of the nth

macro basis function and

• Emn
z represents the scattered field component along ẑ on the mth macro basis func-

tion by the nth macro basis function.

The above matrix equation (2.5) is solved for Il′s, i.e., the co-efficient of the macro

basis functions, and used to compute the induced currents. In order to calculate the

resulting scattered fields, the following expressions for the fields radiated by a DM oriented

along ẑ is used [8]:
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Er = η
Ilcosθ

2πr2

[

1 +
1

jkr

]

e−jkr = Crcosθ (2.6a)

Eθ = jη
kIlsinθ

4πr

[

1 +
1

jkr
−

1

(kr)2

]

e−jkr = Cθsinθ (2.6b)

Hφ = j
kIlsinθ

4πr

[

1 +
1

jkr

]

e−jkr = Cφsinθ (2.6c)

Eφ = 0; Hr = 0; Hθ = 0 (2.6d)

The field expression in (2.6) can be rewritten in Cartesian co-ordinates as shown

below, with source and observation points represented by (xs, ys, zs) and (xo, yo, zo), re-

spectively:

Ex =
(xo − xs)(zo − zs)

r2
(Cr + Cθ) (2.7a)

Ey =
(yo − ys)(zo − zs)

r2
(Cr + Cθ) (2.7b)

Ez =
(zo − zs)

2

r2
Cr −

(xo − xs)
2 + y2

r2
Cθ (2.7c)

Hx = −
(yo − ys)

r
Cφ (2.7d)

Hy =
(xo − xs)

r
Cφ (2.7e)

Hz = 0 (2.7f)

2.3.2 Numerical Results

For the first example we consider a PEC rod, whose length and diameter are λ/10 and

λ/400, respectively. It is illuminated by a plane wave, incident from broadside (note: the

angle of incidence can be arbitrary), as shown in the Fig. 2.1. Fig. 2.2 compares the

backscattered field calculated by using the DM approach as described in Section 2.3.1,

with those obtained from a commercial MoM package.

As we can see from the Fig. 2.2, the comparison with the commercial MoM program

11



Figure 2.1: A PEC rod.
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Figure 2.2: Amplitude comparison of backscattered electric field Ey from the PEC rod in
Fig. 2.1.
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is good. However when the radius of the PEC rod becomes smaller than 10−5 units, some

of the commercial MoM codes (not including the NEC code) give a warning flag about

their inability to mesh the geometry, while the DM approach is able to handle it without

any special modification to the approach.

Next we consider a circular PEC loop with a diameter of 600 mm and a thickness

of 18.6 mm as shown in Fig. 2.3. The loop is fed with a voltage gap source. Fig. 2.4

compares the frequency variation of the feed current calculated by using DM approach

with those obtained using NEC.

Figure 2.3: A PEC circular loop.

From Fig. 2.4 we can see that the comparison of the feed current is good all the

way down to 50 MHz. It is important to point out that the strength of the DM approach

lies in the fact that we can further go down in frequency all the way up to DC, without

any special treatment.

For the next example we consider a PEC helix, whose length is λ/10 with a diameter

of λ/30 and a thickness of λ/200 at 10 GHz, as shown in Fig. 2.5. The helix is fed by using
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Figure 2.4: Frequency variation of the feed current for a PEC loop shown in Fig. 2.3.

a voltage gap source. Fig. 2.6 compares the amplitude of dominant component of the

radiated field Ex calculated using DM approach with those obtained from a commercial

MoM code.

As we can see from the Fig. 2.6, the comparison with the commercial MoM program

is good. However, as may be seen from Fig. 2.7, some of the commercial MoM codes (not

including the NEC code) were unable to calculate the current correctly along the helix,

apparently because of the non-Cartesian nature of its geometry which makes the meshing

difficult for these codes, while the DM approach was able to solve for the current along

the helix with ease.

For the final example we consider a PEC sphere, whose diameter is λ/60 with λ at

10 GHz. It is illuminated by a plane wave, incident from x̂, and polarized along ẑ, as

shown in the Fig. 2.8. Fig. 2.9 compares the scattered Ez field at x = λ/46 calculated by
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Figure 2.5: A PEC helix.
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Figure 2.6: Amplitude comparison of radiated electric field Ex from the PEC helix in Fig.
2.5.
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Figure 2.7: The magnitude of current calculated using a commercial MoM solver for the
PEC helix shown in Fig. 2.5.

using the DM approach as described in Section 2.3.1 with those obtained from Mie Series

[6] for different frequencies of incident plane wave.

Figure 2.8: A PEC sphere.
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Figure 2.9: Amplitude comparison of backscattered electric field Ez from the PEC sphere
in Fig. 2.8.

As we can see from Fig. 2.9, the comparison with the Mie series results is good, all

the way down to very low frequencies, which is one of the major advantages of the DM

formulation, as we have pointed out before.

2.4 Formulation for Dielectric Objects

2.4.1 Geometry Modeling

The first step in the formulation of the dielectric scattering problem essentially follows

along the same line as in the case of PEC objects, in that we again represent the original

scatterer as a collection of small-size dielectric spheres. As before, we then go on to

replace these spheres by their corresponding DMs, and use them to form a set of macro-
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basis functions. At this point we differ from the PEC case and generate the MoM matrix

by imposing a boundary condition but by applying a consistency condition (2.8) on the

tangential E-Field, which reads:

ǫo(ǫr − 1)(Einc + Escat) = F (Il) (2.8)

where F , called as the consistency factor, is derived by analytically solving the problem

of a dielectric sphere with a small radius. This factor, obtained in the manner described

above, is given by:

F ≈
−3j

4πωa3
(2.9)

2.4.2 Numerical Results

For the first example we consider a Dielectric rod with the relative permittivity ǫr of 6 ,

whose length and diameter are λ/4 and λ/400, respectively, at 10 GHz. It is illuminated

by a plane wave, incident from broadside, as shown in Fig. 2.10. Fig. 2.11 compares the

backscattered field calculated by using the DM approach as described in Section 2.4.1,

with those obtained from a commercial FEM package.

As we can see from Fig. 2.11, the comparison with the commercial FEM program is

good. However the commercial MoM code failed due to the fine thickness of the dielectric

rod, while the DM approach was able to handle it with ease.

Next we consider a square-shaped dielectric plate with ǫr = 6, which is λ/40 on the

side and whose thickness is λ/400. The plate is illuminated by a plane wave traveling along

the negative-z direction, as shown in the Fig. 2.12. The backscattered field, calculated

by using the DM approach described in section 2.4.1, is presented in Fig. 2.13, which also

compares these results with the corresponding ones from a commercial MoM package.
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Figure 2.10: A dielectric rod.

2 2.2 2.4 2.6 2.8 3
0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

Distance Along Z in λ

A
m

pl
itu

de
 in

 µ
V

/m

 

 
DM Approach
Comm. FEM

Figure 2.11: Amplitude comparison of backscattered electric field Ey from the dielectric
rod in Fig. 2.10.

Once again, the comparison of the DM results with those from a commercial solver

is good. It should be pointed out, that the commercial MoM solvers become unstable and
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Figure 2.12: A dielectric plate.
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Figure 2.13: Amplitude comparison of backscattered electric field Ey from the dielectric
plate in Fig. 2.12.
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inaccurate for very thin scatterers, especially at low frequencies.

As a final example, we consider plasmonic nano-spheres randomly spread in 3D

space, with a diameter of λ/20 at 300 THz and ǭr = −47.5378− 1.1383j (corresponding

to Gold). It is illuminated by a plane wave, incident from ẑ, and polarized along ŷ, as

shown in the Fig. 2.14. The scattered fields are calculated by using the DM approach

described in section 2.4.1 but with the dipole moments Ils calculated using the complex

permittivity in the consistency condition 2.8 and compared with those generated using a

commercial FEM code.

Figure 2.14: Plasmonic nano-spheres.

From Fig. 2.15 we can see that the scattered fields generated by using the commercial

FEM code shows numerical artifacts near the origin, while the fields calculated using the

DM approach is more physical.
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Figure 2.15: Amplitude comparison of scattered electric field Ey from the plasmonic
spheres in Fig. 2.14.

2.5 Formulation for Inhomogeneous Objects

2.5.1 Geometry Modeling

For formulating inhomogeneous problems, the first step essentially follows along the same

line as in the case of PEC and dielectric objects, in that we again represent the original

scatterer as a collection of small-size PEC spheres in the PEC regions and small-size

dielectric spheres in the dielectric regions. As before, we then go on to replace these

spheres by their corresponding DMs, and use them to form a set of macro-basis functions.

We generate the MoM matrix by imposing the boundary condition 2.4 for PEC spheres

and the consistency condition 2.8 for the dielectric spheres, on the tangential E-Field.

However while applying these conditions it is important to note the fact that the Escat
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should include the contributions from both the PEC and dielectric regions.

2.5.2 Numerical Results

As an example we consider a PEC rod with a square cross-section and uniformly coated

with a dielectric constant ǫr of 6. The length and thickness of the PEC rod are 3λ/100

and λ/100 respectively at 5 GHz. The thickness of the dielectric coating is λ/100. It is

illuminated by a plane wave, incident from broadside, as shown in the Fig. 2.16. Fig.

2.17 compares the backscattered field calculated by using the DM approach, as described

in Section 2.5.1, with those obtained from a commercial MoM package.

Z

Y

Ey

k-z

Hx

PEC

Dielectric

λ/20

3λ/100

(εr = 6)

λ @ 10 GHz

Figure 2.16: A PEC rod with a dielectric coating.

An alternate approach to solving the above problem is to define a PEC rod with

an equivalent thickness, but whose length is same as that of the original geometry. An

equivalent PEC rod for this problem has a thickness of 2.8λ/100 and a length of λ/20,

which is same as that of the original problem.
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Figure 2.17: Amplitude comparison of backscattered electric field Ey from the coated rod
in Fig. 2.16.

2.6 Quasi-Static Formulation

In this section, we introduce the quasi-static type of DM formulation in order to hybridize

DM approach with FDTD algorithm, which will be described later in Chapter 6. Lets

consider the electric fields radiated by a DM oriented along ẑ:

Er = η
Ilcosθ

2πr2

[

1 +
1

jkr

]

e−jkr (2.10a)

Eθ = jη
kIlsinθ

4πr

[

1 +
1

jkr
−

1

(kr)2

]

e−jkr (2.10b)

Eφ = 0 (2.10c)

When the size of problem geometry is very small when compared to the wavelength
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at the frequency of interest i.e., r → 0λ, then the
1

r3
term in the above equations will

dominate. Hence the expressions for Er and Eθ in the limit of r → 0λ and using the

expression for Il from equation 2.2a, can be rewritten as:

lim
r→0λ

Er = η
Ilcosθ

2πjkr3
= 2Eocosθ

a3

r3
(2.11a)

lim
r→0λ

Eθ = η
kIlsinθ

4πjk2r3
= Eosinθ

a3

r3
(2.11b)

Eφ = 0 (2.11c)

The above equations shows that the electric fields are real and time-independent.

These expressions resemble the fields of a static charge dipole. Since this quasi-static

approach produces real and time-independent fields, we can use this to hybridize DM

approach with FDTD to solve a variety of multi-scale problem. This quasi-static approx-

imation can be used for problems for which near field calculations are of interest, since

it is predominantly dictated by the
1

r3
term; also, this approach is computationally less

expensive.

Consider a PEC helix, whose length is λ/10, a diameter of λ/30, and a thickness of

λ/200 at 10 GHz. It is illuminated by a plane wave, incident from x̂, and polarized along

ẑ, as shown in the Fig. 2.18. Fig. 2.19 compares the amplitude of backscattered field Ez

calculated by using the DM approach, with and without the quasi-static approximation.

As we can see from the Fig. 2.19, the comparison between the two, namely with

and without the quasi-static approximation, is good. Even though the quasi-static ap-

proximation is computationally less expensive, it is important to note the fact that this

approximation is valid only when the problem geometry is small when compared to the

wavelength at the frequency of interest, while the DM approach is valid throughout the
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Figure 2.18: A PEC helix.
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Figure 2.19: Amplitude comparison of backscattered electric field Ex from the PEC helix
in Fig. 2.5.

entire frequency range.
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2.7 Order of Singularity

The boundary condition or the consistency condition is always applied on the surface of

the geometry. So for a problem geometry comprising of only PEC objects, the field values

at the geometry’s surface r = a can be calculated from Equation (2.11) as follows:

Er = 2Eocosθ (2.12a)

Eθ = Eosinθ (2.12b)

Eφ = 0 (2.12c)

Hence in the DM approach the fields are always bounded and the order of the

singularity is zero. The same can be proven to be true for dielectric and inhomogeneous

objects.

2.8 Observations and Conclusions

In this chapter we have presented a new physics-based approach for formulating MoM

problems that is based on the use of dipole moments (DMs) – as opposed to the con-

ventional Green’s functions. The absence of the Green’s function, as well as those of the

vector and scalar potentials, helps to eliminate two of the key sources of difficulties in

the conventional MoM formulation, namely the singularity and low-frequency problems.

Specifically, we have shown that there are no singularities that we need to be concerned

with in the DM formulation; hence, this obviates the need for special techniques for

integrating these singularities.

Yet another salutary feature of the DM approach is its ability to handle thin and

lossy structures, whether they be metallic, dielectric-type, or even combinations thereof.
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We have found that the DM formulation can handle these types of objects with ease,

without running into ill-conditioning problems, even for very thin wire-like or surface-

type structures, which lead to ill-conditioned MoM matrices when these problems are

formulated in the conventional manner.

The technique is valid over the entire frequency range, from low to high, and it

does not require the use of loop-star or other special types of basis functions in order to

mitigate the low frequency problem. The DM formulation is universal, and can be used

for both PEC and dielectric objects, and it requires only a relatively minor change in

the formulation when we go from PEC to dielectric scatterers. The approach is also well

suited for hybridization with Finite methods, such as the FEM and the FDTD, and such

an embellishment renders it suitable for handling multi-scale problems conveniently and

efficiently.
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3. Performance Enhancement of DM

Approach

3.1 Introduction

Though the DM approach described in Chapter 2, is accurate and captures all the physics,

is not the most efficient from numerical point of view. This is because the number of

spheres used to represent a three-dimensional object can grow very rapidly if the diameter

of the sphere is small, as is often the case. For instance, for a thin-wire scatterer, the

diameter of the spheres used to represent it is the same as that of the wire. Hence, for the

example shown in Fig.3.1, the number of constituent spheres needed to form the plate can

be quite large, even when the length of the plate is relatively small in comparison to the

wavelength. In this chapter, we introduce techniques to enhance the performance of DM

approach and to adapt this approach to solve a number of representative electromagnetic

scattering problems.
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Figure 3.1: A dielectric plate.

3.2 Higher Order Macro-Basis Function

Our strategy for reducing the number of unknowns significantly and to make it comparable

to that needed in the conventional MoM formulation, is to use macro-basis functions

(MBF). These basis functions belong to a level higher than that of the dipole moments

used to model the geometry in the initial step of the DM approach. The low-level dipole

moments associated with such macro-basis functions are represented by a single unknown,

with the variation of the dipole moments following the shape of the associated macro-

basis function. In order to further improve the performance by reducing the number

of unknowns, we introduce higher-order basis functions (HBFs). Towards this end, we

use a set of macro-basis functions and form a set of suitable higher-order macro-basis

functions and represent them by using a single unknown. The coefficients of the macro-

basis function follow the shape of the higher-order macro-basis function. The MBFs

can be categorized as sub-domain basis functions, as opposed to entire domain basis
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functions. Some of the commonly used low-level basis functions used in the concept of

MoM formulation are triangles, pulses and RWGs [9], but we will use them as MBFs for

the DM approach.

3.2.1 Numerical Results

As a first example, let us consider a PEC sphere with a diameter of λ/60 at 10 GHz.

It is illuminated by a plane wave, incident from x̂, and polarized along ẑ, as shown in

Fig. 3.2. Fig. 3.3 compares the scattered Ez field along the negative-x axis, computed

by using DM approach; DM approach using MBFs; DM approach with HBFs; and, with

those obtained from Mie Series [6]. For this problem, triangular basis functions were used,

both as MBFs and HBFs, in the context of the DM approach.

Figure 3.2: A PEC sphere.

Table 3.1 compares the number of unknowns required to solve the problem using (i)

DM approach alone; (ii) with MBFs and (iii) with HBFs. Table 3.1 shows that the use

of HBFs significantly reduces the number of unknowns, without sacrificing the accuracy,

as may be seen by referring to Fig. 3.3.
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Figure 3.3: Amplitude comparison of scattered electric field Ez from the PEC sphere in
Fig. 3.2.

Table 3.1: Comparison of unknowns required for DM approach usings MBF and HBFs
for the PEC sphere shown in Fig.3.2.

Method No. of Unknowns

DM Approach Only 2322
DM Approach with MBF 86
DM Approach with HBF 43

For the next example, we consider a square-shaped dielectric plate with ǫr = 6, which

is λ/40 on the side and whose thickness is λ/400 (see Fig. 3.1). The plate is illuminated by

a plane wave traveling along the negative-z direction. Fig. 3.4 compares the backscattered

field calculated by using: (i) the DM approach only; (ii) the DM approach with MBFs;

and, (iii) a commercial MoM solver. Table 3.2 compares the required number of unknowns

in each of these cases. For this problem the rooftop basis function was used as MBFs in

the context of DM approach.
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Figure 3.4: Amplitude comparison of backscattered electric field Ey from the dielectric
plate in Fig. 3.1.

Table 3.2: Comparison of unknowns required for DM approach using MBFs for the di-
electric plate shown in Fig.3.1.

Method No. of Unknowns

DM Approach Only 14112
DM Approach with MBFs 50

The results show, once again, that the comparison of the fields is good and the use

of MBFs greatly reduces the number of unknowns without compromising the accuracy of

the results. As we can see from the previous examples, it is relatively easy to choose these

macro-basis functions. In order to better capture the current behavior near the corners

and edges, we can increase the number of MBFs near the corners and edges to refine

the level of discretization. Also, we can reduce the number of HBFs as we go down in

frequency, since the current distribution will not vary very rapidly at lower frequencies.
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3.3 Characteristic Basis Functions

Characteristic basis functions (CBFs) [10] are higher-level entire domain macro-basis func-

tions and their use helps reduce the size of the matrix rather significantly. The CBFs are

tailored for the geometry at hand and often just one or two CBFs are sufficient to solve

the problem if the object is relatively small in size. The use of CBFs enables one to

solve electrically large problems, because the size of the reduced matrix is often orders of

magnitude smaller than one required in the original MoM formulation to achieve the same

level of accuracy. The CBFs, are physics-based and they lead to well-conditioned matrices

[11], because their redundancy is removed via the use of Singular Value Decomposition

(SVD).

It is a common practice to generate the CBFs by solving for the current distributions

using a number of independent excitations, which the angle of incidence and polarization of

the illuminating wave is varied. Next, a matrix is generated by using the resulting current

distributions, as its columns and a SVD of this matrix is performed. The threshold for

the singular values, is typically chosen to be 1% of the highest singular value. Finally, we

ues the vectors corresponding to these singular values to construct the CBFs [12].

Consider a PEC rod, whose length and diameter are λ/10 and λ/400, respectively

as shown in the Fig. 3.5. The CBFs for this problem were calculated as explained above

and are plotted in Fig. 3.6. As we can see from this figure, only two out of the twelve

originally generated solutions survived the SVD thresholding.

To test the method just described, we consider the case of the above PEC rod

illuminated by a plane wave, incident from the broadside direction. Fig. 3.7 compares

the backscattered field calculated by using: (i) the DM approach only; (ii) DM approach

using CBFs; and, (iii) commercial MoM solver.
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Figure 3.5: A PEC rod.
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Figure 3.6: Calculated CBFs for the PEC rod in Fig. 3.5.

From the Fig. 3.7 and Table 3.3 we see a that both the DM results compare with

those obtained by using commercial MoM solver. However, the DM/CBF approach re-
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Figure 3.7: Amplitude comparison of backscattered electric field Ey from the PEC rod in
Fig. 3.5.

Table 3.3: Comparison of unknowns required for DM approach using CBFs for the PEC
rod shown in Fig.3.5.

Method No. of Unknowns

DM Approach Only 100
DM Approach with CBFs 2

duces the number of unknowns by a large factor, namely 50 in this example.

3.4 Fast Matrix Generation

Another way to improve the performance of DM approach is to adapt the Fast Matrix

Generation (FMG) technique [13], proposed for the generation of matrix elements in

the context of the conventional MoM formulation. To adapt this technique for the DM
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approach, we consider only the
1

r
term in the field expression while calculating the inter-

action between basis functions separated by a distance greater than or equal to λ/10 and

while we consider the
1

r2
and

1

r3
terms when the distance is less than λ/10 separation.

Consider a square-shaped dielectric plate, shown in Fig. 3.1. The backscattered

field, calculated by using the DM approach with and without the use of FMG algorithm,

is presented in Fig. 3.8, which also compares these results with the corresponding ones

from a commercial MoM package. Table 3.4 compares the CPU time required by these

two different approaches.
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Figure 3.8: Amplitude comparison of backscattered electric field Ey from the dielectric
plate in Fig. 3.1.

Fig. 3.8 shows a good comparison of the electric field calculated by using DM

approach, with and without the FMG, and also with those from a commercial solver.

Even though the Table 3.4 shows only a slight time advantage of FMG over the DM,it

has been shown elsewhere this advantage grow rapidly as we increase the electrical length
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Table 3.4: Comparison of simulation time for DM approach using FMG for the dielectric
plate shown in Fig.3.1.

Method Simulation Time

DM Approach Only 19.22 minutes
DM Approach with FMG 18.98 minutes

of the geometry. Here we were simply demonstrating that we do not scarifice the accuracy

when we use the FMG along with the DM approach.

3.5 Closed-form Field Expressions

To calculate the elements of the interaction matrix we need to sample the macro basis-

function for the purpose of approximating the integration with a numerical summation.

Let us consider a triangular current distribution which extends over a length of λ/10, as

shown in Fig. 3.9. The fields radiated by this triangular current element is calculated

along a parallel line, at an offset of λ/50, using different number of samples of the current

element. Fig. 3.10 compares the Ez-field variation, for different number of samples, with

the closed form field expression [14] for the same current distribution.

We note from Fig. 3.10 that we need at least 200 samples to achieve a good match

between the closed-form result for the integration and its approximation via numerical

summation, when the offset distance is of λ/50. However, as shown in Fig. 3.11, when

we move further, say to a distance of 500λ, we can achieve a good match between the

direct integration and numerical approximation with just 2 samples. This implies that to

compute the matrix entries for each macro basis function we may need up to 200 samples,

depending on the distance where we apply the boundary condition.It would be even more

computationally expensive if we use a fine mesh, or if the object is electrically large.
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Figure 3.9: Triangular current distribution placed along Z axis from −λ/20 to λ/20.

Hence, it would be useful to find a closed-form expression for the field, generated by the

current distribution, by representing it in a suitable form as shown below.

A typical current distribution on a wire is piecewise sinusoidal in nature, as repre-

sented in equation 3.1 for a wire length of H1 +H2.

I(z) =















ImSin(k(H2 + z)), if 0 > z ≥ −H2

ImSin(k(H1 − z)), if H1 ≥ z ≥ 0

(3.1)

where Im is the maximum amplitude of the current.

The closed-form expression for the field from this type of current distribution along

a bent wire (see Fig. 3.12) can be derived, with separate expressions for the top-half and

bottom-half of the current distribution, as follows:
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Figure 3.10: Amplitude variation of Ez at a z = λ/50 radiated by the current distribution
shown in Fig. 3.9.

Top-Half (0 → H1)

Eu1
= −j30Im[

e−jβR1

R1

− cos(βH1)
e−jβr

r
− ju1sin(βH1)e

−jβr(
1

r2
+

1

jβr3
)]

(3.2a)

Ev1 =
j30Im
v1

[(u1 −H1)
e−jβR1

R1

− u1cos(βH1)
e−jβr

r
−

jsin(βH1)

βr3
e−jβr(rβu2

1 + jv21)]

(3.2b)

Bottom-Half (−H2 → 0)
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Figure 3.11: Amplitude variation of Ez at a z = 500λ radiated by the current distribution
shown in Fig. 3.9.

Figure 3.12: A bent wire.
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Eu2
= −j30Im[

e−jβR2

R2

− cos(βH2)
e−jβr

r
+ ju2sin(βH2)e

−jβr(
1

r2
+

1

jβr3
)]

(3.3a)

Ev2 =
j30Im
v2

[(u2 +H2)
e−jβR2

R2

− u2cos(βH2)
e−jβr

r
+

jsin(βH2)

βr3
e−jβr(rβu2

2 + jv22)]

(3.3b)

where the directions û1 and û2 are unit vectors along the axis of the wire, while v̂1 and

v̂2 are perpendicular to its axis, as shown in Fig. 3.12. From the above equations we can

see that when v1 or v2 is 0, i.e., when the observation point is either along û1 (or û2) the

electric field Ev1 (or Ev2) becomes singular. In order to calculate the correct field values for

these cases, we model the wire geometry with a sinusoidal current distribution as shown

in Fig. 3.13, and use the DM approach with 200 samples. The Ey fields are calculated

along a observation line parallel to ŷ, by using the expressions given in equations 3.2 and

3.3, as well as by using the DM approach. Fig. 3.14 plots the fields calculated by using

these two approaches and they are seen to agree well with each other. We can also see

from this figure that the value of the field monotonically increases from zero as we move

away from the wire axis. Hence we set the field value to be zero along the wire axis

whenever we are interested in the field value at a point located on the axis.

3.5.1 Numerical Results using Triangular Basis Functions

It is important to note the fact that the sinusoidal basis function closely resembles a

triangular basis function (TBF), provided the support of the basis is less than or equal

to λ/10. Hence we can use the closed form expressions given in equations 3.2 and 3.3 to

calculate the field values for the most commonly used TBFs, whose supports are less than

or equal to λ/10.
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Figure 3.13: A wire geometry.
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Figure 3.14: Amplitude variation of Ey along the observation line in λ for the wire geom-
etry in Fig. 3.13.

For the first example we consider a PEC rod, whose length and diameter are λ and

λ/500, respectively. It is illuminated by a plane wave, incident from broadside, as shown
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in the Fig. 3.15. Fig. 3.16 compares the peak amplitude of the induced current in the

PEC rod calculated by using the DM approach and closed form expressions, with those

obtained from a commercial MoM package for different frequencies of the incident plane

wave, ranging from 1 MHz to 10 GHz.

Figure 3.15: A PEC rod.

From Fig. 3.16 we can see that the results from the DM approach using closed-form

expressions compare well with those from the commercial MoM solver. However, we have

found that the commercial MoM solver failed when we go down below 10 Hz, while the DM

approach is able to handle the problem without any special treatments or modifications.

The number of TBFs used to model the wire varies with frequency, starting with 9 TBFs

at 10 GHz and progressively decreasing to 1 at 1 MHz (or below), as listed in Table 3.5.

We expect this to be the case since the variation in the current distribution on the wire

varies less rapidly as we decrease the frequency. Incidentally, although it makes little

difference in the accuracy level of the solution whether we use the same number of TBFs

over the entire frequency range or decrease their number progressively, we find that the

condition number of the interaction matrix improves when we use a variable number of

TBFs with frequency, as may be seen from Fig. 3.17.
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Figure 3.16: Frequency variation of peak current for the PEC rod in Fig. 3.15.

Table 3.5: Number of TBFs used in different frequency ranges for the PEC rod shown in
Fig.3.15.

Frequency Range No. of TBFs Used

1 MHz - 1 GHz 1
1 GHz - 3 GHz 3
3 GHz - 5 GHz 5
5 GHz - 7 GHz 7
7 GHz - 10 GHz 9

In order to study the improvement in performance with the use of closed-form ex-

pressions, we consider a circular PEC loop with a diameter of λ/23.3 and a thickness

of λ/100 at 1 GHz. It is illuminated by a plane wave, incident from the ẑ direction,

and polarized along x̂, as shown in Fig. 3.18. Fig. 3.19 compares the variation of the

induced current calculated by using the DM approach with that derived by using the DM

approach and closed-form expressions. Table 3.6 compares the times required for these
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Figure 3.17: Frequency variation of condition number for the PEC rod in Fig. 3.15.

two approaches and we clearly see that the use of closed-form expression speeds up the

process by a factor of 3.3 for this problem without compromising the accuracy, as may be

seen by referring to Fig. 3.19.

Table 3.6: Comparison of simulation times using DM approach with and without closed-
form expressions for the PEC loop shown in Fig.3.18.

Method Simulation Time

DM Approach without Closed-form 0.53 seconds
DM Approach with Closed-form 0.16 seconds
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Figure 3.18: A PEC circular loop.
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Figure 3.19: Amplitude variation of the induced current for the PEC loop in Fig. 3.18.
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3.5.2 Numerical Results Obtained by using Rooftop Basis Func-

tions

One of the most commonly used basis functions for representing current distributions on

surfaces is the Rooftop. It is a two-dimensional basis function comprising of pulse basis

function along one direction, and a triangular basis function along the other, as shown in

Fig. 3.20. The current density distribution associated with a rooftop is given by:

J(x, y) = ImSin[k(H − |u|)]rect
( x

2H

)

rect
( y

w

)

(3.4)

Figure 3.20: A Rooftop basis function.

In order to model this rooftop using the field expressions previously derived in this

section, we represent the rooftop basis function with a number of TBFs that have the

same maximum amplitude. We carried out a wide range of numerical experiments with

the number of TBFs, and have found that we need to represent a rooftop with 7 TBFs to

get accurate results. As an example, let us consider a square-shaped PEC plate, which is

λ/2 on the side, and whose thickness is λ/25. The plate is illuminated by a plane wave

traveling along the negative-z direction, as shown in the Fig. 3.21. The backscattered field,

calculated by using the DM approach and closed-form expressions, is presented in Fig.

3.22, which also compares these results with the corresponding ones from a commercial

48



MoM package. To calculate the field directly at the center of the plate by using the DM

approach, we average of the field over the footprint of the rooftop basis function at the

center of the plate. We do this in the DM approach in order to improve its accuracy,

instead of using point matching for this case, as we do for other locations on the plate.

Figure 3.21: A PEC plate.

Table 3.7: Comparison of simulation times using the DM approach, with and without
closed-form expressions, for the PEC plate shown in Fig.3.21.

Method Simulation Time

DM Approach without Closed-form 69 seconds
DM Approach with Closed-form 57 seconds

Table 3.7 compares the time required by the DM approach with and without the

use of closed form expressions. It is evident, from Fig. 3.22, that the use of closed form

expression speeds up the process without compromising the accuracy, even when the

observation point is close to the surface of the plate. To further improve the performance

in terms of the CPU time without compromising the accuracy, we can use 7 rooftops

to compute the self term, 5 rooftops to calculate the interaction between the rooftops
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Figure 3.22: Amplitude comparison of backscattered electric field Ey from the PEC plate
in Fig. 3.21.

located within a distance of λ/10; 3 rooftops for the calculation of interaction between

the rooftops when this separation distance is greater than λ/10 but less than λ/5; and, a

single TBF for separation distances greater than λ/5.

3.6 Some Embellishments to the Basic DM Approach

3.6.1 Incorporating Lumped Loads

Lumped loads are often used either to match the impedance of an antenna or to shift

its resonance. The resonance behavior achieved by using lumped loads is often sharp,

and requires a fine frequency sampling to capture this resonance behavior. From our

experience, many of the commercial solvers fail to capture these resonances and it would
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be useful to incorporate lumped loads in the DM approach to see if it performs better

than the existing codes. Incorporating lumped loads in the DM approach is relatively

simple, and is achieved by the addition of the lumped load impedance to certain matrix

elements depending upon the spatial locations of the load.

For the first example, we consider a circular PEC loop with a diameter of 600 mm,

a thickness of 18.6 mm and a lumped capacitor of 0.3 nF inserted in the loop, as shown

in Fig. 3.23. The loop is fed with a voltage gap source. The frequency range of interest is

6 MHz to 11 MHz, and we expect a series resonance to occur around 8 MHz, between the

lumped capacitance and the inductance of the loop. Fig. 3.23 compares the frequency

variation of the input current, calculated by using the DM approach, with those obtained

from the NEC code.

Figure 3.23: A PEC circular loop with a capacitor.

From Fig. 3.24 we can see that the comparison of the input current is good even

though the loaded loop exhibits a sharp resonance.
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Figure 3.24: Frequency variation of the input current in a PEC loop shown in Fig. 3.23.

For the next example, we consider a power coil comprising of 4 loops, shown in Fig.

3.25, which is modeled by using 192 TBFs. Loop-1 is fed by using a voltage gap source.

Fig. 3.26 compares the peak current in the output coil, i.e., the loop-4, obtained by using

the DM approach, and compare it with the one generated by using the NEC code.

Fig. 3.26 shows a good comparison between the amplitude variations, however, there

is a mismatch between the amplitude at the resonant frequency, which is attributable to

the sharpness of the resonance, and the difference in the methodologies used in the DM

approach and the NEC.
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Figure 3.25: A geometry of a power coil.

3.6.2 Input Impedance of Nano Antennas

As we move towards the miniaturization of electronic devices, the sizes of the electronic

components also follow suit. One of the important components of interest is the small

antenna, the evaluation of whose input impedances becomes more challenging as the

cross section of the small antenna becomes comparable to its length. A whole host of

techniques have been proposed in the literature for computing the input impedance of

antennas. Harrington has presented an expression given in (3.5), for evaluating the input

impedance of an antenna by using the current induced on the same.

Zin = −
1

|Im|2

∫

✞
✝
☎
✆

∫

E.J∗

s
ds (3.5)

Since the expression (3.5) is variational, it supposedly generates a result for the

impedance that is second-order accurate even when the induced current Js inserted in (3.5)
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Figure 3.26: Frequency variation of the peak output current for a power coil shown in
Fig. 3.25.

has only a first-order accuracy. However, we will show that by using the DM approach

we can accurately calculate the input impedance of small antennas. Consider the vertical

monopole antenna, shown in Fig. 3.27, which has a length of λ/40 and a thickness of

λ/500 at 10 GHz. Fig. 3.28 shows the current variation along the antenna calculated

by using the DM approach. Table 3.8 below summarizes the input impedance results

computed by using the DM approach; with Harrington’s formula in (3.5); and with a

simplified transmission line model.

Table 3.8 shows that using the conventional truncated sinusoidal type of represen-

tation for the induced current in (3.5) yields results that deviate considerably from those

computed accurately by employing the DM approach.
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Figure 3.27: A vertical monopole antenna.
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Figure 3.28: Amplitude variation of the current for a monopole shown in Fig. 3.27.

3.6.3 Irregular Geometries

Handling irregular geometries can be challenging, since we need to use different mesh

sizes and basis functions to accurately model different parts of the geometry. In the

conventional MoM as well as FEM, this variation in the mesh sizes can lead to a poorly

conditioned matrix. To handle such geometries using the DM approach, we first calculate
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Table 3.8: Comparison of input impedance calculated by using DM approach, Harring-
ton’s approach (3.5) and a simplified transmission model for the monopole shown in
Fig.3.27.

Method Input Reactance

DM Approach -1.1916e+003j
Variational Formula (3.5) -2.5216j
Simplified Transmission Model -1.4080e+003j

the elements of the interaction matrix using the closest possible regular geometry, and

then modify the corresponding elements with the ratio of areas of the footprints of the

basis functions in the regular and the actual geometries.

Consider a PEC plate with a thickness of λ/25, shown in Fig. 3.29. The closet

regular geometry is a λ/2 square plate with the same thickness, i.e., λ/25. The interaction

matrix is generated by using the regular square PEC plate using the DM approach as

described in the Section 3.5.2. This interaction matrix is then modified, to handle the

actual geometry, by multiplying the difference in the foot prints of the roof top basis

functions before calculating the currents. Fig. 3.30 compares the scattered electric field

pattern, at a radial distance of 2λ, with φ = 45◦, calculated by using the DM approach

with those obtained from the commercial MoM solver at 5 GHz.

Figure 3.29: A PEC plate with a staircase corner.

56



−200 −150 −100 −50 0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

θ in Degree

A
m

pl
itu

de
 in

 V
/m

 

 

DM Approach
Comm. MoM

Figure 3.30: Amplitude comparison of scattered electric field Eθ at φ = 45◦ from the PEC
geometry in Fig. 3.29.

From Fig. 3.30 we find that the results from DM approach shows good comparison

with those from the commercial MoM solver. However, it was found that when the

geometry becomes thinner and the number of irregularities increase, the commercial MoM

solver is not able to handle the problem, while the DM approach was able to do so with

relative ease.

3.6.4 Curved Surfaces

Another object of interest is a faceted surface, which is difficult to handle with the con-

ventional solvers when the geometry has sharp edges. Consider the corner reflector shown

in Fig. 3.31, which has a height of λ/2 at 5 GHz and an included angle of 60◦ between the

two faces. Fig. 3.32 compares the backscattered field along a line parallel to y-axis with
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z = λ/2 calculated by using the DM approach (modeled with 180 rooftops), as described

in the Section 3.5.2, with those computed by employing a commercial MoM solver.

Figure 3.31: A corner reflector.

Fig. 3.32 shows a good comparison of the fields calculated by using the DM approach

with those calculated from the commercial solver. However, we found that when we

decrease the included angle between the faces to 5◦ or smaller, the commercial solver is

unable to handle the problem, while the DM approach could without any difficulty.

For the second example we consider a faceted PEC surface shown in Fig. 3.33. It

has a height of λ/4, a width of λ/20 and a thickness of λ/25 at 5 GHz. Fig. 3.34 compares

the backscattered field calculated by using the DM approach (modeled with 40 rooftops),

as described in the Section 3.5.2, with that calculated from a commercial MoM solver.

From Fig. 3.34 we see good comparison between the fields calculated by using the

DM approach with those obtained from a commercial solver. Whenever we deal with

either dielectric objects with curved surfaces, or those with thin curved geometries the

commercial solver generates an ill-conditioned matrix, whose solution is questionable in

terms of accuracy; however, the DM approach exhibits no such behavior.

58



11 11.2 11.4 11.6 11.8 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Distance Along Observation Line in λ

A
m

pl
itu

de
 in

 V
/m

 

 

DM Approach
Comm. MoM

Figure 3.32: Amplitude comparison of backscattered electric field Ez from the corner
reflector in Fig. 3.31.

Figure 3.33: A faceted PEC surface.
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Figure 3.34: Amplitude comparison of backscattered electric field Ez from the faceted
PEC surface in Fig. 3.33.

3.6.5 Geometries with Apertures

DM approach can handle geometries with apertures or slits with relative ease without

requiring any modification to the approach. Consider a rectangular PEC plate, split at

the center, with a gap of λ/40 and a thickness of λ/25 at 10 GHz, as shown in Fig.

3.35. Fig. 3.36 compares the backscattered field computed by using the DM approach as

described in the Section 3.5.2, with that calculated by using a commercial MoM solver.

Fig. 3.36 shows good comparison between the two backscattered fields even as we

approach the surface of the plate. If we decrease the split gap size to λ/80, the associated

matrix in the commercial solver becomes ill-conditioned, while the associated matrix in

the DM approach remains well conditioned regardless of the gap size.

For the next example, we consider a PEC square plate of side length of λ/2 with a
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Figure 3.35: A PEC plate with a split.
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Figure 3.36: Amplitude comparison of backscattered electric field Ey from the PEC surface
in Fig. 3.35.
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square aperture of size λ/20, at a frequency of 10 GHz, as shown in Fig. 3.37. In order

to model the aperture, the first step is to calculate the E-fields over the aperture. Hence

we model a smaller plate of size λ/4 with the same aperture size using the DM approach

without MBFs and calculate the dominant field component in the aperture, namely the Ey

fields in this case. Using the Ey field so obtained, we compute the magnetic field current

−→
Mx over the aperture. Once we know the equivalent magnetic current in the aperture,

we can back it with a PEC surface by invoking the Huygens’ principle. The total field

will be a summation of two sets of fields: (i) scattered by the PEC square plate with the

aperture closed, but in the presence of
−→
Mx, solved by using rooftop basis function in the

context of DM, as described in Section 3.5.2; (ii) fields radiated by
−→
Mx, either when it

placed over a ground plane, or by 2
−→
Mx in free space, if we make the assumption that the

plane is infinitely large. However this approximation is justified since the fields radiated

by 2
−→
Mx over the surface z = 0 is concentrated only near the aperture and they rapidly

decrease as we move away from the aperture, as shown in Figs. 3.38 and 3.39.

Figure 3.37: A PEC plate with a square slot.

Fig. 3.40 compares the amplitude of the backscattered field Ey calculated by using
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Figure 3.38: Equivalent magnetic current.

Distance Along X in λ

D
is

ta
nc

e 
A

lo
ng

 Y
 in

 λ

 

 

−0.2 −0.1 0 0.1 0.2

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 3.39: Amplitude variation of the radiated electric field Ey from the equivalent
magnetic current in Fig. 3.38.

DM approach with those computed by using a commercial MoM solver. We have also

used the same approach to solve the problem of a PEC plate with a rectangular slot

as shown in Fig. 3.41 and the scattered fields from this geometry are plotted in Fig.
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Figure 3.40: Amplitude comparison of backscattered electric field Ey from the PEC surface
in Fig. 3.37.

3.42. Once again we find a good match between the results of the DM approach and

those from a commercial MoM code for both of these plate geometries with apertures.

However, as mentioned earlier for the case of the slit, the commercial solver breaks down

for narrow-size apertures, while the DM approach handles it with relative ease.

3.6.6 Microstrip-based Structures

As the size of the semiconductor devices go down, the thickness of the microstrip substrate

also becomes smaller. With increasing integration of electronic packages sharing the same

substrate, the mutual coupling becomes critical, and often requires an accurate modeling.

The thinness of the substrate, along with the finer widths of the signal traces challenge

the existing CEM algorithms when used to calculate the electromagnetic response charac-
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Figure 3.41: A PEC plate with a rectangular slot.
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Figure 3.42: Amplitude comparison of backscattered electric field Ey from the PEC ge-
ometry in Fig. 3.41.
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teristics of such packages. To demonstrate that the DM approach can handle geometries

with fine structures, we consider the example of a microstrip transmission line shown in

Fig. 3.43, whose length is 2λ and, which has free space as its substrate. The transmission

line is modeled by using the DM approach with a voltage source exciting the line at one

end (x = −λ), under the infinite ground plane approximation, which is typical. We use

rooftops, as described in Section 3.5.2, to model the current densities Jx and Jy with

λ/10 × λ/100 and λ/20 × λ/20, respectively, at a frequency of 10 GHz. Fig. 3.44 plots

the variation of Ix along the trace calculated by using the DM approach and shows the

standing wave pattern as excepted.

Figure 3.43: A microstrip geometry.

For the next example, we consider a similar microstrip geometry, as shown in Fig.

3.45. The line is illuminated by a plane wave traveling along the negative-z direction and

polarized along x̂. Fig. 3.46 compares the scattered field along ẑ, calculated using the

DM approach, as described in the previous example, with those calculated by using a

commercial MoM solver.

Fig. 3.46 shows a good comparison between the results generated by the DM ap-

proach and those derived from a commercial MoM solver. We point out that the advantage

of using the DM approach lies in the fact that it continues to work well when we make

the substrate thinner, add losses to it, and use even finer signal traces. The commercial

solvers, on the other hand break down under these circumstances.
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Figure 3.44: Variation of Ix along the trace of a microstrip line in Fig. 3.43.

Figure 3.45: A microstrip geometry.

3.7 Observations and Conclusions

In this chapter, we have introduced certain refinements to the DM method to improve

its computational efficiency. We have shown that the use of higher-order basis functions

significantly reduces the number of unknowns, without compromising the accuracy and

combines the DM with the CBFM technique helps reduce this number even further. The
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Figure 3.46: Amplitude comparison of backscattered field Ex from a microstrip line in
Fig. 3.45.

use of closed-form expressions for the interaction matrix elements speeds up the process

of matrix generation, regardless of the problem size. For electrically large problems,

employing FMG helps to speed up the interaction matrix generation considerably.

We have shown how we can incorporate lumped loads in the DM approach and that

it is able to capture sharp resonances even at low frequencies, where the commercial solvers

become inaccurate or break down. The DM approach is able to accurately calculate the

input impedance of small antennas; fields from irregular geometries; from faceted surfaces;

from geometries with slot and slit; and, is able to model microstrip line type of geometries

with fine features. In all of the above examples we have solved for, the matrices associated

with the DM approach remained well-conditioned throughout the entire frequency range

of interest, without the use of special treatments. However, this was not the case with

Commercial MoM and FEM solvers, even after special treatments were incorporated in

these solvers.
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4. Recursive Update in Frequency

Domain (RUFD)

4.1 Introduction

The time domain technique FDTD, is a versatile algorithm and handles Cartesian geome-

tries with great ease. The FDTD algorithm is highly parallelizable, however as mentioned

in Chapter 1, the FDTD algorithm requires long run times when an accurate solution is

desired at low frequencies. Also, since it is a time domain algorithm, the method is nei-

ther well suited for dealing with dispersive media, as well as for deriving solutions for

problems that involve high-Q structures. Given this background, it can be argued that

a general-purpose frequency domain technique, which still preserves the salutary features

of the time domain methods, would be very desirable addition to the CEM repertoire.

Hence in this Chapter, we describe a novel method, called RUFD (Recursive Update in

Frequency Domain), which is a general-purpose frequency domain technique, but which

still preserves the salutary features of the time domain methods. RUFD is a frequency do-

main Maxwell-solver, which neither relies upon iterative nor on inversion techniques. The

algorithm also preserves the advantages of the parallelizability–which is a highly desirable

attribute of CEM solvers–by using the difference form of Maxwell’s equations.
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4.2 RUFD Algorithm

In common with FDTD, the RUFD algorithm begins by using the difference form of

Maxwell’s equations to discretize them. Next, it utilizes a leap-frog algorithm, also sim-

ilar to the FDTD, as proposed by Yee [15]. Consequently, RUFD may be viewed as the

frequency domain counterpart of the FDTD, because it solves the CEM problem using

a recursive updating procedure, rather than via matrix solution (based on inversion or

iteration) commonly employed by other frequency domain methods. As a frequency do-

main solver, RUFD handles dispersive media with relative ease; it also avoids prolonged

time-marching when solving low frequency problems, which is typical of time domain

solvers. The formulation is based on modifying the original Maxwell’s equation in a form

that is convenient for recursive updating. These modified equations, originally proposed

by Pflaum et al.[16], are given by:

ejωτ Ên+1

h − Ên
h

τ
=

1

ǫ
∇h × Ĥ

n+
1

2
h e

jωτ

2 −
σ

ǫ
ejωτ Ên+1

h + SE (4.1a)

e

jωτ

2 Ĥ
n+

1

2
h − e

−jωτ

2 Ĥ
n−

1

2
h

τ
= −

1

µ
∇h × Ên

h −
σ∗

µ
e

jωτ

2 Ĥ
n+

1

2
h + SH (4.1b)

where τ denotes the discrete iteration step; h is the mesh size; Ên
h is the approximated

electric field vector at points nτ ; Ĥ
n+

1

2
h the approximated magnetic field vector at points

(n+
1

2
)τ and SH and SE are discrete source terms associated with the excitation.

If we let τ tend to zero in the above system of equations 4.2, we get:

lim
τ→0

ejωτ − 1

τ
= jω (4.2a)

We can also show that Êh,τ=0 = limτ→0 Êh(τ) and Ĥh,τ=0 = limτ→0 Ĥh(τ) are the

solutions of 4.3:
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jωÊh,τ=0 =
1

ǫ
∇h × Ĥh,τ=0 −

σ

ǫ
Êh,τ=0 + SE. (4.3a)

jωĤh,τ=0 = −
1

µ
∇h × Êh,τ=0 −

σ∗

µ
Ĥh,τ=0 + SH . (4.3b)

4.3 Stability Condition

The stability condition to be satisfied for the recursive scheme in (4.1) has been shown

[16] to be:
τ

h
≤

√

ǫµ

8
(4.4)

However, we have found that using the Courant condition, given in (4.5), which

is prescribed for the FDTD algorithm works equally well for the RUFD. Using (4.5) as

opposed to (4.4) saves the simulation time by a factor of 2.

τ

h
≤

√

ǫµ

3
(4.5)

To ensure unconditional stability, even in the presence of usual numerical errors, we

find that it is safe to use:
τ

h
≤ 0.995

√

ǫµ

3
(4.6)

4.4 Source Settings

In the FDTD algorithm one can use either a hard or a soft source for excitation. For

the implementation of the hard source one or more computational grid points are chosen

and a particular field component at that point is assigned a specified value. Also, when

using a hard source, one can remove the source from the computational grid once it is

extinguished. In contrast to this, the source value is added to the field component at
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the selected grid points if we use a soft source. Since RUFD is a recursive frequency

domain technique, and the RUFD calculates the values directly in the frequency domain,

we cannot remove them from the computational grid at any point of time; hence in RUFD

we must always use a hard source.

4.5 Incorporating Lumped Resistance

Lumped resistance are often used to achieve a matched termination. In RUFD the lumped

resistances can be implemented by using σ values in certain specific cells where the lumped

source is to be located. The σ value for a given resistance R can be calculated by using:

σ =
l

RA
(4.7)

where l is the transverse length, and A is the cross-sectional area of the cell. This total re-

sistance can either be distributed over a few cells, by using series or parallel combinations,

or lumped in to a single cell based on the problem at hand.

4.6 Absorbing Boundary Conditions

The boundary condition used for the mesh truncation in the computational domain is

critical since it affects the accuracy of the simulations. It is a commonly referred to as

Absorbing Boundary Conditions (ABC) in the context of the FDTD algorithm. A variety

of ABCs have been developed over the years for use in the FDTD algorithm. The simplest

and computationally inexpensive one is the Mur ABC [17]. However the accuracy of this

ABC is good only for the normal incidence and often cause reflections for other angles

of incidence. Recently, a class of boundary conditions called Perfectly Matched Layers,
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abbreviated as PML, has been introduced by Berenger [18], that are widely used in the

FDTD algorithm. The Convoluted PML [19], also referred to as CPML, is the best in

the class in terms of performance, even though it is computationally expensive. We have

adapted and programmed both the Mur ABC and CPML type of ABCs in the RUFD

algorithm. As we can see from Figs. 4.1 and 4.2, the performance of RUFD/CPML is

superior to RUFD/Mur ABC, since the former is better able to suppress the reflections

from the boundary. One can use either the Mur ABC or the CPML ABC, depending on

the accuracy desired.

Figure 4.1: A square PEC sheet.

4.7 Types of Formulation

The RUFD algorithm has three types of formulation depending on the problem on hand.

In this section we will describe each of them with some illustrative examples.
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Figure 4.2: Amplitude variation of the scattered Ez from a square PEC sheet shown in
Fig. 4.1.

4.7.1 Total Field Formulation

Total field formulation is used for antenna problems or problems which involve sources of

finite support, as opposed to the plane wave type of source, which is unbounded. This

type of formulation uses the total field throughout the computational domain; hence, it

does not need any special modification to the RUFD update equations. As an example,

let us consider a dipole antenna operating at 10 GHz, shown in Fig. 4.3, whose length and

radius are λ/2 and λ/100, respectively. The dipole is fed by using a voltage source in a gap

whose length is λ/20. Fig. 4.4 compares the feed current of the dipole antenna, calculated

by using the RUFD total field formulation with those derived from a commercial MoM

solver.

Fig. 4.4 shows good comparison between the feed current calculated by using the
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Figure 4.3: Geometry of a PEC dipole antenna (Not to Scale).
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Figure 4.4: Amplitude variation of the feed current for a PEC dipole antenna shown in
Fig. 4.3.

RUFD and a commercial MoM code. The antenna was modeled as a thin wire in the

commercial MoM code, while in RUFD it was modeled by using a square PEC rod. The

calculated currents followed the shape and amplitude but show a shift in the frequency

because of the difference in the models used for the antenna in the two different solvers.
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To compensate for this, the RUFD results the frequency axis was scaled by a factor of 1.1

to align the solution for the current distribution, derived by using the RUFD, with that

obtained from the commercial MoM.

4.7.2 Total Field/Scattered Field Formulation

The ABCs are only designed to absorb the plane waves incident upon the boundary, and

they can become unstable when a wave travels away from it. To handle this situation,

which always occurs when we use a plane wave excitation, we employ what is known as

as the total field/scattered field formulation [1]. In this formulation, we define an interior

domain where we work with total fields, while in the region outside of this domain we

use the scattered field (see Fig. 4.5), to ensure that the fields are always outgoing at the

outer boundary, as the radiation condition dictates them to be. The scattered field region

is usually chosen to be 5 cells thick. The fields at the boundary between the total and

scattered field regions are suitably adjusted to ensure the satisfaction of the continuity

condition.

Figure 4.5: A 2D computational domain.
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As an example consider a dielectric cube at 10 GHz, which is λ/25 on the side,

shown in Fig. 4.6, which has a relative permittivity of 6. Fig. 4.7 compares the Ez-

field scattered in the forward direction, calculated by using the total field/scattered field

type of formulation in the RUFD, with those obtained from a commercial MoM solver.

While formulating this problem in RUFD, a small value of σ = 0.01 was used within the

dielectric cube to achieve stability.

Figure 4.6: A dielectric cube.

Fig. 4.7 shows good comparison of the scattered field Ez calculated from the RUFD

and the commercial MoM solver. Even though the commercial MoM was able to solve

this particular geometry, it could not handle when a smaller PEC cube of size λ/100 was

embedded within the dielectric cube (see Fig. 4.8), while the RUFD was able to solve the

problem with ease.
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Figure 4.7: Amplitude variation of the forward scattered field Ez from a dielectric cube
shown in Fig. 4.6.

4.7.3 Scattered Field Formulation

In the Scattered Field formulation, we work only with the scattered fields throughout the

entire computational domain. We replace the objects with hard sources, whose values

are derived from the scattered fields calculated by applying the boundary condition on

the surface of the object. Because of this, we can use the scattered field formulation

only for problems involving PEC objects alone. In other words, for scattering problems

involving dielectric geometries alone, we must always use the total field/scattered field

formulation. As an example consider the problem of calculating the scattering from a

square PEC plate at 10 GHz, whose side length and thickness are 1.5λ and λ/10 as shown

in Fig. 4.9. Fig. 4.10 compares the total Ez field calculated by using the RUFD with

total field/scattered field formulation; RUFD with scattered field formulation; and, the

commercial MoM. Table 4.1 compares the simulation times required by the RUFD and
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Figure 4.8: A PEC cube embedded in a dielectric cube.

the Commercial MoM for this problem.

Figure 4.9: A square PEC plate.
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Figure 4.10: Amplitude variation of the total field Ez from a PEC plate shown in Fig.
4.9.

Table 4.1: Comparison of simulation times required by RUFD and the commercial MoM
for the PEC plate shown in Fig.4.9.

Method Simulation Time

RUFD 19.36 s
Commercial MoM 20.5 s

As is well known, usually, the Finite methods are considerabley more CPU-intensive,

than the MoM, but the Table shows that for this example, which is typical, RUFD is

quite competitive with the MoM. Furthermore, the proposed RUFD algorithm, which

is a Finite method, can handle finite conductivities and inhomogeneous objects much

more numerically efficiently and accurately than can the MoM code, which can become

numerically unstable. Also the RUFD algorithm used here was a serial version and using

a parallel version would speed up the computation considerably, whereas the MoM is not

so easily parallelizable. Fig. 4.10 shows good comparison of the total field Ez calculated
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using the RUFD and those obtained from the commercial MoM solver. We find that the

results calculated using scattering or total field/scattered field formulations are consistent

with each other and also with the commercial solver.

4.8 Performance Enhancement of RUFD

The RUFD algorithm, even though it is robust and accurate for handling a wide variety of

problems, is not the most efficient. Since it is a frequency domain technique, even though

it is similar to the FDTD algorithm because it is recursive, it solves problems only for a

single frequency, as opposed to the FDTD algorithm, which generates the solution for a

range of frequencies from a single simulation. In this section we will introduce a way to

enhance the computational efficiency of the RUFD algorithm without compromising its

accuracy.

4.8.1 Post-Processing

Fig. 4.11 shows the typical signature generated by an RUFD simulations, which shows

that for this problem we need to iterate at least 2000 times to obtain the converged field

value at the chosen point of interest. The information preceding the recursive step when

convergence is achieved (2000 in this example) in RUFD is of no significance, since we

only need to retain the final converged value unlike the FDTD algorithm. Thus, we can

use methods to process the recursive signature during the initial stages of iteration to

predict the final converged value that we are seeking, either by using the zero-frequency

DFT, by employing the moving window average for smoothing, or by fitting the data

using Vector Fitting Algorithm.
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Figure 4.11: A typical signature generated in the RUFD algorithm.

As an example, let us consider the patch antenna operating at 8 GHz which is printed

on a Duroid substrate (ǫr = 2.2) that has a thickness of 0.794 mm, (see Fig. 4.12). The

problem was solved by using the RUFD and further processing of the recursive signature

was done by using vector fitting, polynomial fitting, and smoothing. Table 4.2 compares

the number of iteration steps required by each of these techniques with the number of

time steps required by a commercial FDTD solver.

Table 4.2: Comparison of iterations required by RUFD using different processing tech-
nique and the commercial FDTD for the patch antenna shown in Fig.4.12.

Method Comm. FDTD RUFD Alone Vector Fit Poly Fit Smoothing
No. of Steps 8200 2000 1601 1218 1218

It is evident from the Table 4.2 that using post processing technique makes the

RUFD algorithm computationally efficient, if not competing with the FDTD, dropping

the fact that it is a frequency domain solver.
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Figure 4.12: A patch antenna.

For the next example, we consider a waveguide filter as shown in Fig. 4.13 at 11.8

GHz.

Figure 4.13: A waveguide filter.

Table 4.3 again shows that the post processing helps reduce the number of iterations,

and the polynomial fit performs especially well. For the final example, we consider the
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Table 4.3: Comparison of iterations required by RUFD using different processing tech-
nique for the waveguide filter shown in Fig.4.13.

Method Comm. FDTD RUFD Alone Vector Fit Polynomial Fit
No. of Steps 45540 27000 23585 20544

RF filter operating in the frequency range of 10 GHz. The filter is printed on a substrate

with an ǫr = 2, and a thickness of 1 mm, as shown in Fig. 4.14. Table 4.4 compares the

number of iterations required by the RUFD alone, with smoothing, and the number of

time steps required by commercial FDTD solver.

Figure 4.14: A RF filter.

Table 4.4: Comparison of iterations required by the RUFD, when using the smoothing
technique for the RF filter shown in Fig.4.14.

Method Comm. FDTD RUFD Alone Smoothing
No. of Steps 11300 12000 2100

From Table 4.4 we see that the smoothing algorithm reduce the number of iterations

required by the RUFD quite significantly.
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Until now we have only discussed about post processing techniques which do not

modify the flow of the RUFD algorithm. An alternative is is to do a online processing,

by periodically updating the field values at all the nodes of the computational grid after

smoothing. Consider the PEC plate problem shown in Fig. 4.9, which we have solved by

using the RUFD, combined with a online processing where we update the E-field values

at all the nodes of the computational domain, with the zero-frequency DFT values every

500th step starting at the 400th step. Fig. 4.15 compares the signature of the RUFD

and compares it for the cases of with and without online processing. We find that online

processing slows down the convergence, and hence the post-processing methods offer a

better choice than does the online-processing method.
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Figure 4.15: Signature generated in RUFD algorithm for a PEC plate shown in Fig. 4.9.
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4.8.2 Effect of Time Step on Convergence

To study the effect of varying τ in the RUFD simulations, we consider a small square

PEC patch, shown in Fig. 4.16, which operates at 10 GHz. We model the above problem

by using the RUFD and the value of τ is varied as 0.995∆, 0.595∆ and 0.0995∆ in three

different RUFD simulations, where ∆ is dictated by the Courant condition given in (4.6).

Fig. 4.17 compares the scattered field Ey calculated by using the RUFD simulations with

different values of τ , with those calculated by using the DM approach. Fig. 4.18 compares

the variation of the field at a point from the three RUFD simulations.

Figure 4.16: A square PEC patch.

From Fig. 4.17 we see that the RUFD results compare well with those obtained

from the DM approach, irrespective of the chosen value for τ . However, from Fig. 4.18

we note that decreasing the value of τ , increases the sampling rate, and requires a larger

number of iterations to achieve convergence. Also, increasing the value of τ beyond ∆

leads to instabilities and, hence, an optimum choice for τ is as given in (4.6).
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Figure 4.17: Amplitude variation of the scattered field Ey from a PEC patch shown in
Fig. 4.16.

4.8.3 Effect of Losses on Convergence

To achieve a faster convergence, we use a small value of loss in the entire computational

domain to damp out the oscillations in the RUFD. To study the effect of the loss on

the convergence, we consider the patch antenna problem shown in Fig .4.16, and vary

the value of σ from 0 to 10 in the RUFD algorithm. Fig. 4.19 compares the scattered

field Ey calculated by using the RUFD simulation using different values of σ, with those

calculated by using the DM approach. Fig. 4.20 compares the variation of the field at a

point, computed by using these RUFD simulations.

Fig. 4.19 shows good comparison with the results from the DM approach, irre-

spective of the chosen value for σ. Fig. 4.20 shows that convergence is achieved more

quicker as we increase the value of σ. However, with a very high value of σ serves to
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Figure 4.18: Signature generated in RUFD algorithm for a PEC patch shown in Fig. 4.16.

dampen the final, converged, field values. Hence, in order to maintain a good accuracy,

and achieve a faster convergence at the same time , we use a moderate value ofσ, namely

0.01. for instance. From the plots of the signature shown in Fig. 4.20, we find that the

field values peak up initially and then settle out, as we continue the iteration until we

reach convergence. Hence an intuitive approach would be to start with a higher value for

σ and decrease it in steps as we continue with the simulation. Even though this approach

results in a faster convergence, the accuracy is compromised somewhat, say about a factor

of 10%.

4.8.4 Initializing Using DM Approach

In order to speed up the convergence in the RUFD algorithm, the field nodes in the

computational grid of RUFD are initialized by using DM approach. As an example, we
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Figure 4.19: Amplitude variation of the scattered field Ey from a PEC patch shown in
Fig. 4.16.

have revisited the PEC patch problem, shown in Fig. 4.16, and have it solved by using

the RUFD, using initial values obtained from the DM approach. Fig. 4.21 compares

the scattered field value Ey calculated by using RUFD simulations, with and without

initialization, and with those calculated by using the DM approach. Fig. 4.22 compares

the variation of the field at an observation point obtained from these RUFD simulations.

From Fig. 4.21 we see that the results compare well with those obtained from the

DM approach, irrespective of the initialization. Furthermore, Fig. 4.22 shows that while

using initialization from the fields derived from the DM approach helps to decrease the

overshoot of the signature, it does not result in a faster convergence.
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Figure 4.20: Signature generated in RUFD algorithm for a PEC patch shown in Fig. 4.16.

4.8.5 S-Parameter Calculations

Scattering parameters are used to define the frequency behavior of circuits and can be

calculated by using the RUFD, either by using open terminations or matched terminations

for the circuit ports. In general, the frequency dependent scattering parameter Sij(f)

using matched termination can be defined as follows [20]:

Sij(f) =
Vi(f)

Vj(f)

√

Zoj(f)

Zoi(f)
(4.8)

where Vi(f) and Vj(f) are the voltages at ports i and j, Zoi(f) and Zoi(f) are the

characteristic impedances of the lines connected to these ports. The matched termination

in the RUFD can be achieved either by using the method mentioned in Section 4.5 or

by making the CPML touch the port of the circuit. Both of these approaches are found
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Figure 4.21: Amplitude variation of the scattered field Ey from a PEC patch shown in
Fig. 4.16.

to produce the same results. In order to calculate the S-parameters for the feed line

we need to decompose the current into forward and backward traveling waves, which

can be calculated by using the Prony’s method [21, 22]. When using open termination

for S-parameter calculation, we use the formula proposed in [23], which requires the

decomposition of the waves in all the ports into forward and backward traveling waves,

and we can again use the Prony’s method for this purpose.

As an example, let us consider the RF filter shown in Fig. 4.14. Figs. 4.23 and 4.24

compares the S-parameters, calculated by using the RUFD, with those obtained from the

transmission line model (TL model).

Fig. 4.23 shows that the S11 values, obtained from the RUFD and transmission

line models compare well with each other. However, Fig. 4.24 shows a slight difference

between the S21 values because of the infinite substrate assumption that there is in the
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Figure 4.22: Signature generated in RUFD algorithm for a PEC patch shown in Fig. 4.16.

TL model. The RUFD has the potential to calculate the S-parameters of circuits with

finite substrates which the MoM solvers cannot readily handle because they assume that

the substrate dimensions are infinite by using the layered medium Green’s function.

4.8.6 Sub-Gridding Approach

Sub-Gridding approach in the FDTD enables one to use different mesh sizes in selected

regions of the computational domain, and the same principle has been adopted in the

RUFD to handle mulitscale problem.The problem geometry considered is shown in Fig.

4.25. A fine mesh was used in a part of the domain, which is indicated as the sub-gridding

region in the Fig. 4.25, and a buffer region was used to enable smooth transition between

the coarse and sub-gridded regions. Two test problems were solved by using the RUFD

with sub-gridding, one with the source located in the coarse region, while the other with
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Figure 4.23: Variation of S11 for the RF filter shown in Fig. 4.14.

the source placed inside the sub-gridding region. The sub-gridding approach became

unstable in both of these cases, irrespective of the value chosen for τ , as it very often the

case with sub-gridding algorithms implementation in the FDTD. However, because of the

nature of the RUFD algorithm the same sub-gridding can be achieved using a method

called Multi-Grid, proposed in the Chapter 5.

4.8.7 Improving the Computational Efficiency

While the proposed RUFD algorithm has a number of salutary features, as pointed out

above, it has two disadvantages listed below:

• Takes a longer time for moderate and high-Q problems, such as the case examples

shown in Figs. 4.12 and 4.13.
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Figure 4.24: Variation of S21 for the RF filter shown in Fig. 4.14.

Figure 4.25: A computational domain with sub-gridding.
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• In contrast to the FDTD, the update equations are complex, and they require twice

the memory as compared to that needed in the conventional FDTD.

To overcome these drawbacks, we have modified the original RUFD algorithm to

address the issues mentioned above, and have also incorporated new strategies to accom-

modate non-conformal objects, to deal with low frequencies and to develop a new ABC

which is computationally efficient than the PML. The result is the nuFDTD algorithm

described in the Chapter 6, whose update equations are entirely in the real domain.

The patch antenna problem shown in Fig. 4.12 was solved by using the νFDTD and

the number of steps required is compared in the Table 4.5, with those for the conventional

FDTD and RUFD with smoothing.

Table 4.5: Comparison of iterations required by νFDTD, RUFD using Smoothing and
the commercial FDTD for the patch antenna shown in Fig.4.12.

Method Commercial FDTD RUFD with Smoothing νFDTD
No. of Steps 8200 1218 972

Table 4.5 clearly shows that the νFDTD algorithm perform better not only compared

to the RUFD, but also with the commercial FDTD solver. The waveguide filter shown in

Fig. 4.13 was also solved using νFDTD and the required number of time steps are shown

in the Table 4.6.

Table 4.6: Comparison of iterations required by νFDTD, RUFD using polynomial fit for
the waveguide filter shown in Fig.4.13.

Method Commercial FDTD RUFD with Poly Fit νFDTD
No. of Steps 45540 20544 10000

Tables 4.5 and 4.6 shows that the computational efficiency of the νFDTD is atleast

50% better than that of the RUFD algorithm even after using the best available post-

processing techniques in the RUFD.
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4.8.8 Calculation of Frequency Response

Often designers are interested in electromagnetic response over a band of frequencies

instead of just few. Since RUFD is a frequency domain technique, it calculates the

response only at one frequency from a single simulation run; hence it is computationally

expensive to calculate for multiple frequencies. One way to address this issue would be

to run a number of frequencies using the RUFD, and then interpolate the results for

in between frequencies by using either vector fitting, or polynomial fitting. However,

when the frequencies are separated by more than 20% of the simulation frequncy and

for the frequencies in-between, we initialize the RUFD computational grid with field

values calculated through interpolation based on the results obtained previously at other

frequencies, before we begin the simulation. We improve the convergence of the RUFD

algorithm by following this procedure, which is different from what we found hwen we

used the intialization values from the DM apporach we mentioned in the Section 4.8.4.

To demonstrate the proposed approach of frequency interpolation just described

above, we consider the problem of scattering by a PEC sheet, shown in Fig. 4.1 with the

objective of generating the results at a frequency of 10 GHz. Initially, we solve the problem

for frequencies of 9 GHz and 11 GHz, using the RUFD scattering formulation, and then

interpolate the field values for 10.5 GHz at all the nodes in the computational domain.

This interpolation fails to predict the field values at 10 GHz with the desired accuracy;

hence we use these interpolated data to intialize the RUFD computational grid before

starting with the RUFD iteration at 10 GHz to achieve faster convergence. Fig. 4.26

compares the results calculated by using the RUFD with and without the initialization

step, and we see that the two results compare well. Thus, we have demonstrated that

we can speed up the convergence of the RUFD by using initialization in the way we have

described above.
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Figure 4.26: Amplitude variation of the backscattered field Ez from a PEC sheet shown
in Fig. 4.1.

Another way to calculate the frequency response is to use νFDTD described in

Chapter 6, which is able to handle multiple sources, operating at different frequencies

and using them we can generate the results for a number of frequencies from a single

simulation run. Even when we use a single frequency source in the νFDTD we can

process the results for frequencies within the 5% bandwidth around the source freqeuncy

used during simulation.

4.9 Observations and Conclusions

As alluded to in Section 4.1, the RUFD algorithm is highly parallelizable. This is because,

unlike the FEM, it utilizes the difference form of Maxwell’s equations. Also, since RUFD

uses the Yee cells, its meshing requirements are relatively simple. Moreover, since RUFD
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solves the Maxwell’s equations in a recursive manner, without using either iteration or

inversion, the problems of dealing with ill-conditioned matrices, or constructing robust

pre-conditioners are totally avoided. Also, as a frequency domain solver, it can handle

dispersive media, including plasmonics, relatively easily without any need for Drude or

Debye model as required in FDTD algorithm.

A number of technique has been discussed in this Chapter to further enhance the

performance of the RUFD. These include frequency interpolation schemes to generate the

initial values of the fields in the entire computational domain; introducing losses in the

computational domain; and, post-processing methods, which speed up the convergence

significantly.

It has also been mentioned that the RUFD has been used as a stepping stone to a

new improved version of the FDTD, called the νFDTD, described in detail in the Chapter

6.
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5. On the Hybridization of RUFD

Algorithm

5.1 Introduction

The direct solution of multiscale problems by means of conventional CEM methods–be

it FEM, FDTD or MoM–is highly challenging, even with the availability of modern su-

percomputers, because we need to use a large number of DoFs (degree of freedom) to

accurately describe objects with fine features, which might share the computational do-

main with other large objects. For instance, if a thin-wire is located in an inhomogeneous

medium along with other large-scale objects, and the thickness of the wire is only a small

fraction of the wavelength in the medium, then we must use a very fine mesh to accurately

capture the nuances of its geometry. This, in turn, leads to a large number of DoFs when

there are other large objects also present in the computational domain along with the

thin wire whose shape may be arbitrary.

Dealing with multiscale objects often forces us to compromise the accuracy (relaxing

the numerical discretization process when attempting to capture the small-scale features)

in order to cope with the limited available resources in terms of CPU memory and time.

In this chapter we introduce a scheme that combines the RUFD and the DM approach
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to solve multiscale problems in a numerically efficient manner. Our objective is to handle

objects with fine features with the DM approach, and not directly with the RUFD which

would require us to use a fine mesh (see Fig. 5.2 for the problem shown in Fig. 5.1), at

the cost of increased computational burden when compared to that for a problem without

fine features.

Figure 5.1: A multiscale problem.

The main advantage of this hybrid method is that it does not require local mesh

refinement for objects with fine features (Fig. 5.3). In fact, the region surrounding the

small/thin structure is extracted from the original domain and two different numerical

techniques are used for dealing with the two problems. The coupling of the object with

the remaining part of the computational domain is achieved by using the fields radiated by

the previously extracted region. As a result, the presented method does not place a heavy

burden on the CPU time and memory as do the conventional approaches when dealing
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Figure 5.2: A multiscale problem meshed for RUFD simulation.

with multiscale problems. The DM/RUFD method introduced herein can be implemented

either in an iterative or in a self-consistent manner.

The proposed method is especially useful for modeling wire antennas located in the

vicinity of inhomogeneous structures, as well as for simulating interconnect structures in

integrated circuits, which typically have fine features.

5.2 Iterative Approach

Both the iterative and self-consistent hybrid implementations - the latter to be described

in the following section - begin by extracting a region surrounding the small object from

101



Figure 5.3: A multiscale problem meshed for hybrid RUFD simulation.

the RUFD domain. A 2-D representation of the hybrid problem is shown Fig. 5.3.

Let us assume that two objects, a large PEC plate and a PEC wire, which is small

compared to the operating wavelength, are located in the RUFD computational domain,

which is excited by a gap source, at 10 GHz as shown in Fig. 5.4. The hybrid-iteration

algorithm begins by solving the small object (dipole antenna in this case), which may

be PEC, or dielectric (or a combination thereof) is treated by using the DM approach

described in Chapters 2 and 3, in the absence of large structure.

Next, the fields scattered by the large structure are derived by using RUFD and a

source excitation comprising of the fields radiated by the small object.

These scattered fields are evaluated at the boundary of the extracted region and then
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Figure 5.4: A λ/20 dipole antenna over a finite ground plane (not to scale).

interpolated to obtain the incident fields at the locations of each of the basis function used

to model the dipole in DM approach. Following this, the right hand side of the matrix

equation, generated using the DM approach for the dipole is modified, by superposing

the feed and the fields scattered by the larger structure. Next, the matrix equation is

solved for the weight coefficients of the dipole moments, as a first step in the iteration

process. Then we again solve for the fields scattered by the large object when illuminated

by the fields radiated by the small object, derived by using the recently calculated weight

coefficients of the current in the small object.

The iteration process is continued, by repeating the steps described above. The

process is terminated when numerical convergence has been achieved and the difference

between the results obtained at the k-th and (k-1)-th iteration steps is below a chosen

threshold say 10−3. Fig. 5.5 compares the amplitude of the scattered field Ey calculated
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by using the RUFD iterative hybrid approach with those obtained from a commercial

MoM solver.
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Figure 5.5: Amplitude comparison of Ey field for the multiscale problem shown in Fig.
5.4.

Fig. 5.5 shows the scattered fields calculated by using the RUFD hybrid iterative

method compares well with those obtained from a commercial MoM code. The commercial

MoM code was able to handle this problem with ease since the large object was modeled

as a PEC sheet, however when the PEC sheet is replaced by a thin PEC plate, the CPU

time and the memory required by the commercial MoM increases, as will be demonstrated

in the next section.
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5.3 Self-Consistent Approach

The self-consistent type of hybrid implementation also begins by extracting from the

RUFD domain a region surrounding the small object (see Fig. 5.3). However, this time

the entire problem is solved in a single step by directly inverting a composite matrix

equation, which is constructed as follows. First, the impedance matrix for the small

problem is set up independently of the rest, by using the DM approach; the right hand

side vector for source is computed and stored. Next, we compute the field radiated

by the current distribution on the small object at the location of the large object and

solve for the scattered field on its surface by imposing the boundary condition with the

fields produced by the small object as the incident field on the large object. The fields

scattered by the large object are computed in the entire computational domain by using a

RUFD simulation carried out by using a coarse mesh, and then interpolated in the region

containing the small object to obtain a new excitation vector for the DM system. Now

the matrix equation is solved for the weight coefficients associated with the currents on

the small object, and the final scattered fields are calculate as a weighted superposition

of the contributions from the small and large objects.

To illustrate the procedure, let us consider a dipole antenna of length λ/2 over a

finite ground plane, operating at 10 GHz as shown in Fig. 5.6. Fig. 5.7 compares the

scattered field calculated by using the self-consistent approach as described above, with

those calculated by using the iterative approach and the commercial MoM code. Table

5.1 compares the computational resources required by the self-consistent and iterative

approaches.

Fig. 5.7 shows good comparison of the scattered field calculated by using the self

consistent approach, with those calculated by using the iterative procedure and the com-

mercial MoM code, with the exception of observation points located near the source
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Figure 5.6: A λ/2 dipole antenna over a finite ground plane (not to scale).

Table 5.1: Comparison of computational resources required by the different RUFD hybrid
approaches for the multiscale problem shown in Fig.5.6.

Self-Consistent Approach Iterative Approach

Peak Memory 483 MB 481 MB
Simulation Time 172.3 s 601 s

region. Table 5.1 shows that the results calculated by using the iterative approach are

more accurate, though they have a longer run time in comparison to the self consistent

approach. In order to demonstrate the key advantage of using the hybrid RUFD, the PEC

sheet in Fig. 5.6 was replaced by a PEC plate of thickness λ/20. The problem was solved

by using the self-consistent approach and the variation of scattered field Ey is plotted in

Fig. 5.8. Table 5.2 compares the computational resources required by the self-consistent

approach with those needed by the commercial MoM. From Fig. 5.8 and the Table 5.2,
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Figure 5.7: Amplitude comparison of Ey field for the multiscale problem shown in Fig.
5.6.

we find that the self-consistent approach outperforms the commercial MoM code, both in

terms of memory and simulation time.

Table 5.2: Comparison of computational resources required by the self-consistent approach
with those required by the commercial MoM.

self-Consistent/RUFD Hy-
brid

Comm. MoM

Peak Memory 248 MB 543 MB
Simulation Time 71 s 224.75 s

For the next example we consider a λ/20 diameter sphere, comprising of human

muscle (ǫr = 22− j18), and located above a PEC sheet as shown in Fig. 5.9. The sphere

is illuminated by a plane wave at a frequncy of 10 GHz. The problem is solved by using

the self-consistent approach described previously in this section, with a slight modification

needed to handle the plane wave source being used in this example, as opposed to a feed-
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Figure 5.8: Amplitude comparison of Ey field for the multiscale problem with a λ/20
thick finite ground plane.

gap source that we had dealt with in the previous example. Fig. 5.10 compares the

scattered Ey-field, calculated by using the RUFD hybrid approach with those obtained

from a commercial MoM code.

As seen from Fig. 5.10, the scattered fields calculated by using the RUFD hybrid

approach compares well with those calculated by using a commercial MoM code.

For the next example, we consider a PEC loop, with a thickness of λ/200 and a

diameter of λ/20, as shown in Fig. 5.11. The loop is placed above a finite ground plane,

with a side length of λ, and its scattering and radiation characteristics were investigated

at a frequency of 10 GHz. The problem was first solved by using a feed gap source and

then with a plane wave illumination, polarized along ŷ and traveling along the negative-z

direction, both by using the self-consistent approach. Fig. 5.12 compares the Ey-field for

the radiation problem calculated by using the self-consistent approach with those obtained

from the NEC code. Fig. 5.13 compares the results for the total field Ey for the scattering

problem–calculated by using the self-consistent approach–with those obtained from the
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Figure 5.9: A lossy sphere over a finite ground plane (not to scale).
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Figure 5.10: Amplitude comparison of scattered Ey field for the problem shown in Fig.
5.9.
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commercial MoM.

Figure 5.11: A circular loop over a finite ground plane (not to scale).
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Figure 5.12: Amplitude comparison of Ey field for the loop shown in Fig. 5.11 with a feed
gap source.
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Figure 5.13: Amplitude comparison of total Ey field for the loop shown in Fig. 5.11 with
a plane wave illumination.

From Figs. 5.12 and 5.13 we see that good comparison between the Ey-field cal-

culated by using the self-consistent approach, and those obtained from the commercial

MoM solver. Although the commercial solver was able to handle this problem with ease,

the efficacy of the self-consistent approach becomes evident when the size of the small

object is reduced further to λ/200.

5.4 Vicinity of PML

The effectiveness of the PML determines the accuracy of the RUFD simulations, and the

separation distance of the PML boundary from the objects located inside the simulation

domain determines the computational requirements. Hence, in order to determine the

optimum location of the PML boundary from the objects in the RUFD simulation domain,

we consider a square PEC sheet of size 8λ/100, illuminated by a plane wave, polarized

along ẑ and traveling along negative-y direction at a operating frequency of 10 GHz. The
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variation of the scattered Ez-field is compared for different distances, between the PML

and the PEC sheet, namely λ/40, λ/20 and 3λ/40. Fig. 5.15 shows that the scattered

field, calculated by using the RUFD, is relatively insensitive to the separation distance

between the PEC sheet and the PML boundary, by using a commercial MoM solver. It

also shows that the scattered field calculated by using the RUFD compare well with those

computed by using a commercial MoM solver.

8λ/100

Figure 5.14: A square PEC sheet.

5.5 Multi-Grid Approach

As pointed out in Section 5.1, modeling the fine features of a multiscale problem (see Fig.

5.2) by using the RUFD is computationally very expensive. To handle this problem in a

more efficient way, a sub-gridding approach was investigated. However, it was found that

a stable implementation of sub-gridding could not be achieved. Hence, we introduce a

multi-grid approach where the fine features in the problem are handled separately by using
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Figure 5.15: Amplitude comparison of scattered Ez field for different distances between
the PML boundary and the PEC sheet shown in Fig. 5.14.

a fine mesh for the RUFD computational gird, as shown in Fig. 5.16. As we can see from

this figure, the only difference between the hybrid RUFD and multi-grid approaches is

that the extracted region in the multi-grid method is solved by using a RUFD simulation

carried out with a fine mesh, as opposed to the DM method employed in the context

of the hybrid RUFD approach. The key difference between the sub-gridding and multi-

grid approaches is to that, the fine mesh and the coarse mesh are interfaced at every

iterative step in the sub-gridding approach, while the fine meshed computational domain

is simulated first, and then interfaced with the coarse-mesh simulation, in the multi-grid

method.

To demonstrate the above procedure, we consider a thin square PEC plate, as shown

in Fig. 5.17. The plate is illuminated by a plane wave at a frequency of 10 GHz and we are

interested in calculating the scattered Ey-field along the ẑ-direction, at observation points

ranging from −0.5λ to 0.3λ. If we use the conventional RUFD simulation for this problem,

we would need to mesh the entire computational domain with a mesh size of at least λ/400

(using the thumb rule of using at least two cells to model the thickness of the plate) along
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Figure 5.16: A multiscale problem meshed for multi-grid RUFD simulation.

the ẑ-direction. However, in the multi-grid method we first define a 17λ/20×17λ/20×λ/20

region, which contains the plate and mesh it with a λ/20× λ/20× λ/200 grid, in the x-,

y- and z-directions, respectively. This fine meshed region is first simulated by using the

RUFD/scattered field formulation, and then the converged fields so derived are interfaced

with the coarse-grid RUFD region, to compute the desired scattered fields. Fig. 5.18

compares the scattered Ey-field calculated by using the multi-grid approach with those

obtained by using a commercial MoM solver.

Fig. 5.18 shows a good comparison between the fields calculated by using the multi-

grid approach with those obtained from the commercial MoM solver. We find that the

multi-grid approach reduces the computational requirements by a large factor in compar-

ison to the time and memory requirements of the conventional RUFD algorithm, without

114



Figure 5.17: A square PEC plate.
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Figure 5.18: Amplitude comparison of scattered Ey field for the PEC plate shown in Fig.
5.17.
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compromising the accuracy.

For the next example we consider the problem of scattering by a loop placed over

a square PEC plate, at a frequency of 10 GHz, is λ in the side and it has a thickness of

λ/200, as shown in Fig. 5.19. In this problem we use the self-consistent hybrid approach,

where the small loop is modeled by using the DM approach, while the plate is handled via

the multi-grid approach. The converged fields from these simulations of the loop geometry

and the plate, are then used in a coarse grid RUFD simulation, which is meshed by using

a cell size of λ/20. The Fig. 5.20 compares the calculated scattered Ey-field derived by

using the multi-grid approach, with those obtained from a commercial MoM code. The

comparison is seen to be good.

Figure 5.19: A PEC loop over a finite ground plane (not to scale).

Next, we consider an antenna problem, as shown in Fig. 5.21, where a PEC helix

operating at 10 GHz, is placed over a finite PEC sheet whose thickness is λ/200. The
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Figure 5.20: Amplitude comparison of scattered Ey field for the PEC loop shown in Fig.
5.19.

Helix is fed by using a voltage gap source. We use the same procedure, as described

above for the previous example to solve this problem. The Ez-field radiated by the helix

is calculated along the observation line x = 0 and y = 1.5λ/20. Fig. 5.22 is compares

the computed Ez-field with that obtained by using a commercial MoM code, while Table

5.3 compares the simulation resources required by the multi-grid approach with that for

the commercial MoM code.Fig. 5.22 shows that there are some differences between the

two results, although they show similar trends. This difference can be attributed to the

different source models used in these two approaches.

Table 5.3: Comparison of computational resources required by the multi-grid approach
and the commercial MoM solver for the helix problem shown in Fig.5.21.

Mulit-Grid Approach Comm. MoM

Peak Memory 218 MB 373 MB
Simulation Time 118.8 s 198.4 s

From Table 5.3, we see that the multi-grid approach is computationally more efficient

than the commercial MoM. Also, the commercial MoM was able to handle this problem
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Figure 5.21: A PEC helix over a finite ground plane (not to scale).
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Figure 5.22: Amplitude comparison of radiated Ez field for the PEC helix shown in Fig.
5.21.
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with relative ease, since we used a thin-wire model for the helix even though we included

the finite thickness while modeling in DM approach during the RUFD hybrid simulation.

However, when we include the finite thickness in the commercial MoM code, as we do in

the RUFD in a routine manner, the performance of the commercial MoM becomes poor,

as can be seen from the next example.

For the last example, let us consider a dipole antenna of length λ/2 operating at

10 GHz, placed over a finite ground plane of length of 13λ/20 and thickness λ/200, as

shown in Fig. 5.23. Fig. 5.24 compares the radiated field Ey is calculated along the ẑ-

direction by using the multi-grid approach and is compared with those generated by using

the commercial MoM. The dipole was modeled in the commercial MoM in two different

ways, namely: (i) as a thin wire; and (ii) cylinder with a finite radius of λ/400. Table

5.4 compares the the computational resources required by the multi-grid approach, the

commercial MoM/wire model and the commercial MoM/cylinder model. We find, once

again that the multi-grid approach is computationally more efficient than the commercial

code; however, its accuracy is comparable to that of the MoM code.

Figure 5.23: A PEC dipole placed over a finite ground plane (not to scale).
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Figure 5.24: Amplitude comparison of radiated Ey field for the PEC dipole shown in Fig.
5.23.

Table 5.4: Comparison of computational resources required by the multi-grid approach
and the commercial MoM solver for the dipole problem shown in Fig.5.23.

Multi-Grid Approach Comm. MoM/Wire
Model

Comm.
MoM/Cylinder Model

Peak Memory 345 MB 459.2 MB 387 MB
Simulation Time 115.6 s 187.4 s 194.3 s

5.6 Handling Inhomogeneous Objects with Fine Fea-

tures

The complexity of the multiscale problem increases when an object has either a lossless

or lossy dielectric coating. The efficacy of the hybrid RUFD in handling such multiscale

problems will be demonstrated in this section with illustrative examples.
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5.6.1 Large Objects with Coating

Whenever a large object has a thin dielectric coating, we use a multi-grid approach,

described in the previous section, to model this type of multiscale problems. Let us

consider the dipole antenna problem, which is shown in Fig. 5.25, and which operates at

10 GHz. The PEC plate is coated with ǫr = 6 and the coating is λ/200 thick. We use a

multi-grid approach to model the plate; DM approach to model the dipole antenna; and,

a coarse grid RUFD to calculate the interaction between them. Fig. 5.26 compares the

radiated Ey-fields calculated by using the hybrid RUFD approach with those generated

by using the commercial MoM code. Table 5.5 compares the computational resources

required by the hybrid RUFD approach with that needed by the commercial MoM.

Figure 5.25: A PEC dipole placed over a coated finite ground plane (not to scale).

From Fig. 5.26 and Table 5.5 we find that the hybrid RUFD outperforms the com-

mercial MoM code. It is important to recognize the fact that we can directly incorporate

lossy coating in the proposed hybrid approach, while in the MoM or FEM based solvers,
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Figure 5.26: Amplitude comparison of radiated Ey field for the PEC dipole shown in Fig.
5.25.

Table 5.5: Comparison of computational resources required by the multi-grid approach
and the commercial MoM solver for the dipole problem shown in Fig.5.25.

Multi-Grid Approach Commercial MoM

Peak Memory 270.8 MB 646.2 MB
Simulation Time 97.4 s 276.2 s

special treatments are required to incorporate losses, and doing so also increases the

computational cost.

5.6.2 Coated Small Objects

For multiscale problems involving coated small objects, we use the DM approach to model

them, in a manner described in Section 2.5.1. As an example, let us consider a dipole

antenna operating at 10 GHz, which is coated with λ/100 thick dielectric layer with ǫr = 6,

as shown in Fig. 5.27. The dipole antenna is modeled by using the DM approach, and it

is found that the effective thickness of the coated wire is 1.8λ/200. Fig. 5.28 compares
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the radiated Ey-field calculated by using the hybrid RUFD approach, with that obtained

from the commercial MoM, and Table 5.6 compares the required computational resources.

Figure 5.27: A coated PEC dipole placed over a finite ground plane (not to scale).

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

50

100

150

200

250

300

Distance Along Z in λ

A
m

pl
itu

de
 in

 V
/m

 

 
Hybrid RUFD
Comm. MoM

Figure 5.28: Amplitude comparison of radiated Ey field for the PEC dipole shown in Fig.
5.27.
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Table 5.6: Comparison of computational resources required by the multi-grid approach
and the commercial MoM solver for the coated dipole problem shown in Fig.5.27.

Multi-Grid Approach Commercial MoM

Peak Memory 201.1 MB 1219.7 MB
Simulation Time 106.6 s 1028.9 s

We should point out that the difference in the field behaviors near the feed gap,

as seen from Fig. 5.27, is attributable to different source models used in these two ap-

proaches. Table 5.6 shows that the hybrid RUFD is computationally efficient, by a large

factor, when compared to the commercial MoM code.

5.7 Observations and Conclusions

In this chapter, a novel approach for handling multiscale problems, which combines the

DM method with the newly developed recursive technique in the frequency domain, was

introduced. It was shown that this hybrid scheme preserves the salutary features of the

FDTD algorithm, including convenient mesh generation and parallelization on multiple

processors; and yet, it is convenient for handling dispersive and high-Q structures.

We have shown how the DM approach and the RUFD algorithm may be combined

to solve multiscale problems accurately and efficiently, and the performance of the result-

ing hybrid scheme has been found to be superior to those of some well known and widely

used CEM codes, both in terms of accuracy and computational efficiency. We have also

introduced a multi-grid approach, which takes advantage of the fact that the PML bound-

ary can be brought closer to an object than in conventional schemes. In this approach a

part of the computational domain is meshed with a fine grid, while the rest of the domain

employs the conventional λ/20 discretization. The use of such a hybrid scheme enables us
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to model objects with fine features in a computationally efficient manner. We have shown,

by using a number of illustrative examples, how to hybridize, both the DM approach and

the multi-grid approach with the RUFD algorithm, in order to solve multiscale problems

numerically efficiently.
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6. New Finite Difference Time

Domain (νFDTD) Algorithm

6.1 Introduction

The conventional time domain technique FDTD demands extensive computational re-

sources when solving low frequency problems, or when dealing with dispersive media.

To tackle some of these challenges, the conventional techniques are often modified in a

manner that is tailored to solve a particular problem of interest. However, more often

than not, these tailored methods turn out to be computationally expensive, and they

often lead to instabilities. Hence, it is useful to develop techniques that can overcome the

above limitations, while preserving the advantages of the existing methods. The νFDTD

(New FDTD) technique, which is described in this chapter, is a new general-purpose field

solver, which is designed to tackle the above issues using some novel approaches, that

deviate significantly from the legacy methods that only rely on minor modifications of the

FDTD update algorithm.
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6.2 νFDTD Solver

The νFDTD solver is a hybridized version of conformal FDTD (CFDTD) [24], and a

novel frequency domain technique called the Dipole Moment Approach (DM Approach)

described in Chapter 2. This blend of time domain and frequency domain techniques

empowers the solver with potential to solve problems that require:

• Calculating low frequency response accurately and numerically efficiently

• Handling non-Cartesian geometries such as curved surfaces (see Fig. 6.1) accurately

without staircasing

• Handling thin structures, with or without finite losses (see Fig. 6.2)

• Dealing with multi-scale geometries (see Fig. 6.3)

Figure 6.1: An elliptical geometry.

Advantages Some of the notable features of νFDTD are:

• Unlike the conventional FDTD, the mesh-size utilized by the νFDTD is not dictated

by the finest feature of the geometry, and this size is usually maintained at the
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Figure 6.2: A very thin sheet.

Figure 6.3: PEC loop over a finite ground plane.

conventional λ/20 level. This helps to reduce the computational burden by a large

factor.

• The νFDTD algorithm incorporates a novel post-processing technique which re-

quires relatively few time steps, in comparison to the number of steps required by

the conventional FDTD.

6.3 Low Frequency Response

Despite many advances in Finite methods, such as the FEM and the FDTD, as well as

in integral-equation-based techniques such as the MoM, it still remains a challenge to ac-
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curately calculate the low frequency response for radiation and scattering problems. The

frequency domain techniques, such as the FEM and MoM, both experience difficulties at

low frequencies, because they have to deal with ill-conditioned matrices at these frequen-

cies. On the other hand, while the time-domain-based techniques, such as the FDTD, can

accurately generate results at high frequencies, usually above 1 GHz, the same cannot

be said about their performance at low frequencies. This is not only because the FDTD

results are often corrupted by the presence of non-physical artifacts at low frequencies,

but also because the FDTD requires exorbitantly large number of time steps for accurate

calculation of the response. The required number of time steps can exceed a few million

in some cases before convergence is achieved.

As an example, let us consider a 32 port connector circuit example shown in Fig.6.4.

This connector geometry has been analyzed by using a commercial FDTD solver and the

variation of the transmission co-efficient S21 is plotted in Fig.6.5 as a function of the fre-

quency, and we observe that the results shows ripples that are numerical artifacts. Table

6.1 compares the number of time steps required for the solution to converge at different

frequencies for the connector geometry. It can be inferred from this Table that the num-

ber of time steps required for the convergence increases as we go down in frequency, and

eventually it becomes totally impractical to solve the problem at very low frequencies.

Accurate calculation of the low frequency response becomes especially critical in the area

of RF and digital circuits, since inaccurate results can affect the causality behavior of

the overall system. The νFDTD utilizes a new technique, which is based on analytic

continuation of the results derived at higher frequencies, and which is implemented by

using the DM Approach and related techniques. This new technique is universal in na-

ture, and it covers the entire range of frequencies, including the limiting case of f → 0.

Also, the νFDTD can handle both the RF/Digital circuit problems as well as the radi-

ation/scattering problems with same ease, by employing unique methodologies tailored
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for each of these categories. We present these methodologies in detail in the sections that

follow.

Figure 6.4: A 32 port connector with a overall dimension of 5.6 x 11.88 x 27.35 mm
(Housing not shown here).
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Figure 6.5: Variation of the transmission co-efficient S21 for the 32 port connector shown
in Fig.6.4.

Table 6.1: Comparison of time steps required for convergence for the circuit shown in
Fig.6.4.

Frequency 10 MHz 1 MHz 1 Hz
Time Steps in Millions 0.7 7 70
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6.3.1 RF and Digital Circuits

Consider the variation of the isolation co-efficient S31 shown in Fig.6.6 for the connector

geometry(Fig.6.4). This plot is divided into three regions, namely:

• Region-1: Low-frequency regime

• Region-2: Validation region

• Region-3: High-frequency regime
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Figure 6.6: Variation of the isolation co-efficient S31 for the 32 port connector shown in
Fig.6.4.

There are four frequency values which delimit the above three regions. The frequency

fL describes the lowest frequency of interest defined by the user. The frequency f1, which

divides the regions 1 and 2, is typically chosen to be between 500 MHz to 1000 MHz, while

the frequency f2 dividing the regions 2 and 3 is chosen to be on the order of 2f1 or 3f1.
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The frequency fH is the user input indicating the highest frequency of interest. In each

of these three regions the results are calculated by using a different method. The results

in the high frequency regime are generated by using the conventional FDTD, using a DC

Gaussian pulse as the excitation source, whose 3dB cut-off frequency is set to be fH . In

the low frequency regime, the results are generated by using the proposed new technique,

which involves the following steps:

1. Smooth the “DC Gaussian” Results.

2. Fit the curve from fL to f1 with the DC values, using a quadratic, for instance. The

choice of f1 can be fine-tuned based on the quality of the resulting fit.

3. Validate the smoothed “DC Gaussian” results in region-2 by comparing them with

those generated by “single frequency” simulations at a few points (typically 2 or 3).

We have recalculated the results for the 32-port connector geometry, shown in

Fig.6.4, by using the above method. The new results for the variation of the trans-

mission co-efficient S21 and the isolation co-efficient S31 are shown in Figs. 6.7 and 6.8.

From these figures we can clearly see that the conventional FDTD simulation utilizing

the DC Gaussian pulse does not generate an accurate low frequency response and has

numerical artifacts, while the νFDTD does not suffer from the same.

For the next example, we consider an 8-port connector as shown in Fig. 6.9, which

operates in the frequency range 50-800 MHz. Fig. 6.10 compares the variation of S31

calculated by using the νFDTD with those obtained by using the DC Gaussian in the

conventional FDTD algorithm. Again we find that the DC Gaussian results show spurious

spikes, while the νFDTD was able to calculate it accurately.
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Figure 6.7: Variation of the transmission co-efficient S21 for the 32 port connector shown
in Fig.6.4 calculated using νFDTD.
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Figure 6.8: Variation of the isolation co-efficient S31 for the 32 port connector shown in
Fig.6.4 calculated using νFDTD.

6.3.2 Scattering Problems

In this section we turn to the solution of scattering problems by using the νFDTD. The

methodology for handling the radiation and scattering problems are different from those
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Figure 6.9: A 8 port connector (Housing not shown here).
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Figure 6.10: Variation of the S31 for the 8 port connector shown in Fig.6.9.

used for the RF/Digital circuits, as we will explain below. For the high frequency regime,

we use the conventional FDTD, and use a Gaussian excitation source to generate the

results. However, we employ a different procedure, as outlined below, in the low frequency

regime:

1. Run a “Single Frequency” simulation at a frequency f1, where the largest dimension

of the geometry is λ/100, to calculate the fields at a point located λ/20 from the

surface of the object.

2. Extract the dipole moment by using the analytical expressions for the field radiated
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by an infinitesimal dipole [8] from the field values calculated above.

3. Use the extracted dipole moment to calculate the results from fL to f2, where fL is

the lowest frequency of interest, and f2 is typically chosen to be 2f1 or 3f1. It has

been found that the results generated by using this dipole moment is not only valid

for frequencies as low as 0, but also up to frequencies where the largest dimension

of the geometry becomes λ/10; hence it enables us to dovetail the low frequency

results, seamlessly, with the lower end of the high frequency response.

4. Validate the “DC Gaussian” results in the range between f1 and f2 by compar-

ing them with those calculated by using the analytical expression at a few points

(typically 2 or 3).

In order to extract the dipole moment from the single frequency simulation, one

can either use the method proposed by Furse [25], or use the DFT to process the time

signature. In the Furse method, we choose two samples of the time signature and we fit the

time signature to a sinusoidal curve using those two samples. Even though this method

looks computationally inexpensive when compared to the DFT approach, the choice of

the two samples determines the accuracy of the method, and these samples should not lie

within the transient region; hence we always use the DFT to extract the DM because of

its robustness.

As an example application of the procedure just outlined, we consider a sphere with

a diameter of λ/20, with λ defined at 10 GHz. The sphere is illuminated by a plane

wave traveling in the negative-z direction, with its E-field polarized along y. Fig.6.12

compares the fields calculated by the proposed technique, in the frequency range of 1

Hz to 30 GHz, with those derived analytically. We find that the fields calculated by

using the proposed technique based on DM extraction exhibits good agreement with

those calculated by using the analytical expression. The small deviation between the two
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curves is attributable to the staircase modeling of the sphere in the conventional FDTD,

and it can be corrected by using an effective radius in the analytical expression. It is

important to recognize the fact that we have used the same technique to calculate the

response over the entire frequency range, including frequencies as low as 1 Hz, without

using either the quasi-static approximation or other special treatments that are employed

in the conventional computational electromagnetic (CEM) techniques. Even after the use

of special treatments in the existing techniques, such as the FEM and MoM, the accuracy

of the low-frequency solution is often questionable because of the large condition numbers

of the associated matrix. Thus, despite all the special treatments implemented in these

methods to address the low frequency breakdown problem, it is totally impractical to go

down to frequencies on the order of 1 Hz in the existing techniques.

The amplitude variation of the scattered field with the distance along z, calcu-

lated by using the proposed technique, is shown in Fig.6.13 for a frequency of 1.8 GHz.

This plot also compares the results with those calculated by using analytical expressions.

Again we find good agreement between the νFDTD results and those generated from

the analytical expression for a λ/67 sphere, for the chosen frequency of 1.8 GHz. The

field variation derived by using the νFDTD matches well with that generated from the

analytical expression, both in the near and far field regions.

For the next example we consider a PEC cube of side length λ/20, as shown in

Fig. 6.14 at a frequency of 10 GHz. Fig. 6.15 plots the scattered Ey-field as a function

of frequency, calculated at z = 2.5mm (λ/12 at 10 GHz), by using the νFDTD, and

compares them with those obtained by using the DM approach. The comparison is seen

to be good even at a frequency of 1 Hz.

Based on the illustrative examples presented above, we list below some of the ad-

vantages of the proposed method:
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Figure 6.11: A PEC sphere of diameter λ
20

at 10 GHz.
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Figure 6.12: Amplitude variation of the scattered Ey at a point z = 0.25cm with frequen-
cies from 1Hz to 30 GHz.

• RF and Digital Circuit Problems:

Efficient for constructing low frequency solution, compared to the long runs in

FDTD.

• Scattering Problems:

(a) Can be used for an arbitrary geometry.
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Figure 6.13: Amplitude variation of the scattered Ey with distance along z from λ
67

to λ
10
,

at 1.8 GHz.

Figure 6.14: A PEC cube of side length λ
20

at 10 GHz.

(b) Can be used to efficiently calculate not only the frequency response, but the

near and far fields as well.

6.4 Non-Cartesian Geometries

The conventional FDTD uses a staircase-approximation to model non-Cartesian geome-

tries, as shown in Fig.6.16, and requires the use of a very fine mesh to mitigate the effects

of this staircase approximation when dealing with curved objects. This, in turn, makes
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Figure 6.15: Amplitude variation of the scattered Ey at a point with frequencies from
1Hz to 30 GHz.

the simulation computationally expensive, both in terms of memory and CPU time. Even

though methods such as FEM and MoM can handle curved geometries with much ease

because they do not restrict themselves to a Cartesian type of meshing, often they are not

necessarily the most computationally efficient when dealing with inhomogeneous media.

Hence, it would be advantageous to modify the existing FDTD algorithm so that it can

handle curved geometries, enabling us to conveniently model arbitrary objects, regardless

of their material parameters. In the past, a generalization of the conventional FDTD,

namely the CFDTD algorithm [24], has been developed for this purpose. In CFDTD,

the magnetic field update equations are modified by using the areas of the partially-filled

cells, as opposed to those of the entire cells.

To explain the concept, we consider a partially filled cell, shown in Fig. 6.17. The

equation for this partially-filled cell is derived by using Farady’s law, to get:

∮

C1

~E · ~dl = −µ
∂

∂t

∫

S1

~H · ~ds (6.1)
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(a) A PEC wedge geometry
(b) A PEC wedge with staircase ap-
proximation

Figure 6.16: Meshing of a non-Cartesian geometry by the conventional FDTD

Figure 6.17: A partially-filled cell.

where C1 is the loop ABCDA and S1 is the area enclosed by loop C1. Upon discretizing

this equation, we obtain:

H
n+ 1

2

z (i, j, k) = H
n− 1

2

z (i, j, k)−
dt

µS1

[−En
y (i, j, k) · lAB +En

x (i, j, k) ·dh+En
y (i+1, j, k) · lCD]

(6.2)

The update magnetic equation for the partially-filled cell is shown above in (6.2).

But, as S1 → 0, this modified update equation becomes unstable since, as we see from
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(6.2), the expression for the updated H contains S1 in the denominator. The update

equation can be modified to circumvent this instability problem that arises when the

partial area is small, albeit at the cost of compromising the accuracy. Hence, in order

to improve the accuracy, we propose two new approaches to handling the non-Cartesian

geometries.

6.4.1 Asymptotic Method

In this asymptotic type of implementation, the field values as opposed to the update

equations, are modified by using the local field solution. The proposed new technique is

described below:

• For the partially filled cells with a fill factor ≤ 50%, the E-fields are updated by

using the H-fields calculated by using the modified CFDTD equation given in (6.2).

• For the partially filled cells with a fill factor > 50%, the E fields are updated by

using local solutions generated based on the concepts of reflection or diffraction,

rather than by using the H-fields employed in the CFDTD approach.

Because we use the asymptotic method to compute the reflection or diffraction

coefficients, the proposed technique requires a “single frequency” simulation. However,

this technique can be extended to “DC Gaussian” simulations with a slight modification

as described in the next Section 6.4.2. Also, the proposed technique can be extended to

dielectrics and inhomogeneous geometries without any modification, while the CFDTD

cannot handle either of them without compromising the accuracy.

Let us consider the case of a square PEC sheet whose sides are approximately 4λ(λ

referenced at 10 GHz), and are inclined at an angle of 0.72o with respect to the x-axis,
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as shown in Fig.6.18. The tilt angle has been chosen to be 0.72o so that the edges of the

sheet are offset only by ±λ/40 above or below the x-axis, i.e., half the FDTD cell size of

λ/20. We calculate the amplitude variation of the scattered Ex field at a frequency of 10

GHz, when the plate is illuminated by a plane wave, which travels along the negative-y

direction and is polarized along x. Fig.6.19 compares the results obtained by using the

proposed technique, with those returned by the CFDTD, and by a commercial MoM code,

for the same problem. The results generated by using the proposed technique show good

agreement with the results from the commercial MoM, while the CFDTD results exhibits

spurious ripples in the lit region because of the instability problem encountered in the

CFDTD algorithm when the area S1 → 0. What is more, this is even true when a fine

mesh size of λ
160

is used in the CFDTD, in contrast to the λ
20

mesh size used in νFDTD.

Table 6.2, presents a comparison of the mesh size and the memory requirements, and

shows that the proposed technique easily out-performs the CFDTD, which still suffers

from inaccuracies, even when a very fine mesh is used.

Figure 6.18: A inclined PEC sheet(not to scale).

For the next example, let us change the inclination of the PEC plate in the previous

problem from 0.72o to 1.43o. Fig. 6.20 compares the scattered Ex-field calculated by using

the νFDTD/Asymptotic method, with those obtained by using the CFDTD algorithm

with a mesh size of λ/160, and with the commercial MoM code results. We again find
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Figure 6.19: Amplitude variation of the scattered Ex with distance along y at 10 GHz.

Table 6.2: Comparison of mesh size and memory required for convergence for PEC geom-
etry shown in Fig.6.18.

Parameter νFDTD CFDTDa

Mesh Size Used λ
20

λ
160

Memory Required 413 MB 31 GB

a Results still have numerical artifacts

that the results from the νFDTD match well with those obtained by using the commercial

MoM, while the results from the CFDTD show spurious ripples due to the instability

problem alluded to above.

For the next example, we consider a faceted PEC surface (see Fig. 6.21) projected

length is λ at a frequency of 10 GHz. Fig. 6.22 compares the backscattered Ez-field

calculated by using the νFDTD is compared with those obtained from: (i) the CFDTD

with a mesh size of λ/20; (ii) a commercial MoM code; and (iii) a commercial FEM.

Again we find that the results calculated by using the νFDTD compares well with those
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Figure 6.20: Amplitude variation of the scattered Ex with distance along y at 10 GHz.

obtained from the commercial MoM code, while the results from the commercial FEM

code shows numerical artifacts.

Figure 6.21: A faceted PEC surface (not to scale).
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Figure 6.22: Amplitude variation of the backscattered Ez with distance along y at 10
GHz.

For the next example, let us consider a PEC wedge of side length 4λ, as shown in

Fig. 6.23. Fig. 6.24 plots the scattered field at a frequency of 10 GHz along the specular

direction, obtained by using νFDTD, and compares them with those obtained by using the

CFDTD with a mesh size of λ/50; with a commercial MoM code; and, with a commercial

FEM code. We find a good comparison between the scattered fields calculated by using

the νFDTD with those obtained from the commercial MoM code, while the results from

the CFDTD and the commercial FEM codes show spurious ripples.

For our next example, we consider a finite PEC cylinder, as shown in the Fig.

6.25, with a height of 21λ/20 at a frequency of 10 GHz, for the next example. In order

to calculate the field in the asymptotic limit in the νFDTD method, we use the fields

scattered by an infinite PEC sheet multiplied by the factor f , defined in (6.3)

f =

√

a′

r
(6.3)
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Figure 6.23: A PEC wedge.
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Figure 6.24: Amplitude variation of the scattered Ez with distance along x at 10 GHz.

where a′ is the effective phase center and r is the distance of the observation point from

the effective phase center. Wide range of numerical experiments have shown that this

effective phase center for a PEC cylinder is always 0.5a, where a is the radius of the

cylinder.
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Figure 6.25: A PEC cylinder.
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Figure 6.26: Amplitude variation of the backscattered Ez with distance along x at 10
GHz.

Fig. 6.26 compares the backscattered Ez-fields calculated by using the νFDTD with

those obtained from the CFDTD with a mesh size of λ/20; with a commercial MoM code;

and, with a commercial FEM code. We find that the fields calculated by using the νFDTD
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shows good comparison with those obtained by using the commercial MoM solver. The

results calculated using the commercial FEM shows numerical artifacts and the CFDTD

does not generate the correct scattered field on the surface of the cylinder; however the

νFDTD is able to solve this problem with good accuracy.

While modeling dielectric objects using the CFDTD approach, the partially-filled

cells are smeared an average dielectric constant over the entire volume of the cell. The

asymptotic method proposed here can be used as an alternative, to model dielectric objects

without any modifications, and with better accuracy than that of the CFDTD method.

As an example, let us consider the dielectric slab of thickness λ/8 at a frequency of 10

GHz, with ǫr = 4.2 as shown in Fig. 6.27. Fig. 6.28 compares the backscattered Ez-field

calculated by using the νFDTD with those generated by using the CFDTD, and with

the commercial FEM code. We find that the results generated by using the commercial

FEM and CFDTD codes show spurious ripples, while the those from the νFDTD have a

smooth behavior, which is realistic.

Figure 6.27: A dielectric slab (not to scale).
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Figure 6.28: Amplitude variation of the backscattered Ez with distance along y at 10
GHz.

In order to demonstrate the efficacy of the νFDTD method, we vary the thickness

of the slab, and choose it to be 9λ/80, 10λ/80 and 11λ/80 at a frequency of 10 GHz.

We calculate the phase variation at y = λ/40 and plot it in Fig. 6.29, which shows the

comparison of the phase variation against the thickness, generated by using the infinite

slab analytical expression; the CFDTD; and a commercial FEM code. We find that

the results calculated by using the νFDTD compares well with those obtained from the

analytical expressions for the infinite slab, while the results generated by using the other

methods deviate from the analytical results.

6.4.2 Averaging Technique

As mentioned earlier in Section 6.4.1, the proposed νFDTD technique requires a “single

frequency” simulation because we use the asymptotic limit to compute the reflection or

diffraction coefficients. In this section we describe a modified approach in which we use

the “DC Gaussian” simulation that enables us to generate results for a wide range of
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Figure 6.29: Phase variation of the backscattered Ez at y = λ/40.

frequencies. In order to demonstrate the usefulness of this approach, we consider the

example of a rectangular cylinder of height 4λ at a frequency of 10 GHz, which has

mitered corners as shown in Fig. 6.30. The problem is handled in three steps as shown in

Fig. 6.31 and we use scattered field type of formulation in all of these steps. Even though

it shows three steps, it is important to note the fact that we need only two simulations as

the calculation of the scattered field in step 2, is trivial using the boundary condition. The

simulation for the first step does not call for any modifications to the FDTD algorithm.

However, for the third step we need to modify the field value at the nodes of the partially

filled cells by using the weighted average of the fields at these nodes, obtained from steps

1 and 2, based on the partially filled space in the actual geometry.

Fig. 6.32 compares the backscattered Ey-fields calculated by using the νFDTD, and

with those generated by using the commercial MoM code and the comparison is seen to

be good. For the next example, we consider the faceted PEC geometry shown in Fig.

6.33, whose projected footprint is 4λ at a frequency of 10 GHz. Fig. 6.34 compares the

backscattered Ey-field, calculated by using the νFDTD/Averaging technique, and with
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Figure 6.30: A PEC rectangular cylinder with mitered corner.

Figure 6.31: Principle behind the averaging technique.

those obtained from a commercial MoM solver. From Fig. 6.34, we find that the solution

generated by using the commercial MoM code shows a spurious spike near the surface of
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Figure 6.32: Amplitude variation of the backscattered Ey with distance along x at 10
GHz.

the geometry, while the νFDTD results are smooth.

Figure 6.33: A faceted PEC geometry (not to scale).

For the last example, we consider a curved PEC surface of height 4λ at a frequency

of 10 GHz, as shown in Fig. 6.35. Fig. 6.36 compares the scattered Ey-fields calculated
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Figure 6.34: Amplitude variation of the backscattered Ey with distance along x at 10
GHz.

by using the νFDTD method, and with those from a commercial MoM code, and once

again we find that the comparison is good.

Figure 6.35: A curved PEC surface (with a height of 4λ).
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Figure 6.36: Amplitude variation of the scattered Ey at 10 GHz.

6.4.3 Advantages

Below, we summarize some of the advantages of the proposed method. They are:

(a) Usable for arbitrary geometries, even if the surfaces do not coincide with the Cartesian

mesh, e.g., thin sheets, with or without a slant.

(b) More accurate than the conventional Conformal FDTD.

(c) Retains λ/20 cell size even for thin, slanted and curved bodies, offering memory

advantage and computational efficiency over conventional conformal FDTD.

(d) Free of instability problems even when the fractional area of the partially filled cell is

very small, even when it tends to zero.

(e) Can be extended to dielectric objects, with just a few modifications.
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6.5 Multiscale Problems

In order to handle multiscale problems, we appeal to the ideas of the hybrid RUFD ap-

proach described in the Chapter 5. Since the νFDTD method is a time domain technique,

it has the possibility to generate results over a wide band of frequencies from a single sim-

ulation run, which is not the case with the RUFD approach. In νFDTD we can handle

multiscale problems in three different ways, based of the dimension and the complexity of

the small objects involved in the problem. All the three approaches begin by identifying

a smaller region around the small object, as shown in Fig. 6.38, for the test problem in

Fig. 6.37. The test problem consist of a small dipole of length λ/100 polarized along

the x̂ direction, and operating at 10 GHz. In order to model this problem by using the

conventional FDTD, we need a cell size of at least λ/200 and it becomes computationally

expensive when we choose such a small cell size. Here we propose hybrid techniques to

alleviate this problem.

Figure 6.37: A computational domain with small dipole.

Since in this test case the dipole is very small compared to the operating wavelength,

we can use the quasi-static dipole moment approach described in Section 2.6. The fields

generated by the quasi-static formulation is always real and can be directly interfaced with
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Figure 6.38: Approach handling for multiscale problems in FDTD.

the coarse-grid FDTD algorithm. When the size of the object becomes electrically large,

the fields generated by the dipole moment approach will no longer be real. Hence for this

case, we can turn to the “single frequency” version of the coarse-grid FDTD simulation.

Another alternate approach to handling this situation is to adapt the RUFD/multi-

grid approach, described in earlier Section 5.5. The main advantage of using the multi-grid

approach with the FDTD algorithm is that we can generate results for a wide range of

frequencies from a single simulation run, even when modeling electrically large objects.

The cell size for the embedded fine-mesh domain is chosen such that it is a fraction of

the cell size used in the coarse-grid simulation, to ensure a smooth interface between the

simulations by making the time step used in these simulations as an multiple of each other.

The test problem was solved by using the three different approaches described above and

the calculated radiated Ex-field is compared in Fig. 6.39 with those obtained from the

analytical expression. We used a cell size of λ/20 for coarse grid simulations in all the

three hybrid approaches, and all the three approaches were found to be unconditionally

stable. The embedded fine-mesh domain was modeled by using a cell size of λ/400 in the

multi-grid approach. Fig. 6.39 shows that the results calculated by using the different
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hybrid approaches match well with each other, and with those obtained from the analytical

expression.
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Figure 6.39: Amplitude variation of the radiated Ex at 10 GHz.

6.6 Performance Enhancement

In this section we introduce ways to further enhance the computational efficiency of the

νFDTD algorithm without compromising its accuracy.

6.6.1 Signal Processing Techniques

In this section we show how time advantage can be gained by using signal processing to

determine where to terminate the FDTD simulations by checking its convergence in the

frequency domain instead of in the time domain. Consider a multi-layer problem shown in

Fig. 6.40, which is infinite extent along the ŷ and ẑ direction. It consists of a foam layer,

with ǫr = 1.08, loss tangent = 0.007, and a thickness of λ/50 at a frequency of 400 MHz,
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sandwiched between the E-Glass layers (ǫr = 3.95, loss tangent = 0.012 and a thickness of

λ/1250 at a frequency of 400 MHz). The problem was modeled by using the conventional

FDTD with periodic boundary conditions to render it finite. Fig. 6.41 shows the time

signature at the origin generated by using the conventional FDTD and shows that the

signature is ringing even after 200,000 time steps. Fig. 6.42 shows the variation of the

transmitted Ey-fields at the origin in the frequency range of 3 to 450 MHz, calculated by

using the conventional FDTD and compared with those obtained from the νFDTD. Table

6.3 compares the number of time steps required in these two approaches.

Figure 6.40: A multilayer problem (not to scale).

Table 6.3: Comparison of time steps required by conventional FDTD and νFDTD for the
multilayer problem shown in Fig.6.40.

Frequency Conventional
FDTD

νFDTD

3 MHz 200000 stepsa 4000 steps

a Time signature yet to converge

We find, from Fig. 6.42 and Table 6.3, that the νFDTD is more accurate, especially
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Figure 6.41: Time signature at the origin from the conventional FDTD for the multilayer
problem shown in Fig. 6.40.
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Figure 6.42: Frequency variation of the transmitted field Ey amplitude at the origin for
the multilayer problem shown in Fig. 6.40.

at the lower end of the frequency range and is also computationally more efficient when

compared to the conventional FDTD. It is important to note the fact we are able to

generate the solution for the entire frequency range of interest using the νFDTD, with a

single simulation run of 4000 time steps.
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6.6.2 Absorbing Boundary Condition

Another important factor that affects the accuracy and efficiency of the FDTD simulations

is the boundary conditions used to truncate the computational domain. Even though there

are many boundary conditions that can be used, for mesh truncation, the most widely used

and effective one is the Convoluted Perfectly Matched Layer, or more commonly known

as CPML [19]. Even though the CPML is effective, it is computationally expensive. It is

possible to reduce the computational expense, with little loss of accuracy, by using a new

algorithm, which is based on the impedance boundary condition(IBC). Here the tangential

E-Fields at the end of the computational domain are calculated from the H-fields based

on the impedance relationship:

Etan = ηcosθn̂× ~H (6.4)

where η is the intrinsic impedance of the medium and θ is the incident angle. However,

from many experiments we have found that the use of either η or ηcosθ has little effect on

the accuracy of the simulation. In the proposed approach, the H-fields at the boundaries

of the computational domain are still updated by using the conventional FDTD update

equations, while the E-fields are derived by using the IBC. In order to ensure that the

algorithm is unconditionally stable we use 90% of the Courant condition to determine the

time step.

To study the frequency characteristics of the IBC, we consider a 2D computational

domain, as shown in Fig. 6.43. We use a point source for excitation, with a frequency of

1 GHz, and locate it at the center of the domain. Fig. 6.44 shows the variation of field at

the observation point A in the frequency range of 300 MHz to 1 GHz, calculated by using

the νFDTD/IBC, and compares it with those obtained by using the νFDTD/CPML,

and the comparison is seen to be good. However, the IBC approach is computationally
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inexpensive, when compared to the CPML, and the time advantage of the νFDTD/IBC

over the CPML is a a factor of 2 for this example. We should mention that this advantage

would be considerably higher for 3D problems.

Figure 6.43: A 2D computational domain.
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Figure 6.44: Frequency variation of the Ey-field amplitude at point A shown in Fig. 6.43.
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Next we study the effect of the proximity of the ABC for a 2D computational domain,

shown in Fig. 6.45, at a frequency of 1 GHz. Fig. 6.46 compares the Ey-field at point A

for different dimensions of the computational domain, calculated by using: (i) the νFDTD

with IBC with angle dependence as in (6.4); (ii) without angle dependence, assuming the

incidence to be normal at all points on the boundary; and, (iii) using νFDTD/CPML

with 8 layers. Fig. 6.46 shows good comparison between the results calculated from these

three approaches and we also find that ignoring the angle dependence has little effect on

the accuracy much.

Figure 6.45: A 2D computational domain.

The results presented in Figs. 6.48 and 6.49 for the dipole geometry (see Fig. 6.47)

illustrate the accuracy of the proposed algorithm, which requires much less CPU time and

memory than those required by the CPML. However, work is still in progress to further

improve the accuracy of the proposed boundary condition and to test its applicability to

a wider class of problems.
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Figure 6.46: Amplitude variation of the Ey-field at observation point A, for different
domain sizes for the problem shown in Fig. 6.45.

Figure 6.47: Geometry of a PEC dipole (not to scale).

6.6.3 Well-Logging Applications

Another area of interest in which νFDTD is found to outperform the conventional CEM

algorithms is well-logging application. Consider the stratified medium, shown in Fig. 6.50,

whose geometry is typical for the case of well logging problems. The frequency range of

interest is typically 1 KHz to 1 MHz. Fig. 6.51 shows the incident pulse received at the

observation point, while Fig. 6.52 shows the reflected pulse from the interface received at
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Figure 6.48: Variation of input resistance with frequency for the PEC dipole.
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Figure 6.49: Variation of input reactance with frequency for the PEC dipole.

the observation point calculated by using the νFDTD. At the low frequencies of interest

in this problem, commercial solvers are typically unable to handle the problem, while the

νFDTD is able to analyze it with ease without requiring any modifications.
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Figure 6.50: Geometry of a stratified medium with oil (not to scale).
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Figure 6.51: Variation of Ex component of the incident pulse.

6.7 Observations and Conclusions

In this chapter, we have introduced the νFDTD solver, which is a blend of time and

frequency domain techniques that can generate accurate electromagnetic responses at low

frequencies; handle non-Cartesian geometries accurately without any instability issues

that are often encountered in the conventional CFDTD; model multi-scale geometries
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Figure 6.52: Variation of Ex component of the reflected pulse.

accurately; and, handle lossy/lossless thin structures with ease. In all the cases for which

we have carried out comparison studies with the existing algorithms and commercial

codes, the νFDTD was not only accurate but also computationally the most efficient.

We have also introduced a new boundary condition for the mesh truncation, which is

numerically efficient both, from the points of view of CPU time and memory as compared

to the widely used CPML algorithm, without a noticeable compromise in the relative

accuracy of the computed results. We have also pointed out that the νFDTD is able to

handle low-frequency problems, such as well-logging, that are typically computationally

expensive not only because of the large problem size, but also because of low frequency

range of interest, often beyond the capability of existing commercial solvers. Finally,

since νFDTD builds on the conventional FDTD to solve different types of problems, its

performance can be further enhanced by parallelizing the algorithm [19], which can be

carried out as easily as in the case of the conventional FDTD.
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7. Conclusions and Future Work

The objective of the thesis has been to address some of issues encountered in computa-

tional electromagnetics. In Chapter 2, we have presented a new physics-based approach

for formulating MoM problems that is based on the use of dipole moments (DMs), as

opposed to the conventional Green’s functions. We have shown that there are no singu-

larities that we need to be concerned with in the DM formulation. Yet another salutary

feature of the DM approach is its ability to handle thin and lossy structures, whether they

are metallic, dielectric-type, or even combinations thereof. The technique is valid over

the entire frequency range, from low to high, and it does not require the use of loop-star

or other special types of basis functions in order to mitigate the low frequency problem.

In Chapter 3, we have introduced certain refinements to the DM method to improve

its computational efficiency. We have shown that the use of higher-order basis functions

significantly reduces the number of unknowns, without compromising the accuracy and

combines the DM with the CBFM technique helps reduce this number even further. The

use of closed-form expressions for the interaction matrix elements speeds up the process

of matrix generation, regardless of the problem size. Towards this end, future work is

required to extend the closed-form expressions for modeling dielectric and inhomogeneous

objects. For electrically large problems, employing FMG helps to speed up the interaction

matrix generation considerably. We have shown how we can incorporate lumped loads in

the DM approach and that it is able to capture sharp resonances even at low frequencies,
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where the commercial solvers become inaccurate, or break down. The DM approach is

able to accurately calculate the input impedance of small antennas; fields from irregular

geometries; from faceted surfaces; from geometries with slot and slit; and, is able to model

microstrip line type of geometries with fine features.

Chapter 4 introduced the RUFD algorithm which is highly parallelizable and its

meshing requirements are relatively simple. Moreover, since RUFD solves the Maxwell’s

equations in a recursive manner, without using either iteration or inversion, the problems

of dealing with ill-conditioned matrices, or constructing robust pre-conditioners are totally

avoided. Also, as a frequency domain solver, it can handle dispersive media, including

plasmonics, relatively easily without any need for Drude or Debye model as required in

the FDTD algorithm. A number of techniques have been introduced to further enhance

the performance of the RUFD, such as: (i) frequency interpolation schemes to generate

the initial values of the fields in the entire computational domain; (ii) introducing losses

in the computational domain; and, (iii) post-processing methods, which speed up the

convergence significantly.

In Chapter 5, we have shown how the DM approach and the RUFD algorithm may

be combined to solve multiscale problems accurately and efficiently, and the performance

of the resulting hybrid scheme has been shown to be superior to those of some of the

well known and widely used CEM codes, both in terms of accuracy and computational

efficiency. We have also introduced multi-grid approach where a part of the computational

domain is finely meshed when compared to the rest of the domain. We have shown with

many illustrative examples, how to hybridize both the DM approach and the multi-grid

approach with RUFD algorithm to solve fine featured multiscale problems efficiently.

In Chapter 6, we have introduced the νFDTD, which uses the RUFD as a stepping

stone to obtain a new improved version of the FDTD. Using many illustrative examples,
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νFDTD has been shown to generate accurate electromagnetic responses at low frequencies;

handle non-Cartesian geometries accurately without any instability issues that are often

encountered in the conventional CFDTD; model multi-scale geometries accurately; and,

handle lossy/lossless thin structures with ease. We have also introduced a new boundary

condition for the mesh truncation, which is numerically efficient, both from the points of

view of CPU time and memory, as compared to the widely used CPML algorithm, without

a noticeable compromise in the relative accuracy of the computed results. However, work

is still in progress to improve its accuracy and to test its applicability to a wider class

of problems. We have also demonstrated the efficacy of the νFDTD when used to solve

well-logging problems that are typically computationally expensive, not only because of

the large problem size, but also because of low frequency range of interest. Also, we

have pointed out that since νFDTD relies upon the conventional FDTD to solve different

types of problems, its performance can be further enhanced by parallelizing the algorithm,

which would be desirable.
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