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ABSTRACT 
 

Small, diffusible molecules when recognized by their binding partners, such as 

proteins and antibodies, trigger enzymatic activity, cell communication, and immune 

response. Progress in analytical methods enabling detection, characterization, and 

visualization of biological dynamics at the molecular level will advance our exploration 

of complex biological systems. In this dissertation, analytical platforms were fabricated 

to capture membrane-associated receptors, which are essential proteins in cell signaling 

pathways. The neurotransmitter serotonin and its biological precursor were immobilized 

on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene 

glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the 

biologically selective affinity of immobilized molecules to target native membrane-

associated receptors. These substrates were also tested for biospecificity using antibodies. 

In addition, small-molecule-functionalized platforms, expressing neurotransmitter 

pharmacophores, were employed to examine kinetic interactions between G-protein-

coupled receptors and their associated neurotransmitters. The binding interactions were 

monitored using a quartz crystal microbalance equipped with liquid-flow injection. The 

interaction kinetics of G-protein-coupled serotonin 1A receptor and 

5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free 

environment. Key binding parameters, such as equilibrium dissociation constants, 

binding rate constants, and dissociative half-life, were extracted. These parameters are 

critical for understanding and comparing biomolecular interactions in modern biomedical 

research. 
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By integrating self-assembly, surface functionalization, and nanofabrication, 

small-molecule microarrays were created for high-throughput screening. A hybrid soft-

lithography, called microcontact insertion printing, was used to pattern small molecules 

at the dilute scales necessary for highly selective biorecognition. By carefully tuning the 

polar surface energy of polymeric stamps, problems associated with patterning 

hydrophilic tether molecules inserted into hydrophilic preformed SAMs are surmounted. 

The patterned substrates presenting neurotransmitter precursors selectively capture 

membrane-associated receptors. These advances provide new avenues for fabricating 

small-molecule arrays. 

Furthermore, a novel strategy based on a conventional microcontact printing, 

called chemical lift-off lithography, was invented to overcome the micrometer-scale 

resolution limits of molecular ink diffusion in soft lithography. Self -assembled 

monolayers of hydroxyl-terminated alkanethiols, preformed on gold substrates, were 

selectively removed by oxygen-plasma-treated polymeric stamps in a subtractive 

stamping process with high pattern fidelity. The covalent interactions formed at the 

stamp-substrate interface are believed to be responsible for removing not only alkanethiol 

molecules but also a monolayer of gold atoms from the substrates. A variety of high-

resolution patterned features were fabricated, and stamps were cleaned and reused many 

times without feature deterioration. The remaining SAMs acted as resists for etching 

exposed gold features. Monolayer backfilling into lifted-off areas enabled patterned 

protein capture, and 40-nanometer chemical patterns were achieved. 
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Chapter 1 

 

Molecular Self-Assembly for Biological Investigations and Nanoscale Printing 

1.1 Introduction  

Over the past two decades, our understanding of self-assembly has impacted the 

development of a broad spectrum of science disciplines including biology, pharmacology, 

food sciences, engineering, and neuroscience [1-5]. State-of-the-art designs at the nano- 

and micrometer scales have enabled the creation of systems with precisely controlled 

surface properties that are specific for systems of interest [6-15]. These capabilities have 

been driven, in large part, by advances in instrumentation and new experimental 

techniques for the self-assembly chemistry and characterization of surfaces comprising 

"nanoscale building blocks." [16-23]. Moreover, significance advances in chemical 

synthesis offer a wide variety of these building blocks, resulting in the construction of 

practical models in many applications [24-28]. 

Bioactive surfaces, which have been found to be powerful tools in biological 

investigations, are one application of self-assembly [29-31]. Generally, a bioactive 

surface is a substrate that has a specific affinity for biological targets such as proteins, 

peptides, antibodies, DNA, carbohydrates, neurotransmitters, etc [32-36]. An underlying 

principle of bioactive surfaces relies on the immobilization of biomolecules on the 

surfaces and the recognition of their binding partners in solution at the solid-liquid 

interface [37-40]. Due to the constrained environments and steric hindrance of the 
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binding partners on the surfaces, the effects of orientation and size of both biorecognition 

elements become important [41, 42]. In addition, the biological environment can 

complicate investigations due to background noise from non-specific adsorption. 

Therefore, the type of building blocks used for bioactive surfaces is a crucial factor for 

surface preparation and biological studies. 

When integrated with transducers, bioactive surfaces can be used as "biosensors" 

for detection and differentiation of biomolecular interactions [43, 44]. Materials 

possessing plasmonic, piezoelectric, or electrochemical properties are common types of 

transducers. These property arrays offer the advantage of label-free, real-time 

investigation, leading to the interpretation of physicochemical parameters relevant to the 

binding interactions [37, 40, 45-47]. When combined with soft lithography, bioactive 

surfaces can be used as platforms, called "biochips" for visualizing and screening the 

biomolecular targets and even within biological membranes [12, 48-54]. 

Self-assembled monolayers (SAMs) played a crucial role in this dissertation due to 

their roles in biological investigations and nano- and microscale patterning. Kinetics and 

thermodynamics of binding interactions of small-molecule neurotransmitters and their 

biomacromolecule partners were studied by immobilizing their neurotransmitter analogs 

on SAM-modified substrates. The functionalized substrates, integrated with mass-

sensitive devices, were used to monitor biomolecular recognition interactions in a real-

time, label-free manner. In addition to biologically-relevant studies, self-assembled 

monolayers were used as a starting material for fabricating patterned surfaces. The 

interfacial interactions between an elastomeric stamp and SAMs were found to be key 

factors for successful patterning. 
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1.2 Dissertation Overview 

The objective of this dissertation is to develop and to utilize substrates with 

immobilized small molecules to study the biomolecular interactions of membrane-

associated proteins, relevant to molecular pharmacology and neuroscience. Chapter 1 

focuses the background chemistry knowledge of self-assembled monolayers and their 

applications, and explains the main experimental techniques used in these studies. 

Chapter 2 provides a review of the significant literature on the topics of small-molecule 

signaling in neuroscience, small-molecule neurotransmitter including serotonin (5-HT), 

and challenges of small-molecule immobilization. The development of small-molecule-

functionalized surfaces is discussed. In Chapter 3, 5-hydroxytryptophan (5-HTP)-

functionalized surfaces are utilized to study the kinetic aspects of the molecular 

interactions of G-protein-coupled receptors (GPCRs). These kinetic studies use 

ligand-bound substrates with label-free, real-time methods. Chapter 4 presents an 

approach based on surface wettability to fabricate small-molecule arrays for multiplexed 

screening. Microcontact-insertion printing (µCIP) is utilized to transfer alkanethiol inks 

from oxygen-plasma-treated polydimethylsiloxane (PDMS) stamps to existing SAM 

matrices. The relation of treatment time from oxygen plasma and surface wettability is 

studied to optimize printing conditions. Chapter 5 describes the invention of a new 

printing technique, chemical lift-off lithography (CLL). In CLL, a PDMS stamp, 

chemically treated with oxygen plasma, is used to remove alkanethiolates at the 

conformal contact area. Detail studies were performed to understand the parameters that 
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lead to subtractive printing. Chapter 6 summarizes all works done in this dissertation, and 

outlines possible future work. 

1.3 Background 

1.3.1 Self-Assembly 

Whitesides and Grzybowski beautifully define self-assembly as "the autonomous 

organization of components into patterns or structures without human intervention" [55]. 

Self-assembled patterns and structures can be found in both living and non-living 

organisms, from the molecular-cluster (10
-9

 m) to the galaxy scales (10
21

 m) [56-58]. For 

instance, cells are examples of self-assembly in biological systems [59]. Each individual 

unit is encapsulated by cell membranes, which are dynamic self-assembled bilayers of 

phospholipid molecules. These molecules are held together with weak intermolecular 

forces such as van der Waals, electrostatic, and hydrogen-bonding interactions. The 

concept of self-assembly has been expanded into a wide range of disciplines from basic 

research to engineering applications [60-62]. 

1.3.2 Self-Assembled Monolayers 

Self-assembled monolayers of organic surfactant molecules on substrates 

represent a principal subdivision of self-assembled systems. Intrinsic physical properties 

of individual molecules are responsible for energetically favorable interactions, resulting 

in the formation of crystalline nanostructures with single-molecule thicknesses [1, 2]. The 

most well-known, highly characterized SAM is based on the assembly of n-alkanethiols 

on gold (Au) substrates ( 
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Figure 1-1) [63]. Interestingly, gold/thiolate SAM system is prototypical for other 

fields because they are easy to prepare, highly reproducible, notably stable in ambient 

conditions and flexible for tuning of interfacial properties including wettability, 

reactivity, conductivity, and resistance [1, 64-66]. Although gold is the standard platform 

for SAM formation due to its inertness, SAMs can be formed on a variety of metal 

substrates such as platinum (Pt), copper (Cu), silver (Ag), germanium (Ge), etc, making 

them highly attractive for engineering applications [67-72]. 

In the most general case, an n-alkanethiol comprises an alkyl backbone with the 

n-1 number of methylene units (-CH2-), a thiol head group (-SH), and a methyl tail group 

(CH3-) at the other end. Each molecular component plays a different role in SAM 

formation and its surface properties. After immersion, the chemisorption of 

n-alkanethiols on Au substrates is kinetically favorable occurred due to the strong 

gold-sulfur (Au-S) bond formation at ~40 kcal/mol (compared to ~1.5 kcal/mol of heat 

required for boiling water) [1, 2]. The result of fast and strong bond formation quickly 

leads to nearly full surface coverage (>90%) in approximately 10 s with quasi-ordered 

structures. The phenomenon involves the thermodynamic-favorable maximization of 

weak van der Waals interactions between alkyl backbones, favoring the formation of an 

ordered crystalline lattice with a tilt angle at ~30ę to the surface normal [71]. Further 

chemisorption increases both the surface coverage and crystallinity. Intensive studies by 

scanning tunneling microscopy (STM) have shown that alkanethiolate SAMs have 

several structural features, including domain boundaries, step edges, and vacancy islands 

(Figure 1-2) [73, 74]. 
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In addition to STM techniques, a variety of surface analyses have been utilized to 

characterize SAMs, such as atomic force microscopy (AFM) [75-79], X-ray 

photoelectron spectroscopy (XPS) [71, 77, 80-86], high-resolution electron energy loss 

spectroscopy (HREELS) [87], infrared reflection absorption spectroscopy (IRRAS) [88-

94], contact angle goniometry, surface plasmon resonance (SPR) [45, 95], ellipsometry 

[96, 97], cyclic voltammetry (CV) [98-100], and others. These techniques provide 

additional information, such as composition, structure, and formation energy. 

Usually, absorption of n-alkanethiol SAMs on metal substrates is done via 

solution deposition. In some cases, vapor deposition is used as a stand-alone and/or 

supplementary procedure [101, 102]. The most practical solvent for preparing SAMs is 

ethanol because: it dissolves a variety of alkanethiols, it is inexpensive, it is available in 

high purity, and it has low toxicity. Others such as tetrahydrofuran, dimethyformamide, 

methanol, and toluene, etc, can also be used, depending on the solubility of individual 

adsorbates [25]. Research has been carried out to determine the experimental factors that 

govern the SAM qualities and properties, such as solvent, temperature, concentration, 

deposition time, purity, chain length, chemical structures, and head and tail groups [80, 

103-107]. 

1.3.3 Mixed Self-Assembled Monolayers 

Much of the work in this dissertation involves SAMs containing two or more 

absorbates, called mixed SAMs (Figure 1-3). Mixed SAMs used in many applications 

requires non-phase segregation [10, 11, 41]. Mixed SAMs can be prepared by several 

methods including codeposition from solution mixtures, adsorption of asymmetric 
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disulfides, asymetric diakylsulfides, and insertion-directed self-assembly [1, 23, 108, 

109]. Two main methods that will be employed here involve codeposition and insertion-

directed self-assembly. Codeposition allows SAM formation with a wide range of 

compositions. The surface mole fraction of each component can be adjusted for an 

individual application by varying the solution mole fraction of each component. 

However, the solution mole fraction does not proportionally reflect the surface mole 

fraction, and depends on several factors such as solubility, chain length, and functional 

group [42]. Moreover, these parameters play roles in the homogeneity of the local surface 

composition of SAMs. 

In insertion-directed self-assembly, secondary adsorbate molecules are inserted 

into existing SAM matrices formed from primary thiol molecules, creating a low-density 

and non-phase separated mixed SAMs. The quality of mixed SAMs can be controlled by 

manipulating the defect sizes and density, which are governed by many factors such as 

formation time, concentrations, temperature, and post- preparation treatment. This 

method provides a convenient platform to study single-molecule properties and 

fabrication of biologically-active surfaces. 

1.3.4 Self-Assembled Monolayers for Biological Studies 

The biological system consists of countless macromolecules ranging from small 

oligosaccharides to large proteins. The interactions of an individual component influence 

many processes in living organisms, such as growth, division, communication, and 

reproduction, leading to the diversity of biochemical and biomedical investigations. A 

challenge in biological studies is the non-specific interference from the compositional 



8 

 

complexity, making certain fundamental aspects difficult to study. Self-assembled 

monolayers have become a powerful tool for biological studies. The principle of SAM 

formation enables the structure and properties of surfaces to be precisely controlled 

sufficient in order to prevent non-specific protein adsorption [80, 107, 110-114]. 

Surfaces coated with SAMs of ɤ-functionalized poly-, or oligo-(ethylene glycol) 

[-(CH2CH2O)n-, (PEG, OEG)] alkanethiols on Au substrates are the most common 

systems that exhibit anti-biofouling properties from other biomolecules (Figure 1-4A) 

[113, 115-122]. Generally, alkanethiols are modified with tri-, tetra-, or hexa-(ethylene 

glycol) groups. Structurally, the alkyl backbones of PEG-terminated alkanethiols form 

densely packed, ordered monolayers with nominally all-trans conformation tilted at 30º to 

surface normal, similar to that of n-alkanethiols. The peculiar van der Waals interactions 

of the (ethylene glycol) tail group influence the SAM structures, forming either in helical 

or amorphous conformations. The helical structures give quasi-crystalline surfaces, while 

the amorphous structures produce liquid-like phases [29, 94, 113]. Comprehensive 

studies suggest that both helical and amorphous PEG structures exhibit protein resistance, 

but not all-trans conformations [113]. This result supports the hypothesis that the 

incorporation of interfacial water with PEG moieties may contribute to their ability to 

resist protein adsorption, however, this is still an open area of investigations [123]. 

Moreover, experimental observations show that PEG SAMs formed on different metal 

substrates, such as silver (Ag), exhibit distinct PEG structures, thus altering bio-resistance 

[113]. 

Besides protein resistance, mixed SAMs containing two or more PEG-terminated 

alkanethiols provide a practical experimental platform to tailor the ligands or 
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biomolecules of interest for investigations of ligand-protein, protein-protein, protein-

carbohydrates, and DNA-protein interactions [10-13, 114, 124-127]. One widely used 

system comprises shorter chain tri(ethylene glycol)-terminated alkanethiols (TEG) and 

longer, reactive, hexa(ethylene glycol)-terminated alkanethiols, so-called tethers (Figure 

1-4B). While the shorter chain resists protein adsorption, the tether, containing reactive 

terminal groups such as amine (NH2), carboxyl (COOH), azide (N3), or hydrazide 

(CONH2), is responsible for coupling reactions. 

1.3.5 Self-Assembled Monolayers for Nano- and Microscale Patterning 

Self-assembled monolayers enable the production of deliberate nanostructures 

with well-defined surface properties. By combining these characteristics with lithography 

technologies, SAMs can be patterned into sophisticated small-feature architectures, 

extending their capabilities to a wide range of applications such as high-throughput 

screening, microfluidic networks, and micro-well arrays [49, 51, 128]. Soft lithography, 

introduced by Whitesides and coworkers in the early 1990's, has been a means for 

patterning SAMs. The key strategy involves the use of flexible, elastomeric polymer 

stamp made of PDMS [2, 21, 129]. In general (Figure 1-5), a PDMS stamp is molded 

onto a silicon master containing physical features, resulting in a bas-relief pattern on the 

PDMS stamp. The SAM features are fabricated by transferring alkanethiols, as molecular 

inks, from the featured PDMS stamp onto Au substrates only in the conformally contact 

areas. There are many subfamilies of soft lithography such as microcontact printing 

(µCP), microcontact displacement printing, and microcontact-insertion printing (µCIP) 

[2, 21-23, 108, 130, 131]. Although exhibiting great success for small-scale patterning, 
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these techniques are also limited by many factors such as chemical compatibility of inks, 

stamps, and substrates. Furthermore, pattern fidelity is reduced by lateral diffusion and 

gas-phase deposition of ink molecules, resulting in a practical resolution limit of <100 

nm for alkanethiols on Au when conventional µCP is used. 

Later in this dissertation, small-molecule arrays were fabricated using µCIP. By 

using an oxygen-plasma treatment, hydrophilic alkanethiol molecules were be able to be 

inked on hydrophobic stamps. This technique allows different types of molecular inks on 

the PDMS stamp to be inserted into existing SAM matrices at contact areas. The new 

printing technique, CLL, was developed based on conventional soft lithography [132]. By 

treating a PDMS stamp with oxygen plasma, specific alkanethiols can be withdrawn from 

Au substrates, creating nano- and microscale features. This technique significantly 

improves the resolution limit at 100 nm of conventional printing techniques. 
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1.4 Experimental Techniques 

1.4.1 Atomic Force Microscopy 

Atomic force microscopy, a scanning probe technique, measures surface profiles 

with nanometer-scale resolution by measuring intermolecular forces between a probe (tip, 

<10 nm radius) and surfaces at proximal distances (0.2-10 nm) [133, 134]. An advantage 

of AFM is the sample compatibility with both conductive and non-conductive materials. 

Therefore, AFM is a versatile tool in a broad range of applications, such as electronics, 

semiconductors, materials, and biology [27, 135-139]. Information given by AFM 

measurements tremendously advances our understanding of the surface chemistry of 

materials. 

The key concept of AFM relies on the detection of the differential van der Waals 

interactions between the tip and the surface, which manifests itself as attractive and 

repulsive forces. The force depends on the spring constant of the cantilever and the 

distance between the probe and the sample surface. The force can be approximated to be 

linearly proportional to the cantilever displacement, as described by Hooke's law; 

 Ὂ Ὧὼȟ (1-1) 

where F is the force, k is the spring constant, and x is the cantilever deflection. The spring 

constant of the cantilever typically ranges from 0.1 to 200 N/m, resulting in forces from 

10
-6

 to 10
-13

 N. 

In general, an atomic force microscope consists of five components, including a 

piezoelectronic actuator (PZT), a laser source, a position-sensitive photodiode detector, a 
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feedback controller, and a micro-machined sharp tip (Figure 1-6). The principle of AFM 

operation is to move the tip laterally over (rasterizing) the surface with feedback 

mechanisms that enable the PZT scanner to maintain the tip-sample system at constant 

force, or constant separation. As a result of feedback compensation, the PZT scanner 

moves vertically causing the deviation of laser intensity on the photodiode detector, 

which is used to construct the differential surface profiles. 

Typically, AFM is operated in one of three modes; non-contact mode, contact 

mode, and tapping mode [133]. In non-contact mode (Figure 1-6A), the tip is maintained 

at about 0.1 to 10 nm away from the surface and is oscillated at near its natural resonance 

frequency. By maintain its resonance frequency due to varied sample-tip VDW 

interactions, surface information can be extracted. However, the oscillating tip in native 

or simulated, biological environment, such as aqueous solutions, causes tremendous 

signal interference, making the surface information difficult to interpret. Alternatively, in 

contact mode (<0.5 nm) (Figure 1-6B), the forces between the tip and the surface remain 

constant by maintaining a constant cantilever deflection. Contact mode measurement 

offers the advantages of fast scanning and high resolution, provides surface friction 

analysis, and is suitable for rough samples. Yet, the strong repulsive force exerted by the 

tip can damage or deform soft samples. Another popular mode of AFM operation is an 

intermittently contact mode (0.5-2.0 nm), tapping mode, which is the combination of 

those two techniques (Figure 1-6C). While scanning, the oscillating tip periodically 

touches, "taps", on the sample surface at constant tip-sample interactions by maintaining 

its oscillation amplitudes. This mode allows for high resolution measurements to be made 

on sample surfaces, in particular soft biological specimens. In this work, extensive AFM 
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measurements are used to acquire surface topography, analyze protein binding, and 

examine chemical lift-off lithography. 

1.4.2 Quartz Crystal Microbalance 

In this work, the quartz crystal microbalance (QCM) is utilized as a label-free 

biosensor for qualitative and quantitative detection of protein binding on small-molecule-

functionalized substrates. The quartz crystal microbalance is a mechanical sensor that has 

been used in many research fields and industrial instruments [37, 140]. Its operating 

principle relies on the piezoelectric property of a quartz crystal. Applying an alternating 

potential to metal electrodes on the crystal faces causes a mechanical strain in a shear 

direction, and thus a crystal oscillation. A number of physical parameters of the quartz 

crystal including cut plane, density, shear modulus, and thickness govern the oscillating 

frequency of the quartz crystal. This frequency is called the resonance frequency, f0, 

which is described by  

 
Ὢ
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where µq is the shear modulus, ɟq is the density, and tq is the crystal thickness. Another 

crucial factor to determine its applications is the crystal cut plane. The AT-cut, the most 

common cut of a quartz crystal, has a cut plane at about 35ę from the optical z axis. At 

this angle, a quartz crystal has low temperature coefficient at room temperature, resulting 

in applications over a wide temperature range [37]. 

For our system, an Au electrode deposited on the quartz crystal is used as a 

substrate for surface modification with thiol SAMs (Figure 1-7). The binding of proteins 
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on the SAM-modified quartz crystals cause decreases in frequency, which can be directly 

correlated to the increase in mass, as described by the Sauerbrey's equation: 

 
ЎὪ
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ȟ (1-3) 

where ȹm is the change in mass, and n is the harmonic number (n = 1, for this system), A 

is the active measurement area. In this system, f0 = 10 MHz, A = 0.2 cm
2
, µq = 2.648 

g/cm
3
, and ɟq = 2.947 x 10

11
 g/cm.s

2
. Because these values are constant throughout the 

experiment, the eq.3 can be simplified as: 

 
ЎὪ ὅЎά (1-4) 

where Cf is the calibration constant, equal to 1.1 x 10
9
 Hz/g. From this equation, 

the reduction in the oscillating frequency is directly proportional to the mass bound on 

the crystal substrate. With the constant calibration number, this translates to 0.88 ng of 

mass uptake for every 1 Hz change in frequency. The frequency change is measured 

through an oscillator circuit that consists of a surface-mounted oscillator and an external 

frequency counter. 

1.4.3 Infrared Reflection Absorption Spectroscopy 

Infrared reflection absorption spectroscopy and polarization-modulation reflection 

absorption spectroscopy (PM-IRRAS) are used throughout this dissertation to 

characterize the surface functional groups and molecular conformation of SAM-

functionalized substrates. These techniques are forms of infrared (IR) spectroscopy, 

differing only instrument configurations. In conventional IR spectroscopy, a molecule 

absorbs IR light only when its molecular vibration changes internal dipole moments (a 



15 

 

standard selection rule). The absorption causes the depletion of IR intensity at a specific 

wavelength that depends on molecular vibrations of each functional group. However, 

conventional IR measurements are limited to systems containing very thin films (< 200 

nm) or monolayers, in which the number of molecules on the surface are far less than 

those in the bulk sample [90]. Moreover, diluting the molecule of interest in thin films 

(mixed SAMs) also decreased the measured adsorption peaks [10]. As a result, it is 

extremely difficult to draw definitive conclusions from IR data due to low signal-to-noise 

ratios due in part to atmospheric background absorption. 

By taking advantages of the surface polarization selectivity, some of the 

difficulties in the IR measurement can be circumvented. At grazing angle of incidence 

(~80º from the surface normal), the absorption of p-polarized light by a thin film on a 

metal surface is enhanced, while that of s-polarized light is negligible [90]. This 

polarization selectivity results in the IR absorption only when vibrational modes having 

transition dipole moments perpendicular to the surface. This rule only applies to good 

conductors such as Au. As a consequence, this particular instrument setup, called IRRAS, 

is sensitive to the surface functional groups and molecular orientation on metal surfaces. 

A practical concern of this technique is that the measurement of background references 

on the separate sample can produce baseline artifacts. 

This can be overcome by integrating the IRRAS setup with a photoelastic 

modulator (PM). The PM device produces both s- and p-polarized light that are alternated 

at a high frequency (~50 kHz). Using the same sample, the p-polarized light is used to 

measure the total IR intensity, while s-polarized light is effectively used as a baseline 
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collection of atmospheric background. Subtraction of these light outputs results in the IR 

spectra that are free from the baseline artifacts. 
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1.5 Figures 

 

Figure 1-1. A cross-sectional view of a 1-dodecanethiolate self-assembled monolayer 

(SAM) on a Au{111} substrate. The thiolate head groups (dark yellow) rapidly adsorb 

on the gold surface with high affinity, leading to nearly complete coverage. Weaker 

intermolecular forces between the hydrocarbon backbones (blue) drive the ordered SAM 

lattice. This chemical interaction occurs spontaneously when a gold substrate is exposed 

to alkanethiol molecules, resulting in one-molecule-thick crystalline nanostructures. 

Moreover, the surface properties of SAM-modified substrates can be engineered with a 

wide range of terminal functional groups. 
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Figure 1-2. A STM image of a 1-dodecanthiolate self-assembled monolayer on 

Au{111} to illustrate characteristic defects. Defects within the monolayer are inherent 

to assembly and include substrate step edges (red arrows), domain boundaries (green 

arrows), and substrate vacancy sites (blue arrows). Substrate step edges occur at the 

boundary between gold terraces that differ by a single atomic layer. Domain boundaries 

result from two domains (a domain is a lattice structure with the same tilt direction) of 

alkanethiolates at the interface. Substrate vacancy islands are believed to be formed as a 

result of reorganization of gold atoms removed during deposition. 
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Figure 1-3. Schematic illustration of mixed self-assembled monolayers consisting of 

two types of alkanethiols with different chain lengths. The surface mole fraction of 

two molecules on the substrates depends nonlinearly on the solution mole fraction of 

these molecules. Mixed SAMs can be prepared by several methods such as solution 

codeposition and solution insertion. 
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Figure 1-4. Schematic illustration of self-assembled monolayers for biological 

studies. (A) Self-assembled monolayers functionalized with oligo(ethylene glycol) units 

(OEG-SAMs) can resist non-specific protein adsorption. Similar to alkanethiols, the thiol 

head groups and the hydrocarbon backbones are responsible for SAM formation on Au 

substrates. van der Waals interactions in the OEG backbones cause amorphous and quasi-

crystalline helical structures that exhibit protein resistance. (B) Mixed SAMs of different 

types of OEG molecules present the reactive functional groups, called tethers, in a 

controllable manner. In general, the tethers contain spacer units (longer OEG) and are 

spaced away from each other to facilitate the biomolecular recognition of large 

biomolecules. Various reactive terminal groups may be used as tethers for biomolecule 

captures, including hydrazide (CONH2 as shown in the figure B), carboxyl (COOH), and 

amine (NH2). 
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Figure 1-5. Overview of soft lithography for SAM patterning. An elastomeric stamp 

is made by using polydimethylsiloxane (PDMS) molded from a silicon master containing 

features, resulting in a bas-relief pattern in the PDMS stamp. (A) Before stamping, 

alkanethiols are coated on the PDMS stamp as molecular inks. (B) After stamping, the 

molecular inks are transferred onto Au substrates in conformally contacted areas, 

resulting in a patterned SAM that replicates the stamp feature. This figure is adapted with 

permission from reference 225. 
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Figure 1-6. Schematic illustrations of AFM in three operating modes. (A) In non-

contact mode, the tip-surface distance is maintained while the tip is oscillated at near its 

resonant frequency. The variations in intermolecular forces between the tip and the 

surface are monitored to produce surface profiles. (B) In contact mode, the tip is in 

contact with the substrate. While scanning, the forces between the tip and surface are kept 

constant by feedback mechanisms, resulting in high-resolution topographic information. 

(C) A tapping mode AFM, a combination of two previous modes, is operated by bringing 

the oscillating tip into intermittent contact with the substrate. As a result of oscillation, 

the tip is periodically tapped on the surface at its resonance frequency. The surface 

information is acquired by maintaining the oscillation amplitude. 
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Figure 1-7. Schematic illustration of a QCM instrument. A quartz crystal is coated 

with Au electrodes on both sides and is attached electrically. Generally, in a biomolecule 

binding experiment, the quartz crystal is integrated in a liquid flow cell and sealed with a 

rubber O-ring. The crystal is oscillated by a lever oscillator. While an analyte is flowing 

over the oscillating crystal, any mass adsorbed on the surface causes reduction in the 

oscillating frequency. The frequency change is monitored by a frequency counter and 

recorded for further binding analysis. 
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Chapter 2 

 

Small-Molecule-Functionalized Substrates For Biomacromolecule Capture 

2.1 Introduction  

2.1.1 Significance of Small Molecules in Cell Signaling 

In biological systems, small molecules (<700-800 Da) play regulatory roles in 

both enzymatic activities and signal transmission [1-6]. Specifically, in the brain, signal 

transmission by small, diffusible molecules, called neurotransmitters, enables 

interneuronal communication, which regulates a wide range of physiological responses, 

such as cell growth, gene expression, and activation of membrane potential [7-10]. 

Typically, neurotransmitters can be classified as amino acids, monoamines, peptides, and 

others [11, 12]. The signaling process occurs when neurotransmitters are released from 

presynaptic neurons to an intercellular space between neurons, called a synaptic cleft. 

The released neurotransmitters, carrying chemical information, are mediated by specific 

cell surface receptors in postsynaptic neurons, commonly known as membrane-associated 

receptors, leading to signal transduction into the inside of cells [13]. Different types of 

signal transduction are transmitted through various classes of receptors, including 

enzyme-linked receptors, ligand-gated ion channels (LGICs), and G-protein-coupled 

receptors [14, 15]. Changing the three-dimensional conformation of these receptors upon 

neurotransmitter association is the major key for ion channel opening, G-protein 

activation cycle, and enzyme subunit dimerization [13]. 
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2.1.2 G-Protein-Coupled Receptors as Targets for Small-Molecule Drugs 

Among three classes of receptors, GPCRs are the largest family of membrane-

associated receptors [16]. Commonly, their structure consists of an extracellular 

N-terminal domain, an intracellular C-terminal domain, and seven transmembrane-

spanning domains [13, 17, 18]. Because GPCRs recognize a number of small molecules, 

they are implicated in diverse physiological functions, such as vision, smell, taste, and 

behavior and mood regulation [10]. Alterations of GPCR function are thus believed to be 

relevant in major neuropsychiatric disorders, including anxiety, depression, and 

Alzheimerôs and Parkinsonôs diseases [19-21]. It has been estimated that nearly half of all 

available drugs on the market target at this class of receptors [22, 23]. 

The pharmacological development of therapeutic agents for these receptors has 

been driven toward small active compounds (ligands) that modulate GPCR bioactivity 

[16, 22]. This is because they are easy to solubillize, and they diffuse and permeate in 

biological environments [24]. Their advantages are also supported by the Lipinskiôs rules, 

which describe the upper limits of molecular weight and/or lipophilicity that increase the 

risk of both toxicity and cross-reactivity [25]. Synthetic ligands are principally designed 

to yield high selectivity to the ñorthosteric siteò (the main binding pocket) of some 

GPCRs [16, 25]. These ligands can act as agonists, inverse agonists, and antagonists, 

which regulate different cellular activities that exhibit specific responses. The binding of 

an agonist activates GPCR functions, while an inverse agonist reduces receptor activities 

[25]. An antagonist produces a neutral effect to GPCRs by preventing the agonist 

binding, thus inhibiting GPCR activities [25]. This is the basic understanding for 
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extensive pharmaceutical development, which can be adopted for many types of 

receptors. However, due to the highly specific interaction at the orthosteric site, only a 

small fraction of drugs is available in the market [16]. 

In addition to the specific binding at the orthosteric site, some GPCRs can also 

interact with ligands at different sites, called allosteric sites [16]. The binding of ligands 

at the allosteric binding site has long been known for LGICs, in which their functions can 

be controlled by two ligands simultaneously [26, 27]. A typical mechanism of action of 

these ligands potentiates or inhibits receptor activation by its natural ligand. Due to the 

action at a less conserved binding site, allosteric ligands have been attractive targets for 

drug design. Many GPCRs that have been found to interact with these ligands include 

adenosine, muscarinic, dopamine, and glutamate receptors [28-30]. Benzodiazepines are 

an example of potentiated allosteric ligands of aminobutyric acid receptors [31]. They 

treat anxiety and sleep disorders without inducing the potentially lethal effects of direct-

acting GABA receptor agonists. 

An alternative approach for modulating GPCR function is to use ligands 

containing both orthosteric and allosteric pharmacophores [32]. Two active compounds 

are connected by a chemical linker, yielding bitopic hybrid ligands. These types of 

molecules are designed to act at two different binding sites on the same receptor [33]. 
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2.2 Small-Molecule-Immobilized Substrates as Tools for Biological Investigations 

2.2.1 General Considerations of Small-Molecule Immobilization 

Besides their significance, mentioned above, small molecules can be used as tools 

for chemical genetic study and the discovery of orphan receptors in both peripheral and 

central nervous systems [4, 34, 35]. Progress towards elucidating the roles of orphan 

receptors and functional regulation compounds is supported by advancing in bioanalytical 

models, allowing studies of these particular aspects. Among analytical models, the 

immobilization of biologically active compounds on surfaces (bound ligands) to capture 

their binding partners in solution has been widely recognized [36-39]. 

Small-molecule immobilization on surfaces has several key requirements to 

achieve suitable platforms for biorecognition studies. The bound ligands must retain 

bioactivity comparable to that of free molecules in solution [40, 41]. This brings a 

challenge such that some epitopes, limited in number on small molecules, are not 

available after ligand attachment, resulting in possible bioaffinity alteration [42, 43]. In 

chemical biology, a highly conserved binding site on an individual biomolecule requires 

all functional groups for site-specific interactions. This difficulty has been seen in 

pharmacological development when rational drug design relies on few protein models, 

yielding high failure rates in the clinic [25, 44]. In contrast, this challenge is less 

important for large biomolecules for which many function groups are available for 

tethering without changing the physicochemical properties of binding sites [45, 46]. 

An additional criterion relates to the accessibility of surface-bound ligands to their 

large biomolecules. In general, the sizes of biomolecules, such as proteins and antibodies, 
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are approximately 2 to 10 nm in diameter, which is relatively large compared to small-

molecule ligands [47]. Besides, due to constrained environments, the size mismatch 

between large binding partners in solution and small-molecule ligands on surfaces can 

significantly hinder biomolecular recognition (Figure 2-1). This difficulty can be 

obviated by controlling the surface density of small-molecule ligands in a manner such 

that they are not in proximity, providing a sufficient space for interactions [48]. 

Moreover, densely packed ligands with moieties, such as carboxyls and amines, on 

surfaces can enhance attractive van der Waals and strong hydrogen bonding interactions, 

leading to non-specific adsorption from biomolecules and other complex components in 

heterogeneous biological samples. Hence, strategies to achieve dilute surface coverage of 

bound ligands are necessary to ensure the optimal accessibility and specificity of 

biomolecular interactions. 

Spacing small molecules approximately 5 nm apart due to the sizes of large 

biomolecule partners, requires an advance surface chemistry. Previously, small-molecule 

printing was developed using a high-precision robot printer, creating a dense micro-spot 

array (~200-250 µm) that contains different small-molecule libraries in each spot [37, 

49]. However, this technique cannot determine the spacings between small molecules 

within a spot. Recent developments of SAMs on noble metals were applied to insert 

single molecules by controlling defect sites in a SAM matrix, enabling studies of single-

molecule properties such as photoinduced isomerization, mechanical conductivity, and 

photoinduced conductivity [50-54]. Moreover, insertion-based SAMs can be integrated 

with soft lithography to fabricate patterned SAMs for electronic applications [55-58]. 
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In addition to the insertion-based strategy, small molecules can be spatially 

addressed by using codeposition-based SAMs [59, 60]. By using two or more different 

thiol molecules, the spacings of tether molecules can be stoichiometrically controlled. 

This method is widely applicable in many experimental studies, such as single-molecule 

wires, protein biosensors, and cell physiology [61, 62]. To overcome the challenges 

mentioned earlier, our group has performed systematic studies to fabricate small-

molecule-functionalized surfaces for biomacromolecule capture. By adjusting self-

assembly conditions, such as incubation time and concentration, and more importantly by 

using ligand analogs, functionalized surfaces can express the endogenous bioactivity and 

optimal accessibility of small molecules. To begin, the fabrication of surfaces mimicking 

serotonin bioaffinity was initial goal, as discussed below 

2.2.2 Serotonin as a Prototypical System for Small-Molecule Immobilization 

In our study, serotonin has been chosen to direct our initial efforts at designing 

bioselective surfaces. Structurally, serotonin is a monoamine neurotransmitters, 

consisting of a primary amine separated from an aromatic indole ring by a two carbon 

aliphatic chain (Figure 2-2) [63]. Serotonin is synthesized biologically in two enzymatic 

steps. The first step includes the aromatic ring hydroxylation of the amino acid 

L-tryptophan by tryptophan hydroxylase, yielding L-5-hydroxytryptophan (L-5-HTP). In 

the second step, the carboxyl moiety on L-5-HTP is enzymatically removed by aromatic 

amino acid decarboxylase, giving serotonin or 5-hydroxytrptamine (5-HT) (Figure 2-2). 

Serotonin is one of the most ancient signaling molecules, found in both central and 

peripheral nervous systems, as well as in the gut, cardiovascular system, and blood [64]. 
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Brain serotonin has been implicated in physiological functions, including endocrine 

regulation, cognitive functions, anxiety, sensory functions, appetite, pain, and sleep [65]. 

Alteration in 5-HT signaling is believed to cause neuropsychiatric disorders, disorders, 

such as depression, panic, Alzheimerôs and Parkinsonôs diseases [66-68]. The World 

Health Organization reported that these diseases comprise about 7% of the global burden 

of diseases [22]. Therefore, discovering better treatments for these diseases is one of the 

most important targets for biochemical, clinical, and pharmaceutical research and 

development. 

Investigating serotonin neurotransmission has been particularly challenging, 

however, because serotonin is present in the brain extracellular space at exceptionally 

low (sub-nanomolar to nanomolar) concentrations that are equal to or significantly less 

than those of structurally similar precursors, analogs, metabolites, and other 

electrochemically active neurotransmitters [69]. Thus, the detection of serotonin requires 

ultra-sensitive and selective detection strategies. Insofar as the information content of 

neurotransmitter signaling is encoded temporally and spatially, development of methods 

to measure rapid changes in neurotransmitter levels in specific brain regions, subregions 

and ultimately, in individual synapses is essential for understanding the roles of 

neurotransmitters in modulating complex behavior [70]. 

A comprehensive understanding of serotonergic function is necessary for 

advances in the treatment of the abovementioned psychiatric and neurological disorders. 

The development of in vitro analytical tools to discover unknown serotonin-related 

proteins and to investigate the intermolecular interactions of known serotonin receptors 

will advance our understanding of cell signaling and thus brain function. 
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2.2.3 Solution Insertion for Dilut e Surface Coverage of Tether Molecules 

As mentioned above, surface-derivatized systems require proper distances 

between small-molecule ligands for optimal accessibility of large-biomolecule capture. 

Initially, we introduced a strategy using a combination of insertion-directed SAMs and 

chemical functionalization [42, 71]. With this method, oligo(ethylene glycol)alkanethiols 

containing reactive terminal groups, called tethers, are inserted into a preformed 

hydroxyl-terminated oligo(ethylene glycol)alkanethiolate SAM, known as a protein- 

resistant layer. This creates the requisite dilute surface coverage of tether molecules. The 

reactive terminal group of the tethers is then covalently modified with the selected small 

neurotransmitter 5-HT, resulting in 5-HT-immobilized surfaces at dilute coverage in 

biomolecule-resistant matrices (Figure 2-3). 

5-HT-functionalized surfaces exhibit specific recognition to antibodies directed 

against 5-HT molecules, but not to those raised against other neurotransmitters, including 

dopamine and the enzyme tyrosine hydroxylase. Moreover, these derivatized surfaces 

resist nonspecific protein adsorption from bovine serum albumin (BSA) [42]. 

The assembly and small-molecule immobilization strategy produces surfaces 

capable of biospecific recognition. This approach can be extended to most 

neurotransmitters, as well as to many other small molecules of biological importance. In 

addition to specific interactions, the 5-HT-functionalized surfaces can be used in 

combination with mass spectrometry to derive biomolecular structures of captured 

proteins [72]. However, immobilizing neurotransmitters with this strategy exploits a 

primary amine to bind reactive terminal groups covalently on surface tethers. Using an 
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essential functional group on a neurotransmitter can considerably influence the biological 

functionality of immobilized ligands. Therefore, we have introduced a novel method for 

preserving all necessary functional groups. 

2.2.4 Chemical Functionalization of Small Molecules via Their Biological Analogs 

The initial 5-HT-functionalized surfaces were created by utilizing the primary 

amine group on the 5-HT molecule to couple to surface tethers. Disabling or modifying 

one functional group on a small molecule may significantly change their binding affinity 

with endogenous biological targets. To avoid the functionality alteration of immobilized 

molecules, we have invented the next generation of capture surfaces designed to mimic 

free small molecules in solution [43, 73]. Here, we exploited 5-hydroxytryptophan 

(5-HTP), the biological precursor of 5-HT neurotransmitter. By tethering via its extra 

carboxyl moiety, the immobilized 5-HTP leaves all essential groups associated with 5-HT 

pharmacophore for biorecognition of endogenous receptors (Figure 2-4). 

The binding measurements suggested that 5-HTP-functionalized surfaces show 

bioselectivity to both 5-HTP antibodies and 5-HT membrane-associated receptors, but 

5-HT-functionalized surfaces do not (Figure 2-5). The result from AFM measurements 

also show that 5-HT7 receptors bind onto 5-HTP-functionalized surfaces (Figure 2-6). In 

addition, because the 5-HTP molecule contains a chiral center at the Ŭ-carboxyl position, 

immobilizing L-5-HTP molecules, the biologically active stereoisomers, allows the 

selective capture of 5-HT receptors (Figure 2-7) to a greater extent than enantiomerically 

mixed surfaces. 



53 

 

2.3 Conclusions and Prospects 

Chemical signaling by small-molecule neurotransmitters is an important 

biological process enabling intercellular communication. These neurotransmitters carry 

chemical information and transmit signals through different types of membrane-

associated receptors. Thus, the biological activities of small molecules and membrane-

associated receptors influence many physiological functions, such as mood, pain, and 

appetite. Alterations of these biological activities can cause many neurological disorders, 

including Alzheimerôs and Parkinsonôs diseases. Understanding of cell-signaling 

mechanisms and receptor function is critical for better treatment of the abovementioned 

psychiatric and neurological disorders. Hence, the development of in vitro analytical 

tools to discover unknown serotonin proteins and to investigate the molecular interactions 

of known serotonin receptors enables our comprehension of cell signaling and thus brain 

function. 

Serotonergic neurotransmission is an initial target system for directing the 

development of small-molecule-functionalized substrates. The critical challenges of 

immobilizing small molecules on surfaces, including selectivity, accessibility, and 

bioactivity, were addressed based on insertion-directed self-assembled chemistry of 

oligo(ethylene glycol)alkanethiols and surface chemical functionalization. Initially, we 

invented surface-bound 5-HT as protein-capture platforms for studying and detecting 

5-HT endogenous membrane-associated receptors. Consuming one functional group on a 

small molecule raised concerns that the bioaffinity of surface-bound 5-HT may alter and 

thus reduce biorecognition. 
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Ultimately, utilizing the 5-HTP molecule, containing a carboxyl auxiliary group, 

enables the surfaces containing bound ligands that mimic 5-HT functionality. 

Accordingly, 5-HTP-functionalized surfaces recognize native 5-HTP membrane-

associated receptors. In Chapter 3, the 5-HTP-functionalized surfaces will be utilized to 

investigate biomolecular interactions of GPCRs. Key binding parameters, such as 

equilibrium dissociation constants, rate constants, and dissociative half-life, will be 

extracted. This fundamental information is critical in biomedical research and the 

development of new pharmaceutical strategies to target these important biomolecules. 

Some parts of this chapter was adapted with permission from Vaish, A., Shuster, M. J., 

Cheunkar, S., Singh, Y.S., Weiss, P. S., and Andrews, A. M. Native Serotonin Membrane 

Receptors Recognize 5-Hydroxytryptophan-Functionalized Substrates: Enabling Small 

Molecule Recognition. ACS Chem. Neurosci. 2010, 1, 495-504. 
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2.4 Figures 

 

Figure 2-1. Schematic representation of large biomolecules interacting with a small-

molecule-immobilized substrate. Due to the size mismatch between large biomolecules 

and immobilized molecules, densely packed molecules on the substrate result in steric 

hindrance, preventing bioaccessbility of large biomolecules and reducing bioactivity. 
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Figure 2-2. Biosynthesis of serotonin neurotransmitter (5-hydroxytr yptamine). 

Serotonin is synthesized in a two-step enzymatic process. First, an enzyme tryptophan 

hydroxylase converts the amino acid L-tryptophan to L-5-hydroxytryptophan. Second, 

L-5-hydroxytryptophan is decarboxylated by aromatic amino acid decarboxylase, 

yielding 5-hydroxytryptamine. 
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Figure 2-3. Strategy to fabricate 5-HT-functionalized surfaces. (A) A Au substrate is 

coated with self-assembled monolayers of oligo(ethylene glycol)alkanethiols, a protein-

resistant layer. (B) Carboxyl-terminated oligo(ethylene glycol)alkanethiols are inserted 

into defect sites of the preformed SAMs, creating a dilute surface coverage of longer 

tether molecules. (C) The carboxyl tethers are modified with 5-HT neurotransmitters to 

produce 5-HT-functionaized surfaces. 

  






































































































































































































































































