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ABSTRACT 

Electrohydraulic actuators constitute important force generation and positioning 

elements in various industrial and testing applications. Their high power-to-weight ratio 

and high load stiffness make them better choices than their rival electromechanical 

actuators in multi-actuator service load simulation testing applications such as road 

simulators, flight simulators and shaker tables. However, electrohydraulic actuators 

exhibit significant nonlinearities in their dynamics. In order to obtain satisfactory 

performance in the presence of these nonlinearities, more elaborate control techniques 

than the ubiquitous PID loops may be necessary.  

In this thesis, nonlinear models of electrohydraulic systems are developed for a 

typical single actuator test system. This test system is such that detailed modeling of 

transmission line dynamics is found necessary. A useful result obtained from modal 

approximation of distributed transmission line dynamics is outlined for a specific 

causality case. Suitable system interconnection models are adopted and validated using 

experiments on the test system. 

The validated system model is then used to derive nonlinear pressure/force and 

position controllers based on feedback linearization and its robust enhancements. 

Feedback linearization can be applied to certain model structures which allow the 

cancellation, in real-time, of the measured and modeled nonlinearities of the system. It is 

shown in this thesis that a model of an electrohydraulic system can be configured as 

input-output (IO) linearizable (or partial feedback linearizable) under some basic 

assumptions. In fact, these assumptions are necessary, and yet not unduly restrictive, that 

the term Near IO linearization is used with the controllers so derived.  

A sliding mode controller is designed as a robust extension of the Near IO 

linearizing controller with pressure/force output. It is also shown that the Near IO 

linearizing controller with position output is equivalent to a cascade controller 

implementing the Near IO linearizing pressure/force controller as an inner-loop to a 

feedback plus feed forward outer-loop position controller. The cascade implementation 

has the convenient feature that the position control closed-loop error has a second-order 
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linear dynamics driven by the pressure/force control closed-loop error, which in itself has 

a first-order linear dynamics. A consequence of the equivalence is that it gives insight 

into the choice of the linear gains for the Near IO linearizing position controller. 

Furthermore, the cascade form allows one to view the robustness issues for position 

control from a Lyapunov backstepping perspective.  

The performance of the nonlinear controller is compared against standard PID and 

linear state feedback with integral controllers using experiments and computer 

simulations of the nonlinear system model. It is shown that the nonlinear controllers have 

better tracking performance than the linear controllers, particularly in force control. It is 

demonstrated that there is more performance advantage for the nonlinear position 

controllers with suggested system layout changes and improved signal processing. 

The nonlinear position controllers are further considered for a multi-actuator 

application in road simulation. A nonlinear full-bus model of a transit bus is developed 

for computer simulations of a four-post road simulation system. Time domain interaction 

measures are derived to look at interactions between decentralized PID+Δp and Near IO 

linearizing position control loops. It is shown that there is little interaction between either 

of the decentralized position control loops. However, a second cascaded decentralized 

controller considered for tracking a remote parameter like spindle vertical acceleration 

response faces significant and persistent interactions.  

Finally, the performance of the multi-actuator road simulation system under a 

decentralized Near IO linearizing controller and a decentralized PID+Δp controller are 

compared for a typical rough road profile. The Near IO linearizing resulted in a more 

than 60% improvement in the tracking error metric across all four actuators and a more 

than 50% improvement in the response matching of the sprung mass acceleration power 

spectral density over that obtained with the PID+Δp controller. 
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Chapter 1 
 

Introduction 

Electrohydraulic actuators have a wide range of applications in machine tool drives, 

rolling mills, injection molding machines, materials handling equipment, aircraft control 

surfaces, construction, mining and agricultural equipment, aircraft control surfaces, 

vehicle active suspensions and motion and service load simulation systems. The latter are 

of particular interest in this thesis and include fatigue testing systems for material 

specimens, road simulators for vehicle structures, vibration or shaker test rigs for 

components, and flight simulators and aeronautical fatigue testers for aircraft structures.  

In most of these applications, the demand on the actuators is on the controlled 

delivery of high output power (i.e., force and motion) with precision in the face of weight 

and space constraints. In addition to their high power-to-weight ratio, electrohydraulic 

actuators exhibit a better degree of self cooling and self lubrication (and hence less wear) 

than their rival counterparts in electromechanical actuators. Their high load stiffness is also 

another advantage. However, the dynamics of electrohydraulic actuators exhibit some 

dominant nonlinearities that pose control challenges for improved performance. In this 

thesis, nonlinear controllers are developed to address this issue for an experimental 

electrohydraulic actuation system typically employed in fatigue testing. The results are then 

extended to a multi-actuator service load simulation testing system. 

1.1 Service Load Simulation Testing 

Traditionally, service load testing used to involve dedicating such operating 

environments as test tracks and proving grounds designed to emulate expected in-service 

conditions and associated loads on the test (vehicle) structure. However, it has long been 
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argued that this practice is time-inefficient, expensive, and prone to inconsistencies due to 

environmental variables and test personnel error. 

Since the early 70’s, simulation testing, i.e. testing of components and assemblies 

using simulated loading systems, has been considered to complement, and in some cases 

serve as a convenient substitute to test track testing, thereby improving on the efficiency 

and consistency of testing efforts. Early on, successful applications of simulation testing 

were limited to simple loading patterns for component fatigue testing with the then 

available testing systems. With the advent of high speed digital computation, however, 

simulation testing systems have become capable of complex multi-axial loading of 

individual components and fully developed assemblies alike. Simulation testing now 

enables service load testing in a cost and time efficient manner and within a controlled and 

repeatable laboratory setting. In the rest of this work, we refer to this service load 

simulation testing systems for vehicles as road simulation systems or road simulators. 

Generally speaking, a road simulation system is one which attempts to create a 

controlled and repeatable test environment that closely simulates the operating conditions 

for a significant portion of a vehicle or of the whole vehicle. This definition encompasses 

such testing rigs as chassis dynamometers, component shaker tables and vehicle shakers[1]. 

However, the most common use of the name ‘road simulator’ or ‘road simulation system’ 

is in reference to multi-post vehicle shakers employing actuators to provide excitation 

inputs to vehicle structures. We keep this use of the terms in this work. 

A typical road simulation system aims at replicating road excited vehicle responses 

by providing simulated road excitation inputs to the vehicle system. The excitations are 

provided by controlled electrohydraulic or electromechanical actuators with their own 

dynamics. Therefore, a road simulation system is invariably a dynamic system. And if the 

road simulation system uses electrohydraulic actuators to provide the excitation to the 

vehicle, as is most often the case, then it is invariably a nonlinear dynamic system. It 

therefore poses challenges that may not be easily overcome using linear controllers on the 

electrohydraulic actuators.  
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Road induced inputs can be resolved into components that are longitudinal, vertical, 

lateral and rotational inputs with respect to the vehicle. The realistic road simulation system 

would therefore replicate this combined system of inputs with the correct phase relationship 

between each component [2]. In practice, however, some of the excitation input 

components are simplified or even ignored depending on the testing objective, cost and 

complexity of the road simulation system. There are therefore such classifications as uni-

axial, bi-axial or tri-axial loading systems depending on the number of inputs to be applied 

at each wheel of the vehicle. As far as simulation testing of a whole vehicle structure goes, 

even a ‘uni-axial’ road simulation system applies the loads at the different wheels of a 

dynamically coupled structure: the vehicle. And it needs to maintain the correct magnitude 

and phase relationships at each wheel. This implies that even the simplest whole vehicle 

simulation testing system is a multi-axial nonlinear dynamic system.  

It is natural to expect, at this point, that these nonlinear dynamics have a bearing on 

the effectiveness of service load simulation testing using road simulators. We briefly 

describe the existing solutions below and defer the detailed literature review to Chapter 2. 

1.2 Improving the Performance of Road Simulators 

The performance of road simulators, as gauged by the accuracy of replication of in-

service response or of road profile tracking, has been improved by advances in practical 

control techniques and high performance electrohydraulics. The control techniques are 

heavily dependent on the PID controller and its linear enhancements, including differential 

pressure feedback, phase lead and/lag compensators, etc. To cope with the nonlinearities 

introduced by the electrohydraulic actuators’ and the test vehicle’s dynamics, iterative 

methods are employed to derive appropriate inputs that replicate on-road measured 

responses. However, these iterative approaches still keep the linear control scheme as an 

‘inner’-loop control on the nonlinear electrohydraulic hardware.  

It is the overarching goal of this thesis to address the nonlinearity of the 

electrohydraulic system within the ‘inner’-loop. It is felt that the use of nonlinear 
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controllers to obtain a better ‘inner’-loop control of the electrohydraulic actuators may 

reduce the time and cost associated with setting up and executing the iterative loops. It is 

also possible that, depending on the test scenario and objective, these nonlinear controllers 

may eliminate the need for the iterative loops altogether.  

To help in the evaluation of the effectiveness of the proposed nonlinear controllers 

as ‘inner’-loops in a multi-actuator road simulation system, we make a distinction between 

decentralized and centralized controllers. By decentralized control we mean the control of 

each actuator independently of the others in an essentially single-input single-output 

(SISO) configuration. Centralized control refers to elaborate multiple-input multiple-output 

(MIMO) control systems. With decentralized control, which is primarily desirable for its 

simplicity, it is possible to evaluate the performance of the road simulator without 

completing iterative procedures. We only need to address the interaction or cross-coupling 

between the decentralized control loops due to the coupled dynamics of the test vehicle 

(and actuators).This is addressed separately in this thesis. 

1.3 Main Contribution of the Thesis 

The main contribution of this thesis is in the development and analysis of 

nonlinear controllers that cancel the dominant nonlinearities in the electrohydraulic 

system so that the ‘inner’-loop decentralized control loop of an electrohydraulic actuator 

behaves linearly and the road simulation system performs better. These controllers are 

derived based on a Near-IO linearization approach. It is shown that cascade physical 

interpretations reveal a simple design procedure for the Near IO linearizing position 

controller. These cascade interpretations also lead to straightforward considerations of 

robust versions including sliding mode control. 

Experiments are performed on a test system whole modeling led to a new modal 

approximation result for distributed parameter transmission line modeling. This is 

incorporated in the interconnected electrohydraulic system model to study the limitations 

of the basic assumptions made for controller derivation. The modal approximation result, 
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derived for one causality case here, gives better handling of steady state response, and 

also leads to a physically argued model order reduction for the interconnected system. 

This work is different from related work in the literature on electrohydraulic 

actuator position and force control (reviewed in Section 2.2) in that, assumptions and 

limitations are clearly outlined, model validation results are presented and nearly all 

nonlinear controllers derived in this thesis are experimentally implemented. Furthermore, 

a physically intuitive design procedure is outlined for the Near IO linearizing position 

controller. 

1.4 Thesis Outline 

In Chapter 2, a thorough review of the existing techniques employed to obtain 

satisfactory performance with electrohydraulic road simulators is presented. A literature 

survey is also presented on advanced control techniques proposed for electrohydraulic 

actuators in general applications. A review of interaction (cross coupling) measures for use 

with multi-actuator systems in decentralized control is also included. 

In Chapter 3, an experimental single actuator system is considered to gain insight 

into the modeling of various components in the electrohydraulic system and to validate the 

interconnected system model using closed-loop and open-loop experiments. Furthermore, 

during the course of the study, a detail model of the transmission hoses was found 

necessary. Some useful modal approximation models are derived and included. 

The first part of Chapter 4 deals with the derivation of the nonlinear controllers 

based on the validated model from Chapter 3. The theoretical basis and robustness 

considerations are outlined. In the second part of Chapter 4, the performance of the 

nonlinear controllers is evaluated using both experiments and computer simulations of the 

full nonlinear system model. 

In Chapter 5, the actuator modeling and controller development results of Chapter 4 

are used in a model of a four-actuator road simulation system with a nonlinear full-bus 

model of a transit bus as a test vehicle for computer simulation studies. Interaction 
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measures are described, and decentralized control structures are evaluated. A performance 

comparison is also conducted between a decentralized linear PID+Δp controller and 

decentralized Near IO linearizing position tracking controller using a typical road profile. 

Finally, Chapter 6 presents a summary of the main results and the conclusions of 

this work. Some recommendations for future research are also included in this final 

chapter. 

Each of Chapters 3, 4, and 5 is organized with its own brief introductory notes and 

a chapter summary. The latter is particularly aimed at helping the reader identify specific 

sections within each chapter for easy reference of detailed discussions of a result. 
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Chapter 2 
 

Literature Review 

2.1 Road Simulators 

2.1.1 Introduction to Road Simulation  

Road simulators enable the laboratory assessment of vehicle structural durability, 

ride comfort and Noise and Vibration Harshness (NVH) without having to run the 

vehicle’s drive train on an actual road surface. They can also be used in the assessment of 

pavement damage and the study of road-vehicle interaction [3, 4]. Perhaps the most 

significant of these applications is the evaluation of structural durability and integrity in 

which it is desired to establish how structural components and subassemblies fail from 

fatigue. 

The simplest durability tests involve driving the vehicle over representative road 

surfaces and repeating the process while monitoring the level of degradation. While 

potentially realistic, such tests are expensive and time consuming. This is a major 

problem especially for heavy vehicles where the expected lifetime mileage may be over 

500,000miles [1]. 

Some degree of accelerated mileage accumulation (and testing time compression) 

could be achieved by using test tracks. On test tracks common road features such as 

chuck holes, sine waves, chatter bumps, potholes, etc., are placed in series on a dedicated 

road section. The arrangement of these road features is carefully designed in such a way 

that the in-service fatigue failures are correlated well with the accelerated on-test track 

failures. A not overly severe test track for transit buses, like the one operated by the 

Pennsylvania Transportation Institute (PTI), achieves a mileage compression of 10:1 

based on counts of axle acceleration reversals [5]. These two figures imply that durability 
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testing of heavy vehicles could last in the order of 50,000 miles. It can therefore be 

argued that even the use of test tracks alone could be expensive, time consuming, and 

prone to inconsistencies from driver and test personnel fatigue. Besides, runs on the test 

track require consistently favorable weather for an extended period of time.  

The use of the test track for structural durability testing can be complemented and 

often replaced by the use of road simulators. Trial runs could be done on a validated test 

track and further response replication could be continued in the laboratory using road 

simulators. Aside from the possibility of full test automation, the ability to digitally edit 

less important road profile features and response elements in terms of structural failure is 

an added distinct advantage of computer controlled road simulators. Test accelerations of 

5-10 times are possible using some of these systems [6]. 

There are two basic types of road simulators in general use for structural analysis 

of whole vehicle structures. These are tire coupled and spindle coupled. Tire coupled 

road simulators are vertical actuators on top of which the test vehicle is mounted and only 

single axis vertical inputs are simulated with the vehicle forward speed maintained 

essentially constant. Fore-aft forces and lateral forces generated at the tire-road contact 

patch from acceleration, braking and cornering maneuvers are not intended to be 

simulated using these simulators [7]. Spindle coupled systems, on the other hand, can be 

configured to simulate vertical, lateral, longitudinal and braking inputs to the test vehicle. 

Tire coupled simulators have certain advantages over spindle-coupled simulators. 

The inputs to the vehicle on a tire coupled system are applied in a similar way as on a 

road surface. As a result, suspension parameter changes and degradation effects on the 

vehicle dynamics resemble those on the road. Test set up is easier and fixture costs are 

lower with tire coupled systems, and they can be configured independent of the particular 

test vehicle. The same input, once established, can often be used as the simulated road for 

most vehicles, requiring only compensations for track and wheel base differences [8, 9]. 

A schematic of one leg of a tire coupled road simulator is shown in Fig 2.1. The 

test vehicle’s wheels are mounted on the wheel plates located at one end of a double 

acting piston. A servovalve modulates flow to and from the top (qt(t)) and bottom (qb(t)),  

piston-actuator cylinder chambers, where the necessary pressure force is developed. The 
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usual controller is a Proportional Integral Derivative (PID) controller acting on piston 

position error and supplying current to the servovalve. Sometimes differential pressure 

(ΔP) feedback is included for additional damping [10]. Model based tuning of PID 

controller parameters for such a road simulation system is detailed by Gore et al. [11]. In 

the rest of this chapter, the variants of a PID controller are referred to simply as PID 

control, regardless of whether a P or PD or even PD+ΔP loop is really meant. 

The study in this thesis focuses on a tire coupled system. However, the control 

issues to be pointed out are generic and apply to all road simulators whether they are tire-

coupled or spindle-coupled.  

2.1.2 Control Problem: Drive signal generation 

The control problem with road simulators is often posed as the generation of the 

control reference inputs, labeled xd(t) in Fig 2.1, hereafter referred to as drive signals in 

this chapter. This interpretation is a consequence of the practical prevalence of ‘outer-

loop’ control techniques that will be described below. 

It is possible to playback road profile measurements from a road profilometer as 

the drive signals [9, 12]. However, some important limitations have to be recognized. The 

vehicle response on the simulator using these inputs could be different from that on the 

 
Figure 2.1: Schematic of one leg of a tire coupled road simulator 
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actual profiled road. This is due to mainly the inherent nonlinear dynamics of the 

electrohydraulic actuators of the road simulator and the differences in rolling tire (on the 

road) and non-rolling tire (on simulator) properties. Other difficult to monitor issues 

include the strong possibility that the road profilometer and the test vehicle do not 

traverse the same on-the-road profile and also that forward velocity effects may not be 

properly replicated using this approach. However, this approach remains the cheapest and 

simplest road simulation solution. In terms of minimizing the influence of the dynamics 

of the actuators on the simulation quality, the approach depends heavily on the 

performance of the PID controller. 

However, conventional PID control loops acting on electrohydraulic hardware 

have practical difficulties such as stability margins, actuator and test fixture bandwidth 

limitations and inevitable nonlinearities in the electrohydraulic system. These all have a 

negative bearing on the effort to match the drive signals (xd(t)) with the actual piston 

position in a repeatable manner using only PID control loops. The testing community 

employing electrohydraulic actuators has found it necessary to use the PID controller as 

an ‘inner’ control loop and include ‘outer’ compensation loops to improve control 

accuracy, stability and repeatability [6]. In Section 2.2, a review is presented for other 

advanced control techniques that could be considered for improving the ‘inner’-loop 

control. In fact, it is the objective of this thesis to investigate such solutions to enhance 

the ‘inner’ loop control. 

A common goal of the ‘outer’ loop compensation methods is to modify the input 

drive signal in such a way that responses measured during the test on the simulator match 

those measured on the actual road. These compensation methods are the most common 

and are referred to as input correction methods. These can be divided into two major 

groups. The most common ones are referred to here as “response replication” methods to 

reflect the basic principles of the approach and are discussed in Subsection 2.1.2.1. The 

other group use compensation filters and are discussed in Subsection 2.1.2.2. 

Output correction methods, which post-process the on-road-simulator responses 

obtained by using profilometer measured road profile inputs, have also been 

recommended [13, 14]. Typically, the on road simulator responses are multiplied by the 
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inverse of a linear transfer function model of the road simulator to remove effects of the 

road simulator dynamics. However, the effectiveness of the approach depends to a great 

extent on the degree of linearity of the vehicle and road simulator coupled system. 

Moreover, output correction methods do not address the actual inputs that the test vehicle 

is exposed to and as such have limited application when the actual on-the-road inputs and 

corresponding responses need to be replicated. These methods will not be discussed any 

further in this thesis. 

2.1.2.1 Input Correction by Response Replication 

One of the earliest versions of the input correction methods is the one suggested 

by Cripe [7] in 1972. He used an electrical analog circuit model of the vehicle’s tire to 

derive an “effective road profile” for use as drive signals. The approach involved taking 

measurements of spindle responses and inverting the tire model to derive the inputs that 

would approximately generate the measured spindle responses. Using the method, he 

investigated the enveloping effect of the rolling tire that is absent on the road simulator 

and thus would negatively affect the performance of the simulator. He noted that the non-

rolling tire for use on the simulator has higher radial stiffness and damping coefficient 

than the rolling tire for the same inflation pressure and preload.  

Today, Cripe’s idea of inverting a model is a subset of more rigorous methods 

that aim at replicating on-the-road vehicle responses such as stresses and accelerations 

measured at specific locations on the vehicle and not necessarily at the spindles [15]. The 

philosophy behind this group of methods is that when the measured responses are 

replicated with acceptable fidelity on the road simulator, the road is considered to have 

been simulated satisfactorily [3, 4, 6, 9, 16-18]. In these response replication methods of 

input correction, the vehicle and the simulator hardware, including the PID controllers are 

treated as a black-box with the drive signals as inputs (X) and some remote response 

parameters as outputs (Y). One leg of such a set up is shown in Fig 2.2. The test process 

involves some distinct steps as outlined in the following paragraphs. 
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In a first step, the responses to be replicated are measured on a desired road 

section or test track. These could then be digitally edited to remove non-significant 

content. Suppose these are designated Yd for desired output. In a second step, the test 

vehicle is mounted on the road simulator and experimental model identification is 

performed on the system. The popular approach for doing this is frequency domain 

system identification in which a Frequency Response Function (FRF) of the system (H) is 

determined with white noise broad band signals as inputs and measuring the responses of 

the vehicles, Y, using the same set of transducers as those used to obtain Yd. Given the 

input auto spectral density (GXX) and input-output cross spectral density (GXY), the 

system FRF model is given by  

The computation of the spectral densities uses the Fast Fourier Transform (FFT). 

In a third step, Eq. 2.1 is rearranged and used to derive the inputs X from the known 

outputs Yd. Since FRFs are linear estimates of the system model and since the test system 

-
+

PID Controller

position LVDT

Actuator
drive signal

input {X}

Responses or
outputs { Y}

 
Figure 2.2: Schematic of test setup for Response Replication approach to road simulation 
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invariably contains nonlinearities, the inputs obtained as a result of using Eq. 2.1 are, at 

best, estimates. Therefore, in a fourth step, iterations are performed to improve on the 

drive signals thus obtained. These iterations are generally done offline.  

De Pont [3] tried a numerical setup where the inverse FRF is corrected at each 

step of the iteration by assuming the FRF to be a piecewise linear function of the drive 

signal. But he also found that this approach suffers numerical difficulties during the 

computation of the inverse FRF matrices as successive sets of excitations (drive signals) 

tend to be dependent as the solution is approached, at least for his particular test setup. 

The practically popular approach for this offline iterative scheme is to compute the 

inverse FRF only once at the beginning, as described above, and compute corrections to 

the drive signals iteratively from the errors in the responses [3, 16, 18]. This process, also 

called iterative de-convolution by Soderling et al. [6] and time waveform replication 

(TWR) by De Cuyper et al. [18], is summarized as follows: 

where, i is an iteration count and α is an iteration gain constant used to control the 

stability of the iterations and help prevent overdriving the system. For highly linear 

systems α1 approaches 1 and fewer iterations are required. For highly nonlinear systems, 

the iteration gain approaches 0 [6, 17, 18]. The final drive signal is the one with 

acceptable response matching and it is typically used for subsequent durability testing. 

De Cuper, et al. [18] provided a theoretical justification for the offline iterative 

response replication approach by investigating its convergence properties. They also 

showed that the introduction of a real time controller within the iterative loop (at each 

iteration step) helps reduce the number of iterations, and they go on designing an H∞ 

controller that does this while keeping the PID as an inner loop. 

Conventional test setups involve square models where the number of control input 

channels and response transducers used are equal and the system FRFs are represented by 
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square matrices. In some cases, non-square models, which use more response transducers 

than available control channels, can give improved accuracy of response matching by 

including more information in the simulation that adds to the test fidelity. However, 

unlike direct conventional matrix inversion for square models, the most direct numerical 

methods for non-square simulation involve the computation of a pseudo-inverse of the 

system model, since the system now becomes numerically over-conditioned. The pseudo-

inverse approach results in drive signals that minimize error across all response channels 

in the least squares sense. The success of the non-square models depends, therefore, on 

the quality of response data across all response channels. By using a mix of spindle 

accelerometers and wheel to body displacement transducers, Fash et al. [16], showed that 

the improvement in accuracy using non-square test set-up strongly depends on the 

dynamic frequency range characteristics of the transducers used. Displacement 

transducers typically show better fidelity at low frequency and accelerometers are 

typically more sensitive at high frequency. The non-square model employing this mix of 

transducers showed improved broadband performance in replicating both responses 

(acceleration and displacement) over square models employing only one type of 

transducers (acceleration only or displacement only). 

Raath [17] replaced the FRF system model identification step of the response 

replication effort by parametric dynamic system identification of a state space time 

domain ARX (autoregressive with exogenous input) model. The rest of the steps involved 

are detailed by Eksteen and Raath [19] and are similar to the steps summarized above. It 

is claimed in [19] that this time domain approach needs less data for system identification 

and leads to faster convergence of iterations to the final drive signals. Another advantage 

is the elimination of the need for FFT analysis, which also alleviates difficulties of 

simulating low frequency and high amplitude loading. These include the simulation of a 

vehicle traveling on long wavelength off-road tracks and of impact loading like that of 

aircraft take-off and landing cycles with magnified mean load changes [19]. 

The response replication methods reviewed above also are included in 

commercial versions. Remote Parameter Control (RPC®) from MTS Corporation and 

Time Waveform Replication (TWRTM) from LMS International use the frequency 
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domain approach [15, 18, 20]. QanTiMTM from Kelsey Instruments Ltd. uses the time 

domain approach [6, 19]. 

2.1.2.2 Input Correction with Compensation Filters 

Other basic input correction methods exploit the fact that for a linear system, the 

product of a transfer function and its inverse is unity. This implies that if the response to 

be replicated (desired response) is filtered with a ‘compensation filter’ having a transfer 

function given by the inverse of the test system (actuators and test vehicle), then the on-

simulator response can be expected to match the desired response. Wang [13] and Brauer 

[21] used additional low pass filters on the compensation filter to keep the inverse 

transfer function proper and maintain causality. Brauer [21] also formulated Artificial 

Neural Networks (ANN) as inverse models of the system dynamics for use as 

compensation filters for input correction.  

In Soderling et al. [6], an adaptive inverse control (AIC) method is described in 

which an inverse FRF model identifier continuously updates the compensation filter 

characteristics online. The desired response parameter could be a road profile, in which 

case, the output of the PID control loop is the measured piston position response. 

Alternatively, a mixed mode or cascade setup could be used, where the inverse identifier 

(and the compensation filter) could act on some remote parameter like spindle 

acceleration as the desired response, with the PID loop still acting on the piston position.  

Online iteration (OLI) is a method intended to complement the basic AIC 

described above by providing a way of iteratively compensating for nonlinearities [6]. 

This is done by combining the basic AIC with the scheme of iterative response 

replication reviewed in the previous subsection. The scheme is shown in Fig 2.3. In the 

figure, x(t) is the drive signal, y(t) is a response signal, yd(t) is the desired field measured 

response and i is an iteration count. Each time a drive data point is executed for iteration 

i, a corresponding input of the next iteration, i+1, is also computed in real time. This 

online iteration scheme works faster than the pure (offline) iterative response replication 

methods since it does not need a separate model identification step. 
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In the preceding subsections, a detailed review of the available and practical 

methods for obtaining an acceptable road simulator performance was presented. It was 

observed that all of the methods use an ‘outside’ the loop strategy to compensate for the 

dynamics of the electrohydraulic test system. Most successful applications use iterative 

schemes to deal with system nonlinearities. The ‘inside’ loop is almost entirely a PID 

(+Δp) controller. 

In the following section, ‘inside’ the loop compensation techniques that deal 

directly with the control of electrohydraulic hardware are reviewed. It is the focus of this 

thesis to seek such solutions that would reduce or possibly eliminate the iterations 

required by the ‘outside’ the loop techniques. 

2.2  Control of Electrohydraulic Systems 

As mentioned in the Chapter 1, electrohydraulic systems (EHS) have a wide range 

of applications. They owe this to their high power density, their ability to apply large 
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Figure 2.3: Schematic of online iteration method 
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forces without an intermediate transmission, their high stiffness, and their inherent self 

cooling and lubrication for extended periods of time. However, unlike their rival electric 

motors, electrohydraulic actuators exhibit significant nonlinearities and hence pose a 

relative difficulty of control.  

The advent of the electrohydraulic servovalve since the 1940’s (and recently, of 

the electrohydraulic proportional valve), and  subsequent advances in linear control 

implementations tailored for EHS have helped overcome most of the difficulty [22]. 

Today, most high flow servovalves include on-board feedback control electronics [23], 

and off-the-shelf PID control modules are readily available for most EHS [24]. 

Even though linear control solutions seem to be generally adequate for most 

applications, more demanding performance specifications can be met only by controllers 

that take into account the inherent nonlinearities in the dynamics of the EHS. These 

nonlinearities include: the pressure/flow gain characteristics of the servovalve, the 

dependence of system compliance on the fluctuating entrapped fluid volume, Coulomb 

and static friction in the actuator cylinders, flow forces affecting valve spool position, 

magnetic hysteresis in the valve torque motor, dead band and saturation [25, 26]. Other 

nonlinearities are associated with the driven load and may include nonlinear load 

dynamics, nonlinear friction, inertial coupling, centrifugal and Coriolis forces on a multi-

degree of freedom load [27]. 

To design controllers that take into account at least the dominant nonlinearities, it 

is customary to linearize a nonlinear model of the system dynamics about a desired 

operating point (Jacobian linearization) and obtain a linear model that is valid locally. 

Then, for robustness, it is attempted to approximate as much of the nonlinearities as 

possible as parametric uncertainties and design a robust controller for the worst case 

linear plant model. This usually leads to conservative loop gains. Robust control design 

techniques such as μ-synthesis and H∞ design are readily available for systematically 

handling such problems. In most cases, this results in a controller that trades off low 

frequency performance for high frequency robustness and vice versa [28, 29]. 

The alternative approach to deal with the nonlinearities is to employ nonlinear 

controller design techniques. These include feedback linearization, adaptive control and 
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variable structure control. Combinations of these methods have also been suggested. The 

following subsections review the applications of some of these techniques to EHS. 

2.2.1  Controllers Based on Feedback Linearization 

The theory of feedback linearization is detailed in the texts by Khalil [30] and 

Slotine and Li [31]. The central idea is to use a detailed nonlinear state space model of 

the system and choose the control input in such a way that the nonlinearities are cancelled 

globally, covering the whole region of the operating state space. This results in a linear 

closed loop system. As will be shown later, the dominant nonlinearities in an EHS can be 

modeled such that feedback linearization of the system model is possible. Of particular 

interest is Input-Output (IO) linearization, where only partial feedback linearization is 

achieved by linearizing the input-output relationship of the system [31]. 

Axleson and Kumar [32] derived a feedback linearizing flow control law 

considering only the nonlinearity in the valve flow rate vs. pressure relationship. With 

their limited model they noted the mathematical complexity of the exact feedback 

linearizing input which required higher order derivatives of differential pressure and flow 

variables as the order of the actuator model increased. However, they did not present 

results regarding the performance of their controller. 

Vossoughi and Donath [27] presented an application of feedback linearization to 

the velocity control of an asymmetric electrohydraulic rectilinear actuator for a robot 

arm. They noted that the feedback linearizing controller derived from their model ensured 

exact linearization only with exact estimates of the model parameters and exact 

measurements of the state variables. Notable in Vissoughi and Donath’s paper is their 

attempt to consider uncertainty error bounds on the parameters and the measurements of 

the (feedback) linearized model and pose the problem as a parametrically uncertain linear 

dynamic system and suitable for a subsequent design of a robust controller via μ-

synthesis and H∞ based approaches. They presented only results from performance 

comparisons of the closed loop system with the nominal feedback linearizing controller 
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versus the open loop system instead of comparisons with a conventional controller such 

as a PID loop.  

Hahn et al. [33] presented computer simulation results showing the promise of a 

controller derived from an input-output (IO) linearization of the EHS model, with the 

controlled output being the piston position. By defining a multi-sensor linear controller 

for comparison, they were able to show that the nonlinear controller from IO linearization 

performed better in the presence of servovalve dynamics and Coulomb friction in the 

plant model, which were originally ignored in the plant model used for linearization. In 

addition, the IO linearizing controller showed better robustness in the presence of 

uncertainties in the estimated values of the fluid bulk modulus, the piston mass, and 

Coulomb friction. However, they did not present experimental verifications of their 

observation.  

Sohl and Bobrow [34] derived a feedback linearizing controller for pressure force 

control from a Lyapunov-like analysis. They also synthesized a position tracking 

controller by defining a desired pressure force trajectory from feedback of position and 

velocity and feed forward of an estimate of friction. A comparison of the performance of 

their proposed controller with a P and PD controller showed that their proposed controller 

performed better, with as much as a 35% reduction in settling time and a 100% reduction 

in a full-stroke path tracking error. Their loading model was limited to a simple piston 

mass with friction.  

It is recognized that the success of a feedback linearizing controller depends on 

the plant model structure. Del Re and Isidori [35] took a closer look at this issue for a 

hydraulic system in which the actuator piston controls the swash-plate angle of an 

electrically driven hydraulic pump which in turn drives a hydraulic motor connected to a 

load. Evenif their plant setup was different from the ones addressed in this work, their use 

of a bilinear approximation of the otherwise nonlinear square root valve flow rate vs. 

pressure drop relation for subsequent feedback linearization is noteworthy. They also 

used a linear state observer in the feedback linearizing law despite the fact that the 

resulting closed loop system employing estimated states was no longer linear. Using 

experiments and simulations, they showed that their feedback linearizing controller based 
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on the bilinear approximation performed better than a controller based on a purely linear 

model approximation and exhibited a better potential for optimality in terms of reduction 

of rise time and overshoot.  

The success of the works reviewed above, especially those of Hahn, et al. [33] 

and Sohl and Bobrow [34], are part of the motivation for the decision to further study 

feedback linearizing controllers in this thesis. In Chapter 4, aspects of Hahn, et al.’s work 

shall be extended to the force control case with relevant experiments. In addition, it shall 

be shown in Chapter 4 that Sohl and Bobrow’s controllers can be re-formulated to reveal 

an interesting relationship between IO linearization for force and position control. 

For most of the works on feedback linearizing controllers reviewed in this 

subsection, the valve coefficients, leakage coefficients, the fluid bulk modulus, friction 

and supply pressure at the servovalve are some of the uncertain controller parameters. 

These parameters could also be time varying with temperature changes and wear. The 

next two subsections review the methods suggested in the literature to enhance controller 

performance in the presence of parameter/model uncertainty. 

2.2.2  Adaptive Controllers 

According to Kristić et al. [36], handling parameter uncertainty associated with 

differential-geometric approaches to nonlinear control (to which feedback linearization 

belongs) was the motivation for the development of the first series of adaptive nonlinear 

control schemes. The use of adaptive controllers to handle parameter uncertainty and 

robustness in the control of linear plants, however, has been well established. 

Most of the work on the application of adaptive control to electrohydraulic 

systems (EHS) directly used or implicitly assumed (on-line identified) a locally linearized 

plant model. Hori et al. [37] tested a model reference adaptive controller (MRAC) 

assuming a simple integrator model for an EHS with position output. MRAC has also 

been implemented by Yun and Cho [38] using a simple model that neglects the fluid 

compressibility (pressure dynamics). Ziaei and Sepheri [39] developed a MRAC with 

emphasis on dead-band and nonlinear orifice openings which dominate proportional 
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valve performance near null. They chose a simple model in which static (memory-less) 

nonlinearity was cascaded with a third order linear discrete time dynamic model. 

Plummer and Vaughan [40] proposed a self-tuning indirect adaptive scheme 

following offline identification tests to choose the linear model structure from 

comparisons of the prediction error obtained from different models. Then, they coupled a 

pole placement controller with a least squares on-line estimator. In Bobrow and Lum 

[41], a more comprehensive nonlinear model was used to suggest the structure of the 

linear state space model for subsequent online identification of the model parameters via 

a least squares estimator with data forgetting. They took advantage of the knowledge of 

the model structure to reduce the control law design to a sum of a feed forward term, that 

effectively inverted the online identified dynamics, and a feedback regulator term, for 

which LQR solutions were employed. 

While the results from these and other applications of adaptive control to linear 

EHS models, or identifications thereof, are quite insightful and encouraging, they still 

suffered the limitations of local validity. Also, convergence of the adaptation schemes is 

generally dependent on the richness or persistence of excitation for the system. 

For a class of nonlinear systems whose models take what is known as a Strict 

Feedback Form, recursive Lyapunov controller and adaptation law design methods such 

as backstepping have been developed and are well documented [30, 36]. An application 

of backstepping control design schemes for a force/pressure tracking control of an EHS 

has been by presented by Alleyne and Liu [42]. Their model of the EHS considered the 

orifice flow and Stribeck-Coulomb friction nonlinearity, but not the nonlinear 

compliance. A first-order valve dynamics model cascaded with the model of the pressure 

dynamics was easily structured as a Strict Feedback Form system. The choice of a 

Lyapunov function based on tracking errors and a parameter estimation error led to a 

controller and a gradient parameter adaptation law, which were then successively 

simplified by dropping non-dominant terms and ignoring the valve dynamics. 

Experimental force tracking results presented were quite noisy.  

In Sirouspour and Salcudean [43], backstepping was used to design a position 

tracking controller for a three-way proportional valve coupled to an asymmetric (single 
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acting) actuator. Their plant model used a second-order valve dynamics including spool 

underlap in the orifice flow model and the nonlinear compliance. Parameter adaptation 

laws were also derived using Lyapunov analysis. Simulation results showed good 

improvements over a PD controller optimized to minimize position tracking errors. But it 

was reported that in experiments the adaptive nonlinear controller did not show 

significant improvement over a non-adaptive nonlinear controller (from backstepping) 

employing only off-line determined parameters.  

The work in this thesis does not consider adaptive controllers, but instead uses 

offline identification of model parameters from grey box identification techniques 

described in Appendix B. For robustness to parametric uncertainty, a sliding mode 

controller is considered because of its closeness in structure to the IO linearizing 

controllers. Sliding mode control is the topic reviewed in the following subsection.  

2.2.3  Variable Structure Control 

An alternative solution to handling structured (parametric) uncertainty and 

unstructured uncertainty (unmodeled dynamics) in the control of nonlinear plants is 

variable structure control (VSC), specifically sliding mode control. It is closely related to 

feedback linearization. Typically, sliding mode control design involves: 

• the choice of a switching function S(x,t) that gives a sliding mode (or switching 

surface S(t)=0) with a fast and stable dynamics (for example, tracking error dynamics 

in a tracking application) that behaves as desired, and 

• the design of the reaching phase, i.e., the choice of a controller that guarantees that 

the sliding surface is reached in finite time in the presence of model uncertainty 

Traditional versions of sliding mode control use relay control represented by the signum 

function (sgn(S)), which generally introduces chattering as the control is switched across 

the sliding surface with finite speed. Control chattering is undesirable as it may excite 

unmodeled high frequency dynamics. To reduce chattering, boundary layers are 

introduced around the sliding surface, but robustness is traded off for reduction of 
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chattering. Details of the VSC theory and its enhancements are described in the 

monogram by Utkin [44], the text by Slotine and Li [31], and in the survey paper by 

Hung et al. [45], among others [44-48]. 

Many researchers have proposed different versions of VSC or sliding mode 

control to electrohydraulic systems (EHS). Early VSC applications to EHS focused on 

locally linearized models [49]. But later work emphasized nonlinear models with fixed 

boundary layers and switching gains [50, 51]. Hwang [46] proposed a VSC with time 

varying boundary layer and switching gain, and a sliding surface defined as a first order 

dynamics of a weighed sum of position tracking error, its integral and the integral of 

differential pressure (force) tracking error. The desired force trajectory is obtained as a 

second order filtered output of a desired position trajectory with bounded constant 

friction entering as a disturbance. Computer simulation results demonstrated attenuation 

of control chattering while achieving satisfactory simultaneous position and force 

tracking. Nguyen et al. [52] implemented a VSC for a force tracking problem by defining 

S= F-Fd , where the desired force trajectory(Fd) is obtained in the same way as in Hwang 

[46], but they employed a discontinuous friction observer from extensions of variable 

structure theory. They used a fixed switching gain and replaced tanh(S) for sgn(S) to 

reduce chattering. Experimental results demonstrated that position tracking errors 

increased by a factor of about 10 when friction compensation was removed from the 

control. 

Sliding mode control has also been considered for position control of EHS with a 

flexible mechanical load, which is the case of interest in this work. Fung and Yang [50] 

included a nonlinear spring load on the linear EHS model. Liu and Handroos [51] 

presented a VSC method where the sliding surface is defined as a first order dynamics of 

the weighted tracking errors of all five states (piston position and velocity, load position 

and velocity, and differential pressure) in the model. Desired trajectories for the states 

other than the piston position were obtained using reference filter models with the desired 

position trajectory as input. Experimental and simulation results suggested strong 

robustness against structural (load) uncertainty. 
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Alleyne and Hedrick [53] proposed a two sliding surface approach for a force 

tracking application of VSC on an active vehicle suspension employing an EHS. The 

control input ensures tracking of the spool valve displacement on the second sliding 

surface, while the first surface provides the desired trajectory for the spool position from 

the desired force tracking error dynamics. This cascaded approach is similar to 

backstepping. The proposal also included adaptive parameter identification for the VSC.  

From this review of literature, it appears that sliding mode control (VSC) 

solutions have good potential for control of EHS, particularly because of their close 

relationship with feedback linearization. In this thesis, sliding mode controller are 

considered as robust versions of the IO linearizing controllers. 

2.3  Interaction in Multi-Actuator Systems 

As already stated in Chapter 1, road simulation systems are inherently multi-

actuator systems, and the test vehicles are dynamic structures which exhibit varying 

degrees of cross-coupling between actuation locations. Traditional road simulation test 

setups use decentralized servo (PID) control loops as ‘inner-loops’ that attempt to drive 

each actuator separately, as shown in the schematics in Figs 2.1 and 2.2. However, all 

multi-channel (actuator) systems are known to exhibit interaction due to dynamic load 

cross-coupling, which, even if linear by itself, can become nonlinear when combined 

with the nonlinear actuator dynamics.  

The practical testing methods reviewed previously deal with cross-coupling 

effects only implicitly. The solution is included in the input-output ‘black-box’ approach 

together with successive iterations on the Multiple Input Multiple Output (MIMO) matrix 

setup. In this manner, the methods need not make explicit distinction between linear and 

nonlinear cross-coupling.  

In this thesis, it is sought to enhance the “inner”-loop decentralized controllers. 

For the purpose of quantifying the effectiveness of the decentralized controllers, we 

define certain interaction/cross-coupling measures. This section reviews literature on the 

subject of interaction in multi-actuator systems. 
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Witcher and McAvoy [54] analyzed the issue of quantifying the amount of 

interaction which exists in a multivariable process control system. They extended the 

relative gain array (RGA), which was initially defined for steady state processes by 

Bristol [55], to include dynamic interaction measurement via MIMO transfer matrices for 

the process. They also outlined a time domain procedure for calculating the dynamic 

relative gain array. For a 2x2 process comprised solely of first-order dead time models 

with individual PI controllers to close each of two identical isolated (major diagonal) 

loops, Witcher and McAvoy [54] illustrated that the interaction, which is frequency 

dependent, deteriorates the respective behavior of the individual loops to the point of 

instability unless the PI loops are separately tuned taking the interaction into account. 

Their analysis, even if presented from a process control perspective, highlighted the 

effect of interaction on the decentralized control loops to a coupled process. 

An investigation of interaction in multi-actuator EHSs was done by 

Ramachandran and Dransfield [56]. They looked into the analysis of the origins and 

behavior of actuator interaction experienced by one actuator due to other actuators when 

all were operating on a cantilever beam load under decentralized force tracking control. A 

proportional controller was used. By varying the location of the actuators individually 

along the beam during their experiments and simulations, they showed that interaction 

effects changed the effective damping at one actuator when the relative location of the 

others changed. They noted that interaction effects are felt more at the actuator connected 

to the stiffer point for any location combination. In particular, in a two actuator case, 

interaction increased the tendency of the actuator connected at the stiffer point to be 

oscillatory, as the other actuator was brought progressively closer to it from its less stiff 

side. These conclusions were also verified by quantitatively computing a time domain 

interaction index similar to that of Witcher and McAvoy [54]. The paper by 

Ramchandran and Dransfield [56], while quite insightful regarding multi-actuator EHS 

interaction, did not offer control solutions for compensating actuator interaction effects. 

Pannala et al. [57] also addressed actuator interaction for a similar two-actuator 

force control setup as above. They employed graphical multivariable frequency response 

techniques based on the direct Nyquist array to iteratively design PID controllers for each 
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loop of their centralized or MIMO setup. Their final optimum design retained only P 

terms in each loop. Experiments showed that even these simple centralized or MIMO 

controllers reduced actuator interaction significantly. However, the graphical iterative 

method is cumbersome to apply to more than 3x3 systems. Their work exemplifies the 

fact that whenever centralized controllers are easy to design and the system can be 

considered linear, the potential performance loss (due to interaction) from using 

decentralized controllers can be avoided [58]. 

Sun and Chiu [59] presented a controller design for motion synchronization of an 

EHS with two single-acting actuators. They exploited the particular structure of the 

system model that resulted when the coupling load is an uncertain rigid mass and with 

uncertain locations for attaching the actuators to the load. Linear MIMO robust control 

design was ultimately used to reduce the position synchronization error by an order of 

magnitude from that of a simple mechanical linkage solution for synchronization, but the 

tracking error remained significant.  

In this thesis, it is proposed to control each channel independently as with the 

conventional decentralized ‘inner’ loops, however nonlinear control will be employed to 

compensate for electrohydraulic system nonlinearities. As shall be shown later, the 

nonlinear controllers employ more information (namely dynamic tire forces) that refer 

load cross-coupling to each channel of excitation. We shall quantify the interaction index 

using a dynamic time domain extension of the RGA. 
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Chapter 3 
 

Modeling and Experiments on a Single Actuator Electrohydraulic System 

In this chapter, we present a detailed model of an electrohydraulic system which 

shall be employed as an experimental test stand and validation system for the 

development of the nonlinear controllers in the next chapter. During the course of this 

research, it was found necessary to increase the level of detail in the electrohydraulic 

system model from the level traditionally considered in control oriented design and 

analysis of these systems [25, 32, 35, 37, 39, 41-43, 53, 57, 60]. In particular, detailed 

models of transmission lines and accumulators needed to be considered in order to 

satisfactorily capture the dynamic behavior of the whole system. 

We shall start by describing the layout of the test system and the basic modeling 

assumptions in Section 3.1. The detailed models of the components upstream and 

downstream of the servovalve will be discussed in Section 3.2. Modal approximation of 

the distributed dynamic models of supply and return transmission lines will be detailed in 

Subsection 3.2.1. The modal approximation of the causality case treated in Subsection 

3.2.2 has not been treated before in reviewed literature. The significance of this particular 

causality case and the resulting model order reduction shall be taken advantage of in the 

selection of the model interconnection in Subsection 3.2.4 . 

Section 3.3 presents the fundamental nonlinear model of the servo-actuator 

subsystem that forms the basis of controller design in the next chapter. A nonlinear 

actuator friction model shall also be extracted from simple closed-loop experiments. In 

Section 3.4, the model of the interconnected electrohydraulic system will be simulated 

and some open-loop and closed loop experiments will be used to validate the model 

predictions for select responses. Finally, Section 3.5 presents the chapter summary. 
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3.1 Description of the Single Actuator System 

3.1.1 Introduction 

A very common assumption in the development of models for valve-controlled 

hydraulic actuation systems is that of constant supply and return pressures at the 

servovalve [25, 32, 34, 35, 39, 41-43, 53, 57, 60]. On the other hand, a survey of research 

on fluid transmission line dynamics reveals that significant pressure dynamics are 

introduced in hydraulic systems as a result of the compressibility and inertia of the oil as 

well as the flexibility of the oil and the walls of pipelines [10, 61-64]. Transmission line 

dynamics can be significant on the supply and return lines between the hydraulic power 

unit (pump) and the servovalve as well as between the servovalve and the actuator 

manifold [10, 26]. 

Close-coupling (i.e., mounting the servovalve directly on the actuator manifold) is 

often used as a solution to the problem of minimizing the effects of transmission line 

dynamics between the servovalve and the ports of short-stroke actuators. In the case of 

long-stroke actuators, where such close-coupling may not be physically feasible, the 

effect of transmission line dynamics can be analyzed by explicitly including a 

transmission line model in the model of the servo-system, as shown by Van Schothorst 

[26]. However, in the case of the supply and return lines to the servovalve, close-coupling 

may not be a convenient solution for either short- or long-stroke actuators. This is 

because usually the Hydraulic Power Supply (HPS) unit, including the hydraulic pump, 

drive elements, heat exchangers and cooling water pumps, needs to be housed separately, 

away from the work station of the actuator or the load frame supporting the actuator. In 

such cases, supply and return lines from the HPS to the servovalve that are of significant 

length may be unavoidable. In addition, from installation considerations, these supply and 

return lines are usually flexible hoses rated for the appropriate working pressures. 

Aside form the extensive presentation by Viersma [10], not much has been 

reported on the analysis of an electrohydraulic system including supply and return 

pressure variations at the servovalve. Viersma’s analysis was done in the frequency 
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domain and the emphasis was to provide design rules for the location and sizing of the 

components of electrohydraulic systems. For time domain simulations involving 

nonlinear elements (actuator, accumulator, servovalve, etc), modal approximation of the 

frequency domain results for transmission lines provide modular and simpler alternatives 

to direct numerical solutions of the flow equations in time domain.  

In the following subsections of this chapter, modal approximation results are used 

within a model of an electrohydraulic actuation system to include and investigate supply 

and return pressure variations at the servovalve due to transmission line dynamics. 

Experimental results that validate the model are also included.  

3.1.2  Description of Test System and Basic Modeling Assumptions 

The electrohydraulic system shown schematically in Fig 3.1 was designed for 

fatigue testing applications. The servovalve is a 5 gpm (19 lpm) two-stage servovalve 

employing a torque motor driven double nozzle-flapper first stage and a main spool 

output stage. The servovalve is close-coupled with a 10 kN, 102 mm-stroke symmetric 

actuator, which is mounted on a load frame. Pressure transducers are used for sensing the 

pressures at the four ports of the servovalve. An LVDT and an accelerometer are 

mounted on the actuator piston for position and acceleration measurement, respectively. 
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Figure 3.1: Schematic of test system  



 30

Control and signal processing is done with a dSpace® 1104 single processor 

board, which includes onboard A/D and D/A converters and a slave DSP.  An amplifier 

circuit converts a 0-10 V control output from the dSpace® D/A to a high-impedance 

current input of range -50 to +50mA to the torque motor coils of the servovalve. 

The unit labeled Hydraulic Services Manifold (HSM) is connected to the 

servovalve using 3.048 m-long SAE-100R2 hoses. The Hydraulic Power Supply (HPS) 

unit, including its heat exchanger and drive units, is housed separately and is connected to 

the HSM via 3.048 m-long SAE-100R2 hoses. The HSM provides basic supply and 

return line pressure regulation via the accumulators. In addition, the HSM is equipped 

with a control manifold circuitry to permit selection of high- and low-pressure operating 

modes, low-pressure level adjustment, slow pressure turn-on and turn-off, and fast 

pressure unloading. The drain line provides a path for oil that seeps past the seals in the 

actuator and also for draining oil from the HSM pressure gage.  

During a normal fatigue testing operation, both the low-pressure and high-

pressure solenoids (designated in Fig 3.1 as LP and HP solenoids, respectively) are 

energized, the main control valve is completely wide open, and the circuitry of the HSM 

allows flow at full system pressure [65]. The HSM is therefore modeled by considering 

the lumped nonlinear resistance arising from change of flow directions, flow cross-

sections, as well as flow in the filter element. The total pressure drop between the 

pressure inlet and outlet ports of the HSM is given in manufacturer specifications. The 

available data satisfies a nonlinear expression relating flow rate to pressure drop. While 

the HSM unit is rated for a wide range of flow rate capacities, the rated flow rate through 

the servovalve is within 10% of nominal flow rate of the HSM. Hence, we use a local 

linear approximation to account for losses in the HSM as given by: 

Here, q is the flow rate, ΔpHSM is the pressure drop and RHSM is the equivalent 

hydraulic resistance of the HSM circuitry. It’s assumed that the check valve is an ideal 

one, so that its own dynamics are fast enough to be neglected and its backflow restriction 

has a large enough parallel resistance that the permitted backflow is very small. The drain 

qRp HSMHSM =Δ  (3.1)
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flow is also considered to be negligible. With these simplifications, the system reduces to 

the one shown in Fig 3.2. It should be noted that the resistances are lumped in the HSM 

excluding the gas-charged accumulators. 

One more assumption is needed to further simplify the system for analysis. 

Through extensive frequency domain analysis, Viersma [10] has shown that, provided the 

accumulator and the pressure relief valve on the Hydraulic Power Supply(HPS) unit are 

located sufficiently close to the pump outlet (within 0.3 m, as is the case here), the pump 

flow pulsation frequencies can be suppressed from the pump output pressure. Therefore, 

in the following discussion, it is assumed that the output pressure just after the 

accumulator and pressure relief valve connection points in the HPS unit can be set as a 

known pressure input to the rest of the system. In fact, this is not a very restrictive 

assumption, since the modeling approach presented here is modular and models of the 

components of the whole HPS unit can easily be incorporated if needed. 

For the simplified system, two sections of transmission hoses remain to be 

modeled. The first section is for the supply and return hoses between the HPS and the 

HSM and the second for the hoses between the HSM and the servovalve. A model 

applicable for each section is discussed next. 
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Figure 3.2: Simplified system 
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3.2 Model of Transmission Line Components 

3.2.1 Transmission Line Modeling 

To model the hydraulic hoses for the system described above, a separate literature 

survey was done. It provided rigorous results on validated solutions of the mass and 

momentum conservation equations governing flow in one-dimensional fluid transmission 

lines with a circular cross-section [10, 61-64]. Most of the available analyses have been 

done in the frequency domain, including extensive results for the lossless, the linear 

friction and the ‘exact’ dissipative models [10, 64]. For interconnected system level 

simulations and analytical studies of hydraulic systems, modular time domain solutions 

of the governing conservation equations are often desirable. For this purpose, modal 

approximation of the analytical frequency domain solutions offers an alternative 

technique to direct numerical solutions.  

In general, some assumptions are necessary for the basic results to hold. These 

assumptions include laminar flow in the lines, negligible gravitational effects, negligible 

tangential velocity, and negligible variations of pressure and density in the radial and 

tangential directions. Furthermore, constant and uniform temperature is assumed and by 

so doing heat transfer effects in the fluid line are ignored. Thereby the discussion is 

limited to the linear friction model, which does not include distributed viscosity and heat 

transfer effects [63, 66]. Corrections are applied on the linear friction model to account 

for the frequency dependence of viscosity, following the work of Yang and Tobler [66]. 

The flow lines are assumed to have rigid walls in some derivations [10, 67]. 

However, Blackburn et al.[61], and McCloy and Martin [68] arrive at the same governing 

equations as the rigid wall case (for a frictionless flow) by allowing for wall flexibility 

and defining an effective bulk modulus combining the flexibility of the wall and that of 

the oil. Their definition of effective bulk modulus is the same as that derived by Merritt 

[25], where the effective bulk modulus is viewed as a series interconnection of the 

“stiffness” of the oil, of the container wall and even of entrapped air volume in the oil. 

Following this approach, flexibility effects are considered here via the effective bulk 
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modulus, βe. The model parameters required for any section of the transmission line 

reduce to the ones shown in Fig 3.3. For the hydraulic hoses in this work, nominal values 

of the bulk modulus were taken from charts in [68]. 

Using the above assumptions for the single transmission line, the conservation 

laws can be integrated in the Laplace domain to yield a well-known distributed parameter 

model commonly expressed as a two-port matrix equation and sometimes known as the 

four-pole equations [10, 67]. The four-pole equations can take four physically realizable 

causal forms [26, 61, 63]. Two of these four forms are readily relevant to the problem at 

hand: one for the supply line hoses and another for the return line hoses. The third form 

was addressed by Van Schothorst [26] for modeling distributed pressure dynamics in 

cylinder chambers. The fourth form finds use with accumulator connection lines and is 

discussed in the next subsection and also the publication by the thesis author[69].  

The mathematical derivation of the modal approximation for the four pole 

equations for three of the four causal cases have directly or indirectly been addressed by 

other researchers, notably, Yang and Tobler [66] and Van Schothorst [26]. A derivation 

of the fourth causal case is presented in detail in Subsection 3.2.2, and also in author’s 

paper [69]. For continuity of discussion in this subsection, however, we focus on the first 

two forms for the supply and return line dynamics for which we adopt results from Ref 

[66]. 

Taking the supply line case first, we notice that in most hydraulic servo-system 

applications, a control signal modulates the servovalve consumption flow rate 

downstream of the supply line, qd(t), following the excursions of the (loaded) actuator 

piston. Then qd(t) is a preferred input to the transmission line model, and a realizable 

causality form requires that either pu(t) or qu(t) should be the other input [61]. Since we 

have already assumed the pressure just after the connection point of the pressure relief 

rh, l, Ar ,
pu

qu

pd

qd

ν, ρ, βe

 
Figure 3.3: One dimensional fluid transmission line 
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valve and first accumulator (at the HPS) to be taken as an input to the system, the desired 

causal form of the four-pole equations for the supply line is the so-called pressure-

input/pressure-output causality form [70]. It takes the form of Eq. 3.2 and can be derived 

by defining the boundary conditions for the distributed parameter model as the upstream 

pressure and flow rate (pu, qd) and the downstream pressure and flow rate (pd, qu) at the 

opposite ends of the line.  

The definitions of the propagation operator Γ(s) and the line characteristic 

impedance Zc(s) depend on the friction model chosen [26, 63]. In this work, the linear 

friction model is adopted and the approach of Yang and Tobler [66] for incorporating 

frequency-dependent damping and natural frequency modification factors into 

analytically derived modal representations of the four-pole equations is used. For this 

case, Γ(s) and Zc(s) are defined by Eqs. 3.3 an. 3.4, respectively as: 

Here, d is the line cross sectional diameter. The frequency-dependent correction factors α 

and β are obtained by comparing the modal undamped natural frequencies and damping 

coefficients of the modal approximations of the dissipative (“exact”) model, which was 

described in detail in [71], against the modal representation of the linear friction model 

[66]. Corrected kinematic viscosity (ν) values were suggested in [64]. The dimensionless 

numbers Dn and Zo are the dissipation number and the line impedance constant, 

respectively, and are given by Eqs. 3.5 and 3.6. These parameters depend on the line 

geometry via the line cross sectional diameter, d, and length, l, and the oil properties via 

the density, ρ, and kinematic viscosity,ν. 
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where c is the speed of sound in the hydraulic oil and is computed using: 

Here, the effective bulk modulus of the fluid βe takes into account the flexibility of the 

wall of the transmission line, compressibility of the fluid and also of any entrapped air.  

The three causal functions 1/coshΓ(s), Zc(s)sinhΓ(s)/coshΓ(s), and 

sinhΓ(s)/Zc(s)coshΓ(s) can be represented as infinite sums of quadratic modal transfer 

functions. The goal is to use a finite number of modes to approximate the otherwise 

infinite sum of the modal contributions for the outputs1. Of particular interest for the time 

domain description sought in this section is the state space formulation derived in [66, 

70] and given here by: 

Here, the ωci are the modal undamped natural frequencies of blocked line for the linear 

friction model and are given by: 

                                                 
1 The derivation is similar to the case treated in the following subsection, Subsection 3.2.2. The reader is 
referred to that subsection (and Appendix A) for details on the modal approximation procedure. 
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The modification factors α and β are given as functions of the dimensionless 

modal frequencies d2ωci/4ν [66]. The output is the sum of the modal contributions and is 

expressed as: 

It should be noted that the truncation to a finite number of modes introduces 

steady-state errors. Some methods have been suggested to recover the steady-state output 

based on the fact that at steady-state the original four-pole equation, Eq. 3.2, reduces to: 

Hsue and Hullender [71] discussed rescaling the truncated sum of the modal 

approximation for the dissipative model by its zero-frequency magnitude to bring about 

Eq. 3.11. Van Schothorst [26] and Hullender et al [70] described an additive approach 

where the steady-state error is eliminated by adding a corrective feed-through term on the 

output equation, Eq. 3.10. However, the transfer functions so implemented will no longer 

be strictly proper. This may entail the need for off-line algebraic manipulations when the 

transmission line is connected to static source and/or load linear resistances or other 

transmission line models with their own direct feed-through gains. The eigen values of 

the coupled system may then be altered by the steady-state correction [70]. 

Yang and Tobler [66] introduced methods that modify the input-matrix or use a 

state similarity transformation matrix to affect the steady-state correction while 

preserving the modal eigen values of the truncated model. Since comparable results were 

obtained by the use of either method, the input-matrix modification method was adopted 

for this work. Suppose matrices Ai and Bi represent, respectively, the feedback and input 

matrices in the modal equation, Eq. 3.8. Introducing the input-matrix modifier G, 
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The steady-state value of the n-mode approximation is then:  

Comparing with the desired steady-state value given by Eq. 3.11 and solving for G: 

The number of modes n to be chosen depends on the frequency range of interest for the 

application.  

Similarly, for the return line from the servovalve, we can define the flow rate at 

the servovalve end and the pressure at the downstream (toward the tank) end as inputs to 

the model of the return line based on the other four-pole equation of causality dual to 

Eq. 3.2 (see Ref[63]). Equally, we can use the observation that switching the sign 

convention of the flow direction for just the return line and using the four-pole equation 

dual to Eq. 3.2 yields the same set of four-pole equations as Eq. 3.2, provided the inputs 

to the model remain flow rate toward the servovalve end and pressure at the other end. 

This fact can easily be shown mathematically, but we omit it here for brevity and state 

that, for the return line model all of the derivations presented above for modeling the 

supply line hold. The caveat is to exercise care in using the proper signs for the input and 

output flow rates at both ends of the return line when forming interconnections with other 

system components. 

For step response simulations, it is desirable to have good estimates of the initial 

conditions of the modal states, especially when the interconnected system model contains 

nonlinearities. Usually, for a single pipeline section, the derivative of the modal output 

can be assumed to be zero just before the application of the step change in the input, and 

modal initial conditions can be computed from: 
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where the [pu(0-), qd(0-)]T are the inputs just before the step change. For an interconnected 

pipeline system, the inputs to one pipeline section may be outputs of another section, in 

which case the determination of proper initial values for the modal states of each section 

can be done by trial and error. The step disturbances can also be applied after initial 

transients have died down. In general “steady” simulations, like those involving 

sinusoidal fatigue test waveforms, the modal initial conditions of the interconnected 

system are less important. 

Note that the model described in this section requires few parameters, mainly 

those listed in Fig 3.3, to describe the dynamics of each transmission line section using 

linear state space models in the time domain. This is particularly more convenient for 

control design and analysis than finite difference-based time domain solutions, which 

generally require rigorous discretization methods. 

3.2.2 Modal Approximation for the Pressures Input-Flow Rates Output Causality 
Case 

As noted above, the four pole equations can take one of four causal forms. This 

section deals with the modal approximation for the fourth causality case with upstream 

and downstream pressures [Pd(s) Pu(s)] T as input and upstream and downstream flow 

rates [Qu(s) Qd(s)] T as output for hydraulic transmission lines for which the linear friction 

model is considered applicable (typically those with small dissipation number).  

A typical application of this fourth causality case, given by Eq. 3.16 below, is for 

modeling short connection lines to accumulators, which have been shown to be very 

important for hydraulic system dynamics by Veirsma [10]. Figure 3.4 shows the 

schematic of such a system, where a preferred integration causality assignment for the 

accumulator model (as will be detailed in Subsection 3.2.4) and the use of the first 

causality case for the sections of the main line (as already discussed in Subsection 3.2.1), 

leaves the fourth causality case for the short connection line to the accumulator. The 

double headed arrows in the figure indicate the input-output causality assigned to each 

line element. 
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The causal four-pole equation with [Pd(s) Pu(s)] T as inputs and [Qu(s) Qd(s)] T as 

outputs is given by: 

 

The expressions for the line characteristic impedance Zc(s) and the propagation 

operator Γ(s) depend on whether the basic model chosen is the lossless model, the linear 

friction model or the dissipative model [63]. The linear friction case is considered here 

since the dissipation number, Dn, computed by Eq. 3.5, is of the order of 10-3 in the 

present application and linear friction works well for such cases [63, 66]. Using the 

normalized Laplace operator css ω/= , where 2
hc rνω =  is the viscosity frequency, the 

propagation operator Γ( s ), and the line characteristic impedance Zc( s ) for the linear 

friction model are given, respectively, by: 
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As in Subsection 3.2.1, the dissipation number, Dn, and the line impedance constant, Zo, 

are given by Eqs. 3.5 and 3.6, respectively. 

The modal approximation of Eq. 3.16 is derived by representing each of the 

transcendental transfer functions in the equation as finite sum approximations of low-

order polynomial transfer functions. To this end, the following result from Oldenburger 

and Goodson [72] is used: 

where,  

The approach is to use the result in Eq. 3.19 to find the poles of the individual 

transcendental transfer functions in Eq. 3.16 and then apply partial fraction expansions to 

obtain the modal approximations. Appendix A details this derivation of the modal 

representation of the functions )(sinh)(/1 ssZc Γ  and )(sinh)(/)(cosh ssZs c ΓΓ . Using the 

results from Appendix A, the four-pole equation, Eq. 3.16, can be re-written as: 

In the causality case treated by Yang and Tobler [66] only quadratic terms appear 

in the modal representation and in the causality case treated by Van Schothorst [26] only 

an integrator and quadratic terms appear in the modal representation. However, as 

Eq. 3.21 shows, the causality case treated here contains a first-order lag term in addition 

to the quadratic modes. This will have an implication for the simplification of the final 

result as shall be shown below. 

The modal approximation is obtained by truncating the summation in Eq. 3.21 to 

a finite number of terms. Figure 3.5 shows the Bode plot for the element (1, 1) of the 

exact transfer matrix given in Eq. 3.16. The figure also includes the Bode plots for the 
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modal approximation taken from Eq. 3.21 with the first-order term only, for the 

approximation with the first-order plus one second-order term, and for the approximation 

with the first-order plus two second-order terms included in the summation. Figure 3.6 

shows the same information for element (2, 1) of the transfer matrix given in Eq. 3.16.  
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Note that the overall number of terms to be retained in the approximation depends 

on the application’s frequency regime of interest. It can be seen from Figs 3.5 and 3.6 

that for a wide range of normalized frequency (of the order of 104) the model given by 

Eq. 3.16 can be approximated by the first-order lag term (first-order filter) only. This 

observation implies that for a typical circular sectioned line with a fluid viscosity of 

44cSt and a line diameter of 3 cm, the line can be considered as a low-pass filter with a 

break frequency of about 2 Hz provided the overall frequency regime of interest for the 

application lies below 311 Hz. In this manner, the order of the system model to which the 

transmission line model belongs can be reduced significantly.  

For time domain simulations, convenient state space forms can be derived for the 

approximation. Unlike the causality case treated by Van Schothorst [26], the block 

observer/observability canonical form does not lead to a minimum order realization for 

the causality case treated here. Instead, the following minimal state space formulation is 

derived by inspection from the modal transfer functions in Eq. 3.21. 
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The input and the output vectors are, respectively: 

The coefficient matrices are given by: 

for the first-order mode (i=0) and, 

for the second-order modes (i=1,2,3,…). 

For an n-mode approximation, the state and output equations can be augmented 

diagonally as follows: 

where the augmented state vector and the coefficient matrices are given by the set of 

equations: 

The modal state vectors xi describing the second-order modes do not have a 

simple interpretation of partitioned (modal) output like the causality cases treated by 

Yang and Tobler [66] or Van Schothorst [26] since the modal output matrices, Ci, in 

Eq. 3.26 are not identity matrices. This should not cause any problems as long as the 

model is properly interfaced with connecting subsystems with the input and output 

vectors given above. It should also be noted that as long as the first-order mode is 
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included in the approximation, the steady-state value of the truncated approximation of 

Eq. 3.21 with a finite number of modes is the same as that of the exact equation, Eq. 3.21. 

Unlike the causality cases treated in [66] and [26], there is no need to apply steady-state 

corrections to the approximation to offset the error of truncation. This implies that in 

hydraulic system modeling, whenever the causality assignment of the overall system 

permits it, the causality form given by Eq. 3.21 and the modal approximation given here 

offers better handling of steady-state response.  

As mentioned above, using the first-order mode only is sufficient to approximate 

the transmission line model over a wide range of low frequencies. In addition, the state 

space description chosen above for the first-order mode has a simple interpretation: the 

state variables are the partitioned (modal) outputs. This helps retain physically 

meaningfull state variables, namely the flowrates (qu and qd), for ease of analysis. For a 

range of normalized low frequency, the inclusion of only the first-order term in the 

approximation of Eq. 3.21 leads to the following relation for the upstream and 

downstream flow rates.  

where the L and R are the lumped inertance and resistance of the line given by, 

respectively: 

Therefore, for short connection lines or when Dn<0.001 for which the linear 

friction model applies [66], the transmission line model given by Eq. 3.16 can be 

approximated by a simple series combination of the lumped hydraulic inertance and 

resistance. This result implies that any compressibility effects in the transmission line are 

neglected for the causality case given by Eq. 3.16 , when only first-order approximation 

is used. When short connecting lines to gas charged or spring-loaded hydraulic 

accumulators are modeled with this causality case, as is the application in this chapter, 
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this result supports the usual assumption that the oil side compressibility is negligible 

compared to that of the gas/spring side, as is assumed in the following subsection. 

3.2.3 Modeling Accumulators 

A hydraulic accumulator is an energy storage component in the form of two 

separable volumes with a movable piston or deformable diaphragm separating the 

hydraulic fluid from the charge gas (usually nitrogen) or even sometimes a spring. 

Figure 3.7 shows the design of a typical gas-charged (also called hydro-pneumatic) piston 

accumulator, which is the only type used in the system under consideration. It is assumed 

here that the piston mass and seal friction are negligible. With a lumped parameter 

approach, this assumption implies that the gas pressure and the oil pressure are 

considered equal. Also the compressibility of the oil in the accumulator is considered 

negligible compared to the compressibility of the gas side.  

The gas is considered to undergo a polytropic expansion and compression process 

with polytropic exponent m as given by:  

qa

filling port end cap

piston

seals

port & short
connection line

la

oil side
pa

gas side
pg, Vg

main line
 

Figure 3.7: Gas-charged piston accumulator 
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Here Vg is the gas side volume, and pg is the gas side pressure. The exponent m 

approaches 1 for a slow (nearly isothermal) process and the specific heat ratio of the gas 

for a rapid (adiabatic) process on an ideal gas. Given initial gas pressure pg0 and gas 

volume, Vg0, the gas pressure is computed from Eq. 3.33 , which is equivalent to:  

where qa is the flow rate of the hydraulic oil to the accumulator. For simulations 

involving disturbances applied at the servovalve, it is reasonable to assume that the 

accumulator already develops an initial gas pressure through a slow isothermal (m=1) 

process2. The initial gas volume Vg0 can be estimated by applying Eq. 3.33 between the 

pre-charge state (the gas pre-charge pressure at accumulator capacity) and the initial state 

at the onset of the disturbance. The initial gas pressure pg0 can be estimated as the HSM 

pressure minus the pressure drop in the connection lines.  

It should be noted that thermal losses occur in hydro-pneumatic accumulators due 

to increasing entropy (dissipative heat transfer) during both the compression and the 

expansion of the gas. These energy losses are usually depicted as hysteresis loops in the 

pressure vs. volume diagram of the gas. Starting from the lumped parameter energy 

balance for the gas (represented by a thermal time constant) and using the ideal gas 

equation of state, Pourmovahed and Otis [73] derived the following transfer function 

model for a hydro-pneumatic accumulator relating the gas pressure (pg) to the flow rate of 

the hydraulic oil into the accumulator (qa) valid for small perturbations. 

                                                 
2The present system has an additional slow turn-on/turn-off accumulator that enables the HSM to come to 
full system pressure from an off state in a slow and controlled manner. The servovalve disturbances 
considered in this study are applied after the whole system has reached normal operating conditions.  
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Here, γ is the specific heat ratio of the gas and τ is the thermal time constant. Typical 

empirically estimated values of the thermal time constant are in the order of 15 sec for a 

2.5 liter accumulator [73, 74]. Since, the present system is intended to operate faster (at 

higher frequencies than relevant for such large thermal time constants), heat transfer 

effects are considered negligible. Furthermore for the operating pressures, which are 

generally less than 21 MPa (3000psi) in the present system, the behavior of nitrogen can 

be described sufficiently accurately using the ideal gas law. The polytropic process 

assumption leading to Eq. 3.34 is considered sufficient for such cases. 

3.2.4 Transmission Line Model Interconnections 

Again the supply line (pressure line) case is considered first. The components on 

the supply line of the simplified model of Fig 3.2 can be interconnected as shown in 

Fig 3.8 or Fig 3.9. The arrows indicate the input-output causality assigned for each 

subsystem. Each of the blocks named SECTION I and SECTION II implement Eq. 3.8 

through Eq. 3.14 for the corresponding sections of the supply line.  
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Figure 3.8: Model interconnections for the supply line (Version I) 
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Integration causality is the desired form for the model of the accumulator, which 

is given by Eq. 3.34. It was pointed out by Viersma [10] that the flow dynamics in the 

short branch-away connection lines to the accumulators are significant in most cases. 

Under the linear resistance assumption given by Eq. 3.1, the subsystem “Manifold and 

check valve loss” can be configured either as a pressure-input/flow rate-output subsystem 

(in Version I, Fig 3.8 ) or as a pressure-input/pressure-output subsystem (in Version II, 

Fig 3.9). As a consequence, the model of the short accumulator connection line changes 

between Version I and Version II. The model of the short connection line in Version I has 

the same structure as the one described above for the sections of the main supply line. 

The model for the short connection line in Version II is derived using the modal 

approximation for the relevant four-pole equations with (pu, pd) as input and (qu, qd) as 

output, as described in Subsection 3.2.2 and the paper by the author [69]. It was shown 

there that the dynamics of the short connection line can be approximated by a first-order 

term that reduces to a series interconnection of hydraulic resistance and inertance. This 

result goes along with the convenient assumption that the oil side compressibility in the 

accumulator is negligible compared to that of the gas side. This result also makes 

interconnection Version II preferable to Version I, since it reduces the dynamic order of 

the overall system and verifies a physically argued model order reduction for the system. 

Manifold  and
checkvalve loss

main line
 SECTION I

main line
SECTION II

ACCUMULATOR

CONNECTION
LINE

HPS (pump) side Servovalve side

pressure
flow rate

pu

qu

ps

qs

pa qa

++

Figure 3.9: Model interconnections for the supply line (Version II) 
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The model for the return line is developed in a similar way noting the reverse 

direction of the flow, as mentioned earlier in Subsection 3.2.1. It should be noted that the 

modularity of the subsystem model interconnections allows changes to be made to the 

overall system model with ease. The paper [75] by the author shows an application of the 

interconnected system model where the supply and return line pressure fluctuations are 

investigated by changing the lengths of SECTION II of the transmission hoses. It’s 

shown there that the shorter the lengths of SECTION II of the hoses, the more effective 

the accumulators become in filtering out pressure fluctuations introduced by the lengths 

of SECTION I of the hoses. 

As an example, and for future reference, consider the case where the accumulators 

are close-coupled with the servovalve (whose detailed model is presented in the next 

section).In this case, the subsystems labeled SECTION II are removed from both the 

supply line and return line interconnection models. Figure 3.10 shows the simulated open 

loop response of the pressure at the supply and return ports of the servovalve following a 

50mA step current input (corresponding to full spool travel) to the servovalve. It can be 

seen that supply and return pressure fluctuations are eliminated in this configuration by 

the filtering action of the accumulators. The static pressure drop levels are attained after a 

short period of time. We can therefore assume that the supply and return pressures at the 

servovalve can be assigned average constant values for normal operation. 
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Figure 3.10: Supply and return pressure at the servovalve with close-coupled accumulators  
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3.3  Model for Servovalve and Actuator 

3.3.1 Basic Servo-Actuator Model 

Now that the components upstream (and downstream) of the servovalve, as well 

the possible and preferable interconnection structures have been discussed, it remains to 

investigate models of the servovalve and the actuator. Physical models of 

electrohydraulic servo-actuators are quite widely available in the literature [10, 25, 26, 

34, 60, 67, 76, 77]. The model presented here is adapted to apply to a four-way 

servovalve close-coupled with a double-ended piston actuator.  

Figure 3.11 shows a double-ended translational piston actuator with hydraulic 

flow rates qt from the top chamber and qb to the bottom chamber of the cylinder. Leakage 

flow between the two chambers is either internal (qi) or external from the top chamber 

(qe,t) and from the bottom chamber (qe,b). At and Ab represent the effective piston areas of 

the top and bottom face, respectively. Vt and Vb are the volumes of oil in the top and 

bottom chamber of the cylinder, respectively, corresponding to the center position (xp=0) 

of the piston. These volumes are also considered to include the respective volumes of oil 

in the pipelines between the close-coupled servovalve and actuator as well as the small 

volumes in the servovalve itself.  
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It is assumed that the pressure dynamics in the lines between the servovalve and 

the actuator are negligible due to the close-coupling3. Furthermore, even for a long-stroke 

actuator used in a flight simulator application, where close-coupled mounting is not 

feasible, Van Schothorst [26] has shown that the pressure dynamics in the actuator 

chambers need not be modeled using distributed parameter models. It is, therefore, 

assumed that the pressure is uniform in each cylinder chamber and is the same as the 

pressure at the respective port of the servovalve. 

Starting with the continuity equation and introducing the state equation with the 

effective oil bulk modulus for the cylinder chambers, it can be shown that the pressure 

dynamics are given by (see, for example [60]): 

                                                 
3 This is to say that any resonances introduced by the short-length lines are well above the frequency range 
of interest for the system. In fact, this can be verified using the model presented earlier and the causality 
case treated by Van Schothorst. 
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Figure 3.11:Schematic of a rectilinear actuator and servovalve 
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These equations show that the hydraulic capacitance depends on the piston 

position, and is, therefore, variable. The external leakage flows qe,b, and qe,t are 

considered negligible. The internal leakage past the piston seals is assumed here to be 

laminar with a leakage coefficient CL. 

The predominantly turbulent flows through the sharp-edged control orifices of a 

spool valve, to and from the two sides of the cylinder chambers, are modeled by 

nonlinear expressions [25, 60, 67]. Assuming positive flow directions as shown in 

Fig 3.11, these flows are given by: 

where the sg(x) function is defined by:  

The parameters u1, u2, u3, u4 are included to account for valve spool lap conditions 

as shown in Fig 3.11. Negative values represent overlap while positive values represent 

underlap. The valve coefficients Kv,i are given by: 

These coefficients could be computed from data for the discharge coefficients, 

cd,i, port widths, wi, and oil density, ρ. If we assume that all orifices are identical with the 

same coefficient Kv, then the value of Kv can also be estimated from manufacturer data 
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for the rated valve pressure drop (∆pN), rated flow (QN) and maximum valve stroke (xvmax) 

using the following equation [25, 67]: 

As an approximation of the servovalve spool dynamics, a second-order transfer 

function or equivalently a second-order state space model are extracted from 

manufacturer specifications. 

The state equations governing piston motion are derived considering the loading 

model for the actuator. For the test system, the actuator cylinder is rigidly mounted on a 

load frame as shown in Fig 3.12. The load fame can be used as an inertial frame. 

The upward force on the actuator piston due to the oil pressure in the two cylinder 

chambers is given by: 
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The friction force on the piston in the cylinder is denoted by Ff and the external 

loading including specimen stiffness and damping forces are lumped together in FL. The 

equations of motion are easily derived by applying Newton’s Second Law as follows: 

Equations 3.36, 3.37, 3.46 and 3.47, with qb and qt given by Eqs. 3.39 and 3.40, 

respectively, constitute the state space model for the servovalve and loaded actuator 

subsystem under consideration. These equations also contain the major nonlinearities in 

the system: the variable capacitance and the square root flow rate versus pressure drop 

relations. Nonlinearity is also introduced in Eq. 3.47 by the nonlinear friction force, 

which is discussed next. 

3.3.2  Friction Estimation Experiment and Modeling 

Friction affects the dynamics of the electrohydraulic servovalve as well as the 

dynamics of the actuator piston. Friction in the servovalve is generally considered to be 

predominantly of Coulomb type, acting on the spool of the valve, and can in practice be 

sufficiently eliminated by using dither signals [26]. The particular friction effect of 

interest in this section is the friction force that appears in the equations of motion of the 

actuator piston. The literature offers various empirical models applied to specific 

hydraulic actuators [34, 42, 67, 78]. In the most general case, friction in the actuator 

cylinder is considered to be a function of the position and velocity of the piston, the 

chamber pressures (the differential pressures when the piston is sticking near zero 

velocity), the local oil temperature and also running time. 

In a previous work [75], open-loop and closed-loop tests were performed to 

identify the friction force on the actuator piston by assuming it to be a function of 

velocity. The open-loop tests involved changing the set current input to the servovalve 

while measuring the steady-state cylinder chamber pressure responses as well as 
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estimates of the steady-state velocity estimated by differentiating piston position 

responses.4The friction force is then estimated from Eq. 3.47, assuming the acceleration 

and the external force to be zero. Strong scatter was observed in the friction estimated 

from such open loop tests. 

Improved and more realistic friction force estimates, including hysteresis effects, 

were obtained by performing friction estimation with closed loop position control tests 

after warm up periods to stabilize oil temperatures. The tests involved tracking a 2 Hz 35 

mm sine wave position command under P-control while measuring acceleration, piston 

position and chamber pressures. Newton’s second law (Eq. 3.47) was again used to 

estimate the friction force without having to assume zero acceleration. The velocity is 

computed by taking the finite difference derivate of the position response. Fig 3.13 shows 

the result form one such closed loop test. It shows that the hysteretic behavior of friction 

is especially strong in the upward (positive velocity) motion. It can also be observed that 

the friction force is slightly asymmetric with respect to direction of motion. 

                                                 
4 It should be recalled that the actuator approximates a velocity source in the open-loop.  
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Figure 3.13: Piston friction force 
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For simplicity, the common memory-less analytical model of friction force 

(without hysteresis) as a function of velocity, given by Eq. 3.48, is adopted. 

It is a combination of the so called Stribeck, Coulomb and Viscous terms. The 

coefficients are computed by fitting this equation to the experimental data shown in 

Fig 3.13. The observed asymmetry of the experimentally determined friction force with 

respect to the sign of the velocity is taken into account by taking different coefficients for 

the up and down motions( denoted by ± superscripts in Eq. 3.48). In Subsection 4.1.4.2, it 

will be shown that this equation can further be smoothened by using some 

approximations.  

3.4  Experimental Validation of the Overall System Model 

The models described in the previous sections were simulated in 

MATLAB/Simulink and baseline open-loop and closed-loop experiments were conducted 

to validate the overall system model. In the experiments, a simple load mass is rigidly 

attached to the piston rod, and so the external load force is set to zero. For the models of 

each of the sections of the supply and return line hoses, only six modes were retained in 

the modal approximation. This was decided considering the actuator hydraulic natural 

frequency of 172 Hz computed using formulae from linear models (see Ref [24, 25]) and 

selecting the natural frequency of the highest mode of the approximation for each section 

to be close to twice this value. From frequency response data, the natural frequency for 

the servovalve was estimated to be 140 Hz with a damping ratio of 1.1 with the pump 

supply pressure set independently at 14 MPa. 
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3.4.1 Open-Loop Responses 

Open-loop tests were conducted by step changing the current input to the 

servovalve, which otherwise is the control input in closed-loop feedback control. In these 

tests, a step change in the current input was supplied to the servovalve in the open-loop. 

Fig 3.14  shows a comparison of the supply and return pressure at the servovalve from 

measurement and simulation for a 50 mA step change in the current input. To measure 

these supply and return pressure fluctuations, pressure transducers were mounted on the 

supply and return ports of the servovalve.  

Two observations can be made from the data in Fig 3.14. First, the supply and 

return pressure fluctuations contain the fundamental periods of 25 ms and 32 ms, 

respectively. These correspond to fundamental frequencies of about 40 Hz and 31 Hz, 

respectively. The implication of these fluctuations is that the bandwidth of the actuation 

system is limited by the dynamics of the supply and return hoses, since the other dynamic 

elements including the servovalve and the actuator have higher corner frequencies. 

Second, the model follows the measurement well, particularly in frequency content. 

Remaining discrepancies are attributed to errors in the estimation of effective bulk 

moduli for the different hose sections, truncations in the modal approximation of the 

transmission line models, the estimation of manifold pressure drop coefficients as well as 

the estimated parameters in the adopted simplified model of the servo-actuator.  
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The open-loop response of the system can be investigated further by looking at 

the cylinder chamber pressures shown in Fig 3.15 for the same rated step change in the 

current input as above. It can be seen that the simulation predictions of chamber pressures 

follow the measurements and that the supply and return pressure dynamics introduced by 

the long sections of hoses are reflected in the individual cylinder chamber pressures. The 

oscillation due to the actuator and servovalve dynamics happens on a faster time scale but 

is dominated by slower line dynamics effects. In this particular test, the fast oscillation 

happens at about 150 Hz, but this frequency is subject to change with actuator position. 
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Figure 3.14: Supply and return pressures at the servovalve, model vs. experiment 
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The open-loop piston velocity responses to various magnitude step changes in the 

current input are shown in Fig 3.16. The velocity signal was obtained by low-pass 

filtering (to 400 Hz) and then differentiating the LVDT position signal. In all cases, the 

step change in current is applied by first bringing the piston to approximately xp=-30 mm 

for the positive step current changes (upward motion) and to xp=30 mm for the negative 

changes (downward motion). It can be seen that the velocity responses to higher 

magnitudes of the step current change are different from those to lower magnitudes of 

current. In particular, the responses to higher magnitude current step changes exhibit 

more damping. This demonstrates the nonlinear behavior of the servo-actuator as an 

open-loop velocity source.  

Fig 3.16 shows that the model does a good job of predicting the piston velocity 

responses for different magnitudes of the step current input. Differences are again 

attributed to uncertainties in the servo-actuator model parameters, limitation of the 

measured velocity estimation, and also errors in friction estimation, which has a 

considerable scatter as shown in Fig 3.13 . 
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Figure 3.15: Cylinder chamber pressures, model vs. experiment 
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3.4.2 Closed-Loop Responses 

Further comparisons were performed between simulations and experiments under 

closed-loop tests. Linear proportional position controllers (P-controllers) with identical 

gains were used in both the simulations and the experiments. Sampling rates were set at 

1000 Hz for the experiments. 

Fig 3.17 shows the simulated and measured position and velocity of the actuator 

when tracking a 25 mm, 1 Hz square wave reference position. The prediction matches the 

measurement very well. However, some deterioration is observed in the prediction of the 

upward motion. This can be explained by the rather large uncertainty in the friction 

model adopted for the upward motion as shown in Fig 3.13.  
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Figure 3.16: Piston velocity at various step changes in current, model vs. experiment 
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As can be seen with the lower plot in Fig 3.17, the velocity approaches zero as the 

piston reaches the commanded position. As could be expected from the velocity source 

analogy of the servo-actuator, the velocity response also roughly corresponds to the 

control current input which is shown in Fig 3.18. Recall that the current input, in turn, 

corresponds to the servovalve spool position response with the dynamics given by 

Eq. 3.44. The valve spool, therefore, returns to the null position (xv= 0) as the 

commanded piston position is approached. 
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Figure 3.17: Piston position and velocity, model vs. experiment 
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During the same closed-loop test described above, the response of the chamber 

pressures, which were expected to depend on the supply and return pressure fluctuation 

based on the previous observation of the open-loop response, shows some interesting 

features. When valve lap lengths were ignored and a critical center valve was assumed 

for the model (u1=u2=u3=u4=0 in Eqs. 3.39 and  3.40 ), the chamber pressures stay at a 

higher steady-state value after the transients die down as shown in Fig 3.19. The model 

works well in the fast time transient duration and shows that, just like in the experiment, 

the line dynamics effects reflect onto the dynamics of the chamber pressures, but it fails 

to follow the measurements at steady-state.  
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Figure 3.18: Control current input, model vs. experiment 
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The source of the discrepancy on the steady-state chamber pressures can be 

explained by referring to the statement made above that in closed-loop position control, 

the valve spool approaches its null position as the desired piston position is approached. 

In a real and worn valve, the null region is dominated by valve spool lap conditions and 

associated leakage [79, 80]. The model adopted above allows for including lap effects 

only through (u1, u2, u3, u4), while there were no direct provisions to measure the lap 

geometry of the worn valve used in the experiments. Therefore, a heuristic approach was 

used to see if, in fact, the discrepancy between model and experiments can be attributed 

to lap conditions and undue simplifications in the valve model. Figure 3.20 shows results 

obtained for one set of lap parameters where the lap values are assumed such that the 

lands on the supply port (u1, u4) are slightly overlapped (order of -10-5cm) and those on 

the return port (u2, u3) are slightly underlapped (order of 10-6cm). The remaining 

discrepancy that still exists with lap conditions included could perhaps be explained by a 

more detailed valve model, with the complete leakage geometry accounting also for the 
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Figure 3.19: Pressure responses under closed loop position control, model vs. experiment 
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contribution of radial clearance between the valve spool and its sleeve [26]. The latter 

was completely ignored in the model adopted here in order to simplify the viability of the 

model for the derivation of the nonlinear control laws detailed in the next chapter.  

It should be remarked that the measured differential or load pressure (pL=Δp=pb-

pt) is predicted well with the simulation as shown on Fig 3.19. This will allow us to 

consider a reduced order system model in terms of load pressure in Subsection 4.1.2.3. 

For a nearly symmetric servo-actuator with nearly symmetric cylinder volumes and 

nearly symmetric and matched port flows, only the differential pressure (pL) can be 

controlled by modulating flows. The mean of the chamber pressures is hardly 

controllable, as the dynamics of the individual chamber pressures are governed by nearly 

anti-symmetric equations. As a result, as one chamber pressure rises, the other can fall by 

an amount that changes the differential pressure (pL) and yet keeps the mean pressure 

constant. This can be shown by linearizing the system equations (Eqs. 3.36, 3.37, 3.46, 

and 3.47 ) around operating points [26]. 

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

11
ch

am
be

r p
re

ss
ur

es
 (M

P
a)

time(sec)

Bottom chamber (p
b
), experiment

Top chamber (p
t
), experiment

Bottom chamber (p
b
), simulation

Top chamber (p
t
), simulation

 
Figure 3.20: Chamber pressures during the upward motion, with port leakage 
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3.5 Chapter Summary 

In this chapter, dynamic models were developed for an electrohydraulic system 

that shall be used as an experimental test stand for the design and analysis of nonlinear 

controllers in the next chapter. Causality assignments were selected for the different 

component models and a system interconnection model was chosen for the test system.  

The following points summarize the main contributions of this chapter. 

• A modular time domain modeling approach, suitable for use with nonlinear actuator 

models, was developed to incorporate supply and return pressure variations at the 

servovalve of electrohydraulic systems. This approach enables the analysis of 

distributed dynamics in fluid transmission lines in the time domain via state space 

LTI (linear time-invariant) formulations that offer modular and simpler alternatives to 

finite difference-based time domain solutions of the flow equations. 

• The modal approximation adopted for the model of the main supply and return 

transmission lines fits the causality form treated by others [26, 66]. The mathematical 

derivation of the modal approximation for the fourth causality case with upstream and 

downstream pressures as input and upstream and downstream flow rates as output, 

however, was developed in this work. It applies to hydraulic transmission lines for 

which the linear friction model is good, i.e., where the line dissipation number, Dn, is 

of the order of 10-3. Both transfer function and state space forms were presented. 

• It was shown that the modal approximation for the latter causality case (treated in this 

work) offers at least two conveniences over the other forms: namely, better handing 

of steady-state response, and the possibly of model order reduction since the modal 

approximation reduces to a first-order filter comprised of a series interconnection of 

hydraulic resistance and inertance over a wide range of low frequency regimes.  

• For controller development, the complete nonlinear servo-actuator state space model 

described in Section 3.3 is highly relevant. The modeled dominant nonlinearities are 

highlighted to include: the variable hydraulic capacitance in the cylinder chambers, 

the square root flow rate versus pressure drop relations, and nonlinear friction force 

on the piston, which includes Coulomb, static and viscous components. A rather 
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extensive model-based experimental analysis of the nonlinearities in an 

electrohydraulic actuator (including those in the servovalve) has already been detailed 

by other researchers, most notably by Van Schothorst [26]. 

• The overall system model was validated with experiments. Except for the effects of 

valve leakage on the chamber pressures, the model captured measured responses well. 

It is anticipated that the model could work even better for systems with a newer and 

well adjusted servovalve with somewhat easier to estimate leakage characteristics 

than the present one (which has unknown wear levels). 

Finally, we point out that while the discussion in this chapter was focused on the 

test system under consideration, most of the results are quite typical for many 

electrohydraulic systems. 
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Chapter 4 
 

Nonlinear Control Based on Feedback Linearization 

The system model detailed in the previous chapter shall be used to derive 

nonlinear controllers in this chapter. The chapter is organized in three major sections. In 

Section 4.1, the analytical derivation of nonlinear force and position tracking controllers 

will be detailed from a feedback linearization framework. Different versions of force 

and/or piston position tracking controllers will be presented and analyzed. We will 

summarize the common characteristics of the nonlinear controllers and discuss robust 

versions that incorporate sliding mode control. In Section 4.2, the performance of the 

nonlinear controllers will be discussed at length. Extensive experimental and simulation 

results will be presented and discussed. Section 4.3 presents the summary for the chapter.  

4.1  Derivation of Nonlinear Controllers Based on Feedback Linearization 

In this section, nonlinear controllers are derived for an electrohydraulic system 

under some simplifying assumptions. First, these assumptions will be itemized in 

Subsection 4.1.1. As shall be evident from the discussion in this chapter, the nonlinear 

model-based force control problem forms a natural pre-cursor to the position control 

problem. So, we discuss the force controllers in Subsection 4.1.2, followed by the 

position controllers in Subsection 4.1.3. The nonlinear force and position controllers 

exhibit certain common characteristics that will be summarized in Subsection 4.1.4. Since 

model uncertainties are almost inevitable, it is necessary to seek robust nonlinear 

controllers. This is the topic of Subsection 4.1.5. Finally, in Subsection 4.1.6, simulations 

of the validated system model discussed in Chapter 3 will be used to investigate the effect 

of the basic assumptions made for the derivation of the nonlinear controllers. 
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4.1.1 Basic Assumptions 

For the purpose of control design, it is common practice to simplify the system 

model to allow the derivation and analysis of suitable control laws. In this section, some 

simplifications are introduced while retaining the dominant nonlinearities in the model of 

the electrohydraulic system. Recall that these nonlinearities include the square-root port 

flow rate vs. pressure drop relation, the position dependence of the hydraulic compliance 

in the cylinder chambers, and the nonlinear friction force on the piston. It will be shown, 

in this chapter that, the controllers from feedback linearization attempt to cancel these 

nonlinearities so that the closed loop system model becomes linear under some 

simplifying assumptions.  

The first set of assumptions made here for the purpose of control law derivation is 

regarding the servovalve. The servovalve is assumed to be critically centered with 

symmetric and matched orifices. That is, the underlap/overlap lengths are neglected. 

Instead, an offset value of the valve position can be estimated during calibration to take 

into account abrasion-induced null offsets [60]. Also, the valve spool dynamics are 

neglected on the basis that the natural frequency should be higher than the relevant 

bandwidth of the position and/or force control system. This implies that the valve spool 

position is assumed to be related to the servovalve current with a static gain as given by: 

where, voffvv iii −=  and voffvv xxx −= , with ivoff and xvoff representing the current 

offset and valve spool position offset, respectively. Under these assumptions, either the 

servovalve current or the valve spool position can be considered as the control variable 

for analysis. Since the valve spool position is not measurable for the test system under 

consideration, and also for the convenience of working with the actual physical control 

input, only the servovalve current is used as the control variable in this work. The flow 

rates to and from the cylinder chambers are then rewritten as: 

vvv xGi =  (4.1)
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where sgn(x) is the signum (sign(x)) function, and the new valve coefficients Cv,i 

referenced to the current are given by: 

The form of the flow rate equations given by Eqs. 4.2 and 4.3 make it possible to estimate 

the actual valve coefficients from experimental data, as described in Appendix B. 

The second set of assumptions, made here for the purpose of control law 

derivation, regards the transmission lines upstream and downstream of the servovalve. It 

is assumed the supply and return line pressure fluctuations are minimal and that the two 

pressures can be considered constant at the servovalve. In practice, this is approached by 

close-coupling the supply and return accumulators with the servovalve. 

The third assumption is more of a requirement for the application of the particular 

control laws discussed in this work. We assume that, in all cases, the desired trajectory or 

profile for the output to be tracked (position, pressure or force) is bounded and 

differentiable, with bounded derivatives to the relevant order. The order is usually evident 

with the particular tracking problem. 

The fourth assumption regards whether or not the electrohydraulic system model 

can be considered truly feedback linearizable. Feedback linearization can be applied 

directly to a class of nonlinear systems called affine input systems, where the control 

input appears explicitly and linearly in the state equations. A formal theory of feedback 

linearization is detailed in the texts by Slotine and Li [31] and Khalil [30]. For some 

systems, exact (full state or input-state) linearization may not be feasible. However, based 

on the output definition chosen or called for by the physical application, input-output 

linearization (which is partial feedback linearization) can be performed.  

In the strict sense, as will be detailed in the following subsections, the nonlinear 

electrohydraulic system model is not an affine input system. However, the system model 

RbRbvvbSbSvvb ppppisgCppppisgCq −−−−−−= )sgn()()sgn()( 2,1,  (4.2)

tStSvvRtRtvvt ppppisgCppppisgCq −−−−−−= )sgn()()sgn()( 4,3,  (4.3)

4,3,2,1)( ,, == iKGC ivviv  (4.4)
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lends itself to piecewise input-output (IO) linearization that comes very close to a true 

feedback linearization and is shown to work satisfactorily well under a simple practical 

consideration. It is assumed that for the systems under study, the control current does not 

change signs infinitely fast or at least no faster than the base sample rate of the digital 

implementation. In this thesis, the controllers relying on this assumption are referred to as 

Near Input-Output (or Near IO) linearizing controllers. 

4.1.2  Force Tracking Control 

4.1.2.1 Pressure Force Tracking Control 

Taking the derivative of the pressure force defined by Eq 3.45 and using Eqs 3.36 

and 3.37 it can be shown that: 

where the external leakages, qb,e and qt,e, are neglected assuming a well sealed actuator. 

Using Eqs. 4.2 and 4.3 for qb and qt respectively, and regrouping variables, 

Eq. 4.5 can be rewritten as follows: 

where the nonlinear functions fF and gF are, respectively: 
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Equation 4.6 with fF and gF defined, respectively, by Eqs. 4.7 and 4.8, contains all 

the major modeled nonlinearities in the hydraulic system that arise from fluid compliance 

and turbulent orifice flow. Also, the derivative of the output pressure force Fp can be seen 

to be only piecewise linear in the control input ( vi ). This suggests that an input-output 

(IO) linearization with a relative degree of one can be performed in the respective 

domains ( 0≥vi  and 0<vi ) [30, 31]. In particular, we can cancel the nonlinearities in the 

pressure force dynamics (Eq. 4.6) by choosing the piecewise IO linearizing control input:  

where v is a new (transformed) control input. The pressure force dynamics (Eq. 4.6) 

reduce to: 

This is a simple linear integrator which can easily be stabilized by state feedback. 

Exponentially convergent tracking of a desired differentiable pressure force profile (Fp,d) 

can be achieved by choosing v as: 

The force tracking error dynamics is given by:  

where eF is the force tracking error, eF=Fp-Fp,d.  
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In summary, the control input of Eq. 4.9 with v given by Eq. 4.11 and a proper 

choice of ko>0 can give a desired degree of exponential force tracking performance 

regardless of the nonlinearities in Eq. 4.6 provided the internal dynamics are stable. In 

terms of the force tracking error, the control current is given by: 

It is important to note that Eq. 4.9 (or equivalently Eq. 4.13) cannot be solved “as 

is”, since it contains the control variable, vi , on both sides of an equation involving the 

sgn function. A practical solution to this problem becomes evident when considering the 

digital implementation of the piecewise IO linearizing controller. The sign of the value of 

vi  at the previous time step can be used to compute the value of vi  at the current time 

step, if it can be supposed that the current does not change signs at a rate faster than the 

control sampling rate. It is difficult to prove that this approach does not lead to control 

chatter, even though this problem has been not reported previously in the literature that 

discusses IO linearization for hydraulic drives [27, 33, 35]. In addition, chattering 

problems traceable to this assumption have not been experienced during any of the 

experiments conducted for this thesis. Another solution is to use approximations of the 

sgn(x) function, like the one given by Eq. 4.47 in Subsection 4.1.4.2, so that Eq. 4.13 can 

be solved (fast enough) in the real time implementation. This is possible with the load 

pressure description of gF given in Subsection 4.1.3.2. We chose the former approach of 

relying on a fast sampling rate for its simplicity. 

The above assumption that the sign of the value of vi  at the previous time step 

can be used to compute the value of vi  at the current time step is needed in order to be 

able to solve Eq. 4.13. It is conjectured that this approach gives an IO linearizing 

controller that comes very close to a true IO linearizing controller if there were one. To 

make the explicit distinction between a true IO linearizing controller and the one obtained 

under the above assumption, the term Near IO linearizing controller is suggested and 

used in this work. 
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Note that the piecewise IO linearization resulted in a system of relative degree 

one in each domain ( 0≥vi  and 0<vi ). That is, only one differentiation of the output was 

needed before the input appeared. The external dynamics are given by Eq. 4.10. It 

remains to evaluate the stability of the internal dynamics of degree 3, which involves 

system states that are rendered “unobservable” during the feedback linearization. An 

investigation of the stability of the internal dynamics is better handled using the concept 

of load pressure to be introduced in Subsection 4.1.2.3. The stability analysis is included 

in Appendix C.  

Figure 4.1 shows the schematic for the implementation of the Near IO linearizing 

pressure force tracking controller. Note that this implementation assumes that the two 

chamber pressures as well as the position and velocity of the piston are available by 

measurement. Note also that the pressure force control loop does not explicitly depend on 

the load force (FL) or on the friction force (Ff) on the piston. Implicitly, however, these 

forces determine the position and velocity of the piston (or its internal dynamics as shown 

in Appendix C).  

An important consequence of the nonlinearity cancellation with the Near IO 

linearizing pressure force tracking controller is that a decoupling of the pressure 

dynamics from the piston motion is obtained by the positive (nonlinear) velocity 

feedback. This can be seen by looking at the first term of the nonlinear function, fF, given 

by Eq. 4.7, and the expression for the controller given by Eq. 4.13. This observation will 

be exploited in the discussion of piston position control in Subsection 4.1.3.2. 
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4.1.2.2 Load Force Tracking Control 

This section is included to highlight the application of the IO linearization 

approach to the control of the net force applied to the load (such as the stiffness and 

damping forces on a fatigue specimen), which is referred to in this work as the load force 

(FL). For the system shown in Fig 3.12, this force is given by:  

Differentiating Eq. 4.14 and using Eq. 4.6 , we obtain: 

Proceeding as above, the Near IO linearizing controller for this definition of 

system output can be shown to be: 
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Figure 4.1:Schematic for Near IO linearizing pressure force tracking  controller 
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Here, the gain kL>0 is chosen to stabilize the dynamics of the closed-loop load 

force tracking error, which is given by: 

It can be seen that the load force tracking controller given by Eq. 4.15 needs 

additional variables for feedback, compared to the pressure force controller given by 

Eq. 4.13. Namely, the controller requires feedback of the derivatives of the friction and 

inertia forces and feedback of the load force. The load force can be measured directly by 

placing a load cell between the actuator piston and the specimen (or on the load plate) or 

it can be indirectly estimated from the variables in Eq. 4.14. It is particularly important 

that a good and differentiable approximation of the friction force be found. This issue is 

pursued in Subsection 4.1.4.2. While the above load force controller may indeed be 

studied further, this is not pursued in this thesis. As will be revealed shortly, the pressure 

force controller of the previous subsection has a convenient theoretical and practical 

connection to the position control problem, which is the target problem to be pursued for 

the road simulation application in the next chapter. We, therefore, focus on the pressure 

force controller in this chapter when referring to force control. 

4.1.2.3 Descriptions Using the Load Pressure 

The expression for the pressure force controller can be re-written by introducing 

the so-called load pressure or differential pressure (pL=Δp), defined by: 

And assuming further that the valve ports are matched and symmetrical (Cv,1= 

Cv,2=Cv,3=Cv,4), it can be shown that [25]: 

0)()( ,, =−+− dLLLdLL FFkFF &  (4.17)

tbL ppp −=  (4.18)
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The state equations for the chamber pressures can then be replaced with a single 

state equation for the load pressure (pL), thereby reducing the order of the modeled servo-

actuator system from four to three. This new state equation is given by: 

where , 

Recall that the other two state equations are given by Eqs. 3.46 and 3.47. 

For a symmetric actuator (Ab=At=Ap), the pressure force dynamics are given by 

slightly simpler expressions, namely:  

where,  

The rest of the expressions leading to the Near IO linearizing controller are the 

same as the general case given in Subsection 4.1.2.1. Only the expressions for the 

nonlinear functions fF and gF need to be replaced with those given in Eqs. 4.25 and 4.26. 

It should be recognized that the piecewise IO linearization achieved is of relative degree 

one, in this case as well. Second-order internal dynamics remain, the stability of which is 
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discussed in Appendix C. The implementation of this reduced form of this Near IO 

linearizing force controller is shown schematically in Fig 4.2. 

It should be noted that the pressure force control problem and the load 

(differential) pressure control problem differ only by a factor of the piston area. 

Therefore, the pressure force control conclusions discussed in this work apply equally 

well to the differential or load pressure control case. The load force case, however, is 

significantly different as shown in the previous subsection. 

4.1.3 Piston Position Tracking Control 

The piston position tracking control problem can be solved using two approaches 

within the framework of feedback linearization. The first approach is direct Near IO 

linearization by defining the piston position as the desired system output. The second is 

to use a cascade control where the position control problem is considered an outer-loop to 

the pressure force control problem. It is a major observation of this work that the 

controllers from the two approaches are equivalent. Each approach is detailed in the 

following subsections. 
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Figure 4.2: Schematic for Near IO linearizing pressure force controller using load pressure 
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4.1.3.1 Near IO Linearization with Position Output 

In this subsection, direct piecewise IO linearization is performed with piston 

position, xp, as the system output and a similar control law to the force tracking case is 

derived. The first and second derivatives of the output xp as given by Eqs. 3.36 and 3.37, 

do not contain the control input, vi . However, a second differentiation of Eq. 3.36 gives:  

where fp and gp are given, respectively, by: 

Here, for compactness, the expressions for the nonlinear functions, fF and gF, from 

Eqs. 4.7 and 4.8 have been retained. Proceeding as in the pressure force output case of 

Subsection 4.1.2.1, Eq. 4.27 leads to a piecewise IO linearization with a relative degree of 

3, and suggesting the control law:  

The closed loop position dynamics reduces to the triple integrator:  

which can easily be stabilized by state feedback. It also leads to an exponentially 

convergent tracking (provided the internal dynamics are stable) when the new input v is 

chosen as  
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where xd is the desired position profile. With Eqs. 4.31 and 4.32, the dynamics of the 

closed loop tracking error, e=xp-xd, reduce to: 

The three gains k1, k2, and k3 can be chosen to place the poles of the closed loop 

tracking error dynamics strictly in the left half s-plane. This could be done by using direct 

pole placement or posing the problem as a linear optimal control problem [81]. Direct 

pole placement involves deciding on the location of the three poles for the closed loop 

error dynamics given by Eq. 4.33 and invoking pole placement routines to compute the 

gains. 

To include some optimality, the gains could be chosen using an LQR (Linear 

Quadratic Regulator) approach from linear optimal control theory. To this end, Eq. 4.33 

is rewritten as Eq. 4.34 with u given by Eq. 4.35 below: 

where, 
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It can be shown that the system in Eq. 4.34 is fully controllable with the dummy 

intermediate control signal, u. Standard solutions of the Algebraic Riccati Equation 

(ARE) give the optimal gains that minimize the quadratic cost function given by: 

where Q is a symmetric positive semi-definite weighing matrix and R is a positive scalar 

weight. By using Q and R, optimization trade-offs can be performed between the size and 
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speed of decay of the tracking error e and the linear dummy control action, u. However, u 

makes only part of the true control action, vi . This can be seen by using Eq. 4.32 and the 

notation following Eq. 4.35 and rewriting Eq. 4.30 as follows: 

The choice of the elements of the weight matrix Q and R involves at least as 

much trial and error as the direct pole placement techniques. This is because the number 

of weight variables to be specified as elements of the Q and R matrices is more than the 

maximum of 3 pole locations necessary for the direct pole placement approach. In this 

thesis, the choice of these gains was initially done by an interactive combination of direct 

pole placement and LQR methods. A more useful interpretation that helps with the choice 

of the gains is revealed in Subsection 4.1.3.2. 

It should be noted again that the piecewise IO linearization performed is only a 

Near IO linearization since Eq. 4.30 cannot be solved explicitly across the null valve 

current ( 0=vi ) boundary. In practice, this is overcome by invoking the previous 

assumption that the sign of the value of vi  at the previous time step can be used to 

compute the value of vi  at the current time step. 

It should also be noted that, by reducing the system to the third order tracking 

dynamics of Eq. 4.33, the control law of Eq. 4.30 renders one of the four original states 

(pb, pt, xp, vp) of the system “unobservable”. This leaves a first order internal dynamics. 

The description of this internal dynamics is not straightforward. However, using the load 

pressure description from Subsection 4.1.2.3, the original system becomes of order three, 

with the three states: pL, xp, vp. No internal dynamics remain in this case, and the 

piecewise IO linearization achieved is a full-state feedback linearization. 

Figure 4.3 shows the schematic of the implementation for the Near IO linearizing 

position tracking controller. The load force is considered to comprise of specimen 

reaction forces for the application shown in the schematic of Fig 3.12.  
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4.1.3.2 Cascading with Pressure Force Tracking 

The cascade control of hydraulic actuator piston position employing classical and 

linear state feedback was described in Ref [26, 82, 83]. The central idea of the method 

lies in treating the actuator as a force generator with an inner-loop force (or differential 

pressure, PL) tracking controller, and a feedback plus feed forward outer-loop position 

controller that computes the desired force profile for the inner-loop. The inner-loop pL (or 

Fp) controller generally comprises of a high-gain pL (or Fp) feedback term in addition to 

positive velocity feedback. The latter is intended to cancel the velocity coupling of the 

piston motion and the pressure dynamics. This expectation is reasonable, if flow-pressure 

and variable compliance nonlinearities could be ignored, as can easily be seen in the 

expression of the pressure dynamics, Eq. 4.21 (or its local linearization about operating 

points). Then, with the piston motion decoupled from the pressure dynamics by velocity 

feedback, the outer-loop control would provide compensation for external loads and 

friction, and enable tracking of the desired piston motion (position, velocity and 

acceleration). The outer-loop solves a standard motion control problem and may even 

include adaptive algorithms to compensate for load and parameter changes [83]. 
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The same basic idea of cascading was extended to the realm of nonlinear control 

in the work of Heintze and Van der Welden [82], who compared an inner-loop controller 

based on dynamic inversion with a cascade controller which includes nonlinearity 

compensation in the original constant gain cascade form of Sepehri, et al [83]. Starting 

with a Lyapunov-like analysis, Sohl and Bobrow [34] also presented a cascade position 

tracking controller, with a nonlinear pressure force controller as an inner-loop. The 

proposals in Ref [82] and [34] are similar in structure to the discussion presented below 

which exposes certain interesting facts about the nonlinear cascade control from a 

feedback linearization framework. Eryilmaz and Wilson [84] arrive at a slightly different 

cascade control structure from a singular perturbation point of view.  

It is to be recalled that the Near IO linearizing pressure force tracking control law 

of Subsection 4.1.2.1 (or equivalently with the results of Subsection 4.1.2.3) cancels the 

piston velocity feedback on the pressure force dynamics by the first term of the nonlinear 

function, fF. This nonlinearity cancellation decouples the dynamics of the piston motion 

from the hydraulic pressure/force dynamics. The cascade control of piston position 

discussed in this subssection exploits this result.  

We proceed by constructing a desired pressure force profile (Fp,d), which will be 

an input to the pressure force loop, in terms of the desired piston position profile in such a 

manner that when the pressure force output is driven to the desired force profile, the 

output piston position approaches the desired position. Therefore, we define Fp,d as: 

To understand the reason for this form of Fp,d, recall that the equation of motion of the 

piston is given by: 

Here, initially, it is assumed that accurate estimates of the friction force and the load 

force are available to be included (as feed forward) in the computation of Fp,d. The piston 

gmFFxxkxxkxmF pfLdppdpvdpdp +++−−−−= )()(, &&&&  (4.38)
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mass is assumed to be known. The question of uncertainty and the choice of the gains of 

kv and kp is discussed below. 

Combining Eq. 4.38 and 4.39, the closed loop dynamics can be expressed in terms 

of the closed loop position error, e= xp-xd: 

where eF=Fp-Fp,d is the pressure force tracking error. It has already been argued that an 

exponentially convergent tracking of the pressure force can be obtained using the Near 

IO linearizing controller of Eq. 4.13. Equation 4.40 shows that the position error 

dynamics are given by a second-order linear differential equation driven by the pressure 

force error provided there are no estimation errors for the load and friction forces. The 

gains kv and kp can be easily be chosen to obtain a desired position error dynamics and 

ensure that the closed loop system so obtained is stable. Figure 4.4 shows a schematic for 

the implementation of this cascade control structure.  

Unless otherwise stated, hereafter in this thesis, we shall use the name cascade 

controller to refer to the controller structure with the feed forward plus feedback position 

controller outer-loop and the Near IO linearizing pressure force controller inner-loop. 

Note that the closed loop system of the cascade control is of order three, as is the 

result of the Near IO linearizing position controller of Subsection 4.1.3.1. This can easily 
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be shown by observing that the inner-loop of the cascade controller requires the 

derivative of the desired pressure force as shown in Fig 4.4. In fact, taking the derivative 

of the desired pressure force given by Eq. 4.38, using the result together with Eq. 4.40 in 

the Near IO linearizing pressure force tracking controller of Eq. 4.13, it can be shown that 

the control current is given by: 

where fF and gF are given by Eq. 4.7 and 4.8, respectively. Note that Eq. 4.41 has the 

same form as the Near IO linearizing position tracking controller given by Eq. 4.37. The 

two controllers will be exactly the same when the gains k1, k2, k3 in Eq. 4.37 are chosen 

such that: 

Note that both the cascade controller leading to Eq. 4.41 and the Near IO 

linearizing position controller given by Eq. 4.37 have three linear gains to be set. The 

question that can be posed at this point may be: Which structure is better? 

It is apparent that even if the control current expressions are the same, the cascade 

controller has certain advantages over the Near IO linearizing controller. First, it gives a 

simpler physical insight and interpretation that can aid the choice of the linear gains and 

judge the performance of the resulting closed loop system. The inner-loop pressure force 

(load pressure) dynamics can be made as fast as desired by the choice of ko via pole 

placement (s=- ko) of a first order linear dynamics (Eq. 4.12). The other gains, kp and kv, 

are simply coefficients of a second-order linear dynamics (Eq. 4.40), which have straight 

forward interpretation as factors in the natural frequency and damping coefficient of the 

position loop. A second advantage is that the cascade form does not need feedback of 

piston acceleration measurement if Eq. 4.38 is used to compute the desired pressure 

force, Fp,d. It also does not require a third derivative of the desired position trajectory to 
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be available, even though it is implicit that the third derivative must be bounded due to 

the fact that the derivative of Fp,d is used by the inner-loop force control. A third 

advantage of the cascade control structure regards theoretical robustness analysis, which 

is detailed in Subsection 4.1.5.2. 

However, the cascade control structure has a serious disadvantage in that it 

computes the derivative of the desired force online. The desired force, Fp,d , itself is 

computed in real time from measurements in the position, velocity, and pressure, as well 

as the estimates of friction and load forces. Since these measurements are susceptible to 

noise, high quality signal processing may be necessary. Differentiating noise could cause 

unstable responses with the cascade controller. The Near IO linearizing position tracking 

controller does not suffer from this problem of differentiation of potentially noisy signals. 

It should also be remarked that the gain relations given in Eq. 4.42 can be used in 

a reverse argument (solving for k1, k2, k3) to guide the choice of the gains for the 

controller of Eq. 4.37. This provides a much better and (physically) easy to interpret 

alternative to the LQR based method outlined in Subsection 4.1.3.1 or a direct pole 

placement technique for choosing the gains k1, k2, k3 based on pole locations for the third 

order error dynamics given by Eq. 4.33. However, closed form inversion of Eq. 4.42 

results in very complicated and unwieldy expressions for the general case, and as such 

numerical solutions are recommended.  

For the special case where all three closed-loop poles of Eq. 4.33 are placed at the 

same location on the real axis, say s=-a, a>0, a simple, yet, very useful closed form result 

can be derived. By expanding the characteristic polynomial (s+a)3 of the dynamics given 

by Eq. 4.33 and using the equivalence in Eq. 4.42, one can arrive at: 

In fact, using this result in Eq. 4.40, it is easy to see that, in this case, the second-order 

position error dynamics has a natural frequency of a (rad/s) and a damping ratio of 1. 

Most often, a critically damped response is among well behaved responses that can be 

considered for the design of the position tracking outer-loop. Since ko= a, the first-order 

force tracking inner-loop also has a break frequency of a (rad/s). This observation will be 

pvppo amkmakak 2,, 2 ===  (4.43)
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used in the interpretation of simulation and experimental results in Subsection 4.2.2, for 

both the cascade controller and the Near IO linearizing position controller. 

4.1.4  Characteristics of the Nonlinear Controllers  

In this subsection, we summarize the common characteristics and implementation 

issues of the nonlinear controllers derived in Subsections 4.1.2 and 4.1.3. Then, a 

discussion is presented on the estimation of friction forces which appear in the nonlinear 

position tracking and the load force tracking controllers. 

4.1.4.1 Summary of Main Results and Limitations  

Each of the control laws in Eqs. 4.9, 4.16, and 4.30 has linear and nonlinear state 

feedback components. The linear state feedback component comes from the choices of 

the dummy intermediate part v, and the nonlinear state feedback from the form of the 

nonlinear functions (fF, fp) in the numerators and (gF, gp) in the denominators. The 

nonlinear terms fp, fF , gp, and gF can be seen to contain the dominant nonlinearities in the 

electrohydraulic system. The valve flow rate vs. pressure drop nonlinear relation, which 

appears as in input-nonlinearity, is canceled via the denominators (gF,gp). The variable 

cylinder chamber capacitances are canceled term by term with the both additive and 

multiplicative terms (fp, fF , gp, and gF).  

A significant observation regarding the additive cancellation of the nonlinearities 

is in the (nonlinear and positive) feedback of piston velocity via the first term of the 

nonlinear function fF (or of fp) given by Eq. 4.7 (or Eq. 4.28). This velocity feedback 

leads to the cancellation of the natural feedback of piston velocity in the open loop 

chamber pressure dynamics of Eqs. 3.36 and 3.37, which describe conservation of mass. 

With the load pressure description of Subsection 4.1.2.3, this natural velocity feedback 

appears as a negative feedback in the pressure dynamics, or equivalently, in the pressure 

force dynamics. Canceling this negative velocity feedback amounts to decoupling the 
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piston motion (which is governed by loading) from the pressure dynamics of the 

hydraulic system. This decoupling helps separate the load pressure/pressure force control 

from the piston motion control. In fact, this is what is exploited by the cascade controller 

to reduce the closed-loop system to a linear second-order position error dynamics driven 

by the output of a first-order load pressure/pressure force tracking error dynamics. 

Another component of the additive nonlinearity cancellation is the position-

dependent cancellation of the effects of the leakage flow inside the actuator via the 

second term of function fF (or of fp) given by Eq. 4.7 (or Eq. 4.28 ). By design, it is 

attempted to reduce leakage and hence this term may naturally be small. Nevertheless, in 

the likely scenario that the leakage is not correctly modeled or estimated, this nonlinearity 

cancellation appears as a shift in a (position-dependent) pole location for the load 

pressure/pressure force dynamics. The pole placement after the linearization of the load 

pressure/pressure force dynamics can be tuned to offset consequences of canceling 

leakage on the pressure/pressure force dynamics. 

The choices for the structure of the linear parts of the feedback linearizing 

controllers, which are designated by v in Eq. 4.11 and Eq. 4.32, have systematically been 

done to guarantee exponentially convergent tracking control of the respective outputs. A 

consequence of these choices was that the derivatives of the desired force profiles and 

position trajectories are required to be available online (or as some functions of time)[30]. 

This also limits the application of the nonlinear controllers so derived to tracking 

applications of only smooth trajectories. This is not a serious limitation whenever desired 

trajectories can be generated by filtering a given reference with filters of appropriate 

order and cut-off frequencies. It is also possible that these trajectories are limited to 

naturally smooth ones depending on the application for the actuator. 

Alternative choices of v to those given in Eq. 4.11 and Eq. 4.32 which do not need 

derivatives of the reference trajectory may sometimes be desirable. One such form 

employing simple output feedback is given in Jelali and Kroll [67]. However, these 

choices may mean accepting steady state error and a phase lag or even making the system 

unstable. Consider the pressure force/load pressure tracking control case with the 

following choice of v:  
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where ko>0. The pressure force/load pressure external dynamics, Eq. 4.10, reduces to: 

The output pressure force will be a first-order filter on the desired force profile. 

Exponential tracking is not guaranteed. For sinusoidal desired force profiles, for example, 

there will always be a phase lag that grows to 90o at high frequencies. If the same output 

feedback similar to Eq. 4.44 is used on the position output case, Eq. 4.31, the result is: 

where k1>0. Application of the Routh-Hurwitz criteria shows that this system is unstable. 

In fact, adding a second term involving derivative of the position error to the form of 

Eq. 4.44 still leads to an unstable closed loop system. Therefore, we conclude that 

simpler choices of the linear component v of the feedback linearizing controllers, than 

those already used in the developments of the previous sections, do not necessarily lead 

to better closed loop performance. 

Examination of the nonlinear denominator functions gF and gp in the control laws 

of Eqs. 4.9, 4.16, and 4.30, suggests the possibility of division by zero during online 

computations of the control current. In reality, one set of the possible zero conditions, 

pb=pS and pt=pR (for vi  ≥0) are not likely to happen simultaneously. With the load 

pressure descriptions given by Eqs. 4.19 and 4.20, it is easy to see that these conditions 

would imply pL=-pR =pS which is not possible since the supply pressure is normally set at 

a much higher positive value than the return pressure which is near atmospheric. Another 

likely zero condition for gF and gp is when pL=pS-pR (see Eq. 4.23 ). This is conceivable, 

but also not likely to happen in practice since it would imply having the whole pressure 

drop in the servo-actuator transferred to the load. In any case, a switch can be included to 

set gp and gF to small non-zero numbers to guarantee division by zero does not occur. 

)( ,dppo FFkv −−=  (4.44)
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The derivation of the nonlinear controllers in the previous subsections did not take 

into account the possibility that the control current computed could exceed the allowed 

range (of ±50mA for the test system in this work). As is evident from the expressions for 

the controllers, the controller current magnitude depends on the properties of the desired 

trajectory. If the trajectory has large derivatives, especially of the third position 

derivative, dx&&& , the control current could exceed these ranges. The issue of trajectory 

selection is revisited again in later sections. As a safeguard on implementation, the 

magnitude of the current is limited by a saturation function to be within allowed range 

(±50mA) corresponding to the rated characteristics of the servovalve. 

An important feature of the nonlinear control laws under discussion is that state 

measurements are assumed to be available online. This assumption does not cause 

significant problems since the particular physical modeling adopted uses physically 

meaningful state variables, each of which can be measured, or in the case of velocity, it 

can be obtained by stable numerical differentiation of position LVDT output. 

As was shown in the implementation schematics of Fig 4.1 for pressure force, 

Fig 4.2 for load pressure and Fig 4.3 for piston position control, the major structural 

element of the piston position controller that is absent in the other cases is the fact that 

the position controller requires the derivatives of the friction and load forces. The load 

force could be measured directly by using a load cell for the test unit used in this work. 

The friction force is not directly measurable online but it is estimated from the 

experimentally identified model of the friction force already detailed in Subsection 3.3.2. 

The method adopted in this thesis for obtaining a differentiable estimate of friction is 

discussed further in the following subsection. However, in general, the combined load 

and friction forces are at best estimates and may not be known without error. This brings 

up the issue of uncertainty and robustness which is the subject of Subsection 4.1.5. 
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4.1.4.2 Differentiable Friction Estimation Model 

As discussed in Subsection 3.3.2 , the friction force acting on the piston is 

estimated by fitting the analytical expression given by Eq. 3.48 to the experimental data. 

The expression accounts for the Stribeck (declining friction at low velocity), Coulomb 

and viscous components. However, the expression also has a strong discontinuity and 

sharp corners near zero velocity. Since the implementations of the nonlinear control laws 

for position tracking use the time derivative of the friction force (directly as in Eq. 4.28 or 

indirectly in the cascade controller implementation of Fig 4.6), it is necessary to make the 

nominal expression smooth with respect to velocity before the derivative can be taken.  

The following approximations of the sign function (sgn(x)) and the absolute value 

function (|x|) are taken [67]: 

The parameter γ is used to adjust the degree of smoothening applied to the friction 

estimation of Eq. 3.48. Fig 4.5 shows typical results from applying these approximations. 

Note that the higher the value of the parameter γ the better the approximation, but the 

sharper the corners at zero velocity (i.e, when the piston motion changes direction). A 

compromise value of γ=5 is selected for the remainder of the results presented in this 

work, unless otherwise stated. If the asymmetry with the sign of velocity is to be 

considered, there still remains some corner at exactly zero velocity, but the severity of the 

discontinuity is reduced when the approximations are applied. 
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4.1.5 Robustness Considerations 

Robustness to parameter variation is a well-known concern when using model 

based controllers such as the ones derived in the previous subsections of this chapter. 

These controllers are dependent on possibly uncertain model parameters as well as 

estimates of load and friction forces. Some of the model parameters can be calculated or 

measured fairly accurately. This is particularly true of geometric parameters like volumes 

Vb, Vt, areas Ab, At, Ap and the piston mass mp. The fluid bulk modulus βe, the valve 

coefficient Cv and the leakage coefficient CL, however, are highly uncertain since they 

can change with oil temperature, air entrapment and the working life of the servovalve 

and actuator. Nominal values for these uncertain model parameters βe, Cv, and CL can be 

estimated using offline, so called, grey-box identification techniques which are detailed 

in Appendix B. In coming sessions, experimental and simulation results outlining the 

effects of these parameters are presented. 
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In this subsection, a formal treatment of robustness is presented. The nonlinear 

controllers of the previous sections are modified to account for parameter and 

measurement uncertainty as well as errors in the load force and friction force estimation. 

For compactness, we shall consider the system description using the load pressure state 

variable.  

4.1.5.1 Robust Pressure Force Tracking: Sliding Control 

It turns out that the form of the Near IO linearizing controller for pressure force 

tracking can be easily re-considered from a sliding control point of view and thereby 

formally address the issue of robustness. A detail exposition of the topic of variable 

structure systems and sliding control is outlined in [30, 31, 44] and a literature review of 

applications to electrohydraulic system control has already been given in Subsection 

2.2.3 of Chapter 2. The main results relevant to the discussion at hand are outlined here. 

For the pressure force tracking problem, the system is of relative degree 1 giving 

the pressure force dynamics of Eq. 4.6, repeated here, after dropping the arguments of the 

functions fF and gF: 

Define the sliding manifold parameter S to be: 

The desirable sliding manifold (of zero tracking error) is given by S(t)=0. If the nonlinear 

functions fF and gF of Subsection 4.1.2 are replaced by their estimates Ff̂  and Fĝ to 

account for parametric and measurement uncertainties in these functions, then it can be 

shown that the discontinuous controller: 

would make S satisfy the sliding condition for robustness [31]: 
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Note that, aside from the use of the estimated functions Ff̂  and Fĝ , the main difference 

between Eqs. 4.51 and 4.13 is really in the use of the discontinuous (switching) term 

Ksgn(S) in Eq. 4.51 instead of the proportional term koeF=koS in Eq. 4.13.  

Indeed, using Eqs. 4.49, 4.50 and 4.51 in Eq. 4.52 the following expression can be 

derived for the size of the gain K of the discontinuity in terms of model uncertainty: 

where δfF and δgF are the bounds on the uncertainties(perturbations) in the nonlinear 

functions fF and gF, respectively, and are expressed by: 

Here, gF is considered to be positive (this is the realistic situation described before and 

evident in Eq. 4.23). Since gF is a multiplicative gain, it is convenient to consider the 

nominal value of gF, i.e, Fĝ , as a geometric mean of the maximum and minimum bounds 

of gF. 

The discontinuous controller of Eq. 4.51 can force the system to the sliding 

manifold S=0 and keep it there, and thus give perfect tracking in the face of the 

parametric and state measurement uncertainty. The only requirement is for the gain K to 

satisfy Eq. 4.53. However, in practical implementations, the discontinuous switching 

across the sliding manifold leads to control chattering. This is particularly a serious 

problem when there is a neglected servovalve dynamics in the derivation of the control 

law. This is equivalent to a parasitic neglected “actuator1”dynamics that could lead to 

instability with infinitely fast switching [30, 48]. Other neglected higher frequency 

mechanical dynamics could also be excited. 

                                                 
1 The neglected servovalve spool dynamics in this work is equivalent to what is referred to as neglected 
“parasitic actuator” dynamics in the literature on variable structure control. The reader is advised that, in 
this thesis, the term actuator refers in general to the main part of the controlled system as opposed to just a 
means to deliver control action.  

+ℜ∈−≤ ηη SS
dt
d )(

2
1 2  (4.52)

FdpFFF fFgfgK ˆ1)( , −−++≥ &δδηδ  (4.53)

F
F
F

FFFF g
g
g

gfff δδδ ≤≤<≤− − ˆ
)(0ˆ 1  (4.54)



 94

In order to take advantage of the robustness properties of the sliding mode 

controller and eliminate chattering, “continuous” approximations are usually considered 

[30, 31, 48, 53]. The sign function is replaced by the saturation function, thereby 

introducing a boundary layer around the sliding manifold. By doing so, some 

deterioration of tracking performance is tolerated.  

Replacing the sign function in Eq. 4.51 with the saturation function defined by  

results in  the control law  

where Φ is the boundary layer thickness, which in the present case, translates directly into 

an acceptable bound on the force tracking error. This controller would still satisfy the 

reaching condition (Eq. 4.52) outside the boundary layer, and therefore, make the 

boundary layer attractive and invariant. This gives a degree of tracking performance 

which is bounded by Φ in spite of the parametric uncertainties.  

At this point, it should be clear that the Near IO linearizing controller for pressure 

force tracking given by Eq. 4.13 is almost identical to the “continuous” sliding mode 

controller. The difference is the former approach did not explicitly place bounds on the 

guaranteed tracking performance in the presence of parametric uncertainties, but the latter 

did. Within the boundary layer, the two forms are exactly the same.  

When implementing in the experimental system, it may be more desirable to have 

smooth approximations to the sign switch of Eq. 4.51 or the continuous, yet non-smooth 

saturation function of Eq. 4.56. The tangent hyperbolic function was one such function 

tested in this work. The boundary layer is still invariant and attractive in this case as well 

[30, 47]. 
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Note also that it is still necessary to obtain good estimates of the parameters for 

the nonlinear functions Ff̂  and Fĝ so that the gain K remains reasonable and the bound 

on the tracking error (boundary layer thickness) remains small. Mathematical details for 

this argument are given in Slotine and Li [31]. Here, it suffices to say that, the modeling 

effort in the previous chapter as well as the parameter estimation described in Appendix 

B are all intended to increase tracking performance as best as possible. In the case of the 

Near IO linearizing controller, the gain ko was adjusted considering it as a closed loop 

bandwidth (system pole). In the context of the sliding mode controller, however, the 

equivalent gain K is tuned to provide robustness to parameter uncertainty as well as to 

reduce tracking error. This distinction between the two gain values is important. 

Finally, it should also be pointed out that the sliding control considered here 

addressed only robustness to the so called matched uncertainties, which enter the 

(external) state equation of the pressure force dynamics at the same point as the control 

input. These uncertainties are due typically to the model parameters βe, Cv, and CL and 

state measurement errors. Uncertainties appearing in the other (internal) state equations 

are not addressed directly. In Appendix C, the second order internal dynamics are shown 

to be input-to-state-stable with bounded trajectories for practical approximations of load 

and friction forces. In the next section, we consider these unmatched uncertainties for the 

force loop with respect to the position tracking objective. 

4.1.5.2 Robust Piston Position Tracking: Backstepping 

Sliding control can still be applied to the piston position tracking case. It is to be 

recalled from Subsection 4.1.3.1 that with piston position as the output, the modeled 

electrohydraulic system becomes of relative degree 3 (with no internal dynamics when 

the load pressure description is used). A standard sliding mode controller design would 

start by defining the sliding manifold (S=0) to represent a well-behaved position tracking 

error dynamics. Sometimes the manifold is defined to represent a weighted sum of a 



 96

position and force tracking errors and their integrals. Such applications to piston position 

tracking control of hydraulic actuators are given in [46, 50-52].  

In this thesis, instead of this standard sliding mode approach to robust position 

control, it is desired to take advantage of the exposition in Subsection 4.1.3.2 regarding 

the equivalence of the Near IO linearizing position tracking controller with the cascade 

controller. By keeping the robust pressure force tracking control design results of the 

previous section as the inner-loop, the robustness of the outer-loop and the overall system 

is investigated.  

The desired pressure force profile given by Eq. 4.38 is re-defined here considering 

uncertainty in the estimation of load and friction forces. Replacing the load and friction 

forces by their estimates, the desired force profile is computed by: 

Using Eq. 4.58 in the equation of motion of the piston, Eq. 4.39 , the closed loop position 

error, e=xp-xd, is given by: 

where eF=Fp- Fp,d is the pressure force tracking error, and fF̂  and LF̂ are the estimates of 

the friction and load force respectively. It is assumed that the mass of the piston and 

attachments is known. The friction force is almost always estimated from a model (see 

Subsection 3.3.2 ), while the load force can either be measured (with a load cell) or 

estimated from a relevant model. It should be recalled that the friction force is generally a 

function of velocity ( px& ), while the load force is considered a damping and stiffness 

force, and therefore a function of both piston position (xp) and velocity ( px& ). Bounds are 

assumed for the uncertainty in friction and load forces as follows: 

Unlike the case where there is no uncertainty (Eq. 4.40), Eq. 4.59 shows that the 

cascade controller cannot guarantee convergence of the position error to zero in the 

presence of friction and load force uncertainty, even if the force tracking error converges 

gmFFxxkxxkxmF pfLdppdpvdpdp +++−−−−= ˆˆ)()(, &&&&  (4.58)

)ˆ()ˆ( LLffFpvp FFFFeekekem −+−+=++ &&&  (4.59)
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to zero. The position error dynamics are driven by the uncertainty in friction and load 

force estimation in addition to the force tracking error. The uncertainty enters as a 

disturbance to the position loop. Figure 4.6 shows the revised schematic for the cascade 

controller in the presence of uncertainty in the friction and load forces. 

Even if the force loop has been made robust to the “matched” uncertainty in the 

functions fF and gF , the position loop is still subjected to the effects of uncertainty in 

friction and load force estimation. The problem of this “unmatched” uncertainty of the 

force loop (or of the third order system) can be formally addressed by showing that the 

choice of the desired force output via Eq. 4.58 actually has an interpretation from a 

Backstepping design point of view. As will be shown shortly, this Lyapunov-based 

approach also gives bounds of tracking performance in relation to the size of uncertainty. 

We start by re-writing the system equations including uncertainty in friction and 

load force as follows: 
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This system is in the so called Strict Feedback Form [30, 36]. Starting with the 

first two equations, the pressure force, Fp, can be considered as the input and the 

following Lyapunov function candidate can be taken: 

Using the choice of the desired force trajectory given before (Eq. 4.58), the derivative of 

V1 reduces to: 

With the sliding control notation in Subsection 4.1.5.1, a Lyapunov function candidate 

for the whole system can be written as: 

Using Eq. 4.52, the derivative of this function satisfies: 

When the uncertainty is such that the bounds defined by Eq. 4.60 satisfy the condition: 

The inequality given by Eq. 4.67 becomes:  

For kv≥α, V& is rendered negative semi-definite with the control laws given by Eqs. 4.58 

and 4.56 and the uncertainty bounds given by Eqs. 4.53 and 4.68. Recall that, when the 

matched uncertainty bounds satisfy Eq. 4.53, the pressure force tracking error is driven to 

the boundary layer |eF| ≤ Φ in finite time by the “continuous” sliding mode controller. If, 

in addition, the unmatched uncertainty can be bounded as in Eq. 4.68, i.e., to within a 

compromise linear growth bound that depends on the (acceptable) velocity tracking error, 

the derivative of the Lyapunov function V& is negative semi-definite. Bounded position 
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velocity and force tracking is achieved provided both the matched and unmatched 

uncertainty bounds are satisfied.  

In summary, in the presence of combined matched and unmatched uncertainty for 

the cascade controller, some degree of robustness is guaranteed as long as the 

uncertainties satisfy certain bounds as described. Once again, the results stress the 

importance of having a good set of parameter estimates and models for friction and load 

force so that the relevant uncertainties remain small. 

4.1.6  System Simulations with Nonlinear Control 

In this section, computer simulation results are considered to seek justification for 

the basic assumptions and idealizations made in Subsection 4.1.1 that allowed the 

derivation and analysis of the nonlinear controllers in the Subsections 4.1.2 through 4.1.5. 

For this purpose, we use the validated model of the experimental electrohydraulic system 

described Chapter 3. The simulation results presented in this section are only intended to 

highlight the effects of the idealizations. The analysis of the performance of the nonlinear 

controllers deserves full investigation with real-time experiments and simulations. The 

latter is the topic of next major section, Section 4.2. 

4.1.6.1 Reference Signal Generation 

It is to be recalled that the nonlinear controllers described in the preceding 

sections require differentiable desired or reference trajectories. In this thesis, three types 

of differentiable signals are used as reference trajectories. These are a sine wave, a chirp 

signal and an approximation of a step signal (or of a square wave).  

A chirp signal is a swept sinusoidal wave with linearly increasing frequency at 

constant magnitude. Examples are presented shortly (See Fig 4.7). The advantages of 

using this signal are two fold. First, it can be sufficiently smooth for generating bounded 

derivatives of the desired position or force trajectory needed by the nonlinear position 
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and force tracking controllers. Second, it is possible to simultaneously view the 

performance of the controller with increasing frequency content. The disadvantage is that 

it is often not straightforward to read and extrapolate conclusions from time response 

plots from chirp references. For nonlinear systems, the response is dependent on the 

amplitude of the reference signal, and as such responses to different chirp signals of 

various amplitudes need to be investigated in order to make conclusive statements. 

Relatively easier, and near standard comparison of responses can be obtained by 

generating approximate “step” responses. The Heaviside step function (which has sharp 

corners, and hence is non-differentiable) is approximated by the following differentiable 

function involving the hyperbolic tangent function.  

Here Xd is the size of the step, to is the time the step is applied and T is a parameter that 

defines the “sharpness” of the corners of the approximated step. By adjusting T and, of 

course, Xd, the magnitudes of the derivatives of the desired position or force at the time of 

the step can be controlled. In the limit as 0→T , the function approaches the Heaviside 

step function with sharp corners. Examples of the use of this “smooth” step are presented 

shortly (See Fig 4.10 ). 

4.1.6.2 Effects of Transmission Line and Servovalve Dynamics 

This subsection discusses the predicted performance of the nonlinear controllers, 

derived by neglecting the dynamics of the servovalve as well as the upstream and 

downstream transmission lines, acting on the all inclusive interconnected model of the 

electrohydraulic system presented in Chapter 3. 

We first remark that in the case where the supply and return line accumulators are 

close-coupled with the servovalve, the assumption of constant supply and return 

pressures (as was done for controller derivation) would not be too restrictive. This has 

already been pointed out in Subsection 3.2.4 and exemplified with Fig 3.10. However, the 
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accumulators are not close-coupled with the servovalve for the test system under 

consideration, and so there is a need to evaluate the performance of the controllers in the 

non-ideal case of the test system. We use simulations for this purpose. 

In a similar manner, the effect of neglecting the servovalve dynamics is 

investigated. Inclusion of the servovalve dynamics in the derivation of the Near IO 

linearizing control law would have resulted in the appearance of higher order derivatives 

of the desired and measured trajectories in the control laws. In the position tracking case, 

including a second order servovalve dynamics, for example, implies that two more 

differentiations of the third piston position derivative (Eq. 4.27) would be needed before 

the control signal appears and the Near IO linearization is possible. This in turn would 

require the availability of the third and fourth order derivatives of the piston position 

signal as well as further (up to 5th order derivative) smoothness requirements on the 

desired position trajectory. This undoubtedly would increase the complexity of the 

resulting controller for implementation. In this work, the nonlinear controllers derived 

above by ignoring the servovalve dynamics were considered sufficient to deal with the 

system nonlinearities arising from the turbulent port flow, variable hydraulic compliance 

and friction. However, to evaluate the effects of the neglected servovalve dynamics on 

the performance of these nonlinear controllers, extensive system simulations are 

performed with and without the servovalve dynamics. 

In the following simulation results, the case of the Near IO linearizing position 

controller (of Subsection 4.1.3.1) is considered as it is the most complicated one in terms 

of involving higher order differentiations. Later sections will present experimental and 

simulation results for the other position and force tracking nonlinear controllers. The 

gains k1, k2, k3 were chosen by placing the closed loop poles (roots of Eq. 4.33) at the 

same location s=-500 in the left half s-plane. This location may be too fast, considering 

model uncertainty, signal processing and control saturation, but it serves the purpose in 

this subsection. Also, only inertia load (mp=12 kg, FL=0) is considered. 
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Figure 4.7 shows the tracking performance of the position tracking controller 

when the dynamics of both the transmission line and servovalve are neglected in the 

model of the electrohydraulic system (EHS) to be consistent with the assumptions for the 

derivation of the controller. The chirp reference position signal spans frequencies 0.5-10 

Hz within the first 5 seconds and has amplitude of 10 mm. It can be seen that for this 

case, the tracking performance of the Near IO linearizing position tracking controller is 

near ideal with a maximum tracking error amplitude of about 1.2 % near 10 Hz, without 

saturation in the control current (to a maximum of ±50 mA). 

Figure 4.8 shows the performance of the same controller when the transmission 

line dynamics are still neglected, but the servovalve dynamics is included in the EHS 

model. The tracking error increases in this case to a maximum amplitude of about 12 % 

near 10 Hz. Also the control current saturates at about 4.7 seconds. 
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Figure 4.7:Tracking performance neglecting transmission line and servovalve dynamics in the
EHS model 
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From Figs 4.7 and 4.8, it can be observed that the tracking error is higher when 

the servovalve dynamics is considered in the EHS model. The control current from the 

nonlinear controller saturates slightly faster as well. The increase in the tracking error at 

the higher frequencies is in part due to the saturation of the control current, and therefore, 

the comparisons should focus on the tracking errors before the control current saturated. 

Figure 4.9 shows the simulated tracking performance for the same reference 

trajectory as above but with both the servovalve and transmission line dynamics included 

in the EHS model, i.e., with the most realistic test system model in which the designed 

controllers operate in. It can be seen that the tracking error does increase further with the 

control current saturating faster at about 4.3 seconds.  
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Figure 4.8: Tracking performance with the servovalve dynamics included in the EHS model 
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Further investigations of the effects of neglecting the transmission line and 

servovalve dynamics can be done using the “smooth” step responses. Using Eq. 4.70 with 

different combinations of to and Xd, the up and down “step” responses can be 

approximated by a differentiable function. Meaningful comparisons can be made by 

choosing values of T such that the control current doesn’t saturate. Fig 4.10 shows the 

simulated tracking performance with and without the servovalve and transmission line 

dynamics included. Large amplitude steps of -30 to 30 to -30 mm are used for this 

purpose. 
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Figure 4.9: Tracking performance with both transmission line and servovalve dynamics included
in the EHS model 
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In Fig 4.10 the time histories of the tracking error and the control current are 

visible indicators of the differences between the four cases. The peak tracking error is 

higher when just the transmission lines are included than when just the servovalve 

dynamics are included. This is expected considering the relatively lower bandwidth of the 

supply and return line dynamics compared to that of the servovalve as discussed in 

Subsection 3.4.1. Furthermore, the servovalve dynamics increases the oscillation seen in 

the tracking response before settling. 

It should be stressed that using the smooth step trajectory with smaller values of T 

leads to saturation of the control current even for the case where servovalve and 

transmission line effects are neglected, provided the three closed-loop poles are still 

placed at the same location (s=-500). Using higher values of T makes the desired 

trajectory smoother, thereby reducing the magnitudes of the derivatives of the trajectory. 

The tracking performance is improved in all cases and the control current magnitude is 
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correspondingly reduced as can be seen by comparing Figs 4.10 and 4.11. On the other 

hand, lower values of T also mean sluggish demands on the controller and may cover too 

low frequency regimes. 

The following points summarize the conclusions from the simulation work: 

• For the test system under consideration, there are noticeable differences in 

performance caused by neglecting the servovalve and transmission line dynamics 

during the derivation of the nonlinear controllers.  

• The fact that the dynamics of the supply and return pressure at the servovalve had to 

be neglected is more significant than neglecting the servovalve dynamics itself for the 

derivation of the nonlinear controllers. 

• While including a linear servovalve dynamic model can be considered from the point 

of a Lyapunov based backstepping controller design [43, 85] or using higher-order 

differentiation for Near IO linearization, such structural convenience of modeling is 

not available to include the dynamics of the transmission lines (even with the least 
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Figure 4.11:Simulated tracking performance using a smooth step reference (T=0.06) 
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order modal approximations in Chapter 3) in controller design. This is because the 

supply and return pressure variables enter into the valve flow equations as dominant 

nonlinearities (in the square roots) and without yielding a convenient structure like a 

strict feedback form. 

• The performance of the nonlinear controllers depends strongly on the characteristics 

of the desired trajectory. This affects the controller performance particularly in the 

presence of transmission line and servovalve dynamics in the electrohydraulic system 

model. 

• As a consequence of the above points, the high frequency contents of reference 

signals that can be considered in the simulations and experiments with this test 

system and with the nonlinear controllers are in the order of 15-20 Hz and well below 

the influence of the line dynamics (Subsection 3.4.1). This also limits the bandwidth 

of the experiments considered in this work. 

4.2  Performance of the Nonlinear Controllers  

In this section, the performance of the nonlinear controllers is investigated with 

experiments and simulations. In some cases, nominal performance comparisons are made 

with a traditional PID controller and a Linear State Feedback with Integral (LSFI) 

controller. The PID controller is chosen for comparison because it is a ubiquitous choice 

with electrohydraulic actuator control. Any performance improvement over the PID 

controller will be an interesting contribution. The LSFI controller is chosen among other 

linear controllers because it uses feedback of the same state variables as the nonlinear 

controller does, as can be seen by comparing Fig 4.2 and Fig D.1 (in Appendix D). This 

allows a comparison of linear vs nonlinear state feedback. 

The linear PID or LSFI controllers are generally designed using a locally 

linearized system model. A discussion of the linearized models as well as the equations 

of the PID and LSFI controllers are given in Appendix D. It will be pointed out in the 

relevant sections that in experiments with the linear controllers, the gain settings chosen 
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with the aid of the locally linearized models failed to give a reasonable, if stable, 

response. Therefore, some trial and error was used to tune the gains and obtain an 

oscillation free response with these linear controllers. 

4.2.1 The Pressure Force Tracking Controllers 

The simplest of the nonlinear controllers presented in this chapter is the Near IO 

linearizing controller given by Eq. 4.13. The modified robust version is given by 

Eq. 4.56, which is the “continuous” sliding mode pressure force tracking controller. Both 

controllers are investigated in this subsection.  

The experiments for this subsection considered a realistic loading on a fatigue test 

specimen. The piston was constrained with a neoprene rubber specimen so that large 

force magnitudes can be absorbed for a better force resolution. The force magnitudes 

were selected such that the specimen was always in compression purely for convenience 

with specimen mounting, but there should be no loss of generality for the observations. 

The experimental setup had an LVDT for position measurement, which was low-pass 

filtered to 40 Hz before differentiating the signal to obtain the piston velocity. The 

pressure feedback from two chamber pressure transducers was used to compute the 

pressure force output. 

4.2.1.1 Near IO linearizing Controller 

4.2.1.1.1 Nominal Performance Experiments 

The nominal nonlinear controller in this subsection is the Near IO linearizing 

controller given by Eq. 4.13 with the nominal model parameters for the effective bulk 

modulus (βe), the valve coefficient (Cv) , the leakage coefficient CL,, and the supply (pS) 

and return (pR) pressures at the servovalve. The first three model parameters were 
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estimated using simple experiments as outlined in Appendix B. The last two are known to 

change with the dynamics of the supply and return lines and accumulators as discussed in 

Subsection 3.4.1. However, constant values were used here, thereby limiting the 

bandwidth of the experiments considered here. 

It was difficult to tune the PID controller for no overshoot without oscillations in 

the force response or a large steady-state error. What is shown for the PID controller is 

the best compromise performance obtained after many trials. It can be seen from 

Figs 4.12 that due to the accepted overshoot in the force response with the PID controller, 

the specimen was compressed the most (piston travel was the highest) and the magnitude 

of the peak control current required was the highest in the PID control case. The linear 

state feedback with integral (LSFI) controller case gave a sluggish force response. The 

performance of the nominal nonlinear controller (with ko=750 s-1) was the best 

compromise tracking performance considering the rise time and settling time of the force 
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Figure 4.12: Experimental comparison of the tracking performance of the nominal Near IO
linearizing controller (NLC) against well-tuned PID and LSFI controllers. 
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response as well as the magnitude of control current. Further comparison can be made 

between these controllers by looking at the sinusoidal force tracking responses shown in 

Fig 4.13 with the same gain settings as above. At higher frequencies, the force output 

with the nominal nonlinear controller starts to show increased phase lag, as with the 

linear controllers, but the reduction in output force magnitude with the nonlinear 

controller is not as much as with the linear controllers. In certain applications such as 

with certain fatigue testing specimen, it may often be necessary to reduce force 

magnitude errors and tolerate phase lags, in which case the nonlinear controller has a 

clear advantage. Also, we note that the nonlinear controller uses consistently less current 

peaks (of the order of 40% lower than the PID controller). However, it should be 

expected that the performance of the nonlinear controller will eventually deteriorate at 

higher frequencies (as does that of the linear controllers) due to effects from neglected 

transmission line and servovalve dynamics. 
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Figure 4.13: Experimental comparison of tracking performance for sinusoidal force trajectories 
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The main reason for the observed superiority of the nominal nonlinear controller 

is that with the nonlinearities cancelled by feedback, the nonlinear controller could push 

the possible closed-loop pole location (s=-ko) much further in the left half s-plane than it 

was possible with either the PID or LSFI controllers for these experiments. 

Having established a performance comparison of the nominal nonlinear controller 

against standard linear controllers, it was desired to see how the gain ko can be used to 

tune the performance of the nominal nonlinear controller, in Eq. 4.13. Figure 4.14 shows 

responses as the gain ko was changed over a range of values. 

As the gain ko was increased, the rise time decreased with a corresponding 

increase in the control current. Above a certain magnitude of the gain ko ( ko=1500 s-1) the 

force response showed overshoots and started to include undesirable oscillations from 

unmodeled dynamics. Lower values of the gain ko gave sluggish responses. Nevertheless, 
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Figure 4.14:Tuning the nominal nonlinear controller with gain ko 
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it is clear from Fig 4.14 that the single parameter ko gives a simple way of tuning the 

controller performance for a desired combination of settling times and rise times.  

Steady-state errors were observed to be a function of the null offset (ivoff). For 

these experiments, it was attempted to make the null offset as small as possible by a 

careful use of the mechanical null adjustment provided with the servovalve. 

4.2.1.1.2 Robustness to Parametric Uncertainty 

A known concern with the Near IO-linearizing controller under discussion is the 

potential sensitivity to the model parameters that appear in the controller expression. In 

this section, experimental results are presented outlining the sensitivity of the 

performance of the nonlinear controller to changes in the parameters βe, Cv, and CL. One 

of the parameters is changed while the nominal values are kept for the other parameters 

in the nonlinear controller expression. 

Figure 4.15 shows the effect of uncertainty in the effective bulk modulus (βe). The 

experiments were conducted by changing the effective bulk modulus by about a factor of 

more than ±50% of the nominal value of 850MPa. The lower the value of βe used in the 

controller, the shorter the rise time, and the higher the tendency to overshoot and show 

oscillations in the force response. On the other hand, the higher the value of βe used in the 

controller, the more sluggish the response became. This also implies that if there were a 

reduction in the actual value of the effective or working bulk modulus of the oil in the 

system (from what was set in the controller expression), the controller performance 

improves or deteriorates in the manner depicted in Fig 4.15. In practice, changes in the 

effective bulk modulus of the fluid in a hydraulic system could happen due to various 

reasons including air-entrapment (aeration), changes in mechanical compliance and the 

effect of temperature on air content. 
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It was also observed that the system was more sensitive to changes of βe settings 

towards lower values than to changes towards higher values. The response started to 

overshoot with only a 25% reduction of the value of βe, while the response remained 

virtually the same as the nominal case for a 25% increase in the value of βe. The faster 

responses corresponding to lower βe settings also required higher current peak 

magnitudes as shown in the lower plot of Fig 4.15. For example, for a 25% reduction in 

the value of βe the current peak required was as much as 100% higher than the current 

peak for nominal settings of βe. 

Figure 4.16 shows the effect of uncertainty in the estimation of the valve 

coefficient parameter (Cv). The experiments were conducted by changing the valve 

coefficient parameter by as much as ±25% of the nominal value of 2.75 )../(3 MPamAscm  

while keeping the other parameters at their respective nominal values. The observed trend 
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Figure 4.15: Robustness to changes in the bulk modulus parameter of the nonlinear controller
(experiment) 
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is similar to the effect of βe. However, the response starts to show overshoot with only a 

16% reduction in the value of Cv while it remains less sensitive to increasing the value of 

Cv by as much as 25% of the nominal value. 

It should be remarked that there remains some asymmetry in the responses and 

control current inputs for the application and removal of the step force reference 

corresponding to the up and down motions of the piston. These can be explained by the 

fact that a single value of the valve coefficient was used in the experiments for all valve 

ports (to simplify the implementation of the nonlinear controller), despite the 

identification data indicating a slight asymmetry (Appendix B). Furthermore, the motion 

of the piston (internal dynamics) is influenced by the nonlinear compliance of the 

neoprene rubber, which is known to exhibit hysteretic behavior. 
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Finally, Fig 4.17 shows the effect of the settings of the leakage coefficient (CL) on 

the performance of the nonlinear controller. In these experiments, the values of the 

leakage coefficients were changed by as much as 200% of the nominal value of 0.5 

cm3/(s.MPa). This range is exaggerated to magnify the observed response. The effect of 

the leakage coefficient appears to be causing offset and steady state error when tracking 

the reference force. The control current does not appear to be affected significantly by 

changes in the settings for the leakage coefficient (CL) and it is not repeated here. The 

asymmetry in the response is again attributed to the averaging adopted for the valve 

coefficient and the leakage coefficient to simply the implementation of the nonlinear 

controller (Appendix B). 

In summary, the above robustness experiments suggest that the nonlinear Near IO 

linearizing pressure force tracking controller tolerates a measurable shift in the values of 

the parameters βe and Cv without sacrificing performance. This is particularly true for the 

effective bulk modulus parameter βe whose value is generally considered difficult to 

predict in a hydraulic system. Finally, the effect of changing the leakage coefficient 

setting in the nonlinear controller was seen to be an offset and steady-state error. 
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Figure 4.17: Robustness to changes in the leakage coefficient parameter of the nonlinear
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4.2.1.2 Continuous Sliding Mode Controller 

4.2.1.2.1 Basic Performance Experiments 

In this section, an experimental study is presented for the modified robust 

controller given by Eq. 4.56 and the smooth version given by Eq. 4.57. It should be 

recalled that these controllers are designed to formally address matched parametric 

uncertainty in contrast to the study of robustness (sensitivity) to individual model 

parameters presented in the previous subsection. 

To implement the controller of Eq. 4.56 or of Eq. 4.57, the gain K (which, in 

principle, can be made state dependent) should be chosen to satisfy the inequality given 

by Eq. 4.53 so that the sliding condition is met. For the work in this subsection, the gain 

K was chosen to be a constant satisfying Eq. 4.53 for the specific smoothened-square 

desired force trajectory with T=0.02 sec. The constant η is a small positive number 

formally reflecting the reaching time to the boundary layer. However, this constant was 

absorbed into the other much larger uncertainty bounds for the present system. The 

nominal functions Ff̂  and Fĝ were computed with the model parameters defined with the 

nominal Near IO linearizing controller of Subsection 4.2.1.1.1 and given in Appendix B. 

The bound of the uncertainty (perturbation) in the additive term fF , designated by Ffδ , 

was taken to be 20% of the nominal value. The bound on the uncertainty in the 

multiplicative term gF, designated by Fgδ , was taken to deviate from the nominal value of 

1 by 20%. These roughly correspond, for example, to a worst case combination of 20% 

uncertainty in the bulk modulus (βe) and 15% in the valve coefficient (Cv). The minimum 

value of the gain K computed with these considerations alone is of the order of 1.5E7 

kgcm/s3. It should be noted that expressing the uncertainty in terms of perturbations of gF 

and fF has the added advantage of incorporating uncertainty in the values of pS and pR. It 

also allows the inclusion of combined parametric uncertainty and measurement errors.  

Figure 4.18 shows the experimental tracking performance of the sliding mode 

controller given by Eq. 4.56. It can be seen that the robust controller with a boundary 
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layer thickness of Φ=100 N performs similarly to the Near IO linearizing controller with 

nominal parameters. The boundary layer thickness, which is a bound on the tracking error 

due to uncertainty, was slowly increased to 100 N until chattering was reduced to a 

minimum in the observed current and force responses.  

It is interesting to note that the experiments reported in this section were done 

after maintenance work (replacing filters and changing oil) was done on the hydraulic 

system. The value of the bulk modulus (βe), which is deemed uncertain anyway, is very 

likely to have changed after such maintenance work. The control current peak is slightly 

higher (for the Near IO linearizing controller) than what was observed in the previous 

subsection without much change in tracking performance. 

It was desired to see if there is indeed a difference in performance between the 

smooth version controller given by Eq. 4.57, which uses the tanh function and the version 
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given by Eq. 4.56, which uses the saturation function. Various combination of gain K and 

boundary layer thickness Φ were considered. Figure 4.19 shows an example comparison 

of the responses under the two sliding mode controller versions. In all the cases 

considered, the differences were negligible; with the smooth version showing slightly less 

control peaks and correspondingly lower overshoot in the force response. The rest of the 

experimental work in this thesis uses the smooth version given by Eq. 4.57.  

It is to be recalled that Eq. 4.53 gives only a lower bound for the gain K given the 

modeled part of the system. It should be noted that higher values of the gain K allow for 

larger uncertainty bounds. Figure 4.20 shows the effect of increasing the gain K. As could 

be expected, increasing the gain K improves the tracking performance in terms of 

reducing rise time and tracking error. However, due to the presence of the servovalve and 

transmission line dynamics in the physical system which were neglected during the 
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Figure 4.19:Comparison of sliding mode controller versions (Φ=100 N and K=2.75E7 kgcm/s3) 
(experiment) 
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derivation of the controller, the gain K could not be increased arbitrarily2. This is evident 

in the overshoot observed at higher values of K. Further evidence of the problem of using 

arbitrarily high values of the gain K is given in Fig 4.21. 

Figure 4.21 shows the force tracking response for a high gain setting of K=3.0 E7 

kgcm/s3. Two different settings of the boundary layer thickness are shown; Φ=100 N (left 

column) plots and Φ=50 N (right column) plots. Clearly, the use of high gain K 

compounds the problem of chattering with a low boundary layer thickness setting. 

Chattering excites the dynamics of the servovalve and/or the transmission lines which 

were ignored for the derivation and design of the controller. During the experiments, 

audible noise was generated by the chattering in the actuator for the case of small 

boundary layer setting (Φ=50 N) shown in the figure. 

                                                 
2 Recall that these dynamics are neglected ‘parasitic actuator’ dynamics for the modeled system for 
controller design. See footnote in Subsection 4.1.5.1  
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Figure 4.20: Effect of gain K for Φ=100 N (experiment) 
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In summary, in this subsection, experimental results have been presented to show 

the tracking performance of the continuous sliding mode controllers given by Eqs. 4.57 

and 4.56, which were considered as robust versions of the Near IO linearizing controller 

for pressure force tracking. It is argued mainly that the gain K and the boundary layer 

thickness Φ should be chosen with care. Too high a value of the gain K induces 

overshoot and chatter, especially with low boundary layer thicknesses. 

4.2.1.2.2 Robustness Tests with Simulations 

In the previous subsection, experimental results were presented to show the 

performance of the sliding mode pressure force tracking controller. This controller was 

designed with the goal of achieving robustness to matched parametric uncertainty in the 

basic parameters βe, Cv, and CL. To verify the robustness of the sliding mode controller 
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on the actual system, it is necessary to change the parameters of the plant (the 

electrohydraulic actuator) in a controlled and quantifiable manner. This is very difficult, 

if at all possible, to accomplish on the plant itself. Therefore, in this work, it was decided 

instead to simulate the validated model of the system from Chapter 3, which includes the 

dynamics of supply and return transmission lines, the accumulators and of the servovalve. 

In the simulations, the model parameters could be changed while investigating the 

robustness of the performance of the sliding mode controller to these changes. 

For the simulations in this section, the following basic assumptions were made. 

The specimen reaction, denoted by FL in modeling discussions, was approximated by a 

linear spring and damper of coefficients 950 kN/m and 500 Ns/m, respectively. Also, 

since mounting considerations are absent in computer simulations, larger desired force 

trajectory steps were considered (±4 kN) and correspondingly the smoothing parameter T 

was set higher at T=0.025 sec to limit the derivative of the desired trajectory as described 

in Subsection 4.1.6.1. The lower bound for gain K was then calculated as in the previous 

subsection, i.e, assuming the uncertainty bound Ffδ to be a minimum of 20% of the 

nominal value and bound Fgδ to deviate from the nominal value of 1 by 20%. In the 

simulations, K= 3.4E7 kgcm/s3 and the boundary layer thickness Φ=100 N. 

Figure 4.22 shows simulation results comparing the tracking performance of the 

sliding mode controller when the bulk modulus (βe) parameter of the electrohydraulic 

actuator was changed as much as ±40% while the (βe) parameter of the controller is kept 

at the nominal value (850 MPa). It can be seen that there is virtually no change in 

tracking performance of the sliding mode controller for this wide range of variation in the 

effective bulk modulus of the electrohydraulic actuator. 
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Uncertainty in the controller valve coefficient Cv could come from two uncertain 

parameters of the electrohydraulic actuator, according to the definition vvv KGC =  used in 

controller derivation where the servovalve dynamics were neglected. Fig 4.23 shows 

simulation results showing the effects of variations in the valve gain Gv. It can be seen 

that for as much as ±16% change in the servovalve gain, the tracking performance 

remains close to the nominal. As the gain deviation from the nominal value increased 

beyond these bounds, the performance deteriorated in a manner similar to the case of 

changing Kv discussed below.  
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Figure 4.22: Effect of variation in the effective bulk modulus of the electrohydraulic actuator on
the sliding mode controller (simulation) 
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The valve coefficient Kv, which is the coefficient of the nonlinear port flow 

equations, is defined with respect to the spool position in the servovalve model (see 

Subsection 3.3.1). As shown Fig 4.24, changing Kv instead of the servovalve gain Gv 

gave a similar trend in tracking performance as changing Gv within the ±16% bound. 

With increase in Kv (or Gv) to 18% higher than the nominal value, however, the response 

became oscillatory and ultimately went unstable for only slightly higher values of Kv (or 

Gv). The figure also shows that lower values of Kv (or Gv) than the nominal did not cause 

such a stability problem. 
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It should be recalled that the above observation from simulations with the sliding 

mode controller parallels the experimental observation made in Subsection 4.2.1.1.2 for 

the Near IO linearizing controller. The sliding mode controller is more sensitive to 

uncertainty in the estimate of the valve coefficient than it is to uncertainty in the estimate 

of the bulk modulus. Furthermore, overestimating the value of the valve coefficient Cv for 

the controller is better than underestimating it in terms of maintaining bounded or 

overshoot free response and stability. This is a key observation for both the sliding mode 

and Near IO linearizing controllers. 

Figure 4.25 shows the effect of uncertainty in value of the actuator leakage 

coefficient CL. As in the case of the IO-linearizing controller, the effect of mismatch 

between the leakage coefficient of the actuator and the value used in the controller is to 
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cause steady-state error in the force tracking response. However, compared to the bulk 

modulus and valve coefficient parameters, the leakage coefficient has the least effect in 

terms of altering the transient tracking performance. The negative value of the leakage 

coefficient is a hypothetical case, to show that for as much as a ± 200% mismatch in the 

leakage coefficient, the tracking error was kept within 100 N. When there is perfect 

knowledge of the leakage coefficient, i.e CL takes the nominal value, there is no steady-

state tracking error. 

As noted in the previous subsection using experiments with the sliding mode 

controller, the tracking performance improves, to a limit, with higher gain K settings. 

However, using too high values of gain K settings, to allow higher modeling uncertainty 

bounds and increased robustness, leads to chattering particularly with lower boundary 

layer thickness. This is also demonstrated with system simulations in Fig 4.26. As 
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discussed before, a good deal of modeling effort (in reducing uncertainty) is necessary to 

use optimum values of the gain setting K for a desired level of tracking accuracy without 

exciting the dynamics which are not considered during controller design. 

4.2.1.2.3 Summary of Sliding Mode Force Tracking Results 

The following observations summarize the results on the sliding mode controllers: 

• It was shown with experiments that the robust sliding mode controller can recover the 

performance of the nominal Near IO linearizing controller, provided the gain K and 

the boundary layer thickness Φ are tuned considering allowable uncertainty bounds. 

• Both experiments and simulations showed that high values of gain K and/or too low 

boundary layer thickness Φ values lead to control chatter and excite the servovalve 
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and transmission line dynamics which were neglected during the derivation of the 

control laws. High values of K mean allowing larger uncertainty bounds and thereby 

allowing less emphasis on model accuracy. In the presence of the neglected dynamics 

for the test system, the allowable increase in gain K before chattering commences is 

limited. Therefore, it is imperative to get good estimates of the controller model 

parameters so that the gain K remains reasonable with an acceptable boundary layer 

thickness that does not lead to control chatter. 

• The smooth version of the sliding mode controller using the tangent hyperbolic 

function given by Eq. 4.57 gives slightly less overshoot and control peaks than the 

version using the saturation function given by Eq. 4.56. 

• Simulation studies were conducted to verify the robustness of the sliding mode 

controller design to mismatches in controller vs. system (plant) parameters. It is noted 

that the controller was most sensitive to mismatch in the valve coefficient Cv, which 

in turn could come from uncertainty in the gain of the servovalve Gv or the valve 

coefficient Kv defined with respect to valve spool position. It was also observed that it 

is generally better to overestimate the value of the valve coefficient Cv for use in the 

controller than to underestimate it. Furthermore, the controller was least sensitive to 

as much as a ±200% mismatch in the leakage coefficient CL whose effect was seen to 

be causing a steady-state error. The sliding mode controller was robust to as much as 

a ±40% mismatch in the bulk modulus parameter. 

4.2.2 The Piston Position Tracking Controllers 

As outlined in Subsection 4.1.3, in this thesis, two approaches are described for 

the problem of piston position tracking control with nonlinear controllers from a feedback 

linearization framework. The first is Near IO linearization of the system model with 

piston position as output, giving Eq. 4.30 for the position tracking controller. And the 

second approach is a cascade controller using the Near IO linearizing pressure force 

tracking controller given by Eq. 4.13 as an inner-loop to a feedback plus feed forward 
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position controller outer-loop defining a synthetic desired force profile (by Eq. 4.38 or 

Eq. 4.58) for the inner-loop. It was shown in Subsection 4.1.3.2 that the two approaches 

are theoretically equivalent. Using a Lyapunov backstepping interpretation, it was also 

shown that with the robust sliding mode force controller of Eq. 4.56 (or Eq. 4.57) as the 

inner-loop, and the desired force profile computed by the outer-loop controller given by 

Eq. 4.58, the resulting closed-loop system gives bounded tracking errors for bounded 

uncertainty that meet linear growth conditions. 

Furthermore, a quick look at the schematic of the cascade implementation in 

Fig 4.6 reveals that most of the modeled nonlinear effects and uncertain parameters are 

confined to the force inner-loop, except for friction and load force estimation. The 

theoretical equivalence of the Near IO linearizing position controller with the cascade 

controller implies that the observations on robustness (sensitivity) to parametric variation 

of the Near IO linearizing pressure force controller apply to the Near IO linearizing 

position controller case as well. This is also evident from the similarity of the 

nonlinearity cancellation expressions in the respective controllers; gp is a scaled version 

of gF as given in Eq. 4.29 and fp includes a scaled version of fF as given by Eq. 4.28. In 

this section, the robustness analysis and simulations will be restricted to the uncertainty to 

unmatched uncertainty of the force loop (to the terms in fp other than fF), namely friction.  

The experimental setup had an LVDT (for position measurement) and an 

accelerometer for acceleration measurement. Second-order low-pass Butterworth filters, 

with cut-off frequency at 40 and 50 Hz, were used within the feedback loop for reducing 

noise from the position and acceleration signals. The velocity signal was obtained by 

differentiating the filtered position signal. The pressure transducers for the chamber 

pressure are good to 400 Hz. 

The discussion in this subsection is organized as follows. First, some simulation 

and experimental results are presented for the basic performance of the nominal Near IO 

linearizing position tracking controller. This is followed by an analysis of the robustness 

of the Near IO linearizing controller to uncertainty in friction. We consider load 

measurement uncertainty to be either less severe than uncertainty in friction estimation or 
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that it can be lumped with the friction uncertainty. Finally, experimental results and 

simulations are presented for the cascade controller. 

4.2.2.1 Near IO Linearizing Controller 

4.2.2.1.1 Basic Performance 

In this subsection, experimental and simulation comparisons are presented for the 

Near IO linearizing controller given by Eq. 4.37, a PID position controller, and a linear 

state feedback with integral (LSFI) controller. The case FL=0, i.e, where the actuator is 

loaded with a known inertia load (mp=12kg) is considered. The same sets of model 

parameters (from Appendix B) were used in both the simulations and experiments.  

For the Near IO linearizing controller, pole placement was used to compute the 

three gains k1, k2, k3 so that the three closed-loop poles of the position error dynamics 

(Eq. 4.33) were placed at the same location in the left half s-plane. We used system 

simulations to evaluate various pole locations and chose the set with satisfactory 

experimental response (without saturating the current). Similarly, the PID and the LSFI 

controllers were tuned interactively using nonlinear system simulations and experiments, 

and finally selecting the gain settings that gave satisfactory experimental response 

(oscillation free, minimal steady-state error). The tuning of the PID controller was done 

by increasing the proportional (P) gain until either overshoot commenced in the 

experimental “smooth” step response or the control current saturated, in which case the 

other two gains were adjusted. In all of the position control tests performed for this work, 

the control current saturated with just P control before any overshoot appeared in the 

response. The derivative (D) gain excited unwelcome oscillations. The steady-state 
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response error to a step position reference is normally zero and as such the integral (I) 

gain is not necessary3, barring valve dead zone effects. 

Fig 4.27 shows simulation results when tracking a “smooth” step of -30mm-to-

+30mm-to-30mm defined with the smoothening parameter T=0.05. For the Near IO 

linearizing controller, all three closed-loop poles were set at s=-300. The P-gain of the 

PID controller was 20 mA/cm. The LSFI controller gains were K1=65 mA/cm, K2=-0.005 

mA.s/cm, K3 =0.180 mA/MPa, Ki=-827 mA/s.cm. 

The simulation results in Fig 4.27 show better tracking performance for the Near 

IO linearizing controller (NLC) than either the PID or the LSFI controller. However, the 

                                                 
3 Recall that the electrohydraulic actuator acts as velocity source and as such is a natural integrator to 
position. The steady-state response error to a reference position step input is normally zero under closed-
loop P-control. 
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Figure 4.27: Comparison of the basic performance of the Near IO linearizing controller (NLC)
against linear PID and LSFI controllers (simulation) 
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nonlinear controller used larger current peaks than either linear controller. The gains for 

the simulations of all three controllers were chosen to be the ones that gave well-tuned 

performance in the experiments without saturating the control current (±50 mA). 

Fig 4.28 shows results from experiments. The advantage of the Near IO 

linearizing controller (NLC) over the PID and LSFI controllers did not appear to be 

significant. The NLC was affected the most from delays and dynamic elements (signal 

filters) that were relevant in the experiments but absent in the simulated predictions 

above4. Furthermore, there is asymmetry in the experimental response which is attributed 

mainly to asymmetry in the value of the valve coefficient Cv (see Appendix B) whereas a 

single nominal value was used in the experiments with the NLC.  
                                                 
4 The effect of this in loop filtering can be included in simulations, but the topic is omitted here for brevity. 
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Figure 4.28: Comparison of the basic performance of the Near IO linearizing controller(NLC) with
PID and LSFI controllers (experiment) 
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Since the LSFI controller turned out to be inferior to the PID controller, the LSFI 

controller will not be considered any further in this work. It suffices to say here that, 

nonlinear state feedback (the NLC) performed better than linear state feedback (LSFI) for 

this particular system. However, the comparison performed here is not claimed to be 

exhaustive for all possible closed-loop pole locations with the LSFI controller. 

Some of the oscillation in the response with the NLC can be removed by moving 

the three closed-loop poles to the right for a slower response, thereby reducing the effect 

of the filters. However, it should be recalled from the discussion in Subsection 4.1.6.2 

that there still remain the effect of neglected transmission line and servovalve dynamics. 

Fig 4.29 shows the experimental response comparison of the NLC with the poles placed 

at s=-250 and the PID with the P gain kept the same as before. It can be seen that the 

NLC does not perform any better than the PID when slower pole locations are chosen. 
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Figure 4.29: The Near IO linearizing controller(NLC) with slower pole location compared with a 
well tuned PID controller (experiment) 
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To summarize the results on the basic performance of the Near IO linearizing 

position tracking controller (NLC), it is noted that the NLC may not perform any better 

than a well-tuned PID controller in the presence of unmodeled dynamic elements such as 

signal filters, transmission lines and the servovalve. In practice, high quality sensors can 

be used and the signal processing limitation can effectively be removed. Also, the effect 

of the transmission line dynamics can be effectively eliminated by close-coupling the 

accumulators on the servovalve manifold, as discussed in Subsection 3.2.4.  

To make a concluding statement regarding a performance comparison of the Near 

IO linearizing controller with the PID controller, the effect of the dynamics of the 

transmission lines and the servovalve need to be investigated further. First, we keep the 

same parameters for the model of the servovalve dynamics (ωn,v=140 Hz, and ζv=1.1) and 

consider the case where the accumulators are close-coupled with the servovalve, i.e, only 

SECTIONs II of the supply and return hoses are removed from the system model 

interconnection shown in Fig 3.9, in Chapter 3. Note that not all of the transmission hoses 

are removed, unlike the idealized study in Subsection 4.1.6.2. Also, the pump supply 

pressure is set at 21 MPa, as this is the design supply pressure for all components in the 

system5. Under these conditions, it turns out that even faster closed-loop poles could be 

considered for the near-IO linearizing controller without saturating the control current. 

For the simulation result shown in Fig 4.30 , all three closed loop poles are placed at s=-

400 for the Near IO linearizing controller. Similarly, for the PID controller, the previous 

restriction to experimentally useable maximum gain is lifted and the P-gain is tuned to 

280 mA/cm, giving the same control peak magnitude as the NLC. 

                                                 
5 During the experiments for this work, the test system was sharing the hydraulic pump with other systems 
which run at 14 MPa supply pressure. Unless otherwise noted, in all simulations and experiments, 14 MPa 
was used as the supply pressure at the pump output (see Fig 3.1). 
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Figure 4.30 shows that for the same control current peaks for the two controllers, 

the maximum tracking error is smaller with the NLC (by over a 100%). Furthermore, the 

NLC gives a response that overshoots before settling as can be seen in the tracking error 

response. This may be objectionable in some applications. 

Second, we consider the accumulator close-coupling and pump supply pressure 

settings as above, but include the case where the servovalve corner frequency was 

increased to 240 Hz with the damping ratio of 1.1. This corresponds to the true 

specifications of the present servovalve with the supply pressure at 21 MPa [86]. 

Increasing the servovalve natural frequency to 240 Hz approaches the basic assumption 

of a fast servovalve made for the nonlinear controller derivation. Figure 4.31 shows 

simulation results with these changes. The two controllers were independently tuned, as 

above, so that the same control peak was obtained with the two controllers. The P gain of 
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Figure 4.30: Comparison of the Near IO linearizing controller (NLC) with a PID controller
considering accumulators close-coupled with the servovalve (simulation) 
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the PID needed to be reduced to 250 mA/cm since instability occurred when the above 

gain of 280 mA/cm was used. With the reduced P gain, adding even a small D gain 

excited instability. On the other hand, with the fast servovalve, the three closed-loop 

poles for the NLC could be chosen even faster for basically unchanged current peaks. 

We note from Fig 4.31 that the peak tracking error is lower with the NLC by more 

than 350% of the peak tracking error obtained with the PID controller. With the faster 

servovalve operating at the design pressure, and the accumulators close-coupled with the 

servovalve, we see that the Near IO linearizing controller’s performance approaches the 

ideal conditions where the servovalve dynamics were neglected and the transmission 

lines were absent (Subsection 4.1.6.2). It is also interesting that with a faster servovalve 

in the system, the closed-loop poles could be selected further to the left in the s-plane for 

the Near IO linearizing controller, without significantly increasing the control current 
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Figure 4.31:Comparison of the Near IO linearizing controller (NLC) with a PID controller
considering accumulators close-coupled with a faster servovalve (simulation) 
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peak, and thereby improving the advantage of this controller even more. On the other 

hand, for the PID controller, a limit of 280 mA/cm was determined for the P gain beyond 

which instability commenced in the system response. At the end of Subsection 4.2.2.2.1, 

it will be shown that the Near IO linearizing controller can be tuned for even better 

performance before the control current saturates. 

The following points summarize the main results of this subsection: 

• For the experimental test system, the benefits of the Near IO linearizing position 

tracking controller are greatly influenced by the dynamics of transmission lines and 

servovalve, hardware delays, and the limited bandwidth of the position and 

acceleration signal filters. In the experiments where all these effects were present, the 

Near IO linearizing position tracking controller did not perform much better than a 

well-tuned PID (or P) controller. 

• The response of the Near IO linearizing controller can be tuned by properly selecting 

the closed-loop poles in the left half s-plane. With the accumulators close-coupled 

with the servovalve and/or the servovalve operating faster at its design supply 

pressure, the closed-loop poles could be pushed further to the left in the s-plane for 

better tracking performance without saturating the control current. 

• Assuming the availability of high bandwidth signal processing, and using the 

validated system interconnection model from chapter 3, it is argued that the Near IO 

linearizing position tracking controller would be superior to a PID controller in the 

realizable system including a faster servovalve operating at the design pressure and 

accumulators close-coupled on the servovalve manifold. 

Before closing this subsection, we stress that for the rest of the discussion in this 

chapter, where we are not concerned with comparing the nonlinear controllers with other 

controllers, we consider the test system as initially experimented on. That is, neither 

accumulator close-coupling nor higher supply pressure operation of the servovalve is 

considered, unless stated otherwise. 



 137

4.2.2.1.2 Robustness to Uncertainty in Friction Estimation 

In this subsection, we look at the robustness of the Near IO linearizing position 

tracking controller to uncertainty in the estimation of friction. Recall from the discussions 

in Subsections 4.1.4.2 that the analytical friction force model, estimated from 

experiments described in Subsection 3.3.2, was approximated with differentiable 

functions. This was necessary since the controller expression for the Near IO linearizing 

position tracking controller (Eq. 4.37) uses the derivative of the friction force estimate to 

cancel the nonlinear friction force on the piston and result in the linear closed-loop 

position dynamics.  

Again, since it is hardly possible to exactly determine and alter the friction in the 

actual system in a quantifiable manner, we use system simulations to evaluate the 

robustness of the Near IO linearizing controller to different representative cases of 

friction uncertainty. As a first case, we suppose that the nonlinear and smooth friction 

estimation of Subsection 4.1.4.2 with the smoothening parameter γ=5 is used as the 

nominal friction estimate in the controller, and we alter the friction in the actuator model 

to be higher or lower by 100% (including a hypothetical case of zero friction). In 

practice, significant variations in friction can happen with changes in temperature, oil 

viscosity, operating pressure, and also length of running time for the actuator. As a 

second case, we consider changing the nonlinear friction estimation model used in the 

controller to a nominal linear viscous case, or to even no friction estimation while we 

keep the nominal nonlinear estimate of friction in the actuator model. Both of these cases 

are compared with the case of perfect knowledge of the nonlinear friction in the system 

by the controller. 

For the simulations, we return to the model of the test system from Chapter 3 and 

nominal controller parameters listed in Appendix B. For the Near IO linearizing 

controller, all three closed-loop poles are placed at s=-300. We consider the performance 

of the Near IO linearizing controller when tracking a 20 mm-2 Hz sine wave reference 

trajectory where the velocity is limited to ±25 cm/s. This velocity range is where the 

nonlinearity due to friction is the strongest as shown in Fig 4.5. 
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Figure 4.32 shows results for the first case, where the friction estimation used in 

the controller is mismatched from the actual friction in the actuator by ±100%. 

It can be seen from Fig 4.32 that the effect of uncertainty in the friction estimate 

is minimal on the tracking error with the Near IO linearizing controller. When there is 

more friction in the actuator than estimated by the controller, slightly higher control 

current is required, and the peak tracking error is also correspondingly higher. When 

there is less friction in the actuator than estimated by the controller, the peak tracking 

error is lower. The significant deterioration in tracking performance appears mainly near 

zero velocity, when the piston is coming to rest and changing direction of motion. Also 

notable from the control current and the tracking error plots is the evidence of the effects 

of the stick-slip on transition of friction from static to kinetic values near zero velocity.  
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Figure 4.32: Effect of uncertainty in the actuator friction on the tracking performance of the Near
IO linearizing controller (simulation) 
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Now that it is determined that uncertainty in the nonlinear friction estimation does 

not appear to significantly influence the tracking performance of the Near IO linearizing 

controller, we look at the possibility of using less accurate friction estimation for the 

controller on the resulting performance. Fig 4.33 shows a comparison of cases of no-

friction estimation, nominal nonlinear estimation and (nominal) viscous estimation in the 

controller model, while only the nominal nonlinear model is kept in the actuator model.  

Again, the significant difference in the tracking error from the use of a viscous 

(linear) friction or nonlinear friction or no friction estimation in the Near IO linearizing 

controller is mainly near zero velocity, accompanied by the stick-slip phase of the 

motion, as can be seen in the magnified insert of Fig 4.33. It is slightly better to have an 

estimate of friction in the controller, even if only viscous, than to ignore it altogether.  

In summary, it is observed from the simulation study in this subsection that, for 

the test system model under study, the tracking performance of the Near IO linearizing 
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Figure 4.33: Effect of changing the friction estimation model in the Near IO linearizing controller
(simulation) 
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controller does not appear to be significantly affected by uncertainty in friction 

estimation. A simple viscous estimation may be sufficient for this particular system, 

depending on whether the observed difference in tracking error is considered critical for a 

particular application or not. 

4.2.2.2 Cascading Position Tracking with Pressure force Tracking  

As discussed in detain in Subsection 4.1.3.2, the cascade application of the Near 

IO linearizing pressure force tracking controller of Eq. 4.13 as an inner-loop and the 

definition of desired force profile by (Eq. 4.38 or Eq. 4.58) as a synthetic outer-loop 

position control gives a control current that is equivalent to that of the Near IO linearizing 

position tracking controller. In this subsection, we first demonstrate this equivalence of 

the two control approaches with simple experimental results for nominal cases. We then 

discuss tuning of the cascade controller. And finally, we take a brief look at the 

performance of the robust cascade controller. Only cases with FL=0, i.e, where the 

actuator is loaded with a known inertia load (mp=12kg), are considered. 

4.2.2.2.1 Nominal Performance 

Consider that all three closed-loop poles for the Near IO linearizing position 

tracking controller are set at s=-250. The controller gains k1, k2, and k3 are then computed 

using pole placement after which Eq. 4.43 can be used to compute the equivalent 

controller gains kp, kv, and ko. The resulting numerical values are kp=6.95E5 kg/s2, kv= 

5560 kg/s, and ko=250 s-1 for mp=11.12 kg. Figure 4.34 shows the experimental 

comparison of the two controllers when tracking the smooth step reference from -30-to-

30-to-30 mm defined with T=0.05 as in the last subsection. It can be seen that the 

tracking performance of the two control structures is nearly identical as expected. 
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We now consider the tuning of the cascade controller. Recall that, the three gains 

of the cascade control structure have simple physical interpretations. The gain ko dictates 

the speed of response of the force inner-loop as a result of the Near IO linearizing 

pressure force tracking controller (Eq. 4.13), whereas the gains kp and kv determine the 

natural frequency and damping ratio, respectively, of the second-order outer-loop 

position error dynamics given by Eq. 4.40. Similar interpretations are not readily evident 

for the three linear gains of the Near IO linearizing position tracking controller. 

With these comments, and using the above numerical values or the discussion 

following Eq 4.43, we notice that placing all three poles for the Near IO linearizing 

controller at the same pole location of s=-250 is equivalent to setting the natural 

frequency of the position outer-loop at 40 Hz with a critical damping ratio of 1.0 for the 

cascade controller. Also ko=250 s-1 corresponds to a break frequency of 40 Hz for the 

first-order force-loop. This is not a problem, since, with the interpretation revealed by the 

0 0.5 1 1.5 2
-30

-20

-10

0

10

20

30

po
si

tio
n(

m
m

)

time(sec)
0 0.5 1 1.5 2

-20

-10

0

10

20

tr
ac

ki
ng

 e
rr

or
(m

m
)

time(sec)

0 0.5 1 1.5 2
-50

-25

0

25

50

cu
rr

en
t,

 m
A

time (sec)

reference
Near IO linearizing controller
Cascade Controller

 
Figure 4.34: Equivalence of the Near IO linearizing position tracking controller and the cascade
controller (experiment) 



 142

cascade form, the force error loop is separated from the position error loop and the force 

tracking error drives the position tracking error.  

Figure 4.35 presents experimental results showing the effect of tuning the force 

inner-loop by changing gain ko, while keeping the kp and kv gain settings as above. The 

lower the setting for gain ko, the slower the decay rate of force-tracking error, and 

correspondingly, the slower the position tracking error decays. The need to avoid control 

saturation places an upper bound on the gain ko, and hence, on the speed of the tracking 

response for given settings for kp and kv (specified for the outer-loop). 

To demonstrate the effect of the gain ko more elaborately, we can start with gain 

settings corresponding to slower pole location with the Near IO linearizing position 

controller that do not saturate the control current. For example, for the experimental data 

in Fig 4.36, the design started by placing all three poles of the closed loop system for the 

Near IO linearizing controller at s=-202. With the cascade control, this corresponds to 
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Figure 4.35: Effect of independently tuning the inner force loop with gain ko (experiments) 
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settings of kp=4.45E5 kg/s2 and kv=4490 kg/s, such that the natural frequency of the 

second order position error dynamics is 202 (rad/s) or 32Hz with critical damping. Then 

the gain ko, which is the break frequency of the first-order force loop dynamics, can be 

independently tuned over a wide range without saturating the control current. 

We note from Fig 4.36 that, by increasing only ko, it was possible to recover the 

position tracking response previously obtained in Fig 4.35 using higher values for kp and 

kv. This is done without control saturation in this case. 

Similar tuning can be performed using the other two gains, kp and kv, in the 

cascade controller. Fig 4.37 shows the effect of tuning kp while keeping ko and kv at 

values corresponding to three poles at s=-202 as above (i.e, ko=202 s-1 and kv=4490 kg/s). 

Since increasing kp implies increasing the natural frequency of the outer-loop position 

error dynamics, the position response rises and settles faster with higher values of kp.  
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Fig 4.38 shows the effect of tuning of gain kv while keeping the other gains the 

same, i.e., kp=4.45E5 kg/s2 and ko=202 s-1. It can be seen that for this particular choice of 

gains, reducing kv significantly reduces the damping of the response. Some closed-loop 

response improvement is obtained by increasing kv (and hence the damping) in reducing 

oscillations and overshoot. 
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Figure 4.37: Tuning the response with gain kp (experiments) 
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Before closing this subsection, a remark is due regarding the tuning of the gains 

k1, k2, k3 for Near IO linearizing position tracking controller studied in Subsection 

4.2.2.1.1. Consider the servovalve to operate at the design supply pressure of 21MPa with 

natural frequency 240Hz (instead of the 14MPa supply pressure set in the experiments) 

and also the accumulators to be close-coupled with the servovalve. We also assume the 

availability of high bandwidth feedback signal filters. Recall that, under these conditions, 

it was shown in Subsection 4.2.2.1.1 and Fig 4.31, that the Near IO linearizing position 

controller designed by choosing all three poles at s=-450 performs much better than a 

well-tuned PID controller for the same control current peak magnitude. We remark here 

that by exploiting the equivalence of the Near IO linearizing position controller with the 

cascade controller, it is possible to further tune the Near IO linearizing position 

controller. 

The recommended tuning procedure is summarized as follows: 
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1. Select three stable pole locations for the Near IO linearizing controller. Placing all 

three at the same location, s=-a, a>0, gives simple solutions and convenient 

interpretations. 

2. Invert the equivalence relations in Eq. 4.42 to solve for kp, kv and ko. A numerical 

solution is recommended for inverting this equation for arbitrary pole locations. If all 

poles are chosen at s=-a, a>0, then Eq. 4.43 gives the values kp=a2mp, kv=2amp and 

ko=a (only in terms of the mass mp, and the pole location a). Furthermore, the second-

order position tracking loop has a natural frequency of a (rad/s) and critical damping, 

and the first-order force loop also has a break frequency of a (rad/s). 

3. Tune the gain ko to make the force loop as fast or slow as desired. Similar interactive 

tuning can be carried out for the position loop by using kp and kv. 

4. For the Near IO linearizing position controller, compute the gains k1, k2, k3 from 

Eq. 4.42 using the tuning results of step 3. 

4.2.2.2.2 Robust Cascade Control  

As shown in the schematic of Fig 4.6, robust cascade control is achieved by 

utilizing the continuous sliding mode force controller of Eq. 4.57 as an inner-loop to deal 

with the “matched” parametric uncertainty. The outer-loop position controller computes 

the desired force, Fp,d from Eq. 4.58. Recall that with the cascade implementation of these 

two controllers, the unmatched uncertainty in the friction and load force drives the outer-

loop position error dynamics as a disturbance (see Eq. 4.59). The robustness of the 

sliding mode inner-loop force tracking controller has already been investigated in 

Subsection 4.2.1.2. In this subsection, the robustness of the cascade controller to 

unmatched uncertainty is considered.  

It is to be recalled from the discussion on backstepping in Subsection 4.1.5.2 that 

when the unmatched uncertainty due to friction and load force estimation can be bounded 

with a linear growth bound as in Eq 4.68, and the matched uncertainty satisfies a bound 

as in Eq 4.53, bounded tracking can be guaranteed. Unlike the matched uncertainty 

bound, which can easily be computed to aid in the selection of the switching gain, K, and 
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the boundary layer thickness, Φ, the unmatched uncertainty bound of Eq 4.68 is not 

straightforward to specify or guarantee. This is because it doesn’t explicitly involve 

controller parameters. We may, however, infer from the linear growth bound of Eq 4.68 

that one way to approach satisfying the bound is by driving the force error eF to be as 

small as possible in spite of the matched uncertainty in the force loop. This entails using 

very large gain K values with the sliding mode controller. 

In this subsection, we briefly present an experimental result that demonstrates that 

the robust cascade controller can recover the performance of the nominal cascade 

controller extensively studied in Subsection 4.2.2.2.1. Note that the only major difference 

between the two controllers is that the robust version uses the continuous sliding mode 

controller instead of the Near IO linearizing pressure force controller in inner-loop of the 

cascade. While the nominal cascade controller doesn’t consider parametric and modeling 

uncertainty, the robust cascade controller does (within bounds). 

Figure 4.39 shows a comparison of the robust and nominal cascade controllers. 

During experimentation, it was observed that, in general, rather large magnitudes of K 

and/or Φ were necessary to accommodate the unmodeled dynamics of the transmission 

lines, the servovalve and feedback signal filters in addition to the matched and unmatched 

uncertainty. The gain, K, and the boundary layer thickness, Φ, were heuristically 

determined to obtain a chatter free response with the robust cascade controller without 

saturating the control current. For the data in Fig 4.39, the following values were set for 

the nominal controller (and the outer-loop of the robust controller): kp = 3.0E5 kg/s2, 

kv=2000 kg/s, and ko=502 s-1.; and for the robust controller K=3.0E8 kgcm/s3 and Φ=5000 

N. The outer loop gains correspond to a natural frequency of 26 Hz and a damping ratio 

of 0.6. It can be seen that the performance of robust cascade controller is comparable to 

the nominal one for just these settings, while still using lower control current peaks. Note 

that even higher values of K, with correspondingly higher settings for Φ, could be used to 

recover the nominal performance with the robust controller.  
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We now return to the simulation of the system where we consider the desirable 

configuration of the system in which the accumulators are close-coupled with the 

servovalve and the servovalve corner frequency is 240Hz with the damping ratio of 1.1, 

corresponding to the specifications of the present servovalve with the supply pressure at 

21 MPa [86]. Recall from the discussion at the end of Subsection 4.2.2.1.1 that under 

these considerations, the Near IO linearizing piston position tracking controller 

performed much better than a well-tuned PID controller. It would be interesting to see 

how the robust version of this Near IO linearizing controller (through its equivalence to 

the nominal cascade controller) performs.  

As examples, we present two typical perturbations in the model of the 

electrohydraulic system to show the performance of the robust cascade controller in the 

presence of uncertainty. For the simulations, the outer-loop position controller is 

designed to have a natural frequency of 50 Hz and a damping ratio of 1.0, corresponding 
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to kp=1.1E6 kg/s2 and kv= 7000 kg/s. Starting values of the sliding control gain K can be 

estimated from Eq 4.53 as described in Subsection 4.2.1.2.1 for the force inner-loop, and 

subsequently tuned, together with the value of Φ, by looking at the tracking error 

dynamics and the control activity. For the cascade controller considered in this section, 

the choices are K=3E8 kgcm/s3 and Φ=3000N. 

As a first case, the value of the valve coefficient Cv of the actuator is 

underestimated by the controller by 10% (through Kv or Gv). That is, the value of Cv in the 

model of the actuator is increased while a nominal value of Cv is used in the controller. 

Recall from the discussion in Subsection 4.2.1.2.2 that the sliding mode controller is most 

sensitive to this parameter. Also, consider at the same time that the friction in the actuator 

is 100% higher than the estimate used by the controller. Fig 4.40 shows the simulated 

tracking performance of the robust cascade controller under these perturbations. For 

comparison, the case of perfect knowledge (no perturbation) by the robust controller is 

also shown. It can be seen that the robust controller gives bounded tracking errors, unlike 

the non-robust cascade (or Near IO linearizing) controllers which drive the tracking error 

to zero. Recall that with the robust cascade controller, bounded-ness of the tracking error 

is all that is guaranteed. The boundary layer thickness Φ helps tune this bound on the 

tracking error. It can be seen also that the robust controller uses slightly lower current 

peak to give a slightly smaller peak position tracking error. This is generally not the case 

with the other position controllers discussed so far. As will be shown in the next case, 

neither is this the universal trend with the robust cascade controller. 
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As a second and special case that involves the transmission lines, consider the 

supply line pressure at the pump to drop to a level 20% lower than the nominal value of 

21MPa set in the cascade controller. Consider also that the servovalve response is slower 

with corner frequency of 200 Hz. Fig 4.41 shows the simulation results for this case. It 

can be seen that even for this case of the supply pressure uncertainty (which has not been 

considered before), the robust cascade controller does a decent job at tracking this 

particular reference trajectory in the presence of the perturbations. Note also that the 

current peak and the tracking error are both higher in the perturbed case.  
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Figure 4.40: Tracking performance of the robust cascade controller with valve coefficient and
friction perturbations (simulations) 
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In summary, the robust cascade controller discussed briefly in this subsection 

implements the sliding mode inner-loop force controller with an outer-loop position 

controller generating the desired pressure force for the inner-loop. As shown from a 

backstepping point of view in Subsection 4.1.5.2, when the parametric and modeling 

uncertainty satisfy certain conditions, the robust cascade controller keeps the tracking 

error bounded (and not necessarily zero). An experimental result was shown comparing 

the robust cascade controller with the nominal cascade controller. And two perturbation 

cases were simulated to show the tracking performance of the robust cascade controller.  
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4.3 Chapter Summary 

In this chapter, nonlinear piston position and force tracking controllers were 

developed from a feedback linearization framework. Their performance was then 

analyzed using experiments and simulations on the electrohydraulic test system whose 

model was discussed in the previous chapter. 

For the derivation of the nonlinear controllers, we started by listing basic 

assumptions in Subsection 4.1.1. The main ones are neglecting servovalve dynamics and 

assuming that supply and return line pressure fluctuations are minimal. The latter 

assumption is justified when line accumulators are close-coupled with the servovalve. 

Furthermore, to be able to proceed with the Near Input-Output (IO) linearization, it was 

found necessary to assume that the control current does not change signs faster than the 

base sampling rate of the digital implementation of the resulting controllers.  

In Subsection 4.1.2, different versions of Near IO linearizing force tracking 

controllers were derived for two different force output definitions: the pressure force 

defined by Eq. 3.45 and the load force defined by Eq. 4.14. It turns out that the pressure 

force controller has a very convenient connection to the subsequent study of the position 

control problem. Therefore, it was studied in further detail. The basic Near IO linearizing 

piston force tracking controller is given by Eq. 4.13. It was pointed out that this controller 

cancels the dominant nonlinearities in the pressure force dynamics that arise from 

turbulent valve orifice flow and nonlinear hydraulic compliance, and results in first-order 

linear pressure force error dynamics. Furthermore, it was remarked that the Near IO 

linearizing controllers for tracking load pressure (or differential pressure) and pressure 

force differ only by a factor of the piston area. 

The piston position tracking control problem was investigated using two 

approaches in Subsection 4.1.3. The first approach is Near IO linearization of the system 

model using piston position as output. It has been shown that the resulting controller, 

given by Eq. 4.37, cancels the nonlinear contributions of friction and load force as well as 

that of turbulent valve-orifice flow and hydraulic compliance. The controller reduces the 
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closed loop position tracking error dynamics to a third-order linear dynamics which can 

be tuned by its gains k1, k2, and k3. 

The second approach is based on a cascade controller implementation of the Near 

IO linearizing pressure force tracking controller as inner-loop and a feedback plus feed 

forward piston position tracking controller as outer-loop that computes the desired 

pressure force trajectory for the inner-loop. It was noted that by canceling the natural 

velocity feedback in the pressure force dynamics with the Near IO linearizing pressure 

force tracking controller, a decoupling of the pressure force dynamics from the dynamics 

of the piston motion is obtained. The cascade controller presented exploits this and allows 

one to treat the actuator as a linear force generator which applies the desired force for 

positioning the piston.  

It was shown that the cascade controller is theoretically equivalent to the Near IO 

linearizing position tracking controller. The gains in the two controllers (k1, k2 and k3 for 

the Near IO linearizing one and kp, kv, and ko for the cascade controller) are related 

through Eq. 4.42. Furthermore, it was noted that the cascade form reveals useful 

interpretations for the gains involved: kp and kv are coefficients of the second-order 

position error dynamics and ko is the break frequency of the first-order force inner-loop. 

These interpretations can be used to aid in the selection of the gains for the Near IO 

linearizing controller, which do not have straightforward interpretations in themselves. In 

particular, placing all three closed-loop poles at the same location gives the simple 

expressions, given by Eq. 4.43. Experimental and simulation examples and an outline of 

the recommended procedure for tuning the Near IO linearizing controller were detailed in 

Subsection 4.2.2.2.1. 

A summary of the common characteristics and limitations of the Near IO 

linearizing pressure force and position tracking controllers was given in Subsection 

4.1.4.1. The summary includes interpretations for the nonlinearity cancellation as well as 

the choice of the possible structures of the linear part for the Near IO linearizing 

controllers. It is noted that exponentially convergent tracking is achieved only with the 

original choices given by Eq. 4.11 and Eq. 4.32 despite the requirement of higher-order 

differentiability on the respective reference trajectories with these choices. 
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The performance of the basic Near IO linearizing controllers was investigated 

with experimental results in Subsection 4.2.1.1.1 for the force controller and Subsection 

4.2.1.1.1 for the position controller. In the force control case, the Near IO linearizing 

controller performed better than a PID or a LSFI controller in experiments. In the 

position control case, the improvement obtained in experiments with the Near IO 

linearizing controller over the PID or LSFI controller for this particular test setup was not 

significant. However, using model simulations, it was argued that, given practicable 

considerations of accumulator-close coupling and high supply pressure operation for the 

servovalve, significant improvements can be obtained with the Near IO linearizing 

controller (or the robust versions revised below).  

Furthermore, with experiments and simulations, the sensitivity of the Near IO 

linearizing controllers to the estimated controller parameters, βe, Cv and CL, was 

investigated. For the test system considered, the performance of the controllers is most 

sensitive to the valve coefficient Cv, and least sensitive to the leakage coefficient, CL. The 

controllers tolerate a measurable shift in these parameters (of the order of 15% for the 

most sensitive one, Cv) when each is changed individually. In Subsection 4.2.2.1.2, 

simulations were used to show that the position controller, which uses estimates of 

friction, has good robustness to friction uncertainty. 

Robust control versions of the nonlinear controllers were also considered. For the 

force tracking case, it turned out that the Near IO linearizing pressure force tracking 

controller can be slightly modified considering continuous sliding mode controllers to 

formally address robustness to matched uncertainty. This is given by Eq. 4.56 (or 

Eq. 4.57). Choices of the control gain K and the boundary layer thickness Φ involve 

trade-offs between the size of tolerable uncertainty as expressed by Eq. 4.53 and the need 

to avoid chattering due to unmodeled parasitic dynamics. In Subsection 4.2.1.2, these 

trade-offs and verifications of robustness were demonstrated with experimental and 

simulation results. 

For the position tracking case, robustness to unmatched uncertainty of the force-

loop was investigated from a backstepping point of view in Subsection 4.1.5.2. When the 

uncertainties satisfy certain conditions, bounded tracking is obtained by the cascade 
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controller employing the sliding mode pressure force tracking controller as an inner-loop 

to the outer-loop position controller computing the desired force profile for the inner-loop 

by Eq. 4.58. Experimental and simulation results were given for this robust cascade 

controller in Subsection 4.2.2.2.2. 

In conclusion, each of the nonlinear controllers presented in this chapter has merit 

provided the following conditions are met. 

• The model parameters are carefully identified or estimated from simple experiments 

as outlined in the Appendix B. 

• The accumulators are close-coupled with the servovalve to minimize the dynamic 

effect of transmission lines. 

• The servovalve spool dynamics is fast enough to be neglected justifiably in the 

controller design. In this work, servovalve natural frequencies about 4 times higher 

than the desired system bandwidth were found satisfactory. 

• High bandwidth, low-pass feed back signal filtering is available. 

Under these conditions, each of which is feasible, the Near IO linearizing 

controller (and the cascade controller) can give improved performance than what is 

possible with simple linear controllers (PID o LSFI). The robust nonlinear control 

versions can be used to accommodate the lack of high quality model parameter estimates, 

within bounds. 
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Chapter 5 
 

Application to Multi-Actuator Electrohydraulic Systems in Road Simulation 

It is to be recalled from the literature review in Section 2.1 that the common use 

of multi-actuator systems for road simulation employs offline iterative generation of 

reference signals using MIMO (Multiple Input Multiple Output) model inversion 

approaches to remove nonlinearities. In general, decentralized linear PID (or PID+Δp) 

position controllers are maintained as the ‘inner-loop’ real-time actuator controllers. 

Here, by decentralized control we mean the control of each actuator independently of the 

others, in an essentially SISO (Single Input Single Output) configuration. In this chapter, 

the goal is to study the effect of removing the nonlinearities in each actuator’s dynamics 

using decentralized nonlinear controllers.  

To extend the application of the feedback linearizing controllers described in the 

previous chapter to the case of a multi-actuator electrohydraulic system, a model of a 

four-post electrohydraulic road simulator (four-poster) is developed. Basic assumptions 

are itemized in Section 5.1. In addition to the model of the electrohydraulic actuator, 

which has been detailed in Chapter 3, a nonlinear model of a transit bus is considered as 

the dynamically coupled structural load on the actuators. Section 5.2 details the full-bus 

model and the interconnected model of the road simulator adopted for the simulation 

study in this chapter. 

Note that the independent actuators and their respective decentralized controllers 

are coupled through the dynamics of the load (the test vehicle). In Section 5.3, we define 

explicit interaction measures to help in quantifying the interaction between different 

decentralized control loops. In Section 5.4, we shall compare interactions between the 

respective decentralized loops of Near IO linearizing controllers and PID+Δp controllers. 

In Section 5.5, we present an evaluation of the performance of the road simulation 

system using a typical road profile. Certain performance metrics are defined for this 

purpose. Finally, we close this chapter by summarizing the main points in Section 5.6. 
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5.1 Basic Assumptions 

For the model based study in this chapter, we make the following assumptions: 

• The accumulators upstream and downstream of the servovalve are close-coupled 

on the servovalve manifold. It is to be recalled from the previous chapter that this 

allows us to use constant values for the supply and return pressures at the 

servovalve in the nonlinear control laws. 

• As in the previous chapter, the servovalve dynamics is considered to be fast 

enough to be neglected for the purpose of control design. However, a second-

order linear dynamics model with a natural frequency of ωn,v= 66 Hz and ζv=0.7 is 

considered to approximate the valve dynamics in the interconnected model of the 

road simulator. The servovalve in this application is a three-stage servovalve 

employing a two-stage servovalve as a pilot and its own output spool position 

feedback. The maximum control current is estimated to be ±9 mA corresponding 

to an output spool travel of ± 0.170 cm given in product specifications [87]. 

• To simplify the analysis, we assume perfect knowledge of the necessary 

parameters for the nonlinear controller. In other words, the nominal parameters of 

the electrohydraulic actuators are used in the controller expressions. The robust 

control versions described in the Chapter 3 will not be considered. Aside from the 

determination of parametric and measurement uncertainty bounds, we note that 

there should be no major difficulty in switching to the robust versions of the 

nonlinear controllers for this application as well. 

• For comparisons with PID+Δp controllers, we consider the Near IO linearizing 

position tracking controller in this chapter. It is to be recalled that, this controller 

is equivalent to the cascade implementation of the Near IO linearizing pressure 

force tracking controller as an inner-loop and the feed forward plus feedback 

position controller as an outer-loop. 

• We consider a nonlinear full-bus model of a transit bus to represent the test 

vehicle on the road simulator. Subsection 5.2.1 lists further assumptions pertinent 

to this model. 
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5.2  Description of the Model 

5.2.1 Full-Bus Model 

We consider a full-bus model of a transit bus with dependent suspensions as 

shown in Fig 5.1. The air suspensions and shock absorbers are modeled as nonlinear 

elements. The parameters of the model are extracted from various sources [88-92] and are 

listed in Appendix E. Yaw motions of the bus are considered irrelevant on the four-

poster. Pitch and roll motions of the body (sprung mass) and of the unsprung masses are 

assumed to be small enough to allow use of small angle approximations for the pitch and 

roll motions. The resulting model has seven degrees of freedom comprising of the 

following: bounce of the rear and front unsprung masses (zur, zuf), roll motion of the rear 

and front unsprung masses (φur, φuf), and the pitch (θ), roll (φ) and bounce (zs) motions of 

the sprung mass.  
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Figure 5.1: A full-bus model with dependent suspensions 



159 

 

The equations of motion for the sprung mass (Ms) and front and rear unsprung 

masses (Muf, Mur) are: 

Note that in the above equations, we have assumed compressive tire forces to be positive 

for reasons that will become evident in the next subsection. These tire forces, Fti, are 

approximated by: 

And the nonlinear suspension and damping forces, Fsi, are given by:  

where, fsi and fdi represent interpolations in tables of air suspension stiffness and shock 

absorber damping data, respectively. The displacements of the suspension attachment 

points, zsi, i=1, 2, 3, 4, are given by: 

The displacements of the wheel centers, zui, i=1, 2, 3, 4, are given by:  
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Not shown in Fig 5.1 are the auxiliary roll stiffness and damping torques (Tarr,Tarf) 

and the body pitch stiffness and damping torque (Tp). These are included to account for 

any additional stiffness and damping provided by elements of the suspension geometry 

such as torsion bars and radius rods. The defining equations are: 

where, Karr ,Karf , Kap are the respective auxiliary torsional stiffnesses, and Carr, Carf and 

Cap are the auxiliary torsional damping coefficients. 

5.2.2 Road Simulator Model Interconnection 

Note that for the full-bus model of the previous section, the piston positions, xpi, 

of the four actuators represent road profile inputs to the test vehicle as a system. On the 

other hand, the tire forces, Fti, i=1, 2, 3, 4, can be considered as the outputs of the full-bus 

model and act as the load forces on each of the electrohydraulic actuator load-plates. 

These compressive-positive tire forces Fti, i=1, 2, 3, 4 acting on the actuator load-plates 

have an equivalent role as the tensile-positive specimen reaction forces, FL, in the fatigue 

testing actuator depicted in Fig 3.12 (Chapter 3). Therefore, we state here that, with this 

observation and the basic assumptions listed in Section 5.1, the electrohydraulic actuator 

model developed in Chapter 3 can be used for each of the actuators of the road simulator. 

Similarly, the nonlinear controllers developed in the Chapter 4 apply equally well to each 

of the actuators of the road simulator. 
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Figure 5.2 shows how the input-output interconnection of the road simulation 

system is implemented. To simplify the presentation, the figure shows the 

interconnection of a quarter-bus mechanical model to the model of the electrohydraulic 

actuator including its corresponding controller. The case of the full-bus model has a 

similar structure. 

5.3 Cross-Coupling and Interaction Measures 

In the practical ‘black-box’ approaches reviewed in Section 2.1, the MIMO FRF 

models’ off-diagonal terms represent linear cross-coupling between the respective 

excitation and response pairs. However, it is desirable to have a more concise measure of 

actuator interaction arising from the dynamic (and nonlinear) cross-coupling in the fore to 

aft and side to side motions of the test vehicle. Such a measure could be used to directly 

evaluate and compare potential decentralized controllers without completing a full 

(iterative) response replication procedure.  

Three main interaction measures are in use in multivariable process control 

applications. These are the Relative Gain Array (RGA), the direct Nyquist array and the 

μ- or structured singular value interaction measure [58]. The last two can be computed 

only in the frequency domain. However, frequency domain analysis is not applicable to 

non-linear systems in a straightforward manner. In this chapter, we seek time domain 

extensions of the RGA for use with the nonlinear model of the road simulation system. 

Reference 
Generator Quarter Bus ModelModel of one actuator 

and its controller

Ft

xd xp

v p

Figure 5.2: Road simulator model interconnection 
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The RGA was initially defined for steady-state processes by Bristol [55] and was 

later extended by Witcher and McAvoy [54] to include dynamic interaction 

measurement. Ramachandran and Dransfield [56] used the RGA to look into the origins 

and behavior of interaction between electrohydraulic actuators under linear decentralized 

force tracking controllers operating on a flexible cantilever beam load. In this chapter, we 

use the RGA to study interaction between the actuators in a road simulator under 

decentralized linear and nonlinear position tracking controllers. 

Consider a linear 2x2 system with transfer matrix G, input vector [ ]Tuu 21=u and 

output vector [ ]Tyy 21=y  as shown in Fig 5.3.  

The (i,j) element of the RGA is defined as:  

It compares the effect of input uj on output yi when all other inputs are zero (or 

open-loop) against the effect when all other outputs are held constant (by possibly perfect 

closed-loop control) at any particular frequency ω (s=jω). Note that the notation with the 

signals Uk and Yp as subscripts indicates which variables to hold constant when 

evaluating the derivatives. Given the components of the transfer matrix G, one can show 

that: 
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Figure 5.3: A two-input two-output system 
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The closer an element λi,j of the RGA is to 1, the stronger is the coupling between 

that particular input uj and output yi. Note that the RGA is a matrix of the same size as G 

and that it is invariant under scaling. Therefore, the closer the RGA is to the identity 

matrix, the stronger the diagonal dominance of the system G. This implies that in such a 

case, a decentralized control loop employing a diagonal input-output pairing of ui with yi 

suffers minimal interaction effects from other loops.  

Bristol [55] showed that the elements in any row or column of RGA sum to one. 

Due to this property, for an n x n system, only (n-1) x (n-1) elements need to be 

computed. Therefore, for a 2x2 system, use of Eq. 5.8 is sufficient. Furthermore, it can be 

shown that: 

where the dot-star(.*) product denotes element by element multiplication [93, 94]. 

As noted above, the closeness of the RGA to the identity matrix can be used to 

measure the diagonal dominance of a system G at relevant frequencies. The RGA 

number, defined as the sum norm of the deviation of RGA matrix from the identity matrix 

gives a more compact measure of interaction [94]. It is given by:  

where, s=jω is substituted to make the distinction that the RGA number is a norm and 

hence a real scalar at each frequency ω. The closer the RGA number is to zero at a 

particular frequency, the more diagonally dominant the system G is, and the less a 

decentralized control employing SISO loops between input ui and output yi is affected by 

interaction with other loops. 

For nonlinear systems, such as the system in the present study, time domain 

extensions of the RGA are desirable. To do this, one by one, each input is step changed 

while the other input is held steady [54] . The integrals of the deviations of the respective 

responses from the steady state or equilibrium values11are computed as: 

                                                 
11 Equally, the responses themselves or the integrals of the squared deviations of the responses can be used. 

TsGsGsRGA ])([*).()( 1−=  (5.9)

sumIjRGAnumberRGA −= )()( ωω  (5.10)



164 

 

Then, a matrix with similar structure as G is assembled. For the 2x2 case, we 

have:  

where, the 2,1, =iuiδ , are the step changes in the respective inputs. In the case of smooth 

steps (as shall be used in this work), similar integrals as Eq. 5.11 can be computed. By 

analogy with Eq. 5.9 , for n x n system, we compute the time-dependent RGA by:  

Similarly, a time-dependent RGA number corresponding to Eq. 5.10 can be 

computed. It should be noted that, while the RGA elements show actual cross-coupling 

between respective input-output pairs, the RGA number gives a compact measure of the 

overall interaction between all input-output pairs.  

When decentralized control is used in diagonal SISO loops, the RGA can be used 

to assess the potential or the effectiveness of such control. If the (MIMO or decentralized 

SISO) controller is included in the system of interest for the RGA computation, then the 

RGA can be considered as an indicator of control effectiveness in reducing interaction. 

On the other hand, if the controller is excluded from the system for the RGA computation, 

the results indicate the degree of interaction that a controller(s) is expected to deal with, 

and in particular the potential control difficulty facing decentralized SISO control loops. 

These interpretations will be exploited in the discussion that follows on the decentralized 

control of the multiple actuators of the road simulator 
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5.4 Interactions in Decentralized Control of Multiple Actuators 

In a previous paper [95], the author used ADAMS simulations of a four-poster to 

investigate the nature of interaction between the actuators in the open-loop condition as 

well as under decentralized linear PID control of load plate (piston) positions. It was 

shown there that the RGA number (and interaction) was reduced by a factor of about 200 

when the decentralized PID position control loops were included as opposed to the 

theoretical12 open-loop condition on all actuators. It was also remarked there that, for a 

high setting of effective bulk modulus at 1200 MPa and decentralized PID position 

control gains chosen somewhat arbitrarily, the remaining interactions between the 

actuators with piston position outputs were minimal and died away quickly. On the other 

hand, the interactions facing a second cascaded decentralized control loop acting on tire-

spindle vertical accelerations, with the decentralized PID piston position loops as inner-

loops, were very significant and persistent. 

In this section, the emphasis is placed on comparing the interaction effects 

between decentralized loops of a linear PID+Δp controller against the decentralized loops 

of the Near IO linearizing position controller. For this comparison, we take advantage of 

the two interpretations of the RGA given above: one for investigating the effectiveness of 

decentralized linear and nonlinear position control loops and the other for evaluating the 

potential of a second cascaded decentralized control loop acting on a remote response 

parameter like tire-spindle vertical acceleration. 

5.4.1 Tuning the Decentralized Controllers 

As noted before, simulations of the nonlinear system model described in Section 

5.2 are employed for the discussion in this chapter. It was first attempted to tune the 

decentralized controllers for the four actuators by using a nonlinear quarter-bus model 

                                                 
12 Rectilinear electrohydraulic actuators behave as velocity sources and hence as integrators to position. 
Open-loop use with position output is mainly of theoretical importance. 
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with parameters corresponding to the nonlinear full-bus model. The equations describing 

a quarter-bus (often referred to as quarter-car) model can be derived from Eq 5.1 by 

ignoring all pitch and roll motions and focusing on one corner of the full-bus. Two 

different quarter-bus models were employed to tune the controllers for the front and rear 

actuators, since the front quarter-bus model parameters are generally different from those 

of the rear ones. 

However, the best actuator control gains determined using the quarter-bus model 

led to instability when used on the coupled four-actuator case with the full-bus model. 

The problem was particularly severe when tuning the P-gains of the PID+Δp controllers. 

This is to be expected considering the ignored motion cross-coupling in the quarter-bus 

model that is relevant in the more realistic full-bus model. The gains are, therefore, re-

tuned interactively by considering the useable gains on the full-bus four-actuator system 

as well. The problem of instability (due to coupled load dynamics) with higher gains or 

faster pole locations is much less acute for the Near IO linearizing controller. This is 

because the Near IO linearizing controller uses some of the cross-coupling information 

via feedback of the tire force, which is equivalent to the load force FL in the controller 

expressions derived in chapter 4. 

Fig 5.4 shows a basic comparison between the tracking performance of the Near 

IO linearizing position controller and a PID+Δp position controller for one of the rear 

actuators loaded with a quarter-bus. A large magnitude smooth step reference (from -60 

mm to 60 mm) was generated as discussed in Section 4.1.6.1 with T=0.05. Following the 

procedure in Chapter 4, all three poles of the Near IO linearizing controller were placed 

at s=-400 for the fastest response that doesn’t saturate the control current (±9mA) for the 

chosen smooth step reference. As discussed above, the P-gain for the PID+Δp controller 

is tuned for reducing the peak tracking error for the chosen smooth step-reference without 

destabilizing the response in the four-actuator full-bus case as well. The Δp-gain 

introduces artificial leakage, and therefore damping [10, 26], but it could not be 

arbitrarily increased without increasing steady-state error. For the data in Fig 5.4, P-

gain=3 mA/cm, Δp-gain=0.001 mA/MPa. 
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A similar comparison was obtained for the front actuators. With the lighter 

masses and softer suspension associated with the front portion of the bus, the closed-loop 

poles for the Near IO linearizing controller could be pushed further to the left (to s=-650) 

than it was possible with the rear actuators without saturating the control current or 

inducing instability of the full-bus four-actuator system. The P-gain of the PID+Δp 

controller could likewise be increased further (to 18mA/cm) without destabilizing the 

full-bus case. However, the comparative performance of the Near IO linearizing 

controller with the PID+Δp controller remains similar to that shown in Fig 5.4. It is 

remarked here that, the decentralized Near IO linearizing controller shows consistently 

less tracking error peak magnitudes than the decentralized PID+Δp controller, under the 

assumptions listed in Section 5.1 and the tuning considerations discussed above.  
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Figure 5.4: Tuning the Near IO linearizing controller (NLC) and a PID+Δp controller using a
quarter-bus load model 
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The decentralized controllers tuned using the approach described in this 

subsection will be used to assess interactions for the four-actuator cases in the following 

subsections. 

5.4.2 Interaction Resulting from Decentralized Piston Position Control 

The effect of interaction due to dynamic load cross-coupling on the decentralized 

control of each of the four-poster’s actuator load-plate positions is investigated in this 

section. Both time responses and the RGA interaction measures are used to analyze 

interactions. To this end, the nonlinear system is first brought to a steady-state and then, 

one by one, the reference inputs (desired positions) for the position control loops are step 

changed, while the other actuators are held at zero reference. As remarked in Section 5.3, 

only the effectiveness of decentralized control is being evaluated with these tests. This is 

because the controller for each actuator is already included in the system description for 

the RGA analysis (by analogy with plant G in Fig 5.3 ). 

The models for the four actuators in the present study use identical parameters. 

Unlike the assumption made in the previous paper by the author [95], internal cylinder 

leakage is not ignored. The effect of internal leakage is seen to be the appearance of a 

steady state error in the present study (as noted in Chapter 4 as well). 

Fig 5.5 shows one set of responses following a step change in the reference input 

for the rear-left actuator controller from 0 to 80mm (with smoothening parameter 

T=0.05) while zero reference is given to the controllers of the other actuators. Similar 

results were obtained when applying the step change at the other actuators. 
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It can be seen from Fig 5.5 that, following the step disturbance, clearly, 

interaction is present between the decentralized control loops, but the degree of 

interaction is very small with either controller. The strongest interaction is side to side. 

That is, the rear-left actuator interacts the most with the rear-right actuator, and so on. 

Furthermore, the advantage of the Near IO linearizing controller over the PID+Δp 

controller does not appear to be significant in terms of minimizing interactions in this 

application. 

The diagonal elements of the RGA matrix and the RGA number are computed by 

repeating the tests shown in Fig 5.5 with the other actuators. The results are plotted in 

Fig 5.6. For the RGA elements (λi,j), the actuators are indexed as 1, 2, 3, 4 corresponding 

to front left, front right, rear right , rear left, respectively. 
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Note that the time scales shown in Fig 5.6 are within the rise-time of the step 

change in the reference (or the corresponding response at the test actuator at which the 

step change is applied) shown in Fig 5.5. The diagonal RGA elements rapidly approach 

one and the RGA number vanishes to zero very fast, showing the diagonal dominance of 

the decentralized position control loops. The RGA number with the Near IO linearizing 

controller decays slightly faster than with the PID+Δp controller but overall either 

controller works well on suppressing interactions. The large initial magnitudes of the 

diagonal RGA elements show that interactions are present in the system, but they die 

away very quickly. The switch in the sign of the diagonal RGA elements magnified in the 

inserts in Fig 5.6 is typical of systems showing inverse response (related with non-

minimum phase plants) [54]. In the present application, Fig 5.5 shows that inverse 

response is evident in the actuators on the right side (both front and rear), when positive 

0.7 0.8 0.9 1 1.1 1.2
-400

-300

-200

-100

0

time (sec)

D
ia

go
na

l e
le

m
en

ts
 o

f  
R

G
A

 (
λ i

,i
)

Decentralized NLC

0.7 0.8 0.9 1 1.1 1.2
0

200

400

600

800

time (sec)

 R
G

A
 n

um
be

r

0.7 0.8 0.9 1 1.1 1.2
-400

-300

-200

-100

0

time (sec)

D
ia

go
na

l e
le

m
en

ts
 o

f  
R

G
A

 (
λ i

,i
)

Decentralized PID+Δp Controller

0.7 0.8 0.9 1 1.1 1.2
0

200

400

600

800

time (sec)

 R
G

A
 n

um
be

r

0.95 1

-10

1

10 

0.95 1

-10

1

10 

 λ1,1  λ2,2  λ3,3  λ4,4

 
Figure 5.6: Diagonal elements of the RGA and the RGA number with decentralized Near IO 
linearizing controller (NLC) (left column) and decentralized PID+Δp controller (right column).  
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step reference is applied to the rear left actuator. As Witcher and McAvoy [54] point out, 

these large and switching RGA magnitudes are normally expected to cause control 

difficulty. In the present application, however, the interactions die away very fast, even 

faster than the ‘smooth’ step change (considered reasonable for the application), showing 

the effectiveness of the present decentralized feedback controllers. 

In the paper [95], we used short time-span open-loop tests, without any control on 

all actuators, to trace the physical cause of this behavior. When one actuator moves in 

response to current input, cross-coupling in the vehicle’s dynamics causes load changes 

on the other actuators even if they were operating with a closed valve (zero current). 

However, the actuators do not move much, or any induced motion due to these load 

changes dies away quickly, similar to the closed-loop case shown in Fig 5.5. This can 

certainly be attributed to the good stiffness property of the electrohydraulic actuator.  

The stiffness (inverse of compliance) of the electrohydraulic actuator is largely 

determined by the effective bulk modulus, βe, in the actuator cylinder chambers. It is to 

be recalled that the Near IO linearizing controller cancels the effects of nonlinear 

compliance in the hydraulic cylinder. In simulation experiments conducted by assuming 

perfect knowledge of the value of βe by the Near IO linearizing controllers, and lowering 

the value of βe by as much as 60% from a nominal value of 850 MPa, interactions 

remained insignificant or died away very quickly. In addition, as pointed out in Chapter 

4, the Near IO linearizing controller tolerates a measurable mismatch or uncertainty in the 

value of βe without degrading its performance. Fig 5.7 demonstrates the interactions in 

decentralized loops when the value of βe in the system is 425 MPa, i.e., 50% lower than 

the setting in all four Near IO linearizing controllers. 



172 

 

Comparing the plots in the left column of Fig 5.7 with those in the left column of 

Fig 5.5, we see that interaction leads to higher magnitude oscillations for the case in 

Fig 5.7. However, when compared with the size of the smooth step applied (80 mm), 

these oscillations are insignificant. This is further confirmed by the little change in the 

RGA magnitude and time history seen between the right column of Fig 5.7 and the left 

column of Fig 5.6.  

We conclude this section by stating that the four-poster with decentralized control 

of actuator load-plate positions and the transit bus as a test vehicle behaves as an almost 

diagonal MIMO system. Any interactions exhibited are quickly suppressed by either the 

decentralized Near IO linearizing position controller or the decentralized PID+Δp 

position controller. The advantage of the Near IO linearizing controller with respect to 

interactions appears to be small. The performance of the individual loops, however, 
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Figure 5.7: Effect of mismatch in the bulk modulus parameter (βe) on interactions when 
employing decentralized Near IO linearizing controllers. Time responses (left column), diagonal
elements of the RGA and the RGA number (right column) 



173 

 

depends of the tuning considerations discussed in the previous subsection; in which case, 

the Near IO linearizing controller shows better tracking properties. 

5.4.3 Interaction Facing Decentralized Cascade Spindle Acceleration Control 

It has been discussed in the previous subsection that the interactions in a four-

poster, when measured in terms of actuator load-plate positions, disappear very quickly 

and that, the decentralized control of actuator load-plate positions does a good job of 

suppressing the interactions. In this section, we suppose that some remote response 

parameters is to be considered for decentralized feedback control cascaded13 with the 

default inner-loop control of load-plate positions. Vertical spindle accelerations are one 

common set of response parameters employed in response replication approaches to road 

simulation testing [6, 16]. 

The goal of the simulation analysis in this subsection is to see if cascaded 

decentralized control should indeed be considered for tracking desired spindle 

acceleration responses without resorting to iterative response replication approaches. We 

make the evaluation based on an interaction analysis of the decentralized control loops 

with spindle vertical accelerations as outputs. For the model given in Subsection 5.2.1, 

the relevant outputs are uiz&& , where zui, i=1, 2, 3, 4, are the displacements of the wheel 

centers given by Eq. 5.5. 

The cascaded control structure for one leg of the four-poster is shown 

schematically in Fig 5.8. Note that Controller I in the figure represents either the Near IO 

linearizing position controller or the traditional PID+Δp controller, while Controller II 

represents the cascaded controller being considered for tracking a desired spindle vertical 

acceleration signal, udz&& . Recall that when Controller I is the Near IO linearizing position 

controller, the feedback signals include, in addition to the position, xp, shown), chamber 

                                                 
13 The reader should note the distinction between the cascade control of remote parameters, considered in 
this section, and the cascade control of piston position with pressure force control, outlined in Chapter 4. 
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or differential pressure(s), velocity and acceleration as well estimates of tire and friction 

forces. 

For the RGA analysis of this subsection, the system of interest is boxed by the 

dashed lines in Fig 5.8. The reference load-plate positions (xd) are outputs of the cascaded 

controller and inputs to the boxed system. We invoke the second use of the RGA to 

evaluate interactions in the proposed decentralized cascade structure, without designing 

Controller II14. We proceed as in the previous subsection by step changing the reference 

load plate positions one actuator at a time, while the other actuators were given zero 

reference inputs. The outputs of interest, here, are the spindle vertical accelerations. 

Figure 5.9 shows the time history of spindle acceleration responses following 

smooth step change (of 80mm with smoothening parameter T=0.05) in the reference 

input to the rear left actuator. The results are qualitatively similar when the reference 

input is applied to the other actuators. Note the different acceleration scales between the 

top and bottom row plots. 

                                                 
14 When Controller I is the Near IO linearizing controller (or its cascade equivalent of Chapter 4), 
Controller II should output the relevant derivatives of the desired position as well.  
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Figure 5.8: Cascaded decentralized control structure for spindle vertical acceleration 



175 

 

It can be seen from Fig 5.9 that, again, the strongest response interaction happens 

side to side; the spindle accelerations for the front actuators are of the same order of 

magnitude, as are those of the rear actuators. However, unlike the case of load-plate 

position control discussed in the previous subsection (see Fig 5.5), the interactions in the 

present case are much more significant. We also note from the figure that for the 

controllers tuned specifically as described in Subsection 5.4.1 for the position tracking 

inner-loops (Controller I), higher spindle accelerations are excited by the Near IO 

linearizing controller. This is not necessarily a negative on the performance of the Near 

IO linearizing controller, since at this point, the cascade controller (Controller II), is not 

designed, nor is the desired spindle acceleration profile specified. However, we note that 
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response interactions are similar when using either the Near IO linearizing controller or 

the PID+Δp controller as the inner-loop controller (Controller I).  

Further analysis of the interactions can be made by computing the RGA. The top 

rows of Fig 5.10 show element (1, 1) of the RGA, λ1,1, relating front-left spindle vertical 

acceleration to front-left actuator reference position. The other diagonal RGA elements 

also show similar behavior. The RGA number, plotted in the bottom rows of Fig 5.10, 

gives the interaction information for the whole system in a compact manner.  

The farther the value of a diagonal element of the RGA is from 1, the more the 

decentralized cascade controller (Controller II) at this location gets affected by 

interaction from the other control channels. As can be seen from Fig 5.10, the diagonal 

RGA element (1, 1) deviates widely and randomly from 1. The magnified insert also 

1 2 3 4
-100

-50

0

50

100

time (sec)

D
ia

go
na

l E
le

m
en

t(
1,

1)
 o

f  
R

G
A

 (
λ 1

,1
)

Using decentralized NLC as Controller I

1 2 3 4
0

100

200

300

time (sec)

 R
G

A
 n

um
be

r

1 2 3 4
-100

-50

0

50

100

time (sec)

D
ia

go
na

l E
le

m
en

t(
1,

1)
 o

f  
R

G
A

 (
λ 1

,1
)

Using decentralized PID+Δp as Controller I

1 2 3 4
0

100

200

300

time (sec)

 R
G

A
 n

um
be

r

2 2.2 2.4

-5 

0  

Figure 5.10: Diagonal element (1,1) of the RGA and the RGA number computed with spindle 
acceleration response, when Controller I is the decentralized Near IO linearizing controller (NLC)
(left column) and the decentralized PID+Δp controller (right column). 



177 

 

shows that the RGA element haphazardly switches signs even when it is momentarily 

close to 1. Interactions can be seen more clearly by looking at the time history of the RGA 

number, which takes on increasingly nonzero values as time goes by. Again, there is little 

difference in the interactions exhibited with either the Near IO linearizing controller or 

the PID+Δp controller as the decentralized inner-loop controller (Controller I). 

Recall that in the position control case of the previous subsection, the RGA 

number quickly settles to zero under decentralized position control. The fact that the RGA 

number, in the present case, persistently differs from zero suggests significant control 

problems (due to interactions) facing a cascaded decentralized control of spindle 

accelerations employing independently controlled actuators of the four-poster. These 

interactions can be compounded by the nonlinearity of tire compliance15 between the 

actuation inputs and the spindle acceleration measurement points. Given these excessive 

and persistent interactions, therefore, it is not considered worthwhile to design a 

decentralized cascade controller of vertical spindle accelerations employing the actuators 

of the four-poster.  

5.5 Performance of the Road Simulator under Decentralized Position Control 

In the previous section, we used step test reference profiles to confirm that 

decentralized load-plate position control leaves minimal interaction between the actuators 

of the road simulator with a transit bus as a test vehicle. However, not much has been 

said regarding the performance of the road simulator under these decentralized 

controllers on actual road profiles. In this section, we define certain metrics to assess the 

performance of the road simulator with an actual road profile as a reference.  

For the discussion in this section, the nonlinear full-bus model described in 

Section 5.2 shall be used for evaluating the performance of the road simulator under 

decentralized Near IO linearizing position controllers and decentralized PID+Δp position 

                                                 
15 Note that a linear tire compliance model is considered in this study. 
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controllers. In this section, we include comparisons of the tracking performance of the 

two controllers using a typical road profile as the desired load-plate position trajectory.  

Recall from the model interconnection described in Subsection 5.2.2 that on the 

road simulator, the vehicle model can be considered to be driven by the actuator load-

plate positions (xpi) as inputs. Here, we shall also consider the case where the vehicle 

model is driven directly by the actual road profile (replacing xpi by the road). We shall 

refer to vehicle response obtained under the latter case as the “on-the-road” response. The 

performance of the road simulator system in replicating road excitation shall be evaluated 

by comparing on-simulator response to “on-the-road” response.  To this end, we first 

define some performance metrics. 

5.5.1 Performance Metrics 

Road profiles typically contain such a widely varying excitation that it would be 

inconvenient to investigate the effectiveness of the road simulator by scrutinizing time 

responses or power spectral density (PSD) plots obtained with road profile inputs. The 

performance metrics we shall consider here give single numbers that quantitatively 

indicate the quality of the road simulation. We shall assume that all relevant responses 

output from the numerical simulation are discretized with a constant, yet fast enough, 

sampling rate.  

A simple metric is the rms value of a response parameter X, which is given by: 

where N is the number of data points considered. We shall compare the rms values of the 

sprung and unsprung mass acceleration responses on the road simulator and on-the-road. 

Brauer [21] suggested the related metric called Euclidean error. It is computed by taking 

the rms value of the difference between two discrete signals X and Y of length N as 

follows: 
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We shall compare the Euclidean position error for the decentralized Near IO linearizing 

position controller and the decentralized PID+Δp controller as two cases on the road 

simulator. 

Since vehicle responses are often described in the frequency domain, we also 

compute the Power Spectral Density (PSD) for the sprung mass vertical acceleration for 

both on-simulator and “on-the-road” responses. For a compact comparison, the Euclidean 

sprung mass acceleration error is then computed between the responses with each of the 

two decentralized control schemes and the “on-the-road” response. 

5.5.2 Results for a Rough Road Profile 

The International Roughness Index (IRI) is often used to characterize roughness 

of road surfaces [96]. The typical road profile we consider in this section is of IRI 170 

(in/mile), which falls under a mediocre (bad) road classification. The road profile data 

used here have been taken from ref [96] and they are actual road profiles from field 

measurements for a total distance of 500 meters. The profiles differentiate between left-

side and right-side tracks and are available as tables of horizontal travel vs. vertical 

deviation. This data are easily converted to time signals for an assumed vehicle speed. 

We consider speeds of 35 mph (56 km/hr) and 55 mph (88 km/hr) in this section. Note 

also that the time lag (= wheel base/vehicle speed) differentiates the road excitation 

applied to the front and rear tires. 

For the discussion in this section, the two decentralized controllers are tuned as 

described in Subsection 5.4.1, but this time, for the specific road profile considered here. 

Recall that for a nonlinear system, the performance of the controller (particularly of the 

Near IO linearizing one) depends on the reference trajectory. Since the time waveform 

corresponding to a road profile depends on the vehicle speed, one may consider tuning 
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the controller gains for each vehicle speed as well. However, for the basic comparison 

presented in this section, this was not found necessary. The three-closed-loop pole 

locations for Near IO linearizing controllers of the front actuators are set at s=-1000 and 

those of the rear ones are set at s=-900; for PID+Δp controllers of the front actuators, P-

gain= 18 mA/cm and Δp-gain=0.004 mA/MPa and for the rear ones, P-gain= 3.5 mA/cm 

and Δp-gain=0.005 mA/MPa. These gains are determined for a well-tuned tracking 

performance with the vehicle speed at 35 mph and are used for 55 mph as well.  

Figure 5.11 shows a section of the time waveform plots for the load-plate tracking 

behavior for the rear left actuator. Note that the Near IO linearizing controller gives an 

almost perfect tracking compared to the PID+Δp controller. Table 5-1 summarizes the 

tracking performance for all actuators covering the whole 500 m-long profile using the 

Euclidean position error metric. The position error is computed as the instantaneous error 
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between the actuator position output and the road-profile reference for the particular 

actuator, considering time lags and left-side/right-side track differences. As should be 

expected, for both controllers (which were tuned at 35 mph), the Euclidean error is higher 

at 55 mph, but in all cases, the Near IO linearizing controller outperforms the PID+Δp 

controller in terms of matching each load-plate position with the respective desired road 

profile. The improvement in the tracking performance with the Near IO linearizing 

controller is more than about 60% at all actuators and at both vehicle speeds.  

Table 5-2 shows a further comparison in terms of vehicle response parameters, 

namely, the rms values of sprung and unsprung mass accelerations for the whole 500 m-

long profile. The on-simulator responses using the decentralized Near IO linearizing 

controller have better matching with the “on-the-road” responses than those using the 

PID+Δp controller. We also note the improvement with the Near IO linearizing controller 

is reduced when looking at vehicle responses instead of actuator load-plate tracking 

errors. This can be attributed to the filtering characteristics of the tire and the suspension. 

Table 5-1:Comparison of the tracking performance for the two decentralized controllers

Euclidean Position Error (mm) Vehicle 
Speed 
(mph) 

Decentralized 
Controller Front Left Front Right Rear Right Rear Left 

PID+Δp 0.166 0.189 0.645 0.640 
35 

NLC 0.060 0.072 0.088 0.072 

PID+Δp 0.338 0.362 0.897 0.893 
55 

NLC 0.137 0.162 0.211 0.177 
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Finally, we look at a comparison of responses in the frequency domain. 

Figure 5.12 shows the power spectral density (PSD) of the on-simulator and “on-the-

road” sprung mass acceleration responses with the vehicle speed at 55mph. For lower 

frequencies, there is little difference between the two decentralized controllers. However, 

at higher frequencies, the on-simulator response with the Near IO linearizing controller 

matches the “on-the-road” response much better that the on-simulator response with the 

PID+Δp controller. 

Table 5-2: Comparison of rms values of on-simulator and “on-the-road” responses 

Form of excitation 
(controlled actuator or direct road profile input) Vehicle 

Speed(mph) 

Response 
Parameter 

(accelerations (g)) PID+Δp NLC road 

sprung mass 0.0116 0.0120 0.0119 

front unsprung 
mass 0.3242 0.3201 0.3176 35 

rear unsprung 
mass 0.3926 0.4564 0.4377 

sprung mass 0.0172 0.0187 0.0184 

front unsprung 
mass 0.5400 0.0538 0.5205 55 

rear unsprung 
mass 0.6089 0.7022 0.6700 
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Table 5-3 summarizes the differences between the PSDs of the on-simulator and 

“on-the-road” sprung mass acceleration responses for the whole 500 m-long profile at 

vehicle speeds of 35 and 55mph. For this table, the Euclidean error is computed as the 

rms error between the on-simulator response and “on-the-road” response at each discrete 

frequency point of the FFT (Fast Fourier Transform). For both controllers, it can be seen 

that the Euclidean PSD error is higher at 55mph than at 35mph (as should be expected, 

given tuning was done for 35mph), but in all cases, the Near IO linearizing 

controller(NLC) keeps the error metric smaller than the PID+Δp controller. There is a 

more than 50% improvement in matching the sprung mass response to the “on-the road 

response” with the Near IO linearizing controller. 
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Figure 5.12: PSD of Sprung mass acceleration in the frequency domain for an IRI 170 road at
55mph with the decentralized Near IO linearizing position controller(NLC) and the decentralized
PID+Δp controller 
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5.6 Chapter Summary 

In this chapter, the decentralized control of the electrohydraulic actuators of a 

four-post road simulation system was considered. The Near IO linearizing position 

tracking controller detailed in Chapter 4 was applied without much modification. 

Assumptions relevant to this application of the Near IO linearizing controller were 

detailed in Section 5.1. A full-bus model of a transit bus, employing nonlinear air-

suspensions and nonlinear shock-absorbers, was adopted. The road simulator model 

interconnection used in the simulation studies of this chapter was described in Section 

5.2. 

In Section 5.3, the Relative Gain Array (RGA) was described as a method of 

determining the level of cross-coupling or interaction in multiple-input multiple-output 

(MIMO) systems. A feature of the RGA interaction measure is that it can be used directly 

with time history (simulation or experimental) data without the need for frequency 

response measurements or such identification. The diagonal elements of the RGA and the 

more compact measure, the RGA number, were then used for evaluating two 

decentralized control structures for the four-post road simulator. 

The first decentralized control problem considered was the control of actuator 

load-plate positions. It was shown that in terms of eliminating interaction, decentralized 

Table 5-3: Comparison of the Euclidean error in the sprung mass acceleration PSD  

Vehicle speed 
(mph) 

Decentralized 
controller 

Euclidean error in sprung mass 
acceleration ((g2/Hz)x10-6) 

PID+Δp 8.3967 
35 

NLC 4.0320 

PID+Δp 16.7080 
55 

NLC 4.5079 
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control of actuator load-plate positions is an effective method. This implies that for the 

actuator to follow road profile measurements, the decentralized control of the actuator 

load-plate positions provides a satisfactory solution. It was also highlighted that this arose 

naturally from the good stiffness property of electrohydraulic actuators. Furthermore, in 

terms of suppressing interactions, the advantage for the Near IO linearizing controller 

over the PID+Δp controller appeared to be small.  

The second decentralized control problem considered was the decentralized 

control of a remote response parameter, namely the spindle vertical accelerations, via the 

four post actuators, which in themselves are independently position controlled. It was 

shown that significant interactions face such a cascaded decentralized controller structure 

for tracking vertical spindle accelerations. This was true whether the Near IO linearizing 

controller or the PID+Δp controller are employed as inner-loop position controllers for 

each actuator. This decentralized cascade control structure for controlling spindle vertical 

accelerations (or some similar remote response parameter) did not appear to have a 

potential in road simulation applications where there may be a desire to use on-road 

measured spindle vertical accelerations as reference inputs for cascaded decentralized 

control of the actuators. Iterative response replication approaches, which treat the whole 

system as a MIMO problem, are suited better for this case. 

Finally, some performance metrics were defined in Section 5.5 and used to assess 

the performance of the road simulation system for an actual road profile of mediocre 

(bad) roughness. It was shown that the Near IO linearizing controller outperforms the 

PID+Δp controller in all the cases considered. In particular, there is a more than 60% 

improvement in matching load-plate positions with reference profile inputs. It was noted 

that there is a corresponding improvement in terms of response matching as shown by the 

more than 50% improvement in matching the on-simulator sprung mass acceleration PSD 

response to the “on-the road response” for the test vehicle, road profile and vehicle 

speeds considered. 
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Chapter 6 
 

Conclusions and Recommendations for Further Research 

This thesis started by highlighting the applications of service load simulation 

testing systems and particularly the control challenges with multi-actuator 

electrohydraulic systems in road simulation. Review of technical literature on the subject 

indicated that practical difficulties with traditional PID+Δp control loops, such as the 

nonlinearity of electrohydraulic actuators, stability margins and fixture bandwidth 

limitations have led to the development of ‘outer’-loop MIMO iterative compensation 

methods. It was noted that the ‘inner’-loops still use decentralized PID+Δp loops, and 

that the original control problem has not been entirely solved by the iterative methods. 

In light of the above statements, the main contribution of this thesis is in the 

development and analysis of nonlinear controllers that cancel the dominant nonlinearities 

in the electrohydraulic system so that the control loop of an electrohydraulic actuator 

behaves linearly and the road simulation system performs better. This has been 

accomplished on two levels; first, via simulations and experiments on a single actuator 

test system, which brought up further issues with transmission line modeling and 

interpretations of nonlinear position and force tracking control design, and second, via 

computer simulations of a multi-actuator road simulation system. Section 6.1 summarizes 

the conclusions of this thesis from both levels and Section 6.2 gives a brief description of 

topics identified for possible further research. 

6.1 Conclusions 

A detailed model was presented for an electrohydraulic system which was 

eventually employed as an experimental test stand for the design and analysis of the 

model-based nonlinear controllers. In order to increase the fidelity of the model in 

capturing measured responses, detailed transmission line modeling work was found 
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necessary. The following points highlight the main contributions derived from the 

modeling work in this thesis, particularly on hydraulic transmission line modeling: 

• Time domain formulations of transmission line (and related component) models are 

desirable for interfacing with nonlinear models of actuators. It was shown that the 

modal approximation of the usual frequency domain solutions (so called four-pole 

equations) of the distributed dynamics for one-dimensional fluid transmission lines 

eventually leads to time domain state space formulations. Furthermore, the 

modularity of the state space models makes them simple alternatives to finite 

difference-based time domain solutions of the flow equations. 

• The modal approximation of the four-pole equations for the causality case with 

upstream and downstream pressures as input, and upstream and downstream flow 

rates as output (see Eq.3.16) was developed in this work. Both transfer function and 

state space forms were presented. It was shown that this causality case has some 

advantages over causality cases treated elsewhere. It gives better handing of steady-

state response. Furthermore, over a wide range of low frequency regimes, a first-term 

only modal approximation is sufficient, in which case, the model reduces to a series 

interconnection of hydraulic resistance and inertance. Given these advantages, it is 

recommended that this causality form be used in hydraulic system modeling, 

whenever the causality assignment of the overall system permits it. This was 

demonstrated with the selection of the model interconnection structure for the test 

system under consideration. 

• The dominant nonlinearities of the electrohydraulic actuator included in the nonlinear 

control design are the variable hydraulic capacitance in the cylinder chambers, the 

turbulent valve orifice flow rate vs. pressure drop relations, and the nonlinear friction 

force on the piston. However, an extensive model-based and experimental analysis of 

the nonlinearities in an electrohydraulic actuator, including those in the servovalve, 

has already been detailed by many other researchers. 

In Chapter 4, nonlinear piston position and force tracking controllers were derived 

and investigated using experiments and simulations of the nonlinear model of the test 

system. The basic versions of the controllers were based on a Near input-output (IO) 
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linearization of the system model by designating either force or position as the system 

output. This was possible to perform under some assumptions listed in Subsection 4.1.1. 

These Near IO linearizing controllers cancel the dominant nonlinearities of the system to 

yield linear closed-loop force and position tracking error dynamics. It turns out that the 

Near IO linearization with piston force output and the Near IO linearization with piston 

position output exhibit an interesting inter-relationship. This was revealed from a study of 

a cascade controller implementing the Near IO linearizing pressure force controller as in 

inner-loop to a feedback plus feed forward outer-loop position controller that computes 

the desired force trajectory for the inner-loop. This cascade controller was then shown to 

be equivalent to the Near IO linearizing position tracking controller. The cascade 

interpretation exploits the fact that the Near IO linearizing pressure force tracking 

controller cancels the natural feedback of velocity in the pressure force dynamics thereby 

decoupling the pressure force dynamics from the piston motion. In essence, the actuator 

can then be treated as a force generator for piston motion control.  

Furthermore, explicit relationships were derived between the respective linear 

gains of the cascade controller and the Near IO linearizing position controller. This is a 

major contribution of the analytical work in Chapter 4, since it leads to a design 

procedure for the choice of the gains for the Near IO linearizing position controller. 

While the gains for the decoupled loops of the cascade controller have simple 

interpretations of natural frequency and damping coefficient for the second-order outer 

position loop and break frequency for the first-order force inner-loop, no such 

interpretations are evident for the gains of Near IO linearizing position controller. The 

recommended procedure exploiting the above observations for tuning the Near IO 

linearizing position controller was summarized at the end of Subsection 4.2.2.2.1. 

Performance comparisons were conducted between the Near IO linearizing 

controllers and PID and linear state feedback with integral (LSFI) controllers. In the force 

control case, the Near IO linearizing controller performed better than a PID or a LSFI 

controller in experiments. In the position control case, the improvement obtained in the 

particular experiments with the Near IO linearizing controller over the PID or LSFI 

controller for this particular test setup was not significant. It is believed that the effects of 
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the neglected transmission line and servovalve dynamics (due to operation at non-optimal 

supply pressure) as well as low bandwidth feedback signal processing contributed to the 

degraded performance in the experiments. Using system model simulations, it was shown 

that, under practical assumptions of accumulator close-coupling and design supply 

pressure operation for the servovalve, significant improvements can be obtained with the 

Near IO linearizing position controller as well. 

Investigations of experimental robustness (sensitivity) investigations revealed that 

the Near IO linearizing controller tolerates a measurable mismatch between the controller 

parameter settings and system parameters for the bulk modulus, the valve coefficient and 

the leakage coefficient, as well as estimation of friction. The issue of robustness was 

formally addressed by considering a continuous sliding mode force tracking controller for 

the matched uncertainty. Experiments and simulations were conducted to demonstrate 

trade-offs between robustness, performance and the need to avoid control chattering (in 

the presence of neglected servovalve and transmission line dynamics). For the robust 

position control, a robust cascade controller was considered where the sliding mode force 

controller acts as an inner-loop to the outer loop position controller subjected to load and 

friction uncertainty (unmatched uncertainty). Lyapunov backstepping interpretations 

were invoked to derive linear growth bounds for the tracking errors. 

From the simulation and experimental analysis in Chapter 4, we conclude that the 

Near IO linearizing controllers (or the cascade forms and their robust counter parts) have 

significant potential in those systems where accumulators are close-coupled with the 

servovalve and the servovalve dynamics has a natural frequency of about 4 or more times 

the desired bandwidth. These conditions are met in many electrohydraulic systems. 

In Chapter 5, we extended the application of the nominal Near IO linearizing 

position controller to a decentralized control of a multi-actuator case in a four-post road 

simulation system. A full-bus model of a transit with nonlinear air-suspensions and 

nonlinear shock-absorbers was employed as the test vehicle.  

Both ‘smooth’ step time responses and the Relative Gain Array (RGA) interaction 

measure were used to assess interactions in two proposed decentralized control schemes, 

employing either a PID+Δp controller or a Near IO linearizing position controller.  
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• The first decentralized control scheme was the control of actuator load-plate 

positions, and was shown to be very effective in suppressing interactions. It was 

concluded that this scheme could provide a satisfactory solution if the desire is to 

match road profiles with load-plate positions with little interaction between the 

control loops. Both the Near IO linearizing controller and the PID+Δp controller were 

shown to be nearly equally effective in suppressing interactions for this test vehicle.  

• The second decentralized control scheme was a proposed cascaded controller 

structure for tracking vertical spindle accelerations. This scheme was shown to face 

strong interactions, with either the Near IO linearizing or the PID+Δp controller as 

inner-loop actuator position controllers. This approach doesn’t appear to have the 

potential to replace iterative response replication approaches, which treat the whole 

system as a coupled MIMO problem. 

Finally, a comparison was conducted between the decentralized Near IO 

linearizing position controller and a PID+Δp controller for simulating a vehicle traveling 

over a typical rough road. Using certain performance metrics, it was shown that the Near 

IO linearizing controller outperforms the PID+Δp in all the cases considered. In 

particular, there is more than 60% improvement in the position tracking error metric 

across all actuators and more than 50% improvement in matching the sprung mass 

acceleration power spectral density to the “on-the-road” response for the test vehicle and 

conditions considered. 

Recall that practical road simulation approaches generally consider the road 

simulation system as a MIMO unit, with the decentralized position controllers as ‘inner’-

loops to the ‘outer’-loop iterative drive profile generators that attempt to match on-

simulator responses to desired (on-road) responses. The fact that significantly better 

tracking of actuator load plate positions is obtained with the decentralized Near IO 

linearizing controller has important implications for response-replication road simulation 

approaches. It improves the linearity and speed of response of the ‘inner’-loop, so that 

iterative drive profile generation converges faster and outer-loop MIMO controllers work 

better. 
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6.2 Recommendations for Further Work 

There are certain topics that the author feels deserve further attention. These 

include the following: 

• Complete iterative response replication. In this thesis an extensive review is given for 

the response replication approaches to road simulation and the work focused on 

improving the inner’-loops with nonlinear controllers. It remains to implement the 

nonlinear controllers derived and analyzed in this thesis as ‘inner’-loop (replacing the 

PID +Δp) controllers in actual iterative response replication algorithms either 

experimentally or using computer simulations of the system model. Such a study 

would give further confirmation for the observed improved performance with these 

controllers. 

• Cases of strong cross-coupling. The fact that the observed interactions are the 

strongest from left side to right side suggests the possibility that different interaction 

levels (with the decentralized SISO loops) could be possible with other vehicle 

dimensions. Further study of other vehicles of smaller dimensions than a transit bus 

would help corroborate the observations regarding the minimal interactions between 

the actuator position loops.  

• MIMO controller design for linearized system. For the general multi-actuator case, 

once the nonlinearities of the individual electrohydraulic actuators are cancelled by 

nonlinear feedback, it would be interesting to investigate the possibility of invoking 

MIMO linear controller design techniques such as H∞ and μ-synthesis to design 

robust controllers using the linearized electrohydraulic subsystems. Some work in this 

direction has been started by Vossoughi and Donath [27] for velocity control in 

robotic applications. The extension to multi-actuator cases in force and position 

control with a dynamically coupled-load is largely open.  

• Cascade controller in MIMO motion control. It is to be recalled that the cascade 

interpretation allows one to view the actuator as a force generator by decoupling the 

actuator force and piston motion dynamics. It would be interesting to investigate the 

role of this interpretation in a strongly coupled multi-actuator motion system. 
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Appendix A 
 

Modal Representation of )(sinh)(/1 ssZc Γ  and )(sinh)(/)(cosh ssZs c ΓΓ  

As mentioned in Subsection 3.2.2, to obtain a modal approximation of the 

distributed system transfer function in Eq. 3.16, we first find the poles of the individual 

transcendental transfer functions in Eq. 3.16 and then use partial fraction expansions to 

obtain the modal approximations. This is detailed in this Appendix. 

As noted before, we use the following result from Oldenburger and Goodson [72]: 

where, 

First, the zeroes of the transfer function )(sinh)( ssZc Γ  are computed using 

Eqs. 3.17,  3.18 and  A.1 as follows: 

Note that these zeroes are the poles of the original transfer functions in Eq. 3.16. 

When evaluated at the pole 8−=s , 1)(cosh,0)( =Γ=Γ ss and 0)(sinh =Γ s . At the pole pairs 

2164 siii sbas λ−±−==±= , ,...3,2,1,)1()cos()cosh()cosh()(cosh =−==±=±=Γ iiijjDs i
sin ππλ . 

Note that all of the poles are simple poles [97]. Partial fraction expansion takes the form: 
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The coefficient Ro can be computed using:  

The coefficients Ri and Gi are better computed using residues since the numerator 

and denominator functions are analytic at the respective poles ii bas ±= . 

Once these residues are computed, the following observation applies:  

The denominator in Eq. A.7 simplifies to the quadratic ( 22 8 siss λ++ ). 

The above results will now be used to determine the modal representation for 

each of the two unique elements of the transfer matrix in Eq. 3.16. First, we consider the 

element )(sinh)(/1)( ssZsf c Γ= . Using Eqs. 3.17 and 3.18 in Eq. A.5 together with the 

comments following Eq. A.3, the coefficient Ro is computed as  

For the other coefficients, note that  

where it can be shown that: 
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Using Eqs. 3.17,  3.18,  A.10, and Eq. A.11 and the notes following Eq. A.3, 

Eq. A.9 can be evaluated as: 

Substituting Eq. A.12 into Eq. A.7 and using the result together with Eq. A.8 in 

Eq. A.4, and simplifying the expression, the following modal representation results 

for )(sinh)(/1 ssZc Γ : 

For the other unique element of the transfer matrix )(sinh)(/)(cosh)( ssZssf c ΓΓ= , 

Ro is computed as: 

Using Eqs. A.2 and A.10 , and the notes following Eq. A.3, it can be shown that: 

Finally, using Eq. A.7 with Ri and Gi from Eq. A.15 and substituting the result 

together with Eq. A.14 into Eq. A.4 and simplifying the expression, the modal following 

representation for )(sinh)(/)(cosh ssZs c ΓΓ  results: 
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Appendix B 
 

Test Actuator Model Parameters 

Some of the geometric parameters in the expression for the controller such as 

volumes and piston mass could be calculated easily. Table B-1 lists these basic 

parameters used for the simulations and experiments in Chapters 3 and 4 (unless stated 

otherwise in specific sections). 

For the important, yet unknown parameters such as the effective bulk modulus 

and the valve coefficients, estimated values from manufacturer specifications and 

literature could be used. However, these do not necessarily match the present status of the 

experimental system. Therefore, an offline “grey-box” identification technique is adopted 

for this thesis [60]. We neglect the lap parameters u1, u2, u3, and u4 for this purpose. The 

chamber pressure state equations, Eqs. 3.36 and 3.37, are discretized as follows. At 

sampling instant k, we have: 

Table B-1: Basic actuator model parameters 
 

Symbol Value Unit Comment 

At=Ab=Ap 5.03 cm2 piston areas 

mp 11.12 kg piston,fixture, fluid mass 

pR 0.1 MPa return pressure 

pS 13.89 MPa supply pressure 

stroke 11.43 cm stroke 

Vt 34.42 cm3 volume, top chamber and pipes 

Vb 40.48 cm3 volume, bottom chamber and pipes 
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Discretizing the flow rate equations, Eqs. 3.39 and 3.40, the same way and 

regrouping variables, the following matrix forms can be written: 

where,  

For a given length of the sampled (N>4), each of the system of equations, 

Eqs. B.3 and B.4, is linear in the unknown parameters of bulk modulus (βt and βb), valve 

coefficients (Cv,1, Cv,2, Cv,3 and Cv,4) and the leakage coefficients (CL,b and CL,t). Each of 

the systems of equations, Eqs. B.3 and B.4, has more equations than unknowns, and is 

therefore solved in the least squares sense, fitting the best set of parameters for a given 

data. In this work, several estimates from closed loop position sine sweeps (chirp 

excitations) were averaged together. Furthermore, the disparate estimates of the fluid 

bulk modulus for the top and bottom chambers(βt and βb) which take on close values 

anyway, were averaged together to use a single value (for the effective bulk modulus, for 

example) thereby simplifying the controller. The same was done for the leakage 

coefficient and the valve coefficient in the various controller expressions derived in 
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Chapter 4. The following estimates of the parameters, listed in Table B-2, were used as 

the nominal values for the control experiments in this thesis. 

To further reduce the number of controller parameters required, the valve 

coefficients values for Cv,1, Cv,2, Cv,3 and  Cv,4  are averaged and represented by a single 

nominal value of Cv =2.75 )../(3 MPamAscm . It should be noted, however, that most of the 

nonlinear controllers were observed to be most sensitive to this parameter. And 

asymmetric response, traceable to this disparity of the valve coefficients for the various 

ports, was observed. It is therefore recommended that particular attention be made to the 

consequences of choosing or not choosing disparate estimates for the valve coefficient 

parameters, even though for the simple experiments in this work, this assumption worked 

acceptably. 

Table B-2: Nominal values of controller parameters 

Parameter Value Units 
βe 850 MPa 

Cv,1 2.80 )../(3 MPamAscm

Cv,2 2.73 )../(3 MPamAscm

Cv,3 2.77 )../(3 MPamAscm

Cv,4 2.70 )../(3 MPamAscm

CL 0.5 )./(3 MPascm  
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Appendix C 

 

Internal Stability Considerations 

The internal stability of the IO linearized system is investigated using the simpler 

form given in Subsection 4.1.2.3 which uses the load pressure as a state variable. The 

general case leads to expressions that are mathematically too intricate from which to 

extract stability proofs. In other words, the discussion in this appendix is limited to the 

case of a servovalve with symmetric and matched orifices as well as a symmetric 

actuator. 

Recall from Subsection 4.1.2.3 that the output pressure force dynamics is given 

by (ignoring the offset current, ivoff ): 

We choose the Near IO linearizing controller as follows: 

This results in the closed loop external dynamics: 

An internal dynamics of order 2 remain, since the system dynamics are of an 

overall order 3. Two more internal state variables are required to describe this second 

order internal dynamics. If these are sought in order to complete a normal form 

description of the system[30, 31], the internal state variables must satisfy the following 

condition: 

where Lgηk is the Lie derivative[30, 31]. Simply put, the new state variables must 

satisfy: 
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where the input vector T
pL

g ]00[=g . In general, the internal states are of the 

form 2,1),,,( == kpxx Lppkk &ηη . Choosing, px=1η and px&=2η , the condition of Eq. C.4 

is easily satisfied, since the gradients are given by: 

Therefore, the internal dynamics can be described by the piston motion dynamics 

given in equations Eqs. 3.46 and 3.47 , which are repeated here with the new notation: 

The zero-dynamics is derived by setting the output Fp and hence pL to zero. For 

the case of no load force(FL=0), there will be equilibrium points for the zero dynamics at 

02 == px&η  if and only if a Karnopp-type friction model[98] is adopted such that near 

zero-velocity, the friction force just balances the weight of the piston. This could be at 

any piston position within the stroke. In the realistic presence of load force (from 

specimen reaction, tensile forces being positive), there will be equilibrium points at zero 

velocity ( 02 == pvη ), and at piston positions obtained by solving: 

Assuming a specimen with a linear stiffness KS, there will be equilibrium points at 

zero velocity ( 02 == pvη ) and  
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In this case, even a viscous only friction model reveals the presence of discrete 

equilibrium points for the zero dynamics at 0,/( 21 =−= ηη sp Kgm ). For more elaborate 

friction cases, the location of the equilibrium points is still given by Eq. C.11.  

The following proof proceeds under viscous friction and linear specimen stiffness 

assumptions. In this case, the internal dynamics equations, Eqs. C.8 and C.9, reduce to a 

second order differential equation with constant coefficients. The equilibrium points of 

the zero dynamics (pL=0) are globally exponentially stable. It can be concluded that the 

internal dynamics are locally asymptotically stable and the IO linearizing controller 

ensures convergent local tracking for smooth and bounded reference trajectories Fd with 

bounded derivatives. To ensure the global stability and global tracking, it is sufficient to 

prove the input-to-state stability of the system ),( Lpf ηη =&  where [ ]21 ηηη = with pL as 

the input[30]. The following Lemma can be used to establish this. 

Lemma [30]. Suppose the function ),( Lpf η is continuously differentiable and 

globally Lipschitz in ),( Lpη . If the unforced system )0,(ηη f=&  has a globally 

exponentially stable equilibrium point, then the system ),( Lpf ηη =&  is input-to-state 

stable. 

Since the unforced system )0,(ηη f=&  is already shown to be globally 

exponentially stable, it remains to show that the vector function ),( Lpf η  is globally 

Lipschitz in ),( Lpη .The global Lipschitz condition is also readily satisfied, since: 

where Ap is chosen as the Lipschitz constant. This completes the proof for the 

global stability and global tracking. The caveat is that the Near IO linearization 

performed by the nonlinear controller discussed in this paper is only assumed (and 

experimentally implemented) to approach true IO linearization under the practical 

assumptions made during the controller derivation. 

LpL pAfpf ≤− ∞)0,(),( ηη  (C.12)
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Appendix D 
 

Linearized Models and Linear Feedback Controllers 

D.1 Linearized Models 

Using the load pressure description, and neglecting the servovalve dynamics, the 

nonlinear hydraulic actuator model is summarized here by the following state space 

equations:  

Where,  

is the inverse of the hydraulic compliance. Here, a symmetric actuator with symmetric 

valve coefficients is assumed. Furthermore, the friction force, Ff, is assumed to a linear 

(viscous) force and the load force, FL, is assumed to be given by:  

where KL and BL are the stiffness and damping coefficients, respectively of a 

specimen/load. 

Local linearization of the above nonlinear equations about an operating point 

(xpo,vpo, pLo, ivo) can be performed by taking the Jacobian of the right hand side of the 

state equations, Eqs D.1 through  D.3 . The following linear state space model results : 
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where u is the input current iv and the coefficient matrices are given by:   

with  

The output vector C, depends on the output of interest. In this work, the three relevant 

output cases are: position, pressure force and load force output, for which the C vectors 

are given, respectively, by: 

D.2 Linear State Feedback with Integral Control 

For tracking applications, a linear state feedback with integral (LSFI) control is 

often used. In this thesis, some experimental comparisons were made with this control 

structure in subsections 4.2.1.1.1 and 4.2.2.1.1. The structure and design of this controller 

uBAxx +=&  (D.6)
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is briefly discussed here as it applies to the system under study. For a complete exposition 

of the topic of LSFI control, the reader is referred to textbooks such as [99]. 

Figure D.1 shows the schematic of implementation of LSFI control for the 

electrohydraulic actuator. In the figure, y is the output of interest, which could be 

position, pressure force or load force, and yd is the desired output (xp,d, Fp,d, or FL,d). 

The controller gains are computed by considering the linearized system with the 

matrix A and vectors B, and C defined as in the previous section. With the additional 

integrator output state variable given by:  

the system model is augmented as follows:  

where, 

The linear state feedback controller (u=iv) is given by: 

servovalve

actuator

dy
-Ki

+

-
∫

-[K1 K2 K3]

+

+

C

y

Lpp pvx ,,

linearized system
viix

Figure D.1: Schematic for the linear state feedback with integral (LSFI) controller 
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The augmented gain vector Ka is computed by pole placement. A location of the 

poles selected and MATLAB’s pole placement routines, ACKER and PLACE are used to 

compute the gain vector Ka, and thereby the individual state feedback gains. As pointed 

out in Chapter 4, various pole locations were attempted for the present system. And since 

the gains so computed are based on a simplified and linearized model, often times 

significant online tuning of these gains is necessary to obtain satisfactory responses when 

using the LSFI controller with the actual nonlinear system.  

D.3 Linear PID+Δp Controller. 

The defining expression for this controller is: 

Where the Kp, KI, KD are the proportional (P), integral (I) and derivative (D) gains, 

respectively and KΔp is a differential pressure (Δp) feedback gain. 

iiLppv xKpKvKxKiu −−−−=−== 321aaxK  (D.18)

pKeKedtKeKi pDIPv Δ+++= Δ∫ &  (D.19)
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Appendix E 
 

Parameters for the Models of Road Simulator Actuators and the Full-Bus Model 

The model parameters employed for the simulation study of the multi-actuator 

road simulator system in Chapter 5 are listed in this Appendix. Servovalve dynamic 

parameters are as given in Chapter 5. 

E.1 Parameters of Actuator and Servovalve 

Table E-1: Actuator and servovalve parameters 

Symbol Value Unit Comment 

At=Ab=Ap 81.3 cm2 piston areas 

CL 3.0 cm3/MPa leakage coefficient 

Gv 0.019 cm/mA valve gain 

Kv 3.4521e4 cm2/(s.√MPa) valve coefficient 

mp 63.5 kg piston and load plate mass 

pR 0.1 MPa return pressure 

pS 20.7 MPa supply pressure 

stroke 21.6 cm stroke 

Vt=Vb 877.5 cm3 volume 

βe 850 MPa effective bulk modulus 
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E.2 Parameters for the Full-Bus Model 

Table E-2: Parameters for the full-bus model 

Symbol Value Unit Comment 

blf=brf 1.093 m dimension, see Fig 5.1 

blr=brr 0.971 m dimension, see Fig 5.1 

Cap 5000 Nms/rad auxiliary pitch damping coef. 

Carf 0.0 Nms/rad auxiliary roll damping coef., front 

Carr 0.0 Nms/rad auxiliary roll damping coef., rear 

Ct1=Ct2 75 N.s/m tire damping coefficient, front 

Ct3=Ct4 150 N.s/m tire damping coefficient, rear 

dlf 1.0 m dimension, see Fig 5.1 

dlr 0.942 m dimension, see Fig 5.1 

drf 1.186 m dimension, see Fig 5.1 

drr 1.0 m dimension, see Fig 5.1 

Ip 599400 kgm2 pitch moment of intertia, sprung 

Ir 1498 kgm2 roll moment of inertia, sprung 

Iuf 1033 kgm2 roll inertia, front unsprung mass 

Iur 1070 kgm2 roll inertia, front unsprung mass 

Kap 1000 Nm/rad auxiliary pitch stiffness 

Karf 500 Nm/rad auxiliary roll stiffness 

Karr 500 Nm/rad auxiliary roll stiffness 

Kt1=Kt2 1155382 N/m tire stiffness, front 

Kt3=Kt4 2310764 N/m tire stiffness, rear 

lf 4.525 m dimension, see Fig 5.1 

lr 1.675 m dimension, see Fig 5.1 

Ms 15003 kg sprung mass 

Muf 758 kg unsprung mass, front 

Mur 1571 kg unsprung mass, rear 
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The air suspension and shock absorber (damping) forces are interpolated from 

data given in Fig E.1 for each corner of the bus [90].   
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Figure E.1: Nonlinear damping forces (top) and dual air suspension (bottom) forces 
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