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ABSTRACT 

Both the fabrication and placement of nanostructures (i.e. structures whose 

dimensions are on the order of nanometers) has matured to the point where antenna- and 

waveguide-like elements may be manufactured and precisely placed into useful 

configurations. This is of particular interest because it extends conventional antenna 

concepts and applications into the terahertz and even optical regimes. To support these 

inquiries, it is necessary to correctly describe the electromagnetic properties with proper 

modeling. This thesis will address a few specific topics in the modeling of nanoscale 

electromagnetics and novel applications at terahertz and optical frequencies. First, an 

analytical treatment of the scattering from GaP nanowires and asymptotic forms of the 

average internal intensities are derived. The ratio of orthogonally polarized intensities 

with a vanishingly thin nanowire confirms the presence of the ‘antenna effect’ in this 

limit. The simulation of arrays of metallic nanowires shows that they may function well 

as frequency selective surfaces in the mid-infrared. By introducing a small gap in each 

nanowire, large near fields are produced at resonance that may find use in field enhanced 

spectroscopy. The excitation of nanowires allows them to function as optical 

nanoantennas and they are well described by conventional antenna parameters such as 

input impedance, radiation efficiency and directivity. Nanoantennas can be simulated 

more efficiently by taking advantage of the surface impedance condition, though with 

less accurate calculation of the input reactance. 
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Chapter 1 
 

Introduction 

1.1 Motivation 

Research in electromagnetics can be driven and directed by many different 

processes. Sometimes advances in theory push for the design, fabrication and 

experimentation of new and novel structures. In other cases, developments made in the 

production of innovative structures pull for better analytical or numerical modeling of 

their observed properties. One example of the latter is the recent interest in nanoscale 

electromagnetics. Both the fabrication and placement of nanostructures (i.e. structures 

whose dimensions are on the order of nanometers) has matured to the point where 

antenna- and waveguide-like elements may be manufactured and precisely placed into 

useful configurations. This is of particular interest because it extends conventional 

antenna concepts and applications into the terahertz and even optical regimes. Nanowires 

may be viewed as wire dipole elements, nanocones as broadband biconicals and 

nanotubes as circular waveguides. Recent work by Engheta suggests even the basic 

building blocks of circuits may have similar analogues [1].  

To support these inquiries, it is necessary to correctly describe the 

electromagnetic properties with proper modeling. This thesis will address a few specific 

topics in the modeling of nanoscale electromagnetics and novel applications at terahertz 

and optical frequencies. 
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1.2 Analysis Methods 

For the purpose of this work I will assume that the electromagnetic properties of a 

given material can be completely described by the bulk constitutive parameters µ and ε, 

which, although complex and frequency dependent, are isotropic and homogenous. Also, 

the materials will generally be nonmagnetic so the permeability is equal to its free space 

value (µ=µ0). With this in mind, the vast majority of nanoscale electromagnetics can be 

described using mostly canonical EM methods. These fall into the very general categories 

of analytical and numerical. In either case the formulation may be exact or approximate. 

1.2.1 Analytical  

An analytical approach to a problem in electromagnetics seeks to find a closed 

form solution to the quantity of interest. The notion of “closed form” can mean a finite 

set of elementary functions or an infinite series of special functions. Even for deceivingly 

simple geometries, it can be very tedious to find an exact analytical solution. This usually 

depends on the separability of the Helmholtz equation in a particular coordinate system. 

The coordinate system is typically chosen to correspond to some symmetry of the 

problem. Therefore, we see exact solutions when considering simple shapes like spheres, 

infinite cylinders and planar half spaces (and also more exotic shapes like biconicals, 

spheroids and ellipsoids). Unfortunately, this severely limits the type of problems we can 

solve.  

While it is rare to find an exact sphere or an infinite cylinder in a laboratory 

settting, the closed form solutions generated by analytical methods usually represent a 
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good approximation to some real problems. One example is the Raman scattering from 

long nanowires [2],[3],[4],[5]. Even though the nanowires are of finite extent, both the 

aspect ratio and electrical length are large enough that experimental results match well 

with the modal solution. The full analytical solution may not even be necessary in some 

instances because all but the lowest orders terms are negligible. In fact, in certain limiting 

or asymptotic cases the solution may simplify significantly and lend much more physical 

insight than in endless summations of functions and coefficients.  

1.2.2 Numerical 

The full-wave approach in electromagnetics uses numerical techniques to solve 

specifically formulated equations. These equations can directly depend on the field 

quantities or they can be auxiliary in nature. The name “full-wave” distinguishes this 

technique from some approximate methods, such as ray tracing, in that the full wave 

characteristics from Maxwell’s equations are accounted for. Another important 

distinction, one of great relevance here, is the accuracy of the formulation. An exact 

formulation will give the greatest accuracy; however, it may also require significant 

computational resources. Certain approximate formulations are much easier to solve. In 

some cases the reduction in accuracy from using an approximate formulation is more 

than offset by the increase in computation speed. This is, of course, very dependent on 

the type of problem.  

Most full-wave approaches utilize a perfect electric conductor (PEC) boundary 

condition in their formulation. The only electric current considered is a surface current 
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flowing just along the outside of the boundary. This simplifies the formulation greatly 

and is good approximation to real metals at most radio and microwave frequencies. At 

infrared and optical frequencies metals behave as very poor conductors. Current can 

actually flow within the material, similar to a lossy dielectric. The exact formulation to 

this problem discretizes the full volume of material. This discretization must be fine 

enough to resolve both the skin depth of the metal (due to loss) and also the dispersion 

(due to the change in wavelength). The dielectric functions of metals are high enough that 

standard meshing guidelines (say λeff/20) result in very dense meshes. CPU time and 

memory are sacrificed for accuracy. One approximate formulation uses a surface 

impedance condition. In this approach impenetrability is restored to the material (i.e. no 

currents or fields allowed inside) and the surface current is modulated by an impedance 

that depends on the material parameters and geometry. Physically, currents and fields are 

present inside the metal, but their influence depends on the frequency range. The main 

advantages of this formulation are its computational efficiency and ease of integration 

into standard wire kernels [5].  

1.3 Material Models 

One important assumption inherent to the analysis methods above is that the bulk 

constitutive parameters are known. They can be determined from underlying physical 

models or from experimental data. Direct experimental data would seem to be the most 

desirable; however, it is often unavailable, incomplete or difficult to measure. Arbitrary 

analytical functions can be blindly fit to data points, but it is better if the model relates to 
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the underlying physics involved. Since the materials are nonmagnetic, the quantity of 

interest for modeling is the complex relative permittivity, often separated into real and 

imaginary parts,   

The real part of the permittivity relates to the storage of electric energy while the 

imaginary part relates to the dissipation of electric energy. 

 The simplest model is the Debye model shown below,  

This single pole model represents the frequency dependence as a relaxation 

between the high frequency value, εr∞, and the dc or electrostatic value, εrs. In most cases 

εr∞ = 1.   The relaxation time constant is given by τ. This model is most useful describing 

materials with permanent dipole moments such as polar liquids [6]. 

A more useful model, especially for insulators, is the Lorentz model, given as  

This model comes from an oscillator description of induced dipoles within a 

material and their response to an alternating field. The resonant frequency of the 

oscillator is ω0, which represents the point of maximum real energy. The dampening 

constant, γ, introduces loss into the system. There is also a constant, ωp, which defines the 

plasma frequency within the material. 

The Drude model (1-4) is a surprisingly simple and accurate description of the 

behavior in conductors and doped semiconductors. It has been fit to measurements on 

r r rjε ε ε′ ′′= − . (1-1)

( )
1

rs r
r r j

ε εε ω ε
ωτ

∞
∞

−
= +

+
. (1-2)

2

2 2
0

( )
( )

p
r r j

ω
ε ω ε

ω ω ωγ∞= +
− +

. (1-3)
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noble metals throughout the IR [7] and also to doped semiconductors at millimeter 

wavelengths [8].  

The equation is very similar to the Lorentz model except the resonant frequency is 

taken to be at dc (set to zero), which describes the response of a free electron gas or 

plasma. Note the real part of the permittivity, rε ′ , is negative for all frequencies below ωp. 

A hybrid model, such as the Lorentz-Drude model (1-5), offers a more complete 

description of metals at upper terahertz and optical frequencies [6],[9].  

The permittivity is composed a Drude term and superposition of Lorentz 

functions at resonant frequency ωn and damping constant γn. At lower frequencies (well 

below to near the plasma frequency), the Drude term dominates while dielectric-like 

Lorentzian resonances become important from the observed plasma frequency and 

upwards. 

1.4 Applications 

Besides a topic for experimentation, nanowires and other nanoscale structures 

have garnered much interest for several potential applications. One of these is as an 

infrared frequency selective surface (FSS) [10],[11],[12],[13]. Arranged in a periodic 

array, nanowire segments essentially act as a scaled down dipole FSS. At resonance the 

2

2( ) p
r r j

ω
ε ω ε

ω ωγ∞= −
−

 (1-4)

2 2
0

2 2 2
0

( )
( )

p pn
r r

n n nj j
ω ω

ε ω ε
ω ωγ ω ω ωγ∞= − +

− − +∑  (1-5)
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array reflects a large majority of the incident radiation. This resonance can be tailored in 

wavelength (frequency) to many different locations in the mid-IR, including several 

important atmospheric windows (3-5 µm and 8-12 µm). Laser cavities, beam splitters and 

polarizers could all benefit from this application, which avoids the need to stack many 

thin-film layers.  

Another novel application for arrays of nanowires is as a substrate for harmful 

agent detection, surface enhanced Raman scattering (SERS) and other types of field 

enhanced spectroscopy [14],[15],[16],[17],[18]. This takes advantage of the large electric 

near field values produced at corners, along edges and, especially, within gaps 

(‘Lightning rod effect’). In the context of SERS, these enhanced fields increase the 

returned signal at approximately 4E [19]. At these enhancement factors we can even 

examine the structure of single molecules.  

Possibly the most exciting area to develop around nanostructures is the creation of 

optical antennas. To those in the optics community, this is intriguing because it allows the 

confinement of light to areas much smaller than the incident wavelength [20]. Electrical 

engineers, on the other hand, see a plethora of analogs to devices common in the antenna 

and microwave fields. These include the development of nanocircuit elements [1], optical 

Yagi-Uda antennas [21], solar rectennas, and even optical near field probing [22]. Before 

these concepts can be properly applied at optical frequencies, it is necessary to 

characterize optical nanoantennas in terms of conventional antenna parameters. These 

include efficiency, input impedance and field pattern/directivity.  
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1.5 Summary 

This thesis will begin with an analytical treatment of the scattering from long 

Gallium Phosphide nanowires in Chapter 2. The internal electrical field distribution, 

intensity per unit length and intensity polarization ratio will be examined. In addition, 

asymptotic forms of the intensity will be developed to give physical insight into the 

‘antenna effect’ described in [3] and [4]. Chapter 3 will examine the spectrum from 

doubly periodic arrays of metallic nanowires with the goal of designing a bandstop IR 

FSS. The enhanced fields around tightly coupled regions will also be explored. Chapter 4 

will characterize nanowires acting as optical antennas. This will include a discussion of 

conventional antenna parameters applied to nanoantennas, and the approximate (surface 

impedance) and exact (full volume discretization) modeling approaches. 
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Chapter 2 
 

Asymptotic Scattering from Long, Single Nanowires 

2.1 Motivation 

In the Raman spectroscopy of semiconducting nanowires, there exists an angular 

dependence on the scattering intensities absent in bulk material [3],[4],[5]. Below a 

critical diameter this dependence closely follows a dipole pattern. We obtain a better 

explanation for this ‘antenna effect’ by considering the scattering from and average 

internal intensities within an infinite, right, circular cylinder. Even though the nanowires 

are of finite extent, the length-to-diameter ratios are considered sufficiently high (~100-

700) that this is a valid approach [2]. The antenna effect is most prevalent when the 

transverse magnetic (TM) intensity dominates over the transverse electric (TE) intensity. 

In order to simplify the expressions and measure validity at small radii, we will apply 

asymptotic methods. 

2.2 Permittivity of GaP 

As mentioned in Section 1.3, it is absolutely vital that the material parameters are 

known in the region of interest. Fortunately, measured data exists for Gallium Phosphide 

(GaP) and is given in Fig. 2-1. The data has also been fit to a multiple Lorentizan model 

through a Particle Swarm Optimization [24]. This allowed the authors to produce a time 
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domain representation of the material dispersion. Since the following analysis assumes 

time-harmonic quantities, such a model will be unnecessary here. 

2.3 Example: Rayleigh Scattering from a Sphere 

To illustrate how complicated formulas may be simplified greatly by the 

application of asymptotic approximations, consider the scattering from a dielectric sphere 

of radius, a, and relative permittivity, εr. The exact scattered field expressions involve 

several complicated summations of associated Legendre functions and spherical Bessel 

functions (see [25] or [26] for a complete treatment). When the sphere is small in terms 

of the incident wavelength (i.e. k0a<<1 where k0 is the free space wavenumber), the 

series truncates and only the principal mode (zeroth order term) dominates. This leads to 

a compact expression for the far-zone scattered field,  

 

Fig. 2-1: The relative permittivity of GaP from 10 to 104 THz. 

3
0 0

0

1 ( )
2

jkr
s r
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ε
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. (2-1)
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The backscatter cross section, BCSσ , is given by  

Note that there is a large resonance when εr = –2. For Drude (1-4) spheres in free space, 

this corresponds to the Fröhlich frequency [7], which is 

Given an accepted set of measured permittivity data for silver [8], Fig. 2-2 

compares the normalized backscatter cross section from silver, perfect dielectric and PEC 

spheres of a = 30 nm. This example shows the need to properly characterize materials at 

optical frequencies; the behavior of a “real metal” differs substantially from either ideal 

case.  

2
2 4

0
14 ( )
2

r
BCS

r

a k aεσ π
ε

⎛ ⎞−
⎜ ⎟+⎝ ⎠

. (2-2)

2 2,  for 
3
p

F p

ω
ω γ ω= . (2-3)

 

Fig. 2-2: Normalized backscatter cross section from a single sphere of a = 30 nm in Rayleigh 
approximation (2-2). 
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2.4 Derivation of Fields 

Now let us briefly examine the scattered fields from an infinite circular cylinder 

by a normally incident plane wave. By separating the problem into two linearly 

independent polarizations, transverse magnetic (TM) and transverse electric (TE), we 

may avoid the use of vector harmonics [7] and focus on scalar expansions instead. This 

the preferred approach in [25] and [26]. 

2.4.1 TM Case 

The plane wave is polarized along the cylinder (z) axis and incident normally as in 

Fig. 2-3. 

Assume the electric fields are separable into incident, scattered and dielectric 

components given in standard cylindrical coordinates by   

 

 
Fig. 2-3: TM wave incident on cross section of infinite dielectric cylinder 
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with the usual notation for Bessel and Hankel functions. Notice the electric fields have 

only one vector component for this polarization. The magnetic field is related by 

Faraday’s Law,    

and has two vector components orthogonal to the electric field. 

The unknown coefficients an, bn and cn are found by enforcing continuity on the 

tangential electric and magnetic fields at the cylinder surface. They are [26] 

For nanowires with electrically small radii, these coefficients can be simplified by 

using the following small argument approximations (|ka|<<1) to the Bessel and Hankel 

functions [7],    

( )0 0ˆ ˆ( )  ni i jn
z n

n
E z E j J k e zϕρ

∞

=−∞

= = −∑E  (2-4)

( ) (2)
0 0ˆ ˆ( )  ns s TM jn

z n n
n

E z E j a H k e zϕρ
∞

=−∞

= = −∑E  (2-5)
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for n = 0 terms and 

for n = 1 terms. This leads to approximate expressions for the internal and scattered field 

coefficients, 

The above coefficients are accurate to (k0a)2. It is easy to see that as the dielectric 

constant of the wire approaches the value of free space, the coefficients reach appropriate 

values (zero for scattering terms and one for transmitted terms). A comparison of the 

accuracy of these terms is given in Fig. 2-4. There is good agreement for radii less than 

20 nm, which corresponds to k0a ≤ 0.26 at a wavelength of 488 nm.   
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Fig. 2-4: Approximate and exact expressions of scattering coefficients for different radii (TM). 
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We may now develop an approximate equation for the scattered far field by 

taking the zeroth order term from (2-5) and applying the asymptotic formula 

to get 

The internal field, in the small radius limit, is found using an identical procedure to give 

Note that (2-19) is constant over the nanowire cross-section. This is expected because the 

incident wavelength is large compared with the radius.  

 In Fig. 2-5 the fields of an a = 10 nm GaP nanowire are calculated by the full 

series given in (2-6) yet are nearly constant across the nanowire cross section.  This 

confirms the uniformity predicted by (2-19) for small a. At larger radii, as shown in 

Fig. 2-6, there is much more variation in the internal fields. The approximation (2-19) is 

no longer valid. 
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Fig. 2-5: Normalized field magnitude distribution from a TMz plane wave scattering from an a = 10 nm GaP 
nanowire at λ0 = 488 nm. The blue circle represents the material boundary. 
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Fig. 2-6: Normalized field magnitude distribution from a TMz plane wave scattering from an a = 50 nm GaP 
nanowire at λ0 = 488 nm. The blue circle represents the material boundary. 
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 2.4.2 TE Case 

The incident wave is now assumed to be transverse electric as in Fig. 2-7. 

The resulting incident, scattered and dielectric magnetic field components are  

In this case the magnetic field has only one vector component while the electric 

field has two components in general. These are found from the application of Ampere’s 

law  

 

 
Fig. 2-7:  TE wave incident on cross section of infinite dielectric cylinder 
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The same boundary condition procedure as above is used to find the coefficients. 

The results are very similar to TM incidence with a slight change in the location of εr. 

Similar approximate expressions can be developed for small radii (|ka|<<1) as in 

the TM polarization. In this case, however, both the first and zeroth order terms are 

important in the series. The additional small argument formulas (2-13) and (2-14) are 

needed to calculate these terms. 

After much manipulation, in the limit |ka|<<1 the zeroth order coefficients reduce 

to  

while the first order coefficients become   
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Similar to the TM polarization, Fig. 2-8 shows the convergence of the approximate and 

exact scattering coefficients as a → 0. There is also good agreement for a ≤ 20 nm. 

 The far-zone scattered magnetic field, correct to quadratic order, is  

Applying (2-23) leads to the scattered electric field  

Similarly, the internal magnetic field is approximately 

 

Fig. 2-8:  Approximate and exact expressions of scattering coefficients for different radii (TE). 
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while the internal electric field approaches 

Again, terms higher than quadratic order are ignored in these field expressions. Similar to 

Rayleigh scattering from a dielectric sphere, there is a resonance for this polarization 

when εr = –1.  

 Fig. 2-9 confirms the constant nature of the internal electric fields at small radii. 

Note that the field is discontinuous at the material boundary because the polarization of 

the electric field is no longer tangential to the nanowire. An example of larger nanowire 

behavior is given in Fig. 2-10. Once again there is enough field variation in this case to 

preclude the use of (2-34). 
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Fig. 2-9: Normalized field magnitude distribution from a TEz plane wave scattering from an a = 10 nm GaP 
nanowire at λ0 = 488 nm. The blue circle represents the material boundary. 
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Fig. 2-10:  Normalized field magnitude distribution from a TEz plane wave scattering from an a = 50 nm 
GaP nanowire at λ0 = 488 nm. The blue circle represents the material boundary. 
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2.5 Derivation of Average Internal Intensities 

Besides field quantities, the average internal electric field intensity is also of 

interest in Raman scattering because the ratio of orthogonally polarized intensities 

predicts the antenna effect. Each intensity is given by the following integral [5],  

Upon substitution of the appropriate field expressions, (2-35) may be integrated 

by a lengthy procedure described in [27] for either polarization. 

2.5.1 TM Case 

The resulting expression for the TM incidence internal field intensity is    

This equation diverges when loss in the material becomes negligible (ε" ≈ 0, k1
* ≈ k1), 

therefore the following reformulation may be necessary 

 As shown previously for TM field expressions, the zeroth (n = 0) order term in 

the intensity series dominates at smaller radii (|k0a| → 0). We may then isolate this term, 

apply the Bessel asymptotic expressions of (2-11) and (2-13), and substitute the 

approximate coefficient (2-16). This results in 
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for complex permittivity and 

for real permittivity. Notice there is additional (k0a)2 dependence in (2-39), whereas this 

term cancels in the derivation of (2-38).  

 Fig. 2-11 shows a comparison between the exact and approximate methods. Both 

approximate expressions converge to the exact intensity for a ≤ 15 nm (k0a ≤ 0.19 at a 

wavelength of 488 nm). Beyond these radii, the approximate expressions are not very 

accurate. 

2.5.2 TE Case 

In the case of TE incidence, the integral (2-35) becomes   

for complex permittivity and  
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for real permittivity. 

Unlike the TM case, first order (|n| = 1) terms cannot be neglected. Asymptotic 

forms may be found by following a procedure similar to that above with the additional 

first order terms included. After some arithmetic manipulation, this gives  

from (2-40) and 

from (2-41). 

 Examining Fig. 2-12, both exact intensity curves are nearly collinear for these 

small radii and at this polarization. Therefore, it is not surprising that the lossy and 

lossless approximations are similar to one another because they approximate equivalent 

expressions. 

 At infinitesimal radii (a → 0), the ratio of intensities becomes  

which equals 50.7 for GaP at 488 nm. We may therefore conclude the antenna effect is 

present in nanowires with small to infinitesimal radii. 
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Fig. 2-11: Normalized average internal intensity in GaP nanowire, TM incidence at λ = 488 nm. Lossless 
expressions (blue) evaluated with ε" = 0, lossy (red) with ε" = 0.0003. 
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Fig. 2-12:  Normalized average internal intensity in GaP nanowire, TE incidence at λ = 488 nm. Lossless 
expressions (blue) evaluated with ε" = 0, lossy (red) with ε" = 0.0003. 
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2.6 Summary 

We examined scattering from infinite cylindrical GaP nanowires. Asymptotic 

forms were developed for both field expressions and average internal intensities in the 

limit of small radii. The ratio of orthogonally polarized intensities was found to be in 

excess of unity, indicating the presence of the dipolar Raman scattering pattern or 

‘antenna effect’ as explained in [4]. 
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Chapter 3 
 

Arrays of Nanowires 

3.1 Motivation 

Antenna arrays at conventional frequencies are often used to increase gain and 

shape patterns. A single antenna from the array is still functional, albeit with reduced 

performance. For nanostructures, large arrays are often a functional necessity because the 

size of each individual element is so small compared with the surrounding world. 

Interaction with single nanowires is possible [28], but in general we are interested in the 

ensemble response for most applications, such as field enhanced spectroscopy, method of 

harmful agent detection or bandstop IR FSS. It is therefore relevant to model nanowires 

as a doubly periodic planar array.  

3.2 Optical Properties of Metals 

As mentioned in Section 1.3, a good model of metals in the infrared (50-400 THz) 

through visible (400-750 THz) frequencies is the hybrid Lorentz-Drude model [10]. The 

permittivity obtained from this model for metals is plotted in Fig. 3-1. Both the real and 

imaginary parts exhibit a roll off with increasing frequency. This indicates a transition 

from a good conductor to a lossy dielectric. In between, the electromagnetic behavior is 

similar to that of a loosely coupled plasma whose damped oscillations of charge result in 

a slow wave. This slow wave leads to a shortening of the effective wavelength 
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experienced by the nanowire [29], [30]. Therefore, the resonant lengths of nanoantennas 

are significantly shorter in the near infrared and optical regimes compared with directly 

scaled conventional antenna elements. The relative conductivity,    , given in 

Fig. 3-2 also shows the same roll off with frequency present in the permittivity. Note that 

aluminum maintains a higher conductivity than the Noble metals throughout the entire 

frequency range. 

 

 

Fig. 3-1: Lorentz-Drude model fitted to metals from 50-1000 THz (6000-300 nm) 

0

σ
ωε
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3.3 Modeling 

A periodic version of the Finite Element Boundary Integral (FEBI) [31] code is 

used here to effectively model the interaction between elements in an array. This method 

also has the advantage of directly handling the frequency dependent dielectric profile 

characterized above. It works by combining both solution techniques of the Finite 

Element Method (FEM) and the Method of Moments (MoM). Within the unit cell 

boundary, the fields are solved via FEM. Outside of the boundary, MoM is applied which 

eliminates the need to discretize the surrounding free space.  

Unfortunately, the mesh elements are rectangular ‘bricks’ which require the cross 

section to be square whereas most nanowires are circular. This is a minor discrepancy 

because a strong correlation exists between square and circular conducting elements. To 

alleviate any concern, an effective radius [32], ae, may be introduced that approximately 

 

Fig. 3-2: Relative conductivity of metals calculated from Lorentz-Drude permittivity. 



 

 

33

reconciles the two shapes (see Fig. 3-3). For our purposes, we will still refer to the square 

cross section diameter, d. 

The boundary conditions are inherently periodic in the FEBI code. This means the 

solution obtained is actually for an infinite, planar array of identical elements. Though it 

is impossible to realize such an array, in practice the interelement coupling in large arrays 

is nearly identical to that in the infinite case. Even arrays that cover relatively small areas 

by conventional wisdom will be composed of thousands of nanoelements. 

3.4 IR-FSS 

In direct analogy to a dipole FSS at RF/microwave frequencies, an array of 

nanowires can be constructed to reflect radiation in the infrared. The following examples 

focus on the atmospheric windows of 8-12 µm (37.5-25 THz) and 3-5 µm (100-60 THz) 

with the goal of producing a stopband roughly at the center of the spectrum. 

 

 
Fig. 3-3: Effective radius for square conductor 
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The unit cell geometry is shown in Fig. 3-4. There are only four degrees of 

freedom: Sx and Sy determine the interelement spacing; L and d describe the length and 

diameter of the nanowire. The resonant frequency is directly dependent on L with some 

small dependence on d. A large interelement spacing reduces coupling between elements, 

but also introduces some diffraction when (at normal incidence) Sy > λeff for y-polarized 

waves and Sx > λeff for x-polarized waves. The medium above the structure is assumed to 

be free space (εr = 1) while the medium below is a supportive, electrically large substrate 

modeled as an infinite half-space. Depending on the wavelength of interest and loss 

tolerance, this substrate may be glass (εr ≈ 2.25), polyimide (εr ≈ 3.3), or silicon (εr ≈ 

11.7). 

The resonant frequency, fr, corresponding to the stopband location is usually 

estimated as 

 

 
Fig. 3-4: Unit cell geometry for nanowire stopband FSS 
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However, this result does not take into account the effects of reduced conductivity 

or variation in diameter. Figs. 3-5 and 3-7 show that, for a constant length, increasing the 

diameter of the wire will: (i) broaden the stopband (increase bandwidth); (ii) shift the 

stopband to higher frequencies (shorter wavelengths); (iii) increase reflection in the 

stopband (decrease transmission).  

This last result may be due to the penetration of fields and therefore current into 

the nanowire. The penetration (or skin) depth, δ, in a material depends on both the 

frequency and complex permittivity.  

The penetration depth defines a rough metric for the attenuation of fields, and 

therefore current, penetrating into a material. The field strength attenuates to e-1 or about 

37% of its initial value in the case of a wave incident on an infinite planar surface. For a 

constant permittivity, the penetration depth decreases with increasing frequency. This 

leads to a ‘skin effect’ in metals at high RF and millimeter wave frequencies when δ is so 

small the majority of current is concentrated within a very thin layer near the metal 

surface. In this case perturbations in conducting wire diameter have little effect on the 

current flow because little current occupies the inner cross sectional area of the wire. 

Recall that Figs. 3-1 and 3-2 show the permittivity and conductivity of metals are far 

from constant at infrared and optical frequencies. The roll off is fast enough that even for 

very high values of ω the penetration depth remains finite and actually increases into the 

optical. Therefore the current flow is strongly dependent on the diameter of the nanowire.  

01 1 1Im Im Im
r r
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k j
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ωω με ε ε
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Fig. 3-5: Spectrum for gold nanowire array with variation in d. L =4.063 µm, Sx =3.53 µm, Sy = 5.3 µm, on 
glass (εr = 2.25). 
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Fig. 3-6:  Spectrum for nanowire array with variation in material. L = 4.063 µm,  Sx =3.53 µm, Sy = 5.3 µm, 
d = 353 nm, on glass (εr = 2.25). 
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Fig. 3-7:  Spectrum for gold nanowire array with variation in d. L = 1.47 µm, Sx = 1.33 µm, Sy = 2.0 µm on 
glass (εr = 2.25). 
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Fig. 3-8:  Spectrum for nanowire array with variation in material. L = 1.47 µm, Sx = 1.33 µm, Sy = 2.0 µm, d 
= 133 nm, on glass (εr = 2.25). 
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Table 3-1 confirms that the smaller diameter nanowires are on the order of δ. 

Therefore, less induced current flows along the nanowire and, subsequently, the thinner 

wires exhibit less reflection (and more transmission) in the stopband. The differences 

between skin depths of different materials at identical frequencies are marginal in the IR 

with the exception of aluminum. Figs. 3-6 and 3-8 confirm that in the IR, aluminum is the 

only metal to display any appreciable difference in its transmission/reflection spectrum.  

3.5 Field Enhanced Substrate 

The signal strength in certain spectroscopic techniques, such as SERS, is 

dependent upon the local electric field. This local electric field can reach very high values 

around corners, edges and gaps in plasmonic materials such as metals at optical/IR 

frequencies. Exploiting the FSS design from above, we can introduce a gap of length, g, 

in the wire center as in Fig. 3-9. This is similar to the delta feed gap in a conventional 

RF/microwave dipole but without an impedance matched transmission line. It should be 

noted that in this configuration the nanowire behaves very poorly as an optical 

nanoantenna, which is the subject of Chapter 4. 

Table 3-1: Penetration depth of bulk metals calculated by (3-2) 

λ0 [µm] f [THz] δAu [nm] δAg [nm] δAl [nm] δCu [nm] 
10 30 26.8 25.2 19.3 24.8 
5 60 25.8 24.3 17.3 24.4 
3 100 25.5 24.1 16.3 23.7 

0.5 600 42.2 28.9 13.5 34.1  
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Similar to the IR-FSS studies above, we are interested in determining the 

parameters (gap size, diameter, material choice) that bring about the best performance. In 

this case, the performance is measured by the maximum near field value within the gap 

region. Fig. 3-10 shows the direct correlation between the reflectance maxima and the 

maximum field enhancement. At the reflection resonance the current is maximized along 

the nanowire which also maximizes the electric field in the gap. The field enhancement is 

also heavily dependent on the gap size. 

In Fig. 3-11 (g = 5 nm) the field reaches a maximum value of ~ 60E0 and is very 

uniform within the narrow gap. For a larger (g = 20nm) gap, shown in Fig. 3-12, the field 

is weaker and less uniform. Silver and copper nanowires have both higher reflectance and 

field enhancement (see Fig. 3-13) than gold due to their slightly better conductivity in 

this range. The peaks are also shifted to shorter wavelengths. Even though thinner 

nanowires exhibit less reflectance, Fig. 3-14 shows that the gap field is actually higher. 

This occurs because the fields are concentrated over a smaller cross sectional area. 

 
Fig. 3-9: Unit cell geometry of field enhanced substrate 
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Fig. 3-10: Reflectance and field enhancement for gold nanowires with variation in gap distance. L = 220 
nm, Sx = 200 nm, Sy = 300 nm, d = 20 nm, on glass (εr = 2.25). 
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Fig. 3-11: Normalized electric field magnitude in dB for gold nanowire array at resonance (λ0 = 1132 nm).  
L = 220 nm, Sx = 200 nm, Sy = 300 nm, d = 20 nm, g = 5 nm, on glass (εr = 2.25). 
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Fig. 3-12: Normalized electric field magnitude in dB for gold nanowire array at resonance (λ0 = 1039 nm).  
L = 220 nm, Sx = 200 nm, Sy = 300 nm, d = 20 nm, g = 20 nm, on glass (εr = 2.25). 
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Fig. 3-13:  Reflectance and field enhancement for metallic nanowires with variation in nanowire material. L 
= 220 nm, Sx = 200 nm, Sy = 300 nm, d = 20 nm, g = 5 nm on glass (εr = 2.25). 
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Fig. 3-14:  Reflectance and field enhancement for gold nanowires with variation in nanowire diameter, d. L 
= 220 nm, Sx = 200 nm, Sy = 300 nm, g = 5 nm on glass (εr = 2.25). 
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3.6 Summary 

Large arrays of nanowires may be accurately modeled with a periodic FEBI code. 

This model includes the full dispersive character of metals. Even though metals have 

reduced conductivity at optical and infrared frequencies, it is still sufficiently high to 

support current for relevant applications. 

Nanowire arrays are effective as IR FSSs. Deep (|S21| < -20 dB) stopbands may be 

produced within both mid-IR windows. The resonant frequency is affected by the type of 

metal and nanowire diameter as well as the length. This is likely due to the amount of 

current that the nanowire can support at a given frequency. By placing a short “delta 

feed” type gap in the wire center, high near fields are produced at the reflection 

resonance. These fields depend on the material type and nanowire geometry. 
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Chapter 4 
 

Nanowires as Optical Antennas 

4.1 Motivation 

At traditional wavelengths, antennas are well known as a bridge between energy 

radiated in free space and energy contained in the circuit environment. One may imagine 

that with nanocircuit elements [1], nanoantennas may form the basis for an entirely new 

approach to optical systems [33],[34]. Optical Yagi-Uda arrays for the directed 

transmission of light are just one example of how conventional RF concepts may be 

applied to optics [35]. 

The previous chapters have examined nanowires as simple scatterers. To make the 

transition to nanoantennas, we must characterize these nanoelements in terms of their 

ability to efficiently receive and transmit radiation. These characteristics are fundamental 

to determining how effectively a nanoantenna may couple light in an optical system. 

4.2 Antenna Parameters 

The input impedance, Zin, of an antenna is defined as the ratio of voltage to 

current referenced at the pair of input terminals that define the feed in the absence of any 

load [32]. It is often decomposed into real and imaginary parts  

in
in in in

in

VZ R jX
I

= = + . (4-1)
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One method of measuring the impedance is to feed the antenna with a constant voltage 

source and determine the induced current flowing into the antenna. The integral form of 

Ampere’s Law may be invoked to find the total current (both displacement and 

conduction) from the magnetic field 

With the accurate evaluation of input impedance, the antenna may be abstracted away 

into an equivalent Thévenin circuit model. This allows one to match a source or tune the 

antenna resonances using conventional circuit techniques. 

The radiation efficiency, er, of an antenna is a measure of the power lost by the 

antenna when radiating into free space. It can be expressed as the ratio of power radiated 

by the antenna to the input power, that is 

The radiated power is obtained by integrating the average power flow (via the time-

average Poynting vector, Sav) through a closed surface enclosing the antenna, 

while the real input power is obtained from the circuital relation 

In good conductors the radiation efficiency is usually near unity, but, as shown 

previously, real metals exhibit varying amounts of loss and dispersion at optical 

frequencies. We therefore expect to find low values of efficiency, at least when compared 

totald I⋅ =∫ H l . (4-2)

rad
r

in

Pe
P

= . (4-3)

radP d= ⋅∫∫ avS s , (4-4)
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with conventional RF antennas. The efficiency can also be written in terms of the 

radiation resistance, Rr, and the ohmic or loss resistance, Rloss (4-6). The power accepted 

by the antenna is either dissipated in the loss resistance as heat or in the radiation 

resistance as an electromagnetic wave propagating into free space. We also assume that 

the input resistance, Rin is equivalent to Rr and Rloss in series. 

Another pair of parameters is the directivity and gain of an antenna. The 

directivity relates the radiation pattern of the antenna to that of an isotropic source. 

Written in terms of average power flow and radiated power,  

where r is the radial distance from the antenna. This may also be written in terms of the 

far-field power pattern, F (θ, φ),    

The gain (4-9) is related to the directivity by the radiation efficiency and therefore 

includes energy lost from within the antenna. Both of these parameters have their 

meaning strictly in the far field [32]. 
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4.3 Problem Geometry 

COMSOL Multiphysics®, a general finite element code, was used in 

axisymmetric, transverse magnetic (TM) mode to simulate a single, transmitting 

nanodipole in free space. This mode reduces the full three dimensional problem to a two 

dimensional one by assuming constant field values with respect to the azimuthal angle φ. 

Furthermore, only TM field components are accounted for, that is Eρ, Ez, and Hφ. This 

drastically reduces the computational complexity of the problem and allows us to use a 

very fine finite element mesh. The dipole (see Fig. 4-1) consists of two metallic cylinders 

of radius a separated by a feed gap (similar to section 3.5) of distance g, centered in the 

standard cylindrical coordinate system along the z axis. The total length of both the 

cylinders and feed gap is L. 

The entire simulation domain is enclosed in a sphere of free space (actually a 

semicircle in the two dimensional, axisymmetric mode) with a scattering boundary 

condition to eliminate reflections from propagating waves in the far field. This boundary 

extents at least one free space wavelength from the antenna at the lowest simulated 

frequency (100 THz). 
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4.3.1 Meshing Requirements 

The standard meshing criterion calls for discretization at least every λeff/10. This, 

however, assumes minimal loss and field variation. Around feed regions and sharp 

discontinuities this requirement may need to be reduced significantly. In addition, the 

skin depth of the material, which for metals is many orders smaller than the effective 

wavelength, must also be resolved by a few mesh elements. Fortunately, COMSOL 

Multiphysics® allows one to customize an inhomogeneous mesh. Therefore we use a 

coarse mesh in free space, a fine mesh inside the metal and at the metal/air interface, and 

 

 
Fig. 4-1: Nanodipole geometry with symmetry axis. 
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an even finer mesh around the feed region. Typical mesh dimensions are summarized in 

Table 4-1. 

4.3.2 Feed Method 

Ideally, the feed configuration in an antenna simulation should correlate directly 

to the physical feed when the antenna is realized in a system. Physical feeds are still the 

source of much speculation for optical nanoantennas because they are, by nature, highly 

subwavelength in size. Subwavelength feeds are no obstacle at conventional RF 

wavelengths (meters to millimeters), but their realization becomes more and more 

complicated at optical/IR wavelengths (microns to nanometers). Some novel methods 

that avoid an explicit subwavelength feed are being researched [36], but for the purposes 

of this study, a conventional delta gap feed is assumed. Though the exact values 

determined from a delta gap feed may differ from a more physical source, the predictions 

should at least agree qualitatively and provide a good estimation of optical nanoantenna 

performance.  

The delta gap feed consists of an impressed electric field between the center 

circumferences of the two cylinders. This is illustrated in Fig. 4-2. The electric field is 

Table 4-1: Typical mesh dimensions used in COMSOL for fmax= 700 THz (λ0= 430 nm) in terms of 
physical and electrical length. 

 Free Space Metal Volume Feed Gap 
Max mesh size [nm] 40 1 0.2 
Max mesh size [λ0] 0.093 2.4x10-3 4.8x10-4 

Max mesh size [λAg] 0.013 3.2x10-4 6.4x10-5 
Max mesh size [δAg] 1.24 0.031 6.2x10-3 
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normalized by the gap distance to produce a voltage of unity. The current and therefore 

the input impedance are then measured by application of (4-2).  

4.4 Results 

4.4.1 Input Impedance 

The input impedance was obtained via application of Ampere’s Law (4-2) with a 

contour around the corresponding nanowire radius, a, at the gap center, z = 0. This choice 

effectively measures the total current flowing into the antenna by sampling the magnetic 

field at r = a, z = 0, which is away from the actual nanowire edge. This avoids the large 

field discontinuities present at the edge that give nonphysical results for Zin. 

The following impedance curves share several key features with conventional, 

thin-wire RF antennas: (i) below the first resonance, the reactance is very capacitive 

(negative) corresponding to a short dipole; (ii) there is a low impedance resonance 

(characterized by the first reactance zero) corresponding to a half-wave dipole; (iii) there 

is a high impedance resonance (characterized by the second reactance zero) 

 

 
Fig. 4-2: Delta gap feed model. 
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corresponding to a full-wave dipole. This behavior repeats for higher orders with 

increasing frequency. 

In contrast to conventional antennas, the impedance resonances do not occur at 

half-integer multiples of the exciting free space wavelength. They instead correspond to 

an effective wavelength which scales based on the nanoantenna geometry and frequency 

dependent material parameters [29]. The spacing between resonances tend to decrease in 

the optical (~400-700 THz) as a consequence because this scaling changes as a function 

of frequency. 

 There is an obvious frequency shift in the impedance resonances with variation in 

the nanoantenna length as in Fig. 4-3. Due to the optical wavelength scaling, shortening a 

nanoantenna by one half of its original, physical length does not double its resonant 

frequency. An L = 200 nm, a = 10 nm, g = 5 nm silver nanodipole resonates at f ≈ 300 

THz. Shortening the antenna length to L = 100 nm shifts the resonance to f ≈ 450 THz. 

This does correspond to halving the effective wavelength, λeff, but reduces λ0 to only two-

thirds of its original value (see Table 4-2). 

Changing the nanoantenna radius also has a profound impact on the impedance 

curves (shown in Fig. 4-4). Larger radius nanowires generally have less resonant peaks 

and these peaks are also of a lesser magnitude for both the input resistance and input 

Table 4-2: Effective wavelength for silver nanoantennas (a=10 nm, g=5 nm) extracted from impedance 
data for the L ≈ λeff / 2 resonance. 

fr [THz] L [nm] λ0 [nm] λeff [nm] 
187.65 400 1599 800 

300 200 1000 400 
450 100 667 200  
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reactance. This is in contrast to thin-wire RF antennas where only the input reactance is 

affected by the wire radius [32]. The location of the resonances also shifts to higher 

frequencies with increased nanowire radius. These changes are expected because a is on 

the order of δ and therefore small changes in a will greatly affect the induced current 

along the nanoantenna. 

Changing the nanoantenna material from silver to similar noble metals, such as 

copper and gold, only has a small impact on the input impedance. This is plotted in 

Fig. 4-5.  Due to the lower conductivity of gold and copper beyond 500 THz, the second 

set of resonances (corresponding to L ≈ 3λeff /2 and L ≈ 2λeff) are damped compared with 

silver and Xin never reaches zero. Aluminum has a very different dispersion profile from 

silver, gold and copper. The conductivity remains relatively large even at higher 

frequencies and, as a consequence, an aluminum nanoantenna (L = 200 nm, a = 10 nm) 

first resonates at f ≈ 450 THz. This is much higher in frequency than other comparably 

sized nanoantennas made of noble metals. 
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Fig. 4-3: Input impedance for silver nanoantenna, a=10 nm, g=5 nm with variation in L. 
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Fig. 4-4: Input impedance for silver nanoantenna, L=400 nm, g=5 nm with variation in a. 
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Fig. 4-5: Input impedance for nanoantenna, L=200 nm, a=10 nm composed of different metals. 
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4.4.2 Radiation Efficiency 

The radiation efficiency of an antenna is dependent on both the bulk material loss  

and also the current distribution along the antenna. Since the conductivity of metals rolls 

off at optical frequencies, one would expect nanoantennas resonant at higher frequencies 

to be less efficient. This is, in general, true but not the dominant mechanism. The 

nanoantenna diameter also plays an important role. 

 In Table 4-3 a resonant L = 100 nm silver dipole is about 4% less efficient than 

an L = 200 nm dipole with constant radius. The difference in efficiency is even smaller 

between L = 400 nm and L = 200 nm dipoles (less than 1%). Changing the radius has a 

much greater effect on the radiation efficiency. Even though a thicker dipole resonates at 

a higher (and therefore more lossy) frequency, the efficiency actually increases with 

radius. Efficient optical nanodipoles must have a smaller aspect ratio than their RF/PEC 

equivalents. This is consistent with the surface impedance approach in [6].  

Operating near the L ≈ λeff resonance changes the current distribution along the 

antenna. The current flowing into the antenna from the feed is much smaller (it is 

considered identically zero in some analysis [32]) and, subsequently, the impedance is 

much higher. The radiation efficiency in this mode, given in Table 4-4, is greater than or 

Table 4-3: Radiation efficiency corresponding to the first (L ≈ λeff /2) resonance for silver nanoantennas. 

fr [THz] L [nm] a [nm] Zin [Ω] er [%] Rr [Ω] 
450 100 10 115.16 + j0.05 16.67 19.2 
300 200 10 175.57 - j1.75 20.3 35.64 

130.14 400 5 1272 + j0.75 4.52 57.5 
187.65 400 10 334.76 - j1.1 20.39 68.26 
224.6 400 15 310.76 - j0.32 29.39 91.33  
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equal to the L ≈ λeff /2 mode and may also be of interest for matching to high impedance 

sources or loads. 

As with the input impedance, nanoantennas composed of similar metals have 

approximately the same radiation efficiency (see Table 4-5). Aluminum nanodipoles, 

however, have more than 3 times the radiation efficiency as silver nanodipoles. Their first 

resonance is also in the red (~455 THz or 660 nm) as opposed to the IR. This distinction 

is clearly important when considering nanoantennas for visible applications. 

4.4.3 Radiation Pattern 

The far field radiation pattern is determined by the current distribution on the 

antenna. In conventional, thin-wire RF dipoles, the current distribution is very close to 

sinusoidal. The operating frequency determines the exact shape of this current 

Table 4-4:  Radiation efficiency corresponding to the second (L ≈ λeff) resonance for silver nanoantennas. 

fr [THz] L [nm] a [nm] Zin [Ω] er [%] Rr [Ω] 
535.45 100 10 2279 – j0.82 19 433 
353.47 200 10 2802 + j1.11 22.82 639.4 
141.37 400 5 5503 + j0.46 4.97 273.5 
215.45 400 10 3141 - j1.63 23.11 725.9 
253.29 400 15 1636 -  j0.25 31.33 512.6  

 

Table 4-5:  Radiation efficiency corresponding to the first (L ≈ λeff /2) resonance for L = 200 nm, a = 10 nm, 
g = 5 nm nanoantennas. 

fr [THz] Material Zin [Ω] er [%] Rr [Ω] 
300 Silver 175.57 - j1.75 20.3 35.64 

285.8 Gold 216.23 – j0.16 15.17 32.8 
302.67 Copper 196.55 – j0.77 18.71 36.77 
455.17 Aluminum 122.23 - j1.11 67.46 82.45  
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distribution and, therefore, the radiation pattern. A short dipole has a different pattern 

than a half-wave dipole, which has a different pattern than a full-wave dipole and so 

forth. This behavior at RF assumes that the wavelength of the current distribution is 

nearly identical to that in free space. Again, the oscillations along optical nanoantennas 

scale according to the dispersive material parameters and geometry. There is a disparity 

between the standing current wave and the actual radiated wave.  

The radiation pattern at the first two resonances (L ≈ λeff /2 and L ≈ λeff) closely 

follows that of an electrically short dipole (see Fig. 4-6). This makes intuitive sense 

because the physical antenna length (L = 400 nm) is relatively small with regard to these 

radiated wavelengths (1604 and 1395 nm, respectively). The third (L ≈ 3λeff/2) resonance 

produces sidelobes in the radiation pattern. This is due to the increased complexity in the 

current distribution along the dipole shown in Fig. 4-7. Also, the antenna length is no 

longer very short compared with the radiated free space wavelength (769 nm).  

Table 4-6 summarizes the maximum directivity and gain computed by (4-8) and 

(4-9). Again, because of the disparity between the effective and radiated wavelengths, the 

directivity is approximately between that of a short dipole (D0 ≈ 1.5) and a half-wave 

dipole (D0 ≈ 1.643), depending on the resonant frequency and antenna geometry. Due to 

the reduced efficiency of noble metals at optical frequencies, only the aluminum 

nanoantenna produced a gain in excess of unity. 
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Fig. 4-6: Normalized far-field amplitude pattern of a silver, L = 400 nm, a = 10 nm, g = 5 nm nanoantenna 
at the first three resonances compared with an ideal short dipole. Pattern is rotationally symmetric about the
z axis. 
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Fig. 4-7: Current distribution along silver, L = 400 nm, a = 10 nm, g = 5 nm nanoantenna at three different 
frequencies. Each curve is normalized to its respective maximum value. 
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4.5 Comparison with Surface Impedance Model 

The surface impedance formulation simplifies the boundary problem by reducing 

the number of unknowns in the simulation. Rather than allow volume current within the 

material, only surface current is considered. This eliminates the need to discretize the 

entire material volume as a lossy dielectric. To account for the dispersive and lossy 

optical properties, the surface current is modulated by a frequency-varying impedance. 

This surface impedance depends on the antenna geometry and material parameters. 

Considering the same cylindrical dipole geometry from above, the total surface 

impedance is   

where η0 is the free space impedance, εrm the relative permittivity of the metal, km the 

propagation constant in the metal, a the cylinder radius and I0 and I1 are, respectively, the 

modified Bessel functions of the first and second kind. A full derivation of this quantity is 

given in the Appendix. Similar to a standard RLC circuit, the resistance accounts for 

Table 4-6: Maximum directivity (θ = 90°) and gain for several different nanoantennas at L ≈ λeff /2 
resonance. 

fr [THz] L [nm] a [nm] Material D0 G0 

130.14 400 5 Silver 1.52 0.07 
187.65 400 10 Silver 1.55 0.32 
224.6 400 15 Silver 1.66 0.49 
286 200 10 Gold 1.64 0.25 
300 200 10 Silver 1.53 0.31 
303 200 10 Copper 1.53 0.29 
455 200 10 Aluminum 1.67 1.13  
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energy lost, the reactance accounts for energy stored and both influence the resonant 

frequency. Notice in Fig. 4-8 the surface reactance for silver becomes capacitive a little 

beyond 900 THz. This corresponds to the sign change in the permittivity of silver (see 

Fig. 3-1). The surface impedance was implemented in COMSOL with the identical 

meshing and feed configuration described in section 4.3. 

Fig. 4-9 shows a comparison of input impedances calculated by the surface 

impedance and the full discretization methods. There is excellent agreement in the input 

resistance for both silver and gold nanodipoles across the 100-700 THz band. The surface 

impedance method seems to underestimate the capacitance at lower terahertz frequencies 

 

Fig. 4-8: Surface impedance for several a = 5 nm metallic cylinders. 
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(~100-200 THz). Beyond the first two resonances, the two methods agree better in the 

calculation of input reactance. 

To examine this difference further, let us consider the current distribution along 

the antenna. The total current is found using Ampere’s Law (4-2) at the nanoantenna 

surface. It is important to remember that only surface current flows when using the 

surface impedance condition whereas volume current will flow in reality (and also does 

when discretizing the material volume). (4-2) properly integrates both to give the total 

current in Amperes. The total current magnitude along the antenna at three different 

frequencies is given in Fig. 4-10. Both methods calculate similar standing waves away 

from the feed gap. Near the feed region, the current changes more rapidly using full 

discretization. This is due to the boundary conditions at the feed; the fields are 

discontinuous at the source but must be continuous across the material boundary. With 

the surface impedance condition, the fields are discontinuous across the material 

boundary. It also appears that the two different methods match better at the higher 

frequency (300 THz).  

Fig. 4-11 separates the current distribution into real and imaginary parts. Again, 

agreement is better at 300 THz than otherwise. At 200 THz, the full discretization and 

surface impedance condition calculate opposite signs for the imaginary part of the current 

distribution. This explains the difference in the input reactance at 200 THz shown in 

Fig. 4-9. 

 A comparison of the far-field patterns is given in Fig. 4-12. The agreement is 

excellent between the two methods at all three frequencies even though Fig. 4-10 shows a 

discrepancy in their respective current distributions.  
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Fig. 4-9: Comparison between input impedances calculated by the full discretization and surface impedance
methods for L = 200 nm, a = 5 nm, g = 5 nm, silver (Ag) and gold (Au) nanodipoles. 
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Fig. 4-10: Total current magnitude along a silver, L = 200 nm, a = 5 nm, g = 5 nm nanodipole. Black 
corresponds to f = 100 THz, blue to f = 200 THz, and red to f = 300 THz. Solid lines are from full 
discretization while circles are from surface impedance.  
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Fig. 4-11:  Real and imaginary current flow along a silver, L = 200 nm, a = 5 nm, g = 5 nm nanodipole. 
Black corresponds to f = 100 THz, blue to f = 200 THz, and red to f = 300 THz. Solid lines are from full 
discretization while circles are from surface impedance. 
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Fig. 4-12: Normalized far-field amplitude pattern for silver, L = 200 nm, a = 5 nm, g = 5nm silver 
nanodipoles.  Black corresponds to f = 100 THz, blue to f = 200 THz, and red to f = 300 THz. Solid lines 
are from full discretization while circles are from surface impedance. Note that the patterns are rotated
away from broadside for clarity. 
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 The calculation of far field quantities requires integration which generally reduces 

sensitivity to error. Input impedance depends directly on the current and, therefore, is 

more sensitive to error. 

It is important to remember that the surface impedance formulation is an 

approximation similar to the asymptotic expressions in Chapter 2. We therefore expect to 

sacrifice some accuracy for the sake of simplicity and speed. Details of the decrease in 

unknowns, memory, and CPU time are given in Table 4-7. Though this information is 

given for a specific (and rather small) case, the acceleration is likely even more drastic 

when considering larger problem sizes. 

4.6 Summary 

Optical nanoantennas composed of several different materials were simulated 

between 100 and 700 THz. In general, the nanoantennas reach impedance resonances 

corresponding to half-integer multiples of an effective wavelength. This effective 

wavelength scales based on the nanoantenna geometry and frequency-dependent material 

parameters. The radiation efficiency of nanoantennas is significantly less than their RF 

counterparts though this may be improved by judicious selection of radius, material and 

resonant frequency. Radiation patterns and directivities at the first two resonant 

frequencies correspond closely to electrically short dipoles because of optical wavelength 

Table 4-7: Computation details for 301 point frequency sweep with a 2.66 GHz Intel Xeon processor. 

 Unknowns CPU time [s] Memory [MB] 
Full Discretization 83316 2124 1210 
Surface Impedance 24382 563 547  
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scaling. A surface impedance condition may be used to accelerate the computation of 

antenna parameters, albeit with reduced accuracy in calculating the current distribution, 

especially the imaginary part. The discrepancy in the current distribution has little effect 

on far-field quantities due to the inherent integration involved.  
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Chapter 5 
 

Conclusions 

5.1 Summary 

We have examined several topics in the area of nanoscale electromagnetics. A 

key theme has been that most real materials have complex, frequency-dependent 

dielectric functions at optical frequencies. This requires the reevaluation of usual 

assumptions about the perfect dielectric or conducting properties inherent in 

electromagnetic boundary value problems. The ratio of internal intensities within 

semiconducting nanowires points to an angular dependence in Raman scattering. This 

ratio is significant even as the nanowire radius becomes infinitesimal. Arrays of 

nanowires may be used as frequency selective surfaces in the infrared. They also produce 

intense near fields at optical frequencies, which is of interest in field-enhanced 

spectroscopy. By introducing excitations, nanowires may operate as optical nanoantennas 

and, therefore, can be characterized in terms of conventional antenna parameters. Though 

the efficiency is generally low when compared with conventional RF antennas, they still 

display directive radiation patterns and optical resonances with reasonable input 

impedance. A surface impedance approximation reduces the computation time and 

memory required when simulating dispersive materials of varying conductivity. This 

approximation properly calculates far field quantities and input resistance, though the 

input reactance is not evaluated as accurately. 



 

 

75

5.2 Future Work 

There are still several frontiers that must be explored if optical nanoantennas are 

to become feasible. A more physical feed model should be implemented. This feed 

should correspond to actual excitations in optical systems. Through either brute-force 

computation or numerical efficiency, multiple nanoantenna elements need to be 

simulated. This will aid in the design of, say, optical Yagi-Uda arrays, where mutual 

coupling between elements plays an important role. Due to the conductivity roll off in 

real metals, there may be an upper limit on the attainable resonant frequency with 

nanoantennas and their efficiency. A further investigation into a wider range of materials 

may help to clarify this. Also, the actual optical parameters of the material may differ 

from those in bulk. This requires either direct experimental data or a specific model of the 

shape dependence. 
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Appendix 
 

Derivation of Surface Impedance for a Solid Cylindrical Wire 

Maxwell’s equations in cylindrical coordinates and a source-free region are 

where μ and ε are the usual constitutive parameters of the medium.  

 An infinite cylindrical wire will support no field variation in φ or z. Therefore,  

(A-1) reduces to 

These two sets of equations give rise to two orthogonal sets of waves, transverse 

magnetic (TM) and transverse electric (TE).  The wire will support TM waves, which 

have only the field components Ez and Hφ. Combining the two coupled differential 

equations, 

results in a wave equation in Ez, 
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where k2 is generally a complex number. Rearranging to  

gives a modified Bessel equation of the zeroth order. The solutions within the wire are 

 To avoid a singularity at ρ = 0, the coefficient B must vanish. The magnetic field 

can be found from (A-3)    

 The surface impedance is defined as the ratio of electric and magnetic fields at the 

material surface (ρ = a in this case)  

Introducing the intrinsic impedance of free space, η0, and the relative permittivity of the 

material, εr, this becomes 

where the recurrence relation   

was also used. 
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