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Abstract

This thesis presents new models for conditional covariance matrix. The proposed non-
parametric covariance regression model parameterizes the conditional covariance matrix
of a multivariate response vector as a quadratic function of regression splines. The re-
sulting conditional covariance matrix is positive definite for all explanatory variables
and represents the conditional covariance as the summation of a “baseline” covariance
matrix and a positive definite matrix depending on the explanatory variables. The pro-
posed approach provides an adaptable representation of heteroscedasticity across the
levels of explanatory variable. In addition, the model has a random-effect representa-
tion, allowing for the maximum likelihood parameter estimation via the EM-algorithm.
The asymptotic normality for the estimators is established and some numerical examples
are used to illustrate the proposed procedure.

To cope with the high-dimensionality of the covariates, estimating the conditional
covariance matrix through a modified Cholesky decomposition is proposed. The mod-
ified Cholesky decomposition procedure associates each local covariance matrix with
a unique unit lower triangular and a unique diagonal matrix. The entries of the lower
triangular matrix and the diagonal matrix have statistical interpretation as regression co-
efficients and prediction variances when regressing each term on its predecessors. It
ensures that the estimated conditional covariance matrix is positive definite. To circum-
vent the curse of dimensionality, a class of partially linear models are used to estimate
those regression coefficients and local linear estimators are developed to estimate the
nonparametric variance functions. The asymptotic properties of the proposed procedure
are studied. We show that the proposed procedure for estimating the conditional covari-
ance matrix based on residuals has the same asymptotic bias and variance as that based
on true errors. Comprehensive simulation studies and a real data example are presented
to illustrated the proposed methods.
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Chapter 1
Introduction

1.1 Motivation of the Research

The problem of mean regression (i.e., µµµx = E[y|x]) has been well studied in both the

univariate and multivariate settings. However, estimating a conditional covariance func-

tion Σx = Var[y|x] across a range of response values for an explanatory x-variable is

less studied. In the univariate case, a number of statistical models and procedures sug-

gest that the variance can be expressed as a function of the mean, i.e. for some known

function g, σ2
x = g(µx). For example, see the discussion in Carroll et al. (1982). Other

approaches include separately estimating the mean and the variance (see, for example,

Rutemiller & Bowers (1968), Smyth (1989), etc.) and using kernel estimates of the

variance function (Müller & Stadtmüller (1987)).

The multivariate covariance regression has generally been developed by standard

regression operations on the unconstrained elements of the logarithm of the Cholesky

decomposition of the covariance or the precision matrix. Chiu et al. (1996b) suggested

modelling the elements of the logarithm of the covariance matrix (i.e., Φx = logΣx) as

linear functions of the explanatory variables, i.e. φ j,k,x = β T
j,kx for unknown coefficients

β j,k. One advantage of the constructed covariance function {Σx : x ∈X } is that the

domain of the explanatory x-variable is the same as that in mean regression, i.e., the

explanatory vector can be continuous, discrete, and categorical. However, an issue with

this formulation is the difficulty of the parameter interpretation; a submatrix of Σx does

not necessarily coincide with a submatrix of Φx, so the elements of Φx do not directly

relate to the corresponding covariances in Σx. Pourahmadi (1999) proposed to model
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the unconstrained elements of the Cholesky decomposition of Σ−1
x as linear functions of

x. The weights associated with the jth row have a natural interpretation in terms of the

conditional distribution of y j given y1, . . . ,y j−1. However, one problem of such method

is that this model is not invariant to reordering of the elements of y, and therefore,

it is problematic when there is no natural order of the variables. Additionally, both the

models of Chiu et al. (1996b) and Pourahmadi (1999) require q× p(p+1)/2 parameters

to be estimated, which is very large. The idea of Cholesky decomposition has also

been used by Pourahmadi (2000), Wu & Pourahmadi (2003), and Huang et al. (2006)

to reformulate the estimation of covariance matrix within the framework of regression

modeling.

In recent years, data sets with high dimension and small sample size relative to

dimension have become very common. Examples include gene expression arrays, spec-

troscopic imaging, numerical weather forecasting, and many others. Estimating large

covariance matrices, where the dimension of the data p is comparable to or larger than

the sample size n, has gained particular attention latterly, since high-dimensional data

are so common in applications. There have been a series of researches focusing on the

estimation of sparse covariance matrix or precision matrix using regularization proce-

dures. For example, see the discussions by Meinshausen & Bühlmann (2006), Bickel

& Levina (2008a,b), Levina et al. (2008), and Lam & Fan (2009). Meinshausen &

Bühlmann (2006) proposed a computationally attractive method for covariance selec-

tion that can be used for sparse high-dimensional graphs by performing neighborhood

selection with the LASSO for each node in the graph. By either banding or tapering the

sample covariance matrix, or estimating a banded version of precision matrix, Bickel &

Levina (2008b) obtained an estimate of large covariance matrix which were shown to

be consistent in the operator normal if (logp)/n→ 0. When the variables in covariance

matrix have a natural ordering, Levina et al. (2008) used the Cholesky decomposition

and introduced a nested Lasso penalty to estimate the large covariance matrix. Lam &

Fan (2009) precisely studied the sparsistency and the rate of convergence for estimating

sparse covariance and precision matrices based on penalized likelihood with nonconvex

penalty functions.

Nonparametric regression models have been commonly used in assorted areas. A

number of researchers have extensively studied the various estimation procedures for

the nonparametric regression function. To our best knowledge, although there are some
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references on nonparametric conditional variance function (see Ruppert et al. (1997),

Fan & Yao (1998) and references therein), references for nonparametric models for

conditional covariance matrix are very limited. Lately, Fan et al. (2007) introduced

to model the correlation functions using parametric models and the variance functions

using a fully nonparametric model to estimate the conditional covariance functions of

response variable conditioning on a set of covariates. A kernel estimator for estimat-

ing the nonparametric variance function was developed and the positive definiteness of

the estimated covariance function was ensured. Yin et al. (2010) proposed a fully non-

parametric model for the conditional covariance matrix. However, one limitation of this

method is that it is restricted to the high-dimensional covariates.

More recently, Hoff & Niu (2012) proposed a covariance regression model that pa-

rameterizes the covariance matrix of a vector of multivariate response as a parsimonious

quadratic function of explanatory variables, i.e., Σx = A+BxxT BT with A positive def-

inite and B real. The q× p parameters of B have a direct interpretation in terms of how

heteroscedasticity co-occurs among the p variables of y. In addition, the model has a

random-effects representation, so that straightforward maximum likelihood parameter

estimation via the EM-algorithm can be used, which is computationally efficient. How-

ever, this model still has some limitations in: (1) flexibility based on the parametric

approach; (2) high-dimensional case with large p . In addition, Hoff & Niu (2012) have

not proven any theoretical properties of the estimated parameters.

1.2 Contribution of the Thesis

In this thesis, I consider nonparametric, conditional covariance functions. The proposed

covariance regression model parameterizes the conditional covariance matrix of a mul-

tivariate response vector as a quadratic function of regression splines, which can be re-

garded as a natural extension of Hoff & Niu (2012)’s method. The resulting covariance

function is positive definite for all explanatory variables and represents the conditional

covariance as a “baseline” covariance matrix plus a positive definite matrix depending

on the explanatory variables. The proposed approach provides an adaptable represen-

tation of heteroscedasticity across the levels of explanatory variable. The explanatory

variables of all types, including categorical variables, are accommodated in the proposed

covariance regression model, which is useful in the analysis of multivariate data. The
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maximum likelihood parameter estimation via the EM-algorithm is used for estimating

the parameters. The theoretical development has also been established, which shows

the asymptotic normality for the estimators. Several numerical examples are used to

illustrate the proposed procedure.

The proposed nonparametric conditional covariance models result only considers the

case where the covariates are in the low dimensional space. However, it becomes less

useful in situations where the covariates are high-dimensional. Therefore, estimating the

conditional covariance matrix through a modified Cholesky decomposition is proposed.

The modified Cholesky decomposition procedure associates each local covariance ma-

trix with a unique unit lower triangular and a unique diagonal matrix. The entries of the

lower triangular matrix and the diagonal matrix have statistical interpretation as regres-

sion coefficients and prediction variances when regressing each term on its predecessors.

To circumvent the curse of dimensionality of covariates, a class of partially linear mod-

els are used to estimate those regression coefficients and kernel estimators are developed

to estimate the nonparametric covariance functions. This proposed method ensures that

the estimated conditional covariance function is positive definite locally. It also retains

the parsimony of parametric models and flexibility of the nonparametric models. The

asymptotic properties of the proposed procedure are studied. Comprehensive simulation

studies and a real data example are presented to illustrated the proposed methods.

1.3 Organization of the Thesis

The rest of this thesis is divided into the following chapters.

• Chapter 2 provides a brief review of the related work regarding the estimation of

the covariance matrix. First, parameterization-based approaches, including spec-

tral decomposition, variance-correlation decomposition, and Cholesky decompo-

sition are discussed. Second, several regularization procedures for estimating

large covariance matrices, where the dimension of the data is comparable to or

larger than the sample size, are presented. Two broad groups of covariance es-

timations are considered: those that rely on a natural ordering among variables,

assuming that variables far apart in the ordering are only weakly correlated and

those invariant under variable permutations. Third, nonparametric approaches for

estimating the covariance structures are discussed.
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• Chapter 3 proposes a general approach to estimate the conditional covariance ma-

trix in the context of nonparametric regression models. Two covariance regres-

sion models are considered: one with continuous explanatory variable only and

the other with both continuous and discrete explanatory variables. Parameter es-

timation for each model is made via random-effects representation and an EM-

algorithm. The consistency and asymptotic normality properties of the maximum

likelihood estimators (MLEs) for the proposed nonparametric covariance regres-

sion model are shown. A number of simulation studies are also examined in this

chapter, with an application to the Boston Housing data presented.

• Chapter 4 proposes a methodology for estimating the conditional covariance ma-

trix in the context of high dimensionality. A modified Cholesky decomposition

procedure associates each local covariance matrix with a unique unit lower tri-

angular and a unique diagonal matrix. The entries of the lower triangular matrix

and the diagonal matrix have statistical interpretation as regression coefficients

and prediction variances when regressing each term on its predecessors. A class

of partially linear models are used to estimate those regression coefficients and

kernel estimators are developed to estimate the nonparametric variance functions.

The asymptotic properties of the proposed procedure are studied. Comprehensive

simulation studies and a real data example are presented to illustrated the proposed

methods.

• Chapter 5 concludes the dissertation with recommendation of the future work on

the proposed nonparametric models for the conditional covariance matrix.



Chapter 2
Literature Review

The estimation of covariance matrix is one of the most common and important tasks in

statistical analysis. It has profound applications in assorted fields, which include but are

not limited to: graphical modeling (see, for example, Edwards (2000), Drton & Perlman

(2004), Yuan & Lin (2007)), longitudinal data analysis (see, for example, Diggle &

Verbyla (1998), Smith & Kohn (2002)), machine learning (see, for example, Bilmes

(2000)), and multivariate volatility in finance (see, for example, Bollerslev et al. (1988),

Engle (2002)), etc. It is also one the most challenging and difficult task in practice due

to its dimensionality and the positive definite constraint. In this chapter, several major

methods for the estimation of covariance matrix are presented.

2.1 Parameterization-based Approaches

In consideration of the complexity of a covariance matrix, it is helpful to start by break-

ing it down into components based on modelling considerations and mathematical con-

venience. Decompositions that have caught research interests include spectral decom-

position, variance-correlation decomposition, and Cholesky decomposition. All these

methods consist of decomposing complicated covariance matrices into “dependence”

and “variance” components and then modeling them virtually and separately using re-

gression techniques (Pourahmadi et al. (2007)).
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2.1.1 Spectral (Eigenvalue) Decomposition

The spectral decomposition (also known as eigenvalue decomposition) is to reparame-

terize a covariance matrix Σk in terms of its eigenvalue and eigenvector:

Σk = DkΛkDT
k , (2.1)

where Dk is the matrix of eigenvectors and Λk is a diagonal matrix with the eigenvalues

of Σk on the diagonal.

The reparameterization of covariance matrices in terms of the eigenvalue decompo-

sition has been considered by Flury (1984, 1988). In that model, Flury assumed the

eigenvector matrices, Dk, to be the same across all population and thus the covariance

matrix in the kth population can be expressed as

Σk = DΛkDT . (2.2)

If samples are from independent multivariate normal populations and the eigenvectors

are uniquely identified except for sign and permutation, the maximum likelihood esti-

mates of D and Λk can be computed by the Flury-Gautschi algorithm (Flury & Constan-

tine (1985); Flury & Gautschi (1986); Clarkson (1988)) and the asymptotic distribution

of the estimators is known (Flury (1986a)).

In the context of Gaussian clustering, Banfield & Raftery (1993) have used the spec-

tral decomposition to specify that some, but not all, features (orientation, size, or shape)

to be the same for all clusters. They considered a reparameterization of the covariance

matrix Σk of a cluster Pk in terms of its eigenvalue decomposition,

Σk = λkDkAkDT
k , (2.3)

where λk defines the volume of Pk, Dk is an orthogonal matrix which determines its ori-

entation, and Ak is a diagonal matrix with determinant 1 which defines its shape. They

also gave algorithms for computing the maximum likelihood estimates, but did not ob-

tain the asymptotic distribution of the estimators. The proportional covariance model

(Owen (1984); Flury (1986b); Eriksen (1987); Manly & Rayner (1987); Schott (1999))

is a special case of Banfield & Raftery (1993)’s model. Celeux & Govaert (1995) have

considered the eigenvalue decomposition of the clusters’ covariance matrices from a
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general and flexible point of view. They proposed many general clustering criteria from

the simplest one (spherical clusters with equal volumes which leads to the classical k-

means criterion) to the most complex one (unknown and different volumes, orientations

and shapes for all clusters). To overcome the limitations of Banfield & Raftery (1993)’s

approach, which includes no assessment of the uncertainty about the classification, bias

for the estimated parameter, pre-specified shape matrix by user, equal prior group prob-

abilities, and no formal way of choosing among the possible models etc., Bensmail et al.

(1997) proposed a fully Bayesian analysis of the model based clustering methodology of

Banfield & Raftery (1993). Boik (2002) proposed a spectral model for the simultaneous

eigenstructure of multiple covariance matrices, which subsumes most existing common

principal components and related models. Under normality, he used a Fisher scoring

algorithm for computing maximum likelihood estimates of the parameters and derived

the asymptotic distributions of the estimators.

In spectral decomposition (2.1), the matrix Dk can be further decomposed into a

product of Givens rotation matrices, so that Σk is parameterized in terms of its eigen-

values and Givens angles. (see, e.g., Yang & Berger (1994); Pinheiro & Bates (1996);

Daniels & Kass (1999); and references therein). Yang & Berger (1994) placed a ref-

erence prior on the eigenvalues and the Givens angles and then used it to carry out

Bayesian inference on the covariance matrix. Under different loss functions, the per-

formance of the resulting Bayes estimators of the covariance matrix was showed to be

comparable with several alternative estimators. The approach of Yang & Berger (1994)

is flexible in that it does not assume any specific parametric form for the covariance

matrix, and is applied generally to covariance matrices arising from cross-sectional data

as well as those from longitudinal data. However, it does not identify any specific par-

simonious structure in the covariance matrix, which is an desirable objective for the

covariance matrix under some specific settings, for instance, longitudinal data.

In transforming to the matrix logarithm, Leonard & Hsu (1992) substantially started

from the spectral decomposition. They proposed a flexible class of prior distribution

for the covariance matrix of a multivariate normal distribution and developed exact and

approximate Bayesian, empirical and hierarchical Bayesian estimation and finite sample

inference techniques. Applying the spectral decomposition, Chiu et al. (1996a) provided

a flexible methodology to model the structure of a covariance matrix and study the de-

pendence of the covariances on explanatory variables. They suggested modelling the
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elements of the logarithm of the covariance matrix,

Ψx = logΣx, (2.4)

as linear functions of the explanatory variables, so that for unknown coefficients βi, j,

ψi, j,x = β
T
i, jx. (2.5)

This generalized linear model for covariance matrices provides an applicable addition

to the existing range of special structures for covariance matrices. The proposed method

makes use of the fact that the only constraint on Ψx is its symmetry. However, as the

authors noted, parameter interpretation for the model is difficult. For instance, a subma-

trix of Σx is not generally the matrix exponential of the same submatrix of Ψx, so the

elements of Ψx do not directly link to the corresponding covariances in Σx. On the other

hand, the number of parameters in the model can be quite large. For y ∈Rp and x ∈Rq,

the model involves a q-dimensional vector of coefficients for each of the p(p+ 1)/2

unique elements of Ψx, so the total parameters to be estimated is q× p(p+1)/2.

2.1.2 Variance-Correlation Decomposition

Another commonly used method for handling the covariance matrix is based on the

variance-correlation decomposition. Manly & Rayner (1987) introduced a hierarchy and

a corresponding ANOVA-type partition of the likelihood ratio test statistic for the com-

parison of two or more sample covariance matrices. They showed that the differences

between the covariance matrices depends on changing variances, changing correlations,

and matrices being proportional. Barnard et al. (2000) modeled a covariance matrix in

terms of its corresponding standard deviations and correlation matrix. Specifically, they

wrote

Σk = PkRkPT
k ,

where Pk = diag(
√

σk11, . . . ,
√

σkpp) is a diagonal matrix whose diagonal entries are

the square-roots of those of Σk, and Rk is the corresponding p× p correlation ma-

trix. Two general modelling situations where the variance-correlation decomposition

approach is applicable and useful: shrinkage estimation of regression coefficients and

a general location-scale model for both continuous and categorical variables, were dis-
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cussed. It is noticed that the positive definite constraint of the covariance matrix can be

easily handled via a Gibbs-sampler formulation.

2.1.3 Cholesky Decomposition

In addition, the idea of Cholesky decomposition is widely used to estimate the uncondi-

tional covariance matrix in recent literature. Liu (1993) used the Cholesky decomposi-

tion to obtain a Bartlett-type decomposition of the posterior distribution of a covariance

matrix with monotone missing data. There is also a literature on using the Cholesky

decomposition directly for the covariance matrix (Pinheiro & Bates (1996)), though the

resulting parameterizations do not have simple statistical interpretation. Pourahmadi

(1999, 2000) used the Cholesky decomposition of the inverse of a covariance matrix to

associate a unique unit lower triangular and a unique diagonal matrix with each covari-

ance matrix. The covariance parameters have statistical interpretation as the regression

coefficients and logarithms of prediction error variances corresponding to regressing a

response on its predecessor. More specifically, the modified Cholesky decomposition

can be viewed as:

T ΣT T =V, (2.6)

where T is a unit lower triangular matrix, which has unconstrained entries with statistical

interpretation as the generalized autoregressive parameters (GARP), and the entries of

V = diag(v2
1, . . . ,v

2
p) are the corresponding residual variance (Pourahmadi (1999)). More

concretely, let Y = (Y1, . . . ,Yp) be a generic random vector with mean zero and positive-

definite covariance matrix Σ. Let Ŷi stand for the linear least-squares predictor of Yi

based on its predecessors Yi−1, . . . ,Y1 and εi be its prediction error:

Ŷi =

i−1∑
j=1

φi, jYj,

εi = Yi− Ŷi = Yi−
i−1∑
j=1

φi, jY j, i = 1, . . . , p, (2.7)

where the regression coefficients φi, j’s are unconstrained and the variances v2
i = Var(εi)

are non-negative. Evidently, the prediction errors are uncorrelated, so that, with ε =
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(ε1, . . . ,εp)
T , it follows that Cov(ε) = diag(v2

1, . . . ,v
2
p) = V . Writing (2.7) in matrix

form one obtains

ε = TY, (2.8)

where T is a unit lower triangular matrix with −φi, j in the (i, j)th position for 2 ≤ i ≤
p and j = 1, . . . , i− 1. From (2.8), we can obtain that the matrix T diagonalizes the

covariance matrix Σ as in (2.6). This diagonalization is related to the modified Cholesky

decomposition of Σ and Σ−1 . It is clear that this decomposition depends on the ordering

of the components of Y , so it is well suited to data that have ordered responses, such as

longitudinal data. In a follow-up paper (Pourahmadi (2000)), the maximum likelihood

estimators of the parameters of a generalized linear model for the covariance matrix,

their consistency and their asymptotic normality were studied under the condition that

the observations are normally distributed.

In the analysis of longitudinal data, parsimonious modelling of the covariance struc-

ture is of great importance. Smith & Kohn (2002) proposed a data-driven approach to

identify parsimony in the covariance matrix of longitudinal data. A statistically effi-

cient estimator of the covariance matrix was obtained by factoring the inverse of the

covariance matrix using the Cholesky decomposition. Their method differs from Poura-

hamadi’s in that parsimony was built into the model by allowing the elements in the

strict lower triangle matrix to be identically equal to zero; however, Pourahmadi did

not attempt to formally identify any structural zeros. A hierarchical Bayesian model

was used to flexibly identify any such zeros. The model was estimated using a Markov

chain Monte Carlo (MCMC) sampling scheme that is computationally efficient and can

be applied to covariance matrices of high dimension. In a follow-up paper to Pourah-

madi (1999, 2000), Daniels & Pourahmadi (2002) introduced new priors for a covari-

ance matrix and Bayesian hierarchical models for shrinking a covariance matrix towards

structure. The (T,V )-reparameterization of Σ in (2.6) along with P(Σ) = P(T |V )P(V )

provided a convenient framework for developing conditionally conjugate prior distribu-

tions for covariance matrices.
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2.2 Regularized Estimation in the Presence of High Di-

mensionality

In recent years, data sets with high dimension and small sample size relative to dimen-

sion have become very common. Examples include gene expression arrays, spectro-

scopic imaging, numerical weather forecasting, and many others. Depending on the

applications, the sparsity of the covariance matrix or the precision matrix Σ−1 is fre-

quently imposed. Estimating large covariance matrices, where the dimension of the

data p is comparable to or larger than the sample size n, has gained particular attention

recently, since high-dimensional data are so common in applications. The regularization

procedures have been generally used for the estimation of sparse covariance matrix or

precision matrix.

Two broad groups of covariance estimations have emerged: those that rely on a

natural ordering among variables, assuming that variables far apart in the ordering are

only weakly correlated and those invariant under variable permutations, which will be

discussed in more details below.

2.2.1 Approaches Rely on Natural Ordering among Variables

There are many applications that depend on the natural ordering among variables, which

include regularizing the covariance matrix by banding or tapering (see, for example,

Bickel & Levina (2004), Furrer & Bengtsson (2007), Bickel & Levina (2008b)) and

regularizing Cholesky factor of the precision matrix. The sparsity in the inverse is usu-

ally introduced via the modified Cholesky decomposition (Pourahmadi (1999)). Bickel

& Levina (2008b) considered estimating a covariance matrix of p variables with n ob-

servations by banding or tapering the sample covariance matrix. That is, banding the

sample covariance matrix by

Σ̂k,p ≡ Σ̂k = Bk(Σ̂p), 0≤ k < p, (2.9)

or replacing Σ̂p with Σ̂p ∗R, where ∗ denotes Schur (coordinate-wise) matrix multiplica-

tion and R is positive definite and symmetric. Estimating a banded version of precision

matrix has also been proposed. They showed that banding the Cholesky factor produces

a consistent estimator at various rates in the operator normal as long as (logp)2/n→ 0,
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which implies that maximal and minimal eigenvalues of the estimates and Σp are close.

The methods of regularizing Cholesky factor of the precision matrix use the fact that

the entries of the Cholesky factor have a regression interpretation. Therefore, the appli-

cation of regularization tools, for example, the lasso and ridge penalties (Huang et al.

(2006)), or the nested lasso penalty (Levina et al. (2008)) which mainly designed for

the ordered variables situation, can be allowed. Wu & Pourahmadi (2003) proposed a

k-diagonal banded estimator, which was obtained by local polynomial smoothing along

the first k sub-diagonals of T and setting the rest to 0. An AIC or BIC penalty was sug-

gested to select the number of k. They showed that the resulting estimate of the inverse

was also k-banded and in addition, was element-wise consistent. Huang et al. (2006)

proposed adding an L-1 penalty on the elements of the Cholesky factor T to the normal

likelihood, which leads to Lasso-type shrinkage of the coefficients in T , and introduces

zeros in T which can be placed in arbitrary locations, which is an advantage over Wu &

Pourahmadi (2003). This approach is more flexible than banding the Cholesky factor,

but the resulting estimate of the inverse may not have any zeros at all, hence, the spar-

sity is lost. No consistency results are available for this method. Also relying on the

Cholesky decomposition and penalty function, Levina et al. (2008) imposed a banded

structure on the Cholesky factor T , and selected the bandwidth adaptively for each row

of T , by introducing a novel nested Lasso penalty on the coefficients of regressions

that form the matrix T . It was shown that the structure are more flexibility than reg-

ular banding, but, unlike regular Lasso applied to the entries of the Cholesky factor,

results in a sparse estimator for the precision matrix. Those above-mentioned methods

are appropriate for a number of applications with ordered data, for example, climate

data, spectroscopy data, time series data, etc. However, there are many applications,

for example, gene expression arrays, of which the variables have no distance measure.

Methods proposed to address those data will be discussed below.

2.2.2 Approaches Invariant to Variable Permutations

There is also an urge to construct estimators invariant under variable permutations. Sev-

eral recent papers develop a sparse permutation-invariant estimate of the precision ma-

trix. See for example, d’Aspremont et al. (2007), Rothman et al. (2008), Yuan & Lin

(2007). The common approach of their methods is to add an L1 (lasso) penalty on the
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entries of the precision matrix to the normal likelihood, resulting in the shrinkage of

some components to zero. In Rothman et al. (2008), it has been shown that the rate of

convergence is driven by (log p)/n . However, it is nontrivial to compute the estimator

for high dimensions.

Sparsity in the inverse is particularly helpful in graphical models, since zeros in

the inverse imply a graph structure. The parameter estimation and model selection in

graphical model is equivalent to estimating parameters and identifying zeros in the pre-

cision matrix. Meinshausen & Bühlmann (2006) proposed a computationally attractive

method for covariance selection that can be used for sparse high-dimensional graphs.

They performed neighborhood selection with the LASSO for each node in the graph

and combine the results to learn the structure of a Gaussian concentration graph model.

They showed that the proposed neighborhood selection method is consistent for sparse

high-dimensional graphs. However, the obstacle of the neighborhood selection method

in Meinshausen & Bühlmann (2006) is that the model selection and parameter estima-

tion are done separately. The parameters in the concentration matrix are typically esti-

mated based on the model selected. Yuan & Lin (2007) proposed a penalized-likelihood

method that does model selection and parameter estimation simultaneously in the Gaus-

sian graphical model. They employed an L1 penalty on the off-diagonal elements of the

precision matrix, which is similar to the idea of the lasso in linear regression (Tibshirani

(1996)). The lasso-type estimator Ĉ minimizes

− log |C|+ tr(CĀ)+λ

∑
i6= j

|ci j|, (2.10)

where C = Σ−1 and the nonnegative garrote-type estimator minimizes

− log |C|+ tr(CĀ)+λ

∑
i6= j

ci j

c̃i j
, subject to ci j/c̃i j ≥ 0. (2.11)

Their methods leads to a sparse and shrinkage estimator of the concentration matrix that

is positive definite, and thus conduct model selection and estimation simultaneously. In

addition, they showed that although the implementation of the methods is nontrivial due

to the positive constraint, the computation can be done effectively by taking advantage

of the efficient maxdet algorithm developed in convex optimization.

Zou et al. (2006) applied L1 penalty to loadings in the context of PCA to achieve
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sparse representation. They proposed a method called sparse principal component anal-

ysis (SPCA) using the LASSO (elastic net) to produce modified principal components

with sparse loadings. They showed that PCA can be formulated as a regression-type op-

timization problem, then sparse loadings can be obtained by imposing the LASSO (elas-

tic net) constraint on the regression coefficients. They proposed efficient algorithms to

realize SPCA for both regular multivariate data and gene expression arrays, and showed

that the methods enjoyed advantages in aspects including computational efficiency, high

explained variance and ability of identifying important variables.

Thresholding the sample covariance matrix in high-dimensional setting was thor-

oughly studied by Karoui (2008), Bickel & Levina (2008a), and Cai et al. (2008) with

remarkable results for high-dimensional applications. One of the biggest advantages

is its simplicity - hard thresholding carries no computation burden, unlike many other

methods of covariance regularization. In the setting of “large sample size n, large di-

mensionality p”, Karoui (2008) developed an estimator for sparse matrix by hard thresh-

olding small entries of the sample covariance matrix and putting them to zero. The es-

timator was shown to be consistent in operator norm, under the condition that certain

moments exist. Similarly, Bickel & Levina (2008a) proposed thresholding of the sample

covariance matrix as a simple and permutation - invariant method of covariance regular-

ization. The difference is that they developed a natural permutation-invariant notion of

sparsity, which is more specialized then Karoui (2008)’s. It was shown that the thresh-

olded estimate is consistent in the operator norm as long as the true covariance matrix

is sparse, the variables are Gaussian or sub-Gaussian, and (log p)/n→ 0, and obtain

explicit rates. A potential disadvantage is the loss of positive definiteness. However, the

proposed estimator for a suitably sparse class of matrices is shown to be consistent un-

der certain conditions, the estimator will be positive definite with probability tending to

1. Despite the consistency of estimators in operator norm by Karoui (2008) and Bickel

& Levina (2008a), and explicitness of the rates of convergence, it is not clear whether

any of these rates of convergence are optimal. Cai et al. (2008) established the optimal

rate of convergence for estimating the covariance matrix and the precision matrix over

a wide range of classes of covariance matrices. Both the operator norm and Frobenius

norm were considered. However, all the aforementioned methods are not directly appli-

cable to estimating sparse precision matrix when the dimensionality pn is greater than

the sample size n.



16

2.3 Nonparametric Models for the Covariance Matrix

In order to balance between variability and bias of the covariance estimators, it is rea-

sonable to contract attention to covariance structures suggested by the data. To this

end, nonparametric approaches for estimating the covariance structures are useful not

only as a guide to the formulation of parametric models but also as the basis for for-

mal inference without requiring additional parametric assumptions. Glasbey (1988),

Shapiro & Botha (1991), Sampson & Guttorp (1992), Hall et al. (1994), and Hall &

Patil (1994) proposed several nonparmetric models to estimate the covariance matrices.

However, most nonparametric estimators of covariance matrices were developed either

for stationary processes or without heeding the positive-definiteness constraint. Diggle

& Verbyla (1998) introduced a nonparametric estimator for the covariance structure of

longitudinal data without assuming stationarity. However, their estimator, based on ker-

nel weighted local linear regression smoothing of sample variogram ordinates and of

squared residuals, is not guaranteed to be positive definite.

In the analysis of longitudinal data, it is an important issue to estimate the covari-

ance functions. It features notably in forecasting the trajectory of an individual response

over time and is closely related with improving the efficiency of regression coefficients

estimated. Nevertheless, due to the fact that longitudinal data are frequently collected

at irregular and possibly subject-specific time points, great challenges would be arised

in estimating the covariance function. Interest in this kind of challenges has surged

in the recent literature. Following Fan & Zhang (2000)’s two-step estimation of func-

tional linear models, Wu & Pourahmadi (2003) proposed nonparametric estimators of

the covariance matrices which are guaranteed to be positive definite. Specifically, they

applied nonparametric smoothing, by local polynomials, to the first few subdiagonals

of the Cholesky factor and set to zero the remaining subdiagonals, thereby restricting T

to be a banded lower triangular matrix. The asymptotic results for the local polynomial

estimators of components of the covariance matrix were established. They showed that

the single matrix element estimates converge to their population values in probability,

with pn→ ∞ at a certain rate determined by the spline smoothers used. The limitation

of their method is that the proposed approach can deal with only balanced or nearly

balanced longitudinal data.

There are few references available for nonparametric models for a covariance func-
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tion. A class of semiparametric models for the covariance function was proposed by

Fan et al. (2007). They considered a semiparametric varying-coefficient partially linear

model:

y(t) = x(t)T
α(t)+ z(t)T

β + ε(t), (2.12)

where α(t) consists of p unknown smooth functions, β is a q-dimensional unknown

parameter vector, and E{ε(t)|x(t),z(t)} = 0. Nonparametric models for longitudinal

data (Lin & Carroll (2001); Wang (2003)) can be viewed as a special case of model

(2.12). Focusing on parsimonious modeling of the covariance function of the ran-

dom error process ε(t) for the analysis of longitudinal data, when observations are

collected at irregular and possibly subject-specific time points, they imposed a para-

metric correlation structure (i.e. corr{ε(s),ε(t) = ρ(t,s,θ)}, where ρ(t,s,θ) is a posi-

tive definite function of s and t) while allowing a nonparametric variance function (i.e.

Var{ε(t)|x(t),z(t)} = σ2(t) ). The semiparametric model guarantees positive definite-

ness for the resulting estimate; it retains the flexibility of nonparametric modeling and

parsimony and ease of interpretation of parametric modeling. A kernel estimator was

developed for the estimation of the nonparametric variance function σ2(t). They further

developed estimation procedures for parameters θ in correlation structure using quasi-

likelihood and minimum generalized variance approaches. They introduced a semi-

parametric varying coefficient partially linear model for longitudinal data and proposed

an estimation procedure for model coefficients α(t) and β by using a profile weighted

least squares approach. Sampling properties of the proposed estimation procedures were

studied and asymptotic normality of the resulting estimators was established.

Yin et al. (2010) proposed a nonparametric model for the conditional covariance ma-

trix, which can be regarded as a natural extension of existing nonparametric models for

conditional variance. For two random variables X and U , they modeled the conditional

covariance of X given U as Cov(X |U) = Σ(U), where the component was assumed to be

an unknown but smooth function of U . They developed a Nadaraya-Watson (NW) ker-

nel estimators for both the conditional mean m(u) and the conditional covariance Σ(u).

Specifically, the kernel method was to minimize

1
n

n∑
i=1

[{
Xi−m(u)

}T
Σ
−1(u)

{
Xi−m(u)

}
− log

(
|Σ−1(u)|

)]
Kh(Ui−u). (2.13)
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The resulting NW kernel estimator was obtained, of which the asymptotic bias, variance

and in addition asymptotic normality were also derived. They found that without know-

ing the true regression function, the conditional covariance matrix can be asymptotically

estimated as well as if the true regression function was known in advance.



Chapter 3
Nonparametric Covariance
Regression Models

This chapter presents a general approach to estimate the conditional covariance matrix

in the context of nonparametric regression models. Two covariance regression models

are considered: one with continuous explanatory variable only and the other with both

continuous and discrete explanatory variables. We propose an estimation procedure

for each model via random-effects representation and an EM-algorithm. Monte Carlo

simulation studies are conducted to assess the finite sample performance of the proposed

procedure and a real data example is used to illustrate the proposed methodology.

3.1 Covariance Regression Model I

Let y ∈ Rp be a random multivariate response vector and x ∈ Rq be a vector of predict

variables. The goal is to provide a model and the method to estimate Cov(y|x) = Σx, the

conditional covariance matrix of y given x. Now considering a cubic spline S(x) with

knots κ1, . . . ,κJ , which has linear, quadratic and cubic terms on x, and one term of the

form (x−κ j)
3
+ for each knot, the proposed covariance regression model is given by

Σx = A+BS(x)S(x)T BT , (3.1)

where S(x) = [x,x2,x3,(x−κ1)
3
+, · · · ,(x−κJ)

3
+] is a q× (J + 3) matrix, A is a p× p

positive-definite matrix, and B is a p× q matrix. The resulting covariance function is
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positive definite for all x and represents the conditional covariance as a “baseline” co-

variance matrix A plus a p× p nonnegative definite matrix depending on x. The p× q

parameters of B have an explicit explanation of the heteroscedasticity among the p vari-

ables of y. In addition, the model has a random-effect representation, allowing for the

maximum likelihood parameter estimation via the EM-algorithm.

3.1.1 Model Interpretation

Consider a model for data Y = (yT
1 ,y

T
2 , . . . ,y

T
n )

T observed under the conditions X =

(xT
1 ,x

T
2 , . . . ,x

T
n )

T with yi = (yi1,yi2, . . . ,yip)
T ,xi = (xi1,xi2, . . . ,xiq)

T . The model has the

following form:

yi = µµµxi
+gi(xi)+ εεε i, (3.2)

where µµµxi
is a constant vector, εεε i is a random vector, and gi(xi) is a vector of components

gi j(xi), j = 1,2, . . . , p. It is assumed that each gi j(xi) is a nonparametric function and

can be expressed as a linear combination of a set of splines basis in terms of the unit’s

explanatory vector xi. Let,

s(xi) = γi1xi + γi2x2
i + γi3x3

i +
J∑

j=1

γi,3+ j(xi−κ j)
3
+ = S(xi)γγγ i , (3.3)

with a random vector γγγ i = (γi1,γi2, . . . ,γ3+J)
T . Then gi j(xi) can be expressed in terms

of s(xi). That is,

gi j(xi) = bT
j s(xi) = bT

j S(xi)γγγ i, (3.4)

where bT
j is the j-th row of a p× q matrix B, and gi(xi) = BS(xi)γγγ i, an explanatory

vector for unit i.

Therefore, yi can be expressed as

yi = µµµxi
+BS(xi)γγγ i + εεε i. (3.5)
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It is assumed that the random variables satisfy

E(εεε i) = 0, Cov(εεε i) = A; (3.6)

E(γγγ i) = 0, Cov(γγγ i) = I, E(γγγ iεεε
T
i ) = 0, (3.7)

i = 1,2, . . . ,n.

Let {b1,b2, . . . ,bp} be the rows of B. The covariance regression model gives

Var(yi j|xi) = a j, j +bT
j S(xi)S(xi)

T b j,

Cov(yi j,yik|xi) = a j,k +bT
j S(xi)S(xi)

T bk.

The above parameterizations of the variance indicates that the variance in each element

of response vector y to be increasing in the elements of explanatory vector x, if all

elements of b j are of the same signs. The minimum variance is obtained when x = 0.

Additionally, the model given by equation (3.5) can be regarded as a factor analysis

model and thus has a random-effects representation. The p×q parameters of matrix B
have a direct interpretation in terms of how heteroscedasticity co-occurs among the p

variables of y. In order to see how the random-effects representation affects the variance,

let {b1, . . . ,bp} be the rows of B. The covariance regression model (3.5) can then be

expressed as 
yi1−µxi1

...

yip−µxi p

=


bT

1 S(xi)
...

bT
p S(xi)

γγγ i +


εi1
...

εip

 . (3.8)

where γγγ i expresses additional variability beyond that represented by εεε i. The vectors

{b1, . . . ,bp} describe how this additional variability is displayed across the p different

response variables. Small values of b j indicate little heteroscedasticity in y j as a function

of x, while big values of b j indicate large heteroscedasticity in y j. y j and yk become

more positively or more negatively correlated, respectively, as their variances increase,

when vectors b j and bk begin either in the same or opposite direction.

The random effects representation of the model gives that the resulting covariance
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matrix for yi given xi equals to

Cov(yi|xi) = E
{
(yi−µµµxi

)(yi−µµµxi
)T}

= E
{

BS(xi)γγγ iγγγ
T
i S(xi)

T BT +BS(xi)γγγ iεεε
T
i + εεε iγγγ

T
i S(xi)

T BT + εεε iεεε
T
i
}

= BS(xi)S(xi)
T B+A

= Σxi, (3.9)

which is exactly the same form as that proposed in (3.1).

3.1.2 Parameter Estimation with the EM-algorithm

Suppose that {yi,xi, i = 1,2, . . . ,n} is a random sample from the population {y,x},
where yi = (yi1,yi2, . . . ,yip)

T and xi = (xi1,xi2, . . . ,xiq)
T . We now consider parameter

estimation based on observed data Y = (yT
1 , . . . ,y

T
n )

T given X = (xT
1 , . . . ,x

T
n )

T . We as-

sume normal models for all error terms:

γγγ1, . . . ,γγγn ∼ Nd(0,Id×d),

εεε1, . . . ,εεεn ∼ Np(0,Ap×p), (3.10)

for the proposed model (3.5), where S(xi) =
(
xi,x2

i ,x3
i , (xi−κ1)

3
+, · · · , (xi−κJ)

3
+

)
, a

q×d matrix with d = 3+ J, yi,µµµxi
and εεε i are p×1 vectors, γγγ i is a d×1 vector, and B

is p×q matrix.

Assume {µµµx,x∈X } are known and let E= (eT
1 , · · · ,eT

n )
T be the matrix of residuals

ei = yi−µµµxi
, i = 1,2, . . . ,n. The log-likelihood of the parameters based on X and E is:

`(A,B : E,X) (3.11)

= c− 1
2

n∑
i=1

log |A+BS(xi)S(xi)
T BT |− 1

2

n∑
i=1

tr
[{

A+BS(xi)S(xi)
T BT}−1eieT

i

]
.

It can be shown that the maximum likelihood estimates of A and B satisfy the following

equations:

∑
i

Σ̂
−1
xi

=
∑

i

Σ̂
−1
xi

eieT
i Σ̂
−1
xi
,
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∑
i

Σ̂
−1
xi

B̂S(xi)S(xi)
T =

∑
i

Σ̂
−1
xi

eieT
i Σ̂
−1
xi

B̂S(xi)S(xi)
T , (3.12)

where Σ̂xi = Â+ B̂S(x)S(x)T B̂T . We may use kronecker product to get the close-form

expressions for Â and B̂. However, the direct maximization of (3.11) from kronecker

product is complicated.

The maximization likelihood estimation via simple iterative methods. For example,

the EM-algorithm, is straightforward. This method relies on the conditional distribution

of {γγγ1, . . . ,γγγn} given {A,B,Y,X}, which can be derived as follows.

The conditional distribution of yi given (γγγ i,xi,A,B) and the marginal distribution of

γγγ i can be expressed as

yi | γγγ i,xi,A,B ∼ Np(µµµxi
+BS(xi)γγγ i,A),

γγγ i ∼ Nd(0,Id×d),

then the conditional distribution of (yi,γγγ i) given (xi,A,B) can be expressed as

f (yi,γγγ i | xi,A,B)

= exp
{
− 1

2
(yi−µµµxi

−BS(xi)γγγ i)
T A−1(yi−µµµxi

−BS(xi)γγγ i)−
1
2

γγγ
T
i γγγ i
}

×(2π)−
p+d

2 |A|−
1
2 .

Thus the conditional distribution of yi given (xi,A,B) is known as

f (yi | xi,A,B)

=

∫
f (yi,γγγ i | xi,A,B)dγγγ i

=

∫
(2π)−

p+d
2 |A|−

1
2 exp

[
− 1

2
{

eT
i A−1ei− eT

i A−1BS(xi)

(I+S(xi)
T A−1BS(xi))

−1S(xi)
T BT A−1ei

}]
×exp

[
− 1

2
(γγγ i−µµµγγγ i

)T (I+S(xi)
T BT A−1BS(xi))(γγγ i−µµµγγγ i

)
]
dγγγ i

= (2π)−
p
2 |A|−

1
2 |Σγγγ i
|

1
2 exp

[
− 1

2
{

eT
i A−1ei− eT

i A−1BS(xi)

(I+S(xi)
T A−1BS(xi))

−1S(xi)
T BT A−1ei

}]
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= (2π)−
p
2 |A|−

1
2 |Σγγγ i
|

1
2 exp

[
− 1

2
{

eT
i A−1(I−BS(xi)Σ

−1
γγγ i

S(xi)
T BT A−1)ei

}]
,

where

Σγγγ i =
{

I+S(xi)
T A−1BS(xi)

}−1
,

µµµγγγ i
=

{
I+S(xi)

T A−1BS(xi)
}−1 S(xi)

T BT A−1ei.

Hence the conditional distribution of γγγ i given {Y,X,A,B} is expressed as

f (γγγ i | Y,X,A,B)

=
f (yi,γγγ i | xi,A,B)

f (yi | xi,A,B)

= (2π)−
d
2 |Σγγγ i
|−

1
2 exp

(
− 1

2
[
γγγ

T
i
{

I+S(xi)
T BT A−1BS(xi)

}
γγγ i

−eT
i A−1BS(xi)γγγ i− γγγ

T
i S(xi)

T BT A−1ei +µµµ
T
xi

Σγγγ i
µµµxi

])
.

Therefore, the conditional distribution of {γγγ1, . . . ,γγγn} given {A,B,Y,X} is as fol-

lows:

(
γγγ i|Y,X,A,B

)
∼ Nd(µµµγγγ i

,Σγγγ i
), where

Σγγγ i
=

{
I+S(xi)

T BT A−1BS(xi)
}−1

,

µµµγγγ i
= Σγγγ i

S(xi)
T BT A−1ei. (3.13)

The EM-algorithm alternates between computing the expectation of the complete

data log-likelihood evaluated using the current estimate for the latent variables and

computing parameters maximizing the expected log-likelihood. The complete data log-

likelihood `(A,B) is given as

`(A,B)

=−1
2

[
np log(2π)+n log |A|+

n∑
i=1

{
ei−BS(xi)γγγ i

}T A−1{ei−BS(xi)γγγ i
}]

. (3.14)

Given current estimates (Â, B̂) of (A,B), the classical EM approach is to maximize
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the expected data log-likelihood E{`(A,B)|Â, B̂},

E{`(A,B)|Â, B̂}

=−1
2

(
np log(2π)+n log |A|+

n∑
i=1

E
[{

ei−BS(xi)γγγ i
}T A−1{ei−BS(xi)γγγ i

}
|Â, B̂

])
.

To drive the EM formula, the representation of E{`(A,B)|Â, B̂} needs to be simplified.

Denote µµµγγγ i
= E(γγγ i|Â, B̂,ei) and Σγγγ i

= Var(γγγ i|Â, B̂,ei) as the conditioned mean and

variance of γγγ i given Â, B̂,ei, which will be used in the following analysis. It is easy to

verify that

E
[
{ei−BS(xi)γγγ i}

T A−1 {ei−BS(xi)γγγ i}|Â, B̂
]

=
{

ei−BS(xi)µµµγγγ i

}T A−1{ei−BS(xi)µµµγγγ i

}
+E

[{
BS(xi)γ̃γγ i

}T A−1{BS(xi)γ̃γγ i
}]

=
{

ei−BS(xi)µµµγγγ i

}T A−1{ei−BS(xi)µµµγγγ i

}
+ tr
{

S(xi)
T BT A−1BS(xi)Σγγγ i

}
.

where γ̃γγ i = γγγ i−µµµγγγ i
. By the factorization Σγγγ i

= KiKT
i of Σγγγ i

where Ki is a d×d matrix,

the above second term can be represented as

tr
{

S(xi)
T BT A−1BS(xi)Σγγγ i

}
= tr

[{
BS(xi)Ki

}T A−1BS(xi)Ki

]
.

Thus,

E
[
{ei−BS(xi)γγγ i}

T A−1 {ei−BS(xi)γγγ i}|Â, B̂
]

=
{

ei−BS(xi)µµµγγγ i

}T
A−1

{
ei−BS(xi)µµµγγγ i

}
+ tr

[
{BS(xi)Ki}T A−1BS(xi)Ki

]
= tr

[{
(ei,0)−BS(xi)(µµµγγγ i

,Ki)
}T A−1{(ei,0)−BS(xi)(µµµγγγ i

,Ki)
}]

= tr
{
(Ẽi−BX̃i)

T A−1(Ẽi−BX̃i)
}
,

where X̃i = S(xi)(µµµγγγ i
,Ki) and Ẽi = (ei,0) has only a nonzero column. We also have the

sum in a form of a matrix trace,

n∑
i=1

E
{
(ei−BS(xi)γγγ i)

T A−1(ei−BS(xi)γγγ i)|Â, B̂
}
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=
n∑

i=1

tr
{
(Ẽi−BX̃i)

T A−1(Ẽi−BX̃i)
}

= tr
{
(Ẽ−BX̃)T A−1(Ẽ−BX̃)

}
,

where

X̃ = (X̃1, . . . , X̃n), Ẽ = (Ẽ1, . . . , Ẽn).

The expected value of the complete data log-likelihood can be simply written as

E
{
`(A,B)|Â, B̂

}
=−1

2
[
np log(2π)+n log |A|+ tr

{
(Ẽ−BX̃)T A−1(Ẽ−BX̃)

}]
,

which is the likelihood for multivariate normal regression. Clearly, the maximizer of the

E{`(A,B)|Â, B̂} is given by

B̃ = ẼX̃T (X̃X̃T )−1, (3.15)

Ã = (Ẽ− B̂X̃)(Ẽ− B̂X̃)T/n. (3.16)

The above EM formula can be further simplified. Practically, it is not required to

factorize the matrix Σγγγ i , which will be shown below. For simplicity, let ui = S(xi)µµµγγγ i

and U = (u1, . . . ,un). By definition,

ẼX̃T =
n∑

i=1

ẼiX̃T
i =

n∑
i=1

eiuT
i = EUT ,

X̃X̃T =
n∑

i=1

{
uiuT

i +S(xi)KiKT
i S(xi)

T}= UUT +

n∑
i=1

S(xi)Σγγγ i
S(xi)

T .

Similarly,

(Ẽ− B̂X̃)(Ẽ− B̂X̃)T =

n∑
i=1

(ei− B̂ui)(ei− B̂ui)
T + B̂

{ n∑
i=1

S(xi)Σγγγ i
S(xi)

T
}

B̂T

= (E− B̂U)(E− B̂U)T + B̂
{ n∑

i=1

S(xi)Σγγγ i
S(xi)

T
}

B̂T .

The details of the EM algorithm for the multivariate normal regression are described

as follows. Let (Â, B̂) be the current estimation.
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EM algorithm for the nonparametric regression model (3.5).

1. Estimate µµµγγγ i
= E(γγγ i|Â, B̂,ei,xi) and Σγγγ i

= Var(γγγ i|Â, B̂,ei,xi).

2. Compute ui = S(xi)µµµγγγ i
, R = E− B̂U, and M =

∑n
i=1 S(xi)Σγγγ i

S(xi)
T .

3. Update Â and B̂ by

Â =
(
RRT + B̂MB̂T)/n, B̂ = EUT (UUT +M)−1.

This procedure is repeated until a desired convergence criterion has been met.

3.2 Theoretical Properties

The asymptotic properties of the maximum likelihood estimators (MLEs) have been

extensively studied. In this section, the consistency and asymptotic normality proper-

ties of the MLEs for the proposed nonparametric covariance regression model will be

discussed.

Let Θ be a subset of Rm. Let Pθ : θ ∈Θ be a family of distributions on (Ωz,Fz).

Let µ be a σ -finite measure on (Ωz,Fz). Suppose Pθ � µ ,∀θ ∈ Θ and denote by

fθ = dPθ/dµ the derivative of Pθ with respect to µ . The maximum likelihood estimate

of θ is defined by

θ̂ = argmax

{
n∑

i=1

log fθ (zi),θ ∈Θ

}
.

Lemma 3.2.1 (Cramér’s Consistency). Suppose z1, . . . ,zn are i.i.d. from fθ (z),θ ∈ Θ.

Let S(θ ,z) = ∂

∂θ T log fθ (z), which is the score function. Let En{S(θ ,z)}= 1
n
∑n

i=1

S(θ ,zi). Suppose θ0 is the true parameter and furthermore,

a. S(θ ,z) is continuous in θ ;

b. E{S(θ0,z)} ≡ 0;

c. E{S(θ ,z)} is differentiable at θ = θ0 and the derivative matrix is negative defi-

nite;
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d. In the neighborhood of θ0, En{S(θ ,z)} converges in probability uniformly to

E{S(θ ,z)}. In other words, ∃ a neighborhood G of θ0, such that

sup
θ∈G
‖En{S(θ ,z)}−E{S(θ ,z)}‖→P 0;

Then, there is a sequence {θ̂n : n = 1,2, . . .} such that

i. P
(
θ̂n is a solution to En{S(θ ,z)}= 0

)
→ 1;

ii. θ̂n→P θ0.

The details of Lemma 3.2.1 can be found in several references (see, for example,

Cramér (1946) and Lehmann (1998)).

Considering the nonparametric regression model (3.5), yi|xi’s are independent and

identically distributed from multivariate normal, with mean µµµxi
and covariance A +

BS(xi)ST (xi)BT , i= 1,2 . . . ,n. It is very challenging in establishing sampling properties

of the resulting estimator of Â and B̂. To simplify the theoretical proofs, we impose the

following assumptions:

Assumption A1. The collected data is a random sample from model (3.2), in which

gi(xi) can be represented as BS(xi)γγγ i for a set of finite pre-specified basis func-

tions. That is, model (3.5) is a correct model.

Assumption A2. Assume that the mean µµµxi
is known. Without loss of generality, it is

assumed that µµµxi
= 0.

Assumption A1 implies that gi(xi) lies in the functional space spanned by a set of the

pre-specified basis functions. Thus, we do not need to analyze the approximation error

of gi(xi) in the theoretical proofs. The assumption A2 allows us to ignore the estimation

error due to µ̂µµxi
, and further simplify the proof.

Under Assumptions A1 and A2, the log-likelihood can be written as:

log fA,B(x,y)

= c− 1
2

log |A+BS(x)ST (x)BT |− 1
2

tr
[{

A+BS(x)ST (x)BT}−1 yyT
]
. (3.17)
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Based on Lemma 3.2.1, for model (3.5) with the parameters θ = (A,B) and the random

variables z = (x,y), the maximum likelihood estimators Â and B̂ can be proved to be

consistent. The Theorem 3.2.1 shows the consistent property of the maximum likelihood

estimators Â and B̂.

Theorem 3.2.1 (Consistency). Let S(A,B,x,y)= ∂

∂ (A,B) log fA,B(x,y), which is the score

function. Let En{S(A,B,x,y)}= 1
n
∑n

i=1 S(A,B,xi,yi). Denote by (A0,B0) the true pa-

rameters. Under Assumptions A1 and A2, (Â, B̂)→P (A0,B0).

Proof. The proof consists of validation of Conditions (a)—(d) step by step. Specifically,

we will check the following conditions one by one:

a. S(A,B,x,y) is continuous in (A,B);

b. E{S(A0,B0,x,y)} ≡ 0;

c. E{S(A,B,x,y)} is differentiable at (A,B) = (A0,B0) and the derivative matrix is

negative definite;

d. In the neighborhood of (A0,B0), En{S(A,B,x,y)} converges in probability uni-

formly to E{S(A,B,x,y)}. In other words, ∃ a neighborhood G of (A0,B0), such

that

sup
(A0,B0)∈G

‖En{S(A,B,x,y)}−E{S(A,B,x,y)}‖→P 0;

First, check the continuity of the score function. The representation of the function

S is given as

S(A,B,x,y) =
∂ log fA,B(y,x)

∂ (A,B)
=

(
∂ log fA,B(y,x)

∂A
,
∂ log fA,B(y,x)

∂B

)
.

For simplicity, let Σx(A,B) = A+BS(x)ST (x)BT . It is noted that by the assumption

(3.2), Σx(A0,B0) is the conditioned covariance matrix of y given x at the true A0 and B0.

This property will be used in the following analysis. For simplicity, denote Σx(A,B) =
Σx and Σx(A0,B0) = Σx0. It follows that

S1(A,B,x,y) =
∂ log fA,B(y,x)

∂A
=

1
2

Σ
−1
x (yyT −Σx)Σ

−1
x , (3.18)

S2(A,B,x,y) =
∂ log fA,B(y,x)

∂B
= Σ

−1
x (yyT −Σx)Σ

−1
x BS(x)S(x)T . (3.19)
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So S(A,B,x,y) is continuous at (A,B). Hence, condition (a) is satisfied.

By the equality E{yyT |x}= Σx0, (3.18), and (3.19), it is easy to verify that

E{S1(A,B,x,y)|x}= 1
2

Σ
−1
x
(
Σx0−Σx

)
Σ
−1
x ,

E{S2(A,B,x,y)|x}= Σ
−1
x
(
Σx0−Σx

)
Σ
−1
x BS(x)S(x)T .

By the law of total expectation,

E{S1(A,B,x,y)}= 1
2

E
{

Σ
−1
x
(
Σx0−Σx

)
Σ
−1
x
}
, (3.20)

E{S2(A,B,x,y)}= E
{

Σ
−1
x
(
Σx0−Σx

)
Σ
−1
x BS(x)S(x)T} . (3.21)

Obviously, E{S1(A0,B0,x,y)} = E{S2(A0,B0,x,y)} = 0. Therefore, the condition (b)

is also satisfied.

To show that E{S(A,B,x,y)} is derivatiable at (A0,B0), consider that

Σ
−1
x
(
Σx0−Σx

)
Σ
−1
x = Σ

−1
x0
(
Σx0−Σx

)
Σ
−1
x0 +∆x (3.22)

with ∆x a second order term of Σx−Σx0,

∆x = Σ
−1
x0
(
Σx0−Σx

)
(Σ−1

x −Σ
−1
x0 )+(Σ−1

x −Σ
−1
x0 )
(
Σx0−Σx

)
Σ
−1
x

= Σ
−1
x0
(
Σx0−Σx

)
Σ
−1
x (Σx0−Σx)Σ

−1
x0 +Σ

−1
x
(
Σx0−Σx

)
Σ
−1
x0 (Σx0−Σx)Σ

−1
x .

Denoting by δA = A−A0 and δB = B−B0, it follows that

Σx0−Σx = −δA +B0S(x)S(x)T BT
0 − (B0 +δB)S(x)S(x)T (B0 +δB)

T

= −δA−B0S(x)S(x)T
δ

T
B −δBS(x)S(x)T BT

0 −δBS(x)S(x)T
δ

T
B

= −L (δA,δB,x,y)−δBS(x)S(x)T
δ

T
B , (3.23)

where L : (U,V)→L (U,V,x,y) is a linear operator defined by

L (U,V,x,y) = U+B0S(x)S(x)T VT +VS(x)S(x)T BT
0 . (3.24)

Using the above analysis on E{S1(A,B,x,y} and E{S2(A,B,x,y} in (3.20-3.21), they

can be re-written, respectively, in a sum of two terms with one linear and other second-
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order of δA and δB,

E{S1(A,B,x,y)}= −1
2

E
{

Σ
−1
x0 L (δA,δB,x,y)Σ−1

x0
}
+D1 (3.25)

E{S2(A,B,x,y)}= −E
{

Σ
−1
x0 L (δA,δB,x,y)Σ−1

x0 B0S(x)S(x)T}+D2, (3.26)

where D1 and D2 are two second-order terms of δA and δB, which are not of our interest,

and hence, omit the details. Therefore, both E{S1(A,B,x,y)} and E{S2(A,B,x,y)}
are differentiable at (A0,B0). So the differentiability of E{S(A,B,x,y)} at (A0,B0) is

shown.

The linear terms in (3.25) and (3.26) define the linear operator in terms of the deriva-

tive matrix of E{S(A,B,x,y)}. It is easy to verify that the quadratic form of the deriva-

tive matrix with respect to the variables (U,V) is given by

q(U,V) = − 1
2

tr
[
UT E

{
Σ
−1
x0 L (U,V,x,y)Σ−1

x0
}]

− tr
[
VT E

{
Σ
−1
x0 L (U,V,x,y)Σ−1

x0 B0S(x)S(x)T}].
The negative definiteness of the quadratic form is proven by rewriting

−2q(U,V)

= E
[
tr
{

UT
Σ
−1
x0 L (U,V,x,y)Σ−1

x0
}
+2tr

{
VT

Σ
−1
x0 L (U,V,x,y)Σ−1

x0 B0S(x)S(x)T}]
= E

[
tr
{

Σ
−1
x0 L (U,V,x,y)Σ−1

x0 (U
T +2B0S(x)S(x)T VT )

}]
.

Using the equality 2tr(HW ) = tr(H(W +W T )) for any matrix W and any symmetric

matrix H, it follows that

−2q(U,V)

= E
(

tr
[
Σ
−1
x0 L (U,V,x,y)Σ−1

x0
{

UT +B0S(x)S(x)T VT +VS(x)S(x)T BT
0
}])

= E
[
tr
{

Σ
−1
x0 L (U,V,x,y)Σ−1

x0 L (U,V,x,y)
}]

> 0.

Therefore, the derivative matrix of E{S(A,B,x,y)} at (A0,B0) is negative definite, i.e.,

the condition (c) is true.
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Now consider the error En{S1(A,B,x,y)}−E{S1(A,B,x,y)} with

En{S1(A,B,x,y)}= 1
n

n∑
i=1

S1(A,B,xi,yi).

It is represented in a sum of three error terms as follows.

En{S1(A,B,x,y)}−E{S1(A,B,x,y)}

=
[
En{S1(A,B,x,y)}−En{S1(A0,B0,x,y)}

]
+
[
En{S1(A0,B0,x,y)}−E{S1(A0,B0,x,y)}

]
+
[
E{S1(A0,B0,x,y)}−E{S1(A,B,x,y)}

]
.

Obviously, by the strong law of large numbers, the second error term converges in prob-

ability to zero,

En{S1(A0,B0,x,y)}−E{S1(A0,B0,x,y)}→P 0. (3.27)

The continuity of E{S1(A,B,x,y)} at (A0,B0) implies that, for an arbitrary small ε > 0,

there exists a neighborhood G1 of (A0,B0) in which

‖E{S1(A0,B0,x,y)}−E{S1(A,B,x,y)}‖< ε. (3.28)

To estimate the first term, it is represented as

En{S1(A,B,x,y)}−En{S1(A0,B0,x,y)}

=
1

2n

n∑
i=1

{
Σ
−1
xi
(yiyT

i −Σxi)Σ
−1
xi
−Σ

−1
xi0(yiyT

i −Σxi0)Σ
−1
xi0

}
=

1
2n

n∑
i=1

[
Σ
−1
xi
(Σxi0−Σxi)Σ

−1
xi

+
{

Σ
−1
xi
(yiyT

i −Σxi0)Σ
−1
xi
−Σ

−1
xi0(yiyT

i −Σxi0)Σ
−1
xi0
}]

.

By (3.23) and (3.24),

‖Σxi0−Σxi‖ ≤ ‖A−A0‖+
(
2‖B0‖+‖B−B0‖

)
‖B−B0‖‖S(xi)S(xi)

T‖.

The sequence {‖S(xi)S(xi)
T‖} is obviously bounded. Hence, for the ε mentioned
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above, there exists a neighborhood G2 of (A0,B0) such that ‖Σxi0− Σxi‖ ≤ ε for all

i. On the other hand, ‖Σ−1
x ‖ ≤ ‖A−1‖ for any x. Let G3 be a neighborhood of A0 in

which ‖A−1‖ ≤ 2‖A−1
0 ‖. It is seen that in that intersected set G2∩G3,

‖Σ−1
xi
(Σxi0−Σxi)Σ

−1
xi
‖ ≤ ‖Σ−1

xi
‖‖Σxi0−Σxi‖‖Σ

−1
xi
‖ ≤ (2‖A−1

0 ‖)
2
ε, ∀xi. (3.29)

It is also observed that

‖Σ−1
xi
−Σ

−1
xi0‖= ‖Σ

−1
xi
(Σxi0−Σxi)Σ

−1
xi0‖ ≤ (2‖A−1

0 ‖)
2
ε.

Now the error Σ−1
xi
(yiyT

i −Σxi0)Σ
−1
xi
−Σ

−1
xi0(yiyT

i −Σxi0)Σ
−1
xi0 can be estimated as,

‖Σ−1
xi
(yiyT

i −Σxi0)Σ
−1
xi
−Σ

−1
xi0(yiyT

i −Σxi0)Σ
−1
xi0‖

= ‖(Σ−1
xi
−Σ

−1
xi0)(yiyT

i −Σxi0)Σ
−1
xi

+Σ
−1
xi0(yiyT

i −Σxi0)(Σ
−1
xi
−Σ

−1
xi0)‖

≤ ‖Σ−1
xi
−Σ

−1
xi0‖‖yiyT

i −Σxi0‖‖Σ
−1
xi
‖+‖Σ−1

xi0‖‖yiyT
i −Σxi0‖‖Σ

−1
xi
−Σ

−1
xi0‖

≤ 2‖yiyT
i −Σxi0‖(2‖A

−1
0 ‖)

3
ε

≤ 2C0(2‖A−1
0 ‖)

3
ε, (3.30)

where C0 is an upper bound of ‖yiyT
i −Σxi0‖ for all i. The estimates (3.29) and (3.30)

yield

‖En{S1(A,B,x,y)}−En{S1(A0,B0,x,y)}‖ ≤
1
2
((2‖A−1

0 ‖)
2 +C0(2‖A−1

0 ‖)
3)ε.

So it is concluded that there exits a neighborhood G0 in which

‖En{S1(A,B,x,y)}−En{S1(A0,B0,x,y)}‖< ε. (3.31)

Combining (3.27), (3.28), and (3.31), the following estimate

‖En{S1(A,B,x,y)}−E{S1(A,B,x,y)‖

< 2ε +‖En{S1(A0,B0,x,y)}−E{S1(A0,B0,x,y)}‖
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holds in the neighborhood G = G0∩G1 of (A0,B0). Therefore,

P
(

sup
(A,B)∈G

‖En{S1(A,B,x,y)}−E{S1(A,B,x,y)‖< 3ε
)

≥ P
(
‖En{S1(A0,B0,x,y)}−E{S1(A0,B0,x,y)}‖< ε

)
→ 1.

That is,

sup
(A,B)∈G

‖En{S1(A,B,x,y)}−E{S1(A,B,x,y)‖→P 0,

Similarly, it can also be shown that there exists a neighborhood G′ of (A0,B0) such

that

sup
(A,B)∈G′

‖En{S2(A,B,x,y)}−E{S2(A,B,x,y)‖→P 0,

where En{S2(A,B,x,y)}= 1
n
∑n

i=1 S2(A,B,xi,yi), because

‖En{S2(A,B,x,y)}−E{S2(A,B,x,y)‖

≤
∥∥En{S2(A,B,x,y)}−En{S2(A0,B0,x,y)}

∥∥
+
∥∥En{S2(A0,B0,x,y)}−E{S2(A0,B0,x,y)}

∥∥
+
∥∥E{S2(A0,B0,x,y)}−E{S2(A,B,x,y)}

∥∥
and the following results hold for these three terms as (3.27), (3.28), and (3.31) as fol-

lows.

(1) En{S2(A0,B0,x,y)}−E{S2(A0,B0,x,y)}→P 0.

(2) For an arbitrary small ε > 0, there exists a neighborhood G′1 of (A0,B0) in which

‖E{S2(A0,B0,x,y)}−E{S2(A,B,x,y)‖< ε, (3.32)

(3) By (3.30), in the neighborhood G2∩G3,

‖En{S1(A,B,x,y)}−En{S1(A0,B0,x,y)}‖

≤ 1
n

n∑
i=1

∥∥Σ
−1
xi
(yiyT

i −Σxi)Σ
−1
xi
−Σ

−1
xi0(yiyT

i −Σxi0)Σ
−1
xi0

∥∥‖B‖∥∥S(xi)S(xi)
T∥∥

≤ 2C0C1C2(2‖A−1
0 ‖)

3
ε,
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where C1 is a bound of ‖B‖ in a neighborhood of B0 which should be chosen small

enough to be contained by G2∩G3, and C2 is a bound of ‖S(x)S(x)T‖. Thus, the

estimate ‖En{S1(A,B,x,y)}−En{S1(A0,B0,x,y)}‖< ε holds in a neighborhood

G′0 of (A0,B0).

The proof of condition (d) is complete.

In view of the satisfying the condition (a) – (d) in Theorem 3.2.1, the maximum

likelihood estimators Â and B̂ are shown to be consistent.

Lemma 3.2.2 (Cramér, Asymptotic Normality). Let z1,z2, . . . , be i.i.d. with density

fθ (z) (with respect to dµ), θ ∈Θ, and let θ0 denote the true value of the parameter, If

a. Θ is an open subset of Rk;

b. Second partial derivatives of log fθ (z) with respect to θ exist and are continuous

for all z, and may be passed under the integral sign in
∫

log fθ (z)dµ(z);

c. There exists a function M(z) such that Eθ0M(z) < ∞ and each component of the

Hessian matrix H(θ ,z) of log fθ (z) is bounded in absolute value by M(z) uni-

formly in some neighborhood of θ0;

d. I(θ0) =−E{H(θ ,z)} is positive definite;

e. fθ (z) = fθ0(z) a.e. dµ implies θ = θ0,

Then there exists a strongly consistent sequence θ̂n of roots of the likelihood equation

such that
√

n(θ̂ −θ0)→D N(0, I−1(θ0)).

For references of Lemma 3.2.2, see, for example, Cramér (1946) and Lehmann

(1998).

Theorem 3.2.2 (Asymptotic Normality). Under Conditions of Theorem 3.2.1, the max-

imum likelihood estimators (Â, B̂) satisfy

√
n((Â, B̂)T − (A0,B0)

T )→D N(0, I−1{(A0,B0)
T}).
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Proof. Regarding the asymptotic normality of the maximum likelihood estimators Â
and B̂ for the nonparametric regression model (3.5), it remains to check the following

condition (a) – (e) for log fA,B(x,y) in (3.17). That is, we will check the following

conditions one by one.

a. Θ is an open subset of Rk;

b. Second partial derivatives of log fA,B(x,y) with respect to (Â, B̂) exist, are con-

tinuous for all (x,y), and may be passed under the integral sign in∫
log fA,B(z)dµ(x,y);

c. There exists a function M(z) such that EA0,B0M(z) < ∞ and each component of

the Hessian matrix H(A,B,x,y) of log fA,B(x,y) is bounded in absolute value by

M(x,y) uniformly in some neighborhood of θ0;

d. I{(A0,B0)}=−E{H(A,B,x,y)} is positive definite;

e. fA,B(x,y) = fA0,B0(x,y) a.e. dµ implies (A,B) = (A0,B0).

The condition (a) is obviously true. Since y|x follows a multivariate normal distri-

bution, with density

fA,B(y,x) ∝ |Σx|−
1
2 exp{−1

2
yT

Σ
−1
x y}

and Σx is a matrix of polynomial functions with respect to the parameters (A,B), the

function log fA,B(x,y) is a rational function with respect to the parameters (A,B). The

existence and continuity for the second partial derivatives of log fA,B(x,y) is thus as-

sured. Next, consider the condition (c).

For simplicity. let F = BS(x)S(x)T and G = FBT . Based on equations (3.18) and

(3.19), and using

∂Σx
∂ai j

= eieT
j ,

∂Σx
∂bst

=
∂G
∂bst

= eseT
t FT +FeteT

s ,
∂F
∂bst

= eseT
t S(x)S(x)T ,

it follows that

∂S1(A,B,x,y)
∂ai j

=−1
2

Σ
−1
x (eieT

j Σ
−1
x yyT +yyT

Σ
−1
x eie j + eieT

j )Σ
−1
x , (3.33)
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∂S1(A,B,x,y)
∂bst

=−1
2

Σ
−1
x

(
∂G
∂bst

Σ
−1
x yyT +yyT

Σ
−1
x

∂G
∂bst

+
∂G
∂bst

)
Σ
−1
x , (3.34)

∂S2(A,B,x,y)
∂ai j

=−Σ
−1
x (eieT

j Σ
−1
x yyT +yyT

Σ
−1
x eie j + eieT

j )Σ
−1
x F, (3.35)

∂S2(A,B,x,y)
∂bst

=−Σ
−1
x

(
∂C
∂bst

Σ
−1
x yyT +yyT

Σ
−1
x

∂C
∂bst

+
∂C
∂bst

)
Σ
−1
x F

+(Σ−1
x yyT

Σ
−1
x −Σ

−1
x )

∂F
∂bst

. (3.36)

Let M1 be the neighborhood of A0, such that ‖A−1‖ ≤ 2‖A−1
0 ‖. We have ‖Σ−1

x ‖ ≤
‖A−1‖ ≤ 2‖A−1

0 ‖ for all x. Let M2 be the neighborhood of B0, such that ‖B‖ ≤ 2‖B0‖.
Then, in the neighborhood M = M1∩M2 of θ0,

‖∂S1(A,B,x,y)
∂ai j

‖ ≤ 1
2
‖Σ−1

x ‖2(‖eieT
j Σ
−1
x yyT‖+‖yyT

Σ
−1
x eieT

j ‖+‖eieT
j ‖
)

≤ 1
2
‖Σ−1

x ‖2(2‖Σ−1
x ‖‖yyT‖+1

)
≤ 2‖A−1

0 ‖
2(4‖A−1

0 ‖‖yyT‖+1
)
=: M1.

Similarly,

‖∂S1(A,B,x,y)
∂bst

‖ ≤ 2M1‖F‖ ≤ 4M1‖B0‖‖S(x)‖2 =: M2,

‖∂S2(A,B,x,y)
∂ai j

‖ ≤ M2,

‖∂S2(A,B,x,y)
∂bst

‖ ≤ 4M2‖B0‖‖S(x)‖2 +2‖A−1
0 ‖
(
2‖A−1

0 ‖‖yyT‖+1
)
‖S(x)‖2

=: M3.

Thus, each second derivative of log fA,B(x,y) is bounded by

M(x,y) = max(M1,M2,M3).

It is noticed that

EA0,B0(‖yyT‖) = EA0,B0{tr(yyT )}= tr
{

EA0,B0(yyT )
}
= tr{E(Σx0)} .
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Hence,

EA0,B0(M1(x,y)) = 2‖A−1
0 ‖

2 [4‖A−1
0 tr{E(Σx0)}+1

]
< ∞,

In the same fashion, it follows that in the neighborhood of (A0,B0), EA0,B0(M2) and

EA0,B0(M3) are finite, too, concluding that EA0,B0(M(x,y))< ∞. Hence, condition (c) is

true.

The condition (c) implies that E
{

∂S(A,B,x,y)
∂ (A,B)

}
converges uniformly in the neighbor-

hood of (A0,B0). Therefore, ∂

∂ (A,B)E{S(A,B,x,y)} = E
{

∂S(A,B,x,y)
∂ (A,B)

}
. Accordingly, it

has been shown that second partial derivatives of log fA,B(x,y) with respect to (A,B)
exist and are continuous for all (x,y), and may be passed under the integral sign in∫

log fA,B(x,y)dµ(x,y), which completes the prove of condition (b).

It has been shown that ∂

∂ (A,B)E{S(A,B,x,y)} is negative definite. By condition

(b), −E{∂S(A,B,x,y)
∂ (A,B) } = −

∂

∂ (A,B)E{S(A,B,x,y)} is positive definite. Condition (d) is

satisfied.

Finally, the condition fA,B(x,y) = fA0,B0(x,y) a.e. dµ for all z = (x,y) ∈ Rp is

equivalent to

|Σx|−
1
2 exp

(
−1

2
yT

Σ
−1
x y
)
= |Σx0|−

1
2 exp

(
−1

2
yT

Σ
−1
x0 y
)

a.e. dµ, ∀x,y,

which is equivalent to

|Σx0|
1
2 |Σx|−

1
2 = exp

{
−1

2
yT (Σ−1

x0 −Σ
−1
x )y

}
a.e. dµ, ∀x,y.

The left side of the above equation is a constant for fixed x, thus

yT (Σ−1
x0 −Σ

−1
x )y = c(x) a.e. dµ, ∀x,y.

where c(x) = log |Σx|− log |Σx0| depends on x only. Next, it is shown that c(x) = 0 a.e.

dµx with the marginal density µx. It is proceeded by contradiction. Let D = {x | c(x) 6=
0}. If µx(D) 6= 0, then D has an open subset D0. Let

Ω =
{
(x,y) | yT (Σ−1

x0 −Σ
−1
x )y = c(x), x ∈ D0

}
.
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Obviously, µ(Ω)> 0 since µx(D0)> 0, which implies that Ω has an open set Ω0. Hence,

one can find two points (x,y) and (x,ay) in Ω0 ⊂Ω with |a| 6= 1. It follows that

a2c(x) = a2yT (Σ−1
x0 −Σ

−1
x )y = (ay)T (Σ−1

x0 −Σ
−1
x )(ay) = c(x),

which yields c(x) = 0 in contradiction to that x ∈ D0 ⊂ D. Therefore, it is proved that

c(x) = 0 a.e. dµx, or equivalently, Σx0 = Σx a.e. dµx. Since Σx is a one-to-one function

from (A,B) to Σx, it is concluded that (A,B) = (A0,B0) and complete the proof of

condition (e).

It is known that there is a unique root of the likelihood equation for every n, which is

the maximum likelihood estimator (Â, B̂). Moreover, it is shown the consistency of the

maximum likelihood estimators Â and B̂. By Theorem 3.2.2 accordingly, the maximum

likelihood estimators Â and B̂ have asymptotic normality.

3.3 Covariance Regression Model II

Model (3.1) assumes that all the variables xi are continuous. In many real applications,

categorical variables such as gender may also affect the observations. In this section, an

extension of the nonparametric covariance regression model is considered by taking the

potential categorical variables into account.

Let z ∈ Rr be a dummy variable that represent categorical predicting variables that

have 0/1 elements. The extended covariance regression model of (3.1) has the following

form

Σx = A+BS(x)S(x)T BT +CzzT CT , (3.37)

where S(x), A, and B are defined as before, and C is a p× r matrix that needs to be

estimated as the unknown matrices A and B.

To estimate the parameter matrices A, B, and C, consider the nonparametric regres-

sion model:

yi = µµµxi,zi
+BS(xi)γγγ i + τiCzi + εεε i, (3.38)

based on the set of random samples {yi,xi,zi, i = 1,2, . . . ,n} from population {y,x,z},
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where γi and τi are random variables with the normalization assumptions:

γγγ1, . . . ,γγγn ∼ Nd(0,Id×d),

τ1, . . . ,τn ∼ N(0,1), τi and γγγ i independent, n
√

εεε1, . . . ,εεεn ∼ Np(0,Ap×p). (3.39)

It is assumed that the conditioned mean µµµxi,zi
given xi and zi, is known for i =

1, . . . ,n.

The above assumptions result in the conditional normal distribution of {γγγ1, . . . ,γγγn}
and {τ1, . . . ,τn} given {A,B,C,Y,X,Z}, which the theoretical derivation can be de-

scribed as follows.

First, it follow that

(yi | γγγ i,τi,xi,zi,A,B,C) ∼ Np(µµµxi,zi
+BS(xi)γγγ i + τiCzi,A)

γγγ i ∼ Nd(0,Id×d)

τi ∼ N(0,1), γγγ i and τi are independent,

then the conditional distribution of {yi,γγγ i,τi} given {xi,zi,A,B,C} can be expressed as

f (yi,γγγ i,τi | xi,zi,A,B,C)

= (2π)−
p+d+1

2 |A|−
1
2 exp

[
− 1

2
γγγ

T
i γγγ i−

1
2

τ
2
i

−1
2
{

yi−µµµxi,zi
−BS(xi)γγγ i− τiCzi

}T A−1{yi−µµµxi,zi
−BS(xi)γγγ i− τiCzi

}]
so the conditional distribution of (yi,γγγ i) given (xi,zi,A,B,C) is known as

f (yi,γγγ i | xi,zi,A,B,C)

=

∫
f (yi,γγγ i,τi | xi,zi,A,B,C)dτi

=

∫
(2π)−

p+d+1
2 |A|−

1
2 exp

(
− 1

2
[
eT

i A−1ei−2γγγ
T
i S(xi)

T BT A−1ei +

γγγ
T
i
{

I+S(xi)
T BT A−1BS(xi)

}
γγγ i−σ

2
1 (z

T
i CT A−1ei− zT

i CT A−1BS(xi)γγγ i)
2])

exp
{
− 1

2σ2
1
(τi−µ1)

2}dτi
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= (2π)−
p+d

2 |A|−
1
2 (σ2

1 )
1
2 exp

(
− 1

2
[
eT

i A−1ei−2γγγ
T
i S(xi)

T BT A−1ei +

γγγ
T
i
{

I+S(xi)
T BT A−1BS(xi)

}
γγγ i−σ

2
1 (z

T
i CT A−1ei− zT

i CT A−1BS(xi)γγγ i)
2]),

where

σ
2
1 = (1+ zT

i CT A−1Czi)
−1,

µ1 = σ
2
1 zT

i CT A−1 {ei−BS(xi)γγγ i} .

So the conditional distribution of γγγ i given (Y,X,Z,A,B,C) can be derived as follows,

f (γγγ i | Y,X,Z,A,B,C)

∝ f (yi,γγγ i | xi,zi,A,B,C)

∝ exp
(
− 1

2
[
γγγ

T
i {I+S(xi)

T BT A−1(I−σ
2
1 CzizT

i CT A−1)BS(xi)}γγγ i−

2γγγ
T
i S(xi)

T BT A−1(I−σ
2
1 CzizT

i CT A−1)ei
])

∝ exp
{
− 1

2
(γγγ i−µµµγγγ i

)T
Σ
−1
γγγ i
(γγγ i−µµµγγγ i

)
}
,

where

Σγγγ i
= {I+S(xi)

T BT A−1(I−σ
2
1 CzizT

i CT A−1)BS(xi)}−1,

µµµγγγ i
= Σγγγ i

S(xi)
T BT A−1(I−σ

2
1 CzizT

i CT A−1)ei.

Therefore, the conditional distribution of {γ1, . . . ,γn} given {Y,X,Z,A,B,C} is as

follows:

(γγγ i|Y,X,Z,A,B,C) ∼ Nd(µµµγγγ i
,Σγγγ i

), where

Σγγγ i
= {I+S(xi)

T BT A−1(I−σ
2
1 CzizT

i CT A−1)BS(xi)}−1,

µµµγγγ i
= Σγγγ i

S(xi)
T BT A−1(I−σ

2
1 CzizT

i CT A−1)ei.

Under the similar fashion, the conditional distribution of (yi,τi) given (xi,zi,A,B,C)

is derived as

f (yi,τi | xi,zi,A,B,C)
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=

∫
f (yi,γγγ i,τi | xi,zi,A,B,C)dγγγ i

=

∫
(2π)−

p+d+1
2 |A|−

1
2 exp

[
− 1

2
{

eT
i A−1ei + τ

2
i (1+ zT

i CT A−1Czi)−2τizT
i CT A−1ei

−(ei− τiCzi)
T A−1BS(xi)Σ2S(xi)

T BT A−1(ei− τiCzi)
}]

exp
{
− 1

2σ2
1
(γγγ i−µµµ2)

T
Σ
−1
2 (γγγ i−µµµ2)

}
dγγγ i

= (2π)−
p+1

2 |A|−
1
2 |Σ2|

1
2 exp

[
− 1

2
{

eT
i A−1ei + τ

2
i (1+ zT

i CT A−1Czi)−

2τizT
i CT A−1ei−µµµ

T
2 Σ
−1
2 µµµ2

}]
,

where

Σ2 = {I+S(xi)
T BT A−1BS(xi)}−1,

µµµ2 = Σ2S(xi)
T BT A−1(ei− τiCzi).

So the conditional distribution of τi given {Y,X,Z,A,B,C} can be derived as follows,

f (τi | Y,X,Z,A,B,C)

∝ f (yi,τi | xi,zi,A,B,C)

∝ exp
{
− 1

2

(
τ

2
i
[
1+ zT

i CT A−1{I−BS(xi)Σ2S(xi)
T BT A−1}Czi

]
−

2τizT
i CT A−1{I−BS(xi)Σ2S(xi)

T BT A−1}ei

)}
∝ exp

{
− 1

2σ2
τi

(τi−µτi)
2},

where

σ
2
τi

= {1+ zT
i CT A−1(I−BS(xi)Σ2S(xi)

T BT A−1)Czi}−1,

µτi = Στiz
T
i CT A−1{I−BS(xi)Σ2S(xi)

T BT A−1}ei.

Therefore, the conditional distribution of {τ1, . . . ,τn} given {Y,X,Z,A,B,C} is as

follows:

(τi|Y,X,Z,A,B,C) ∼ Nd(µτi,σ
2
τi
), where
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σ
2
τi

=
[
1+ zT

i CT A−1{I−BS(xi)Σ2S(xi)
T BT A−1}Czi

]−1
,

µτi = σ
2
τi

zT
i CT A−1{I−BS(xi)Σ2S(xi)

T BT A−1}ei, (3.40)

(γγγ i|Y,X,Z,A,B,C) ∼ Nd(µµµγγγ i
,Σγγγ i

), where

Σγγγ i
= {I+S(xi)

T BT A−1(I−σ
2
1 CzizT

i CT A−1)BS(xi)}−1,

µµµγγγ i
= Σγγγ i

S(xi)
T BT A−1(I−σ

2
1 CzizT

i CT A−1)ei, (3.41)

with Σ2 = {I+S(xi)
T BT A−1BS(xi)}−1 and σ2

1 = (1+ zT
i CT A−1Czi)

−1.

Similar as in the previous model, the log-likelihood of the parameters based on X,

Z, and the matrix E = (eT
1 , · · · ,eT

n )
T of residuals ei = yi−µµµxi,zi

, i = 1,2, . . . ,n is

`(A,B,C : E,X,Z) = c− 1
2

n∑
i=1

log |A+BS(xi)S(xi)
T BT +CzizT

i CT |

−1
2

n∑
i=1

tr
[{

A+BS(xi)S(xi)
T BT +CzizT

i CT}−1 eieT
i

]
. (3.42)

The data log-likelihood `(A,B,C) given {Y,X,Z,µ,γ} is

`(A,B,C)

= −1
2

[
np log(2π)+n log |A|+

+
n∑

i=1

{ei−BS(xi)γγγ i− τiCzi}T A−1 {ei−BS(xi)γγγ i− τiCzi}
]
. (3.43)

Therefor, given current estimates (Â, B̂, Ĉ) of (A,B,C), the estimation step of the

EM-algorithm is to compute µµµγγγ i
, Σγγγ i

, µτi , and σ2
τi

as follows:

µµµγγγ i
= E(γγγ i|Â, B̂, Ĉ,ei,xi,zi), Σγγγ i

= Var(γγγ i|Â, B̂,ei,xi,zi),

µτi = E(τi|Â, B̂, Ĉ,ei,xi,zi), σ
2
τi
= Var(τi|Â, B̂,ei,xi,zi).

Substitude µµµγγγ i
, Σγγγ i

, µτi and σ2
τi

into the complete data log-likelihood (3.43), it follows

that

E{`(A,B,C)|Â, B̂, Ĉ}
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= −1
2

{
np log(2π)+n log |A|+

+
n∑

i=1

E
(
{ei−BS(xi)γγγ i− τiCzi}T A−1 {ei−BS(xi)γγγ i− τiCzi}|Â, B̂, Ĉ

)}
.

By the factorization Σri = KiKT
i , the last term can be simplified as shown below.

E
[
{ei−BS(xi)γγγ i− τiCzi}T A−1 {ei−BS(xi)γγγ i− τiCzi}|Â, B̂, Ĉ

]
=

{
ei−BS(xi)µµµγγγ i

−µτiCzi

}T
A−1

{
ei−BS(xi)µµµγγγ i

−µτiCzi

}
+ tr

[
A−1{BS(xi)ΣriS(xi)

T BT +σ
2
τi

CzizT
i CT}]

=
{

ei−BS(xi)µµµγγγ i
−µτiCzi

}T
A−1

{
ei−BS(xi)µµµγγγ i

−µτiCzi

}
+ tr

[
{BS(xi)Ki}T A−1 {BS(xi)Ki}+(στiCzi)

T A−1(στiCzi)
]

= tr
[{

ei−BS(xi)µµµγγγ i
−µτiCzi, −BS(xi)Ki, −στiCzi

}T A−1{
ei−BS(xi)µµµγγγ i

−µτiCzi, −BS(xi)Ki, −στiCzi
}]

= tr
{(

E∗i −DX∗i
)T A−1(E∗i −DX∗i

)}
.

Here the following representation was used.

(
ei−BS(xi)µµµγγγ i

−µτiCzi, −BS(xi)Ki, −στiCzi
)

= (ei,0,0)− (B,C)

(
S(xi)µµµγγγ i

S(xi)Ki 0

µτizi 0 στizi

)
= E∗i −DX∗i ,

with E∗i = (ei,0,0), D = (B,C), and X∗i =

(
S(xi)µµµγγγ i

S(xi)Ki 0

µτizi 0 στizi

)
. Therefore,

denoting X∗ = (X∗1, . . . ,X
∗
n) and E∗ = (E∗1, . . .E

∗
n), the expected value of the complete

data log-likelihood can be expressed as

E{`(A,B,C)|Â, B̂, Ĉ}

= −1
2

[
np log(2π)+n log |A|+ tr

{(
E∗−DX∗

)T A−1(E∗−DX∗
)}]

,

yielding the expected likelihood for multivariate normal regression whose maximizers
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are given by

D̃ = E∗X∗T (X∗X∗T )−1, (3.44)

Ã = (E∗− D̂X∗)(E∗− D̂X∗)T/n. (3.45)

The above EM formula can also be simplified by using

wi =

(
S(xi)µµµγγγ i

ziµτi

)
, Qi =

(
S(xi)Σγγγ i

S(xi)
T 0

0 zizT
i σ2

γγγ i

)
, W = (wi, . . . ,wn).

It produces the equalities

E∗X∗T = EW,

X∗X∗T = WWT +
n∑

i=1

Qi,

(E∗− D̂X∗)(E∗− D̂X∗)T = (E− D̂W)(E− D̂W)T + D̂
( n∑

i=1

Qi
)
D̂T .

Let (Â, B̂, Ĉ) be the current estimation, the EM algorithm for estimating the param-

eters in model (3.38) can be explained as follows.

EM algorithm for the regression model (3.38).

1. Estimate µµµγγγ i
= E(γγγ i|Â, B̂, Ĉ,ei,xi,zi), Σγγγ i

= Var(γγγ i|Â, B̂, Ĉ,ei,xi,zi), µτi =

E(τi|Â, B̂, Ĉ,ei,xi,zi), and σ2
τi
= Var(τi|Â, B̂, Ĉ,ei,xi,zi).

2. Compute wi =

(
S(xi)µµµγγγ i

ziµτi

)
, T = E− D̂W, and Q =

∑n
i=1 Qi.

3. Update Â and D̂ by

Â =
(
TTT + D̂QD̂T)/n, D̂ = EWT (WWT +Q)−1.

This procedure is repeated until a desired convergence criterion has been satisfied.

Since D̂ = (B̂, Ĉ), namely, B̂ is the first q columns of D̂ and Ĉ is the last r columns of

D̂, the estimates of B and C can be obtained.
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3.4 Numerical Studies

3.4.1 Simulation Studies

Example 1
First, consider a simulation study for covariance regression model (3.1). The simu-

lated data sets are generated as follows. Let A and B be

A =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , B =


0.8 −0.2 −0.2

−0.2 0.8 −0.2

−0.2 −0.2 0.8

−0.2 −0.2 −0.2

 ,

where A is a 4×4 matrix and B is a 4×3 matrix (i.e., p = 4 and q = 3).

First, independently generate each element of X, xi j from Uniform distribution U(0,1)

for i = 1, . . . ,n, j = 1, . . . ,3. The random error vectors εεε1, . . . ,εεεn are taken from a mul-

tivariate normal population with zero mean and covariance matrix A. Five knots (i.e.,

J = 5), which denoted as κ1, . . . ,κ5, are selected at equal intervals over the range of X
(i.e., [0,1]). Hence, the smoothing spline S(xi) can be expressed as

S(xi) = [xi,x2
i ,x

3
i ,(xi−κ1)

3
+, . . . ,(xi−κ5)

3
+].

The random vectors γγγ1, . . . ,γγγn are taken from a multivariate normal distribution with

zero mean and covariance matrix Id×d, where d = J + 3 = 8. Then yi from yi =

BS(xi)γγγ i + εεε i is generated for i = 1, . . . ,n . To examine the performance of the pro-

posal method, the experiment is repeated 100 times each of sample size n = 100, 200,

500, and 1000.

To examine the performance in estimating Σx, consider the following three criteria

to evaluate the estimation accuracy of Σ̂x, the estimate of Σx:

41 =
1
n

n∑
i=1

[
tr{H(xi)}− log|H(xi)|

]
− p, (3.46)

42 =
1
n

n∑
i=1

tr{H(xi)− I}2, (3.47)
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43 =
1
n

n∑
i=1

tr(Σ̂xi−Σxi)
2 (3.48)

where H(xi) = Σ−1
xi

Σ̂xi , |H(xi)| is the determinant of matrix H(xi) and tr{H(xi)} is its

trace. Note that41 and42 are not the original Stein loss and the quadratic loss.

Table 3.1 summarize respectively the average (“average”), the standard deviation (

“stdev.”) and the median (“median”) of41,42, and43 over 100 runs.

Table 3.1. The performance of the covariance regression model in estimating Σx for simulation
example 1. The average (“average”), the standard deviation (“stdev.”) and the median (“median”)
of41,42 and43 over 100 repetitions when sample size equals to 100, 200, 500, and 1000.

sample size 41 42 43

100 average 0.2430 0.5470 1.6266
stdev. 0.1219 0.4026 0.8894

median 0.2065 0.4247 1.3833
200 average 0.1243 0.2697 0.8666

stdev. 0.0664 0.1703 0.5215
median 0.1050 0.2192 0.7524

500 average 0.0621 0.1296 0.4730
stdev. 0.0278 0.0670 0.2332

median 0.0591 0.1213 0.4487
1000 average 0.0445 0.0907 0.3976

stdev. 0.0083 0.0194 0.1076
median 0.0443 0.0879 0.3975

It can be seen from Table 3.1 that as the sample size n increases, the average, the

standard deviation, and the median of41,42 and43 would decrease, namely, the per-

formance of the proposed method would be better.

Example 2
Now consider another simulation example for covariance model (3.1) with randomly

generated parameter matrix A and B. Suppose p and q are set the same as above. The

generated parameter matrixes A and B, satisfy 1) A is symmetric, each diagonal element

of A is positive; 2) B has full rank, each element of B is between −1 and 1, and the
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columns of B are orthogonal, which can be written as follows.

A =


0.7864 −0.9386 −0.4500 0.2103

−0.9386 1.6076 0.2483 0.6582

−0.4500 0.2483 1.0292 −0.2794

0.2103 0.6582 −0.2794 2.0083

 ,

B =


0.2649 0.7592 0.4719

0.4005 0.3779 −0.2148

0.7400 −0.1535 −0.4961

−0.4710 0.5072 −0.6965

 ,

Similarly, the elements of explanatory samples X are generated from standard uni-

form distribution U(0,1). The random error vectors εεε1, . . . ,εεεn are taken from a mul-

tivariate normal population with zero mean and covariance matrix A. Five knots are

selected at equal intervals over [0,1]. So the smoothing spline S(xi) is of the same form

as that in Example 1. The random vectors γγγ1, . . . ,γγγn are taken from a multivariate nor-

mal distribution with zero mean and covariance matrix Id×d with d = J + 3 = 8. The

response variable yi can then be generated from yi = BS(xi)γγγ i + εεε i, i = 1, . . . ,n. To ex-

amine the performance of our proposal, the experiment is repeated 100 times each of

sample size n = 100, 200, 500, and 1000.

The results of the average (“average”), the standard deviation (“stdev.”) and the

median (“median”) of41,42, and43 over 100 repetitions are shown in Table 3.2.

It can be seen from Table 3.2 that as the sample size n increase, the average, the

standard deviation, and the median of 41, 42 and 43 would decrease, that is, the per-

formance of the proposed method would be better.

Example 3
Consider a simulation example for covariance regression model (3.37). Suppose p

is 5, q is 4, and r is 3. First, the parameter matrixes A, B, and C are generated, such

that 1) A is symmetric, each diagonal element of A is positive; 2) B has full rank, each

element of B is between −1 and 1, and the columns of B are orthogonal; 3) C has full

rank, each element of C is between −1 and 1, and the columns of C are orthogonal. A
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Table 3.2. The performance of the covariance regression model in estimating Σx for simulation
example 2. The average (“average”), the standard deviation (“stdev.”) and the median (“me-
dian”) of 41, 42 and 43 over 100 repetitions when sample size equals to 100, 200, 500, and
1000.

sample size 41 42 43

100 average 0.4607 6.3310 4.4998
stdev. 0.6287 5.3844 3.7046

median 0.2650 0.6064 3.2132
200 average 0.1695 0.8717 1.7059

stdev. 0.1931 2.4070 1.2060
median 0.1314 0.3487 1.4400

500 average 0.0685 0.3125 0.6556
stdev. 0.0212 0.5616 0.2451

median 0.0693 0.2111 0.6254
1000 average 0.0467 0.3347 0.3559

stdev. 0.0159 0.4154 0.1505
median 0.0429 0.1721 0.3210

B, and C can be written as follows.

A =



2.4061 1.0373 0.8447 0.2015 0.3466

1.0373 2.6082 0.8604 0.2627 0.2260

0.8447 0.8604 2.3373 0.7075 −0.5037

0.2015 0.2627 0.7075 0.4411 −0.4116

0.3466 0.2260 −0.5037 −0.4116 0.6234


,

B =



−0.2392 0.3585 −0.7545 −0.0776

0.5216 −0.2955 −0.1202 0.6855

0.7894 0.0954 −0.2900 −0.4899

−0.1618 −0.2555 −0.5585 0.3203

0.1464 0.8425 0.1424 0.4261


,
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C =



−0.4914 0.7658 −0.0029

−0.3150 −0.3145 0.7933

0.3255 0.0369 0.4117

−0.5783 −0.5486 −0.3846

−0.4679 0.1111 0.2306


,

where A is a 5×5 matrix, B is a 5×4 matrix, and C is a 5×3 matrix .

Then independently generate elements of X from standard uniform distribution U(0,1)

and elements of Z from Bernoulli distribution. The random error vectors εεε1, . . . ,εεεn are

taken from a multivariate normal population with zero mean and covariance matrix A.

Five knots are selected at equal intervals over [0,1]. So the smoothing spline S(xi)

is of the same form as that in Example 1. The random vectors γγγ1, . . . ,γγγn are taken

from a multivariate normal distribution with zero mean and covariance matrix Id×d with

d = J +3 = 8. The random variables τ1, . . . ,τn are taken from a standard normal distri-

bution. Then we generate yi from yi = BS(xi)γγγ i + τiCzi + εεε i, i = 1, . . . ,n. To examine

the performance of the proposed method, the experiment is repeated 100 times each of

sample size n = 100, 200, 500, and 1000.

To examine the performance in estimating Σx,z, consider the following two criteria

to evaluate the estimation accuracy of Σ̂x,z, the estimate of Σx,z:

41 =
1
n

n∑
i=1

[
tr{H(xi,zi)}− log|H(xi,zi)|

]
− p, (3.49)

42 =
1
n

n∑
i=1

tr{H(xi,zi)− I}2, (3.50)

43 =
1
n

n∑
i=1

tr(Σ̂xi,zi−Σxi,zi)
2 (3.51)

where H(xi,zi) = Σ−1
xi,zi

Σ̂xi,zi , |H(xi,zi)| is the determinant of matrix H(xi,zi), and addi-

tionally tr{H(xi,zi)} is its trace. Note that41 and42 are are not the original Stein loss

and the quadratic loss.

Table 3.3 summarize respectively the average (“average”), the standard deviation (

“stdev.”) and the median (“median”) of 41, 42, and 43 over 100 runs. It can be seen

from Table 3.3 that as the sample size n increase, the average, the standard deviation and
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the median of41,42, and43 would decrease, that is, the performance of the proposed

method would be better.

Table 3.3. The performance of the covariance regression model in estimating Σx for simulation
example 3. The average (“average”), the standard deviation (“stdev.”) and the median (“me-
dian”) of 41, 42 and 43 over 100 repetitions when sample size equals to 100, 200, 500, and
1000.

sample size 41 42 43

100 average 0.9550 3.9281 14.4240
stdev. 0.4146 4.2178 7.4105

median 0.8212 2.5336 12.4547
200 average 0.4705 1.6728 5.1726

stdev. 0.0993 0.6354 1.7469
median 0.4569 1.4974 5.1011

500 average 0.3273 1.3221 2.3855
stdev. 0.0428 0.2955 0.6955

median 0.3301 1.2961 2.2440
1000 average 0.2768 1.1691 1.5297

stdev. 0.0262 0.1939 0.4105
median 0.2746 1.1476 1.5177

3.4.2 Application to Boston Housing Data

In this section, we apply the proposed method on the Boston Housing data set for illus-

tration . The data set reports the median value of owner-occupied homes in 506 U.S.

census tracts in the Boston area in 1970, together with several variables which might

help to explain the variation in housing value (see Harrison & Rubinfeld (1978)). For

illustration purposes, we consider five social economics variables: CRIM(crime rate

by town), TAX (full-value property-tax rate), PTRATIO (pupil-teacher ratio by town),

MEDV (median value of owner-occupied homes), and NOX (nitric oxides concentration

in parts per 10 million). For simplicity of notation, the response variables CRIM, TAX,

PTRATIO, MEDV, and NOX are denoted by y1,y2, . . . ,y5, respectively. Fan & Huang

(2005) used
√

LSTAT as the covariate x, where LSTAT denotes the percentage of lower

status of the population. Here, the square-root transformation is employed since the dis-

tribution of LSTAT is examined to be asymmetric and therefore the resulting data have

nearly symmetric distribution. Note that in order to be consistent with the model setting
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CRIM

Figure 3.1. Estimated mean function for CRIM. The black line is local polynomial fits; the red
dots indicate the observed value of the variable CRIM. These legends remain the same through
Figure 3.5.

of the proposed model and reduce the possible bias, the regressor in the covariance func-

tion, x, is transformed so that it is uniformly distributed over [0,1]. To be specific, each

observation vector is 5-dimensional with elements consisting of CRIM, TAX, PTRA-

TIO, MEDV, and NOX respectively, which is denoted by yi = (yi1,yi2, . . . ,yi5). The

explanatory variable xi denotes the standardized square-root of LSTAT for the i-th ob-

servation. The objective of the study is to examine how the correlation structure of those

y-variables varies as the percentage of lower status changes.

To evaluate the performance of the proposed nonparametric regression model, the

mean function is needed to be estimated first. The the mean function can be subtracted

from the corresponding data for response variables and the estimation of the covariance

function can be proceeded. Precisely, if consider yi|xi ∼N(µµµxi
,Σxi), each element µµµxi

is

estimated by loess using the R-code, one for each of the response variable CRIM, TAX,

PTRATIO, MEDV, and NOX, respectively. The plots of estimated regression functions

µµµxi
at those y-variables are shown in Figure 3.1 through Figure 3.5.
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Figure 3.2. Estimated mean function for TAX.
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Figure 3.3. Estimated mean function for PTRATIO.
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Figure 3.4. Estimated mean function for MEDV.
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Figure 3.5. Estimated mean function for NOX.
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Next, we obtain the conditional covariance matrix through the proposed nonparamet-

ric regression model. Five knots (i.e., J = 5), which denoted as κ1, . . . ,κ5, are selected

at equal intervals over the range of x (i.e., [0,1]). Hence, the smoothing spline S(xi) can

be expressed as

S(xi) = [xi,x2
i ,x

3
i ,(xi−κ1)

3
+, . . . ,(xi−κ5)

3
+].

Then the pairwise nonparametric correlation coefficients are computed, which are

denoted by ρ̂(y1,y2|x). Figure 3.6 through Figure 3.15 depict the estimation of condi-

tional correlation coefficients. In these figures, the pointwise 95% confidence intervals

ρ̂(y1,y2|x)±1.96× ŜE{ρ̂(y1,y2|x)}, where the standard error estimate ŜE{ρ̂(y1,y2|x)}
was obtained based on 200 bootstrap experiments and 1.96 is approximately the 97.5

percentile point of the normal distribution. The legends are as follows: the solid black

line is the estimated conditional correlation coefficients based on the proposed non-

parametric covariance regression model; the dashed red line is the sample correlation

coefficients based on the whole dataset; the dotted blue lines are the pointwise 95%

confidence intervals based on the bootstrap experiments. For comparison purposes, the

sample correlation coefficients are also presented in Table 3.4.

Table 3.4. Sample Correlation Coefficients.
CRIM TAX PTRATIO MEDV NOX

CRIM 1.0000 0.4597 0.1709 -0.1780 0.2234
TAX 0.4597 1.0000 0.3192 -0.1414 0.4850

PTRATIO 0.1709 0.3192 1.0000 -0.3228 -0.0842
MEDV -0.1780 -0.1414 -0.3228 1.0000 0.0469
NOX 0.2234 0.4850 -0.0842 0.0469 1.0000

Comparing the results in Table 3.4 and Figure 3.6 through Figure 3.15, a number of

findings can be obtained. First, Table3.4 shows that sample correlation coefficients be-

tween the crime rate (CRIM) and the housing value (MEDV), the full-value property-tax

rate (TAX) and the housing value (MEDV), the pupil-teacher ratio by town (PTRATIO)

and the housing value (MEDV), and the pupil-teacher ratio by town (PTRATIO) and the

nitric oxides concentration (NOX) , are negative. On the other hand, the correlation co-

efficients estimated by the proposed method present more details. To be specific, Figure

3.6 depicts that the correlation coefficient between the crime rate (CRIM) and the full-

value property-tax rate (TAX) has a curved trend as lower status increases. When the

lower status is small, CRIM and TAX has high correlation; as the lower status increases
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this correlation coefficient decreases and it reaches its minimum when x is close to 0.5;

then the correlation coefficient goes up as x increases. Analogously, the correlation

coefficients between the crime rate (CRIM) and the pupil-teacher ratio by town (PTRA-

TIO) (see Figure 3.7), the crime rate (CRIM), and the nitric oxides concentration (NOX)

(see Figure 3.9) have similar trends as that between CRIM and TAX. Figure 3.8 shows

that the correlation coefficient between the crime rate (CRIM) and the housing value

(MEDV) has a decreasing trend as lower status increases. It goes from weak positive

correlation from moderate negative correlation as the lower status grows. Furthermore,

the correlation between the tax rate (TAX) and the housing value (MEDV) (see Figure

3.11) drops as the lower status increases. Similar trend can be observed from the hous-

ing value (MEDV) and the nitric oxides concentration (NOX) (see Figure 3.15). It is

noted that these findings are not available from the simple sample correlation coefficient

matrix presented in Table 3.4 .
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Figure 3.6. Estimated correlation coefficients of CRIM and TAX for Boston Housing Data.
The solid black line is the estimated conditional correlation coefficients based on the proposed
nonparametric covariance regression model; the dashed red line is the sample correlation co-
efficients based on the whole dataset; the dotted blue lines are the pointwise 95% confidence
intervals based on the bootstrap experiments. These legends remain the same through Figure
3.15.
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Figure 3.7. Estimated correlation coefficients of CRIM and PTRATIO for Boston Housing Data.
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Figure 3.8. Estimated correlation coefficients of CRIM and MEDV for Boston Housing Data.
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Figure 3.9. Estimated correlation coefficients of CRIM and NOX for Boston Housing Data.
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Figure 3.10. Estimated correlation coefficients of TAX and PTRATIO for Boston Housing Data.
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Figure 3.11. Estimated correlation coefficients of TAX and MEDV for Boston Housing Data.
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Figure 3.12. Estimated correlation coefficients of TAX and NOX for Boston Housing Data.
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Figure 3.13. Estimated correlation coefficients of PTRATIO and MEDV for Boston Housing
Data.
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Figure 3.14. Estimated correlation coefficients of PTRARIO and NOX for Boston Housing
Data.
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Figure 3.15. Estimated correlation coefficients of MEDV and NOX for Boston Housing Data.



Chapter 4
Functional Estimation of
Conditional Covariance

Chapter 3 considers the situation in which the covariates are low dimensional. However,

it becomes less useful in situations where the covariates are high-dimensional. In this

chapter, estimating the conditional covariance matrix through a modified Cholesky de-

composition is proposed. The modified Cholesky decomposition procedure associates

each local covariance matrix with a unique unit lower triangular and a unique diagonal

matrix. The entries of the lower triangular matrix and the diagonal matrix have statis-

tical interpretation as regression coefficients and prediction variances when regressing

each term on its predecessors. A class of partially linear models are used to estimate

those regression coefficients and kernel estimators are developed to estimate the non-

parametric variance functions. The asymptotic properties of the proposed procedure are

studied. Comprehensive simulation studies are conducted to examine the finite sample

performance of the proposed procedures. A real data example is used to illustrate the

proposed methodology.
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4.1 Estimation of Covariance Function Assuming Par-

tially Linear Models

4.1.1 The Modified Cholesky Decomposition

Let y = (Y1, . . . ,Ym)
T be the response vector, x = (X1, . . . ,Xd)

T and U be the associated

covariates, and εεε = (ε1, . . . ,εm)
T be the error vector with E(εεε|x,U) = 0. Then in regres-

sion analysis, the responses usually can be decomposed into two uncorrelated parts as

follows:

y = E(y|x,U)+ εεε. (4.1)

In the subsection, the estimation of the conditional mean function will be discussed. In

order to illustrate the rationale of the proposed method, the conditional mean is assumed

to be known for now. The primary interest in this chapter is to estimate the conditional

covariance matrix ΣΣΣ(x,U) = Cov(y|x,U) = Cov(εεε|x,U). The idea of Cholesky decom-

position through associating the conditional covariance matrix with a unique unit lower

triangular and a unique diagonal matrix will be adopted. To be more specific, since

ΣΣΣ(x,U) is symmetric, it has the following modified Cholesky decomposition structure:

L(x,U)ΣΣΣ(x,U)LT (x,U) = D(x,U), (4.2)

where L(x,U) is a lower triangular matrix containing ones on its diagonal and elements

−φk j(x,U) in the (k, j)-th position for 1≤ j < k ≤ m, and D(x,U) is a diagonal matrix

of diagonals σ2
1 (x,U), . . . ,σ2

m(x,U).

The modified Cholesky decomposition (4.2) can be re-written as

ΣΣΣ(x,U) = {L(x,U)}−1D(x,U){LT (x,U)}−1. (4.3)

Therefore, in consideration of estimating the covariance matrix using the Cholesky de-

composition (4.2), it is sufficient to estimate the entries of the lower triangular ma-

trix L(x,U) and the diagonal matrix D(x,U), particularly, −φk j(x,U),1 ≤ j < k ≤ m,

and σ2
k (x,U),k = 1, . . . ,m. Based on the form of lower triangular matrix L(x,U), the

Cholesky decomposition (4.2) can be re-formulated through regression modeling. To be
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concrete, denote

e = L(x,U)εεε, (4.4)

i.e., e1 = ε1 and ek = εk−
∑k−1

j=1 φk j(x,U)ε j for k = 2, · · · ,m, where the regression co-

efficients φk j’s are unconstrained and the variances Var(ek|x,U) = σ2
k (x,U) are non-

negative. Then,

ε1 = e1, εk =
k−1∑
j=1

φk j(x,U)ε j + ek, k ≥ 2. (4.5)

Evidently, the prediction errors are uncorrelated since Cov(e|x,U) = D(x,U) is a di-

agonal matrix. Therefore, the elements φk j(x,U) in the lower triangular matrix L(x,U)

and the diagonals σ2
k (x,U) of D(x,U) have statistical interpretation as the regression

coefficients and prediction variances corresponding to regressing each error term εk on

its predecessor ε j, j = 1, . . . ,k for k = 2, . . . ,m.

First we focus on estimating the coefficients φk j(x,U). There has been focused

research in the literature for local smoothing techniques when the dimension (d +1) of

the covariates (x,U) is relatively small and the sample size n is sufficiently large, see for

example, the local polynomial regression by Fan & Gijbels (1996). However, in modern

data sets, the dimension of covariates is usually large, which requires new techniques

to estimate φk j(x,U). In this proposal, we consider model the regression of φ(x,U)

through partially linear models. To be specific, assume

φk j(x,U) = βk j(U)+ γγγ
T
k jx (4.6)

for k = 2, . . . ,m, j = 1, . . . ,k−1, where βk j(·)’s are unknown smoothing functions and

γγγk j’s are d× 1 vectors of unknown parameters. Then the error term (4.5) can be re-

written as that for k = 2, . . . ,m,

εk =
k−1∑
j=1

φk j(x,U)ε j + ek

=
k−1∑
j=1

{
βk j(U)+ γγγ

T
k jx
}

ε j + ek
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= εεε
T
(k−1)βββ k,(k−1)(U)+(εεε(k−1)⊗x)T

γγγk + ek, (4.7)

where the symbol ⊗ denotes the Kronecker product,

εεε(k−1) = (ε1, . . . ,εk−1)
T ,βββ k,(k−1)(·) =

(
βk1(·), . . . ,βk,k−1(·)

)T
,γγγk j = (γk j1, . . . ,γk jd)

T ,

and γγγk = (γγγT
k1, . . . ,γγγ

T
k,k−1)

T stacks the vectors γγγk j from j = 1 through k− 1 into a long

column vector. The expression (4.7) is a semiparametric varying-coefficient partially

linear model, which has been well studied in the literature, see for example Fan & Huang

(2005), Fan et al. (2007), etc.. Profile least square techniques can be used for estimation

of the partially linear varying-coefficient models. The details of estimation procedures

will be discussed in the subsection. With efficient estimators of βk j(U) and γγγk j’s, the

elements φk j(x,U) can be estimated efficiently. Consequently, the estimation of L(x,U)

can be obtained.

Next we consider estimating the elements σ2
k (x,U) in the diagonal matrix D(x,U).

From previous discussion, it is noted that σ2
k (x,U) = Var(ek|x,U), for k = 1, . . . ,m. In

view of simplicity, we assume that σ2
k (x,U) = σ2

k (U) throughout the present context.

Accordingly, σ2
k (U) can be directly estimated by using standard nonparametric smooth-

ing techniques. A natural estimator for σ2
k (U) is the kernel estimator, which ensures

that the estimated covariance function is positive definite locally. The kernel estimate

for σ2
k (U) can be constructed as follows:

σ̂
2
k (U) =

∑n
i=1 ê2

ikKh2(Ui−U)∑n
i=1 Kh2(Ui−U)

, k = 1, . . . ,m, (4.8)

where Kh2(·) = K(·/h2)/h2, K(·) is a kernel density function, and h2 is a smoothing

parameter.

4.1.2 Sample Estimation of Conditional Covariance Matrix

There are many approaches to estimate the unknown parameters {βk j,k = 2, . . . ,m, j =

1, . . . ,k−1} and the varying coefficient functions {γk jl,k = 2, . . . ,m, j = 1, . . . ,k−1, l =

1, . . . ,d}. Profile least square is a useful approach for estimation of the partially linear

varying-coefficient model.

Suppose that we have a random sample of size n, {(Ui,xi,yi), i = 1, . . . ,n}, from
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the population (U,x,y), where xi = (Xi1, . . . ,Xid)
T and yi = (Yi1, . . . ,Yim)

T . First, we

assume that the conditional mean E(y|x = xi,U = Ui) for i = 1, . . . ,n, are observed.

Accordingly, the error εi’s are assumed to be known as a priori. In this subsection,

we will focus on the sample estimation for L(x,U) and D(x,U) with true errors εi’s.

We will also discuss the replacement of true errors with corresponding residuals for the

sample estimation. Profile least square techniques will be used for estimation of the

partially linear varying-coefficient models. Practically, we can give a closed form for

the profile least-squares estimator of (βββ k,(k−1),γγγk) based on the given samples for each

k = 2, . . . ,m.

Denote vk = εεε(k−1)⊗x, a column vector of d(k−1) components. Then (4.7) can be

re-written as

εk = εεε
T
(k−1)βββ k,(k−1)(U)+vT

k γγγk + ek. (4.9)

For a given γγγk, let ε∗k = εk−vT
k γγγk. Thus

ε
∗
k = εεε

T
(k−1)βββ k,(k−1)(U)+ ek. (4.10)

Recall that e1, . . . ,em are uncorrelated in the modified Cholesky decomposition. Thus

(4.10) is a varying coefficient model, assuming that ε∗k and εεε(k−1) are known.

Let εi,k, vi,k, and ei,k be the samples of εk, vk, and ek corresponding to the i-th sample,

respectively, and let mi,k = εεεT
i,(k−1)βββ k,(k−1)(Ui) for i = 1, . . . ,n. Put the samples together

in matrix form, we have the sample model of (4.9) in matrix form as

εεεk−Vkγγγk = mk + ek, (4.11)

where

εεεk = (ε1k, . . . ,εnk)
T , Vk = (v1k, . . . ,vnk)

T , ek = (e1k, . . . ,enk)
T , mk = (m1k, . . . ,mnk)

T .

It is known that the local linear regression results in a linear estimate for βββ k,(k−1)(·).
Hence, the estimate of βββ k,(k−1)(·) is linear in εεεk−Vkγγγk, and thus the estimate of mk is

of the form Sh(εεεk−Vkγγγk). The matrix Sh is known as a smoothing matrix of the local
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linear smoother with bandwidth h. In addition, the profile least square is as follows:

`k(βββ k,(k−1),γγγk) = ‖εεεk−Vkγγγk−Sh(εεεk−Vkγγγk)‖2

= ‖(I−Sh)(εεεk−Vkγγγk)‖2. (4.12)

We can employ local linear regression techniques to estimate βββ k,(k−1)(·) for each

k ≥ 2. To be specific, for any U in the neighborhood of a given U0, we can locally

approximate βk j(U) by a linear function as follows:

βk j(U)≈ ak j +bk j(U−U0). (4.13)

The local linear regression is to find the coefficients

ak = (ak1, . . . ,ak,k−1)
T , bk = (bk1, . . . ,bk,k−1)

T

approximately by minimizing the following least squares functions

ˆ̀k(ak,bk) =
n∑

i=1

[
ε
∗
ik−

k−1∑
j=1

{
ak j +bk j(Ui−U0)

}
εi j

]2
Kh(Ui−U0), (4.14)

where ε∗i,k = εi,k− vT
i,kγγγk and Kh(·) = K(·/h)/h is a kernel function with bandwidth h.

The optimal solution of minak,bk
ˆ̀k(ak,bk) is given by

(âT
k , b̂

T
k )

T = Hh(U0)(εεεk−Vkγγγk), (4.15)

where

Hh(U0) =
(
D(U0)

T K(U0)D(U0)
)−1D(U0)

T K(U0),

K(U0) = diag{Kh(U1−U0), . . . ,Kh(Un−U0)},

D(U0) =
[
Ek, diag{(U1−U0)/h, . . . ,(Un−U0)/h}Ek

]
,

with Ek = [εεε1, . . . ,εεεk−1]. The optimal solution yields a local linear estimate for βββ k,(k−1)(U)

near U0:

β̂ββ k,(k−1)(U)≈ âk + b̂k(U−U0).
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The local linear regression gives an approximate m̂k = Sh(εεεk−Vkγγγk) to mk with

Sh =


(εεε1(k−1),0)Hh(U1)

...

(εεεn(k−1),0)Hh(Un)

 , (4.16)

and the regression error

êk = (I−Sh)(εεεk−Vkγγγk). (4.17)

The parameter vectors γγγk, k = 2, . . . ,m, can be regressed recursively as follows.

Taking the sum of the norm squares in (4.17) , we have that total error

etotal(γγγk) =
∥∥(I−Sh)(εεεk−Vkγγγk)

∥∥2
2.

The linear regression minimizing the error etotal(γγγk) gives the following approximate to

γγγk:

γ̂γγk =
{

VT
k (I−Sh)

T (I−Sh)Vk
}−1{VT

k (I−Sh)
T (I−Sh)εεεk

}
. (4.18)

Substituting the above estimates into (4.15), we obtain the estimates of βββ k,(k−1)(U)

and β̇ββ k,(k−1)(U),

β̂ββ k,(k−1)(U) = [I, 0]Hk(U)(εεεk−Vkγ̂γγk), (4.19)
ˆ̇
βββ k,(k−1)(U) = [0, I]Hk(U)(εεεk−Vkγ̂γγk). (4.20)

Therefore, the regression coefficient φk j(x,U) can be estimated with

φ̂k j(x,U) = β̂k j(U)+ γ̂γγ
T
k jx (4.21)

for j = 1, . . . ,k−1. Consequently, the estimation of L(x,U) can be obtained by replac-

ing the above procedure for k = 2, . . . ,m.

Thereafter we will investigate the estimate for σ2
k (U) in the diagonal matrix D(x,U).

The standard kernel smoothing techniques can be applied to estimate σ2
k (U) as βk j(U)’s
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and γk j’s are obtained. To be specific, we define the residuals by

êi1 = εi1,

êik = εik−
k−1∑
j=1

{
β̂k j(Ui)+ γ̂γγ

T
k jxi

}
εi j,

for i = 1, . . . ,n and k = 2, . . . ,m. Therefore, the kernel estimator for σ2
k (U) can be

directly constructed by

σ̂
2
k (U) =

∑n
i=1 ê2

ikKh2(Ui−U)∑n
i=1 Kh2(Ui−U)

, k = 1, . . . ,m, (4.22)

where Kh2(·) = K(·/h2)/h2, K(·) is a kernel density function, and h2 is a smoothing pa-

rameter known as a bandwidth. Subsequently, a proper estimate of D(x,U) is a diagonal

matrix D̂(x,U) with its (k,k)-th element being σ̂2
k (U), for k = 1, . . . ,m.

With the obtained estimators L̂(x,U) and D̂(x,U), we can estimate ΣΣΣ(x,U) by its

Cholesky decomposition Σ̂ΣΣ(x,U) = {L̂(x,U)}−1D̂(x,U){L̂T (x,U)}−1.

4.1.3 Estimation of Conditional Mean

In previous subsections, the conditional mean E(y|x,U) is assumed to be directly ob-

servable. This facilitates to illustrate the motivation of our proposed method. However,

in practice, the conditional mean function is usually unobservable. Consequently, it is

not trivial to provide a consistent estimator for E(y|x,U), especially when the dimension

of the covariates (x,U) (d + 1) is fairly large compared with the sample size n. When

the dimension (d+1) is relatively small, standard nonparametric smoothing techniques

such as the local polynomial regression (Fan & Gijbels (1996)) can be used to efficiently

estimate the conditional mean E(y|x,U) . In this subsection, we will mainly focus on

estimating the conditional mean functions when the dimension (d + 1) is large. The

varying coefficient models of the form

Yj = α j0(U)+xT
ααα j(U)+ ε j, for j = 1, . . . ,m, (4.23)

are proposed to model the conditional mean E(y|x,U), where α j0(U) and ααα j(U) =

{α j1(U), . . . ,α jd(U)}T are smoothing functions of U . This varying coefficient model
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is studied by Fan & Zhang (2000) in the context of longitudinal data and by Hastie

& Tibshirani (1993) for the case of independent and identical distributed observations.

This varying coefficient model maintains the modeling flexibility and simultaneously

avoids the curse of dimensionality of covariates. In addition, the varying-coefficients

can be delicately interpreted in many applications.

The unknown smoothing functions α j0(U) and ααα j(U) = {α j1(U), . . . ,α jd(U)}T

can be easily estimated by using any linear smoother. Here we employ local linear

approximation (Fan & Gijbels (1996)). To be specific, for any Ui in the neighborhood

of a given U , we can locally approximate αil(U) by following form Taylor’s expansion,

α jl(U)≈ α jl(Ui)+α
′
jl(Ui)(Ui−U)≡ c jl +d jl(Ui−U), (4.24)

for j = 1, . . . ,m and l = 0, . . . ,d. Note that since the data are localized in covariate

U , the covariance structure does not greatly affect the local linear estimator Fan et al.

(2007). Therefore, we can estimate {α jl(U), l = 0, . . . ,d} for each j by minimizing the

following local least squares function

ˆ̀j(c j,d j) =
n∑

i=1

[
Yi j−

d∑
l=0

{
c jl +d jl(Ui−U)

}
Xil

]2
Kh1(Ui−U), (4.25)

where Xi0≡ 1, c j =(c j0, . . . ,c jd)
T , d j =(d j0, . . . ,d jd)

T , and Kh1(.)=K(./h1)/h1 is a re-

scaled kernel function with a bandwidth h1. Denote by {ĉ j, d̂ j} = argminc j,d j
` j(c j,d j)

the resulting local linear estimators. It is clearly known that α̂ jl = ĉ jl for l = 0, . . . ,d.

Under certain regularity conditions, the resulting estimate α̂ jl(U) is a consistent estimate

of α jl(U) with the nonparametric convergent rate (Fan & Zhang (1999)). Therefore, a

consistent estimate of E(Yj|x,U) is

Ê(Yj|x,U) = α̂ jl(U)+xT
α̂αα j(U), for j = 1, . . . ,m.

4.2 Sampling Properties

In subsection 4.1.2 it is assumed that the conditional mean E(y|x,U) is known for the

ease of illustration. In subsection 4.1.3 the estimation for E(y|x,U) is discussed when

the sample {(Ui,xi,yi), i = 1, . . . ,n} is observable. Therefore, the residuals can be ob-
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tained through replacing E(y|x,U) with its consistent estimation Ê(y|x,U), which can

be noted as follows,

ε̂i j = Yi j−
{

α̂ j0(Ui)+ α̂αα
T
j xi

}
, (4.26)

for i= 1, . . . ,n and j = 1, . . . ,m. Then we use the residuals ε̂i j’s to play the role of the er-

ror εi j’s in subsection 4.1.2. Accordingly βk j(U)’s, γk jl’s, and σ2
k (U)’s can be estimated

by using (4.18), (4.19), and (4.22). Subsequently, (4.3) and (4.21) can by adopted to

estimate the conditional covariance matrix ΣΣΣ(x,U) = Cov(εεε|x,U). With slightly nota-

tional abuse, hereafter we still use the notations β̂k j(U)’s, γ̂k jl’s, and σ̂2
k (U)’s to denote

the estimators of βk j(U)’s, γk jl’s, and σ2
k (U)’s, when the errors are replaced with the

corresponding residuals. With such alternate, it is of interest to investigate how the es-

timation error due to the estimate of E(y|x,U) affects the estimation of the conditional

covariance matrix ΣΣΣ(x,U). To address this issue, the following theorems derive the

asymptotic bias and the variance of β̂k j(U)’s, γ̂k jl’s, and σ2
k (U)’s, respectively, when

the error εi j’s are replaced by the residuals ε̂i j’s.

The following technical conditions are imposed. We remark here that these are not

the weakest possible conditions, but they are imposed to facilitate the proofs.

(C1). (The density of the index variable) Suppose U has a compact support and a prob-

ability density f (·), bounded away from 0 and with continuous derivative.

(C2). (The Kernel function) Suppose that the kernel function K(·) is a symmetric den-

sity function with a compact support.

(C3). (Smoothness of relevant functions) Assume that (i) the functions E(xxT xxT |U)

and E{(εεε ⊗ x)(εεε ⊗ x)T (εεε ⊗ x)(εεε ⊗ x)T |U} are continuous; (ii) Suppose that the

functions ααα(U), βββ (U), σ2
k (U), E(xxT |U), and E{(εεε ⊗ x)(εεε ⊗ x)T |U} have con-

tinuous third derivatives.

(C4). (The bandwidth) Suppose that the bandwidths satisfies nhn/(log2 n)→∞ as hn→
0; nh1/(log2 n)→ ∞ as h1→ 0; and nh2/(log2 n)→ ∞ as h2→ 0.

(C5). (The moment requirement) Suppose the covariate vector x and the error vectors εεε

and e satisfy that E(‖x‖4|U) < ∞, E(‖e‖2+δ |U) < ∞, and E(‖εεε‖2+δ |U) < ∞ for

some δ > 0.
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Let µi =
∫

uiK(u)du, vi =
∫

uiK2(u)du, and cn(h) = h2 + logn/(nh)1/2 for an arbi-

trary bandwidth h.

Theorem 4.2.1. Suppose conditions (C1) - (C5) hold true. Then

(nh1)
1/2
{

β̂ββ k,(k−1)(U)−βββ k,(k−1)(U)− 1
2h2

1µ2β̈ββ k,(k−1)(U)
}

→D N
(

0,v0{var(εεε|U)}−1 σ2
k (U)

f (U)

)
, (4.27)

for k = 2,3, . . . ,m, where µ2 =
∫

u2K(u)du and v0 =
∫

K2(u)du and f (U) denotes the

density function of covariate U.

Theorem 4.2.2. Suppose conditions (C1) - (C5) hold true. Then the estimator of γγγk is

asymptotically normal, that is,

√
n(γ̂γγk− γγγk) →D N

(
0,ΣΣΣγ

)
, (4.28)

for k = 2,3, . . . ,m, and ΣΣΣγ is as follows:

ΣΣΣγ = σ
2
k (x,U)

[
E
{
(εεε(k−1)⊗x)(εεε(k−1)⊗x)T}

−E
{
E
{
(εεε(k−1)⊗x)xT |U

}
E(xxT |U)−1E

{
x(εεε(k−1)⊗x)T |U

}}]−1
.

Theorem 4.2.3. Suppose conditions (C1) - (C5) hold true. Then

(nh2)
1/2{

σ̂
2
k (U)−σ

2
k (U)−bias

}
→D N

(
0,v0

var(e2
k |U)

f (U)

)
, (4.29)

for k = 2,3, . . . ,m, where bias = h2
2µ2

{
σ̇2

k ḟ (U)

f (U) +
σ̈2

k (U)
2

}
, ḟ (U), σ̇2

k (U) and σ̈2
k (U) de-

notes the gradients and Hessian, respectively.

4.3 Numerical Studies

4.3.1 Simulation Studies

In the following simulation studies, it is assumed that m = 6 and d = 3. The simulated

data sets are generated as follows. The covariate vector x follows from a multivariate
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normal distribution with mean 0 and covariance matrix (ρi j)3×3, where ρi j = ρ |i− j|.

Moreover, the parameter ρ is set to be 0.25,0.50, and 0.75 corresponding to low, me-

dian, and high correlations among the covariate vector x, which shows the effects of

collinearity on the estimation of covariance matrix. In addition, the covariate U is taken

from a uniform distribution on the interval [0,1].

Next, let us generate the parameters and smoothing functions in the partially linear

models. To be precise, the errors of the random error vector εεε = (ε1, . . . ,ε6), which are

ek’s with k = 1, . . . ,6, are generated independently from normal population with mean 0

and conditional variance function σ2
k (U), where σ2

k (U) = σ2
0{0.1+ |sk(U)|}2 given U

values. To examine the effects of different noise levels, σ0 is set to be 1,2, and 4. The

elements of γγγk j’s in model (4.6) are selected as follows:

γγγ21 = (0.1881,−0.0792,−0.0396)T ,

γγγ31 = (−0.1980,0.0495,−0.1287)T ,

γγγ32 = (−0.4554,−0.0990,−0.4950)T ,

γγγ41 = (0.4158,−0.3069,0.0495)T ,

γγγ42 = (0.3465,0.4059,0.4356)T ,

γγγ43 = (−0.1287,0.0693,−0.1683)T ,

γγγ51 = (0.1287,0.3366,0.2178)T ,

γγγ52 = (0.1980,−0.1287,0.0099)T ,

γγγ53 = (−0.0990,−0.0792,0.2772)T ,

γγγ54 = (−0.0891,0.0990,−0.0099)T ,

γγγ61 = (0.1980,−0.3861,0.3267)T ,

γγγ62 = (0.4851,0.1683,0.1782)T ,

γγγ63 = (0.3069,−0.1386,0.4950)T ,

γγγ64 = (0.2079,−0.3564,0.4653)T ,

γγγ65 = (−0.0198,0.0693,−0.4455)T .

The coefficients α jl(U)’s, βk j(U)’s, and s2
k(U)’s, are randomly selected from the
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following functions:

1
6

{
3
2

U1/2,2U,−3U2,−4U3,
π

2
cos(

πU
2

),
π

2
sin(

πU
2

),

−exp(U)

exp(1)−1
,

log(1+U)

2log(2)−1
,
(1−U)/(1+U)

2log(2)−1
,
6U(1+U)

5
.

}
To examine the performance of our method, we repeat the experiment 1000 times with

sample size n = 400,600, and 800.

In order to investigate the performance of proposed methods, two scenarios are con-

sidered. The first scenario adopts the estimated errors ε̂i j’s to access the estimation,

which is referred to as the “residual” estimator. Therefore, the residuals are estimated

by

êi1 = ε̂i1,

êik = ε̂ik−
k−1∑
j=1

{β̂k j(U)+ γ̂γγ
T
k jxi}ε̂i j,

for i = 1, . . . ,n and k = 2, . . . ,m. In the second scenario, we use the true errors εi j’s,

which is referred to as the “error” estimator.

First, we examine the performance of our proposed method in estimating conditional

covariance matrix Σ(x,U). Denote by Σ̂(x,U) the estimate of Σ(x,U). The following

two criteria are used to evaluate the estimation accuracy of Σ̂(x,U):

41 =
1
n

n∑
i=1

[tr{A(xi,Ui)}− log |A(xi,Ui)|]−m, and (4.30)

42 =
1
n

n∑
i=1

tr{A(xi,Ui)− I}2, (4.31)

(4.32)

where A(xi,Ui) = Σ−1(xi,Ui)Σ̂(xi,Ui), tr(A(xi,Ui)) is the trace of matrix A(xi,Ui) and

|A(xi,Ui)| is its determinant. The two losses41 and42 are usually referred to as Stein

loss and the quadratic loss in the literature, for example, Muirhead (1982).

Table 4.1 and 4.2 summarize respectively the average (“average”), the standard de-

viation (“stdev.”), the median (“median”) and the median absolute deviation (“mad.”) of
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Stein loss41 and the quadratic loss42 over 1000 repetitions. It can be seen from Table

4.1 and 4.2 that the proposed method performs better with the increase of the sample size

n. With different σ0 levels, the proposed method performs similarly, which indicates that

the proposed method is very robust to the noise level σ0. In addition, it is noted that the

correlation coefficient ρ has negative effects on the performance results. Specifically,

the smaller the correlation is the better the proposed method performs. Comparing the

results using “residuals” and that using “errors”, it is not surprising to see that using

“residuals” estimator performs relatively to that using “error” estimator.

Next, we assess the performance of our proposed method in estimating ααα(U) via the

mean squared errors (MSEααα ), which is defined as follows:

MSEααα =
1

24n

n∑
i=1

6∑
j=1

3∑
l=0

{
α̂ jl(Ui)−α jl(Ui)

}2
. (4.33)

Table 4.3 summaries respectively the average (“average”), the standard deviation (“stdev.”),

the median (“median”) and the median absolute deviation (“mad.”) of MSEααα over 1000

repetitions. It can be seen from Table 4.3 that the local linear approximation offers

an accurate estimate for the mean functions. The proposed method performs better in

estimating the conditional mean functions with the increase of the sample size n, and

deteriorates with the increase of σ0.

Similarly, the performance of the proposed method in estimating βββ (U),γγγ , and σ2
k (U)

are evaluated via the mean squared errors MSEβββ , MSEγγγ , and MSEσσσ respectively. Specif-

ically,

MSEβββ =
1
5n

n∑
i=1

6∑
k=2

 1
k−1

k−1∑
j=1

{
β̂k j(Ui)−βk j(Ui)

}2

 , (4.34)

MSEγγγ =
1
5

6∑
k=2

3∑
l=1

 1
k−1

k−1∑
j=1

{
γ̂k j− γk j

}2

 , (4.35)

MSEσ =
1
6n

n∑
i=1

6∑
k=1

{
σ̂

2
k (Ui)−σ

2
k (Ui)

}2
. (4.36)

Table 4.4, Table 4.5, and Table 4.6 summarize average (“average”), the standard devi-

ation (“stdev.”), the median (“median”) and the median absolute deviation (“mad.”) of
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MSEβββ , MSEγγγ , and MSEσ over 1000 repetitions, respectively. It can be observed from

Table 4.4 that in estimating βββ (U) our propose using “residuals” behaves very similarly

to that using “errors”, though the latter performs slightly better in most cases. This con-

firms the theoretical investigation in Theorem. In addition, the proposed method is very

robust to the noise level σ0, which can be found analytically in view of (4.7). Similarly

to the comments on estimates βββ (U), it can be observed similar phenomenon in estimat-

ing the γγγ in Table 4.5. In Table 4.6, the estimate of σ2
k (U) deteriorates with the increase

of σ0, which parallels to the observation in estimating ααα(U). The proposed method

using “errors” performs slightly better than that using “residuals”.

Figure 4.1 and 4.2 depict the boxplots for the Stein loss 41 and quadratic loss 42

over 1000 iterations respectively with the sample size n selected as 400,600, and 800,

the correlation coefficient ρ selected as 0.25,0.50, and 0.75, the noise σ0 specified as

1. Here the boxplot is used to graphically depict data through five-number summaries:

the smallest observation, lower quartile, median, upper quartile, and largest observation.

Corresponding to the discussion on the estimation accuracy of Σ̂ΣΣ(x,U) from Table 4.1

and 4.2, it can be observed that with the increase of the sample size n the median of

two loss functions decrease, which thus indicate the proposed method performs better.

In addition, the performance deteriorates with the increase of correlation coefficient ρ .

The boxplots also indicate some observations may be outliers. Figure 4.3 to Figure

4.6 depict the histograms forMSEααα , MSEβββ , MSEγγγ , and MSEσ with the noise level σ0

specified as 1.

Figure 4.7 depict the estimated conditional mean function with varying coefficient

models and their 95% pointwise confidence intervals for a simulation study with the

sample size n = 800, the correlation coefficient ρ = 0.25, and the noise level σ0 = 1.

The black solid lines are the true mean functions ααα i j(U), for i = 1, . . . ,6, j = 0, . . . ,3;

the blue dash-dotted lines are the estimated mean functions α̂αα i j(U), for i = 1, . . . ,6, j =

0, . . . ,3; and the red dashed lines are the corresponding 95% pointwise confidence inter-

vals. Figure 4.7 demonstrates that the estimated conditional mean functions are accurate

approximations to the true conditional mean functions. Accordingly, Figure 4.8 depict

the estimated βββ k j(U) with k = 2, . . . ,6, j = 1, . . . ,k− 1 in model (4.6) and their 95%

pointwise confidence intervals for a simulation study with the sample size n = 800, the

correlation coefficient ρ = 0.25, and the noise level σ0 = 1. It is not surprising to see

that the proposed method produce good approximations to the true smoothing functions.
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Figure 4.1. Boxplot for Stein loss41 given σ0 = 1.

4.3.2 Real Data Application

We get most of our energy from nonrenewable energy sources, of which the three most

often used energy sources are: crude oil (also known as petroleum), natural gas, and

coal. Coal is the most abundant fossil fuel produced in the United States and is relatively

inexpensive to produce and convert to useful energy. It is known as a nonrenewable en-

ergy source because it takes millions of years to create. However, producing and using

coal has many impacts on the environment. In the United States, most coal is used as

a fuel to generate electricity. Burning coal produces numerous emissions that adversely

affect the environment and human health. Crude oil is refined into the petroleum prod-

ucts that are burned to produce energy, they may be used to propel a vehicle, to heat a

building, or to produce electric power in a generator. Natural gas has many qualities that

make it an efficient, relatively clean, and economical energy source. Burning natural
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Table 4.1. The performance of proposed functional estimation of conditional covariance matrix
Σ(x,U) via Stein loss41. The average (“average”), the standard deviation (“stdev.”), the median
(“median”) and the median absolute deviation (“mad.”) of Stein loss 41 over 1000 repetitions.
The numbers in the last six columns are multiplied by a factor of 100.

residual error
σ0 σ0

sample size ρ 1.0 2.0 4.0 1.0 2.0 4.0

400

25

aver. 53.15 52.89 53.08 36.51 36.85 36.68
stdev. 18.55 18.65 18.72 8.51 8.90 8.76

median 48.23 47.78 48.78 34.94 35.36 35.25
mad. 11.00 10.79 11.26 5.19 5.46 5.43

50

aver. 54.58 54.19 52.76 36.97 36.92 36.72
stdev. 19.25 18.26 18.43 8.66 8.53 9.11

median 50.54 50.69 48.96 35.55 35.66 35.40
mad. 11.69 11.26 11.70 5.73 5.57 5.15

75

aver. 54.80 55.95 55.32 36.37 37.07 36.70
stdev. 19.23 20.26 18.65 8.42 8.81 8.26

median 50.53 51.05 51.05 35.25 35.45 35.40
mad. 12.39 12.25 11.39 5.52 5.26 5.14

600

25

aver. 40.44 38.71 38.86 25.61 25.43 25.32
stdev. 15.73 13.98 14.08 6.46 6.24 6.29

median 37.32 35.92 35.99 24.55 24.20 24.32
mad. 10.46 8.99 9.58 4.42 3.99 3.95

50

aver. 39.91 39.08 39.07 25.41 25.24 25.02
stdev. 15.67 15.05 14.36 6.57 6.58 6.13

median 36.65 35.73 35.82 24.21 24.02 24.11
mad. 10.03 9.49 9.03 4.26 4.03 3.82

75

aver. 41.30 39.20 39.82 25.32 24.73 25.27
stdev. 15.38 14.92 14.70 6.46 6.04 6.18

median 38.07 35.48 37.08 24.16 23.58 24.22
mad. 9.67 9.36 9.62 3.98 3.88 4.17

800

25

aver. 32.00 31.60 32.28 19.59 19.57 19.97
stdev. 12.46 12.31 12.12 5.13 5.16 5.26

median 29.22 29.29 30.30 18.55 18.64 19.17
mad. 8.22 8.50 8.53 3.25 3.30 3.66

50

aver. 32.81 32.70 32.02 19.83 19.99 19.80
stdev. 12.67 12.80 11.88 5.10 5.16 4.97

median 30.41 30.02 29.78 18.85 18.93 18.91
mad. 8.55 8.85 8.13 3.31 3.28 3.28

75

aver. 33.58 33.27 33.05 19.80 19.71 19.93
stdev. 12.91 13.33 12.62 5.02 5.22 5.15

median 30.90 30.73 30.65 18.98 18.64 18.94
mad. 8.26 8.72 8.51 3.21 3.29 3.22
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Table 4.2. The performance of proposed functional estimation of conditional covariance matrix
Σ(x,U) via quadratic loss 42. The average (“average”), the standard deviation (“stdev.”), the
median (“median”) and the median absolute deviation (“mad.”) of quadratic loss 42 over 1000
repetitions.

residual error
σ0 σ0

sample size ρ 1.0 2.0 4.0 1.0 2.0 4.0

400

25

aver. 1.78 1.75 1.76 0.95 0.96 0.96
stdev. 1.09 1.06 1.06 0.36 0.39 0.37

median 1.40 1.41 1.45 0.85 0.86 0.86
mad. 0.49 0.50 0.51 0.19 0.20 0.20

50

aver. 1.84 1.82 1.75 0.97 0.97 0.96
stdev. 1.08 1.04 1.03 0.37 0.36 0.41

median 1.52 1.52 1.45 0.86 0.89 0.88
mad. 0.55 0.53 0.53 0.21 0.21 0.20

75

aver. 1.86 1.90 1.87 0.95 0.97 0.96
stdev. 1.11 1.19 1.08 0.37 0.38 0.36

median 1.53 1.56 1.57 0.86 0.86 0.88
mad. 0.55 0.56 0.55 0.20 0.19 0.19

600

25

aver. 1.31 1.21 1.22 0.65 0.64 0.64
stdev. 0.77 0.65 0.67 0.24 0.23 0.24

median 1.11 1.05 1.04 0.60 0.58 0.59
mad. 0.44 0.38 0.39 0.15 0.14 0.14

50

aver. 1.27 1.24 1.23 0.64 0.64 0.63
stdev. 0.75 0.72 0.69 0.24 0.25 0.23

median 1.07 1.03 1.04 0.58 0.58 0.58
mad. 0.42 0.40 0.38 0.15 0.13 0.13

75

aver. 1.33 1.24 1.26 0.64 0.62 0.64
stdev. 0.74 0.73 0.70 0.24 0.22 0.23

median 1.14 1.02 1.09 0.58 0.56 0.59
mad. 0.43 0.39 0.41 0.14 0.13 0.14

800

25

aver. 0.98 0.97 0.99 0.49 0.48 0.50
stdev. 0.54 0.54 0.51 0.18 0.18 0.18

median 0.83 0.84 0.88 0.44 0.44 0.46
mad. 0.33 0.32 0.35 0.11 0.11 0.12

50

aver. 1.02 1.01 0.98 0.49 0.50 0.49
stdev. 0.56 0.56 0.51 0.18 0.18 0.17

median 0.88 0.87 0.86 0.45 0.45 0.45
mad. 0.34 0.35 0.32 0.11 0.11 0.11

75

aver. 1.04 1.04 1.03 0.49 0.49 0.50
stdev. 0.56 0.61 0.56 0.17 0.18 0.18

median 0.90 0.88 0.88 0.45 0.44 0.45
mad. 0.34 0.35 0.34 0.11 0.11 0.11
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Table 4.3. The performance of proposed method in estimating ααα(U) via mean squared errors
MSEααα . The average (“average”), the standard deviation (“stdev.”), the median (“median”) and
the median absolute deviation (“mad.”) of MSEααα over 1000 repetitions. The numbers in the last
six columns are multiplied by a factor of 100.

residual
σ0

sample size ρ 1.0 2.0 4.0

400

25

aver. 0.53 2.07 8.30
stdev. 0.19 0.76 2.94

median 0.48 1.91 7.76
mad. 0.10 0.42 1.60

50

aver. 0.63 2.51 9.91
stdev. 0.23 0.94 3.78

median 0.59 2.32 9.04
mad. 0.12 0.49 1.97

75

aver. 1.08 4.20 17.38
stdev. 0.43 1.69 6.88

median 0.99 3.81 16.13
mad. 0.24 0.88 3.93

600

25

aver. 0.35 1.38 5.43
stdev. 0.12 0.49 1.98

median 0.33 1.27 5.04
mad. 0.07 0.27 1.06

50

aver. 0.43 1.67 6.60
stdev. 0.15 0.58 2.17

median 0.40 1.56 6.14
mad. 0.08 0.34 1.24

75

aver. 0.70 2.79 11.26
stdev. 0.26 1.06 4.57

median 0.65 2.59 10.33
mad. 0.15 0.59 2.54

800

25

aver. 0.27 1.03 4.19
stdev. 0.09 0.34 1.49

median 0.25 0.98 3.90
mad. 0.05 0.19 0.83

50

aver. 0.32 1.26 5.02
stdev. 0.11 0.49 1.68

median 0.30 1.13 4.66
mad. 0.06 0.24 0.94

75

aver. 0.54 2.15 8.34
stdev. 0.20 0.84 2.91

median 0.50 1.98 7.79
mad. 0.11 0.46 1.72
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Table 4.4. The performance of proposed method in estimating βββ via mean squared errors MSEβββ .
The average (“average”), the standard deviation (“stdev.”), the median (“median”) and the me-
dian absolute deviation (“mad.”) of MSEβββ over 1000 repetitions. The numbers in the last six
columns are multiplied by a factor of 100.

residual error
σ0 σ0

sample size ρ 1.0 2.0 4.0 1.0 2.0 4.0

400

25

aver. 1.50 1.44 1.50 1.63 1.59 1.65
stdev. 0.73 0.66 0.69 0.88 0.84 0.82

median 1.31 1.29 1.34 1.38 1.35 1.42
mad. 0.33 0.33 0.36 0.39 0.36 0.42

50

aver. 1.45 1.42 1.49 1.59 1.52 1.63
stdev. 0.66 0.60 0.75 0.81 0.67 0.88

median 1.28 1.26 1.30 1.38 1.34 1.37
mad. 0.34 0.32 0.38 0.38 0.36 0.40

75

aver. 1.45 1.53 1.56 1.52 1.60 1.65
stdev. 0.66 0.69 0.73 0.79 0.81 0.83

median 1.29 1.36 1.39 1.30 1.38 1.41
mad. 0.32 0.36 0.39 0.35 0.38 0.42

600

25

aver. 0.92 0.91 0.94 1.03 1.01 1.05
stdev. 0.42 0.40 0.43 0.50 0.48 0.54

median 0.83 0.81 0.84 0.90 0.88 0.91
mad. 0.23 0.20 0.21 0.25 0.23 0.25

50

aver. 0.94 0.94 0.94 1.03 1.05 1.04
stdev. 0.42 0.44 0.40 0.52 0.54 0.49

median 0.83 0.83 0.84 0.89 0.91 0.91
mad. 0.21 0.21 0.22 0.24 0.25 0.25

75

aver. 0.97 0.93 0.95 1.03 1.01 1.03
stdev. 0.46 0.42 0.45 0.53 0.52 0.52

median 0.86 0.84 0.84 0.89 0.87 0.89
mad. 0.22 0.21 0.22 0.25 0.24 0.23

800

25

aver. 0.69 0.67 0.69 0.77 0.76 0.78
stdev. 0.34 0.32 0.32 0.42 0.40 0.40

median 0.60 0.59 0.60 0.66 0.65 0.68
mad. 0.16 0.15 0.17 0.18 0.18 0.19

50

aver. 0.68 0.69 0.67 0.75 0.78 0.76
stdev. 0.32 0.33 0.30 0.37 0.40 0.38

median 0.61 0.60 0.60 0.65 0.66 0.65
mad. 0.16 0.16 0.16 0.18 0.18 0.17

75

aver. 0.72 0.71 0.70 0.78 0.78 0.78
stdev. 0.35 0.32 0.32 0.41 0.38 0.39

median 0.63 0.63 0.62 0.67 0.67 0.67
mad. 0.18 0.16 0.16 0.20 0.18 0.19
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Table 4.5. The performance of proposed method in estimating γγγ via mean squared errors MSEγγγ .
The average (“average”), the standard deviation (“stdev.”), the median (“median”) and the me-
dian absolute deviation (“mad.”) of MSEγγγ over 1000 repetitions. The numbers in the last six
columns are multiplied by a factor of 100.

residual error
σ0 σ0

sample size ρ 1.0 2.0 4.0 1.0 2.0 4.0

400

25

aver. 0.37 0.38 0.37 0.32 0.33 0.32
stdev. 0.11 0.11 0.11 0.09 0.10 0.10

median 0.36 0.36 0.35 0.31 0.32 0.31
mad. 0.07 0.07 0.07 0.06 0.07 0.06

50

aver. 0.49 0.48 0.48 0.43 0.42 0.43
stdev. 0.15 0.15 0.16 0.14 0.14 0.14

median 0.47 0.46 0.45 0.41 0.39 0.40
mad. 0.09 0.10 0.10 0.08 0.08 0.09

75

aver. 0.86 0.89 0.85 0.76 0.78 0.76
stdev. 0.28 0.31 0.29 0.26 0.28 0.27

median 0.82 0.85 0.80 0.72 0.74 0.72
mad. 0.17 0.19 0.17 0.16 0.17 0.15

600

25

aver. 0.24 0.23 0.23 0.21 0.21 0.21
stdev. 0.07 0.07 0.07 0.07 0.06 0.06

median 0.22 0.22 0.22 0.20 0.20 0.20
mad. 0.05 0.05 0.04 0.04 0.04 0.04

50

aver. 0.31 0.30 0.30 0.27 0.27 0.27
stdev. 0.10 0.10 0.09 0.09 0.09 0.08

median 0.29 0.29 0.28 0.27 0.26 0.25
mad. 0.06 0.06 0.05 0.05 0.05 0.05

75

aver. 0.55 0.53 0.54 0.49 0.48 0.49
stdev. 0.18 0.18 0.18 0.17 0.17 0.17

median 0.52 0.50 0.51 0.46 0.46 0.46
mad. 0.11 0.11 0.11 0.10 0.11 0.10

800

25

aver. 0.17 0.16 0.17 0.15 0.15 0.15
stdev. 0.05 0.05 0.05 0.04 0.04 0.05

median 0.16 0.16 0.16 0.14 0.15 0.14
mad. 0.03 0.03 0.03 0.03 0.03 0.03

50

aver. 0.22 0.22 0.21 0.20 0.20 0.20
stdev. 0.07 0.07 0.07 0.06 0.06 0.06

median 0.21 0.21 0.21 0.19 0.19 0.19
mad. 0.04 0.04 0.04 0.04 0.04 0.04

75

aver. 0.39 0.39 0.40 0.36 0.36 0.37
stdev. 0.13 0.13 0.14 0.12 0.12 0.14

median 0.37 0.37 0.37 0.34 0.34 0.34
mad. 0.08 0.08 0.09 0.08 0.07 0.08
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Table 4.6. The performance of proposed method in estimating σ via mean squared errors MSEσ .
The average (“average”), the standard deviation (“stdev.”), the median (“median’) and the me-
dian absolute deviation (“mad.”) of MSEσ over 1000 repetitions. The numbers in the last six
columns are multiplied by a factor of 100.

residual error
σ0 σ0

sample size ρ 1.0 2.0 4.0 1.0 2.0 4.0

400

25

aver. 0.13 1.99 33.01 0.10 1.49 24.09
stdev. 0.12 1.85 30.05 0.09 1.40 21.76

median 0.09 1.36 22.76 0.07 1.02 17.07
mad. 0.06 0.80 13.95 0.04 0.62 9.74

50

aver. 0.13 1.99 33.61 0.10 1.50 24.84
stdev. 0.11 1.75 28.59 0.08 1.39 21.55

median 0.09 1.49 24.53 0.07 1.10 17.71
mad. 0.06 0.89 14.69 0.04 0.63 10.35

75

aver. 0.13 2.09 32.55 0.10 1.49 24.45
stdev. 0.11 1.81 26.51 0.08 1.34 20.64

median 0.09 1.58 24.18 0.07 1.05 17.55
mad. 0.06 0.97 14.93 0.04 0.62 9.96

600

25

aver. 0.10 1.58 25.74 0.07 1.04 17.50
stdev. 0.09 1.36 21.04 0.06 0.89 14.06

median 0.07 1.15 19.19 0.05 0.75 13.08
mad. 0.04 0.66 11.09 0.03 0.42 7.14

50

aver. 0.11 1.61 25.26 0.07 1.08 17.50
stdev. 0.09 1.31 22.99 0.06 0.89 16.19

median 0.08 1.20 17.90 0.05 0.82 12.54
mad. 0.05 0.74 10.77 0.03 0.45 6.93

75

aver. 0.10 1.61 27.47 0.07 1.09 18.66
stdev. 0.09 1.37 24.42 0.06 0.91 16.21

median 0.07 1.19 19.73 0.05 0.82 14.04
mad. 0.04 0.73 11.57 0.03 0.47 8.16

800

25

aver. 0.09 1.38 23.07 0.05 0.87 14.37
stdev. 0.07 1.14 19.97 0.04 0.71 12.08

median 0.06 0.97 17.36 0.04 0.64 10.69
mad. 0.04 0.58 10.28 0.02 0.35 5.96

50

aver. 0.08 1.33 22.23 0.05 0.88 13.89
stdev. 0.07 1.15 18.98 0.05 0.75 11.79

median 0.06 0.94 16.48 0.04 0.64 10.37
mad. 0.03 0.52 9.94 0.02 0.37 5.99

75

aver. 0.09 1.40 23.26 0.05 0.89 14.97
stdev. 0.08 1.19 21.00 0.04 0.74 13.32

median 0.06 1.03 15.89 0.04 0.67 10.70
mad. 0.04 0.62 9.58 0.02 0.37 6.11
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Figure 4.2. Boxplot for quadratic loss42 given σ0 = 1.

gas for energy results in much fewer emissions of nearly all types of air pollutants and

carbon dioxide (CO2) per unit of heat produced than coal or refined petroleum products.

In early years, the choices for most electric utility generators were large coal-powered

plants. However, resulting from economic processes, technological innovations, and en-

vironmental developments , natural gas and crude oil have become the fuel of choice for

new power plants due to their clean burning nature. It is of interest to investigate how

the average electricity prices rely on the average fossil fuel costs.

We now illustrate the proposed method by an application to the Pennsylvania elec-

tricity load data set. The data set was collected at three distinct areas at Pennsylvania

during the period of January through April in 2009. The power stations in these areas

burn coal to generate electricity. When the demand of electricity load is beyond the

supply of the current energy source, the power plants have to use other energy sources,
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Figure 4.3. Histogram for mean square error MSEααα given σ0 = 1.

for example, crude oil and natural gas, to generate the electricity. Therefore, the average

electricity prices may depend upon the average fossil fuel costs in very different ways.

The data set consists of the average electricity prices at three areas of Pennsylvania, the

overall electricity load, as well as the hourly prices of coal, crude oil and natural gas

that might explain the variation in the average electricity prices. There are 2615 data

points in total after removing a few observations with missing values. For simplicity of

notation, the average electricity prices at these three areas of Pennsylvania is denoted by

y = (Y1,Y2,Y3)
T , the covariate overall electricity load is denoted by U , and the covari-

ates hourly prices of coal, crude oil and natural gas are denoted by x = (X1,X2,X3)
T .

Note that in this application, the observations for the electricity load U is normalized so

that its values are within interval [0,1]. The objective of the study is to understand the

association between the average electricity prices at these three areas of Pennsylvania
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Figure 4.4. Histogram for mean square error MSEβββ given σ0 = 1.

and the four covariates.

First, we investigate how the electricity rates change with the fossil fuel costs and

the electricity load. The varying-coefficient model

Yj = α j0(U)+α j1(U)X1 +α j2(U)X2 +α j3(U)X3 + ε j, for j = 1,2,3, (4.37)

is fitted to the given data. Figure 4.9 presents the estimated varying-coefficient functions

and their 95% pointwise confidence intervals. It demonstrates that when the electricity

load is light, say U is less than 0.1, the average electricity prices rely on the hourly

prices of crude oil in area one and area three. While the hourly prices of coal and

natural gas have little effect on the average electricity prices at these three areas, since

the relative varying-coefficient functions are not significantly different from zero within
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Figure 4.5. Histogram for mean square error MSEγγγ given σ0 = 1.

this interval. However, the fossil fuel prices affect the average prices in complicated

patterns as the electricity load becomes heavier. To be specific, in area one, when the

electricity load U is greater than 0.6, the average electricity prices are determined by all

these three energy sources. As the U is close to 1, the hourly price of the coal and natural

gas dominates the average electricity price seeing that the varying-coefficient functions

are significantly varying from zero. In area two, the average electricity price depends

upon the price of coal and natural gas when when U is larger than 0.8 and the price of

coal dominates the average electricity price notably. While in area three, all these three

energy sources influence the average price of electricity when the electricity load U is

larger than 0.8 since all the corresponding varying-coefficient functions are significantly

different from zero. Additionally, as the load U grows, the price of coal dominates the

average electricity price considerably.
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Figure 4.6. Histogram for mean square error MSEσ given σ0 = 1.

The above analysis presents the marginal effects the fossil fuel costs and the elec-

tricity load have on the average electricity prices in three areas of Pennsylvania. It is

usually desirable to understand in advance the joint relationship amongst the average

electricity prices in these three different districts. Therefore the study of the correlation

structure of these three places is preferred. In order to achieve this aim, the proposed

method via modified Cholesky decomposition is used to estimate the conditional covari-

ance matrix. The residuals can be fitted through (4.5) and (4.6). Figure 4.10 depicts the

estimated smoothing functions βk j(U)’s in (4.6) and the corresponding 95% pointwise

confidence intervals, where k = 2,3 and j = 1, . . . ,k−1. The blue dash-dotted lines are

the estimated βk j(U)’s, for k = 2,3 and j = 1, . . . ,k− 1; the red dashed lines are the

corresponding 95% pointwise confidence intervals. In addition, the estimated γγγk j’s in
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Figure 4.7. Estimated αi j(U)’s and their 95% pointwise confidence intervals, for i =
1, . . . ,6, j = 0, . . . ,3. The black solid lines are the true mean functions ααα i j(U); the blue dash-
dotted lines are the estimated mean functions α̂i j(U); and the red dashed lines are the corre-
sponding 95% pointwise confidence intervals. These legends remain the same for Figure 4.8.
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Figure 4.8. Estimated βk j(U)’s and their 95% pointwise confidence intervals, for k =
2, . . . ,6, j = 1, . . . ,k−1.
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(4.6) are as follows:

γγγ21 = (0.2041,−0.4087,0.1461)T ,

γγγ31 = (0.1592,−0.0685,0.1198)T ,

γγγ32 = (−0.1289,0.0486,−0.0832)T .

The conditional correlation functions can be obtained through dividing the conditional

covariance functions by the conditional variance functions. Figure 4.11 depicts the con-

ditional correlation functions and their 95% pointwise confidence intervals when the

covariate vector x is fixed at its center. It can be easily seen that the average electric-

ity prices are positive-correlated at a high level when the electricity load U is relatively

low. As the electricity load increases, the correlation structure changes with different

trend. To be specific, when the U is close to 0.8, the correlation between the average

electricity prices in area 1 and area 2 achieves its minimum. While there is a monotone

decreasing trend for the corresponding correlation coefficient between area 1 and area

3. But even with high electricity load, these prices are still highly correlated since the

correlation coefficient remain large, which is above 0.8. The correlation between the

average electricity prices in area 2 and area 3 goes down as the electricity load increase.

The different observation comparing to other two plots is that the correlation coefficient

drop very quickly from 0.6 to 0.15, which indicating that with high electricity load, the

average electricity prices in area 2 and area 3 is positive-correlated at a low level.
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Figure 4.9. Estimated varying-coefficient αi j(U)’s and their 95% pointwise confidence intervals
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one to three respectively (with subscript i); while the four rows depict the estimated coefficients
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are the corresponding 95% pointwise confidence intervals.
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4.4 Technical Proofs

In this section, we will first provide three lemmas and then use these lemmas repetitively

to prove the theorems. The following notation will be used in the proof of the theorems.

Lemma 4.4.1 (Li et al. (2012)). Let {(Ui,Yi), i = 1, . . . ,n} be independent and identi-

cally distributed random vectors. In addition to conditions (C1) and (C2), we further

assume that E(Y 2)< ∞ and
∫

y2 fu,y(u,y)dy < ∞ where fu,y(u,y) denotes the joint den-

sity of (U,Y ). Then

sup
U0∈supp(U)

∣∣∣∣∣n−1
n∑

i=1

Kh(Ui−U0)Yi{(Ui−U0)/h}l

−E
[
Kh(Ui−U0)Yi{(Ui−U0)/h}l

]∣∣∣
= Op{logn/(nh)1/2},a.s. (4.38)

Lemma 4.4.2 (Li et al. (2012)). Let {(Ui,Yi), i = 1, . . . ,n} be independent and identi-

cally distributed random vectors. In addition to conditions (C1) and (C2), we further

assume that g(u) =
∫

y fu,y(u,y)dy<∞ has a continuous second-order derivative, where

fu,y(u,y) denotes the joint density of (U,Y ). Then

sup
U0∈supp(U)

∣∣∣E[Kh(Ui−U0)Yi{(Ui−U0)/h}l
]
−µlg(U0)−hµl+1ġ(U0)

∣∣∣
= O(h2),a.s.

Lemma 4.4.3 (Li et al. (2012)). Suppose conditions (C1) - (C3) hold true. Then,

sup
U0∈supp(U)

|α̂ααk(U0)−αααk(U0)|= Op{cn(hn)}, a.s.

α̂ααk(U0)−αααk(U0) = h2
nµ2α̈ααk(U0)/2+

= C0

{(
1 0

0 µ2

)
⊗E(xxT |U =U0) f (U0)

}−1

{BT (U0)W(U0)εεεk}+op{cn(hn)},

where C0 = (Id,0d), εεεk = (ε1k, . . . ,εnk)
T , W(U0) = diag{Khn(U1−U0), . . . ,Khn(Un−
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U0)}, and

B(U0) =


xT

1 (U1−U0)xT
1 /hn

xT
2 (U2−U0)xT

2 /hn
...

...

xT
n (Un−U0)xT

n /hn

 .

Proof of Theorem 4.2.1 . Denote by K(U0) = diag{Kh1(U1 −U0), . . . ,Kh1(Un −U0)},
and

D̂(U0) =


ε̂εε

T
1(k−1) (U1−U0)ε̂εε

T
1(k−1)/h1

ε̂εε
T
2(k−1) (U2−U0)ε̂εε

T
2(k−1)/h1

...
...

ε̂εε
T
n(k−1) (Un−U0)ε̂εε

T
n(k−1)/h1

 .

For simplicity, we shortly denote

K0 = K(U0), D̂0 = D̂(U0), ∆i =Ui−U0, i = 1,2, · · · ,n.

As noted before, the local linear regression is to find {(ak,bk),k = 2, . . . ,m} mini-

mizing the least square function

`k(ak,bk) =
n∑

i=1

ε
∗
ik−

k−1∑
j=1

{
ak j +bk j(Ui−U0)

}
εi j

2

Kh(Ui−U0),

of which an optimal solutions is

{âk,h1b̂k}T = {D̂T
0 K0D̂0}−1{D̂T

0 K0ε̂εε
∗
k} (4.39)

Therefore,

{β̂ββ k,(k−1)(U0),h1
ˆ̇
βββ k,(k−1)(U0)}T

= {âk,h1b̂k}T

= {D̂T
0 K0D̂0}−1{D̂T

0 K0ε̂εε
∗
k}

= {D̂T
0 K0D̂0}−1{D̂T

0 K0εεε
∗
k}+{D̂T

0 K0D̂0}−1{D̂T
0 K0(ε̂εε

∗
k− εεε

∗
k)}, (4.40)
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where ε̂εε
∗
k = (ε̂∗1k, . . . , ε̂

∗
nk)

T and εεε∗k = (ε∗1k, . . . ,ε
∗
nk)

T .

By (4.7) and Taylor expansion, we obtain that

ε
∗
ik = ε̂εε

T
i(k−1){βββ k,(k−1)(U0)+∆iβ̇ββ k,(k−1)(U0)+

∆2
i

2
β̈ββ k,(k−1)(U

∗
i )}

+{(εεεT
i(k−1)− ε̂εε

T
i(k−1))}βββ k,(k−1)(Ui)+ eik,

where U∗i is a value between U0 and Ui. Thus,

{D̂T
0 K0D̂0}−1{D̂T

0 K0εεε
∗
k}

= {βββ k,(k−1)(U0),h1β̇ββ k,(k−1)(U0)}T

+
1
2
{D̂T

0 K0D̂0}−1D̂T
0 K0


∆2

1ε̂εε
T
1(k−1)β̈ββ k,(k−1)(U

∗
1 )

∆2
2ε̂εε

T
2(k−1)β̈ββ k,(k−1)(U

∗
2 )

...

∆2
nε̂εε

T
n(k−1)β̈ββ k,(k−1)(U

∗
n )



+{D̂T
0 K0D̂0}−1D̂T

0 K0


(εεεT

1(k−1)− ε̂εε
T
1(k−1))βββ k,(k−1)(U1)

(εεεT
2(k−1)− ε̂εε

T
2(k−1))βββ k,(k−1)(U2)

...

(εεεT
n(k−1)− ε̂εε

T
n(k−1))βββ k,(k−1)(Un)


+{D̂T

0 K0D̂0}−1D̂T
0 K0ek. (4.41)

Partition D̂T
0 K0D̂0 in block form as[

Sn0(U0) Sn1(U0)

Sn1(U0) Sn2(U0)

]

where Snl(U0) =
∑n

i=1 Kh1(∆i){∆i/h1}l ε̂εε i(k−1)ε̂εε
T
i(k−1). In addition, Snl(U0) can be writ-

ten as follows.

Snl(U0)

=
n∑

i=1

Kh1(∆i){∆i/h1}l{εεε i(k−1)+ ε̂εε i(k−1)− εεε i(k−1)}{εεε i(k−1)+ ε̂εε i(k−1)− εεε i(k−1)}T

=

n∑
i=1

Kh1(∆i){∆i/h1}l
εεε i(k−1)εεε

T
i(k−1)
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+
n∑

i=1

Kh1(∆i){∆i/h1}l{ε̂εε i(k−1)− εεε i(k−1)}εεεT
i(k−1)

+
n∑

i=1

Kh1(∆i){∆i/h1}l
εεε i(k−1){ε̂εε i(k−1)− εεε i(k−1)}T

+
n∑

i=1

Kh1(∆i){∆i/h1}l{ε̂εε i(k−1)− εεε i(k−1)}{ε̂εε i(k−1)− εεε i(k−1)}T

= Snl,1 +Snl,2 +Snl,3 +Snl,4. (4.42)

In the sequel, we deal with Snl,i separately for i = 1, . . . ,4.

First, let us study the convergence rate of Snl,1. Let D1(U0) = E(εεεεεεT |U =U0). By

Lemma 4.4.1 and 4.4.2, we have that

sup
U0∈supp{U}

|n−1Snl,1(U0)−D1(U0) f (U0)µl|= Op{h2
1 + logn/(nh1)

1/2}

= Op{cn(h1)}, l = 0,2

sup
U0∈supp{U}

|n−1Sn1,1(U0)|= Op{h1 + logn/(nh1)
1/2}. (4.43)

Next, we study the convergence rate of Snl,i, i= 2,3,4. Because these three terms are

similar, we will only present the details of the convergence rate of Snl,2 for simplicity.

Recall that

εεε i(k−1) = yi(k−1)− (ααα1(Ui), . . . ,αααk−1(Ui))
T xi = yi(k−1)− (Ik−1⊗xT

i )ααα(k−1)(Ui),

where ααα(k−1)(Ui) = (αααT
1 (Ui), . . . ,ααα

T
(k−1)(Ui))

T . Then,

ε̂εε i(k−1)− εεε i(k−1) = (Ik−1⊗xT
i ){ααα(k−1)(Ui)− α̂αα(k−1)(Ui)}.

Therefore, it can be obtained that

Snl,2 =
n∑

i=1

Kh1

(
∆i

h1

)l

(Ik−1⊗xT
i ){ααα(k−1)(Ui)− α̂αα(k−1)(Ui)}εεεT

i(k−1)

=
n∑

i=1

Kh1

(
∆i

h1

)l

{αααT
(k−1)(Ui)− α̂αα

T
(k−1)(Ui)}(Ik−1⊗xi)εεε

T
i(k−1).
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In addition, let

S∗nl,2 =

n∑
i=1

Kh1(∆i)

(
∆i

h1

)l

(Ik−1⊗xi)εεε
T
i(k−1).

By noting that E(εεε i(k−1)|xi,Ui) = 0, we have

E(S∗nl,2) = nE

{
Kh1(∆i)

(
∆i

h1

)l

(Ik−1⊗xi)εεε
T
i(k−1)

}
= 0.

Additionally,

Var(S∗nl,2) = E(S∗2nl,2)−{E(S∗nl,2)}2

= E(S∗2nl,2)

= nE

[
K2

h1
(∆i)

(
∆i

h1

)2l{
(Ik−1⊗xi)εεε

T
i(k−1)

}2
]

= O(n/h1).

Therefore, by using Lemma 4.4.1 and Lemma 4.4.2 , we can obtain that

sup
U0∈supp{U}

|n−1S∗nl,2|= Op{logn/(nh1)
1/2}.

Moreover, it follows from Lemma 4.4.3 that

sup
U0∈supp{U}

|αααT
(k−1)(U0)− α̂αα

T
(k−1)(U0)|= Op{cn(hn)}.

Then,

sup
U0∈supp{U}

|n−1Snl,2|= Op

[
cn(hn){logn/(nh1)

1/2}
]
, (4.44)

which is asymptotically ignorable comparing with n−1Snl,1. Similarly, it can be obtained

that

sup
U0∈supp{U}

|n−1Snl,3| = Op

[
cn(hn){logn/(nh1)

1/2}
]
, (4.45)
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sup
U0∈supp{U}

|n−1Snl,4| = Op{c2
n(hn)}, (4.46)

both of which are asymptotically ignorable comparing with n−1Snl,1. Accordingly, it

follows that

sup
U0∈supp{U}

∣∣∣∣∣n−1D̂T
0 K0D̂0−

[
1 0

0 µ2

]
⊗D1(U0) f (U0)

∣∣∣∣∣
=

[
Op{cn(h1)} Op{h1 + logn/(nh1)

1/2}
Op{h1 + logn/(nh1)

1/2} Op{cn(h1)}

]
(4.47)

Next, let us study the convergence of the second term in (4.41).

n−1D̂T
0 K0


∆2

1ε̂εε
T
1(k−1)β̈ββ k,(k−1)(U

∗
1 )

∆2
2ε̂εε

T
2(k−1)β̈ββ k,(k−1)(U

∗
2 )

...

∆2
nε̂εε

T
n(k−1)β̈ββ k,(k−1)(U

∗
n )


=

[ ∑n
i=1 Kh1(∆i)∆

2
i ε̂1(k−1)ε̂εε

T
1(k−1)β̈ββ k,(k−1)(U

∗
i )∑n

i=1 Kh1(∆i)∆
3
i /h1ε̂1(k−1)ε̂εε

T
1(k−1)β̈ββ k,(k−1)(U

∗
i )

]
. (4.48)

It follows from condition (C3) and the mean-value theorem that

|β̈ββ k,(k−1)(U
∗
i )− β̈ββ k,(k−1)(U0)| ≤ ch1|∆i|.

Therefore,

sup
U0∈supp{U}

∣∣∣∣∣n−1D̂T
0 K0


∆2

1ε̂εε
T
1(k−1)β̈ββ k,(k−1)(U

∗
1 )/2

∆2
2ε̂εε

T
2(k−1)β̈ββ k,(k−1)(U

∗
2 )/2

...

∆2
nε̂εε

T
n(k−1)β̈ββ k,(k−1)(U

∗
n )/2


−

h2
1

2
f (U0)

[
µ2

0

]
E{εεε(k−1)εεε

T
(k−1)|U =U0}β̈ββ k,(k−1)(U0)

∣∣∣∣∣
=

[
OP{h2

1(h
2
1 + logn/(nh1)

1/2)}
OP{h2

1(h1 + logn/(nh1)
1/2)}

]
. (4.49)
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It remains to study the convergence of the third term in (4.41). It is noticed that

the elements in the matrix D have mean zero asymptotically. Similarly using ε̂εε i(k−1)−
εεε i(k−1) = (Ik−1⊗ xT

i ){ααα(k−1)(Ui)− α̂αα(k−1)(Ui)} and the uniform convergence results

obtained in Lemma 3, we have

sup
U0∈supp{U}

∣∣∣∣∣∣∣∣∣∣∣
D̂T

0 K0


(εεεT

1(k−1)− ε̂εε
T
1(k−1))βββ k,(k−1)(U1)

(εεεT
2(k−1)− ε̂εε

T
2(k−1))βββ k,(k−1)(U2)

...

(εεεT
n(k−1)− ε̂εε

T
n(k−1))βββ k,(k−1)(Un)



∣∣∣∣∣∣∣∣∣∣∣
= oP{cn(h1)}. (4.50)

Therefore, by combining the above results, we can have that

β̂ββ k,(k−1)(U0)−βββ k,(k−1)(U0) =
1
2

µ2h2
1β̈ββ k,(k−1)(U0)+

C

{[
1 0

0 µ2

]
⊗D1(U0) f (U0)

}−1

{DT (U0)K(U0)ek}+oP{cn(h1)}, (4.51)

where C = [Id(k−1)×d(k−1),0d(k−1)×d(k−1)]. Then the asymptotic normality can be easily

derived. The proof of this theorem is thus completed.

Proof of Theorem 4.2.2 . For simplicity, we shortly denote

Ki = K(Ui), D̂i = D̂(Ui), ∆i =Ui−U0, i = 1,2, · · · ,n.

We have that

γ̂γγk =
{

V̂T
k (I− Ŝh1)

T (I− Ŝh1)V̂k
}−1{V̂T

k (I− Ŝh1)
T (I− Ŝh1)ε̂εεk

}
, (4.52)

where V̂k = (v̂1k, . . . , v̂nk)
T = (ε̂εε1(k−1)⊗x1, . . . , ε̂εεn(k−1)⊗xn)

T ,

Ŝh1 =


(ε̂εε1(k−1),0)

{
D̂T

1 K1D̂1
}−1D̂T

1 K1
...

(ε̂εεn(k−1),0)
{

D̂T
n KnD̂n

}−1D̂T
n Kn

 . (4.53)
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Denote δδδ ik = ε̂εε ik− εεε ik and δδδ i(k−1) = ε̂εε i(k−1)− εεε i(k−1). Then D̂0 can be re-written as

D̂0 =


δδδ

T
1(k−1) ∆1δδδ

T
1(k−1)/h1

δδδ
T
2(k−1) ∆2δδδ

T
2(k−1)/h1

...
...

δδδ
T
n(k−1) ∆nδδδ

T
n(k−1)/h1

+


εεεT
1(k−1) ∆1εεεT

1(k−1)/h1

εεεT
2(k−1) ∆2εεεT

2(k−1)/h1
...

...

εεεT
n(k−1) ∆nεεεT

n(k−1)/h1


= δδδ D0 +D0.

Therefore,

D̂T
0 K0D̂0 = (δδδ D0 +D0)

T K0(δδδ D0 +D0)

= DT
0 K0D0 +δδδ

T
D0

K0D0

+DT
0 K0δδδ D0 +δδδ

T
D0

K0δδδ D0. (4.54)

We first study the convergence rate of δδδ
T
D0

K0D0. We have that

δδδ
T
D0

K0D0

=

[ ∑n
i=1 Kh1(∆i)εεε i(k−1)δδδ

T
i(k−1)

∑n
i=1 Kh1(∆i)∆i/h1εεε i(k−1)δδδ

T
i(k−1)∑n

i=1 Kh1(∆i)∆i/h1εεε i(k−1)δδδ
T
i(k−1)

∑n
i=1 Kh1(∆i)(∆i/h1)

2εεε i(k−1)δδδ
T
i(k−1)

]
.

It is noted that each block in the matrix δδδ
T
D0

K0D0 has the similar form as that of

Snl,3. Therefore, it can be obtained that

sup
U0∈supp{U}

|n−1
δδδ

T
D0

K0D0| = Op

[
cn(hn){logn/(nh1)

1/2}
]

(4.55)

Next, let us study the convergence rate of δδδ
T
D0

K0δδδ D0 , which can be re-formulated as

follows:

δδδ
T
D0

K0D0

=

[ ∑n
i=1 Kh1(∆i)δδδ i(k−1)δδδ

T
i(k−1)

∑n
i=1 Kh1(∆i)∆i/h1δδδ i(k−1)δδδ

T
i(k−1)∑n

i=1 Kh1(∆i)∆i/h1δδδ i(k−1)δδδ
T
i(k−1)

∑n
i=1 Kh1(∆i)(∆i/h1)

2δδδ i(k−1)δδδ
T
i(k−1)

]
.
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Based on Snl,4 and its corresponding convergence rate, we have that

sup
U0∈supp{U}

|n−1
δδδ

T
D0

K0δδδ D0| = Op
{

c2
n(hn)

}
(4.56)

Therefore, by combining the results of (4.54),(4.55), and (4.56), we can have that

sup
U0∈supp{U}

|n−1D̂T
0 K0D̂0−n−1DT

0 K0D0| = Op
{

c2
n(hn)

}
(4.57)

Next, let us derive the similar property for the term D̂T
0 K0V̂k. We have that

V̂k =


ε̂εε

T
1(k−1)⊗xT

1
...

ε̂εε
T
n(k−1)⊗xT

n



=


εεεT

1(k−1)⊗xT
1

...

εεεT
n(k−1)⊗xT

n

+


δδδ
T
1(k−1)⊗xT

1
...

δδδ
T
n(k−1)⊗xT

n


= Vk +δδδ Vk

Therefore,

D̂T
0 K0V̂k = (δδδ D0 +D0)

T K0(Vk +δδδ Vk)

= DT
0 K0Vk +δδδ

T
D0

K0Vk

+DT
0 K0δδδ Vk +δδδ

T
Vk

K0δδδ Vk . (4.58)

It is trivial to derive that

δδδ
T
Vk

K0D0

=

[ ∑n
i=1 Kh1(∆i)δδδ i(k−1)(εεε

T
i(k−1)⊗xT

i )∑n
i=1 Kh1(∆i)∆i/h1δδδ i(k−1)(εεε

T
i(k−1)⊗xT

i )

]
.

By using the same argument that leads to Snl,3 and its corresponding convergence rate,
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we have that

sup
U0∈supp{U}

|n−1
δδδ

T
Vk

K0D0|= Op

[
cn(hn){logn/(nh1)

1/2}
]

(4.59)

Accordingly, it follow from Snl,4 that

sup
U0∈supp{U}

|n−1
δδδ

T
Vk

K0δδδ Vk |= Op
{

c2
n(hn)

}
(4.60)

Thus, combining the results of (4.59) and (4.60), we can obtain that

sup
U0∈supp{U}

|n−1D̂T
0 K0V̂k−n−1DT

0 K0Vk| = Op

[
cn(hn)

{
logn

(nh1)1/2 + cn(hn)

}]
.(4.61)

Denote Q̂0 = (D̂T
0 K0D̂0)

−1D̂T
0 K0V̂k and Q0 = (DT

0 K0D0)
−1DT

0 K0Vk, then combining

the results of (4.57) and (4.61) yields that

sup
U0∈supp{U}

|n−1Q̂0−n−1Q0| = Op

[
cn(hn)

{
logn

(nh1)1/2 + cn(hn)

}]
. (4.62)

Now, let’s consider the term (V̂k− Ŝh1V̂k)
T (V̂k− Ŝh1V̂k). Note that

V̂k− Ŝh1V̂k =


ε̂εε

T
1(k−1)⊗xT

1
...

ε̂εε
T
n(k−1)⊗xT

n

−


(ε̂εεT
1(k−1),0)Q̂1

...

(ε̂εεT
n(k−1),0)Q̂n

 . (4.63)

Therefore, (V̂k− Ŝh1V̂k)
T (V̂k− Ŝh1V̂k) can be decomposed as

(V̂k− Ŝh1V̂k)
T (V̂k− Ŝh1V̂k)

=
n∑

i=1

[{
ε̂εε i(k−1)⊗xi− Q̂T

i (ε̂εε
T
i(k−1),0)

T
}{

ε̂εε
T
i(k−1)⊗xT

i − (ε̂εεT
i(k−1),0)Q̂i

}]
=

n∑
i=1

(
ε̂εε i(k−1)⊗xi

)(
ε̂εε

T
i(k−1)⊗xT

i

)
−

n∑
i=1

(
ε̂εε i(k−1)⊗xi

)(
(ε̂εεT

i(k−1),0)Q̂i

)
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−
n∑

i=1

(
Q̂T

i (ε̂εε
T
i(k−1),0)

T
)(

ε̂εε
T
i(k−1)⊗xT

i

)
+

n∑
i=1

(
Q̂T

i (ε̂εε
T
i(k−1),0)

T
)(

(ε̂εεT
i(k−1),0)Q̂i

)
= Ê1 + Ê2 + Ê3 + Ê4. (4.64)

In the sequel, we deal with Êi separately for i = 1, . . . ,4. We fist consider Ê1.

Ê1 =
n∑

i=1

(
ε̂εε i(k−1)⊗xi

)(
ε̂εε

T
i(k−1)⊗xT

i

)
=

n∑
i=1

{
(εεε i(k−1)+δδδ i(k−1))⊗xi

}{
(εεεT

i(k−1)+δδδ
T
i(k−1))⊗xT

i

}
= E1 +δδδ E1, (4.65)

where

E1 =
n∑

i=1

(
εεε i(k−1)⊗xi

)(
εεε

T
i(k−1)⊗xT

i

)
(4.66)

δδδ E1 =
n∑

i=1

(
δδδ i(k−1)⊗xi

)(
εεε

T
i(k−1)⊗xT

i

)
+

n∑
i=1

(
εεε i(k−1)⊗xi

)(
δδδ

T
i(k−1)⊗xT

i

)
+

n∑
i=1

(
δδδ i(k−1)⊗xi

)(
δδδ

T
i(k−1)⊗xT

i

)
(4.67)

By using the same argument as before, we have

sup
U0∈supp{U}

|n−1Ê1−n−1E1|= Op

[
cn(hn)

{
logn

(nh1)1/2 + cn(hn)

}]
. (4.68)

Now we turn to study the convergence rate of Ê2. Note that

Ê2 =

n∑
i=1

(
ε̂εε i(k−1)⊗xi

)(
(ε̂εεT

i(k−1),0)Q̂i

)
=

n∑
i=1

(
εεε i(k−1)⊗xi +δδδ i(k−1)⊗xi

)(
(εεεT

i(k−1),0)Q̂i +(δδδ T
i(k−1),0)Q̂i

)
= Ê2,1 + Ê2,2 + Ê2,3 + Ê2,4,
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where

Ê2,1 =

n∑
i=1

(
εεε i(k−1)⊗xi

)(
(εεεT

i(k−1),0)Q̂i

)
(4.69)

Ê2,2 =

n∑
i=1

(
εεε i(k−1)⊗xi

)(
(δδδ T

i(k−1),0)Q̂i

)
(4.70)

Ê2,3 =

n∑
i=1

(
δδδ i(k−1)⊗xi

)(
(εεεT

i(k−1),0)Q̂i

)
(4.71)

Ê2,4 =
n∑

i=1

(
δδδ i(k−1)⊗xi

)(
(δδδ T

i(k−1),0)Q̂i

)
(4.72)

By (4.62), we obtain that

Ê2,1 =
n∑

i=1

(
εεε i(k−1)⊗xi

)(
(εεεT

i(k−1),0)Qi

)
+op

[
cn(hn)

{
logn

(nh1)1/2 + cn(hn)

}]
. (4.73)

Following the same argument, we have that Ê2,2, Ê2,3, and Ê2,4 are asymptotically neg-

ligible comparing with Ê2,1. Hence, if denoting

E2 =
n∑

i=1

(
εεε i(k−1)⊗xi

)(
(εεεT

i(k−1),0)Qi

)
, (4.74)

then it can be shown that

Ê2 = E2 +op

[
cn(hn)

{
logn

(nh1)1/2 + cn(hn)

}]
. (4.75)

Similar properties can be shown for Ê3 and Ê4. Therefore,

(V̂k− Ŝh1V̂k)
T (V̂k− Ŝh1V̂k)

=
n∑

i=1

[{
εεε i(k−1)⊗xi−QT

i (εεε
T
i(k−1),0)

T
}{

εεε
T
i(k−1)⊗xT

i − (εεεT
i(k−1),0)Qi

}]
+op

[
cn(hn)

{
logn

(nh1)1/2 + cn(hn)

}]
= (Vk−Sh1Vk)

T (Vk−Sh1Vk)+op

[
cn(hn)

{
logn

(nh1)1/2 + cn(hn)

}]
(4.76)
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Equivalently, by using the same argument as before, we can show that

V̂T
k (I− Ŝh1)

T (I− Ŝh1)ε̂εεk

= VT
k (I−Sh1)

T (I−Sh1)εεεk +op

[
cn(hn)

{
logn

(nh1)1/2 + cn(hn)

}]
. (4.77)

Combining the results of (4.76) and (4.77), we have

γ̂γγk =
{

VT
k (I−Sh1)

T (I−Sh1)Vk
}−1{VT

k (I−Sh1)
T (I−Sh1)εεεk

}
+op

[
cn(hn)

{
logn

(nh1)1/2 + cn(hn)

}]
. (4.78)

Denote

γ̃γγk =
{

VT
k (I−Sh1)

T (I−Sh1)Vk
}−1{VT

k (I−Sh1)
T (I−Sh1)εεεk

}
, (4.79)

then by following Theorem 4.1 of Fan and Huang (2004), we can have the asymptotic

normality of γ̃γγk as follows,

√
n(γ̃γγk− γγγk) →D N

(
0,ΣΣΣγ

)
, (4.80)

for k = 2,3, . . . ,m, and ΣΣΣγ is given as follows:

ΣΣΣγ = σ
2
k (x,U)

[
E
{
(εεε(k−1)⊗x)(εεε(k−1)⊗x)T}

−E
{
E
{
(εεε(k−1)⊗x)xT |U

}
E(xxT |U)−1E

{
x(εεε(k−1)⊗x)T |U

}}]−1
.

This, together with (4.78), proves the results.

Proof of Theorem 4.2.3 . Note that

σ̂
2
k (U0) =

n∑
i=1

{ê2
ik}Kh2

/ n∑
i=1

Kh2(∆i)

=

n∑
i=1

{e2
ik +2eik(êik− eik)+(êik− eik)

2}Kh2(∆i)
/ n∑

i=1

Kh2(∆i).
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First we need to prove that

sup
U0

∣∣∣∣∣
n∑

i=1

eik(êik− eik)Kh2(∆i)
/ n∑

i=1

Kh2(∆i)

∣∣∣∣∣= Op {cn(h2)cn(hn)+ cn(h1)} , (4.81)

sup
U0

∣∣∣∣∣
n∑

i=1

(êik− eik)
2Kh2(∆i)

/ n∑
i=1

Kh2(∆i)

∣∣∣∣∣= Op{cn(h2)c2
n(hn)+ c2

n(h1)}. (4.82)

Using the fact that εεε i(k−1) = yi(k−1)− (Ik−1⊗ xT
i )vec{ααα(k−1)(Ui)} and ε̂ik = yik−

α̂αα
T
k (Ui)xi, it can be derived that

êik− eik

= xT
i {αααk(Ui)− α̂ααk(Ui)}− γ̂γγ

T
k (ε̂εε i(k−1)⊗xi)+ γγγ

T
k (εεε i(k−1)⊗xi)

−β̂ββ
T
k,(k−1)(Ui)ε̂εε i(k−1)+βββ

T
k,(k−1)(Ui)εεε i(k−1)

= xT
i {αααk(Ui)− α̂ααk(Ui)}− (γ̂γγk− γγγk)

T (εεε i(k−1)⊗xi)

−(γ̂γγk− γγγk)
T{(ε̂εε i(k−1)− εεε i(k−1))⊗xi}− γγγ

T
k {(ε̂εε i(k−1)− εεε i(k−1))⊗xi}

−{β̂ββ k,(k−1)(Ui)−βββ k,(k−1)(Ui)}T
εεε i(k−1)

−{β̂ββ k,(k−1)(Ui)−βββ k,(k−1)(Ui)}T{ε̂εε i(k−1)− εεε i(k−1)}

−βββ
T
k,(k−1)(Ui){ε̂εε i(k−1)− εεε i(k−1)}

= xT
i {αααk(Ui)− α̂ααk(Ui)}− (γ̂γγk− γγγk)

T (εεε i(k−1)⊗xi)

−(γ̂γγk− γγγk)
T ([(Ik−1⊗xT

i ){α̂αα(k−1)(Ui)−ααα(k−1)(Ui)}
]
⊗xi

)
−γγγ

T
k
([
(Ik−1⊗xT

i ){α̂αα(k−1)(Ui)−ααα(k−1)(Ui)}
]
⊗xi

)
−{β̂ββ k,(k−1)(Ui)−βββ k,(k−1)(Ui)}T

εεε i(k−1)

−{β̂ββ k,(k−1)(Ui)−βββ k,(k−1)(Ui)}T ([(Ik−1⊗xT
i ){α̂αα(k−1)(Ui)−ααα(k−1)(Ui)}

]
⊗xi

)
−βββ

T
k,(k−1)(Ui)

([
(Ik−1⊗xT

i ){α̂αα(k−1)(Ui)−ααα(k−1)(Ui)}
]
⊗xi

)
(4.83)

Denote g1(x) as a function of x. By using condition (C5), Lemma 4.4.1 and 4.4.2 ,

E(eik|xi,Ui) = 0 implies

sup
U0

∣∣∣∣∣
n∑

i=1

eikg1(xi)Kh2(∆i)
/ n∑

i=1

Kh2(∆i)

∣∣∣∣∣= Op{cn(h2)}. (4.84)
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Therefore, by employing the results that

sup
U0

|α̂ααk(U0)−αααk(U0)| = Op{cn(hn)},

sup
U0

∣∣∣β̂ββ k,(k−1)(U0)−βββ k,(k−1)(U0)
∣∣∣ = Op{cn(h1)},

(4.81) can be proven after some tedious calculation.

Next, let g2(x,εεε(k−1)) denote the function of (x,εεε(k−1)). Similarly, by employing

condition (C5), Lemma 4.4.1 and 4.4.2, it can be obtained that

sup
U0

∣∣∣∣∣
n∑

i=1

g2(xi,εεε(k−1))Kh2(∆i)
/ n∑

i=1

Kh2(∆i)

∣∣∣∣∣= Op(1). (4.85)

Then (4.82) can be derived by using Cauchy-Schwarz inequality. Therefore, (4.81)

and (4.82) are proven.

Next we will show that

n∑
i=1

Kh2(∆i)e2
ik

/ n∑
i=1

Kh2(∆i)−σ
2
k (U0)

= h2
2µ2

{
σ̇

2
k (U0)

ḟ (U0)

f (U0)
+

σ̈2
k (U0)

2

}
+n−1

n∑
i=1

Kh2(∆i){e2
ik−σ

2
k (Ui)}

/
f (U0)

+op{cn(h2)}. (4.86)

To prove equation (4.86), we first re-write the left part as

n∑
i=1

Kh2(∆i)e2
ik

/ n∑
i=1

Kh2(∆i)−σ
2
k (U0)

=
n∑

i=1

Kh2(∆i){e2
ik−σ

2
k (U0)}

/ n∑
i=1

Kh2(∆i)

=

n∑
i=1

Kh2(∆i){e2
ik−σ

2
k (Ui)+σ

2
k (Ui)−σ

2
k (U0)}

/ n∑
i=1

Kh2(∆i)
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=
n∑

i=1

Kh2(∆i){e2
ik−σ

2
k (Ui)}

/ n∑
i=1

Kh2(∆i)

+

n∑
i=1

Kh2(∆i){σ2
k (Ui)−σ

2
k (U0)}

/ n∑
i=1

Kh2(∆i) (4.87)

It is noted that f (U0) is bounded away from 0 by condition (C1). Thus Lemma 4.4.1

and Lemma 4.4.2 imply that

sup
U0∈supp{U}

∣∣ f̂−1(U0)− f−1(U0)
∣∣= Op{cn(h2)}, almost surely, (4.88)

where f̂ (U0) = n−1∑n
i=1 Kh2(∆i).

Applying (4.88), equation (4.87) can be expressed as

n∑
i=1

Kh2(∆i)e2
ik

/ n∑
i=1

Kh2(∆i)−σ
2
k (U0)

= n−1
n∑

i=1

Kh2(∆i){e2
ik−σ

2
k (Ui)}

[
f−1(U0)+Op{cn(h2)}

]
+n−1

n∑
i=1

Kh2(∆i){σ2
k (Ui)−σ

2
k (U0)}

[
f−1(U0)+Op{cn(h2)}

]
(4.89)

Denote the first and second term in the above equality as E1 and E2 respectively. Then

E1 is an average of independent and identically distributed random variables. E2 can be

approximated as follows.

By Taylor expansion,

σ
2
k (Ui)≈ σ

2
k (U0)+(Ui−U0)σ̇

2
k (U0)+(Ui−U0)

2
σ̈

2
k (U

∗
i )/2, (4.90)

where U∗i is a value between Ui and U0. Then
∑n

i=1 Kh2(∆i){σ2
k (Ui)−σ2

k (U0)}
/

f (U0)

can be approximated by

n−1
n∑

i=1

Kh2(∆i){σ2
k (Ui)−σ

2
k (U0)}

/
f (U0)

≈
∑n

i=1 Kh2(∆i)∆iσ̇
2
k (U0)

n f (U0)
+

∑n
i=1 Kh2(∆i)∆

2
i σ̈2

k (U0)

2n f (U0)
(4.91)
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By Lemma 4.4.1 and 4.4.2, it follows that∑n
i=1 Kh2(∆i)∆iσ̇

2
k (U0)

n f (U0)
= h2µ1σ̇

2
k (U0)+

h2
2µ2 ḟ (U0)σ̇

2
k (U0)

f (U0)
+Op{cn(h2)} (4.92)

∑n
i=1 Kh2(∆i)∆

2
i σ̈2

k (U0)

2n f (U0)
=

h2
2µ2σ̈2

k (U0)

2
+

h3
2µ3 ḟ (U0)σ̇

2
k (U0)

2 f (U0)
+Op{cn(h2)} (4.93)

Combining the results of equalities (4.92) and (4.93), E2 can be approximated by

h2
2µ2

{
σ̇2

k (U0) ḟ (U0)

f (U0)
+

σ̈2
k (U0)

2

}
. (4.94)

Therefore, the asymptotic normality of this theorem can be easily derived.



Chapter 5
Summary and Recommendations
for Future Research

In this chapter, the major contribution of the dissertation is summarized and the direc-

tions of the future research are outlined.

5.1 Contributions of the Dissertation

The major contribution of the dissertation is the estimation of the conditional covari-

ance functions of response variables given different types of covariates in the context

of nonparametric regression models. Nonparametric regression models have been used

in many different areas. Numerous estimation procedures for nonparametric mean re-

gression have been extensively studied. However, there are few references available for

nonparametric models for a conditional covariance matrix. Our contribution is to fill

this gap by developing nonparametric models for conditional covariance matrix.

In the low dimension setting, the proposed methodology presented in Chapter 3

parameterizes the conditional covariance matrix of a multivariate response vector as

a quadratic function of regression splines. This covariance regression model can be

regarded as a factor analysis model and thus has a random-effects representation, which

allows for straightforward maximum likelihood parameter estimation using the EM-

algorithm. Furthermore, the covariance regression model allows for the mean function

to be separately parameterized from the variance function, providing more flexibility
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comparing to the methods that accommodate heteroscedasticity in the form of a mean-

variance relationship. The positive-definiteness constraint on conditional covariance

matrix is guaranteed.

In modern data sets, the dimension of the covariate is usually very large, which calls

for new approaches for estimating the conditional covariance functions. This motiva-

tion is challenge due to the positive-definiteness constraint on covariance matrix and the

curse of dimensionality of covariates. Our contribution is to develop a functional estima-

tion of the conditional covariance matrix which is able to address these obstacles. The

methodology is established in Chapter 4. The idea of Cholesky decomposition through

associating the conditional covariance matrix with a unique unit lower triangular and a

unique diagonal matrix is followed. The entries of the lower triangular matrix and the

diagonal matrix have statistical interpretation as regression coefficients and prediction

variances when regressing each term on its predecessors. To circumvent the curse of

dimensionality of covariates and maintain the modeling flexibility, a class of partially

linear models are used to estimate those regression coefficients and kernel estimators are

developed to estimate the nonparametric covariance functions. This proposed method

ensures that the estimated conditional covariance function is positive definite locally.

It also retains the parsimony of parametric models and flexibility of the nonparametric

models. The asymptotic properties of the proposed procedure are studied. It has been

shown that the proposed method for estimating the conditional matrix has the oracle

property in the sense that the resulting estimate using residuals has the same asymptotic

variance and bias as that using the true errors.

The proposed nonparametric models for estimating the conditional covariance ma-

trix in this dissertation have various applications, including graphical modeling, func-

tional data and longitudinal data analysis, machine learning, risk management, and mul-

tivariate volatility in finance.

5.2 Future Work Directions

It is worth pointing out that while in the covariance regression models in Chapter 3, the

distribution of the error terms is not specified, the normality is assumed for parameter

estimation. Other types of error distributions can also be considered and the implemen-

tation is feasible. In my work, the cubic spline basis is selected as the basis function.
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Other choice of the pre-specified basis function can also be consider, for example, the

B-spline basis. Furthermore, it is of interest to choose an appropriate set of explanatory

variables for the proposed covariance regression models, which is challenging. Classical

variable selection criteria, such as AIC and BIC, and penalized least squares techniques

can be used. Additionally, the Bayesian procedures may be adopted. For example, it is

possible to formulate a prior distribution and thus some coefficients are allowed to be

zero with non-zero probability.

For the functional estimation procedure for the conditional covariance matrix pro-

posed in Chapter 4, some different approaches for estimating the regression coefficients

may be considered. For example, an alternative procedure for estimating φ(x,U) is to

use the robust methods in the presence of outliers, or to model φ(x,U) through single-

index models or varying coefficient models. It is of interest to develop nonparametric

regression model for estimating the conditional covariance matrix when the covariates

are very high-dimensional. Variable selection techniques are desired to screen out ir-

relevant explanatory variables and thus an appropriate set of covaraites are selected.

Variable selection procedures, for example penalized least squares techniques can be

applied. It is of interest to incorporate variable selection techniques into the Cholesky

decomposition procedure. It is noted that different x-variable order might lead to a

different Cholesky decomposition based estimate with a finite sample size. Therefore,

it is important to resolve issues related to bandwidth flexibility, positive definiteness,

and permutation invariance (Rothman et al. (2008)) under a unified framework. Further

studies along this line are needed.
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