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ABSTRACT 

With the advances in GPS and other location acquisition technologies, an increasing 

amount of trajectory data is being captured and recorded. This trajectory data has attracted the 

attention of researchers from many domains due to the potential benefits of discovering the 

underlying behavior patterns and predicting future trajectories of the users. In this thesis, we 

focus on indoor trajectory data in an attempt to detect heterogeneous trajectory patterns across 

users within the raw x-y coordinated data records in an indoor environment and further predict 

individuals’ future trajectories. Due to the heterogeneity in human behaviors, individuals do not 

exhibit the same pattern in their trajectories. Consequently, one single trajectory model is not 

capable of capturing these behavior patterns. To tackle this problem, we propose a Mixed Markov 

Model (MMM) approach that models the latent trajectory patterns from all input trajectories 

without the need of user identification. This study may show high impact in domains, such as 

health care, transportation systems, public security, etc., where privacy issue and heterogeneity in 

behavior patterns are concerned. A case study using real indoor trajectory data of workers in an 

engineering design space is presented for validating our prediction model.   
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Chapter 1 

 

Introduction 

The past few years have witnessed the fast development of wireless communication 

techniques (GPRS, Bluetooth, RF). Some technologies are synchronized with Global Positioning 

System (GPS) which can provide accurate time-tagged x-y coordinates of moving objects. These 

location acquisition technologies have been embedded in a huge number of mobile devices to 

capture all kinds of trajectories, leading to an era of ubiquitous position tracking. The availability 

of tremendous spatial-temporal data urges researchers to develop data mining algorithms to 

extract interesting patterns of people’s behaviors. The valuable knowledge discovered in the 

spatial data has been applied to many location-based services to benefit people’s lives everywhere. 

For example, people can search for the nearest restaurants or hotels with high rates from other 

people’s recommendation when they travel to a new place; decision makers from the areas of 

business, marketing and government are also interested in the data with spatial-temporal data: 

marketing managers want to know customers’ behavior patterns so that they can optimize their 

marketing strategies to offer the right services for the targeted customer; police can make use of 

the data to detect the patterns of criminals who commit crimes to do a better job in guarding 

public security. Thus, the ability to collect and store spatial-temporal data enables people from 

various areas to discover useful patterns and knowledge for their different purposes.       

In the meantime, a lot of indoor tracking systems have also been set up to monitor 

people's trajectories, among which RFID-based systems have been widely used for indoor 

trajectory tracking. RFID (RF Identification) is a means of storing and retrieving data through 

electromagnetic transmission to an RF compatible integrated circuit and is now being seen as a 

radical means of enhancing data handling processes (Chiesa et al., 2002). Users wear tags to be 
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tracked. There is communication between the receiver and tags for sampling users' locations 

periodically. However, the trajectory is recorded real-time or may even be delayed. That is, it 

may be too late to take measures when there are abnormal signs detected, such as abnormal 

behavior in a nursing home or changes of customers' purchasing behaviors in shopping malls, etc. 

Besides, it costs a lot of human resource for manual monitoring. Thus, there is an urgent need to 

develop spatio-temporal data mining techniques to automatically extract interesting patterns and 

knowledge in user trajectories to facilitate quick responses and proper measures taken instantly, 

according to the system prediction.  

 Several proposals for predicting people’s future trajectories are based on people’s 

trajectory histories. However, in an indoor space there are a lot of customer flows. It will be a 

waste to build database to record individual’s trajectories. Besides, people may also have privacy 

concerns. Thus, we aim to predict the trajectories of people in an indoor environment to realize an 

intelligent indoor tracking system while simultaneously maintaining people's privacy. For 

example, the employees in nursing homes can prevent potential wandering or elopement behavior 

of the elders or patients; The manager or owner of groceries are able to adjust selling strategies 

according to customers' purchasing behavior patterns. The basic idea is: there exist some latent 

patterns among the trajectory data generated by all users, so that the trajectories can be grouped 

into several clusters with their unique trajectory features, instead of studying each individual’s 

trajectory separately. The methodology follows two steps: first, we transfer the x-y coordinated 

locations into states. Here, a state means a region or place of interest. So, the trajectories can be 

presented as a sequence of states; second, we model these trajectories by an MMM and train the 

parameters of the MMM by applying the EM algorithm to learn the latent patterns of the 

trajectories and the state transition probabilities of each pattern; finally, we can estimate the 

current state of the coming trajectory and make prediction for its future states based on the state 

transition matrix trained for each cluster. In order to make prediction more precise, we also make 
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use of the specific time and location information. We assume that (a) people’s behavior varies 

temporally. For example, one may come and stay in his office from 9am to12am every weekday. 

So, the state transition probability will be different at different times of the day; (b) the state 

transition probability will also depend on the location. That means, people “on the way” to (with 

a trajectory toward) region B from region A will definitely have higher transition probability of 

going to B (A->B) than going to X (A->X, where X denotes other regions except B).     

 The potential contributions of this thesis include: 1) the technique of this paper is free 

from domain knowledge, so that our method can be applied in other scenarios for trajectory 

prediction. For example, car renting, terrorism alert, shopping at stores, etc.; 2) we count different 

patterns of user behaviors by applying Mixed Markov Model; 3) we take the specific time and 

location information into consideration to make better predictions.  

 The rest of the thesis is organized as follows. In chapter 2, we conduct a literature review 

on general methods of trajectory pattern analysis, ideas of trajectory prediction in previous papers 

and related methods that will be applied in the methodology of this paper. Chapter 3 proposes a 

methodology of Mixed Markov model based trajectory pattern learning and prediction. Chapter 4 

presents results of the experiment. Chapter 5 evaluates the results and gives a discussion. Chapter 

6 concludes the thesis.  

 



 

 

 

Chapter 2 

 

Literature Review 

In this chapter, we review previous studies related to trajectory pattern mining. First, we 

summarize some general methods that have been widely used in trajectory pattern analysis. 

Second, we take a look at ideas that have been proposed by researchers that address the problem 

of trajectory prediction. Finally, we introduce some basic concepts of MMM, which was 

employed in our prediction model.    

2.1 Trajectory Pattern Analysis 

Owing to the tremendous increase in the amount of spatial-temporal data, data mining 

techniques, such as clustering, pattern detection, etc., applied to the analysis of this kind of data 

have been widely studied in different scenarios (e.g., epidemic surveillance (Pfeiffer et al., 2007), 

evacuation tracking (Andrienko et al., 2009), etc.). For example, Andrienko et al. (2009) applied 

density-based clustering OPTICS to two types of spatiotemporal data: trajectories of moving 

objects (evacuation traces) and events (landings and interdictions of moving entities). Several 

spatio-temporal data mining methods (including clustering, association rules and sequential 

pattern detection) were investigated to help address RFID trajectory data challenges.  

2.1.1 Spatial-temporal data clustering 

Data Mining Clustering aims to discover groups of objects that share similar 

attributes/patterns in a high dimensional space. However, clustering methods often consider 
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objects as points with multidimensional properties, which may not be appropriate for structurally 

complex data sets (e.g., trajectories of objects and other spatio-temporal data types). Specifically, 

clustering in general assumes that coordinates of data points are not ordered according to some 

independent variable, such as time. In order to overcome these limitations and accommodate to 

the clustering of spatio-temporal data, a generic notion of clustering can be applied by defining a 

specific distance function which measures the degree of dissimilarity between data items. I.e., 

spatial-temporal clustering here refers to a process of grouping objects based on their spatial and 

temporal similarities (Kisilevich et al., 2010). In the following, we present two clustering 

methods for trajectory data related to our methodology: model-based clustering and clustering for 

extracting places of interest.  

Model-based clustering 

 The objective of model-based clustering is to derive a global model capable of describing 

the whole trajectories in the dataset (Kisilevich et al., 2010). In Gaffney et al.’s work, the authors 

proposed a generative probabilistic approach for clustering continuous trajectories based on 

mixture models (Gaffney et al., 1999). In their method, each cluster is modeled in a regression 

manner as a smooth function of time with additive noise. The trajectories which are likely to be 

generated from the same regression model component are grouped into one cluster. Generally 

used model types (referred to a priori) include Gaussian, multinominal, Hidden Markov Models 

(HMM), etc., among which, Markov Chains and HMMs (Smyth, 1997; Bengio, 1999; Alon et al., 

2003) have been recognized as the dominant models for time sequences. Compared to similarity-

based methods, model-based methods offer better interpretability since the resulting model for 

each cluster directly characterizes that cluster (Zhong et al., 2003).  

Places of Interest 

 Enriching trajectories with semantic meaning offers an insightful perspective in trajectory 

data analysis. Especially for our purpose of next-location prediction, detecting of places of 
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interest or important places in the trajectory data, i.e., frequently visited places, places that people 

stay for a long time or pass regularly during some time of the day, is critical in the first step. 

Alvares et al. proposed a model of enriching trajectories with semantic geographical information 

by detecting the stops and moves (Alvares et al., 2007). In their definition, stops refer to 

interesting spatial locations, such as traffic lights in transportation system or parks in people’s 

traveling routes. By constructing the table of stops, their application was able to query the 

important places during a given time. Also, the trajectory was conferred with semantics by being 

transferred into the “stop”s and “move”s. Their algorithm for finding “stop”s and “move”s 

verifies for each point of a trajectory T if it intersects the geometry of a candidate stop. In the 

following work of Alvares et. al, they presented an alternative solution to find interesting places 

which are not expected by the user (Palma et al., 2008). The proposed solution called CB-SMoT 

(Clustering-Based Stops and Moves of Trajectories) is a spatio-temporal clustering method based 

on speed, dealing with single trajectories. This approach mainly deals with the cases where the 

low speed is the main indicator of an interesting event, such as traffic jams.  

2.1.2 Association rule mining 

Association rule mining (ARM) seeks to discover association among transactions 

encoded within a database (Agrawal et al., 1993). The associations detected in spatio-temporal 

data can offer people an insightful view of mobility characteristics of moving objects and can be 

further used to predict their future movements. For example, detecting the movement patterns of 

customers over time in a shopping mall may help the manager to optimize the utilization of space 

and inform the store owners to pre-prepare their service, which is predicted to be in need in the 

future few hours. Attempts to explore these spatio-temporal relationships have been made by 

researchers from spatio-temporal domain by mapping the data to transactions. Mennis and Liu 
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applied ARM to reveal the association among processes of socioeconomic change and urban 

growth in Denver, Colorado, U.S.A (Mennis and Liu, 2005). In the technical report of Verhein et 

al., they provide a comprehensive definition of spatio-temporal association rules (STARs) that 

describe how an object moves between regions over time (Verhein et al., 2006). Further, they are 

devoted to finding regions with useful temporal characteristics (thoroughfares, sinks, sources and 

stationary regions) and to predicting how objects move through the regions based on spatio-

temporal rules that are discovered. Their approach presents the spatio-temporal patterns over a 

time window so that it enables the observation of seeing the changing nature of patterns over time.   

2.1.3 Sequential pattern detection 

 Patterns that are mined from trajectories are called trajectory patterns and characterize 

interesting behaviors of a single object or group of moving objects (Fosca et al., 2008). These patterns 

provide useful information for inferring the past trajectories or future movements of objects. Given a 

spatio-temporal series, Cao et al. study the problem of discovering sequential patterns, which refer to  

routes frequently followed by the object (Cao et al., 2005). The idea is: they transfer the original series 

of spatial locations into a list of frequently visited spatial regions by summarizing the line segments. A 

substring tree structure was employed to find patterns.   

 Instead of focusing on the trajectory segments, Giannotti et al, on the other hand, developed 

an extension of the sequential pattern mining paradigm to find frequent movement patterns by taking 

both space (i.e., the regions of space visited during movements) and time (i.e., the duration of 

movements) into account (Giannotti et al., 2007). A T-pattern is introduced to describe a sequence of 

consecutive points with annotation of temporal transitions. Their methodology follows two steps: first, 

the regions of interest need to be detected. Then the input trajectories are transformed from sequences 

of points to that of regions of interest; second, temporal annotation is counted for mining the 

underlying patterns by applying the method proposed in (Giannotti et al., 2006).   



 

 

 

2.2 Trajectory Prediction 

With the pervasiveness of location-based services, there is an unprecedented availability 

of huge amounts of spatio-temporal data, which attracts researchers’ interest to tackle research 

problems on human mobility. Among these problems, prediction of people’s next location has 

been an essential issue in many studies. Attempts from different perspectives have been made to 

solve this problem. Some of them employ a model based on frequent trajectory patterns (Yavas et 

al., 2005; Monreale et al., 2009). In Yavas et al.’s work, the authors proposed an algorithm to 

predict the next intercell movement of a mobile user in a mobile computing system (Yavas et al,, 

2005). The algorithm follows three phases: first, they extract user mobility patterns from the 

history of mobile users; second, association rules are mined from these patterns; finally, a mobile 

user’s next location is predicted by using these rules. The notion of support is used for the 

selection of rules.  In Monreale et al.’s work, they also use the movement patterns, which is 

extracted by employing the Trajectory Pattern algorithm proposed by Giannotti et al. in 2006 

(Giannotti et al., 2006; Monreale et al., 2009). Then, a T-pattern Tree is built to capture the global 

model of the underlying mobility data, which is similar to the use of association rules as 

predictive rules. Their idea for prediction is to compute the best matching score of all the 

candidate paths of the T-patterns Tree with children of the best node to be selected as next 

possible locations. The algorithm to find the best matching pattern computes the matching score 

by introducing the concepts of punctual score and path score. A similar idea was also proposed by 

Jeung et al. earlier (Jeung et al., 2008). A Hybrid Prediction Algorithm (HPA) presented by them 

provides predictions for both near and distant time by combining the predefined motion functions 

with movement behavior patterns.  
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 Ying et al. present an innovative approach for predicting future locations from the 

perspective of semantic trajectory (Ying et al., 2011). By taking both geographic and semantic 

features of users’ trajectories into account, they propose the location prediction framework called 

SemanPredict. Furthermore, instead of detecting frequent patterns among the whole dataset, they 

give a cluster-based prediction strategy based on the frequent behaviors of similar users in the 

same cluster for the purpose of predicting a mobile user’s next location.   

 In addition, the extended Kalman Filter(EKF) was also proposed for state estimation and 

trajectory prediction. In Prévost et al.’s work, the authors presented an EKF approach for state 

estimation and trajectory prediction of a moving object detected by an unmanned aerial vehicle 

(Prévost et al., 2007). The filter is used to estimate its true setpoints, model states, model outputs 

and position in space, in spite of model uncertainty and measurement uncertainty. They assume 

the object is a non-linear controlled system with Gaussian noise and the dynamic characteristics 

of the system have been already known.  

2.3 Mixed Markov Model 

 Mixture Markov Model (MMM) is defined as a finite mixture of Markov chains, 

allowing for individual differences in transition probabilities. For example, it considers the 

heterogeneity of customer behaviors in a market. Each chain represents a group of sequences 

sharing similar characteristics. Each sequence is generated by one of the chains with some 

probability, denoted by a latent variable, X. Xk = 1 when the kth model generates the sequence; 

Xk=0, otherwise. MMM has been employed for years in the analysis of customer behavior. 

Poulsen applied MMM to model the brand choice behavior of customers (Poulsen, 1990). Not 

limited to marketing, MMM has also been employed in other applications. For instance, by 

learning a mixture of first-order Markov models, Cadez et al. discover navigation patterns of 
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users on a Web Site (Cadez et al., 2000). Asahara et al. applied MMM to spatio-temporal data, 

i.e., trajectories, to detect the underlying behavior patterns of customers in a commercial 

shopping complex for the purpose of evaluation of levels of customer satisfaction (Asahara et al, 

2011). An EM algorithm is usually applied to optimize the parameters of MMM by an iterative 

procedure. 



 

 

 

Chapter 3 

 

Methodology  

Trajectory mining techniques have been extensively developed and employed to study 

people's trajectories. In order to predict next locations in people’s trajectories, it is essential to 

understand the underlying patterns in them. A great challenge in the data set we had access to was 

that an individual’s identity is anonymous in the trajectories (on any given day, an individual 

might pick up any of the RFID tags, with this information unrecorded). So, we are not able to 

speculate their future trajectories based on their past trajectory histories. But people may share the 

same pattern during a particular time of the day. For example, two colleagues go to have lunch 

from their office every noon during the workday. Likewise, the trajectories of an individual 

person may carry several patterns according to the person’s schedule. Thus, we focus on the 

trajectory patterns among all the (a training set of) input trajectories. MMM is employed in this 

thesis to detect the different patterns in these trajectories using a model-based clustering method. 

We chose it because it considers the trajectory patterns as latent variables. This model-based 

clustering method can directly characterize parameters of each cluster in terms of its state 

transition matrix, as well as the cluster’s prior probability (essentially, its frequency of use). Our 

methodology follows three steps. First, we cluster all the two-dimensional spatial measurements 

into “states”. And, we represent the original x, y coordinated trajectories as a sequences of 

clusters (states). Second, the Mixed Markov Model is employed to build the model for state 

transitions of each unique pattern. The EM algorithm is used for training the model parameters in 

an iterative way. Finally, prediction is made according to state transition probabilities of the 

mixing components in the operational phase, applied to (test) trajectories that are temporally 

“revealed”, with the predictions for a given trajectory at each time point based on the trajectory’s 
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causal subsequence, relative to the current time point. Besides our basic model, we also exploit 

time and location information as conditioning context for the state transitions in the second step. 

Also, a model order selection method, Bayesian Information Criterion (BIC), helps to determine 

the number of latent trajectory patterns.   

3.1 Track Representation: Sequence of States 

In this first step of the methodology, the input trajectories, given as a sequence of x-y 

coordinated points with time stamps, are converted into a sequence of states. Here, state means 

point of interest. This step endows semantic meaning to the trajectories and helps in the 

comprehension of the trajectory data, serving as an essentially important preprocessing step for 

the following pattern extraction and further prediction of future locations of the users.   

Alvares et al. proposed a general model for enriching trajectory with semantic meaning 

(Alvares et al., 2007). They presented an algorithm to extract “stop”s and “move”s for the 

trajectories, where stops denote important places where people stay for a relatively long time (e.g., 

hotels, parks, etc.) and moves are sub-trajectories between two consecutive stops, by integrating 

trajectory data with the background geographic information.  

Borrowing the concept of “stop”s and “move”s, we propose a method to extract the 

points of interest, i.e., states, without the need of knowing the background geographic information. 

We assume people involved in activities in a room should exhibit dense trajectory points in this 

local area; on the other hand, people should have sparse points in the sub-trajectory when they 

move from room to room and the shape is line-like. So, the trajectories can be segmented into 

several parts. The segments are primarily composed of two main categories: points of interest 

(stops) and sub-routes (moves). In indoor space, for example, sub-routes can be paths from a 

meeting room to an office, and points of interest can be an office and a meeting room. A density-



13 

 

based DBSCAN clustering method (or, in fact, any clustering method) can in principle separate 

the stops from moves for trajectories. Specifically, our method for extracting states from 

trajectory data follows three steps: 

(1) We partition the trajectory into segments, "stop"(in-room) and "move" (room-to-room) 

by applying a clustering method to extract the dense-regions as candidate stops; 

(2) We cluster the candidate "stop" segments to detect points of interest for all trajectories; 

(3) The input trajectories are thus converted to sequences of points of interest.  

There are two potential forms for representation. Either, the track is represented as a 

sequence of states; alternatively, by a sequence of unique cluster transitions, plus the run-length 

(i.e., how long the user stays in a cluster). The first representation of a discrete sequence of states 

is given as  

X(n) = (X1(n), X2
(n), ...,  XTn

(n)), n=1, 2,…, N 

where N is the number of measurements (points) in a trajectory; Xi
(n) ϵ {1, 2,…, M}, 

which is the set of state indices. Actually, the two presentations are equal and can be converted to 

each other since the sampling rate is almost uniform. We use the first representation in this thesis.  

The above presents a general method to extract the points of interest for transforming 

coordinated location points into sequences of states. However, in our indoor space case, the 

sampling rate is about two minutes, which allows users to move from one location to another 

between two of our data measurement points. Thus, the “moves” are not well-captured in the 

experiments of our indoor trajectory data. 

3.2 Mixed Markov Model 

Mixed Markov chain is proposed to deal with the heterogeneity in human behaviors in 

order to overcome the assumption of homogeneity in a traditional Markov chain, which is not 
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able to capture different user behaviors in the data. The Mixed Markov chain is more appropriate 

to describe real-world cases where human behaviors or reactions vary in response to even the 

same offering or input. Thus, MMM has been employed in many domains, including marketing, 

psychology, biology, etc. for discovering unique user clusters, within which users share some 

similarities, and with clear differences in behaviors exhibited across clusters. In [Poulsen, 1990], 

the author applied Mixed Markov chain to analyze brand choice behaviors in the market. In our 

case, for indoor trajectory data, we denote each chain representing a group of trajectories that 

carry similar characteristics in state transitions. Each trajectory is generated by one of the chains 

in probability. Z denotes the latent variable which represents one unique cluster, namely, Zk = 1 

means the kth cluster generates the trajectory; Zk= 0, otherwise.  

Let X = {X(n), n=1, 2,…, N} be the training dataset for all input trajectories. We model 

the trajectory data by a mixture of first order Markov Models, i.e., 

                                                                                               (3.1) 

where P[x/θl] is the mixture density (joint likelihood), given by  

            (3.2) 

Thus, P[x] can also be written as  

                                                                    (3.3) 

where K is the number of mixture components; α is mixing coefficient; π is the 

probability of component l starting with state x0; ρ is the transition probability conditioned on 

component l; and  . 

 The training objective is to maximize the training set log-likelihood 

        (3.4) 
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 An Expectation-Maximization(EM) algorithm is used to estimate the parameters 

following the steps below: 

 Step 1: Initialization 

                          (3.5) 

              (3.6) 

           (3.7) 

 where N is the number of times a joint event occurs. 

 Step 2: E-step 

                       (3.8) 

 Step 3: M-step 

          (3.9) 

       (3.10) 

                  (3.11) 

Step 4: go to step 2 unless converged.  

This EM algorithm monotonically ascends in the training set log-likelihood objective, 

and is thus finds a locally optimal solution.  However, as the log-likelihood objective is a  non-

convex function of the model parameters, only local optimality is ensured – the global maximum 

likelihood solution is not ensured to be found by this method.  
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After apply the EM algorithm, the trajectories are clustered into groups with common 

latent variables, which thus indicate common patterns across the training trajectories.   

However, we lose a lot of information regarding state transition when we represent the 

original x-y coordinated points into states in the first step. For example, if an individual is on the 

way to B from A, it is very likely that he will transfer from state A to state B. Thus, the location 

information that we reduced in the first step (by clustering the spatial measurements) may still be 

able to help us predict state transitions. We consider this information a “hint”. On the other hand, 

we may also get a transition hint from temporal information. It is reasonable to assume people 

exhibit different state transition probabilities during different times of the day. For example, at 

12pm in the noon, it is more likely for a person to transfer from office to dining room; while at 5 

pm, he should have high probability to go home from his office. Thus, we also evaluated 

embedding the spatial and temporal information in the MMM (as conditioning context) in order 

to improve the prediction accuracy of state transitions.  

Time-embedded MMM 

 In order to make use of the information of time stamp for each location point, we embed 

temporal factor into the MMM. The idea is pretty straightforward: we make the state transition 

probability condition on time. Specifically, the method follows two steps. First, we quantized the 

time stamps into a discrete set of times (e.g., within one hour).  Second, a dimension of temporal 

factor was added to the state transition probability matrix, which is expressed as 

],;/[ 11   ntt TljSkSP
 

 where Tn-1 denotes the time of the (t-1)th state. 

The E-M step for training the parameters can be modified in the same way.   
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Location-embedded MMM 

 We quantified the trend for a user to go to one state from another in order to embed 

location hint for their state transitions. Conditioned on the previous two location points, the state 

transition probability is given as   
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               (3.12) 

 where Ck is the center of state k; ||Ck - xt-1||2 indicates the absolute distance between 

current location and center of state k;  (||Ck - xt-2||2 - ||Ck - xt-1||2) is dynamic distance to state k 

considering previous two locations, which suggests the direction of going to state k.  

 Another simpler way to consider the location hint is to quantize the 2D measurement 

space in the same way as counting the time hint, and condition on which spatial cell the trajectory 

is in at times t-1 and t, in predicting the state at time t+1. Similarly, the transition probability 

conditioned on pattern l, spatial cells at time t-1 and t, is given as 

 
],;/[ ,11 tttt CCljSkSP  
 

where Ct-1 and Ct denote indices of spatial cells at time t-1 and t.  

3.3 Prediction of Next Point of Interest 

 With the parameters of MMM trained, we can make prediction for users’ next point of 

interest. Given the current state k, the predicted probability of going to state j can be computed as  

 
  

l

ii

n

ii lkxjxPXlLPkxjxP ];/[]/[]/[ 1

)(

1

     (3.13) 

 where P[L=l/X(n)] is the probability of the coming trajectory X(n) being cluster l, which 

can be computed using equation (3.8) in the E-step of the EM algorithm.  



18 

 

3.4 Model Order Selection: BIC  

In order to determine the number of latent components (clusters) in the MMM, we 

employ BIC for model order selection. BIC for choosing the number of components is given as 

 
]|[log)(log

2

1
)()( )(

22

k

Free xPNKNKBIC 
    (3.14) 

where NFree(K) is the number of free parameters in the model.  

In our case,  

))1()1()1(()(  MMMKKKNFree     (3.15) 

where K-1 is for α, M-1 is for π, M(M-1) is for state transition probability matrix.  

 )(minarg* KBICK K        (3.16) 

 

 X in BIC is the set of all training trajectories.



 

 

 

Chapter 4 

 

Experiments and Results 

 The data source we employ to do the experiments is provided by Buzby Networks, LLC, 

collected by the BuzNet Real-Time Locating System (RTLS) which monitors people's real-time 

indoor positions in Penn State Learning Factory (http://www.buzbynetworks.com/). A total number 

of twelve battery-power wireless tags are used for tracking people's locations over time. The 

received data contains information of all 12 tags from January to April, 2012, which shows 

people's locations sampled approximately every two minutes every day for those three months. 

The table to store such spatio-temporal data is comprised of three columns, Time_Stamp (time 

stamp), Message (location) and Destination_EUI (tag number): Time_Stamp indicates the time 

point of the corresponding location in the same row, e.g., 2012-01-21 20:39:50.000, Message 

describes the 3D (x,y,z) location of people in that moment, e.g., 18.70,15.20,Floor 1, 

Destination_EUI records the number of the tag which reports the spatio-time information. There 

are 12 different number, each identifying one of the 12 tags. The original data format we received 

is .bak file. We extended and restored the data in SQL Server 2008. The original data schema is 

clear and succinct in recording the time and location information of people's trajectories. A user 

picked up one tag from the tag container when his/her trajectory was starting to be monitored and 

he/she put it back in the container before leaving the building of the learning factory. Thus, the 

trajectories are round-trip, starting from the location of tag contain (18.6, 11.8) and ending in the 

same place. Also, as we know, most of the time, the tags lie in the tag container. So, we filtered 

these points in the tag container. And we also select the data points with time stamps from 8am to 

10pm, which is the open time of Learning Factory. We pre-processed a total number of 1438 

trajectories from the data of three months. There are totally 36356 measurements (points). We 

http://www.buzbynetworks.com/
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divide the data into two parts for training and testing. The training data set is 1091 tracks for two 

months (1/20/12~3/20/12); and, the testing data set is 347 tracks for one month 

(3/21/12~/4/20/12). 

 The experiment is done following the steps in the methodology: (1) we cluster the point-

based locations into states; and transfer trajectories made of the x-y coordinated points into 

sequences of states. (2) We build the MMM model and employ EM algorithm to train and BIC to 

select the models. (3) Next point of interest is made by computing how it belongs to each of the 

patterns, and then the transition probability is based on the transition probability of all patterns.  

The results of experiments of extended MMM conditioned on time and location is also presented.  

 State definition 

 In this indoor setting, we simplified the extraction of places of interest by employing k-

means to extract regions of interest in the indoor space. As Fig. 4-1 shows, we get five clusters. 

Each color denotes a cluster: red, shop room; pink, part #1 of work room; green, part #2 of work 

room; yellow, lab; blue, lobby. Choosing these five clusters is visually plausible since the clusters 

correspond to different rooms (most of them). Besides, Bayesian Information Criterion (BIC) 

could be used in practice for choosing the number of clusters, which can help make the local 

decisions about whether the current centroids should be split. 
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Figure 4-1 Five Regions of Interest for Learning Factory. 

 

  MMM model Building 

 Next, we build the MMM on the training data for detecting the underlying trajectory 

patterns. MMM considers the heterogeneity in human behaviors as latent patterns. The objective 

is to maximize the log likelihood. As Fig. 4-2 shows, the log-likelihood is strictly increasing 

versus iteration times by EM algorithm.    
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Figure 4-2 Log-likelihood Vs. Iteration. 

 

 The total prediction accuracy we get is 0.9155. And the prediction accuracy for each step 

is presented in Fig. 4-3.  

 

Figure 4-3 Prediction Accuracy for Each Step. 
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 As we see, the prediction accuracy is high in the first few steps. This is because users 

usually stay in the initial state for a while. Then, the curve drops since states start to transition and 

the ongoing state varies -- it is hard to tell which one the user is going to without enough 

information about the coming trajectory. Finally, the curve goes up and oscillates without 

dropping too much. This suggests the prediction accuracy increases as more information of the 

coming trajectory is available. (Also, the ending state is known – it is the same as the starting 

state). 

 Model Order Selection: BIC 

 The number of components is determined by BIC. As Fig. 4-4 shows, the minimum point 

is when # of components equals 4. It suggests there are four unique trajectory patterns across all 

the users.  

 

Figure 4-4 BIC for Determining # of Latent Variable K 

 

 In order to observe the four components, we present the clustering of all training 

trajectories into four patterns detected as show in Fig. 4-5.  



24 

 

 

 

Figure 4-5 Clusters of Training Trajectories for Each Pattern 

 

The transition probabilities for each component are presented as follows.  

Probj_k_l(:,:,1) = 

    0.7024    0.1347    0.1371    0.0732    0.0572 

    0.0605    0.3905    0.0947    0.0941    0.0486 

    0.0325    0.0364    0.5103    0.0321    0.0129 

    0.0432    0.1220    0.0804    0.7300    0.0137 

    0.1613    0.3164    0.1775    0.0706    0.8675 

Probj_k_l(:,:,2) = 

    0.7034    0.1510    0.0622    0.0456    0.2681 

    0.0779    0.4580    0.0969    0.1044    0.2132 

    0.0200    0.0237    0.6718    0.0259    0.0427 

    0.0393    0.1327    0.0801    0.7562    0.0637 

    0.1594    0.2346    0.0890    0.0679    0.4123 

 

Probj_k_l(:,:,3) = 

    0.0278    0.0204    0.0749    0.0000    0.0077 

    0.0000    0.0123    0.0341    0.1443    0.0052 

    0.0000         0            0              0         0.0007 

         0             0            0              0         0.0004 

    0.9722    0.9673    0.8909    0.8557     0.9859 

Probj_k_l(:,:,4) = 

    0.8416    0.0628    0.1115    0.0284    0.2261 

    0.0680    0.8110    0.3643    0.3952    0.3080 

    0.0041    0.0077    0.3353    0.0326    0.0041 

    0.0143    0.0541    0.1515    0.5180    0.0079 

    0.0719    0.0644    0.0373    0.0258    0.4539 

 

 Also, it is interesting to know how the prediction accuracy varies depending on the 

number of components. Figure 4-6 (a) shows the relation between total accuracy and number of 
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components. The largest accuracy achieves at K=4 or 5, which matches the result of model order 

selection. Figure 4-6 (b) shows the relation between transition prediction accuracy and number of 

components. The transition accuracy is still smoothly increasing after K=4. Thus, BIC is more 

likely to select the optimum number of components to maximize the total accuracy.  
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     (a)                                                                       (b) 

Figure 4-6 (a) Total Prediction Accuracy Vs. # of components (b) Transition Prediction Accuracy 

Vs. # of components 

  

 Sample predicted tracks 

 Several predicted trajectories are shown in Fig. 4-7 (a)-(d) to know how the prediction 

algorithm works. The results suggest that (1) prediction is good when the state is stable (in Fig. 4-

7 (a)); (2) the prediction accuracy increases when more track history is available (in Fig. 4-7 (b)); 

(3) sharp changes are hard to predict; while general changes can be predicted (in Fig. 4-7 (c)); (4) 

bad prediction when the trajectory changes a lot in early times (in Fig. 4-7 (d)).   
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Figure 4-7 (a) Prediction of Test Track #101 

 

Figure 4-7 (b) Prediction of Test Track #135 
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Figure 4-7 (c) Prediction of Test Track #225 

 

Figure 4-7 (d) Prediction of Test Track #137 

 

 In general, our algorithm learned from the training trajectories that when a user enters 

into a state, he/she will stay in the stable state there for a time. So, the prediction is pretty good 

when the state is stable; when it comes to the state transition, the algorithm needs to learn more 

information about the history of the trajectory to detect its pattern before it can make correct 



28 

 

predictions. Otherwise, the prediction does not work well in the initial stage when there are a lot 

state transitions. 

 The transition accuracy of basic MMM is 0.1293. Thus, we embed time and location 

information in order to improve the prediction in state transitions.  

 Time-embedded Prediction 

 Time is embedded by quantifying the time stamp on a hourly basis in order to catch the 

potential transition hint based on time. The transition accuracy of time-embedded MMM is 

0.1234 and the total accuracy is 0.9013. From the result, we cannot see effective improvement in 

both transition prediction accuracy and total prediction accuracy. Two reasons may cause this. 

First, the periodicity is more likely to be observed in the trajectory history of individual users, 

while it is not obvious among all the input trajectories across the users since different users have 

different schedules. Second, the contextual information regarding how data was collected may 

explain the reason. The data is collected from employees in Penn State Learning Factory, who 

randomly picked up one tag for recording their trajectories, which suggest, the trajectories may 

not be complete. Also, for most of the time, the tags are not worn, which means the effective 

trajectories data is a small portion. 

 Location-embedded Prediction 

 We implement the “location hint” embedded prediction by defining a 2-dim spatial 

quantification. Specifically, we quantified the 1490x1000 gridded layout into 620 cells, with an 

average of 50 points in a cell. The prediction accuracy of state transition has risen to be 0.3306, 

with the predictable rate (namely, the fraction of transitions with plausible hints that are predicted 

by the location embedded MMM) of the whole test data to be 0.3687. The total prediction 

accuracy is 0.89. And the false state transition prediction rate (i.e., how often a state transition is 

predicted that does not occur) is 0.6513. The false state transition prediction rate is a little bit high, 

suggesting the location-embedded prediction is a little bit overreacted. It is reasonable since the 
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workers in Learning Factory always walk around during their work, especially in the “work” 

room, which takes a large portion of the data points. Thus, it generates false signs for state 

transitions.  

 Comparison of the performance of three models 

 We compute the performance measure for the three models, denominated by the number 

of predictable state transitions. We get 0.35, 0.33 and 0.89, respectively for MMM, time-

embedded MMM and location-embedded MMM. The chart below shows the comparison of the 

performance of the three models, in terms of performance measure, transition prediction accuracy 

and total prediction accuracy. 
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Figure 4-8 Comparison of the Performance of Three Models 

 

The performance measure of Fig. 4-8 shows that the location-based MMM presents remarkable 

increase in prediction accuracy of state transitions. It suggests that the “location hint” is 

recognized as a strong sign for state transitions.     

 



 

 

 

Chapter 5 

 

Discussion 

 In this thesis, we focused on prediction of users’ next point of interest in the trajectory 

data of anonymous user identification. Several attempts have been made by researchers before. 

The methodologies can be generalized into two kinds: using the user’s trajectory history (Yavas 

et al., 2005) and learning from the patterns in all the input trajectories (cluster into patterns in 

nature) (Monreale et al., 2009). Our methodology belongs to the latter since the user identity is 

not known. By employing the MMM, we detected four trajectory patterns within the data. Using 

the parameters trained by EM, we get a total prediction accuracy of 0.9133 depending on 5 states 

(points of interest) in Penn State Learning factories. The step prediction (Fig. 4-3) shows that the 

prediction accuracy of first few steps is high on account of the states being relatively stable; then 

the accuracy drops as states transitions happen and users’ states vary; however, as Fig. 4-3 tells 

the accuracy goes up again and oscillates, which suggests, when more trajectory information is 

available, our prediction algorithm detects some state changes as well as predicting the stable 

ones. It is consistent with the predictions of sample trajectories: the stable trajectory maintains 

high prediction rates (Fig. 4-7(a)); the algorithm can detect general changes (Fig. 4-7(b)(c)) but 

does not work well when there are a lot of changes in the first few states(Fig. 4-7(b)(d)). In 

Monreale et al.’s work, their prediction rate is no less than 20% (Monreale et al., 2009). And our 

results shows higher prediction rate, up to 90%. It suggests the prediction based on pattern 

detection is being validated. Our experimental results outperform that of Monreale et al.’s. This 

may be caused by the data set we employed; or the patterns in this data set are simple and small in 

number; or trajectory patterns are not fully detected by applying the Trajectory Pattern algorithm 
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to insufficient trajectory data in their work. But the performance of our prediction algorithm 

should also count.  

 In general, the MMM for prediction has three unique characteristics compared with other 

pattern-detection based location prediction: (1) The patterns are considered as latent variables in 

MMM and the model is learned with no need of prior pattern input. (2) It predicts not only state 

transitions, but also determines whether it will stay in the current state, further, suggesting how 

long it will stay in the state. (3) MMM model is simple in computing and easy to interpret.  

Whilst the results for prediction is good, but the prediction rate is low as 10% when it comes to 

state transitions. In order to overcome this problem, we make use of “time hint” and “location 

hint”. However, the MMM embedded with “time hint” does not rise up to our expectation. It may 

be caused by several reasons: (1) there is no obvious periodicity in the data among trajectory data 

across the users and due the incompletion of user trajectories; (2) the initialization of EM for 

training MMM counts; (3) in terms of applying BIC to choose the number of patterns, the 

parameters maybe inter-dependent when the time dimension is added. When “location hint” is 

embedded, the transition prediction is significantly improved to be 0.33. Thus, location 

information is proved to be plausible hints for state transition in this indoor context. However, we 

should also be careful about the trade-offs of the location-embedded MMM. While it can suggest 

signs of state transition according to two previous points, it also causes “overreact”, which false 

predicts a state transition.   

 Also, the prediction results depend on places of interest. It is reasonable that a more 

accurate prediction can be achieved when we reduce the number of clusters. Since this algorithm 

can be applied to other domains, the definition of clusters can be determined by the users of this 

methodology so that they can select the points of interest according to their specific needs, 

making it as a user input for domain applications.  
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 The MMM we proposed in this thesis solves the issue of prediction of points of interest. 

Due to performance that showed in results, it is an effective methodology to solve the problem. It 

fits to the literature of this problem for the three unique characteristics discussed above. The 

significance of solving this problem also lies in that it can be applied to many domains where user 

preference is diverse and privacy (anonymous user identification) is highly valued. Potential 

contribution can be: (1) In shopping malls. The manager can know the patterns from customer 

flow, and predict the future customer flows, so that he can inform the store owners to prepare 

their service well in advance. (2) In health care center. The stuff can deal with the wandering case 

more efficiently by knowing what the next area would be for the patient so that tragedies may be 

avoided by fast actions. (3) Serial criminal or terrorism. It can help the police predict and identify 

where will happen the next criminal and do a better job in guaranteeing public security.   

 The future work may be: (1) to further improve the accuracy of state transitions by 

embedding other information which can be a hint to the state transitions. (2) to discover the 

correlation between the trajectories of individuals, and explore the underlying social networks 

within the anonymous trajectory data set. One interesting research question can also be to un-

anonymize user identification.  

 



 

 

 

Chapter 6 

 

Conclusion 

 We introduced a new methodology to predict the next point of interest of a moving object. 

The idea of prediction is based on all the input trajectories with anonymous user identifications. 

By applying MMM, we modeled the latent patterns with EM for parameter training. The results 

of our experiment demonstrated that this methodology gives significant prediction accuracy and 

allow users to define the points of interest according to their own needs. Besides, the MMM is 

easy to compute and interpret. And the model can determine the patterns without prior input 

patterns. It can also tell whether it will stay in the current state as well as the probability of transit 

to another state. Besides, the location-based MMM exhibits significant performance in the 

prediction of state transitions. 
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