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Abstract 
 
 
It is widely believed that the parameters of cutting speed and undeformed chip thickness can be 

used to influence the specific energy consumption of traditional machining processes. The 

purpose of this study was to further investigate the degree to which these two parameters affect 

the system load response (e.g. force, power consumption) – and in turn the specific energy 

consumption – when they are applied quasi-statically as well as dynamically. This was carried 

out experimentally using a CNC planer (to study the effects of cutting velocity) and a CNC lathe 

(to study the effects of undeformed chip thickness). Furthermore, this study purposed to 

ascertain whether the loading response of a system to dynamic parameter manipulation can be 

predicted based on a characterization of the system’s response to static changes in the same 

parameter. This involved discretizing the time-varying cases and treating them as a continuous 

series of static cutting instances, each of which could then be assigned a predicted force value. 

Obviously, such a technique would only be effective if there is close agreement between the 

static and dynamic loading responses of the given system. 

As a result of empirical testing, close agreement was found between the loading responses for 

static and dynamic variations in cutting speed for both AA6061-T6 and OFE Copper. When 

similar variations were applied to AA6061-T6 and Ti3Al2.5V in the direction of undeformed chip 

thickness, close agreement between static and dynamic loading responses was again found, 

but for low to moderate values of the processing parameter. These observations suggest that, 

for many materials, the nature of material response in low-frequency, modulation-assisted 

machining (MAM) is similar to that which occurs in conventional machining. Based on this 

similarity, it was also found that the general shape of the characterized load response to static 

parameter manipulation could be used to predict whether MAM would consume more or less 

specific energy than its conventionally cut counterpart. Specifically, MAM will generally require 

slightly more energy for dynamic changes in cutting velocity but significantly less energy for 

dynamic changes in undeformed chip thickness, as compared to conventional cutting.  

It is suggested that further research be performed which incorporates dynamic changes in 

cutting speed and rake angle into the energy prediction model for MAM as applied in the 

direction of undeformed chip thickness. Finally, a further study may also make use of an 

intermediate variable, such as thickness of the primary deformation zone, as the predicted 

quantity for the dynamic cases. Such might provide insight as to the existence of a common 
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physical mechanism underlying the energetics of both modulated machining configurations and 

would act as an extension of the research performed by Kececioglu [2,14]. 
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Chapter 1: Introduction 

Analyses of material removal processes such as turning, drilling and milling often involve 

consideration of the underlying deformation mechanics. Traditional machining methods are 

unique in that their modes of material removal require direct contact between the tool and 

workpiece. The behavior of this interaction affects many system parameters: notably, tool 

loading and wear. Such parameters determine the local energy consumption of the process, 

which in turn affects decisions regarding equipment selection and cost effectiveness. 

Although the term “traditional machining” encompasses a variety of processes, the method of 

material removal is quite similar throughout. In each case, the cutting edge of a tool oriented at 

some rake angle (α) with a relief angle (β) engages a workpiece at a given cutting speed (VDC) 

and undeformed chip thickness (h0) giving rise to the formation of a narrow band of shearing 

which extends from the tool’s cutting edge to the surface of the workpiece at an angle φ (see 

Fig. 1.1) [1]. The thickness of this band may vary along its length and has been known in some 

cases to be thicker near the tool edge than near the surface of the workpiece [2]. In any case, 

this region is referred to as the primary deformation zone (PDZ) and is responsible for the 

majority of strain imposed on the workpiece throughout the process of chip formation [3-5]. The 

card deck analogy developed by Piispanen has long been applied in order to quantify the 

degree of deformation that occurs in the PDZ [6]. This strain is known to be a function of α and 

the ratio between the undeformed and deformed chip thicknesses h0 and hc, respectively [1]. 

The area at which the tool contacts the workpiece is relatively small and is known as the 

intimate contact region (ICR) [3,7,8]. The portion of the newly formed chip that has been in close 

proximity to the ICR will also undergo deformation as a result of tool/workpiece friction. This 

band has been referred to by some as the secondary deformation zone [3,4]. The strain 

imposed in these two zones is widely accepted as being responsible for the overwhelming 

majority of mechanical work required in the metal cutting process [1,5]. It is believed that the 

PDZ accounts for approximately three-fourths of this energy requirement and the secondary 

deformation zone is responsible for the remaining amount [1]. 

The processing parameters of undeformed chip thickness, cutting velocity, and rake angle are 

known to affect the magnitude of specific energy required for material removal [1,9-11]. This 

presents an important question: can changes in processing effect changes in the physical 

phenomena controlling energy consumption and if so, to what degree? Technologies exist 

which can modify such processing parameters both statically as well as dynamically. Many have 
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observed that statically reducing the undeformed chip thickness results in a greater degree of 

specific energy consumption, known as the “size effect” in metal cutting [4,10,12,13]. Kececioglu 

believed that it was the size of the shear zone itself, rather than the more general variable of 

undeformed chip thickness, which was responsible for the size effect [14]. In any case, some 

have attributed this size-dependent phenomenon to be directly correlated with the number of 

defects in the material that will pass through the PDZ and facilitate slip plane formation [12,15]. 

Thus, smaller volumes of a given material logically contain fewer of such defects than do larger 

volumes. In a similar vein, cutting velocity—which directly correlates with strain rate—is also 

known to influence the mechanisms of deformation. Work performed by Kececioglu on this 

subject is well known. He determined that increases in strain rate correspond with increases in 

shear flow stress [2], and thus to a greater degree of energy consumption in the PDZ [1]. This 

strain-rate dependency is also referred to by Shaw who goes on to state that increases in 

temperature tend to have the opposite effect on flow stress. Furthermore, a counter-balancing 

effect has been observed in which high cutting speeds can elicit temperatures sufficient enough 

to weaken a material and bring about adiabatic shear in the PDZ – a phenomenon known as 

“thermal softening.” However, such is most commonly observed at cutting speeds on the order 

of some meters/sec [1], which is several orders of magnitude greater than those used in this 

study and is therefore not expected to be a significant factor here. 

Experiments which indicate the existence of such phenomenon are typically performed by 

making multiple cuts in a material, each at a different value of the static parameter under 

investigation. However, such parameters can also be modified dynamically during the course of 

the cut. Considerable work in this regard has been performed by Chandrasekar et al through the 

use of modulation-assisted machining (MAM) techniques [3,7,16-21]. MAM has demonstrated 

an ability to provide a high level of control over dynamic tool displacement through the use of 

coupled linear and oscillatory motion. Because these motions are induced using multiple 

actuation systems, they can be applied along different axes. The relative orientation of these 

axes determines which processing parameter will be dynamic in nature. 

1.1 Problem statement: 

The purpose of the present study is to further investigate the effects that undeformed chip 

thickness and cutting velocity have on the magnitude of specific energy consumption for 

orthogonal cutting processes. Specifically, these parameters will be applied in varying degrees 

of magnitude both statically (through conventional cutting methods) as well as dynamically (by 
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incorporating MAM) in order to assess their respective effects on the energy-related phenomena 

described above.  
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Figure 1.1: Schematic of orthogonal cutting and its commonly associated parameters. 
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Chapter 2: Background 

The importance of processing parameters on the energetics of machining via the tool-workpiece 

interaction was discussed in the previous chapter. Conventional, or static parameter, cutting 

processes have long been studied [1,2,5,6,8,10,12]. Only in the last several decades has the 

technology been available which makes dynamic parameter manipulation not only possible, but 

effective. The intentional use of oscillatory tool displacement appears to have become popular 

following the work of Kumabe in 1979, though he was arguably not the first to use it [19,22,23]. 

Application of this method was initially focused on the high-frequency (>5 kHz) range, which 

became known as “vibration-assisted machining” (VAM). Joshi notes the difference between 

this and the related technique of MAM which accesses low-frequencies (<1 kHz) [23]. These 

methods most commonly make use of a 1D oscillation although they can be extended to 2D as 

was done by Shamoto in his well-known elliptical vibration studies [16,19,21,23,24]. The 

direction of the 1D motion is arbitrary, though two cases are of special interest to the present 

study, namely “velocity-direction” and “feed-direction.” These two types of MAM affect the 

processing parameters of cutting velocity and undeformed chip thickness, respectively. Prior 

research performed on these techniques will now be discussed and a review of their underlying 

mechanics will be presented in the following chapter. 

2.1 Velocity-direction MAM: 

The tool-workpiece interface is a region characterized by high pressure and as such, is difficult 

to directly lubricate. A study performed by Moscoso et al provided visual proof that lubricant is 

not allowed access to the ICR during cutting [3]. However, by inducing a sinusoidal time-varying 

cutting velocity of sufficient magnitude, it has been shown that the tool will separate from the 

workpiece and thus allow lubricant to access this regime. Evidence of ICR lubrication was seen 

directly using a transparent tool visualization technique and indirectly by observation of the tool-

work friction coefficient (see Fig. 2.1). The perturbative motion described here can be achieved 

through the use of a piezoelectric actuator and is often coupled with a linear motion provided by 

a motor [3]. It is important to note however that tool-work separation is only possible for cutting 

speeds that are less than the maximum modulation velocity. In many cases, the limited ability of 

the piezoelectric actuator renders velocity-direction MAM incapable of achieving material 

removal rates higher than 0.5 m/s [19]. 
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Although some studies have suggested a positive correlation between cutting velocity and 

specific energy consumption, all of these have been performed using static parameter 

manipulation (e.g. multiple cuts each made at different cutting speeds). The experiment 

performed by Moscoso et al which employed a time-varying cutting speed cannot be compared 

to the conventional case without incorporating the effect of lubricant on the tool-work interaction. 

Thus, whereas specific advantages of velocity-direction MAM have been identified which may 

justify industry’s acceptance of the process, the effects of its dynamic nature on the energetics 

of dry metal cutting are less adequately understood.  

2.2 Feed-direction MAM: 

Ductile metals such as aluminum, titanium, and nickel alloys present unique challenges to the 

machining industry due to their tendency to produce continuous chips [7]. This aspect is 

especially detrimental to the drilling process, as large chips are difficult to evacuate from the 

cutting site and thus promote tool breakage. In order to encourage chip removal, high-pressure 

fluids may be used to lower the temperature at the cutting site, break chips into smaller pieces, 

and evacuate them from the hole [7,25,26]. This method is effective, as tools used in the 

presence of such metal removal fluids (MRFs) have been found to last up to 250 times as many 

cycles. However, MRFs can be expensive; estimates have placed them at up to 16% of the total 

cost for some machining processes. Efforts have been made to remove the need for such fluids 

by instead applying various coatings to the tools. Such tools have been found to last 

approximately 100 times as many cycles as the baseline case. However, this technique is only 

advantageous under a narrow range of processing conditions [25].  

Previous studies have demonstrated MAM’s ability to form discrete chips when the direction of 

modulation is parallel to the undeformed chip thickness [7,18,19,21]. The application of this 

feed-direction MAM to the drilling process is analogous to the commonly used “peck-drilling” 

technique in which the machine controller periodically moves the tool away from the workpiece, 

effectively breaking the chip while simultaneously lubricating the ICR. Traditional peck drilling 

has its limits however. In the case of manual machines, this may come in the form of the 

operator’s speed of motion; for CNC machines, it might be due to the inertial effects that must 

be overcome by the motor. Peck-drilling can be applied at a much higher rate through the use of 

a piezoelectric actuator positioned near the tool since its intrinsic kinematic and dynamic 

properties allow it to overcome both aforementioned limitations. 
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Although the discussion thus far has focused on drilling, feed-direction MAM can similarly be 

incorporated into the turning process. Consider a cutting tool used to continuously turn down the 

length of a tube for example. This could also result in discrete chips, depending on the ratio of 

the modulation frequency to the rotational frequency of the primary spindle. Although chip 

evacuation is less of a concern in such a case, feed-direction MAM has been used to produce 

metal particulates of controlled size and shape (see Fig. 2.2) [18,19,21]. Such particulate may 

be the intended product of the cutting operation, or may be a valuable byproduct. Furthermore, 

the mode by which the tool disengages from the workpiece in feed-direction MAM allows 

separation to be achieved even at high cutting speeds, making this case more viable from an 

industrial standpoint [19]. 

As was the case in velocity-direction MAM, studies have already been performed which 

demonstrate the ability of feed-direction MAM to carry out prescribed motions under load and to 

affect tool-work separation and cutting forces [7,16-18,21-23,27]. However, there again exists 

some gap in knowledge surrounding the subject of the effect that undeformed chip thickness 

has on energy consumption when applied dynamically and whether its magnitude can be 

predicted based on knowledge of its dependence on static variations in this processing 

parameter.  
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Figure 2.1: Cutting forces and friction coefficient values for a range of velocity-direction 

modulation amplitudes. In all cases, VDC=10mm/s, h0=0.10mm, fm=75Hz. The normal and 

friction forces reported here were the average plateau values [3]. 

 

 

Figure 2.2: Examples of chips produced using feed-direction MAM [18]. 

 

 

 

  



9 
 

Chapter 3: Mechanics of MAM 

This chapter serves to review the underlying mechanics of MAM-based processing methods. It 

should be noted that many of the equations used throughout this chapter have also been 

reported in Ref. [27] which was frequently referred to during the course of the present study. 

3.1 Velocity-direction MAM: 

Velocity-direction MAM is a special case of MAM in which a time-varying velocity in the cutting 

direction is superimposed on the cutting speed (see Fig. 3.1). Throughout this study, the term 

displacement is used to refer to the position of the tool with respect to the workpiece. With these 

conditions established, the effective displacement (Deff) and velocity (Veff) can be written in terms 

of time (t), the amplitude of modulation (K), the modulation frequency (fm), and the static 

component of the effective cutting velocity (VDC) as 

                       [Eq. 3.1] 

                         . [Eq. 3.2] 

It should be noted that the absence of any phase shift in the sine and cosine terms infers that 

sin(2πfmt)=0 at time t=0 (e.g. zero displacement at t=0). Also, since the value of sin(2πfmt) is 

arbitrary at the edge of the workpiece, the location represented by zero displacement may be 

offset from this edge. Finally, since tool/workpiece displacement and velocity are defined 

relative to one another, an experimental setup may allow for the tool and/or the workpiece to be 

in motion relative to some fixed object. 

The effective velocity will travel between maximum and minimum values of VDC+2πfmK and 

VDC-2πfmK, respectively. Depending on the relationship between VDC, fm, and K, one of three 

situations will occur. In each of them, the average cutting velocity will be equal to VDC; thus, the 

displacement trace will always be represented by a sinusoidal variation superimposed on a line 

of constant slope and the velocity trace by a sinusoidal variation offset from the x-axis. The first 

case has been named “forward advancement” since the tool not only remains in contact with the 

workpiece but also has a positive velocity (e.g. advances) throughout the entire length of cut 

(see Fig. 3.2a). Forward advancement occurs when VDC>2πfmK. The second is known as the 

“critical case” since the tool and workpiece remain in contact but periodically have zero 

instantaneous relative velocity (see Fig. 3.2b). The critical case occurs when VDC=2πfmK. The 

third condition is referred to as “separation” since the tool and workpiece periodically separate 



10 
 

from one another throughout the cut (see Fig. 3.2c). Separation occurs when VDC<2πfmK. When 

this condition is met, each complete modulation period will have three notable times: t’, t’’, and 

t’’’. Conceptually, t’ denotes the time(s) at which separation begins, t’’ the time(s) at which the 

distance of separation is a maximum, and t’’’ the time(s) at which the tool and workpiece regain 

contact. Graphically, t’ is the time at which the displacement-time trace sees a local maximum, 

t’’ the time of a local minimum, and t’’’ the time at which the displacement is next equal to its 

value at time t’. See Fig. 3.3 for a pictorial description of these critical times.  

The time(s) between which the tool moves away from the workpiece (t’ ≤ t ≤ t’’) can be solved 

analytically by setting Veff in Eq 3.2 equal to zero, resulting in 

      
 

    
     (

    

     
) . [Eq. 3.3]  

Recalling from geometry that the function cos(X) over the range 0 to 2π graphically looks like 

Figure 3.4, then t’ and t’’ are related by 

             . [Eq. 3.4] 

Solving for the difference between the local maximum and subsequent local minimum yields the 

equation for maximum effective distance of separation, given by 

            |√  (
   

     
)
 
|  

   

   
[     (

    

     
)   ] . [Eq. 3.5] 

Note that Eq. 3.3 and Eq. 3.5 will only yield real values if separation occurs. 

3.2 Feed-direction MAM: 

Feed-direction MAM is a special case of MAM in which a time varying displacement in the feed 

direction is superimposed parallel to the undeformed chip thickness (see Fig. 3.5). In the case of 

turning, this induced modulation has a constant phase shift (φ) between passes of 

    [
  

  
    (

  

  
)] [Eq. 3.6] 

where fw is the angular speed of the workpiece (e.g. spindle speed) and INT() denotes the 

integer part of the value. The wavelength (λ) is expressed as 

    
  

  
  [Eq 3.7] 



11 
 

where d is the average diameter of the workpiece. The overall displacement (Z) of the tool in its 

nth pass can be represented spatially as 

              (
 

  
)        (

 

 

  

  
           ) [Eq. 3.8] 

where x represents the instantaneous location of the tool along the circumference of the 

workpiece (0≤x≤2πd) [27]. The instantaneous undeformed thickness (h0) can be found by taking 

the difference between the displacements of the nth and n-1th passes 

           . [Eq. 3.9] 

Under certain conditions it is possible for h0 to be analytically less than or equal to zero which is 

theoretically synonymous with tool/workpiece separation and the formation of a discrete chip. It 

is important to note that chip thickness, and thus the conditions for separation, depends not only 

on the amplitude of modulation but also on the phase shift between passes. The minimum 

amplitude required to achieve separation as a function of the phase shift can be expressed as  

     
  

    (
 

 
)
  [Eq 3.10] 

It is evident from Fig. 3.6 that separation can be achieved with minimum modulation amplitude 

when φ=π, which has been named the “optimum modulation condition” [17,19]. 
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Figure 3.1: Orthogonal cutting geometry for velocity-direction MAM [19]. Note that the amplitude 

A is referred to as K in the present study. 

 

 
Figure 3.2: Tool displacement and velocity vs time for cases of: (a) forward advancement, (b) 

critical condition, and (c) separation. 
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Figure 3.3: Pictorial representation of critical times as defined using the displacement-time 

trace. 

 

 

Figure 3.4: Graphical example of Eq. 3.3. 
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Figure 3.5: Orthogonal cutting geometry for feed-direction MAM [19]. Note that the amplitude A 

is referred to as K in the present study. 

 

 

Figure 3.6: Classification of cutting type as a function of modulation amplitude and phase shift 

between passes [7]. Note that the amplitude parameter A is referred to as K in the present 

study. 
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Chapter 4: Experimental Methods 

This purpose of this section of the thesis is to describe the experimental configurations, 

materials and data acquisition methods used in executing the experimental work of the present 

study. As the thesis involved the exploration of power- and energy-related effects for two types 

of parameter modulation methods, namely velocity-direction modulation and feed-direction 

modulation, this chapter is logically divided along those lines. 

4.1 Velocity-direction MAM 

A. Experimental setup  To study the effects that cutting velocity has on specific energy 

consumption for both conventional cutting and velocity-direction MAM, a custom computer-

controlled planer was constructed (Fig. 4.1). The device couples a linear motion with a 

sinusoidally varying modulated motion and imparts them on a workpiece. The linear motion is 

provided by a linear stage (Nippon Bearing Corp., Model BG5520B) which is driven by a closed-

loop, PID controlled servo motor (Parker USA, Model MPP1002D3E-NPSN). Positioning data is 

provided to a motion controller (Parker USA, Model 6K2) by an in-built optical rotary encoder 

with effective resolution of 8000 counts/rev (post-quadrature). These digital signals were also 

monitored externally during each experiment to measure the constant, or DC, component of 

workpiece velocity. The motion controller enables the servo drive (Parker USA, Model Aries AR-

20AE) to regulate the power supplied to the servo motor. The rotational motion provided by the 

motor is converted to linear motion via a rotary coupling to the ball-screw of the linear stage. 

The primary shaft of the ball-screw has a pitch of 20 mm, resulting in an overall theoretical linear 

positioning accuracy of ±2.5 um when considering the optical encoder capability.  

The sinusoidal, or AC, component of the workpiece velocity was provided by a piezo-ceramic 

actuator (APC International, Model Pst 150/14/100 VS20). One end of the actuator was fixed to 

the ball-screw driven platform while the other was attached to a work-fixturing platform that 

enabled motion along a single degree of freedom in the cutting direction. The work-fixturing 

platform was a well-greased linear slide (Nippon Bearing Corp., Model SGW35) whose motion 

axis was carefully aligned with the larger linear stage using a dial indicator. The work-fixturing 

platform facilitated holding of a workpiece using set screws. The displacement of this platform 

relative to the linear stage (e.g. the purely AC component of the motion) was monitored using a 

capacitance probe (Capacitec, Model HPC-40) which was affixed to the ball-screw driven 

platform. The oscillatory motion was generated by charging the piezo-ceramic actuator with a 
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sinusoidal voltage which originated from a waveform generator (Agilent, Model 33220A) and 

was amplified using a power supply (Kepco, Model BOP 100-4M). Using this system, voltages 

ranging from 0-100 V can be provided to the actuator. 

The cutting tool was produced from a 12.7 mm x 25.4 mm x 177.8 mm high speed steel blank 

and was mounted on a cast-iron tool holder. The tool was machined using wire electrical 

discharge machining and had an effective rake angle of 30° and a relief angle of ~5°. The rake 

and flank surfaces of the tool were finish ground to produce a sharp cutting edge (Fig. 4.2). The 

tool holder was mounted on a three-axis force transducer (Kistler, Model 9257A) with the 

orientation of two of these axes, FX and FY, aligned along and perpendicular to the cutting 

direction, respectively. The transducer was mounted on a ball-screw driven dovetail slide (Setco 

USA, Model M2PLWY.8) with an in-built linear encoder (Heidenhain) attached to a digital 

readout device. The rough positioning of the tool was set by adjusting the height using the hand 

crank on the dovetail slide. The final value of undeformed chip thickness was verified using a 

second capacitance probe (Capacitec, Model HPC-150). The undeformed chip thickness in 

these experiments was 20 um with an uncertainty of 2.5%. It should be noted that the 

capacitance probes require a common reference ground. This was provided by the steel table. 

Arguably the most difficult challenge in implementing a precision machining tool is minimizing 

system compliance due to the force generated by the tool/work interaction. The fundamental 

principles of beam theory state that the deflection of an end loaded beam can be expressed as 

δ=(PL3)/(3EI) where δ is the linear deflection, P the cutting force, L the length of the beam, E the 

Young’s modulus, and I the area moment of inertia. Several design iterations of the tool and its 

holder were necessary to reduce compliance. The final experimental platform was tested for 

compliance at various locations over a range of cutting forces. A capacitance probe was placed 

normal to the respective surfaces indicated by Fig. 4.3 and the values of force and the 

corresponding local compliances are recorded in Table 4.1. 

To obtain the desired cutting velocities under the load ranges investigated, the motor required 

tuning. Two sets of PID gains were used: one for conventional cutting and the other for MAM. 

Although it is common practice to tune such gains as tightly as possible to yield the fastest 

system response, it was found that high gains effected unsteady motions. This was validated by 

comparing the encoder’s internally measured digital motion profile with an externally measured 

position provided by the capacitance probe. The capacitance probe was positioned such that it 

measured normal to the direction of travel. A series of motions at a range of velocities were 
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tested and the two displacement profiles were compared. To simulate the cutting loads 

expected in the study, the motion profiles were measured during actual cutting tests. The results 

of these tests can be seen in Figs. 4.4-4.5. The values for the high gain settings on the motion 

controller were (P, D, I) = (25.0, 4.4, 0), while the low gain settings were (P, D, I)=(8.3, 3.6, 0). It 

was empirically observed that more linear profiles were possible using the low-gain settings; 

thus, all conventional machining experiments were performed with these gains. For modulation-

assisted machining, a time-varying load caused counter-rotation of the motor resulting in 

departure from its linear motion. In these cases, high-gain settings were used as they provided 

better response for these time-varying loads. Figures 4.6-4.7 provide evidence that the 

magnitude of this counter-rotation was lessened by the use of high-gains. The sinusoidal motion 

of the platform itself was also validated, as is clear in Fig. 4.8.  

In the context of the planer machine, the term displacement is used to refer to the location of an 

arbitrary point on the work holding platform relative to the cutting tool. An increasing 

displacement indicates that the workpiece is moving in the cutting direction. This demonstrates 

the concept that it is not the value of displacement that is of primary importance here, but rather 

the nature of how the displacement trace varies over time. The reason this parameter is 

displayed in the results and not merely bypassed en route to obtaining cutting velocity has to do 

with its ability to relate conceptually with tool-work separation (refer to Fig. 3.3). Recall that the 

effective displacement trace represents a synthesis of temporally linear and nonlinear motion. 

The linear component is due to the (approximately) constant velocity (VDC) imposed on the 

stage by the motor and the nonlinear component is due to the sinusoidal velocity (VAC) imposed 

by the piezoelectric actuator. The effective velocity (Veff) is simply the superimposition of VAC on 

VDC. For cases of conventional cutting, VAC=0 and thus Veff=VDC. It should be noted that the 

velocity terms seen in the figures are best-fit approximations of the data and are therefore 

noise-free. Also, recall that VDC has a time varying component built into it due to the nature of 

the motor to counter-rotate when under sufficient load. This is factored into the best-fit models. 

B. Data acquisition  Two channels on the dynamometer were used to sense the 

cutting and tangential forces according to the orientations seen in Fig. 4.9. The signal from 

these channels was amplified using charge amplifiers (Kistler, Model 5004). The charge from 

the capacitance probes was also amplified (Capacitec, Model 4100-SL). These data were then 

output from their respective amplifiers and received by a data acquisition system (National 

Instruments, Model cDAQ-9178) that simultaneously accessed an analog input board (NI-9215) 

and a digital input board (NI-9411) at a sampling rate of fs=10 kHz. The differential digital 
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signals from the rotary encoder operated at TTL voltage levels and thus required no 

amplification. To facilitate simultaneous acquisition of data from these two input boards, it was 

necessary to record the raw digital signals from the encoder and to decode the quadrature 

signal offline using a specially-designed Matlab script (see appendix D). This was because 

Labview’s in-built linear encoder subroutine was observed to cause severe data lag, presumably 

due to the computational cost of dynamically decoding the quadrature signal. The Matlab 

quadrature decoding script was validated by commanding the linear stage to first move a pre-

programmed distance (25mm) at a constant speed (10mm/s) and then to move the same 

distance in reverse at half the original speed. Results from this test can be seen in Fig. 4.10. 

The synchronization of the two input boards was validated by measuring equivalently-sourced 

electrical signals from the encoder using both the analog and digital modules (Fig. 4.11). As is 

evident in the figure, these modules are able to simultaneously measure the rise and fall of the 

encoding signal with a high degree of accuracy.  

C. Experiments  The materials tested included AA6061-T6 and oxygen-free 

electronic (OFE) copper (Cu101). Workpieces were constructed from 3.175 mm thick flat bar 

stock (McMaster Carr) and were machined to a size of approximately 20 mm x 30 mm. The 

workpiece thickness was reduced to 1.0 mm for a step height of 1.5 mm. The initial thickness of 

3.175 mm was maintained throughout the remainder of the workpiece to provide structural 

integrity (Fig. 4.12). In all cases, the undeformed chip thickness (h0) was 20 um, resulting in a 

cutting force of Fp≈15-20 N for both materials. The system compliance values given in Table 4.1 

are representative of those expected under these force levels. Note that the cutting width is at 

least 10 times greater than the cutting depth, which is generally accepted as facilitating plane 

strain deformation [1]. 

Five cutting speeds (VDC) were used to characterize load response as a function of velocity: 

0.05, 0.25, 0.50, 0.75, and 1.00 mm/s. Three trials were performed at each of these speeds 

(except VDC=0.50 which had 8 trials) and the overall average cutting power for each speed was 

found. In order to compare conventional cutting with velocity-direction MAM, five modulated 

trials were performed at VDC=0.50 mm/s, fm=10 Hz, and K=19 V for aluminum and 16 V for 

copper. Note that the amplitude of modulation varies between materials since it was designed 

so as to effect approximately 75% of the critical MAM condition. Table 4.2 provides a 

comprehensive list of the cutting conditions mentioned here. The order in which these cuts were 

performed was randomized and reference-establishing cuts were made between each trial. 

These reference cuts were performed at VDC=1 mm/s and h0=20 um. For the conventional 
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machining tests, the piezo-actuator was provided with a DC offset voltage such that the only 

difference between the MAM tests was the lack of an AC motion. This DC offset merely placed 

the actuator in an extended condition to ensure that the actuator stiffness would be similar 

between the conventional and MAM conditions used in this study.  

4.2 Feed-Direction MAM 

All experiments for feed-direction MAM were performed in Ref. [27] and a new analysis of the 

same data sets is provided here using the analysis framework described in Chapter 5. 

A. Experimental setup  The MAM experiments were performed using a computer 

numerical control (CNC) lathe (Miyano, Model BNC42) outfitted with a custom-built piezo-

actuation device capable of achieving a sinusoidal motion. A boring tool (0deg rake, 5deg relief) 

was mounted to this actuator and oriented such that the configuration also approximated 

orthogonal cutting. While the use of a piezo-ceramic actuator to cause the sinusoidal motion of 

a tool is similar to that in the preceding section, the key difference in this series of experiments 

is that the sinusoidal motion is effected in a direction transverse to the cutting velocity and in the 

direction of tool feed. A three-axis load washer (Kistler, Model 9027A) was mounted between 

the boring tool holder and the piezo device such that it was capable of sensing the cutting loads. 

The spindle speed and feed rate (e.g., undeformed chip thickness) were controlled by entering 

the respective parameters into the controller of the CNC lathe. Finally, the oscillatory motion of 

the tool was controlled in a similar manner as described above for velocity-direction modulation, 

that is, by means of a similar waveform generator and voltage amplifier. 

The term displacement is used in the context of the CNC lathe to refer to the location of the 

boring bar’s cutting edge relative to that of the workpiece. Increasing values of displacement 

indicate that the turret is feeding the tool into the workpiece. Since the undeformed chip 

thickness, or instantaneous feed, is the difference between the displacement profiles of the 

current and previous pass, it is also sinusoidal in nature (with an offset equal to the feed rate). 

The only deviation from this shape comes in the form of a saturation limit at h0=0, thus 

preventing what would be negative values of undeformed chip thickness. Note that in the case 

of conventional cutting, the amplitude of this sine wave is zero, thus, the instantaneous 

undeformed chip thickness is equivalent to the feed rate of the turret (s). 

B. Experiments  Turning experiments were carried out using AA6061-T6 and 

Ti3Al2.5V tubes which had an outer diameter of 25.4 mm. The wall thicknesses for the 
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aluminum and titanium tubes were 1.24 mm and 1.295 mm, respectively. Each experiment was 

performed with a spindle speed of 1200 rpm (giving cutting speeds of 1.52 and 1.51 m/s for 

aluminum and titanium, respectively). Static feed rates varied between 0.005 mm/rev and 0.050 

mm/rev, which should be noted as being faciliatory to plane strain conditions [1]. A total feed 

length of 0.5 mm was used for the 0.005 mm/rev case and 2.0 mm was used for all other cases. 

Modulation frequencies of 10, 50, 100, and 110 Hz were each used, effecting fm/fw ratios of 0.5, 

2.5, 5.0, and 5.5, respectively. Data was sampled at a rate of fs=5 kHz. The piezo-ceramic 

actuator received a sinusoidal voltage signal of amplitude 60V in all cases. A list of the 

conditions tested using the lathe is given in Table 4.3. Note that only one trial was performed for 

each condition. 

Note: see Table 4.4 for a list of various mechanical and thermal properties for the workpiece 

materials used in the present study. 
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Figure 4.1: Solid model of computer-controlled planer. Components include linear stage (light 

blue), piezo-actuator (violet), capacitance probe (dark green), linear slide (yellow), work fixturing 

platform (black), workpiece and tool (red), tool holder (dark blue), force transducer (light green), 

vertical stage (tan). 

 

 

Figure 4.2: Profile of cutting edge prior to experimental trials. 
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Figure 4.3: Locations along tool assembly at which compliance was checked as reported in 

Table 4.1. 

 

 

Figure 4.4: Tested “linear” motion of stage for VDC=0.05 mm/s with high gain settings (P, D, I) = 

(25.0, 4.4, 0). 
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Figure 4.5: Tested “linear” motion of stage for VDC=0.05 mm/s with low gain settings (P, D, I) = 

(8.3, 3.6, 0). 

 

 

 

Figure 4.6: Analysis of modulated cut using the high gain settings. Note the constancy of Vdc. 
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Figure 4.7: Analysis of modulated cut using the low gain setting. Note the lack of constancy in 

Vdc. 

 

 

Figure 4.8: Pre-amplified 10 Hz sinusoidal voltage signal and resulting motion of work holder 

platform. Post amplified signal sent to piezo actuator was 90 V peak to peak. 
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Figure 4.9: Orientation of cutting direction force, Fp, and its transverse counterpart, Fq. 

 

 

 

Figure 4.10: Decoded motion profile of linear stage resulting from a commanded motion of 

distance D=25mm at velocity V=10mm/s followed by a motion of distance D=-25mm at velocity 

V=5mm/s. 
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Figure 4.11: Analog and digital voltage measurements of identical signals from encoder. The 

two tracks, A and B, are a result of the use of quadrature encoding. 

 

 

 

Figure 4.12: Workpiece drawing: note that the planer experimental cutting trials removed 

material from the 1mmx1.5mm cross-section. 
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Table 4.1: Average forces and corresponding local compliance values (normalized by Fp,avg) of 

planer setup for various conventional cutting conditions. Note that Fp and Fq are in the direction 

of and tangent to the cutting velocity, respectively. 

 

 

 

 

Table 4.2: List of workpiece materials and cutting conditions tested using CNC planer (velocity-

direction MAM). 
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Table 4.3: List of workpiece materials and cutting conditions tested using CNC lathe (feed-

direction MAM). Note that a spindle speed of 1200rpm was used throughout. 

 

 

Table 4.4: Various mechanical and thermal property values for the workpiece materials used in 

this study. 
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Chapter 5: Analysis Methodology 

A fundamental characteristic of modulation-assisted processing methods is that controllable 

process parameters are modulated over a range of values so as to affect desirable changes in 

baseline performance. In the present study, controllable machining parameters for modulation-

assisted machining include cutting speed and undeformed chip thickness. In conventional 

machining configurations, performance measures such as instantaneous power dissipation and 

energy consumption are usually sensitive to these inputs within a parameter space whose 

breadth is material-dependent. In this regard, it is unsurprising that many have reported that the 

use of modulation has a marked effect on performance for a number of machining 

configurations [3,7,9,16-24,26-30]. Explanations of these effects usually cite fundamental 

differences between thermo-mechanical response in modulation-assisted versus conventional 

processing methods; these include but are not limited to: lower yield stresses due to enhanced 

dislocation generation [31], reduced friction due to enhanced contact lubrication [3] and incipient 

straining associated with smaller removal volumes [32]. While each is plausible for explaining 

the observed differences, it often is not recognized that the time-varying nature of the machining 

parameters may also affect overall performance. In this regard, insufficient consideration has 

been given to explicitly resolving whether parameter modulation simply modifies the temporal 

distribution of the output measures (e.g., force) or whether it fundamentally alters the nature of 

thermo-mechanical response underlying deformation in material removal.  

The purpose of this section of the thesis is to address how the character of functional 

relationships between output measures (e.g., instantaneous power) and controllable machining 

parameters in conventional processing configurations can be used to understand the role of 

parameter modulation in affecting performance in modulation-assisted configurations. 

5.1 Discretization of the cutting process 

The cutting process in modulation-assisted machining can be modeled as a discretization of that 

which occurs in conventional cutting. In the limit wherein parameters controlling modulation 

(e.g., frequency, amplitude) tend toward zero, machining parameters (e.g., undeformed chip 

thickness, cutting velocity) are constant and this process approximates one of continuous 

material removal. In contrast, for configurations wherein parameters controlling modulation are 

non-zero, modulation can be used to affect significant changes to characteristics of the material 

removal process, such as periodic contact separation and/or oscillatory loading. It is unclear 
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whether the presumption holds that the cutting process in these latter scenarios is simply a 

discretization of that which occurs in conventional cutting or whether fundamental differences 

exist for the unit events in modulation-assisted machining. Instantaneous power consumption 

and overall energy expenditure are output measures that together can be used to probe this 

question. If the underlying nature of both of these output measures is fundamentally different 

with the application of modulation, then the notion of discretization of the conventional 

machining process is suspect.  

Instantaneous power consumption is useful in evaluating maximum power requirements and 

energy expenditure during cutting. The expended energy is simply obtained by integration of the 

power distribution over time. In conventional machining, cutting power (and force) saturates 

rapidly after the start of chip formation to a plateau whose magnitude is related to a host of 

controllable input parameters including speed, undeformed chip thickness, rake angle, etc. This 

nominal cutting power is generally maintained until chip formation ceases. In the case of milling, 

the power consumption may vary dynamically over time since each tooth of the tool will typically 

engage and disengage the workpiece once per spindle revolution. However, this can still be 

viewed as a static parameter process, since the processing parameters – most notably cutting 

speed and undeformed chip thickness – are held relatively constant throughout the duration of 

each cut.  

In contrast, the power consumption profile in modulation-assisted machining is time-varying 

since the processing parameters are themselves intrinsically dynamic. In this view, the nature of 

load response can be expected to be similar in modulation-assisted machining as in 

conventional machining, where instantaneous force dissipation and power consumption are 

both dictated by the instantaneous cutting parameters. In this regard, it is important to establish 

the manner in which cutting power in conventional machining changes as a function of input 

parameters, particularly those modulated in the current study: undeformed chip thickness and 

cutting velocity.  

5.2 Effects of parameter modulation on power 

The effects of parameter modulation can be generalized to represent behavior for any 

modulation configuration. Consider an arbitrary machining parameter, X, whose value can be 

modulated with respect to time in modulation-assisted machining. For example, in feed 

modulation, this parameter would be the undeformed chip thickness. For a modulation 
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configuration that directly affects X, the instantaneous value of X is given by X=Ksin(2πfmt)+X0 

where K is modulation amplitude (in units of X), fm is modulation frequency, t is time and X0 is 

the initial value of X. Considering the sinusoidal nature of this relationship, the value of X can 

vary over a range [-K+X0, K+X0]. Consider also that instantaneous power consumption has 

historically been taken as the cutting force multiplied by the instantaneous cutting speed [1]. If a 

dependent relationship exists between parameter X and instantaneous power (denoted as P), it 

follows that P will also be time-varying in the case of modulation and will vary between some 

maximum and some minimum value. A straightforward method to determine this instantaneous 

power is to correlate it with load response at an equivalent value of X in conventional machining. 

This dependent relationship, P(X), can be established empirically by evaluating the 

instantaneous value of P for a range of input X’s in conventional machining configurations. For 

example, if X represents undeformed chip thickness, the P(X) relationship can be evaluated by 

measuring machining power for a range of undeformed chip thicknesses in conventional 

machining. Such a method inherently assumes that the underlying thermo-mechanical response 

is the same in modulation-assisted machining as it is in conventional machining. While the 

validity of this assumption has yet been established, it can be tested through comparisons made 

of predicted power dissipation and actual power dissipation.  

5.3 Effects of parameter modulation on energy 

If the validity of the above approach is established, knowledge of the P(X) relationship in 

conventional machining enables first-pass prediction of instantaneous power consumption in 

modulated machining conditions wherein the value of X is controllable. Furthermore, the total 

energy expended during machining can be found according to ∫      . However, direct 

comparisons between energy expended in conventional machining and that consumed in 

modulation-assisted machining are non-trivial. In conventional machining, the power 

consumption during a cut is relatively time-invariant (represented as P0) and the machining 

parameter value is constant (X0). This can be compared with modulation configurations, where 

power dissipation is given by P(X) where X is a function of time. Thus, one-to-one comparison 

with P0 requires determination of a weighted power value, Peff, for modulation-assisted 

machining. In this case, there exists an effective modulation parameter Xeff such that Peff=P(Xeff). 

It is not difficult to show that the nature of P(X) ultimately influences the values of Peff and Xeff. 

Consider first the expected value of the modulated parameter, E[X]~X0, for the probability 

density function (Fig. 5.2) of the driving sinusoidal function. The power dissipated at this 

parameter value is equivalent to that dissipated in conventional machining such that 
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P(E[X])=P(X0)=P0. In contrast, Peff is given by the expected value of the power function, 

E[P(X)]=Peff. The value of Peff relative to P0 can be shown to be dependent on the curvature of 

P(X) through Jensen’s inequality. Jensen’s inequality states that for a random variable ‘y’ that 

takes values in an interval over which a given function f is convex, then E(f(y)) ≥ f(E(y)) where 

E(y) is the geometric mean of y over its range. Further, the inequality reverses direction when 

the function f is concave and the two sides are equivalent when the function f is linear [33]. This 

can be graphically visualized in Fig. 5.3. With regard to power dissipation in modulation-assisted 

machining, this indicates that: (i) Peff≥P0 if the P(X) curve is convex, (ii) Peff≤P0 if the P(X) curve 

is concave and (iii) Peff=P0 if the P(X) curve is linear.  

From the above analysis, one may be able to determine a priori the effects that parameter 

modulation has on energy consumption through an understanding of response under a range of 

conventional, or static, machining conditions. This requires knowledge as to whether the 

corresponding static P(X) relationship is convex, concave, or linear over the range of the 

modulated parameter space. For configurations wherein cutting speed or undeformed chip 

thickness is modulated, P(X) often is linearly related to the modulated parameter X over a broad 

parameter space [10,34]. However, several studies have pointed to non-linear behavior at 

extreme conditions. Specifically, the P(X) curve can exhibit convex or concave nature at low 

values of cutting speed and/or undeformed chip thickness, respectively [10,11].  

5.4 Empirical characterization of load response and power dissipated 

While Peff will ultimately be useful in exploiting the conventional machining and MAM energy 

inequality, the validity of using a P(X) relationship, calibrated on a range of conventional 

machining data, to predict instantaneous power dissipation in modulation-assisted machining 

must first be established. This, as described above, can come from a direct comparison of 

predictions using P(X) against empirically obtained measurements in MAM. To establish the 

P(X) relationship, the instantaneous value of P can be measured for various values of X in 

conventional machining and a least-squares fit of the data can be made to approximate P(X). In 

practice, power oft is not measured directly in machining experiments; it usually is inferred from 

measurements of force response F made through dynamometry. Recall that the cutting power in 

machining is historically given as the product of the cutting force Fp and the cutting velocity V. It 

is simple to posit that the force dissipated as a function of X, e.g., Fp(X), can be used to 

establish P(X). An understanding of an appropriate general form to fit Fp(X), where X is cutting 

velocity or undeformed chip thickness, can come from literature. 
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A. Velocity-direction MAM Research performed by Maan and co-workers indicates that, for 

steels cut at low speeds, there exists an approximately logarithmic relationship between specific 

energy and cutting speed [11]. This can be seen in Fig. 5.4, where the specific energy is plotted 

against the log-scaled cutting speed. This results in a linearized relationship between the 

variables which is most readily fit according to e(X) = A’*ln(X) + B’ where e is specific energy in 

J/mm3, X is cutting velocity in mm/s, and A’ and B’ are fitting parameters. From this, the cutting 

force (Fp) can be easily back-formulated into the equation       [ ]    where the fitting 

constants A and B are equivalent to h0w0A’ and h0w0B’. The parameters h0 and w0 represent 

undeformed chip thickness and workpiece width, respectively. The parameters of A and B can 

be found through the least-squares technique. Specifically, if M*p=r where M is a matrix of size 

(n x q) containing elements of the fitting function, p is a vector of size (q x 1) containing the 

fitting parameters and r is a vector of size (n x 1) containing the data to be fit, then the fitting 

parameters can be solved according to p = (MTM)-1*MT*r. After the fitting parameters are 

determined, the power dissipation relationship is simply written as              [ ]      

      where X has units of mm/s and P has units of Watts. The curvature of this relationship 

can be evaluated through determination of the second partial derivative of P with respect to X, 

thus yielding the quantity A/X. Considering that A can be any real number, the P(X) will be 

convex when A>0, linear when A=0, and concave when A<0. 

B. Feed-direction MAM An understanding of the relationship between cutting force and 

undeformed chip thickness comes from Ref. [10], where a roughly linear relationship between 

undeformed chip thickness (h0) and cutting force (Fp) is found for h0>0.1 mm in plain carbon 

steel (see Figure 5.5). In the same figure, it was observed that at h0<0.1 mm, the cutting force 

tended toward zero. The linear portion of this trace is classically referred to as an oblique 

asymptote and occurs in functions whose denominator is of order exactly 1 greater than that of 

the numerator. In order to ensure intersection with the origin, the asymptote’s y-intercept must 

be cancelled out by a term in the function that must also independently go to zero for large 

values of the abscissa (so as not to affect the linear asymptote). From this, a general form for 

Fp(X) can come as          
 

    
 where X is undeformed chip thickness (units of um) 

and A, B, and C are fitting parameters, each of which must be a real number greater than or 

equal to zero. The equation of this asymptote can be found by making X sufficiently large; this 

effectively drives the B/(C*X+1) term to zero and leaves the linear part of this expression, 

A*X + B, unaffected. It is important to note that the equation for force is linear with respect to 

parameters A and B, but non-linear with respect to C. An approach to quantify these parameters 
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may be as follows: the values for A and B can be determined by fitting a line through two 

empirically-obtained data points, then C can then be determined using the Newton-Raphson 

iterative algorithm to minimize the residual sum of squares. Given Fp(X), the P(X) equation can 

be written as      [      
 

    
] where VDC has units of m/s and P has units of Watts. 

Computing the second partial derivative of P with respect to X yields (-2*V*B*C2)/(C*X+1)3. 

Considering that A, B and C must each be real numbers greater than or equal to zero, P(X) in 

this form will be linear when B and/or C is zero and will be concave when B and C are non-zero. 

5.5 Numerical analysis methods 

Data processing was handled using two custom Matlab scripts: one designed for data collected 

from the planer setup and the other for the lathe. These scripts are provided in Appendices G 

and H. The main features of the codes include the determination of a best-fit function for X, 

force prediction based on X and the determination of both actual and predicted specific energy 

consumption. Both numerical routines automatically identify the times at which cutting is initiated 

and when it ends based on the magnitude of Fp and plots these boundaries using green and 

red dashed lines, respectively. The use of Fp to characterize these critical time values is 

justified due to the close correspondence between the Fp and Fq traces and the lower signal to 

noise ratio present in Fp as compared to Fq. In data collected using both the planer and lathe 

machines, it is common for the force values seen at the beginning and end of the cuts to be 

somewhat different from those seen in the middle, or “steady-state,” portion of the cut. Thus, 

each routine evaluates cutting velocity, power, and energy based on a specified window of data. 

For the planer, this window begins 5 mm into the cut and ends 20 mm into the cut. For the lathe, 

the window begins 0.1 mm into the cut and ends 0.1 mm before the cut finishes. The beginning 

and ending of each window is represented using thin green and red dotted lines, which naturally 

occur inside the boundary limits of the overall cut. Lastly, the routines also use the Fp trace to 

determine the times at which each plateau begins and ends and identifies these times using 

green dots and red x's, respectively, which are positioned along the abscissa. 

A primary difference between the two codes is the numerical integration scheme by which 

cutting energy is calculated. From traditional metal cutting mechanics, the total energy (E) 

consumed in a material removal process is E=Fp*Veff*Δt [1]. For both the planer and lathe data, 

a numerical technique for rectangular integration can be expressed symbolically as 

E=Σ[Fpi*dxi]=Σ[Fpi*Veffi*dti]. Note that the use of majuscule E is important here as the energy 

has not been normalized by volume. Due to the small dt’s used (1e-4 and 2e-4 s for planer and 
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lathe data, respectively), trapezoidal integration was found to yield nearly identical results 

(<0.01% difference). For feed-direction modulation, the rectangular integration technique 

simplifies to E=VDC*dt*Σ[Fpi] since Veff and dt are constant as a function of time. However, this 

is not the case for velocity-direction MAM wherein Veff is time-varying. In this case, energy is 

calculated according to E=dt*Σ[Fpi*Veffi]. Once energy has been obtained, the quantity can be 

normalized by volume. 

Both routines were validated by first analyzing simulated, noise-free control data. Estimated 

values for amplitude and frequency of X, as well as actual and predicted specific energy were 

compared against pre-programmed values (e.g., Figs. 5.7-5.10) and the results of such are 

given in Tables 5.1-5.2. The theoretical values for amplitude and frequency of X were 

determined analytically while the specific energy values were determined using offline numerical 

integration using time steps (dt) at least three orders of magnitude smaller than those of the 

analysis codes. As can be seen in the figures and in the tables, the computational scheme used 

here tracks well with the expected result in the simulated cases presented. Finally, it should be 

noted that saturation limits were designed into the routine such as to prevent negative values for 

predicted power. This is justified by the assumption that the machining system is perfectly rigid; 

thus, cutting forces can only exist as positive values and are concurrent with the forward 

advancement of the tool through the work. 
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Figure 5.1: General shape of convex, linear and concave functions. 

 

 

Figure 5.2: Probability density, λ, of the sine function. 
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Figure 5.3: Graphical explanation of P/X variables and their relative magnitudes for a convex 

function. 

 

 

Figure 5.4: Reference indicating logarithmic relationship between cutting speed and specific 

energy consumption [11]. 
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Figure 5.5: Reference indicating oblique asymptote for force-undeformed chip thickness 

relationship at high values of the abscissa and tending toward the origin at low values [10]. 

 

 

Figure 5.6: Examples of 0% (a), 50% (b) and 100% (c) MAM, calculated based on range of 

cutting force. 
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Figure 5.7: Results from numerical analysis of artificial data simulating a conventional cut at 

Vdc=1.00mm/s using planer machine. 
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Figure 5.8: Results from numerical analysis of artificial data simulating velocity-direction MAM at 

Vdc=1.00mm/s, fm=10Hz, K=15.92um, 100% MAM using planer machine. 
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Figure 5.9: Results from numerical analysis of artificial data simulating a conventional cut at 

s=0.020mm/rev, w=1200rpm using lathe. 
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Figure 5.10: Results from numerical analysis of artificial data simulating feed-direction MAM at 

s=0.020mm/rev, w=1200rpm, fm=10Hz, K=0.010mm, 100% MAM using lathe. 
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Table 5.1: Comparison of theoretical values with those found using velocity-direction Matlab 

analysis routine 

Velocity-
Direction 

MAM 

Theor. Act. Pred.   Theor. Act.   Theor. Act. 

e e e   fm fm   K K 

(J/mm^3) (J/mm^3) (J/mm^3)   (Hz) (Hz)   (um) (um) 

Conventional 0.2000 0.2000 0.2000   - -   - - 

100% MAM 0.2061 0.2061 0.2061   10.000 10.000   15.916 15.916 

 

 

Table 5.2: Comparison of theoretical values with those found using feed-direction Matlab 

analysis routine 

Feed-
Direction 

MAM 

Theor. Act. Pred.   Theor. Act.   Theor. Act. 

e e e   fm fm   K K 

(J/mm^3) (J/mm^3) (J/mm^3)   (Hz) (Hz)   (um) (um) 

Conventional 1.3333 1.3333 1.3333   - -   - - 

100% MAM 1.2764 1.2764 1.2765   10.000 9.999   10.000 9.996 
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Chapter 6: Results 

6.1 Velocity-direction MAM  

A. Forces and displacements  Fig. 6.1 shows the measurement of force dissipated in 

conventional machining of AA6061-T6 at 0.05 mm/s with an undeformed chip thickness of 20um 

as well as the displacement (and velocity) of the linear stage over time. From the figure, it is 

clear that the cutting force, Fp, and the tangential force, Fq, rapidly rise and fall at the start and 

end of cutting, respectively. In the steady-state region, Fp and Fq are relatively constant over 

the length of the measurement at Fp,plat=19.86±1.15 N and Fq,plat=6.28±0.82 N, respectively. 

Figs. 6.2 and 6.3 show similar measurements at higher cutting speeds of 0.50 mm/s and 1.00 

mm/s, respectively. While the magnitudes of the cutting and tangential forces appear quite 

similar of that of the low speed case, the length of the traces is noticeably smaller due to the 

higher velocities used. Figs. 6.4-6.6 show the force dissipated in conventional machining of OFE 

Cu under equivalent machining conditions. From these figures it is clear that the nature of the 

traces is fundamentally similar to that of the AA6061-T6 measurements. However, the force 

dissipated is not constant across the range of velocity; at the lower end of the velocity range, Fp 

is noticeably lower at 14.70±0.71 N for 0.05 mm/s compared to 20.04±0.99 N for 1.00 mm/s. A 

summary of these measurements is provided in Table 6.1. 

The force response in modulation-assisted machining is quite different than that which occurs in 

conventional machining. Fig. 6.7a shows the force dissipated and displacement measurement in 

modulation-assisted machining the aluminum alloy at 0.50 mm/s, 10 Hz and 19 um amplitude. 

This same trace is shown at higher magnification over a smaller time range in Fig. 6.7b. The 

displacement of the workpiece with respect to time, which was linear in the conventional 

machining case, now also exhibits sinusoidal character due to the application of the modulation. 

The effective cutting velocity, as a result, exhibits sinusoidal character. These effects cause the 

force signature to contain clear periodicity, with a plateau value that occurs between trace 

segments where the force rises and falls to local minimum values (Fp,min>0 N and Fq,min≈0 

N). The beginning and end of these valleys in the force signature correspond to periodic 

separation of the tool from the workpiece. The load observed at the plateau in the force trace is 

concurrent with maximal advance of the tool into the workpiece. From the figure, the forces 

have plateau values of Fp,plat=20.37±0.81 N and Fq,plat=4.88±0.29 N, similar to that seen in 

the conventional machining case for a speed of 0.50 mm/s. A similar trend as that seen for 

AA6061-T6 is seen in the modulation-assisted machining of OFE copper (Fig. 6.8a and 6.8b), 
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where modulation changed the nature of the force trace and resulted in similar plateau values 

as those observed in conventional machining at a similar initial cutting speed.  

B. Power dissipated  The instantaneous power dissipated in modulation-assisted 

machining also exhibited periodicity due to the periodicity in instantaneous velocity and in 

instantaneous force Fp. The peak power values occur simultaneously with the peak effective 

cutting velocities. Unlike the cutting force, the peak power dissipated during modulation-assisted 

cutting ~.025W is significantly larger than that which was measured for conventional machining 

(~.010W). This was attributed to the fact that the instantaneous velocity at these peak power 

values was higher than in conventional machining. Figs. 6.9 and 6.10 show the effect of cutting 

velocity on power dissipated in conventional machining of both materials. From the figures, it is 

clear that power dissipated increases monotonically with cutting speed. To derive an empirical 

relationship between power and cutting velocity, P(X), where X is the modulated variable 

(cutting velocity), conventional machining data was fitted according to the function    

   [ ]    where Fp has units of N and X of mm/s, as described in Chapter 5. A least squares 

fit of the AA6061-T6 conventional machining data yielded constants of A=0.543 and B=21.5 with 

a resultant R2=0.972. Fitting the OFE copper conventional machining data in a similar fashion 

yielded A=1.72 and B=19.4 with an R2=0.926. These same coefficients were incorporated to fit 

the P(X) relationship for the aluminum alloy and the copper, yielding values of R2=1.000 and 

R2=0.998, respectively. The fit curves are also plotted in Figs. 6.9 and 6.10. From the figures, a 

greater degree of convexity in P(X) is evident for the copper (∂2P/∂X2=1.1e-3 for X=0.5 mm/s) 

than for the aluminum alloy (∂2P/∂X2=3.4e-3 at X=0.5 mm/s). For both materials, it is clear that 

the P(X) relationship is a good indicator of instantaneous power in modulation-assisted 

machining. 

C. Energy consumption For conventional machining, cutting energy (E) was obtained by 

numerical integration of the cutting force (Fp) measurement and the instantaneous velocity data 

from the encoder. This quantity was then normalized by volume to obtain specific energy 

consumption (e) (see Chapter 5). The specific cutting energies for conventional and modulation-

assisted machining of AA6061-T6 at VDC=0.50 mm/s were 1.056±0.021 J/mm3 and 1.047±0.013 

J/mm3, respectively (Fig. 6.11). In order to qualify these results statistically, a hypothesis test 

was performed with a null hypothesis of h0: ēconv=ēmam and alternative of h1: ēconv<ēmam, where ē 

represents the sample’s average specific energy value. The null hypothesis was not rejected for 

an α=0.05 level of significance. A plot of the probability density functions for conventional 

machining and modulation-assisted machining can be seen in Fig. 6.12. From this figure, one 
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can see the relative degree of similarity between the statistically expected energy consumption 

values for these cases. The specific cutting energy for OFE copper was also evaluated. For 

conventional machining, the specific energy was 0.921±0.020 J/mm3 while that of modulation-

assisted machining was 0.947±0.019 J/mm3, (see Fig. 6.13). The same hypothesis test was 

performed for copper and it was determined that the null hypothesis should be rejected at the 

α=0.05 level of significance. Thus, it can be said that modulation-assisted machining requires 

more energy than conventional cutting in OFE copper at a 95% confidence level. A plot of the 

probability density functions for conventional and modulated cutting can be seen in Fig. 6.14. 

From this, it is easy to see the difference between the statistically expected energy values for 

these two types of cutting. To summarize, the specific cutting energy for modulation-assisted 

machining is seen to be higher for OFE copper and approximately the same for AA6061-T6 

when compared with that of conventional machining. These general trends are not surprising 

considering the P(X) relationship for both materials, which exhibited more convexity in the case 

of OFE copper. 

6.2 Feed-direction MAM 

A. Forces and displacements  Figs. 6.15-6.17 show measurements of force dissipated in 

conventional machining of AA6061-T6 over a range of feed rates from 0.005 mm/rev to 0.050 

mm/rev. From the figures it is clear that the morphology of the force traces is quite similar to that 

of the earlier conventional machining experiments, but the range over which it increases is 

significantly higher. For example, the cutting force at a feed rate of 0.005 mm/rev was 

Fp,plat=21.29±1.31 N while that at 0.050 mm/rev was Fp,plat=75.72±4.04 N. Figs. 6.18-6.20 

show similar measurement in Ti3Al2.5V at equivalent feed rates as in the aluminum alloy. From 

these figures it is clear that the nature of the traces is fundamentally similar to that of the 

AA6061-T6 measurements. However, the magnitudes of the forces are clearly higher due to the 

titanium alloy’s intrinsically higher strength. The cutting force increased from Fp,plat=32.38±0.72 

N for 0.005 mm/rev to Fp,plat=120.38±2.26 N for 0.050 mm/rev. The measurements for 

conventional machining of both alloys are summarized in Table 6.2.  

As was the case in velocity-direction modulation, the force response in feed-direction 

modulation is quite different than that which occurs in conventional machining. Fig. 6.21a shows 

the force dissipated and displacement measurement in feed-direction modulation-assisted 

machining for the aluminum alloy at 0.020 mm/rev, 10 Hz and 14.5 um amplitude. This same 

trace is shown at higher magnification over a smaller time range in Fig. 6.21b. The displacement 
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of the tool with respect to time, which was linear in the conventional machining case, now 

exhibits sinusoidal character due to the application of the modulation. The sinusoidal 

displacement of the tool, as described in Chapter 3, causes the effective undeformed chip 

thickness to have sinusoidal character when fm/fw is an odd integer multiple of 1/2. This 

characteristic is also seen for modulation frequencies of fm=[50, 110 Hz], where the modulated 

amplitude is K=[15.0, 13.4 um] (see Figs 6.22a,b and 6.24a,b). The modulation of chip 

thickness causes the force signature to exhibit periodicity as well, with a plateau value that 

occurs between trace segments where the force rises and falls to zero. The load observed at 

the plateau in the force trace is concurrent with the maximum undeformed chip thickness. From 

Figs. 6.21a,b, the forces at 10 Hz have plateau values of Fp,plat=58.17±0.65 N and 

Fq,plat=50.25±1.49 N, both significantly higher than those seen in conventional machining with 

a constant undeformed chip thickness of 0.020 mm where Fp,plat=43.53±2.49 N and 

Fq,plat=37.95±3.67 N.  

When the ratio fm/fw is an even integer multiple of 1/2, the undeformed chip thickness is 

expected to be constant as described in Chapter 3. This is shown in Figs. 6.23a,b for the 

aluminum alloy when fm=100 Hz. In this case, the force levels are constant despite the 

sinusoidal motion of the tool due to the constant undeformed chip thickness. Further, the 

magnitudes of the plateau forces, Fp,plat=43.19±1.60 N and Fq,plat=37.73±2.60 N, are seen to 

be similar to those of conventional machining with a constant undeformed chip thickness of 

0.020 mm. Similar observations to those above can be made for the Ti3Al2.5V material, albeit at 

a higher force range. The force traces for the Ti3Al2.5V material are provided in Figs. 18-20 and 

25a-28b and a summary of the measurements for both materials is provided in Table 6.2. 

B. Power dissipated  Modulation of the undeformed chip thickness caused periodic 

variation of power dissipation in both the aluminum and titanium alloys. Figs. 6.29 and 6.30 

show the effect of undeformed chip thickness on power dissipation in conventional machining. 

From the figures, it is clear that power dissipated increases monotonically with increases in 

undeformed chip thickness. To derive an empirical relationship between power and undeformed 

chip thickness, P(X), where X is the modulated variable (undeformed chip thickness), 

conventional machining data was fitted according to the function          
 

    
. For 

AA6061-T6, this yielded the fitting parameter values of A=0.869, B=32.3, and C=0.258, yielding 

R2=0.992 when Fp has units of N and undeformed chip thickness units of um. For Ti3Al2.5V, 

these constants were determined to be A=1.94, B=23.4, and C=6.44, yielding R2=1.000. The 
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same fitting parameters were used to characterize the power dissipation data in conventional 

machining and the R2 values were equivalent to those of the Fp(X) relationship as Fp(X) and 

P(X) have essentially identical shapes. Recall that for feed-direction modulation, P=F*V where V 

is constant. This can be compared with velocity-direction modulation where V is a function of 

time (see Figs. 6.1-6.8). Recall, from the discussion in Chapter 5, that the degree of concavity 

for the P(X) fit is related to the term (-2*V*b*c2) / (c*X+1)3. For X=20um, this term equates 

to -2.8x10-2 and -1.3x10-3 for AA6061-T6 and Ti3Al2.5V, respectively, indicating a greater 

degree of concavity for the aluminum alloy.  

These empirically-derived P(X) relationships were then used to predict instantaneous power 

dissipation in modulation-assisted machining in the feed direction by using the measured 

instantaneous undeformed chip thickness derived from the displacement data; this is plotted in 

Figs. 21a-28b in red on the power traces. From the figures, it is clear that the P(X) relationship 

is generally a good indicator of instantaneous power in modulation-assisted machining, but 

noticeably over-predicts the peak in power dissipation for both materials. 

C. Energy consumption For conventional machining, cutting energy (E) was obtained by 

numerical integration of the cutting force (Fp) measurement and the instantaneous velocity data 

from the encoder. This quantity could then be normalized by volume to obtain specific energy 

consumption (e) (see Chapter 5). Note the difference between this method and that used in 

velocity-direction modulation: here cutting velocity is constant and an effective velocity due to 

modulation is not necessary to determine power dissipation. As a result of this integration, the 

specific energy for conventional cutting of AA6061-T6 was found to be e=1.76 J/mm3. This 

value compares to those values found under modulation conditions at fm=[10, 50, 100, 110 Hz] 

where e=[1.60, 1.58, 1.74, 1.54 J/mm3]. This is summarized in Fig. 6.31 and Table 6.2. Note 

that in cases wherein fm/fw is an odd integer multiple of 1/2 (e.g., 10, 50, 110 Hz) that the 

average energy dissipation is noticeably lower than that of the conventional machining case. 

This can be compared with the specific energy for a situation wherein fm/fw is an even integer 

multiple of 1/2 (e.g., 100Hz), which was much closer to that of the conventional machining case. 

Indeed, the predicted values of specific cutting energy are quite close for all frequencies as the 

relative error for each of the modulation frequencies of fm=[10, 50, 100, 110 Hz] were [4.4, 2.6, 

2.8, 0.1%], respectively. This indicates that the parameter modulation effects captured by the 

P(X) curve in conventional machining of the AA6061-T6 material is able to explain the lower 

energy consumption for modulation-assisted machining of the same material.  
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For the titanium alloy, the specific cutting energy was 2.38 J/mm3, again higher than the 

aluminum alloy due to the higher flow stress of the titanium. This corresponding specific cutting 

energy values for modulation conditions at fm=[10, 50, 100, and 110 Hz] were e=[2.15, 2.04, 

2.44, and 2.08 J/mm3], as is shown in Fig. 6.32 and Table 6.2. As in the case of the aluminum 

alloy, the energy dissipated in modulated machining of the titanium was lower only for 

modulation conditions wherein fm/fw was an odd integer multiple of 1/2. However, this behavior 

is at odds with the predicted energy values using the P(X) curve, which were not substantially 

different than in the conventional machining case. The relative error in the predicted specific 

cutting energies for modulation frequencies of fm=[10, 50, 100, 110 Hz] were [9.5, 19.2, 1.7, 

11.4%]. As only one trial was performed for each cutting condition, a statistical analysis like that 

performed for the velocity-direction modulation data would not be practical in this situation. 
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Figure 6.1: Numerical analysis results for AA6061-T6 cut at h0=20um and VDC=0.05mm/s 

using planer. 

 

Figure 6.2: Numerical analysis results for AA6061-T6 cut at h0=20um and VDC=0.50mm/s 

using planer. 
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Figure 6.3: Numerical analysis results for AA6061-T6 cut at h0=20um and VDC=1.00mm/s 

using planer. 

 

Figure 6.4: Numerical analysis results for OFE Cu cut at h0=20um and VDC=0.05mm/s using 

planer. 
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Figure 6.5: Numerical analysis results for OFE Cu cut at h0=20um and VDC=0.50mm/s using 

planer. 

 

Figure 6.6: Numerical analysis results for OFE Cu cut at h0=20um and VDC=1.00mm/s using 

planer. 
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Figure 6.7a: Numerical analysis results for AA6061-T6 cut using planer at h0=20um, 

VDC=0.50mm/s, fm=10Hz, K=19V. 

 

Figure 6.7b: Close-up of the numerical analysis results for AA6061-T6 cut using planer at 

h0=20um, VDC=0.50mm/s, fm=10Hz, K=19V. 
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Figure 6.8a: Numerical analysis results for OFE Cu cut using planer at h0=20um, 

VDC=0.50mm/s, fm=10Hz, K=16V. 

 

Figure 6.8b: Close-up of the numerical analysis results for OFE Cu cut using planer at 

h0=20um, VDC=0.50mm/s, fm=10Hz, K=16V. 
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Figure 6.9: P(X) trace for AA6061-T6 where X denotes cutting speed. 

 

 

Figure 6.10: P(X) trace for OFE Cu where X denotes cutting speed. 
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Figure 6.11: Specific energy consumption for AA6061-T6 cut with conventional and MAM 

conditions using planer. 

 

 

Figure 6.12: Probability density of t-distribution for AA6061-T6 cut with conventional and MAM 

conditions using planer. 
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Figure 6.13: Specific energy consumption for OFE Cu cut with conventional and MAM 

conditions using planer. 

 

 

Figure 6.14: Probability density of t-distribution for OFE Cu cut with conventional and MAM 

conditions using planer. 
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Figure 6.15: Numerical analysis results for AA6061-T6 cut at s=0.005 mm/rev using lathe. 

 

Figure 6.16: Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev using lathe. 
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Figure 6.17: Numerical analysis results for AA6061-T6 cut at s=0.050 mm/rev using lathe. 

 

Figure 6.18: Numerical analysis results for Ti3Al2.5V cut at s=0.005 mm/rev using lathe. 



60 
 

 

Figure 6.19: Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev using lathe. 

 

Figure 6.20: Numerical analysis results for Ti3Al2.5V cut at s=0.050 mm/rev using lathe. 
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Figure 6.21a: Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=10Hz, 

K=60V using lathe. 

 

Figure 6.21b: Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=10Hz, 

K=60V using lathe. 
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Figure 6.22a: Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=50Hz, 

K=60V using lathe. 

 

Figure 6.22b: Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=50Hz, 

K=60V using lathe. 
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Figure 6.23a: Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=100Hz, 

K=60V using lathe. 

 

Figure 6.23b: Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=100Hz, 

K=60V using lathe. 
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Figure 6.24a: Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=110Hz, 

K=60V using lathe. 

 

Figure 6.24b: Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=110Hz, 

K=60V using lathe. 
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Figure 6.25a: Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=10Hz, K=60V 

using lathe. 

 

Figure 6.25b: Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=10Hz, 

K=60V using lathe. 
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Figure 6.26a: Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=50Hz, K=60V 

using lathe. 

 

Figure 6.26b: Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=50Hz, 

K=60V using lathe. 
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Figure 6.27a: Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=100Hz, 

K=60V using lathe. 

 

Figure 6.27b: Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=100Hz, 

K=60V using lathe. 
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Figure 6.28a: Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=110Hz, 

K=60V using lathe. 

 

Figure 6.28b: Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=110Hz, 

K=60V using lathe. 
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Figure 6.29: P(X) trace for AA6061-T6 where X denotes depth of cut. 

 

 

Figure 6.30: P(X) trace for Ti3Al2.5V where X denotes depth of cut. 
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Figure 6.31: Actual and predicted value of specific energy for AA6061-T6 at various fm/fw ratios. 

 

 

Figure 6.32: Actual and predicted value of specific energy for Ti3Al2.5V at various fm/fw ratios. 
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Table 6.1: List of trials performed using planer (velocity-direction MAM) and their results. All cuts 

were made at h0=20um. Note that e,avg denotes the average specific energy for the empirical 

data and e,pred that resulting from integrating the predicted instantaneous power values. 

 

  



72 
 

Table 6.2: List of trials performed using lathe (feed-direction MAM) and their results. All cuts 

were made at fw=1200 rpm. 
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Chapter 7: Discussion 

The present work involved characterization of load response, power dissipation and energy 

expended as a function of controllable process parameters in conventional machining as well as 

in two configurations of MAM: that is, velocity-direction and feed-direction. A fundamental 

characteristic of these modulation configurations is that instantaneous machining input variables 

of cutting velocity and undeformed chip thickness are modulated over a controllable range of 

values. From the results, it was clear that parameter modulation was an important factor in 

determining the nature of the measured response for most of the modulation-assisted 

machining cases investigated. In this regard, the effects of these parameters on load response 

in conventional machining were found to explain well the nature of the loading behavior in 

modulation-assisted machining. This section of the thesis serves as a discussion of these 

results and introduces potential explanations of this behavior. 

7.1 Velocity-direction MAM 

Conventional machining experiments at different velocities were used to model the correlation 

between cutting velocity and load response (e.g., force, power). The general form of the fit used 

to model the force trace was       [ ]    and that used to model power dissipation was 

             [ ]           , where X is cutting velocity in mm/s and A and B are 

constants. Recall that these generalized expressions were elucidated from cutting experiments 

in soft steels at low speeds [11], and were used here to describe the materials of the present 

study. From the results, it was clear from the high R2 values (e.g., R2>0.998 for both materials’ 

P(X) relationships) of the fits that these general relationships were adequate in modeling the 

effects of machining variables on conventional machining behavior. These fitted power 

dissipation relationships in conventional machining were then used to predict instantaneous 

power dissipation in modulation-assisted machining, wherein values of the independent variable 

X (where X denotes cutting velocity here) varied over time. Figures 6.7b and 6.8b show that the 

predicted power values track the actual power data quite well with small over-prediction (less 

than 3.5%) at peak values. The ability to predict loading behavior in modulation-assisted 

machining in this manner indicates that modulation within the parameter space investigated 

(e.g., low frequency) likely does not modify the underlying mechanics of deformation that occurs 

in conventional machining.  
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With regard to energy consumption, it was found that no statistically significant difference 

existed between the specific cutting energy of conventional machining and that of modulation-

assisted machining of AA6061-T6. On the other hand, conventional machining of OFE Cu was 

found to require less specific energy than velocity-direction MAM. (It should be noted that 

although this difference is statistically significant, it is still marginal in context of the overall 

amount consumed.) These results can be explained by consideration of the nature of the P(X) 

relationships that describe effects in conventional machining of these materials. It was shown 

earlier that the shape of a material’s P(X) curve may have a direct influence on the energy 

expended in machining when X is time-varying. Specifically, for materials with convex forms of 

the P(X) relationship, modulation-assisted machining is expected to require more energy than 

its conventional counterpart. The converse is true for concave forms and the terms are 

mathematically equivalent for linear forms of P(X). Figs. 6.9 and 6.10 show the P(X) 

relationships for both materials; the curvature of the copper P(X) trace is more than three times 

greater that of the aluminum alloy, though both appear fairly linear overall. Thus, it is not 

surprising that the energy differences between conventional and modulated cutting are relatively 

small (<3%) for both materials.  

The physical basis of the slightly more pronounced curvature in the OFE copper P(X) behavior 

can come from an understanding of strain rate effects in deformation. For many strain-

hardening materials, increases in strain rate result in increased flow stress [2] and the degree to 

which a material is affected by strain rate is material-dependent [35-38]. This phenomenon is 

manifested in a measure commonly referred to as strain rate sensitivity (m), which is defined as 

m=ln(σ2/σ1)/ln(  2/  1), where σ is the true stress, EDOT is the strain rate, and subscripts 1 and 2 

refer to the specimens deformed at the lower and higher of the two strain rates, respectively 

[35,37]. The parameter m is usually evaluated at constant strain and temperature. Two common 

methods exist for evaluating strain rate sensitivity. In the first, two samples of the same material 

are deformed under tensile load at different strain rates (  1 and   2) thus generating two curves. 

In the second, a single sample is deformed at a specified strain rate (  1) to some limit and then 

the strain rate is rapidly changed to the higher rate (  2). This is often referred to as a jump test 

[37].  

The first of these methods was performed for both AA6061-T6 and OFE copper at room 

temperature to better understand rate-dependent response of both materials. Cylindrical tensile 

testing specimens were made using a CNC lathe with consideration to ASTM E8. A drawing of 

these specimens is provided in Figure 7.1, modified so as to effect a 1% (.003”) increase in 
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diameter at either end of the narrow section—a common allowance made in order to provide 

some control over the necking/fracture location. Two specimens for each material were tested in 

tension to failure using a uniaxial testing machine (Instron 4206) at strain rates of 3.3x10-4 s-1 

and 3.3x10-3 s-1 and elongation was measured with an extensometer (Instron 2630-037, 2” 

gauge length). It should be noted that these strain rates are expected to be several orders of 

magnitude lower than those in the present study. Loading methods capable of assessing strain 

rate sensitivity at higher strain rates are possible using the Hopkinson bar technique [36,38,39]. 

Engineering stress and strain measured during testing were converted to true stress – true 

strain up to necking according to σT = σE*(1+ E) and  T = ln(1+ E) [40] and results from these 

experiments are provided in Figs. 7.2-7.3. Strain rate sensitivity for each material was calculated 

as a function of strain in the plastic regime. From Table 7.1, OFE Cu exhibited strain rate 

sensitivity approximately an order of magnitude higher (m = 1.07e-2) than that of AA6061-T6 (m 

= 9.17e-4) at their respective yield points. The values for m determined for copper are 

consistent with those found in literature (m=1.4x10-2 at  =.25,   1=.00014s-1,   2=.015s-1) [36]. 

Although no value for m could be found in literature for the AA6061-T6, the order of magnitude 

in Table 7.1 is similar to that of AA2024 at room temperature [37]. The relatively higher strain 

rate sensitivity indicates that the copper is more susceptible to non-linear P(    ) response than is 

the aluminum alloy. This is consistent with the greater degree of convexity exhibited in the P(X) 

trace for copper, where X is the cutting velocity. Regardless of the material or degree of P(X) 

convexity, the dependent relationship between cutting speed and power in conventional 

machining vis-à-vis P(X) characterization was found to be an adequate model to describe the 

loading response in modulation-assisted machining. In this regard, the underlying deformation 

response in velocity-direction modulation under dry conditions is not significantly different than 

that of conventional machining. 

Finally, it should be noted that the effect of system compliance can be seen in the slight 

discrepancies between the force and displacement data. However, the effects of compliance on 

the analysis method used in the present study are insignificant since they merely act to narrow 

the effective performance range of the system. 
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7.2 Feed-direction MAM 

Similar to the method used in the velocity-direction modulation case, conventional machining 

experiments at different undeformed chip thicknesses were used to model the correlation 

between undeformed chip thickness and load response (e.g., power, force). The general form of 

the fit used to model the force trace was          
 

    
 and that used to model power 

dissipation was      [      
 

    
] where X denotes undeformed chip thickness (units of 

um), P has units of Watts, VDC units of m/s, and A, B, C are constants. These generalized 

expressions were elucidated from a study performed on plain carbon steel [10], and were used 

here to describe the materials of the present study. As was the case in velocity-direction 

modulation, high R2 values (e.g., R2 > 0.99 for the P(X) relationship in both materials) indicated 

that these general relationships were adequate in modeling the effects of undeformed chip 

thickness on conventional machining behavior. These relationships were then applied to fit the 

power dissipated in modulation-assisted machining. For both materials, there is a good 

correlation between the actual and predicted power traces except at the peaks in the power 

trace when fm/fw was an odd integer multiple of 1/2 (e.g., fm = 10, 50, 110 Hz), as is seen in 

Figs. 6.21,6.22,6.24 and 6.25,6.26,6.28. This can be compared to the relatively good prediction 

when fm/fw was an integer multiple of 1/2 (e.g., fm = 100 Hz), as is seen in Figs. 6.23 and 6.27. 

The primary difference in both scenarios is that the undeformed chip thickness is time varying in 

the former while it is constant in the latter. In this regard, feed modulation with a constant chip 

thickness more closely resembles a conventional machining configuration. The unexpected 

behavior at the peaks in the power trace for cases of dynamic undeformed chip thickness 

suggests that an additional mechanism is present in these materials when they are cut using 

feed-direction modulation. The effects of such a mechanism on loading response can be 

characterized by the generation of a dynamic P(X) trace, examples of which can be seen in 

Figures 7.4-7.5. It is suggested that such a phenomenon could be due to the assumption that 

undeformed chip thickness is the only significant dynamic processing parameter in feed-

direction MAM. Such is not entirely true however, as rake angle and cutting speed are also 

technically dynamic here. Thus, further studies on this subject may make good use of a more 

robust definition for the parameter X that would somehow combine the respective dynamic 

natures of undeformed chip thickness, rake angle, and cutting speed. 

With regards to specific energy consumption, the amount consumed in conventional cutting for 

each material dropped significantly as undeformed chip thickness increased from low to 
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moderate values before leveling off somewhat (see Fig. 7.6). This trend is in agreement with 

literature already published regarding the size effect [4]. Furthermore, AA6061-T6 and 

Ti3Al2.5V showed similar trends in that the specific energy in modulation-assisted machining 

when the fm/fw ratio is an odd integer multiple of 1/2 (e.g., fm = 10, 50, 110 Hz) was lower than 

when the ratio is either zero (e.g., fm = 0) or when it is an even integer multiple of 1/2 (e.g., fm = 

100 Hz). As was true for the velocity-direction MAM cases, the energy expenditure in feed-

direction MAM can also be explained by consideration of the nature of the P(X) relationships 

that describe effects in conventional machining of these materials. Figs. 6.29 and 6.30 show the 

P(X) relationships for both materials: both are seen to exhibit some degree of concavity in their 

traces. An unexpected outcome in this regard is that both materials showed similar energy 

reductions with the use of modulation, despite the aluminum alloy exhibiting significantly more 

concavity than the titanium alloy (∂2P/∂X2 = -2.8x10-2 in aluminum versus -1.3x10-3 in titanium). 

Regardless, it was shown earlier that in situations wherein P(X) is concave, modulation-assisted 

machining is expected to have lower energy expenditure than conventional machining due to 

the shape of the input power distribution. 

The physical basis of curvature in the P(X) trace for both materials can come from an 

understanding of the effects of undeformed chip thickness and size scale in deformation. In this 

regard, the non-linear response of materials with decreasing sample size has been well 

documented for various types of loading configurations and is commonly referred to as the “size 

effect” when applied to the field of metal cutting [1,4,10,12]. The size effect phenomenon in 

machining has been explained by Shaw through consideration of intrinsic defect density [15]. 

The premise of his theory rests in the notion that the distribution of defects in the material 

affects flow stress in a non-linear manner with changes in depth of cut. Specifically, for smaller 

depths of cut, a fewer number of defects pass through the PDZ that would ultimately give rise to 

slip plane formation. A schematic of this method as applied to orthogonal cutting can be seen in 

Figure 7.7 [15]. This schematic is also used in Shaw’s later publication which serves as a 

literature review on the size effect [12]. 
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Figure 7.1: Drawing of round tensile test specimens fabricated using a CNC lathe. A gradual 

taper is enforced on the narrow section such that either end has a diameter of 0.353” in order to 

control the location of necking/fracture. 

 

 

Figure 7.2: True stress – true strain curves for AA6061-T6 deformed at different strain rates, 

used to determine the strain rate sensitivity parameter, m. 



79 
 

 

Figure 7.3: True stress – true strain curves for OFE Copper deformed at different strain rates, 

used to determine the strain rate sensitivity parameter, m. 

 

 

 

Figure 7.4: P(X) trace for AA6061-T6 demonstrating difference between the static data and 

dynamic data collected at fm=50Hz. 
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Figure 7.5: P(X) trace for Ti3Al2.5V demonstrating difference between the static data and 

dynamic data collected at fm=50Hz. 

 

 

 

Figure 7.6: Specific energy versus undeformed chip thickness for AA6061-T6 and Ti3Al2.5V. 
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Figure 7.7: Figure taken from Shaw [15] used to conceptualize the presence of defects within a 

material and their effect on slip-plane formation. Note here that a denotes defect spacing, d the 

undeformed chip thickness, P an individual slip plane, and Φ the shear angle. 
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Table 7.1: Values for strain rate sensitivity determined empirically for AA6061-T6 and OFE 

copper as a function of true strain. 
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Chapter 8: Conclusions and Future Work 

The present study included a detailed characterization of loading response (e.g., force, power, 

energy) in conventional machining and modulation-assisted machining in the velocity and feed 

directions. It was shown that material response in conventional machining provided the basis for 

an adequate model to describe the loading response in modulation-assisted machining. In this 

regard, it was found that the relationship between power dissipation and a modulated machining 

parameter (e.g., velocity or undeformed chip thickness), P(X), could be determined from 

conventional machining experiments and applied to predict power dissipation in modulation-

assisted machining. This was true for every material tested in velocity-direction modulation 

(AA6061-T6 and OFE Cu) and in feed-direction modulation (AA6061-T6 and Ti3Al2.5V). The 

shape of the P(X) relationship was shown to be important, as convexity in the trace indicated 

that modulated cutting would require more energy than conventional machining. The opposite 

was shown to be true for concave P(X) relationships and the terms were found to be equal in 

the case of linear P(X) relationships. This comparative reasoning is, of course, only valid if the 

underlying thermo-mechanical response of the system with regard to static and dynamic 

variations in processing parameters is constant. The analysis of power consumption and 

specific energy performance parameters indicated this assumption was valid for velocity-

direction modulation of both materials and for feed-direction modulation of the aluminum alloy. 

The predictive analysis correctly indicated that specific cutting energy in velocity-direction 

modulation of AA6061-T6 was approximately the same for conventional cutting. Further, it also 

was able to properly determine that, for OFE Cu, velocity-direction modulation required slightly 

more energy than conventional machining. The convexity of the P(X) relationship for the 

aluminum alloy was approximately three times greater than that of copper and was linked to this 

behavior. Tensile testing experiments indicated that copper has a strain rate sensitivity an order 

of magnitude greater than that of the aluminum alloy at their respective yield points, which is 

consistent with the above findings regarding energy consumption and P(X) convexity. With 

regard to feed-direction modulation, the specific energies required to cut both AA6061-T6 and 

Ti3Al2.5V using modulation were found to be significantly less than those required by 

conventional machining. Although this was an expected result due to the concavity of each 

material’s respective static P(X) trace, the predicted power at peak values of instantaneous 

undeformed chip thickness was found to overestimate the actual power requirement, particularly 

for the titanium alloy. This was evidenced through a dynamic P(X) trace which deviated from the 
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static P(X) trace at large values of undeformed chip thickness (h0>40 um). Thus, although it 

appears that the size effect phenomenon is present in feed-direction MAM, the mechanical 

response of the system to dynamic changes in this processing parameter is different than that 

observed for static changes in undeformed chip thickness. It is suggested that a further study be 

carried out which incorporates the combined effects of undeformed chip thickness, cutting 

speed, and rake angle in the variable X, since each of these is dynamic in nature for feed-

direction MAM. 

Finally, it is suggested that a future study make use of PDZ thickness as an intermediate 

variable relating the processing parameters of cutting speed and undeformed chip thickness to 

specific energy. This would build upon the work performed by Kececioglu who believed that 

both an increase in cutting speed and a decrease in undeformed chip thickness reduced the 

size of the PDZ and thus increased the flow stress of the material [2,14]. Such an approach 

could lead to a better understanding of the physics underlying how processing parameters affect 

energy consumption and whether their effects can be explained in terms of some common 

variable. 
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Appendix A: Photos of planer setup 

 
 

Figure A.1: Desktop PC unit and NI data acquisition assembly. 

 

 

Figure A.2: Close-up of NI data acquisition assembly. Note: Chassis PFI0 outputs trigger and 

chassis PFI1 outputs pulsetrain (dictates sampling rate), both of which are collected by NI-9411. 

The NI-9411 also receives differentially encoded digital data from the rotary encoder (DDC). 

Channels 0/1/2 on the NI-9215 receive -10 to +10V analog signals carrying data regarding 

Fp/Fq/DAC, respectively. 
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Figure A.3: Table holding planer assembly mechanical components (outlined in blue, top) and 

controller housing (outlined in red, bottom) 

 

 

 

Figure A.4: Isometric view of planer assembly, analogous to Fig. 4.1. 
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Figure A.5: Devices used to generate and monitor signal sent to piezo-ceramic actuator. 

Specifically, an Agilent 33220A waveform generator (outline in orange, right), a Kepco BOP 

100-4M voltage amplifier / power supply (outlined in green, bottom left) and a Taktronix 

TDS2024C oscilloscope (outlined in yellow, top left) were used. 
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Appendix B: Program flowchart 

Summary: The following diagram is a flowchart used to represent the interaction between the 

various data sources, acquisition routines, and analysis programs. These programs are 

provided in the following appendices, as indicated by the diagram. 

 

 
 
 
Fig. B.1: Flowchart of data sources  acquisition routines  analysis programs. 
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Appendix C: NI Labview data acquisition VI 

Summary: The Labview VI seen below in Figs. B.1, B.2 was used to collect 3 channels of 

analog voltages and 2 channels of digital voltages simultaneously at a specified sampling 

frequency (10 kHz). The hardware which this program accessed can be seen in Fig. A.2. The 

analog data was stored in a user-named .txt file with the classifier “_A” appended to the end of 

the filename. Similarly, the digital data was stored in its own .txt file with the classifier “_D” 

appended to its filename. Each channel was stored as a separate column in these files. 

Furthermore, each file contained a single headerline detailing the respective gain settings of the 

Fp and Fq charge amplifiers. 

 

Figure C.1: Left half of VI’s block diagram. 
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Figure C.2: Right half of VI’s block diagram. 
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Figure C.3: Front panel of VI. 
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Appendix D: Quadrature decoding routine (Matlab) 

Summary: The purpose of the Matlab code presented here is to decode the digital data sent 

from the rotary encoder and collected via the NI-9411 and Labview into a series of “steps.” Each 

post-quadrature count on the rotary encoder represents a step from which 3 conditions arise: 

either the encoder sees a forward rotation between samplings (step=+1), no rotation (step=0), 

or a backward rotation (step=-1). Once decoded, the routine imports the corresponding analog 

data from a separate text file and incorporates this along with the vector of steps into a new .txt 

file. The original data from the analog and digital files is stored in subfolder, in case future 

reference in required. 

 

%% quadDecoder.m 
% 
% WRITTEN BY: JOSH NORMAN 
% DATE: 10/24/12 
% PROGRAM SUMMARY: DECODES QUADRATURE ENCODER PULSES INTO A FORM OF 
% RELATIVE LINEAR POSITION. DATA IS IMPORTED FROM USER SELECTED "*_D.TXT" 
% FILE WHICH IS IN A 2 COLUMN FORMAT.  COLUMN 1 IS TRACK (A) AND COLUMN 2 
% IS TRACK (B). THE DECODED POSITION DATA IS THEN OUTPUTTED TO A NEW TEXT 
% FILE ALONG WITH RAW DATA FROM THE ANALOG "*_A.TXT" FILE.  THE TWO 
% ORIGINAL .TXT FILES ARE MOVED TO A "RAW" SUBFOLDER IN THE WORKING 
% DIRECTORY IN CASE FUTURE REFERENCE IS REQUIRED. 
%  
% >>>>>>>>>>                MECHANICAL UNIT = mm                 <<<<<<<<<< 

  
clc; close all; clear all; 

  
%% INPUTS 

  
encRes = 8000;              %post quadrature encoder resolution [counts/rev] 
lead = 20;                  %ball-screw lead [MU/rev] 
MUperCOUNT = lead/encRes;   % [MU/count] 

  
%% CHOOSE TXT FILE TO IMPORT 

  
% Select "relevant" files 
wildcard_txt = '*D.txt'; 
files_struct = dir(wildcard_txt);                   %list all encoded _D.txt files in structure 

variable 
files_cell = struct2cell(files_struct);             %list these files in cell 
names_cell = files_cell(1,:);                       %select first row of cell b/c it contains 

names 
names_char = char(names_cell);                      %convert this cell row of names to characters 
[m,n] = size(names_char);                           %use m to know how many files are available 

  
if m==0 
   error('NO ENCODED TXT FILES ARE LOCATED IN CURRENT DIRECTORY') 

   
elseif m<10     %single digit number of files 
   for i = 1:m 
        FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:));     %create character array of 

file options to choose from   
   end 

  
elseif m>=10    %double digit number of files 
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    for i = 1:9 
        FileOptions(i,:) = sprintf('% i) %s',i,names_char(i,:));    %create character array of 

file options to choose from 
    end 
    for i = 10:m 
        FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:));     %create character array of 

file options to choose from 
    end 
end 

  
% Print filenames to workspace 
disp(' ') 
fprintf('\t\t\tANALYSIS OF EXPERIMENTAL DATA') 
fprintf('\n\n') 
disp(FileOptions)                                       %print list of numericized _D.txt files 

to workspace 
fprintf('\n\n') 

  
% Choose file on which to run analysis 
fileChoice = input('Enter File #   -->  ');             %user enters number corresponding to 

desired file 
filename_ext_D = deblank(names_char(fileChoice,:)); 
[PATHSTR, filename, EXT] = fileparts(filename_ext_D); 

  
%% IMPORT DATA FROM TXT FILE 

  
% Read .txt File 
fidD = fopen(filename_ext_D);                           %open the file 
header = fscanf(fidD,'%s',1);                           %store the first line of the file as the 

header 
DATAcell = textscan(fidD,'%f %f','headerlines',1);      %import data from file into cell variable 
DATAmat = cell2mat(DATAcell);                           %convert cell variable to matrix 
fclose(fidD);                                           %close the file 

  
% Assign Data Channels  
raw.A = DATAmat(:,1);      %[s]                         %first column of data 
raw.B = DATAmat(:,2);      %[mm]                        %second column of data 

  
% Find length of these data columns 
N = length(raw.A); 

  
%% CONVERT DATA TO BOOLEAN 
% If data is not in boolean form yet (ie 0 or 1) this will convert it. 
% Otherwise, it will be left as is. 

  
bool.A = raw.A>0; 
bool.B = raw.B>0; 

  
%% CREATE DIFFERENTIAL VARIABLES 
% Where diff.A(i) = bool.A(i)-bool.A(i-1) 
% and   diff.B(i) = bool.B(i)-bool.B(i-1) 

  
%Create variables of same data that's been shifted forward 1 row 
shift.A(2:N+1,1) = bool.A; 
shift.B(2:N+1,1) = bool.B; 

  
%Eliminate last entry 
shift.A(end) = ''; 
shift.B(end) = ''; 

  
%Create differential variables 
diff.A = bool.A-shift.A; 
diff.B = bool.B-shift.B; 

  
%% CONVERT A AND B TRACKS TO STEP NUL/FWD/REV 
% A "step" is defined as a single count on the rotary encoder wheel.  Thus, 
% each step can be converted to relative linear displacement by multiplying 
% by MUperCOUNT.  NUL/FWD/REV are to be represented as 0/1/-1 respectively.  Due 
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% to oversampling, a majority of these should be STEP NUL, or 0, (ie encoder 
% remained quasi-stationary). 

  
%Initialize step vector 
stepVec = zeros(N,1); 

  
%Prepare waitbar divider.  This simple indicates approximate amount of file 
%that has been decoded at any given time. 
divideWait = 10^(floor(log10(N))-1); 
hWait = waitbar(0,'Decoding...'); 

  
%Start Main Loop 
for i = 2:N                         %must start at 2nd index due to shifted variables 
    %Create reusable variables 
    diff.Ai = diff.A(i); 
    diff.Bi = diff.B(i); 
    bool.Ai = bool.A(i); 
    bool.Bi = bool.B(i); 

     
    %Determine NUL/FWD/REV 
    switch diff.Ai 
        case 0 
            switch diff.Bi 
                case 0 
                    stepi = 0;      %NUL 
                case 1 
                    if bool.Ai==0 
                        stepi = -1; %REV 
                    else 
                        stepi = 1;  %FWD 
                    end 
                case -1 
                    if bool.Ai==0 
                        stepi = 1;  %FWD 
                    else     
                        stepi = -1; %REV 
                    end 
            end 
        case 1 
            if bool.Bi==0 
                stepi = 1;          %FWD 
            else 
                stepi = -1;         %REV 
            end 
        case -1 
            if bool.Bi==0 
                stepi = -1;         %REV 
            else 
                stepi = 1;          %FWD 
            end 
    end 

     
    %Write stepi to ith position in stepVec 
    stepVec(i) = stepi;             %vector of 0/1/-1 indicating steps 
    if round(i/divideWait)==i/divideWait %if condition is met... 
        waitbar(i/N,hWait)          %...update waitbar 
    end 
end 
close(hWait);                       %close waitbar once decoding is finished 

  
%% OUTPUT DECODED DATA TO FILE 

  
% Import analog data 
filename_A = filename;              %initialize variable 
filename_A(end) = 'A';              %choose analog file instead of digital 
filename_ext_A = sprintf('%s.txt',filename_A); 
fidA = fopen(filename_ext_A);       %open analog data file 
DATAcellA = textscan(fidA,'%f %f %f %f','headerlines',1); %read in analog data to cell variable 
DATAmatA = cell2mat(DATAcellA);     %convert cell variable to matrix 
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fclose(fidA);                       %close analog data file 

  
% Assign data channels  
raw.Fx = DATAmatA(:,1);             %first column 
raw.Fy = DATAmatA(:,2);             %second column 
raw.D_AC = DATAmatA(:,3);           %third column 

  
% Output header to new file 
filename_NEW = filename(1:end-2); 
filename_ext_NEW = sprintf('%s.txt',filename_NEW);  %new filename to which all relevant data is 

written for use in numerical analysis routines 
fidNEW = fopen(filename_ext_NEW,'w+t'); 
fprintf(fidNEW,'%s\n',header); 

  
% Output column headers 
fprintf(fidNEW,'Fx Fy VcapProbe StepVector\n'); 

  
% Output data to new file 
fprintf(fidNEW,'%.4f %.4f %.4f %i\n',[raw.Fx,raw.Fy,raw.D_AC,stepVec]'); 
fclose(fidNEW); 

  
% Create Directory for RAW (*_A and *_D) files 
mkdir(pwd,'RAW');                   %create "RAW" folder if it doesn't already exist in working 

directory 

  
% Move RAW files into this folder 
movefile(filename_ext_D,['RAW/' filename_ext_D]); 
movefile(filename_ext_A,['RAW/' filename_ext_A]); 
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Appendix E: Planer force data fitting routine (Matlab) 

Summary: This program receives cutting velocity and average Fp values from static cutting 

experiments.  The number of trials represented by the average force values can be seen in 

Table 6.1. The force-velocity data is fit according to the equation Fp(V) = A*ln(V) + B which was 

elucidated from Ref. [11]. Since this equation is linear with respect to the fitting parameters A 

and B, the least squares solution can be obtained through standard linear algebra techniques. 

Specifically, if  

   

[
 
 
 
      

      
  

      ]
 
 
 
 

   [
 
 
] 

   

[
 
 
 
       

       

 
       ]

 
 
 

 

then the vector n, which contains the fitting parameters, can be solved according to 

             . 

 

%% forceFitPlaner.m 

%  

% WRITTEN BY: JOSH NORMAN 

% DATE: 12/17/12 

% PROGRAM SUMMARY: RECEIVES CUTTING VELOCITY AND AVERAGE FORCE VALUES FROM 

% STATIC CUTTING TRIALS AND USES LEAST SQUARES FITTING TECHNIQUE TO FIT 

% FORCE DATA ACCORDING TO THE SHAPE F=A*ln(x)+B WHICH WAS DERIVED FROM 

% Maan, N., and Broese Van Groenou, A., 1977, “Low Speed Scratch 

% Experiments on Steels,” Wear, 42(2), pp. 365-390. 

  

clc; close all; clear all; 

  

%% INPUTS 

  

%Static cutting speeds 

Vdc = [ 

    .05 

    .25 

    .50 

    .75 

    1.00 

    ];  %[mm/s] 
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%Average forces in cutting direction 

Favg = [ 

    19.862 

    20.821 

    21.19 

    21.498 

    21.364 

    ];   %[N] 

  

%% LEAST SQUARES FITTING 

  

x = Vdc; 

y = Favg; 

  

A = [log(x),ones(length(x),1)];     %fitting shape 

B = y;                              %data 

X = inv(A'*A)*A'*B;                 %linear algebra solution method for least squares fitting 

  

Ffit = X(1)*log(x) + X(2); 

  

%Create variables to be used to visualize best fit curve 

xPlot = .01:.01:2; 

yfitPlot = X(1)*log(xPlot) + X(2); 

  

%% EVALUATE FIT 

  

RSS = sum((y-Ffit).^2);             %residual sum of squares 

TSS = sum((y-mean(y)).^2);          %total sum of squares 

R2F = 1-(RSS/TSS);                  %R-squared value 

  

%% PLOTTING 

  

hfig1 = figure(1); 

set(hfig1,'color','w') 

set(hfig1,'name','Force') 

  

hold on 

plot(Vdc,Favg,'.b','markersize',25) 

plot(xPlot,yfitPlot,'r','linewidth',2) 

hold off 

xlim([0,1.05]) 

ylim([17,24]) 

set(gca,'YTick',[17:1:24]) 

  

set(gca,'fontsize',22) 

hx = xlabel('Velocity (mm/s)'); 

hy = ylabel('Force (N)'); 

set(hx,'fontsize',24) 

set(hy,'fontsize',24) 

strT = sprintf('Al6061-T6\n\n\n\n') 

hT = title(strT); 

set(hT,'fontsize',30) 

strT2 = sprintf('Force=A*ln(V) + B\nA=%.4e | B=%.4e\nR^2=%.4f',X(1),X(2),R2F); 

hT2 = gtext(strT2); 

set(hT2,'fontsize',24,'horizontalalignment','center') 

  

%% DISPLAY TO SCREEN 

  

disp(' ') 

disp('Coefficients') 

disp(sprintf('%.4e %.4e',X(1),X(2))) 

  

%%                      ^^^   F O R C E   ^^^ 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                       vvv   P O W E R   vvv 

  

%% POWER 

% Least-squares fitting technique IS NOT performed for power.  Rather the 

% values for the fitting variables determined above for force are used here 

% and a known equation for power as a function of force and velocity is 
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% used. 

  

Pavg = Favg.*Vdc / 1000;                                        %power "data" 

PfitPlot = X(1)*log(xPlot).*(xPlot/1000) + X(2)*(xPlot/1000);   %power "fit" 

  

%% EVALUATE FIT 

% Even though fitting technique was not re-performed, we can still 

% determine how accurately the resulting equation "fits" the power values 

% derived from data. 

  

Pfit = X(1)*log(x).*(x/1000) + X(2).*(x/1000); 

RSS = sum((Pavg-Pfit).^2); 

TSS = sum((Pavg-mean(Pavg)).^2); 

R2P = 1-(RSS/TSS); 

  

%% PLOTTING 

  

hfig2 = figure(2); 

set(hfig2,'color','w') 

set(hfig2,'name','Power') 

  

hold on 

plot(Vdc,Pavg,'.','color',[.2 .5 .2],'markersize',35) 

plot(xPlot,PfitPlot,'r','linewidth',2) 

hold off 

xlim([0,1.05]) 

ylim('auto'); 

y=ylim; 

ylim([0,y(2)]) 

  

set(gca,'fontsize',22) 

hx = xlabel('Velocity (mm/s)'); 

hy = ylabel('Power (W)'); 

set(hx,'fontsize',24) 

set(hy,'fontsize',24) 

strT = sprintf('Al6061-T6\n\n\n\n'); 

hT = title(strT); 

set(hT,'fontsize',30) 

strT2 = sprintf('Power=A*ln(V)*(Ve-3) + B*(Ve-3)\nA=%.4e | B=%.4e\nR^2=%.4f',X(1),X(2),R2P); 

hT2 = gtext(strT2); 

set(hT2,'fontsize',24,'horizontalalignment','center') 
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Appendix F: Lathe force data fitting routine (Matlab) 

Summary: This program receives undeformed chip thickness and average Fp values from static 

cutting experiments.  The number of trials represented by the average force values can be seen 

in Table 6.2. The force-thickness data is fit according to the equation          
 

    
 which 

was elucidated from Ref. [10]. Parameters A and B were solved by fitting a line through the last 

two data points (in order to best-approximate the oblique asymptote). The non-linear fitting 

parameter, C, was solved using the Newton-Raphson convergence algorithm. 

%% forceFitLathe.m 

%  

% WRITTEN BY: JOSH NORMAN 

% DATE: 12/17/12 

% PROGRAM SUMMARY: RECEIVES UNDEFORMED CHIP THICKNESS AND AVERAGE FORCE 

% VALUES FROM STATIC CUTTING TRIALS AND USES LEAST SQUARES FITTING 

% TECHNIQUE TO FIT FORCE DATA ACCORDING TO THE SHAPE F=m*x+b-(b/(A*x+1)) 

% WHICH WAS DERIVED FROM Arsecularatne, J. A., 1997, “On Tool-Chip 

% Interface Stress Distributions, Ploughing Force and Size Effect in 

% Machining,” Int. J. Mach. Tools Manuf., 37(7), pp. 885-899. 

  

clc; close all; clear all; 

  

%% INPUTS 

  

V = 1.5180;     %cutting velocity (m/s) taken from analysis program 

  

%Static values of undeformed chip thickness 

h = [ 

    5 

    10 

    20 

    30 

    40 

    50 

    ];  %[um] 

  

%Average forces in cutting direction 

Favg = [ 

    21.287 

    31.559 

    43.529 

    55.845 

    67.033 

    75.719 

    ];   %[N] 

  

%% EQUATION OF ASYMPTOTE 

% Best guess for asymptote is a straight line through the last two data 

% points 

  

P = polyfit(h(end-1:end),Favg(end-1:end),1); 

m = P(1);   %slope of line 

b = P(2);   %y-intercept of line 

  

%% PERFORM NEWTON-RAPHSON 

% This is performed since the fitting equation has a single non-linear 

% fitting variable, referred to as "A" here 

  

ADiffLim = .0001; 

i=2; 

A = [1 0];      %initial guess=0 
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while abs(A(i)-A(i-1))>ADiffLim     %determines whether variable has settled to a relatively 

constant value between iterations 

  

% EQUATION OF REMAINDER 

% Remainder must cancel out y-intercept of asymptote such that curve passes 

% through origin.  Also, a fitting coefficient must be involved which 

% determines how quickly the curve deviates from the asymptote.  It has  

% been observed that the final curve has a concave shape. Thus, the 

% remainder will be of the form -b/(Ax+1) 

  

% FIRST DERIVATIVE 

D1 = sum((Favg - m*h - b + (b./(A(i)*h+1))) .* ((-2*b*h)./((A(i)*h + 1).^2))); 

  

% SECOND DERIVATIVE 

D2 = sum(((Favg - m*h - b + (b./(A(i)*h+1))) .* ((4*b*(h.^2))./((A(i)*h + 1).^3))) + 

((2*b*h)./((A(i)*h+1).^2)).*((b*h)./((A(i)*h+1).^2))); 

  

A(i+1) = A(i)-(D1/D2);              %calculate next guess for variable A 

  

i = i+1; 

end 

  

Af = A(i);                          %choose last iteration as the best fit 

Ffit = m*h + b + (-b./(Af*h + 1));  %fitted force equation 

  

%Create variables to be used to visualize best fit curve 

hPlot = 0:.1:max(h); 

FfitPlot = m*hPlot + b + (-b./(Af*hPlot + 1)); 

  

%% EVALUATE FINAL FIT 

  

RSS = sum((Favg-Ffit).^2);          %residual sum of squares 

TSS = sum((Favg-mean(Favg)).^2);    %total sum of squares 

R2 = 1-(RSS/TSS);                   %R-squared value 

  

%% PLOTTING 

  

hfig1 = figure(1); 

set(hfig1,'color','w') 

set(hfig1,'name','Force') 

  

hold on 

plot(h,Favg,'.b','markersize',25) 

plot(hPlot,FfitPlot,'r','linewidth',2) 

hold off 

xlim([0,50]) 

ylim([0,125]) 

  

set(gca,'fontsize',22) 

hx = xlabel('h, undeformed chip thickness (um)'); 

hy = ylabel('Force (N)'); 

set(hx,'fontsize',24) 

set(hy,'fontsize',24) 

strT = sprintf('Al6061-T6\n\n\n'); 

hT = title(strT); 

set(hT,'fontsize',30) 

strT2 = sprintf('F = a*h + b - b/(c*h+1)\na=%.4e | b=%.4e | c=%.4e\nR^2=%.4f',m,b,Af,R2); 

hT2 = gtext(strT2); 

set(hT2,'fontsize',24,'horizontalalignment','center') 

  

%% DISPLAY TO SCREEN 

  

disp(' ') 

disp('Coefficients') 

disp(sprintf('%.4e %.4e %.4e',m,b,Af)) 

disp(' ') 

disp('Goodness of Fit') 

disp(sprintf('R^2 = %.4f',R2)) 

  

%%                      ^^^   F O R C E   ^^^ 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%                       vvv   P O W E R   vvv 

  

%% POWER FIT 

% Least-squares fitting technique IS NOT performed for power.  Rather the 

% values for the fitting variables determined above for force are used here 

% and a known equation for power as a function of force and velocity is 

% used. 

  

Pavg = Favg*V;              %power "data" 

PfitPlot = FfitPlot*V;      %power "fit" 

  

%% PLOTTING 

  

hfig2 = figure(2); 

set(hfig2,'color','w') 

set(hfig2,'name','Power') 

  

hold on 

plot(h,Pavg,'.','color',[.2 .5 .2],'markersize',25) 

plot(hPlot,PfitPlot,'r','linewidth',2) 

hold off 

  

ylim([0,200]) 

  

set(gca,'fontsize',22) 

hx = xlabel('h, undeformed chip thickness (um)'); 

hy = ylabel('Power (W)'); 

set(hx,'fontsize',24) 

set(hy,'fontsize',24) 

strT = sprintf('Al6061-T6\n\n\n'); 

hT = title(strT); 

set(hT,'fontsize',30) 

strT2 = sprintf('P = V*[a*h + b - b/(c*h+1)]\na=%.4e | b=%.4e | c=%.4e\nR^2=%.4f',m,b,Af,R2); 

hT2 = gtext(strT2); 

set(hT2,'fontsize',24,'horizontalalignment','center') 
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Appendix G: Planer analysis routine (Matlab) 

Summary: This routine imports planer-specific data (Fx,Fy,DAC,DDC) from a user-specified .txt 

file and performs numerical analysis techniques. Primary code features include: 

 determination of effective instantaneous displacement and velocity (via encoder data 

combined with that from capacitance probe) 

 determination of best-fit equations characterizing said displacement 

 determination of beginning and end of cut 

 determination of beginning and end of individual periodic cutting instances 

 force prediction routine based on Fp(Veff) found using forceFitPlaner.m 

 specific energy calculations. 

Note: This code refers to Fp/Fq as Fx/Fy, respectively. 

 

%% MAManalysisPlaner.m 

% 

% WRITTEN BY: JOSH NORMAN 

% PROGRAM SUMMARY: THIS ROUTINE IMPORTS PLANER-SPECIFIC DATA FROM A USER 

% SPECIFIED .TXT FILE AND PERFORMS NUMERICAL ANALYSIS. PRIMARY FEATURES 

% INCLUDE: 

%       DETERMINATION OF EFFECTIVE INSTANTANEOUS DISPLACMENT AND VELOCITY 

%           (ENCODER DATA COMBINED WITH THAT FROM CAPACITANCE PROBE) AS 

%           WELL AS BEST FIT EQUATION CHARACTERIZING THIS DISPLACEMENT. 

%       DETERMINATION OF BEGINNING AND END OF CUT.  

%       DETERMINATION OF BEGINNING AND END OF PERIODIC CUTTING INSTANCES.  

%       FORCE PREDICTION ROUTINE BASED ON Fp(Veff) FOUND USING 

%           forceFitPlaner.m. 

%       SPECIFIC ENERGY CALCULATIONS. 

%       NOTE: Fp/Fq ARE REFERRED TO AS Fx/Fy RESPECTIVELY. 

  

clc; clear all; close all; 

  

%% INPUTS 

  

specD = 1;                  %flag for determining which method will used to find "cutting" 

portion of data (0/1 = total/specified distance) 

Dwait = 5;                  %distance to wait between start of cut and start of analysis 

Drel = 15;                  %relevant distance over which work will be determined [mm] 

percentTrig1 = .50;         %percentage of Fx range for triggering 

percentTrig2 = .50;         %percentage of Fx range for triggering 

  

fs = 10000;                 %sampling rate [Hz] 

encRes = 8000;              %post quadrature encoder resolution [counts/rev] 

lead = 20;                  %ball-screw lead [MU/rev] 

MUperCOUNT = lead/encRes;   % [MU/count] 

mmPerV = .025;              %mm per Volt (capacitance probe) 

w = 1.003;                  %workpiece width [mm] 

  

%% CHOOSE TXT FILE TO IMPORT 

  

% Select "Relevant" Files 

wildcard_txt = '*.txt'; 



106 
 

files_struct = dir(wildcard_txt);                   %list all .txt files in structure 

files_cell = struct2cell(files_struct);             %list these files in cell 

names_cell = files_cell(1,:);                       %select first row of cell b/c it contains 

names 

names_char = char(names_cell);                      %convert this cell row of names to characters 

[m,n] = size(names_char);                           %use m to know how many files are available 

  

if m==0 

   error('NO TXT FILES ARE LOCATED IN CURRENT DIRECTORY') 

   

elseif m<10     %single digits 

   for i = 1:m 

        FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:));     %create character array of 

file options to choose from   

   end 

  

elseif m>=10    %double digits 

    for i = 1:9 

        FileOptions(i,:) = sprintf('% i) %s',i,names_char(i,:));    %create character array of 

file options to choose from 

    end 

    for i = 10:m 

        FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:));     %create character array of 

file options to choose from 

    end 

end 

  

% Print Filenames to Workspace 

disp(' ') 

fprintf('\t\t\tANALYSIS OF EXPERIMENTAL DATA') 

fprintf('\n\n') 

disp(FileOptions)                                                   %print list to workspace 

fprintf('\n\n') 

  

% Choose file on which to run analysis 

fileChoice = input('Enter File #   -->  ');                         %user enters number 

corresponding to file 

filename_ext = deblank(names_char(fileChoice,:));                   %remove placeholding spaces 

from end of selected filename 

[PATHSTR, filename, EXT] = fileparts(filename_ext); 

  

%% IMPORT DATA FROM TXT FILE 

  

% Read .txt File 

fid = fopen(filename_ext); 

header = fscanf(fid,'%s',1);                                %store first line of file to variable 

"header" 

DATAcell = textscan(fid,'%f %f %f %f','headerlines',2);     %read in all four columns of data to 

cell variable, skipping first two lines of file 

DATAmat = cell2mat(DATAcell);                               %convert data from cell to matrix 

fclose(fid);                                                %close file 

  

%Automatically determine fm 

fmInd = strfind(filename,'fm');                             %find start index 

HzInd = strfind(filename,'Hz');                             %find end index 

fm = str2num(filename(fmInd+2:HzInd-1));                    %use indices to locate and store 

modulation frequency [Hz] 

  

% Automatically determine NperVx and NperVy 

NperVx_start = min(strfind(header,'='))+1;                  %find start index 

NperVx_end   = min(strfind(header,'_'))-1;                  %find end index 

NperVy_start = max(strfind(header,'='))+1;                  %find start index 

NperVy_end   = max(strfind(header,'_'))-1;                  %find end index 

NperVx = str2num(header(NperVx_start:NperVx_end));          %use indices to locate and store 

amplifier gain value as number [N/V] 

NperVy = str2num(header(NperVy_start:NperVy_end));          %use indices to locate and store 

amplifier gain value as number [N/V] 

  

% Automatically determine desired Vdc 

Vdc_des_start = strfind(filename,'Vdc')+3;                  %find start index 

Vdc_des_end   = strfind(filename,'mms')-1;                  %find end index 
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Vdc_des = str2num(strrep(filename(Vdc_des_start:Vdc_des_end),'-','.')); %use indices to locate 

and store value as number 

  

% Automatically determine depth of cut h0 

h0_stop = strfind(filename,'um')-1;                         %find end index (note: this variable 

must be the first item in the filename) 

h0 = str2num(filename(2:h0_stop))/1000;                     %depth of cut [mm] 

  

% Assign Data Channels  

Fx = NperVx*(-DATAmat(:,1));                                %aka Fp [N] 

Fy = NperVy*DATAmat(:,2);                                   %aka Fq [N] 

ch2 = DATAmat(:,3);                                         %raw cap probe data [V] 

steps = DATAmat(:,4);                                       %encoder counts (+1/0/-1 = 

FWD/NUL/REV) 

  

% Calculate cumulative "DC" displacement 

D_DC  = MUperCOUNT*cumsum(steps);                           %use "steps" variable created by 

quadDecoder.m to find linear displacement [mm] 

  

%% LINEARLY INTERPOLATE 

% The purpose of this section is to smooth out the innately choppy digital 

% data by linearly interpolating between the midpoints of each 2.5um step 

  

% Find Voffset of Cap Probe  

switch fm 

    case 0 

        Voffset = ch2(1); 

    otherwise 

        NperPeriod = floor(fs/fm);              %No. of samples per period 

        Voffset = mean(ch2(1:NperPeriod));      %cap probe voltage offset found by averaging 1 

period of measurements 

end 

  

% Find length of data sets 

N = length(Fx); 

  

% Create time vector 

dT = 1/fs;          %[s] 

T  = dT*(1:1:N)';   %[s] 

  

% Get indices of points where displacement has changed 

dD_ind = (1:1:N)'.*abs(steps); 

  

% Eliminate all entries that are 0 

dD_ind(dD_ind==0) = []; 

  

%Create two vectors of indices offset from each other by 1 row 

dD_indShift = dD_ind;           %initialize vector 

dD_indShift(2:end+1) = dD_ind;  %shift values down 1 row 

dD_indShift(1) = 1;             %then make 1st entry == 1 

dD_ind(end+1) = N;              %add entry at end of vector 

  

% Find integer midpoints of these indices 

dD_indMids = floor((dD_ind+dD_indShift)/2); 

  

% Convert to time 

T_Mids = dD_indMids*dT; 

  

% Find displacement values at these times 

D_Mids = D_DC(dD_indMids); 

  

% Linearly interpolate between these values 

D_lin = zeros(N,1); 

for i = 1:length(dD_indMids)-1 

    ind_curr = dD_indMids(i); 

    ind_next = dD_indMids(i+1); 

    D_curr = D_DC(ind_curr); 

    D_next = D_DC(ind_next); 

    D_lin(ind_curr:ind_next) = linspace(D_curr,D_next,ind_next-ind_curr+1); 

end 

D_lin(ind_next:end) = D_next;   %fill in remaining points with last distance midpoint value 
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%% ADD AC COMPONENT TO DC 

% Note: AC refers to the dynamic portion of displacment which is induced by 

% the piezo-ceramic actuator and monitored using a capacitance probe.  DC 

% refers to the static portion of the displacement trace which is induced 

% by the servo motor and monitored using a quadrature rotary encoder. The 

% DC component is in fact not always constant throughout, as the motor has 

% the tendency to backtrack on itself under oscillatory loads.  This will 

% be taken into account when Deff is characterized using least-squares 

% fitting. 

  

% Let new D_DC be represented by D_lin 

D_DC = -D_lin;              %negative is due to sign convention in that encoder sees a negative 

step when workpiece is moving into the tool [mm] 

  

% Find scaled and mean adjusted AC displacement data 

D_AC = mmPerV*(ch2-Voffset);%dynamic component of displacement. Note that higher values of ch2 

voltage indicate + displacement according to convention [mm] 

  

% Add AC to DC 

D_ACDC = D_DC+D_AC;         %effective displacement [mm] 

  

%% DETERMINE START/STOP OF CUTTING 

% These conditions are determined by monitoring the Fx (aka Fp) trace and 

% noting when it rises above critical values.  These critical values are a 

% percentage of the Fx signal's total range. 

  

% Smooth out inconsistencies 

FxSmooth = smooth(Fx,100); 

  

xPercent = (FxSmooth-min(FxSmooth))/(max(FxSmooth)-min(FxSmooth));    %each Fx entry as percent 

of Fx range      

c1 = 1;                                     %initiate counter 1 

while xPercent(c1) < percentTrig2           %looks for critical percent of > percentTrig 

    c1 = c1+1;                              %count forward 1 index per loop iteration 

end 

cutStart = c1;                              %location in vector where cutting data starts 

         

% Use switch to determine whether the entire length, specD=0, or just a 

% specified distance, specD=1, will be used to represent the cut (ie used 

% to calculate energy, etc). It is often advantageous to monitor only a 

% portion of the total trace since the beginning and end may be 

% misrepresentative of the crucial part of the cut. 

switch specD        

     

    case 0                                  %use entire cutting range 

        c2 = length(FxSmooth);              %initiate counter 2 where at end of data set 

        while xPercent(c2) < percentTrig2   %check if condition is met 

            c2 = c2-1;                      %... if not, count backward 1 index per loop 

iteration 

        end 

        cutStop = c2;                       %location in vector where cutting data stops 

         

    case 1                                  %use specified cutting range 

        Dstart = D_ACDC(cutStart); 

        Dstart = Dstart+Dwait; 

        while D_ACDC(cutStart)<Dstart       %check if condition is met 

           cutStart=cutStart+1;             %... if not, add 1 to index 

        end 

        Dstop = Dstart + Drel; 

        c2 = c1; 

        while D_ACDC(c2)<Dstop              %check if condition is met 

            c2 = c2+1;                      %... if not, count forward 1 index per loop iteration 

        end 

        cutStop = c2;                       %index at which cutting "stops" 

end 

  

FxRel = mean(Fx(cutStart:cutStop));         %newly found relevant range of Fx (aka Fp) data [N] 

  

%% DETERMINE START/STOP OF PEAK PLATEAU 
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c1 = 1;                                     %initiate counter 1 

while xPercent(c1) < percentTrig1           %check if condition is met 

    c1 = c1+1;                              %... if not, count forward 1 index per loop iteration 

end 

peakStart = c1;                             %location in vector where cutting data starts 

         

c2 = length(FxSmooth);                      %initiate counter 2  at end of data set 

while xPercent(c2) < percentTrig1           %check if condition is met 

    c2 = c2-1;                              %if not, count backward 1 index per loop iteration 

end 

peakStop = c2;                              %location in vector where cutting data stops 

      

Tpeak = T(peakStart:peakStop);              %vector of times during which Fx has plateaued 

Dpeak = D_ACDC(peakStop)-D_ACDC(peakStart); %vector of effective displacements during which Fx 

has plateaued 

FxPeak = mean(Fx(peakStart:peakStop));      %vector of Fx's during which Fx has plateaued 

  

%% CALCULATE VOLUME 

% This volume represents the amount of material removed and will be used to 

% normalize energy 

  

vol = (D_DC(cutStop)-D_DC(cutStart))*w*h0;  %[mm^3] 

  

%% DEFINE "CUTTING" VECTORS 

  

% Time 

TCut = T(cutStart:cutStop);                 %time vector b/t when cutting starts and stops 

  

% Displacement 

D_DCcut = D_DC(cutStart:cutStop); 

D_ACcut = D_AC(cutStart:cutStop); 

D_ACDCcut = D_ACDC(cutStart:cutStop); 

  

%% LEAST SQUARES FIT 

% The purpose of this section is to provide a least-squares 

% characterization for the effective displacement (and thus velocity). Such 

% a characterization has the advantage of being completely noise free, 

% which cannot be said of standard filtering techniques.  This noise-free 

% criteria is important, since the force prediction scheme is sensitive to 

% noise in the velocity trace. 

  

switch fm 

     

     

%             > > >   C O N V E N T I O N A L   < < < 

    case 0      

        f = 0; 

            % LEAST SQUARES ON ACDC DISPLACEMENT 

            cACDC = [TCut, ones(length(TCut),1)]; 

            dACDC = D_ACDCcut; 

            xACDC = inv(cACDC'*cACDC)*cACDC'*dACDC; 

            Aacdc = xACDC(1); Bacdc = xACDC(2); 

            % Fitted displacement curve2 

            D_ACDCfitBest = Aacdc*TCut + Bacdc*ones(length(TCut),1); 

            D_DCfitBest = D_ACDCfitBest;        %same since there's no ac 

            D_ACfitBest = zeros(length(TCut),1); 

         

             

%               > > >   M O D U L A T I O N   < < <        

    otherwise 

        RSSbest = inf;                  %initialize with worst case residual sum of squares value 

        for f = fm-.01:.001:fm+.01;     %scan a range of modulation frequencies near the expected 

fm.  This often results in a better R^2 fit 

             

             

            % LEAST SQUARES ON DC DISPLACEMENT - this is performed despite 

            % "DC" classifier because motor has a tendency to periodically 

            % backtrack on itself due to modulated loading 

            cDC = [sin(2*pi*f*TCut), cos(2*pi*f*TCut), TCut, ones(length(TCut),1)]; 

            dDC = D_DCcut; 

            xDC = inv(cDC'*cDC)*cDC'*dDC; 
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            Adc = xDC(1); Bdc = xDC(2); Cdc = xDC(3); Ddc = xDC(4); 

            % Fitted displacement curve 

            D_DCfit = Adc*sin(2*pi*f*TCut) + Bdc*cos(2*pi*f*TCut) + Cdc*TCut + 

Ddc*ones(length(TCut),1); 

  

  

            % LEAST SQUARES ON AC DISPLACEMENT 

            cAC = [sin(2*pi*f*TCut), cos(2*pi*f*TCut)]; 

            dAC = D_ACcut; 

            xAC = inv(cAC'*cAC)*cAC'*dAC; 

            Aac = xAC(1); Bac = xAC(2); 

            % Fitted displacement curve 

            D_ACfit = Aac*sin(2*pi*f*TCut) + Bac*cos(2*pi*f*TCut); 

  

  

            % DETERMINE FIT 

            D_ACDCfit = D_DCfit+D_ACfit; 

            % Evaluate closeness of fit 

            RSS = sum((D_ACDCfit-D_ACDCcut).^2);    %RSS=residual sum of squares 

                if RSS<RSSbest                      %if this iteration of loop resulted in lower 

RSS, store the following values as "best" 

                    RSSbest = RSS; 

                    fbest = f; 

                    D_DCfitBest = D_DCfit; 

                    D_ACfitBest = D_ACfit; 

                    D_ACDCfitBest = D_ACDCfit; 

                    AacBest = Aac; 

                    BacBest = Bac; 

                end 

        end 

end 

  

%% BEST FIT VARIABLES 

  

D_DCfit = D_DCfitBest; 

D_ACfit = D_ACfitBest; 

D_ACDCfit = D_ACDCfitBest; 

  

%% FIND VELOCITIES 

% use standard numerical differentiation method 

  

% DC Velocity 

D_DCshift = D_DCfit;                            %intialize shifted displacement vector 

D_DCshift(2:end+1) = D_DCshift;                 %shift entries down one row 

delD_DC = D_DCfit - D_DCshift(1:end-1);         %D(i)-D(i-1) 

delD_DC(1) = 0;                                 %sets first entry to zero 

Vdc = delD_DC/dT;                               %velocity of stage wrt table [mm/s]           

Vdc(1) = [];                                    %eliminate first entry 

  

% AC Velocity 

D_ACshift = D_ACfit;                            %initialize shifted displacement vector 

D_ACshift(2:end+1) = D_ACshift;                 %shift entries down one row 

delD_AC = D_ACfit - D_ACshift(1:end-1);         %D(i)-D(i-1) 

delD_AC(1) = 0;                                 %sets first entry to zero 

Vac = delD_AC/dT;                               %velocity of workpice wrt stage [mm/s] 

Vac(1) = [];                                    %eliminate first entry 

  

% Effective Velocity (ACDC) 

D_ACDCshift = D_ACDCfit;                        %initialize shifted displacement vector 

D_ACDCshift(2:end+1) = D_ACDCshift;             %shift entries down one row 

delD_ACDC = D_ACDCfit-D_ACDCshift(1:end-1);     %D(i)-D(i-1) 

delD_ACDC(1) = 0;                               %sets first entry to zero 

Veff = delD_ACDC/dT;                            %velocity of workpice wrt table (or tool) [mm/s] 

Veff(1) = [];                                   %eliminate first entry 

  

%% FIND POINTS OF SEPARATION'S BEGINNING/MAXIMUM/ENDING 

% Separation occurs when velocity becomes negative.  Max distance of 

% separation occurs when velocity becomes positive.  Contact is 

% reestablished when displacement is equal to that at which separation 

% began. 

% Use velocity derived from best fit, since this section is largely 
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% dependent on finding local mins and maxs, which is only effective in a 

% noiseless environment. 

  

% Find indices of local extrema 

diffSignV = diff(sign(Veff)); 

diffSignV(2:end+1) = diffSignV;             %insert a zero as the first entry 

locMin = find(diffSignV==2);                %indices of local mins 

locMax = find(diffSignV==-2);               %indices of local maxs 

  

% Determine if separation is occuring 

if isempty(or(locMin,locMax)) 

    sepFlag = 0;                            %seperation does not occur 

else 

    sepFlag = 1;                            %separation occurs 

end 

  

% Create flags for each of 4 cases and rewrite D vector's such that 

% locMin and locMax have same number of entries, locMax(1)/locMax(end) must come 

% before locMin(1)/locMin(end) 

if sepFlag == 1     %do this routine only if separation is actually occuring 

    if and(locMax(1)<locMin(1),locMax(end)>locMin(end)) %starts on MAX, ends on MAX 

        extFlag = 1; 

        locMax(end) = ''; 

    elseif and(locMax(1)<locMin(1),locMax(end)<locMin(end)) %starts on MAX, ends on MIN 

        extFlag = 2; 

    elseif and(locMax(1)>locMin(1),locMax(end)>locMin(end)) %starts on MIN, ends on MAX 

        extFlag = 3; 

        locMin(1) = ''; 

        locMax(end) = ''; 

    elseif and(locMax(1)>locMin(1),locMax(end)<locMin(end)) %starts on MIN, ends on MIN 

        extFlag = 4; 

        locMin(1) = ''; 

    end 

  

    % Displacements at local extrema 

    D_fitMin = D_ACDCfit(locMin); 

    D_fitMax = D_ACDCfit(locMax); 

  

    % Points of separations' BEGINNING 

    T_sepBeg = TCut(locMax); 

  

    % Point of separations' MAXIMUM 

    T_sepMax = TCut(locMin); 

  

    % Values of maximum separation 

    D_sepMax = D_fitMax - D_fitMin; 

  

    % Points of separations' ENDING 

    T_sepEnd = 0*T_sepBeg;      %initialize 

    for k = 1:length(locMin) 

        c3 = locMax(k)+1;      %initialize counter c3 

        while D_ACDCfit(c3)<D_fitMax(k) 

            c3 = c3+1; 

        end 

        locRecut(k) = c3; 

        T_sepEnd(k) = TCut(c3); 

    end 

end 

  

%% ELIMINATE VELOCITIES WHERE SEPARATION OCCURS 

% Set these velocities equal to zero since they won't contribute to energy 

% consumption 

  

Veff2 = Veff;                                   %initialize new variable 

if sepFlag==1 

    for kk = length(locMax):-1:1 

        Veff2(locMax(kk)+1:locRecut(kk)-1)=0;   %eliminate (use 1e-5 to approx 0) all noncutting 

portions of Veff trace (must start at end of trace) 

    end 

end 
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%% ALGORITHM 2: DETERMINE RANGE OF DISCRETE "RELEVANT" DATA 

% Algorithm 2: "Relevant" = when tool is engaged.  Thus this range will 

% consist of multiple discrete instances of "relevant" data. 

% Note: This range is determined using ch1 because ch1 responds 

% "immdeiately" when the tool is engaged 

  

percentTrigger3 = 0.7; 

i = 1;                                  %initiate counter Nrel2  

iMinus = 0;                             %after the outer while loop, we'll subtract this from i 

c1 = cutStart;                          %initiate counter c1 

  

switch f                                %this switch-case generates cPeriod, depending on the 

piezo's input frequency 

    case 0 

        cPeriod = cutStop-cutStart;     %a zero freq case needs to exist to prevent Inf values 

for cPeriod 

    otherwise 

        cPeriod = (1/fm)*(1/dT);        %number of steps in one period of piezo cycle based on 

fft frequency 

end 

  

while c1<cutStop                        %stops loop when it reaches end of data set 

     

        % Find Leading Edge > > > > > > > > > > >  

        while and(xPercent(c1) < percentTrigger3,c1<cutStop)  %searches for leading edge by 

looking for percent change of > percentTrigger2 

            c1 = c1+1;                  %note: instance wont occur when loop is broken 

        end 

        relDataSTART2(i) = c1;          %location in vector where relevant data starts 

        flag1 = 1; 

        % > > > > > > > > >  > > > > > > > > > > > 

     

     

    if c1<cutStop   %do this if we didn't just reach the end of the data set by looking for 

another rising edge             

        flag1 = 2; 

        % Predict Falling Edge - - - - - - - - -  

        switch f 

            case 0      %if 0 frequency case, skip 3/4 of steps in between Alg 1's range 

                cToSkip = floor((3/4)*(cutStop-cutStart));    %number of steps to skip before 

searching for falling edge 

                c1 = c1+cToSkip;                    %skip the cycles 

            otherwise   %if not 0 frequency case, calculate and skip percentage of period, based 

on user input as to approx how much of period has cutting ("percentHigh") 

                cToSkip1 = floor(.3*cPeriod);       %number of steps to skip before searching for 

falling edge 

                c1 = c1+cToSkip1;                   %skip the cycles to predict falling edge 

                if c1 >= cutStop                    %...but  if skipping these cycles puts us 

past end of Rel1 set... 

                    relDataSTART2(i) = '';          %...delete last instance of relDataSTART2 

because Predict Falling Edge counted up to cutStop 

                    iMinus = 1;                     %after the outer while loop, we'll subtract 

this from i because we have a false positive in relDataSTART2 

                end 

        end 

        % - - - - - - - - - - - - - - - - - - - -   

    else %this "else" only occurs if we've reached the end of the data set while looking for the 

next leading edge 

        relDataSTART2(i) = '';                      %if Find Leading Edge counted up to cutStop 

        iMinus = 1;                                 %after the outer while loop, we'll subtract 

this from i 

    end 

         

         

    if c1<cutStop   %do this if we didn't just reach the end of the data set by predicting the 

next falling edge             

        % Find Falling Edge o o o o o o o o o o o  

        while and(xPercent(c1) >= percentTrigger3 , c1<cutStop) %search for falling edge 

            c1 = c1+1;                              %note: instance wont occur when loop is 

broken 

        end 
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        relDataSTOP2(i) = c1-1;                     %location in vector where relevant data stops 

        flag1 = 3; 

        % o o o o o o o o o o o o o o o o o o o o  

         

         

        % Predict Leading Edge = = = = = = = = = 

        switch f 

            case 0  %do nothing since we're already at end of set 

             

            otherwise 

                if (relDataSTOP2(i)-relDataSTART2(i)) < cPeriod  %this if command prevents 

cToSkip from becoming negative, which occurs if on/off triggers do not occur every period 

                    cRemainInPeriod(i) = cPeriod - (relDataSTOP2(i)-relDataSTART2(i));     

%number of cycles remaining in current period 

                    cToSkip2 = floor((.5)*cRemainInPeriod(i));   %number of cycles to skip before 

searching for next rising edge 

                    c1 = c1+cToSkip2;               %skip the cycles 

                end 

        end 

        % = = = = = = = = = = = = = = = = = = = =  

        if c1<cutStop %if c1 is STILL less than relDataSTOP (ie we didn't just reach the end of 

the relevant Alg 1 data by predicting next leading edge 

        i = i+1; 

        end 

    end 

end 

Nrel2 = i-iMinus;                                   %subtract 1 (via iMinus) ONLY if there's a 

false positive from while loop 

  

if length(relDataSTART2)==length(relDataSTOP2)+1 

   relDataSTART2(end) = ''; 

   Nrel2 = Nrel2-1; 

end 

% [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []  

  

%% PLATEAU FORCES 

% Plateau forces are designated as the average value over the discrete 

% range where the Fx value has approximately saturated 

  

switch f 

    case 0      %conventional cutting 

        for ii=1:Nrel2 

           FxPlat(ii) = mean(Fx(relDataSTART2(ii):relDataSTOP2(ii)));  

           FyPlat(ii) = mean(Fy(relDataSTART2(ii):relDataSTOP2(ii)));  

        end  

    otherwise   %modulated cutting 

        for ii=2:Nrel2 

           FxPlat(ii) = mean(Fx(relDataSTART2(ii):relDataSTOP2(ii)));  

           FyPlat(ii) = mean(Fy(relDataSTART2(ii):relDataSTOP2(ii)));  

        end 

  

end 

  

%% DETERMINE MAM CONDITIONS USING Fx 

% Note: This should be done under conditions of high trigger start and high 

% length of analysis 

  

if fm~=0 

   % Smooth Fx trace 

   FxRelSmooth = smooth(Fx(cutStart:cutStop),NperPeriod/100); 

    

   % Determine No. of periods 

   Nperiods = floor(length(TCut)/NperPeriod); 

    

   % Find max and min Fx for each period 

   FxMaxs = zeros(Nperiods,1);  %initialize 

   FxMins = zeros(Nperiods,1);  %initialize 

   for k = 1:Nperiods 

       FxMaxs(k) = max(FxRelSmooth(((k-1)*NperPeriod)+1:k*NperPeriod)); 

       FxMins(k) = min(FxRelSmooth(((k-1)*NperPeriod)+1:k*NperPeriod));       
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   end 

   FxMinsPos = FxMins; 

   FxMinsPos(FxMins<0)=0;          %set all negative values to zero 

    

   % Determine percentage of critical MAM, where 0% is conventional cutting 

   % and 100% represents a MAM condition in which Fx just touches 0N each 

   % period 

   critMAM = mean((FxMaxs-FxMinsPos)./FxMaxs)*100; 

       

end 

  

%% PREDICT ENERGY 

% Use forceFitPlaner.m to determine function and its best fit linear 

% coefficients. It was found that there exists a natural logarithmic 

% relationship between Fx and V.  Since P = F*V, the best fit curve 

% assumption is a combination of logarithmic and linear (since V-V is 

% exactly linear).  Thus, P = A*ln(x)*x + B*x where A and B are constants 

% found using the linear solver best-fit method 

  

coeff = [5.4282e-01 2.1529e+01];                                    %coefficients from 

forceFitPlaner.m 

  

Pest = coeff(1)*log(Veff2).*(Veff2/1000) + coeff(2)*(Veff2/1000);   %[W] 

Pest(Pest<0)=0;                                                     %effectively eliminates 

singularity problem caused by log(Veff2) 

  

if sepFlag==1 

    Pest(Veff2==0)=0;                                               %power should = 0 when tool 

has separated from workpiece 

end 

     

dWest = Pest*dT; 

    dWest(1) = dWest(1)*.5;                                         %technicality of first 

instance lasting only half a time step 

    dWest(end) = dWest(end)*.5;                                     %technicality of last 

instance lasting only half a time step 

West = sum(dWest)/vol; 

     

%% CALCULATE ENERGY 

  

% Instantaneous work 

dW = Fx(cutStart:cutStop).*delD_ACDC/1000;  %dW(i)=F(i)*[-(D(i)-D(i-1))] ONLY CUTTING PORTION 

CONSIDERED [J]  

  

% Power 

P = dW/dT;                                  %[W] 

  

% All work terms 

Wall = sum(dW)/vol;                         %summation of all work terms [J/mm^3] 

  

% Only positive work terms 

dWpos = dW; 

dWpos(dWpos<0)=0; 

Wpos = sum(dWpos)/vol;                      %summation of only positive work terms [J/mm^3] 

  

% Only work terms within separation boxes 

if sepFlag == 1     %do this routine only if separation is actually occuring 

    dWsep = 0*dW;       %initialize 

    for k = 1:length(locMin) 

       dWsep(locMax(k):locRecut(k)) = dW(locMax(k):locRecut(k));  

    end 

    Wsep = sum(dWsep);                      %[J] 

end 

  

%% PLOT DISPLACEMENT 

  

% Initialize figure 

hFig1 = figure(1); 

fullscreen = get(0,'ScreenSize'); 

set(hFig1,'position',[10, 50, floor(fullscreen(3)/2)-30, fullscreen(4)-132]) 

set(hFig1,'color','w','Name','Analysis') 
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% Plot displacement 

ax1 = subplot(4,1,1); 

hold on 

plot(T,D_ACDC,'k','linewidth',2.5) 

plot(TCut,D_ACDCfit,'g','linewidth',1) 

hold off 

  

% Format figure 

set(gca,'fontsize',18) 

ylabel('Displacement (mm)') 

legend('Actual','Best Fit') 

hTtl = title(strrep(filename,'_','\_')); 

set(hTtl,'fontsize',22) 

  

grid on 

  

%% PLOT SEPARATION BOXES 

% Each separation box has width equal to amount of time tool was separated 

% from workpiece and height equal to max distance of separation between 

% tool and workpiece (NOT ACCOUNTING FOR COMPLIANCE) 

  

if sepFlag == 1     %do this routine only if separation is actually occuring 

    hold on 

    for k = 1:length(locMin) 

        rectangle('position',[T_sepBeg(k),D_fitMin(k),T_sepEnd(k)-

T_sepBeg(k),D_sepMax(k)],'edgecolor',[.25 .5 .7],'linewidth',2) 

    end 

    hold off 

end 

  

%% PLOT VELOCITIES 

  

% Plot velocity 

ax2 = subplot(4,1,2); 

hold on 

plot(TCut(2:end),Vdc,'-r') 

plot(TCut(2:end),Vac,'--','color',[0 .6 .3]) 

plot(TCut(2:end),Veff,'b','linewidth',2) 

  

% Format figure 

set(gca,'fontSize',18) 

ylabel('Velocity (mm/s)') 

legend('Vdc','Vac','Veff') 

grid on 

    

%% PLOT FORCES 

  

% Plot forces 

ax3 = subplot(4,1,3); 

hp1 = plot(T,Fx,'b'); 

hold on 

hp2 = plot(T,Fy,'m'); 

  

plot([T(cutStart),T(cutStart)],[min(Fx),max(Fx)],':g','linewidth',2.5) 

plot([T(cutStop),T(cutStop)],[min(Fx),max(Fx)],':r','linewidth',2.5) 

plot([T(peakStart),T(peakStart)],[min(Fx),max(Fx)],'--g','linewidth',2.5) 

plot([T(peakStop),T(peakStop)],[min(Fx),max(Fx)],'--r','linewidth',2.5) 

  

plot([T(relDataSTART2)],0,'.g','markersize',18) 

plot([T(relDataSTOP2)],0,'xr','markersize',9,'linewidth',2.5) 

  

for jj = 1:Nrel2 

   hp3 = plot([T(relDataSTART2(jj)),T(relDataSTOP2(jj))],[FxPlat(jj),FxPlat(jj)],'--

b','linewidth',2.5); 

   hp4 = plot([T(relDataSTART2(jj)),T(relDataSTOP2(jj))],[FyPlat(jj),FyPlat(jj)],'--

m','linewidth',2.5); 

end 

  

% Format figure 

hold off 
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set(gca,'fontSize',18) 

legend([hp1 hp2 hp3 hp4],'Fp','Fq','Fp Plat','Fq Plat') 

ylabel('Force (N)') 

grid on 

  

%% PLOT POWER 

  

% Plot power 

ax4 = subplot(4,1,4); 

hold on 

% plot(TCut(2:end),Pest,'r','linewidth',3) 

plot(TCut,P,'k','linewidth',1) 

hold off 

  

% Format figure 

set(gca,'fontSize',18) 

xlabel('Time (s)') 

ylabel('Power (W)') 

% legend('Predicted','Actual') 

grid on 

  

%% LINK X-AXES 

  

linkaxes([ax1,ax2,ax3,ax4],'x') 

xlim([0,T(end)]) 

  

figure(1) 

  

%% PRINT TO WORKSPACE 

  

disp(' ') 

disp(' ') 

disp('C O N D I T I O N') 

if fm==0 

    disp('Conventional') 

else 

    disp(sprintf('  %3.0f%% of critical MAM',critMAM)) 

end 

disp(' ') 

disp(' ') 

  

disp('F O R C E') 

disp(sprintf('   Avg Fp             = %.2f N',FxRel)) 

if fm==0 

    disp(sprintf('   Avg Plateau Fp     = %.2f +/- %.2e N',mean(FxPlat),std(FxPlat))) 

    disp(sprintf('   Avg Plateau Fq     = %.2f +/- %.2e N',mean(FyPlat),std(FyPlat))) 

else 

    disp(sprintf('   Avg Plateau Fp     = %.2f +/- %.2e 

N',mean(FxPlat(2:end)),std(FxPlat(2:end)))) 

    disp(sprintf('   Avg Plateau Fq     = %.2f +/- %.2e 

N',mean(FyPlat(2:end)),std(FyPlat(2:end)))) 

end 

disp(' ') 

disp(' ') 

  

disp('P O W E R') 

disp(sprintf('   Avg Power          = %.2e J/s',mean(P))) 

disp(' ') 

disp(' ') 

  

disp('V O L  S P E C  E N E R G Y ') 

  

disp(sprintf('   Total summed       = %.4e J/mm^3',Wall)) 

disp(sprintf('   Predicted          = %.4e J/mm^3',West)) 

  

disp(' ') 

disp(' ') 

  

if fm~=0 

disp('M A M  C O N D I T I O N S') 

disp(sprintf('   Best fm            = %.4f Hz',fbest)) 
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disp(sprintf('   Displacement Amp K = %.2f um',norm([AacBest,BacBest],2)*1000)) 

end 

  

FxPlat1 = Fx(relDataSTART2:relDataSTOP2); 

FyPlat1 = Fy(relDataSTART2:relDataSTOP2); 
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Appendix H: Lathe analysis routine (Matlab) 

Summary: This routine imports lathe-specific data (Fx,Fy,Fz,DAC) from a user-specified .txt file 

and performs numerical analysis techniques. Primary features include: 

 determination of beginning and end of cut 

 determination of beginning and end of individual periodic cutting instances 

 determination of effective instantaneous displacement and velocity (assumed linear 

motion of turret is combined with data from capacitance probe) 

 determination of best-fit equation characterizing said displacement 

 determination of instantaneous undeformed chip thickness 

 force prediction routine based on Fp(h0) found using forceFitLathe.m 

 specific energy calculations 

Note: This code refers to Fp/Fq as Fy/Fz, respectively. 

 

%% MAManalysisLathe.m 

%  

% Written By: Josh Norman 

% PROGRAM SUMMARY: THIS ROUTINE IMPORTS LATHE-SPECIFIC DATA FROM A USER 

% SPECIFIED .TXT FILE AND PERFORMS NUMERICAL ANALYSIS. PRIMARY FEATURES 

% INCLUDE: 

%       DETERMINATION OF BEGINNING AND END OF CUT.  

%       DETERMINATION OF BEGINNING AND END OF PERIODIC CUTTING INSTANCES.  

%       DETERMINATION OF EFFECTIVE INSTANTANEOUS DISPLACMENT AND VELOCITY 

%           (ASSUMED LINEAR MOTION OF TURRET IS COMBINED WITH DATA FROM 

%           CAPACITANCE PROBE) AS WELL AS BEST FIT EQUATION CHARACTERIZING 

%           THIS DISPLACEMENT. 

%       DETERMINATION OF INSTANTANEOUS UNDEFORMED CHIP THICKNESS 

%       FORCE PREDICTION ROUTINE BASED ON Fp(h0) FOUND USING 

%           forceFitLathe.m. 

%       SPECIFIC ENERGY CALCULATIONS. 

%       NOTE: Fp/Fq ARE REFERRED TO AS Fy/Fz RESPECTIVELY. 

  

clc; clear all; close all; 

  

%% INPUTS 

  

num_headerlines = 1;%number of headerlines                                                

fs = 5000;          %sampling frequency [Hz]                         

percentHigh = 0.40; %approx % of cycle in which cutting occurs         

w = 1200;           %angular velocity [rpm]                          

do = 25.4;          %workpiece outer diameter [mm]                   

wallThick = 1.24;   %workpiece wall thickness [mm]                   

NperVx = 10;        %Newtons per Volt in x dir [N/V]                 

NperVy = 20;        %Newtons per Volt in y dir [N/V]                 

NperVz = 20;        %Newtons per Volt in z dir [N/V]                 

uperV = 25;         %microns per Volt in displacement [um/V]         

driftZComp = 1;     %compensate for drift? (y/n = 1/0)               

showdriftZComp = 0; %show drift comp?      (y/n = 1/0)               

SScase = 3;         %which freq to use for Single Sine...            

                    %...  (1/2/3 = input/fft/modfft)             
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percentTrigger1 = 0.2; %trigger percentage for determining range of parent relevant data set 

                                         

%% CHOOSE TXT FILE TO IMPORT 

  

% Select "Relevant" Files 

wildcard_txt = '*.txt'; 

files_struct = dir(wildcard_txt);                   %list all .txt files in structure 

files_cell = struct2cell(files_struct);             %list these files in cell 

names_cell = files_cell(1,:);                       %select first row of cell b/c it contains 

names 

names_char = char(names_cell);                      %convert this cell row of names to characters 

[m,n] = size(names_char);                           %use m to know how many files are available 

  

if m==0 

   error('NO TXT FILES ARE LOCATED IN CURRENT DIRECTORY') 

   

elseif m<10     %single digits 

   for i = 1:m 

        FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:));     %create character array of 

file options to choose from   

   end 

  

elseif m>=10    %double digits 

    for i = 1:9 

        FileOptions(i,:) = sprintf('% i) %s',i,names_char(i,:));    %create character array of 

file options to choose from 

    end 

    for i = 10:m 

        FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:));     %create character array of 

file options to choose from 

    end 

end 

  

% Print Filenames to Workspace 

disp(' ') 

fprintf('\t\t\tANALYSIS OF EXPERIMENTAL DATA') 

fprintf('\n\n') 

disp(FileOptions)                                                   %print list to workspace 

fprintf('\n\n') 

  

% Choose file on which to run analysis 

fileChoice = input('Enter File #   -->  ');                         %user enters number 

corresponding to file 

filename_ext = deblank(names_char(fileChoice,:));                   %remove placeholding spaces 

from end of selected filename 

[PATHSTR, filename, EXT] = fileparts(filename_ext); 

  

%% IMPORT DATA FROM .txt FILE   

  

fid = fopen(filename_ext);                                          %open file 

Acell = textscan(fid,'%f %f %f %f','headerlines',num_headerlines);  %import data from all 4 

columns of file to cell variable 

Amat = cell2mat(Acell);                                             %convert cell variable to 

matrix 

fclose(fid);                                                        %close file 

  

% Assigning Data Channels  

ch0 = Amat(:,1);                                                    %first column 

ch1 = Amat(:,2);                                                    %second column 

ch2 = Amat(:,3);                                                    %third column 

ch3 = Amat(:,4);                                                    %fourth column 

  

%                    F O R C E   C A L C U L A T I O N    

  

Fx = ch0*NperVx;                                                    %Force in x-direction [N] 

Fy = ch1*NperVy;                                                    %Force in y-direction [N] 

FzIni = ch2*NperVz;                                                 %Force in z-direction [N] 

  

%              D I S P L A C E M E N T   C A L C U L A T I O N     

  

%Displacement Calculation 
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D_AC = ch3*uperV;                                                   %Capacitive (ie dynamic) 

displacement [um] 

  

%% PRE-PROCESSING 

  

%Determine Modulation Frequency - - - - -  

locHz = strfind(filename_ext,'Hz');     %find index 

loc_ = strfind(filename_ext,'_');       %find index 

HzValStart = 1; 

for i = 1:length(loc_) 

    if loc_(i)<locHz; 

        HzValStart = loc_(i)+1;         %by end of outer for loop, HzValStart will be the index 

of the space where the piezo freq value begins 

    end 

end 

HzValStop = locHz-1;                    %index of the space where the piezo freq value stops 

fStr = filename_ext(HzValStart:HzValStop); 

f = str2num(fStr);                      %piezo frequency [Hz]     

% - - - - - - - - - - - - - - - - - - - - - 

  

% Determine feedrate & & & & & & & & & &  

locFR = strfind(filename_ext,'mmrev'); 

FR = (str2num(filename_ext(locFR-5)) + 1/1000*str2num(filename_ext(locFR-3:locFR-1)))*1000; 

%turret feedrate (um/rev) 

% & & & & & & & & & & & & & & & & & & & & 

  

%Constants + + + + + + + + + + + + + + 

N = length(ch0); 

dT = 1/fs;                              %time step [s] 

t = (0:1:N-1)'*dT;                      %time vector [s] 

di = do - 2*wallThick;                  %inner diameter of tube [mm] 

diaCut = mean([di,do]);                 %average diameter [mm] 

wSI = w*2*pi/60;                        %angular velocity of workpiece in SI [rad/s] 

V = (pi/(60*1000)) * w * diaCut;        %workpiece velocity at point of contact [m/s] 

distCut = V.*t;                         %distance tool has cut as function of time [m] 

Pspin = 60/w;                           %period for one revolution of spindle [s] 

stepsPerRot = round(fs*Pspin);          %number of timesteps in one revolution of spindle 

V_DC = FR*w/60;                         %turret velocity [um/s] 

  

chCurr = ch1; 

chCurrSmooth = smooth(chCurr,10);                   %smooth out chCurr data 

yRange = max(chCurrSmooth)-min(chCurrSmooth);       %range of values on current channel 

yPercent = (chCurrSmooth-min(chCurrSmooth))/yRange; %vector of channels values as percent of 

range 

% + + + + + + + + + + + + + + + + + + +  

  

%% ALGORITHM 1: DETERMINE RANGE OF PARENT "RELEVANT" DATA  

% Algorithm 1: "Relevant" = range between when tool is first engaged until 

% it is last disengaged. 

  

% START/STOP ALGORITHM 1 - - - - - - - - - - - - 

c1 = 1;                                     %initiate counter 1 

while yPercent(c1) < percentTrigger1        %looks for percent change of > percentTrigger1 

    c1 = c1+1;                              %note: instance wont occur when loop is broken 

end 

relDataSTART1 = c1;                         %location in vector where relevant data starts 

c2 = length(chCurr);                        %initiate counter 2 where at end of data set 

while yPercent(c2) < percentTrigger1 

    c2 = c2-1; 

end 

relDataSTOP1 = c2;                          %location in vector where relevant data stops 

  

lengthRel1 = relDataSTOP1-relDataSTART1+1;  %length of parent data set 

%  - - - - - - - - - - - - - - - - - - - - - - -  

  

    % Drift Compensation in Fz * * * * * * * * * * * 

    switch driftZComp       %Use a switch to easily turn on/off drift compensation 

        case 0              %NO drift compensation on force in z-dir 

            Fz = FzIni;     %leave Fz as it was initially 

        case 1              %WITH drift compensation on force in z-dir 
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            distCutNonRel = distCut([1:relDataSTART1,relDataSTOP1:length(distCut)],1);  %vector 

of the non-relevant distances cut 

            FzNonRel = FzIni([1:relDataSTART1,relDataSTOP1:length(FzIni)],1);           %vector 

of the non-relevant Fz's 

            driftLineCoeffs = polyfit(distCutNonRel,FzNonRel,1); 

            FzDriftLine = polyval(driftLineCoeffs,distCut); 

            Fz = FzIni-FzDriftLine; 

    end 

    % * * * * * * * * * * * * * * * * * * * * * * * * 

  

% Define vector of times during which cutting occurs 

tCut = t(relDataSTART1:relDataSTOP1); 

     

%% PERFORM FFT ON PARENT DISPLACEMENT DATA 

  

displRelev1 = D_AC([relDataSTART1:relDataSTOP1],1);    %[um] 

L = length(displRelev1);                                                %number of samples 

fNyq = fs/2;                                                            %Nyquist frequency [Hz] 

Nfft = 2^(nextpow2(L)-1);                                               %length of fft by taking 

largest possible power of 2 from length of ch3 

fft_freq = fNyq*linspace(0,1,Nfft/2)';                                  %fft frequencies taking 

into account frequency resolution (single sided) 

fft_displRelev = fft(displRelev1,Nfft);                                 %perform FFT   

fft_displRelevAdj = fft_displRelev/L;                                   %scale FFT by dividing by 

L (# of samples) 

fft_displRelevAdjSingSided = 2*abs(fft_displRelevAdj(1:Nfft/2));        %single sided analysis of 

fft results 

fft_freqNoDCBinIndex = fft_freq > 0.5*f;                                %returns logical true for 

all frequencies that are greater than 50% of input frequencies.  These frequencies will be 

skipped when looking for max freq in order to eliminate DC component [Hz] 

fft_freqNoDCIndex = find(fft_freq > 0.5*f);                             %returns index of all 

frequencies that are greater than 50% of input frequencies 

fft_displRelevAdjSingSidedNoDC = fft_freqNoDCBinIndex.*fft_displRelevAdjSingSided; %set power (y-

axis) of all frequencies lower than above criteria == 0 in order to filter out DC component 

  

%% DETERMINE FREQUENCY 

  

freqFFTIndex = find(fft_displRelevAdjSingSidedNoDC==max(fft_displRelevAdjSingSidedNoDC)); 

%location on freq domain where max occurs 

if length(freqFFTIndex)>1               %if multiple frequencies appear as the primary 

frequency... 

    freqFFTIndex = min(freqFFTIndex);   %...select the lowest of these frequencies 

    warning('MULTIPLE PRIMARY FREQUENCIES DETECTED') 

end 

freqFFT = fft_freq(freqFFTIndex);       %primary frequency of oscillation [Hz] 

freqFFTdist = 1 / ((1/(2*pi*freqFFT))*wSI*(diaCut/1000/2));  %primary frequency of oscillation in 

distance cut metric [rad/m] 

  

%% DETERMINE WHICH CUTTING TYPE IS OCCURING 

% Case 1: Used when either f = 0 or else when the cutting tool loses 

% contact during machining 

% Case 2: Used when the cutting tool oscillates, but maintains contact 

  

xStartTest = round(0.45*(relDataSTOP1 - relDataSTART1) + relDataSTART1);    %start of range near 

middle of data set 

xStopTest  = round(0.55*(relDataSTOP1 - relDataSTART1) + relDataSTART1);    %end of range near 

middle of data set 

CutTypeCaseTestRange = Fy(xStartTest:xStopTest);                            %Fy values within 

this range 

stdTestRange = std(CutTypeCaseTestRange);                                   %calculates standard 

deviation of the selected force data in order to determine if oscillation occurs, but at constant 

so (constant thickness) 

  

if or(or(f==0,min(yPercent(xStartTest:xStopTest)) <= 0.1),stdTestRange < 1) 

    CutTypeCase = 1; 

elseif min(yPercent(xStartTest:xStopTest)) > 0.1 

    CutTypeCase = 2; 

else  

    error('Unrecognizable cutting type') 

end 
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%% DETERMINE RANGE OF REPRESENTATIVE CONVENTIONAL DATA 

% Eliminate loading/unloading portions of traces 

  

Dskip = 100;                        %distance to eliminate on either side of data [um] 

Nskip = round(Dskip/(V_DC*dT));     %number of points skipped 

repStart = relDataSTART1+Nskip;     %start index 

repStop  = relDataSTOP1-Nskip;      %stop index 

FpRep = Fy(repStart:repStop);       %Fp data in this representative range [N] 

FqRep = Fz(repStart:repStop);       %Fq data in this representative range [N] 

FpAvgRep = mean(FpRep);             %average Fp [N] 

  

%% ALGORITHM 2: DETERMINE RANGE OF DISCRETE "RELEVANT" DATA 

% Algorithm 2: "Relevant" = when tool is engaged.  Thus this range will 

% consist of multiple discrete instances of "relevant" data. 

% Note: This range is determined using ch1 because ch1 responds 

% "immediately" when the tool is engaged 

  

switch CutTypeCase 

         

% START/STOP ALGORITHM 2 FOR CASE 1 [] [] [] [] [] [] [] 

case 1   

percentTrigger2 = 0.3; 

i = 1;                                      %initiate counter Nrel2  

iMinus = 0;                                 %after the outer while loop, we'll subtract this from 

i 

c1 = repStart;                              %initiate counter c1 

  

switch f  %this switch-case generates cPeriod, depending on the piezo's input frequency 

    case 0 

        cPeriod = repStop-repStart;         %a zero freq case needs to exist to prevent Inf 

values for cPeriod 

    otherwise 

        cPeriod = (1/freqFFT)*(1/dT);       %number of steps in one period of piezo cycle based 

on fft frequency 

end 

  

while c1<repStop                            %stops loop when it reaches end of data set 

     

        % Find Leading Edge > > > > > > > > > > >  

        while and(yPercent(c1) < percentTrigger2,c1<repStop)  %searches for leading edge by 

looking for percent change of > percentTrigger2 

            c1 = c1+1;                      %note: instance wont occur when loop is broken 

        end 

        relDataSTART2(i) = c1;              %location in vector where relevant data starts 

        flag1 = 1;                          %used for debugging 

        % > > > > > > > > >  > > > > > > > > > > > 

     

     

    if c1<repStop                           %do this if we didn't just reach the end of the data 

set by looking for another rising edge             

        flag1 = 2;                          %used for debugging 

        % Predict Falling Edge - - - - - - - - -  

        switch f 

            case 0                          %if 0 frequency case, skip 3/4 of steps in between 

Alg 1's range 

                cToSkip = floor((3/4)*(repStop-repStart));    %number of steps to skip before 

searching for falling edge 

                c1 = c1+cToSkip;            %skip the cycles 

            otherwise                       %if not 0 frequency case, calculate and skip 

percentage of period, based on user input as to approx how much of period has cutting 

("percentHigh") 

                cToSkip1 = floor((percentHigh-.10)*cPeriod);    %number of steps to skip before 

searching for falling edge 

                c1 = c1+cToSkip1;           %skip the cycles to predict falling edge 

                if c1 >= repStop            %...but  if skipping these cycles puts us past end of 

Rel1 set... 

                    relDataSTART2(i) = '';  %...delete last instance of relDataSTART2 because 

Predict Falling Edge counted up to repStop 

                    iMinus = 1;             %after the outer while loop, we'll subtract this from 

i because we have a false positive in relDataSTART2 

                end 
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        end 

        % - - - - - - - - - - - - - - - - - - - -   

    else                                    %this "else" only occurs if we've reached the end of 

the data set while looking for the next leading edge 

        relDataSTART2(i) = '';              %if Find Leading Edge counted up to repStop 

        iMinus = 1;                         %after the outer while loop, we'll subtract this from 

i 

    end 

         

         

    if c1<repStop                           %do this if we didn't just reach the end of the data 

set by predicting the next falling edge             

        % Find Falling Edge o o o o o o o o o o o  

        while and( yPercent(c1) >= percentTrigger2 , c1<repStop ) %search for falling edge 

            c1 = c1+1;                      %note: instance wont occur when loop is broken 

        end 

         

        relDataSTOP2(i) = c1-1;             %location in vector where relevant data stops 

        flag1 = 3;                          %used for debugging 

        % o o o o o o o o o o o o o o o o o o o o  

         

         

        % Predict Leading Edge = = = = = = = = = 

        switch f 

            case 0                          %do nothing since we're already at end of set 

             

            otherwise 

                if (relDataSTOP2(i)-relDataSTART2(i)) < cPeriod     %this if command prevents 

cToSkip from becoming negative, which occurs if on/off triggers do not occur every period 

                    cRemainInPeriod(i) = cPeriod - (relDataSTOP2(i)-relDataSTART2(i));     

%number of cycles remaining in current period 

                    cToSkip2 = floor((1/2)*cRemainInPeriod(i));     %number of cycles to skip 

before searching for next rising edge 

                    c1 = c1+cToSkip2;       %skip the cycles 

                end 

        end 

        % = = = = = = = = = = = = = = = = = = = =  

        if c1<repStop                       %if c1 is STILL less than relDataSTOP (ie we didn't 

just reach the end of the relevant Alg 1 data by predicting next leading edge 

        i = i+1; 

        end 

    end 

end 

Nrel2 = i-iMinus;                           %subtract 1 (via iMinus) ONLY if there's a false 

positive from while loop 

% [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []  

  

% START/STOP ALGORITHM 2 FOR CASE 2 <> <> <> <> <> <> <> 

case 2 

i = 1;                                      %initiate counter Nrel2  

iMinus = 0;                                 %after the outer while loop, we'll subtract this from 

i 

c1 = repStart;                              %initiate counter c1.  This will count through each 

of the points in the data set 

percentTrigger2 = 0.3;                      %percent trigger for relevant data flagging for Alg2 

  

%Find valueTrigger2: Use Fy data for triggering/flagging 

switch f                                    %this switch-case generates cPeriod, depending on the 

piezo's input frequency 

    case 0 

        cPeriod = repStop-repStart;         %a zero freq case needs to exist to prevent Inf 

values for cPeriod 

    otherwise 

        cPeriod = (1/f)*(1/dT);             %number of steps in one period of piezo cycle 

end 

  

minRel2(i) = min(Fy(c1:c1+ceil(cPeriod))); 

maxRel2(i) = max(Fy(c1:c1+ceil(cPeriod))); 

rangeRel2(i) = maxRel2(i) - minRel2(i); 

valueTrigger2(i) = minRel2(i) + percentTrigger2*rangeRel2(i); %value for relevant data flagging 

for Alg2 
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while c1<repStop                            %stops loop when it reaches end of Alg1's relevant 

data 

     

        % Find Leading Edge > > > > > > > > > > >  

        while and(Fy(c1) < valueTrigger2(i),c1<repStop)  %searches for leading edge by looking 

for percent change of > percentTrigger 

            c1 = c1+1;                      %note: instance wont occur when loop is broken 

        end 

        relDataSTART2(i) = c1;              %location in vector where relevant data starts 

        flag1 = 1;                          %used for debugging 

        % > > > > > > > > >  > > > > > > > > > > > 

     

     

    if c1<repStop                           %do this if we didn't just reach the end of the 

relevant data according to Alg1 by looking for another leading edge             

        flag1 = 2;                          %used for debugging 

        % Predict Falling Edge - - - - - - - - -  

        cPeriod = (1/f)*(1/dT);             %number of steps in one period of piezo cycle 

        switch f 

            case 0                          %if 0 frequency case, skip 3/4 of steps in between 

Alg 1's range 

                cToSkip = floor((3/4)*(repStop-repStart));    %number of steps to skip before 

searching for falling edge 

                c1 = c1+cToSkip;            %skip the cycles 

            otherwise                       %if not 0 frequency case, calculate and skip 3/4 of 

steps for 1 piezo cycle... 

                cToSkip1 = floor((1/2)*cPeriod);    %number of steps to skip before searching for 

falling edge 

                c1 = c1+cToSkip1;           %skip the cycles to predict falling edge 

                if c1 >= repStop            %...but  if skipping these cycles puts us past end of 

Rel1 set... 

                    relDataSTART2(i) = '';  %...delete last instance of relDataSTART2 because 

Predict Falling Edge counted up to repStop 

                    iMinus = 1;             %after the outer while loop, we'll subtract this from 

i because we have a false positive in relDataSTART2 

                end 

        end 

         

        % - - - - - - - - - - - - - - - - - - - -   

    else                                    %this "else" only occurs if we've reached the end of 

the data set while looking for the next leading edge 

        relDataSTART2(i) = '';              %if Find Leading Edge counted up to relDataSTOP2 

        iMinus = 1;                         %after the outer while loop, we'll subtract this from 

i because we have a false positive in relDataSTART2 

    end 

         

         

    if c1<repStop                           %do this if we didn't just reach the end of the 

relevant data according to Alg1 by predicting the next falling edge             

        % Find Falling Edge o o o o o o o o o o o  

        while and( Fy(c1) >= valueTrigger2(i) , c1<repStop )   %search for falling edge 

            c1 = c1+1;                      %note: instance wont occur when loop is broken 

        end 

         

        relDataSTOP2(i) = c1-1;             %location in vector where relevant data stops 

        flag1 = 3;                          %used for debugging 

        % o o o o o o o o o o o o o o o o o o o o  

         

         

        % Predict Leading Edge = = = = = = = = = 

        switch f 

            case 0                          %do nothing since we're already at end of set 

             

            otherwise 

                if (relDataSTOP2(i)-relDataSTART2(i)) < cPeriod     %this "if" command prevents 

cToSkip from becoming negative, which occurs if on/off triggers do not occur every period 

                    cRemainInPeriod(i) = cPeriod - (relDataSTOP2(i)-relDataSTART2(i));     

%number of cycles remaining in current period 

                    cToSkip2 = floor((1/2)*cRemainInPeriod(i));     %number of cycles to skip 

before searching for next rising edge 
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                    c1 = c1+cToSkip2;       %skip the cycles 

                end 

        end 

        flag1 = 4;                          %used for debugging 

        % = = = = = = = = = = = = = = = = = = = =  

        minRel2(i+1) = min(Fy(relDataSTART2(i):relDataSTOP2(i))); 

        maxRel2(i+1) = max(Fy(relDataSTART2(i):relDataSTOP2(i))); 

        rangeRel2(i+1) = maxRel2(i+1) - minRel2(i+1); 

        valueTrigger2(i+1) = minRel2(i+1) + percentTrigger2*rangeRel2(i+1); %value for relevant 

data flagging for Alg2 

        if c1<repStop                       %if c1 is STILL less than relDataSTOP (ie we didn't 

just reach the end of the relevant Alg 1 data by predicting next leading edge 

            i = i+1; 

        end 

    end 

end 

Nrel2 = i-iMinus;                           %subtract 1 (via iMinus) ONLY if there's a false 

positive from while loop 

% <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> 

  

end %of SWITCH on CutTypeCase 

  

%% PLATEAU FINDING ALGORITHM 

  

for c2 = 1:Nrel2    %do this for each chunk of relevant data according to Algorithm 2 (discrete) 

  

    % Plateau Finding Algorithm 1 * * * * * * * * * * *      

    percentTrigger3 = 0.6; 

    % Fy Left  -  -  -  -  -  -   

    LeftIndex1(c2) = relDataSTART2(c2);         %initiate position of left boundary of plateau 

    while yPercent(LeftIndex1(c2)) < percentTrigger3 

        LeftIndex1(c2) = LeftIndex1(c2) + 1;    %at completion of loop, this will be the index of 

the plateau's trigger on 

    end     

    % Fy Right 

    RightIndex1(c2) = relDataSTOP2(c2);         %initiate position of left boundary of plateau 

    while yPercent(RightIndex1(c2)) < percentTrigger3 

        RightIndex1(c2) = RightIndex1(c2) - 1;  %at completion of loop, this will be the index of 

the plateau's trigger off 

    end     

    %  -  -  -  -  -  -  -  -  - 

    % * * * * * * * * * * * * * * * * * * * * * * * * * 

     

end 

  

  

    % Plateau Processing / Short Plateau Correction = = = = = = = = = = = = 

     

    % Correction of Forces o o o o o o o o o o o o o 

    for c3 = 1:Nrel2      %counter c3 is essentially identical to c2 

         

       % Fy Plateau 

       FyPlateauDomain = Fy(LeftIndex1(c3):RightIndex1(c3));                %vector of forces on 

current plateau [N] 

       lengthPlatFy(c3) = length(FyPlateauDomain);                          %length of current 

plateau 

       if lengthPlatFy(c3)/(relDataSTOP2(c3)-relDataSTART2(c3)+1) < .01     %if current plateau 

is short... 

          lengthPlatFy(c3) = relDataSTOP2(c3)-relDataSTART2(c3)+1;          %...this accounts for 

incorrect short plateau (short means <1% of rel2 range)... 

          FyPlateauDomain = Fy(relDataSTART2(c3):relDataSTOP2(c3));         %...by making plateau 

the entire rel2 range  

       end 

       FyPlateauAvgs(c3) = mean(FyPlateauDomain);                           %current plateau's 

average force [N]    

       FyPlateauStds(c3) = std(FyPlateauDomain);                            %current plateau's 

standard deviation [N] 

        

       % Fz Plateau 

       FzPlateauDomain = Fz(LeftIndex1(c3):RightIndex1(c3));                %vector of forces on 

current plateau [N] 
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       lengthPlatFz(c3) = length(FzPlateauDomain);                          %length of current 

plateau 

       if lengthPlatFz(c3)/(relDataSTOP2(c3)-relDataSTART2(c3)+1) < .01     %if current plateau 

is short... 

          lengthPlatFz(c3) = relDataSTOP2(c3)-relDataSTART2(c3)+1;          %...this accounts for 

incorrect short plateau (short means <1% of rel2 range)... 

          FzPlateauDomain = Fz(relDataSTART2(c3):relDataSTOP2(c3));         %...by making plateau 

the entire rel2 range  

       end 

       FzPlateauAvgs(c3) = mean(FzPlateauDomain);                           %current plateau's 

average force [N]  

       FzPlateauStds(c3) = std(FzPlateauDomain);                            %current plateau's 

standard deviation [N] 

        

    end 

    % o o o o o o o o o o o o o o o o o o o o o o o o 

     

     

    % Correction of Start/Stop Indices / \ / \ / \ / 

    %First Instance _ _ _ _ _ _ _ _  

    FyPlateaus = Fy(LeftIndex1(1):RightIndex1(1));                          %initiate vector of 

Plateau Forces [N] 

    lengthToAddFy(1) = length(FyPlateaus);                                  %initiate vector 

containing lengths of individual plateaus 

    if lengthToAddFy(1)/(relDataSTOP2(1)-relDataSTART2(1)+1) < .01          %if current plateau 

is short (short means <1% of rel2 range)... 

       lengthToAddFy(1) = relDataSTOP2(1)-relDataSTART2(1)+1;               %...this accounts for 

incorrect short plateau... 

       FyLeftIndex2(1) = relDataSTART2(1);                                  %...by making left  

index of plateau same as rel2 START index... 

       FyRightIndex2(1) = relDataSTOP2(1);                                  %...and by making 

right index of plateau same as rel2 STOP index 

    else                                                                    %the left&right 

indices stay the same, since it's not a short plateau 

       FyLeftIndex2(1) = LeftIndex1(1); 

       FyRightIndex2(1) = RightIndex1(1); 

    end 

    FyPlateaus = Fy(FyLeftIndex2(1):FyRightIndex2(1));                      %redefine plateaus 

vector after short plateaus have been accounted for 

     

    FzPlateaus = Fz(LeftIndex1(1):RightIndex1(1));                          %initiate vector of 

Plateau Forces [N] 

    lengthToAddFz(1) = length(FzPlateaus);                                  %initiate vector 

containing lengths of individual plateaus     

    if lengthToAddFz(1)/(relDataSTOP2(1)-relDataSTART2(1)+1) < .01          %if current plateau 

is short (short means <1% of rel2 range)... 

       lengthToAddFz(1) = relDataSTOP2(1)-relDataSTART2(1)+1;               %...this accounts for 

incorrect short plateau... 

       FzLeftIndex2(1) = relDataSTART2(1);                                  %...by making left  

index of plateau same as rel2 START index... 

       FzRightIndex2(1) = relDataSTOP2(1);                                  %...and by making 

right index of plateau same as rel2 STOP index 

    else                                                                    %the left&right 

indices stay the same, since it's not a short plateau 

       FzLeftIndex2(1) = LeftIndex1(1); 

       FzRightIndex2(1) = RightIndex1(1); 

    end 

    FzPlateaus = Fz(FzLeftIndex2(1):FzRightIndex2(1));                      %redefine plateaus 

vector after short plateaus have been accounted for 

  

    %_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

     

    %Other Instances * * * * * * * * *  

    for c4 = 2:Nrel2 

       lengthFyPlat = length(FyPlateaus);                                   %length of force 

vector for all plateaus up to present c4 

       lengthToAddFy(c4) = RightIndex1(c4) - LeftIndex1(c4) + 1;            %length of current 

force vector to be appended 

       if lengthToAddFy(c4)/(relDataSTOP2(c4)-relDataSTART2(c4)+1) < .01    %if current plateau 

is short (short means <1% of rel2 range)... 
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           lengthToAddFy(c4) = relDataSTOP2(c4)-relDataSTART2(c4)+1;        %...rewrite 

lengthToAddFy to be the length of current rel2 range 

           FyPlateaus(lengthFyPlat+1:lengthFyPlat+lengthToAddFy(c4),1) = 

Fy(relDataSTART2(c4):relDataSTOP2(c4)); %make plateau the entire rel2 range 

           FyLeftIndex2(c4) = relDataSTART2(c4);                            %left  index of 

plateau AFTER short plateau correction 

           FyRightIndex2(c4) = relDataSTOP2(c4);                            %right index of 

plateau AFTER short plateau correction 

       else                                                                 %plateau is ok 

length, proceed with standard plateau finder 

           FyLeftIndex2(c4) = LeftIndex1(c4);                               %the left index stays 

the same, since it's not a short plateau 

           FyRightIndex2(c4) = RightIndex1(c4);                             %the right index 

stays the same, since it's not a short plateau 

           FyPlateaus(lengthFyPlat+1:lengthFyPlat+lengthToAddFy(c4),1) = 

Fy(FyLeftIndex2(c4):FyRightIndex2(c4));    %cumulative force vector [N] 

       end 

               

       lengthFzPlat = length(FzPlateaus);                                   %length of force 

vector for all plateaus up to present c4 

       lengthToAddFz(c4) = RightIndex1(c4) - LeftIndex1(c4) + 1;            %length of current 

force vector to be appended        

       if lengthToAddFz(c4)/(relDataSTOP2(c4)-relDataSTART2(c4)+1) < .01 

           lengthToAddFz(c4) = relDataSTOP2(c4)-relDataSTART2(c4)+1;        %rewrite 

lengthToAddFz if instance c4 is a "short" plateau (short means <1% of rel2 range) 

           FzPlateaus(lengthFzPlat+1:lengthFzPlat+lengthToAddFz(c4),1) = 

Fz(relDataSTART2(c4):relDataSTOP2(c4)); %make plateau the entire rel2 range            

           FzLeftIndex2(c4) = relDataSTART2(c4);                            %left  index of 

plateau AFTER short plateau correction 

           FzRightIndex2(c4) = relDataSTOP2(c4);                            %right index of 

plateau AFTER short plateau correction 

       else                                                                 %plateau is ok 

length, proceed with standard plateau finder 

           FzLeftIndex2(c4) = LeftIndex1(c4);                               %the left index stays 

the same, since it's not a short plateau 

           FzRightIndex2(c4) = RightIndex1(c4);                             %the right index 

stays the same, since it's not a short plateau 

           FzPlateaus(lengthFzPlat+1:lengthFzPlat+lengthToAddFz(c4),1) = 

Fz(FzLeftIndex2(c4):FzRightIndex2(c4));    %cumulative force vector [N] 

       end 

    end 

    % * * * * * * * * * * * * * * * * *          

    % / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / 

     

     

    FyPlatAvg = mean(FyPlateaus);                                           %average across all 

data points included in plateau 

    FzPlatAvg = mean(FzPlateaus);                                           %average across all 

data points included in plateau 

     

    tPlateausY = 0:dT:(length(FyPlateaus)-1)*dT;                            %create vector of 

pseudotimes for Work integration 

    tPlateausZ = 0:dT:(length(FzPlateaus)-1)*dT;                            %create vector of 

pseudotimes for Work integration 

    % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

     

%% PROCESS RELEVANT DATA 

  

%                           F  O   R   C   E   S 

  

%Algorithm 1 - - - - - - - - - 

FxRelev1 = Fx([relDataSTART1:relDataSTOP1],1);          %[N] 

FyRelev1 = Fy([relDataSTART1:relDataSTOP1],1);          %aka Fp [N] 

FzRelev1 = Fz([relDataSTART1:relDataSTOP1],1);          %aka Fq [N] 

distCutRelev1 = distCut([relDataSTART1:relDataSTOP1],1);%to be used in least squares fitting [m] 

  

tRelev1 = t([relDataSTART1:relDataSTOP1]);              %time vector of relevant data [s] 

FRelev1Sq = [FxRelev1.^2, FyRelev1.^2, FzRelev1.^2];    %matrix with Fx^2, Fy^2, Fz^2 in columns 

[N] 

FRelev1SqSum = sum(FRelev1Sq,2);                        %sum across rows 
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FRelev1Res = sqrt(FRelev1SqSum);                        %resultant force considering Fx, Fy, Fz 

[N] 

% - - - - - - - - - - - - - - - 

  

  

%Algorithm 2 < > < > < > < > < > 

FxRelev2(:,1) = Fx(relDataSTART2(1):relDataSTOP2(1));   %initiate vector of relevant forces [N] 

FyRelev2(:,1) = Fy(relDataSTART2(1):relDataSTOP2(1));   %initiate vector of relevant forces [N] 

FzRelev2(:,1) = Fz(relDataSTART2(1):relDataSTOP2(1));   %initiate vector of relevant forces [N] 

displRelev2 = D_AC(relDataSTART2(1):relDataSTOP2(1));   %initiate vector of relevant 

displacements [um] 

  

for k = 2:Nrel2 

    lengthToAdd = relDataSTOP2(k) - relDataSTART2(k) + 1;    %length of current vector to be 

appended (add 1 so it includes both start and end positions' data) 

  

    lengthFx = length(FxRelev2); 

    FxRelev2(lengthFx+1:lengthFx+lengthToAdd,1) = Fx(relDataSTART2(k):relDataSTOP2(k)); %append 

force data [N] 

  

    lengthFy = length(FyRelev2); 

    FyRelev2(lengthFy+1:lengthFy+lengthToAdd,1) = Fy(relDataSTART2(k):relDataSTOP2(k)); %append 

force data [N] 

  

    lengthFz = length(FzRelev2); 

    FzRelev2(lengthFz+1:lengthFz+lengthToAdd,1) = Fz(relDataSTART2(k):relDataSTOP2(k)); %append 

force data [N] 

  

    lengthdispl = length(displRelev2); 

    displRelev2(lengthdispl+1:lengthdispl+lengthToAdd,1) = 

D_AC(relDataSTART2(k):relDataSTOP2(k)); %append displacement data [um] 

end 

  

tRelev2 = 0:dT:(length(FxRelev2)-1)*dT;                 %does NOT correspond to real time, but 

can be used for time integration [s] 

FRelev2Sq = [FxRelev2.^2, FyRelev2.^2, FzRelev2.^2];    %matrix with Fx^2, Fy^2, Fz^2 in columns 

[N] 

FRelev2SqSum = sum(FRelev2Sq,2);                        %sum across rows 

FRelev2Res = sqrt(FRelev2SqSum);                        %resultant force considering Fx, Fy, Fz 

[N] 

% < > < > < > < > < > < > < > < >  

  

%Peak/Mean Forces = = = = = = = = 

%   Peak: Use plateau data (mean +/- 1std) 

%   Mean: Use parent (ie relev1) data (mean +/- 1std) 

  

switch f   %f is input freq to piezo 

case 0  % : : : : : : : 

%Fy PEAK 

FyMaxPlusMinus = std(FyPlateaus);                       %std of entire plateaus data set (only 1 

plateau b/c f=0) [N] 

FyMaxDC = mean(FyPlateaus);                             %mean of entire plateaus data set (only 1 

plateau b/c f=0) [N] 

  

%Fy MEAN 

FyAvgPlusMinus = std(FyRelev1);                         %std of entire rel1 data set (only 1 

plateau b/c f=0) [N] 

FyAvgDC = mean(Fy(relDataSTART1:relDataSTOP1));         %mean of entire rel1 data set (only 1 

plateau b/c f=0) [N] 

  

%Fz PEAK 

FzMaxPlusMinus = std(FzPlateaus);                       %std of entire plateaus data set (only 1 

plateau b/c f=0) [N] 

FzMaxDC = mean(FzPlateaus);                             %mean of entire plateaus data set (only 1 

plateau b/c f=0) [N] 

  

%Fz MEAN 

FzAvgPlusMinus = std(Fz(relDataSTART1:relDataSTOP1));   %std of entire rel1 data set (only 1 

plateau b/c f=0) [N] 

FzAvgDC = mean(Fz(relDataSTART1:relDataSTOP1));         %mean of entire rel1 data set (only 1 

plateau b/c f=0) [N] 



129 
 

% : : : : : : : : : : :  

  

otherwise  % + + + + + +    

for ck = 1:Nrel2 

   FyMax(ck) = max(Fy(FyLeftIndex2(ck):FyRightIndex2(ck))); %max force of current Alg2 chunk 

   FzMax(ck) = max(Fz(FzLeftIndex2(ck):FzRightIndex2(ck))); %max force of current Alg2 chunk 

    

   FyAvg(ck) = mean(Fy(FyLeftIndex2(ck):FyRightIndex2(ck)));%average force of current Alg2 chunk 

   FzAvg(ck) = mean(Fz(FzLeftIndex2(ck):FzRightIndex2(ck)));%average force of current Alg2 chunk 

end 

  

%Fy PEAK 

FyMaxPlusMinus = sqrt(sum((lengthPlatFy-1).*(FyPlateauStds.^2)) ./ sum(lengthPlatFy-1));    

%pooled standard deviation of plateau standard deviations  

FyMaxDC = mean(FyPlateauAvgs);                                                              

%pooled means of average plateau values [N] 

  

%Fy MEAN 

FyAvgPlusMinus = std(FyRelev1);                                                             %std 

of entire rel1 data set (not pooled b/c only 1 range) 

FyAvgDC = mean(FyRelev1);                                                                   %mean 

of parent forces [N] 

  

%Fz PEAK 

FzMaxPlusMinus = sqrt(sum((lengthPlatFz-1).*(FzPlateauStds.^2)) ./ sum(lengthPlatFz-1));    

%pooled standard deviation of plateau standard deviations  

FzMaxDC = mean(FzPlateauAvgs);                                                              

%pooled means of average plateau values [N] 

  

%Fz MEAN 

FzAvgPlusMinus = std(FzRelev1);                                                             

%standard deviation of parent forces [N] 

FzAvgDC = mean(FzRelev1);                                                                   %mean 

of parent forces [N] 

% + + + + + + + + + + +   

end 

% = = = = = = = = = = = = = = = = =  

  

  

%                         F R I C T I O N   C O E F F  

  

%Use plateau values (xxPlateauAvg1) to prevent zero/inf values.  The 

%friction coefficient is equal to Fz/Fy (ie Fq/Fp) 

  

u = FzPlateauAvgs./FyPlateauAvgs;   %vector of friction coefficients 

uDC = mean(u);                      %DC component of friction coefficient 

uPlusMinus = std(u);                %plus minus component of friction coefficient 

  

%% LINEAR LEAST SQUARES W/ INPUT FREQ 

  

freqINdist = 1 / ((1/(2*pi*f))*wSI*(diaCut/1000/2));%primary frequency of oscillation in distance 

cut metric [rad/m] 

     

d = displRelev1;                                    %set vector d to Alg1's relevant displacement 

[um] 

C = [cos(freqINdist*distCutRelev1), sin(freqINdist*distCutRelev1), 

ones(length(distCutRelev1),1)]; %set matrix C 

xIn = inv(C'*C)*C'*d;                               %get coefficients by solving linear equation 

resnormIn = norm(d-C*xIn)^2;                        %squared 2-norm of residual 

Ainput = xIn(1); Binput = xIn(2); Cinput = xIn(3);  %COEFFICIENTS TO GIVEN EQUATION 

sineFitIn = Ainput*cos(freqINdist*distCutRelev1) + Binput*sin(freqINdist*distCutRelev1) + Cinput; 

    %Determine R^2 value - Note: R^2 = 1 - RSS/TSS where resnorm=RSS 

    RSSIn = resnormIn;                              %residual sum of squares 

    TSS = sum((d - mean(d)).^2);                    %total sum of squares 

    RsquaredIn = 1 - (RSSIn/TSS);                   %R^2 value for least squares linear fit on 

input frequency 

     

%% LINEAR LEAST SQUARES W/ FFT FREQ 

C = [cos(freqFFTdist*distCutRelev1), sin(freqFFTdist*distCutRelev1), 

ones(length(distCutRelev1),1)]; %set matrix C 

xFFT = inv(C'*C)*C'*d;                              %get coefficients by solving linear equation 
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resnormFFT = norm(d-C*xFFT)^2;                      %squared 2-norm of residual 

Afft = xFFT(1); Bfft = xFFT(2); Cfft = xFFT(3);     %"BEST" COEFFICIENTS TO GIVEN EQUATION by LS 

on fft primary frequency 

sineFitFFT = Afft*cos(freqFFTdist*distCutRelev1) + Bfft*sin(freqFFTdist*distCutRelev1) + Cfft; 

RSSFFT = resnormFFT; 

RsquaredFFT = 1 - (RSSFFT/TSS);                     %R^2 value for least squares linear fit on 

fft primary frequency 

  

%% LINEAR LEAST SQUARES W/ MODIFIED FFT FREQ 

  

freqMagnify = 50;                               %increase frequency resolution by freqMagnify 

times, compared to fft 

fft_freqResol = (fs/2)/(length(fft_freq)-1);    %resolution of fft frequency [Hz] 

freqResolMagnify = fft_freqResol/freqMagnify;   %new resolution [Hz] 

freqFFTModlb = freqFFT-fft_freqResol;           %lower bound on primary frequency spectrum [Hz] 

freqFFTModub = freqFFT+fft_freqResol;           %upper bound on primary frequency spectrum [Hz] 

%Initialize Rsquared value for lower bound of frequency - to be used in loop 

freqFFTModdist = 1 / ((1/(2*pi*freqFFTModlb))*wSI*(diaCut/1000/2)); %primary frequency of 

oscillation in distance cut metric [rad/m] 

C = [cos(freqFFTModdist*distCutRelev1), sin(freqFFTModdist*distCutRelev1), 

ones(length(distCutRelev1),1)]; %set matrix C 

xMod = inv(C'*C)*C'*d;                          %get coefficients by solving linear equation 

resnormMod = norm(d-C*xMod)^2;                  %squared 2-norm of residual 

  

RSSMod = resnormMod;   

RsquaredMod = 1 - (RSSMod/TSS);                 %R^2 value for least squares linear fit 

RsquaredModMax = RsquaredMod;                   %initializes max Rsquared: this could change 

during convergence loop below 

freqFFTModBest = freqFFTModdist;                %initializes best frequency: this could change 

during convergence loop below 

  

  

if f==0  %in this case the following terms are irrelevant. Thus set == 0 

freqFFTModBest = 0; 

AAmod = 0; Bmod = 0; Cmod = 0; 

RSSModBest = 0; 

RsquaredModMax = 0; 

  

else 

for i = 1:2*freqMagnify-1                                               %allows us to test 

frequencies between but not including upper and lower bounds 

    freqFFTMod(i) = freqFFTModlb + i*freqResolMagnify;                  %adds number of magnified 

delta frequencies to the lower bound frequency [Hz] 

    freqFFTModdist = 1 / ((1/(2*pi*freqFFTMod(i)))*wSI*(diaCut/1000/2));%primary frequency of 

oscillation in distance cut metric [rad/m] 

    C = [cos(freqFFTModdist*distCutRelev1), sin(freqFFTModdist*distCutRelev1), 

ones(length(distCutRelev1),1)]; %set matrix C 

    xMod = inv(C'*C)*C'*d;                                              %get coefficients by 

solving linear equation 

    resnormMod = norm(d-C*xMod)^2;                                      %squared 2-norm of 

residual 

  

    RSSMod = resnormMod;   

    RsquaredMod(i)= 1 - (RSSMod/TSS);                                   %R^2 value for least 

squares linear non negative fit 

  

    if RsquaredMod(i) > RsquaredModMax 

        freqFFTModBest = freqFFTMod(i);                                 %if this frequency yields 

higher Rsquared, save this as best frequency 

        RSSModBest = RSSMod; 

        RsquaredModMax = 1 - (RSSModBest/TSS);                          %if new test frequency 

yields higher Rsquared, save this freqs parameters as the max 

        AAmod = xMod(1); Bmod = xMod(2); Cmod = xMod(3);                %"BEST" COEFFICIENTS TO 

GIVEN EQUATION by LS on "best" modied frequency 

    end 

end 

end 

  

freqFFTModBestdist = 1 / ((1/(2*pi*freqFFTModBest))*wSI*(diaCut/1000/2)); %primary frequency of 

oscillation in distance cut metric [rad/m] 
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sineFitMod = AAmod*cos(freqFFTModBestdist*distCutRelev1) + 

Bmod*sin(freqFFTModBestdist*distCutRelev1) + Cmod; 

  

%% EFFECTIVE DISPLACEMENT 

  

D_ACfit = sineFitMod;       %use displacement from best fit on modified fft 

D_DC = V_DC*tCut;           %turret displacement 

D_ACDC = D_DC+D_ACfit;      %cumulative (ie effective) displacement [um] 

D_ACDC = D_ACDC-D_ACDC(1);  %offset all values such that ramp starts at D_ACDC = 0 

  

%% DISPLACEMENT OF PREVIOUS PASS 

  

D_ACDCprev(stepsPerRot+1:length(D_ACDC)+stepsPerRot,1) = D_ACDC;    %same as D_ACDC but shifted 

the equivalent of one spindle rotation   

D_ACDCprev(length(D_ACDC)+1:end)='';                                %eliminate remaining entries 

on vector 

  

%% INSTANTANEOUS UNDEFORMED CHIP THICKNESS 

% aka "depth of cut" 

  

h = zeros(length(Fy),1);                            %initialize variable 

h(relDataSTART1:relDataSTOP1) = D_ACDC-D_ACDCprev;  %undeformed chip thickness [um] 

h(h<0)=0;                                           %set all negative values to zero 

  

%% ACTUAL POWER 

  

P = FyRelev1*V;         %Power vector [W] 

PAvgRep = FpAvgRep*V;   %Average power [W] 

  

%% PREDICTED POWER 

% Use forceFitLathe.m to determine function and its best fit 

% coefficients. Force is fit according to F=m*x+b-(b/(A*x+1)), thus 

% P=V*(m*x+b-(b/(A*x+1))) 

  

coeff = [8.6860e-01 3.2289e+01 2.5792e-01];         %from forceFitLathe.m 

Pest = zeros(length(Fy),1);                         %initialize 

Pest = V*(coeff(1)*h + coeff(2) - (coeff(2)./(coeff(3)*h + 1)));    %predict power [W] 

Pest(h==0)=0;                                       %set power to zero when tool is separated 

from workpiece 

  

%% ENERGY 

  

%                             W   O   R   K   (VOL SPEC.) 

  

l = ((repStop-repStart)*dT*V_DC)/1000;              %length of workpiece cut based on V_DC [mm] 

vol = (pi*(do^2)/4 - pi*(di^2)/4)*(l);              %total volume machined [mm^3] 

WtotRep = sum(FpRep)*dT*V/vol;                      %total specific work required [J/mm^3] 

WtotRepPred = sum(Pest(repStart:repStop))*dT/vol;   %total predicted specific work required 

[J/mm^3] 

WtotRepTrap = trapz(FpRep)*dT*V/vol;                %check value if trapezoidal integration were 

used instead 

  

%% SINGLE SINE FUNCTION 

% A*sin(x) + B*cos(x) + C = D*sin(x+p) + C 

%   where: 

%   D = sqrt(A^2+B^2) 

%   p = atan(B/A) 

  

switch SScase 

    case 1 

    xSS = [distCut(relDataSTART1:relDataSTOP1)]';   %relevant x data 

    fCase = f;      %defines which frequency this case uses [Hz] 

    freqSS = fCase*360; %piezo frequency [degrees/s] 

    y1SS = Ainput*sind(xSS*freqSS) + Binput*cosd(xSS*freqSS) + Cinput; %two sinusoidal terms 

    DSS = norm([Ainput,Binput],2);       %magnitude of A & B = D 

    pSS = atan2(Binput,Ainput)*180/pi;   %phase shift 

    y2SS = DSS*sind(xSS*freqSS+pSS)+Cinput;           %single sinusoidal term 

    strSS = 'Input Frequency';  %to be used to ID which case was used in a figure 

    case 2 

    xSS = [distCut(relDataSTART1:relDataSTOP1)]';   %relevant x data 

    fCase = freqFFT;    %defines which frequency this case uses [Hz] 



132 
 

    freqSS = fCase*360;  %fft frequency [degrees/s] 

    y1SS = Afft*sind(xSS*freqSS) + Bfft*cosd(xSS*freqSS) + Cfft; %two sinusoidal terms 

    DSS = norm([Afft,Bfft],2);       %magnitude of A & B = D 

    pSS = atan2(Bfft,Afft)*180/pi;   %phase shift 

    y2SS = DSS*sind(xSS*freqSS+pSS)+Cfft;           %single sinusoidal term 

    strSS = 'FFT Frequency';    %to be used to ID which case was used in a figure 

    case 3 

    xSS = [distCut(relDataSTART1:relDataSTOP1)]';   %relevant x data 

    fCase = freqFFTModBest;    %defines which frequency this case uses [Hz] 

    freqSS = fCase*360;  %modified fft frequency [degrees/s] 

    y1SS = AAmod*sind(xSS*freqSS) + Bmod*cosd(xSS*freqSS) + Cmod; %two sinusoidal terms 

    DSS = norm([AAmod,Bmod],2);       %magnitude of A & B = D 

    pSS = atan2(Bmod,AAmod)*180/pi;   %phase shift 

    y2SS = DSS*sind(xSS*freqSS+pSS)+Cmod;           %single sinusoidal term         

    strSS = 'Modified FFT Frequency';    %to be used to ID which case was used in a figure 

end 

  

%% FIGURE: DISPLACEMENT 

  

hfig1 = figure(1);  %initialize figure window 

fullscreen = get(0,'ScreenSize'); 

set(hfig1,'position',[0,-50 fullscreen(3) fullscreen(4)]) 

set(hfig1,'color','w'); 

set(hfig1,'Name','Data Analysis'); 

ax(2) = subplot(4,1,1); 

  

hold on 

plot(tCut,D_ACDC,'b','linewidth',2) 

plot(tCut,D_ACDCprev,'--b','linewidth',2) 

hold off 

  

set(gca,'fontsize',18);   

ylabel('Displacement (um)'); 

legend('Current Pass','Previous Pass') 

  

if testCase==1                          %if using artificial data... 

ylimits = ylim;                         %get current y limits 

ylim([ylimits(1) ylimits(2)+50])        %set maximum y limit to .5 + old y limit for plotting 

end 

  

%% FIGURE: FORCES 

  

ax(1) = subplot(4,1,3); 

hold on 

  

% X-AXIS: DISTANCE CUT [m] 

% hFx = plot(t,Fx,'k','parent',ax(1));    %plot ch0 

hFy = plot(t,Fy,'m','parent',ax(1));    %plot ch1 

hFz = plot(t,Fz,'b','parent',ax(1));    %plot ch2 

hStart1 = plot([t(relDataSTART1);t(relDataSTART1)],[min(min([Fx,Fy,Fz])),max(max([Fx,Fy,Fz]))],'-

-g','linewidth',3);   %plot vertical line at relDataSTART 

hStop1 = plot([t(relDataSTOP1);t(relDataSTOP1)],[min(min([Fx,Fy,Fz])),max(max([Fx,Fy,Fz]))],'--

r','linewidth',3);   %plot vertical line at relDataSTART 

  

hStart2 = 

plot([t(repStart);t(repStart)],[min(min([Fx,Fy,Fz])),max(max([Fx,Fy,Fz]))],':g','linewidth',3);   

%plot vertical line at relDataSTART 

hStop2 = 

plot([t(repStop);t(repStop)],[min(min([Fx,Fy,Fz])),max(max([Fx,Fy,Fz]))],':r','linewidth',3);   

%plot vertical line at relDataSTART 

  

htext = gca; set(htext,'fontsize',18);  %set text fontsize 

% xlabel('Time(s)'); 

  

for k = 1:length(relDataSTART2) 

    %Identify relevant data (Algorithm 2) 

    hStart2 = plot(t(relDataSTART2(k)),0,'g.','markersize',20,'linewidth',2.5,'parent',ax(1));     

%plot relevant data start markers according to algorithm 2 

    hStop2 = plot(t(relDataSTOP2(k)),0,'rx','markersize',8,'linewidth',2.5,'parent',ax(1));      

%plot relevant data stop markers according to algorithm 2 
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    %Identify plateau in Fy Data (Algorithm 1) 

    hPlatFy1 = 

plot([t(FyLeftIndex2(k)),t(FyRightIndex2(k))],[FyPlateauAvgs(k),FyPlateauAvgs(k)],'m--

','linewidth',2,'parent',ax(1));   %plot horizontal line in between markers 

  

    %Identify plateau in Fz Data (Algorithm 1) 

    hPlatFz1 = 

plot([t(FzLeftIndex2(k)),t(FzRightIndex2(k))],[FzPlateauAvgs(k),FzPlateauAvgs(k)],'b--

','linewidth',2,'parent',ax(1));   %plot horizontal line in between markers 

end 

  

htext = gca; set(htext,'fontsize',18);  %set text fontsize 

ylabel('Force (N)'); 

  

%Switch/Case for z Drift Compensation - - - - - - - - 

switch showdriftZComp 

    case 0 

        %LEGH = 

legend([hFx,hFy,hFz,hPlatFy1,hPlatFz1,hStart1,hStop1,hStart2,hStop2],'Fx','Fy','Fz','Fy 

Plateau','Fz Plateau','Continuous','Continuous','Discrete','Discrete'); 

        LEGH = legend([hFy,hFz,hPlatFy1,hPlatFz1],'Fp','Fq','Fp Plat','Fq Plat');         

    case 1 

        hFzIni = plot(distCutNonRel,FzNonRel,'.c','markersize',0.1); 

        hFzDriftLine = plot(distCut,FzDriftLine,'r','linewidth',0.1); 

        [LEGH,OBJH,OUTH,OUTM] = legend([hFy,hFz,hFzDriftLine],'Fp','Fq','Drift Comp'); 

end 

%- - - - - - - - - - - - - - - - - - - - - - - - - - 

  

if testCase==1 

ylimits = ylim;                     %get current y limits 

ylim([ylimits(1) ylimits(2)+.5])    %set maximum y limit to .5 + old y limit for plotting 

end 

hold off 

  

%% FIGURE: DEPTH OF CUT 

  

ax(3) = subplot(4,1,2); 

  

hold on 

plot(tCut,h(relDataSTART1:relDataSTOP1),'b','linewidth',2) 

hold off 

  

set(gca,'fontsize',18) 

strY = sprintf('Undeformed Chip\nThickness (um)'); 

ylabel(strY) 

ylim([-1,max(h(relDataSTART1:relDataSTOP1))*1.1]) 

  

%% FIGURE: POWER 

  

ax(4) = subplot(4,1,4); 

  

hold on 

plot(tCut,P,'k','linewidth',2) 

plot(tCut,Pest(relDataSTART1:relDataSTOP1),'r','linewidth',2) 

hold off 

  

set(gca,'fontsize',18) 

xlabel('Time (s)') 

ylabel('Power (W)') 

legend('Actual','Predicted') 

  

linkaxes(ax,'x');   %synchronize limits of x-axes on 1st and 2nd subplots 

  

%% REPORT DATA 

  

disp(sprintf('\n'))  %2 blank lines 

disp('___________________________________________________________________') 

disp(sprintf('\n'))  %2 blank lines 

disp('      O   U   T   P   U   T   S   ') 

disp(sprintf('\n'))  %2 blank lines 
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disp('MODULATION PARAMETERS - - - - - - - - - -') 

str1 = sprintf('fm                       = %.4f Hz',freqFFTModBest); 

str2 = sprintf('Modulation Amplitude K   = %.3f um',norm([AAmod,Bmod],2)); 

disp(str1) 

disp(str2) 

disp('- - - - - - - - - - - - - - - - - - - - -') 

disp(sprintf('\n'))  %2 blank lines 

  

disp('FORCE   - - - - - - - - - - - - - - - - -') 

str5 = sprintf('Mean Representative Fp = %.3f N', FpAvgRep); 

switch f 

    case 0 

        str6 = sprintf('Mean Plateau Fps       = %.3f +/- %.3f 

N',mean(FyPlateauAvgs(1:end)),std(FyPlateauAvgs(1:end))); 

        str7 = sprintf('Mean Plateau Fqs       = %.3f +/- %.3f 

N',mean(FzPlateauAvgs(1:end)),std(FzPlateauAvgs(1:end))); 

    otherwise 

        str6 = sprintf('Mean Plateau Fps       = %.3f +/- %.3f 

N',mean(FyPlateauAvgs(2:end)),std(FyPlateauAvgs(2:end))); 

        str7 = sprintf('Mean Plateau Fqs       = %.3f +/- %.3f 

N',mean(FzPlateauAvgs(2:end)),std(FzPlateauAvgs(2:end))); 

end 

disp(str5) 

disp(str6) 

disp(str7) 

disp('- - - - - - - - - - - - - - - - - - - - -') 

disp(sprintf('\n'))  %2 blank lines 

  

% disp('FRICTION COEFF  - - - - - - - - - - - - -') 

% str1 = sprintf('Friction coefficient = %.3f +/- %.3f',uDC,uPlusMinus); 

% disp(str1) 

% disp('- - - - - - - - - - - - - - - - - - - - -') 

% disp(sprintf('\n'))  %2 blank lines 

  

disp('POWER - - - - - - - - - - - - - - - - - -') 

str1 = sprintf('Average  = %.3f J/s',PAvgRep); 

disp(str1) 

disp('- - - - - - - - - - - - - - - - - - - - -') 

disp(sprintf('\n'))  %2 blank lines 

  

disp('WORK REQUIRED   - - - - - - - - - - - - -') 

str1 = sprintf('Representative Actual    = %.4f J/mm^3',WtotRep); 

str2 = sprintf('Representative Predicted = %.4f J/mm^3',WtotRepPred); 

disp(str1) 

disp(str2) 

disp('- - - - - - - - - - - - - - - - - - - - -') 

disp(sprintf('\n'))  %2 blank lines 

  

disp('LEAST SQUARES - - - - - - - - - - - - - -') 

% str1 = sprintf('On Input Frequency: f=%.4f [Hz]',f); 

% str2 = sprintf('\t LSBestFit = %.4f*Cos + %.4f*Sin + %.4f',Ainput,Binput,Cinput); 

% str3 = sprintf('\t RSS = %.2E',RSSIn); 

% str4 = sprintf('\t R^2 = %.4f',RsquaredIn); 

% disp(str1) 

% disp(str2) 

% disp(str3) 

% disp(str4) 

% disp(' ') 

%  

% str5 = sprintf('On Primary FFT Frequency: f=%.4f [Hz]',freqFFT); 

% str6 = sprintf('\t LSBestFit = %.4f*Cos + %.4f*Sin + %.4f',Afft,Bfft,Cfft); 

% str7 = sprintf('\t RSS = %.2E',RSSFFT); 

% str8 = sprintf('\t R^2 = %.4f',RsquaredFFT); 

% disp(str5) 

% disp(str6) 

% disp(str7) 

% disp(str8) 

% disp(' ') 

  

str9 = sprintf('On %ix Magnified Resolution FFT Frequency: f=%.4f 

[Hz]',freqMagnify,freqFFTModBest); 
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str10 = sprintf('\t LSBestFit = %.4f*Cos + %.4f*Sin + %.4f',AAmod,Bmod,Cmod); 

str11 = sprintf('\t RSS = %.2E',RSSModBest); 

str12 = sprintf('\t R^2 = %.4f',RsquaredModMax); 

disp(str9) 

disp(str10) 

disp(str11) 

disp(str12) 

disp('- - - - - - - - - - - - - - - - - - - - -') 

disp(sprintf('\n'))  %2 blank lines 

  

disp('DISPLACEMENT FIT EQUATION - - - - - - - -') 

str1 = ('X-axis: Distance Cut [m]  |  Y-axis: Displacement [um]'); 

str2 = sprintf('Best Fit Equation Using %s (%.3f Hz)',strSS,fCase); 

str3 = sprintf('%.3f*Sin(%.0f*X+%.3f)+%.3f',DSS,freqSS,pSS,Cinput); 

disp(str1) 

disp(str2) 

disp(str3) 

disp('- - - - - - - - - - - - - - - - - - - - -') 

  

disp(sprintf('\n'))  %2 blank lines 

disp('___________________________________________________________________') 

 

 


