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Abstract

With the advent of sub-micron technologies and increasingvareness of Electromagnetic
Interference and Compatibility (EMI/EMC) issues, designes are often interested in full-
wave solutions of complete systems, taking to account a vaty of environments in which
the system operates. However, attempts to do this substanliyaincrease the complexities
involved in computing full-wave solutions, especially wimethe problems involve multi-
scale geometries with very ne features. For such problemsyen the well-established
numerical methods, such as the time domain technique FDTD drthe frequency domain
methods FEM and MoM, are often challenged to the limits of the capabilities. In an
attempt to address such challenges, three novel techniguegsve been introduced in this
work, namely Dipole Moment (DM) Approach, Recursive Update irFrequency Domain
(RUFD) and New Finite Di erence Time Domain ( FDTD). Furthermore, the e cacy of
the above techniques has been illustrated, via several exales, and the results obtained
by proposed techniques have been compared with other eximgtinumerical methods for

the purpose of validation.

The DM method is a new physics-based approach for formulagriVioM problems,
which is based on the use of dipole moments (DMs), as opposedthe conventional
Green's functions. The absence of the Green's functions, agll as those of the vector
and scalar potentials, helps to eliminate two of the key soces of di culties in the con-
ventional MoM formulation, namely the singularity and lowfrequency problems. Specif-
ically, we show that there are no singularities that we needtbe concerned with in the
DM formulation; hence, this obviates the need for special ¢bniques for integrating these
singularities. Yet another salutary feature of the DM apprach is its ability to handle
thin and lossy structures, or whether they are metallic, dlectric-type, or even combina-

tions thereof. We have found that the DM formulation can hanktk these types of objects



with ease, without running into ill-conditioning problems even for very thin wire-like or
surface-type structures, which lead to ill-conditioned M@ matrices when these problems
are formulated in the conventional manner. The technique igalid over the entire fre-
quency range, from low to high, and it does not require the use# loop-star type of basis

functions in order to mitigate the low frequency problem.

Next, we have introduced the RUFD, which is a general-purposeefjuency domain
technique, and which still preserves the salutary featuresf the time domain methods.
RUFD is a frequency domain Maxwell-solver, which neither rels upon iterative nor on in-
version techniques. The algorithm also preserves the adtages of the parallelizability|
which is a highly desirable attribute of CEM solvers|by using the di erence form of
Maxwell's equations. Since RUFD solves the Maxwell's equatis in a recursive manner,
without using either iteration or inversion, the problems bdealing with ill-conditioned
matrices, or constructing robust pre-conditioners are taily avoided. Also, as a frequency

domain solver, it can handle dispersive media, includinggdmonics, relatively easily.

The conventional time domain technique FDTD demands exteive computational
resources when solving low frequency problems, or when deglwith dispersive media.
The FDTD (New FDTD) technique is a new general-purpose eld solve which is de-
signed to tackle the above issues using some novel approachéhich deviate signi cantly
from the legacy methods that only rely on minor modi cationsof the FDTD update algo-
rithm. The FDTD solver is a hybridized version of the conformal FDTD (CBTD), and
a novel frequency domain technique called the Dipole MomeApproach (DM Approach).
This blend of time domain and frequency domain techniques @owers the solver with
potential to solve problems that involve: (i) calculating bw frequency response accurately
and numerically e ciently; (ii) handling non-Cartesian geometries such as curved surfaces
accurately without staircasing; (iii) handling thin structures, with or without nite losses;

and (iv) dealing with multi-scale geometries.
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1. Introduction

1.1 Electromagnetics

Electromagnetics is the branch of physics which describeset behavior of the EM eld
and its interaction with matter. All the equations governingthis behavior can be math-
ematically derived by using the well-knownMaxwell's Equations[1, 2]. The Maxwell's
equation can be written down either in the dierential form (1.1), or in integral form

(1.2), by using the Stoke's theorem and the Divergence theorerd.[

_ @
r E= @t (1.1a)
r H=Js+ %t (1.1b)
r D= (1.1¢)
r B=0 (1.1d)



Edl = —@ B:ds (1.2a)
| 77 gkz
H:dl = Jsds+ = D:ds (1.2b)
7z @Y,z
- Duds= dv (1.2¢)
zZ

- Bids=0 (1.2d)

In the above equations {.1) and (1.2),

E(r;t) is electric eld intensity in V=m

H(r;t) is magnetic eld intensity in A=m;

D(r;t) is electric ux density in C=n?;

B(r;t) is magnetic ux density in W b=nf;

Js(r;t) is impressed electric surface current density iA=m?;

(r;t) is impressed electric charge density i€=m?;

1.2 Theoretical Methods of Analysis

Analysis of electromagnetic problems, often begins with these of a suitable theoretical
method, instead of an experimental one, at least during thenitial phase, since exper-
imental methods are more expensive and time-consuming. Theethodologies used for
the theoretical or computational analyses of an electromagtic problem can be broadly

classi ed into four types [.], namely:



1. Analytical methods:  These methods are accurate and e cient, but can be used
only for regular shaped geometries involving symmetry. Rerbation methods and

Variational techniques are some of the typical examples ohalytical methods.

2. Model-based methods: Transmission line models and Cavity models are grouped
under Model based methods. These methods provide insighttmthe problem, but

often involves simplifying assumptions to reduce the conmgtities involved.

3. Computational methods: Finite Di erence Time Domain (FDTD), Finite El-
ement Method (FEM) and Method of Moments (MoM) are the most wdely used
techniques. The computational methods, typically referg to as Computational
Electromagnetic (CEM), are highly versatile and accurate in nature, though they

are often computationally expensive.

4. Computational intelligence methods: These methods are used to predict values
from the existing database and also for optimization purpes. The techniques
that come under this category are Neural network and Neuro-fay techniques, for

example.

1.3 Computational Methods

Computational methods are often the preferred choice becsiof their versatile nature.
Most of the commercial softwares in computational electroagnetics are based on the

following three techniques, namely:

1. FDTD: As the name suggests, FDTD algorithm solves the di erence for of the
Maxwell's di erential equations, 1.1aand 1.1b. The most salient feature of this time

domain technique is that it is highly parallelizable and caibe used to e ciently solve



problems involving inhomogeneous media.

2. MoM: The MoM algorithm formulates the electromagnetic analysigproblem in
terms of integral equations, via the use of Green's functionSince MoM is a fre-

guency domain technique, it can easily handle dispersive dia.

3. FEM: FEM algorithm is a nite method, solves the di erential equaions by using
the weighted residual method, which leads to a large sparseatrnix. As in case
of the MoM, FEM is also a frequency domain technique and, hescit can handle

dispersive media with ease.

1.4 Motivation

With the advent of sub-micron technologies and increasingvareness of Electromagnetic
Interference and Compatibility (EMI/EMC) issues, designes are often interested in full-
wave solutions of complete systems, taking to account a vaty of environments in which
the system operates. However, attempts to do this increaseetltomplexities involved in
computing full-wave solutions manifold, especially wherhe problems involve multi-scale
geometries with very ne features. For such problems, evehe well-established numerical
methods, such as the time domain technique FDTD and the freqacy domain methods
FEM and MoM, are often challenged to the limits of their capailities. On the basis
of our experience with the conventional frequency domain t@ds, we can identify the

following areas of concern:

Handling thin wires and/or sheets, with or without nite losses
Deriving a universal approach for PEC, dielectric and inhoogeneous bodies
Accurately modeling multi-scale geometries

4



Accurately integrating the Green's function for curved geosetries

Dealing with singular and hypersingular behaviors of the @&en's function when

generating the MoM matrix

Dealing with the low-frequency breakdown problem, which igtroduced by the
dominance of the scalar potential term over the vector potéal, as the frequency

approaches zero.

In addition, the conventional FDTD technique demands extesive computational re-
sources when solving low-frequency problems, or when deglvith dispersive media. To
tackle some of these challenges, conventional techniques aften modi ed, and tailored,
to solve a particular problem of interest. Even though thistsategy helps to solve a par-
ticular problem, it is often computationally expensive, ad numerically unstable as well.
Consequently, techniques that can overcome the above li@iions without compromising

their advantages are very desirable additions to the CEM regptoire.

1.5 Outline of Research Methodology

The underlying theme of this study is to research into new appaches for meeting the
challenges listed in the Sectioi.4. The proposed techniques are formulated for canonical
problems and are implemented using either Matlab or+€ . The generated results are
compared against the conventional approach, and are thenlwmated and benchmarked
by using commercial codes that are best suited for the prolteat hand. Amplitude com-
parisons of the results have been shown for all the problenmseéstigated, while the phase
comparison is included only for those problems for which the is a mismatch between
results derived by the proposed method, and those obtained hising the commercial

codes.



1.6 Organization of the Thesis

In Chapter 2, we introduce a universal MoM-like formulation, called theéDipole Moment
Approach (DM Approach), which bypasses the use of the Green'ariction, and over-
comes some of the disadvantages of the conventional freqeyedomain techniques. Then,
in Chapter 3, we propose techniques to improve the e ciency of the Dipol&oment Ap-
proach and also ways to handle lumped loads, apertures, slind irregular geometries,
Non-Cartesian geometries and microstrip structures. In cipter 4, we introduce RUFD
(Recursive Update in Frequency Domain), which is a frequena@omain technique uses
the di erence form of Maxwell's equations, and which presees some of the desirable
properties of FDTD, the time domain method, such as generaty the solution by using
a recursive approach, as opposed to matrix inversion or itron, typically employed in
the frequency domain. Next, Chapter5 introduces ways to hybridize the RUFD with
DM approach to solve a variety of multi-scale problems. Chagr 6 deals with techniques
to improve the performance of FDTD algorithm when solving l frequency problems,
handling non-Cartesian geometries, and dealing with mul8cale problems. It also intro-
duces signal processing techniques and new mesh truncatsmhemes to further improve
the e ciency of the FDTD algorithm. Chapter 7 discusses the results, summarizes the
contributions of this thesis and concludes with the identication of some possible avenues

of future research.



2. Dipole Moment Approach

2.1 Introduction

Formulating integral equations via the use of Green's funitns is a well-established and
universally accepted method4, 4, 5] in the context of MoM, and it has been a staple
for CEM problems in the past. But MoM requires special treatrent at low frequencies
where it runs in to di culties, and it switches to loop-star basis functions to mitigate the
problem. Furthermore, MoM needs to deal with the singular atior hyper-singular behav-
iors of the Green's functions, and designs special technegufor integrating them when
generating the matrix elements. Additionally, both the fregency domain techniques,
namely FEM and MoM, experience di culties when handling mutiscale geometries, be-
cause the associated matrices for these problems can becdirmonditioned. To mitigate
these problems, we introduce a universal MoM-type formulatn, which bypasses the use
of Green's function to overcome the disadvantages of the a@mtional frequency domain

techniques alluded to above.



2.2 Dipole Moment Concept

The sphere, whose geometry is uniquely de ned by its radiusas been extensively used as
a canonical object for validating various CEM algorithms, sed to compute Radar Cross
Section(RCS) for instance. Here, we exploit the analyticalractability of the problem
of scattering by a sphere, and use the sphere as a building ¢tkdor modeling arbitrary
geometries in a manner that generates the scattered electreld directly, rather than

using the Green's function in conjunction with vector and saar potentials.

For the case of a sphere illuminated by a plane wave, the scattd elds can be
determined analytically. Consider a PEC sphere of radiug, which is immersed in free
space, and is illuminated by a plane wav&, = Eqe **. In the limit of ka! 0, the

scattered electric far elds can be written:

jkr
lim ES = EC,e (ka)3cos (cos  1=2) (2.1a)
kal 0 kr
lim ES = E,° - (ka)>sin (}cos 1) (2.1b)
kal 0 ° kr 2 '

The equations @.1) have been derived by using the spherical wave functionq.[ A
close examination of (R.1)) reveals the fact that the expressions in (.1)) resemble the
far elds radiated from a combination of an x-directed electc dipole and a y-directed

magnetic dipole, whose moments are given by:

N

I, = Eo%(ka)s (2.2a)
2

Kly = onk—z(ka)3 (2.2b)

Along the same lines, we can show that the equivalent dipole ments for a lossless
dielectric sphere of radiusa, whose relative permittivity and permeability are , and

respectively, can be written as:



C e A g 1

= Eo e (ka)* 5 (2.33)
- 2 3T 1

Kly = Eofs (ka5 (2.3b)

Equations (2.3) can be readily modi ed for a lossy medium by replacing the &
valued , and ,, with their complex permittivity and permeability . It's important to

note that the magnetic dipole moment goes to zero for non-magtic media ( , = 1).

Hence the dipole moment representation of a scatterer genemthe samefar elds
as those scattered by the original object. However, what hastbeen realized in the past
{ and what can be proven analytically [] { is that for a sphere whose radius is electrically
small, the dipole moment elds exactly match the original oas scattered by the sphere,

all the way up to its surface, and not just in the far eld.

2.3 Formulation for PEC Objects

2.3.1 Geometry Modeling

When formulating a problem that involves only PEC objects, lhe rst step is to represent
the original scatterer by using a collection of PEC spheredlext these spheres are replaced
by their corresponding Dipole Moments(DMs) and a set of themre used to form a suitable
set of macro-basis functions. We then evaluate the electrelds generated by these macro
basis functions and compute the reactions between them antkttesting functions, which
are also the same as the basis functions (Galerkin method} generate the elements of
the MoM matrix. The right-hand side of this matrix is obtained by applying the boundary
condition on the total tangential E-Field, by testing it with the same functions as those

used to generate the matrix elements.



Einc + Edar =0 (2.4)

Hence, with the incident E- eld polarized alongz? the matrix equation for a thin

PEC rod oriented alongz*and modeled by usingN macro basis functions, will have the

form: 2 3 2 3 2 3
EL ER ER i EN B EX e
EZ EZ2 EZ i EN 124 BEz, o5
ENT EN2 ENS .:: ENN 15 EN i

In the above equation @.5),

11} represents the e ective dipole moment of the@™ macro basis function - directed

along 2,

n .. represents the tangential incident eld component at the loation of the n™

macro basis function and

EM represents the scattered eld component along én the m" macro basis func-

tion by the n'" macro basis function.

The above matrix equation @.5) is solved forll %, i.e., the co-e cient of the macro
basis functions, and used to compute the induced currents.n lorder to calculate the
resulting scattered elds, the following expressions fohe elds radiated by a DM oriented

along 2is used §:
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llcos 1
+

= — jkr —

r T ikr e C,cos (2.6a)

kllsin 1 1 -
A ke (k)2 e C sin (2.6b)

kllsin 1 -

— jkl‘ — .

H ] i 1+ ke e C sin (2.6¢)
E =0; H =0; H =0 (2.6d)

The eld expression in .6) can be rewritten in Cartesian co-ordinates as shown

below, with source and observation points represented by ys; zs) and (Xo; Yo; Zo), re-

spectively:
£, = Xo ijgzo =) +c) (2.72)
Ey = e y?ﬁz" )¢+ C) (2.7b)
E, = (Z"r—f)zq & );32)2 "V (2.70)
Hy = (y°r—y5)c (2.7d)
Hy = Ko Xs) r X (2.7€)
H,=0 (2.7f)

2.3.2 Numerical Results

For the rst example we consider a PEC rod, whose length and alineter are = 10 and
=400, respectively. It is illuminated by a plane wave, incide from broadside (note: the
angle of incidence can be arbitrary), as shown in the Fig2.1. Fig. 2.2 compares the
backscattered eld calculated by using the DM approach as deribed in Section2.3.],

with those obtained from a commercial MoM package.

As we can see from the Fig2.2, the comparison with the commercial MoM program

11



Figure 2.1: A PEC rod.
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Figure 2.2: Amplitude comparison of backscattered electrield E, from the PEC rod in
Fig. 2.1
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is good. However when the radius of the PEC rod becomes smatlean 10 ° units, some
of the commercial MoM codes (not including the NEC code) give warning ag about
their inability to mesh the geometry, while the DM approach s able to handle it without

any special modi cation to the approach.

Next we consider a circular PEC loop with a diameter of 600 mm dra thickness
of 18.6 mm as shown in Fig.2.3. The loop is fed with a voltage gap source. Fig2.4
compares the frequency variation of the feed current calaséd by using DM approach

with those obtained using NEC.

Figure 2.3: A PEC circular loop.

From Fig. 2.4 we can see that the comparison of the feed current is good &ailet
way down to 50 MHz. It is important to point out that the strength of the DM approach
lies in the fact that we can further go down in frequency all th way up to DC, without

any special treatment.

For the next example we consider a PEC helix, whose length 10 with a diameter

of =30 and a thickness of= 200 at 10 GHz, as shown in Fig2.5. The helix is fed by using

13
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Figure 2.4:. Frequency variation of the feed current for a PE@op shown in Fig. 2.3.

a voltage gap source. Fig.2.6 compares the amplitude of dominant component of the
radiated eld Ey calculated using DM approach with those obtained from a comancial

MoM code.

As we can see from the Fig2.6, the comparison with the commercial MoM program
is good. However, as may be seen from Fig.7, some of the commercial MoM codes (not
including the NEC code) were unable to calculate the currentocrectly along the helix,
apparently because of the non-Cartesian nature of its geotmnewhich makes the meshing
di cult for these codes, while the DM approach was able to seok for the current along

the helix with ease.

For the nal example we consider a PEC sphere, whose diameter = 60 with  at
10 GHz. It is illuminated by a plane wave, incident fromx7 and polarized alongz? as

shown in the Fig. 2.8 Fig. 2.9 compares the scattered, eld at x = =46 calculated by

14



Figure 2.5: A PEC helix.
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Figure 2.6: Amplitude comparison of radiated electric elde, from the PEC helix in Fig.
2.5
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Figure 2.7: The magnitude of current calculated using a conercial MoM solver for the
PEC helix shown in Fig. 2.5

using the DM approach as described in Sectidh3.1with those obtained from Mie Series

[6] for di erent frequencies of incident plane wave.

Figure 2.8: A PEC sphere.
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Figure 2.9: Amplitude comparison of backscattered electrield E, from the PEC sphere
in Fig. 2.8

As we can see from Fig2.9, the comparison with the Mie series results is good, all
the way down to very low frequencies, which is one of the majadvantages of the DM

formulation, as we have pointed out before.

2.4 Formulation for Dielectric Objects

2.4.1 Geometry Modeling

The rst step in the formulation of the dielectric scattering problem essentially follows
along the same line as in the case of PEC objects, in that we agaepresent the original
scatterer as a collection of small-size dielectric sphere#&\s before, we then go on to

replace these spheres by their corresponding DMs, and userthto form a set of macro-

17



basis functions. At this point we di er from the PEC case and gnerate the MoM matrix
by imposing a boundary condition but by applying a consistazy condition (2.8) on the

tangential E-Field, which reads:

ol r  1)(Einc + Escar) = F(Il) (2.8)

whereF, called as the consistency factor, is derived by analytidplsolving the problem
of a dielectric sphere with a small radius. This factor, obtaed in the manner described

above, is given by: 3
]

F 4la 3

(2.9)

2.4.2 Numerical Results

For the rst example we consider a Dielectric rod with the redtive permittivity , of 6 ,
whose length and diameter are= 4 and =400, respectively, at 10 GHz. It is illuminated
by a plane wave, incident from broadside, as shown in Fig.1Q Fig. 2.11compares the
backscattered eld calculated by using the DM approach as deribed in Section2.4.],

with those obtained from a commercial FEM package.

As we can see from Fig2.11, the comparison with the commercial FEM program is
good. However the commercial MoM code failed due to the ne ttkness of the dielectric

rod, while the DM approach was able to handle it with ease.

Next we consider a square-shaped dielectric plate with = 6, which is =40 on the
side and whose thickness is 400. The plate is illuminated by a plane wave traveling along
the negative-z direction, as shown in the Fig2.12 The backscattered eld, calculated
by using the DM approach described in sectiod.4.], is presented in Fig.2.13 which also

compares these results with the corresponding ones from arcoercial MoM package.
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Figure 2.10: A dielectric rod.
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Figure 2.11: Amplitude comparison of backscattered eleatrield E, from the dielectric

rod in Fig. 2.10

Once again, the comparison of the DM results with those from @mmercial solver

is good. It should be pointed out, that the commercial MoM seérs become unstable and
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Figure 2.12: A dielectric plate.

= = =DM Approach
8F Comm. MoM

Amplitude in mV/m
o
(e} (&3] ~

o
(6]
T

4 1 1 1 1 J
1 1.2 1.4 1.6 1.8 2

Distance Along Z in |

Figure 2.13: Amplitude comparison of backscattered eleatrield E, from the dielectric
plate in Fig. 2.12
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inaccurate for very thin scatterers, especially at low fragencies.

As a nal example, we consider plasmonic nano-spheres randgnspread in 3D
space, with a diameter of=20 at 300 THz and , = 475378 1:1383 (corresponding
to Gold). It is illuminated by a plane wave, incident fromz} and polarized alongy? as
shown in the Fig. 2.14 The scattered elds are calculated by using the DM approach
described in sectior?.4.1 but with the dipole momentslls calculated using the complex
permittivity in the consistency condition 2.8 and compared with those generated using a

commercial FEM code.

Figure 2.14: Plasmonic nano-spheres.

From Fig. 2.15we can see that the scattered elds generated by using the corarcial
FEM code shows numerical artifacts near the origin, while # elds calculated using the

DM approach is more physical.
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Figure 2.15: Amplitude comparison of scattered electric dl E, from the plasmonic
spheres in Fig.2.14

2.5 Formulation for Inhomogeneous Objects

2.5.1 Geometry Modeling

For formulating inhomogeneous problems, the rst step esseally follows along the same
line as in the case of PEC and dielectric objects, in that we amp represent the original
scatterer as a collection of small-size PEC spheres in the €Eegions and small-size
dielectric spheres in the dielectric regions. As before, whein go on to replace these
spheres by their corresponding DMs, and use them to form a sdtmacro-basis functions.
We generate the MoM matrix by imposing the boundary conditio 2.4 for PEC spheres
and the consistency condition2.8 for the dielectric spheres, on the tangential E-Field.

However while applying these conditions it is important to nte the fact that the Egca

22



should include the contributions from both the PEC and dieletric regions.

2.5.2 Numerical Results

As an example we consider a PEC rod with a square cross-sectard uniformly coated
with a dielectric constant , of 6. The length and thickness of the PEC rod are 3100
and =100 respectively at 5 GHz. The thickness of the dielectric dirag is =100. It is
illuminated by a plane wave, incident from broadside, as sivm in the Fig. 2.16 Fig.
2.17compares the backscattered eld calculated by using the DMpgroach, as described

in Section 2.5.1, with those obtained from a commercial MoM package.

A H, E,
Bl r=C

[] Dielectiic (!, ="6) k.,

<€ >
120

Figure 2.16: A PEC rod with a dielectric coating.

An alternate approach to solving the above problem is to de ne PEC rod with
an equivalent thickness, but whose length is same as that dfet original geometry. An
equivalent PEC rod for this problem has a thickness of:2= 100 and a length of = 20,

which is same as that of the original problem.
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Figure 2.17: Amplitude comparison of backscattered eleatrield E, from the coated rod
in Fig. 2.16

2.6 Quasi-Static Formulation
In this section, we introduce the quasi-static type of DM fanulation in order to hybridize

DM approach with FDTD algorithm, which will be described laer in Chapter 6. Lets

consider the electric elds radiated by a DM oriented along:”

llcos 1 :
— jkr
E, e 1+ ke e (2.10a)
kllsin 1 1 :
E =) — 1+ -—— Jkr 2.1
P ke Gy © (2.100)
E =0 (2.10c)

When the size of problem geometry is very small when comparedthe wavelength
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. . 1 . : .
at the frequency of interest i.e.r ! 0 , then the 3 term in the above equations will
dominate. Hence the expressions fat, and E in the limit of r I 0 and using the

expression forll from equation2.2a can be rewritten as:

. _ llcos _ a
rI!mg E = m = 2E.cos 3 (2.11a)

: _ kllsin_ _ a3
rI!lrr(} E = m = EoSin 3 (2.11b)
E =0 (2.11c)

The above equations shows that the electric elds are real drtime-independent.
These expressions resemble the elds of a static charge dgo Since this quasi-static
approach produces real and time-independent elds, we carsei this to hybridize DM
approach with FDTD to solve a variety of multi-scale problem This quasi-static approx-
imation can be used for problems for which near eld calculains are of interest, since
it is predominantly dictated by the %3 term; also, this approach is computationally less

expensive.

Consider a PEC helix, whose length is= 10, a diameter of = 30, and a thickness of
=200 at 10 GHz. Itis illuminated by a plane wave, incident fronx,and polarized along
2, as shown in the Fig.2.18 Fig. 2.19compares the amplitude of backscattered eldE,

calculated by using the DM approach, with and without the quai-static approximation.

As we can see from the Fig.2.19 the comparison between the two, namely with
and without the quasi-static approximation, is good. Evenhough the quasi-static ap-
proximation is computationally less expensive, it is impaant to note the fact that this
approximation is valid only when the problem geometry is snlawhen compared to the

wavelength at the frequency of interest, while the DM apprazh is valid throughout the
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Figure 2.18: A PEC helix.
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Figure 2.19: Amplitude comparison of backscattered eledatrield E, from the PEC helix
in Fig. 2.5,

entire frequency range.
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2.7 Order of Singularity

The boundary condition or the consistency condition is alwa applied on the surface of
the geometry. So for a problem geometry comprising of only REobjects, the eld values

at the geometry's surface = a can be calculated from EquationZ.11) as follows:

E, = 2E,cos (2.12a)
E = Eosin (2.12b)
E =0 (2.12¢)

Hence in the DM approach the elds are always bounded and the der of the
singularity is zero. The same can be proven to be true for desitric and inhomogeneous

objects.

2.8 Observations and Conclusions

In this chapter we have presented a new physics-based approdor formulating MoM

problems that is based on the use of dipole moments (DMs) { apmosed to the con-
ventional Green's functions. The absence of the Green's fition, as well as those of the
vector and scalar potentials, helps to eliminate two of thedy sources of di culties in

the conventional MoM formulation, namely the singularity aad low-frequency problems.
Speci cally, we have shown that there are no singularitieshaat we need to be concerned
with in the DM formulation; hence, this obviates the need forspecial techniques for

integrating these singularities.

Yet another salutary feature of the DM approach is its abiliy to handle thin and

lossy structures, whether they be metallic, dielectric-fye, or even combinations thereof.
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We have found that the DM formulation can handle these typesfabjects with ease,
without running into ill-conditioning problems, even for \ery thin wire-like or surface-
type structures, which lead to ill-conditioned MoM matrices when these problems are

formulated in the conventional manner.

The technique is valid over the entire frequency range, fronow to high, and it
does not require the use of loop-star or other special typekhmasis functions in order to
mitigate the low frequency problem. The DM formulation is uiversal, and can be used
for both PEC and dielectric objects, and it requires only a tatively minor change in
the formulation when we go from PEC to dielectric scatterersThe approach is also well
suited for hybridization with Finite methods, such as the FBM and the FDTD, and such
an embellishment renders it suitable for handling multi-sde problems conveniently and

e ciently.
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3. Performance Enhancement of DM

Approach

3.1 Introduction

Though the DM approach described in Chapteg, is accurate and captures all the physics,
is not the most e cient from numerical point of view. This is because the number of
spheres used to represent a three-dimensional object canwvery rapidly if the diameter
of the sphere is small, as is often the case. For instance, #othin-wire scatterer, the
diameter of the spheres used to represent it is the same asttb&the wire. Hence, for the
example shown in Fig3.1, the number of constituent spheres needed to form the platarc
be quite large, even when the length of the plate is relatiyebmall in comparison to the
wavelength. In this chapter, we introduce techniques to emince the performance of DM
approach and to adapt this approach to solve a number of re@entative electromagnetic

scattering problems.
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Figure 3.1: A dielectric plate.

3.2 Higher Order Macro-Basis Function

Our strategy for reducing the number of unknowns signi cany and to make it comparable
to that needed in the conventional MoM formulation, is to usemacro-basis functions
(MBF). These basis functions belong to a level higher than #t of the dipole moments
used to model the geometry in the initial step of the DM apprazh. The low-level dipole
moments associated with such macro-basis functions are megented by a single unknown,
with the variation of the dipole moments following the shapef the associated macro-
basis function. In order to further improve the performancéy reducing the number
of unknowns, we introduce higher-order basis functions (HBIr. Towards this end, we
use a set of macro-basis functions and form a set of suitablglier-order macro-basis
functions and represent them by using a single unknown. Thee cients of the macro-

basis function follow the shape of the higher-order macrabis function. The MBFs

can be categorized as sub-domain basis functions, as oppos® entire domain basis
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functions. Some of the commonly used low-level basis furwis used in the concept of
MoM formulation are triangles, pulses and RWGsY], but we will use them as MBFs for

the DM approach.

3.2.1 Numerical Results

As a rst example, let us consider a PEC sphere with a diameterfo=60 at 10 GHz.
It is illuminated by a plane wave, incident fromx} and polarized alongz? as shown in
Fig. 3.2 Fig. 3.3 compares the scattered, eld along the negative-x axis, computed
by using DM approach; DM approach using MBFs; DM approach wit HBFs; and, with
those obtained from Mie Seriess]. For this problem, triangular basis functions were used,

both as MBFs and HBFs, in the context of the DM approach.

Figure 3.2: A PEC sphere.

Table 3.1 compares the number of unknowns required to solve the probiausing (i)
DM approach alone; (ii) with MBFs and (iii) with HBFs. Table 3.1 shows that the use
of HBFs signi cantly reduces the number of unknowns, withousacri cing the accuracy,

as may be seen by referring to Fig3.3.
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Figure 3.3: Amplitude comparison of scattered electric eld, from the PEC sphere in
Fig. 3.2

Table 3.1: Comparison of unknowns required for DM approachsings MBF and HBFs
for the PEC sphere shown in Fig.2

Method | No. of Unknowns
DM Approach Only 2322

DM Approach with MBF 86

DM Approach with HBF 43

For the next example, we consider a square-shaped dielecplate with , = 6, which
is =40 on the side and whose thickness 400 (see Fig.3.1). The plate is illuminated by
a plane wave traveling along the negative-z direction. Fig3.4compares the backscattered
eld calculated by using: (i) the DM approach only; (ii) the DM approach with MBFs;
and, (iii) a commercial MoM solver. Table3.2 compares the required number of unknowns
in each of these cases. For this problem the rooftop basis &tion was used as MBFs in

the context of DM approach.
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Figure 3.4: Amplitude comparison of backscattered electrield E, from the dielectric
plate in Fig. 3.1

Table 3.2: Comparison of unknowns required for DM approachsing MBFs for the di-
electric plate shown in Fig3.1

Method | No. of Unknowns
DM Approach Only 14112
DM Approach with MBFs 50

The results show, once again, that the comparison of the edds good and the use
of MBFs greatly reduces the number of unknowns without compmising the accuracy of
the results. As we can see from the previous examples, it isatelely easy to choose these
macro-basis functions. In order to better capture the curré behavior near the corners
and edges, we can increase the number of MBFs near the cornansl edges to re ne
the level of discretization. Also, we can reduce the number 8fBFs as we go down in

frequency, since the current distribution will not vary vey rapidly at lower frequencies.
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3.3 Characteristic Basis Functions

Characteristic basis functions (CBFs)1(] are higher-level entire domain macro-basis func-
tions and their use helps reduce the size of the matrix ratheigni cantly. The CBFs are
tailored for the geometry at hand and often just one or two CB¥& are su cient to solve
the problem if the object is relatively small in size. The usef CBFs enables one to
solve electrically large problems, because the size of tleeluced matrix is often orders of
magnitude smaller than one required in the original MoM formation to achieve the same
level of accuracy. The CBFs, are physics-based and they leadvell-conditioned matrices
[11], because their redundancy is removed via the use of Singulfalue Decomposition

(SVD).

Itis a common practice to generate the CBFs by solving for theurrent distributions
using a number of independent excitations, which the angléiacidence and polarization of
the illuminating wave is varied. Next, a matrix is generated ¥ using the resulting current
distributions, as its columns and a SVD of this matrix is perfoned. The threshold for
the singular values, is typically chosen to be 1% of the higstesingular value. Finally, we

ues the vectors corresponding to these singular values tmstruct the CBFs [17].

Consider a PEC rod, whose length and diameter are 10 and =400, respectively
as shown in the Fig.3.5. The CBFs for this problem were calculated as explained ab®v
and are plotted in Fig. 3.6. As we can see from this gure, only two out of the twelve

originally generated solutions survived the SVD thresholdg.

To test the method just described, we consider the case of tlaove PEC rod
illuminated by a plane wave, incident from the broadside daction. Fig. 3.7 compares
the backscattered eld calculated by using: (i) the DM apprach only; (ii) DM approach

using CBFs; and, (iii) commercial MoM solver.
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Figure 3.5: A PEC rod.
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Figure 3.6: Calculated CBFs for the PEC rod in Fig.3.5.

From the Fig. 3.7 and Table 3.3 we see a that both the DM results compare with

those obtained by using commercial MoM solver. However, theMJCBF approach re-
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Figure 3.7: Amplitude comparison of backscattered electrield E, from the PEC rod in
Fig. 3.5

Table 3.3: Comparison of unknowns required for DM approachsing CBFs for the PEC
rod shown in Fig3.5.

Method | No. of Unknowns
DM Approach Only 100
DM Approach with CBFs 2

duces the number of unknowns by a large factor, namely 50 inishexample.

3.4 Fast Matrix Generation

Another way to improve the performance of DM approach is to agd the Fast Matrix
Generation (FMG) technique [L3F], proposed for the generation of matrix elements in

the context of the conventional MoM formulation. To adapt ths technique for the DM
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. 1 . : . . .
approach, we consider only therL term in the eld expression while calculating the inter-
action between basis functions separated by a distance geyathan or equal to =10 and

: : 1 1 . : .
while we consider ther—2 and 3 terms when the distance is less thar= 10 separation.

Consider a square-shaped dielectric plate, shown in Fig.1. The backscattered
eld, calculated by using the DM approach with and without the use of FMG algorithm,
is presented in Fig. 3.8, which also compares these results with the correspondinges
from a commercial MoM package. Tabl&.4 compares the CPU time required by these

two di erent approaches.
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Figure 3.8: Amplitude comparison of backscattered electrield E, from the dielectric
plate in Fig. 3.1

Fig. 3.8 shows a good comparison of the electric eld calculated by ing DM
approach, with and without the FMG, and also with those from acommercial solver.
Even though the Table 3.4 shows only a slight time advantage of FMG over the DM, it

has been shown elsewhere this advantage grow rapidly as war@éase the electrical length
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Table 3.4: Comparison of simulation time for DM approach usg FMG for the dielectric
plate shown in Fig3.1

Method | Simulation Time
DM Approach Only 19.22 minutes
DM Approach with FMG 18.98 minutes

of the geometry. Here we were simply demonstrating that we d@nscari ce the accuracy

when we use the FMG along with the DM approach.

3.5 Closed-form Field Expressions

To calculate the elements of the interaction matrix we needotsample the macro basis-
function for the purpose of approximating the integration Wh a numerical summation.
Let us consider a triangular current distribution which exends over a length of=10, as
shown in Fig. 3.9. The elds radiated by this triangular current element is céculated
along a parallel line, at an o set of = 50, using di erent number of samples of the current
element. Fig. 3.10compares theE,- eld variation, for di erent number of samples, with

the closed form eld expressionll4] for the same current distribution.

We note from Fig. 3.10that we need at least 200 samples to achieve a good match
between the closed-form result for the integration and itspgroximation via numerical
summation, when the o set distance is of=50. However, as shown in Fig3.11, when
we move further, say to a distance of 50Q we can achieve a good match between the
direct integration and numerical approximation with just 2samples. This implies that to
compute the matrix entries for each macro basis function weay need up to 200 samples,
depending on the distance where we apply the boundary condit.It would be even more

computationally expensive if we use a ne mesh, or if the olgeis electrically large.
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Figure 3.9: Triangular current distribution placed along Zaxis from =20 to =20.

Hence, it would be useful to nd a closed-form expression fohe eld, generated by the

current distribution, by representing it in a suitable formas shown below.

A typical current distribution on a wire is piecewise sinusdal in nature, as repre-

sented in equation3.1 for a wire length ofH; + H».

8

EImSin(k(H2+ z)); if0>z H,

I (z) = (3.1)
3
“1nSin(k(H, 2z)); ifHy z O

wherel, is the maximum amplitude of the current.

The closed-form expression for the eld from this type of cuent distribution along
a bent wire (see Fig.3.12 can be derived, with separate expressions for the top-halihd

bottom-half of the current distribution, as follows:
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Figure 3.10: Amplitude variation ofE, at az = =50 radiated by the current distribution
shown in Fig. 3.9.
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Figure 3.11: Amplitude variation ofE, at az =500 radiated by the current distribution
shown in Fig. 3.9.

Figure 3.12: A bent wire.
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. e IRz el o1 1
Bup = [30m[—g— ol H2)——+jussin(H e (5+ )]
(3.33)
i iR 2 i" isin(H _
Evz:JSOIm[(Uz"‘Hz)e UZCOS(Hz)e "‘Jsm( 2)ejr(rug+jV§)]
Vo R> r rs

(3.3b)

where the directionsu{* and U} are unit vectors along the axis of the wire, while/;”and
¥ are perpendicular to its axis, as shown in Fig3.12 From the above equations we can
see that whenv; or v, is 0, i.e., when the observation point is either along,; for &) the
electric eld E,, (or E,,) becomes singular. In order to calculate the correct eld vaes for
these cases, we model the wire geometry with a sinusoidal reunt distribution as shown
in Fig. 3.13 and use the DM approach with 200 samples. ThE, elds are calculated
along a observation line parallel to//*by using the expressions given in equatior&2 and
3.3 as well as by using the DM approach. Fig3.14 plots the elds calculated by using
these two approaches and they are seen to agree well with eather. We can also see
from this gure that the value of the eld monotonically increases from zero as we move
away from the wire axis. Hence we set the eld value to be zerooalg the wire axis

whenever we are interested in the eld value at a point locateon the axis.

3.5.1 Numerical Results using Triangular Basis Functions

It is important to note the fact that the sinusoidal basis furction closely resembles a
triangular basis function (TBF), provided the support of the basis is less than or equal
to =10. Hence we can use the closed form expressions given in @quat3.2 and 3.3 to

calculate the eld values for the most commonly used TBFs, wise supports are less than

or equal to =10.
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Figure 3.13: A wire geometry.
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Figure 3.14: Amplitude variation ofE, along the observation line in for the wire geom-
etry in Fig. 3.13

For the rst example we consider a PEC rod, whose length and alineter are and

=500, respectively. It is illuminated by a plane wave, incidg from broadside, as shown
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in the Fig. 3.15 Fig. 3.16 compares the peak amplitude of the induced current in the
PEC rod calculated by using the DM approach and closed form pressions, with those
obtained from a commercial MoM package for di erent frequesies of the incident plane

wave, ranging from 1 MHz to 10 GHz.

Figure 3.15: A PEC rod.

From Fig. 3.16we can see that the results from the DM approach using closéatm
expressions compare well with those from the commercial Maoddlver. However, we have
found that the commercial MoM solver failed when we go down lwsv 10 Hz, while the DM
approach is able to handle the problem without any specialéatments or modi cations.
The number of TBFs used to model the wire varies with frequegcstarting with 9 TBFs
at 10 GHz and progressively decreasing to 1 at 1 MHz (or below)k &sted in Table 3.5.
We expect this to be the case since the variation in the curredistribution on the wire
varies less rapidly as we decrease the frequency. Inciddigtaalthough it makes little
di erence in the accuracy level of the solution whether we esthe same number of TBFs
over the entire frequency range or decrease their number gressively, we nd that the
condition number of the interaction matrix improves when waise a variable number of

TBFs with frequency, as may be seen from Fig3.17.
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Figure 3.16: Frequency variation of peak current for the PE@od in Fig. 3.15

Table 3.5: Number of TBFs used in di erent frequency ranges ifdhe PEC rod shown in
Fig.3.15

Frequency Range \ No. of TBFs Used

1 MHz - 1 GHz
1 GHz - 3 GHz
3 GHz - 5 GHz
5 GHz - 7 GHz
7 GHz - 10 GHz

O N1l WweEk

In order to study the improvement in performance with the usef closed-form ex-
pressions, we consider a circular PEC loop with a diameter of 233 and a thickness
of =100 at 1 GHz. It is illuminated by a plane wave, incident from tke 2 direction,
and polarized alongx? as shown in Fig. 3.18 Fig. 3.19 compares the variation of the
induced current calculated by using the DM approach with thiaderived by using the DM

approach and closed-form expressions. Table6 compares the times required for these
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Figure 3.17: Frequency variation of condition number for ta PEC rod in Fig. 3.15

two approaches and we clearly see that the use of closed-foerpression speeds up the
process by a factor of 3.3 for this problem without compromirgy the accuracy, as may be

seen by referring to Fig.3.19

Table 3.6: Comparison of simulation times using DM approachith and without closed-
form expressions for the PEC loop shown in Fig.18

Method \ Simulation Time

DM Approach without Closed-form 0.53 seconds
DM Approach with Closed-form 0.16 seconds
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Figure 3.18: A PEC circular loop.
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Figure 3.19: Amplitude variation of the induced current for he PEC loop in Fig. 3.18
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3.5.2 Numerical Results Obtained by using Rooftop Basis Func-

tions

One of the most commonly used basis functions for represergicurrent distributions on
surfaces is the Rooftop. It is a two-dimensional basis funeh comprising of pulse basis
function along one direction, and a triangular basis funabn along the other, as shown in

Fig. 3.2Q The current density distribution associated with a rooftp is given by:

L . o X y
J(X;y) = ImSin[k(H j uj)]rect o rect w (3.4)

Figure 3.20: A Rooftop basis function.

In order to model this rooftop using the eld expressions preously derived in this
section, we represent the rooftop basis function with a nunalp of TBFs that have the
same maximum amplitude. We carried out a wide range of numeal experiments with
the number of TBFs, and have found that we need to represent aaftop with 7 TBFs to
get accurate results. As an example, let us consider a squaleped PEC plate, which is
=2 on the side, and whose thickness is 25. The plate is illuminated by a plane wave
traveling along the negative-z direction, as shown in the §i 3.21 The backscattered eld,
calculated by using the DM approach and closed-form exprésss, is presented in Fig.

3.22 which also compares these results with the correspondinges from a commercial
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MoM package. To calculate the eld directly at the center of he plate by using the DM
approach, we average of the eld over the footprint of the rdtop basis function at the
center of the plate. We do this in the DM approach in order to irprove its accuracy,

instead of using point matching for this case, as we do for @hlocations on the plate.

Figure 3.21: A PEC plate.

Table 3.7: Comparison of simulation times using the DM appezh, with and without
closed-form expressions, for the PEC plate shown in Fg21

Method \ Simulation Time

DM Approach without Closed-form 69 seconds
DM Approach with Closed-form 57 seconds

Table 3.7 compares the time required by the DM approach with and withauthe
use of closed form expressions. It is evident, from Fi§.22 that the use of closed form
expression speeds up the process without compromising thecaracy, even when the
observation point is close to the surface of the plate. To ftiver improve the performance
in terms of the CPU time without compromising the accuracy, & can use 7 rooftops

to compute the self term, 5 rooftops to calculate the interdion between the rooftops

49



= with Closed Form Expression
O Comm. MoM

Amplitude in V/m
© o © © o o =
IN a1 o ~ © © [ [
T

o
w

0.2 ——.
0 0.5 1 15 2

Distance Along Z in |

Figure 3.22: Amplitude comparison of backscattered eleatrield E, from the PEC plate
in Fig. 3.21

located within a distance of = 10; 3 rooftops for the calculation of interaction between
the rooftops when this separation distance is greater thas 10 but less than =5; and, a

single TBF for separation distances greater tharr 5.

3.6 Some Embellishments to the Basic DM Approach

3.6.1 Incorporating Lumped Loads

Lumped loads are often used either to match the impedance af antenna or to shift
its resonance. The resonance behavior achieved by using hed loads is often sharp,
and requires a ne frequency sampling to capture this resonee behavior. From our

experience, many of the commercial solvers fail to capturbdse resonances and it would
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be useful to incorporate lumped loads in the DM approach to edf it performs better
than the existing codes. Incorporating lumped loads in the @ approach is relatively
simple, and is achieved by the addition of the lumped load ingglance to certain matrix

elements depending upon the spatial locations of the load.

For the rst example, we consider a circular PEC loop with a dimeter of 600 mm,
a thickness of 18.6 mm and a lumped capacitor of 0.3 nF insedten the loop, as shown
in Fig. 3.23 The loop is fed with a voltage gap source. The frequency ramgf interest is
6 MHz to 11 MHz, and we expect a series resonance to occur aroundi8z, between the
lumped capacitance and the inductance of the loop. Fig3.23 compares the frequency
variation of the input current, calculated by using the DM approach, with those obtained

from the NEC code.

Figure 3.23: A PEC circular loop with a capacitor.

From Fig. 3.24we can see that the comparison of the input current is good eve

though the loaded loop exhibits a sharp resonance.
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Figure 3.24: Frequency variation of the input current in a PE loop shown in Fig. 3.23

For the next example, we consider a power coil comprising of@bps, shown in Fig.
3.25 which is modeled by using 192 TBFs. Loop-1 is fed by using altage gap source.
Fig. 3.26compares the peak current in the output coill, i.e., the lood; obtained by using

the DM approach, and compare it with the one generated by usinthe NEC code.

Fig. 3.26shows a good comparison between the amplitude variation@wever, there
is a mismatch between the amplitude at the resonant frequeyonhich is attributable to
the sharpness of the resonance, and the di erence in the metiologies used in the DM

approach and the NEC.
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Figure 3.25: A geometry of a power coil.

3.6.2 Input Impedance of Nano Antennas

As we move towards the miniaturization of electronic deviceshe sizes of the electronic
components also follow suit. One of the important componesitof interest is the small
antenna, the evaluation of whose input impedances become®mn challenging as the
cross section of the small antenna becomes comparable toldéagth. A whole host of
techniques have been proposed in the literature for compaog the input impedance of
antennas. Harrington has presented an expression given %), for evaluating the input

impedance of an antenna by using the current induced on therse.

Z

Zin = JITJZ = EZJst (35)

Since the expression3 5 is variational, it supposedly generates a result for the

impedance that is second-order accurate even when the inddcurrent Js inserted in 8.5)
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Figure 3.26: Frequency variation of the peak output currenfor a power coil shown in
Fig. 3.25

has only a rst-order accuracy. However, we will show that by sing the DM approach
we can accurately calculate the input impedance of small annas. Consider the vertical
monopole antenna, shown in Fig.3.27, which has a length of =40 and a thickness of
=500 at 10 GHz. Fig. 3.28 shows the current variation along the antenna calculated
by using the DM approach. Table3.8 below summarizes the input impedance results
computed by using the DM approach; with Harrington's formulain (3.5); and with a

simpli ed transmission line model.

Table 3.8 shows that using the conventional truncated sinusoidal tyg of represen-
tation for the induced current in (3.5) yields results that deviate considerably from those

computed accurately by employing the DM approach.
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Figure 3.27: A vertical monopole antenna.
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Figure 3.28: Amplitude variation of the current for a monopa shown in Fig. 3.27.
3.6.3 Irregular Geometries
Handling irregular geometries can be challenging, since ween to use di erent mesh
sizes and basis functions to accurately model di erent pastof the geometry. In the

conventional MoM as well as FEM, this variation in the mesh ges can lead to a poorly

conditioned matrix. To handle such geometries using the DMparoach, we rst calculate
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Table 3.8: Comparison of input impedance calculated by uginrDM approach, Harring-
ton's approach 3.5 and a simplied transmission model for the monopole showmi
Fig.3.27.

Method | Input Reactance
DM Approach -1.1916e+003j
Variational Formula (3.5 -2.5216j

Simpli ed Transmission Model -1.4080e+003j

the elements of the interaction matrix using the closest psible regular geometry, and
then modify the corresponding elements with the ratio of aes of the footprints of the

basis functions in the regular and the actual geometries.

Consider a PEC plate with a thickness of= 25, shown in Fig. 3.29 The closet
regular geometry is a= 2 square plate with the same thickness, i.e5 25. The interaction
matrix is generated by using the regular square PEC plate ugj the DM approach as
described in the Sectior8.5.2 This interaction matrix is then modi ed, to handle the
actual geometry, by multiplying the di erence in the foot prints of the roof top basis
functions before calculating the currents. Fig.3.30 compares the scattered electric eld
pattern, at a radial distance of 2, with =45 | calculated by using the DM approach

with those obtained from the commercial MoM solver at 5 GHz.

Figure 3.29: A PEC plate with a staircase corner.
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Figure 3.30: Amplitude comparison of scattered electric diE at =45 from the PEC
geometry in Fig. 3.29

From Fig. 3.30we nd that the results from DM approach shows good compariso
with those from the commercial MoM solver. However, it was fou that when the
geometry becomes thinner and the number of irregularitiesgrease, the commercial MoM

solver is not able to handle the problem, while the DM approacwas able to do so with

relative ease.

3.6.4 Curved Surfaces

Another object of interest is a faceted surface, which is di alt to handle with the con-
ventional solvers when the geometry has sharp edges. Coesithe corner re ector shown
in Fig. 3.31, which has a height of=2 at 5 GHz and an included angle of 6(between the

two faces. Fig.3.32compares the backscattered eld along a line parallel to yx& with
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z = =2 calculated by using the DM approach (modeled with 180 roaips), as described

in the Section3.5.2, with those computed by employing a commercial MoM solver.

Figure 3.31: A corner re ector.

Fig. 3.32shows a good comparison of the elds calculated by using thévDapproach
with those calculated from the commercial solver. However,enmfound that when we
decrease the included angle between the faces tods smaller, the commercial solver is

unable to handle the problem, while the DM approach could whibut any di culty.

For the second example we consider a faceted PEC surface shawFig. 3.33 It
has a height of = 4, a width of =20 and a thickness of= 25 at 5 GHz. Fig. 3.34compares
the backscattered eld calculated by using the DM approachnjodeled with 40 rooftops),

as described in the Sectio3.5.2 with that calculated from a commercial MoM solver.

From Fig. 3.34we see good comparison between the elds calculated by usihg
DM approach with those obtained from a commercial solver. \\mever we deal with
either dielectric objects with curved surfaces, or those thi thin curved geometries the
commercial solver generates an ill-conditioned matrix, vase solution is questionable in

terms of accuracy; however, the DM approach exhibits no sutiehavior.
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Figure 3.32: Amplitude comparison of backscattered eleatrield E, from the corner
re ector in Fig. 3.31

Figure 3.33: A faceted PEC surface.
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Figure 3.34: Amplitude comparison of backscattered eleatrield E, from the faceted
PEC surface in Fig. 3.33

3.6.5 Geometries with Apertures

DM approach can handle geometries with apertures or slits thi relative ease without
requiring any modi cation to the approach. Consider a rectagular PEC plate, split at

the center, with a gap of =40 and a thickness of=25 at 10 GHz, as shown in Fig.
3.35 Fig. 3.36compares the backscattered eld computed by using the DM appach as

described in the Sectior8.5.2 with that calculated by using a commercial MoM solver.

Fig. 3.36shows good comparison between the two backscattered eld#ea as we
approach the surface of the plate. If we decrease the splitmsize to = 80, the associated
matrix in the commercial solver becomes ill-conditioned, lile the associated matrix in

the DM approach remains well conditioned regardless of theg size.

For the next example, we consider a PEC square plate of sidadgh of =2 with a
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Figure 3.35: A PEC plate with a split.
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Figure 3.36: Amplitude comparison of backscattered eleatrield E, from the PEC surface
in Fig. 3.35
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square aperture of size= 20, at a frequency of 10 GHz, as shown in Fig.37. In order
to model the aperture, the rst step is to calculate the E- ells over the aperture. Hence
we model a smaller plate of size= 4 with the same aperture size using the DM approach
without MBFs and calculate the dominant eld component in the aperture, namely theE,
elds in this case. Using theE, eld so obtained, we compute the magnetic eld current
!MX over the aperture. Once we know the equivalent magnetic cemt in the aperture,
we can back it with a PEC surface by invoking the Huygens' pringle. The total eld
will be a summation of two sets of elds: (i) scattered by the EC square plate with the
aperture closed, but in the presence é\ﬂx, solved by using rooftop basis function in the
context of DM, as described in Sectior3.5.2 (ii) elds radiated by !MX, either when it
placed over a ground plane, or by!I\ZX in free space, if we make the assumption that the
plane is in nitely large. However this approximation is just ed since the elds radiated
by Z!MX over the surfacez = 0 is concentrated only near the aperture and they rapidly

decrease as we move away from the aperture, as shown in Figg8and 3.39

Figure 3.37: A PEC plate with a square slot.

Fig. 3.40compares the amplitude of the backscattered eldE, calculated by using
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Figure 3.38: Equivalent magnetic current.
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Figure 3.39: Amplitude variation of the radiated electric dd E, from the equivalent
magnetic current in Fig. 3.38

DM approach with those computed by using a commercial MoM s@r. We have also
used the same approach to solve the problem of a PEC plate withrectangular slot

as shown in Fig. 3.41 and the scattered elds from this geometry are plotted in Fig
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Figure 3.40: Amplitude comparison of backscattered eleatrield E, from the PEC surface
in Fig. 3.37.

3.42 Once again we nd a good match between the results of the DM ppach and
those from a commercial MoM code for both of these plate gedmes with apertures.
However, as mentioned earlier for the case of the slit, the camarcial solver breaks down

for narrow-size apertures, while the DM approach handles with relative ease.

3.6.6 Microstrip-based Structures

As the size of the semiconductor devices go down, the thickeed the microstrip substrate

also becomes smaller. With increasing integration of eleghic packages sharing the same
substrate, the mutual coupling becomes critical, and ofterequires an accurate modeling.
The thinness of the substrate, along with the ner widths of he signal traces challenge

the existing CEM algorithms when used to calculate the elecimagnetic response charac-
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Figure 3.41: A PEC plate with a rectangular slot.
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Figure 3.42: Amplitude comparison of backscattered eleatrield E, from the PEC ge-
ometry in Fig. 3.41
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teristics of such packages. To demonstrate that the DM appach can handle geometries
with ne structures, we consider the example of a microstrigransmission line shown in
Fig. 3.43 whose length is 2 and, which has free space as its substrate. The transmission
line is modeled by using the DM approach with a voltage sour@xciting the line at one
end (x = ), under the in nite ground plane approximation, which is typical. We use
rooftops, as described in SectioB.5.2 to model the current densitiesJ, and J, with
=10 =100 and =20 =20, respectively, at a frequency of 10 GHz. Fig3.44 plots
the variation of |, along the trace calculated by using the DM approach and showise

standing wave pattern as excepted.

Figure 3.43: A microstrip geometry.

For the next example, we consider a similar microstrip geormg as shown in Fig.
3.45 The line is illuminated by a plane wave traveling along the egative-z direction and
polarized alongx? Fig. 3.46 compares the scattered eld along,“calculated using the
DM approach, as described in the previous example, with thescalculated by using a

commercial MoM solver.

Fig. 3.46 shows a good comparison between the results generated by M ap-
proach and those derived from a commercial MoM solver. We poout that the advantage
of using the DM approach lies in the fact that it continues to wrk well when we make
the substrate thinner, add losses to it, and use even ner sigl traces. The commercial

solvers, on the other hand break down under these circumstas.
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Figure 3.44: Variation ofl, along the trace of a microstrip line in Fig.3.43

Figure 3.45: A microstrip geometry.

3.7 Observations and Conclusions

In this chapter, we have introduced certain re nements to te DM method to improve
its computational e ciency. We have shown that the use of higer-order basis functions
signi cantly reduces the number of unknowns, without compmmising the accuracy and

combines the DM with the CBFM technique helps reduce this nuber even further. The
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Figure 3.46: Amplitude comparison of backscattered eld, from a microstrip line in
Fig. 3.45

use of closed-form expressions for the interaction matrixeenents speeds up the process
of matrix generation, regardless of the problem size. Foreefrically large problems,

employing FMG helps to speed up the interaction matrix genation considerably.

We have shown how we can incorporate lumped loads in the DM appch and that
it is able to capture sharp resonances even at low frequerssiezhere the commercial solvers
become inaccurate or break down. The DM approach is able tocacately calculate the
input impedance of small antennas; elds from irregular geoetries; from faceted surfaces;
from geometries with slot and slit; and, is able to model miostrip line type of geometries
with ne features. In all of the above examples we have solvédr, the matrices associated
with the DM approach remained well-conditioned throughouthe entire frequency range
of interest, without the use of special treatments. Howevethis was not the case with
Commercial MoM and FEM solvers, even after special treatmenwere incorporated in

these solvers.
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4. Recursive Update in Freguency

Domain (RUFD)

4.1 Introduction

The time domain technique FDTD, is a versatile algorithm andhandles Cartesian geome-
tries with great ease. The FDTD algorithm is highly parallakable, however as mentioned
in Chapter 1, the FDTD algorithm requires long run times when an accuratsolution is
desired at low frequencies. Also, since it is a time domain alithm, the method is nei-
ther well suited for dealing with dispersive media, as wellsafor deriving solutions for
problems that involve high-Q structures. Given this backgyund, it can be argued that
a general-purpose frequency domain technique, which splleserves the salutary features
of the time domain methods, would be very desirable additioto the CEM repertoire.
Hence in this Chapter, we describe a novel method, called RUFRé€cursive Update in
Frequency Domain), which is a general-purpose frequencyndain technique, but which
still preserves the salutary features of the time domain mebds. RUFD is a frequency do-
main Maxwell-solver, which neither relies upon iterative or on inversion techniques. The
algorithm also preserves the advantages of the parallelbty{which is a highly desirable

attribute of CEM solvers{by using the di erence form of Maxwvell's equations.
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4.2 RUFD Algorithm

In common with FDTD, the RUFD algorithm begins by using the di erence form of
Maxwell's equations to discretize them. Next, it utilizes adap-frog algorithm, also sim-
ilar to the FDTD, as proposed by Yee 5. Consequently, RUFD may be viewed as the
frequency domain counterpart of the FDTD, because it solvahe CEM problem using
a recursive updating procedure, rather than via matrix sokion (based on inversion or
iteration) commonly employed by other frequency domain mbbds. As a frequency do-
main solver, RUFD handles dispersive media with relative e@sit also avoids prolonged
time-marching when solving low frequency problems, whicls itypical of time domain
solvers. The formulation is based on modifying the origindflaxwell's equation in a form
that is convenient for recursive updating. These modi ed agations, originally proposed

by P aum et al.[ 16], are given by:

1q
. j!
1 n+1 n n+_—- - .
¢ E} e - 1 R O (4.1a)
1 i 1
R R U -
e h e h = Sy, B —e2H, 2+8S, (4.1b)

where denotes the discrete iteration steph is the mesh sizeéﬂ is the approximated
1

n+ =

electric eld vector at points n ; Iqh 2 the approximated magnetic eld vector at points

1 . . . o
(n+ §) and Sy and Sg are discrete source terms associated with the excitation.

If we let tend to zero in the above system of equations2, we get:

Iilmoé' 1o (4.23)

We can also show that=y. - = lim | oEn( ) and Hp. - = lim | oHn( ) are the

solutions of4.3;
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. 1
'En=0="rn Hy-oo —En=o+ Se: (4.3a)

. 1
i'Bho= “rn En-o —Hn o+ Sk (4.3b)

4.3 Stability Condition

The stability condition to be satis ed for the recursive sceme in @.1) has been shown

[16] to be: r—
8 (4.4)

g

However, we have found that using the Courant condition, givein (4.5), which
is prescribed for the FDTD algorithm works equally well for he RUFD. Using @.5 as

opposed to ¢.4) saves the simulation time by a factor of 2.

r

5 (4.5)

o

To ensure unconditional stability, even in the presence osual numerical errors, we

nd that it is safe to use: r
— 0995 — 4.6
H 3 (4.6)

4.4 Source Settings

In the FDTD algorithm one can use either a hard or a soft sourctr excitation. For
the implementation of the hard source one or more computatal grid points are chosen
and a particular eld component at that point is assigned a seci ed value. Also, when
using a hard source, one can remove the source from the conggignal grid once it is

extinguished. In contrast to this, the source value is addetb the eld component at
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the selected grid points if we use a soft source. Since RUFD igexursive frequency
domain technique, and the RUFD calculates the values diregtin the frequency domain,
we cannot remove them from the computational grid at any potrof time; hence in RUFD

we must always use a hard source.

4.5 Incorporating Lumped Resistance

Lumped resistance are often used to achieve a matched teration. In RUFD the lumped
resistances can be implemented by usingvalues in certain speci c cells where the lumped

source is to be located. The value for a given resistanc&® can be calculated by using:

o
= (4.7)

wherel is the transverse length, andh is the cross-sectional area of the cell. This total re-
sistance can either be distributed over a few cells, by usisgries or parallel combinations,

or lumped in to a single cell based on the problem at hand.

4.6 Absorbing Boundary Conditions

The boundary condition used for the mesh truncation in the coputational domain is
critical since it a ects the accuracy of the simulations. Itis a commonly referred to as
Absorbing Boundary Conditions (ABC) in the context of the FDTD algorithm. A variety
of ABCs have been developed over the years for use in the FDTatithm. The simplest
and computationally inexpensive one is the Mur ABCI1[/]. However the accuracy of this
ABC is good only for the normal incidence and often cause re tans for other angles

of incidence. Recently, a class of boundary conditions el Perfectly Matched Layers,
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abbreviated as PML, has been introduced by Berengerd], that are widely used in the
FDTD algorithm. The Convoluted PML [19)], also referred to as CPML, is the best in
the class in terms of performance, even though it is computanally expensive. We have
adapted and programmed both the Mur ABC and CPML type of ABCs in he RUFD

algorithm. As we can see from Figs4.1 and 4.2, the performance of RUFD/CPML is

superior to RUFD/Mur ABC, since the former is better able to supress the re ections
from the boundary. One can use either the Mur ABC or the CPML ABCdepending on

the accuracy desired.

Figure 4.1: A square PEC sheet.

4.7 Types of Formulation

The RUFD algorithm has three types of formulation dependingrothe problem on hand.

In this section we will describe each of them with some illusttive examples.
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Figure 4.2: Amplitude variation of the scatteredE, from a square PEC sheet shown in
Fig. 4.1

4.7.1 Total Field Formulation

Total eld formulation is used for antenna problems or prok®#ms which involve sources of
nite support, as opposed to the plane wave type of source, vwah is unbounded. This
type of formulation uses the total eld throughout the compuational domain; hence, it
does not need any special modi cation to the RUFD update equains. As an example,
let us consider a dipole antenna operating at 10 GHz, shown ing- 4.3, whose length and
radius are = 2 and =100, respectively. The dipole is fed by using a voltage soart a gap
whose length is= 20. Fig. 4.4compares the feed current of the dipole antenna, calculated
by using the RUFD total eld formulation with those derived from a commercial MoM

solver.

Fig. 4.4 shows good comparison between the feed current calculated using the

74



Figure 4.3: Geometry of a PEC dipole antenna (Not to Scale).
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Figure 4.4: Amplitude variation of the feed current for a PEC g@ole antenna shown in
Fig. 4.3

RUFD and a commercial MoM code. The antenna was modeled as arthwire in the
commercial MoM code, while in RUFD it was modeled by using a sgre PEC rod. The
calculated currents followed the shape and amplitude but slv a shift in the frequency

because of the di erence in the models used for the antennatime two di erent solvers.
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To compensate for this, the RUFD results the frequency axis wacaled by a factor of 1.1
to align the solution for the current distribution, derived by using the RUFD, with that

obtained from the commercial MoM.

4.7.2 Total Field/Scattered Field Formulation

The ABCs are only designed to absorb the plane waves inciderian the boundary, and
they can become unstable when a wave travels away from it. Tahdle this situation,
which always occurs when we use a plane wave excitation, wepdoy what is known as
as the total eld/scattered eld formulation [ 1]. In this formulation, we de ne an interior
domain where we work with total elds, while in the region ouside of this domain we
use the scattered eld (see Fig4.5), to ensure that the elds are always outgoing at the
outer boundary, as the radiation condition dictates them tde. The scattered eld region
is usually chosen to be 5 cells thick. The elds at the boundgrbetween the total and
scattered eld regions are suitably adjusted to ensure theasisfaction of the continuity

condition.

Figure 4.5. A 2D computational domain.
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As an example consider a dielectric cube at 10 GHz, which 25 on the side,
shown in Fig. 4.6, which has a relative permittivity of 6. Fig. 4.7 compares theE,-
eld scattered in the forward direction, calculated by usig the total eld/scattered eld
type of formulation in the RUFD, with those obtained from a comrmercial MoM solver.
While formulating this problem in RUFD, a small value of = 0:01 was used within the

dielectric cube to achieve stability.

Figure 4.6: A dielectric cube.

Fig. 4.7 shows good comparison of the scattered eld, calculated from the RUFD
and the commercial MoM solver. Even though the commercial Nib was able to solve
this particular geometry, it could not handle when a smallePEC cube of size= 100 was
embedded within the dielectric cube (see Figt.8), while the RUFD was able to solve the

problem with ease.
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Figure 4.7: Amplitude variation of the forward scattered et E, from a dielectric cube
shown in Fig. 4.6.

4.7.3 Scattered Field Formulation

In the Scattered Field formulation, we work only with the sctered elds throughout the
entire computational domain. We replace the objects with hrd sources, whose values
are derived from the scattered elds calculated by applyinghe boundary condition on
the surface of the object. Because of this, we can use the seetd eld formulation
only for problems involving PEC objects alone. In other worgl for scattering problems
involving dielectric geometries alone, we must always ushket total eld/scattered eld
formulation. As an example consider the problem of calculaty the scattering from a
square PEC plate at 10 GHz, whose side length and thickness ar8 and = 10 as shown
in Fig. 4.9. Fig. 4.10 compares the totalE, eld calculated by using the RUFD with
total eld/scattered eld formulation; RUFD with scattered eld formulation; and, the

commercial MoM. Table4.1 compares the simulation times required by the RUFD and
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Figure 4.8: A PEC cube embedded in a dielectric cube.

the Commercial MoM for this problem.

Figure 4.9: A square PEC plate.
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Figure 4.10: Amplitude variation of the total eld E, from a PEC plate shown in Fig.
4.9

Table 4.1: Comparison of simulation times required by RUFD ahthe commercial MoM
for the PEC plate shown in Fig4.9.

Method \ Simulation Time
RUFD 19.36 s
Commercial MoM 205 s

As is well known, usually, the Finite methods are considera®f more CPU-intensive,
than the MoM, but the Table shows that for this example, whichis typical, RUFD is
quite competitive with the MoM. Furthermore, the proposed RIFD algorithm, which
is a Finite method, can handle nite conductivities and inhonogeneous objects much
more numerically e ciently and accurately than can the MoM @de, which can become
numerically unstable. Also the RUFD algorithm used here was &sal version and using
a parallel version would speed up the computation considéig, whereas the MoM is not

so easily parallelizable. Fig4.10shows good comparison of the total eldE, calculated
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using the RUFD and those obtained from the commercial MoM sav. We nd that the
results calculated using scattering or total eld/scatteed eld formulations are consistent

with each other and also with the commercial solver.

4.8 Performance Enhancement of RUFD

The RUFD algorithm, even though it is robust and accurate for &ndling a wide variety of
problems, is not the most e cient. Since it is a frequency domin technique, even though
it is similar to the FDTD algorithm because it is recursive, t solves problems only for a
single frequency, as opposed to the FDTD algorithm, which gerates the solution for a
range of frequencies from a single simulation. In this seati we will introduce a way to
enhance the computational e ciency of the RUFD algorithm without compromising its

accuracy.

4.8.1 Post-Processing

Fig. 4.11shows the typical signature generated by an RUFD simulationsvhich shows
that for this problem we need to iterate at least 2000 times tobtain the converged eld

value at the chosen point of interest. The information preckng the recursive step when
convergence is achieved (2000 in this example) in RUFD is of smgni cance, since we
only need to retain the nal converged value unlike the FDTD #&orithm. Thus, we can

use methods to process the recursive signature during thdti@ stages of iteration to

predict the nal converged value that we are seeking, eithdsy using the zero-frequency
DFT, by employing the moving window average for smoothing,raoy tting the data

using Vector Fitting Algorithm.
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Figure 4.11: A typical signature generated in the RUFD algathm.

As an example, let us consider the patch antenna operating aGHz which is printed
on a Duroid substrate (; = 2:2) that has a thickness of 0.794 mm, (see Figl.12. The
problem was solved by using the RUFD and further processing thfe recursive signature
was done by using vector tting, polynomial tting, and smoahing. Table 4.2 compares
the number of iteration steps required by each of these tedaues with the number of

time steps required by a commercial FDTD solver.

Table 4.2: Comparison of iterations required by RUFD using dirent processing tech-
nique and the commercial FDTD for the patch antenna shown inig.4.12

Method Comm. FDTD RUFD Alone Vector Fit Poly Fit Smoothing
No. of Steps | 8200 2000 1601 1218 1218

It is evident from the Table 4.2 that using post processing technique makes the
RUFD algorithm computationally e cient, if not competing wi th the FDTD, dropping

the fact that it is a frequency domain solver.
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Figure 4.12: A patch antenna.

For the next example, we consider a waveguide lter as shown Fig. 4.13at 11.8

GHz.

Figure 4.13: A waveguide lter.

Table 4.3again shows that the post processing helps reduce the numbéiterations,

and the polynomial t performs especially well. For the nal example, we consider the
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Table 4.3: Comparison of iterations required by RUFD using dirent processing tech-
nique for the waveguide Iter shown in Fig4.13

Method Comm. FDTD RUFD Alone Vector Fit Polynomial Fit
No. of Steps 45540 27000 23585 20544

RF lIter operating in the frequency range of 10 GHz. The Iter is printed on a substrate
with an , =2, and a thickness of 1 mm, as shown in Fig4.14 Table 4.4 compares the
number of iterations required by the RUFD alone, with smoothmg, and the number of

time steps required by commercial FDTD solver.

Figure 4.14:. A RF lter.

Table 4.4: Comparison of iterations required by the RUFD, wheusing the smoothing
technique for the RF Iter shown in Fig.4.14

Method Comm. FDTD RUFD Alone Smoothing
No. of Steps 11300 12000 2100

From Table 4.4 we see that the smoothing algorithm reduce the number of itations

required by the RUFD quite signi cantly.
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Until now we have only discussed about post processing techues which do not
modify the ow of the RUFD algorithm. An alternative is is to do a online processing,
by periodically updating the eld values at all the nodes of he computational grid after
smoothing. Consider the PEC plate problem shown in Figd.9, which we have solved by
using the RUFD, combined with a online processing where we ugtd the E- eld values
at all the nodes of the computational domain, with the zeroréquency DFT values every
500" step starting at the 400" step. Fig. 4.15 compares the signature of the RUFD
and compares it for the cases of with and without online prossing. We nd that online
processing slows down the convergence, and hence the peostessing methods o er a

better choice than does the online-processing method.
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0.358 = = =Online Processing
Q356| ;
c g Iy I I
S ! H 0 1 'l ! W IHAHN
< oss el "::" ' ::;:":' ':": M i\i W *g: Hilin "m
E " l } :, "Il:lllllll“l:ll'l:ll: !|| ll' || l.l'i' ll:' I I||I A
= 0352 .Ill 1“ ¢ W ju e r
' " Wttt i Yy 'ul l\ y
g ::,-lnﬁ fmu:l fl :I\'u ‘h Y HH LK i -: fm'
0.35
I l
0.348

0346 | | | | | | | J
1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration

Figure 4.15: Signature generated in RUFD algorithm for a PEClate shown in Fig. 4.9.
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4.8.2 E ect of Time Step on Convergence

To study the e ect of varying in the RUFD simulations, we consider a small square
PEC patch, shown in Fig. 4.1 which operates at 10 GHz. We model the above problem
by using the RUFD and the value of is varied as 0995, 0 :595 and 0:0995 in three

di erent RUFD simulations, where is dictated by the Courant condition given in (4.6).
Fig. 4.17compares the scattered elcE, calculated by using the RUFD simulations with
di erent values of , with those calculated by using the DM approach. Fig4.18compares

the variation of the eld at a point from the three RUFD simulations.

Figure 4.16: A square PEC patch.

From Fig. 4.17 we see that the RUFD results compare well with those obtained
from the DM approach, irrespective of the chosen value for. However, from Fig. 4.18
we note that decreasing the value of, increases the sampling rate, and requires a larger
number of iterations to achieve convergence. Also, increagithe value of beyond

leads to instabilities and, hence, an optimum choice foris as given in ¢.6).
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Figure 4.17: Amplitude variation of the scattered eldE, from a PEC patch shown in
Fig. 4.16

4.8.3 E ect of Losses on Convergence

To achieve a faster convergence, we use a small value of losthe entire computational
domain to damp out the oscillations in the RUFD. To study the eect of the loss on
the convergence, we consider the patch antenna problem sinoim Fig .4.16 and vary
the value of from O to 10 in the RUFD algorithm. Fig. 4.19 compares the scattered
eld E, calculated by using the RUFD simulation using di erent value of , with those
calculated by using the DM approach. Fig.4.20 compares the variation of the eld at a

point, computed by using these RUFD simulations.

Fig. 4.19 shows good comparison with the results from the DM approaciirre-
spective of the chosen value for. Fig. 4.20 shows that convergence is achieved more

quicker as we increase the value of. However, with a very high value of serves to
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Figure 4.18: Signature generated in RUFD algorithm for a PECagich shown in Fig. 4.16

dampen the nal, converged, eld values. Hence, in order to nmiatain a good accuracy,
and achieve a faster convergence at the same time , we use a enaté value of , namely
0.01. for instance. From the plots of the signature shown ini¢z 4.20 we nd that the
eld values peak up initially and then settle out, as we contiue the iteration until we
reach convergence. Hence an intuitive approach would be t@adtwith a higher value for
and decrease it in steps as we continue with the simulation.vén though this approach
results in a faster convergence, the accuracy is comprontismmewhat, say about a factor

of 10%.

4.8.4 Initializing Using DM Approach

In order to speed up the convergence in the RUFD algorithm, theeld nodes in the

computational grid of RUFD are initialized by using DM appro&h. As an example, we
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Figure 4.19: Amplitude variation of the scattered eldE, from a PEC patch shown in
Fig. 4.16

have revisited the PEC patch problem, shown in Fig4.16 and have it solved by using
the RUFD, using initial values obtained from the DM approach. Fig. 4.21 compares
the scattered eld value Ey calculated by using RUFD simulations, with and without
initialization, and with those calculated by using the DM aproach. Fig. 4.22 compares

the variation of the eld at an observation point obtained flom these RUFD simulations.

From Fig. 4.21we see that the results compare well with those obtained frothe
DM approach, irrespective of the initialization. Furthernore, Fig. 4.22 shows that while
using initialization from the elds derived from the DM approach helps to decrease the

overshoot of the signature, it does not result in a faster ceargence.
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Figure 4.20: Signature generated in RUFD algorithm for a PECagich shown in Fig. 4.16

4.8.5 S-Parameter Calculations

Scattering parameters are used to de ne the frequency behawr of circuits and can be
calculated by using the RUFD, either by using open terminatios or matched terminations
for the circuit ports. In general, the frequency dependentcattering parameter S; (f )

using matched termination can be de ned as follows{]:

s
Vi(f)  Zg(f)
Vi(f)  Zai(f)

S (f) = (4.8)

where Vi(f ) and V, (f ) are the voltages at ports i and j,Z.(f ) and Z(f ) are the
characteristic impedances of the lines connected to theser{s. The matched termination
in the RUFD can be achieved either by using the method mentioden Section 4.5 or

by making the CPML touch the port of the circuit. Both of theseapproaches are found
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Figure 4.21: Amplitude variation of the scattered eldE, from a PEC patch shown in
Fig. 4.16

to produce the same results. In order to calculate the S-pareeters for the feed line
we need to decompose the current into forward and backwardatreling waves, which
can be calculated by using the Prony's method’[, 27]. When using open termination
for S-parameter calculation, we use the formula proposed [&3], which requires the
decomposition of the waves in all the ports into forward anddckward traveling waves,

and we can again use the Prony's method for this purpose.

As an example, let us consider the RF Iter shown in Fig4.14 Figs. 4.23and 4.24
compares the S-parameters, calculated by using the RUFD, Wwithose obtained from the

transmission line model (TL model).

Fig. 4.23 shows that the S;; values, obtained from the RUFD and transmission
line models compare well with each other. However, Figt.24 shows a slight di erence

between theS,; values because of the in nite substrate assumption that thie is in the
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Figure 4.22: Signature generated in RUFD algorithm for a PECagich shown in Fig. 4.16

TL model. The RUFD has the potential to calculate the S-paranters of circuits with
nite substrates which the MoM solvers cannot readily handl because they assume that

the substrate dimensions are in nite by using the layered nitum Green's function.

4.8.6 Sub-Gridding Approach

Sub-Gridding approach in the FDTD enables one to use di erermesh sizes in selected
regions of the computational domain, and the same principlleas been adopted in the
RUFD to handle mulitscale problem.The problem geometry coitered is shown in Fig.
4.25 A ne mesh was used in a part of the domain, which is indicateds the sub-gridding
region in the Fig. 4.25 and a bu er region was used to enable smooth transition bee&en
the coarse and sub-gridded regions. Two test problems werdved by using the RUFD

with sub-gridding, one with the source located in the coargegion, while the other with
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Figure 4.23: Variation ofS;; for the RF lter shown in Fig. 4.14

the source placed inside the sub-gridding region. The subdying approach became
unstable in both of these cases, irrespective of the valueosien for , as it very often the

case with sub-gridding algorithms implementation in the FDD. However, because of the
nature of the RUFD algorithm the same sub-gridding can be adhed using a method

called Multi-Grid, proposed in the Chapter5.

4.8.7 Improving the Computational E ciency

While the proposed RUFD algorithm has a number of salutary feéares, as pointed out

above, it has two disadvantages listed below:

Takes a longer time for moderate and high-Q problems, such @ case examples

shown in Figs.4.12and 4.13
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Figure 4.25: A computational domain with sub-gridding.
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In contrast to the FDTD, the update equations are complex, aththey require twice

the memory as compared to that needed in the conventional FIDX.

To overcome these drawbacks, we have modi ed the original RDFalgorithm to
address the issues mentioned above, and have also incorpetanew strategies to accom-
modate non-conformal objects, to deal with low frequenciesd to develop a new ABC
which is computationally e cient than the PML. The result is the nuFDTD algorithm

described in the Chapter6, whose update equations are entirely in the real domain.

The patch antenna problem shown in Fig4.12was solved by using the FDTD and
the number of steps required is compared in the Table5, with those for the conventional

FDTD and RUFD with smoothing.

Table 4.5: Comparison of iterations required by FDTD, RUFD using Smoothing and
the commercial FDTD for the patch antenna shown in Figt.12

Method Commercial FDTD RUFD with Smoothing FDTD
No. of Steps 8200 1218 972

Table 4.5clearly shows that the FDTD algorithm perform better not only compared
to the RUFD, but also with the commercial FDTD solver. The wavguide Iter shown in
Fig. 4.13was also solved usingFDTD and the required number of time steps are shown
in the Table 4.6.

Table 4.6: Comparison of iterations required by FDTD, RUFD using polynomial t for
the waveguide Iter shown in Fig4.13

Method Commercial FDTD RUFD with Poly Fit FDTD
No. of Steps 45540 20544 10000

Tables 4.5 and 4.6 shows that the computational e ciency of the FDTD is atleast
50% better than that of the RUFD algorithm even after using thebest available post-

processing techniques in the RUFD.
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4.8.8 Calculation of Frequency Response

Often designers are interested in electromagnetic respensver a band of frequencies
instead of just few. Since RUFD is a frequency domain techniguit calculates the
response only at one frequency from a single simulation rumence it is computationally
expensive to calculate for multiple frequencies. One way tldress this issue would be
to run a number of frequencies using the RUFD, and then interpate the results for
in between frequencies by using either vector tting, or pghomial tting. However,
when the frequencies are separated by more than 20% of the wiation frequncy and
for the frequencies in-between, we initialize the RUFD compational grid with eld
values calculated through interpolation based on the regalobtained previously at other
frequencies, before we begin the simulation. We improve tleenvergence of the RUFD
algorithm by following this procedure, which is di erent fom what we found hwen we

used the intialization values from the DM apporach we mentiged in the Section4.8.4

To demonstrate the proposed approach of frequency interaion just described
above, we consider the problem of scattering by a PEC sheetosvn in Fig. 4.1 with the
objective of generating the results at a frequency of 10 GHaitially, we solve the problem
for frequencies of 9 GHz and 11 GHz, using the RUFD scattering foulation, and then
interpolate the eld values for 10.5 GHz at all the nodes in theeomputational domain.
This interpolation fails to predict the eld values at 10 GHz wth the desired accuracy;
hence we use these interpolated data to intialize the RUFD cqouatational grid before
starting with the RUFD iteration at 10 GHz to achieve faster comergence. Fig. 4.26
compares the results calculated by using the RUFD with and wibut the initialization
step, and we see that the two results compare well. Thus, wevgademonstrated that
we can speed up the convergence of the RUFD by using initialin in the way we have

described above.
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Figure 4.26: Amplitude variation of the backscattered eldE, from a PEC sheet shown
in Fig. 4.1

Another way to calculate the frequency response is to usd&-DTD described in
Chapter 6, which is able to handle multiple sources, operating at dieent frequencies
and using them we can generate the results for a number of fuscies from a single
simulation run. Even when we use a single frequency sourcethe FDTD we can
process the results for frequencies within the 5% bandwidtdround the source freqeuncy

used during simulation.

4.9 Observations and Conclusions

As alluded to in Section4.1, the RUFD algorithm is highly parallelizable. This is becaus,
unlike the FEM, it utilizes the di erence form of Maxwell's equations. Also, since RUFD

uses the Yee cells, its meshing requirements are relativeiynple. Moreover, since RUFD
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solves the Maxwell's equations in a recursive manner, withbusing either iteration or
inversion, the problems of dealing with ill-conditioned miices, or constructing robust
pre-conditioners are totally avoided. Also, as a frequencyothain solver, it can handle
dispersive media, including plasmonics, relatively eagilvithout any need for Drude or

Debye model as required in FDTD algorithm.

A number of technique has been discussed in this Chapter tortloer enhance the
performance of the RUFD. These include frequency interpolah schemes to generate the
initial values of the elds in the entire computational doman; introducing losses in the
computational domain; and, post-processing methods, whispeed up the convergence

signi cantly.

It has also been mentioned that the RUFD has been used as a staygpstone to a
new improved version of the FDTD, called the FDTD, described in detail in the Chapter

6.
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5. On the Hybridization of RUFD

Algorithm

5.1 Introduction

The direct solution of multiscale problems by means of convtonal CEM methods{be
it FEM, FDTD or MoM({is highly challenging, even with the availability of modern su-
percomputers, because we need to use a large number of DoFsg(de of freedom) to
accurately describe objects with ne features, which mighshare the computational do-
main with other large objects. For instance, if a thin-wires located in an inhomogeneous
medium along with other large-scale objects, and the thickss of the wire is only a small
fraction of the wavelength in the medium, then we must use a ie ne mesh to accurately
capture the nuances of its geometry. This, in turn, leads to large number of DoFs when
there are other large objects also present in the computatial domain along with the

thin wire whose shape may be arbitrary.

Dealing with multiscale objects often forces us to comprose the accuracy (relaxing
the numerical discretization process when attempting to gaure the small-scale features)
in order to cope with the limited available resources in tersiof CPU memory and time.

In this chapter we introduce a scheme that combines the RUFD dnthe DM approach
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to solve multiscale problems in a numerically e cient manne Our objective is to handle
objects with ne features with the DM approach, and not diredy with the RUFD which

would require us to use a ne mesh (see Figh.2 for the problem shown in Fig.5.1), at
the cost of increased computational burden when comparedttoat for a problem without

ne features.

Figure 5.1: A multiscale problem.

The main advantage of this hybrid method is that it does not rquire local mesh
re nement for objects with ne features (Fig. 5.3). In fact, the region surrounding the
small/thin structure is extracted from the original domain and two di erent numerical
techniques are used for dealing with the two problems. The wpling of the object with
the remaining part of the computational domain is achievedybusing the elds radiated by
the previously extracted region. As a result, the presentedethod does not place a heavy

burden on the CPU time and memory as do the conventional appaohes when dealing
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Figure 5.2: A multiscale problem meshed for RUFD simulation.

with multiscale problems. The DM/RUFD method introduced heein can be implemented

either in an iterative or in a self-consistent manner.

The proposed method is especially useful for modeling wiratannas located in the
vicinity of inhomogeneous structures, as well as for simdiag interconnect structures in

integrated circuits, which typically have ne features.

5.2 Iterative Approach

Both the iterative and self-consistent hybrid implementabns - the latter to be described

in the following section - begin by extracting a region surtnding the small object from
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Figure 5.3: A multiscale problem meshed for hybrid RUFD simation.
the RUFD domain. A 2-D representation of the hybrid problem ishown Fig. 5.3.

Let us assume that two objects, a large PEC plate and a PEC wirgvhich is small
compared to the operating wavelength, are located in the RUFBomputational domain,
which is excited by a gap source, at 10 GHz as shown in Fi§.4. The hybrid-iteration
algorithm begins by solving the small object (dipole antermin this case), which may
be PEC, or dielectric (or a combination thereof) is treated ¥ using the DM approach

described in Chapters2 and 3, in the absence of large structure.

Next, the elds scattered by the large structure are derived yousing RUFD and a

source excitation comprising of the elds radiated by the sall object.
These scattered elds are evaluated at the boundary of the #acted region and then
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Figure 5.4. A =20 dipole antenna over a nite ground plane (not to scale).

interpolated to obtain the incident elds at the locations d each of the basis function used
to model the dipole in DM approach. Following this, the righthand side of the matrix
equation, generated using the DM approach for the dipole isadi ed, by superposing
the feed and the elds scattered by the larger structure. Nextthe matrix equation is
solved for the weight coe cients of the dipole moments, as arst step in the iteration
process. Then we again solve for the elds scattered by thadg object when illuminated
by the elds radiated by the small object, derived by using tle recently calculated weight

coe cients of the current in the small object.

The iteration process is continued, by repeating the stepsedcribed above. The
process is terminated when numerical convergence has beehieved and the di erence
between the results obtained at the k-th and (k-1)-th iteraibn steps is below a chosen

threshold say 103. Fig. 5.5 compares the amplitude of the scattered eld, calculated
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by using the RUFD iterative hybrid approach with those obtaired from a commercial

MoM solver.
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Figure 5.5: Amplitude comparison ofE, eld for the multiscale problem shown in Fig.
5.4

Fig. 5.5 shows the scattered elds calculated by using the RUFD hybridterative
method compares well with those obtained from a commercialdW code. The commercial
MoM code was able to handle this problem with ease since theda object was modeled
as a PEC sheet, however when the PEC sheet is replaced by a tREC plate, the CPU

time and the memory required by the commercial MoM increasess will be demonstrated

in the next section.
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5.3 Self-Consistent Approach

The self-consistent type of hybrid implementation also bégs by extracting from the
RUFD domain a region surrounding the small object (see Figh.3). However, this time
the entire problem is solved in a single step by directly inveng a composite matrix
equation, which is constructed as follows. First, the impethce matrix for the small
problem is set up independently of the rest, by using the DM gpoach; the right hand
side vector for source is computed and stored. Next, we computhe eld radiated
by the current distribution on the small object at the locaton of the large object and
solve for the scattered eld on its surface by imposing the limdary condition with the
elds produced by the small object as the incident eld on thelarge object. The elds
scattered by the large object are computed in the entire corafational domain by using a
RUFD simulation carried out by using a coarse mesh, and thenterpolated in the region
containing the small object to obtain a new excitation vectofor the DM system. Now
the matrix equation is solved for the weight coe cients asscated with the currents on
the small object, and the nal scattered elds are calculateas a weighted superposition

of the contributions from the small and large objects.

To illustrate the procedure, let us consider a dipole antemnof length =2 over a
nite ground plane, operating at 10 GHz as shown in Fig.5.6. Fig. 5.7 compares the
scattered eld calculated by using the self-consistent appach as described above, with
those calculated by using the iterative approach and the camercial MoM code. Table
5.1 compares the computational resources required by the setinsistent and iterative

approaches.

Fig. 5.7 shows good comparison of the scattered eld calculated bying the self
consistent approach, with those calculated by using the tative procedure and the com-

mercial MoM code, with the exception of observation pointsocated near the source
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Figure 5.6: A =2 dipole antenna over a nite ground plane (not to scale).

Table 5.1: Comparison of computational resources requirég the di erent RUFD hybrid
approaches for the multiscale problem shown in Fig6.

\ Self-Consistent Approach Iterative Approach
Peak Memory 483 MB 481 MB
Simulation Time | 172.3 s 601 s

region. Table5.1 shows that the results calculated by using the iterative appach are
more accurate, though they have a longer run time in compaas to the self consistent
approach. In order to demonstrate the key advantage of usinige hybrid RUFD, the PEC
sheet in Fig. 5.6 was replaced by a PEC plate of thickness 20. The problem was solved
by using the self-consistent approach and the variation otattered eld E, is plotted in
Fig. 5.8 Table 5.2 compares the computational resources required by the setfnsistent

approach with those needed by the commercial MoM. From Figh.8 and the Table 5.2,
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Figure 5.7: Amplitude comparison ofE, eld for the multiscale problem shown in Fig.
5.6.

we nd that the self-consistent approach outperforms the asomercial MoM code, both in
terms of memory and simulation time.

Table 5.2: Comparison of computational resources requirbg the self-consistent approach
with those required by the commercial MoM.

self-Consistent/RUFD Hy- Comm. MoM

brid
Peak Memory 248 MB 543 MB
Simulation Time | 71 s 224.75 s

For the next example we consider &= 20 diameter sphere, comprising of human
muscle (, =22 18), and located above a PEC sheet as shown in Fi§.9. The sphere
is illuminated by a plane wave at a frequncy of 10 GHz. The prodm is solved by using
the self-consistent approach described previously in thegction, with a slight modi cation

needed to handle the plane wave source being used in this exdénas opposed to a feed-
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Figure 5.8: Amplitude comparison ofE, eld for the multiscale problem with a =20
thick nite ground plane.

gap source that we had dealt with in the previous example. Fig5.10 compares the
scattered E- eld, calculated by using the RUFD hybrid approach with tho® obtained

from a commercial MoM code.

As seen from Fig.5.10 the scattered elds calculated by using the RUFD hybrid

approach compares well with those calculated by using a corarial MoM code.

For the next example, we consider a PEC loop, with a thicknesd =200 and a
diameter of =20, as shown in Fig.5.11 The loop is placed above a nite ground plane,
with a side length of , and its scattering and radiation characteristics were irestigated
at a frequency of 10 GHz. The problem was rst solved by using &dd gap source and
then with a plane wave illumination, polarized along/’and traveling along the negative-z
direction, both by using the self-consistent approach. Fig.12compares theE- eld for
the radiation problem calculated by using the self-consistt approach with those obtained
from the NEC code. Fig.5.13compares the results for the total eldE, for the scattering

problem{calculated by using the self-consistent approaghith those obtained from the
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Figure 5.9: A lossy sphere over a nite ground plane (not to ate).
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Figure 5.10: Amplitude comparison of scattered, eld for the problem shown in Fig.
5.9

109



commercial MoM.

Figure 5.11: A circular loop over a nite ground plane (not toscale).
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Figure 5.12: Amplitude comparison oE, eld for the loop shown in Fig. 5.11with a feed
gap source.
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Figure 5.13: Amplitude comparison of totaE, eld for the loop shown in Fig. 5.11with
a plane wave illumination.

From Figs. 5.12and 5.13 we see that good comparison between ttg,- eld cal-
culated by using the self-consistent approach, and thosetalmed from the commercial
MoM solver. Although the commercial solver was able to handtis problem with ease,
the e cacy of the self-consistent approach becomes evidemthen the size of the small

object is reduced further to = 200.

5.4 Vicinity of PML

The e ectiveness of the PML determines the accuracy of the RUFsimulations, and the
separation distance of the PML boundary from the objects lated inside the simulation
domain determines the computational requirements. Hencea) brder to determine the
optimum location of the PML boundary from the objects in the RIFD simulation domain,
we consider a square PEC sheet of size=800, illuminated by a plane wave, polarized

along 2'and traveling along negative-y direction at a operating frguency of 10 GHz. The
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variation of the scatteredE,- eld is compared for di erent distances, between the PML
and the PEC sheet, namely=40, =20 and 3=40. Fig. 5.15shows that the scattered
eld, calculated by using the RUFD, is relatively insensitie to the separation distance
between the PEC sheet and the PML boundary, by using a commé&tMoM solver. It

also shows that the scattered eld calculated by using the RUB compare well with those

computed by using a commercial MoM solver.

8+/100

Figure 5.14: A square PEC sheet.

5.5 Multi-Grid Approach

As pointed out in Section5.1, modeling the ne features of a multiscale problem (see Fig.
5.2) by using the RUFD is computationally very expensive. To hané this problem in a
more e cient way, a sub-gridding approach was investigatedHowever, it was found that
a stable implementation of sub-gridding could not be achied. Hence, we introduce a

multi-grid approach where the ne features in the problem a& handled separately by using
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Figure 5.15: Amplitude comparison of scattere@, eld for di erent distances between
the PML boundary and the PEC sheet shown in Fig5.14

a ne mesh for the RUFD computational gird, as shown in Fig5.16 As we can see from
this gure, the only di erence between the hybrid RUFD and muti-grid approaches is
that the extracted region in the multi-grid method is solvedby using a RUFD simulation
carried out with a ne mesh, as opposed to the DM method empleg in the context
of the hybrid RUFD approach. The key di erence between the sugridding and multi-
grid approaches is to that, the ne mesh and the coarse mesheamterfaced at every
iterative step in the sub-gridding approach, while the ne neshed computational domain
is simulated rst, and then interfaced with the coarse-meskimulation, in the multi-grid

method.

To demonstrate the above procedure, we consider a thin sqad?EC plate, as shown
in Fig. 5.17. The plate is illuminated by a plane wave at a frequency of 10Kz and we are
interested in calculating the scatteredE,- eld along the 2-direction, at observation points
ranging from 0:5 to 0:3 . If we use the conventional RUFD simulation for this problem,
we would need to mesh the entire computational domain with a@sh size of at least= 400

(using the thumb rule of using at least two cells to model thehickness of the plate) along
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Figure 5.16: A multiscale problem meshed for multi-grid RUFimulation.

the 2-direction. However, in the multi-grid method we rstde neal7=20 17=20 =20
region, which contains the plate and mesh it with a=20 =20 =200 grid, in the x-,
y- and z-directions, respectively. This ne meshed regiors irst simulated by using the
RUFD/scattered eld formulation, and then the converged elds so derived are interfaced
with the coarse-grid RUFD region, to compute the desired sdared elds. Fig. 5.18
compares the scatteredE,- eld calculated by using the multi-grid approach with those

obtained by using a commercial MoM solver.

Fig. 5.18shows a good comparison between the elds calculated by ugithe multi-
grid approach with those obtained from the commercial MoM $eer. We nd that the
multi-grid approach reduces the computational requiremés by a large factor in compar-

ison to the time and memory requirements of the convention&®UFD algorithm, without
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Figure 5.17: A square PEC plate.
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Figure 5.18: Amplitude comparison of scattere, eld for the PEC plate shown in Fig.
5.17
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compromising the accuracy.

For the next example we consider the problem of scattering kg loop placed over
a square PEC plate, at a frequency of 10 GHz, isin the side and it has a thickness of
=200, as shown in Fig5.19 In this problem we use the self-consistent hybrid approach
where the small loop is modeled by using the DM approach, whithe plate is handled via
the multi-grid approach. The converged elds from these sintations of the loop geometry
and the plate, are then used in a coarse grid RUFD simulation,hich is meshed by using
a cell size of=20. The Fig. 5.20 compares the calculated scatterelt- eld derived by
using the multi-grid approach, with those obtained from a ammercial MoM code. The

comparison is seen to be good.

Figure 5.19: A PEC loop over a nite ground plane (not to scale

Next, we consider an antenna problem, as shown in Fi¢.21, where a PEC helix

operating at 10 GHz, is placed over a nite PEC sheet whose thiness is=200. The
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Figure 5.20: Amplitude comparison of scattere&, eld for the PEC loop shown in Fig.
5.19

Helix is fed by using a voltage gap source. We use the same phwe, as described
above for the previous example to solve this problem. THe,- eld radiated by the helix

is calculated along the observation linek = 0 and y = 1:5=20. Fig. 5.22is compares
the computedE,- eld with that obtained by using a commercial MoM code, whi¢ Table
5.3 compares the simulation resources required by the multiigrapproach with that for
the commercial MoM code.Fig.5.22 shows that there are some di erences between the
two results, although they show similar trends. This di er&ce can be attributed to the
di erent source models used in these two approaches.

Table 5.3: Comparison of computational resources requirdyy the multi-grid approach
and the commercial MoM solver for the helix problem shown ini§.5.21

| Mulit-Grid Approach Comm. MoM
Peak Memory 218 MB 373 MB
Simulation Time | 118.8 s 198.4 s

From Table 5.3, we see that the multi-grid approach is computationally mag e cient

than the commercial MoM. Also, the commercial MoM was able todndle this problem

117



Figure 5.21: A PEC helix over a nite ground plane (not to scad).
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Figure 5.22: Amplitude comparison of radiated, eld for the PEC helix shown in Fig.
5.21
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with relative ease, since we used a thin-wire model for thelbeeven though we included
the nite thickness while modeling in DM approach during theRUFD hybrid simulation.

However, when we include the nite thickness in the commerdidMoM code, as we do in
the RUFD in a routine manner, the performance of the commerdidoM becomes poor,

as can be seen from the next example.

For the last example, let us consider a dipole antenna of lethg =2 operating at
10 GHz, placed over a nite ground plane of length of 1320 and thickness =200, as
shown in Fig. 5.23 Fig. 5.24 compares the radiated eldE, is calculated along thez®
direction by using the multi-grid approach and is compared ith those generated by using
the commercial MoM. The dipole was modeled in the commerci&loM in two di erent
ways, namely: (i) as a thin wire; and (ii) cylinder with a nite radius of =400. Table
5.4 compares the the computational resources required by the thtgrid approach, the
commercial MoM/wire model and the commercial MoM/cylindermodel. We nd, once
again that the multi-grid approach is computationally moree cient than the commercial

code; however, its accuracy is comparable to that of the MoMbde.

Figure 5.23: A PEC dipole placed over a nite ground plane (rido scale).
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Figure 5.24: Amplitude comparison of radiatedE, eld for the PEC dipole shown in Fig.
5.23

Table 5.4: Comparison of computational resources requirdyy the multi-grid approach
and the commercial MoM solver for the dipole problem shown iRig.5.23

Multi-Grid Approach  Comm.  MoM/Wire  Comm.

Model MoM/Cylinder Model
Peak Memory 345 MB 459.2 MB 387 MB
Simulation Time | 115.6 s 187.4 s 1943 s

5.6 Handling Inhomogeneous Objects with Fine Fea-

tures
The complexity of the multiscale problem increases when aibject has either a lossless

or lossy dielectric coating. The e cacy of the hybrid RUFD in handling such multiscale

problems will be demonstrated in this section with illustréve examples.
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5.6.1 Large Objects with Coating

Whenever a large object has a thin dielectric coating, we use multi-grid approach,
described in the previous section, to model this type of mudicale problems. Let us
consider the dipole antenna problem, which is shown in Fi¢.25 and which operates at
10 GHz. The PEC plate is coated with , = 6 and the coating is =200 thick. We use a
multi-grid approach to model the plate; DM approach to modethe dipole antenna; and,
a coarse grid RUFD to calculate the interaction between themFig. 5.26 compares the
radiated E- elds calculated by using the hybrid RUFD approach with thog generated
by using the commercial MoM code. Tablé.5 compares the computational resources

required by the hybrid RUFD approach with that needed by the canmercial MoM.

Figure 5.25: A PEC dipole placed over a coated nite ground phe (not to scale).

From Fig. 5.26and Table 5.5we nd that the hybrid RUFD outperforms the com-
mercial MoM code. It is important to recognize the fact that v can directly incorporate

lossy coating in the proposed hybrid approach, while in the 8 or FEM based solvers,
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Figure 5.26: Amplitude comparison of radiatedE, eld for the PEC dipole shown in Fig.
5.25

Table 5.5: Comparison of computational resources requirdyy the multi-grid approach
and the commercial MoM solver for the dipole problem shown iRig.5.25

\ Multi-Grid Approach Commercial MoM
Peak Memory 270.8 MB 646.2 MB
Simulation Time | 97.4 s 276.2 s

special treatments are required to incorporate losses, amtbing so also increases the

computational cost.

5.6.2 Coated Small Objects

For multiscale problems involving coated small objects, wese the DM approach to model
them, in a manner described in Sectio2.5.1 As an example, let us consider a dipole
antenna operating at 10 GHz, which is coated with= 100 thick dielectric layer with , = 6,
as shown in Fig.5.27. The dipole antenna is modeled by using the DM approach, and i

is found that the e ective thickness of the coated wire is:8=200. Fig. 5.28 compares
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the radiated E- eld calculated by using the hybrid RUFD approach, with that obtained

from the commercial MoM, and Table5.6 compares the required computational resources.

Figure 5.27: A coated PEC dipole placed over a nite ground phe (not to scale).
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Figure 5.28: Amplitude comparison of radiatedE, eld for the PEC dipole shown in Fig.
5.27.
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Table 5.6: Comparison of computational resources requirdyy the multi-grid approach
and the commercial MoM solver for the coated dipole problenhewn in Fig.5.27.

\ Multi-Grid Approach Commercial MoM
Peak Memory 201.1 MB 1219.7 MB
Simulation Time | 106.6 s 1028.9 s

We should point out that the di erence in the eld behaviors rear the feed gap,
as seen from Fig.5.27, is attributable to di erent source models used in these tw@p-
proaches. Table5.6 shows that the hybrid RUFD is computationally e cient, by a large

factor, when compared to the commercial MoM code.

5.7 Observations and Conclusions

In this chapter, a novel approach for handling multiscale mblems, which combines the
DM method with the newly developed recursive technique in thfrequency domain, was
introduced. It was shown that this hybrid scheme preserves¢ salutary features of the
FDTD algorithm, including convenient mesh generation and grallelization on multiple

processors; and yet, it is convenient for handling dispevsi and high-Q structures.

We have shown how the DM approach and the RUFD algorithm may beombined
to solve multiscale problems accurately and e ciently, andhe performance of the result-
ing hybrid scheme has been found to be superior to those of somell known and widely
used CEM codes, both in terms of accuracy and computationakceency. We have also
introduced a multi-grid approach, which takes advantage dhe fact that the PML bound-
ary can be brought closer to an object than in conventional Bemes. In this approach a
part of the computational domain is meshed with a ne grid, wile the rest of the domain

employs the conventional= 20 discretization. The use of such a hybrid scheme enables us
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to model objects with ne features in a computationally e cient manner. We have shown,
by using a number of illustrative examples, how to hybridizeboth the DM approach and

the multi-grid approach with the RUFD algorithm, in order to solve multiscale problems

numerically e ciently.
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6. New Finite Di erence Time

Domain ( FDTD) Algorithm

6.1 Introduction

The conventional time domain technique FDTD demands exteiv@ computational re-

sources when solving low frequency problems, or when degliwith dispersive media.
To tackle some of these challenges, the conventional teaiumés are often modied in a
manner that is tailored to solve a particular problem of inteest. However, more often
than not, these tailored methods turn out to be computationdy expensive, and they
often lead to instabilities. Hence, it is useful to develop thniques that can overcome the
above limitations, while preserving the advantages of thexisting methods. The FDTD

(New FDTD) technique, which is described in this chapter, is aew general-purpose eld
solver, which is designed to tackle the above issues usingnsonovel approaches, that
deviate signi cantly from the legacy methods that only relyon minor modi cations of the

FDTD update algorithm.
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6.2 FDTD Solver

The FDTD solver is a hybridized version of conformal FDTD (CFDTD [24], and a
novel frequency domain technique called the Dipole Moment ppoach (DM Approach)
described in Chapter2. This blend of time domain and frequency domain techniques

empowers the solver with potential to solve problems that cpiire:

Calculating low frequency response accurately and numaally e ciently

Handling non-Cartesian geometries such as curved surfacesg Fig.6.1) accurately

without staircasing
Handling thin structures, with or without nite losses (see Hg. 6.2)

Dealing with multi-scale geometries (see Fig5.3)

Figure 6.1: An elliptical geometry.

Advantages Some of the notable features of FDTD are:

Unlike the conventional FDTD, the mesh-size utilized by the FDTD is not dictated

by the nest feature of the geometry, and this size is usuallynaintained at the
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Figure 6.2: A very thin sheet.

Figure 6.3: PEC loop over a nite ground plane.

conventional = 20 level. This helps to reduce the computational burden by aige

factor.

The FDTD algorithm incorporates a novel post-processing tecloue which re-
quires relatively few time steps, in comparison to the numbef steps required by

the conventional FDTD.

6.3 Low Frequency Response

Despite many advances in Finite methods, such as the FEM antdd FDTD, as well as

in integral-equation-based techniques such as the MoM, itilsremains a challenge to ac-
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curately calculate the low frequency response for radiaticand scattering problems. The
frequency domain techniques, such as the FEM and MoM, both garience di culties at
low frequencies, because they have to deal with ill-condihed matrices at these frequen-
cies. On the other hand, while the time-domain-based techpies, such as the FDTD, can
accurately generate results at high frequencies, usuallpa@ae 1 GHz, the same cannot
be said about their performance at low frequencies. This i®honly because the FDTD
results are often corrupted by the presence of non-physicattifacts at low frequencies,
but also because the FDTD requires exorbitantly large numbef time steps for accurate
calculation of the response. The required number of time §t® can exceed a few million

in some cases before convergence is achieved.

As an example, let us consider a 32 port connector circuit exghe shown in Fig6.4.
This connector geometry has been analyzed by using a comni@r&DTD solver and the
variation of the transmission co-e cient S,; is plotted in Fig.6.5 as a function of the fre-
guency, and we observe that the results shows ripples thateanumerical artifacts. Table
6.1 compares the number of time steps required for the solutio tconverge at di erent
frequencies for the connector geometry. It can be inferretbin this Table that the num-
ber of time steps required for the convergence increases &ge down in frequency, and
eventually it becomes totally impractical to solve the prolem at very low frequencies.
Accurate calculation of the low frequency response becomapecially critical in the area
of RF and digital circuits, since inaccurate results can a& the causality behavior of
the overall system. The FDTD utilizes a new technique, which is based on analytic
continuation of the results derived at higher frequenciegnd which is implemented by
using the DM Approach and related techniques. This new techmue is universal in na-
ture, and it covers the entire range of frequencies, includj the limiting case off ! 0.
Also, the FDTD can handle both the RF/Digital circuit problems as well as the radi-

ation/scattering problems with same ease, by employing wpie methodologies tailored
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for each of these categories. We present these methodolsgnedetail in the sections that

follow.

Figure 6.4: A 32 port connector with a overall dimension of 6.x 11.88 x 27.35 mm
(Housing not shown here).
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Figure 6.5: Variation of the transmission co-e cientS,; for the 32 port connector shown
in Fig.6.4.

Table 6.1: Comparison of time steps required for convergenfor the circuit shown in
Fig.6.4.

Frequency 10 MHz 1 MHz 1Hz
Time Steps in Millions | 0.7 7 70
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6.3.1 RF and Digital Circuits

Consider the variation of the isolation co-e cient S3; shown in Fig6.6 for the connector

geometry(Fig6.4). This plot is divided into three regions, namely:

Region-1: Low-frequency regime
Region-2: Validation region

Region-3: High-frequency regime
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Figure 6.6: Variation of the isolation co-e cient S3; for the 32 port connector shown in
Fig.6.4.

There are four frequency values which delimit the above theeegions. The frequency
f. describes the lowest frequency of interest de ned by the usél'he frequencyf ;, which
divides the regions 1 and 2, is typically chosen to be betwed80 MHz to 1000 MHz, while

the frequencyf, dividing the regions 2 and 3 is chosen to be on the order df,2or 3f ;.
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The frequencyfy is the user input indicating the highest frequency of inteist. In each
of these three regions the results are calculated by using eedent method. The results
in the high frequency regime are generated by using the contienal FDTD, using a DC
Gaussian pulse as the excitation source, whose 3dB cut-oeffuency is set to bd . In
the low frequency regime, the results are generated by usitige proposed new technique,

which involves the following steps:

1. Smooth the \DC Gaussian" Results.

2. Fit the curve fromf_ to f, with the DC values, using a quadratic, for instance. The

choice off ; can be ne-tuned based on the quality of the resulting t.

3. Validate the smoothed \DC Gaussian" results in region-2ypcomparing them with

those generated by \single frequency" simulations at a fewomts (typically 2 or 3).

We have recalculated the results for the 32-port connectoregmetry, shown in
Fig.6.4, by using the above method. The new results for the variatioof the trans-
mission co-e cient Sy; and the isolation co-e cient Sz; are shown in Figs.6.7 and 6.8.
From these gures we can clearly see that the conventional AID simulation utilizing
the DC Gaussian pulse does not generate an accurate low freqay response and has

numerical artifacts, while the FDTD does not su er from the same.

For the next example, we consider an 8-port connector as showm Fig. 6.9, which
operates in the frequency range 50-800 MHz. Figs.10 compares the variation ofSz;
calculated by using the FDTD with those obtained by using the DC Gaussian in the
conventional FDTD algorithm. Again we nd that the DC Gaussian results show spurious

spikes, while the FDTD was able to calculate it accurately.
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Figure 6.7: Variation of the transmission co-e cientS,; for the 32 port connector shown
in Fig.6.4 calculated using FDTD.
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Figure 6.8: Variation of the isolation co-e cient Ss; for the 32 port connector shown in
Fig.6.4 calculated using FDTD.

6.3.2 Scattering Problems

In this section we turn to the solution of scattering problera by using the FDTD. The

methodology for handling the radiation and scattering prolems are di erent from those
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Figure 6.9: A 8 port connector (Housing not shown here).
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Figure 6.10: Variation of theSg; for the 8 port connector shown in Fig5.9.

used for the RF/Digital circuits, as we will explain below. Br the high frequency regime,
we use the conventional FDTD, and use a Gaussian excitatiomwgce to generate the
results. However, we employ a di erent procedure, as outlidébelow, in the low frequency

regime:

1. Run a\Single Frequency" simulation at a frequency,, where the largest dimension
of the geometry is =100, to calculate the elds at a point located =20 from the

surface of the object.
2. Extract the dipole moment by using the analytical expressns for the eld radiated
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by an in nitesimal dipole [8] from the eld values calculated above.

3. Use the extracted dipole moment to calculate the resultsdm f to f,, wheref is
the lowest frequency of interest, and, is typically chosen to be 2, or 3f;. It has
been found that the results generated by using this dipole m@nt is not only valid
for frequencies as low as 0, but also up to frequencies whehe targest dimension
of the geometry becomes= 10; hence it enables us to dovetail the low frequency

results, seamlessly, with the lower end of the high frequgncesponse.

4. Validate the \DC Gaussian" results in the range betweeri; and f, by compar-

ing them with those calculated by using the analytical expision at a few points

(typically 2 or 3).

In order to extract the dipole moment from the single frequesy simulation, one
can either use the method proposed by Furséf], or use the DFT to process the time
signature. In the Furse method, we choose two samples of thmé signature and we t the
time signature to a sinusoidal curve using those two sampleBven though this method
looks computationally inexpensive when compared to the DF&pproach, the choice of
the two samples determines the accuracy of the method, andetbe samples should not lie
within the transient region; hence we always use the DFT to évact the DM because of

its robustness.

As an example application of the procedure just outlined, weoosider a sphere with
a diameter of =20, with de ned at 10 GHz. The sphere is illuminated by a plane
wave traveling in the negative-z direction, with its E- eld polarized along y. Fig6.12
compares the elds calculated by the proposed technique, the frequency range of 1
Hz to 30 GHz, with those derived analytically. We nd that the elds calculated by
using the proposed technique based on DM extraction exhibitgood agreement with

those calculated by using the analytical expression. The sithdeviation between the two
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curves is attributable to the staircase modeling of the sphe in the conventional FDTD,
and it can be corrected by using an e ective radius in the angtiical expression. It is
important to recognize the fact that we have used the same tatique to calculate the
response over the entire frequency range, including freaqueges as low as 1 Hz, without
using either the quasi-static approximation or other speal treatments that are employed
in the conventional computational electromagnetic (CEM) échniques. Even after the use
of special treatments in the existing techniques, such asdiFEM and MoM, the accuracy
of the low-frequency solution is often questionable becausf the large condition numbers
of the associated matrix. Thus, despite all the special tréaents implemented in these
methods to address the low frequency breakdown problem, & fotally impractical to go

down to frequencies on the order of 1 Hz in the existing technigs.

The amplitude variation of the scattered eld with the distance along z, calcu-
lated by using the proposed technique, is shown in Figy13for a frequency of 1.8 GHz.
This plot also compares the results with those calculated hysing analytical expressions.
Again we nd good agreement between the FDTD results and those generated from
the analytical expression for a= 67 sphere, for the chosen frequency of 1.8 GHz. The
eld variation derived by using the FDTD matches well with that generated from the

analytical expression, both in the near and far eld regions

For the next example we consider a PEC cube of side length 20, as shown in
Fig. 6.14at a frequency of 10 GHz. Fig.6.15 plots the scatteredE,- eld as a function
of frequency, calculated atz = 2:5mm (=12 at 10 GHz), by using the FDTD, and
compares them with those obtained by using the DM approach. hE comparison is seen

to be good even at a frequency of 1 Hz.

Based on the illustrative examples presented above, we liselow some of the ad-

vantages of the proposed method:
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Figure 6.11: A PEC sphere of diametes; at 10 GHz.
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Figure 6.12: Amplitude variation of the scatterecg, at a point z = 0:25cm with frequen-
cies from 1Hz to 30 GHz.

RF and Digital Circuit Problems:

E cient for constructing low frequency solution, comparedto the long runs in

FDTD.

Scattering Problems:

(a) Can be used foran arbitrary geometry

137



nFDTD

0.025
= © = Analytical Expression

0.02

0.015+

Amplitude in V/m

0.01r

0.005

1 1 1 1
-S-
0.02 003 0.04 005 0.06 0.07 0.08 0.09 0.1
Distance Along Z in |

Figure 6.13: Amplitude variation of the scatteredE, with distance along z from to 4,
at 1.8 GHz.

Figure 6.14: A PEC cube of side length; at 10 GHz.

(b) Can be used to e ciently calculate not only the frequencyresponse, but the

near and far elds as well.

6.4 Non-Cartesian Geometries

The conventional FDTD uses a staircase-approximation to na@l non-Cartesian geome-
tries, as shown in Fig6.16 and requires the use of a very ne mesh to mitigate the e ects

of this staircase approximation when dealing with curved gects. This, in turn, makes
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Figure 6.15: Amplitude variation of the scatteredE, at a point with frequencies from
1Hz to 30 GHz.

the simulation computationally expensive, both in terms omemory and CPU time. Even
though methods such as FEM and MoM can handle curved geomesiwith much ease
because they do not restrict themselves to a Cartesian typémeshing, often they are not
necessarily the most computationally e cient when dealingvith inhomogeneous media.
Hence, it would be advantageous to modify the existing FDTD gbrithm so that it can
handle curved geometries, enabling us to conveniently madebitrary objects, regardless
of their material parameters. In the past, a generalizatiof the conventional FDTD,
namely the CFDTD algorithm [24], has been developed for this purpose. In CFDTD,
the magnetic eld update equations are modi ed by using the r@as of the partially- lled

cells, as opposed to those of the entire cells.

To explain the concept, we consider a partially lled cell, lsown in Fig. 6.17. The

equation for this partially- lled cell is derived by using Farady's law, to get:

Ed= —~ H d (6.1)
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(b) A PEC wedge with staircase ap-
(a) A PEC wedge geometry proximation

Figure 6.16: Meshing of a non-Cartesian geometry by the cantional FDTD

Figure 6.17: A patrtially- lled cell.

where C; is the loop ABCDA and S; is the area enclosed by loog;. Upon discretizing

this equation, we obtain:

1
2

HE Ak = HE TGO 5l EJGEK) e + EXGEK) dhs EJG+LiEK) leo)

(6.2)

The update magnetic equation for the partially- lled cell 8 shown above in §.2).

But, as S; ! 0, this modi ed update equation becomes unstable since, ag wee from
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(6.2), the expression for the updatedH contains S; in the denominator. The update
equation can be modied to circumvent this instability prodem that arises when the
partial area is small, albeit at the cost of compromising theccuracy. Hence, in order
to improve the accuracy, we propose two new approaches to léing the non-Cartesian

geometries.

6.4.1 Asymptotic Method

In this asymptotic type of implementation, the eld values @& opposed to the update
equations, are modi ed by using the local eld solution. Theproposed new technique is

described below:

For the partially lled cells with a Il factor 50%, the E- elds are updated by

using theH - elds calculated by using the modi ed CFDTD equation givenin (6.2).

For the partially lled cells with a Il factor > 50%, the E elds are updated by
using local solutions generated based on the concepts ofeetion or diraction,

rather than by using the H- elds employed in the CFDTD approadb.

Because we use the asymptotic method to compute the re ectioor diraction
coe cients, the proposed technique requires a \single fregncy" simulation. However,
this technique can be extended to \DC Gaussian" simulationwith a slight modi cation
as described in the next Sectiol.4.2 Also, the proposed technique can be extended to
dielectrics and inhomogeneous geometries without any maudition, while the CFDTD

cannot handle either of them without compromising the accacy.

Let us consider the case of a square PEC sheet whose sides ppeaximately 4 (

referenced at 10 GHz), and are inclined at an angle of7/@ with respect to the x-axis,
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as shown in Fig6.18 The tilt angle has been chosen to be:T° so that the edges of the
sheet are o set only by =40 above or below the x-axis, i.e., half the FDTD cell size of
=20. We calculate the amplitude variation of the scattered, eld at a frequency of 10
GHz, when the plate is illuminated by a plane wave, which trave along the negative-y
direction and is polarized along x. Figh.19 compares the results obtained by using the
proposed technique, with those returned by the CFDTD, and bg commercial MoM code,
for the same problem. The results generated by using the praged technique show good
agreement with the results from the commercial MoM, while th CFDTD results exhibits
spurious ripples in the lit region because of the instabiiit problem encountered in the
CFDTD algorithm when the areaS; ! 0. What is more, this is even true when a ne
mesh size ofy; is used in the CFDTD, in contrast to the ;; mesh size used inFDTD.
Table 6.2, presents a comparison of the mesh size and the memory regments, and

shows that the proposed technique easily out-performs theFOTD, which still su ers

from inaccuracies, even when a very ne mesh is used.

Figure 6.18: A inclined PEC sheet(not to scale).

For the next example, let us change the inclination of the PE@late in the previous
problem from Q72° to 1:43°. Fig. 6.20compares the scattered,- eld calculated by using
the FDTD/Asymptotic method, with those obtained by using the CFDTD algorithm

with a mesh size of=160, and with the commercial MoM code results. We again nd
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Figure 6.19: Amplitude variation of the scatteredE, with distance along y at 10 GHz.

Table 6.2: Comparison of mesh size and memory required foneergence for PEC geom-
etry shown in Fig6.18

Parameter \ FDTD CFDTD @

Mesh Size Used 55 166
Memory Required 413 MB 31 GB

a8 Results still have numerical artifacts

that the results from the FDTD match well with those obtained by using the commercial
MoM, while the results from the CFDTD show spurious ripples de to the instability

problem alluded to above.

For the next example, we consider a faceted PEC surface (sag.F5.21) projected
length is at a frequency of 10 GHz. Fig. 6.22 compares the backscatteredE,- eld
calculated by using the FDTD is compared with those obtained from: (i) the CFDTD
with a mesh size of=20; (ii) a commercial MoM code; and (iii) a commercial FEM.

Again we nd that the results calculated by using the FDTD compares well with those
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Figure 6.20: Amplitude variation of the scatteredE, with distance along y at 10 GHz.

obtained from the commercial MoM code, while the results fnre the commercial FEM

code shows numerical artifacts.

Figure 6.21: A faceted PEC surface (not to scale).
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Figure 6.22: Amplitude variation of the backscatterede, with distance along y at 10
GHz.

For the next example, let us consider a PEC wedge of side lehgt , as shown in
Fig. 6.23 Fig. 6.24plots the scattered eld at a frequency of 10 GHz along the spalar
direction, obtained by using FDTD, and compares them with those obtained by using the
CFDTD with a mesh size of = 50; with a commercial MoM code; and, with a commercial
FEM code. We nd a good comparison between the scattered eddcalculated by using
the FDTD with those obtained from the commercial MoM code, whilehe results from

the CFDTD and the commercial FEM codes show spurious ripples

For our next example, we consider a nite PEC cylinder, as sk in the Fig.
6.25 with a height of 21=20 at a frequency of 10 GHz, for the next example. In order
to calculate the eld in the asymptotic limit in the FDTD method, we use the elds

scattered by an in nite PEC sheet multiplied by the factorf , de ned in (6.3)
" 5
f = % (6.3)
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Figure 6.23: A PEC wedge.

121
= = =nFDTD

¢ Comm. MoM
Comm. FEM
—0— CFDTD | /50

115

Amplitude in V/m

0.5 1 15 2 25
Distance Along X in |

Figure 6.24: Amplitude variation of the scatterede, with distance along x at 10 GHz.

wherea’is the e ective phase center and is the distance of the observation point from
the e ective phase center. Wide range of numerical experimis have shown that this

e ective phase center for a PEC cylinder is always:Ba, where a is the radius of the

cylinder.
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Figure 6.25: A PEC cylinder.
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Figure 6.26: Amplitude variation of the backscatterede, with distance along x at 10
GHz.

Fig. 6.26compares the backscattere#t,- elds calculated by using the FDTD with
those obtained from the CFDTD with a mesh size of 20; with a commercial MoM code;

and, with a commercial FEM code. We nd that the elds calculdaed by using the FDTD
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shows good comparison with those obtained by using the comeial MoM solver. The
results calculated using the commercial FEM shows numerlcatifacts and the CFDTD
does not generate the correct scattered eld on the surfacé the cylinder; however the

FDTD is able to solve this problem with good accuracy.

While modeling dielectric objects using the CFDTD approachthe partially- lled
cells are smeared an average dielectric constant over theienvolume of the cell. The
asymptotic method proposed here can be used as an alternatito model dielectric objects
without any modi cations, and with better accuracy than that of the CFDTD method.
As an example, let us consider the dielectric slab of thickrees= 8 at a frequency of 10
GHz, with , =4:2 as shown in Fig.6.27. Fig. 6.28compares the backscattereé&,- eld
calculated by using the FDTD with those generated by using the CFDTD, and with
the commercial FEM code. We nd that the results generated bysing the commercial
FEM and CFDTD codes show spurious ripples, while the thosedim the FDTD have a

smooth behavior, which is realistic.

Figure 6.27: A dielectric slab (not to scale).
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Figure 6.28: Amplitude variation of the backscatterede, with distance along y at 10
GHz.

In order to demonstrate the e cacy of the FDTD method, we vary the thickness
of the slab, and choose it to be € 80, 10=80 and 11=80 at a frequency of 10 GHz.
We calculate the phase variation aty = =40 and plot it in Fig. 6.29 which shows the
comparison of the phase variation against the thickness, riggrated by using the in nite
slab analytical expression; the CFDTD; and a commercial FEMode. We nd that
the results calculated by using the FDTD compares well with those obtained from the
analytical expressions for the in nite slab, while the redts generated by using the other

methods deviate from the analytical results.

6.4.2 Averaging Technique

As mentioned earlier in Sectior6.4.], the proposed FDTD technique requires a \single
frequency" simulation because we use the asymptotic limibtcompute the re ection or
di raction coe cients. In this section we describe a modi ed approach in which we use

the \DC Gaussian" simulation that enables us to generate re#is for a wide range of
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Figure 6.29: Phase variation of the backscatterefl, aty = =40.

frequencies. In order to demonstrate the usefulness of thapproach, we consider the
example of a rectangular cylinder of height 4 at a frequency of 10 GHz, which has
mitered corners as shown in Fig6.3Q The problem is handled in three steps as shown in
Fig. 6.31and we use scattered eld type of formulation in all of thesetagps. Even though
it shows three steps, it is important to note the fact that we eed only two simulations as
the calculation of the scattered eld in step 2, is trivial ugnhg the boundary condition. The
simulation for the rst step does not call for any modi cations to the FDTD algorithm.
However, for the third step we need to modify the eld value atlie nodes of the partially
lled cells by using the weighted average of the elds at thesnodes, obtained from steps

1 and 2, based on the partially lled space in the actual geortrg.

Fig. 6.32compares the backscattere#t,- elds calculated by using the FDTD, and
with those generated by using the commercial MoM code and tlo®emparison is seen to
be good. For the next example, we consider the faceted PEC gesiry shown in Fig.
6.33 whose projected footprint is 4 at a frequency of 10 GHz. Fig.6.34 compares the

backscatteredE,- eld, calculated by using the FDTD/Averaging technique, and with
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Figure 6.30: A PEC rectangular cylinder with mitered corner

Figure 6.31: Principle behind the averaging technique.

those obtained from a commercial MoM solver. From Fig6.34 we nd that the solution

generated by using the commercial MoM code shows a spuriopgke near the surface of
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Figure 6.32: Amplitude variation of the backscatteredE, with distance along x at 10
GHz.

the geometry, while the FDTD results are smooth.

Figure 6.33: A faceted PEC geometry (not to scale).

For the last example, we consider a curved PEC surface of hetig at a frequency

of 10 GHz, as shown in Fig.6.35 Fig. 6.36 compares the scattered,- elds calculated
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Figure 6.34: Amplitude variation of the backscatteredE, with distance along x at 10
GHz.

by using the FDTD method, and with those from a commercial MoM code, and @e

again we nd that the comparison is good.

Figure 6.35: A curved PEC surface (with a height of 4).
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6.4.3 Advantages

Below, we summarize some of the advantages of the proposedhuod. They are:

(a) Usable forarbitrary geometries even if the surfaces do not coincide with the Cartesian

mesh, e.g., thin sheets, with or without a slant.

(b) More accurate than the conventional Conformal FDTD.

(c) Retains /20 cell size even for thin, slanted and curved bodies, o erg memory

advantage and computational e ciency over conventional aoformal FDTD.

(d) Free of instability problems even when the fractional aa of the partially lled cell is

very small, even when it tends to zero.

(e) Can be extended to dielectric objects, with just a few madations.



6.5 Multiscale Problems

In order to handle multiscale problems, we appeal to the ideaof the hybrid RUFD ap-
proach described in the Chapteb. Since the FDTD method is a time domain technique,
it has the possibility to generate results over a wide band éfequencies from a single sim-
ulation run, which is not the case with the RUFD approach. In FDTD we can handle
multiscale problems in three di erent ways, based of the diension and the complexity of
the small objects involved in the problem. All the three appraches begin by identifying
a smaller region around the small object, as shown in Fig.38 for the test problem in
Fig. 6.37 The test problem consist of a small dipole of length= 100 polarized along
the R direction, and operating at 10 GHz. In order to model this prolem by using the
conventional FDTD, we need a cell size of at least 200 and it becomes computationally
expensive when we choose such a small cell size. Here we pepgbrid techniques to

alleviate this problem.

Figure 6.37: A computational domain with small dipole.

Since in this test case the dipole is very small compared todloperating wavelength,
we can use the quasi-static dipole moment approach descdbie Section2.6. The elds

generated by the quasi-static formulation is always real @can be directly interfaced with
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Figure 6.38: Approach handling for multiscale problems in FLD.

the coarse-grid FDTD algorithm. When the size of the objectdcomes electrically large,
the elds generated by the dipole moment approach will no layer be real. Hence for this

case, we can turn to the \single frequency" version of the cse-grid FDTD simulation.

Another alternate approach to handling this situation is to aapt the RUFD/multi-
grid approach, described in earlier Sectigh.5. The main advantage of using the multi-grid
approach with the FDTD algorithm is that we can generate redts for a wide range of
frequencies from a single simulation run, even when modgjielectrically large objects.
The cell size for the embedded ne-mesh domain is chosen subht it is a fraction of
the cell size used in the coarse-grid simulation, to ensuresmooth interface between the
simulations by making the time step used in these simulatieras an multiple of each other.
The test problem was solved by using the three di erent appiaxhes described above and
the calculated radiatedE- eld is compared in Fig. 6.39 with those obtained from the
analytical expression. We used a cell size &f 20 for coarse grid simulations in all the
three hybrid approaches, and all the three approaches wemihd to be unconditionally
stable. The embedded ne-mesh domain was modeled by usingad size of =400 in the

multi-grid approach. Fig. 6.39 shows that the results calculated by using the di erent
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hybrid approaches match well with each other, and with thosebtained from the analytical

expression.
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Figure 6.39: Amplitude variation of the radiatedE, at 10 GHz.

6.6 Performance Enhancement

In this section we introduce ways to further enhance the compational e ciency of the

FDTD algorithm without compromising its accuracy.

6.6.1 Signal Processing Techniques

In this section we show how time advantage can be gained by ngisignal processing to
determine where to terminate the FDTD simulations by checkig its convergence in the
frequency domain instead of in the time domain. Consider a riidlayer problem shown in

Fig. 6.40 which is in nite extent along the § and 2 direction. It consists of a foam layer,

with , =1:08, loss tangent = 0.007, and a thickness of 50 at a frequency of 400 MHz,
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sandwiched between the E-Glass layers (= 3:95, loss tangent = 0.012 and a thickness of
= 1250 at a frequency of 400 MHz). The problem was modeled by wugiime conventional
FDTD with periodic boundary conditions to render it nite. Fig. 6.41shows the time
signature at the origin generated by using the convention&DTD and shows that the
signature is ringing even after 200,000 time steps. Fid.42 shows the variation of the
transmitted E,- elds at the origin in the frequency range of 3 to 450 MHz, caldated by
using the conventional FDTD and compared with those obtairtefrom the FDTD. Table

6.3 compares the number of time steps required in these two appahes.

Figure 6.40: A multilayer problem (not to scale).

Table 6.3: Comparison of time steps required by conventioneDTD and FDTD for the
multilayer problem shown in Fig6.4Q

Frequency Conventional FDTD
FDTD
3 MHz | 200000 steps | 4000 steps

2 Time signature yet to converge

We nd, from Fig. 6.42and Table 6.3, that the FDTD is more accurate, especially
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Figure 6.41: Time signature at the origin from the conventioal FDTD for the multilayer
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Figure 6.42: Frequency variation of the transmitted eldE, amplitude at the origin for
the multilayer problem shown in Fig. 6.40Q

at the lower end of the frequency range and is also computatialy more e cient when
compared to the conventional FDTD. It is important to note the fact we are able to
generate the solution for the entire frequency range of intest using the FDTD, with a

single simulation run of 4000 time steps.
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6.6.2 Absorbing Boundary Condition

Another important factor that a ects the accuracy and e cien cy of the FDTD simulations
is the boundary conditions used to truncate the computaticsd domain. Even though there
are many boundary conditions that can be used, for mesh truation, the most widely used
and e ective one is the Convoluted Perfectly Matched Layerpr more commonly known
as CPML [19. Even though the CPML is e ective, it is computationally expensive. It is
possible to reduce the computational expense, with littleos of accuracy, by using a new
algorithm, which is based on the impedance boundary conditi(IBC). Here the tangential
E-Fields at the end of the computational domain are calculatl from the H- elds based

on the impedance relationship:

Ewn = cos A H (6.4)

where is the intrinsic impedance of the medium and is the incident angle. However,
from many experiments we have found that the use of eitheror cos has little e ect on
the accuracy of the simulation. In the proposed approach, ¢hH- elds at the boundaries
of the computational domain are still updated by using the aoventional FDTD update
equations, while the E- elds are derived by using the IBC. Irorder to ensure that the
algorithm is unconditionally stable we use 90% of the Couraoondition to determine the

time step.

To study the frequency characteristics of the IBC, we conséd a 2D computational
domain, as shown in Fig.6.43 We use a point source for excitation, with a frequency of
1 GHz, and locate it at the center of the domain. Fig6.44shows the variation of eld at
the observation pointA in the frequency range of 300 MHz to 1 GHz, calculated by using
the FDTD/IBC, and compares it with those obtained by using the FDTD/CPML,

and the comparison is seen to be good. However, the IBC appribas computationally
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inexpensive, when compared to the CPML, and the time advanga of the FDTD/IBC
over the CPML is a a factor of2 for this example. We should mention that this advantage

would be considerably higher for 3D problems.

Figure 6.43: A 2D computational domain.
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Figure 6.44: Frequency variation of theée- eld amplitude at point A shown in Fig. 6.43
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Next we study the e ect of the proximity of the ABC for a 2D computational domain,
shown in Fig. 6.45 at a frequency of 1 GHz. Fig.6.46 compares theE- eld at point A
for di erent dimensions of the computational domain, calclated by using: (i) the FDTD
with IBC with angle dependence as inq.4); (ii) without angle dependence, assuming the
incidence to be normal at all points on the boundary; and, {) using FDTD/CPML
with 8 layers. Fig. 6.46shows good comparison between the results calculated fronese
three approaches and we also nd that ignoring the angle depdence has little e ect on

the accuracy much.

Figure 6.45: A 2D computational domain.

The results presented in Figs6.48and 6.49for the dipole geometry (see Fig6.47)
illustrate the accuracy of the proposed algorithm, which ires much less CPU time and
memory than those required by the CPML. However, work is stilin progress to further
improve the accuracy of the proposed boundary condition artd test its applicability to

a wider class of problems.
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domain sizes for the problem shown in Fig6.45

Figure 6.47: Geometry of a PEC dipole (not to scale).

6.6.3 Well-Logging Applications

Another area of interest in which FDTD is found to outperform the conventional CEM
algorithms is well-logging application. Consider the sttaed medium, shown in Fig. 6.50
whose geometry is typical for the case of well logging probis. The frequency range of
interest is typically 1 KHz to 1 MHz. Fig. 6.51shows the incident pulse received at the

observation point, while Fig. 6.52shows the re ected pulse from the interface received at
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Figure 6.48: Variation of input resistance with frequencyadr the PEC dipole.
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Figure 6.49: Variation of input reactance with frequency fothe PEC dipole.

the observation point calculated by using the FDTD. At the low frequencies of interest
in this problem, commercial solvers are typically unable thandle the problem, while the

FDTD is able to analyze it with ease without requiring any modcations.
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Figure 6.50: Geometry of a strati ed medium with oil (not to sale).
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Figure 6.51: Variation ofEx component of the incident pulse.

6.7 Observations and Conclusions

In this chapter, we have introduced the FDTD solver, which is a blend of time and
frequency domain techniques that can generate accurateatemagnetic responses at low
frequencies; handle non-Cartesian geometries accuratelthout any instability issues

that are often encountered in the conventional CFDTD; modemulti-scale geometries
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Figure 6.52: Variation ofE, component of the re ected pulse.

accurately; and, handle lossy/lossless thin structures thiease. In all the cases for which
we have carried out comparison studies with the existing algthms and commercial
codes, the FDTD was not only accurate but also computationally the moste cient.
We have also introduced a new boundary condition for the medhuncation, which is
numerically e cient both, from the points of view of CPU time and memory as compared
to the widely used CPML algorithm, without a noticeable compomise in the relative
accuracy of the computed results. We have also pointed outaghthe FDTD is able to
handle low-frequency problems, such as well-logging, thate typically computationally
expensive not only because of the large problem size, butalsecause of low frequency
range of interest, often beyond the capability of existinganmercial solvers. Finally,
since FDTD builds on the conventional FDTD to solve di erent types of problems, its
performance can be further enhanced by parallelizing thegalrithm [19], which can be

carried out as easily as in the case of the conventional FDTD.
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7. Conclusions and Future Work

The objective of the thesis has been to address some of isselesountered in computa-
tional electromagnetics. In Chapter2, we have presented a new physics-based approach
for formulating MoM problems that is based on the use of dipelmoments (DMs), as
opposed to the conventional Green's functions. We have showhat there are no singu-
larities that we need to be concerned with in the DM formulabn. Yet another salutary
feature of the DM approach is its ability to handle thin and I@sy structures, whether they
are metallic, dielectric-type, or even combinations theod. The technique is valid over
the entire frequency range, from low to high, and it does noequire the use of loop-star

or other special types of basis functions in order to mitigatthe low frequency problem.

In Chapter 3, we have introduced certain re nements to the DM method to irprove
its computational e ciency. We have shown that the use of higer-order basis functions
signi cantly reduces the number of unknowns, without comprmising the accuracy and
combines the DM with the CBFM technique helps reduce this nuber even further. The
use of closed-form expressions for the interaction matrixeenents speeds up the process
of matrix generation, regardless of the problem size. Towds this end, future work is
required to extend the closed-form expressions for modgjidielectric and inhomogeneous
objects. For electrically large problems, employing FMG tes to speed up the interaction
matrix generation considerably. We have shown how we can arporate lumped loads in

the DM approach and that it is able to capture sharp resonansesven at low frequencies,
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where the commercial solvers become inaccurate, or breakwio The DM approach is
able to accurately calculate the input impedance of small gannas; elds from irregular
geometries; from faceted surfaces; from geometries withtshnd slit; and, is able to model

microstrip line type of geometries with ne features.

Chapter 4 introduced the RUFD algorithm which is highly parallelizabé and its
meshing requirements are relatively simple. Moreover, s RUFD solves the Maxwell's
equations in a recursive manner, without using either iteteon or inversion, the problems
of dealing with ill-conditioned matrices, or constructingobust pre-conditioners are totally
avoided. Also, as a frequency domain solver, it can handle p&sive media, including
plasmonics, relatively easily without any need for Drude obebye model as required in
the FDTD algorithm. A number of techniques have been introdeed to further enhance
the performance of the RUFD, such as: (i) frequency interpdian schemes to generate
the initial values of the elds in the entire computational domain; (ii) introducing losses
in the computational domain; and, (iii) post-processing nteods, which speed up the

convergence signi cantly.

In Chapter 5, we have shown how the DM approach and the RUFD algorithm may
be combined to solve multiscale problems accurately and eently, and the performance
of the resulting hybrid scheme has been shown to be superiar those of some of the
well known and widely used CEM codes, both in terms of accura@and computational
e ciency. We have also introduced multi-grid approach whee a part of the computational
domain is nely meshed when compared to the rest of the domaie have shown with
many illustrative examples, how to hybridize both the DM appoach and the multi-grid

approach with RUFD algorithm to solve ne featured multiscaé problems e ciently.

In Chapter 6, we have introduced the FDTD, which uses the RUFD as a stepping

stone to obtain a new improved version of the FDTD. Using manylustrative examples,
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FDTD has been shown to generate accurate electromagnetispenses at low frequencies;
handle non-Cartesian geometries accurately without any stability issues that are often
encountered in the conventional CFDTD; model multi-scaleepmetries accurately; and,
handle lossy/lossless thin structures with ease. We havesalintroduced a new boundary
condition for the mesh truncation, which is numerically e dent, both from the points of
view of CPU time and memory, as compared to the widely used CRMalgorithm, without
a noticeable compromise in the relative accuracy of the conmed results. However, work
is still in progress to improve its accuracy and to test its ggicability to a wider class
of problems. We have also demonstrated the e cacy of theFDTD when used to solve
well-logging problems that are typically computationallyexpensive, not only because of
the large problem size, but also because of low frequency ganof interest. Also, we
have pointed out that since FDTD relies upon the conventional FDTD to solve di erent
types of problems, its performance can be further enhancey jparallelizing the algorithm,

which would be desirable.

169



Publications from this Dissertation

Book Chapters

\An E cient Dipole-Moment-based Method of Moments (MoM) for mulation”, Com-
putational Electromagnetics: Recent Advances and Engimaey Applications, Springer-

Verlag, New York, to be published July 2013.

\New Finite Di erence Time Domain( FDTD) Electromagnetic Field Solver", Com-
putational Electromagnetics: Recent Advances and Engimaey Applications, Springer-

Verlag, New York, to be published July 2013.

Journals

\Numerically E cient Method of Moments Formulation valid Ov er A Wide Fre-
guency Band including Very Low Frequencies'lET Microwaves Antennasé& Prop-

agation Vol. 6, Issue 1, Page(s): 46-51, 2012.

\The Dipole Moment (DM) and Recursive Update in Frequency Dorain (RUFD)
Methods: Two Novel Techniques in Computational Electromaggtics”, URSI Radio

Science Bulletin 338 September 2011.

Conference Proceedings

\ FDTD: A Novel Algorithm for Improving Conformal FDTD Method", accepted
for IEEE International APS and UNSC/URSI National Radio Sciene Meeting
2013.

\A New Impedance Boundary Condition for FDTD Mesh Truncatiori', accepted for

IEEE International APS and UNSC/URSI National Radio Sciene Meeting 2013.

170



\ FDTD: A Novel Algorithm for Dealing with Curved Objects in the Context of
FDTD", in Proc. of IEEE International APS and UNSC/URSI National Radio

Science Meeting2012.

\Estimating e ective Depth of Gas Wellbore Using Electromagetic Techniques”,
in Proc. of IEEE International APS and UNSC/URSI National Radio Sciene
Meeting, 2012.

\A New E cient Numerical Technique for the Analysis of Microstrip Circuits Char-
acterized by Rough Pro les", in Proc. oflEEE International APS and UNSC/URSI

National Radio Science Meeting2012.

\Formulating Matrix Equations in the Context of MoM by using the Dipole Mo-
ment (DM) Method instead of Green's Functions”, in Proc. ofThe International
Conference on Electromagnetics in Advanced ApplicationsQEAA) , Cape Town -

South Africa, September 2012.

\On the Hybridization of Dipole Moment (DM) and Finite Method s for E cient
Solution of Multiscale Problems”, in Proc. ofThe 5th European Conference on

Antennas and Propagation2011.

\A numerically e cient approach to metamaterial (MTM) mode ling", in Proc. of

International Workshop on Antenna Technology (iIWAT) 2011.

\Accurate Computation of Input Impedance of Nano Antennas”, inProc. of IEEE

International APS and UNSC/URSI National Radio Science Meng, 2011.

\A Universal and Numerically E cient Method of Moments Formul ation Covering
a Wide Frequency Band", in Proc. ofIEEE Antennas and Propagation Society

International Symposium Spokane - WA, July 2011.

171



\A Universal Approach for Generating Electromagnetic Respae over a Wide Band
Including Very Low Frequencies”, in Proc. ofEEE International APS and UNSC/URSI

National Radio Science Meeting2011.

\Singularity-Free Approach for the Evaluation of the Matrix Elements in the Con-
text of the Method of Moments Based on the Use of Closed-Form gpessions for the
Fields Radiated by the Subdomain Basis Functions", in Procof IEEE International

APS and USNC/URSI National Radio Science Meeting2010.

\A Universal Dipole-Moment-Based Approach for Formulating MM-Type Prob-
lems without the Use of Green's Functions”, in Proc. oThe 4th European Confer-

ence on Antennas and Propagatiqr2010.

\Numerical Solution of Scattering form Metallo-Dielectriccomposites via the CBFM
applied in Conjunction with the Dipole Moment Approach (DMA)", in Proc. of
IEEE International APS and USNC/URSI National Radio Sciene Meeting 2010.

\RUFD: A General-purpose, Non-lterative and Matrix-Free CEM Algorithm for
Solving Electromagnetic Scattering and Radiation Problemin the Frequency Do-
main", in Proc. of 20th International Symposium on Electromagnetic TheoryGer-

many, August 16-19, 2010.

\On the Hybridization of RUFD Algorithm with the DM Approach for S olving
Multiscale Problems”, in Proc. of20th International Symposium on Electromagnetic

Theory, Germany, August 16-19, 2010.

\A New-Dipole-Momentbased MoM Approach for Solving Electroragnetic Radia-
tion and Scattering Problems”, in Proc. olEEE International APS and USNC/URSI

National Radio Science Meeting2009.

\A Novel Technique for Electromagnetic Modeling of Extremegl Small Objects”,

172



in Proc. of IEEE International APS and USNC/URSI National Radio Sciene
Meeting, 2009.

173



Bibliography

[1] R. Garg,Analytical and computational methods in electromagneticsLondon: Artech

House, 2008.

[2] A. F. Peterson, S. L. Ray, and R. Mittra, Computational methods for electromagnet-

ics. New Jersey: IEEE Press, 1997.
[3] D. K. Cheng, Field and wave electromagnetics Addison-Wesley, 1989.

[4] R. F. Harrington, Field computation by moment methodsNew York: The Macmillan

Company, 1968.

[5] R. Mittra, Computer techniques for electromagnetics New York: Hemisphere Pub-

lishing Corporation, 1987.

[6] R. F. Harrington, Time-harmonic electromagnetic elds New Jersey: IEEE Press,

2001.

[7] J. Bringuier, \Multi-scale techniques in computation&electromagnetics,” Ph.D. dis-

sertation, The Pennsylvania State University, 2010.

[8] C. A. Balanis, Antenna theory: analysis and design New Jersey: John Wiley &

Sons, 2005.

174



[9] S. Rao, D. Wilton, and A. Glisson, \Electromagnetic scattring by surfaces of arbi-
trary shape,” IEEE Trans. Antennas and Propagation vol. 30, no. 3, pp. 409{418,
1982.

[10] E. Lucente, A. Monorchio, and R. Mittra, \An iteration-free MoM approach based
on excitation independent characteristic basis functionfor solving large multiscale
electromagnetic scattering problems,IEEE Trans. Antennas and Propag, vol. 56,

pp. 999{1007, April 2008.

[11] R. Mittra and K. Du, \Characteristic basis function method for iteration-free solution
of large method of moments problemsProgress In Electromagnetics Researghol. 6,

pp. 307{336, 2008.

[12] N. Mehta, \Numerical analysis of frequency selective daces," Master's thesis, The

Pennsylvania State University, 2010.

[13] S. J. Kwon and R. Mittra, \Impedance matrix generation ly using fast matrix gen-
eration (FMG) technique,” Microwave and Optical Technology Lettersvol. 51, pp.
204{213, January 2009.

[14] E. C. Jordan and K. G. Balmain,Electromagnetic waves and radiating systemser.

Prentice-Hall electrical engineering series. Prentice-Hal968.

[15] K. S. Yee, \Numerical solution of inital boundary value poblems involving maxwell's
equations in isotropic media,"IEEE Trans. Antennas and Propag, vol. 14, no. 3, pp.

302{307, May 1966.

[16] C. Paum and Z. Rahimi, \An iterative solver for the nite -di erence frequency-
domain (FDFD) method for simulation of materials with negaive permittivity,"

Numer. Linear Algebra Appl, vol. 14, no. 0, pp. 1{6, 2009.

175



[17] G. Mur, \Absorbing boundary conditions for the nite{di erence approximation of
the time{domain electromagnetic eld equations,"IEEE Trans. on Electromagnetic

Compatibility, vol. 23, pp. 377{382, 1981.

[18] J. P. Berenger, \Three-dimensional perfectly matchethyer for the absorption of

electromagnetic waves,'J. Comp. Phys, vol. 127, p. 363{379, 1996.

[19] W. Yu, R. Mittra, T. Su, Y. Liu, and X. Yang, Parallel nite-di erence time-domain
Method London: Artech House, 2006.

[20] A. Taove and S. C. HagnessComputational electrodynamics { the FDTD method
MA: Artech House, 2005.

[21] K. Naishadham and X. P. Lin, \Application of spectral doman prony's method to
the FDTD analysis of planar microstrip circuits,” IEEE Trans. on Microwave Theory

and Techniquesvol. 42, pp. 2391{2398, 1996.

[22] M. A. Schamberger, S. Kosanovich, and R. Mittra, \Paranter extraction and correc-
tion for transmission lines and discontinuities using thenite di erence time domain
method," IEEE Trans. on Microwave Theory and Techniquesvol. 44, pp. 919{925,
1996.

[23] T. K. Sarkar, Z. A. Maricevic, and M. Kahrizi, \An accurate de-embedding pro-
cedure for characterizing discontinuities,"International Journal of Microwave and

Millimeter-Wave Computer-Aided Engineeringvol. 2, no. 3, pp. 135{143, 1992.

[24] W. Yu and R. Mittra, \A conformal FDTD software package nodeling antennas and
microstrip circuit components,” IEEE Trans. Antennas and Propagation pp. 28{39,

2000.

176



[25] C. M. Furse, \Application of the Finite Di erence Time Domain method to bioelec-
tromagnetic simulations,” Applied Computational Electromagnetics Society Newslet-

ter, 1997.

177



VITA

Kadappan Panayappan was born on 26 December 1984 in Chennai, Tamilnadu,
India. He completed his high school from Saint Mary's Anglo Irien Higher Secondary
School, Chennai, India in 2002. He obtained his Bachelors im@neering in Electronics
and Communication Engineering from Anna University, Chennaindia in 2006. In 2008,
he obtained his Master of Technology in RF and Microwave Enggering from Indian
Institute of Technology, Kharagpur. In August of 2008, he joied the Department of
Electrical Engineering at The Pennsylvania State Universyt USA where he continued
as a graduate research assistant obtaining his PhD in May 2801 His research interests
include Finite Di erence Time Domain (FDTD) method, hybrid techniques to enhance
the performance of FDTD, low frequency electromagnetic nesnse, handling multiscale
problems, improving the performance of conformal FDTD, patlel programming and

processor speci ¢ optimization.



	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Electromagnetics
	Theoretical Methods of Analysis
	Computational Methods
	Motivation
	Outline of Research Methodology
	Organization of the Thesis

	Dipole Moment Approach
	Introduction
	Dipole Moment Concept
	Formulation for PEC Objects
	Geometry Modeling
	Numerical Results

	Formulation for Dielectric Objects
	Geometry Modeling
	Numerical Results

	Formulation for Inhomogeneous Objects
	Geometry Modeling
	Numerical Results

	Quasi-Static Formulation
	Order of Singularity
	Observations and Conclusions

	Performance Enhancement of DM Approach
	Introduction
	Higher Order Macro-Basis Function
	Numerical Results

	Characteristic Basis Functions
	Fast Matrix Generation
	Closed-form Field Expressions
	Numerical Results using Triangular Basis Functions
	Numerical Results Obtained by using Rooftop Basis Functions

	Some Embellishments to the Basic DM Approach
	Incorporating Lumped Loads
	Input Impedance of Nano Antennas
	Irregular Geometries
	Curved Surfaces
	Geometries with Apertures
	Microstrip-based Structures

	Observations and Conclusions

	Recursive Update in Frequency Domain (RUFD)
	Introduction
	RUFD Algorithm
	Stability Condition
	Source Settings
	Incorporating Lumped Resistance
	Absorbing Boundary Conditions
	Types of Formulation
	Total Field Formulation
	Total Field/Scattered Field Formulation
	Scattered Field Formulation

	Performance Enhancement of RUFD
	Post-Processing
	Effect of Time Step on Convergence
	Effect of Losses on Convergence
	Initializing Using DM Approach
	S-Parameter Calculations
	Sub-Gridding Approach
	Improving the Computational Efficiency
	Calculation of Frequency Response

	Observations and Conclusions

	On the Hybridization of RUFD Algorithm
	Introduction
	Iterative Approach
	Self-Consistent Approach
	Vicinity of PML
	Multi-Grid Approach
	Handling Inhomogeneous Objects with Fine Features
	Large Objects with Coating
	Coated Small Objects

	Observations and Conclusions

	New Finite Difference Time Domain (FDTD) Algorithm
	Introduction
	FDTD Solver
	Low Frequency Response
	RF and Digital Circuits
	Scattering Problems

	Non-Cartesian Geometries
	Asymptotic Method
	Averaging Technique
	Advantages

	Multiscale Problems
	Performance Enhancement
	Signal Processing Techniques
	Absorbing Boundary Condition
	Well-Logging Applications

	Observations and Conclusions

	Conclusions and Future Work

