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ABSTRACT 

 
Satellite operations are becoming an increasingly private industry, requiring increased 

profitability. Efficient and safe operation of satellites in orbit will ensure longer lasting and more 

profitable satellite services. This thesis focuses on the use of a multi-objective evolutionary 

algorithm to schedule the maneuvers of a hypothetical satellite operating at geosynchronous 

altitude, by seeking to minimize the propellant consumed through the execution of stationkeeping 

maneuvers and the time the satellite is displaced from its desired orbital plane. North-South 

stationkeeping was studied in this thesis, through the use of a set of orbit inclination change 

maneuvers each year. Two cases for the maximum number of maneuvers to be executed were 

considered, with four and five maneuvers per year. The results delivered by the algorithm provide 

maneuver schedules which require 40 to 100 m/s of total    for two years of operation, with the 

satellite maintaining the satellite’s orbital plane to within 0.1˚ between 84 and 96 percent of the 

two years being modeled.  
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Chapter 1  
 

Introduction 

As commercial space companies expand their operations in space, these companies and 

organizations must investigate new, more cost effective methods to continue the necessary 

operations to help make this fledgling industry profitable. One concern is to extend the 

operational lifespan of their commercial satellites. The objective of this thesis is to demonstrate 

the application of a modern multi-objective evolutionary algorithm to this problem in order to 

investigate an optimal stationkeeping maneuver scheduling to ensure safer and more cost 

effective operational lifetimes for geosynchronous satellites by minimizing both the time out of 

position and the total propellant consumed over the operational period of the satellite. This is 

done using a procedural model, which simulates the operation of a collection of satellites over the 

course of three years. These satellites are considered to be under the perturbing effects of the 

gravitational pulls of the Sun and Moon. A direct correlation between the frequency of 

maneuvering and both total time out of service and total fuel consumed is expected. The results of 

this thesis could offer insights into a new method for planning the stationkeeping maneuvers 

necessary for long-term operations of satellites in geosynchronous orbit. 

1.1: Motivations 

The focus of this thesis is the operation of satellites in geosynchronous orbit, where a 

variety of satellites critical to telecommunications and national defense are operated. Ensuring 

longer, less expensive and safer operational lifetimes for these satellites is the most direct route to 

decreasing the cost and extending the operational lifetime of a satellite. Doing so involves 
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extending the usefulness of the available fuel supply for the necessary stationkeeping maneuvers. 

Profitability for the satellite, and especially for a constellation of satellites, can be increased by 

minimizing the amount of time an individual satellite is out of service, times when it is unable to 

perform the functions it was designed to carry out due to maneuvering or having its antennas or 

other systems shut down to avoid damage.  

Also of significant concern is the ever-present possibility of collisions between satellites. 

Fortunately, to this point, no major collisions between satellites has occurred at geosynchronous 

altitudes, but the immediate and long-term effects of a single collision in low-Earth orbit can be 

easily seen by a quick investigation of the Iridium-Cosmos collision in 2009 [7]. Knowing these 

effects and the limitations of ground-based tracking systems leads to some concern as orbital 

altitudes about the Earth continue to become more crowded.  

1.2: Method 

The optimal stationkeeping problem uses a model following Cowell’s Method for a 

satellite orbiting Earth at geosynchronous altitude, with the gravitational perturbations of the Sun 

and Moon. This model uses a fixed step-size numeric integrator to model the motion and 

operation of one satellite over a two year period under the perturbing effects of the Sun and 

Moon. A range of stationkeeping maneuver frequencies, from one maneuver daily to one 

maneuver annually, is used to demonstrate the inefficiency of arbitrary maneuver scheduling. In 

order to optimize the scheduling of the maneuvers, a multi-objective evolutionary algorithm will 

be applied to the problem, which will schedule four and five maneuvers per year for the satellite. 

Optimal performance of the results will be determined by the amount of total    consumed and 

the percentage of the total time in operation the satellite spends with a position that lies outside of 
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the desired orbital plane by more than 0.1˚. Since this is a demonstration, an impulsive thrust 

approximation is used for this model. 

1.3: Thesis Overview 

Chapter 2 begins with some background information on the space environment and 

general practices at geosynchronous altitudes, additional information on the severity and lasting 

effects of satellite collisions, and concludes with an overview of the history, inspiration, 

operation, and application of evolutionary algorithms. That will be followed in Chapter 3 by an 

in-depth investigation of the problem and a derivation of the equations of motion which were 

used for the simulation, including the assumptions applied to make the problems tractable. Also 

included here is an overview of the model with an explanation of the interactions with the multi-

objective evolutionary algorithm. In Chapter 4 a few representative or exceptional cases, and their 

results, will be considered in detail. Finally, Chapter 5 contains the conclusions reached based on 

the data generated from the experiments carried out using the model, as well as suggestions for 

future work. 
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Chapter 2  
 

Background 

2.1: Geosynchronous Operations 

The geosynchronous Earth orbit (GEO) is extremely important to the day-to-day 

operations of the modern world. Many key communications satellites are operated at that altitude, 

taking advantage of the unique opportunity to have the satellite move at the same rate the Earth 

rotates, thus allowing the satellite to remain fixed relative to a stationary observer. However, this 

popularity can become a liability.  

In order to allow for more satellites to operate at GEO, a method known as co-location is 

used. This assigns multiple satellites to occupy the same locations in orbit, but makes these 

particular locations much more crowded. These highly desired orbit slots correspond strongly to 

the locations on the Earth with greatest population. As of January 2004, as many as 8 satellites 

occupied a single 2˚ bin at geosynchronous altitude [1]. Understandably, the more crowded an 

area of space is, the greater the likelihood of collisions occurring there. As a result, effective 

stationkeeping methods are necessary to ensure the long-term safety of satellite operations at 

GEO.  

There are two primary forms of maneuvers used for stationkeeping at GEO. First is east-

west stationkeeping [2] [3]. This type of stationkeeping is needed to ensure that a satellite will 

remain in its desired parking slot at altitude. Too large of an east-west drift will put a satellite at 

risk of colliding with another satellite. This drift is caused by the non-uniform gravitational 

potential of the Earth. Even in a circular, equatorial orbit, these small variations have a 

measurable effect on the satellite, which must be corrected for. The other type of maneuver 
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needed at GEO is intended for correcting the north-south drift caused primarily by the 

gravitational pulls of the Sun and Moon. This is a very long period drift in the inclination of the 

orbit, requiring approximately 27 years to complete a single half period with amplitude of nearly 

15˚ [4]. 

The particular stationkeeping methods used depend on the mission being carried out. For 

maintaining the formation of a constellation over time, relative stationkeeping is used. This 

method maintains the relative positions between the satellites in the constellation, which 

maintains the integrity of the formation over time. This method is ideal for applications where 

precise relative positioning within the constellation is needed, often for applications where 

continuous coverage is needed by the formation, not by any particular individual satellite. The 

other method is known as absolute stationkeeping. For this method, a box is defined along the 

formation’s orbital track. This box is the region in which the satellite is to operate. Maneuvers are 

used to keep the satellite operating within this box at all times, with new maneuvers being carried 

out when the boundary of the box is reached. This method is most useful in applications where 

coverage of particular regions of the Earth’s surface is necessary, or for the operation of an 

individual satellite, as opposed to a constellation. The parking slot assigned to a satellite in GEO 

is an excellent example of a well defined operational box, within which the satellite must remain 

at all times. 

Currently, most stationkeeping operations are controlled from stations on the ground. 

When the orbit of the satellite, or constellation, being operated has had its orbit perturbed from 

the desired orbit, maneuvers are ordered from the ground station to correct the orbit. Since the 

late 1990s, autonomous orbit control systems have been developed and deployed on operational 

satellites. These autonomous systems reduce the operation costs for a mission by allowing the 

satellite to schedule and carry out its day-to-day operations, thus reducing the necessary staffing 

for the mission, which reduces the cost of operation. 
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2.2: Collisions 

The potential for collisions have been present since the dawn of the space age, but have 

increased in likelihood in the most recent decades. A variety of causes for collision events exist, 

both natural and manmade. 

Collisions on orbit are a threat which must always be considered in planning of satellite 

operations. Micrometeoroids are an ever present threat, primarily at GEO, with the likelihood of 

such an impact increasing at certain times of the year corresponding to various meteor showers. A 

variety of predictive models exist for the micrometeoroid environment, which predict the flux, 

mass and speed distributions of particles at orbit. [5] 

A dramatic illustration of the results of a collision between satellites occurred in February 

of 2009 when an uncontrolled satellite, Cosmos 2251, collided with the active communications 

satellite Iridium 33, a member of the Iridium communications satellite constellation. This 

collision destroyed both satellites, shattering them into many smaller pieces. The Iridium 

satellite’s destruction left a hole in the constellation’s coverage, requiring other satellites to 

maneuver to cover the sudden gap. The destruction of the satellites also increased the number of 

uncontrolled objects in orbit. This event illustrates the multiple risks posed by collision events at 

orbit: they jeopardize the mission of the satellite and can produce hundreds, even thousands of 

addition pieces of debris, increasing the chances of future collisions [6] [7] [8] [9]. 

This type of collision requires significant relative velocities to occur. As a result, they 

mainly occur in lower orbits, where a multiple orbit inclinations are used, leading to crossing 

orbit tracks. Great effort has been put into researching and avoiding collisions between satellites, 

using predictive models to determine the probabilities of future collisions [10].  At GEO, the orbit 

used is in the equatorial plane, and all objects are traveling in the same direction. As a result, the 

relative velocities between any two satellites in orbit at GEO are very small. This means that any 
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inter-satellite collisions at this altitude are likely to be less dramatic than those at lower altitudes, 

but are by no means any less concerning [11]. Satellites are very fragile systems, independent of 

the altitude they operate at. As a result, even a minor collision can have significant effects on the 

operation of a satellite. Some examples of these effects may include the misalignment of 

thrusters, which hampers orbit maintenance operations, and the damaging of antennas, inhibiting 

the communication of the satellite with the ground. 

2.3: Evolutionary Algorithms 

Considering the costs and risks involved in launching and operating satellites in GEO, the 

use of modern techniques for optimizing the operation of these systems is of significant interest. 

Evolutionary algorithms are incredibly powerful tools for optimizing and investigating 

interesting and important engineering problems. These optimization methods have been applied 

to engineering problems since their development in the 1980s. Now, advances in computer 

hardware allow for greater numbers of computations to be carried out in a shorter period of time 

and allow for more truly useful results to be obtained from a particularly powerful class of the 

evolutionary algorithm, the multi-objective evolutionary algorithm. 

2.3.1: Operation 

The operation of any genetic algorithm is derived from the basic principles of Darwinian 

evolution, in particular the survival of the fittest. Through the use of a cost or fitness function to 

rate the strength of individual members of the digital population, as well as various generational 

changes, a population is moved through the search space toward an optimal solution for the 

problem at hand. 
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The fitness function is a user defined function. Typically, this is some mathematical 

expression of the form: 

                (2.1) 

where       and      . This minimization is typically done using some restrictions, which 

can be placed on both the objective and search, or solution, spaces. Doing so can significantly 

reduce search time by limiting the feasible search space, allowing for more of the population to 

search the space of interest and lead to more useful results in a shorter time. 

As with biological evolution, a population is gradually moved from an initial random 

dispersal to at least one member being optimized for survival. The movement of the population 

members is done through a series of operators, namely crossover, mutation, and selection. 

Crossover is analogous to mating where the characteristics, decision variable values, two or more 

population members are combined in some manner in order to produce one or more new 

population members. A wide variety of crossover methods exists and are employed in different 

algorithms, each providing unique strengths and weaknesses. Mutation varies the characteristics 

of individual members randomly, expanding the search of the algorithm. Selection determines, 

based on the fitness of the individual population members, and determines population members 

that move onto the next generation. As with crossover, a variety of methods exists, each with 

different levels of selection pressure and competition.  

Single-objective problems, such as maximizing the load a beam can carry, and multi-

objective problems, such as maximizing the load a beam can carry while minimizing the weight 

of the beam, each have different types of solutions. As a result, the operation of single-objective 

and multi-objective algorithms differs slightly, mainly in the stopping criteria for the algorithm. 

For multi-objective algorithms, the run length is governed by the number of fitness function 

evaluations that are desired. Single objective algorithm run times can vary, as they operate until 

an optimal solution is found. A generic flow chart for the operation of a genetic algorithm can be 
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found in Figure 2.1. First, an initial population is created with random values for each of the 

attributes each member carries. The attributes of these population members are then passed to a 

fitness function, which returns a numerical value for the fitness level of each population member 

for all of the objectives being considered. The fitness values are then used in selection, where the 

“survival of the fittest” concept is applied. Here, the most fit members of the current population 

are selected to be used in generating a new generation through the use of a crossover operation. 

These most fit members may also persist into the next generation, depending upon the algorithm 

being used. At the same time, the algorithm may store the most fit members in an archive to be 

used in later generations, but this function also depends upon the particular algorithm being used. 

A mutation operator is typically applied as well, which varies the attributes of each member by a 

small amount. With a new generation created, the algorithm checks that the stopping criteria have 

been met. If they have, the results are returned, and the algorithm’s operation ceases. If they have 

not been met, then the algorithm passes the current population to the fitness evaluation function, 

continuing the loop. 
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Figure 2.1: Flow Chart for a Genetic Algorithm 

The use of the archive is an optional component, included in some newer algorithms. 

Population members with the best fitness in their generations are stored in the archive, and are 

often employed in operations with future generations in order to maintain greater diversity within 

a population, helping to prevent the algorithm from stalling. 

With all of the operators, the main focus is properly combining each to provide a fast and 

accurate algorithm. This leads to a necessity for balance between rapid convergence, which can 

cause the algorithm to be extremely sensitive to local optima, and stagnation which prevents the 

algorithm from completely driving the population to an optimal value. These concepts are heavily 

discussed in the references [12] [13] [14] [15].  
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2.3.2: Multi-Objective Evolutionary Algorithms 

The multi-objective evolutionary algorithm, or MOEA, has its own unique challenges. In 

order to understand these challenges and several of their solutions, a few definitions must be 

established. The first of these terms is non-dominance. In the context of MOEAs, a non-

dominated solution cannot be outperformed by any other solution in terms of all objectives. A 

non-dominated set is the set of solutions which cannot be outperformed in all of the objectives by 

any other population member. To increase performance in any one objective, performance in at 

least one other objective must be sacrificed. This is the root of the trade-off concept. Illustrating 

the trade-offs between a collection of possible solutions makes a posteriori decision making 

possible. Another term for this collection of non-dominated solution is the Pareto optimal set.  

Another term for the Pareto optimal set, often used when referring to a graphical 

representation of the results provided by an algorithm, is the Pareto front. These fronts are the 

limit on the optimization available for the problem being considered. In fact, the front separates 

the solution space into two distinct regions: the accessible and inaccessible regions. The points 

lying on the front are the non-dominated set of solutions to the problem being considered, or the 

representations of the optimal solutions to the problem being considered. The shape of the Pareto 

front is typically unique to the problem being considered.  Bounds exist on the dimension of the 

Pareto front. The maximum dimension of the Pareto front will be one less than the dimension of 

the objective space. 

A distinction must be made between the different conditions of Pareto optimality. As in 

single objective problems, a global set of optimal solutions is desired. The set of globally optimal, 

non-dominated, solutions is the Pareto optimal set. Typically, Pareto optimal sets can only be 

easily known for multi-objective test problems [16] [17] used to investigate the performance of 

MOEAs. For the vast majority of real-world applications, especially when exhaustive testing is 
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not a readily available option, the generated solution set must be termed a Pareto approximate set 

until some type of proof of optimality can be applied. 

The quality of the results provided by an MOEA can be described in terms of three 

characteristics: convergence, consistency, and diversity. Convergence refers to approaching the 

Pareto optimal front. A fully converged solution will lie on the Pareto front. A consistent solution 

consists of results which all have similar levels of convergence. Obtaining a single result which is 

significantly more converged than the rest does not provide the trade-off information we desire 

from the application of an MOEA. Diversity in the solutions is also highly desired. Solutions 

which are clumped together offer very little insight into the trade-offs available in solving the 

problem. The ideal solution set displays all of these characteristics leading to a well defined 

Pareto optimal set, with the greatest insight into the options available to solve the problem being 

studied. 

The stopping criterion for an MOEA is significantly different from that used by a single 

objective algorithm. Since a consistently, fully converged, diverse set of results is desired, the use 

of a measure of improvement from generation to generation is not easily defined, and is typically 

not sufficient. Instead, the length of time over which the algorithm is operated is used to 

determine when the operation should end. The parameter defining this is known as NFE, or 

number of function evaluations. A higher NFE total provides the MOEA with more opportunity 

to search the solution space, but requires more computer time and operations in order to provide 

the final results.  

2.3.3: History 

Evolutionary algorithm development began in the 1980’s as a method to solve 

optimization problems, particularly for problems where derivative based methods were not 
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applicable or efficient [18]. These early algorithms sought to solve single-objective problems 

which had a single optimal solution.  

As the broad applicability of this method became apparent, it was applied to other, more 

interesting engineering problems. Most engineering problems have a multitude of design criteria, 

such as cost, weight, and failure criteria, which must be optimized. There are often trade-offs 

between these objectives, where improvement in any one objective can only be obtained by 

sacrificing performance in another. Early work on these multi-objective problems was done using 

single objective algorithms being applied to each individual objective. This method proved to be 

clumsy, inefficient, and lacking in proofs which could be applied to demonstrate the optimality of 

the result. 

Major changes occurred in the mid-1990’s with the development of the Nondominated 

Sorting Genetic Algorithm, or NSGA, by Deb [19]. This algorithm provided significant 

performance improvements compared to the earlier MOEAS, but the algorithm used a very vague 

parameter known as niche radius. This parameter did not easily relate to the problem being 

considered but significantly affected the performance of the algorithm, mainly in terms of 

convergence rate. The next improvement on the algorithm was the most important, leading to the 

Nondominated Sorting Genetic Algorithm II, or more compactly, NSGA-II  [20]. With this 

iteration, the use of the niche radius parameter was removed, making the results provided by the 

algorithm more easily understood. More recently, the ε-Domination Based Multi-Objective 

Evolutionary Algorithm, ε-MOEA [21], which is used in this thesis, has revisited the use of the 

spacing parameter in a different manner. The ε-dominance used in this, and other recent 

algorithms, serves to accelerate the convergence of the algorithm. Further developments in 

algorithms, such as the self-parameterizing Borg MOEA [22], have offered significant 

improvements in terms of speed and search fidelity. 
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2.3.4: Applications to Optimization Problems

Evolutionary algorithms have applications across a wide variety of engineering 

disciplines. Examples of these applications can be found in such varied disciplines as civil, 

electrical, and aerospace engineering. As varied as the disciplines are, the subjects of the 

applications are even more varied, ranging from water resource management to satellite 

constellation design.  

The needs for clean, readily available water has become an increasingly important subject 

of interest for many communities and decision makers across the globe, driving engineers to 

pursue novel techniques to provide decision makers with as much accurate information as 

possible with as little personal bias as can be achieved. The global search methods used in 

MOEAs allows for all of the available options to be analyzed, with the costs and benefits of each 

easily returned for the consideration of decision makers. Reed et al. have used MOEAs 

extensively in their research and in advising policy makers in the available option in dealing with 

optimal allocation of water resources [23] [24].  

One of the original applications of evolutionary algorithms was in the development of 

control laws, modifying the gains of controllers to increase the stability or performance of an 

engineering system. This has continued with the development of multi-objective EAs, allowing 

for more than a single desired trait to be investigated. Extensions of this approach have reached 

into the realm of fuzzy logic and machine learning, with noteworthy applications including the 

development of fuzzy autopilot systems, optimized using MOEAs [25].  

In addition to the controls aspects of aerospace engineering, MOEAs have been applied 

successfully to problems in other facets of the discipline. Increasing interest in supersonic 

vehicles has driven the development of more safe and efficient airfoil shapes at these velocities. 

Such applications have led to superior designs being discovered which were previously unknown 
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[26]. Applications in the fields of satellite operations and constellation design and operation 

abound, as well. With recent successful developments and deployments of high-efficiency, low-

thrust propulsion systems for use on satellites, optimal applications have been highly desired. 

MOEAs have been used in designing both interplanetary trajectories and orbit transfers, often 

focusing on the use of low-thrust propulsion systems [27] [28] [29] [30]. Satellite constellations 

have been employed for as long as large area coverage for communication or positioning systems 

has been needed. Given the national security implications of the failure of a member of the 

constellation, the problem of reconfiguring the constellation while maintaining both the coverage 

of the constellation and ensuring the longest possible operational lifetime of the constellation as a 

whole has been of significant interest,. MOEAs proved to be incredibly well suited to investigate 

this problem, and offered unique insights into the problem itself [31]. Another developing 

technology is the use of formation flying of small satellites. These satellites offer enhanced 

capabilities for scientific experimentation over modern satellites, at equal or lower cost. 

Efficiently maneuvering these formations can pose problems, most notably due to the risks of 

contamination of other formation members with expelled propellant. With all of these 

considerations in mind, MOEAs have been applied to determining the maneuver size, direction, 

and coasting arc for each formation member, allowing for a safer and more cost effective 

operation of a formation [32]. 

As this technology develops, and a wider variety of engineers and scientists investigate 

the unique benefits provided by MOEAs, new applications will arise. The variety of these newer 

applications, as well as the results found, have drawn heavy attention. These trends have become 

so numerous and noteworthy as to spur the writing of a book on the subject. Coello Coello 

released a text in 2005, covering the trends in evolutionary multi-objective optimization, 

concerning both the developing theory and applications of these tools [33]. 
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Chapter 3  
 

Analysis 

3.1: Overview of Problem 

When orbiting the Earth, perturbing forces, of smaller magnitude than that of the 

gravitation of Earth, cause variations in the orbit of the satellite. These perturbations arise from a 

variety of sources, and vary in type and magnitude with the orbital altitude of the satellite. At 

geosynchronous altitude, the most significant perturbations arise from the gravitational effects of 

the Sun and Moon, solar radiation pressure, and zonal harmonic effects; the most significant of 

these are the Luni-Solar gravitational effects [34]. These perturbations cause changes in the 

inclination of the orbits of satellites at higher altitudes and can thus subject those satellites to 

other perturbations, such as zonal harmonic effects, with increased significance. The model used 

here incorporates the effects of the gravitational perturbations of the Sun and Moon acting on a 

single, hypothetical, satellite orbiting Earth at GEO.  

3.2: Assumptions 

A variety of assumptions and simplifications are made for this problem to allow a 

solution to be obtained in a reasonable amount of time. The first assumption is that the satellite is 

primarily orbiting the Earth, and that the Sun and Moon are applying perturbing gravitational 

effects to that orbit. All other forces and pressures, such as atmospheric drag, solar radiation 

pressure, and gravitational attraction from other planets, are being ignored. We next make the 
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assumption that the mass of the satellite is much less than that of the mass of the gravitational 

sources being considered, allowing for the following: 

              (3.1) 

 

All maneuvers are assumed to be carried out using impulsive maneuvers. All of the 

velocity changes are assumed to be instantaneous, with no time-varying thrust profile. With the 

one minute time steps being used for this model, this approximation is quite reasonable as the 

burn times necessary for such small changes in velocity are likewise quite small, certainly smaller 

than the one minute time steps.  

Following along with the previous assumption, the mass of the satellite is assumed to 

remain constant though the operational period being studied. In reality, whenever the thrusters are 

used, the satellite discharges a small amount of its overall mass. Thus, over the operational 

lifetimes of the satellite, the total mass can decrease by as much as 50% [34, pp. 894-5].  

For this model, only the inclination regulating maneuvers are being simulated. There is 

no simulation of the rephasing of the satellite or for reorienting the satellite in order to carry out 

the maneuver. The necessary    for an inclination change,   , at any point on an orbit, is given 

by 

 
          

 

 
  

(3.2) 

 

where    is the magnitude of the velocity at the time the of maneuver, and   can be found using 

spherical trigonometry to be  

                                              (3.3) 

Here,    is the inclination of the orbit before the maneuver,    is the inclination after the 

maneuver, and    is the change in right ascension of the ascending node from the initial to the 
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final orbit. The most efficient location on the orbit to carry out this type of maneuver is at the 

node crossing, where the orbit crosses the equatorial plane. At that location, no change in right 

ascension of the ascending node is needed, reducing the value for  , which decreases the 

necessary   . The formula for finding the necessary    becomes simply 

 
           

  

 
  

(3.4) 

 

3.3: Derivation of the Equations of Motion 

The derivation of the equations of motion is fairly simple, following directly from 

Newton’s Second Law of Motion, 

                                             
(3.5) 

 

Through substitutions, including the assumption noted in Eq. (3.1), the governing 

equations of motion for this problem simplify to 

     

   

   

   
    

  
 

       

    
 

 
        

     
 

 
(3.6) 

 

To simplify further, some vector relations are needed in order to reduce the 

computational needs. Consider Figure 3.1 below, showing the positional relationships between 

the Earth, Sun, Moon, and satellite. 
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Figure 3.1: Vector diagram illustrating the geometry of the problem 

 

Based on the vector relations, the following substitutions are employed: 

                (3.7a) 

                 (3.7b) 

 

As a result, Eq. (3.5) can be written as 

    

   

   

   
    

  
 

            

    
 

 
            

     
 

 
(3.8) 

 

The formulation of Eq. (3.8) puts the equations of motion into a convenient form for 

modeling. Through the use of an efficient ephemeris [35] [36], the positions       and       can be 

easily found at any desired time. 
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3.4: MOEA 

This problem boils down to the optimal scheduling of a set of stationkeeping maneuvers 

for a satellite in GEO. The optimal timing for each maneuver, however, depends upon the 

previous maneuvers. These earlier maneuvers determine when the satellite will cross the desired 

orbital plane where a maneuver can be carried out with minimal fuel consumption. MOEAs are 

very well suited for solving this type of problem, making their application here quite interesting. 

The model, further explained in Section 3.5, serves as the fitness evaluation function for 

the MOEA being used for this thesis. Due to its computational efficiency and variety of 

applications, the εMOEA is applied to the problem. This is done through the use of the MOEA 

Framework, version 1.10, openly available from http://www.moeaframework.org. This 

framework provides a means of easy integration of externally defined problems with a variety of 

MOEAs as well as methods for analyzing the performance of the chosen algorithm for the 

specified problem. 

The εMOEA is noteworthy for applying the archive of most fit population members in 

the crossover and mutation operations. This allows for the algorithm to avoid stagnation in 

converging to the Pareto front. Figure 3.2 illustrates the operation of the εMOEA, including the 

use of the archive members in every generation. 

As with any evolutionary algorithm, an initial population with random attributes is 

created and evaluated for fitness. Selection is carried out using tournaments which offer the 

benefits of increased diversity within each generation while driving convergence. The most fit 

members are then saved to the archive and passed onto the crossover operation. Simultaneously, a 

tournament selection on the archive members is carried out. The selected archive members are 

also passed to the crossover operator. One regular population member is crossed with an archive 

member to generate new population members. This tight integration of the archive in both 
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selection and crossover serves to increase the diversity of the population, which provides a more 

thorough search of the solution space. A mutation operation is then carried out on the population 

members. Finally, the algorithm checks the total number of function evaluations it has completed 

and proceeds or closes as is appropriate. 

 

Figure 3.2: Flow Chart for the εMOEA 

The other noteworthy difference between the operation of εMOEA and other MOEAs is 

the use of ε-dominance. A value, known as ε, can be defined for each objective which is being 

optimized. The objective space can then be broken down into a grid with cells with size ε1 by ε2, 

as can be seen in Figure 3.3. Only one dominant solution can exist within each cell. This 

approach serves to increse the both diversity of the search results and the convergence rate for the 

algorithm. Selection is also more quickly carried out because any population members that exist 

in a cell dominated by any other populated cell considered fully dominated, and are therefore not 

considered. In Figure 3.3, if P, 1, and 2 are assumed to be population members of a particular 

generation, assuming that optimality requires minimizing f1 and f2, selection would occur only 
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between points 1 and 2, as the cell they populate dominates the cell in which P populates, and 

thus they dominate P as well. 

 

Figure 3.3: Figure Illustrating ε-Dominance (From Deb. Et al, 2003 [21]) 

For this thesis, the decision vector has length N, where N is the number of maneuvers. 

Each member of this decision vector is a number  , where  

       (3.9) 

 

This vector is passed into the model which then interprets each as the fraction of the year which 

must pass before carrying out each stationkeeping maneuver.  

 While operating, the model will compile values for two objectives: the total    usedand 

the portion of the operational time being considered where the satellite has an out of desired plane 

position of at least 0.1˚. The total    used provides a generic measure of propellant consumption, 

independent of the type of thruster used for the maneuvers. The time out of position is of interest 

for the effective operation of the satellite. Increased time spent out of the desired orbital plane can 

decrease the time where coverage is provided to a desired location. It also increases the time 
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where the satellite is subjected to additional perturbing forces, typically due to the non-uniform 

distribution of the Earth’s mass.  

 Before returning the results to the MOEA, the time out of position is divided by the total 

time being investigated, so that the time out of position objective,    , lies between 0 and 1. 

Some of the total    values may be excessively large, and therefore unreasonable to consider. A 

threshold limit of 100 m/s of velocity change per maneuver, double the value suggested as 

necessary by Chobotov, is used to remove the results which require more velocity change. If the 

total    is greater the 100 m/s times the number of maneuvers carried out, the time out of 

position objective is incremented by 1. This ensures that these useless results are not carried on 

from generation to generation. 

 The algorithm is carried out using the default parameterizations for the εMOEA built into 

the MOEA Framework. The only parameter which is varied is the maximum NFE. Three values 

of NFE are considered in this thesis: 1000, 5000, and 10000. The results returned for each of 

these different stopping criteria serve to illustrate the relationship between length of search and 

result quality for this problem. 

3.5: Model 

The model applied here employs Cowell’s method [37] [38] [39] in order to numerically 

propagate the motion of a hypothetical satellite at geosynchronous altitude over a period of two 

years. In addition to the gravitational pull of the Earth, the perturbing effects of the gravitational 

forces applied by the Sun and Moon must also be incorporated. The position vector is initially 

aligned with the First Point of Aries at 00:00:00 UTC on 1 January, 2013. The satellite is initially 

on a circular orbit. 
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This model serves as the fitness function used by the εMOEA. The scheduled maneuver 

times for each population member are passed as arguments. The objective space for the problem 

is two-dimensional. Through the use of the MOEA, an optimal set of maneuver schedules, all of 

which require a combination of the two objectives: the minimum amount of propellant used and 

the minimum amount of time where the satellite is displaced from the desired orbital plane by 

more than 0.1˚. The satellite will operate under the same scheduling for both years being 

simulated. Values for these objectives are calculated by the model, and are returned to the 

MOEA, which uses the values at later stages in its operation. 

The overall operation of the model and its incorporation with the MOEA is very straight 

forward. As decision variables, the model receives a vector of times at which the stationkeeping 

maneuvers should be carried out. The model then integrates the equations of motion for the 

satellite, while performing the maneuvers at the indicated times. After the integration is carried 

out, the total propellant used over the operational period of the satellite being considered, in terms 

of   , and the ratio of the total time spent with an out-of-plane displacement greater than 0.1˚ 

with the total time being simulated are determined. These two values are then passed back to the 

MOEA as objective values. A slight refinement of the objective values is needed. With no 

method for bounding the objective values, results with unreasonable objective values may be 

produced. In order to accommodate this, a simple correction is made to the both of the generated 

objective values if either one is found to exceed the reasonable limits. A flow chart for the model 

is shown in Figure 3.4. 

Upon receiving the scheduled times for the maneuvers, the model initializes the positions 

of the satellite and the positions of the Sun and Moon relative to Earth. The motion of the 

satellite, Sun, and Moon relative to Earth are integrated over the course of a year, with the 

satellite performing maneuvers at the scheduled times. After the year is completed, the total    

used and time spent out of the desired orbital plane are calculated. If the satellite has not 
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completed both years of simulated operation, the next year is simulated. If both years of operation 

are complete, the total    and time out of plane for both years are totaled and returned to the 

MOEA. 

 

 

Figure 3.4: Flow Chart for Model 

Integration of the equations of motion is carried out using an improved Euler method. 

This method was selected because it offered accuracies on the same order as the ephemeris 

models used, and is computationally very fast. This is desired because it allows for faster function 

evaluations, requiring less wall clock time in order to carry out a set number of function 

evaluations for an algorithm run. The inset portion of the model loop is shown in Figure 3.5.  

Starting from an initial time corresponding to zero minutes into the year, the model 

checks to see if this is a time where a maneuver is scheduled to be carried out. If yes, then the 



26 

 

maneuver is carried out, the total amount of    used is increased by the    required for the 

maneuver. The position and velocity vectors for the satellites are corrected to reflect the 

maneuver was carried out. The position vectors from the Sun and Moon to the satellite are then 

calculated, so that the integration of the equations of motion can be carried out. The updates 

position vector is then used with the desired position vector to determine whether the satellite is 

deemed to be orbiting out of the desired orbital plane. If this is the case, then the time out of 

position total is incremented. The current time is then incremented, leading to a check to see if 

half of a day has been completed since the last time the positions of the Sun and Moon were 

updated. If this is the case, then updated positions are found. Another check is carried out to 

determine if a year of operation has been simulated. If this is the case, then this portion of the 

routine is exited, returning to the outer loop shown in Figure 3.4. Otherwise, the loop is re-entered 

and followed until the desired simulation is completed. 

The desired position vector for the satellite,    , is known as a function of time by 

                                       (3.8) 

where   is the mean motion of the satellite, found by 

 

   
  

    
  

(3.9) 

  is the time since the investigation began, and          are the ECI unit vectors. 
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Figure 3.5: Flow Chart for Inner Loop for Model 

3.6: Problem Cases 

Two problem cases are used for this thesis. First is a verification case, where the only 

decision variable is the integer number of stationkeeping maneuvers to be carried out each year. 

This case is used to verify the integrity of the model, and to compare results to those already 

shown in literature [4]. The second, and arguably more interesting case, is the scheduling of a set 

number of maneuvers each year.  

The verification case is used to obtain similar results to those found by Chobotov, namely 

that 4-5 maneuvers carried out annually can maintain the orbit of a satellite in GEO to 

approximately 0.1˚, with each maneuver requiring about 50 m/s of   . The search space of this 



28 

 

case is very simple to navigate as it is just the set of integer numbers from 1 to 365, 

corresponding to the number of evenly spaced maneuvers carried out per year of operation. Given 

the very small, one-dimensional search space of this case, the use of a MOEA is decidedly 

frivolous, so the model will simply be run for each of the different values to be investigated. This 

verification case uses a fairly naïve approach to scheduling the maneuvers, assuming that they 

occur at evenly spaced intervals throughout the year. As a result, the applied velocity changes 

will not be minimal, as it is highly unlikely that the maneuvers will be carried out where the 

perturbed orbit and desired orbit intersect, which requires a change in right ascension of the 

ascending node for the orbit as well.  

The second case has a much larger search space, with dimension equal to the number of 

maneuvers to be used each year. This search space is much more interesting because a wide 

variety of combinations of timings of maneuvers exist. The decision vector for this case will be 

N-dimensional, where N is the number of maneuvers to be carried out. The components of the 

vector are denoted   , the time from the start of the year to the time when the maneuver is carried 

out. A slight restriction of the search space can be made by requiring that         , which 

reasonably requires that the scheduled maneuvers be carried out in order, and not be scheduled at 

the same time. Within the second case, two sub-problems are considered, scheduling four 

maneuvers and five maneuvers per year. These maneuver counts were chosen in order to parallel 

the recommendations of Chobotov. 

The scheduling of the maneuvers is a problem very well suited to the application of an 

MOEA because there is coupling between the scheduling of the maneuvers and the occurrence of 

the ideal times to perform an inclination change, namely where the satellite crosses the equatorial 

plane. This coupling of the decision variables is easily accommodated by the search method 

applied by the MOEA.
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Chapter 4  
 

Results 

4.1: Naïve Scheduling 

The data generated from the search of the naïve scheduling space provide a baseline set 

of results for comparison with the results which are generated by the MOEA. The results 

tabulated in Table 4.1 illustrate the inefficiency of scheduling maneuvers in such a manner. The 

unreasonable nature of these results is shown by considering the maximum total    used for the 

operational period being simulated; the maximum value is hundreds of times larger than the    

required to enter an interplanetary transfer trajectory. The time out of position objective, the ratio 

of time spent with a displacement from the desired orbital plane of at least 0.1˚, also proves to 

have room for significant improvement.  

Table 4.1: Range of Objective Values for Naïve Scheduling Method 

 Minimum Maximum 

Δv (km/s) 0.0905 37393 

Time Out of Position 

Percentage 

2.80 82.05 

 

Particular interest is placed on the sub-problems of scheduling four and five maneuvers 

per year. The total    and time out of service ration for both cases are tabulated in Table 4.2. 

These values provide a baseline condition which we desire the results generated by the MOEA to 

improve upon.  
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Table 4.2: Naïve Scheduling Results for Four and Five Maneuver Sub-Problems 

 Maneuvers 

4 5 

Δv (km/s) 0.0905 136.0980 

Time Out of Position 

Percentage 

31.17 55.78 

 

The    totals shown in Table 4.2 were produced by totaling the    used in 4 and 5 

evenly spaced inclination change maneuvers per year for two years. The relatively large 

magnitudes are expected, as the likelihood that the maneuvers were carried out at or near the 

desired orbital plane, where the change in right ascension of the ascending node would be small, 

is very slim.  

4.2: Scheduling With εMOEA 

Through the use of a MOEA, improvements in both objectives are made through 

adjusting the decision variables for the problem, in this case, the times at which the 

stationkeeping maneuvers are carried out. The solutions generated by the MOEA completely 

dominated the naïve solution to the problem, as desired. 

4.2.1: Four Maneuver 

Although the baseline results showed that the naïve scheduling of four maneuvers per 

year outperformed all of the other configurations in terms of propellant consumption, a time out 

of position of over 31% shows significant room for improvement. The schedules for the 

maneuvers used by the satellite, and the accompanying objective values are shown in Figure 4.1. 

These results were generated using different values for the maximum number of fitness function 
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evaluations which the MOEA is to use. The results were so dominant, in fact, that the baseline 

results and MOEA generated results could not be shown on the same figure while providing 

sufficient resolution to view the Pareto fronts. The minimum and maximum increases in 

performance for both of the objectives at each of the allowed NFE are displayed in Table 4.3. 

These increases in performance in terms of total ∆v consumption range from 23.72% to 47.92%. 

In addition, total    consumption for this maneuver type ranged between 40 and 70 m/s, reduced 

from 90 m/s. Even more noteworthy are the improvements in the percentage of time out of 

position. Improvements here ranged from 50.67% to 85.54%.  The performance increases are 

relative to the baseline results from Table 4.2. 

 

Table 4.3: Increases in Performance with Respect to the Baseline Results for Four Maneuvers 

 Percent Change from Baseline 

NFE Δv Time Out of Position 

Minimum Maximum Minimum Maximum 

1000 26.80 40.53 50.67 80.68 

5000 23.72 35.18 57.91 85.54 

10000 29.14 47.92 56.47 85.27 
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Figure 4.1: Development of the Pareto Front with varying Function Evaluations for the four maneuver sub-

problem 

4.2.2: Five Maneuver 

The five decision variable problem produced similar results to the four variable problem. 

Great room for improvement existed for this problem, with a baseline required ∆v of over 136 

km/s and over 55% time out of position. The improvements for this problem resulted in maneuver 

schedules providing similar    requirements to those for the four maneuver case, but provided 

even better results in terms of the time out of position for the satellite. The tabulated 

improvements are quite large, but are not unreasonable when considering the poor performance 

from the naïve search. The performance increases are relative to the baseline results from Table 

4.2. 
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Table 4.4: Increases in Performance with Respect to the Baseline Results for Five Maneuvers 

 Percent Change from Baseline 

NFE Δv Time Out of Position 

Minimum Maximum Minimum Maximum 

1000 99.9486 99.9550 99.8391 99.93873 

5000 99.9536 99.9610 99.7418 99.9732 

10000 99.9548 99.9605 99.9587 99.9891 

 

 

 

Figure 4.2: Development of the Pareto Front with varying Function Evaluations for the five maneuver sub-

problem 
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More noteworthy than the relative improvements are the final ranges in objectives 

returned by the MOEA. All of the optimal maneuver schedules require total    less the 100 m/s, 

and ensure the satellite operates outside of the desired orbital plane by no more than 16% of the 

time it is in orbit.  

4.3: Analysis of Results 

Significant improvements over the naïve scheduling method are seen for both sub-

problems. The maneuver schedules developed using the MOEA vastly outperform the naïve 

scheduling method in terms of both the total propellant consumed during the course of operation, 

and the time the satellite is displaced from its desired orbital plane.  

The large search space of coupled decision variables displays noteworthy dependence on 

the number of function evaluations used by the algorithm. Significant changes in the location of 

the Pareto front developed after 10000 function evaluations can be seen in both the four and five 

maneuver problems, as shown in Figure 4.1and Figure 4.2. The most significant changes are seen 

when comparing the Pareto fronts after 5000 NFE and 10000 NFE. The 10000 NFE Pareto front 

dominates the front after 5000, as performance in both objectives is improved for both sub-

problems. The complete domination of the naïve solutions used as a basis for comparison 

supports the application of this method for developing maneuver schedules for satellites.  

The Pareto approximate set for the four maneuver problem exhibits better diversity than 

the five maneuver results. This provides a more well-defined Pareto front, which helps to better 

illustrate the available trade-offs. The results for both sub-problems showed excellent 

consistency, with no apparent outliers existing in the non-dominated sets.  

Overall, the significant improvements in both objectives suggests that the use of such a 

method for the scheduling of stationkeeping maneuvers is a viable option. The relationship 
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between the NFE and level of convergence is not unexpected. With larger maximum NFE comes 

increased time where the algorithm can search the solution space for optimal configurations. Run 

serially on a 3.42 GHz AMD processor, the 10000 NFE runs required approximately three hours 

each to complete. Larger runs would reasonably take longer. However, the use of parallelization 

techniques, namely carrying out the fitness evaluations on separate processors would significantly 

reduce the time to perform the same search.  

This approach offers unique advantages over more conventional, human-centric, 

approaches, where the maneuvers are scheduled individually, often as they become necessary. 

Through the use of an MOEA, any number of maneuvers can be scheduled prior to the launch of 

a satellite, assuming that sufficiently accurate ephemeris information is available. Additional 

constraints can also be placed upon the solution space, such as requiring a particular maneuver to 

be carried out at a specified time. Multiple schedules can be developed in a matter of hours, 

whereas developing similar results conventionally could require days. Solving in parallel offers 

additional opportunity for scalability, as increasing the number of processors in a computer 

system is typically easier, faster, and cheaper to perform when compared to adding additional 

staff.
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Chapter 5  
 

Conclusions and Future Work 

This thesis has shown that scheduling stationkeeping maneuvers using an MOEA is a 

viable option that provides significant decreases in the time the satellite spends out of the desired 

orbital plane and the required    used in stationkeeping when compared to scheduling maneuvers 

at evenly spaced maneuvers every year. In practice, the results returned would provide satellite 

operators a variety of options for maneuver schedules, with each option providing unique benefits 

in terms of propellant consumption or time out of position. This variety would allow for the 

mission to be more heavily analyzed before launch, which in turn can allow for more accurate 

budgets for propellant consumption or insight into needs to investigate other possible issues with 

the long-term operation of the satellite, such as coverage concerns. 

Additional applications of this method exist and warrant further investigation. 

Expansions on the model described here are many in number. One notable possible extension is 

the inclusion of east-west stationkeeping maneuvers, in addition to the north-south maneuvers 

used in this thesis. Such a study could provide improved scheduling guidelines or practices, 

improving the effectiveness of satellite operations. Such a study could be further expanded upon 

by applying this method to an actual mission, and comparing the MOEA generated results to the 

actual operation of the satellite. 

Some additional possible options here include using higher accuracy ephemeris data, or 

accounting for other perturbations, such as solar radiation pressure. A variety of other thrust 

models could be considered, including low-thrust thrusters, constant magnitude or even ramp 

thrust profiles. There is also no reason this method could not be applied to other orbits, at lower 
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altitudes or other inclinations. Changing these altitudes and inclinations introduces other possible 

perturbations, such as atmospheric drag and oblateness effects. 

It should be noted, once again, that a word of caution is needed concerning the use of 

multi-objective evolutionary algorithms. Algorithm operation is carried out for an established 

number of fitness function evaluations. The time required to carry out an individual run for a real 

world cost function is typically much greater than the time needed for the evolutionary algorithm 

to be carried out. As a result, with greater wall-clock time needed for the function to be evaluated, 

fewer function evaluations can be carried out in a set length of time, reducing the amount of the 

search space which can be covered. So, in practice, although a more accurate model is always 

desired, the time necessary to evaluate this model may seem restrictive. Currently, the most 

effective approach to dealing with this problem is distributing the operations out over multiple 

processors, thus increasing the amount of evaluations which can be carried out in a set amount of 

wall time. The availability of the necessary resources for such an approach should always be 

considered before being applied, as a significant investment of time must be given in configuring 

the problem and evolutionary algorithm to operate on multiple processors.
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