

The Pennsylvania State University

The Graduate School

College of Engineering

UNDERSTANDING THE INFLUENCE OF PARAMETER

MODULATION IN MACHINING-BASED PROCESSING

A Thesis in

Mechanical Engineering

by

Joshua M. Norman

© 2013 Joshua M. Norman

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

May 2013

ii

The thesis of Joshua M. Norman was reviewed and approved* by the following:

Christopher J. Saldana

Assistant Professor of Industrial Engineering

Thesis Adviser

Edward C. De Meter

Professor of Industrial and Mechanical Engineering

Thesis Reviewer

Karen Thole

Professor of Mechanical Engineering

Department Head of Mechanical and Nuclear Engineering

*Signatures are on file in the Graduate School

iii

Abstract

It is widely believed that the parameters of cutting speed and undeformed chip thickness can be

used to influence the specific energy consumption of traditional machining processes. The

purpose of this study was to further investigate the degree to which these two parameters affect

the system load response (e.g. force, power consumption) – and in turn the specific energy

consumption – when they are applied quasi-statically as well as dynamically. This was carried

out experimentally using a CNC planer (to study the effects of cutting velocity) and a CNC lathe

(to study the effects of undeformed chip thickness). Furthermore, this study purposed to

ascertain whether the loading response of a system to dynamic parameter manipulation can be

predicted based on a characterization of the system’s response to static changes in the same

parameter. This involved discretizing the time-varying cases and treating them as a continuous

series of static cutting instances, each of which could then be assigned a predicted force value.

Obviously, such a technique would only be effective if there is close agreement between the

static and dynamic loading responses of the given system.

As a result of empirical testing, close agreement was found between the loading responses for

static and dynamic variations in cutting speed for both AA6061-T6 and OFE Copper. When

similar variations were applied to AA6061-T6 and Ti3Al2.5V in the direction of undeformed chip

thickness, close agreement between static and dynamic loading responses was again found,

but for low to moderate values of the processing parameter. These observations suggest that,

for many materials, the nature of material response in low-frequency, modulation-assisted

machining (MAM) is similar to that which occurs in conventional machining. Based on this

similarity, it was also found that the general shape of the characterized load response to static

parameter manipulation could be used to predict whether MAM would consume more or less

specific energy than its conventionally cut counterpart. Specifically, MAM will generally require

slightly more energy for dynamic changes in cutting velocity but significantly less energy for

dynamic changes in undeformed chip thickness, as compared to conventional cutting.

It is suggested that further research be performed which incorporates dynamic changes in

cutting speed and rake angle into the energy prediction model for MAM as applied in the

direction of undeformed chip thickness. Finally, a further study may also make use of an

intermediate variable, such as thickness of the primary deformation zone, as the predicted

quantity for the dynamic cases. Such might provide insight as to the existence of a common

iv

physical mechanism underlying the energetics of both modulated machining configurations and

would act as an extension of the research performed by Kececioglu [2,14].

v

Table of Contents

List of Tables .. vii

List of Figures .. viii

Acknowledgements .. xiii

Chapter 1. INTRODUCTION ... 1

 1.1 Problem Statement ... 2

Chapter 2. BACKGROUND ... 5

 2.1 Velocity-direction MAM ... 5

 2.2 Feed-direction MAM .. 6

Chapter 3. MECHANICS OF MAM .. 9

 3.1 Velocity-Direction MAM ... 9

 3.2 Feed-Direction MAM .. 10

Chapter 4. EXPERIMENTAL METHODS .. 15

 4.1 Velocity-direction MAM .. 15

 4.1A Experimental setup .. 15

 4.1B Data acquisition .. 17

 4.1C Experiments .. 18

 4.2 Feed-direction MAM .. 18

 4.2A Experimental setup .. 19

 4.2B Experiments... 20

Chapter 5. ANALYSIS METHODOLOGY .. 29

 5.1 Discretization of the cutting process ... 29

 5.2 Effects of parameter modulation on power .. 30

 5.3 Effects of parameter modulation on energy .. 31

 5.4 Empirical characterization of load response and power dissipated 32

 5.4A Velocity-direction MAM ... 33

 5.4B Feed-direction MAM ... 33

 5.5 Numerical analysis method ... 34

vi

Chapter 6. RESULTS ... 44

 6.1 Velocity-direction MAM .. 44

 6.1A Forces and displacements .. 44

 6.1B Power dissipated .. 45

 6.1C Energy consumption ... 45

 6.2 Feed-direction MAM .. 46

 6.2A Forces and displacements .. 46

 6.2B Power dissipated .. 47

 6.2C Energy consumption ... 48

Chapter 7. DISCUSSION ... 73

 7.1 Velocity-direction MAM .. 73

 7.2 Feed-direction MAM ... 76

Chapter 8. CONCLUSIONS AND FUTURE WORK ... 83

References ... 85

Appendix A: Photos of planer setup .. 88

Appendix B: Program flowchart ... 91

Appendix C: NI Labview data acquisition VI .. 92

Appendix D: Quadrature decoding routine (Matlab) ... 95

Appendix E: Planer force data fitting routine (Matlab) ... 99

Appendix F: Lathe force data fitting routine (Matlab) .. 102

Appendix G: Planer analysis routine (Matlab) ... 105

Appendix H: Lathe analysis routine (Matlab) ... 118

vii

List of Tables

Table 4.1 Average forces and corresponding local compliance values (normalized by

Fp,avg) of planer setup for various conventional cutting conditions 27

Table 4.2 List of workpiece materials and cutting conditions tested using CNC planer

(velocity-direction MAM) .. 27

Table 4.3 List of workpiece materials and cutting conditions tested using CNC lathe (feed-

direction MAM) ... 28

Table 4.4 Various mechanical and thermal property values for the workpiece materials

used in this study ... 28

Table 5.1 Comparison of theoretical values with those found using velocity-direction Matlab

analysis routine .. 43

Table 5.2 Comparison of theoretical values with those found using feed-direction Matlab

analysis routine .. 43

Table 6.1 List of trials performed using planer (velocity-direction MAM) and their results .. 71

Table 6.2 List of trials performed using lathe (feed-direction MAM) and their results 72

Table 7.1 Values for strain rate sensitivity determined empirically for AA6061-T6 and OFE

Cu as a function of true strain .. 82

viii

List of Figures

Figure 1.1 Schematic of orthogonal cutting and its commonly associated parameters 4

Figure 2.1 Cutting forces and friction coefficient values for a range of velocity-direction

modulation amplitudes ... 8

Figure 2.2 Examples of chips produced using feed-direction MAM 8

Figure 3.1 Orthogonal cutting geometry for velocity-direction MAM 12

Figure 3.2 Tool displacement and velocity vs time for cases of: (a) forward advancement,

(b) critical condition, and (c) separation .. 12

Figure 3.3 Pictorial representation of critical times as defined using the displacement-time

trace... 13

Figure 3.4 Graphical example of Eq. 3.3 ... 13

Figure 3.5 Orthogonal cutting geometry for feed-direction MAM ... 14

Figure 3.6 Classification of cutting type as a function of modulation amplitude and phase

shift between passes ... 14

Figure 4.1 Solid model of computer-controlled planer ... 21

Figure 4.2 Profile of cutting edge prior to experimental trials ... 21

Figure 4.3 Locations along tool assembly at which compliance was checked as reported in

Table 4.1 .. 22

Figure 4.4 Tested “linear” motion of stage for VDC=0.05 mm/s with high gain settings (P, D, I)

= (25.0, 4.4, 0) ... 22

Figure 4.5 Tested “linear” motion of stage for VDC=0.05 mm/s with low gain settings (P, D, I)

= (8.3, 3.6, 0) ... 23

Figure 4.6 Analysis of modulated cut using the high gain settings 23

Figure 4.7 Analysis of modulated cut using the low gain setting .. 24

Figure 4.8 Pre-amplified 10 Hz sinusoidal voltage signal and resulting motion of work holder

platform. Post amplified signal sent to piezo actuator was 90 V peak to peak 24

Figure 4.9 Orientation of cutting direction force, Fp, and its transverse counterpart, Fq 25

Figure 4.10 Decoded motion profile of linear stage resulting from a commanded motion of

distance D=25mm at velocity V=10mm/s followed by a motion of distance

D=-25mm at velocity V=5mm/s .. 25

Figure 4.11 Analog and digital voltage measurements of identical signals from encoder. The

two tracks, A and B, are a result of the use of quadrature encoding 26

ix

Figure 4.12 Workpiece drawing: note that the planer experimental cutting trials removed

material from the 1mmx1.5mm cross-section ... 26

Figure 5.1 General shape of convex, linear and concave functions..................................... 36

Figure 5.2 Probability density, λ, of the sine function .. 36

Figure 5.3 Graphical explanation of P/X variables and their relative magnitudes for a convex

function .. 37

Figure 5.4 Reference indicating logarithmic relationship between cutting speed and specific

energy consumption ... 37

Figure 5.5 Reference indicating oblique asymptote for force-undeformed chip thickness

relationship at high values of the abscissa and tending toward the origin at low

values .. 38

Figure 5.6 Examples of 0% (a), 50% (b) and 100% (c) MAM, calculated based on range of

cutting force ... 38

Figure 5.7 Results from numerical analysis of artificial data simulating a conventional cut at

Vdc=1.00mm/s using planer machine .. 39

Figure 5.8 Results from numerical analysis of artificial data simulating velocity-direction

MAM at Vdc=1.00mm/s, fm=10Hz, K=15.92um, 100% MAM using planer

machine ... 40

Figure 5.9 Results from numerical analysis of artificial data simulating a conventional cut at

s=0.020mm/rev, w=1200rpm using lathe ... 41

Figure 5.10 Results from numerical analysis of artificial data simulating feed-direction MAM at

s=0.020mm/rev, w=1200rpm, fm=10Hz, K=0.010mm, 100% MAM using lathe .. 42

Figure 6.1 Numerical analysis results for AA6061-T6 cut at h0=20um and VDC=0.05mm/s

using planer ... 50

Figure 6.2 Numerical analysis results for AA6061-T6 cut at h0=20um and VDC=0.50mm/s

using planer ... 50

Figure 6.3 Numerical analysis results for AA6061-T6 cut at h0=20um and VDC=1.00mm/s

using planer ... 51

Figure 6.4 Numerical analysis results for OFE Cu cut at h0=20um and VDC=0.05mm/s using

planer ... 51

Figure 6.5 Numerical analysis results for OFE Cu cut at h0=20um and VDC=0.50mm/s using

planer ... 52

Figure 6.6 Numerical analysis results for OFE Cu cut at h0=20um and VDC=1.00mm/s using

planer ... 52

x

Figure 6.7a Numerical analysis results for AA6061-T6 cut using planer at h0=20um,

VDC=0.50mm/s, fm=10Hz, K=19V .. 53

Figure 6.7b Close-up of the numerical analysis results for AA6061-T6 cut using planer at

h0=20um, VDC=0.50mm/s, fm=10Hz, K=19V .. 53

Figure 6.8a Numerical analysis results for OFE Cu cut using planer at h0=20um,

VDC=0.50mm/s, fm=10Hz, K=16V .. 54

Figure 6.8b Close-up of the numerical analysis results for OFE Cu cut using planer at

h0=20um, VDC=0.50mm/s, fm=10Hz, K=16V .. 54

Figure 6.9 P(X) trace for AA6061-T6 where X denotes cutting speed 55

Figure 6.10 P(X) trace for OFE Cu where X denotes cutting speed 55

Figure 6.11 Specific energy consumption for AA6061-T6 cut with conventional and MAM

conditions using planer .. 56

Figure 6.12 Probability density of t-distribution for AA6061-T6 cut with conventional and MAM

conditions using planer .. 56

Figure 6.13 Specific energy consumption for OFE Cu cut with conventional and MAM

conditions using planer .. 57

Figure 6.14 Probability density of t-distribution for OFE Cu cut with conventional and MAM

conditions using planer .. 57

Figure 6.15 Numerical analysis results for AA6061-T6 cut at s=0.005 mm/rev using lathe.... 58

Figure 6.16 Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev using lathe.... 58

Figure 6.17 Numerical analysis results for AA6061-T6 cut at s=0.050 mm/rev using lathe.... 59

Figure 6.18 Numerical analysis results for Ti3Al2.5V cut at s=0.005 mm/rev using lathe 59

Figure 6.19 Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev using lathe 60

Figure 6.20 Numerical analysis results for Ti3Al2.5V cut at s=0.050 mm/rev using lathe 60

Figure 6.21a Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=10Hz,

K=60V using lathe .. 61

Figure 6.21b Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=10Hz,

K=60V using lathe .. 61

Figure 6.22a Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=50Hz,

K=60V using lathe .. 62

Figure 6.22b Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=50Hz,

K=60V using lathe .. 62

Figure 6.23a Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=100Hz,

K=60V using lathe .. 63

xi

Figure 6.23b Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=100Hz,

K=60V using lathe .. 63

Figure 6.24a Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=110Hz,

K=60V using lathe .. 64

Figure 6.24b Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=110Hz,

K=60V using lathe .. 64

Figure 6.25a Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=10Hz,

K=60V using lathe .. 65

Figure 6.25b Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=10Hz,

K=60V using lathe .. 65

Figure 6.26a Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=50Hz,

K=60V using lathe .. 66

Figure 6.26b Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=50Hz,

K=60V using lathe .. 66

Figure 6.27a Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=100Hz,

K=60V using lathe .. 67

Figure 6.27b Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=100Hz,

K=60V using lathe .. 67

Figure 6.28a Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=110Hz,

K=60V using lathe .. 68

Figure 6.28b Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=110Hz,

K=60V using lathe .. 68

Figure 6.29 P(X) trace for AA6061-T6 where X denotes depth of cut 69

Figure 6.30 P(X) trace for Ti3Al2.5V where X denotes depth of cut 69

Figure 6.31 Actual and predicted value of specific energy for AA6061-T6 at various fm/fw

ratios .. 70

Figure 6.32 Actual and predicted value of specific energy for Ti3Al2.5V at various fm/fw

ratios .. 70

Figure 7.1 Drawing of round tensile test specimens fabricated using a CNC lathe. A gradual

taper is enforced on the narrow section such that either end has a diameter of

0.353” in order to control the location of necking/fracture 78

Figure 7.2 True stress – true strain curves for AA6061-T6 deformed at different strain rates,

used to determine the strain rate sensitivity parameter, m 78

xii

Figure 7.3 True stress – true strain curves for OFE Copper deformed at different strain

rates, used to determine the strain rate sensitivity parameter, m 79

Figure 7.4 P(X) trace for AA6061-T6 demonstrating difference between the static data and

dynamic data collected at fm=50Hz ... 79

Figure 7.5 P(X) trace for Ti3Al2.5V demonstrating difference between the static data and

dynamic data collected at fm=50Hz ... 80

Figure 7.6 Specific energy versus undeformed chip thickness for AA6061-T6 and

Ti3Al2.5V ... 80

Figure 7.7 Figure taken from Shaw [15] used to conceptualize the presence of defects

within a material and their effect on slip-plane formation 81

Figure A.1 Desktop PC unit and NI data acquisition assembly .. 88

Figure A.2 Close-up of NI data acquisition assembly .. 88

Figure A.3 Table holding planer assembly mechanical components (outlined in blue, top)

and controller housing (outlined in red, bottom) ... 89

Figure A.4 Isometric view of planer assembly, analogous to Fig. 4.1 89

Figure A.5 Devices used to generate and monitor signal sent to piezo-ceramic actuator 90

Figure B.1 Flowchart of data sources  acquisition routines  analysis programs 91

Figure C.1 Left half of VI’s block diagram .. 92

Figure C.2 Right half of VI’s block diagram .. 93

Figure C.3 Front panel of VI .. 94

xiii

Acknowledgements

 I would like to extend my truest thanks to my adviser, Dr. Saldana, whose wisdom and

guidance over the past year have been paramount to the execution of this project. I also want to

recognize the contributions of labmate Cesar Moreno, and support specialists Dan Supko,

Randy Wells, and David Shelleman to the design, fabrication, and testing of various

components used in this study. My gratitude also goes out to Dr. De Meter for his extremely

valuable input as a result of the reviewing process.

I also want to thank my wife, Kristi, for being an anchor of support and encouragement for me

these past several years. Most importantly, I want to recognize my Lord and Saviour Jesus

Christ–my faith in whom has sustained me throughout the course of my studies and has given

me purpose both within as well as beyond the realm of academia.

1

Chapter 1: Introduction

Analyses of material removal processes such as turning, drilling and milling often involve

consideration of the underlying deformation mechanics. Traditional machining methods are

unique in that their modes of material removal require direct contact between the tool and

workpiece. The behavior of this interaction affects many system parameters: notably, tool

loading and wear. Such parameters determine the local energy consumption of the process,

which in turn affects decisions regarding equipment selection and cost effectiveness.

Although the term “traditional machining” encompasses a variety of processes, the method of

material removal is quite similar throughout. In each case, the cutting edge of a tool oriented at

some rake angle (α) with a relief angle (β) engages a workpiece at a given cutting speed (VDC)

and undeformed chip thickness (h0) giving rise to the formation of a narrow band of shearing

which extends from the tool’s cutting edge to the surface of the workpiece at an angle φ (see

Fig. 1.1) [1]. The thickness of this band may vary along its length and has been known in some

cases to be thicker near the tool edge than near the surface of the workpiece [2]. In any case,

this region is referred to as the primary deformation zone (PDZ) and is responsible for the

majority of strain imposed on the workpiece throughout the process of chip formation [3-5]. The

card deck analogy developed by Piispanen has long been applied in order to quantify the

degree of deformation that occurs in the PDZ [6]. This strain is known to be a function of α and

the ratio between the undeformed and deformed chip thicknesses h0 and hc, respectively [1].

The area at which the tool contacts the workpiece is relatively small and is known as the

intimate contact region (ICR) [3,7,8]. The portion of the newly formed chip that has been in close

proximity to the ICR will also undergo deformation as a result of tool/workpiece friction. This

band has been referred to by some as the secondary deformation zone [3,4]. The strain

imposed in these two zones is widely accepted as being responsible for the overwhelming

majority of mechanical work required in the metal cutting process [1,5]. It is believed that the

PDZ accounts for approximately three-fourths of this energy requirement and the secondary

deformation zone is responsible for the remaining amount [1].

The processing parameters of undeformed chip thickness, cutting velocity, and rake angle are

known to affect the magnitude of specific energy required for material removal [1,9-11]. This

presents an important question: can changes in processing effect changes in the physical

phenomena controlling energy consumption and if so, to what degree? Technologies exist

which can modify such processing parameters both statically as well as dynamically. Many have

2

observed that statically reducing the undeformed chip thickness results in a greater degree of

specific energy consumption, known as the “size effect” in metal cutting [4,10,12,13]. Kececioglu

believed that it was the size of the shear zone itself, rather than the more general variable of

undeformed chip thickness, which was responsible for the size effect [14]. In any case, some

have attributed this size-dependent phenomenon to be directly correlated with the number of

defects in the material that will pass through the PDZ and facilitate slip plane formation [12,15].

Thus, smaller volumes of a given material logically contain fewer of such defects than do larger

volumes. In a similar vein, cutting velocity—which directly correlates with strain rate—is also

known to influence the mechanisms of deformation. Work performed by Kececioglu on this

subject is well known. He determined that increases in strain rate correspond with increases in

shear flow stress [2], and thus to a greater degree of energy consumption in the PDZ [1]. This

strain-rate dependency is also referred to by Shaw who goes on to state that increases in

temperature tend to have the opposite effect on flow stress. Furthermore, a counter-balancing

effect has been observed in which high cutting speeds can elicit temperatures sufficient enough

to weaken a material and bring about adiabatic shear in the PDZ – a phenomenon known as

“thermal softening.” However, such is most commonly observed at cutting speeds on the order

of some meters/sec [1], which is several orders of magnitude greater than those used in this

study and is therefore not expected to be a significant factor here.

Experiments which indicate the existence of such phenomenon are typically performed by

making multiple cuts in a material, each at a different value of the static parameter under

investigation. However, such parameters can also be modified dynamically during the course of

the cut. Considerable work in this regard has been performed by Chandrasekar et al through the

use of modulation-assisted machining (MAM) techniques [3,7,16-21]. MAM has demonstrated

an ability to provide a high level of control over dynamic tool displacement through the use of

coupled linear and oscillatory motion. Because these motions are induced using multiple

actuation systems, they can be applied along different axes. The relative orientation of these

axes determines which processing parameter will be dynamic in nature.

1.1 Problem statement:

The purpose of the present study is to further investigate the effects that undeformed chip

thickness and cutting velocity have on the magnitude of specific energy consumption for

orthogonal cutting processes. Specifically, these parameters will be applied in varying degrees

of magnitude both statically (through conventional cutting methods) as well as dynamically (by

3

incorporating MAM) in order to assess their respective effects on the energy-related phenomena

described above.

4

Figure 1.1: Schematic of orthogonal cutting and its commonly associated parameters.

5

Chapter 2: Background

The importance of processing parameters on the energetics of machining via the tool-workpiece

interaction was discussed in the previous chapter. Conventional, or static parameter, cutting

processes have long been studied [1,2,5,6,8,10,12]. Only in the last several decades has the

technology been available which makes dynamic parameter manipulation not only possible, but

effective. The intentional use of oscillatory tool displacement appears to have become popular

following the work of Kumabe in 1979, though he was arguably not the first to use it [19,22,23].

Application of this method was initially focused on the high-frequency (>5 kHz) range, which

became known as “vibration-assisted machining” (VAM). Joshi notes the difference between

this and the related technique of MAM which accesses low-frequencies (<1 kHz) [23]. These

methods most commonly make use of a 1D oscillation although they can be extended to 2D as

was done by Shamoto in his well-known elliptical vibration studies [16,19,21,23,24]. The

direction of the 1D motion is arbitrary, though two cases are of special interest to the present

study, namely “velocity-direction” and “feed-direction.” These two types of MAM affect the

processing parameters of cutting velocity and undeformed chip thickness, respectively. Prior

research performed on these techniques will now be discussed and a review of their underlying

mechanics will be presented in the following chapter.

2.1 Velocity-direction MAM:

The tool-workpiece interface is a region characterized by high pressure and as such, is difficult

to directly lubricate. A study performed by Moscoso et al provided visual proof that lubricant is

not allowed access to the ICR during cutting [3]. However, by inducing a sinusoidal time-varying

cutting velocity of sufficient magnitude, it has been shown that the tool will separate from the

workpiece and thus allow lubricant to access this regime. Evidence of ICR lubrication was seen

directly using a transparent tool visualization technique and indirectly by observation of the tool-

work friction coefficient (see Fig. 2.1). The perturbative motion described here can be achieved

through the use of a piezoelectric actuator and is often coupled with a linear motion provided by

a motor [3]. It is important to note however that tool-work separation is only possible for cutting

speeds that are less than the maximum modulation velocity. In many cases, the limited ability of

the piezoelectric actuator renders velocity-direction MAM incapable of achieving material

removal rates higher than 0.5 m/s [19].

6

Although some studies have suggested a positive correlation between cutting velocity and

specific energy consumption, all of these have been performed using static parameter

manipulation (e.g. multiple cuts each made at different cutting speeds). The experiment

performed by Moscoso et al which employed a time-varying cutting speed cannot be compared

to the conventional case without incorporating the effect of lubricant on the tool-work interaction.

Thus, whereas specific advantages of velocity-direction MAM have been identified which may

justify industry’s acceptance of the process, the effects of its dynamic nature on the energetics

of dry metal cutting are less adequately understood.

2.2 Feed-direction MAM:

Ductile metals such as aluminum, titanium, and nickel alloys present unique challenges to the

machining industry due to their tendency to produce continuous chips [7]. This aspect is

especially detrimental to the drilling process, as large chips are difficult to evacuate from the

cutting site and thus promote tool breakage. In order to encourage chip removal, high-pressure

fluids may be used to lower the temperature at the cutting site, break chips into smaller pieces,

and evacuate them from the hole [7,25,26]. This method is effective, as tools used in the

presence of such metal removal fluids (MRFs) have been found to last up to 250 times as many

cycles. However, MRFs can be expensive; estimates have placed them at up to 16% of the total

cost for some machining processes. Efforts have been made to remove the need for such fluids

by instead applying various coatings to the tools. Such tools have been found to last

approximately 100 times as many cycles as the baseline case. However, this technique is only

advantageous under a narrow range of processing conditions [25].

Previous studies have demonstrated MAM’s ability to form discrete chips when the direction of

modulation is parallel to the undeformed chip thickness [7,18,19,21]. The application of this

feed-direction MAM to the drilling process is analogous to the commonly used “peck-drilling”

technique in which the machine controller periodically moves the tool away from the workpiece,

effectively breaking the chip while simultaneously lubricating the ICR. Traditional peck drilling

has its limits however. In the case of manual machines, this may come in the form of the

operator’s speed of motion; for CNC machines, it might be due to the inertial effects that must

be overcome by the motor. Peck-drilling can be applied at a much higher rate through the use of

a piezoelectric actuator positioned near the tool since its intrinsic kinematic and dynamic

properties allow it to overcome both aforementioned limitations.

7

Although the discussion thus far has focused on drilling, feed-direction MAM can similarly be

incorporated into the turning process. Consider a cutting tool used to continuously turn down the

length of a tube for example. This could also result in discrete chips, depending on the ratio of

the modulation frequency to the rotational frequency of the primary spindle. Although chip

evacuation is less of a concern in such a case, feed-direction MAM has been used to produce

metal particulates of controlled size and shape (see Fig. 2.2) [18,19,21]. Such particulate may

be the intended product of the cutting operation, or may be a valuable byproduct. Furthermore,

the mode by which the tool disengages from the workpiece in feed-direction MAM allows

separation to be achieved even at high cutting speeds, making this case more viable from an

industrial standpoint [19].

As was the case in velocity-direction MAM, studies have already been performed which

demonstrate the ability of feed-direction MAM to carry out prescribed motions under load and to

affect tool-work separation and cutting forces [7,16-18,21-23,27]. However, there again exists

some gap in knowledge surrounding the subject of the effect that undeformed chip thickness

has on energy consumption when applied dynamically and whether its magnitude can be

predicted based on knowledge of its dependence on static variations in this processing

parameter.

8

Figure 2.1: Cutting forces and friction coefficient values for a range of velocity-direction

modulation amplitudes. In all cases, VDC=10mm/s, h0=0.10mm, fm=75Hz. The normal and

friction forces reported here were the average plateau values [3].

Figure 2.2: Examples of chips produced using feed-direction MAM [18].

9

Chapter 3: Mechanics of MAM

This chapter serves to review the underlying mechanics of MAM-based processing methods. It

should be noted that many of the equations used throughout this chapter have also been

reported in Ref. [27] which was frequently referred to during the course of the present study.

3.1 Velocity-direction MAM:

Velocity-direction MAM is a special case of MAM in which a time-varying velocity in the cutting

direction is superimposed on the cutting speed (see Fig. 3.1). Throughout this study, the term

displacement is used to refer to the position of the tool with respect to the workpiece. With these

conditions established, the effective displacement (Deff) and velocity (Veff) can be written in terms

of time (t), the amplitude of modulation (K), the modulation frequency (fm), and the static

component of the effective cutting velocity (VDC) as

 [Eq. 3.1]

 . [Eq. 3.2]

It should be noted that the absence of any phase shift in the sine and cosine terms infers that

sin(2πfmt)=0 at time t=0 (e.g. zero displacement at t=0). Also, since the value of sin(2πfmt) is

arbitrary at the edge of the workpiece, the location represented by zero displacement may be

offset from this edge. Finally, since tool/workpiece displacement and velocity are defined

relative to one another, an experimental setup may allow for the tool and/or the workpiece to be

in motion relative to some fixed object.

The effective velocity will travel between maximum and minimum values of VDC+2πfmK and

VDC-2πfmK, respectively. Depending on the relationship between VDC, fm, and K, one of three

situations will occur. In each of them, the average cutting velocity will be equal to VDC; thus, the

displacement trace will always be represented by a sinusoidal variation superimposed on a line

of constant slope and the velocity trace by a sinusoidal variation offset from the x-axis. The first

case has been named “forward advancement” since the tool not only remains in contact with the

workpiece but also has a positive velocity (e.g. advances) throughout the entire length of cut

(see Fig. 3.2a). Forward advancement occurs when VDC>2πfmK. The second is known as the

“critical case” since the tool and workpiece remain in contact but periodically have zero

instantaneous relative velocity (see Fig. 3.2b). The critical case occurs when VDC=2πfmK. The

third condition is referred to as “separation” since the tool and workpiece periodically separate

10

from one another throughout the cut (see Fig. 3.2c). Separation occurs when VDC<2πfmK. When

this condition is met, each complete modulation period will have three notable times: t’, t’’, and

t’’’. Conceptually, t’ denotes the time(s) at which separation begins, t’’ the time(s) at which the

distance of separation is a maximum, and t’’’ the time(s) at which the tool and workpiece regain

contact. Graphically, t’ is the time at which the displacement-time trace sees a local maximum,

t’’ the time of a local minimum, and t’’’ the time at which the displacement is next equal to its

value at time t’. See Fig. 3.3 for a pictorial description of these critical times.

The time(s) between which the tool moves away from the workpiece (t’ ≤ t ≤ t’’) can be solved

analytically by setting Veff in Eq 3.2 equal to zero, resulting in

 (

) . [Eq. 3.3]

Recalling from geometry that the function cos(X) over the range 0 to 2π graphically looks like

Figure 3.4, then t’ and t’’ are related by

 . [Eq. 3.4]

Solving for the difference between the local maximum and subsequent local minimum yields the

equation for maximum effective distance of separation, given by

 |√ (

)

|

[(

)] . [Eq. 3.5]

Note that Eq. 3.3 and Eq. 3.5 will only yield real values if separation occurs.

3.2 Feed-direction MAM:

Feed-direction MAM is a special case of MAM in which a time varying displacement in the feed

direction is superimposed parallel to the undeformed chip thickness (see Fig. 3.5). In the case of

turning, this induced modulation has a constant phase shift (φ) between passes of

 [

 (

)] [Eq. 3.6]

where fw is the angular speed of the workpiece (e.g. spindle speed) and INT() denotes the

integer part of the value. The wavelength (λ) is expressed as

 [Eq 3.7]

11

where d is the average diameter of the workpiece. The overall displacement (Z) of the tool in its

nth pass can be represented spatially as

 (

) (

) [Eq. 3.8]

where x represents the instantaneous location of the tool along the circumference of the

workpiece (0≤x≤2πd) [27]. The instantaneous undeformed thickness (h0) can be found by taking

the difference between the displacements of the nth and n-1th passes

 . [Eq. 3.9]

Under certain conditions it is possible for h0 to be analytically less than or equal to zero which is

theoretically synonymous with tool/workpiece separation and the formation of a discrete chip. It

is important to note that chip thickness, and thus the conditions for separation, depends not only

on the amplitude of modulation but also on the phase shift between passes. The minimum

amplitude required to achieve separation as a function of the phase shift can be expressed as

 (

)
 [Eq 3.10]

It is evident from Fig. 3.6 that separation can be achieved with minimum modulation amplitude

when φ=π, which has been named the “optimum modulation condition” [17,19].

12

Figure 3.1: Orthogonal cutting geometry for velocity-direction MAM [19]. Note that the amplitude

A is referred to as K in the present study.

Figure 3.2: Tool displacement and velocity vs time for cases of: (a) forward advancement, (b)

critical condition, and (c) separation.

13

Figure 3.3: Pictorial representation of critical times as defined using the displacement-time

trace.

Figure 3.4: Graphical example of Eq. 3.3.

14

Figure 3.5: Orthogonal cutting geometry for feed-direction MAM [19]. Note that the amplitude A

is referred to as K in the present study.

Figure 3.6: Classification of cutting type as a function of modulation amplitude and phase shift

between passes [7]. Note that the amplitude parameter A is referred to as K in the present

study.

15

Chapter 4: Experimental Methods

This purpose of this section of the thesis is to describe the experimental configurations,

materials and data acquisition methods used in executing the experimental work of the present

study. As the thesis involved the exploration of power- and energy-related effects for two types

of parameter modulation methods, namely velocity-direction modulation and feed-direction

modulation, this chapter is logically divided along those lines.

4.1 Velocity-direction MAM

A. Experimental setup To study the effects that cutting velocity has on specific energy

consumption for both conventional cutting and velocity-direction MAM, a custom computer-

controlled planer was constructed (Fig. 4.1). The device couples a linear motion with a

sinusoidally varying modulated motion and imparts them on a workpiece. The linear motion is

provided by a linear stage (Nippon Bearing Corp., Model BG5520B) which is driven by a closed-

loop, PID controlled servo motor (Parker USA, Model MPP1002D3E-NPSN). Positioning data is

provided to a motion controller (Parker USA, Model 6K2) by an in-built optical rotary encoder

with effective resolution of 8000 counts/rev (post-quadrature). These digital signals were also

monitored externally during each experiment to measure the constant, or DC, component of

workpiece velocity. The motion controller enables the servo drive (Parker USA, Model Aries AR-

20AE) to regulate the power supplied to the servo motor. The rotational motion provided by the

motor is converted to linear motion via a rotary coupling to the ball-screw of the linear stage.

The primary shaft of the ball-screw has a pitch of 20 mm, resulting in an overall theoretical linear

positioning accuracy of ±2.5 um when considering the optical encoder capability.

The sinusoidal, or AC, component of the workpiece velocity was provided by a piezo-ceramic

actuator (APC International, Model Pst 150/14/100 VS20). One end of the actuator was fixed to

the ball-screw driven platform while the other was attached to a work-fixturing platform that

enabled motion along a single degree of freedom in the cutting direction. The work-fixturing

platform was a well-greased linear slide (Nippon Bearing Corp., Model SGW35) whose motion

axis was carefully aligned with the larger linear stage using a dial indicator. The work-fixturing

platform facilitated holding of a workpiece using set screws. The displacement of this platform

relative to the linear stage (e.g. the purely AC component of the motion) was monitored using a

capacitance probe (Capacitec, Model HPC-40) which was affixed to the ball-screw driven

platform. The oscillatory motion was generated by charging the piezo-ceramic actuator with a

16

sinusoidal voltage which originated from a waveform generator (Agilent, Model 33220A) and

was amplified using a power supply (Kepco, Model BOP 100-4M). Using this system, voltages

ranging from 0-100 V can be provided to the actuator.

The cutting tool was produced from a 12.7 mm x 25.4 mm x 177.8 mm high speed steel blank

and was mounted on a cast-iron tool holder. The tool was machined using wire electrical

discharge machining and had an effective rake angle of 30° and a relief angle of ~5°. The rake

and flank surfaces of the tool were finish ground to produce a sharp cutting edge (Fig. 4.2). The

tool holder was mounted on a three-axis force transducer (Kistler, Model 9257A) with the

orientation of two of these axes, FX and FY, aligned along and perpendicular to the cutting

direction, respectively. The transducer was mounted on a ball-screw driven dovetail slide (Setco

USA, Model M2PLWY.8) with an in-built linear encoder (Heidenhain) attached to a digital

readout device. The rough positioning of the tool was set by adjusting the height using the hand

crank on the dovetail slide. The final value of undeformed chip thickness was verified using a

second capacitance probe (Capacitec, Model HPC-150). The undeformed chip thickness in

these experiments was 20 um with an uncertainty of 2.5%. It should be noted that the

capacitance probes require a common reference ground. This was provided by the steel table.

Arguably the most difficult challenge in implementing a precision machining tool is minimizing

system compliance due to the force generated by the tool/work interaction. The fundamental

principles of beam theory state that the deflection of an end loaded beam can be expressed as

δ=(PL3)/(3EI) where δ is the linear deflection, P the cutting force, L the length of the beam, E the

Young’s modulus, and I the area moment of inertia. Several design iterations of the tool and its

holder were necessary to reduce compliance. The final experimental platform was tested for

compliance at various locations over a range of cutting forces. A capacitance probe was placed

normal to the respective surfaces indicated by Fig. 4.3 and the values of force and the

corresponding local compliances are recorded in Table 4.1.

To obtain the desired cutting velocities under the load ranges investigated, the motor required

tuning. Two sets of PID gains were used: one for conventional cutting and the other for MAM.

Although it is common practice to tune such gains as tightly as possible to yield the fastest

system response, it was found that high gains effected unsteady motions. This was validated by

comparing the encoder’s internally measured digital motion profile with an externally measured

position provided by the capacitance probe. The capacitance probe was positioned such that it

measured normal to the direction of travel. A series of motions at a range of velocities were

17

tested and the two displacement profiles were compared. To simulate the cutting loads

expected in the study, the motion profiles were measured during actual cutting tests. The results

of these tests can be seen in Figs. 4.4-4.5. The values for the high gain settings on the motion

controller were (P, D, I) = (25.0, 4.4, 0), while the low gain settings were (P, D, I)=(8.3, 3.6, 0). It

was empirically observed that more linear profiles were possible using the low-gain settings;

thus, all conventional machining experiments were performed with these gains. For modulation-

assisted machining, a time-varying load caused counter-rotation of the motor resulting in

departure from its linear motion. In these cases, high-gain settings were used as they provided

better response for these time-varying loads. Figures 4.6-4.7 provide evidence that the

magnitude of this counter-rotation was lessened by the use of high-gains. The sinusoidal motion

of the platform itself was also validated, as is clear in Fig. 4.8.

In the context of the planer machine, the term displacement is used to refer to the location of an

arbitrary point on the work holding platform relative to the cutting tool. An increasing

displacement indicates that the workpiece is moving in the cutting direction. This demonstrates

the concept that it is not the value of displacement that is of primary importance here, but rather

the nature of how the displacement trace varies over time. The reason this parameter is

displayed in the results and not merely bypassed en route to obtaining cutting velocity has to do

with its ability to relate conceptually with tool-work separation (refer to Fig. 3.3). Recall that the

effective displacement trace represents a synthesis of temporally linear and nonlinear motion.

The linear component is due to the (approximately) constant velocity (VDC) imposed on the

stage by the motor and the nonlinear component is due to the sinusoidal velocity (VAC) imposed

by the piezoelectric actuator. The effective velocity (Veff) is simply the superimposition of VAC on

VDC. For cases of conventional cutting, VAC=0 and thus Veff=VDC. It should be noted that the

velocity terms seen in the figures are best-fit approximations of the data and are therefore

noise-free. Also, recall that VDC has a time varying component built into it due to the nature of

the motor to counter-rotate when under sufficient load. This is factored into the best-fit models.

B. Data acquisition Two channels on the dynamometer were used to sense the

cutting and tangential forces according to the orientations seen in Fig. 4.9. The signal from

these channels was amplified using charge amplifiers (Kistler, Model 5004). The charge from

the capacitance probes was also amplified (Capacitec, Model 4100-SL). These data were then

output from their respective amplifiers and received by a data acquisition system (National

Instruments, Model cDAQ-9178) that simultaneously accessed an analog input board (NI-9215)

and a digital input board (NI-9411) at a sampling rate of fs=10 kHz. The differential digital

18

signals from the rotary encoder operated at TTL voltage levels and thus required no

amplification. To facilitate simultaneous acquisition of data from these two input boards, it was

necessary to record the raw digital signals from the encoder and to decode the quadrature

signal offline using a specially-designed Matlab script (see appendix D). This was because

Labview’s in-built linear encoder subroutine was observed to cause severe data lag, presumably

due to the computational cost of dynamically decoding the quadrature signal. The Matlab

quadrature decoding script was validated by commanding the linear stage to first move a pre-

programmed distance (25mm) at a constant speed (10mm/s) and then to move the same

distance in reverse at half the original speed. Results from this test can be seen in Fig. 4.10.

The synchronization of the two input boards was validated by measuring equivalently-sourced

electrical signals from the encoder using both the analog and digital modules (Fig. 4.11). As is

evident in the figure, these modules are able to simultaneously measure the rise and fall of the

encoding signal with a high degree of accuracy.

C. Experiments The materials tested included AA6061-T6 and oxygen-free

electronic (OFE) copper (Cu101). Workpieces were constructed from 3.175 mm thick flat bar

stock (McMaster Carr) and were machined to a size of approximately 20 mm x 30 mm. The

workpiece thickness was reduced to 1.0 mm for a step height of 1.5 mm. The initial thickness of

3.175 mm was maintained throughout the remainder of the workpiece to provide structural

integrity (Fig. 4.12). In all cases, the undeformed chip thickness (h0) was 20 um, resulting in a

cutting force of Fp≈15-20 N for both materials. The system compliance values given in Table 4.1

are representative of those expected under these force levels. Note that the cutting width is at

least 10 times greater than the cutting depth, which is generally accepted as facilitating plane

strain deformation [1].

Five cutting speeds (VDC) were used to characterize load response as a function of velocity:

0.05, 0.25, 0.50, 0.75, and 1.00 mm/s. Three trials were performed at each of these speeds

(except VDC=0.50 which had 8 trials) and the overall average cutting power for each speed was

found. In order to compare conventional cutting with velocity-direction MAM, five modulated

trials were performed at VDC=0.50 mm/s, fm=10 Hz, and K=19 V for aluminum and 16 V for

copper. Note that the amplitude of modulation varies between materials since it was designed

so as to effect approximately 75% of the critical MAM condition. Table 4.2 provides a

comprehensive list of the cutting conditions mentioned here. The order in which these cuts were

performed was randomized and reference-establishing cuts were made between each trial.

These reference cuts were performed at VDC=1 mm/s and h0=20 um. For the conventional

19

machining tests, the piezo-actuator was provided with a DC offset voltage such that the only

difference between the MAM tests was the lack of an AC motion. This DC offset merely placed

the actuator in an extended condition to ensure that the actuator stiffness would be similar

between the conventional and MAM conditions used in this study.

4.2 Feed-Direction MAM

All experiments for feed-direction MAM were performed in Ref. [27] and a new analysis of the

same data sets is provided here using the analysis framework described in Chapter 5.

A. Experimental setup The MAM experiments were performed using a computer

numerical control (CNC) lathe (Miyano, Model BNC42) outfitted with a custom-built piezo-

actuation device capable of achieving a sinusoidal motion. A boring tool (0deg rake, 5deg relief)

was mounted to this actuator and oriented such that the configuration also approximated

orthogonal cutting. While the use of a piezo-ceramic actuator to cause the sinusoidal motion of

a tool is similar to that in the preceding section, the key difference in this series of experiments

is that the sinusoidal motion is effected in a direction transverse to the cutting velocity and in the

direction of tool feed. A three-axis load washer (Kistler, Model 9027A) was mounted between

the boring tool holder and the piezo device such that it was capable of sensing the cutting loads.

The spindle speed and feed rate (e.g., undeformed chip thickness) were controlled by entering

the respective parameters into the controller of the CNC lathe. Finally, the oscillatory motion of

the tool was controlled in a similar manner as described above for velocity-direction modulation,

that is, by means of a similar waveform generator and voltage amplifier.

The term displacement is used in the context of the CNC lathe to refer to the location of the

boring bar’s cutting edge relative to that of the workpiece. Increasing values of displacement

indicate that the turret is feeding the tool into the workpiece. Since the undeformed chip

thickness, or instantaneous feed, is the difference between the displacement profiles of the

current and previous pass, it is also sinusoidal in nature (with an offset equal to the feed rate).

The only deviation from this shape comes in the form of a saturation limit at h0=0, thus

preventing what would be negative values of undeformed chip thickness. Note that in the case

of conventional cutting, the amplitude of this sine wave is zero, thus, the instantaneous

undeformed chip thickness is equivalent to the feed rate of the turret (s).

B. Experiments Turning experiments were carried out using AA6061-T6 and

Ti3Al2.5V tubes which had an outer diameter of 25.4 mm. The wall thicknesses for the

20

aluminum and titanium tubes were 1.24 mm and 1.295 mm, respectively. Each experiment was

performed with a spindle speed of 1200 rpm (giving cutting speeds of 1.52 and 1.51 m/s for

aluminum and titanium, respectively). Static feed rates varied between 0.005 mm/rev and 0.050

mm/rev, which should be noted as being faciliatory to plane strain conditions [1]. A total feed

length of 0.5 mm was used for the 0.005 mm/rev case and 2.0 mm was used for all other cases.

Modulation frequencies of 10, 50, 100, and 110 Hz were each used, effecting fm/fw ratios of 0.5,

2.5, 5.0, and 5.5, respectively. Data was sampled at a rate of fs=5 kHz. The piezo-ceramic

actuator received a sinusoidal voltage signal of amplitude 60V in all cases. A list of the

conditions tested using the lathe is given in Table 4.3. Note that only one trial was performed for

each condition.

Note: see Table 4.4 for a list of various mechanical and thermal properties for the workpiece

materials used in the present study.

21

Figure 4.1: Solid model of computer-controlled planer. Components include linear stage (light

blue), piezo-actuator (violet), capacitance probe (dark green), linear slide (yellow), work fixturing

platform (black), workpiece and tool (red), tool holder (dark blue), force transducer (light green),

vertical stage (tan).

Figure 4.2: Profile of cutting edge prior to experimental trials.

22

Figure 4.3: Locations along tool assembly at which compliance was checked as reported in

Table 4.1.

Figure 4.4: Tested “linear” motion of stage for VDC=0.05 mm/s with high gain settings (P, D, I) =

(25.0, 4.4, 0).

23

Figure 4.5: Tested “linear” motion of stage for VDC=0.05 mm/s with low gain settings (P, D, I) =

(8.3, 3.6, 0).

Figure 4.6: Analysis of modulated cut using the high gain settings. Note the constancy of Vdc.

24

Figure 4.7: Analysis of modulated cut using the low gain setting. Note the lack of constancy in

Vdc.

Figure 4.8: Pre-amplified 10 Hz sinusoidal voltage signal and resulting motion of work holder

platform. Post amplified signal sent to piezo actuator was 90 V peak to peak.

25

Figure 4.9: Orientation of cutting direction force, Fp, and its transverse counterpart, Fq.

Figure 4.10: Decoded motion profile of linear stage resulting from a commanded motion of

distance D=25mm at velocity V=10mm/s followed by a motion of distance D=-25mm at velocity

V=5mm/s.

26

Figure 4.11: Analog and digital voltage measurements of identical signals from encoder. The

two tracks, A and B, are a result of the use of quadrature encoding.

Figure 4.12: Workpiece drawing: note that the planer experimental cutting trials removed

material from the 1mmx1.5mm cross-section.

27

Table 4.1: Average forces and corresponding local compliance values (normalized by Fp,avg) of

planer setup for various conventional cutting conditions. Note that Fp and Fq are in the direction

of and tangent to the cutting velocity, respectively.

Table 4.2: List of workpiece materials and cutting conditions tested using CNC planer (velocity-

direction MAM).

28

Table 4.3: List of workpiece materials and cutting conditions tested using CNC lathe (feed-

direction MAM). Note that a spindle speed of 1200rpm was used throughout.

Table 4.4: Various mechanical and thermal property values for the workpiece materials used in

this study.

29

Chapter 5: Analysis Methodology

A fundamental characteristic of modulation-assisted processing methods is that controllable

process parameters are modulated over a range of values so as to affect desirable changes in

baseline performance. In the present study, controllable machining parameters for modulation-

assisted machining include cutting speed and undeformed chip thickness. In conventional

machining configurations, performance measures such as instantaneous power dissipation and

energy consumption are usually sensitive to these inputs within a parameter space whose

breadth is material-dependent. In this regard, it is unsurprising that many have reported that the

use of modulation has a marked effect on performance for a number of machining

configurations [3,7,9,16-24,26-30]. Explanations of these effects usually cite fundamental

differences between thermo-mechanical response in modulation-assisted versus conventional

processing methods; these include but are not limited to: lower yield stresses due to enhanced

dislocation generation [31], reduced friction due to enhanced contact lubrication [3] and incipient

straining associated with smaller removal volumes [32]. While each is plausible for explaining

the observed differences, it often is not recognized that the time-varying nature of the machining

parameters may also affect overall performance. In this regard, insufficient consideration has

been given to explicitly resolving whether parameter modulation simply modifies the temporal

distribution of the output measures (e.g., force) or whether it fundamentally alters the nature of

thermo-mechanical response underlying deformation in material removal.

The purpose of this section of the thesis is to address how the character of functional

relationships between output measures (e.g., instantaneous power) and controllable machining

parameters in conventional processing configurations can be used to understand the role of

parameter modulation in affecting performance in modulation-assisted configurations.

5.1 Discretization of the cutting process

The cutting process in modulation-assisted machining can be modeled as a discretization of that

which occurs in conventional cutting. In the limit wherein parameters controlling modulation

(e.g., frequency, amplitude) tend toward zero, machining parameters (e.g., undeformed chip

thickness, cutting velocity) are constant and this process approximates one of continuous

material removal. In contrast, for configurations wherein parameters controlling modulation are

non-zero, modulation can be used to affect significant changes to characteristics of the material

removal process, such as periodic contact separation and/or oscillatory loading. It is unclear

30

whether the presumption holds that the cutting process in these latter scenarios is simply a

discretization of that which occurs in conventional cutting or whether fundamental differences

exist for the unit events in modulation-assisted machining. Instantaneous power consumption

and overall energy expenditure are output measures that together can be used to probe this

question. If the underlying nature of both of these output measures is fundamentally different

with the application of modulation, then the notion of discretization of the conventional

machining process is suspect.

Instantaneous power consumption is useful in evaluating maximum power requirements and

energy expenditure during cutting. The expended energy is simply obtained by integration of the

power distribution over time. In conventional machining, cutting power (and force) saturates

rapidly after the start of chip formation to a plateau whose magnitude is related to a host of

controllable input parameters including speed, undeformed chip thickness, rake angle, etc. This

nominal cutting power is generally maintained until chip formation ceases. In the case of milling,

the power consumption may vary dynamically over time since each tooth of the tool will typically

engage and disengage the workpiece once per spindle revolution. However, this can still be

viewed as a static parameter process, since the processing parameters – most notably cutting

speed and undeformed chip thickness – are held relatively constant throughout the duration of

each cut.

In contrast, the power consumption profile in modulation-assisted machining is time-varying

since the processing parameters are themselves intrinsically dynamic. In this view, the nature of

load response can be expected to be similar in modulation-assisted machining as in

conventional machining, where instantaneous force dissipation and power consumption are

both dictated by the instantaneous cutting parameters. In this regard, it is important to establish

the manner in which cutting power in conventional machining changes as a function of input

parameters, particularly those modulated in the current study: undeformed chip thickness and

cutting velocity.

5.2 Effects of parameter modulation on power

The effects of parameter modulation can be generalized to represent behavior for any

modulation configuration. Consider an arbitrary machining parameter, X, whose value can be

modulated with respect to time in modulation-assisted machining. For example, in feed

modulation, this parameter would be the undeformed chip thickness. For a modulation

31

configuration that directly affects X, the instantaneous value of X is given by X=Ksin(2πfmt)+X0

where K is modulation amplitude (in units of X), fm is modulation frequency, t is time and X0 is

the initial value of X. Considering the sinusoidal nature of this relationship, the value of X can

vary over a range [-K+X0, K+X0]. Consider also that instantaneous power consumption has

historically been taken as the cutting force multiplied by the instantaneous cutting speed [1]. If a

dependent relationship exists between parameter X and instantaneous power (denoted as P), it

follows that P will also be time-varying in the case of modulation and will vary between some

maximum and some minimum value. A straightforward method to determine this instantaneous

power is to correlate it with load response at an equivalent value of X in conventional machining.

This dependent relationship, P(X), can be established empirically by evaluating the

instantaneous value of P for a range of input X’s in conventional machining configurations. For

example, if X represents undeformed chip thickness, the P(X) relationship can be evaluated by

measuring machining power for a range of undeformed chip thicknesses in conventional

machining. Such a method inherently assumes that the underlying thermo-mechanical response

is the same in modulation-assisted machining as it is in conventional machining. While the

validity of this assumption has yet been established, it can be tested through comparisons made

of predicted power dissipation and actual power dissipation.

5.3 Effects of parameter modulation on energy

If the validity of the above approach is established, knowledge of the P(X) relationship in

conventional machining enables first-pass prediction of instantaneous power consumption in

modulated machining conditions wherein the value of X is controllable. Furthermore, the total

energy expended during machining can be found according to ∫ . However, direct

comparisons between energy expended in conventional machining and that consumed in

modulation-assisted machining are non-trivial. In conventional machining, the power

consumption during a cut is relatively time-invariant (represented as P0) and the machining

parameter value is constant (X0). This can be compared with modulation configurations, where

power dissipation is given by P(X) where X is a function of time. Thus, one-to-one comparison

with P0 requires determination of a weighted power value, Peff, for modulation-assisted

machining. In this case, there exists an effective modulation parameter Xeff such that Peff=P(Xeff).

It is not difficult to show that the nature of P(X) ultimately influences the values of Peff and Xeff.

Consider first the expected value of the modulated parameter, E[X]~X0, for the probability

density function (Fig. 5.2) of the driving sinusoidal function. The power dissipated at this

parameter value is equivalent to that dissipated in conventional machining such that

32

P(E[X])=P(X0)=P0. In contrast, Peff is given by the expected value of the power function,

E[P(X)]=Peff. The value of Peff relative to P0 can be shown to be dependent on the curvature of

P(X) through Jensen’s inequality. Jensen’s inequality states that for a random variable ‘y’ that

takes values in an interval over which a given function f is convex, then E(f(y)) ≥ f(E(y)) where

E(y) is the geometric mean of y over its range. Further, the inequality reverses direction when

the function f is concave and the two sides are equivalent when the function f is linear [33]. This

can be graphically visualized in Fig. 5.3. With regard to power dissipation in modulation-assisted

machining, this indicates that: (i) Peff≥P0 if the P(X) curve is convex, (ii) Peff≤P0 if the P(X) curve

is concave and (iii) Peff=P0 if the P(X) curve is linear.

From the above analysis, one may be able to determine a priori the effects that parameter

modulation has on energy consumption through an understanding of response under a range of

conventional, or static, machining conditions. This requires knowledge as to whether the

corresponding static P(X) relationship is convex, concave, or linear over the range of the

modulated parameter space. For configurations wherein cutting speed or undeformed chip

thickness is modulated, P(X) often is linearly related to the modulated parameter X over a broad

parameter space [10,34]. However, several studies have pointed to non-linear behavior at

extreme conditions. Specifically, the P(X) curve can exhibit convex or concave nature at low

values of cutting speed and/or undeformed chip thickness, respectively [10,11].

5.4 Empirical characterization of load response and power dissipated

While Peff will ultimately be useful in exploiting the conventional machining and MAM energy

inequality, the validity of using a P(X) relationship, calibrated on a range of conventional

machining data, to predict instantaneous power dissipation in modulation-assisted machining

must first be established. This, as described above, can come from a direct comparison of

predictions using P(X) against empirically obtained measurements in MAM. To establish the

P(X) relationship, the instantaneous value of P can be measured for various values of X in

conventional machining and a least-squares fit of the data can be made to approximate P(X). In

practice, power oft is not measured directly in machining experiments; it usually is inferred from

measurements of force response F made through dynamometry. Recall that the cutting power in

machining is historically given as the product of the cutting force Fp and the cutting velocity V. It

is simple to posit that the force dissipated as a function of X, e.g., Fp(X), can be used to

establish P(X). An understanding of an appropriate general form to fit Fp(X), where X is cutting

velocity or undeformed chip thickness, can come from literature.

33

A. Velocity-direction MAM Research performed by Maan and co-workers indicates that, for

steels cut at low speeds, there exists an approximately logarithmic relationship between specific

energy and cutting speed [11]. This can be seen in Fig. 5.4, where the specific energy is plotted

against the log-scaled cutting speed. This results in a linearized relationship between the

variables which is most readily fit according to e(X) = A’*ln(X) + B’ where e is specific energy in

J/mm3, X is cutting velocity in mm/s, and A’ and B’ are fitting parameters. From this, the cutting

force (Fp) can be easily back-formulated into the equation [] where the fitting

constants A and B are equivalent to h0w0A’ and h0w0B’. The parameters h0 and w0 represent

undeformed chip thickness and workpiece width, respectively. The parameters of A and B can

be found through the least-squares technique. Specifically, if M*p=r where M is a matrix of size

(n x q) containing elements of the fitting function, p is a vector of size (q x 1) containing the

fitting parameters and r is a vector of size (n x 1) containing the data to be fit, then the fitting

parameters can be solved according to p = (MTM)-1*MT*r. After the fitting parameters are

determined, the power dissipation relationship is simply written as []

 where X has units of mm/s and P has units of Watts. The curvature of this relationship

can be evaluated through determination of the second partial derivative of P with respect to X,

thus yielding the quantity A/X. Considering that A can be any real number, the P(X) will be

convex when A>0, linear when A=0, and concave when A<0.

B. Feed-direction MAM An understanding of the relationship between cutting force and

undeformed chip thickness comes from Ref. [10], where a roughly linear relationship between

undeformed chip thickness (h0) and cutting force (Fp) is found for h0>0.1 mm in plain carbon

steel (see Figure 5.5). In the same figure, it was observed that at h0<0.1 mm, the cutting force

tended toward zero. The linear portion of this trace is classically referred to as an oblique

asymptote and occurs in functions whose denominator is of order exactly 1 greater than that of

the numerator. In order to ensure intersection with the origin, the asymptote’s y-intercept must

be cancelled out by a term in the function that must also independently go to zero for large

values of the abscissa (so as not to affect the linear asymptote). From this, a general form for

Fp(X) can come as

 where X is undeformed chip thickness (units of um)

and A, B, and C are fitting parameters, each of which must be a real number greater than or

equal to zero. The equation of this asymptote can be found by making X sufficiently large; this

effectively drives the B/(C*X+1) term to zero and leaves the linear part of this expression,

A*X + B, unaffected. It is important to note that the equation for force is linear with respect to

parameters A and B, but non-linear with respect to C. An approach to quantify these parameters

34

may be as follows: the values for A and B can be determined by fitting a line through two

empirically-obtained data points, then C can then be determined using the Newton-Raphson

iterative algorithm to minimize the residual sum of squares. Given Fp(X), the P(X) equation can

be written as [

] where VDC has units of m/s and P has units of Watts.

Computing the second partial derivative of P with respect to X yields (-2*V*B*C2)/(C*X+1)3.

Considering that A, B and C must each be real numbers greater than or equal to zero, P(X) in

this form will be linear when B and/or C is zero and will be concave when B and C are non-zero.

5.5 Numerical analysis methods

Data processing was handled using two custom Matlab scripts: one designed for data collected

from the planer setup and the other for the lathe. These scripts are provided in Appendices G

and H. The main features of the codes include the determination of a best-fit function for X,

force prediction based on X and the determination of both actual and predicted specific energy

consumption. Both numerical routines automatically identify the times at which cutting is initiated

and when it ends based on the magnitude of Fp and plots these boundaries using green and

red dashed lines, respectively. The use of Fp to characterize these critical time values is

justified due to the close correspondence between the Fp and Fq traces and the lower signal to

noise ratio present in Fp as compared to Fq. In data collected using both the planer and lathe

machines, it is common for the force values seen at the beginning and end of the cuts to be

somewhat different from those seen in the middle, or “steady-state,” portion of the cut. Thus,

each routine evaluates cutting velocity, power, and energy based on a specified window of data.

For the planer, this window begins 5 mm into the cut and ends 20 mm into the cut. For the lathe,

the window begins 0.1 mm into the cut and ends 0.1 mm before the cut finishes. The beginning

and ending of each window is represented using thin green and red dotted lines, which naturally

occur inside the boundary limits of the overall cut. Lastly, the routines also use the Fp trace to

determine the times at which each plateau begins and ends and identifies these times using

green dots and red x's, respectively, which are positioned along the abscissa.

A primary difference between the two codes is the numerical integration scheme by which

cutting energy is calculated. From traditional metal cutting mechanics, the total energy (E)

consumed in a material removal process is E=Fp*Veff*Δt [1]. For both the planer and lathe data,

a numerical technique for rectangular integration can be expressed symbolically as

E=Σ[Fpi*dxi]=Σ[Fpi*Veffi*dti]. Note that the use of majuscule E is important here as the energy

has not been normalized by volume. Due to the small dt’s used (1e-4 and 2e-4 s for planer and

35

lathe data, respectively), trapezoidal integration was found to yield nearly identical results

(<0.01% difference). For feed-direction modulation, the rectangular integration technique

simplifies to E=VDC*dt*Σ[Fpi] since Veff and dt are constant as a function of time. However, this

is not the case for velocity-direction MAM wherein Veff is time-varying. In this case, energy is

calculated according to E=dt*Σ[Fpi*Veffi]. Once energy has been obtained, the quantity can be

normalized by volume.

Both routines were validated by first analyzing simulated, noise-free control data. Estimated

values for amplitude and frequency of X, as well as actual and predicted specific energy were

compared against pre-programmed values (e.g., Figs. 5.7-5.10) and the results of such are

given in Tables 5.1-5.2. The theoretical values for amplitude and frequency of X were

determined analytically while the specific energy values were determined using offline numerical

integration using time steps (dt) at least three orders of magnitude smaller than those of the

analysis codes. As can be seen in the figures and in the tables, the computational scheme used

here tracks well with the expected result in the simulated cases presented. Finally, it should be

noted that saturation limits were designed into the routine such as to prevent negative values for

predicted power. This is justified by the assumption that the machining system is perfectly rigid;

thus, cutting forces can only exist as positive values and are concurrent with the forward

advancement of the tool through the work.

36

Figure 5.1: General shape of convex, linear and concave functions.

Figure 5.2: Probability density, λ, of the sine function.

37

Figure 5.3: Graphical explanation of P/X variables and their relative magnitudes for a convex

function.

Figure 5.4: Reference indicating logarithmic relationship between cutting speed and specific

energy consumption [11].

38

Figure 5.5: Reference indicating oblique asymptote for force-undeformed chip thickness

relationship at high values of the abscissa and tending toward the origin at low values [10].

Figure 5.6: Examples of 0% (a), 50% (b) and 100% (c) MAM, calculated based on range of

cutting force.

39

Figure 5.7: Results from numerical analysis of artificial data simulating a conventional cut at

Vdc=1.00mm/s using planer machine.

40

Figure 5.8: Results from numerical analysis of artificial data simulating velocity-direction MAM at

Vdc=1.00mm/s, fm=10Hz, K=15.92um, 100% MAM using planer machine.

41

Figure 5.9: Results from numerical analysis of artificial data simulating a conventional cut at

s=0.020mm/rev, w=1200rpm using lathe.

42

Figure 5.10: Results from numerical analysis of artificial data simulating feed-direction MAM at

s=0.020mm/rev, w=1200rpm, fm=10Hz, K=0.010mm, 100% MAM using lathe.

43

Table 5.1: Comparison of theoretical values with those found using velocity-direction Matlab

analysis routine

Velocity-
Direction

MAM

Theor. Act. Pred. Theor. Act. Theor. Act.

e e e fm fm K K

(J/mm^3) (J/mm^3) (J/mm^3) (Hz) (Hz) (um) (um)

Conventional 0.2000 0.2000 0.2000 - - - -

100% MAM 0.2061 0.2061 0.2061 10.000 10.000 15.916 15.916

Table 5.2: Comparison of theoretical values with those found using feed-direction Matlab

analysis routine

Feed-
Direction

MAM

Theor. Act. Pred. Theor. Act. Theor. Act.

e e e fm fm K K

(J/mm^3) (J/mm^3) (J/mm^3) (Hz) (Hz) (um) (um)

Conventional 1.3333 1.3333 1.3333 - - - -

100% MAM 1.2764 1.2764 1.2765 10.000 9.999 10.000 9.996

44

Chapter 6: Results

6.1 Velocity-direction MAM

A. Forces and displacements Fig. 6.1 shows the measurement of force dissipated in

conventional machining of AA6061-T6 at 0.05 mm/s with an undeformed chip thickness of 20um

as well as the displacement (and velocity) of the linear stage over time. From the figure, it is

clear that the cutting force, Fp, and the tangential force, Fq, rapidly rise and fall at the start and

end of cutting, respectively. In the steady-state region, Fp and Fq are relatively constant over

the length of the measurement at Fp,plat=19.86±1.15 N and Fq,plat=6.28±0.82 N, respectively.

Figs. 6.2 and 6.3 show similar measurements at higher cutting speeds of 0.50 mm/s and 1.00

mm/s, respectively. While the magnitudes of the cutting and tangential forces appear quite

similar of that of the low speed case, the length of the traces is noticeably smaller due to the

higher velocities used. Figs. 6.4-6.6 show the force dissipated in conventional machining of OFE

Cu under equivalent machining conditions. From these figures it is clear that the nature of the

traces is fundamentally similar to that of the AA6061-T6 measurements. However, the force

dissipated is not constant across the range of velocity; at the lower end of the velocity range, Fp

is noticeably lower at 14.70±0.71 N for 0.05 mm/s compared to 20.04±0.99 N for 1.00 mm/s. A

summary of these measurements is provided in Table 6.1.

The force response in modulation-assisted machining is quite different than that which occurs in

conventional machining. Fig. 6.7a shows the force dissipated and displacement measurement in

modulation-assisted machining the aluminum alloy at 0.50 mm/s, 10 Hz and 19 um amplitude.

This same trace is shown at higher magnification over a smaller time range in Fig. 6.7b. The

displacement of the workpiece with respect to time, which was linear in the conventional

machining case, now also exhibits sinusoidal character due to the application of the modulation.

The effective cutting velocity, as a result, exhibits sinusoidal character. These effects cause the

force signature to contain clear periodicity, with a plateau value that occurs between trace

segments where the force rises and falls to local minimum values (Fp,min>0 N and Fq,min≈0

N). The beginning and end of these valleys in the force signature correspond to periodic

separation of the tool from the workpiece. The load observed at the plateau in the force trace is

concurrent with maximal advance of the tool into the workpiece. From the figure, the forces

have plateau values of Fp,plat=20.37±0.81 N and Fq,plat=4.88±0.29 N, similar to that seen in

the conventional machining case for a speed of 0.50 mm/s. A similar trend as that seen for

AA6061-T6 is seen in the modulation-assisted machining of OFE copper (Fig. 6.8a and 6.8b),

45

where modulation changed the nature of the force trace and resulted in similar plateau values

as those observed in conventional machining at a similar initial cutting speed.

B. Power dissipated The instantaneous power dissipated in modulation-assisted

machining also exhibited periodicity due to the periodicity in instantaneous velocity and in

instantaneous force Fp. The peak power values occur simultaneously with the peak effective

cutting velocities. Unlike the cutting force, the peak power dissipated during modulation-assisted

cutting ~.025W is significantly larger than that which was measured for conventional machining

(~.010W). This was attributed to the fact that the instantaneous velocity at these peak power

values was higher than in conventional machining. Figs. 6.9 and 6.10 show the effect of cutting

velocity on power dissipated in conventional machining of both materials. From the figures, it is

clear that power dissipated increases monotonically with cutting speed. To derive an empirical

relationship between power and cutting velocity, P(X), where X is the modulated variable

(cutting velocity), conventional machining data was fitted according to the function

 [] where Fp has units of N and X of mm/s, as described in Chapter 5. A least squares

fit of the AA6061-T6 conventional machining data yielded constants of A=0.543 and B=21.5 with

a resultant R2=0.972. Fitting the OFE copper conventional machining data in a similar fashion

yielded A=1.72 and B=19.4 with an R2=0.926. These same coefficients were incorporated to fit

the P(X) relationship for the aluminum alloy and the copper, yielding values of R2=1.000 and

R2=0.998, respectively. The fit curves are also plotted in Figs. 6.9 and 6.10. From the figures, a

greater degree of convexity in P(X) is evident for the copper (∂2P/∂X2=1.1e-3 for X=0.5 mm/s)

than for the aluminum alloy (∂2P/∂X2=3.4e-3 at X=0.5 mm/s). For both materials, it is clear that

the P(X) relationship is a good indicator of instantaneous power in modulation-assisted

machining.

C. Energy consumption For conventional machining, cutting energy (E) was obtained by

numerical integration of the cutting force (Fp) measurement and the instantaneous velocity data

from the encoder. This quantity was then normalized by volume to obtain specific energy

consumption (e) (see Chapter 5). The specific cutting energies for conventional and modulation-

assisted machining of AA6061-T6 at VDC=0.50 mm/s were 1.056±0.021 J/mm3 and 1.047±0.013

J/mm3, respectively (Fig. 6.11). In order to qualify these results statistically, a hypothesis test

was performed with a null hypothesis of h0: ēconv=ēmam and alternative of h1: ēconv<ēmam, where ē

represents the sample’s average specific energy value. The null hypothesis was not rejected for

an α=0.05 level of significance. A plot of the probability density functions for conventional

machining and modulation-assisted machining can be seen in Fig. 6.12. From this figure, one

46

can see the relative degree of similarity between the statistically expected energy consumption

values for these cases. The specific cutting energy for OFE copper was also evaluated. For

conventional machining, the specific energy was 0.921±0.020 J/mm3 while that of modulation-

assisted machining was 0.947±0.019 J/mm3, (see Fig. 6.13). The same hypothesis test was

performed for copper and it was determined that the null hypothesis should be rejected at the

α=0.05 level of significance. Thus, it can be said that modulation-assisted machining requires

more energy than conventional cutting in OFE copper at a 95% confidence level. A plot of the

probability density functions for conventional and modulated cutting can be seen in Fig. 6.14.

From this, it is easy to see the difference between the statistically expected energy values for

these two types of cutting. To summarize, the specific cutting energy for modulation-assisted

machining is seen to be higher for OFE copper and approximately the same for AA6061-T6

when compared with that of conventional machining. These general trends are not surprising

considering the P(X) relationship for both materials, which exhibited more convexity in the case

of OFE copper.

6.2 Feed-direction MAM

A. Forces and displacements Figs. 6.15-6.17 show measurements of force dissipated in

conventional machining of AA6061-T6 over a range of feed rates from 0.005 mm/rev to 0.050

mm/rev. From the figures it is clear that the morphology of the force traces is quite similar to that

of the earlier conventional machining experiments, but the range over which it increases is

significantly higher. For example, the cutting force at a feed rate of 0.005 mm/rev was

Fp,plat=21.29±1.31 N while that at 0.050 mm/rev was Fp,plat=75.72±4.04 N. Figs. 6.18-6.20

show similar measurement in Ti3Al2.5V at equivalent feed rates as in the aluminum alloy. From

these figures it is clear that the nature of the traces is fundamentally similar to that of the

AA6061-T6 measurements. However, the magnitudes of the forces are clearly higher due to the

titanium alloy’s intrinsically higher strength. The cutting force increased from Fp,plat=32.38±0.72

N for 0.005 mm/rev to Fp,plat=120.38±2.26 N for 0.050 mm/rev. The measurements for

conventional machining of both alloys are summarized in Table 6.2.

As was the case in velocity-direction modulation, the force response in feed-direction

modulation is quite different than that which occurs in conventional machining. Fig. 6.21a shows

the force dissipated and displacement measurement in feed-direction modulation-assisted

machining for the aluminum alloy at 0.020 mm/rev, 10 Hz and 14.5 um amplitude. This same

trace is shown at higher magnification over a smaller time range in Fig. 6.21b. The displacement

47

of the tool with respect to time, which was linear in the conventional machining case, now

exhibits sinusoidal character due to the application of the modulation. The sinusoidal

displacement of the tool, as described in Chapter 3, causes the effective undeformed chip

thickness to have sinusoidal character when fm/fw is an odd integer multiple of 1/2. This

characteristic is also seen for modulation frequencies of fm=[50, 110 Hz], where the modulated

amplitude is K=[15.0, 13.4 um] (see Figs 6.22a,b and 6.24a,b). The modulation of chip

thickness causes the force signature to exhibit periodicity as well, with a plateau value that

occurs between trace segments where the force rises and falls to zero. The load observed at

the plateau in the force trace is concurrent with the maximum undeformed chip thickness. From

Figs. 6.21a,b, the forces at 10 Hz have plateau values of Fp,plat=58.17±0.65 N and

Fq,plat=50.25±1.49 N, both significantly higher than those seen in conventional machining with

a constant undeformed chip thickness of 0.020 mm where Fp,plat=43.53±2.49 N and

Fq,plat=37.95±3.67 N.

When the ratio fm/fw is an even integer multiple of 1/2, the undeformed chip thickness is

expected to be constant as described in Chapter 3. This is shown in Figs. 6.23a,b for the

aluminum alloy when fm=100 Hz. In this case, the force levels are constant despite the

sinusoidal motion of the tool due to the constant undeformed chip thickness. Further, the

magnitudes of the plateau forces, Fp,plat=43.19±1.60 N and Fq,plat=37.73±2.60 N, are seen to

be similar to those of conventional machining with a constant undeformed chip thickness of

0.020 mm. Similar observations to those above can be made for the Ti3Al2.5V material, albeit at

a higher force range. The force traces for the Ti3Al2.5V material are provided in Figs. 18-20 and

25a-28b and a summary of the measurements for both materials is provided in Table 6.2.

B. Power dissipated Modulation of the undeformed chip thickness caused periodic

variation of power dissipation in both the aluminum and titanium alloys. Figs. 6.29 and 6.30

show the effect of undeformed chip thickness on power dissipation in conventional machining.

From the figures, it is clear that power dissipated increases monotonically with increases in

undeformed chip thickness. To derive an empirical relationship between power and undeformed

chip thickness, P(X), where X is the modulated variable (undeformed chip thickness),

conventional machining data was fitted according to the function

. For

AA6061-T6, this yielded the fitting parameter values of A=0.869, B=32.3, and C=0.258, yielding

R2=0.992 when Fp has units of N and undeformed chip thickness units of um. For Ti3Al2.5V,

these constants were determined to be A=1.94, B=23.4, and C=6.44, yielding R2=1.000. The

48

same fitting parameters were used to characterize the power dissipation data in conventional

machining and the R2 values were equivalent to those of the Fp(X) relationship as Fp(X) and

P(X) have essentially identical shapes. Recall that for feed-direction modulation, P=F*V where V

is constant. This can be compared with velocity-direction modulation where V is a function of

time (see Figs. 6.1-6.8). Recall, from the discussion in Chapter 5, that the degree of concavity

for the P(X) fit is related to the term (-2*V*b*c2) / (c*X+1)3. For X=20um, this term equates

to -2.8x10-2 and -1.3x10-3 for AA6061-T6 and Ti3Al2.5V, respectively, indicating a greater

degree of concavity for the aluminum alloy.

These empirically-derived P(X) relationships were then used to predict instantaneous power

dissipation in modulation-assisted machining in the feed direction by using the measured

instantaneous undeformed chip thickness derived from the displacement data; this is plotted in

Figs. 21a-28b in red on the power traces. From the figures, it is clear that the P(X) relationship

is generally a good indicator of instantaneous power in modulation-assisted machining, but

noticeably over-predicts the peak in power dissipation for both materials.

C. Energy consumption For conventional machining, cutting energy (E) was obtained by

numerical integration of the cutting force (Fp) measurement and the instantaneous velocity data

from the encoder. This quantity could then be normalized by volume to obtain specific energy

consumption (e) (see Chapter 5). Note the difference between this method and that used in

velocity-direction modulation: here cutting velocity is constant and an effective velocity due to

modulation is not necessary to determine power dissipation. As a result of this integration, the

specific energy for conventional cutting of AA6061-T6 was found to be e=1.76 J/mm3. This

value compares to those values found under modulation conditions at fm=[10, 50, 100, 110 Hz]

where e=[1.60, 1.58, 1.74, 1.54 J/mm3]. This is summarized in Fig. 6.31 and Table 6.2. Note

that in cases wherein fm/fw is an odd integer multiple of 1/2 (e.g., 10, 50, 110 Hz) that the

average energy dissipation is noticeably lower than that of the conventional machining case.

This can be compared with the specific energy for a situation wherein fm/fw is an even integer

multiple of 1/2 (e.g., 100Hz), which was much closer to that of the conventional machining case.

Indeed, the predicted values of specific cutting energy are quite close for all frequencies as the

relative error for each of the modulation frequencies of fm=[10, 50, 100, 110 Hz] were [4.4, 2.6,

2.8, 0.1%], respectively. This indicates that the parameter modulation effects captured by the

P(X) curve in conventional machining of the AA6061-T6 material is able to explain the lower

energy consumption for modulation-assisted machining of the same material.

49

For the titanium alloy, the specific cutting energy was 2.38 J/mm3, again higher than the

aluminum alloy due to the higher flow stress of the titanium. This corresponding specific cutting

energy values for modulation conditions at fm=[10, 50, 100, and 110 Hz] were e=[2.15, 2.04,

2.44, and 2.08 J/mm3], as is shown in Fig. 6.32 and Table 6.2. As in the case of the aluminum

alloy, the energy dissipated in modulated machining of the titanium was lower only for

modulation conditions wherein fm/fw was an odd integer multiple of 1/2. However, this behavior

is at odds with the predicted energy values using the P(X) curve, which were not substantially

different than in the conventional machining case. The relative error in the predicted specific

cutting energies for modulation frequencies of fm=[10, 50, 100, 110 Hz] were [9.5, 19.2, 1.7,

11.4%]. As only one trial was performed for each cutting condition, a statistical analysis like that

performed for the velocity-direction modulation data would not be practical in this situation.

50

Figure 6.1: Numerical analysis results for AA6061-T6 cut at h0=20um and VDC=0.05mm/s

using planer.

Figure 6.2: Numerical analysis results for AA6061-T6 cut at h0=20um and VDC=0.50mm/s

using planer.

51

Figure 6.3: Numerical analysis results for AA6061-T6 cut at h0=20um and VDC=1.00mm/s

using planer.

Figure 6.4: Numerical analysis results for OFE Cu cut at h0=20um and VDC=0.05mm/s using

planer.

52

Figure 6.5: Numerical analysis results for OFE Cu cut at h0=20um and VDC=0.50mm/s using

planer.

Figure 6.6: Numerical analysis results for OFE Cu cut at h0=20um and VDC=1.00mm/s using

planer.

53

Figure 6.7a: Numerical analysis results for AA6061-T6 cut using planer at h0=20um,

VDC=0.50mm/s, fm=10Hz, K=19V.

Figure 6.7b: Close-up of the numerical analysis results for AA6061-T6 cut using planer at

h0=20um, VDC=0.50mm/s, fm=10Hz, K=19V.

54

Figure 6.8a: Numerical analysis results for OFE Cu cut using planer at h0=20um,

VDC=0.50mm/s, fm=10Hz, K=16V.

Figure 6.8b: Close-up of the numerical analysis results for OFE Cu cut using planer at

h0=20um, VDC=0.50mm/s, fm=10Hz, K=16V.

55

Figure 6.9: P(X) trace for AA6061-T6 where X denotes cutting speed.

Figure 6.10: P(X) trace for OFE Cu where X denotes cutting speed.

56

Figure 6.11: Specific energy consumption for AA6061-T6 cut with conventional and MAM

conditions using planer.

Figure 6.12: Probability density of t-distribution for AA6061-T6 cut with conventional and MAM

conditions using planer.

57

Figure 6.13: Specific energy consumption for OFE Cu cut with conventional and MAM

conditions using planer.

Figure 6.14: Probability density of t-distribution for OFE Cu cut with conventional and MAM

conditions using planer.

58

Figure 6.15: Numerical analysis results for AA6061-T6 cut at s=0.005 mm/rev using lathe.

Figure 6.16: Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev using lathe.

59

Figure 6.17: Numerical analysis results for AA6061-T6 cut at s=0.050 mm/rev using lathe.

Figure 6.18: Numerical analysis results for Ti3Al2.5V cut at s=0.005 mm/rev using lathe.

60

Figure 6.19: Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev using lathe.

Figure 6.20: Numerical analysis results for Ti3Al2.5V cut at s=0.050 mm/rev using lathe.

61

Figure 6.21a: Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=10Hz,

K=60V using lathe.

Figure 6.21b: Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=10Hz,

K=60V using lathe.

62

Figure 6.22a: Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=50Hz,

K=60V using lathe.

Figure 6.22b: Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=50Hz,

K=60V using lathe.

63

Figure 6.23a: Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=100Hz,

K=60V using lathe.

Figure 6.23b: Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=100Hz,

K=60V using lathe.

64

Figure 6.24a: Numerical analysis results for AA6061-T6 cut at s=0.020 mm/rev, fm=110Hz,

K=60V using lathe.

Figure 6.24b: Close-up of numerical results for AA6061-T6 cut at s=0.020 mm/rev, fm=110Hz,

K=60V using lathe.

65

Figure 6.25a: Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=10Hz, K=60V

using lathe.

Figure 6.25b: Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=10Hz,

K=60V using lathe.

66

Figure 6.26a: Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=50Hz, K=60V

using lathe.

Figure 6.26b: Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=50Hz,

K=60V using lathe.

67

Figure 6.27a: Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=100Hz,

K=60V using lathe.

Figure 6.27b: Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=100Hz,

K=60V using lathe.

68

Figure 6.28a: Numerical analysis results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=110Hz,

K=60V using lathe.

Figure 6.28b: Close-up of numerical results for Ti3Al2.5V cut at s=0.020 mm/rev, fm=110Hz,

K=60V using lathe.

69

Figure 6.29: P(X) trace for AA6061-T6 where X denotes depth of cut.

Figure 6.30: P(X) trace for Ti3Al2.5V where X denotes depth of cut.

70

Figure 6.31: Actual and predicted value of specific energy for AA6061-T6 at various fm/fw ratios.

Figure 6.32: Actual and predicted value of specific energy for Ti3Al2.5V at various fm/fw ratios.

71

Table 6.1: List of trials performed using planer (velocity-direction MAM) and their results. All cuts

were made at h0=20um. Note that e,avg denotes the average specific energy for the empirical

data and e,pred that resulting from integrating the predicted instantaneous power values.

72

Table 6.2: List of trials performed using lathe (feed-direction MAM) and their results. All cuts

were made at fw=1200 rpm.

73

Chapter 7: Discussion

The present work involved characterization of load response, power dissipation and energy

expended as a function of controllable process parameters in conventional machining as well as

in two configurations of MAM: that is, velocity-direction and feed-direction. A fundamental

characteristic of these modulation configurations is that instantaneous machining input variables

of cutting velocity and undeformed chip thickness are modulated over a controllable range of

values. From the results, it was clear that parameter modulation was an important factor in

determining the nature of the measured response for most of the modulation-assisted

machining cases investigated. In this regard, the effects of these parameters on load response

in conventional machining were found to explain well the nature of the loading behavior in

modulation-assisted machining. This section of the thesis serves as a discussion of these

results and introduces potential explanations of this behavior.

7.1 Velocity-direction MAM

Conventional machining experiments at different velocities were used to model the correlation

between cutting velocity and load response (e.g., force, power). The general form of the fit used

to model the force trace was [] and that used to model power dissipation was

 [] , where X is cutting velocity in mm/s and A and B are

constants. Recall that these generalized expressions were elucidated from cutting experiments

in soft steels at low speeds [11], and were used here to describe the materials of the present

study. From the results, it was clear from the high R2 values (e.g., R2>0.998 for both materials’

P(X) relationships) of the fits that these general relationships were adequate in modeling the

effects of machining variables on conventional machining behavior. These fitted power

dissipation relationships in conventional machining were then used to predict instantaneous

power dissipation in modulation-assisted machining, wherein values of the independent variable

X (where X denotes cutting velocity here) varied over time. Figures 6.7b and 6.8b show that the

predicted power values track the actual power data quite well with small over-prediction (less

than 3.5%) at peak values. The ability to predict loading behavior in modulation-assisted

machining in this manner indicates that modulation within the parameter space investigated

(e.g., low frequency) likely does not modify the underlying mechanics of deformation that occurs

in conventional machining.

74

With regard to energy consumption, it was found that no statistically significant difference

existed between the specific cutting energy of conventional machining and that of modulation-

assisted machining of AA6061-T6. On the other hand, conventional machining of OFE Cu was

found to require less specific energy than velocity-direction MAM. (It should be noted that

although this difference is statistically significant, it is still marginal in context of the overall

amount consumed.) These results can be explained by consideration of the nature of the P(X)

relationships that describe effects in conventional machining of these materials. It was shown

earlier that the shape of a material’s P(X) curve may have a direct influence on the energy

expended in machining when X is time-varying. Specifically, for materials with convex forms of

the P(X) relationship, modulation-assisted machining is expected to require more energy than

its conventional counterpart. The converse is true for concave forms and the terms are

mathematically equivalent for linear forms of P(X). Figs. 6.9 and 6.10 show the P(X)

relationships for both materials; the curvature of the copper P(X) trace is more than three times

greater that of the aluminum alloy, though both appear fairly linear overall. Thus, it is not

surprising that the energy differences between conventional and modulated cutting are relatively

small (<3%) for both materials.

The physical basis of the slightly more pronounced curvature in the OFE copper P(X) behavior

can come from an understanding of strain rate effects in deformation. For many strain-

hardening materials, increases in strain rate result in increased flow stress [2] and the degree to

which a material is affected by strain rate is material-dependent [35-38]. This phenomenon is

manifested in a measure commonly referred to as strain rate sensitivity (m), which is defined as

m=ln(σ2/σ1)/ln(2/ 1), where σ is the true stress, EDOT is the strain rate, and subscripts 1 and 2

refer to the specimens deformed at the lower and higher of the two strain rates, respectively

[35,37]. The parameter m is usually evaluated at constant strain and temperature. Two common

methods exist for evaluating strain rate sensitivity. In the first, two samples of the same material

are deformed under tensile load at different strain rates (1 and 2) thus generating two curves.

In the second, a single sample is deformed at a specified strain rate (1) to some limit and then

the strain rate is rapidly changed to the higher rate (2). This is often referred to as a jump test

[37].

The first of these methods was performed for both AA6061-T6 and OFE copper at room

temperature to better understand rate-dependent response of both materials. Cylindrical tensile

testing specimens were made using a CNC lathe with consideration to ASTM E8. A drawing of

these specimens is provided in Figure 7.1, modified so as to effect a 1% (.003”) increase in

75

diameter at either end of the narrow section—a common allowance made in order to provide

some control over the necking/fracture location. Two specimens for each material were tested in

tension to failure using a uniaxial testing machine (Instron 4206) at strain rates of 3.3x10-4 s-1

and 3.3x10-3 s-1 and elongation was measured with an extensometer (Instron 2630-037, 2”

gauge length). It should be noted that these strain rates are expected to be several orders of

magnitude lower than those in the present study. Loading methods capable of assessing strain

rate sensitivity at higher strain rates are possible using the Hopkinson bar technique [36,38,39].

Engineering stress and strain measured during testing were converted to true stress – true

strain up to necking according to σT = σE*(1+ E) and T = ln(1+ E) [40] and results from these

experiments are provided in Figs. 7.2-7.3. Strain rate sensitivity for each material was calculated

as a function of strain in the plastic regime. From Table 7.1, OFE Cu exhibited strain rate

sensitivity approximately an order of magnitude higher (m = 1.07e-2) than that of AA6061-T6 (m

= 9.17e-4) at their respective yield points. The values for m determined for copper are

consistent with those found in literature (m=1.4x10-2 at =.25, 1=.00014s-1, 2=.015s-1) [36].

Although no value for m could be found in literature for the AA6061-T6, the order of magnitude

in Table 7.1 is similar to that of AA2024 at room temperature [37]. The relatively higher strain

rate sensitivity indicates that the copper is more susceptible to non-linear P() response than is

the aluminum alloy. This is consistent with the greater degree of convexity exhibited in the P(X)

trace for copper, where X is the cutting velocity. Regardless of the material or degree of P(X)

convexity, the dependent relationship between cutting speed and power in conventional

machining vis-à-vis P(X) characterization was found to be an adequate model to describe the

loading response in modulation-assisted machining. In this regard, the underlying deformation

response in velocity-direction modulation under dry conditions is not significantly different than

that of conventional machining.

Finally, it should be noted that the effect of system compliance can be seen in the slight

discrepancies between the force and displacement data. However, the effects of compliance on

the analysis method used in the present study are insignificant since they merely act to narrow

the effective performance range of the system.

76

7.2 Feed-direction MAM

Similar to the method used in the velocity-direction modulation case, conventional machining

experiments at different undeformed chip thicknesses were used to model the correlation

between undeformed chip thickness and load response (e.g., power, force). The general form of

the fit used to model the force trace was

 and that used to model power

dissipation was [

] where X denotes undeformed chip thickness (units of

um), P has units of Watts, VDC units of m/s, and A, B, C are constants. These generalized

expressions were elucidated from a study performed on plain carbon steel [10], and were used

here to describe the materials of the present study. As was the case in velocity-direction

modulation, high R2 values (e.g., R2 > 0.99 for the P(X) relationship in both materials) indicated

that these general relationships were adequate in modeling the effects of undeformed chip

thickness on conventional machining behavior. These relationships were then applied to fit the

power dissipated in modulation-assisted machining. For both materials, there is a good

correlation between the actual and predicted power traces except at the peaks in the power

trace when fm/fw was an odd integer multiple of 1/2 (e.g., fm = 10, 50, 110 Hz), as is seen in

Figs. 6.21,6.22,6.24 and 6.25,6.26,6.28. This can be compared to the relatively good prediction

when fm/fw was an integer multiple of 1/2 (e.g., fm = 100 Hz), as is seen in Figs. 6.23 and 6.27.

The primary difference in both scenarios is that the undeformed chip thickness is time varying in

the former while it is constant in the latter. In this regard, feed modulation with a constant chip

thickness more closely resembles a conventional machining configuration. The unexpected

behavior at the peaks in the power trace for cases of dynamic undeformed chip thickness

suggests that an additional mechanism is present in these materials when they are cut using

feed-direction modulation. The effects of such a mechanism on loading response can be

characterized by the generation of a dynamic P(X) trace, examples of which can be seen in

Figures 7.4-7.5. It is suggested that such a phenomenon could be due to the assumption that

undeformed chip thickness is the only significant dynamic processing parameter in feed-

direction MAM. Such is not entirely true however, as rake angle and cutting speed are also

technically dynamic here. Thus, further studies on this subject may make good use of a more

robust definition for the parameter X that would somehow combine the respective dynamic

natures of undeformed chip thickness, rake angle, and cutting speed.

With regards to specific energy consumption, the amount consumed in conventional cutting for

each material dropped significantly as undeformed chip thickness increased from low to

77

moderate values before leveling off somewhat (see Fig. 7.6). This trend is in agreement with

literature already published regarding the size effect [4]. Furthermore, AA6061-T6 and

Ti3Al2.5V showed similar trends in that the specific energy in modulation-assisted machining

when the fm/fw ratio is an odd integer multiple of 1/2 (e.g., fm = 10, 50, 110 Hz) was lower than

when the ratio is either zero (e.g., fm = 0) or when it is an even integer multiple of 1/2 (e.g., fm =

100 Hz). As was true for the velocity-direction MAM cases, the energy expenditure in feed-

direction MAM can also be explained by consideration of the nature of the P(X) relationships

that describe effects in conventional machining of these materials. Figs. 6.29 and 6.30 show the

P(X) relationships for both materials: both are seen to exhibit some degree of concavity in their

traces. An unexpected outcome in this regard is that both materials showed similar energy

reductions with the use of modulation, despite the aluminum alloy exhibiting significantly more

concavity than the titanium alloy (∂2P/∂X2 = -2.8x10-2 in aluminum versus -1.3x10-3 in titanium).

Regardless, it was shown earlier that in situations wherein P(X) is concave, modulation-assisted

machining is expected to have lower energy expenditure than conventional machining due to

the shape of the input power distribution.

The physical basis of curvature in the P(X) trace for both materials can come from an

understanding of the effects of undeformed chip thickness and size scale in deformation. In this

regard, the non-linear response of materials with decreasing sample size has been well

documented for various types of loading configurations and is commonly referred to as the “size

effect” when applied to the field of metal cutting [1,4,10,12]. The size effect phenomenon in

machining has been explained by Shaw through consideration of intrinsic defect density [15].

The premise of his theory rests in the notion that the distribution of defects in the material

affects flow stress in a non-linear manner with changes in depth of cut. Specifically, for smaller

depths of cut, a fewer number of defects pass through the PDZ that would ultimately give rise to

slip plane formation. A schematic of this method as applied to orthogonal cutting can be seen in

Figure 7.7 [15]. This schematic is also used in Shaw’s later publication which serves as a

literature review on the size effect [12].

78

Figure 7.1: Drawing of round tensile test specimens fabricated using a CNC lathe. A gradual

taper is enforced on the narrow section such that either end has a diameter of 0.353” in order to

control the location of necking/fracture.

Figure 7.2: True stress – true strain curves for AA6061-T6 deformed at different strain rates,

used to determine the strain rate sensitivity parameter, m.

79

Figure 7.3: True stress – true strain curves for OFE Copper deformed at different strain rates,

used to determine the strain rate sensitivity parameter, m.

Figure 7.4: P(X) trace for AA6061-T6 demonstrating difference between the static data and

dynamic data collected at fm=50Hz.

80

Figure 7.5: P(X) trace for Ti3Al2.5V demonstrating difference between the static data and

dynamic data collected at fm=50Hz.

Figure 7.6: Specific energy versus undeformed chip thickness for AA6061-T6 and Ti3Al2.5V.

81

Figure 7.7: Figure taken from Shaw [15] used to conceptualize the presence of defects within a

material and their effect on slip-plane formation. Note here that a denotes defect spacing, d the

undeformed chip thickness, P an individual slip plane, and Φ the shear angle.

82

Table 7.1: Values for strain rate sensitivity determined empirically for AA6061-T6 and OFE

copper as a function of true strain.

83

Chapter 8: Conclusions and Future Work

The present study included a detailed characterization of loading response (e.g., force, power,

energy) in conventional machining and modulation-assisted machining in the velocity and feed

directions. It was shown that material response in conventional machining provided the basis for

an adequate model to describe the loading response in modulation-assisted machining. In this

regard, it was found that the relationship between power dissipation and a modulated machining

parameter (e.g., velocity or undeformed chip thickness), P(X), could be determined from

conventional machining experiments and applied to predict power dissipation in modulation-

assisted machining. This was true for every material tested in velocity-direction modulation

(AA6061-T6 and OFE Cu) and in feed-direction modulation (AA6061-T6 and Ti3Al2.5V). The

shape of the P(X) relationship was shown to be important, as convexity in the trace indicated

that modulated cutting would require more energy than conventional machining. The opposite

was shown to be true for concave P(X) relationships and the terms were found to be equal in

the case of linear P(X) relationships. This comparative reasoning is, of course, only valid if the

underlying thermo-mechanical response of the system with regard to static and dynamic

variations in processing parameters is constant. The analysis of power consumption and

specific energy performance parameters indicated this assumption was valid for velocity-

direction modulation of both materials and for feed-direction modulation of the aluminum alloy.

The predictive analysis correctly indicated that specific cutting energy in velocity-direction

modulation of AA6061-T6 was approximately the same for conventional cutting. Further, it also

was able to properly determine that, for OFE Cu, velocity-direction modulation required slightly

more energy than conventional machining. The convexity of the P(X) relationship for the

aluminum alloy was approximately three times greater than that of copper and was linked to this

behavior. Tensile testing experiments indicated that copper has a strain rate sensitivity an order

of magnitude greater than that of the aluminum alloy at their respective yield points, which is

consistent with the above findings regarding energy consumption and P(X) convexity. With

regard to feed-direction modulation, the specific energies required to cut both AA6061-T6 and

Ti3Al2.5V using modulation were found to be significantly less than those required by

conventional machining. Although this was an expected result due to the concavity of each

material’s respective static P(X) trace, the predicted power at peak values of instantaneous

undeformed chip thickness was found to overestimate the actual power requirement, particularly

for the titanium alloy. This was evidenced through a dynamic P(X) trace which deviated from the

84

static P(X) trace at large values of undeformed chip thickness (h0>40 um). Thus, although it

appears that the size effect phenomenon is present in feed-direction MAM, the mechanical

response of the system to dynamic changes in this processing parameter is different than that

observed for static changes in undeformed chip thickness. It is suggested that a further study be

carried out which incorporates the combined effects of undeformed chip thickness, cutting

speed, and rake angle in the variable X, since each of these is dynamic in nature for feed-

direction MAM.

Finally, it is suggested that a future study make use of PDZ thickness as an intermediate

variable relating the processing parameters of cutting speed and undeformed chip thickness to

specific energy. This would build upon the work performed by Kececioglu who believed that

both an increase in cutting speed and a decrease in undeformed chip thickness reduced the

size of the PDZ and thus increased the flow stress of the material [2,14]. Such an approach

could lead to a better understanding of the physics underlying how processing parameters affect

energy consumption and whether their effects can be explained in terms of some common

variable.

85

References

[1] Shaw, Milton, 1984, Metal Cutting Principles, Oxford University Press, New York, NY.

[2] Kececioglu, D., 1958, “Shear-Strain Rate in Metal Cutting and its Effects on Shear-Flow
Stress,” Trans. ASME, 80(1), pp. 158-167.

[3] Moscoso, W., Olgun, E., Compton, W. D., and Chandrasekar, S., 2005, “Effect of Low-
Frequency Modulation on Lubrication of Chip-Tool Interface in Machining,” Trans. ASME, J.
Tribol., 127(1), pp. 238-244.

[4] Joshi, S. S., and Melkote, S. N., 2004, “An Explanation for the Size-Effect in Machining
Using Strain Gradient Plasticity,” Trans. ASME, J. Manuf. Sci. Eng., 126(4), pp. 679-684.

[5] Merchant, M. E., 1945, “Mechanics of the Metal Cutting Process,” J. Appl. Phys. 16, pp. 167-
275, 318-324.

[6] Piispanen, V., 1948, “Theory of Formation of Metal Chips,” J. Appl. Phys., 19(10), pp. 876-
881.

[7] Mann, J. B., Guo, Y., Saldana, C., Compton, W. D., and Chandrasekar, S., 2011, “Enhancing
Material Removal Processes Using Modulation-Assisted Machining,” Tribol. Int., 44(10), pp.
1225-1235.

[8] Doyle, E. D., Horne, J. G., and Tabor, D., 1979, “Frictional Interactions Between Chip and
Rake Face in Continuous Chip Formation,” Proc. R. Soc. Lond. A, Math. Phys. Sci., 366(1725),
pp. 173-183.

[9] Deyuan, Z., and Lijiang, W., 1998, “Investigation of Chip in Vibration Drilling,” Int. J. Mach.
Tools. Manuf., 38(3), pp. 165-176.

[10] Arsecularatne, J. A., 1997, “On Tool-Chip Interface Stress Distributions, Ploughing Force
and Size Effect in Machining,” Int. J. Mach. Tools Manuf., 37(7), pp. 885-899.

[11] Maan, N., and Broese Van Groenou, A., 1977, “Low Speed Scratch Experiments on
Steels,” Wear, 42(2), pp. 365-390.

[12] Shaw, M. C., 2003, “The Size Effect in Metal Cutting,” Sadhana, 28, pp. 875-896.

[13] Dinesh, D., Swaminathan, S., Chandrasekar, S., and Farris, T. N., 2001, “An Intrinsic Size-
Effect in Machining due to the Strain Gradient,” Am. Soc. Mech. Eng. Manuf. Eng. Div., 12, pp.
197-204.

[14] Kececioglu, D., 1960, “Shear-Zone Size, Compressive Stress, and Shear Strain in Metal-
Cutting and their Effects on Mean Shear-Flow Stress,” Trans. of ASME J. Eng. Industry, 82(1),
pp. 79-86.

[15] Shaw, M. C., 1950, “A Quantized Theory of Strain Hardening as Applied to the Cutting of
Metals,” J. Appl. Phys., 21, pp. 599-606.

86

[16] Toews, H. G. III, Compton, W. D., and Chandrasekar, S., 1998, “A Study of the Influence of
Superimposed Low-Frequency Modulation on the Drilling Process,” Precis. Eng., 22(1), pp. 1-9.

[17] Chhabra, P. N., Ackroyd, B., Compton, W. D., and Chandrasekar, S., 2002, “Low-
Frequency Modulation-Assisted Drilling Using Linear Drives,” Proc. Inst. Mech. Eng. Part B J.
Eng. Manuf., 216(3), pp. 321-330.

[18] Mann, J. B., Saldana, C., Chandrasekar, S., Compton, W. D., and Trumble, K. P., 2007,
“Metal Particulate Production by Modulation-Assisted Machining,” Scr. Mater., 57(10), pp. 909-
912.

[19] Mann, J. B., Saldana, C., Moscoso, W., Compton, W. D., and Chandrasekar, S., 2009,
“Effects of Controlled Modulation on Interface Tribology and Deformation in Machining,” Tribol.
Lett., 35(3), pp. 211-217.

[20] Saldana, C., Swaminathan, S., Brown, T. L., Moscoso, W., Mann, J. B., Compton, W. D.,
and Chandrasekar, S., 2010, “Unusual Applications of Machining: Controlled Nanostructuring of
Materials and Surfaces,” Trans. ASME J. Manuf. Sci. Eng., 132(3), pp. 0309081-03090812.

[21] Mann, J. B., Guo, Y., Saldana, C., Yeung, H., Compton, W. D., and Chandrasekar, S.,
2011, “Modulation-Assisted Machining: A New Paradigm in Material Removal Processes,” Adv.
Mater. Res., 223, pp. 514-522.

[22] Brehl, D. E., and Dow, T. A., 2007, “Review of Vibration-Assisted Machining,” Precis. Eng.,
32(3), pp. 153-172.

[23] Joshi, R. S., and Singh, H., 2011, “Piezoelectric Transducer Based Devices for
Development of a Sustainable Machining System – A Review,” Proc. 2011 Joint IEEE
International Symposium on Applications of Ferroelectrics/International Symposium on
Piezoresponse Force Microscopy & Nanoscale Phenomena in Polar Materials, IEEE,
Piscataway, NJ.

[24] Shamoto, E., and Moriwaki, T., 1994, “Study on Elliptical Vibration Cutting,” CIRP Ann,
43(1), pp. 35-38.

[25] Dasch, J. M., Ang, C. C., Wong, C. A., Cheng, Y. T., Weiner, A. M., Lev, L. C., and Konca,
E., 2004, “A Comparison of Five Categories of Carbon-Based Tool Coatings for Dry Drilling of
Aluminum,” Surf. Coat. Technol., 200(9), pp. 2970-2977.

[26] Litvinov, L. P., 1990, “Vibration-Assisted Drilling of Deep Holes,” Vestnik Mashinostroeniya,
70(5), pp. 22-24.

[27] Maan, J. B., 2010, “Modulation-Assisted Machining,” Ph.D. thesis, Purdue University.

[28] Takeyama, H, and Kato, S., 1991, “Burrless Drilling by Means of Ultrasonic Vibration,”
CIRP Ann., 40(1), pp. 83-86.

[29] Astashev, V. K., 1992, “Effect of Ultrasonic Vibration of a Single-Point Tool on the Process
of Cutting,” J. Mach. Manuf. Reliab., 5(3), pp. 65-70.

87

[30] Astashev, V. K., and Babitsky, V. I., 1998, “Ultrasonic Cutting as a Nonlinear (Vibro-Impact)
Process,” Ultrasonics, 36(1-5), pp. 89-96.

[31] Langenecker, B., 1966, “Effects of Ultrasound on Deformation Characteristics of Metals,”
IEEE Trans. Sonics. Ultrason. SU-13(1), pp. 1-8.

[32] Rosa, P. A. R., Kolednik, O., Martins, P. A. F., and Atkins, A. G., 2007, “The Transient
Beginning to Machining and the Transition to Steady-State Cutting,” Int. J. Mach. Tools Manuf.,
47(12-13), pp. 1904-1915.

[33] Jensen, J. L. V. W., 1905, “Sur les Fonctions Convexes et les Inégalités Entre les Valeurs
Moyennes,” Acta Mathematica, 90.

[34] Marusich, T. D., 2001, “Effects of Friction and Cutting Speed on Cutting Force,” Am. Soc.
Mech. Eng. Manuf. Eng. Div., 12, pp. 115-123.

[35] Nieh, T. G., and Wadsworth, J., 1990, “Superplastic Ceramics,” Annual review of materials
science, 32, pp.117-140.

[36] Follansbee, P. S., and Kocks, U. F., 1988, “A Constitutive Description of the Deformation of
Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable,”
Acta Matall., 36(1), pp. 81-93.

[37] Hosford, W. F., 2011, Metal Forming Mechanics and Metallurgy, 4th ed., Cambridge
University Press, Chap. 5.

[38] Glenn, T., and Bradley, W., 1973, “The Origin of Strain-Rate Sensitivity in OFHC Copper,”
Metall. Trans. A, Phys. Metal. Mater. Sci., 4(10), pp. 2343-2348.

[39] Nicholas, T., 1981, “Tensile Testing of Materials at High Rates of Strain,” Exp. Mech., 21(5),
pp. 177-185.

[40] Callister, W. D., 2007, Materials Science and Engineering: An Introduction, 7th ed., John
Wiley & Sons, Inc., New York, NY, Chap. 6.

88

Appendix A: Photos of planer setup

Figure A.1: Desktop PC unit and NI data acquisition assembly.

Figure A.2: Close-up of NI data acquisition assembly. Note: Chassis PFI0 outputs trigger and

chassis PFI1 outputs pulsetrain (dictates sampling rate), both of which are collected by NI-9411.

The NI-9411 also receives differentially encoded digital data from the rotary encoder (DDC).

Channels 0/1/2 on the NI-9215 receive -10 to +10V analog signals carrying data regarding

Fp/Fq/DAC, respectively.

89

Figure A.3: Table holding planer assembly mechanical components (outlined in blue, top) and

controller housing (outlined in red, bottom)

Figure A.4: Isometric view of planer assembly, analogous to Fig. 4.1.

90

Figure A.5: Devices used to generate and monitor signal sent to piezo-ceramic actuator.

Specifically, an Agilent 33220A waveform generator (outline in orange, right), a Kepco BOP

100-4M voltage amplifier / power supply (outlined in green, bottom left) and a Taktronix

TDS2024C oscilloscope (outlined in yellow, top left) were used.

91

Appendix B: Program flowchart

Summary: The following diagram is a flowchart used to represent the interaction between the

various data sources, acquisition routines, and analysis programs. These programs are

provided in the following appendices, as indicated by the diagram.

Fig. B.1: Flowchart of data sources  acquisition routines  analysis programs.

92

Appendix C: NI Labview data acquisition VI

Summary: The Labview VI seen below in Figs. B.1, B.2 was used to collect 3 channels of

analog voltages and 2 channels of digital voltages simultaneously at a specified sampling

frequency (10 kHz). The hardware which this program accessed can be seen in Fig. A.2. The

analog data was stored in a user-named .txt file with the classifier “_A” appended to the end of

the filename. Similarly, the digital data was stored in its own .txt file with the classifier “_D”

appended to its filename. Each channel was stored as a separate column in these files.

Furthermore, each file contained a single headerline detailing the respective gain settings of the

Fp and Fq charge amplifiers.

Figure C.1: Left half of VI’s block diagram.

93

Figure C.2: Right half of VI’s block diagram.

94

Figure C.3: Front panel of VI.

95

Appendix D: Quadrature decoding routine (Matlab)

Summary: The purpose of the Matlab code presented here is to decode the digital data sent

from the rotary encoder and collected via the NI-9411 and Labview into a series of “steps.” Each

post-quadrature count on the rotary encoder represents a step from which 3 conditions arise:

either the encoder sees a forward rotation between samplings (step=+1), no rotation (step=0),

or a backward rotation (step=-1). Once decoded, the routine imports the corresponding analog

data from a separate text file and incorporates this along with the vector of steps into a new .txt

file. The original data from the analog and digital files is stored in subfolder, in case future

reference in required.

%% quadDecoder.m
%
% WRITTEN BY: JOSH NORMAN
% DATE: 10/24/12
% PROGRAM SUMMARY: DECODES QUADRATURE ENCODER PULSES INTO A FORM OF
% RELATIVE LINEAR POSITION. DATA IS IMPORTED FROM USER SELECTED "*_D.TXT"
% FILE WHICH IS IN A 2 COLUMN FORMAT. COLUMN 1 IS TRACK (A) AND COLUMN 2
% IS TRACK (B). THE DECODED POSITION DATA IS THEN OUTPUTTED TO A NEW TEXT
% FILE ALONG WITH RAW DATA FROM THE ANALOG "*_A.TXT" FILE. THE TWO
% ORIGINAL .TXT FILES ARE MOVED TO A "RAW" SUBFOLDER IN THE WORKING
% DIRECTORY IN CASE FUTURE REFERENCE IS REQUIRED.
%
% >>>>>>>>>> MECHANICAL UNIT = mm <<<<<<<<<<

clc; close all; clear all;

%% INPUTS

encRes = 8000; %post quadrature encoder resolution [counts/rev]
lead = 20; %ball-screw lead [MU/rev]
MUperCOUNT = lead/encRes; % [MU/count]

%% CHOOSE TXT FILE TO IMPORT

% Select "relevant" files
wildcard_txt = '*D.txt';
files_struct = dir(wildcard_txt); %list all encoded _D.txt files in structure

variable
files_cell = struct2cell(files_struct); %list these files in cell
names_cell = files_cell(1,:); %select first row of cell b/c it contains

names
names_char = char(names_cell); %convert this cell row of names to characters
[m,n] = size(names_char); %use m to know how many files are available

if m==0
 error('NO ENCODED TXT FILES ARE LOCATED IN CURRENT DIRECTORY')

elseif m<10 %single digit number of files
 for i = 1:m
 FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:)); %create character array of

file options to choose from
 end

elseif m>=10 %double digit number of files

96

 for i = 1:9
 FileOptions(i,:) = sprintf('% i) %s',i,names_char(i,:)); %create character array of

file options to choose from
 end
 for i = 10:m
 FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:)); %create character array of

file options to choose from
 end
end

% Print filenames to workspace
disp(' ')
fprintf('\t\t\tANALYSIS OF EXPERIMENTAL DATA')
fprintf('\n\n')
disp(FileOptions) %print list of numericized _D.txt files

to workspace
fprintf('\n\n')

% Choose file on which to run analysis
fileChoice = input('Enter File # --> '); %user enters number corresponding to

desired file
filename_ext_D = deblank(names_char(fileChoice,:));
[PATHSTR, filename, EXT] = fileparts(filename_ext_D);

%% IMPORT DATA FROM TXT FILE

% Read .txt File
fidD = fopen(filename_ext_D); %open the file
header = fscanf(fidD,'%s',1); %store the first line of the file as the

header
DATAcell = textscan(fidD,'%f %f','headerlines',1); %import data from file into cell variable
DATAmat = cell2mat(DATAcell); %convert cell variable to matrix
fclose(fidD); %close the file

% Assign Data Channels
raw.A = DATAmat(:,1); %[s] %first column of data
raw.B = DATAmat(:,2); %[mm] %second column of data

% Find length of these data columns
N = length(raw.A);

%% CONVERT DATA TO BOOLEAN
% If data is not in boolean form yet (ie 0 or 1) this will convert it.
% Otherwise, it will be left as is.

bool.A = raw.A>0;
bool.B = raw.B>0;

%% CREATE DIFFERENTIAL VARIABLES
% Where diff.A(i) = bool.A(i)-bool.A(i-1)
% and diff.B(i) = bool.B(i)-bool.B(i-1)

%Create variables of same data that's been shifted forward 1 row
shift.A(2:N+1,1) = bool.A;
shift.B(2:N+1,1) = bool.B;

%Eliminate last entry
shift.A(end) = '';
shift.B(end) = '';

%Create differential variables
diff.A = bool.A-shift.A;
diff.B = bool.B-shift.B;

%% CONVERT A AND B TRACKS TO STEP NUL/FWD/REV
% A "step" is defined as a single count on the rotary encoder wheel. Thus,
% each step can be converted to relative linear displacement by multiplying
% by MUperCOUNT. NUL/FWD/REV are to be represented as 0/1/-1 respectively. Due

97

% to oversampling, a majority of these should be STEP NUL, or 0, (ie encoder
% remained quasi-stationary).

%Initialize step vector
stepVec = zeros(N,1);

%Prepare waitbar divider. This simple indicates approximate amount of file
%that has been decoded at any given time.
divideWait = 10^(floor(log10(N))-1);
hWait = waitbar(0,'Decoding...');

%Start Main Loop
for i = 2:N %must start at 2nd index due to shifted variables
 %Create reusable variables
 diff.Ai = diff.A(i);
 diff.Bi = diff.B(i);
 bool.Ai = bool.A(i);
 bool.Bi = bool.B(i);

 %Determine NUL/FWD/REV
 switch diff.Ai
 case 0
 switch diff.Bi
 case 0
 stepi = 0; %NUL
 case 1
 if bool.Ai==0
 stepi = -1; %REV
 else
 stepi = 1; %FWD
 end
 case -1
 if bool.Ai==0
 stepi = 1; %FWD
 else
 stepi = -1; %REV
 end
 end
 case 1
 if bool.Bi==0
 stepi = 1; %FWD
 else
 stepi = -1; %REV
 end
 case -1
 if bool.Bi==0
 stepi = -1; %REV
 else
 stepi = 1; %FWD
 end
 end

 %Write stepi to ith position in stepVec
 stepVec(i) = stepi; %vector of 0/1/-1 indicating steps
 if round(i/divideWait)==i/divideWait %if condition is met...
 waitbar(i/N,hWait) %...update waitbar
 end
end
close(hWait); %close waitbar once decoding is finished

%% OUTPUT DECODED DATA TO FILE

% Import analog data
filename_A = filename; %initialize variable
filename_A(end) = 'A'; %choose analog file instead of digital
filename_ext_A = sprintf('%s.txt',filename_A);
fidA = fopen(filename_ext_A); %open analog data file
DATAcellA = textscan(fidA,'%f %f %f %f','headerlines',1); %read in analog data to cell variable
DATAmatA = cell2mat(DATAcellA); %convert cell variable to matrix

98

fclose(fidA); %close analog data file

% Assign data channels
raw.Fx = DATAmatA(:,1); %first column
raw.Fy = DATAmatA(:,2); %second column
raw.D_AC = DATAmatA(:,3); %third column

% Output header to new file
filename_NEW = filename(1:end-2);
filename_ext_NEW = sprintf('%s.txt',filename_NEW); %new filename to which all relevant data is

written for use in numerical analysis routines
fidNEW = fopen(filename_ext_NEW,'w+t');
fprintf(fidNEW,'%s\n',header);

% Output column headers
fprintf(fidNEW,'Fx Fy VcapProbe StepVector\n');

% Output data to new file
fprintf(fidNEW,'%.4f %.4f %.4f %i\n',[raw.Fx,raw.Fy,raw.D_AC,stepVec]');
fclose(fidNEW);

% Create Directory for RAW (*_A and *_D) files
mkdir(pwd,'RAW'); %create "RAW" folder if it doesn't already exist in working

directory

% Move RAW files into this folder
movefile(filename_ext_D,['RAW/' filename_ext_D]);
movefile(filename_ext_A,['RAW/' filename_ext_A]);

99

Appendix E: Planer force data fitting routine (Matlab)

Summary: This program receives cutting velocity and average Fp values from static cutting

experiments. The number of trials represented by the average force values can be seen in

Table 6.1. The force-velocity data is fit according to the equation Fp(V) = A*ln(V) + B which was

elucidated from Ref. [11]. Since this equation is linear with respect to the fitting parameters A

and B, the least squares solution can be obtained through standard linear algebra techniques.

Specifically, if

[

]

 [

]

[

]

then the vector n, which contains the fitting parameters, can be solved according to

 .

%% forceFitPlaner.m

%

% WRITTEN BY: JOSH NORMAN

% DATE: 12/17/12

% PROGRAM SUMMARY: RECEIVES CUTTING VELOCITY AND AVERAGE FORCE VALUES FROM

% STATIC CUTTING TRIALS AND USES LEAST SQUARES FITTING TECHNIQUE TO FIT

% FORCE DATA ACCORDING TO THE SHAPE F=A*ln(x)+B WHICH WAS DERIVED FROM

% Maan, N., and Broese Van Groenou, A., 1977, “Low Speed Scratch

% Experiments on Steels,” Wear, 42(2), pp. 365-390.

clc; close all; clear all;

%% INPUTS

%Static cutting speeds

Vdc = [

 .05

 .25

 .50

 .75

 1.00

]; %[mm/s]

100

%Average forces in cutting direction

Favg = [

 19.862

 20.821

 21.19

 21.498

 21.364

]; %[N]

%% LEAST SQUARES FITTING

x = Vdc;

y = Favg;

A = [log(x),ones(length(x),1)]; %fitting shape

B = y; %data

X = inv(A'*A)*A'*B; %linear algebra solution method for least squares fitting

Ffit = X(1)*log(x) + X(2);

%Create variables to be used to visualize best fit curve

xPlot = .01:.01:2;

yfitPlot = X(1)*log(xPlot) + X(2);

%% EVALUATE FIT

RSS = sum((y-Ffit).^2); %residual sum of squares

TSS = sum((y-mean(y)).^2); %total sum of squares

R2F = 1-(RSS/TSS); %R-squared value

%% PLOTTING

hfig1 = figure(1);

set(hfig1,'color','w')

set(hfig1,'name','Force')

hold on

plot(Vdc,Favg,'.b','markersize',25)

plot(xPlot,yfitPlot,'r','linewidth',2)

hold off

xlim([0,1.05])

ylim([17,24])

set(gca,'YTick',[17:1:24])

set(gca,'fontsize',22)

hx = xlabel('Velocity (mm/s)');

hy = ylabel('Force (N)');

set(hx,'fontsize',24)

set(hy,'fontsize',24)

strT = sprintf('Al6061-T6\n\n\n\n')

hT = title(strT);

set(hT,'fontsize',30)

strT2 = sprintf('Force=A*ln(V) + B\nA=%.4e | B=%.4e\nR^2=%.4f',X(1),X(2),R2F);

hT2 = gtext(strT2);

set(hT2,'fontsize',24,'horizontalalignment','center')

%% DISPLAY TO SCREEN

disp(' ')

disp('Coefficients')

disp(sprintf('%.4e %.4e',X(1),X(2)))

%% ^^^ F O R C E ^^^

%%%

% vvv P O W E R vvv

%% POWER

% Least-squares fitting technique IS NOT performed for power. Rather the

% values for the fitting variables determined above for force are used here

% and a known equation for power as a function of force and velocity is

101

% used.

Pavg = Favg.*Vdc / 1000; %power "data"

PfitPlot = X(1)*log(xPlot).*(xPlot/1000) + X(2)*(xPlot/1000); %power "fit"

%% EVALUATE FIT

% Even though fitting technique was not re-performed, we can still

% determine how accurately the resulting equation "fits" the power values

% derived from data.

Pfit = X(1)*log(x).*(x/1000) + X(2).*(x/1000);

RSS = sum((Pavg-Pfit).^2);

TSS = sum((Pavg-mean(Pavg)).^2);

R2P = 1-(RSS/TSS);

%% PLOTTING

hfig2 = figure(2);

set(hfig2,'color','w')

set(hfig2,'name','Power')

hold on

plot(Vdc,Pavg,'.','color',[.2 .5 .2],'markersize',35)

plot(xPlot,PfitPlot,'r','linewidth',2)

hold off

xlim([0,1.05])

ylim('auto');

y=ylim;

ylim([0,y(2)])

set(gca,'fontsize',22)

hx = xlabel('Velocity (mm/s)');

hy = ylabel('Power (W)');

set(hx,'fontsize',24)

set(hy,'fontsize',24)

strT = sprintf('Al6061-T6\n\n\n\n');

hT = title(strT);

set(hT,'fontsize',30)

strT2 = sprintf('Power=A*ln(V)*(Ve-3) + B*(Ve-3)\nA=%.4e | B=%.4e\nR^2=%.4f',X(1),X(2),R2P);

hT2 = gtext(strT2);

set(hT2,'fontsize',24,'horizontalalignment','center')

102

Appendix F: Lathe force data fitting routine (Matlab)

Summary: This program receives undeformed chip thickness and average Fp values from static

cutting experiments. The number of trials represented by the average force values can be seen

in Table 6.2. The force-thickness data is fit according to the equation

 which

was elucidated from Ref. [10]. Parameters A and B were solved by fitting a line through the last

two data points (in order to best-approximate the oblique asymptote). The non-linear fitting

parameter, C, was solved using the Newton-Raphson convergence algorithm.

%% forceFitLathe.m

%

% WRITTEN BY: JOSH NORMAN

% DATE: 12/17/12

% PROGRAM SUMMARY: RECEIVES UNDEFORMED CHIP THICKNESS AND AVERAGE FORCE

% VALUES FROM STATIC CUTTING TRIALS AND USES LEAST SQUARES FITTING

% TECHNIQUE TO FIT FORCE DATA ACCORDING TO THE SHAPE F=m*x+b-(b/(A*x+1))

% WHICH WAS DERIVED FROM Arsecularatne, J. A., 1997, “On Tool-Chip

% Interface Stress Distributions, Ploughing Force and Size Effect in

% Machining,” Int. J. Mach. Tools Manuf., 37(7), pp. 885-899.

clc; close all; clear all;

%% INPUTS

V = 1.5180; %cutting velocity (m/s) taken from analysis program

%Static values of undeformed chip thickness

h = [

 5

 10

 20

 30

 40

 50

]; %[um]

%Average forces in cutting direction

Favg = [

 21.287

 31.559

 43.529

 55.845

 67.033

 75.719

]; %[N]

%% EQUATION OF ASYMPTOTE

% Best guess for asymptote is a straight line through the last two data

% points

P = polyfit(h(end-1:end),Favg(end-1:end),1);

m = P(1); %slope of line

b = P(2); %y-intercept of line

%% PERFORM NEWTON-RAPHSON

% This is performed since the fitting equation has a single non-linear

% fitting variable, referred to as "A" here

ADiffLim = .0001;

i=2;

A = [1 0]; %initial guess=0

103

while abs(A(i)-A(i-1))>ADiffLim %determines whether variable has settled to a relatively

constant value between iterations

% EQUATION OF REMAINDER

% Remainder must cancel out y-intercept of asymptote such that curve passes

% through origin. Also, a fitting coefficient must be involved which

% determines how quickly the curve deviates from the asymptote. It has

% been observed that the final curve has a concave shape. Thus, the

% remainder will be of the form -b/(Ax+1)

% FIRST DERIVATIVE

D1 = sum((Favg - m*h - b + (b./(A(i)*h+1))) .* ((-2*b*h)./((A(i)*h + 1).^2)));

% SECOND DERIVATIVE

D2 = sum(((Favg - m*h - b + (b./(A(i)*h+1))) .* ((4*b*(h.^2))./((A(i)*h + 1).^3))) +

((2*b*h)./((A(i)*h+1).^2)).*((b*h)./((A(i)*h+1).^2)));

A(i+1) = A(i)-(D1/D2); %calculate next guess for variable A

i = i+1;

end

Af = A(i); %choose last iteration as the best fit

Ffit = m*h + b + (-b./(Af*h + 1)); %fitted force equation

%Create variables to be used to visualize best fit curve

hPlot = 0:.1:max(h);

FfitPlot = m*hPlot + b + (-b./(Af*hPlot + 1));

%% EVALUATE FINAL FIT

RSS = sum((Favg-Ffit).^2); %residual sum of squares

TSS = sum((Favg-mean(Favg)).^2); %total sum of squares

R2 = 1-(RSS/TSS); %R-squared value

%% PLOTTING

hfig1 = figure(1);

set(hfig1,'color','w')

set(hfig1,'name','Force')

hold on

plot(h,Favg,'.b','markersize',25)

plot(hPlot,FfitPlot,'r','linewidth',2)

hold off

xlim([0,50])

ylim([0,125])

set(gca,'fontsize',22)

hx = xlabel('h, undeformed chip thickness (um)');

hy = ylabel('Force (N)');

set(hx,'fontsize',24)

set(hy,'fontsize',24)

strT = sprintf('Al6061-T6\n\n\n');

hT = title(strT);

set(hT,'fontsize',30)

strT2 = sprintf('F = a*h + b - b/(c*h+1)\na=%.4e | b=%.4e | c=%.4e\nR^2=%.4f',m,b,Af,R2);

hT2 = gtext(strT2);

set(hT2,'fontsize',24,'horizontalalignment','center')

%% DISPLAY TO SCREEN

disp(' ')

disp('Coefficients')

disp(sprintf('%.4e %.4e %.4e',m,b,Af))

disp(' ')

disp('Goodness of Fit')

disp(sprintf('R^2 = %.4f',R2))

%% ^^^ F O R C E ^^^

%%%

104

% vvv P O W E R vvv

%% POWER FIT

% Least-squares fitting technique IS NOT performed for power. Rather the

% values for the fitting variables determined above for force are used here

% and a known equation for power as a function of force and velocity is

% used.

Pavg = Favg*V; %power "data"

PfitPlot = FfitPlot*V; %power "fit"

%% PLOTTING

hfig2 = figure(2);

set(hfig2,'color','w')

set(hfig2,'name','Power')

hold on

plot(h,Pavg,'.','color',[.2 .5 .2],'markersize',25)

plot(hPlot,PfitPlot,'r','linewidth',2)

hold off

ylim([0,200])

set(gca,'fontsize',22)

hx = xlabel('h, undeformed chip thickness (um)');

hy = ylabel('Power (W)');

set(hx,'fontsize',24)

set(hy,'fontsize',24)

strT = sprintf('Al6061-T6\n\n\n');

hT = title(strT);

set(hT,'fontsize',30)

strT2 = sprintf('P = V*[a*h + b - b/(c*h+1)]\na=%.4e | b=%.4e | c=%.4e\nR^2=%.4f',m,b,Af,R2);

hT2 = gtext(strT2);

set(hT2,'fontsize',24,'horizontalalignment','center')

105

Appendix G: Planer analysis routine (Matlab)

Summary: This routine imports planer-specific data (Fx,Fy,DAC,DDC) from a user-specified .txt

file and performs numerical analysis techniques. Primary code features include:

 determination of effective instantaneous displacement and velocity (via encoder data

combined with that from capacitance probe)

 determination of best-fit equations characterizing said displacement

 determination of beginning and end of cut

 determination of beginning and end of individual periodic cutting instances

 force prediction routine based on Fp(Veff) found using forceFitPlaner.m

 specific energy calculations.

Note: This code refers to Fp/Fq as Fx/Fy, respectively.

%% MAManalysisPlaner.m

%

% WRITTEN BY: JOSH NORMAN

% PROGRAM SUMMARY: THIS ROUTINE IMPORTS PLANER-SPECIFIC DATA FROM A USER

% SPECIFIED .TXT FILE AND PERFORMS NUMERICAL ANALYSIS. PRIMARY FEATURES

% INCLUDE:

% DETERMINATION OF EFFECTIVE INSTANTANEOUS DISPLACMENT AND VELOCITY

% (ENCODER DATA COMBINED WITH THAT FROM CAPACITANCE PROBE) AS

% WELL AS BEST FIT EQUATION CHARACTERIZING THIS DISPLACEMENT.

% DETERMINATION OF BEGINNING AND END OF CUT.

% DETERMINATION OF BEGINNING AND END OF PERIODIC CUTTING INSTANCES.

% FORCE PREDICTION ROUTINE BASED ON Fp(Veff) FOUND USING

% forceFitPlaner.m.

% SPECIFIC ENERGY CALCULATIONS.

% NOTE: Fp/Fq ARE REFERRED TO AS Fx/Fy RESPECTIVELY.

clc; clear all; close all;

%% INPUTS

specD = 1; %flag for determining which method will used to find "cutting"

portion of data (0/1 = total/specified distance)

Dwait = 5; %distance to wait between start of cut and start of analysis

Drel = 15; %relevant distance over which work will be determined [mm]

percentTrig1 = .50; %percentage of Fx range for triggering

percentTrig2 = .50; %percentage of Fx range for triggering

fs = 10000; %sampling rate [Hz]

encRes = 8000; %post quadrature encoder resolution [counts/rev]

lead = 20; %ball-screw lead [MU/rev]

MUperCOUNT = lead/encRes; % [MU/count]

mmPerV = .025; %mm per Volt (capacitance probe)

w = 1.003; %workpiece width [mm]

%% CHOOSE TXT FILE TO IMPORT

% Select "Relevant" Files

wildcard_txt = '*.txt';

106

files_struct = dir(wildcard_txt); %list all .txt files in structure

files_cell = struct2cell(files_struct); %list these files in cell

names_cell = files_cell(1,:); %select first row of cell b/c it contains

names

names_char = char(names_cell); %convert this cell row of names to characters

[m,n] = size(names_char); %use m to know how many files are available

if m==0

 error('NO TXT FILES ARE LOCATED IN CURRENT DIRECTORY')

elseif m<10 %single digits

 for i = 1:m

 FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:)); %create character array of

file options to choose from

 end

elseif m>=10 %double digits

 for i = 1:9

 FileOptions(i,:) = sprintf('% i) %s',i,names_char(i,:)); %create character array of

file options to choose from

 end

 for i = 10:m

 FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:)); %create character array of

file options to choose from

 end

end

% Print Filenames to Workspace

disp(' ')

fprintf('\t\t\tANALYSIS OF EXPERIMENTAL DATA')

fprintf('\n\n')

disp(FileOptions) %print list to workspace

fprintf('\n\n')

% Choose file on which to run analysis

fileChoice = input('Enter File # --> '); %user enters number

corresponding to file

filename_ext = deblank(names_char(fileChoice,:)); %remove placeholding spaces

from end of selected filename

[PATHSTR, filename, EXT] = fileparts(filename_ext);

%% IMPORT DATA FROM TXT FILE

% Read .txt File

fid = fopen(filename_ext);

header = fscanf(fid,'%s',1); %store first line of file to variable

"header"

DATAcell = textscan(fid,'%f %f %f %f','headerlines',2); %read in all four columns of data to

cell variable, skipping first two lines of file

DATAmat = cell2mat(DATAcell); %convert data from cell to matrix

fclose(fid); %close file

%Automatically determine fm

fmInd = strfind(filename,'fm'); %find start index

HzInd = strfind(filename,'Hz'); %find end index

fm = str2num(filename(fmInd+2:HzInd-1)); %use indices to locate and store

modulation frequency [Hz]

% Automatically determine NperVx and NperVy

NperVx_start = min(strfind(header,'='))+1; %find start index

NperVx_end = min(strfind(header,'_'))-1; %find end index

NperVy_start = max(strfind(header,'='))+1; %find start index

NperVy_end = max(strfind(header,'_'))-1; %find end index

NperVx = str2num(header(NperVx_start:NperVx_end)); %use indices to locate and store

amplifier gain value as number [N/V]

NperVy = str2num(header(NperVy_start:NperVy_end)); %use indices to locate and store

amplifier gain value as number [N/V]

% Automatically determine desired Vdc

Vdc_des_start = strfind(filename,'Vdc')+3; %find start index

Vdc_des_end = strfind(filename,'mms')-1; %find end index

107

Vdc_des = str2num(strrep(filename(Vdc_des_start:Vdc_des_end),'-','.')); %use indices to locate

and store value as number

% Automatically determine depth of cut h0

h0_stop = strfind(filename,'um')-1; %find end index (note: this variable

must be the first item in the filename)

h0 = str2num(filename(2:h0_stop))/1000; %depth of cut [mm]

% Assign Data Channels

Fx = NperVx*(-DATAmat(:,1)); %aka Fp [N]

Fy = NperVy*DATAmat(:,2); %aka Fq [N]

ch2 = DATAmat(:,3); %raw cap probe data [V]

steps = DATAmat(:,4); %encoder counts (+1/0/-1 =

FWD/NUL/REV)

% Calculate cumulative "DC" displacement

D_DC = MUperCOUNT*cumsum(steps); %use "steps" variable created by

quadDecoder.m to find linear displacement [mm]

%% LINEARLY INTERPOLATE

% The purpose of this section is to smooth out the innately choppy digital

% data by linearly interpolating between the midpoints of each 2.5um step

% Find Voffset of Cap Probe

switch fm

 case 0

 Voffset = ch2(1);

 otherwise

 NperPeriod = floor(fs/fm); %No. of samples per period

 Voffset = mean(ch2(1:NperPeriod)); %cap probe voltage offset found by averaging 1

period of measurements

end

% Find length of data sets

N = length(Fx);

% Create time vector

dT = 1/fs; %[s]

T = dT*(1:1:N)'; %[s]

% Get indices of points where displacement has changed

dD_ind = (1:1:N)'.*abs(steps);

% Eliminate all entries that are 0

dD_ind(dD_ind==0) = [];

%Create two vectors of indices offset from each other by 1 row

dD_indShift = dD_ind; %initialize vector

dD_indShift(2:end+1) = dD_ind; %shift values down 1 row

dD_indShift(1) = 1; %then make 1st entry == 1

dD_ind(end+1) = N; %add entry at end of vector

% Find integer midpoints of these indices

dD_indMids = floor((dD_ind+dD_indShift)/2);

% Convert to time

T_Mids = dD_indMids*dT;

% Find displacement values at these times

D_Mids = D_DC(dD_indMids);

% Linearly interpolate between these values

D_lin = zeros(N,1);

for i = 1:length(dD_indMids)-1

 ind_curr = dD_indMids(i);

 ind_next = dD_indMids(i+1);

 D_curr = D_DC(ind_curr);

 D_next = D_DC(ind_next);

 D_lin(ind_curr:ind_next) = linspace(D_curr,D_next,ind_next-ind_curr+1);

end

D_lin(ind_next:end) = D_next; %fill in remaining points with last distance midpoint value

108

%% ADD AC COMPONENT TO DC

% Note: AC refers to the dynamic portion of displacment which is induced by

% the piezo-ceramic actuator and monitored using a capacitance probe. DC

% refers to the static portion of the displacement trace which is induced

% by the servo motor and monitored using a quadrature rotary encoder. The

% DC component is in fact not always constant throughout, as the motor has

% the tendency to backtrack on itself under oscillatory loads. This will

% be taken into account when Deff is characterized using least-squares

% fitting.

% Let new D_DC be represented by D_lin

D_DC = -D_lin; %negative is due to sign convention in that encoder sees a negative

step when workpiece is moving into the tool [mm]

% Find scaled and mean adjusted AC displacement data

D_AC = mmPerV*(ch2-Voffset);%dynamic component of displacement. Note that higher values of ch2

voltage indicate + displacement according to convention [mm]

% Add AC to DC

D_ACDC = D_DC+D_AC; %effective displacement [mm]

%% DETERMINE START/STOP OF CUTTING

% These conditions are determined by monitoring the Fx (aka Fp) trace and

% noting when it rises above critical values. These critical values are a

% percentage of the Fx signal's total range.

% Smooth out inconsistencies

FxSmooth = smooth(Fx,100);

xPercent = (FxSmooth-min(FxSmooth))/(max(FxSmooth)-min(FxSmooth)); %each Fx entry as percent

of Fx range

c1 = 1; %initiate counter 1

while xPercent(c1) < percentTrig2 %looks for critical percent of > percentTrig

 c1 = c1+1; %count forward 1 index per loop iteration

end

cutStart = c1; %location in vector where cutting data starts

% Use switch to determine whether the entire length, specD=0, or just a

% specified distance, specD=1, will be used to represent the cut (ie used

% to calculate energy, etc). It is often advantageous to monitor only a

% portion of the total trace since the beginning and end may be

% misrepresentative of the crucial part of the cut.

switch specD

 case 0 %use entire cutting range

 c2 = length(FxSmooth); %initiate counter 2 where at end of data set

 while xPercent(c2) < percentTrig2 %check if condition is met

 c2 = c2-1; %... if not, count backward 1 index per loop

iteration

 end

 cutStop = c2; %location in vector where cutting data stops

 case 1 %use specified cutting range

 Dstart = D_ACDC(cutStart);

 Dstart = Dstart+Dwait;

 while D_ACDC(cutStart)<Dstart %check if condition is met

 cutStart=cutStart+1; %... if not, add 1 to index

 end

 Dstop = Dstart + Drel;

 c2 = c1;

 while D_ACDC(c2)<Dstop %check if condition is met

 c2 = c2+1; %... if not, count forward 1 index per loop iteration

 end

 cutStop = c2; %index at which cutting "stops"

end

FxRel = mean(Fx(cutStart:cutStop)); %newly found relevant range of Fx (aka Fp) data [N]

%% DETERMINE START/STOP OF PEAK PLATEAU

109

c1 = 1; %initiate counter 1

while xPercent(c1) < percentTrig1 %check if condition is met

 c1 = c1+1; %... if not, count forward 1 index per loop iteration

end

peakStart = c1; %location in vector where cutting data starts

c2 = length(FxSmooth); %initiate counter 2 at end of data set

while xPercent(c2) < percentTrig1 %check if condition is met

 c2 = c2-1; %if not, count backward 1 index per loop iteration

end

peakStop = c2; %location in vector where cutting data stops

Tpeak = T(peakStart:peakStop); %vector of times during which Fx has plateaued

Dpeak = D_ACDC(peakStop)-D_ACDC(peakStart); %vector of effective displacements during which Fx

has plateaued

FxPeak = mean(Fx(peakStart:peakStop)); %vector of Fx's during which Fx has plateaued

%% CALCULATE VOLUME

% This volume represents the amount of material removed and will be used to

% normalize energy

vol = (D_DC(cutStop)-D_DC(cutStart))*w*h0; %[mm^3]

%% DEFINE "CUTTING" VECTORS

% Time

TCut = T(cutStart:cutStop); %time vector b/t when cutting starts and stops

% Displacement

D_DCcut = D_DC(cutStart:cutStop);

D_ACcut = D_AC(cutStart:cutStop);

D_ACDCcut = D_ACDC(cutStart:cutStop);

%% LEAST SQUARES FIT

% The purpose of this section is to provide a least-squares

% characterization for the effective displacement (and thus velocity). Such

% a characterization has the advantage of being completely noise free,

% which cannot be said of standard filtering techniques. This noise-free

% criteria is important, since the force prediction scheme is sensitive to

% noise in the velocity trace.

switch fm

% > > > C O N V E N T I O N A L < < <

 case 0

 f = 0;

 % LEAST SQUARES ON ACDC DISPLACEMENT

 cACDC = [TCut, ones(length(TCut),1)];

 dACDC = D_ACDCcut;

 xACDC = inv(cACDC'*cACDC)*cACDC'*dACDC;

 Aacdc = xACDC(1); Bacdc = xACDC(2);

 % Fitted displacement curve2

 D_ACDCfitBest = Aacdc*TCut + Bacdc*ones(length(TCut),1);

 D_DCfitBest = D_ACDCfitBest; %same since there's no ac

 D_ACfitBest = zeros(length(TCut),1);

% > > > M O D U L A T I O N < < <

 otherwise

 RSSbest = inf; %initialize with worst case residual sum of squares value

 for f = fm-.01:.001:fm+.01; %scan a range of modulation frequencies near the expected

fm. This often results in a better R^2 fit

 % LEAST SQUARES ON DC DISPLACEMENT - this is performed despite

 % "DC" classifier because motor has a tendency to periodically

 % backtrack on itself due to modulated loading

 cDC = [sin(2*pi*f*TCut), cos(2*pi*f*TCut), TCut, ones(length(TCut),1)];

 dDC = D_DCcut;

 xDC = inv(cDC'*cDC)*cDC'*dDC;

110

 Adc = xDC(1); Bdc = xDC(2); Cdc = xDC(3); Ddc = xDC(4);

 % Fitted displacement curve

 D_DCfit = Adc*sin(2*pi*f*TCut) + Bdc*cos(2*pi*f*TCut) + Cdc*TCut +

Ddc*ones(length(TCut),1);

 % LEAST SQUARES ON AC DISPLACEMENT

 cAC = [sin(2*pi*f*TCut), cos(2*pi*f*TCut)];

 dAC = D_ACcut;

 xAC = inv(cAC'*cAC)*cAC'*dAC;

 Aac = xAC(1); Bac = xAC(2);

 % Fitted displacement curve

 D_ACfit = Aac*sin(2*pi*f*TCut) + Bac*cos(2*pi*f*TCut);

 % DETERMINE FIT

 D_ACDCfit = D_DCfit+D_ACfit;

 % Evaluate closeness of fit

 RSS = sum((D_ACDCfit-D_ACDCcut).^2); %RSS=residual sum of squares

 if RSS<RSSbest %if this iteration of loop resulted in lower

RSS, store the following values as "best"

 RSSbest = RSS;

 fbest = f;

 D_DCfitBest = D_DCfit;

 D_ACfitBest = D_ACfit;

 D_ACDCfitBest = D_ACDCfit;

 AacBest = Aac;

 BacBest = Bac;

 end

 end

end

%% BEST FIT VARIABLES

D_DCfit = D_DCfitBest;

D_ACfit = D_ACfitBest;

D_ACDCfit = D_ACDCfitBest;

%% FIND VELOCITIES

% use standard numerical differentiation method

% DC Velocity

D_DCshift = D_DCfit; %intialize shifted displacement vector

D_DCshift(2:end+1) = D_DCshift; %shift entries down one row

delD_DC = D_DCfit - D_DCshift(1:end-1); %D(i)-D(i-1)

delD_DC(1) = 0; %sets first entry to zero

Vdc = delD_DC/dT; %velocity of stage wrt table [mm/s]

Vdc(1) = []; %eliminate first entry

% AC Velocity

D_ACshift = D_ACfit; %initialize shifted displacement vector

D_ACshift(2:end+1) = D_ACshift; %shift entries down one row

delD_AC = D_ACfit - D_ACshift(1:end-1); %D(i)-D(i-1)

delD_AC(1) = 0; %sets first entry to zero

Vac = delD_AC/dT; %velocity of workpice wrt stage [mm/s]

Vac(1) = []; %eliminate first entry

% Effective Velocity (ACDC)

D_ACDCshift = D_ACDCfit; %initialize shifted displacement vector

D_ACDCshift(2:end+1) = D_ACDCshift; %shift entries down one row

delD_ACDC = D_ACDCfit-D_ACDCshift(1:end-1); %D(i)-D(i-1)

delD_ACDC(1) = 0; %sets first entry to zero

Veff = delD_ACDC/dT; %velocity of workpice wrt table (or tool) [mm/s]

Veff(1) = []; %eliminate first entry

%% FIND POINTS OF SEPARATION'S BEGINNING/MAXIMUM/ENDING

% Separation occurs when velocity becomes negative. Max distance of

% separation occurs when velocity becomes positive. Contact is

% reestablished when displacement is equal to that at which separation

% began.

% Use velocity derived from best fit, since this section is largely

111

% dependent on finding local mins and maxs, which is only effective in a

% noiseless environment.

% Find indices of local extrema

diffSignV = diff(sign(Veff));

diffSignV(2:end+1) = diffSignV; %insert a zero as the first entry

locMin = find(diffSignV==2); %indices of local mins

locMax = find(diffSignV==-2); %indices of local maxs

% Determine if separation is occuring

if isempty(or(locMin,locMax))

 sepFlag = 0; %seperation does not occur

else

 sepFlag = 1; %separation occurs

end

% Create flags for each of 4 cases and rewrite D vector's such that

% locMin and locMax have same number of entries, locMax(1)/locMax(end) must come

% before locMin(1)/locMin(end)

if sepFlag == 1 %do this routine only if separation is actually occuring

 if and(locMax(1)<locMin(1),locMax(end)>locMin(end)) %starts on MAX, ends on MAX

 extFlag = 1;

 locMax(end) = '';

 elseif and(locMax(1)<locMin(1),locMax(end)<locMin(end)) %starts on MAX, ends on MIN

 extFlag = 2;

 elseif and(locMax(1)>locMin(1),locMax(end)>locMin(end)) %starts on MIN, ends on MAX

 extFlag = 3;

 locMin(1) = '';

 locMax(end) = '';

 elseif and(locMax(1)>locMin(1),locMax(end)<locMin(end)) %starts on MIN, ends on MIN

 extFlag = 4;

 locMin(1) = '';

 end

 % Displacements at local extrema

 D_fitMin = D_ACDCfit(locMin);

 D_fitMax = D_ACDCfit(locMax);

 % Points of separations' BEGINNING

 T_sepBeg = TCut(locMax);

 % Point of separations' MAXIMUM

 T_sepMax = TCut(locMin);

 % Values of maximum separation

 D_sepMax = D_fitMax - D_fitMin;

 % Points of separations' ENDING

 T_sepEnd = 0*T_sepBeg; %initialize

 for k = 1:length(locMin)

 c3 = locMax(k)+1; %initialize counter c3

 while D_ACDCfit(c3)<D_fitMax(k)

 c3 = c3+1;

 end

 locRecut(k) = c3;

 T_sepEnd(k) = TCut(c3);

 end

end

%% ELIMINATE VELOCITIES WHERE SEPARATION OCCURS

% Set these velocities equal to zero since they won't contribute to energy

% consumption

Veff2 = Veff; %initialize new variable

if sepFlag==1

 for kk = length(locMax):-1:1

 Veff2(locMax(kk)+1:locRecut(kk)-1)=0; %eliminate (use 1e-5 to approx 0) all noncutting

portions of Veff trace (must start at end of trace)

 end

end

112

%% ALGORITHM 2: DETERMINE RANGE OF DISCRETE "RELEVANT" DATA

% Algorithm 2: "Relevant" = when tool is engaged. Thus this range will

% consist of multiple discrete instances of "relevant" data.

% Note: This range is determined using ch1 because ch1 responds

% "immdeiately" when the tool is engaged

percentTrigger3 = 0.7;

i = 1; %initiate counter Nrel2

iMinus = 0; %after the outer while loop, we'll subtract this from i

c1 = cutStart; %initiate counter c1

switch f %this switch-case generates cPeriod, depending on the

piezo's input frequency

 case 0

 cPeriod = cutStop-cutStart; %a zero freq case needs to exist to prevent Inf values

for cPeriod

 otherwise

 cPeriod = (1/fm)*(1/dT); %number of steps in one period of piezo cycle based on

fft frequency

end

while c1<cutStop %stops loop when it reaches end of data set

 % Find Leading Edge > > > > > > > > > > >

 while and(xPercent(c1) < percentTrigger3,c1<cutStop) %searches for leading edge by

looking for percent change of > percentTrigger2

 c1 = c1+1; %note: instance wont occur when loop is broken

 end

 relDataSTART2(i) = c1; %location in vector where relevant data starts

 flag1 = 1;

 % > > > > > > > > > > > > > > > > > > > >

 if c1<cutStop %do this if we didn't just reach the end of the data set by looking for

another rising edge

 flag1 = 2;

 % Predict Falling Edge - - - - - - - - -

 switch f

 case 0 %if 0 frequency case, skip 3/4 of steps in between Alg 1's range

 cToSkip = floor((3/4)*(cutStop-cutStart)); %number of steps to skip before

searching for falling edge

 c1 = c1+cToSkip; %skip the cycles

 otherwise %if not 0 frequency case, calculate and skip percentage of period, based

on user input as to approx how much of period has cutting ("percentHigh")

 cToSkip1 = floor(.3*cPeriod); %number of steps to skip before searching for

falling edge

 c1 = c1+cToSkip1; %skip the cycles to predict falling edge

 if c1 >= cutStop %...but if skipping these cycles puts us

past end of Rel1 set...

 relDataSTART2(i) = ''; %...delete last instance of relDataSTART2

because Predict Falling Edge counted up to cutStop

 iMinus = 1; %after the outer while loop, we'll subtract

this from i because we have a false positive in relDataSTART2

 end

 end

 % -

 else %this "else" only occurs if we've reached the end of the data set while looking for the

next leading edge

 relDataSTART2(i) = ''; %if Find Leading Edge counted up to cutStop

 iMinus = 1; %after the outer while loop, we'll subtract

this from i

 end

 if c1<cutStop %do this if we didn't just reach the end of the data set by predicting the

next falling edge

 % Find Falling Edge o o o o o o o o o o o

 while and(xPercent(c1) >= percentTrigger3 , c1<cutStop) %search for falling edge

 c1 = c1+1; %note: instance wont occur when loop is

broken

 end

113

 relDataSTOP2(i) = c1-1; %location in vector where relevant data stops

 flag1 = 3;

 % o

 % Predict Leading Edge = = = = = = = = =

 switch f

 case 0 %do nothing since we're already at end of set

 otherwise

 if (relDataSTOP2(i)-relDataSTART2(i)) < cPeriod %this if command prevents

cToSkip from becoming negative, which occurs if on/off triggers do not occur every period

 cRemainInPeriod(i) = cPeriod - (relDataSTOP2(i)-relDataSTART2(i));

%number of cycles remaining in current period

 cToSkip2 = floor((.5)*cRemainInPeriod(i)); %number of cycles to skip before

searching for next rising edge

 c1 = c1+cToSkip2; %skip the cycles

 end

 end

 % =

 if c1<cutStop %if c1 is STILL less than relDataSTOP (ie we didn't just reach the end of

the relevant Alg 1 data by predicting next leading edge

 i = i+1;

 end

 end

end

Nrel2 = i-iMinus; %subtract 1 (via iMinus) ONLY if there's a

false positive from while loop

if length(relDataSTART2)==length(relDataSTOP2)+1

 relDataSTART2(end) = '';

 Nrel2 = Nrel2-1;

end

% [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []

%% PLATEAU FORCES

% Plateau forces are designated as the average value over the discrete

% range where the Fx value has approximately saturated

switch f

 case 0 %conventional cutting

 for ii=1:Nrel2

 FxPlat(ii) = mean(Fx(relDataSTART2(ii):relDataSTOP2(ii)));

 FyPlat(ii) = mean(Fy(relDataSTART2(ii):relDataSTOP2(ii)));

 end

 otherwise %modulated cutting

 for ii=2:Nrel2

 FxPlat(ii) = mean(Fx(relDataSTART2(ii):relDataSTOP2(ii)));

 FyPlat(ii) = mean(Fy(relDataSTART2(ii):relDataSTOP2(ii)));

 end

end

%% DETERMINE MAM CONDITIONS USING Fx

% Note: This should be done under conditions of high trigger start and high

% length of analysis

if fm~=0

 % Smooth Fx trace

 FxRelSmooth = smooth(Fx(cutStart:cutStop),NperPeriod/100);

 % Determine No. of periods

 Nperiods = floor(length(TCut)/NperPeriod);

 % Find max and min Fx for each period

 FxMaxs = zeros(Nperiods,1); %initialize

 FxMins = zeros(Nperiods,1); %initialize

 for k = 1:Nperiods

 FxMaxs(k) = max(FxRelSmooth(((k-1)*NperPeriod)+1:k*NperPeriod));

 FxMins(k) = min(FxRelSmooth(((k-1)*NperPeriod)+1:k*NperPeriod));

114

 end

 FxMinsPos = FxMins;

 FxMinsPos(FxMins<0)=0; %set all negative values to zero

 % Determine percentage of critical MAM, where 0% is conventional cutting

 % and 100% represents a MAM condition in which Fx just touches 0N each

 % period

 critMAM = mean((FxMaxs-FxMinsPos)./FxMaxs)*100;

end

%% PREDICT ENERGY

% Use forceFitPlaner.m to determine function and its best fit linear

% coefficients. It was found that there exists a natural logarithmic

% relationship between Fx and V. Since P = F*V, the best fit curve

% assumption is a combination of logarithmic and linear (since V-V is

% exactly linear). Thus, P = A*ln(x)*x + B*x where A and B are constants

% found using the linear solver best-fit method

coeff = [5.4282e-01 2.1529e+01]; %coefficients from

forceFitPlaner.m

Pest = coeff(1)*log(Veff2).*(Veff2/1000) + coeff(2)*(Veff2/1000); %[W]

Pest(Pest<0)=0; %effectively eliminates

singularity problem caused by log(Veff2)

if sepFlag==1

 Pest(Veff2==0)=0; %power should = 0 when tool

has separated from workpiece

end

dWest = Pest*dT;

 dWest(1) = dWest(1)*.5; %technicality of first

instance lasting only half a time step

 dWest(end) = dWest(end)*.5; %technicality of last

instance lasting only half a time step

West = sum(dWest)/vol;

%% CALCULATE ENERGY

% Instantaneous work

dW = Fx(cutStart:cutStop).*delD_ACDC/1000; %dW(i)=F(i)*[-(D(i)-D(i-1))] ONLY CUTTING PORTION

CONSIDERED [J]

% Power

P = dW/dT; %[W]

% All work terms

Wall = sum(dW)/vol; %summation of all work terms [J/mm^3]

% Only positive work terms

dWpos = dW;

dWpos(dWpos<0)=0;

Wpos = sum(dWpos)/vol; %summation of only positive work terms [J/mm^3]

% Only work terms within separation boxes

if sepFlag == 1 %do this routine only if separation is actually occuring

 dWsep = 0*dW; %initialize

 for k = 1:length(locMin)

 dWsep(locMax(k):locRecut(k)) = dW(locMax(k):locRecut(k));

 end

 Wsep = sum(dWsep); %[J]

end

%% PLOT DISPLACEMENT

% Initialize figure

hFig1 = figure(1);

fullscreen = get(0,'ScreenSize');

set(hFig1,'position',[10, 50, floor(fullscreen(3)/2)-30, fullscreen(4)-132])

set(hFig1,'color','w','Name','Analysis')

115

% Plot displacement

ax1 = subplot(4,1,1);

hold on

plot(T,D_ACDC,'k','linewidth',2.5)

plot(TCut,D_ACDCfit,'g','linewidth',1)

hold off

% Format figure

set(gca,'fontsize',18)

ylabel('Displacement (mm)')

legend('Actual','Best Fit')

hTtl = title(strrep(filename,'_','_'));

set(hTtl,'fontsize',22)

grid on

%% PLOT SEPARATION BOXES

% Each separation box has width equal to amount of time tool was separated

% from workpiece and height equal to max distance of separation between

% tool and workpiece (NOT ACCOUNTING FOR COMPLIANCE)

if sepFlag == 1 %do this routine only if separation is actually occuring

 hold on

 for k = 1:length(locMin)

 rectangle('position',[T_sepBeg(k),D_fitMin(k),T_sepEnd(k)-

T_sepBeg(k),D_sepMax(k)],'edgecolor',[.25 .5 .7],'linewidth',2)

 end

 hold off

end

%% PLOT VELOCITIES

% Plot velocity

ax2 = subplot(4,1,2);

hold on

plot(TCut(2:end),Vdc,'-r')

plot(TCut(2:end),Vac,'--','color',[0 .6 .3])

plot(TCut(2:end),Veff,'b','linewidth',2)

% Format figure

set(gca,'fontSize',18)

ylabel('Velocity (mm/s)')

legend('Vdc','Vac','Veff')

grid on

%% PLOT FORCES

% Plot forces

ax3 = subplot(4,1,3);

hp1 = plot(T,Fx,'b');

hold on

hp2 = plot(T,Fy,'m');

plot([T(cutStart),T(cutStart)],[min(Fx),max(Fx)],':g','linewidth',2.5)

plot([T(cutStop),T(cutStop)],[min(Fx),max(Fx)],':r','linewidth',2.5)

plot([T(peakStart),T(peakStart)],[min(Fx),max(Fx)],'--g','linewidth',2.5)

plot([T(peakStop),T(peakStop)],[min(Fx),max(Fx)],'--r','linewidth',2.5)

plot([T(relDataSTART2)],0,'.g','markersize',18)

plot([T(relDataSTOP2)],0,'xr','markersize',9,'linewidth',2.5)

for jj = 1:Nrel2

 hp3 = plot([T(relDataSTART2(jj)),T(relDataSTOP2(jj))],[FxPlat(jj),FxPlat(jj)],'--

b','linewidth',2.5);

 hp4 = plot([T(relDataSTART2(jj)),T(relDataSTOP2(jj))],[FyPlat(jj),FyPlat(jj)],'--

m','linewidth',2.5);

end

% Format figure

hold off

116

set(gca,'fontSize',18)

legend([hp1 hp2 hp3 hp4],'Fp','Fq','Fp Plat','Fq Plat')

ylabel('Force (N)')

grid on

%% PLOT POWER

% Plot power

ax4 = subplot(4,1,4);

hold on

% plot(TCut(2:end),Pest,'r','linewidth',3)

plot(TCut,P,'k','linewidth',1)

hold off

% Format figure

set(gca,'fontSize',18)

xlabel('Time (s)')

ylabel('Power (W)')

% legend('Predicted','Actual')

grid on

%% LINK X-AXES

linkaxes([ax1,ax2,ax3,ax4],'x')

xlim([0,T(end)])

figure(1)

%% PRINT TO WORKSPACE

disp(' ')

disp(' ')

disp('C O N D I T I O N')

if fm==0

 disp('Conventional')

else

 disp(sprintf(' %3.0f%% of critical MAM',critMAM))

end

disp(' ')

disp(' ')

disp('F O R C E')

disp(sprintf(' Avg Fp = %.2f N',FxRel))

if fm==0

 disp(sprintf(' Avg Plateau Fp = %.2f +/- %.2e N',mean(FxPlat),std(FxPlat)))

 disp(sprintf(' Avg Plateau Fq = %.2f +/- %.2e N',mean(FyPlat),std(FyPlat)))

else

 disp(sprintf(' Avg Plateau Fp = %.2f +/- %.2e

N',mean(FxPlat(2:end)),std(FxPlat(2:end))))

 disp(sprintf(' Avg Plateau Fq = %.2f +/- %.2e

N',mean(FyPlat(2:end)),std(FyPlat(2:end))))

end

disp(' ')

disp(' ')

disp('P O W E R')

disp(sprintf(' Avg Power = %.2e J/s',mean(P)))

disp(' ')

disp(' ')

disp('V O L S P E C E N E R G Y ')

disp(sprintf(' Total summed = %.4e J/mm^3',Wall))

disp(sprintf(' Predicted = %.4e J/mm^3',West))

disp(' ')

disp(' ')

if fm~=0

disp('M A M C O N D I T I O N S')

disp(sprintf(' Best fm = %.4f Hz',fbest))

117

disp(sprintf(' Displacement Amp K = %.2f um',norm([AacBest,BacBest],2)*1000))

end

FxPlat1 = Fx(relDataSTART2:relDataSTOP2);

FyPlat1 = Fy(relDataSTART2:relDataSTOP2);

118

Appendix H: Lathe analysis routine (Matlab)

Summary: This routine imports lathe-specific data (Fx,Fy,Fz,DAC) from a user-specified .txt file

and performs numerical analysis techniques. Primary features include:

 determination of beginning and end of cut

 determination of beginning and end of individual periodic cutting instances

 determination of effective instantaneous displacement and velocity (assumed linear

motion of turret is combined with data from capacitance probe)

 determination of best-fit equation characterizing said displacement

 determination of instantaneous undeformed chip thickness

 force prediction routine based on Fp(h0) found using forceFitLathe.m

 specific energy calculations

Note: This code refers to Fp/Fq as Fy/Fz, respectively.

%% MAManalysisLathe.m

%

% Written By: Josh Norman

% PROGRAM SUMMARY: THIS ROUTINE IMPORTS LATHE-SPECIFIC DATA FROM A USER

% SPECIFIED .TXT FILE AND PERFORMS NUMERICAL ANALYSIS. PRIMARY FEATURES

% INCLUDE:

% DETERMINATION OF BEGINNING AND END OF CUT.

% DETERMINATION OF BEGINNING AND END OF PERIODIC CUTTING INSTANCES.

% DETERMINATION OF EFFECTIVE INSTANTANEOUS DISPLACMENT AND VELOCITY

% (ASSUMED LINEAR MOTION OF TURRET IS COMBINED WITH DATA FROM

% CAPACITANCE PROBE) AS WELL AS BEST FIT EQUATION CHARACTERIZING

% THIS DISPLACEMENT.

% DETERMINATION OF INSTANTANEOUS UNDEFORMED CHIP THICKNESS

% FORCE PREDICTION ROUTINE BASED ON Fp(h0) FOUND USING

% forceFitLathe.m.

% SPECIFIC ENERGY CALCULATIONS.

% NOTE: Fp/Fq ARE REFERRED TO AS Fy/Fz RESPECTIVELY.

clc; clear all; close all;

%% INPUTS

num_headerlines = 1;%number of headerlines

fs = 5000; %sampling frequency [Hz]

percentHigh = 0.40; %approx % of cycle in which cutting occurs

w = 1200; %angular velocity [rpm]

do = 25.4; %workpiece outer diameter [mm]

wallThick = 1.24; %workpiece wall thickness [mm]

NperVx = 10; %Newtons per Volt in x dir [N/V]

NperVy = 20; %Newtons per Volt in y dir [N/V]

NperVz = 20; %Newtons per Volt in z dir [N/V]

uperV = 25; %microns per Volt in displacement [um/V]

driftZComp = 1; %compensate for drift? (y/n = 1/0)

showdriftZComp = 0; %show drift comp? (y/n = 1/0)

SScase = 3; %which freq to use for Single Sine...

 %... (1/2/3 = input/fft/modfft)

119

percentTrigger1 = 0.2; %trigger percentage for determining range of parent relevant data set

%% CHOOSE TXT FILE TO IMPORT

% Select "Relevant" Files

wildcard_txt = '*.txt';

files_struct = dir(wildcard_txt); %list all .txt files in structure

files_cell = struct2cell(files_struct); %list these files in cell

names_cell = files_cell(1,:); %select first row of cell b/c it contains

names

names_char = char(names_cell); %convert this cell row of names to characters

[m,n] = size(names_char); %use m to know how many files are available

if m==0

 error('NO TXT FILES ARE LOCATED IN CURRENT DIRECTORY')

elseif m<10 %single digits

 for i = 1:m

 FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:)); %create character array of

file options to choose from

 end

elseif m>=10 %double digits

 for i = 1:9

 FileOptions(i,:) = sprintf('% i) %s',i,names_char(i,:)); %create character array of

file options to choose from

 end

 for i = 10:m

 FileOptions(i,:) = sprintf('%i) %s',i,names_char(i,:)); %create character array of

file options to choose from

 end

end

% Print Filenames to Workspace

disp(' ')

fprintf('\t\t\tANALYSIS OF EXPERIMENTAL DATA')

fprintf('\n\n')

disp(FileOptions) %print list to workspace

fprintf('\n\n')

% Choose file on which to run analysis

fileChoice = input('Enter File # --> '); %user enters number

corresponding to file

filename_ext = deblank(names_char(fileChoice,:)); %remove placeholding spaces

from end of selected filename

[PATHSTR, filename, EXT] = fileparts(filename_ext);

%% IMPORT DATA FROM .txt FILE

fid = fopen(filename_ext); %open file

Acell = textscan(fid,'%f %f %f %f','headerlines',num_headerlines); %import data from all 4

columns of file to cell variable

Amat = cell2mat(Acell); %convert cell variable to

matrix

fclose(fid); %close file

% Assigning Data Channels

ch0 = Amat(:,1); %first column

ch1 = Amat(:,2); %second column

ch2 = Amat(:,3); %third column

ch3 = Amat(:,4); %fourth column

% F O R C E C A L C U L A T I O N

Fx = ch0*NperVx; %Force in x-direction [N]

Fy = ch1*NperVy; %Force in y-direction [N]

FzIni = ch2*NperVz; %Force in z-direction [N]

% D I S P L A C E M E N T C A L C U L A T I O N

%Displacement Calculation

120

D_AC = ch3*uperV; %Capacitive (ie dynamic)

displacement [um]

%% PRE-PROCESSING

%Determine Modulation Frequency - - - - -

locHz = strfind(filename_ext,'Hz'); %find index

loc_ = strfind(filename_ext,'_'); %find index

HzValStart = 1;

for i = 1:length(loc_)

 if loc_(i)<locHz;

 HzValStart = loc_(i)+1; %by end of outer for loop, HzValStart will be the index

of the space where the piezo freq value begins

 end

end

HzValStop = locHz-1; %index of the space where the piezo freq value stops

fStr = filename_ext(HzValStart:HzValStop);

f = str2num(fStr); %piezo frequency [Hz]

% -

% Determine feedrate & & & & & & & & & &

locFR = strfind(filename_ext,'mmrev');

FR = (str2num(filename_ext(locFR-5)) + 1/1000*str2num(filename_ext(locFR-3:locFR-1)))*1000;

%turret feedrate (um/rev)

% &

%Constants + + + + + + + + + + + + + +

N = length(ch0);

dT = 1/fs; %time step [s]

t = (0:1:N-1)'*dT; %time vector [s]

di = do - 2*wallThick; %inner diameter of tube [mm]

diaCut = mean([di,do]); %average diameter [mm]

wSI = w*2*pi/60; %angular velocity of workpiece in SI [rad/s]

V = (pi/(60*1000)) * w * diaCut; %workpiece velocity at point of contact [m/s]

distCut = V.*t; %distance tool has cut as function of time [m]

Pspin = 60/w; %period for one revolution of spindle [s]

stepsPerRot = round(fs*Pspin); %number of timesteps in one revolution of spindle

V_DC = FR*w/60; %turret velocity [um/s]

chCurr = ch1;

chCurrSmooth = smooth(chCurr,10); %smooth out chCurr data

yRange = max(chCurrSmooth)-min(chCurrSmooth); %range of values on current channel

yPercent = (chCurrSmooth-min(chCurrSmooth))/yRange; %vector of channels values as percent of

range

% + + + + + + + + + + + + + + + + + + +

%% ALGORITHM 1: DETERMINE RANGE OF PARENT "RELEVANT" DATA

% Algorithm 1: "Relevant" = range between when tool is first engaged until

% it is last disengaged.

% START/STOP ALGORITHM 1 - - - - - - - - - - - -

c1 = 1; %initiate counter 1

while yPercent(c1) < percentTrigger1 %looks for percent change of > percentTrigger1

 c1 = c1+1; %note: instance wont occur when loop is broken

end

relDataSTART1 = c1; %location in vector where relevant data starts

c2 = length(chCurr); %initiate counter 2 where at end of data set

while yPercent(c2) < percentTrigger1

 c2 = c2-1;

end

relDataSTOP1 = c2; %location in vector where relevant data stops

lengthRel1 = relDataSTOP1-relDataSTART1+1; %length of parent data set

% -

 % Drift Compensation in Fz * * * * * * * * * * *

 switch driftZComp %Use a switch to easily turn on/off drift compensation

 case 0 %NO drift compensation on force in z-dir

 Fz = FzIni; %leave Fz as it was initially

 case 1 %WITH drift compensation on force in z-dir

121

 distCutNonRel = distCut([1:relDataSTART1,relDataSTOP1:length(distCut)],1); %vector

of the non-relevant distances cut

 FzNonRel = FzIni([1:relDataSTART1,relDataSTOP1:length(FzIni)],1); %vector

of the non-relevant Fz's

 driftLineCoeffs = polyfit(distCutNonRel,FzNonRel,1);

 FzDriftLine = polyval(driftLineCoeffs,distCut);

 Fz = FzIni-FzDriftLine;

 end

 % *

% Define vector of times during which cutting occurs

tCut = t(relDataSTART1:relDataSTOP1);

%% PERFORM FFT ON PARENT DISPLACEMENT DATA

displRelev1 = D_AC([relDataSTART1:relDataSTOP1],1); %[um]

L = length(displRelev1); %number of samples

fNyq = fs/2; %Nyquist frequency [Hz]

Nfft = 2^(nextpow2(L)-1); %length of fft by taking

largest possible power of 2 from length of ch3

fft_freq = fNyq*linspace(0,1,Nfft/2)'; %fft frequencies taking

into account frequency resolution (single sided)

fft_displRelev = fft(displRelev1,Nfft); %perform FFT

fft_displRelevAdj = fft_displRelev/L; %scale FFT by dividing by

L (# of samples)

fft_displRelevAdjSingSided = 2*abs(fft_displRelevAdj(1:Nfft/2)); %single sided analysis of

fft results

fft_freqNoDCBinIndex = fft_freq > 0.5*f; %returns logical true for

all frequencies that are greater than 50% of input frequencies. These frequencies will be

skipped when looking for max freq in order to eliminate DC component [Hz]

fft_freqNoDCIndex = find(fft_freq > 0.5*f); %returns index of all

frequencies that are greater than 50% of input frequencies

fft_displRelevAdjSingSidedNoDC = fft_freqNoDCBinIndex.*fft_displRelevAdjSingSided; %set power (y-

axis) of all frequencies lower than above criteria == 0 in order to filter out DC component

%% DETERMINE FREQUENCY

freqFFTIndex = find(fft_displRelevAdjSingSidedNoDC==max(fft_displRelevAdjSingSidedNoDC));

%location on freq domain where max occurs

if length(freqFFTIndex)>1 %if multiple frequencies appear as the primary

frequency...

 freqFFTIndex = min(freqFFTIndex); %...select the lowest of these frequencies

 warning('MULTIPLE PRIMARY FREQUENCIES DETECTED')

end

freqFFT = fft_freq(freqFFTIndex); %primary frequency of oscillation [Hz]

freqFFTdist = 1 / ((1/(2*pi*freqFFT))*wSI*(diaCut/1000/2)); %primary frequency of oscillation in

distance cut metric [rad/m]

%% DETERMINE WHICH CUTTING TYPE IS OCCURING

% Case 1: Used when either f = 0 or else when the cutting tool loses

% contact during machining

% Case 2: Used when the cutting tool oscillates, but maintains contact

xStartTest = round(0.45*(relDataSTOP1 - relDataSTART1) + relDataSTART1); %start of range near

middle of data set

xStopTest = round(0.55*(relDataSTOP1 - relDataSTART1) + relDataSTART1); %end of range near

middle of data set

CutTypeCaseTestRange = Fy(xStartTest:xStopTest); %Fy values within

this range

stdTestRange = std(CutTypeCaseTestRange); %calculates standard

deviation of the selected force data in order to determine if oscillation occurs, but at constant

so (constant thickness)

if or(or(f==0,min(yPercent(xStartTest:xStopTest)) <= 0.1),stdTestRange < 1)

 CutTypeCase = 1;

elseif min(yPercent(xStartTest:xStopTest)) > 0.1

 CutTypeCase = 2;

else

 error('Unrecognizable cutting type')

end

122

%% DETERMINE RANGE OF REPRESENTATIVE CONVENTIONAL DATA

% Eliminate loading/unloading portions of traces

Dskip = 100; %distance to eliminate on either side of data [um]

Nskip = round(Dskip/(V_DC*dT)); %number of points skipped

repStart = relDataSTART1+Nskip; %start index

repStop = relDataSTOP1-Nskip; %stop index

FpRep = Fy(repStart:repStop); %Fp data in this representative range [N]

FqRep = Fz(repStart:repStop); %Fq data in this representative range [N]

FpAvgRep = mean(FpRep); %average Fp [N]

%% ALGORITHM 2: DETERMINE RANGE OF DISCRETE "RELEVANT" DATA

% Algorithm 2: "Relevant" = when tool is engaged. Thus this range will

% consist of multiple discrete instances of "relevant" data.

% Note: This range is determined using ch1 because ch1 responds

% "immediately" when the tool is engaged

switch CutTypeCase

% START/STOP ALGORITHM 2 FOR CASE 1 [] [] [] [] [] [] []

case 1

percentTrigger2 = 0.3;

i = 1; %initiate counter Nrel2

iMinus = 0; %after the outer while loop, we'll subtract this from

i

c1 = repStart; %initiate counter c1

switch f %this switch-case generates cPeriod, depending on the piezo's input frequency

 case 0

 cPeriod = repStop-repStart; %a zero freq case needs to exist to prevent Inf

values for cPeriod

 otherwise

 cPeriod = (1/freqFFT)*(1/dT); %number of steps in one period of piezo cycle based

on fft frequency

end

while c1<repStop %stops loop when it reaches end of data set

 % Find Leading Edge > > > > > > > > > > >

 while and(yPercent(c1) < percentTrigger2,c1<repStop) %searches for leading edge by

looking for percent change of > percentTrigger2

 c1 = c1+1; %note: instance wont occur when loop is broken

 end

 relDataSTART2(i) = c1; %location in vector where relevant data starts

 flag1 = 1; %used for debugging

 % > > > > > > > > > > > > > > > > > > > >

 if c1<repStop %do this if we didn't just reach the end of the data

set by looking for another rising edge

 flag1 = 2; %used for debugging

 % Predict Falling Edge - - - - - - - - -

 switch f

 case 0 %if 0 frequency case, skip 3/4 of steps in between

Alg 1's range

 cToSkip = floor((3/4)*(repStop-repStart)); %number of steps to skip before

searching for falling edge

 c1 = c1+cToSkip; %skip the cycles

 otherwise %if not 0 frequency case, calculate and skip

percentage of period, based on user input as to approx how much of period has cutting

("percentHigh")

 cToSkip1 = floor((percentHigh-.10)*cPeriod); %number of steps to skip before

searching for falling edge

 c1 = c1+cToSkip1; %skip the cycles to predict falling edge

 if c1 >= repStop %...but if skipping these cycles puts us past end of

Rel1 set...

 relDataSTART2(i) = ''; %...delete last instance of relDataSTART2 because

Predict Falling Edge counted up to repStop

 iMinus = 1; %after the outer while loop, we'll subtract this from

i because we have a false positive in relDataSTART2

 end

123

 end

 % -

 else %this "else" only occurs if we've reached the end of

the data set while looking for the next leading edge

 relDataSTART2(i) = ''; %if Find Leading Edge counted up to repStop

 iMinus = 1; %after the outer while loop, we'll subtract this from

i

 end

 if c1<repStop %do this if we didn't just reach the end of the data

set by predicting the next falling edge

 % Find Falling Edge o o o o o o o o o o o

 while and(yPercent(c1) >= percentTrigger2 , c1<repStop) %search for falling edge

 c1 = c1+1; %note: instance wont occur when loop is broken

 end

 relDataSTOP2(i) = c1-1; %location in vector where relevant data stops

 flag1 = 3; %used for debugging

 % o

 % Predict Leading Edge = = = = = = = = =

 switch f

 case 0 %do nothing since we're already at end of set

 otherwise

 if (relDataSTOP2(i)-relDataSTART2(i)) < cPeriod %this if command prevents

cToSkip from becoming negative, which occurs if on/off triggers do not occur every period

 cRemainInPeriod(i) = cPeriod - (relDataSTOP2(i)-relDataSTART2(i));

%number of cycles remaining in current period

 cToSkip2 = floor((1/2)*cRemainInPeriod(i)); %number of cycles to skip

before searching for next rising edge

 c1 = c1+cToSkip2; %skip the cycles

 end

 end

 % =

 if c1<repStop %if c1 is STILL less than relDataSTOP (ie we didn't

just reach the end of the relevant Alg 1 data by predicting next leading edge

 i = i+1;

 end

 end

end

Nrel2 = i-iMinus; %subtract 1 (via iMinus) ONLY if there's a false

positive from while loop

% [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] [] []

% START/STOP ALGORITHM 2 FOR CASE 2 <> <> <> <> <> <> <>

case 2

i = 1; %initiate counter Nrel2

iMinus = 0; %after the outer while loop, we'll subtract this from

i

c1 = repStart; %initiate counter c1. This will count through each

of the points in the data set

percentTrigger2 = 0.3; %percent trigger for relevant data flagging for Alg2

%Find valueTrigger2: Use Fy data for triggering/flagging

switch f %this switch-case generates cPeriod, depending on the

piezo's input frequency

 case 0

 cPeriod = repStop-repStart; %a zero freq case needs to exist to prevent Inf

values for cPeriod

 otherwise

 cPeriod = (1/f)*(1/dT); %number of steps in one period of piezo cycle

end

minRel2(i) = min(Fy(c1:c1+ceil(cPeriod)));

maxRel2(i) = max(Fy(c1:c1+ceil(cPeriod)));

rangeRel2(i) = maxRel2(i) - minRel2(i);

valueTrigger2(i) = minRel2(i) + percentTrigger2*rangeRel2(i); %value for relevant data flagging

for Alg2

124

while c1<repStop %stops loop when it reaches end of Alg1's relevant

data

 % Find Leading Edge > > > > > > > > > > >

 while and(Fy(c1) < valueTrigger2(i),c1<repStop) %searches for leading edge by looking

for percent change of > percentTrigger

 c1 = c1+1; %note: instance wont occur when loop is broken

 end

 relDataSTART2(i) = c1; %location in vector where relevant data starts

 flag1 = 1; %used for debugging

 % > > > > > > > > > > > > > > > > > > > >

 if c1<repStop %do this if we didn't just reach the end of the

relevant data according to Alg1 by looking for another leading edge

 flag1 = 2; %used for debugging

 % Predict Falling Edge - - - - - - - - -

 cPeriod = (1/f)*(1/dT); %number of steps in one period of piezo cycle

 switch f

 case 0 %if 0 frequency case, skip 3/4 of steps in between

Alg 1's range

 cToSkip = floor((3/4)*(repStop-repStart)); %number of steps to skip before

searching for falling edge

 c1 = c1+cToSkip; %skip the cycles

 otherwise %if not 0 frequency case, calculate and skip 3/4 of

steps for 1 piezo cycle...

 cToSkip1 = floor((1/2)*cPeriod); %number of steps to skip before searching for

falling edge

 c1 = c1+cToSkip1; %skip the cycles to predict falling edge

 if c1 >= repStop %...but if skipping these cycles puts us past end of

Rel1 set...

 relDataSTART2(i) = ''; %...delete last instance of relDataSTART2 because

Predict Falling Edge counted up to repStop

 iMinus = 1; %after the outer while loop, we'll subtract this from

i because we have a false positive in relDataSTART2

 end

 end

 % -

 else %this "else" only occurs if we've reached the end of

the data set while looking for the next leading edge

 relDataSTART2(i) = ''; %if Find Leading Edge counted up to relDataSTOP2

 iMinus = 1; %after the outer while loop, we'll subtract this from

i because we have a false positive in relDataSTART2

 end

 if c1<repStop %do this if we didn't just reach the end of the

relevant data according to Alg1 by predicting the next falling edge

 % Find Falling Edge o o o o o o o o o o o

 while and(Fy(c1) >= valueTrigger2(i) , c1<repStop) %search for falling edge

 c1 = c1+1; %note: instance wont occur when loop is broken

 end

 relDataSTOP2(i) = c1-1; %location in vector where relevant data stops

 flag1 = 3; %used for debugging

 % o

 % Predict Leading Edge = = = = = = = = =

 switch f

 case 0 %do nothing since we're already at end of set

 otherwise

 if (relDataSTOP2(i)-relDataSTART2(i)) < cPeriod %this "if" command prevents

cToSkip from becoming negative, which occurs if on/off triggers do not occur every period

 cRemainInPeriod(i) = cPeriod - (relDataSTOP2(i)-relDataSTART2(i));

%number of cycles remaining in current period

 cToSkip2 = floor((1/2)*cRemainInPeriod(i)); %number of cycles to skip

before searching for next rising edge

125

 c1 = c1+cToSkip2; %skip the cycles

 end

 end

 flag1 = 4; %used for debugging

 % =

 minRel2(i+1) = min(Fy(relDataSTART2(i):relDataSTOP2(i)));

 maxRel2(i+1) = max(Fy(relDataSTART2(i):relDataSTOP2(i)));

 rangeRel2(i+1) = maxRel2(i+1) - minRel2(i+1);

 valueTrigger2(i+1) = minRel2(i+1) + percentTrigger2*rangeRel2(i+1); %value for relevant

data flagging for Alg2

 if c1<repStop %if c1 is STILL less than relDataSTOP (ie we didn't

just reach the end of the relevant Alg 1 data by predicting next leading edge

 i = i+1;

 end

 end

end

Nrel2 = i-iMinus; %subtract 1 (via iMinus) ONLY if there's a false

positive from while loop

% <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <>

end %of SWITCH on CutTypeCase

%% PLATEAU FINDING ALGORITHM

for c2 = 1:Nrel2 %do this for each chunk of relevant data according to Algorithm 2 (discrete)

 % Plateau Finding Algorithm 1 * * * * * * * * * * *

 percentTrigger3 = 0.6;

 % Fy Left - - - - - -

 LeftIndex1(c2) = relDataSTART2(c2); %initiate position of left boundary of plateau

 while yPercent(LeftIndex1(c2)) < percentTrigger3

 LeftIndex1(c2) = LeftIndex1(c2) + 1; %at completion of loop, this will be the index of

the plateau's trigger on

 end

 % Fy Right

 RightIndex1(c2) = relDataSTOP2(c2); %initiate position of left boundary of plateau

 while yPercent(RightIndex1(c2)) < percentTrigger3

 RightIndex1(c2) = RightIndex1(c2) - 1; %at completion of loop, this will be the index of

the plateau's trigger off

 end

 % - - - - - - - - -

 % *

end

 % Plateau Processing / Short Plateau Correction = = = = = = = = = = = =

 % Correction of Forces o o o o o o o o o o o o o

 for c3 = 1:Nrel2 %counter c3 is essentially identical to c2

 % Fy Plateau

 FyPlateauDomain = Fy(LeftIndex1(c3):RightIndex1(c3)); %vector of forces on

current plateau [N]

 lengthPlatFy(c3) = length(FyPlateauDomain); %length of current

plateau

 if lengthPlatFy(c3)/(relDataSTOP2(c3)-relDataSTART2(c3)+1) < .01 %if current plateau

is short...

 lengthPlatFy(c3) = relDataSTOP2(c3)-relDataSTART2(c3)+1; %...this accounts for

incorrect short plateau (short means <1% of rel2 range)...

 FyPlateauDomain = Fy(relDataSTART2(c3):relDataSTOP2(c3)); %...by making plateau

the entire rel2 range

 end

 FyPlateauAvgs(c3) = mean(FyPlateauDomain); %current plateau's

average force [N]

 FyPlateauStds(c3) = std(FyPlateauDomain); %current plateau's

standard deviation [N]

 % Fz Plateau

 FzPlateauDomain = Fz(LeftIndex1(c3):RightIndex1(c3)); %vector of forces on

current plateau [N]

126

 lengthPlatFz(c3) = length(FzPlateauDomain); %length of current

plateau

 if lengthPlatFz(c3)/(relDataSTOP2(c3)-relDataSTART2(c3)+1) < .01 %if current plateau

is short...

 lengthPlatFz(c3) = relDataSTOP2(c3)-relDataSTART2(c3)+1; %...this accounts for

incorrect short plateau (short means <1% of rel2 range)...

 FzPlateauDomain = Fz(relDataSTART2(c3):relDataSTOP2(c3)); %...by making plateau

the entire rel2 range

 end

 FzPlateauAvgs(c3) = mean(FzPlateauDomain); %current plateau's

average force [N]

 FzPlateauStds(c3) = std(FzPlateauDomain); %current plateau's

standard deviation [N]

 end

 % o

 % Correction of Start/Stop Indices / \ / \ / \ /

 %First Instance _ _ _ _ _ _ _ _

 FyPlateaus = Fy(LeftIndex1(1):RightIndex1(1)); %initiate vector of

Plateau Forces [N]

 lengthToAddFy(1) = length(FyPlateaus); %initiate vector

containing lengths of individual plateaus

 if lengthToAddFy(1)/(relDataSTOP2(1)-relDataSTART2(1)+1) < .01 %if current plateau

is short (short means <1% of rel2 range)...

 lengthToAddFy(1) = relDataSTOP2(1)-relDataSTART2(1)+1; %...this accounts for

incorrect short plateau...

 FyLeftIndex2(1) = relDataSTART2(1); %...by making left

index of plateau same as rel2 START index...

 FyRightIndex2(1) = relDataSTOP2(1); %...and by making

right index of plateau same as rel2 STOP index

 else %the left&right

indices stay the same, since it's not a short plateau

 FyLeftIndex2(1) = LeftIndex1(1);

 FyRightIndex2(1) = RightIndex1(1);

 end

 FyPlateaus = Fy(FyLeftIndex2(1):FyRightIndex2(1)); %redefine plateaus

vector after short plateaus have been accounted for

 FzPlateaus = Fz(LeftIndex1(1):RightIndex1(1)); %initiate vector of

Plateau Forces [N]

 lengthToAddFz(1) = length(FzPlateaus); %initiate vector

containing lengths of individual plateaus

 if lengthToAddFz(1)/(relDataSTOP2(1)-relDataSTART2(1)+1) < .01 %if current plateau

is short (short means <1% of rel2 range)...

 lengthToAddFz(1) = relDataSTOP2(1)-relDataSTART2(1)+1; %...this accounts for

incorrect short plateau...

 FzLeftIndex2(1) = relDataSTART2(1); %...by making left

index of plateau same as rel2 START index...

 FzRightIndex2(1) = relDataSTOP2(1); %...and by making

right index of plateau same as rel2 STOP index

 else %the left&right

indices stay the same, since it's not a short plateau

 FzLeftIndex2(1) = LeftIndex1(1);

 FzRightIndex2(1) = RightIndex1(1);

 end

 FzPlateaus = Fz(FzLeftIndex2(1):FzRightIndex2(1)); %redefine plateaus

vector after short plateaus have been accounted for

 %_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

 %Other Instances * * * * * * * * *

 for c4 = 2:Nrel2

 lengthFyPlat = length(FyPlateaus); %length of force

vector for all plateaus up to present c4

 lengthToAddFy(c4) = RightIndex1(c4) - LeftIndex1(c4) + 1; %length of current

force vector to be appended

 if lengthToAddFy(c4)/(relDataSTOP2(c4)-relDataSTART2(c4)+1) < .01 %if current plateau

is short (short means <1% of rel2 range)...

127

 lengthToAddFy(c4) = relDataSTOP2(c4)-relDataSTART2(c4)+1; %...rewrite

lengthToAddFy to be the length of current rel2 range

 FyPlateaus(lengthFyPlat+1:lengthFyPlat+lengthToAddFy(c4),1) =

Fy(relDataSTART2(c4):relDataSTOP2(c4)); %make plateau the entire rel2 range

 FyLeftIndex2(c4) = relDataSTART2(c4); %left index of

plateau AFTER short plateau correction

 FyRightIndex2(c4) = relDataSTOP2(c4); %right index of

plateau AFTER short plateau correction

 else %plateau is ok

length, proceed with standard plateau finder

 FyLeftIndex2(c4) = LeftIndex1(c4); %the left index stays

the same, since it's not a short plateau

 FyRightIndex2(c4) = RightIndex1(c4); %the right index

stays the same, since it's not a short plateau

 FyPlateaus(lengthFyPlat+1:lengthFyPlat+lengthToAddFy(c4),1) =

Fy(FyLeftIndex2(c4):FyRightIndex2(c4)); %cumulative force vector [N]

 end

 lengthFzPlat = length(FzPlateaus); %length of force

vector for all plateaus up to present c4

 lengthToAddFz(c4) = RightIndex1(c4) - LeftIndex1(c4) + 1; %length of current

force vector to be appended

 if lengthToAddFz(c4)/(relDataSTOP2(c4)-relDataSTART2(c4)+1) < .01

 lengthToAddFz(c4) = relDataSTOP2(c4)-relDataSTART2(c4)+1; %rewrite

lengthToAddFz if instance c4 is a "short" plateau (short means <1% of rel2 range)

 FzPlateaus(lengthFzPlat+1:lengthFzPlat+lengthToAddFz(c4),1) =

Fz(relDataSTART2(c4):relDataSTOP2(c4)); %make plateau the entire rel2 range

 FzLeftIndex2(c4) = relDataSTART2(c4); %left index of

plateau AFTER short plateau correction

 FzRightIndex2(c4) = relDataSTOP2(c4); %right index of

plateau AFTER short plateau correction

 else %plateau is ok

length, proceed with standard plateau finder

 FzLeftIndex2(c4) = LeftIndex1(c4); %the left index stays

the same, since it's not a short plateau

 FzRightIndex2(c4) = RightIndex1(c4); %the right index

stays the same, since it's not a short plateau

 FzPlateaus(lengthFzPlat+1:lengthFzPlat+lengthToAddFz(c4),1) =

Fz(FzLeftIndex2(c4):FzRightIndex2(c4)); %cumulative force vector [N]

 end

 end

 % * * * * * * * * * * * * * * * * *

 % / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /

 FyPlatAvg = mean(FyPlateaus); %average across all

data points included in plateau

 FzPlatAvg = mean(FzPlateaus); %average across all

data points included in plateau

 tPlateausY = 0:dT:(length(FyPlateaus)-1)*dT; %create vector of

pseudotimes for Work integration

 tPlateausZ = 0:dT:(length(FzPlateaus)-1)*dT; %create vector of

pseudotimes for Work integration

 % =

%% PROCESS RELEVANT DATA

% F O R C E S

%Algorithm 1 - - - - - - - - -

FxRelev1 = Fx([relDataSTART1:relDataSTOP1],1); %[N]

FyRelev1 = Fy([relDataSTART1:relDataSTOP1],1); %aka Fp [N]

FzRelev1 = Fz([relDataSTART1:relDataSTOP1],1); %aka Fq [N]

distCutRelev1 = distCut([relDataSTART1:relDataSTOP1],1);%to be used in least squares fitting [m]

tRelev1 = t([relDataSTART1:relDataSTOP1]); %time vector of relevant data [s]

FRelev1Sq = [FxRelev1.^2, FyRelev1.^2, FzRelev1.^2]; %matrix with Fx^2, Fy^2, Fz^2 in columns

[N]

FRelev1SqSum = sum(FRelev1Sq,2); %sum across rows

128

FRelev1Res = sqrt(FRelev1SqSum); %resultant force considering Fx, Fy, Fz

[N]

% - - - - - - - - - - - - - - -

%Algorithm 2 < > < > < > < > < >

FxRelev2(:,1) = Fx(relDataSTART2(1):relDataSTOP2(1)); %initiate vector of relevant forces [N]

FyRelev2(:,1) = Fy(relDataSTART2(1):relDataSTOP2(1)); %initiate vector of relevant forces [N]

FzRelev2(:,1) = Fz(relDataSTART2(1):relDataSTOP2(1)); %initiate vector of relevant forces [N]

displRelev2 = D_AC(relDataSTART2(1):relDataSTOP2(1)); %initiate vector of relevant

displacements [um]

for k = 2:Nrel2

 lengthToAdd = relDataSTOP2(k) - relDataSTART2(k) + 1; %length of current vector to be

appended (add 1 so it includes both start and end positions' data)

 lengthFx = length(FxRelev2);

 FxRelev2(lengthFx+1:lengthFx+lengthToAdd,1) = Fx(relDataSTART2(k):relDataSTOP2(k)); %append

force data [N]

 lengthFy = length(FyRelev2);

 FyRelev2(lengthFy+1:lengthFy+lengthToAdd,1) = Fy(relDataSTART2(k):relDataSTOP2(k)); %append

force data [N]

 lengthFz = length(FzRelev2);

 FzRelev2(lengthFz+1:lengthFz+lengthToAdd,1) = Fz(relDataSTART2(k):relDataSTOP2(k)); %append

force data [N]

 lengthdispl = length(displRelev2);

 displRelev2(lengthdispl+1:lengthdispl+lengthToAdd,1) =

D_AC(relDataSTART2(k):relDataSTOP2(k)); %append displacement data [um]

end

tRelev2 = 0:dT:(length(FxRelev2)-1)*dT; %does NOT correspond to real time, but

can be used for time integration [s]

FRelev2Sq = [FxRelev2.^2, FyRelev2.^2, FzRelev2.^2]; %matrix with Fx^2, Fy^2, Fz^2 in columns

[N]

FRelev2SqSum = sum(FRelev2Sq,2); %sum across rows

FRelev2Res = sqrt(FRelev2SqSum); %resultant force considering Fx, Fy, Fz

[N]

% < > < > < > < > < > < > < > < >

%Peak/Mean Forces = = = = = = = =

% Peak: Use plateau data (mean +/- 1std)

% Mean: Use parent (ie relev1) data (mean +/- 1std)

switch f %f is input freq to piezo

case 0 % : : : : : : :

%Fy PEAK

FyMaxPlusMinus = std(FyPlateaus); %std of entire plateaus data set (only 1

plateau b/c f=0) [N]

FyMaxDC = mean(FyPlateaus); %mean of entire plateaus data set (only 1

plateau b/c f=0) [N]

%Fy MEAN

FyAvgPlusMinus = std(FyRelev1); %std of entire rel1 data set (only 1

plateau b/c f=0) [N]

FyAvgDC = mean(Fy(relDataSTART1:relDataSTOP1)); %mean of entire rel1 data set (only 1

plateau b/c f=0) [N]

%Fz PEAK

FzMaxPlusMinus = std(FzPlateaus); %std of entire plateaus data set (only 1

plateau b/c f=0) [N]

FzMaxDC = mean(FzPlateaus); %mean of entire plateaus data set (only 1

plateau b/c f=0) [N]

%Fz MEAN

FzAvgPlusMinus = std(Fz(relDataSTART1:relDataSTOP1)); %std of entire rel1 data set (only 1

plateau b/c f=0) [N]

FzAvgDC = mean(Fz(relDataSTART1:relDataSTOP1)); %mean of entire rel1 data set (only 1

plateau b/c f=0) [N]

129

% : : : : : : : : : : :

otherwise % + + + + + +

for ck = 1:Nrel2

 FyMax(ck) = max(Fy(FyLeftIndex2(ck):FyRightIndex2(ck))); %max force of current Alg2 chunk

 FzMax(ck) = max(Fz(FzLeftIndex2(ck):FzRightIndex2(ck))); %max force of current Alg2 chunk

 FyAvg(ck) = mean(Fy(FyLeftIndex2(ck):FyRightIndex2(ck)));%average force of current Alg2 chunk

 FzAvg(ck) = mean(Fz(FzLeftIndex2(ck):FzRightIndex2(ck)));%average force of current Alg2 chunk

end

%Fy PEAK

FyMaxPlusMinus = sqrt(sum((lengthPlatFy-1).*(FyPlateauStds.^2)) ./ sum(lengthPlatFy-1));

%pooled standard deviation of plateau standard deviations

FyMaxDC = mean(FyPlateauAvgs);

%pooled means of average plateau values [N]

%Fy MEAN

FyAvgPlusMinus = std(FyRelev1); %std

of entire rel1 data set (not pooled b/c only 1 range)

FyAvgDC = mean(FyRelev1); %mean

of parent forces [N]

%Fz PEAK

FzMaxPlusMinus = sqrt(sum((lengthPlatFz-1).*(FzPlateauStds.^2)) ./ sum(lengthPlatFz-1));

%pooled standard deviation of plateau standard deviations

FzMaxDC = mean(FzPlateauAvgs);

%pooled means of average plateau values [N]

%Fz MEAN

FzAvgPlusMinus = std(FzRelev1);

%standard deviation of parent forces [N]

FzAvgDC = mean(FzRelev1); %mean

of parent forces [N]

% + + + + + + + + + + +

end

% = = = = = = = = = = = = = = = = =

% F R I C T I O N C O E F F

%Use plateau values (xxPlateauAvg1) to prevent zero/inf values. The

%friction coefficient is equal to Fz/Fy (ie Fq/Fp)

u = FzPlateauAvgs./FyPlateauAvgs; %vector of friction coefficients

uDC = mean(u); %DC component of friction coefficient

uPlusMinus = std(u); %plus minus component of friction coefficient

%% LINEAR LEAST SQUARES W/ INPUT FREQ

freqINdist = 1 / ((1/(2*pi*f))*wSI*(diaCut/1000/2));%primary frequency of oscillation in distance

cut metric [rad/m]

d = displRelev1; %set vector d to Alg1's relevant displacement

[um]

C = [cos(freqINdist*distCutRelev1), sin(freqINdist*distCutRelev1),

ones(length(distCutRelev1),1)]; %set matrix C

xIn = inv(C'*C)*C'*d; %get coefficients by solving linear equation

resnormIn = norm(d-C*xIn)^2; %squared 2-norm of residual

Ainput = xIn(1); Binput = xIn(2); Cinput = xIn(3); %COEFFICIENTS TO GIVEN EQUATION

sineFitIn = Ainput*cos(freqINdist*distCutRelev1) + Binput*sin(freqINdist*distCutRelev1) + Cinput;

 %Determine R^2 value - Note: R^2 = 1 - RSS/TSS where resnorm=RSS

 RSSIn = resnormIn; %residual sum of squares

 TSS = sum((d - mean(d)).^2); %total sum of squares

 RsquaredIn = 1 - (RSSIn/TSS); %R^2 value for least squares linear fit on

input frequency

%% LINEAR LEAST SQUARES W/ FFT FREQ

C = [cos(freqFFTdist*distCutRelev1), sin(freqFFTdist*distCutRelev1),

ones(length(distCutRelev1),1)]; %set matrix C

xFFT = inv(C'*C)*C'*d; %get coefficients by solving linear equation

130

resnormFFT = norm(d-C*xFFT)^2; %squared 2-norm of residual

Afft = xFFT(1); Bfft = xFFT(2); Cfft = xFFT(3); %"BEST" COEFFICIENTS TO GIVEN EQUATION by LS

on fft primary frequency

sineFitFFT = Afft*cos(freqFFTdist*distCutRelev1) + Bfft*sin(freqFFTdist*distCutRelev1) + Cfft;

RSSFFT = resnormFFT;

RsquaredFFT = 1 - (RSSFFT/TSS); %R^2 value for least squares linear fit on

fft primary frequency

%% LINEAR LEAST SQUARES W/ MODIFIED FFT FREQ

freqMagnify = 50; %increase frequency resolution by freqMagnify

times, compared to fft

fft_freqResol = (fs/2)/(length(fft_freq)-1); %resolution of fft frequency [Hz]

freqResolMagnify = fft_freqResol/freqMagnify; %new resolution [Hz]

freqFFTModlb = freqFFT-fft_freqResol; %lower bound on primary frequency spectrum [Hz]

freqFFTModub = freqFFT+fft_freqResol; %upper bound on primary frequency spectrum [Hz]

%Initialize Rsquared value for lower bound of frequency - to be used in loop

freqFFTModdist = 1 / ((1/(2*pi*freqFFTModlb))*wSI*(diaCut/1000/2)); %primary frequency of

oscillation in distance cut metric [rad/m]

C = [cos(freqFFTModdist*distCutRelev1), sin(freqFFTModdist*distCutRelev1),

ones(length(distCutRelev1),1)]; %set matrix C

xMod = inv(C'*C)*C'*d; %get coefficients by solving linear equation

resnormMod = norm(d-C*xMod)^2; %squared 2-norm of residual

RSSMod = resnormMod;

RsquaredMod = 1 - (RSSMod/TSS); %R^2 value for least squares linear fit

RsquaredModMax = RsquaredMod; %initializes max Rsquared: this could change

during convergence loop below

freqFFTModBest = freqFFTModdist; %initializes best frequency: this could change

during convergence loop below

if f==0 %in this case the following terms are irrelevant. Thus set == 0

freqFFTModBest = 0;

AAmod = 0; Bmod = 0; Cmod = 0;

RSSModBest = 0;

RsquaredModMax = 0;

else

for i = 1:2*freqMagnify-1 %allows us to test

frequencies between but not including upper and lower bounds

 freqFFTMod(i) = freqFFTModlb + i*freqResolMagnify; %adds number of magnified

delta frequencies to the lower bound frequency [Hz]

 freqFFTModdist = 1 / ((1/(2*pi*freqFFTMod(i)))*wSI*(diaCut/1000/2));%primary frequency of

oscillation in distance cut metric [rad/m]

 C = [cos(freqFFTModdist*distCutRelev1), sin(freqFFTModdist*distCutRelev1),

ones(length(distCutRelev1),1)]; %set matrix C

 xMod = inv(C'*C)*C'*d; %get coefficients by

solving linear equation

 resnormMod = norm(d-C*xMod)^2; %squared 2-norm of

residual

 RSSMod = resnormMod;

 RsquaredMod(i)= 1 - (RSSMod/TSS); %R^2 value for least

squares linear non negative fit

 if RsquaredMod(i) > RsquaredModMax

 freqFFTModBest = freqFFTMod(i); %if this frequency yields

higher Rsquared, save this as best frequency

 RSSModBest = RSSMod;

 RsquaredModMax = 1 - (RSSModBest/TSS); %if new test frequency

yields higher Rsquared, save this freqs parameters as the max

 AAmod = xMod(1); Bmod = xMod(2); Cmod = xMod(3); %"BEST" COEFFICIENTS TO

GIVEN EQUATION by LS on "best" modied frequency

 end

end

end

freqFFTModBestdist = 1 / ((1/(2*pi*freqFFTModBest))*wSI*(diaCut/1000/2)); %primary frequency of

oscillation in distance cut metric [rad/m]

131

sineFitMod = AAmod*cos(freqFFTModBestdist*distCutRelev1) +

Bmod*sin(freqFFTModBestdist*distCutRelev1) + Cmod;

%% EFFECTIVE DISPLACEMENT

D_ACfit = sineFitMod; %use displacement from best fit on modified fft

D_DC = V_DC*tCut; %turret displacement

D_ACDC = D_DC+D_ACfit; %cumulative (ie effective) displacement [um]

D_ACDC = D_ACDC-D_ACDC(1); %offset all values such that ramp starts at D_ACDC = 0

%% DISPLACEMENT OF PREVIOUS PASS

D_ACDCprev(stepsPerRot+1:length(D_ACDC)+stepsPerRot,1) = D_ACDC; %same as D_ACDC but shifted

the equivalent of one spindle rotation

D_ACDCprev(length(D_ACDC)+1:end)=''; %eliminate remaining entries

on vector

%% INSTANTANEOUS UNDEFORMED CHIP THICKNESS

% aka "depth of cut"

h = zeros(length(Fy),1); %initialize variable

h(relDataSTART1:relDataSTOP1) = D_ACDC-D_ACDCprev; %undeformed chip thickness [um]

h(h<0)=0; %set all negative values to zero

%% ACTUAL POWER

P = FyRelev1*V; %Power vector [W]

PAvgRep = FpAvgRep*V; %Average power [W]

%% PREDICTED POWER

% Use forceFitLathe.m to determine function and its best fit

% coefficients. Force is fit according to F=m*x+b-(b/(A*x+1)), thus

% P=V*(m*x+b-(b/(A*x+1)))

coeff = [8.6860e-01 3.2289e+01 2.5792e-01]; %from forceFitLathe.m

Pest = zeros(length(Fy),1); %initialize

Pest = V*(coeff(1)*h + coeff(2) - (coeff(2)./(coeff(3)*h + 1))); %predict power [W]

Pest(h==0)=0; %set power to zero when tool is separated

from workpiece

%% ENERGY

% W O R K (VOL SPEC.)

l = ((repStop-repStart)*dT*V_DC)/1000; %length of workpiece cut based on V_DC [mm]

vol = (pi*(do^2)/4 - pi*(di^2)/4)*(l); %total volume machined [mm^3]

WtotRep = sum(FpRep)*dT*V/vol; %total specific work required [J/mm^3]

WtotRepPred = sum(Pest(repStart:repStop))*dT/vol; %total predicted specific work required

[J/mm^3]

WtotRepTrap = trapz(FpRep)*dT*V/vol; %check value if trapezoidal integration were

used instead

%% SINGLE SINE FUNCTION

% A*sin(x) + B*cos(x) + C = D*sin(x+p) + C

% where:

% D = sqrt(A^2+B^2)

% p = atan(B/A)

switch SScase

 case 1

 xSS = [distCut(relDataSTART1:relDataSTOP1)]'; %relevant x data

 fCase = f; %defines which frequency this case uses [Hz]

 freqSS = fCase*360; %piezo frequency [degrees/s]

 y1SS = Ainput*sind(xSS*freqSS) + Binput*cosd(xSS*freqSS) + Cinput; %two sinusoidal terms

 DSS = norm([Ainput,Binput],2); %magnitude of A & B = D

 pSS = atan2(Binput,Ainput)*180/pi; %phase shift

 y2SS = DSS*sind(xSS*freqSS+pSS)+Cinput; %single sinusoidal term

 strSS = 'Input Frequency'; %to be used to ID which case was used in a figure

 case 2

 xSS = [distCut(relDataSTART1:relDataSTOP1)]'; %relevant x data

 fCase = freqFFT; %defines which frequency this case uses [Hz]

132

 freqSS = fCase*360; %fft frequency [degrees/s]

 y1SS = Afft*sind(xSS*freqSS) + Bfft*cosd(xSS*freqSS) + Cfft; %two sinusoidal terms

 DSS = norm([Afft,Bfft],2); %magnitude of A & B = D

 pSS = atan2(Bfft,Afft)*180/pi; %phase shift

 y2SS = DSS*sind(xSS*freqSS+pSS)+Cfft; %single sinusoidal term

 strSS = 'FFT Frequency'; %to be used to ID which case was used in a figure

 case 3

 xSS = [distCut(relDataSTART1:relDataSTOP1)]'; %relevant x data

 fCase = freqFFTModBest; %defines which frequency this case uses [Hz]

 freqSS = fCase*360; %modified fft frequency [degrees/s]

 y1SS = AAmod*sind(xSS*freqSS) + Bmod*cosd(xSS*freqSS) + Cmod; %two sinusoidal terms

 DSS = norm([AAmod,Bmod],2); %magnitude of A & B = D

 pSS = atan2(Bmod,AAmod)*180/pi; %phase shift

 y2SS = DSS*sind(xSS*freqSS+pSS)+Cmod; %single sinusoidal term

 strSS = 'Modified FFT Frequency'; %to be used to ID which case was used in a figure

end

%% FIGURE: DISPLACEMENT

hfig1 = figure(1); %initialize figure window

fullscreen = get(0,'ScreenSize');

set(hfig1,'position',[0,-50 fullscreen(3) fullscreen(4)])

set(hfig1,'color','w');

set(hfig1,'Name','Data Analysis');

ax(2) = subplot(4,1,1);

hold on

plot(tCut,D_ACDC,'b','linewidth',2)

plot(tCut,D_ACDCprev,'--b','linewidth',2)

hold off

set(gca,'fontsize',18);

ylabel('Displacement (um)');

legend('Current Pass','Previous Pass')

if testCase==1 %if using artificial data...

ylimits = ylim; %get current y limits

ylim([ylimits(1) ylimits(2)+50]) %set maximum y limit to .5 + old y limit for plotting

end

%% FIGURE: FORCES

ax(1) = subplot(4,1,3);

hold on

% X-AXIS: DISTANCE CUT [m]

% hFx = plot(t,Fx,'k','parent',ax(1)); %plot ch0

hFy = plot(t,Fy,'m','parent',ax(1)); %plot ch1

hFz = plot(t,Fz,'b','parent',ax(1)); %plot ch2

hStart1 = plot([t(relDataSTART1);t(relDataSTART1)],[min(min([Fx,Fy,Fz])),max(max([Fx,Fy,Fz]))],'-

-g','linewidth',3); %plot vertical line at relDataSTART

hStop1 = plot([t(relDataSTOP1);t(relDataSTOP1)],[min(min([Fx,Fy,Fz])),max(max([Fx,Fy,Fz]))],'--

r','linewidth',3); %plot vertical line at relDataSTART

hStart2 =

plot([t(repStart);t(repStart)],[min(min([Fx,Fy,Fz])),max(max([Fx,Fy,Fz]))],':g','linewidth',3);

%plot vertical line at relDataSTART

hStop2 =

plot([t(repStop);t(repStop)],[min(min([Fx,Fy,Fz])),max(max([Fx,Fy,Fz]))],':r','linewidth',3);

%plot vertical line at relDataSTART

htext = gca; set(htext,'fontsize',18); %set text fontsize

% xlabel('Time(s)');

for k = 1:length(relDataSTART2)

 %Identify relevant data (Algorithm 2)

 hStart2 = plot(t(relDataSTART2(k)),0,'g.','markersize',20,'linewidth',2.5,'parent',ax(1));

%plot relevant data start markers according to algorithm 2

 hStop2 = plot(t(relDataSTOP2(k)),0,'rx','markersize',8,'linewidth',2.5,'parent',ax(1));

%plot relevant data stop markers according to algorithm 2

133

 %Identify plateau in Fy Data (Algorithm 1)

 hPlatFy1 =

plot([t(FyLeftIndex2(k)),t(FyRightIndex2(k))],[FyPlateauAvgs(k),FyPlateauAvgs(k)],'m--

','linewidth',2,'parent',ax(1)); %plot horizontal line in between markers

 %Identify plateau in Fz Data (Algorithm 1)

 hPlatFz1 =

plot([t(FzLeftIndex2(k)),t(FzRightIndex2(k))],[FzPlateauAvgs(k),FzPlateauAvgs(k)],'b--

','linewidth',2,'parent',ax(1)); %plot horizontal line in between markers

end

htext = gca; set(htext,'fontsize',18); %set text fontsize

ylabel('Force (N)');

%Switch/Case for z Drift Compensation - - - - - - - -

switch showdriftZComp

 case 0

 %LEGH =

legend([hFx,hFy,hFz,hPlatFy1,hPlatFz1,hStart1,hStop1,hStart2,hStop2],'Fx','Fy','Fz','Fy

Plateau','Fz Plateau','Continuous','Continuous','Discrete','Discrete');

 LEGH = legend([hFy,hFz,hPlatFy1,hPlatFz1],'Fp','Fq','Fp Plat','Fq Plat');

 case 1

 hFzIni = plot(distCutNonRel,FzNonRel,'.c','markersize',0.1);

 hFzDriftLine = plot(distCut,FzDriftLine,'r','linewidth',0.1);

 [LEGH,OBJH,OUTH,OUTM] = legend([hFy,hFz,hFzDriftLine],'Fp','Fq','Drift Comp');

end

%-

if testCase==1

ylimits = ylim; %get current y limits

ylim([ylimits(1) ylimits(2)+.5]) %set maximum y limit to .5 + old y limit for plotting

end

hold off

%% FIGURE: DEPTH OF CUT

ax(3) = subplot(4,1,2);

hold on

plot(tCut,h(relDataSTART1:relDataSTOP1),'b','linewidth',2)

hold off

set(gca,'fontsize',18)

strY = sprintf('Undeformed Chip\nThickness (um)');

ylabel(strY)

ylim([-1,max(h(relDataSTART1:relDataSTOP1))*1.1])

%% FIGURE: POWER

ax(4) = subplot(4,1,4);

hold on

plot(tCut,P,'k','linewidth',2)

plot(tCut,Pest(relDataSTART1:relDataSTOP1),'r','linewidth',2)

hold off

set(gca,'fontsize',18)

xlabel('Time (s)')

ylabel('Power (W)')

legend('Actual','Predicted')

linkaxes(ax,'x'); %synchronize limits of x-axes on 1st and 2nd subplots

%% REPORT DATA

disp(sprintf('\n')) %2 blank lines

disp('___')

disp(sprintf('\n')) %2 blank lines

disp(' O U T P U T S ')

disp(sprintf('\n')) %2 blank lines

134

disp('MODULATION PARAMETERS - - - - - - - - - -')

str1 = sprintf('fm = %.4f Hz',freqFFTModBest);

str2 = sprintf('Modulation Amplitude K = %.3f um',norm([AAmod,Bmod],2));

disp(str1)

disp(str2)

disp('- -')

disp(sprintf('\n')) %2 blank lines

disp('FORCE - - - - - - - - - - - - - - - - -')

str5 = sprintf('Mean Representative Fp = %.3f N', FpAvgRep);

switch f

 case 0

 str6 = sprintf('Mean Plateau Fps = %.3f +/- %.3f

N',mean(FyPlateauAvgs(1:end)),std(FyPlateauAvgs(1:end)));

 str7 = sprintf('Mean Plateau Fqs = %.3f +/- %.3f

N',mean(FzPlateauAvgs(1:end)),std(FzPlateauAvgs(1:end)));

 otherwise

 str6 = sprintf('Mean Plateau Fps = %.3f +/- %.3f

N',mean(FyPlateauAvgs(2:end)),std(FyPlateauAvgs(2:end)));

 str7 = sprintf('Mean Plateau Fqs = %.3f +/- %.3f

N',mean(FzPlateauAvgs(2:end)),std(FzPlateauAvgs(2:end)));

end

disp(str5)

disp(str6)

disp(str7)

disp('- -')

disp(sprintf('\n')) %2 blank lines

% disp('FRICTION COEFF - - - - - - - - - - - - -')

% str1 = sprintf('Friction coefficient = %.3f +/- %.3f',uDC,uPlusMinus);

% disp(str1)

% disp('- -')

% disp(sprintf('\n')) %2 blank lines

disp('POWER - - - - - - - - - - - - - - - - - -')

str1 = sprintf('Average = %.3f J/s',PAvgRep);

disp(str1)

disp('- -')

disp(sprintf('\n')) %2 blank lines

disp('WORK REQUIRED - - - - - - - - - - - - -')

str1 = sprintf('Representative Actual = %.4f J/mm^3',WtotRep);

str2 = sprintf('Representative Predicted = %.4f J/mm^3',WtotRepPred);

disp(str1)

disp(str2)

disp('- -')

disp(sprintf('\n')) %2 blank lines

disp('LEAST SQUARES - - - - - - - - - - - - - -')

% str1 = sprintf('On Input Frequency: f=%.4f [Hz]',f);

% str2 = sprintf('\t LSBestFit = %.4f*Cos + %.4f*Sin + %.4f',Ainput,Binput,Cinput);

% str3 = sprintf('\t RSS = %.2E',RSSIn);

% str4 = sprintf('\t R^2 = %.4f',RsquaredIn);

% disp(str1)

% disp(str2)

% disp(str3)

% disp(str4)

% disp(' ')

%

% str5 = sprintf('On Primary FFT Frequency: f=%.4f [Hz]',freqFFT);

% str6 = sprintf('\t LSBestFit = %.4f*Cos + %.4f*Sin + %.4f',Afft,Bfft,Cfft);

% str7 = sprintf('\t RSS = %.2E',RSSFFT);

% str8 = sprintf('\t R^2 = %.4f',RsquaredFFT);

% disp(str5)

% disp(str6)

% disp(str7)

% disp(str8)

% disp(' ')

str9 = sprintf('On %ix Magnified Resolution FFT Frequency: f=%.4f

[Hz]',freqMagnify,freqFFTModBest);

135

str10 = sprintf('\t LSBestFit = %.4f*Cos + %.4f*Sin + %.4f',AAmod,Bmod,Cmod);

str11 = sprintf('\t RSS = %.2E',RSSModBest);

str12 = sprintf('\t R^2 = %.4f',RsquaredModMax);

disp(str9)

disp(str10)

disp(str11)

disp(str12)

disp('- -')

disp(sprintf('\n')) %2 blank lines

disp('DISPLACEMENT FIT EQUATION - - - - - - - -')

str1 = ('X-axis: Distance Cut [m] | Y-axis: Displacement [um]');

str2 = sprintf('Best Fit Equation Using %s (%.3f Hz)',strSS,fCase);

str3 = sprintf('%.3f*Sin(%.0f*X+%.3f)+%.3f',DSS,freqSS,pSS,Cinput);

disp(str1)

disp(str2)

disp(str3)

disp('- -')

disp(sprintf('\n')) %2 blank lines

disp('___')

