
The Pennsylvania State University

The Graduate School

College of Engineering

ROBUST, ADAPTABLE MANY-OBJECTIVE

OPTIMIZATION: THE FOUNDATIONS, PARALLELIZATION

AND APPLICATION OF THE BORG MOEA

A Dissertation in

Computer Science and Engineering

by

David M. Hadka

Copyright 2013 David M. Hadka

Submitted in Partial Fulfillment

of the Requirements
for the Degree of

Doctor of Philosophy

May 2013

The dissertation of David M. Hadka was received and approved* by the following:

Kamesh Madduri
Assistant Professor of Computer Science and Engineering
Dissertation Co-Adviser
Chair of Committee

Patrick Reed
Associate Professor of Civil and Environmental Engineering
Dissertation Co-Adviser

Sofya Raskhodnikova
Associate Professor of Computer Science and Engineering

Soundar R. T. Kumara
Allen E. & M. Pearce Professor of Industrial and Manufacturing Engineering
Affiliated Professor of Computer Science and Engineering

Timothy W. Simpson
Professor of Mechanical Engineering and Industrial Engineering

Mark T. Traband
Research Associate at the Applied Research Laboratory
Affiliate Faculty of Industrial and Manufacturing Engineering

Lee Coraor
Director of Academic Affairs, Computer Science and Engineering

*Signatures are on file in the Graduate School.

ii

ABSTRACT

This dissertation presents the design, development, and parallelization of the Borg Mul-
tiobjective Evolutionary Algorithm (MOEA), an efficient and robust many-objective opti-
mization tool. It is characterized by its use of auto-adaptive multi-operator search and
other adaptive features, allowing the algorithm to tailor itself to local search conditions en-
countered during optimization. Using a rigorous diagnostic framework, the Borg MOEA is
distinguished against a broad sample of state-of-the-art MOEAs. The Borg MOEA meets
or exceeds the efficiency, reliability, and search quality of other MOEAs on the majority of
tested problems. To extend the application of the Borg MOEA to time-consuming, complex
engineered systems, we develop two parallel versions of the Borg MOEA: (1) the master-
slave and (2) the multi-master Borg MOEA. These parallel versions are capable of running
efficiently on large-scale computing systems, exploiting tens of thousands of processors. Such
large-scale computing allows the Borg MOEA to optimize complex engineered systems effi-
ciently while producing high-quality results with high reliability. This work culminates with
two real-world case studies of complex engineered systems: (1) the General Aviation Aircraft
(GAA) design problem and (2) a risk-based water supply portfolio planning problem.

iii

Contents

List of Figures vii

List of Tables xv

Acknowledgements xvii

1 Introduction 1

2 Background 6
2.1 Multiobjective Optimization . 6
2.2 Multiobjective Problem . 8
2.3 Pareto Optimality . 9
2.4 Multiobjective Evolutionary Algorithms . 11
2.5 Many-Objective Optimization . 13
2.6 Test Algorithms . 15
2.7 Test Problems . 17
2.8 Measuring Quality . 17

3 Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Frame-
work 24
3.1 The Borg MOEA . 24

3.1.1 ǫ-Dominance Archive . 25
3.1.2 ǫ-Progress . 26
3.1.3 Restarts . 28
3.1.4 Auto-Adaptive Multi-Operator Recombination 30
3.1.5 The Algorithm . 33

3.2 Theoretical Characteristics . 36
3.2.1 Runtime Analysis . 36
3.2.2 Proof of Convergence . 36
3.2.3 Recommended Parameter Values . 37

3.3 Comparative Study . 37
3.3.1 Control Maps . 41
3.3.2 Auto-Adaptive Multi-Operator Behavior 45

iv

3.3.3 Critical Components of Borg . 46
3.4 Conclusion . 49

4 Framework for Diagnosing Search Controls and Failure Modes 50
4.1 Diagnostic Framework . 51

4.1.1 Search Control Metrics . 51
4.1.2 Variance Decomposition of Controls 55
4.1.3 Computational Experiment . 55

4.2 Results and Discussion . 57
4.3 Conclusion . 69

5 Case Study: Diagnostic Assessment of the BorgMOEA for Many-Objective
Product Family Design Problems 71
5.1 Introduction . 71
5.2 Methodology . 74

5.2.1 Sobol’ Sensitivity Analysis . 76
5.2.2 Experimental Setup . 76
5.2.3 Performance Metrics . 78
5.2.4 Best, Probability of Attainment and Efficiency 78

5.3 Results . 79
5.3.1 Best Achieved Value, Probability of Attainment and Efficiency 81
5.3.2 Sobol’ Sensitivity Analysis . 82
5.3.3 Auto-Adaptive Operator Probabilities 84

5.4 Conclusion . 85

6 Large-Scale Parallelization of the Borg MOEA 87
6.1 Introduction . 87
6.2 The Serial Borg MOEA . 90

6.2.1 Constraint Handling . 90
6.2.2 Auto-Adaptive Multi-Operator Search 92
6.2.3 ǫ-Progress Triggered Restarts . 94
6.2.4 Controllability of the Borg MOEA 95

6.3 Parallelizing the Borg MOEA . 95
6.3.1 Master-Slave Implementation . 96
6.3.2 Multi-Master Implementation . 99

6.4 Conclusion . 102

7 Scalability of the Parallel Borg MOEA 103
7.1 Experimental Scalability Analysis . 103
7.2 Modeling the Parallel Borg MOEA . 109

7.2.1 Runtime of the Serial Borg MOEA 113
7.2.2 Runtime of the Master-Slave Borg MOEA 114
7.2.3 Runtime of the Multi-Master Borg MOEA 120

v

7.3 Ideal Configuration . 121
7.4 Conclusion . 122

8 Case Study: Risk-Based Water Supply Portfolio Planning 123
8.1 Introduction . 123
8.2 Methodology . 126
8.3 Results . 129

8.3.1 Convergence Speed and Reliability 129
8.3.2 End-of-Run Quality . 131
8.3.3 Operator Dynamics . 132
8.3.4 Parallel Efficiency and Speedup . 135

8.4 Conclusion . 139

9 Conclusions, Contributions, and Future Work 142
9.1 Contributions . 144

9.1.1 Technical Contributions . 144
9.1.2 Peer-Reviewed Journal Articles . 145
9.1.3 Presentations at Conferences and Invited Talks 146
9.1.4 Patents . 147
9.1.5 Software . 147

9.2 Future Work . 148

A Multiobjective Problems 150

B Sobol’s Global Variance Decomposition 153

C Asynchronous MOEA SimPy Model 155

Bibliography 158

vi

List of Figures

2.1 Example of the tradeoff between two objectives: (1) cost and (2) error. A
tradeoff is formed between these two conflicting objectives where increases in
cost lead to reduced error. All figures in this dissertation showing objectives
include arrows pointing towards the ideal optimum. 7

2.2 Example showing the effect of diminishing returns, where a large increase in
cost is necessary to impart a marginal reduction in error. 7

2.3 Example showing how constraints define an infeasible region (the hashed re-
gion). Valid solutions to the optimization problem are only found in the
feasible region. 9

2.4 Depiction of the various Pareto dominance regions. These regions are relative
to each solution, which is centered in the figure. The dominated region is
inferior in all objectives, the dominating region is superior in all objectives
and the non-dominated region is superior in one objective but inferior in the
other. 10

2.5 Shows a hypothetical mapping between a 3-dimensional Pareto optimal set
and its associated 2-dimensional Pareto front. The shaded region in the Pareto
front shows the space dominated by the Pareto front. 10

2.6 The outline of a simple EA. EAs begin with an initialization process, where
the initial search population is generated. They next enter a loop of select-
ing parent individuals from the search population, applying a recombination
operator (such as crossover and mutation in genetic algorithms) to gener-
ate offspring, and finally updating the search population with these offspring
using a replacement strategy. This loop is repeated until some termination
condition is met, usually after a fixed number of objective function evalua-
tions (NFE). Upon termination, the EA reports the set of optimal solutions
discovered during search. 11

2.7 Hypervolume measures the volume of the space dominated by the approxima-
tion set, bounded by a reference point. This reference point is typically the
nadir point (i.e., the worst-case value for each objective) of the reference set
plus some fixed delta. This delta ensures extremal points contribute non-zero
hypervolume. 19

2.8 Generational distance is the average distance from every solution in the ap-
proximation set to the nearest solution in the reference set. 20

vii

2.9 Inverted generational distance is the average distance from every solution in
the reference set to the nearest solution in the approximation set. 20

2.10 ǫ+-indicator (also known as the additive ǫ-indicator) is the smallest distance
ǫ that the approximation set must be translated by in order to completely
dominate the reference set (Coello Coello et al., 2007). 21

2.11 Spacing measures the uniformity of the spacing between solutions in an ap-
proximation set. 22

2.12 Demonstrates the importance of ǫ-indicator as a measure of consistency. (a)
A good approximation set to the reference set, indicated by the dashed line.
(b) Generational distance averages the distance between the approximation
set and reference set, reducing the impact of large gaps. The missing points
are shaded light gray. (c) The change in hypervolume due to a gap is small
relative to the entire hypervolume. (d) ǫ-Indicator easily identifies the gap,
reporting a metric 2-3 times worse in this example. 23

3.1 2D example depicting how ǫ-progress is measured. Existing archive members
are indicated by •, and the ǫ-boxes dominated by these members are shaded
gray. New solutions being added to the archive are indicated by ×. Cases
(1) and (2) depict occurrences of ǫ-progress. The new solutions reside in
previously unoccupied ǫ-boxes. Case (3) shows the situation in which the
new solution is accepted into the archive, but since it resides in an occupied
ǫ-box it does not count towards ǫ-progress — the improvement is below the
threshold ǫ. 27

3.2 Flowchart of the Borg MOEA’s restart logic. After a certain number of eval-
uations, the MOEA breaks out of its main loop to check if ǫ-progress or the
population-to-archive ratio indicate a restart is required. If a restart is re-
quired, the population is resized and filled with all members of the archive.
Any remaining population slots are filled with solutions selected randomly
from the archive and mutated using uniform mutation applied with probabil-
ity 1/L. In addition, the tournament selection size is adjusted to account for
the new population size. Finally, the MOEA’s main loop is resumed. 29

3.3 Illustration of how a population evolves from multiple restarts, forming what is
known as “connected runs.” With an initial population of sizeN , the MOEA is
run until the first restart is triggered. At this point, the population is emptied
and filled with the current archive, A1. Next, the remaining slots in the resized
population, shown in gray, are filled with solutions selected randomly from A1

and mutated using uniform mutation applied with probability 1/L. Lastly,
the tournament size is adjusted to account for the new population size. This
process repeats until termination. 31

3.4 Examples showing the offspring distribution of the operators used in this
study. Parents are indicated by •. The differential evolution plot depicts the
difference vector with arrows. 34

viii

3.5 Flowchart of the Borg MOEA main loop. First, one of the recombination
operators is selected using the adaptive multi-operator procedure described in
Section 3.1.4. For a recombination operator requiring k parents, 1 parent is
selected uniformly at random from the archive. The remaining k − 1 parents
are selected from the population using tournament selection. The offspring
resulting from this operator are evaluated and then considered for inclusion
in the population and archive. 35

3.6 Best achieved and 75% attainment results from the comparative study. (a)
shows the best value achieved by the MOEA across all seeds, where black
indicates values near the reference set hypervolume. (b) shows the probability
of attaining at least 75% of the reference set hypervolume for each problem.
Black indicates 100% probability; white indicates 0% probability. 39

3.7 Control map showing the relation between population size and number of
objective function evaluations on the DTLZ2 problem from 2 to 8 objectives. 42

3.8 Control map showing the relation between population size and number of
objective function evaluations on the DTLZ1 problem from 2 to 8 objectives. 43

3.9 Depicts the effect of epistasis on success of operators in the Borg MOEA’s
auto-adaptive multi-operator recombination on an unrotated and rotated in-
stance of the DTLZ2 problem. (a) shows the unrotated version from the
DTLZ test suite; (b) shows the rotated version from the CEC 2009 competition. 44

3.10 (a) The percentage of operator usage throughout an entire run across all tested
problems using a set of fixed parameters. Black cells indicate 100% usage and
white cells indicate 0% usage of each operator. SBX and PCX are the two
dominant operators on unrotated and rotated problems, respectively, while
the other operators show moderate influence on several problems. (b) The
restart frequencies due to ǫ-progress and the population-to-archive ratio. ǫ-
Progress is scaled so black cells indicate the maximum of 826 restarts observed
during any run; the population-to-archive ratio is scaled so black cells indicate
the maximum of 14 observed restarts. 45

3.11 Best achieved and 75% attainment results from the analysis of the critical
components of the Borg MOEA. (a) shows the best value achieved by the
configuration across all seeds, where black indicates values near the reference
set hypervolume. (b) shows the probability of attaining at least 75% of the
reference set hypervolume for each problem. Black indicates 100% probabil-
ity; white indicates 0% probability. The enabled components in each variant
are identified with letters: (A) population-to-archive ratio triggered restarts
with adaptive population sizing; (B) ǫ-progress; and (C) auto-adaptive mul-
tioperator recombination. 48

4.1 The correlation dimension is the slope where the correlation dimension esti-
mate ln(C(r))/ ln(r) is relatively constant (this region is called the plateau
region in the literature). As indicated, small and large radii do not reflect
dimensionality. 54

ix

4.2 For each algorithm, a Sobol’ sequence-based statistical sampling of its pa-
rameters is generated (i.e., the parameter block). Each parameter set in
the parameter block is evaluated using multiple random number seed trials
(S = 50) to improve the statistical quality of our results. From the resulting
non-dominated approximation sets, the corresponding performance metrics
are computed. An attainment threshold retains all parameter settings sur-
passing the threshold value, which are then used to compute the probability
of attainment, efficiency, and controllability measures. 56

4.3 The overall best performance for each algorithm on each problem instance is
illustrated as the percentage of target metric value achieved. The targets for
each problem are based on their true reference sets. Black regions indicate
there exists at least one parameter set that yielded near-optimal metric values.
White regions indicate no such parameter set exists. 59

4.4 The probability of attainment results illustrate the percent of parameter sets
for each algorithm that yielded end-of-run metric values surpassing a 75%-
attainment threshold. Black regions indicate large success rates while white
regions indicate low success rates. 61

4.5 The efficiency of each MOEA shows the minimum number of NFE required
for the algorithm to reliably (with 90% probability) produce approximation
sets surpassing the 75% attainment threshold. Black regions indicate efficient
algorithms requiring fewer objective function evaluations. White regions in-
dicate cases where the algorithm failed to surpass the attainment threshold
given a maximum of 1000000 evaluations. 62

4.6 Controllability of each algorithm on the problems studied as measured using
the correlation dimension. Black regions indicate controllable algorithms with
large sweet spots; white regions indicate the algorithm is uncontrollable. . . . 64

4.7 Sobol’ sensitivities of individual algorithm parameters for all problem in-
stances. The first-order Sobol’ indices represent the single parameter con-
tributions to the hypervolume distributions’ variances. In a given problem
instance, the first order indices for a given algorithm must sum to be less
than or equal to 1. Interactive effects represent each parameter’s contribu-
tions to the hypervolume ensembles variances through combined impacts with
other parameters. Note the interactive effects do not sum to 1 for each prob-
lem dimension because each shaded cell has variance contributions that are
also present in other cells (i.e., higher order interactive parametric effects).
X’s indicate cases when sensitivities are too uncertain to draw conclusions
as determined when the bootstrap confidence intervals exceeded a window
greater than +/- 20% around the expected sensitivity value. 66

x

4.8 Sobol’ sensitivities of individual algorithm parameters for all problem in-
stances. The first-order Sobol’ indices represent the single parameter con-
tributions to the hypervolume distributions’ variances. In a given problem
instance, the first order indices for a given algorithm must sum to be less
than or equal to 1. Interactive effects represent each parameter’s contribu-
tions to the hypervolume ensembles variances through combined impacts with
other parameters. Note the interactive effects do not sum to 1 for each prob-
lem dimension because each shaded cell has variance contributions that are
also present in other cells (i.e., higher order interactive parametric effects).
X’s indicate cases when sensitivities are too uncertain to draw conclusions
as determined when the bootstrap confidence intervals exceeded a window
greater than +/- 20% around the expected sensitivity value. 67

5.1 Flowchart of the Borg MOEA main loop that includes constraint handling.
First, one of the recombination operators is selected using the adaptive multi-
operator procedure. For a recombination operator requiring k parents, k − 1
parents are selected from the population using tournament selection. The
remaining parent is selected randomly from the archive if the archive contains
feasible solutions; otherwise, it is selected randomly from the population. The
offspring resulting from this operator are evaluated and then considered for
inclusion in the population and archive. 75

5.2 Parallel coordinates plot of the reference set generated by ǫ-MOEA and the
Borg MOEA. The traces in the plot are colored by the algorithm which pro-
duced the solution. The ideal direction for each objective is downwards. . . . 80

5.3 Plots showing the best achieved metric value and probability of attainment
for each performance metric. The y-axis ranges across the metric values from
0 to 1. The circle markers indicate the best achieved metric value by each
algorithm. The shaded bars show the probability of each algorithm producing
results which match or exceed a threshold. The threshold is the metric value
in the y-axis. Black regions indicate 100% attainment; white regions indicate
0% attainment. 81

5.4 Plots showing the efficiency for each performance metric. The y-axis ranges
across the metric values from 0 to 1. The shaded bars show the minimum NFE
required for each algorithm to match or exceed the threshold of the y-axis.
Black regions indicate few NFE are required; white regions indicate more than
1000000 evaluations (the upper limit in this study) are required. 82

xi

5.5 First-, second- and total-order sensitivities between the parameters controlling
ǫ-MOEA and the Borg MOEA with respect to their AEI performance. The
circles represent the first-order sensitivities of each parameter, where larger
circles indicate the parameter has a strong impact on performance. Rings
around each circle indicate total-order sensitivities, where larger rings indicate
the parameter contributes many higher-order interactions. Lines between pa-
rameters indicate second-order sensitivities, where thicker lines indicate the
two parameters interact strongly to affect performance. 83

5.6 Demonstration of the Borg MOEA’s auto-adaptive and cooperative multi-
operator search, showing the operator probabilities from 50 seeds of the Borg
MOEA using its default parameter settings (shown in Table 5.3). 85

6.1 Flowchart of the Borg MOEA main loop. First, one of the recombination
operators is selected using the adaptive multi-operator procedure described in
Section 6.2.2. For a recombination operator requiring k parents, k−1 parents
are selected from the population using tournament selection. The remaining
parent is selected randomly from the archive if the archive contains feasible
solutions; otherwise it is selected randomly from the population. The offspring
resulting from this operator are evaluated and then considered for inclusion
in the population and archive. 91

6.2 Diagram of the master-slave implementation of the Borg MOEA. The master
node maintains the ǫ-dominance archive and runs the main loop of the serial
Borg MOEA. The decision variables are transmitted to the slave nodes, and
the evaluated objective function values and constraints are returned to the
master node. 96

6.3 Flowchart of the main Borg MOEA loop running on the master nodes. A
queue supports the asynchronous generation and evaluation of offspring. When
a slave node is available (it returns an evaluated offspring), the master queries
the queue for the unevaluated offspring. If the queue is empty, the algorithm
invokes the operator selection and offspring generation steps from the serial
Borg MOEA. 98

6.4 Diagram of the multi-master implementation of the Borg MOEA. The multi-
master Borg MOEA consists of two or more master-slave instances. This
diagram depicts three such instances. The multi-master consists of an ad-
ditional controller node, which communicates with the masters using several
messages. (1) Each master node periodically transmits its local ǫ-dominance
archive to the controller to update the global archive. (2) When a master
node is struggling, it sends a help message to the controller. (3) The con-
troller responds with guidance, which includes the global ǫ-dominance archive
and global operator probabilities. 101

7.1 The average parallel efficiency of the master-slave Borg MOEA on the 5-
objective DTLZ2 and UF11 test problems. 106

xii

7.2 The average hypervolume speedup of the master-slave Borg MOEA on the
5-objective DTLZ2 and UF11 test problems. The 16 processor configuration
is used as the baseline for calculating hypervolume speedup. 107

7.3 The average parallel efficiency of the multi-master Borg MOEA on the 5-
objective DTLZ2 and UF11 test problems. 108

7.4 The average hypervolume speedup of the multi-master Borg MOEA on the
5-objective DTLZ2 test problem. The master-slave implementation is used as
the baseline for computing hypervolume speedup. 110

7.5 The average hypervolume speedup of the multi-master Borg MOEA on the
5-objective UF11 test problem. The master-slave implementation is used as
the baseline for computing hypervolume speedup. 111

7.6 Diagram depicting the various costs incurred during a run of a synchronous,
master-slave MOEA. In this example, P = 4 with one master and 3 slaves.
The dotted line indicates the start of a new generation. 113

7.7 Diagram depicting the various costs incurred during a run of an asynchronous,
master-slave MOEA. In this example, P = 4 with one master and 3 slaves.
The master sends a solution to an available slave (TC), the slave evaluates
the solution (TF), the slave sends the evaluated solution back to the master
(TC), and the master processes the solution and generates the next offspring
to evaluate (TA). 114

7.8 Predicted efficiency of a synchronous MOEA (using the model developed by
Erick Cantú-Paz (Cantú-Paz, 2000)) compared against the predicted efficiency
of an asynchronous MOEA using the simulation model. TF ranges from 0.0001
up to 1 second, and P ranges from 2 to 16, 384 processors. The coloring shows
the efficiency, with highest efficiency in the red regions and worst efficiency in
the blue regions. Note the log scale of the x- and y- axes. 119

8.1 2D demonstration of the hypervolume indicator. (a) The bounds of the ref-
erence set are used to calculate the reference point; this calculation typically
adds a delta so that the boundary points contribute positive hypervolume. (b)
Given an approximation set, the hypervolume is the volume of space domi-
nated between the approximation set points and the reference point. (c)
Demonstration of how an approximation set with good proximity but poor
diversity results in a sub-optimal hypervolume. 128

8.2 Probability of each parallel implementation of attaining a hypervolume >=
90% of the reference set hypervolume on the LRGV problem. Each subplot
shows the results for different processor counts, from 1024 up to 16384 pro-
cessors. 130

8.3 The operator probability runtime dynamics from a single run of the master-
slave Borg MOEA with 1024 processors. The solid black line traces the hy-
pervolume of the approximation set at each point in time. 134

xiii

8.4 The operator probability runtime dynamics from a single run of the 16 island
multi-master Borg MOEA with 1024 processors. Each subplot shows the
operator probabilities for an island. The vertical black lines indicate when
the island requested help from the controller. Like Figure 8.3, the solid black
line traces the hypervolume of the approximation set at each point in time. . 136

8.5 Predicted efficiency for the multi-master Borg MOEA on the LRGV problem
from 1024 up to 65536 processors. 138

8.6 Hypervolume speedup of the multi-master Borg MOEA implementations com-
pared to the baseline master-slave Borg MOEA. These results are averaged
over the 50 random seed trials. 140

A.1 Reference sets for the DTLZ1 test problem with 2 and 3 objectives. UF12
from the CEC 2009 competition is a 5 objective rotated variant of DTLZ1. . 150

A.2 Reference sets for the DTLZ2, DTLZ3, and DTLZ4 test problems with 2 and
3 objectives. While these three problems share the same reference set, their
objective definitions differ dramatically. For instance, DTLZ3 is considerably
more difficult than DTLZ2 due to the addition of multi-modality. UF11 from
the CEC 2009 competition is a 5 objective rotated variant of DTLZ2. 151

A.3 Reference sets for the DTLZ7 test problem with 2 and 3 objectives. 151
A.4 Reference sets for the WFG1 problem for 2 and 3 objectives. UF13 from the

CEC 2009 competition is the 5 objective variant of WFG1. 151
A.5 Reference sets for the unconstrained problems from the CEC 2009 competition.152

xiv

List of Tables

2.1 The test problems used throughout this dissertation along with key properties. 18

3.1 Statistical comparison of algorithms based on the 75% quantile of the hyper-
volume, generational distance, and ǫ+-indicator metrics. +, =, and − indicate
Borg’s 75% quantile was superior, statistically indifferent from, or inferior to
the competing algorithm, respectively. 38

3.2 Statistical comparison of the critical components of the Borg MOEA based on
the 75% quantile of the hypervolume, generational distance and ǫ+-indicator
metrics. +, =, and − indicate the full Borg MOEA’s 75% quantile was supe-
rior, statistically indifferent from or inferior to the competing variant, respec-
tively. The enabled components in each variant are identified with letters: (A)
population-to-archive ratio triggered restarts with adaptive population sizing;
(B) ǫ-progress; and (C) auto-adaptive multioperator recombination. 47

4.1 List of prior comparison studies analyzing objective scaling for MOEAs. †

marks algorithms modified specifically for handling many-objective optimiza-
tion. 51

4.2 Notation used in study. 52
4.3 Statistical comparison of algorithms counting the number of problems in which

each MOEA was best or tied for best. The Kruskal-Wallis and Mann-Whitney
U tests are used to check for statistical differences in the generational distance,
hypervolume and ǫ+-indicator values across the 50 random seed replicates.
Counts are differentiated by the search control metrics: best, probability of
attainment (prob), efficiency (eff), and controllability (cont). 65

5.1 Design parameters and their respective ranges. 73
5.2 Objectives and ǫ values. 73
5.3 Sampled parameter ranges and default settings. 77

7.1 Notation used throughout this chapter. 105
7.2 Table comparing the experimental results to the analytical and simulation

models. All times are in seconds. Errors are percent deviation from experi-
mental times. 118

7.3 The average wait time of messages in the controller. 121

xv

8.1 Decision variables used by the LRGV problem. 125
8.2 Objectives used by the LRGV problem. 125
8.3 The parallel MOEAs tested in this study and their salient characteristics. . . 127
8.4 Table showing the median and standard deviation of the end-of-run hypervol-

ume results. The Kruskal-Wallis and Mann-Whitney U tests were used to test
the statistical significance of the medians. The significant column contains a
X if the median from that row is significantly different than the best result,
16384 processor multi-master Borg MOEA (32 islands), with 95% confidence.
The row containing the best result is highlighted. The final column contains
the corresponding p-value from the Mann-Whitney U test. 133

8.5 Table showing the median NFE expended by each implementation and the
parallel efficiency. 137

xvi

Acknowledgements

I would like to thank Daniel Finke, Chris Ligetti, Mark Traband, and my other colleagues
at The Pennsylvania State University Applied Research Laboratory for their support and
encouragement over the years. I would also like to thank Joshua Kollat, Joseph Kasprzyk,
Rachel Urban, Alisha Fernandez, Matthew Woodruff, Jonathan Herman, Martha Butler, and
Ruchit Shah for their support of and contributions to this work. Thanks to my committee
members for reviewing this dissertation and providing helpful feedback. Last but not least,
special thanks to Patrick Reed for nurturing my interest in this subject matter and helping
guide this research.

This work used the Extreme Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant number OCI-1053575.

The authors acknowledge the Texas Advanced Computing Center (TACC) at The University
of Texas at Austin for providing HPC resources that have contributed to the research results
reported within this dissertation.

This work was supported in part through instrumentation funded by the National Science
Foundation through grant OCI-0821527.

xvii

It is a mistake to think you can solve any major problem with just potatoes.
- Douglas Adams

xviii

Chapter 1

Introduction

Multiobjective evolutionary algorithms (MOEAs) are a class of optimization algorithms in-
spired by the processes of natural evolution (Holland, 1975). As early as 1984, researchers
have been interested in solving problems with multiple conflicting objectives using evolution-
ary algorithms (Schaffer, 1984). Since then, researchers have successfully applied MOEAs
to a large array of problems from industrial, electrical, computer, civil and environmental
engineering; aeronautics; finance; chemistry; medicine; physics; and computer science (for a
detailed overview see Coello Coello et al. (2007)).

In early MOEA research, only a small number of algorithms existed to solve multiob-
jective optimization problems and their performance was limited to fairly simple two and
three objective formulations. It was the introduction of the Nondominated Sorting Genetic
Algorithm-II (NSGA-II) (Deb et al., 2000) that revolutionized the field, dramatically in-
creasing the use of Pareto dominance-based optimization in an extremely diverse array of
applications (Coello Coello et al., 2007). Even with the large number of MOEAs developed
after NSGA-II, it remains one of the most widely used and cited MOEAs to date.

In recent years, burgeoning computing power and an increasing acceptance of MOEAs as
multiobjective optimizers has led researchers to solve problems with four or more objectives
(Fleming et al., 2005; Coello Coello et al., 2007; di Pierro et al., 2007; Ferringer et al.,
2009; Kasprzyk et al., 2009). Quickly, however, a number of theoretical and experimental
issues were observed. Such problems were termed many-objective and were shown to strain
traditional MOEAs, which were originally designed for only two or three objectives. In some
cases, complete search failures were observed on many-objective problems (Purshouse and
Fleming, 2003, 2007).

A quick thought exercise gives light to the complexities that arise during many-objective
optimization. Consider a 6 objective problem. An MOEA solving this problem must consider
all interactions and tradeoffs among the 6 objectives. However, encoded in the 6 objective
formulation are all subproblems of lower dimension. This includes 6 single-objective sub-
problems, 15 two-objective subproblems, 20 three-objective subproblems, 15 four-objective
subproblems and 6 five-objective subproblems. In total, 63 subproblems must be simultane-
ously solved by the MOEA.

One early and popular approach for handling many objectives involves aggregating the

1

many objectives into a single objective. This single objective is subsequently solved using
a single-objective evolutionary algorithm (EA). Many practical problems exist in this ap-
proach, however, that limit its applicability. Not only will aggregating the objectives hide the
complex interactions and tradeoffs among the many objectives, Kasprzyk et al. (2009) and
Kollat et al. (2011) demonstrate that it is necessary to use the full many-objective formu-
lation to avoid myopic decision making. For instance, Kasprzyk et al. (2009) demonstrated
that using lower-dimensional formulations lead to severe decision errors in a water portfolio
planning system, increasing the potential for costly failures when planning a city’s water
portfolio.

Hence, there is significant interest in solving the full many-objective formulations of
complex, real-world problems. This approach, unfortunately, is not without its own set of
issues. Farina and Amato (2004), Fleming et al. (2005), and Purshouse and Fleming (2007)
observed that the proportion of locally Pareto non-dominated solutions tends to become large
as the number of objectives increases. This is a direct result of Pareto dominance and its aim
to capture, without preference, the entire tradeoff surface between two or more conflicting
objectives. This leads to difficulties in producing offspring that dominate poorly performing,
but still non-dominated, members in the population — a phenomenon termed dominance
resistance (Hanne, 2001; Ikeda et al., 2001; Purshouse and Fleming, 2007). This increasing
proportion of locally Pareto non-dominated solutions and the phenomenon of dominance
resistance can impact the performance of MOEAs in several ways.

First, these conditions may limit the ability of dominance relations (e.g., Pareto dom-
inance) in differentiating high-quality and low-quality solutions. Several researchers have
proposed alternate dominance relations to provide more stringent dominance criteria. One
must, however, be aware of the impact of selecting a different dominance relation, as it may
focus search towards a subspace and fail to produce solutions along the entire extent of the
tradeoff surface (Coello Coello et al., 2007).

Second, as the proportion of locally Pareto non-dominated solutions increases and the
offspring are likely to also be non-dominated as a result of dominance resistance, it is often
difficult for an MOEA to identify which offspring should survive and replace existing members
in the population. In such scenarios, the diversity operator, such as crowding, is often the
primary mechanism for determining survival. This phenomenon is termed active diversity
maintenance (Purshouse and Fleming, 2007).

Third, Hanne (1999) observed that active diversity maintenance can cause deterioration.
Deterioration occurs whenever the solution set discovered by an MOEA at time i contains
one or more solutions dominated by a solution discovered at some earlier point in time j < i.
In the extreme, deterioration can cause an MOEA to diverge away from the Pareto front.
Laumanns et al. (2002) effectively eliminate deterioration with the ǫ-dominance relation;
however, at present, most state-of-the-art MOEAs in use today have yet to adopt mechanisms
for avoiding deterioration.

Lastly, Teytaud (2006, 2007) show that dominance resistance can cause the convergence
rate of MOEAs to degrade to be no better than random search for problems with ten or
more objectives. This result is backed by Ishibuchi et al. (2008a), where it is demonstrated

2

that several state-of-the-art MOEAs fail on problems with as few as four objectives.
Clearly, there exists significant interest in many-objective optimization, but key inno-

vations are necessary in order to overcome these documented problems. This dissertation
documents a sequence of studies to better understand and develop the theory and founda-
tions for robust many-objective optimization. First, a novel MOEA was designed specifically
for handling complex, many-objective problems where the primary future focus will be on
advancing severely challenging real-world applications. In order to facilitate these design
goals, the proposed Borg MOEA assimilates several design principles from existing MOEAs
and introduces several novel components. These components include:

1. an ǫ-box dominance archive for maintaining convergence and diversity throughout
search (Laumanns et al., 2002);

2. ǫ-progress, which is a computationally efficient measure of search progression and stag-
nation;

3. an adaptive population sizing operator based on ǫ-NSGA-II’s (Kollat and Reed, 2006)
use of time continuation to maintain search diversity and to facilitate escape from local
optima;

4. multiple recombination operators to enhance search across a wide assortment of prob-
lem domains; and

5. the steady-state, elitist model of ǫ-MOEA (Deb et al., 2003), which can be easily
extended for use on parallel architectures.

Next, a comprehensive comparative study between the Borg MOEA and a number of
competing MOEAs was conducted. Not only does this study test more algorithms and
problems than previously attempted in the literature, it proposes new performance measures
for differentiating the quality, reliability and efficiency of the tested MOEAs. In addition,
Sobol’ global variance decomposition is used to decompose the relative importance of and
interactions among each algorithm’s parameters. By identifying key parameters and their
complex interactions, guidance on parameterizing and controlling the algorithms can be
inferred.

Lastly, in order to facilitate large-scale, time-consuming problems, two parallel variants
of the Borg MOEA were developed. Not only do the parallel variants significantly reduce
the time needed to solve such problems, they drastically improve the overall search quality.
Discrete event simulation results detailing the necessary conditions to maximize speedup
and efficiency were developed and incorporated to maximize the potential of the parallel
variants. Both variants were applied to a severely constrained, many-objective complex
engineered system.

The result of this dissertation research includes the serial and parallel versions of the
Borg MOEA, and the theoretical and experimental results to support these claims. The
remainder of this dissertation is organized as follows.

3

Chapter 2 - Background
This chapter provides the reader with sufficient background to understand the primary com-
ponents of this dissertation. It formally defines multiobjective optimization, Pareto opti-
mality and many-objective optimization. The theoretical and experimental issues observed
in the literature concerning many-objective optimization are detailed. Chapter 2 concludes
with descriptions of the MOEAs and test problems used throughout this dissertation.

Chapter 3 - Borg: An Auto-Adaptive Many-Objective Evolutionary Computing
Framework
Chapter 3 introduces the Borg MOEA for many-objective optimization. The Borg MOEA
combines ǫ-dominance, a measure of convergence speed named ǫ-progress, randomized restarts
and auto-adaptive multioperator recombination into a unified optimization framework. A
comparative study on 33 instances of 18 test problems from the DTLZ (Deb et al., 2001),
WFG (Huband et al., 2006), and CEC 2009 (Zhang et al., 2009b) test suites demonstrates
that the Borg MOEA meets or exceeds 6 state-of-the-art MOEAs on the majority of the
tested problems.

Chapter 4 - Framework for Diagnosing Search Controls and Failure Modes
Extending the comparative study from the previous chapter, Chapter 4 introduces a diag-
nostic framework for rigorously assessing the search controls and failure modes of MOEAs.
Using this methodology, it is possible to carefully determine an MOEA’s search quality, relia-
bility, efficiency and controllability. Applying this framework to the Borg MOEA and 8 other
state-of-the-art many-objective optimizers solidifies the contributions provided by the Borg
MOEA. This study represents the most comprehensive evaluation of the state-of-the-field
ever completed.

Chapter 5 - Case Study: Diagnostic Assessment of the Borg MOEA for Many-
Objective Product Family Design Problems
Chapter 5 explores the application of the Borg MOEA on a real-world product family design
problem: the severely constrained, ten objective General Aviation Aircraft (GAA) problem.
The GAA problem represents a promising benchmark problem that strongly highlights the
importance of using auto-adaptive search to discover how to exploit multiple recombination
strategies cooperatively. The auto-adaptive behavior of the Borg MOEA is rigorously com-
pared against its ancestor algorithm, the ǫ-MOEA, by employing global sensitivity analysis
across each of the algorithm’s feasible parameter ranges. This provides the first application
of the Sobol’ sensitivity analysis from Chapter 4 to determine the individual and interactive
parameter sensitivities of MOEAs on a real-world many-objective problem.

Chapter 6 - Large-Scale Parallelization of the Borg MOEA
The previous chapters have identified the number of function evaluations (NFE) as the
key controlling parameter of the Borg MOEA. Therefore, it is logical to build a parallel
implementation of the Borg MOEA to increase NFE by running on large-scale computing

4

systems. Chapter 6 develops two parallel variants of the Borg MOEA. The master-slave
Borg MOEA is designed to scale to thousands of processors. The multi-master Borg MOEA
is designed to scale on emerging Petascale systems. Both parallel variants retain the auto-
adaptive features of the serial Borg MOEA from Chapter 3 but also introduce several features
designed to improve the reliability of the algorithm on large, complex, severely constrained
problems.

Chapter 7 - Scalability of the Parallel Borg MOEA
Chapter 7 provides a preliminary exploration of the scalability of the two parallel Borg
MOEA implementations on the 5D DTLZ2 and UF11 test problems. This chapter starts with
an experimental comparison of the parallel efficiency and hypervolume speedup of the master-
slave and multi-master Borg MOEA. Next, models for predicting the runtime, efficiency, and
lower and upper processor bounds are derived. This includes a discrete event simulation
model for accurately modeling the complex interactions in the parallel Borg MOEA. Lastly,
these models are used to provide guidance for optimally configuring the parallel Borg MOEA.

Chapter 8 - Case Study: Risk-Based Water Supply Portfolio Planning
Chapter 8 explores the application of the parallel Borg MOEA on a real-world complex engi-
neered system: a severely constrained, six objective risk-based water supply portfolio plan-
ning problem. This problem features many of the challenging problem properties discussed
in Chapter 6. It is many-objective, multi-modal, non-linear, contains a mix of discrete and
real decision variables, is severely constrained, and has stochastic objectives with expensive
function evaluation times. Using this problem, we demonstrate that the parallel variants of
the Borg MOEA developed in Chapter 6 significantly improve speed of convergence, solution
quality, and reliability.

Chapter 9 - Conclusions, Contributions, and Future Work
Chapter 9 concludes this dissertation by detailing the results from the prior chapters and dis-
cussing the impact the Borg MOEA has on solving large-scale, complex engineered systems.
Additionally, the contributions to the fields of parallel computing, evolutionary computation,
and operations research resulting from this dissertation are outlined. Lastly, future research
directions that can extend and improve the work presented in this dissertation are proposed.

5

Chapter 2

Background

This chapter provides introductions to core technical concepts that are utilized throughout
this dissertation, and provides a more detailed review of historical work focused on multiob-
jective evolutionary algorithms (MOEAs). Section 2.1 introduces the goals of multiobjective
optimization. Section 2.2 formally defines the multiobjective problem class. Section 2.3
introduces the concept of Pareto optimality, which captures the notion of optimality for
multiobjective problems. Section 2.4 presents the motivation behind MOEAs. Section 2.5
discusses the extension of MOEAs to many-objective problems, which are problems with
≥ 4 objectives. Section 2.6 and Section 2.7 detail the MOEAs and test problems used for
testing throughout this dissertation. Lastly, Section 2.8 discusses the techniques to measure
solution quality when testing MOEAs.

2.1 Multiobjective Optimization

Optimization is the process of identifying the best solution among a set of alternatives (Miet-
tinen, 1999). Whereas single objective optimization employs a single criterion for identifying
the best solution among a set of alternatives, multiobjective optimization employs two or
more criteria. The criteria used to compare solutions are known as objectives. As multiple
objectives can conflict with one another — i.e., improving one objective leads to the deterio-
ration of another — there is, generally speaking, no single optimal solution to multiobjective
problems.

As an example, Figure 2.1 shows the tradeoff between two objectives: (1) cost and (2)
error. The shaded region depicts the set of candidate solutions to this hypothetical problem.
The top-left region contains low cost, high error candidate solutions. The bottom-right
region contains high cost, low error candidate solutions. Between these two extremes lie
the various degrees of tradeoff between the two objectives, where increases in cost lead to
reduced error.

Figure 2.1 demonstrates a fundamental issue in multiobjective optimization. Given that
there is no single optimal solution, rather a multitude of potential solutions with varying
degrees of tradeoff between the objectives, decision-makers are subsequently responsible for

6

E
rr

o
r

Cost

Low cost

High error

High cost

Low error

Tradeo!

Figure 2.1: Example of the tradeoff between two objectives: (1) cost and (2) error. A tradeoff
is formed between these two conflicting objectives where increases in cost lead to reduced
error. All figures in this dissertation showing objectives include arrows pointing towards the
ideal optimum.

E
rr

o
r

Cost

Figure 2.2: Example showing the effect of diminishing returns, where a large increase in cost
is necessary to impart a marginal reduction in error.

7

exploring this set of potential solutions and identifying the solution(s) to be implemented.
While ultimately the selection of the final solution is the responsibility of the decision-
maker, optimization tools should assist this decision process to the best of their ability.
For instance, it may prove useful to identify points of diminishing returns. For example,
Figure 2.2 identifies the region where a large increase in cost is necessary to impart a marginal
decrease in error. To perform this type of analysis, it is necessary to provide the decision-
maker with an enumeration or approximation of these tradeoffs. This strategy of enumerating
or approximating the tradeoffs is known as a posteriori optimization (Coello Coello et al.,
2007), and is the focus of this dissertation.

2.2 Multiobjective Problem

A multiobjective problem (MOP) with M objectives is defined as

minimize
x∈Ω

F (x) = (f1(x), f2(x), . . . , fM(x))

subject to ci(x) = 0, ∀i ∈ E ,
cj(x) ≤ 0, ∀j ∈ I.

(2.1)

We call x the decision variables, which is the vector of variables that are manipulated
during the optimization process:

x =

x1

x2
...
xL

 (2.2)

Decision variables can be defined in a variety of ways, but it is common to see the following
types (Bäck et al., 1997):

• Real-Valued: 0.1134, with optional lower and upper bounds

• Binary: 001100010010100001011110101101110011

• Permutation: 4,2,0,1,3

In some applications, it is possible for the number of decision variables, L, to not be a fixed
value. In this dissertation, however, we assume that L is constant for a given problem.

The decision space, Ω, is the set of all decision variables. The MOP may impose restric-
tions on the decision space, called constraints. As an example, in Figure 2.3, a hypothetical
constraint would prevent any solutions from exceeding an error threshold. In this manner,
constraints inform the optimization process as to which solutions are infeasible or imprac-
tical. Equation (2.1) shows that zero or more constraints ci(x) can be defined to express
both equality and inequality constraints. The sets E and I define whether the constraint is
an equality or inequality constraint. The set of all decision variables in Ω which are feasible
(i.e., satisfy all constraints) define the feasible region, Λ.

8

E
rr

o
r

Cost

Infeasible Region

Feasible Region

Error < ξ

Figure 2.3: Example showing how constraints define an infeasible region (the hashed region).
Valid solutions to the optimization problem are only found in the feasible region.

2.3 Pareto Optimality

The notion of optimality used today is adopted from the work of Francis Ysidro Edgeworth
and Vilfredo Pareto (Coello Coello et al., 2007), and is commonly referred to as Pareto
optimality. Pareto optimality considers solutions to be superior or inferior to another solution
only when it is superior in all objectives or inferior in all objectives, respectively. The
tradeoffs in an MOP are captured by solutions which are superior in some objectives but
inferior in others. Such pairs of solutions which are both superior and inferior with respect
to certain objectives are called non-dominated, as shown in Figure 2.4. More formally, the
notion of Pareto optimality is defined by the Pareto dominance relation:

Definition 1. A vector u = (u1, u2, . . . , uM) Pareto dominates another vector v =
(v1, v2, . . . , vM) if and only if ∀i ∈ {1, 2, . . . ,M}, ui ≤ vi and ∃j ∈ {1, 2, . . . ,M}, uj < vj.
This is denoted by u ≺ v.

Two solutions are non-dominated if neither Pareto dominates the other (i.e., u ⊀ v and
v ⊀ u). The set of all non-dominated solutions is captured by the Pareto optimal set and
the Pareto front. The former contains the decision variables while the latter contains the
objectives.

Definition 2. For a given multiobjective problem, the Pareto optimal set is defined by

P∗ = {x ∈ Ω | ¬∃x′ ∈ Λ, F (x′) ≺ F (x)}

Definition 3. For a given multiobjective problem with Pareto optimal set P∗, the Pareto

front is defined by
PF∗ = {F (x) | x ∈ P∗}

9

f2
(x

)

f1(x)

DominatedNon-Dominated

Non-DominatedDominating

Figure 2.4: Depiction of the various Pareto dominance regions. These regions are relative
to each solution, which is centered in the figure. The dominated region is inferior in all
objectives, the dominating region is superior in all objectives and the non-dominated region
is superior in one objective but inferior in the other.

f2
(x

)

f1(x)

Variable 1

V
a

ri
a

b
le

 2
Var

ia
ble

 3

Pareto Optimal Set Pareto Front

Figure 2.5: Shows a hypothetical mapping between a 3-dimensional Pareto optimal set and
its associated 2-dimensional Pareto front. The shaded region in the Pareto front shows the
space dominated by the Pareto front.

10

Selection of Parents

Recombination

Survival / Replacement

Initialization

Termination

Lo
o

p
 U

n
ti

l T
e

rm
in

a
ti

o
n

Figure 2.6: The outline of a simple EA. EAs begin with an initialization process, where the
initial search population is generated. They next enter a loop of selecting parent individuals
from the search population, applying a recombination operator (such as crossover and muta-
tion in genetic algorithms) to generate offspring, and finally updating the search population
with these offspring using a replacement strategy. This loop is repeated until some termina-
tion condition is met, usually after a fixed number of objective function evaluations (NFE).
Upon termination, the EA reports the set of optimal solutions discovered during search.

In this dissertation, the Pareto dominance relation is applied to the objectives. For
convenience, we use x ≺ y interchangeably with F (x) ≺ F (y).

Figure 2.5 shows an example Pareto optimal set and Pareto front, and the resulting
mapping between the two. The Pareto optimal set defines the decision variables, whereas
the Pareto front captures the objectives and their tradeoffs via Pareto optimality.

2.4 Multiobjective Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of search and optimization algorithms inspired
by processes of natural evolution (Holland, 1975). A broad overview of the design and
development of EAs is provided in Bäck et al. (1997). The outline of a simple EA is shown
in Figure 2.6. EAs begin with an initialization process, where the initial search population is

11

generated. They next enter a loop of selecting parent individuals from the search population,
applying a recombination operator to generate offspring, and finally updating the search
population with these offspring using a replacement strategy. This loop is repeated until some
termination condition is met, usually after a fixed number of objective function evaluations
(NFE). Upon termination, the EA reports the set of optimal solutions discovered during
search.

The behavior of the selection, recombination and survival/replacement processes typically
depend on the “class” of EA. For instance, genetic algorithms (GAs) apply crossover and
mutation operators that mimic genetic reproduction via DNA (Holland, 1975). Particle
swarm optimization (PSO) algorithms simulate flocking behavior, where the direction of
travel of each individual is steered towards the direction of travel of surrounding individuals
(Kennedy and Eberhart, 1995). While the behavior of each class may be vastly different,
they all share a common attribute of utilizing a search population.

Their ability to maintain a population of diverse solutions makes EAs a natural choice
for solving MOPs. Early attempts at solving MOPs involved using aggregation-based ap-
proaches (Bäck et al., 1997). In aggregation-based approaches, the decision-maker defines an
aggregate fitness function that transforms the MOP into a single objective problem, which
can subsequently be solved with an EA. Two commonly-used aggregate fitness functions are
linear weighting:

FL(x) =
M∑

i=1

λifi(x), (2.3)

and the weighted Chebyshev method:

FT (x) = max
i=1,2,...,M

(λi |z∗i − fi(x)|) , (2.4)

where λ = (λ1, λ2, . . . , λM) are the weights and z∗ = (z∗1 , z
∗
2 , . . . , z

∗
M) is a reference point

identifying the decision-maker’s goal (note: this reference point need not be a feasible solu-
tion).

Coello Coello et al. (2007) discusses the advantages and disadvantages of aggregate fit-
ness approaches. The primary advantage is the simplicity of the approach and the ability to
exploit existing EAs to solve MOPs. In addition, appropriately defined aggregate fitness func-
tions can provide very good approximations of the Pareto front. However, poorly-weighted
aggregate fitness functions may be unable to find non-convex regions of the Pareto front.
This is problematic since selecting appropriate weights is non-trivial, especially if the rela-
tive worth of each objective is unknown or difficult to quantify. Lastly, in order to generate
multiple Pareto optimal solutions, aggregate fitness approaches need to be run with differing
weights to generate solutions across the entire Pareto front.

These limitations lead to the development of multiobjective evolutionary algorithms
(MOEAs) that search for multiple Pareto optimal solutions in a single run. The first MOEA
to search for multiple Pareto optimal solutions, the Vector Evaluated Genetic Algorithm
(VEGA), was introduced by Schaffer (1984). VEGA was found to have problems similar
to aggregation-based approaches, such as an inability to generate concave regions of the

12

Pareto front. Goldberg (1989a) was first to suggest the use of Pareto-based selection, but
this concept was not applied until 1993 in the Multiobjective Genetic Algorithm (MOGA)
(Fonseca and Fleming, 1993). Between 1993 and 2003, several first-generation MOEAs were
introduced demonstrating important design concepts such as elitism, diversity maintenance
and external archiving. Notable first-generation algorithms include the Niched-Pareto Ge-
netic Algorithm (NPGA) (Horn and Nafpliotis, 1993), the Non-dominated Sorting Genetic
Algorithm (NSGA) (Srinivas and Deb, 1994), the Strength Pareto Evolutionary Algorithm
(SPEA) (Zitzler and Thiele, 1999), the Pareto-Envelope based Selection Algorithm (PESA)
(Corne and Knowles, 2000) and the Pareto Archived Evolution Strategy (PAES) (Knowles
and Corne, 1999). Many of these MOEAs have since been revised to incorporate more
efficient algorithms and improved design concepts. To date, Pareto-based approaches out-
number aggregate fitness approaches (Coello Coello et al., 2007). For a more comprehensive
overview of the historical development of MOEAs, please refer to the text by Coello Coello
et al. (2007).

2.5 Many-Objective Optimization

In the past twenty years, researchers have successfully applied MOEAs to a large array of
problems from industrial, electrical, computer, civil and environmental engineering; aeronau-
tics; finance; chemistry; medicine; physics and computer science (Coello Coello et al., 2007).
While in the majority of these domains MOEAs have been used predominately to solve two
or three objective problems, there are growing demands for addressing higher-dimensional
problems. This has lead to a growing research community in many-objective optimization
(Fleming et al., 2005; Adra and Fleming, 2009).

While many-objective applications are growing in their success, there exists strong the-
oretical and experimental evidence suggesting that existing approaches are insufficient for
many-objective problems. Farina and Amato (2004), Fleming et al. (2005) and Purshouse
and Fleming (2007) observe that the proportion of locally Pareto non-dominated solutions
tends to become large as the number of objectives increases. This is a direct result of Pareto
dominance and its aim to capture, without preference, the entire tradeoff surface between
two or more objectives. This leads to difficulties in producing offspring that dominate poorly
performing, but still non-dominated, members in the population — a phenomenon termed
dominance resistance (Hanne, 2001; Ikeda et al., 2001; Purshouse and Fleming, 2007). This
increasing proportion of locally Pareto non-dominated solutions and the phenomenon of
dominance resistance can impact the performance of MOEAs in several ways.

First, these conditions may limit the ability of dominance relations in differentiating high-
quality and low-quality solutions. Several researchers have proposed alternate dominance
relations to provide more stringent dominance criteria, including the preferability (Fonseca
and Fleming, 1998), preferred (Drechsler et al., 2001), ǫ-preferred (Sülflow et al., 2007), k-
optimality (Farina and Amato, 2004) and preference order ranking (di Pierro et al., 2007)
dominance relations. Corne and Knowles (2007) propose using classical methods to rank non-
dominated objective vectors, such as average ranking, which have been shown to provide

13

competitive results. One must, however, be aware of the impact of selecting a different
dominance relation, as it may focus search towards a subspace and fail to produce solutions
along the entire extent of the tradeoff surface (Coello Coello et al., 2007).

Second, as the proportion of locally Pareto non-dominated solutions increases and the
offspring are likely to also be non-dominated as a result of dominance resistance, it is often
difficult for an MOEA to identify which offspring should survive and replace existing members
in the population. In such scenarios, the diversity operator, such as crowding, is often the
primary mechanism for determining survival. This phenomenon is termed active diversity
maintenance (Purshouse and Fleming, 2007).

Third, Hanne (1999) observed that active diversity maintenance can cause deterioration.
Deterioration occurs whenever the solution set discovered by an MOEA at time i contains
one or more solutions dominated by a solution discovered at some earlier point in time j < i.
In the extreme, deterioration can cause an MOEA to diverge away from the Pareto front.
Laumanns et al. (2002) effectively eliminate deterioration with the ǫ-dominance relation;
however, at present, most state-of-the-art MOEAs in use today have yet to adopt mechanisms
for avoiding deterioration.

Lastly, as detailed in Chapter 4, we show empirically on several MOEAs that parame-
terization can greatly impact the performance of an MOEA. For many top-performing algo-
rithms, proper parameterization becomes severely challenging as the number of objectives
increases. In addition, we demonstrate that most modern MOEAs can fail in terms of both
convergence and reliability on test problems with as few as four objectives. These results
are backed by the theoretical work of Teytaud (2006, 2007), which show that dominance re-
sistance can cause the convergence rate of MOEAs to degrade to be no better than random
search for problems with ten or more objectives, and the experimental work of Ishibuchi
et al. (2008a), where it is also demonstrated that several state-of-the-art MOEAs fail on
problems with as few as four objectives.

A variety of methods have been proposed in the literature for addressing many-objective
optimization. The following briefly overviews the most common methods.

Aggregate Fitness Functions Using aggregation functions to convert a multiobjective
problem into a single-objective problem have remained popular, but special care must be
taken when designing the aggregation function to avoid its potential pitfalls (Wagner et al.,
2007). However, it is suggested in the literature that aggregate fitness functions may be par-
ticularly advantageous on many-objective problems since they avoid scaling issues (Ishibuchi
et al., 2009). However, this claim has yet to be sufficiently demonstrated across a variety of
challenging many-objective problems.

Indicator-Based Methods Indicator-based methods replace the Pareto dominance rela-
tion with an indicator function intended to guide search towards regions of interest (Ishibuchi
et al., 2010). The hypervolume measure is often used as the indicator function due to its
theoretical characteristics (Ishibuchi et al., 2010). Hypervolume-based methods avoid active
diversity maintenance by not using an explicit diversity-preserving mechanisms, and instead

14

promote diversity through the hypervolume measure itself (Wagner et al., 2007). One poten-
tial downfall to hypervolume-based methods is the computational complexity of calculating
the hypervolume measure on high-dimensional problems, but Ishibuchi et al. (2010) have
proposed an approximation method to reduce the computational complexity.

Pareto Front Approximation Issues like deterioration arise when finite population sizes
force an MOEA to remove Pareto non-dominated solutions during replacement (Laumanns
et al., 2002). Excessive deterioration can cause the MOEA to diverge away from the Pareto
front. As the proportion of Pareto non-dominated solutions increases as the number of objec-
tives increases, the occurrence of deterioration increases. Laumanns et al. (2002) introduced
the ǫ-dominance relation as a way to eliminate deterioration by approximating the Pareto
front, and also provided theoretical proofs of convergence and diversity for algorithms using
this relation (if the algorithm satisfies several additional necessary conditions).

Space Partitioning and Dimensionality Reduction Both space partitioning and di-
mensionality reduction methods attempt to convert many-objective problems into lower-
dimensional instances that can be solved effectively using existing MOEAs. Space partition-
ing methods attempt to emphasize search in lower-dimensional objective spaces by parti-
tioning the M-objective space of the original problem into many disjoint lower-dimensional
subspaces, each of which is searched independently (Aguirre and Tanaka, 2009). On the other
hand, dimensionality reduction methods attempt to convert the higher-dimensional objec-
tive space into a lower-dimensional representation using methods like principal component
analysis (PCA) (Saxena and Deb, 2008).

Rotational Invariance While not specifically a method for many-objective optimization,
the importance of rotational invariance is only briefly explored in the literature but its
impacts on real-world problems are significant (Coello Coello et al., 2007; Iorio and Li, 2008).
Rotational invariance relates to the effects of conditional dependencies between decision
variables and the recombination operators. In unrotated problems (i.e., decision variables are
independent), each decision variable can be optimized independently. In rotated problems, on
the other hand, improvements require the simultaneous modification of all decision variables
which are conditionally dependent on one another. Given the prevalence of conditional
dependencies in real-world applications, it is interesting to note that there exist relatively
few rotationally invariant operators in active use (Hadka and Reed, 2012a).

2.6 Test Algorithms

In this dissertation, we compare a number of MOEAs designed for many-objective optimiza-
tion. The following briefly describes the key characteristics of each MOEA, and provides
references for additional information.

15

NSGA-II and SPEA2 (Baselines) The popular NSGA-II (Deb et al., 2000) and SPEA2
(Zitzler et al., 2002a) are two of the oldest MOEAs still in active use today (Coello Coello
et al., 2007). NSGA-II is the classical example of a Pareto-based MOEA. SPEA2 differs in
its use of Pareto dominance information — the strength or fitness of a solution is the number
of competing solutions it dominates. Given their sustained popularity in the literature, they
are included as baseline algorithms from which to compare more recent contributions.

ǫ-MOEA (Pareto Front Approximation) ǫ-MOEA (Deb et al., 2002b) was the first
MOEA to use the ǫ-dominance relation of Laumanns et al. (2002) to provide guarantees of
convergence and diversity. It is the only steady-state MOEA tested. The term steady state
describes EAs and MOEAs that only replace one solution in the population during each
iteration of the algorithm. This is in contrast to generational algorithms, which replace the
entire population in a single iteration. Note also that the Borg MOEA (see Chapter 3) draws
on ǫ-MOEA’s highly efficient algorithmic structure in its implementation.

ǫ-NSGA-II (Pareto Front Approximation) ǫ-NSGA-II (Kollat and Reed, 2006) is an-
other popular MOEA that combines NSGA-II, an ǫ-dominance archive, adaptive population
sizing, and time continuation (Goldberg, 1989b; Srivastava, 2002). In general, MOEAs use
a fixed population size and assume the user has specified a population size appropriate for
the given problem. ǫ-NSGA-II attempts to adapt the population size relative to the problem
difficulty. In addition, time continuation is used to trigger a series of connected runs in an
attempt to improve search quality. Adaptive population sizing and time continuation are
discussed in more detail in Chapter 3. ǫ-NSGA-II has been applied successfully to a broad
array of real-world many-objective problems (Kollat and Reed, 2006, 2007; Kasprzyk et al.,
2009; Ferringer et al., 2009; Kasprzyk et al., 2011; Kollat et al., 2011).

MOEA/D (Aggregate Fitness Functions) MOEA/D (Zhang et al., 2009a) is a recently-
introduced MOEA that uses aggregate functions, but attempts to avoid the pitfalls in prior
aggregation approaches (Coello Coello et al., 2007; Wagner et al., 2007) by simultaneously
solving many single-objective Chebyshev decompositions of many-objective problems in a
single run. Since its introduction, MOEA/D has established itself as a benchmark for new
MOEAs by winning the 2009 IEEE Congress on Evolutionary Computation (CEC 2009)
competition (Zhang and Suganthan, 2009).

IBEA (Indicator-Based Method) Indicator-based methods work by replacing the Pareto
dominance relation with the indicator function. IBEA (Zitzler and Künzli, 2004) uses the
hypervolume measure, which avoids active diversity maintenance by not using an explicitly
diversity preserving mechanism.

GDE3 (Rotationally Invariant) GDE3 (Kukkonen and Lampinen, 2005) is a multi-
objective variant of differential evolution (DE). GDE3 (and DE in general) is notable for
rotationally invariant operators — they produce offspring independent of the orientation of

16

the fitness landscape — which is important for problems with high degrees of conditional
dependence among its decision variables (Iorio and Li, 2008). GDE3 was a strong competitor
in the CEC 2009 competition (Zhang and Suganthan, 2009).

OMOPSO (Pareto Front Approximation) OMOPSO (Sierra and Coello Coello, 2005)
is one of the most successful multiobjective particle swarm optimization (PSO) algorithms to
date. It is notable for being the first multiobjective PSO algorithm to include ǫ-dominance
as a means to solve many-objective problems. OMOPSO thus provides a representative
baseline from the PSO class of algorithms.

2.7 Test Problems

The 33 instances of 18 unconstrained, real-valued multiobjective test problems listed in
Table 2.1 are used in this dissertation to test the MOEAs. Also shown are the ǫ values used
for ǫ-dominance. The UF1-UF13 problems are the unconstrained problems used during the
IEEE Congress on Evolutionary Computation (CEC) competition held in 2009 (Zhang et al.,
2009b). UF11 and UF12 are rotated instances of the 5D DTLZ2 and DTLZ3 test problems,
respectively (Deb et al., 2001). UF13 is the 5D WFG1 test problem (Huband et al., 2006).
Appendix A shows example reference sets for these problems. The DTLZ problems are from
a set of scalable test problems (Deb et al., 2001). In this dissertation, these problems are
tested with 2, 4, 6 and 8 objectives. Table 2.1 also lists the ǫ values used for ǫ-dominance.
For the scalable DTLZ test problems, the ǫ values used were 0.01, 0.15, 0.25 and 0.35 for 2,
4, 6 and 8 objectives, respectively.

The conference version of the DTLZ suite (Deb et al., 2002b) omits two problems and
relabels another. This dissertation along with most other studies use the problems and names
defined in Deb et al. (2001). DTLZ5 and DTLZ6 were omitted since the original problem
definitions produce Pareto fronts differing from the published analytical solutions with four
or more objectives. This issue was identified by Huband et al. (2006) and corrected in Deb
and Saxena (2006) by including additional problem constraints. DTLZ8 and DTLZ9 also
include side constraints and were consequently omitted from this dissertation.

2.8 Measuring Quality

When running MOEAs on a MOP, the MOEA outputs an approximation of the Pareto op-
timal set and Pareto front. The approximation of the Pareto front, called the approximation
set, can be used to measure the quality of an MOEA on a particular problem. In some situa-
tions, such as with contrived test problems, a reference set of the globally optimal solutions
may be known. If known, the reference set can be used to measure the absolute performance
of an MOEA. If not known, the approximation sets from multiple MOEAs can be compared
to determine their relative quality.

17

Table 2.1: The test problems used throughout this dissertation along with key properties.

Problem M L Properties ǫ
UF1 2 30 Complicated Pareto Set 0.001
UF2 2 30 Complicated Pareto Set 0.005
UF3 2 30 Complicated Pareto Set 0.0008
UF4 2 30 Complicated Pareto Set 0.005
UF5 2 30 Complicated Pareto Set, Discontinuous 0.000001
UF6 2 30 Complicated Pareto Set, Discontinuous 0.000001
UF7 2 30 Complicated Pareto Set 0.005
UF8 3 30 Complicated Pareto Set 0.0045
UF9 3 30 Complicated Pareto Set, Discontinuous 0.008
UF10 3 30 Complicated Pareto Set 0.001
UF11 5 30 DTLZ2 5D Rotated 0.2
UF12 5 30 DTLZ3 5D Rotated 0.2
UF13 5 30 WFG1 5D 0.2
DTLZ1 2-8 M+4 Multimodal, Separable 0.01-0.35
DTLZ2 2-8 M+9 Concave, Separable 0.01-0.35
DTLZ3 2-8 M+9 Multimodal, Concave, Separable 0.01-0.35
DTLZ4 2-8 M+9 Concave, Separable 0.01-0.35
DTLZ7 2-8 M+19 Discontinuous, Separable 0.01-0.35

There is no consensus in the literature of the appropriate procedure with which to com-
pare approximation sets. These procedures, called performance metrics, come in two forms:
(1) unary and (2) binary performance metrics (Zitzler et al., 2002c). Unary performance
metrics produce a single numeric value with which to compare approximation sets. Unary
performance metrics have the advantage of permitting the comparison of approximation sets
without requiring the actual approximation set, as one need only compare the numeric val-
ues. Binary performance metrics, on the other hand, compare pairs of approximation sets,
identifying which of the two approximation sets is superior. In order to allow comparisons
across studies, this dissertation uses only unary performance metrics.

Zitzler et al. (2002b) contend that the number of unary performance metrics required to
determine if one approximation set is preferred over another must be at least the number
of objectives in the problem. Because different MOEAs tend to perform better in different
metrics (Bosman and Thierens, 2003), Deb and Jain (2002) suggest only using metrics for the
two main functional objectives of MOEAs: proximity and diversity. The following outlines
several of the commonly-used unary performance metrics. For details of these performance
metrics see Coello Coello et al. (2007).

Hypervolume As shown in Figure 2.7, the hypervolume metric computes the volume of
the space dominated by the approximation set. This volume is bounded by a reference point,
which is usually set by finding the nadir point (i.e., the worst-case objective value for each

18

f2
(x

)

f1(x)

Reference Point

Approximation Set

Hypervolume

Figure 2.7: Hypervolume measures the volume of the space dominated by the approximation
set, bounded by a reference point. This reference point is typically the nadir point (i.e., the
worst-case value for each objective) of the reference set plus some fixed delta. This delta
ensures extremal points contribute non-zero hypervolume.

objective) of the reference set plus some fixed increment. This fixed increment is necessary
to allow the extremal points in the approximation set to contribute to the hypervolume.
Knowles and Corne (2002) suggest the hypervolume metric because it is compatible with
the outperformance relations, scale independent, intuitive, and can reflect the degree of
outperformance between two approximation sets.

The major disadvantage of the hypervolume metric is its runtime complexity of O(nM−1),
where n is the size of the non-dominated set. However, Beume and Rudolph (2006) provide
an implementation with runtime O(n logn + nM/2) based on the Klee’s measure algorithm
by Overmars and Yap. This implementation permits computing the hypervolume metric
on moderately sized non-dominated sets up to M = 8 objectives in a reasonable amount of
time. Further improvements by While et al. (2012) improve the expected runtime further,
allowing the efficient calculation of hypervolume with ten or more objectives.

Generational Distance Generational distance (GD) is the average distance from every
solution in the approximation set to the nearest solution in the reference set, as shown
in Figure 2.8. As such, it measures proximity to the reference set. GD by itself can be
misleading, as an approximation set containing a single solution in close proximity to the
reference set produces low GD measurements, and is often combined with diversity measures
in practice (Hadka and Reed, 2012b).

Inverted Generational Distance As its name indicates, the inverted generational dis-
tance (IGD) is the inverse of GD — it is the average distance from every solution in the
reference set to the nearest solution in the approximation set. IGD measures diversity, as

19

f2
(x

)

f1(x)

Reference Set

Approximation Set

Distance Measurement

Figure 2.8: Generational distance is the average distance from every solution in the approx-
imation set to the nearest solution in the reference set.

f2
(x

)

f1(x)

Reference Set

Approximation Set

Distance Measurement

Figure 2.9: Inverted generational distance is the average distance from every solution in the
reference set to the nearest solution in the approximation set.

20

f2
(x

)

f1(x)

Reference Set

Approximation Set

Distance Measurement

Maximum

Translation

Distance

Figure 2.10: ǫ+-indicator (also known as the additive ǫ-indicator) is the smallest distance
ǫ that the approximation set must be translated by in order to completely dominate the
reference set (Coello Coello et al., 2007).

shown in Figure 2.9, since an approximation set is required to have solutions near each
reference set point in order to achieve low IGD measurements (Coello Coello et al., 2007).

ǫ+-Indicator The additive ǫ-indicator (ǫ+-indicator) measures the smallest distance ǫ that
the approximation set must be translated by in order to completely dominate the reference
set, as shown in Figure 2.10. One observes that good proximity and good diversity both
result in low ǫ values, as the distance that the approximation needs to be translated is
reduced. However, if there is a region of the reference set that is poorly approximated by
the solutions in the approximation set, a large ǫ is required. Therefore, we claim the ǫ+-
indicator measures the consistency of an approximation set (Hadka and Reed, 2012a). An
approximation set must be free from large gaps or regions of poor approximation in order to
be consistent.

Spacing Spacing, shown in Figure 2.11, measures the uniformity of the spacing between
solutions in an approximation set (Coello Coello et al., 2007). An approximation set that is
well-spaced will not contain dense clusters of solutions separated by large empty expanses.
Note that, since spacing does not involve a reference set in its calculation, an approximation
can register good spacing while having poor proximity to the reference set. It is therefore
recommended to use spacing in conjunction with a performance metric for proximity.

In this dissertation, we have chosen to present results only for GD, hypervolume and
ǫ+-indicator. These three metrics record proximity, diversity and consistency, respectively,
which we claim are the three main functional objectives of MOEAs (Fonseca and Fleming,
1996). Figure 2.12 provides a graphical representation of the importance of the ǫ+-indicator

21

f2
(x

)

f1(x)

Approximation Set

Distance Measurement

Figure 2.11: Spacing measures the uniformity of the spacing between solutions in an approx-
imation set.

and consistency. MOEAs are expected to produce high-quality solutions covering the entire
extent of the tradeoff surface, with few gaps or regions of poor approximation.

In order to report these performance metrics consistently, all performance metrics are
normalized. This normalization converts all performance metrics to reside in the range
[0, 1], with 1 representing the optimal value. First, the reference set is normalized by its
minimum and maximum bounds so that all points in the reference set lie in [0, 1]N , the N -
dimensional unit hypercube. Second, each approximation set is normalized using the same
bounds. Third, the performance metrics are calculated using these normalized sets. Finally,
the performance metrics are transformed by the following equations to ensure a value of 1
represents the optimal value achievable by the metric. Hypervolume is transformed with:

M(As
p) = M̂(As

p)/M∗, (2.5)

where M̂ represents the raw metric value. GD and the ǫ+-indicator are transformed with:

M(As
p) = max(1− M̂(As

p), 0). (2.6)

When solving test problems, such as those listed in Table 2.1, the reference set is known
analytically. For most real-world problems, however, the reference set is not available. In
these situations, it is often necessary to construct a reference set from the union of all
approximation sets generated during experimentation. Then, performance metrics can be
evaluated relative to this combined reference set.

22

(a)

Average

Distance

(b)

(c) (d)

Figure 2.12: Demonstrates the importance of ǫ-indicator as a measure of consistency. (a) A
good approximation set to the reference set, indicated by the dashed line. (b) Generational
distance averages the distance between the approximation set and reference set, reducing
the impact of large gaps. The missing points are shaded light gray. (c) The change in
hypervolume due to a gap is small relative to the entire hypervolume. (d) ǫ-Indicator easily
identifies the gap, reporting a metric 2-3 times worse in this example.

23

Chapter 3

Borg: An Auto-Adaptive
Many-Objective Evolutionary
Computing Framework

This chapter is drawn from the following paper: “Hadka, D. and Reed, P. (2012). Borg: An
Auto-Adaptive Many-Objective Evolutionary Computing Framework. Evolutionary Compu-
tation. In-Press.”

This chapter introduces the Borg MOEA for many-objective optimization. The Borg
MOEA combines ǫ-dominance, a measure of convergence speed named ǫ-progress, random-
ized restarts, and auto-adaptive multioperator recombination into a unified optimization
framework. A comparative study on 33 instances of 18 test problems from the DTLZ, WFG,
and CEC 2009 test suites demonstrates that the Borg MOEA meets or exceeds 6 state-of-
the-art MOEAs on the majority of the tested problems. Performance for each test problem
is evaluated using a 1000 point Latin hypercube sampling of each of the algorithm’s feasible
parameterization space. The statistical performance of every sampled MOEA parameteri-
zation is evaluated using 50 replicate random seed trials. The Borg MOEA is not a single
algorithm; instead, it represents a class of algorithms whose operators are adaptively selected
based on the problem. The adaptive discovery of key operators is of particular importance for
benchmarking how variation operators enhance search for complex many-objective problems.

The remainder of this chapter is organized as follows. Section 3.1 presents the inner work-
ings of the Borg MOEA in detail. Section 3.2 analyzes the algorithm’s runtime complexity
and details the conditions necessary to guarantee convergence. Section 3.3 presents the re-
sults of a comparative study between the Borg MOEA and the 6 state-of-the-art MOEAs
listed in Section 2.6.

3.1 The Borg MOEA

The Borg MOEA is designed specifically for handling complex many-objective problems
where our primary future focus will be on advancing severely challenging real-world appli-

24

cations. In order to facilitate these design goals, the Borg MOEA assimilates several design
principles from existing MOEAs and introduces several novel components. These compo-
nents include:

1. an ǫ-box dominance archive for maintaining convergence and diversity throughout
search;

2. ǫ-progress, which is a computationally efficient measure of search progression and stag-
nation introduced in this study;

3. an adaptive population sizing operator based on ǫ-NSGA-II’s (Kollat and Reed, 2006)
use of time continuation to maintain search diversity and to facilitate escape from local
optima;

4. multiple recombination operators to enhance search across a wide assortment of prob-
lem domains; and

5. the steady-state, elitist model of ǫ-MOEA (Deb et al., 2003), which can be easily
extended for use on parallel architectures.

Each of these components is discussed individually in Sections 3.1.1-3.1.4. Section 3.1.5
discusses how these individual components are combined to form the Borg MOEA.

3.1.1 ǫ-Dominance Archive

As discussed in Section 2.5, deterioration is a fundamental issue encountered by MOEAs. The
dominance resistance encountered in many-objective optimization only serves to exacerbate
deterioration. Rudolph (1998) and Rudolph and Agapie (2000) presented a selection strategy
for a fixed-size archive that avoids deterioration. However, Laumanns et al. (2002) noted
that while their selection strategy guarantees convergence to the true Pareto-optimal front,
their approach was unable to guarantee a diverse set of Pareto-optimal solutions. As a result
of these observations, Laumanns et al. (2002) developed the ǫ-dominance archive in order to
guarantee simultaneous convergence and diversity in MOEAs.

Definition 4. For a given ǫ > 0, a vector u = (u1, u2, . . . , uM) ǫ-dominates another vector
v = (v1, v2, . . . , vM) if and only if ∀i ∈ {1, 2, . . . ,M}, ui ≤ vi+ǫ and ∃j ∈ {1, 2, . . . ,M}, uj <
vj + ǫ.

In addition to the theoretical benefits of guaranteed convergence and diversity, ǫ-domi-
nance provides a minimum resolution which effectively bounds the archive size. This is
of practical importance to decision-makers, who are able to define ǫ using domain-specific
knowledge of their precision goals or computational limits (Kollat and Reed, 2007; Kasprzyk
et al., 2009). In practice, it is useful to specify different ǫ values for each objective; however,
without loss of generality, we use a single ǫ value to improve the clarity of this study.

A variant called the ǫ-box dominance archive is used in the ǫ-MOEA and ǫ-NSGA-II algo-
rithms by Deb et al. (2003) and Kollat and Reed (2007), respectively. The ǫ-box dominance

25

Algorithm 1: ǫ-Box Dominance Archive Update Method

Input: The new solution x being added to the archive.
Output: true if x is added to the archive; false otherwise.

1 foreach solution y in the archive do
2 if x ≺ǫ y then
3 remove y from the archive;
4 else if y ≺ǫ x then
5 return false;

6 add x to the archive;
7 return true;

relation is defined below and the archive update procedure is outlined in Algorithm 1. The
archive update procedure is executed once for every solution generated by the MOEA.

Definition 5. For a given ǫ > 0, a vector u = (u1, u2, . . . , uM) ǫ-box dominates another
vector v = (v1, v2, . . . , vM) if and only if one of the following occurs

1.
⌊
u

ǫ

⌋
≺

⌊
v

ǫ

⌋
, or

2.
⌊
u

ǫ

⌋
=

⌊
v

ǫ

⌋
and

∥∥u− ǫ
⌊
u

ǫ

⌋∥∥ <
∥∥v − ǫ

⌊
v

ǫ

⌋∥∥.

This is denoted by u ≺ǫ v.

Conceptually, the ǫ-box dominance archive divides the objective space into hyperboxes
with side-length ǫ, called ǫ-boxes. The ǫ-box in which a solution resides is determined using
the ǫ-box index vector. We use the notation

⌊
u

ǫ

⌋
=

(⌊
u1

ǫ

⌋
,
⌊
u2

ǫ

⌋
, . . . ,

⌊
uM

ǫ

⌋)
for computing

the ǫ-box index vector, where ⌊·⌋ is the floor function. As seen in Definition 5, dominance is
determined using this index vector rather than the objective values. Case 2 in Definition 5
covers the situation in which two or more solutions reside in the same ǫ-box. In this situation,
the solution nearest the optimal corner (i.e., bottom-left corner if minimized) of the ǫ-box
dominates any other solutions in the same ǫ-box.

3.1.2 ǫ-Progress

While the ǫ-box dominance archive guarantees convergence and diversity, this guarantee is
subject to the solutions produced by the MOEA. MOEAs tend to fail on multimodal prob-
lems due to preconvergence to local optima causing search to stagnate. In this section, we
introduce a computationally efficient extension to the ǫ-box dominance archive for measuring
search progression called ǫ-progress. Consequently, the inability of an MOEA to maintain
ǫ-progress indicates search stagnation, which can subsequently trigger routines for reviving
search.

26

(1)

(2)

(3)

Є

Є
f2
(x
)

f1(x)

Figure 3.1: 2D example depicting how ǫ-progress is measured. Existing archive members are
indicated by •, and the ǫ-boxes dominated by these members are shaded gray. New solutions
being added to the archive are indicated by ×. Cases (1) and (2) depict occurrences of ǫ-
progress. The new solutions reside in previously unoccupied ǫ-boxes. Case (3) shows the
situation in which the new solution is accepted into the archive, but since it resides in
an occupied ǫ-box it does not count towards ǫ-progress — the improvement is below the
threshold ǫ.

Definition 6. ǫ-Progress occurs when a solution x passed to the update procedure outlined
in Algorithm 1 is accepted into the archive such that no existing member of the archive existed
with the same ǫ-box index vector.

ǫ-Progress supplements the use of ǫ as the problem resolution by mandating ǫ as the
minimum threshold for improvement. An MOEA must periodically produce at least one
solution whose improvement exceeds this threshold to avoid stagnation. If stagnation is
detected, appropriate action can be taken to either revive search or terminate the algorithm.

Figure 3.1 demonstrates ǫ-progress on a 2D example. Existing archive members are
indicated by •, and the ǫ-boxes dominated by these members are shaded gray. New solutions
being added to the archive are indicated by ×. Cases (1) and (2) depict occurrences of ǫ-
progress. The new solutions reside in previously unoccupied ǫ-boxes. Case (3) shows the
situation in which the new solution is accepted into the archive, but since it resides in
an occupied ǫ-box it does not count towards ǫ-progress — the improvement is below the
threshold ǫ.

27

Extending the ǫ-box dominance archive in Algorithm 1 to include ǫ-progress is straightfor-
ward. In this study, the ǫ-box dominance archive increments a counter every time ǫ-progress
occurs. This counter is periodically checked after a user-specified number of evaluations.
If the counter is unchanged from the previous check, then the MOEA failed to produce
significant improvements, and the restart mechanism discussed in Section 3.1.3 is triggered.

3.1.3 Restarts

Restarts are a mechanism for reviving search after stagnation is detected using ǫ-progress.
In the Borg MOEA, a restart consists of three actions:

1. the search population size is adapted to remain proportional to the archive size;

2. the tournament selection size is adapted to maintain elitist selection; and

3. the population is emptied and repopulated with solutions from the archive, with any
remaining slots filled by mutated archive solutions.

Each of these three functions utilized in restarts are described in more detail below.

Adaptive Population Sizing Tang et al. (2006) observed that maintaining a population
size proportional to the archive size helped escape local optima on a highly multi-modal
real-world problem. This mechanism of adapting the population size is built into the ǫ-
NSGA-II algorithm by Kollat and Reed (2006) via the use of the population-to-archive ratio
γ (ǫ-NSGA-II literature refers to this ratio as the injection rate). The population-to-archive
ratio specifies the ratio of the population size to the archive size:

γ =
population size

archive size
≥ 1. (3.1)

The Borg MOEA utilizes the same adaptive population sizing strategy as ǫ-NSGA-II,
except that the population-to-archive ratio is maintained throughout the run. At any point
during the execution of the algorithm, if the population-to-archive ratio differs from γ by
more than 25%, the population size is adapted. Figure 3.2 outlines the logic of triggering
restarts by ǫ-progress and the population-to-archive ratio.

This strategy ensures the population size remains commensurate with the Pareto front
discovered by the MOEA. By using the archive size as a proxy for problem difficulty, we
assume the population should grow proportionally with problem difficulty based on the
theoretical recommendations of Horn (1995) and Mahfoud (1995).

Adaptive Tournament Size The Borg MOEA is designed such that it maintains tour-
nament sizes to be τ , a fixed percentage of the population size, after every restart:

tournament size = max (2, ⌊τ(γA)⌋) , (3.2)

28

Inject

from

Archive

Adapt

Population Size

and Tournament

Selection Size

Main

Loop

Yes

No

ε-Progress

Indicates

Restart

No
Pop-to-Arc

Ratio Indicates

Restart

Yes

Periodically

Check

Figure 3.2: Flowchart of the Borg MOEA’s restart logic. After a certain number of evalu-
ations, the MOEA breaks out of its main loop to check if ǫ-progress or the population-to-
archive ratio indicate a restart is required. If a restart is required, the population is resized
and filled with all members of the archive. Any remaining population slots are filled with
solutions selected randomly from the archive and mutated using uniform mutation applied
with probability 1/L. In addition, the tournament selection size is adjusted to account for
the new population size. Finally, the MOEA’s main loop is resumed.

29

where A is the size of the archive. As Deb (2001) discusses, the concept of selection pressure
is important in understanding the convergence behavior of EAs, but its formulation is not
readily applicable to multiobjective optimization. Whereas selection pressure originally mea-
sured the probability of selecting the i-th best individual from a population (Bäck, 1994),
the multiobjective equivalent can be formulated as the probability of selecting a solution
from the i-th best rank. If we assume that the proportion of non-dominated solutions in the
population is approximately 1/γ after a restart, then the probability of binary tournament
selection choosing a non-dominated member when γ = 4 is 1− (1−1/γ)2 = 1− (3

4
)2 = 0.44.

If instead γ = 8, then this probability decreases to 1−(7
8
)2 = 0.23, or roughly half as before.

In order to maintain the same multiobjective selection pressure, the tournament size must
be increased to 4, resulting in a selection probability of 1 − (7

8
)4 = 0.41. In this manner, τ

governs the tournament size as the population dynamics increase the population size beyond
the initial minimum value. Note that τ = 0 can be used to enforce binary tournaments
regardless of the population size.

Injection The idea of injection is derived from the work of Goldberg (1989b) and Sri-
vastava (2002) who exploit time continuation. Time continuation uses multiple-epoch runs
instead of the single-epoch run typically employed by MOEAs. Multiple-epoch runs are
characterized by periodically emptying the population, retaining the best solution(s), and re-
populating with new randomly-generated solutions. For multiobjective problems, Kollat and
Reed (2006) introduced injection, which involves refilling the population with all members of
the archive. Any remaining slots in the population are filled with new randomly-generated
solutions.

After some experimentation on the DTLZ (Deb et al., 2001), WFG (Huband et al., 2006),
and CEC 2009 (Zhang et al., 2009b) test suites, we observed that filling the remaining slots
with solutions selected randomly from the archive and mutated using uniform mutation
applied with probability 1/L achieved significantly better results. This is supported by the
work of Schaffer et al. (1989) and others showing the dependence of effective mutation rates
upon the number of decision variables L.

Figure 3.3 illustrates how a population evolves throughout the execution of the Borg
MOEA as a result of the restart mechanism. Pseudocode for the restart mechanism is
presented in Algorithm 2.

3.1.4 Auto-Adaptive Multi-Operator Recombination

One of the problems encountered when using MOEAs in real-world contexts is the inability
to know a priori which recombination operator performs best on a given problem. Vrugt
and Robinson (2007) and Vrugt et al. (2009) address this issue by introducing an adaptive
multi-operator hybrid called AMALGAM. The adaptability and reliability of AMALGAM
was demonstrated on 10 multiobjective test problems in Vrugt and Robinson (2007) and a
complex hydrologic model calibration problem in Zhang et al. (2010).

The idea is to establish a feedback loop in which operators that produce more successful
offspring are rewarded by increasing the number of offspring produced by that operator.

30

N . . .

A1

An-1

An(γ-1)A1 An-1

A1 A2 An

Run 1 Run 2 Run n

Initial

Population
End-of-Run

Result

Adaptive

Population Sizing

with Injected

Solutions

TS=max(2, τ(γ))An-1

Adjust Tournament Selection Size

(γ-1)

Figure 3.3: Illustration of how a population evolves from multiple restarts, forming what is
known as “connected runs.” With an initial population of size N , the MOEA is run until the
first restart is triggered. At this point, the population is emptied and filled with the current
archive, A1. Next, the remaining slots in the resized population, shown in gray, are filled
with solutions selected randomly from A1 and mutated using uniform mutation applied with
probability 1/L. Lastly, the tournament size is adjusted to account for the new population
size. This process repeats until termination.

31

Algorithm 2: Random Restart

Input: The current archive, the population-to-archive ratio γ and the selection ratio τ
Output: The population after random restart

1 Empty the population;
2 Fill population with all solutions in the archive;

// Compute the size of the new population

3 new size ← γ ∗ size(archive);
// Inject mutated archive members into the new population

4 while size(population) < new size do
5 new solution ← select randomly one solution from archive;
6 Mutate new solution using uniform mutation applied with probability 1/L;
7 Add new solution to population;
8 Update archive with new solution;

// Adjust tournament size to account for the new population size

9 Set the tournament size to max(2, floor(τ ∗ new size));

Given K > 1 operators, we maintain the probabilities {Q1, Q2, . . . , QK}, Qi ∈ [0, 1], of
applying each operator to produce the next offspring. These probabilities are initialized to
Qi = 1/K. Periodically, these probabilities are updated by first counting the number of solu-
tions in the ǫ-box dominance archive that were produced by each operator, {C1, C2, . . . , CK},
and updating each Qi by

Qi =
Ci + ς∑K

j=1(Cj + ς)
. (3.3)

The constant ς > 0 prevents the operator probabilities from reaching 0, thus ensuring that
no operators are “lost” during the execution of the algorithm. In this study, we use ς = 1.

This approach differs from AMALGAM primarily in how the probabilities are updated.
Our feedback loop updates the probabilities by counting the number of solutions produced
by each operator in the ǫ-box dominance archive. Since AMALGAM is based on NSGA-II,
which does not use an archive, it instead counts solutions in the population. This lack of an
ǫ-dominance archive makes AMALGAM prone to deterioration on many-objective problems
(Laumanns et al., 2002). In addition, since the ǫ-box dominance archive maintains the best
solutions in terms of both convergence and diversity, our approach favors operators producing
offspring with both of these qualities.

As a result, the Borg MOEA is not a single algorithm but a class of algorithms whose
operators are adaptively selected based on the problem and the decision variable encoding.
The discovery of key operators is of particular importance to real-world problems where such
information is unknown a priori. In addition, this is an ideal platform for benchmarking
how new variation operators enhance search on complex many-objective problems. Since this
study is considering only real-valued test problems, we have selected the following parent-

32

centric, mean-centric, uniformly distributed and self-adaptive real-valued operators:

• Simulated Binary Crossover (SBX) (Deb and Agrawal, 1994)

• Differential Evolution (DE) (Storn and Price, 1997)

• Parent-Centric Crossover (PCX) (Deb et al., 2002a)

• Unimodal Normal Distribution Crossover (UNDX) (Kita et al., 1999)

• Simplex Crossover (SPX) (Tsutsui et al., 1999)

• Uniform Mutation (UM) applied with probability 1/L

In addition, offspring produced by SBX, DE, PCX, UNDX and SPX are mutated using
Polynomial Mutation (PM) (Deb and Agrawal, 1994). Figure 3.4 provides examples showing
the offspring distribution generated by each of these operators. These figures show the
tendency of SBX, UM and PM to generate solutions along a single axis, which degrades
their efficacy on problems with conditional dependencies among its decision variables. DE,
PCX, UNDX and SPX do not exhibit this tendency; one can expect these four operators to
perform better on rotated, epistatic problems.

3.1.5 The Algorithm

The Borg MOEA combines the components discussed in the previous sections within the ǫ-
MOEA algorithm introduced by Deb et al. (2003). The rationale behind selecting ǫ-MOEA
is its highly efficient steady-state model. Selection and replacement in ǫ-MOEA is based
solely on the dominance relation and requires no expensive ranking, sorting, or truncation.
In addition, the steady-state model will support parallelization in future studies without the
need for synchronization between generations.

Figure 3.5 is a flowchart of the Borg MOEA’s main loop. First, one of the recombination
operators is selected using the adaptive multi-operator procedure described in Section 3.1.4.
For a recombination operator requiring k parents, 1 parent is selected uniformly at random
from the archive. The remaining k − 1 parents are selected from the population using
tournament selection. The resulting offspring are evaluated and considered for inclusion in
the population and archive.

If the offspring dominates one or more population members, the offspring replaces one of
these dominated members randomly. If the offspring is dominated by at least one population
member, the offspring is not added to the population. Otherwise, the offspring is non-
dominated and replaces a randomly-selected member of the population. Inclusion in the
archive is determined with the archive update procedure outlined in Section 3.1.1.

Each iteration of this main loop produces one offspring. After a certain number of
iterations of this main loop, ǫ-progress and the population-to-archive ratio are checked as
described in Section 3.1.3. If a restart is required, the main loop halts and the restart

33

Simulated Binary Crossover Di�erential Evolution Uniform Mutation

Unimodal Normal

Distribution CrossoverParent-Centric Crossover Simplex Crossover

Figure 3.4: Examples showing the offspring distribution of the operators used in this study.
Parents are indicated by •. The differential evolution plot depicts the difference vector with
arrows.

34

Population Archive

Recombination

(1)

(k-1)

Evaluate

PCX+PM

UNDX+PM

SPX+PM

SBX+PM

DE+PM

UM

Figure 3.5: Flowchart of the Borg MOEA main loop. First, one of the recombination
operators is selected using the adaptive multi-operator procedure described in Section 3.1.4.
For a recombination operator requiring k parents, 1 parent is selected uniformly at random
from the archive. The remaining k − 1 parents are selected from the population using
tournament selection. The offspring resulting from this operator are evaluated and then
considered for inclusion in the population and archive.

35

procedure is invoked. Once the restart has completed, the main loop is resumed and this
process repeats until termination.

For the comparative analysis in this study, the Borg MOEA terminates after a fixed
number of function evaluations. However, in practice, ǫ-progress can be used to terminate the
algorithm if no improvements are detected after a specified number of function evaluations.

3.2 Theoretical Characteristics

3.2.1 Runtime Analysis

Consider the runtime computational complexity of the Borg MOEA. For each offspring,
dominance checks against the population and archive of sizes P and A, respectively, take
time O(M(P +A)). However, since the population size is a constant multiple of the archive
size, this simplifies to O(MA). For η evaluations, the total runtime of the Borg MOEA is
O(ηMA). Note that we simplified these expressions by assuming selection and recombination
take constant time.

Thus, the Borg MOEA is an efficient algorithm that scales linearly with the archive size.
Recall from Section 3.1.1 how the archive size is controlled by the value of ǫ. By scaling ǫ, the
algorithm can be made to run more efficiently at the cost of producing more approximate
representations of the Pareto front. The determination of ǫ is left to the decision-maker,
who may use domain-specific knowledge of their significant precision goals or computational
limits (Kollat and Reed, 2007).

3.2.2 Proof of Convergence

Exploring the limit behavior of an algorithm as the runtime goes to infinity, t → ∞, is
important from a theoretical view. It is not necessary for an algorithm to have guaranteed
convergence to be practically useful, but issues like preconvergence and deterioration that
arise in many-objective optimization make such results informative. In fact, most MOEAs do
not have guaranteed convergence (Laumanns et al., 2002). The main crux of such convergence
proofs is the assumption that there exists a non-zero probability of generating Pareto optimal
solutions. Using the terminology of Rudolph (1998) and Rudolph and Agapie (2000), the
recombination operators must have diagonal-positive transition matrices. Since tournament
selection operates with replacement and all recombination operators used in this study have
a form of mutation in which the entire decision space is reachable, the conditions outlined
by Rudolph and Agapie (2000) for diagonal-positive transition matrices are satisfied.

The second necessary condition for guaranteed convergence on a multiobjective problem is
elite preservation (Rudolph, 1998). As proved by Laumanns et al. (2002), the ǫ-dominance
archive satisfies elite preservation. The ǫ-box dominance archive used in this study also
satisfies elite preservation using the same logic — a solution in the archive at time t, x ∈ At,
is not contained in At+1 if and only if there exists a solution y ∈ At+1 with F (y) ≺ǫ F (x) —
thus proving the sequence of solutions generated by the Borg MOEA converges completely

36

and in the mean to the set of minimal elements (the Pareto optimal set) as t → ∞. In
addition, Laumanns et al. (2002) proved the ǫ-box dominance archive preserves the diversity
of solutions.

3.2.3 Recommended Parameter Values

Appropriate parameterization of the algorithm and operators is important for its efficiency
and effectiveness. The following parameterization guidelines are derived from the Latin
hypercube sampling performed in Section 3.3 and the suggested operator parameterizations
from the literature (refer to the cited papers for the meaning and usage of the parameters).

For the Borg MOEA, it is recommended to use an initial population size of 100, a
population-to-archive ratio of γ = 4 and a selection ratio of τ = 0.02. On the problems
tested, the SBX and PM operators performed best with distribution indices less than 100
with SBX applied with probability greater than 0.8. Both PM and UM should be applied
with probability 1/L. DE performed best with a crossover rate and step size of 0.6. For the
multiparent operators, Deb et al. (2002a) suggests using 3 parents for PCX and UNDX and
L + 1 parents for SPX. For PCX, the ση and σζ parameters controlling the variance of the
resulting distribution should be set to 0.1 (Deb et al., 2002a). For UNDX, use σξ = 0.5 and
ση = 0.35/

√
L to preserve the mean vector and covariance matrix (Kita et al., 1999). For

SPX, the expansion rate should be
√
P + 1, where P is the number of parents, to preserve

the covariance matrix of the population (Tsutsui et al., 1999).

3.3 Comparative Study

To test the performance of the Borg MOEA, a comparative study between the Borg MOEA,
ǫ-MOEA, MOEA/D, GDE3, OMOPSO, IBEA and ǫ-NSGA-II was undertaken using several
many-objective test problems from the DTLZ (Deb et al., 2001), WFG (Huband et al., 2006),
and CEC 2009 (Zhang et al., 2009b) test problem suites. These top-ranked MOEAs provide
a rigorous performance baseline for distinguishing the Borg MOEA’s contributions on a set
of problems widely accepted in the community for benchmarking performance (Zhang and
Suganthan, 2009). Table 2.1 lists the problems explored in this study along with their key
properties.

While the figures in this section only show the hypervolume metric, Table 3.1 does include
summary results with generational distance and the additive ǫ-indicator (ǫ+). Generational
distance directly measures convergence whereas the ǫ+-indicator provides a better measure
of diversity and consistency (Coello Coello et al., 2007).

Each algorithm was executed 1000 times using parameters produced by a Latin hyper-
cube sampling (LHS) (McKay et al., 1979) across each of the algorithm’s feasible parameter
range. Each execution of a sampled parameter set was replicated 50 times with different
randomly-generated initial populations. The parameters analyzed include the population
size, maximum number of objective function evaluations, and the parameters controlling
selection and recombination operators. Since certain parameterizations can result in poor

37

Table 3.1: Statistical comparison of algorithms based on the 75% quantile of the hyper-
volume, generational distance, and ǫ+-indicator metrics. +, =, and − indicate Borg’s 75%
quantile was superior, statistically indifferent from, or inferior to the competing algorithm,
respectively.

Hypervolume Generational Distance ǫ+-Indicator
Algorithm + = − + = − + = −
ǫ-NSGA-II 15 8 10 17 4 12 15 4 14
ǫ-MOEA 16 9 8 24 3 6 17 3 13
IBEA 23 7 3 18 1 14 24 2 7
OMOPSO 24 4 5 25 3 5 22 4 7
GDE3 25 2 6 29 3 1 24 2 7
MOEA/D 25 3 5 27 3 3 24 4 5

performance, the worst performing half of all parameterizations were eliminated from the
remainder of this analysis. By analyzing the set of best performing parameters, we measure
the performance of an algorithm in terms of solution quality as well as its reliability and
controllability across a range of parameterizations.

The ranges from which the parameters were sampled is as follows. The number of fitness
evaluations was sampled between [10000, 1000000] in order to permit tractable execution
times while providing meaningful results. The population size, offspring size, and archive
sizes are all sampled between [10, 1000]. This range was chosen to encompass the commonly
employed “rule-of-thumb” population sizes in MOEA parameterization recommendations.
Mutation rate, crossover rate, and step size encompass their entire feasible ranges of [0, 1].
Distribution indices for SBX and PM range between [0, 500], which is based on the “sweet
spot” identified by Purshouse and Fleming (2007). The ǫ values used by the Borg MOEA,
ǫ-MOEA, ǫ-NSGA-II and OMOPSO are shown in Table 2.1.

Table 3.1 provides a summary of the results from this analysis. The Kruskal-Wallis one-
way analysis of variance and Mann-Whitney U tests were used to compare the algorithms
using the 75% quantile of the hypervolume, generational distance and ǫ+-indicator metrics
with 95% confidence intervals (Sheskin, 2004). These tests help guarantee any difference in
the observed value is statistically significant and not a result of random chance. Table 3.1
records the number of problems in which the Borg MOEA outperformed, underperformed or
was statistically indifferent from each competing algorithm with respect to the 75% quantile
of each metric. The 75% quantile was selected to compare the algorithms at a moderate level
of success; however, the results do not differ significantly from the 50% and 90% quantiles. As
shown, the Borg MOEA outperformed the competing algorithms on the majority of problem
instances, but ǫ-NSGA-II and ǫ-MOEA were strong competitors.

For a more detailed view of the results, we compare the algorithms using their best
achieved value and the probability of attaining at least 75% of the reference set hypervolume.
The best achieved value, shown in Figure 3.6a, presents the best achieved hypervolume for
each algorithm across all seeds and parameters. Figure 3.6b, which shows the probability

38

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7
2

D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D R

e
fe

re
n

ce
 S

e
t

H
yp

e
rv

o
lu

m
e

N
o

 H
yp

e
rv

o
lu

m
e

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

(a) Best Achieved

MOEA/D

Borg

GDE3

OMOPSO

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

ε-MOEA

IBEA

ε-NSGA-II

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

1
0

0
%

 P
ro

b
a

b
ili

ty

0
%

 P
ro

b
a

b
ili

ty

(b) Attainment

Figure 3.6: Best achieved and 75% attainment results from the comparative study. (a)
shows the best value achieved by the MOEA across all seeds, where black indicates values
near the reference set hypervolume. (b) shows the probability of attaining at least 75% of
the reference set hypervolume for each problem. Black indicates 100% probability; white
indicates 0% probability.

39

of attaining at least 75% of the reference set hypervolume, indicates for each algorithm the
percentage of its parameters and seeds that reached a moderate level of success (i.e., 75%
of the reference set hypervolume). We distinguish between these two measurements since
the best achieved value may be a needle-in-the-haystack, where only a small number of
parameters or seeds were successful. In this scenario, reporting only the best achieved value
hides the fact that the likelihood of producing the best achieved value is low. The attainment
measurement distinguishes these cases.

Figure 3.6a shows that across the majority of the tested problem instances, the Borg
MOEA is able to produce approximation sets matching or exceeding the quality achieved
by the competing algorithms. Only in UF1, UF8, UF12 and DTLZ7 8D is the Borg MOEA
slightly outperformed. As GDE3 is the only algorithm outperforming the Borg MOEA on
all such cases, this suggests the rotationally-invariant DE operator may prove useful on these
instances and consequently an optimal operator choice would be expected to provide some
advantage relative to learning. MOEA/D and OMOPSO also show an advantage on the UF1
and 6D DTLZ7, respectively.

Figure 3.6a also shows several algorithms failing on UF12, UF13 and DTLZ3 at higher
dimensions. UF12 and UF13 are rotated instances of the 5D DTLZ3 and 5DWFG1 problems.
As unrotated DTLZ3 instances cause many MOEAs to fail (Hadka and Reed, 2012b), it is
not surprising that UF12 is difficult. What is surprising, however, is that the MOEAs tested
in this study with rotationally-invariant operators (e.g., GDE3 and Borg) struggled on UF12,
given their good performance on the 6D DTLZ3. In addition, IBEA seems to completely
fail on DTLZ3. As IBEA uses SBX and PM, which are the variation operators used by a
number of the MOEAs tested in this study, this suggests the hypervolume indicator fails to
guide search on this problem. Further investigation of this disparity should be undertaken.

While the majority of the algorithms produce at least one good approximation set on
UF3, UF5, UF6, UF8 and UF10, Figure 3.6b shows that the probability of doing so is very
low. This demonstrates how reporting only the best attained value may be misleading, as
the likelihood of attaining good quality solutions may be extremely low.

Identifying and understanding the root causes of these failures is necessary to improve
the reliability of MOEAs. UF5 and UF6 both consist of small, disjoint, finitely sized Pareto
sets (Zhang et al., 2009b). These sparse Pareto optimal solutions are separated by large
gaps, which appear to cause significant problems for the variation operators, many of which
like SBX, PCX and PM favor producing offspring near the parents. It is not immediately
obvious which properties of UF3, UF8 and UF10 are causing all tested MOEAs to fail. UF8
and UF10 do share identical Pareto sets and Pareto fronts, which suggests the construction
of the Pareto sets and Pareto fronts for these two problems may be the source of such failures.

In summary, the Borg MOEA showed superior performance in both the best attained
value and the probability of attaining at least 75% of the reference set hypervolume. This
is initial evidence that the Borg MOEA provides superior performance and reliability when
compared to other state-of-the-art MOEAs. However, there is still room for improvement
on several of the UF test problems for all algorithms, as seen in the attainment results. The
difficulties exhibited by UF3, UF5, UF6, UF8 and UF10 should prompt further investigation

40

and influence the development of additional test problems.

3.3.1 Control Maps

Figures 3.7 and 3.8 provide a more detailed exploration of the algorithms’ performance on
two specific problem instances, DTLZ2 and DTLZ1, by showing their control maps. These
two problem instances are selected since DTLZ2 is one of the easiest problems tested in this
study, whereas DTLZ1 is multi-modal and challenging for all of the algorithms. Control
maps highlight regions in parameter space whose parameterizations produce approximation
sets with hypervolume values near the reference set hypervolume (black regions), and pa-
rameterizations that produce poor approximation sets (white regions). In this case, we are
plotting population size versus the number of objective function evaluations.

Identifying so-called “sweet spots” is of particular interest, which are large regions of
high-performing parameterizations (Goldberg, 1998). In Figure 3.7, all algorithms excluding
IBEA show reliable parameterization on the 2D DTLZ2 instance. However, as the number
of objectives is increased, MOEA/D, GDE3, OMOPSO and IBEA show significant declines
in performance. The Borg MOEA, ǫ-MOEA and ǫ-NSGA-II retain a large sweet spot on
DTLZ2 instances with up to 8 dimensions, but a small decline in performance is observed
on ǫ-MOEA and ǫ-NSGA-II on the 8D DTLZ2 problem. In Figure 3.8, we observe that the
Borg MOEA and ǫ-NSGA-II are the only algorithms showing large sweet spots on DTLZ1,
even on the 2D instance. The Borg MOEA is the only tested algorithm with a sweet spot
on the 8D DTLZ1 instance.

ǫ-MOEA and IBEA have chaotic control maps, with patches of light and dark regions,
indicating that specific parameters or parameter combinations are resulting in poor perfor-
mance. Algorithms whose performance is highly dependent on its parameter selection are
expected to be difficult to use on real-world problems, where expensive objective evaluation
costs prohibit experimentation to discover correct parameter settings. Utilizing MOEAs with
large “sweet spots” is therefore desirable in real-world settings.

For algorithms that do not exhibit large “sweet spots”, trends can often be observed
to guide better parameter selection. As an example, Figures 3.7 and 3.8 show MOEA/D
has a strong dependency on population size. These results suggest that running MOEA/D
with larger population sizes will tend to improve its resulting approximation sets. However,
since MOEA/D’s neighborhood scheme severely increases its runtime as the population size
grows, increasing the population size may not be a feasible option. Borg is expected to be
insensitive to the initial population size due to its adaptive population sizing scheme. Figures
3.7 and 3.8 confirm this hypothesis. For the Borg MOEA, the number of objective function
evaluations is key to improving its performance, suggesting the Borg MOEA will benefit from
parallelization. The study of parameterization trends and their impact on controllability is
discussed in detail in Chapter 4.

41

GDE3

Borg

MOEA/D

OMOPSO

2D
1M

500K

750K

250K

1M

500K

750K

250K

1M

500K

750K

250K

1M

500K

750K

250K

4D 6D 8D

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 E
v

a
lu

a
ti

o
n

s

Population Size
1000500250 750 1000500250 750 1000500250 750 1000500250 750

ε-MOEA

1M

500K

750K

250K

1M

500K

750K

250K

1M

500K

750K

250K

ε-NSGA-II

IBEA

R
e

fe
re

n
ce

 S
e

t
H

yp
e

rv
o

lu
m

e
N

o
 H

yp
e

rv
o

lu
m

e

Figure 3.7: Control map showing the relation between population size and number of objec-
tive function evaluations on the DTLZ2 problem from 2 to 8 objectives.

42

GDE3

Borg

MOEA/D

OMOPSO

2D
1M

500K

750K

250K

1M

500K

750K

250K

1M

500K

750K

250K

1M

500K

750K

250K

4D 6D 8D

O
b

je
ct

iv
e

 F
u

n
ct

io
n

 E
v

a
lu

a
ti

o
n

s

Population Size
1000500250 750 1000500250 750 1000500250 750 1000500250 750

ε-MOEA

1M

500K

750K

250K

1M

500K

750K

250K

1M

500K

750K

250K

ε-NSGA-II

IBEA

R
e

fe
re

n
ce

 S
e

t
H

yp
e

rv
o

lu
m

e
N

o
 H

yp
e

rv
o

lu
m

e

Figure 3.8: Control map showing the relation between population size and number of objec-
tive function evaluations on the DTLZ1 problem from 2 to 8 objectives.

43

SBX DE

PCX UNDX

SPX UM

100%

50%

0%

100%

50%

0%

100%

50%

0%
500K250K 500K250K

O
p

e
ra

to
r

P
ro

b
a

b
ili

ty

NFE

(a) DTLZ2 5D Unrotated

SBX DE

PCX UNDX

SPX UM

100%

50%

0%

100%

50%

0%

100%

50%

0%
500K250K 500K250K

O
p

e
ra

to
r

P
ro

b
a

b
ili

ty

NFE

(b) DTLZ2 5D Rotated

Figure 3.9: Depicts the effect of epistasis on success of operators in the Borg MOEA’s auto-
adaptive multi-operator recombination on an unrotated and rotated instance of the DTLZ2
problem. (a) shows the unrotated version from the DTLZ test suite; (b) shows the rotated
version from the CEC 2009 competition.

44

PCX

SBX

SPX

UNDX
U

F
1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

DE

UM

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

1
0

0
%

 P
ro

b
a

b
ili

ty

0
%

 P
ro

b
a

b
ili

ty

(a) Operator Probabilities

ε-Progress

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

Pop-to-Arc Ratio

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

H
ig

h
 F

re
q

u
e

n
cy

Lo
w

 F
re

q
u

e
n

cy

(b) Restart Frequencies

Figure 3.10: (a) The percentage of operator usage throughout an entire run across all tested
problems using a set of fixed parameters. Black cells indicate 100% usage and white cells
indicate 0% usage of each operator. SBX and PCX are the two dominant operators on unro-
tated and rotated problems, respectively, while the other operators show moderate influence
on several problems. (b) The restart frequencies due to ǫ-progress and the population-
to-archive ratio. ǫ-Progress is scaled so black cells indicate the maximum of 826 restarts
observed during any run; the population-to-archive ratio is scaled so black cells indicate the
maximum of 14 observed restarts.

3.3.2 Auto-Adaptive Multi-Operator Behavior

Next we demonstrate the ability of the auto-adaptive multi-operator recombination to adapt
to a specific problem. Several of the tested problems can be classified into unrotated and
rotated instances. Rotated instances have high degrees of conditional dependence between
decision variables. Such conditional dependencies can degrade the performance of recom-
bination operators, but we claim the auto-adaptive multi-operator procedure is capable of
identifying and exploiting rotationally-invariant operators on such problems. Figure 3.9
shows the operator probabilities as discussed in Section 3.1.4 throughout the execution of
the Borg MOEA on an unrotated and rotated instance of the DTLZ2 problem. The plots
show 50 replicates of the Borg MOEA executed with the recommended parameters from Sec-
tion 3.2.3. As expected, the Borg MOEA correctly selects rotationally-invariant operators
to maximize performance on the rotated problems. It is interesting to note in Figure 3.9
that multiple operators work cooperatively during search and that their emphasis in search
is highly dynamic (e.g., see SPX and PCX in Figure 3.9b).

45

A more comprehensive view of operator probabilities is given in Figure 3.10a, which
shows the percentage of operator usage throughout an entire run across all tested problem
instances. Each cell in the figure is colored according to the percentage of operator use by
calculating the “area under the curve” in the plots in Figure 3.9:

Percentagei =

∑
j O(i, j)∑

i

∑
j O(i, j)

, (3.4)

where O(i, j) is the probability of applying operator i after j objective function evaluations.
Using a similar setup as above, the results are averaged over 50 replicates of the Borg
MOEA executed with the recommended parameters from Section 3.2.3. Figure 3.10a shows
that SBX is dominant on the unrotated DTLZ problems, whereas PCX, SBX and several
other operators have significant contributions on the UF problems. This confirms that a
priori operator selection is non-trivial, especially on real-world problems where the problem
characteristics are most likely unknown. Analysis of both Figure 3.6b and Figure 3.10a show
that in UF1, UF4, UF7, UF9, UF11 and DTLZ1, the Borg MOEA’s high attainment is
benefiting from the cooperative utilization of several variational operators. These results are
corroborated by the findings of Vrugt and Robinson (2007) and Vrugt et al. (2009), who
also show that even operators that provide minor contributions can critically influence the
quality of final results.

Figure 3.10b shows the frequency that ǫ-progress and population-to-archive ratio trig-
gered restarts across all tested problem instances. On the DTLZ problem instances, we
observe higher frequencies of both ǫ-progress and population-to-archive ratio restarts as the
problem dimension is increased. As increasing the problem dimension generally results in
proportionally larger non-dominated Pareto sets, the population-to-archive ratio should be
triggered more frequently with the increasing archive size. Overall, Figure 3.10 demonstrates
that the auto-adaptive multioperator component and the two restart triggers are actively
used across a variety of problems. In the following section, we extend this analysis to show
that the combination of all three components are necessary for the performance and relia-
bility of the Borg MOEA.

3.3.3 Critical Components of Borg

We conclude this analysis by determining how critical each of individual constituent com-
ponents of the Borg MOEA are to its overall performance and reliability. The components
analyzed are (A) population-to-archive ratio triggered restarts with adaptive population siz-
ing, (B) ǫ-progress triggered restarts, and (C) the auto-adaptive multioperator recombination
operator. We repeated the analyses based on 1000 LHS parameterizations, where each pa-
rameterization is run for 50 random seed replicates, as done earlier, but with the individual
components enabled or disabled to run all 6 potential variants. These variants are compared
against the baseline ǫ-MOEA and the full Borg MOEA.

Table 3.2 shows the statistical comparison of the different combinations. On the majority
of the tested cases, the full Borg MOEA variant is equivalent or superior. Given that the

46

Table 3.2: Statistical comparison of the critical components of the Borg MOEA based on the
75% quantile of the hypervolume, generational distance and ǫ+-indicator metrics. +, =, and
− indicate the full Borg MOEA’s 75% quantile was superior, statistically indifferent from
or inferior to the competing variant, respectively. The enabled components in each variant
are identified with letters: (A) population-to-archive ratio triggered restarts with adaptive
population sizing; (B) ǫ-progress; and (C) auto-adaptive multioperator recombination.

Hypervolume Generational Distance ǫ+-Indicator
Variant + = − + = − + = −

A 17 6 10 22 4 7 16 4 13
B 11 10 12 11 4 18 9 8 18
C 21 6 6 24 4 5 15 7 11
AB 11 13 9 11 4 18 9 7 17
AC 20 6 7 23 7 3 14 8 11
BC 5 20 8 2 28 3 4 22 7

test problem suite used in this study is biased towards a few operators (i.e., SBX on DTLZ),
it is expected that the variants B and AB are competitive. Since the Borg MOEA must
expend objective function evaluations learning the dominant operator(s), the variants using
the dominant operator by default have a competitive advantage. The full potential of auto-
adaptive multioperator variation is on real-world applications, where the dominant operators
are not known a priori and are likely to vary. Simply having the ability to discover this
operator dependency is a significant contribution and strength of the Borg MOEA.

Figure 3.11 shows the best achieved value and the probability of attaining at least 75%
of the reference set hypervolume for the different variants. As expected, ǫ-progress has a
very strong impact on proximity, but requires the other operators for diversity, as seen on
the darker shadings for variants B, AB and BC in Figure 3.11b. The effects of the auto-
adaptive multioperator variation operator can be seen on a number of problems, and is very
pronounced on UF7. The variants C, AC, BC and the full Borg MOEA show significant
improvements on UF7. From Figure 3.10a, we see this was achieved by identifying SBX
and PCX as dominant operators. Figure 3.11 does verify that the variants without the
multioperator learning curve do have an advantage on the DTLZ test problems in which
SBX is a dominant operator. The population-to-archive ratio triggered restarts with adap-
tive population sizing appear to have a more pronounced effect on the higher dimensional
DTLZ instances. This distinction is clearly visible when comparing ǫ-MOEA with variant
A. The earlier results seen on ǫ-NSGA-II also support the positive impacts of adaptive pop-
ulation sizing as captured in Table 3.2, which shows ǫ-NSGA-II as one of the top performers
overall. It can therefore be concluded that all three constituent components of the Borg
MOEA contribute to its observed success and its intended use in many-objective real-world
applications.

47

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

R
e

fe
re

n
ce

 S
e

t
H

yp
e

rv
o

lu
m

e

N
o

 H
yp

e
rv

o
lu

m
e

ε-MOEA

A

B

C

AB

AC

BC

Borg MOEA

(a) Best Achieved

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

1
0

0
%

 P
ro

b
a

b
ili

ty

0
%

 P
ro

b
a

b
ili

ty

ε-MOEA

A

B

C

AB

AC

BC

Borg MOEA

(b) Attainment

Figure 3.11: Best achieved and 75% attainment results from the analysis of the critical com-
ponents of the Borg MOEA. (a) shows the best value achieved by the configuration across
all seeds, where black indicates values near the reference set hypervolume. (b) shows the
probability of attaining at least 75% of the reference set hypervolume for each problem.
Black indicates 100% probability; white indicates 0% probability. The enabled components
in each variant are identified with letters: (A) population-to-archive ratio triggered restarts
with adaptive population sizing; (B) ǫ-progress; and (C) auto-adaptive multioperator recom-
bination.

48

3.4 Conclusion

The Borg MOEA provides robust optimization by assimilating design components from other
MOEAs and introduces several novel features. ǫ-Dominance archives and ǫ-progress maintain
a well-spread Pareto front and monitor convergence speed. If the convergence speed declines
and search stagnates, randomized restarts are triggered which revive search by resizing and
diversifying the population while carefully maintaining selection pressure. Lastly, the Borg
MOEA provides a facility to incorporate multiple recombination operators and automatically
adapts its use of these operators based on their relative performance.

Our comparative study demonstrates the efficacy of the Borg MOEA on 33 test problem
instances ranging from 2 to 8 objectives. Using a large-scale Latin hypercube sampling of
each algorithm’s parameters, we observed that the Borg MOEA outperformed the competing
algorithms on the majority of the test problems. The Borg MOEA reliably and consistently
produced Pareto sets matching or exceeding the best-known algorithms in terms of hyper-
volume, generational distance and ǫ+-indicator.

In particular, the Borg MOEA showed significant advantages over competing algorithms
on many-objective, multi-modal problems. On such problems, the Borg MOEA produced
results with significantly better hypervolume and achieved such results with higher proba-
bility. However, all of the tested algorithms showed serious reliability issues on several UF
problems, an issue which should elicit further investigations.

While the Borg MOEA’s use of multiple recombination operators requires users to set
more parameters, our control map results highlight that the Borg MOEA’s auto-adaptive
search features strongly reduce parameterization challenges and provide large “sweet spots,”
even on problems with 8 objectives. Nonetheless, operator selection and parameterization
are important considerations when maximizing the performance of any MOEA. In Chapter 4,
we detail the dependencies between search operators, their parameters and many-objective
performance for a broad range of MOEAs, including the Borg framework introduced in this
study.

49

Chapter 4

Framework for Diagnosing Search
Controls and Failure Modes

This chapter is drawn from the paper: “Hadka, D. and Reed, P. (2012). Diagnostic Assess-
ment of Search Controls and Failure Modes in Many-Objective Evolutionary Optimization.
Evolutionary Computation, 20(3):423-452.”

To date, the complex dynamics of MOEAs when solving many-objective optimization
problems has limited the analytical assessment of their strengths and weaknesses. Alter-
natively, with the advent of the DTLZ (Deb et al., 2001), WFG (Huband et al., 2006) and
CEC 2009 (Zhang et al., 2009b) test problem suites, the systematic study of objective scaling
through numerical experimentation has provided important insights into MOEA scalability
for increasing objective dimensions. Khare et al. (2003) published the first study examin-
ing the effects of objective scaling on proximity and diversity using four DTLZ problems.
Several additional experimental studies have been published using fixed or tuned parame-
ters, as shown in Table 4.1. Purshouse and Fleming (2003, 2007) published the first study
constructing control maps across a range of problem dimensions for the recombination and
mutation operators for the Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb
et al., 2000) by sampling points on a grid from parameter space. They demonstrated that the
parameterization “sweet spot” migrates as the number of objectives increases. This result
suggests that default parameter settings commonly used in the literature are not applicable
to problems of varying dimensions.

More generally, Goh and Tan (2009) discuss the challenges in designing frameworks for
the empirical analysis and performance assessment of MOEAs. They assert three important
design requirements for any diagnostic framework: (1) multiple performance metrics covering
the functional objectives of multiobjective optimization, (2) an adequate sample of problems,
and (3) the ability to uncover pertinent parameter controls and dynamic search behavior
within the algorithm. This study introduces a systematic framework for diagnosing the search
capabilities of MOEAs while providing guidance on how the key multivariate interactions
between an algorithm’s parameters and its operators change as the number of objectives
increases. This study represents one of the largest and most comprehensive computational
experiments ever performed on MOEAs. Millions of algorithm runs using trillions of fitness

50

Table 4.1: List of prior comparison studies analyzing objective scaling for MOEAs. † marks
algorithms modified specifically for handling many-objective optimization.

Algorithms Problems Objectives Parameters Reference
NSGA-II, SPEA2, PESA DTLZ 1-3, 6 2-8 Tuned Khare et al. (2003)
NSGA-II, MSOPS, RSO Custom 2, 4, 6 Fixed Hughes (2005)
NSGA-II, POGA† DTLZ 1-4, 6-8 4-8 Tuned di Pierro (2006)
NSGA-II, SPEA2, IBEA DTLZ 1-7, WFG 2-4 Fixed Wagner et al. (2007)
NSGA-II DTLZ 1-3, 6 4-8 Tuned Praditwong and Yao (2007)
NSGA-II, SPEA2, ǫ-MOEA DTLZ 1-2 3-6 Fixed Wagner et al. (2007)
NSGA-II, POGA DTLZ 1-7 4-8 Tuned di Pierro et al. (2007)
NSGA-II DTLZ 2 3, 6, 12 Grid Purshouse and Fleming (2003, 2007)
PESA-II NK Landscapes 2, 5, 10 Fixed Knowles and Corne (2007)
NSGA-II† Knapsack 2, 4, 6, 8 Fixed Ishibuchi et al. (2008a)
NSGA-II† DTLZ2 6, 8, 12 Fixed Adra and Fleming (2009)

function evaluations were executed to explore the design space of state-of-the-art MOEAs.
Such extensive experimentation supports the comparison of each algorithm’s best achieved
metric values, their probabilities of attaining high-quality approximation sets, efficiency, and
controllability without biasing results to “tuned” rules for parameterization. Failures in
this study for the first time imply failures in the MOEA’s design — selection, variation
operators, ranking, diversity maintenance, archiving, etc. and their interactions — rather
than the synoptic analysis of poor parameterization effects, which has been the dominant
focus of prior literature.

The diagnostic framework and our proposed measure of controllability are described in
detail in Section 4.1. The results of a comparative analysis using this diagnostic framework
is presented in Section 4.2 along with an analysis of search controls and failure modes. This
paper concludes in Section 4.3 with a discussion of the impact of this work.

4.1 Diagnostic Framework

The primary contribution of this chapter is a diagnostic framework for robustly comparing
how MOEA operators, their parameterization, and the interactions between these factors
influence their successes and failures in many-objective optimization. Section 4.1.1 defines
the best attained approximation set, probability of attainment, efficiency, and controllability
metrics used by this diagnostic framework. Section 4.1.2 introduces variance decomposition
of controls for analyzing the multivariate interactions between parameters. Section 4.1.3
outlines the computational experiment performed in this study. Table 4.2 identifies common
notations used throughout this section.

4.1.1 Search Control Metrics

Whereas the performance metrics discussed in Section 2.8 compare the quality of approxima-
tion sets from single runs, they are only applicable to fixed parameterizations. In this study
we propose instead the following metrics for statistically sampled ensembles of approxima-

51

Table 4.2: Notation used in study.

Symbol Description
M Number of objectives
s ∈ S A seed from the set of random number generator seeds
p ∈ P A parameter set in the parameter block
A One of the studied algorithms
As

p A single run of the algorithm A using parameter set p and seed s; returns an
approximation set

Ap Shorter version of As
p implying a single seed s is used

M(As
p) Performance metric applied to the approximation set from a single run

M∗ Target metric value (i.e., best achievable metric value given a reference set)

tion sets and their corresponding performance metrics to provide guidance on an MOEA’s
utility. Our diagnostic framework classifies an MOEA’s utility using four measures: best
achieved value, probability of attainment, efficiency, and controllability.

Best Achieved Value The majority of studies report the best achieved end-of-run per-
formance metric value. However, unlike the majority of studies where results are based on
fixed or tuned parameters, our best attained result is drawn from a large statistical sampling
of the full feasible parameterization ranges for all of the major operators in each algorithm
in order to provide a rigorous measure of an MOEA’s best performance.

Best Achieved Value = max
p∈P
M(Ap) (4.1)

Probability of Attainment While the best achieved value is an absolute measure of an
MOEA’s search quality, the reliability of an algorithm is a stronger indicator of an MOEA’s
utility. This is particularly important on rotated, multi-modal, many-objective problems
where an MOEA may be capable of producing quality end-of-run approximation sets, but
the probability of doing so is low. We propose measuring an MOEA’s reliability with the
probability that the end-of-run approximation set surpasses an attainment threshold, α.
From the set of parameters P, the set of parameters surpassing this attainment threshold is

Pα = {p ∈ P :M(Ap) ≥ α} . (4.2)

From this, the probability of attainment is defined by

Probability of Attainment =
|Pα|
|P| . (4.3)

Efficiency MOEAs that achieve high attainment probabilities with fewer objective func-
tion evaluations are preferred over those that require more time to search. Efficiency mea-
sures the minimum number of objective function evaluations (NFE) required to achieve a

52

high probability of attainment. Given a range R of NFE values, we define a band of statis-
tically sampled parameterizations within that range as

BR = {p ∈ P : NFE(p) ∈ R} , (4.4)

and the subset of parameterizations in that band surpassing the attainment threshold as

Bα
R = {p ∈ BR :M(Ap) ≥ α} . (4.5)

Efficiency is defined as the minimum NFE band R such that 90% of the parameters in the
band surpass the attainment threshold:

Efficiency = min

{
R :
|Bα

R|
|BR|

≥ 0.9

}
, (4.6)

where R = [∆i,∆(i + 1)] for i = {0, . . . , 99} and ∆ = 10000. Note the similarities between
these equations and those for the probability of attainment. The choice of 90% is based
on our efforts to maintain consistency and rigor across our performance measures. In the
context of this specific study, there were no significant differences in efficiency if 50% and
75% thresholds were stipulated.

Controllability Lastly, we are interested in the distribution of the parameters in Pα.
Controllable algorithms are those which exhibit “sweet spots”, or regions in parameter space
with high attainment probabilities. The correlation dimension (Grassberger and Procaccia,
1983) of Pα is our measure of controllability. Hence, controllability is computed by

Controllability = lim
r→0

ln(C(r))

ln(r)
, (4.7)

where

C(r) =
1

N(N − 1)

N∑

i,j=1
i 6=j

H(r − |pi − pj|) (4.8)

with pi, pj ∈ Pα, N = |Pα| and H is the Heaviside function defined by

H(u) =

{
0 if u < 0

1 if u ≥ 0.
(4.9)

Conceptually, C(r) is the average fraction of parameter sets within a radius r of each other.
The growth of C(r) with respect to r reflects dimensionality since higher dimensional spaces
permit more opportunities for points to be close (Baker and Gollub, 1990). As shown in
Figure 4.1, rather than computing (4.7) directly, it is recommended to instead compute the
slope where the correlation dimension estimate ln(C(r))/ ln(r) is relatively constant (this
region is called the plateau region in the literature) (Nayfeh and Balachandran, 1995).

53

ln(r)

ln(C(r))
Saturation as

radius encompasses

entire space

Only one point

lies within radius,

 C(r) levels o!
at 1/N2

Constant slope
(plateau region)

Figure 4.1: The correlation dimension is the slope where the correlation dimension estimate
ln(C(r))/ ln(r) is relatively constant (this region is called the plateau region in the literature).
As indicated, small and large radii do not reflect dimensionality.

To compute (4.7), the effective parameters Pα are first normalized to reside within the
unit hypercube. The N(N + 1)/2 pairwise distances between effective parameters are com-
puted and stored in an array. C(r) from (4.8) is computed for various r ∈ [0, 1] by referencing
distances in this stored array. Next, the plateau region is identified, as shown in Figure 4.1.
Let R = {r : rmin ≤ r ≤ rmax} be the sampled values of r within some bounds. The linearity
of ln(C(r)) versus ln(r) is determined by computing the correlation coefficient (Edwards,
1993)

ρ =
n (

∑
xy)− (

∑
x) (

∑
y)√

n (
∑

x2)− (
∑

x)2
√
n (

∑
y2)− (

∑
y)2

, (4.10)

where the summations are over the values r ∈ R, n = |R|, x = ln(r) and y = ln(C(r)).
Searching for the largest bounds, rmax − rmin, with |ρ| ≥ 1− ξ identifies the plateau region.
This study used ξ = 0.001 to ensure a high degree of linearity. Finally, the slope of the
identified plateau region and the estimation of (4.7) is calculated using linear least squares
regression (Edwards, 1993)

m =
n (

∑
xy)− (

∑
x) (

∑
y)

n (
∑

x2)− (
∑

x)2
, (4.11)

with the same variables as (4.10).
In summary, controllability measures the correlation between effective parameters. Thus,

larger controllability values indicate increasingly larger perturbations to an effective param-
eter set will still result in good performance, which indicates the existence of “sweet spots”.

54

The existence of “sweet spots” is necessary for the effective control of search via parameteri-
zation. Without “sweet spots”, adapting parameters becomes hard since effective parameters
are like needles in a haystack — small perturbations to effective parameters will likely result
in poor performance.

4.1.2 Variance Decomposition of Controls

The highly non-linear nature of MOEAs emerges from complex interactions between their
operators and their parameterization, which has limited the analysis of generalized MOEA
behavior. Most studies to date only examine one or two parameters in isolation (Harik and
Lobo, 1999). However, recent advances in sensitivity analysis have introduced techniques
for computing all parameter effects and their multivariate interactions more reliably and
with fewer parametric assumptions relative to traditional methods like analysis of variance
(ANOVA).

Variance decomposition attributes to each parameter the percentage it contributes to an
output ensemble’s variance. First-order effects represent variation caused solely by a single
parameter. Second-order and higher-order interaction effects represent variation caused by
two or more parameters in conjunction. Total-order effects represent for each parameter the
summation of its first-order and all higher-order effects.

While ANOVA has been traditionally used to capture first- and second-order effects, the
variance decomposition method developed by I.M. Sobol’ with modifications by Saltelli et al.
(2008) provides many advantages. First, using the implementation in Saltelli et al. (2008),
the total-order effects can be computed with little additional cost over Sobol’s original im-
plementation. Second, whereas uniform random sampling of parameters yields a sampling
error growth rate of 1/

√
N , sampling parameters with Sobol’s quasi-random sequence gen-

erator yields an error growth rate of 1/N , a significant improvement in convergence (Tang
et al., 2007). In this study, N = |P|. Third, the rank-ordering of parameters by Sobol’s
method has been observed in practice to be more reliable and stable than ANOVA (Tang
et al., 2007). Finally, Sobol’s method is model independent and only assumes parameter
independence. ANOVA, on the other hand, assumes normally-distributed model responses,
homoscedasticity, and independence of cases (Tang et al., 2007).

For these reasons, Sobol’s variance decomposition is used in this study to identify an
MOEA’s key parameters and investigate the multivariate interactions between its control
parameters. Error estimates are determined using bootstrapping. A more detailed discussion
of Sobol’s variance decomposition and bootstrapping is provided in Appendix B.

4.1.3 Computational Experiment

This study applies the Borg MOEA and the eight MOEAs listed in Section 2.6 to the 33
test problem instances listed in Table 2.1. Figure 4.2 depicts the overall outline of this
computational experiment, which is described in detail below. To permit Sobol’s variance
decomposition for each algorithm, a parameter block consisting of 1000(2P + 2) parameter
sets is generated using a Sobol’ sequence-based statistical sampling method, where P is the

55

Single

Algorithm

Evaluation

Parameter Block Metrics
Attainment

Threshold

Approximation

Sets

Seed 1

Seed 2

Seed S

Attainment

Volumes

Controllability

Distribution

Threshold

1.0

0.0
Target Metric

C
D

F

Threshold

1.0

0.0
Target Metric

C
D

F

Threshold

1.0

0.0
Target Metric

C
D

F

Dimension?
Hyp GD IGD Spread EI

11 11 11 11 11

Hyp GD IGD Spread EI
12 12 12 12 12

Hyp GD IGD Spread EI
1K 1K 1K 1K 1K

. .
 .

Hyp GD IGD Spread EI
1N 1N 1N 1N 1N

. .
 .

Hyp GD IGD Spread EI
21 21 21 21 21

Hyp GD IGD Spread EI
22 22 22 22 22

Hyp GD IGD Spread EI
2K 2K 2K 2K 2K

. .
 .

Hyp GD IGD Spread EI
2N 2N 2N 2N 2N

. .
 .

Hyp GD IGD Spread EI
S1 S1 S1 S1 S1

Hyp GD IGD Spread EI
S2 S2 S2 S2 S2

Hyp GD IGD Spread EI
SK SK SK SK SK

. .
 .

Hyp GD IGD Spread EI
SN SN SN SN SN

. .
 .

Figure 4.2: For each algorithm, a Sobol’ sequence-based statistical sampling of its parameters is generated (i.e., the
parameter block). Each parameter set in the parameter block is evaluated using multiple random number seed trials
(S = 50) to improve the statistical quality of our results. From the resulting non-dominated approximation sets, the
corresponding performance metrics are computed. An attainment threshold retains all parameter settings surpassing the
threshold value, which are then used to compute the probability of attainment, efficiency, and controllability measures.

56

number of parameters controlling the algorithm. For each parameter set in the parameter
block, the algorithm is run 50 times using different initial pseudo-random number generator
seeds for each problem instance. The same parameter block is used across all seeds and
problem instances for each algorithm. The result of each run is a Pareto approximation set
which is evaluated using the performance metrics discussed in Section 2.8. The multiple
random number seed trials render the results independent of the initial population and
improve the statistical quality of our results.

After all the data is collected, the search control metrics and variance decomposition of
controls are computed. Each parameter block is analyzed to identify only those runs surpass-
ing a 75%-attainment threshold relative to the known reference sets. The resulting attain-
ment volume is used to compute the probability of attainment, efficiency, and controllability
search control metrics. Along with the best achieved value, these measures of algorithmic
utility can be used to make observations of the current state-of-the-field for solving many-
objective problems. Additionally, our framework utilizes Sobol’s variance decomposition to
rigorously assess each algorithm’s search controls while simultaneously providing insights
into the multivariate interactions between parameters and operators. Our proposed use of
variance decomposition thus characterizes the effect of objective scaling on MOEA search.

The range of sampled parameter values is taken from Hadka and Reed (2012a). The num-
ber of fitness evaluations was sampled between [10000, 1000000] in order to permit tractable
execution times while providing meaningful results. The population size, offspring size, and
archive sizes are all sampled between [10, 1000]. This range was chosen to encompass the
commonly employed “rule-of-thumb” population sizes in MOEA parameterization recom-
mendations. Mutation rate, crossover rate, and step size encompass their entire feasible
ranges of [0, 1]. Distribution indices for SBX and PM range between [0, 500], which is based
on the “sweet spot” identified by Purshouse and Fleming (2007).

The experiments were executed on the CyberSTAR computing cluster at the Pennsylva-
nia State University, which consists of 512 2.7 GHz processors and 1536 2.66 GHz proces-
sors. In total, 280 million algorithm runs were executed requiring approximately 225 years
of computational effort. To the best of our knowledge, this is the most extensive and com-
prehensive comparison study of MOEAs to date. Consequently, our results do not rely on
fixed or tuned parameters and provides a state-of-the-field baseline for many-objective evo-
lutionary optimization. While the computational expenditure for this study is high, it has
freed our analysis and results from restrictive assumptions, and is the first robust analysis
that statistically samples the design space of MOEAs.

4.2 Results and Discussion

Figures 4.3, 4.4, 4.5, and 4.6 show the best achieved value, probability of attainment, ef-
ficiency and controllability measures, respectively, for the 33 test problem instances. Each
plot contains three horizontal subplots showing the generational distance (GD), hypervol-
ume, and ǫ+-indicator performance metrics. Each subplot is composed of shaded squares
corresponding to the problem (x-axis) and the algorithm (y-axis). The interpretation of the

57

shading depends on the individual plot, but in all cases black represents the ideal result and
white the worst result. All shadings are scaled linearly as indicated in the legends.

Figure 4.3 shows for each MOEA its overall best achieved metric value for the three
performance metrics. Dark regions indicate at least one of the sampled parameter sets
attained performance metric values very near to the target metric value. Starting with GD,
which measures the average distance from objective vectors in the approximation set to the
nearest neighbor in the reference set, we observe that at least one parameter set was able to
attain near-optimal convergence to the reference set for most problem instances. We observe
that all of the algorithms had difficulty on the UF12 problem from the CEC 2009 test suite,
and ǫ-NSGA-II, OMOPSO and SPEA2 had difficulty on the 6 and 8 dimension cases of the
DTLZ3 problem. In addition, NSGA-II struggled on the 8D DTLZ3 instance and SPEA2
struggled on the 8D DTLZ1 instance. This indicates that apart from these few exceptions,
the majority of the tested algorithms are capable of producing at least one approximation
set in close proximity to the reference set. While GD measures proximity to the reference
set, a non-diverse population covering only a small fraction of the reference set can receive
near-optimal GD values. In other words, GD provides no information about diversity.

The hypervolume performance metric, which measures the volume of space dominated
by the approximation set, combines proximity and diversity into a single evaluation metric.
Again, the majority of the tested algorithms are able to generate at least one approximation
set with a hypervolume near the reference set. First, we observe low hypervolume values on
UF11, UF12 and UF13. Given the near-optimal GD values on UF11 and UF13, this indicates
the MOEAs struggle to maintain a diverse set of solutions on these problem instances. This
loss in diversity is also apparent for IBEA on DTLZ3 and DTLZ7. On DTLZ3, IBEA
struggles to maintain a diverse approximation set regardless of problem dimension. This
indicates a significant search failure for IBEA, particularly given the fact that IBEA is based
on the hypervolume indicator. The Borg MOEA is able to achieve near-optimal hypervolume
values for the majority of the tested problem instances, only struggling on UF12, UF13 and
8D DTLZ7. The ability of the Borg MOEA to maintain a diverse approximation set is aided
by its use of an ǫ-dominance archive.

The last metric shown in Figure 4.3 is ǫ+-indicator. The ǫ+-indicator highlights the
existence of gaps in the Pareto fronts (i.e., consistency as illustrated in Figure 2.12). The
ǫ+-indicator highlights the difficulty of UF12 and UF13 as detected by GD and hypervol-
ume. A clear pattern emerges on the DTLZ problems showing a degradation in performance
of the algorithms at higher problem dimensions. The Borg MOEA, ǫ-NSGA-II, ǫ-MOEA
and MOEA/D show a slight advantage, particularly on higher-dimensional DTLZ problem
instances.

Combining these three performance metrics provides a clear indication as to the quality
of an approximation set. A favorable GD value implies good proximity, a favorable hypervol-
ume implies good diversity with proximity, and a favorable ǫ+-indicator value implies good
consistency (i.e., the absence of poorly approximated regions in the approximation set). As
an example, an MOEA exhibiting good GD but poor ǫ+-indicator values implies some regions
of the reference set are approximated poorly. Tradeoffs between the various algorithms with

58

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(a) Generational Distance (GD)

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(b) Hypervolume

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(c) ǫ+-Indicator

0.01.0

Meets Target Metric Value

0.8 0.6 0.4 0.2

Figure 4.3: The overall best performance for each algorithm on each problem instance is
illustrated as the percentage of target metric value achieved. The targets for each problem are
based on their true reference sets. Black regions indicate there exists at least one parameter
set that yielded near-optimal metric values. White regions indicate no such parameter set
exists.

59

respect to the functional objectives of MOEAs is evident; however, the Borg MOEA shows
the most successful results across all functional objectives. Alternatively, IBEA, SPEA2 and
NSGA-II struggled to produce diverse approximation sets on many-objective problems.

Readers should note that in addition to the tested algorithms, random search was used to
establish a baseline comparison. The random search baseline was established by randomly
generating the same number of solutions as were evaluated by the MOEAs and adding them
to an ǫ-dominance archive using the same ǫ values as the Borg MOEA and OMOPSO. The
performance metrics were computed for the approximation sets generated by random search.
In all cases excluding UF12, where all algorithms failed, the MOEAs outperformed random
search. This fact is important as it implies the MOEAs are performing non-trivial search.

It is interesting to note the difficulty observed on UF12. UF12 is the rotated version of
the 5D DTLZ3 problem originally used in the CEC 2009 competition (Zhang et al., 2009b).
This suggests that state-of-the-art MOEAs still show significant search failures on rotated,
multi-modal, many-objective problems. This highlights the need for further advancements
in this area.

Many studies feature the best observed metric, but such cherry picking of parameters
poorly reflects a user’s ability to utilize an MOEA in real-world applications where search
failures can have actual economic costs. Recall that this study uses an 75%-attainment
threshold when calculating the probability of attainment. The probability of attainment,
which is the percentage of sampled parameter sets that are able to achieve 75% of each
problem instance’s reference set, is shown in Figure 4.4. Black identifies cases where the
majority of the parameter sets sampled are successful in attaining high quality approximation
sets.

Starting with GD in Figure 4.4, we observe that all algorithms exhibit high attainment
probabilities on most UF problems and all tested dimensions of DTLZ2, DTLZ4 and DTLZ7.
For these cases, the majority of the parameters sampled produce results with a high level of
proximity. However, this does not hold for DTLZ1 and DTLZ3. The majority of the tested
MOEAs show low attainment probabilities, even on 2D and 4D DTLZ3. The Borg MOEA,
ǫ-NSGA-II, ǫ-MOEA and NSGA-II were the only MOEAs that retained high attainment
probabilities on 2D and 4D DTLZ3.

In addition, the hypervolume and ǫ+-indicator values show diversity and consistency
are issues. With the exceptions of UF1, UF2, UF4, UF7 and lower-dimensional DTLZ
problem instances, the tested algorithms were not reliably capable of producing well-spread
and consistent approximation sets. The Borg MOEA, ǫ-NSGA-II, ǫ-MOEA and MOEA/D
provide better diversity and consistency than the other MOEAs, but even these struggle on
higher-dimensional instances.

The general trend across all of the algorithms’ low attainment probabilities on DTLZ1 and
DTLZ3 suggests multi-modal problems can cause significant search failure. In combination,
Figure 4.3 and Figure 4.4 show that these algorithms can attain high quality solutions, but
the probability of it occurring using commonly selected parameters decreases significantly
as the objective space dimension increases.

Efficiency reflects the amount of effort expended by the MOEA, in terms of the number

60

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(a) Generational Distance (GD)

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(b) Hypervolume

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(c) ǫ+-Indicator

0%100%

% of Parameter Sets Reaching Attainment Threshold

80% 60% 40% 20%

Figure 4.4: The probability of attainment results illustrate the percent of parameter sets for
each algorithm that yielded end-of-run metric values surpassing a 75%-attainment threshold.
Black regions indicate large success rates while white regions indicate low success rates.

61

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(a) Generational Distance (GD)

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(b) Hypervolume

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(c) ǫ+-Indicator

990k-1M0-10k

NFE Until 90% of Parameter Sets Reach Attainment

200k-210k 400k-410k 600k-610k 800k-810k

Figure 4.5: The efficiency of each MOEA shows the minimum number of NFE required
for the algorithm to reliably (with 90% probability) produce approximation sets surpassing
the 75% attainment threshold. Black regions indicate efficient algorithms requiring fewer
objective function evaluations. White regions indicate cases where the algorithm failed to
surpass the attainment threshold given a maximum of 1000000 evaluations.

62

of objective function evaluations (NFE), to produce approximation sets surpassing the 75%
attainment threshold. Figure 4.5 shows the efficiency results, where black regions indicate
cases where the MOEA required fewer NFE and white indicates the MOEA failed to surpass
the attainment threshold. Looking at GD, the majority of the tested MOEAs produced
approximation sets with good proximity with 200k or fewer NFE. The few exceptions are
NSGA-II, SPEA2, OMOPSO, IBEA and ǫ-NSGA-II on DTLZ3. NSGA-II, SPEA2 and
ǫ-NSGA-II also struggled on higher-dimensional DTLZ1 in terms of efficiency. MOEA/D
struggled on UF13 and 8D DTLZ7.

Looking at hypervolume and ǫ+-indicator, low efficiencies occur on UF6, UF8, UF10-
UF13 and higher-dimensional DTLZ problem instances. Comparing these results to Fig-
ure 4.4, reduced efficiency corresponds with low attainment probabilities. If the algorithm
fails to reliably generate approximation sets surpassing the attainment threshold, they will
also be marked with low efficiency. On the scalable DTLZ instances, we observe a rapid loss
in efficiency as the problem dimension increases. The Borg MOEA, ǫ-MOEA and MOEA/D
are the only MOEAs with high efficiency on the higher-dimensional multi-modal DTLZ1 and
DTLZ3 instances.

Although the reliability and efficiency of the algorithms are important, it is equally
important to understand their controllability. Figure 4.6 shows controllability, which is a
measure of the spatial distribution and correlation between parameter sets in the attainment
volume. The results are normalized such that the correlation dimensions are divided by
the dimension of the hypercube used to sample each algorithm’s parameter space. The
correlation dimension calculation considers only those parameter sets that are able to attain
the 75%-attainment threshold and consequently gives an indication of the distribution of
these parameter sets in the full parametric hypervolumes sampled for each algorithm. Cases
with low probability of attainment and high controllability signify the attainment volume
forms a tightly-clustered sweet spot in a subspace of the overall parameter space. Conversely,
cases with high probability of attainment and low controllability indicates the attainment
volume is large but sparsely populated.

For example, compare the hypervolume values for the Borg MOEA between Figure 4.4
and Figure 4.6. Figure 4.4 shows that the Borg MOEA has moderate attainment probabili-
ties, but Figure 4.6 indicates the attainment volume is tightly clustered and forms a “sweet
spot”. IBEA and SPEA2 show the opposite: their higher attainment probabilities corre-
spond often with lower controllability, particularly for GD and ǫ+-indicator. This suggests
these algorithms will be more difficult to parameterize in practice, as the attainment volume
is sparse. Overall, the Borg MOEA and ǫ-MOEA are the most controllable of the tested
algorithms. They still struggle on several UF problems and 8D DTLZ7. ǫ-NSGA-II and
MOEA/D are also strong competitors in terms of GD and ǫ+-indicator. It is interesting to
note that although the Borg MOEA’s multioperator search increases its parameterization
requirements, its adaptive search actually serves to make the algorithm easier to use and
more effective than the other algorithms on most problem instances.

Table 4.3 shows the number of problems each MOEA resulted in the best metric value
statistically tied for the best. Ties and statistical differences were determined using a 9-

63

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(a) Generational Distance (GD)

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(b) Hypervolume

U
F

1

U
F

2

U
F

3

U
F

4

U
F

5

U
F

6

U
F

7

U
F

8

U
F

9

U
F

1
0

U
F

1
1

U
F

1
2

U
F

1
3

2
D

4
D

6
D

8
D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

2
D

4
D

6
D

8
D

MOEA/D

Borg

GDE3

OMOPSO

ε-MOEA

IBEA

ε-NSGA-II

SPEA2

NSGA-II

(c) ǫ+-Indicator

Relative Dimension of the Attainment Volume

0.01.0 0.8 0.6 0.4 0.2

Figure 4.6: Controllability of each algorithm on the problems studied as measured using the
correlation dimension. Black regions indicate controllable algorithms with large sweet spots;
white regions indicate the algorithm is uncontrollable.

64

Table 4.3: Statistical comparison of algorithms counting the number of problems in which
each MOEA was best or tied for best. The Kruskal-Wallis and Mann-Whitney U tests are
used to check for statistical differences in the generational distance, hypervolume and ǫ+-
indicator values across the 50 random seed replicates. Counts are differentiated by the search
control metrics: best, probability of attainment (prob), efficiency (eff), and controllability
(cont).

Hypervolume Generational Distance ǫ+-Indicator
Algorithm Best Prob Eff Cont Best Prob Eff Cont Best Prob Eff Cont
Borg 31 18 17 26 31 27 28 32 30 18 21 28
ǫ-MOEA 23 14 24 24 29 30 30 29 22 22 27 27
ǫ-NSGA-II 19 14 14 19 29 28 27 28 19 18 21 26
OMOPSO 20 15 12 10 29 24 24 25 21 16 17 16
MOEA/D 23 4 19 18 32 24 30 27 27 13 25 27
GDE3 24 8 14 7 32 21 27 23 22 11 20 15
IBEA 18 5 11 7 28 23 25 5 11 5 16 3
NSGA-II 16 8 13 13 26 21 26 25 15 9 19 18
SPEA2 16 3 9 7 26 21 24 10 13 5 13 11

way Kruskal-Wallis test preceding 2-way Mann-Whitney U tests on the results from the
50 random seed replicates using 95% confidence intervals (Sheskin, 2004). These statistical
tests help guarantee that any observed differences are not a result of random chance. The
MOEAs in Table 4.3 are shown top to bottom in the perceived ordering from best to worst.
This ordering is weighted towards the hypervolume metric, as it is the strongest indicator
that combines proximity and diversity into a single metric value. Across all performance
measures, the Borg MOEA and ǫ-MOEA were superior on the most problems. Borg was most
dominant in terms of hypervolume, whereas ǫ-MOEA was dominant on generational distance
and ǫ+-indicator. IBEA, SPEA2 and NSGA-II showed the worst performance among the
tested algorithms. The large values seen in Table 4.3 for generational distance indicates that
most MOEAs were statistically indifferent from one another with respect to this metric.
The wider range of values in hypervolume and ǫ+-indicator implies a number of MOEAs
struggled to produce diverse approximation sets. Overall, algorithms like the Borg MOEA,
ǫ-MOEA, ǫ-NSGA-II, OMOPSO and MOEA/D should be preferred in practice. Note that
four of these five MOEAs include ǫ-dominance, providing experimental evidence in support
of the theoretical findings of Laumanns et al. (2002).

These results combined with the statistical study performed in Hadka and Reed (2012a)
helps solidify the dominance of the Borg MOEA over other state-of-the-art MOEAs. The
work by Vrugt and Robinson (2007) and Vrugt et al. (2009) focusing on multimethod search
supports the observation that while multimethod algorithms increase the number of algo-
rithm parameters, the end result is a more robust and controllable tool. Nevertheless, these
results show multimodal and many-objective problems still pose challenges, as is clearly
observed when looking at the effectiveness and controllability of algorithms.

Now that a coarse-grained picture of search successes and failures has been established,
we now explore a more fine-grained analysis of search controls using global variance decom-
position. Figure 4.7 and Figure 4.8 show the first-order and interactive effects of the search
parameters for the hypervolume metric for all problems. Each subplot is composed of shaded

65

First-Order Interaction

B
o

rg

Initial Population Size
Max Evaluations
Population-to-Archive Ratio
Selection Ratio
SBX Rate
SBX Distribution Index
PM Rate
PM Distribution Index
DE Crossover Rate
DE Step Size
UM Rate
PCX Number of Parents
PCX Number of O!spring
PCX Eta
PCX Zeta
UNDX Number of Parents
UNDX Number of O!spring
UNDX Eta
UNDX Zeta
SPX Number of Parents
SPX Number of O!spring
SPX Epsilon

ε-
N

S
G

A
-I

I

Population Size
O!spring Size
Max Evaluations
SBX Rate
SBX Distribution Index
PM Rate
PM Distribution Index

ε-
M

O
E

A

Population Size
O!spring Size
Max Evaluations
SBX Rate
SBX Distribution Index
PM Rate
PM Distribution Index

U
F1

U
F2

U
F3

U
F4

U
F5

U
F6

U
F7

U
F8

U
F9

U
F1

0
U

F1
1

U
F1

2
U

F1
3

2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

U
F1

U
F2

U
F3

U
F4

U
F5

U
F6

U
F7

U
F8

U
F9

U
F1

0
U

F1
1

U
F1

2
U

F1
3

2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

O
M

O
P

SO

Population Size

Max Evaluations
Archive Size

Mutation Probability
Mutation Perturbation Index

(Insensitive)(Highly Sensitive) Parameter Sensitivity

0%100% 80% 60% 40% 20%

Figure 4.7: Sobol’ sensitivities of individual algorithm parameters for all problem instances.
The first-order Sobol’ indices represent the single parameter contributions to the hypervol-
ume distributions’ variances. In a given problem instance, the first order indices for a given
algorithm must sum to be less than or equal to 1. Interactive effects represent each parame-
ter’s contributions to the hypervolume ensembles variances through combined impacts with
other parameters. Note the interactive effects do not sum to 1 for each problem dimension
because each shaded cell has variance contributions that are also present in other cells (i.e.,
higher order interactive parametric effects). X’s indicate cases when sensitivities are too un-
certain to draw conclusions as determined when the bootstrap confidence intervals exceeded
a window greater than +/- 20% around the expected sensitivity value.

66

First-Order Interaction

G
D

E
3

Population Size
Max Evaluations
DE Crossover Rate
DE Step Size

M
O

E
A

/D

Population Size
Max Evaluations
Neighborhood Size
Delta
Eta
DE Crossover Rate
DE Step Size
PM Rate
PM Distribution Index

S
P

E
A

2 Archive Size

Population Size
O!spring Size

Max Evaluations
SBX Rate
SBX Distribution Index
PM Rate
PM Distribution Index

N
SG

A
-I

I

Population Size
O!spring Size
Max Evaluations
SBX Rate
SBX Distribution Index
PM Rate
PM Distribution Index

U
F1

U
F2

U
F3

U
F4

U
F5

U
F6

U
F7

U
F8

U
F9

U
F1

0
U

F1
1

U
F1

2
U

F1
3

2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

U
F1

U
F2

U
F3

U
F4

U
F5

U
F6

U
F7

U
F8

U
F9

U
F1

0
U

F1
1

U
F1

2
U

F1
3

2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D 2D 4D 6D 8D

DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ7

IB
EA

Population Size
O!spring Size
Max Evaluations
SBX Rate
SBX Distribution Index
PM Rate
PM Distribution Index

(Insensitive)(Highly Sensitive) Parameter Sensitivity

0%100% 80% 60% 40% 20%

Figure 4.8: Sobol’ sensitivities of individual algorithm parameters for all problem instances.
The first-order Sobol’ indices represent the single parameter contributions to the hypervol-
ume distributions’ variances. In a given problem instance, the first order indices for a given
algorithm must sum to be less than or equal to 1. Interactive effects represent each parame-
ter’s contributions to the hypervolume ensembles variances through combined impacts with
other parameters. Note the interactive effects do not sum to 1 for each problem dimension
because each shaded cell has variance contributions that are also present in other cells (i.e.,
higher order interactive parametric effects). X’s indicate cases when sensitivities are too un-
certain to draw conclusions as determined when the bootstrap confidence intervals exceeded
a window greater than +/- 20% around the expected sensitivity value.

67

squares corresponding to the problem instance (x-axis) and the algorithm’s parameters (y-
axis). For the DTLZ problems, this visualization captures the change in parameter sensi-
tivities as the objective space’s dimension is increased. Black represents the most sensitive
parameters whereas white identifies parameters with negligible effects. The shading corre-
sponds to the % ensemble variance contributed by a given parameter or its interactions as
identified by Sobol’s global variance decomposition. Squares marked with an X indicate the
bootstrap confidence intervals exceeded a window greater than +/- 20% around the expected
sensitivity value (representing a 40% range), which implies the sensitivity indices could not
be reliably computed. A large confidence range in the computed sensitivities is caused by
the effects of parameterization not being significantly stronger than stochastic effects (i.e.,
low signal-to-noise). When this occurs, search is mostly independent of its parameters and is
heavily influenced by purely random effects within the evolutionary algorithms. Therefore,
we say the X’s indicate search failure.

Note Figure 4.7 focuses on the Borg MOEA, ǫ-MOEA, ǫ-NSGA-II and OMOPSO, as these
algorithms all share some combination of adaptive operators or ǫ-dominance archives. Fig-
ure 4.8 provides the sensitivities for the remaining algorithms. While these figures contains
a lot of information, there are several key observations. First, for several problems there are
strong first-order effects, indicating one or more parameters are independently responsible
for the algorithms’ performance. For the Borg MOEA, ǫ-NSGA-II, ǫ-MOEA and OMOPSO,
the key first-order parameter across most problems is the maximum number of evaluations.
This indicates that parameterizing the Borg MOEA, ǫ-NSGA-II, ǫ-MOEA and OMOPSO
should prove easier in practice as the first-order impact of parameters is controlled for the
most part by a single parameter, the maximum number of evaluations. Lengthening the
runtime of these MOEAs will help produce better results, assuming the optimum has yet to
be achieved. As a result, these algorithms should benefit from parallelization, as increasing
the number of evaluations should directly result in better performance. Interestingly, these
four MOEAs all utilize ǫ-dominance archives, suggesting that ǫ-dominance is an important
component for controllability. Table 4.3 and Figure 4.5 also show that the Borg MOEA,
ǫ-NSGA-II, ǫ-MOEA and OMOPSO are in fact highly efficient on many problem instances,
so it is possible to exploit their sensitivity to NFE to attain effective, reliable and efficient
search.

MOEA/D and NSGA-II show strong first-order effects for population size on a number
of problems. Hadka and Reed (2012a) show with control maps that these MOEAs require
larger population sizes in these cases. As the algorithm runtimes grow polynomially with
the population size, MOEA/D and NSGA-II are required to have long runtimes in order
to maintain their performance. MOEAs not sensitive to population size will scale better in
practice.

Across all tested algorithms we observe a strong trend of increasing interaction effects
with increasing objective count. The level of interaction appears dependent on the problem
instance, and may reflect problem difficulty. In particular, poor controllability in Figure 4.6
coupled with high levels of interaction between parameters indicate parameterization is dif-
ficult for a specific algorithm and problem instance. For instance, on UF11 the Borg MOEA

68

dominates the other tested algorithms in probability of attainment and controllability, as
shown in Figures 4.4 and 4.6. This is reflected in Figure 4.7 in the strong first-order sen-
sitivity to the maximum number of evaluations and weak interactive effects. On the other
hand, IBEA and GDE3 show strong first-order and interactive effects spread across multiple
parameters. We expect such MOEAs to be difficult to control due to the significance of many
parameters. This is confirmed in Figure 4.6 by the weak controllability of IBEA and GDE3
in hypervolume relative to the other tested MOEAs. In this manner, a better understanding
of how parameters effect search performance can be deduced from Figures 4.7 and 4.8.

A critical concern highlighted in Figure 4.8 for most MOEAs that do not use ǫ-dominance
archives is how their parameter sensitivities change significantly across problem types and
even within the same problem with increasing objective dimension. Moreover, their sen-
sitivities have increasingly complex interactive dependencies for many-objective problems.
Consequently, a user cannot use any “rule-of-thumb” beyond enumerative testing when us-
ing the algorithms in challenging many-objective applications, especially if they are multi-
modal. These results highlight the importance auto-adaptive search frameworks such as the
Borg MOEA that minimize controllability challenges while maintaining efficient and reliable
search.

In Hadka and Reed (2012a), we observed that for most problems, only one of the Borg
MOEA’s recombination operators were probabilistically dominant. In other words, the auto-
adaptive multi-operator approach used in the Borg MOEA identified a key operator for each
problem. However, Figure 4.7 shows that all of the operators strongly influence the overall
hypervolume performance. In Vrugt and Robinson (2007) and Vrugt et al. (2009), the authors
observed the same phenomenon in their multimethod approach — while a single operator
became probabilistically dominant in search, the remaining operators remained critical to
the overall success of the algorithm.

4.3 Conclusion

Due to the increasing interest in using MOEAs to solve many-objective problems, it is nec-
essary to understand the impact of objective scaling on search controls and failure modes.
In this study, we contribute a methodology for quantifying the reliability, efficiency and con-
trollability of MOEAs. In addition, this methodology clarifies the multivariate impacts of
operator choices and parameterization on search. We have observed that many algorithms
have difficulty in maintaining diverse approximation sets on problems with as few as four
objectives. In addition, we have shown the necessity of diversity-maintaining archives, such
as the ǫ-dominance archive, when applying MOEAs to problems with more than three ob-
jectives. A major contribution of this study is our proposed controllability measure, which
permits comparing MOEAs without arbitrary parameterization assumptions. Most algo-
rithms are reasonably reliable, efficient and controllable for attaining approximation sets
that are in close proximity to the reference sets; however, diversity is far less controllable as
a problem’s objective space increases in dimension. One of the major factors identified for
such search failures is multi-modality and the lack of ǫ-dominance archives.

69

Sobol’s global variance decomposition was used to establish the sensitivities of each al-
gorithm’s parameters on the hypervolume of its resulting approximation set. A shift in
parameter sensitivities from first-order to interactive effects was observed as the number of
objectives is increased. These results can be used by researchers and practitioners when es-
tablishing parameterization guidelines. Moreover, these results suggest the need for adaptive
search controls for many-objective optimization, while also indicating that adapting search
controls will be non-trivial at higher problem dimensions.

The Borg MOEA’s multioperator adaptivity strongly enhanced its overall effectiveness,
efficiency and controllability relative to the other algorithms tested. The Borg MOEA shows
consistent levels of effectiveness, efficiency and controllability for a majority of the prob-
lems tested, and had very dominant performance on higher dimensional problem instances.
By identifying search control issues, key parameters, and failure modes on test problems,
improvements to MOEAs and their potential applicability to real-world problems can be
assessed. While this study is only a first step towards understanding the impact of objective
scaling on MOEAs, it has yielded several insights into the challenges faced when applying
MOEAs to many-objective problems.

70

Chapter 5

Case Study: Diagnostic Assessment of
the Borg MOEA for Many-Objective
Product Family Design Problems

This chapter is drawn from the following paper: “Hadka, D., Simpson, T.W. and Reed,
P.M. (2012). Diagnostic Assessment of the Borg MOEA for Many-Objective Product Family
Design Problems. IEEE Congress on Evolutionary Computation, Brisbane, Australia, 10-15
June 2012, pp. 986-995.”

This chapter explores the application of the Borg MOEA on a real-world product family
design problem: the severely constrained, ten objective General Aviation Aircraft (GAA)
problem. The GAA problem represents a promising benchmark problem that highlights the
importance of using auto-adaptive search to discover how to exploit multiple recombination
strategies cooperatively. The auto-adaptive behavior of the Borg MOEA is rigorously com-
pared against its ancestor algorithm, the ǫ-MOEA, by employing global sensitivity analysis
across each algorithm’s feasible parameter ranges. This study provides the first Sobol’ sensi-
tivity analysis to determine the individual and interactive parameter sensitivities of MOEAs
on a real-world many-objective problem.

The remainder of this chapter is organized up as follows. Section 5.1 introduces the GAA
problem. Section 5.2 presents the experimental details that are based on the diagnostic
framework introduced in Chapter 4. Section 5.3 presents the diagnostic assessment results
from the GAA problem. Finally, Section 5.4 summarizes the findings of this chapter.

5.1 Introduction

In Chapter 4, we found that the Borg MOEA matched or exceeded the performance of the
other MOEAs on the majority of test problem instances, and was particularly effective on
the many-objective problems. Reed et al. (2012) extended this study by applying the same
nine algorithms to three real-world, water resource engineering applications. Across the
three water resource engineering applications, the Borg MOEA again proved to be efficient,

71

effective, reliable and easy-to-use (i.e., large parameter “sweet spots” (Goldberg, 2002)). This
suggests the Borg MOEA is a strong candidate MOEA for application to many-objective
engineering design problems.

To further explore the characteristics of the Borg MOEA, this chapter provides a detailed
statistical analysis of the Borg MOEA’s search controls relative to its non-adaptive ancestor,
the ǫ-MOEA, on a severely challenging real-world engineering design problem. It should be
noted that our prior comprehensive assessment of MOEAs showed that the Borg MOEA
was best overall when compared against eight state-of-the-art MOEAs, and the ǫ-MOEA
was a top performer among the non-adaptive traditional MOEAs (Hadka and Reed, 2012b).
The algorithms’ search controls are rigorously assessed using Sobol’ variance-based global
sensitivity analysis (Sobol’, 2001; Saltelli, 2002; Sobol’ and Kucherenko, 2005).

The product family design problem tested in this chapter is the General Aviation Aircraft
(GAA) design problem introduced by Simpson et al. (1996). Compared to existing product
family design problems (Simpson, 2005), it is a relatively small problem that involves the
design of three general aviation aircraft (a product family) that share common subsystems
but must satisfy the needs of various general aviation clients. “General aviation” refers to
all flights excluding military and commercial operations, and thus caters to a diverse set
of potential clientele, from recreational pilots to traveling business executives. As a single
aircraft cannot meet all individual needs, three aircraft are designed to accommodate 2, 4
and 6 passengers while satisfying a wide variety of performance and economic constraints.
The over-arching goal in the GAA product family design problem is the design of the three
aircraft to maximize the commonality of subsystems on all three aircraft to reduce costs
while simultaneously addressing the conflicting goal of maximizing the tailored performance
characteristics of the individual aircraft.

Simpson et al. (1996) introduced the GAA problem and solved it using a two-objective
formulation, but they found that they could not generate feasible points and had to allow 3%
constraint violations to attain design alternatives. Subsequent to its introduction, further
research into alternate formulations and solution strategies have also struggled when solving
the GAA problem (D’Souza and Simpson, 2003; Simpson and D’Souza, 2004). Shah et al.
(2011) was the first successful application of an MOEA, the ǫ-NSGA-II (Kollat and Reed,
2006), to the GAA problem, successfully generating a large number of potential constraint-
satisfying designs.

To characterize the difficulty of the GAA problem, Shah et al. (2011) performed an ex-
periment where they used Monte Carlo sampling to generate 50 million designs and obtained
only four constraint-satisfying designs. Furthermore, these four designs were all dominated
by designs produced by ǫ-NSGA-II. This highlights that unguided sampling explorations of
the problem hold little to no value for informing the decision-makers. For these reasons, the
GAA problem provides a compelling baseline for testing MOEAs on severely constrained
problems.

In this chapter, we follow the 27 decision variable, 10 objective and 1 aggregate constraint
violation formulation of the GAA problem used by Shah et al. (2011). Table 5.1 lists the
decision variables and their allowable range for each aircraft in the family. Table 5.2 lists the

72

Table 5.1: Design parameters and their respective ranges.

Design Variable Units Min Max
Cruise Speed Mach 0.24 0.48
Aspect Ratio - 7 11
Sweep Angle - 0 6
Propeller Diameter ft 5.5 5.968
Wing Loading lb/ft2 19 25
Engine Activity Factor - 85 110
Seat Width inch 14 20
Tail Length/Diameter Ratio - 3 3.75
Taper Ratio - 0.46 1

Table 5.2: Objectives and ǫ values.

Objective Units Min/Max ǫ
Takeoff Noise dB min 0.15
Empty Weight lb min 30
Direct Operating Cost $/hour min 6
Ride Roughness - min 0.03
Fuel Weight lb min 30
Purchase Price 1970 $ min 3000
Flight Range nm max 150
Max Lift/Drag Ratio - max 0.3
Max Cruise Speed kts max 3
Product Family Penalty Function - min 0.3

73

ten objectives being optimized for each individual aircraft. Readers are referred to Simpson
et al. (1996) and Shah et al. (2011) for full details on the GAA problem. The ǫ-NSGA-II
was not included in this study because our primary focus is demonstrating how the auto-
adaptive search operators of the Borg MOEA distinguish its performance from ǫ-MOEA. We
have verified that the Borg MOEA is fully superior to the ǫ-NSGA-II on the GAA problem
in a separate effort.

5.2 Methodology

Since the GAA problem includes side constraints, it is necessary to extend its design from
Chapter 3 to include constraint handling. In this and subsequent chapters, the ǫ-MOEA and
the Borg MOEA both employ the constraint handling technique proposed by Srinivas and
Deb (1994). Their approach extends binary tournament selection as follows:

1. If both solutions violate constraints, then the one with a lower aggregate constraint
violation is selected.

2. If one solution is feasible and the other solution violates constraints, then the feasible
solution is selected.

3. If both solutions are feasible, then Pareto dominance is used to select the solution.

Recall that ǫ-MOEA selects one parent from the population and the other from the
ǫ-dominance archive. On constrained problems, if no feasible solutions have been found
yet, then the ǫ-dominance archive may only contain one solution — the solution that least
violates the constraints. This is problematic because the lone solution in the ǫ-dominance
archive will always be selected as one of the parents. To avoid this issue, the parent selection
mechanism in ǫ-MOEA and the Borg MOEA were modified as follows:

1. If no feasible solutions have been found (i.e., the ǫ-dominance archive contains a single
solution), then both parents are selected from the population.

2. Otherwise, if feasible solutions have been found, then select one parent from the pop-
ulation and the other from the archive.

Figure 5.1 shows how constraint handling operates within the multioperator procedure.
First, one of the six operators is selected using the operator probability distribution. Second,
for an operator requiring k parents, k−1 are selected from the population using tournament
selection. If the archive contains feasible solutions, then the remaining parent is selected
randomly from the archive; otherwise, the remaining parent is selected randomly from the
population. Lastly, the resulting offspring are inserted back into the population and archive
following the same logic as ǫ-MOEA.

74

Population Archive

Recombination

(1)(k-1)

Evaluate

PCX+PM

UNDX+PM

SPX+PM

SBX+PM

DE+PM

UM

Archive

Contains

Feasible

Solutions?

No Yes

Figure 5.1: Flowchart of the Borg MOEA main loop that includes constraint handling. First,
one of the recombination operators is selected using the adaptive multi-operator procedure.
For a recombination operator requiring k parents, k − 1 parents are selected from the pop-
ulation using tournament selection. The remaining parent is selected randomly from the
archive if the archive contains feasible solutions; otherwise, it is selected randomly from the
population. The offspring resulting from this operator are evaluated and then considered for
inclusion in the population and archive.

75

5.2.1 Sobol’ Sensitivity Analysis

As discussed in detail in Chapter 4, Sobol’ sensitivity analysis is a form of variance decom-
position that attributes the variation observed in a model’s output to perturbations of the
model’s input (Saltelli et al., 2008). In Chapter 4, we explored the application of Sobol’
sensitivity analysis to understanding the effects of an MOEA’s parameters (e.g., popula-
tion size, number of function evaluations, mutation and crossover rates) on the end-of-run
performance of the algorithm. In this chapter, we extend this analysis by applying Sobol’
sensitivity analysis to ǫ-MOEA and the Borg MOEA for the GAA problem.

By using a special pseudo-random sampling technique proposed by Saltelli et al. (2008),
one can compute the first-, second- and total-order sensitivity indices using Sobol’ sensitivity
analysis. For this application, first-order indices reflect the impact of a single input parameter
on end-of-run performance, independent of all other parameters. Second-order effects capture
the pairwise interactions between parameters, identifying parameter combinations which
influence the behavior of MOEAs. Total-order effects sum the first-order effects with all
interactive effects (second-order, third-order, and so on) for a given parameter. By capturing
these interactions, researchers can identify the parameter combinations that are important
to each MOEA.

The results from Chapter 4 show that parameter interactions vary across problems and
even vary across the same problem class for different numbers of objectives. When parameter
interactions change dramatically across problems, the parameters of an MOEA need to be
tuned for each application. It is hypothesized that the auto-adaptive search in the Borg
MOEA overcomes these limitations to yield robust search regardless of the parameterization
choices (i.e., it has been shown to be highly controllable). The sensitivity analysis in this
study attempts to confirm this hypothesis on a real-world problem. Moreover, many existing
MOEAs are strongly biased by only considering the directional search provided by the SBX
and PM operators. This chapter examines the Borg MOEA’s multi-operator dynamics for
the GAA product family design problem.

5.2.2 Experimental Setup

To perform Sobol’ sensitivity analysis and present robust statistical results in the form of
attainment probabilities, each algorithm was run on the GAA problem using parameters
sampled across the algorithm’s full parameter space (see Table 5.3). The parameter samples
are produced using the Sobol’ sequence generator, which ensures that the parameters are
sampled uniformly from the parameter hyperboxes. For an MOEA with P parameters,
the Sobol’ sequence generator produces (2P + 2) ∗N parameterizations. Furthermore, each
parameterization is run by the MOEA using 50 random seed replications to fully characterize
performance.

This sampling strategy represents a Monte Carlo approximation of each MOEA’s full
joint probability distribution function (PDF) of performance from which we can rigorously
assess the best achieved value and probability of attainment measures. In total, this study
accumulates the results of 2000000 sets of MOEA results on the GAA problem.

76

Table 5.3: Sampled parameter ranges and default settings.

Parameter Min Max Default
(Initial) Population Size 10 1000 100
Max Evaluations 10000 1000000 50000
Injection Rate 0.1 1.0 0.25
SBX Rate 0.0 1.0 1.0
SBX Distribution Index 0.0 500.0 15.0
PM Rate 0.0 1.0 1/L
PM Distribution Index 0.0 500.0 20.0
DE Crossover Rate 0.0 1.0 0.1
DE Step Size 0.0 1.0 0.5
UM Rate 0.0 1.0 1/L
PCX # of Parents 2.0 10.0 3
PCX # of Offspring 1.0 10.0 2
PCX Eta 0.0 1.0 0.1
PCX Zeta 0.0 1.0 0.1
UNDX # of Parents 2.0 10.0 3
UNDX # of Offspring 1.0 10.0 2
UNDX Eta 0.0 1.0 0.5
UNDX Zeta 0.0 1.0 0.35
SPX # of Parents 2.0 10.0 3
SPX # of Offspring 1.0 10.0 2
SPX Epsilon 0.0 1.0 0.5

77

Given the computational demands of this study, the codes for ǫ-MOEA and the Borg
MOEA were implemented using the MOEA Framework Java library1 and executed on the
CyberSTAR compute cluster at the Pennsylvania State University. CyberSTAR consists of
384 2.66 GHz Intel Nehalem processors and 128 2.7 GHz AMD Shanghai processors.

5.2.3 Performance Metrics

Performance metrics are used to evaluate the approximation sets produced by running an
MOEA, allowing the comparison of approximation sets using numeric values. While hyper-
volume is a preferred performance metric (Fonseca and Fleming, 1996), its use in this study
is computationally infeasible due to the GAA problem having 10 objectives. Instead, the
following three performance measures are employed by this study, which are detailed in the
reference text by Coello Coello et al. (2007).

First, generational distance (GD) is used as a measure of proximity to the reference
set. GD is the average distance of approximation set solutions to the nearest reference set
solution. Thus, approximation sets nearer to the reference set result in lower GD values.

Second, inverted generational distance (IGD) measures the diversity of the approximation
set by averaging the distance of reference set solutions to the nearest approximation set
solution. Approximation sets with solutions near each reference set solution yield lower IGD
values.

Third, additive ǫ-Indicator (AEI) measures the consistency of the approximation set.
Since AEI measures the largest distance ǫ that the approximation set must be translated
to dominate the entire reference set, any region of the approximation set that poorly ap-
proximates the reference set will result in larger AEI values. An approximation set that
consistently approximates the entire reference set will result in lower AEI values.

All three metrics are normalized by the bounds of the reference set. The ideal value of
each is 0.

5.2.4 Best, Probability of Attainment and Efficiency

As discussed in Chapter 4, Sobol’ sensitivity analysis requires that we globally sample the full
parameterization space of each MOEA to approximate the joint PDF for their performance.
Consequently, we have defined rigorous measures of their performance to capture (1) the
best overall result, (2) the probability of attaining high quality results, and (3) the efficiency
in attaining high quality results. These metrics are defined in Chapter 4.

First, the best achieved value records the best metric value achieved across all runs of an
MOEA, reflecting the absolute best performance observed using that algorithm.

Second, the probability of attainment records the probability that an MOEA surpasses
a threshold of performance. For example, if the threshold is set to 0.1, then the probability
of attainment records the number of approximation sets measuring a metric value of ≤ 0.1.

1http://www.moeaframework.org/

78

In this experiment, we vary this threshold from 0 to 1 in increments of 0.01, which allows us
to show the change in attainment probabilities across a range of performance thresholds.

Finally, efficiency measures the minimum number of objective function evaluations (NFE)
required by the MOEA to produce results exceeding a threshold of performance with high
probability. This probability is computed by dividing the parameter hyperbox into bands
of 10000 NFE each and determining the fraction of parameters in each band that produce
results exceeding the threshold. The band with the minimum NFE that attains the threshold
with a probability ≥ 90% defines our measure of efficiency. For example, if the threshold is
set to 0.1 and an MOEA’s efficiency is the band 70000− 80000, then running the MOEA on
the problem for 80000 NFE has a high likelihood of producing approximation sets measuring
a metric value ≤ 0.1 across all of its sampled parameterizations. It is important to gener-
alize performance to this probabilistic context in order to capture efficiency that is robust
regardless of how an MOEA is parameterized (i.e., it is efficient and easy-to-use).

5.3 Results

ǫ-MOEA and the Borg MOEA were run using 50 random seed replicates for all of the
statistically sampled parameter inputs prescribed in the experimental setup section. Each
run produces an approximation set, all of which are combined to form the reference set.
This reference set is subsequently used to compute the GD, IGD and AEI metrics. The
reference set consists of 630 solutions total, with 112 produced by ǫ-MOEA and 518 solutions
produced by the Borg MOEA. Figure 5.2 shows the parallel coordinates plot of the reference
set, indicating the solutions produced by ǫ-MOEA and the Borg MOEA. The figure is drawn
such that the preferred direction for each objective is toward the bottom of each of the
vertical lines for each objective. Figure 5.2 shows that the Borg MOEA finds a far more
diverse set of solutions and that its solutions are more effectively discovering the extremes.

Note that we say an algorithm produced the reference set solution if it was not dominated
by any other solutions produced by the other algorithm. However, given that both ǫ-MOEA
and the Borg MOEA utilize ǫ as a problem-specific resolution for determining significant
differences between solutions, we can also ask how many reference set solutions are ǫ-covered
by each algorithm. A reference set solution is ǫ-covered by an algorithm if there exists a
solution in the approximation set whose distance from the reference set is smaller than ǫ.
Percentage-wise, ǫ-MOEA ǫ-covered 38.7% of the reference set when accumulating results
across all its runs. The Borg MOEA ǫ-covered 97.3% of the reference set across its runs. This
implies the Borg MOEA nearly perfectly specified the entire reference set for this problem.
It is also worth noting that the ǫ-values when using ǫ-dominance archiving are not algorithm
parameters. They represent the “significant precision” for each objective for an engineering
or real world calculation (i.e., in real-world applications, overly precise non-domination is
meaningless and can even be harmful). This fact is often lost when studies focus solely on
test functions that have no physical meaning.

79

202.54 0.2416.822568.9341918.07387.451.8059.331881.4973.25

74.04 2018.02 79.93 1.99 478.24 44684.29 2000.27 14.41 187.78 1.76

ε-MOEA Borg MOEA

Takeo!

Noise

Empty

Weight

Direct

Operating

Cost

Ride

Roughness

Fuel

Weight

Purchase

Price

Flight

Range

Max

Lift/Drag

Ratio

Max

Cruise

Speed

Product Family

Penalty Function

O
p

ti
m

u
m

Figure 5.2: Parallel coordinates plot of the reference set generated by ǫ-MOEA and the Borg MOEA. The traces in the
plot are colored by the algorithm which produced the solution. The ideal direction for each objective is downwards.

80

ε-MOEA Borg ε-MOEA Borg ε-MOEA Borg

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ta
n

ce
 f

ro
m

 Id
e

a
l V

a
lu

e

(T
h

re
sh

o
ld

)
GD IGD AEI

P
ro

b
a

b
ili

ty
 o

f
A

tt
a

in
m

e
n

t

100%

80%

60%

40%

20%

0%

Figure 5.3: Plots showing the best achieved metric value and probability of attainment for
each performance metric. The y-axis ranges across the metric values from 0 to 1. The circle
markers indicate the best achieved metric value by each algorithm. The shaded bars show
the probability of each algorithm producing results which match or exceed a threshold. The
threshold is the metric value in the y-axis. Black regions indicate 100% attainment; white
regions indicate 0% attainment.

5.3.1 Best Achieved Value, Probability of Attainment and Effi-
ciency

Next, we examine the overall best achieved value and attainment probabilities in Figure 5.3.
Each subplot in Figure 5.3 shows the results for the GD, IGD, and AEI metrics for both
algorithms. The y-axis provides the distance of the approximation set from the reference
set. Ideal performance would have all runs measuring a distance of 0 from the reference
set. The solid dots indicate the best achieved metric value for each algorithm (smallest
distance) across all of its runs. Thus, a solid dot nearer to the top of each subplot indicates
at least one parameterization of the algorithm performed ideally for a given metric. For all
three metrics, the Borg MOEA slightly outperforms ǫ-MOEA with regards to the overall
best achieved metric value. It should be noted that this is not a very strong measure
of performance. Users would be interested being able to attain this level of performance
regardless of their parameterization choices (i.e., a high probability of attainment across the
sampled parameterizations for each algorithm).

In Figure 5.3, the probability of attainment is shown by the shaded bars. Recall that the
y-axis shows the threshold, varying in distance from the reference set. The shading represents
the probability of the parameterizations exceeding the threshold value, where black indicates
100% attainment probability and white indicates 0% attainment probability. Intermediate
probabilities appear as a shade of gray as noted in the key in the figure. For GD and IGD,
the Borg MOEA has a 100% attainment probability up to metric values within a distance of
0.02 of the reference set. ǫ-MOEA, on the other hand, begins to have trouble reaching GD
and IGD values within a distance of 0.1 of the reference set.

An even more dramatic difference is seen in AEI. Here, it is very unlikely that ǫ-MOEA
produces AEI values less than 0.5. ǫ-MOEA can only reliably attain AEI values larger than
0.8. Recall that AEI is a measure of consistency. This result implies that ǫ-MOEA is very
inconsistent, and produces results that poorly approximate some portions of the reference
set (i.e., it is prone to gaps in its approximation sets). The Borg MOEA provides more

81

0.0

0.2

0.4

0.6

0.8

1.0
ε-MOEA Borg ε-MOEA Borg ε-MOEA Borg

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

D
is
ta
n
ce

 f
ro
m
 Id

e
a
l V

a
lu
e

(T
h
re
sh

o
ld
)

GD IGD AEI

N
F
E
 t
o
 R
e
a
ch

 T
h
re
sh

o
ld
 w

it
h

P
ro
b
a
b
ili
ty
 >
 9
0
%

< 10000

200000

400000

600000

800000

> 1000000

Figure 5.4: Plots showing the efficiency for each performance metric. The y-axis ranges
across the metric values from 0 to 1. The shaded bars show the minimum NFE required for
each algorithm to match or exceed the threshold of the y-axis. Black regions indicate few
NFE are required; white regions indicate more than 1000000 evaluations (the upper limit in
this study) are required.

consistent results, showing strong probabilities up to AEI values of 0.25.
Similar in design to Figure 5.3, Figure 5.4 shows the efficiency of the algorithms. Here, the

shading indicates the minimum NFE required for the algorithm to produce results meeting or
exceeding the threshold of the y-axis with a high probability (≥ 90% of the parameterizations
sampled in a given band of NFE are successful in meeting or exceeding the metric threshold).
We observe that the Borg MOEA exhibits substantially higher efficiency than ǫ-MOEA. For
GD and IGD, the Borg MOEA can produce results within a distance of 0.05 of the ideal
metric value with as few as 50000 NFE. For AEI, the Borg MOEA is dramatically more
efficient and effective. ǫ-MOEA requires more than 1000000 NFE to get within a distance of
0.8 of its ideal value. Figure 5.4 in combination with attainment results in Figure 5.3 show
that beyond this point, ǫ-MOEA is failing to attain any reliable search across its sampled
parameterizations.

5.3.2 Sobol’ Sensitivity Analysis

Sobol’ sensitivity analysis provides information about the importance of each individual
MOEA parameter as well as its interactions with other parameters. Figure 5.5 shows the
first-, second-, and total-order sensitivities in each plot with respect to their AEI perfor-
mance. Around the outside of the plots, the filled circles correspond to each parameter
of the algorithms. The size of the circle reflects the first-order sensitivity. A small circle
indicates that the parameter has no effect on the performance of the algorithm, whereas a
large circle indicates that the parameter has a significant effect on the algorithm. Strong
first-order sensitivities are helpful if they exist because they distinguish which parameter(s)
users should focus on when using that particular MOEA. The rings around the circles show
total-order effects. Total-order sensitivities represent the fully interactive, non-separable
multi-parameter controls. Larger rings indicate larger total-order sensitivities. If the rings
are significantly larger than the filled first-order circles, then most of a parameter’s influence
emerges through its interactions with other parameters. The lines between the circles show
second-order effects in Figure 5.5. Thicker lines indicate stronger second-order interaction

82

Max

Evaluations

Injection

Rate

SBX

Rate

SBX

Distribution

Index

PM

Rate

PM

Distribution

IndexDE

Crossover

Rate

DE

Step

Size

UM

Rate

PCX

of

Parents

PCX

of

O�sring

PCX

Eta

PCX

Zeta

UNDX

of

Parents UNDX

of

O�spring

UNDX

Eta

UNDX

Zeta

SPX

of

Parents

SPX

of

O�spring

SPX

Epsilon

Initial

Population

Size

Max

Evaluations

Population

Size

SBX

Rate

SBX

Distribution

Index

PM

Rate
PM

Distribution

Index

ε-MOEA Borg

First-Order Sensitivities Total-Order Sensitivities Second-Order Sensitivities

53% 1%

77% 12%
25% 1%

Figure 5.5: First-, second- and total-order sensitivities between the parameters controlling ǫ-MOEA and the Borg MOEA
with respect to their AEI performance. The circles represent the first-order sensitivities of each parameter, where larger
circles indicate the parameter has a strong impact on performance. Rings around each circle indicate total-order sensi-
tivities, where larger rings indicate the parameter contributes many higher-order interactions. Lines between parameters
indicate second-order sensitivities, where thicker lines indicate the two parameters interact strongly to affect performance.

83

between the two parameters.
Starting with ǫ-MOEA, we see each parameter has small first-order sensitivities, moderate

second-order sensitivities, yet large total-order sensitivities. Since the total-order sensitiv-
ity for a parameter is a sum of its first-order and all interactive sensitivities involving that
parameter, this implies ǫ-MOEA has many higher-order interactions among its parameters.
In traditional non-adaptive MOEAs, such as the ǫ-MOEA, strong higher-order interactions
among an algorithm’s parameters suggest the algorithm is uncontrollable. It will be impossi-
ble to independently tune its parameters as they are all fully interdependent. This supports
our prior observations that show traditional non-adaptive MOEA’s parameter controls are
dominantly interactive and change with problem class or dimension of the objective space
even within the same problem class (Hadka and Reed, 2012b). This is a severe weakness for
real-world application of non-adaptive MOEAs.

The Borg MOEA, on the other hand, shows a strong dependence on the maximum number
of objective function evaluations. This does not imply it requires more function evaluations
than ǫ-MOEA; alternatively, it means that increasing the number of function evaluations is a
clear and easy way to improve the Borg MOEA’s performance. This result confirms previous
observations of Hadka and Reed (2012b) on this real-world problem. This dependence is
shown in the strong first-order sensitivities as well as the strong second-order interactions
with other parameters. The remaining parameters have far less effect, showing only small
amounts of first-, second- and total-order sensitivities. This suggests that the Borg MOEA
is dramatically less sensitive to the parameterization of its operators. Figure 5.5 clearly
shows that all of the Borg MOEA’s search operators influence its overall performance given
their strong interactions with the maximum number of evaluations. It is interesting to note
that PCX, SBX and SPX do have some pairwise interactions, which indicate that the Borg
MOEA’s overall performance is influenced by how these operators work cooperatively.

5.3.3 Auto-Adaptive Operator Probabilities

The Borg MOEA’s auto-adaptive and cooperative multi-operator search can be further ex-
plored by analyzing the dynamics of its operator probabilities. Figure 5.6 shows traces from
50 seeds of the Borg MOEA using its default parameter settings (shown in Table 5.3). The
y-axis of each trace shows the probability each specific operator is used during a run of the
Borg MOEA. Figure 5.6 shows that for the first 20000 NFE, three operators are cooperating:
SBX, PCX and SPX. Each operator is allocated approximately 30% by the auto-adaptive
operator selection mechanism during this initial search phase. This initial search phase ac-
counts for the rapid convergence to the reference set, as observed in the efficiency results
(see Figure 5.4). After 20000 evaluations, PCX dominates. PCX’s parent-centric behavior
is well-suited for introducing small, beneficial perturbations to a design, allowing fine-tuning
near the end of a run. Additionally, the strong influence from PCX can be observed in
the sensitivity results in Figure 5.5, where PCX shows moderate first- and second-order
sensitivities.

Combined with the results presented earlier, Figure 5.6 provides the first evidence of the
beneficial effect of multiple search operators on a real-world problem. ǫ-MOEA is limited

84

SBX DE PCX

UNDX SPX UM

1.0

0.0

0.8

0.6

0.4

0.2

5000040000300002000010000

1.0

0.0

0.8

0.6

0.4

0.2

5000040000300002000010000

1.0

0.0

0.8

0.6

0.4

0.2

5000040000300002000010000

1.0

0.0

0.8

0.6

0.4

0.2

5000040000300002000010000

1.0

0.0

0.8

0.6

0.4

0.2

5000040000300002000010000

1.0

0.0

0.8

0.6

0.4

0.2

5000040000300002000010000

P
ro

b
a

b
ili

ty
 o

f
S

e
le

ct
in

g
 O

p
e

ra
to

r
P

ro
b

a
b

ili
ty

 o
f

S
e

le
ct

in
g

 O
p

e
ra

to
r

NFE NFE NFE

Figure 5.6: Demonstration of the Borg MOEA’s auto-adaptive and cooperative multi-
operator search, showing the operator probabilities from 50 seeds of the Borg MOEA using
its default parameter settings (shown in Table 5.3).

to the SBX operator, but Figure 5.6 shows that other search operators are more effective
on this problem. Furthermore, no single operator was sufficient. It is both the individual
contributions from one or more operators and their interactions that lead to the behavior
seen in the Borg MOEA. Figure 5.5 shows that even non-dominant operators like DE, UNDX
and UM have second-order interactions with NFE that influence the Borg MOEA’s final
performance across its parameterizations.

5.4 Conclusion

In this study, we characterized the effects of the enhancements introduced in the Borg MOEA
over its predecessor, the ǫ-MOEA, on the GAA product family design problem. This study
also provides the first full Sobol’ diagnostic assessment of the Borg MOEA on a severely
challenging, real-world, 10-objective test problem. The results show that the enhancements
proposed by the Borg MOEA significantly improve reference set coverage and increase the
probability of producing high-quality results. Such gains are critical in real-world scenarios,
since the decision-maker can be confident that the Borg MOEA is producing high-quality
solutions with a high probability with minimal sensitivities to its parameters.

Our results confirm the sensitivities first identified by Hadka and Reed (2012b) on a
number of analytical test problems. The Borg MOEA’s performance is highly efficient and

85

can be easily improved by increasing its runtime (i.e., the number of objective function
evaluations). This implies two important conclusions. First, by not relying heavily on other
parameters, the Borg MOEA is very controllable. The user need not be concerned with
parameterization and must only allocate a sufficient amount of processing time in order
to produce high-quality results. Second, its dependency on runtime suggests that the Borg
MOEA will benefit greatly from parallelization strategies. A simple master-slave architecture
will increase the number of objective function evaluations available to the algorithm and,
consequently, will improve the quality and reliability of the results. Although the Borg
MOEA is dependent on runtime, the efficiency measure demonstrates that significantly fewer
NFE are required relative to ǫ-MOEA to produce near-optimal results with high likelihood.
This confirms prior work in showing that the Borg MOEA is highly efficient in attaining
high-quality Pareto approximation sets in a limited number of evaluations.

Finally, we observed that combinations of operators were active in the Borg MOEA
throughout its search. This confirms observations by Vrugt and Robinson (2007) and Vrugt
et al. (2009) that multiple operators benefit multiobjective optimization. While we identified
SBX, PCX and SPX as the dominant search operators for the Borg MOEA, it is important to
note that this does not necessarily imply that the remaining three operators are unnecessary.
While DE, UNDX and UM were not selected with high probability, they do contribute
to the result by periodically producing new solutions as represented in these operator’s
second-order interactions with run duration. Overall this study demonstrates that the Borg
MOEA is highly controllable in challenging real-world applications and can, consequently,
dramatically increase the size and scope of problems that can be effectively addressed. Future
work entails tackling other challenging product family design problems and computationally-
intensive engineering design challenges encountered in complex systems design.

86

Chapter 6

Large-Scale Parallelization of the
Borg MOEA

This chapter is drawn from the paper “Hadka, D., Reed, P.M., and Madduri, K. Large-
Scale Parallelization of the Borg MOEA for Addressing the Design of Complex Engineered
Systems. Evolutionary Computation, In Review.”

This chapter describes two alternative parallel implementations of the Borg MOEA: (1)
the master-slave Borg MOEA and (2) the multi-master Borg MOEA. The master-slave im-
plementation is designed to scale up to several thousand processors while the multi-master
implementation is designed to scale on emerging Petascale systems (i.e., architectures with
greater than 100000 processors). Both implementations retain the auto-adaptive nature
of the serial Borg MOEA, but include several improvements to increase the efficiency and
reliability of the Borg MOEA on large, complex engineering problems.

The remainder of this chapter is organized as follows. Section 6.1 discusses the need for
a large-scale parallel version of the Borg MOEA capable of scaling on emerging Petascale
systems. Section 6.2 overviews the serial implementation of the Borg MOEA and discusses
several extensions to improve the efficiency and reliability of the algorithm on severely con-
strained, complex engineered systems. Section 6.3 introduces the master-slave and multi-
master implementations of the Borg MOEA. Finally, Section 6.4 concludes this chapter.
Analysis of the parallel implementations is provided in Chapter 7 and Chapter 8.

6.1 Introduction

As high performance computing capabilities continue their exponential growth, engineers
continue to increase the fidelity of their models and the complexity of the systems consid-
ered in design optimization (Venkataraman and Haftka, 2004; Simpson and Martins, 2011;
Bloebaum and McGowan, 2010). In these complex engineered systems, decision-makers no
longer want a single, numerical solution to a design problem — they instead want the abil-
ity to explore and visualize tradeoffs between multiple conflicting objectives to aid them in
understanding the range of potential solutions that are available (Balling et al., 1999; Kollat

87

and Reed, 2007; Simpson and Martins, 2011; Bloebaum and McGowan, 2010).
One of the first design challenges encountered when optimizing complex engineered sys-

tems is the formulation of the problem (Woodruff et al., 2013). The problem formulation
is often tied to the optimization strategy, and is a potential source for negative decision
biases. Cognitive myopia refers to the decision bias introduced in highly aggregated, low
dimensional formulations for design objectives where optimization may cause stakeholders
to inadvertently ignore alternatives that would otherwise influence their decision preferences
(Hogarth, 1981). Cognitive hysteresis is another form of decision bias where highly restric-
tive definitions of optimality often reinforce the decision-maker’s preconceptions that limit
the diversity of alternatives discovered in the process of design (Gettys and Fisher, 1979).
The use of highly aggregated objective formulations and severe constraints when abstracting
design preferences for a complex engineered system leads to the identification of alterna-
tives in extreme regions of the decision space whose performance is often considered inferior
when decision-makers are able to consider additional design relevant performance measures
(Franssen, 2005; Brill et al., 1990). Instead, Woodruff et al. (2013) proposes a many-objective
visual analytics (MOVA) framework wherein problem formulation, many-objective optimiza-
tion, negotiated design selection, and interactive visualization are exercised as one fluid pro-
cess, allowing the problem formulation to change and adapt given new knowledge gained from
optimization and visualization. With this approach, the optimization algorithm is given the
opportunity to explore higher-dimensional spaces to discover tradeoffs, and the potential for
negative decision biases that may result from restrictive definitions of optimality. The ben-
efits of using many-objective formulations has been demonstrated in a number of successful
applications (Fleming et al., 2005; Ferringer et al., 2009; Kasprzyk et al., 2009; Reed et al.,
2012; Fu et al., 2012; Kasprzyk et al., 2012; Woodruff et al., 2013).

To facilitate the MOVA framework, it is necessary to employ many-objective search tools
that can effectively search the higher-dimensional problem formulations while minimizing
the time required to explore alternative candidate problem formulations. Rapid evaluations
of multiple competing formulation hypotheses allow fluid feedback between the optimization
process, design selection, interactive visualization, and problem reformulation. There exist
a number of challenges in this regard, particularly when solving complex engineered sys-
tems. Complex engineered systems often feature challenging problem properties, including
(1) many-objective formulations, (2) multi-modality (or false optima), (3) nonlinearity, (4)
discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also
called epistasis) (Reed et al., 2012). These properties prohibit the use of traditional optimiza-
tion techniques, and often require the use of metaheuristics like multiobjective evolutionary
algorithms (MOEAs). MOEAs are continuing to grow in popularity in many engineering
fields as a result of their ability to approximate the set of Pareto optimal (Pareto efficient)
solutions in a single run. However, the existence of these challenging problem properties
or even subsets of these properties can cause significant search failures in MOEAs (Coello
Coello et al., 2007; Nicklow et al., 2010; Wang et al., 2011; Reed et al., 2012; Hadka et al.,
2012; Woodruff et al., 2013). For instance, it is well documented that many-objective, multi-
modal, and non-separable problems can cause many MOEAs to struggle or even outright

88

fail to find high-quality solutions to an optimization problem (Purshouse and Fleming, 2003,
2007; Ishibuchi et al., 2008a,b; Hadka and Reed, 2012b).

For these reasons, an MOEA that can effectively optimize complex engineered systems
within the MOVA framework is desirable. The Borg MOEA is a strong candidate since
rigorous studies have demonstrated its ability to solve problems expressing these challenging
problem properties, often outperforming other contemporary MOEAs (Reed et al., 2012;
Hadka and Reed, 2012a; Hadka et al., 2012). Its strength comes from its auto-adaptive
features that tailor the algorithm to specific problem properties. For instance, most con-
temporary MOEAs employ a single search operator set (i.e., recombination and mutation).
The Borg MOEA instead includes a collection of search operators and automatically adapts
itself to favor the search operator(s) that are most effective. Often, dynamically varying
combinations of search operators yield the best performance. Moreover, prior studies have
shown that the Borg MOEA is highly controllable and insensitive to its parameterization
(Woodruff et al., 2012; Hadka and Reed, 2012a,b; Hadka et al., 2012; Reed et al., 2012). This
provides an important advantage within the MOVA framework: the MOVA decision-maker
can focus on their problem versus the design and parameterization of the many-objective
search tool. With the Borg MOEA, the algorithm contains a variety of search operators that
will remain effective across a range of problem domains (Reed et al., 2012).

There are two remaining challenges before a many-objective search tool like the Borg
MOEA can be deployed operationally within the MOVA framework. First, the search tool
must support rapid feedback for computationally demanding optimization tasks. Not only
are the function evaluation times considered in design applications increasing, but the num-
ber of function evaluations (NFE) required to converge to high-quality solutions for highly
challenging many-objective applications is also increasing. For example, a problem with an
objective function evaluation time of 0.1 seconds running on an MOEA for 1000000 NFE
will require 27 hours to complete a single random seed trial, not including any additional
overhead required by the MOEA. Second, the search tool must converge to high-quality
approximations with high reliability. Since MOEAs are stochastic optimization tools, every
run of an MOEA may produce substantially different results. This issue often dramatically
increases the demands for highly challenging applications where multiple seed trials are re-
quired to compensate for diversity maintenance and convergence failures within the available
wall clock for an application (Reed et al., 2012). In the example above, a typical 50 random
seed trial analysis increases the computational time for attaining an improved approximation
to the Pareto optimal set to more than 50 days. Additionally, if the output of the search tool
is not reliable, the decision-maker can not depend on it to provide guidance within MOVA.

This study contributes two parallel variants of the Borg MOEA designed to facilitate rapid
and reliable optimization. A goal for this study is to provide reduced wall clock optimization
by parallelizing objective function evaluations across thousands or even tens of thousands
of processors. This study explores the relative effectiveness, efficiency, and reliability of
two alternative parallelization schemes for the Borg MOEA. A simple master-slave Borg
MOEA implementation distributes function evaluations across many slave nodes without
changing the core serial behavior of the algorithm. Our second parallelization scheme is the

89

multi-master Borg MOEA implementation, which runs many concurrent instances of the
master-slave Borg MOEA. However, unlike the classic island-based model, the multi-master
Borg MOEA introduces a global controller node responsible for detecting search failures in
individual islands and providing guidance derived from a global archive tracking high-quality
solutions and search operators. The multi-master Borg MOEA implementation generalizes
the serial algorithm’s auto-adaptive search to massively parallel computing architectures, and
exploits the enhanced diversity maintenance of the island model for parallelization (Coello
Coello et al., 2007; Tang et al., 2007) while simultaneously maximizing the speedup attained
with the master-slave scheme.

6.2 The Serial Borg MOEA

The Borg MOEA consists of three key components: (1) an ǫ-dominance archive to maintain a
diverse set of Pareto approximate solutions, (2) an ǫ-progress restart mechanism triggered by
search stagnation to avoid preconvergence to local optima, and (3) the use of multiple search
operators that adapt to a given problem’s landscape (Hadka and Reed, 2012a). These com-
ponents are adaptive in nature, allowing the Borg MOEA to adapt to local search conditions
encountered in stochastic, complex engineered systems. Additional complexities of complex
engineered systems have necessitated several extensions to the Borg MOEA. This includes
(1) constraint handing, (2) improved operator probabilities to handle severely-constrained
search, and (3) a new adaptive extension to the ǫ-progress restart mechanism. This section
details the serial Borg MOEA with the addition of these new extensions.

6.2.1 Constraint Handling

In Chapter 5, we extended the Borg MOEA to support constraint handling for use with
the General Aviation Aircraft (GAA) problem using the technique proposed by Srinivas and
Deb (1994). We reiterate this constraint handling mechanism here since its use in severely
constrained complex engineered systems is vital. This mechanism extends binary tournament
selection as follows:

1. If both solutions violate constraints, then the one with a lower aggregate constraint
violation is selected.

2. If one solution is feasible and the other solution violates constraints, then the feasible
solution is selected.

3. If both solutions are feasible, then Pareto dominance is used to select the solution.

The Borg MOEA selects one parent from the population and the other from the ǫ-
dominance archive as illustrated in Figure 6.1. On constrained problems, if no feasible
solutions have been found yet, then the ǫ-dominance archive may only contain one solution
— the solution that least violates the constraints. This is problematic because the lone

90

Population Archive

Recombination

(1)(k-1)

Evaluate

PCX+PM

UNDX+PM

SPX+PM

SBX+PM

DE+PM

UM

Archive

Contains

Feasible

Solutions?

No Yes

Figure 6.1: Flowchart of the Borg MOEA main loop. First, one of the recombination oper-
ators is selected using the adaptive multi-operator procedure described in Section 6.2.2. For
a recombination operator requiring k parents, k−1 parents are selected from the population
using tournament selection. The remaining parent is selected randomly from the archive if
the archive contains feasible solutions; otherwise it is selected randomly from the population.
The offspring resulting from this operator are evaluated and then considered for inclusion in
the population and archive.

91

solution in the ǫ-dominance archive will always be selected as one of the parents. To avoid
this issue, the parent selection mechanism in the Borg MOEA is modified as follows:

1. If no feasible solutions have been found (i.e., the ǫ-dominance archive contains a single
solution), then both parents are selected from the population.

2. Otherwise, if feasible solutions have been found, then select one parent from the pop-
ulation and the other from the archive.

Figure 6.1 shows how constraint handling operates within the multioperator procedure.
First, one of the six operators is selected using the operator probability distribution. Second,
for an operator requiring k parents, k−1 are selected from the population using tournament
selection. If the archive contains feasible solutions, then the remaining parent is selected
randomly from the archive; otherwise, the remaining parent is selected randomly from the
population. Lastly, the resulting offspring are inserted back into the population and archive
following the same logic as the original Borg MOEA (Hadka and Reed, 2012a).

6.2.2 Auto-Adaptive Multi-Operator Search

One of the problems encountered when using MOEAs is the inability to know a priori which
recombination operator performs best on a given problem. Moral et al. (2006) first proposed
the use of multiple search algorithms in their switching algorithm. This switching approach
involves switching randomly to a different search algorithm if certain criteria for progress
are not met. Vrugt and Robinson (2007) and Vrugt et al. (2009) proposed a more adap-
tive approach, AMALGAM, whereby the application of each search algorithm is controlled
probabilistically based on the performance attained by each algorithm. The key limitations
of both approaches is their use of algorithms that scale poorly on many-objective problems.
The Borg MOEA improves upon these designs by integrating multiple search operators in
a highly adaptive framework. Furthermore, the full suite of variational operators utilized in
the Borg MOEA were not considered in prior multi-method approaches. This is important
as the Borg MOEA is better described as an MOEA framework that instantiates itself al-
gorithmically based on which mating and mutation operators or operator combinations are
most effective while searching a given problem.

The Borg MOEA exploits the following six search operators:

1. Simulated Binary Crossover (SBX) (Deb and Agrawal, 1994)

2. Differential Evolution (DE) (Storn and Price, 1997)

3. Parent-Centric Crossover (PCX) (Deb et al., 2002a)

4. Simplex Crossover (SPX) (Tsutsui et al., 1999)

5. Unimodal Normal Distribution Crossover (UNDX) (Kita et al., 1999)

92

6. Uniform Mutation (UM) applied with probability 1/L

In addition, offspring produced by SBX, DE, PCX, SPX, and UNDX are mutated using
polynomial mutation (PM) (Deb and Agrawal, 1994). It should be noted that these operators
provide a variety of offspring distributions. For instance, SBX, PCX, and PM produce
offspring near one of the parents. Such small perturbations helps fine-tune existing designs.
SPX and DE result in larger perturbations, allowing the MOEA to translate across large
landscapes efficiently. UNDX produces offspring about the centroid of the parents, quickly
converging to valleys in the landscape. UM is the most disruptive of the operators, which
aids in adding diversity to the population to prevent preconvergence.

Another key difference between these operators is rotational-invariance. In the ideal case,
all decision variables are independent and can thus be optimized independently. However, it
is common in complex engineered systems to encounter large amounts of interaction (epis-
tasis) between decision variables. SBX and PM are tailored for problems with independent
decision variables. PCX, SPX, UNDX, and DE are rotationally-invariant, and will often
perform better on non-separable, epistatic problems.

The Borg MOEA uses all six operators, but adapts the probability that each operator
is applied based on the success of each operator from prior iterations. The original Borg
MOEA implementation based its operator probabilities on which operators contributed the
current members of the ǫ-dominance archive. We call this strategy “membership”. Mem-
bership favors search operators that contribute high-quality and diverse solutions to the
ǫ-dominance archive, but this becomes problematic when the ǫ-dominance archive is small,
as the probabilities are based on only a small sample of Pareto approximate solutions. There
are three potential causes of small archives: (1) a new solution was added to the archive
that dominates most or all of the existing members, (2) the ǫ values are too large, or (3) the
problem is heavily constrained and is unable to find feasible solutions.

An alternative strategy is to base operator probabilities on which operators contributed
the most recent additions to the ǫ-dominance archive. We call this strategy “recency”.
Consider how recency handles the three cases above. For case (1), recency will base the
operator probabilities on the additions that lead up to the most recent dominating solution.
For case (2), recency tracks any addition to the archive, even if the change is within an
occupied ǫ-box (only one solution can reside in an ǫ-box, and the algorithm favors those
nearest to the optimal corner of the ǫ-box). For case (3), recency will favor those operators
that produce solutions with fewer constraint violations, since the solution with the fewest
constraint violations is always accepted into the archive. In all cases, recency collects valuable
information concerning which operators contributed to the archive.

The Borg MOEA is modified to use both strategies. The operator probabilities are based
on both membership and recency. This allows the algorithm to derive operator probabilities
from a larger and more informative sample. In this study, we track the most recent 50
additions to the archive when calculating recency. Our implementation uses a bounded list,
called the recency list, to keep track of the most recent additions to the archive.

More concretely, given K > 1 operators, the Borg MOEA maintains the probabilities
{Q1, Q2, . . . , QK}, Qi ∈ [0, 1], of applying each operator to produce the next offspring.

93

These probabilities are initially set to Qi = 1/K and are updated periodically. To up-
date the probabilities, first count the archive membership contributed by each operator,
{M1,M2, . . . ,MK}, where Mi is the number of solutions in the ǫ-dominance archive that
were produced by the i-th operator. Then count recency, {R1, R2, . . . , RK}, where Ri is the
number of solutions in the recency list that were produced by the i-th operator. Afterward,
each Qi is updated by

Qi =
Mi +Ri + ς∑K

j=1(Mj +Rj + ς)
. (6.1)

The constant ς > 0 prevents the operator probabilities from reaching 0, thus ensuring no
operators are “lost” during the execution of the algorithm. In this study, we use ς = 1.

6.2.3 ǫ-Progress Triggered Restarts

Since the ǫ-dominance archive is the set of all non-dominated solutions produced by the
MOEA, Hadka and Reed (2012a) propose monitoring the ǫ-dominance archive to detect
search stagnation. If no new non-dominated solutions are accepted into the ǫ-dominance
archive over a period of time, then the MOEA has stagnated. For instance, the MOEA may
be stuck at a local optima. This mechanism of monitoring the ǫ-dominance archive for search
stagnation is called ǫ-progress. In the Borg MOEA, if the entire population is evolved and
the ǫ-dominance archive remains unchanged (no ǫ-progress), then a restart is triggered.

A restart involves several steps designed to help the algorithm escape local optima and
introduce additional diversity into the search population. First, the population is emptied.
Second, the population is resized relative to the ǫ-dominance archive. Several studies theo-
retically and experimentally demonstrate that maintaining a population size relative to the
Pareto approximate set, as inferred by the ǫ-dominance archive size, helps avoid preconver-
gence (Horn, 1995; Mahfoud, 1995; Kollat and Reed, 2006; Hadka and Reed, 2012a). Finally,
the population is filled with all solutions in the ǫ-dominance archive. Any remaining slots
in the population are filled with randomly-selected ǫ-dominance archive members that un-
dergo uniform mutation applied with probability 1/L. This seeding reintroduces previously-
discovered non-dominated solutions into the search population but also introduces additional
diversity through the mutation operator.

On complex engineered systems, the small perturbations introduced by a mutation prob-
ability of 1/L may not be sufficient to escape the local optima. Small perturbations also
do not help discover other disjoint Pareto optimal regions. However, simply increasing the
mutation probability is not straightforward. Larger perturbations are disruptive, and can
slow search by introducing many sub-optimal solutions into the population. We propose
in this study an adaptive restart strategy that identifies the smallest mutation probability
required to escape the local optima.

The Borg MOEA starts with a mutation probability of 1/L. Whenever a restart occurs
that fails to escape the local optima, the mutation probability is increased. When a restart
is successful, the mutation probability is decreased. The speed at which the probabilities
change is controlled by a parameter called the “mutation index”, mindex. This index starts

94

with value 0 and is incremented or decremented when restarts are unsuccessful or successful,
respectively. A restart is unsuccessful if there are two back-to-back restarts with no changes
to the ǫ-dominance archive (i.e., the ǫ-progress count remains unchanged). The “maximum
mutation index”, mmax, defines the maximum value of mindex. The minimum value is 0.
Then, the uniform mutation rate is calculated by

mutation rate =

[
1 +

(L− 1)mindex

mmax

]
/L

where L is the number of decision variables defined by the MOP. Hence, when mindex is 0,
the mutation rate is 1/L; when mindex is equal to mmax, the mutation rate is 100%.

6.2.4 Controllability of the Borg MOEA

We conclude this section by discussing briefly the results of Chapters 3 and 4. It is commonly
known that MOEAs are often strongly sensitive to their parameterizations (Purshouse and
Fleming, 2003, 2007). Most contemporary MOEAs are flawed in this respect since their
performance is tied to non-trivial parameterizations that are not consistent across problem
domains (or even problems within the same domain). Hadka and Reed (2012b) developed
a rigorous statistical framework for assessing the sensitivity of MOEAs to their parame-
terization. MOEAs with highly-sensitive parameters are termed “uncontrollable”, as the
decision-maker is required to constantly tweak parameters to improve performance. Con-
trollability is a fundamental requirement for MOEAs to have operational value. Our studies
have shown for a wide variety of problems that traditional non-adaptive MOEAs often suffer
from isolated islands of effective parameters that would be very difficult if not impossible to
discover in a real world application context (Hadka et al., 2012; Reed et al., 2012; Woodruff
et al., 2012). Moreover, the transition to massively parallel computing systems often limits
the amount of compute time available to users, making it of paramount importance that an
MOEA lack sensitivity to its parameterizations.

Chapter 4 used this sensitivity analysis framework to rigorously confirm that the auto-
adaptive features of the Borg MOEA drastically improves the algorithm’s controllability.
Several of our studies using test functions and real-world applications have confirmed that
while the Borg MOEA typically meets or exceeds other MOEAs in is efficiency, NFE is the
key controlling parameter (Hadka and Reed, 2012b; Hadka et al., 2012; Woodruff et al., 2012;
Reed et al., 2012). Furthermore, since NFE is its key controlling parameter, it is expected
to benefit substantially from parallelization.

6.3 Parallelizing the Borg MOEA

This section describes two parallel implementations of the Borg MOEA. Both implemen-
tations are designed to remain faithful to the adaptive nature of the serial Borg MOEA
described in Section 6.2. The master-slave Borg MOEA implementation in Section 6.3.1

95

ε-Dominance

Archive

Master

Node

Slave

Node Slave

Node

Slave

Node

Figure 6.2: Diagram of the master-slave implementation of the Borg MOEA. The master
node maintains the ǫ-dominance archive and runs the main loop of the serial Borg MOEA.
The decision variables are transmitted to the slave nodes, and the evaluated objective func-
tion values and constraints are returned to the master node.

is designed to scale to thousands of processors. The multi-master implementation in Sec-
tion 6.3.2 expands on the master-slave implementation to scale on emerging Petascale high-
performance computing architectures.

6.3.1 Master-Slave Implementation

The master-slave model for MOEAs is a straightforward extension of a serial MOEA to
perform objective function evaluations in parallel (Cantú-Paz, 2000; Coello Coello et al.,
2007). Modern parallel systems are typically comprised of many multi-core processors, each
consisting of two or more processing cores (e.g., a quad-core processor). Throughout this
dissertation, we refer to these individual processing cores as “processors”. As shown in
Figure 6.2, on a system with P processors, one of the processors is labeled the “master” and
the remaining P − 1 processors are labeled “slaves”. Internally, the master node runs the
serial MOEA as-is; the only alteration is that objective function evaluations are dispatched
to one of the available slave nodes. The master sends the decision variables to an available
slave node, the slave node evaluates the problem with the given decision variables, and when
finished sends the evaluated objective values and constraints (if any) back to the master
node.

Most MOEAs in use today are generational, meaning that the population is evolved in
distinct stages called generations. In a single generation, the population is evolved to produce
offspring, the offspring are evaluated, and the offspring are added back into the population
(possibly replacing existing members in the population). Parallelizing a generational MOEA
using the master-slave approach is fairly straightforward (Cantú-Paz, 2000; Coello Coello

96

et al., 2007). For the sake of simplicity, assume that the number of offspring is equal to
the number of slave nodes, P − 1. Then, when the algorithm reaches the point where it
needs to evaluate the offspring, each member of the offspring is sent to its own slave node
for evaluation. Once all slave nodes return the evaluated objective values, the algorithm
resumes its serial loop. The need to completely evaluate all offspring before continuing to
the next generation gives rise to the term “synchronous MOEA”.

For completeness, we can remove our assumption that the number of offspring equals the
number of slave nodes, P − 1, by sending multiple offspring at a time to a single slave node.
For instance, given 16 total processors, 15 would be slave nodes. For an offspring population
size of 100, we can batch 6 or 7 offspring to be evaluated by a single slave node. When the
offspring size does not divide evenly by the number of slave nodes, then some nodes must
process an additional offspring. As a result, some nodes have more work than the others,
and will require more time to complete their evaluations. This potentially lowers efficiency
as some of the slave nodes will sit idle while others continue processing. This problem also
arises when the time to evaluate a solution is variable.

Alternatively, the Borg MOEA is a steady-state algorithm. Steady-state algorithms do
not have defined generational boundaries; instead, each individual in the population evolves
inside its own distinct evolutionary cycle. Since no boundary exists between generations,
such algorithms are also called “asynchronous MOEAs”. Additionally, the lack of a bound-
ary often reduces overhead and increases the parallel performance of the algorithm. The
remainder of this section describes the master-slave Borg MOEA implementation.

The master-slave Borg MOEA maintains a queue of unevaluated solutions. Whenever a
slave node is available for processing, it queries this queue for the next solution to evaluate.
If the queue is empty, then the typical Borg operator selection and offspring generation
mechanism is triggered to insert one or more offspring (unevaluated solutions) into the queue.
Otherwise, the next unevaluated solution in the queue is sent to the slave node. The main
Borg MOEA loop is this process of slave nodes querying the queue for solutions, and new
solutions being generated and appended to the queue as needed.

When a slave node finishes evaluating a solution and sends the evaluated objective and
constraint values to the Borg master node, these solutions are immediately added to the
population and ǫ-dominance archive. The strategy for adding/replacing solutions in the
population and archive are identical to the serial Borg MOEA. These newly-added solutions
are now available as parents when the offspring generation mechanism is invoked next. The
flowchart of these steps is shown in Figure 6.3. The other components of the Borg MOEA,
such as ǫ-progress restarts, adaptive population sizing, etc., occur next and are identical to
the serial Borg MOEA. The only difference is that any new solutions generated during a
restart are appended to the queue.

Initialization works similarly to the serial Borg MOEA with one exception. As with
offspring generation, the solutions generated during initialization are added to the queue
and processed as described earlier. However, consider what happens when running on N +1
processors, with 1 master node and N slave nodes, and an initial population size of N . All
N initial solutions will be generated randomly and sent to the slave nodes for evaluation.

97

Queue of

Unevaluated

Offspring

Select

Operator and

Generate

Offspring

Push

Unevaluated

Offspring to

Queue

Draw Next

Unevaluated

Offspring from

Queue

Is

Queue

Empty?

Yes

No

Send

Unevaluated

Offspring to

Slave Node

Receive and

Process

Evaluated

Offspring from

Slave Node

Figure 6.3: Flowchart of the main Borg MOEA loop running on the master nodes. A queue
supports the asynchronous generation and evaluation of offspring. When a slave node is
available (it returns an evaluated offspring), the master queries the queue for the unevaluated
offspring. If the queue is empty, the algorithm invokes the operator selection and offspring
generation steps from the serial Borg MOEA.

98

The first solution to finish evaluation is added to the population, and the next offspring is
immediately generated. At this point, the population has only 1 evaluated solution, which
is problematic for multi-parent recombination operators and also lacks sufficient genetic
diversity. To ensure that the population is filled with a sufficient number of solutions before
applying the evolutionary operators to generate offspring, the master-slave Borg MOEA
always generates at least 2N initial solutions, where N is the number of slave nodes. This
ensures that at least N solutions have been added to the population prior to applying any
evolutionary operators.

Function evaluation times are a significant factor in controlling the scalability of the
master-slave scheme (Cantú-Paz, 2000). As function evaluation times decrease below 1 sec-
ond, our prior work (Hadka et al., 2013) has shown that the Borg MOEA’s master node be-
comes congested due to rapid objective function evaluation turnaround by the slave nodes,
which reduces the efficiency of the algorithm and results in an overall decline in parallel
scalability beyond one thousand processors. These results motivated our exploration of the
multi-master scheme introduced in this chapter, which represents a hierarchical paralleliza-
tion scheme (Cantú-Paz, 2000) that hybridizes the classic island-model and master-slave
strategies. In the next section, we introduce the multi-master Borg MOEA.

6.3.2 Multi-Master Implementation

The multi-master Borg MOEA abstracts the master-slave implementation to follow an island-
based model of parallelization (Cantú-Paz, 2000). In an island-based model, each island runs
a distinct MOEA with its own population evolved independently of other islands. Imple-
mentations of island-based MOEAs often include periodic migration events, wherein a small
fraction of the population at each island is transmitted to one or more other islands. These
migrations are intended to permit sharing of information between islands.

While the classic island-based model is a popular strategy for parallelizing MOEAs, it
exacerbates the parameterization and algorithmic design challenges present in MOEAs. In
order to run an island-based MOEA, one must select (1) the number of islands, (2) the num-
ber of processors per island, (3) the population size on each island, (4) operator selection and
parameterization, (5) whether to run the same MOEA (homogeneous) or different MOEAs
(heterogeneous) on each island, (6) migration policies; etc. Cantú-Paz (2000) developed the-
oretical models to determine problem-specific values for some of these settings, but in doing
so also shows the complexities and non-linear relationships between the various settings that
makes parameterization challenging. The effectiveness of an island-based MOEA is heavily
dependent on such non-trivial design choices that must be tailored to individual problems.
This is a limiting factor in the operational value of classic island-based MOEAs.

Our design of the multi-master Borg MOEA seeks to generalize its ease-of-use and auto-
adaptivity while maximizing its parallel efficiency on large-scale computing architectures.
Several studies have shown that the Borg MOEA’s auto-adaptivity eliminates parameteri-
zation concerns by allowing the algorithm to adapt and maximize its potential on a given
problem (Hadka and Reed, 2012b; Hadka et al., 2012). This eliminates issues (3), (4), and
(5), since the dynamics of the Borg MOEA automatically configure the algorithm for the lo-

99

cal conditions encountered during search. This additionally implies that each island running
the Borg MOEA can assume drastically different search operators as needed to maximize
performance. For instance, a struggling island can introduce heavy mutations to escape
local optima while another island is fine-tuning near-optimal solutions using small, local
perturbations. We address (6) by introducing an auto-adaptive migration mechanism based
on the search progress made by each island. Unlike the unguided migration events in clas-
sic island-based models, in the multi-master Borg MOEA migrations only occur when an
island is struggling and injects high-quality solutions and new search operator preferences
to guide the struggling local population. Lastly, we answer (1) and (2) in Chapter 7 by
contributing a discrete event simulation model to predict topologies for the multi-master
Borg MOEA that maximize its parallel efficiency. The full details of the multi-master Borg
MOEA implementation are given below.

As shown in Figure 6.4, the multi-master Borg MOEA introduces a new node, called
the “controller”, that has two responsibilities: (1) maintaining a global ǫ-dominance archive,
and (2) providing guidance to master nodes when they need help. The global ǫ-dominance
archive maintains the Pareto optimal solutions discovered by all master nodes. Identical to
how each master node uses the ǫ-dominance archive to track the operators that contribute
new, Pareto approximate solutions, the controller uses the global ǫ-dominance archive to
track the operators that contribute globally Pareto approximate solutions. Note the term
“global” as used here refers to the aggregate of all ǫ-dominant solutions from the full suite
of searching master nodes. Each master node periodically sends an update to the controller
every 10000 NFE. This update contains any new Pareto approximate solutions discovered
by the master since its last update.

Since each master node is running an instance of the master-slave Borg MOEA, it includes
all of the mechanisms to detect search stagnation and trigger restarts. In the event that
these mechanisms are unsuccessful at escaping the local optima, the master node notifies the
controller that it needs assistance. Upon receiving the help request, the controller seeds the
master with the contents of the global ǫ-dominance archive and global operator probabilities.
This in essence replaces the local ǫ-dominance archive that was stuck at a local optima with
the global search state. Additionally, it provides the best-known global operator probabilities
for contributing new Pareto approximate solutions. Upon receiving this guidance from the
controller, the master updates its internal state and triggers a restart. Since the local archive
of the master node is now set to the global ǫ-dominance archive, the solutions injected during
the restart are derived from the global search state, and the adaptive population sizing
ensures the population is resized appropriately given the global search state.

The multi-master implementation also features a different style of initialization from the
serial and master-slave Borg MOEA implementations. The original Borg MOEA generated
the initial population by sampling the decision variables uniformly at random from their
bounds. While uniform sampling is a common initialization strategy used in MOEAs, it has
a major disadvantage: it makes no guarantee that the sampled points are representative of
the actual distribution. In the context of MOEAs, this means that there is no guarantee that
the initial population includes a representative sampling of all decision variable combinations.

100

Master

Node

Controller

Node

Local

ε-Dominance

Archive

Node

Node

Local

ε-Dominance

Archive

Local

ε-Dominance

Archive

Slave

Node Slave

Node

Slave

Node

Slave

Node

Slave

Node

Slave

Node Slave

Node

Slave

Node

Global

ε-Dominance

Archive

1 Update

2Help

3 Guidance

Figure 6.4: Diagram of the multi-master implementation of the Borg MOEA. The multi-
master Borg MOEA consists of two or more master-slave instances. This diagram depicts
three such instances. The multi-master consists of an additional controller node, which
communicates with the masters using several messages. (1) Each master node periodically
transmits its local ǫ-dominance archive to the controller to update the global archive. (2)
When a master node is struggling, it sends a help message to the controller. (3) The controller
responds with guidance, which includes the global ǫ-dominance archive and global operator
probabilities.

101

Instead, uniform sampling tends to result in areas with higher and lower densities, potentially
introducing random bias into the initial search population.

It has been proposed in the literature to use other sampling techniques like Latin hyper-
cube sampling (LHS) and Sobol’s low-discrepancy sequence generator (Bäck et al., 1997).
The improved quality of the samples by LHS and Sobol’ sequence have been used in Monte
Carlo simulations to improve convergence and reduce the number of required samples (Mac-
donald, 2009). In the context of MOEAs, LHS and Sobol’ sequence help ensure that the
initial population contains a representative sampling of the search space. In the multi-master
Borg MOEA, we propose the global Latin hypercube initialization strategy. When the multi-
master algorithm first starts, each master node notifies the controller of its desired initial
population size. The sum total is the number of initial solutions generated by the controller
using LHS. The controller then uniformly at random partitions these solutions into the initial
populations for each master. Finally, the controller transmits the initial populations to the
master.

For example, suppose we have 16 islands each using an initial population size of 100. Just
like the master-slave Borg MOEA, the master node generates twice as many initial solutions
as required to ensure that the population is filled prior to entering the main evolutionary
loop. Thus, each island would request 200 initial solutions. Then, the controller would
generate 16 ∗ 200 = 3200 initial solutions using LHS. Next, these 3200 solutions will then be
randomly partitioned into 16 groups of 200. Finally, each group is sent to the corresponding
island.

While this initialization strategy adds some additional overhead at startup, it has the
benefit of ensuring that globally, the multi-master algorithm starts with a well-distributed,
diverse set of initial solutions. Without this approach, the initial populations would have
less diversity and likely subject to faster preconvergence.

6.4 Conclusion

This chapter introduced the master-slave and multi-master Borg MOEA. The next two
chapters explore the theoretical and experimental properties of these two parallel variants.
Chapter 7 explores the theoretical scalability results and provides a strategy for determining
the optimal topologies for the parallel Borg MOEA variants. Chapter 8 applies both parallel
variants to a real-world complex engineered system: a risk-based water supply portfolio
planning problem. This case study exercises the theoretical models on a real-world problem.

102

Chapter 7

Scalability of the Parallel Borg MOEA

This chapter is drawn from the paper “Hadka, D., Madduri, K. and Reed, P.M. (2013).
Scalability Analysis of the Asynchronous, Master-Slave Borg Multiobjective Evolutionary Al-
gorithm. International Parallel and Distributed Processing Symposium (IPDPS), Nature-
Inspired Distributed Computing Workshop (NIDISC), Boston, MA, 20-24 May 2013 (To
Appear).”

This chapter begins with an experimental analysis of the scalability of the master-slave
and multi-master Borg MOEA on the Texas Advanced Computing Center (TACC) Ranger
supercomputer. Here, we contrast naive speedup (increased NFE) versus hypervolume
speedup (increased search quality) resulting from different configurations of the parallel Borg
MOEA. Afterward, we build a discrete event simulation model for predicting the runtime be-
havior of the parallel Borg MOEA. These results are validated using the 5-objective DTLZ2
and UF11 problems. Finally, we discuss how to configure the Borg MOEA to maximize
search quality.

The remainder of this chapter is organized as follows. Section 7.1 uses the DTLZ2 and
UF11 problems to experimentally explore the scalability of the master-slave and multi-master
Borg MOEA. Section 7.2 derives the analytical and discrete event simulation model for pre-
dicting the behavior of the parallel Borg MOEA. Section 7.3 discusses how this information is
used to configure the master-slave and multi-master Borg MOEA to maximize performance.
Finally, Section 7.4 discusses the impact of these results.

7.1 Experimental Scalability Analysis

In Chapters 4 and 5, we identified that the key parameter for controlling the search quality of
the Borg MOEA is NFE, the number of objective function evaluations performed in a run.
This has been the motivating factor for parallelizing the Borg MOEA, as parallelization
should increase NFE and as a consequence search quality. This relies on the assumption
that NFE and search quality are correlated. To test this assumption, we must distinguish
between speedup that increases NFE, which we term naive speedup, and speedup that results
in an MOEA attaining high-quality results faster, which we term hypervolume speedup. In

103

this section, we experimentally analyze the naive speedup and hypervolume speedup of the
Borg MOEA on a simple 5-objective test problem, DTLZ2, and the more challenging, non-
separable UF11 problem.

Naive speedup is speedup in terms of increased NFE as a result of parallelizing the
MOEA. Naive speedup is related to parallel efficiency, as a more efficient parallel algorithm
yields more NFE. For instance, if two MOEAs are run for the same amount of wallclock
time, then the more efficient algorithm will evaluate more solutions. We therefore define
efficiency as

efficiency =
NFEP

P · NFES

, (7.1)

where NFES is the total NFE for a serial MOEA and NFEP is the total NFE for a parallel
MOEA with P processors. The denominator calculates the total NFE that would result
from running P instances of the serial MOEA on P processors. The numerator is the actual
NFE from running the parallel MOEA on P processors. A parallel MOEA with an efficiency
near 1 is ideal.

Hypervolume speedup measures how much quicker a parallel MOEA reaches a certain
hypervolume threshold than its serial counterpart. Hypervolume values range from [0, 1]
with values near 1 indicating high-quality approximation sets. Hypervolume speedup is
calculated by first setting the hypervolume threshold, H ∈ [0, 1]. Then, we determine the
minimum wallclock time required for the serial MOEA to attain the hypervolume threshold,
TH
S , and the minimum wallclock time for the parallel MOEA to attain the same threshold,

TH
P . Finally, the hypervolume speedup is calculated by

hypervolume speedup =
TH
S

TH
P

. (7.2)

For example, if it takes 100 seconds for the serial MOEA to attain a hypervolume threshold
of H = 0.9 and only 25 seconds for the parallel MOEA to attain the same threshold, then
the hypervolume speedup is 4.

Naive speedup reflects the efficiency of the parallel MOEA and the increase in NFE result-
ing from lower algorithm overhead. Hypervolume speedup is more indicative of the benefits
of parallelization since a parallel MOEA with a larger speedup is attaining high-quality re-
sults faster. However, we consider naive speedup in this analysis due to our observation that
NFE is the only parameter that effects the search quality of the Borg MOEA. Therefore, we
hypothesize that there is a correlation between naive speedup (i.e., parallel efficiency) and
hypervolume speedup. To test this hypothesis, we apply the master-slave and multi-master
Borg MOEA variants to two well-known analytical problems. The first, the 5-objective
DTLZ2 (Deb et al., 2002b), is considered simple for MOEAs to solve (as was shown in the
diagnostic analysis in Chapter 4). All decision variables are separable, and can be evolved in-
dependently of the others. The second problem, the 5-objective UF11 (Zhang et al., 2009b),
is a variant of DTLZ2 where the decision variables are rotated and scaled to introduce de-
pendencies between the variables. Results from the IEEE CEC 2009 competition (Zhang
and Suganthan, 2009) and the diagnostic analysis of Chapter 4 show many state-of-the-art

104

Table 7.1: Notation used throughout this chapter.

Symbol Description
TF Function evaluation time
TC Communication time
TA Algorithm overhead (population management, offspring generation, etc.)
TS Runtime of the serial algorithm
TP Runtime of the parallel, asynchronous algorithm
N Number of function evaluations
P Number of processors (i.e., cores)

MOEAs struggle to solve UF11. These functions provide a mechanism to explore how prob-
lem difficulty interplays with speedup to impact the Borg MOEA’s search. Table 7.1 shows
the notation used throughout this chapter.

The function evaluation time of these two problems is less than 1 microsecond. To explore
the scalability of the Borg MOEA, controlled delays were introduced to the problems. In
this chapter, we explore three different delays: 0.001, 0.01, and 0.1 seconds with a coefficient
of variation of 0.1. This allows us to precisely control TF and vary it proportionally to TC

and TA to measure the actual speedup and efficiency.
For each problem and time delay, the master-slave Borg MOEA was executed on the

TACC Ranger system with 16, 32, 64, 128, 256, 512, and 1024 processors. Each run of
the algorithm was replicated 50 times, and the reported results are averaged across the 50
replicates. The multi-master Borg MOEA can scale to larger processor counts, and therefore
was tested on 1024, 2048, and 4096 processors with 2, 4, 8, 16, and 32 islands.

The experiments performed in this chapter were executed on the Texas Advanced Com-
puting Center (TACC) Ranger system. TACC Ranger consists of 3,936 16-way symmetric
multiprocessing (SMP) compute nodes, each containing four 2.3 GHz AMD Opteron Quad-
Core 64-bit processors and 32 GBs of memory. Each core can perform 9.2 GFLOPS. In total,
there are 62976 processing cores. Throughout this dissertation, we refer to these individ-
ual processing cores as “processors”. Nodes are connected using two large Sun InfiniBand
DataCenter switches.

Figure 7.1 shows the average parallel efficiency of the master-slave Borg MOEA on the
5-objective DTLZ2 and UF11 test problems calculated using (7.1). The three line series
plot the different function evaluation times. As one would expect, when TF is small (i.e.,
TF = 0.001 seconds), the master-slave Borg MOEA is inefficient as the number of processors
grows. For larger TF , the master-slave Borg MOEA remains efficient at higher processor
counts. This observation is consistent across both DTLZ2 and UF11.

Observe in Figure 7.1 that the parallel efficiency is maximized with 16 processors when
TF = 0.001, 128 processors when TF = 0.01, and 512 processors with TF = 0.1 seconds. At
larger processor counts than listed, the parallel efficiency of the master-slave Borg MOEA
begins to decline. It is at this point where NFE is maximized, and we want to determine if
hypervolume speedup is also maximized.

105

16 32 64 128 256 512 1024 2048 4096
0

0.2

0.4

0.6

0.8

1

Number of Processors

E
��

ic
ie
n
c

y

16 32 64 128 256 512 1024 2048 4096
0

0.2

0.4

0.6

0.8

1

Number of Processors

E
��

ic
ie
n
c

y T
F
=0.001

T
F
=0.01

T
F
=0.1

Figure 7.1: The average parallel efficiency of the master-slave Borg MOEA on the 5-objective
DTLZ2 and UF11 test problems.

Figure 7.2 shows the average hypervolume speedup of the master-slave Borg MOEA on
the 5-objective DTLZ2 and UF11 test problems calculated using (7.2). Here, the hypervol-
ume threshold is set on the x-axis, and the hypervolume speedup for the given hypervolume
threshold is plotted on the y-axis. The various line series plot the different processor counts.
In these plots, hypervolume speedup is computed relative to the base 16 processor configu-
ration. For this reason, the 16 processor line is flat. A hypervolume speedup of 4 indicates
that configuration achieved the same hypervolume as the 16 processor configuration in only
1/4 the wallclock time.

Observe in Figure 7.2 for TF = 0.001 that the 32 processor configuration exhibits the
largest hypervolume speedup. This is close to the prediction based on parallel efficiency,
which expected the 16 processor configuration to maximize hypervolume speedup. Note
that all the larger processor counts have lower hypervolume speedup than the baseline 16
processor configuration for TF = 0.001. The communication overhead quickly dominates the
runtime, decreasing the efficiency of the algorithm when TF is small. As TF increases to 0.01
seconds, the 128 processor configuration maximizes hypervolume speedup. This matches
the prediction based on efficiency. With TF = 0.1 seconds, the 512 and 1024 processor
configurations offer maximum hypervolume speedup, closely matching the prediction based
on efficiency. This confirms our hypothesis that maximizing parallel efficiency is closely tied
to maximizing hypervolume speedup for the master-slave Borg MOEA.

Figure 7.2 also shows how hypervolume speedup is affected by problem difficulty. As the
hypervolume threshold is increased to 1, it is more challenging for the MOEA to generate
approximation sets surpassing that threshold. This is exhibited by the non-linear curves
in Figure 7.2. This is very pronounced in the UF11 subplots, which show a decline in
hypervolume speedup as the level of quality increases from a hypervolume of 0 to 0.5, but
then an increase in hypervolume speedup as the quality increases further towards 1. This
demonstrates that problem difficulty can have a significant impact on search quality and
affect the efficacy of parallel MOEAs.

Switching now to the multi-master Borg MOEA, Figure 7.3 shows the average parallel
efficiency of the multi-master Borg MOEA on the 5-objective DTLZ2 and UF11 test prob-
lems. Here, efficiency is plotted against the number of islands in the multi-master topology.
The various line series plot different processor counts. Each subplot in Figure 7.3 shows

106

� ��2 ��� ��� ��� 1
1

2

3

�

�

�

7

�

H�pervolume

S
p
e
e
d
u
p

1� �roce		or	
32 �roce		or	
�� �roce		or	
12� �roce		or	
2�� �roce		or	
�12 �roce		or	
1�2� �roce		or	

� ��2 ��� ��� ��� 1
�

�

1�

1�

2�

2�

3�

3�

��

H�pervolume

S
p
e
e
d
u
p

� ��2 ��� ��� ��� 1
�

1

2

3

�

�

�

7

�

H�pervolume

S
p
e
e
d
u
p

� ��2 ��� ��� ��� 1
�

���

1

1��

2

2��

H�pervolume

S
p
e
e
d
u
p

� ��2 ��� ��� ��� 1
�

2

�

�

�

1�

12

1�

1�

1�

2�

H�pervolume

S
p
e
e
d
u
p

� ��2 ��� ��� ��� 1
�

���

1

1��

2

2��

H�pervolume

S
p
e
e
d
u
p

Figure 7.2: The average hypervolume speedup of the master-slave Borg MOEA on the 5-
objective DTLZ2 and UF11 test problems. The 16 processor configuration is used as the
baseline for calculating hypervolume speedup.

107

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

Number of Islands

E
ff

ic
ie

n
c
y

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

Number of Islands

E
ff

ic
ie

n
c
y

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

Number of Islands

E
ff

ic
ie

n
c
y

1024 Processors

2048 Processors

4096 Processors

UF11

T
F
=

0
.0

0
1
 s

e
c

T
F
=

0
.0

1
 s

e
c

T
F
=

0
.1

 s
e
c

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

Number of Islands

E
ff

ic
ie

n
c
y

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

Number of Islands

E
ff

ic
ie

n
c
y

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

Number of Islands

E
ff

ic
ie

n
c
y

DTLZ2

Figure 7.3: The average parallel efficiency of the multi-master Borg MOEA on the 5-objective
DTLZ2 and UF11 test problems.

108

a consistent trend where increasing the number of islands increases the parallel efficiency
of the multi-master Borg MOEA. When TF is small, the parallel efficiency benefits from
having more islands, since this allows the multi-master Borg MOEA to run each island with
smaller, more efficient master-slave instances while reducing communication overhead. For
TF = 0.01 seconds, we observe that the parallel efficiency is maximized with 8 islands with
1024 processors, 16 islands with 2048 processors, and 32 islands with 4096 islands. For
TF = 0.1 seconds, the parallel efficiency is maximized with 2 islands with 1024 processors, 4
islands with 2048 processors, and 8 islands with 4096 processors. Again, we hypothesize that
the hypervolume speedup of the multi-master Borg MOEA is maximized when the parallel
efficiency is maximized.

Figures 7.4 and 7.5 show the hypervolume speedup for 5-objective DTLZ2 and UF11 test
problems, respectively. These plots are similar to Figure 7.2, except the colored line series
correspond to different numbers of islands. The tested processor counts are identified by each
vertical column of subplots. Additionally, we are using the master-slave implementation as
the baseline. Thus, a speedup of 4 indicates that multi-master configuration matched the
hypervolume of the master-slave implementation in 1/4 the wallclock time.

While the TF = 0.001 case in Figure 7.3 never reaches ideal parallel efficiency, our hy-
pothesis would indicate that 32 islands will maximize hypervolume speedup since 32 islands
offers the best parallel efficiency. This is confirmed in Figure 7.4 and Figure 7.5, which show
32 islands has the maximum hypervolume speedup for the tested processor counts. This
demonstrates the advantages from using the multi-master Borg MOEA on problems with
small TF . For TF = 0.01, hypervolume speedup is maximized with 8 islands with 1024 pro-
cessors, 16 islands with 2048 processors, and 32 islands with 4096 processors. This matches
exactly when the corresponding plots in Figure 7.3 indicate maximum parallel efficiency.
Likewise, for TF = 0.1, we see that hypervolume speedup is maximized with 2 islands with
1024 processors, 4 islands with 2048 processors, and 8 islands with 4096 processors. In Fig-
ure 7.5, the 4 island configuration provides slightly improved hypervolume speedup over the 8
island multi-master Borg MOEA. This closely matches when parallel efficiency is maximized
in Figure 7.3. The difference observed between the hypervolume speedup on DTLZ2 and
UF11 demonstrates how problem difficulty can influence the ideal parallel configuration. In
this case, using fewer islands allows more NFE per island, which outperforms running more
islands with fewer NFE per island.

These results confirm our hypothesis that maximizing the parallel efficiency of the Borg
MOEA will maximize the hypervolume speedup. Consequently, maximizing parallel effi-
ciency maximizes solution quality and convergence speed. This result supports prior results
showing that the overall search quality of the Borg MOEA is only dependent on NFE and
no other parameters (Hadka and Reed, 2012b).

7.2 Modeling the Parallel Borg MOEA

Parallel EAs can be classified into two categories: (1) synchronous and (2) asynchronous
(Cantú-Paz, 2000). Synchronous EAs require that all of their population members are eval-

109

S
p
e
e
d
u
p

1024 Processors 2048 Processors 4096 Processors

T
F
=

0
.0

0
1
 s

e
c
o
n
d

s
T

F
=

0
.0

1
 s

e
c
o
n
d
s

T
F
=

0
.1

 s
e
c
o
n
d
s

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
1024 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8
4096 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
1024 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16
4096 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

10

11
1024 Processors

Hypervolume

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18
4096 Processors

Hypervolume

S
p
e
e
d
u
p

Master-Slave Borg

Multi-Master Borg (2 Islands)

Multi-Master Borg (4 Islands)

Multi-Master Borg (8 Islands)

Multi-Master Borg (16 Islands)

Multi-Master Borg (32 Islands)

Legend

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
2048 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

10

11
2048 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
2048 Processors

Hypervolume

S
p
e
e
d
u
p

Figure 7.4: The average hypervolume speedup of the multi-master Borg MOEA on the 5-objective DTLZ2 test problem.
The master-slave implementation is used as the baseline for computing hypervolume speedup.

110

Master-Slave Borg

Multi-Master Borg (2 Islands)

Multi-Master Borg (4 Islands)

Multi-Master Borg (8 Islands)

Multi-Master Borg (16 Islands)

Multi-Master Borg (32 Islands)

Legend

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16
1024 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16
2048 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25
4096 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
1024 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

10

11
2048 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20
4096 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
1024 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
2048 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10
4096 Processors

Hypervolume

S
p
e
e
d
u
p

1024 Processors 2048 Processors 4096 Processors

s

Figure 7.5: The average hypervolume speedup of the multi-master Borg MOEA on the 5-objective UF11 test problem.
The master-slave implementation is used as the baseline for computing hypervolume speedup.

111

uated in a given generation before their evolutionary search proceeds to the next generation.
Synchronization poses a computational bottleneck that leads to large algorithmic overhead
and strongly limits the maximum parallelization efficiencies that can be achieved. Alter-
natively, asynchronous EAs avoid the synchronization step and eliminate their dependence
on fully evaluated populations (i.e., generations), greatly expanding their potential to yield
greater parallel efficiencies.

Since Bethke (1976) first attempted to parallelize a genetic algorithm in 1976, many stud-
ies have experimentally explored various methods of parallelizing EAs. For years, researchers
developed different parallelization strategies and applied these algorithms successfully in
many problem domains (Cantú-Paz, 1998). Then, in 1997, Erick Cantú-Paz began develop-
ing theoretical models for designing efficient parallel EAs (Cantú-Paz, 1997; Cantú-Paz and
Goldberg, 1997a,b), which lead to his seminal publication (Cantú-Paz, 2000) detailing the
theoretical properties of parallel EAs. Cantú-Paz’s derivations focused on synchronous EAs,
commenting only that asynchronous EAs would likely yield significant improvements in effi-
ciency. However, to date, no detailed theoretical analysis of the scalability of asynchronous
EAs has been published.

This section develops models for predicting the parallel behavior of the master-slave and
multi-master Borg MOEA. Note that the parallel Borg MOEA is asynchronous, and these
results can be generalized to typical asynchronous MOEAs. We explore the parallel scaling
limits of the parallel Borg MOEA by developing an analytical model and a discrete event
simulation model. The analytical model assumes a well-characterized, constant function eval-
uation time (TF). This allows us to derive closed-form solutions for the expected speedup,
efficiency, and processor count lower and upper bounds. The discrete event simulation simu-
lation model allows us to better model communication costs, critical section overheads, and
function evaluation times that follow probability distributions. Using these models, we show
how we are able to more accurately model the parallel execution of the Borg MOEA.

The execution of the serial Borg MOEA consists of the following steps: (1) select and
apply a search operator to produce offspring, (2) evaluate the offspring, (3) add the offspring
to the population and archive, and (4) periodically check for stagnation (triggering a restart
if necessary) and update the operator probabilities. For analysis, we model the time required
to perform each of these execution steps using the notations TC , TF , and TA. TC is the time
required to send and receive messages between the master and slave nodes. TF is the time
to evaluate one offspring. TA is the time required to perform the serial components of the
Borg MOEA, including adding the offspring to the population and archive, checking for
stagnation, performing restarts, and adapting the operator probabilities. The total number
of function evaluations allocated to the MOEA in a single run is denoted by N , and the
number of processors available to the parallel algorithm is denoted by P . When P processors
are available, one acts as a master node and P − 1 serve as slave nodes. This notation is
summarized in Table 7.1.

Before beginning the scalability analysis, it is important to distinguish the difference
between synchronous and asynchronous MOEAs. Most MOEAs in use today are genera-
tional, meaning that the population is evolved in distinct stages called generations. In a

112

Master

Worker 1

Worker 2

Worker 3

TC TA TF Idle

Figure 7.6: Diagram depicting the various costs incurred during a run of a synchronous,
master-slave MOEA. In this example, P = 4 with one master and 3 slaves. The dotted line
indicates the start of a new generation.

single generation, the population is evolved to produce offspring, the offspring are evaluated,
and the offspring are added back into the population (possibly replacing existing members
in the population). The key point here is that the previous generation must complete be-
fore the next generation starts. The need to synchronize generations gives rise to the term
synchronous MOEA.

Figure 7.6 shows the timeline of events for a typical synchronous, master-slave MOEA.
The vertical dotted lines indicate the start of a new generation. A generation begins when
the master generates the offspring and sends them to the slave nodes for evaluation. Note
that the master is also responsible for evaluating one offspring. It is also possible to send
multiple solutions to a single slave node. In this study, however, we consider only the case
where a single solution is sent. Next, the slaves evaluate the offspring and send the results
back to the master node. Finally, the master updates the population with the offspring.

Asynchronous MOEAs eliminate the concept of a generation. As soon as an offspring
is evaluated and returned to the master, the next offspring is immediately generated. This
is shown in Figure 7.7. Note that as soon as the master receives the evaluated results
from a slave, it immediately produces another offspring for that slave. Also note that the
TA for the asynchronous MOEA is shorter than the TA for the synchronous MOEA. This is
because the asynchronous MOEA processes one offspring at a time, whereas the synchronous
MOEA processes all offspring from the generation at once. Comparing Figures 7.6 and 7.7,
one can see the reduction in idle time using an asynchronous MOEA. In the remainder
of this chapter, we develop and validate theoretical models for the master-slave and multi-
master Borg MOEA. Since the parallel Borg MOEA is an asynchronous algorithm, the results
presented here are generalizable to generic asynchronous MOEAs.

7.2.1 Runtime of the Serial Borg MOEA

In order to calculate speedup and efficiency, we need to derive the time for the serial al-
gorithm. The total time for running a steady-state MOEA like the Borg MOEA in serial,
denoted by TS, is:

TS = N (TF + TA) (7.3)

The serial algorithm requires N function evaluations, where each function evaluation requires
TF and TA, the time to generate the next offspring, the time to evaluate the offspring, and

113

Master

Worker 1

Worker 2

Worker 3

TC TA TF Idle

Figure 7.7: Diagram depicting the various costs incurred during a run of an asynchronous,
master-slave MOEA. In this example, P = 4 with one master and 3 slaves. The master
sends a solution to an available slave (TC), the slave evaluates the solution (TF), the slave
sends the evaluated solution back to the master (TC), and the master processes the solution
and generates the next offspring to evaluate (TA).

the time to process the evaluated offspring.

7.2.2 Runtime of the Master-Slave Borg MOEA

The parallel, master-slave implementation of the Borg MOEA follows a similar structure as
the serial Borg MOEA. The only difference is the distribution of the evaluation of offspring to
many slave nodes. Instead of generating and evaluating one offspring at a time, the master-
slave implementation generates a new offspring whenever a slave node is available. Because
the master-slave Borg MOEA is asynchronous and does not include any synchronization
barriers, the slave nodes must compete with one another for access to the limited resources of
the master node. To determine how well the master-slave Borg MOEA scales with increasing
numbers of slaves, we start by building a simple, analytical model and work our way to a
more accurate but complex simulation model.

Analytical Model

We begin our analysis by assuming that TF , TA, and TC are constant. Assuming these times
are constant allows us to model the asynchronous algorithm using an analytical model.
Furthermore, by assuming all communication times are constant, all steps are performed
in lockstep. The master node is guaranteed to be available when a slave node completes
evaluating the objectives, eliminating any resource contention. This is seen in Figure 7.7,
where the master node is always free to receive the result from a slave node as soon as the slave
finishes evaluating the solution. From Figure 7.7, the parallel runtime of an asynchronous,
master-slave MOEA is given by:

TP =
N

P − 1
(TF + 2TC + TA) (7.4)

One function evaluation requires TF + 2TC + TA. This accounts for sending the decision
variables to the slave node (TC), evaluating the objectives (TF), sending the objectives back
to the master (TC), processing the evaluated solution and generating the next offspring

114

(TA). As the evaluations are spread across all slave nodes, each slave node performs N
P−1

evaluations.
One factor limiting scalability is the availability of the master node. We calculate the

maximum number of processors that are feasible before the master reaches saturation (no
idle time to process additional solutions) as:

PUB =
TF

2TC + TA

(7.5)

Looking at this from a different perspective, we can ask how many processors are required
to ensure the parallel implementation is at least faster than the serial implementation. To
answer this question, we solve TS

TP
> 1 to get:

P LB > 2 +
2TC

TF + TA
(7.6)

From (7.6), we can calculate the lower bound on the number of processors needed for
different time costs. Observe that the asynchronous model needs at least three processors
to run faster than the serial algorithm regardless of the values of TF , TC , and TA.

Discrete Event Simulation Model

The analytical model is limited by the assumptions that TF , TC , and TA are constant.
Relaxing these assumptions, we assume that TF , TC , and TA follow a probability distribution.
This introduces resource contention where the slave nodes must compete for access to the
master node. When the master node is busy processing a request, slave nodes must wait in
a queue until the master becomes available. This waiting will reduce the efficiency of the
algorithm as P increases and resource contention becomes more likely. To model this more
complex interaction, we build a discrete event simulation model.

The discrete event simulation model was developed in SimPy 2.31, a discrete event sim-
ulation library for Python. The structure of the simulation model is identical to that of the
Borg MOEA. However, instead of actually performing the calculations or sending messages,
the simulation model “holds” the resources for a set amount of time. For example, the mas-
ter node would be modeled as follows. First, a “request” for the master simulates the slave
waiting while the master is busy. Second, once the master is available, we “hold” the master
to simulate the communication and algorithm processing time. Once the hold completes,
the master is “released” and a slave is “activated”. This release and activation is used to
simulate sending a message to the slave node. This sequence of steps can be simulated in
SimPy as follows.

1 y i e l d request , s e l f , master
2 y i e l d hold , s e l f , sampleTc () + sampleTa () + sampleTc ()
3 y i e l d r e l e a s e , s e l f , master

1http://simpy.sourceforge.net/

115

4 a c t i va t e (s lave , s l a v e . eva lua t e ())

Accurate measurements of TC , TA, and TF are needed for the simulation model to be
accurate. Given a large sampling of these timing values for real executions of an algorithm on
a parallel system, we used the R Project2, an open-source language for statistical computing,
to fit the sampled data to various distributions. Subsequently, the log-likelihood is calculated
for each distribution to determine which best fits the sampled data. This is performed using
the fitdistr function in the MASS library within the R Project, and selecting the distribution
that produces the smallest log-likelihood value. For example, given the array of sampled
times, we can fit the data to three different distribution as follows.

1 print (noquote ("Normal:"))
2 normal <− f i t d i s t r (times , "normal")
3 normal
4 normal\$ l o g l i k
5

6 print (noquote ("Log Normal:"))
7 lognormal <− f i t d i s t r (times , "lognormal")
8 lognormal
9 lognormal \$ l o g l i k

10

11 print (noquote ("Exponential:"))
12 exponent i a l <− f i t d i s t r (times , "exponential")
13 exponent i a l
14 exponent i a l \$ l o g l i k

Running the resulting simulation model, we can compute the simulated runtime of the
parallel algorithm, TP . From this, we can predict the efficiency of the parallel algorithm with
EP = TS

PTP
. The source code for this simulation is contained in Appendix C.

Validating the Simulation Model

On the Texas Advanced Computing Center (TACC) Ranger supercomputer, we were able to
collect timing data with a resolution of 1 microsecond. This timing data was subsequently
used to approximate the probability distributions of TA and TF . The value for TC was
captured separately by measuring the round-trip time to send and receive messages between
the master and all slave nodes. This allows an accurate estimation of the point-to-point
communication cost since the payload of each message is a constant size. On TACC Ranger,
we calculated the value of TC to be 6 microseconds.

Table 7.2 shows the predictions from the analytical and simulation model compared with
experimental results collected from runs on TACC Ranger. The table shows the mean values

2http://www.r-project.org

116

for TA, TC , and TF collected from the experiment. Using these time values, we can compute
the predicted elapsed time from the analytical and simulation models. These predicted times
are shown in Table 7.2 along with the relative error calculated with:

Error =

∣∣TActual
P − TPredicted

P

∣∣
∣∣TActual

P

∣∣ (7.7)

As hypothesized, the analytical model becomes error prone when the TF

2TC+TA
ratio is small.

This is seen by comparing the analytical model error as TF increases. The error also increases
as the processor count increases. This shows the fundamental limitation of the analytical
model. It is unable to account for the resource contention encountered when a large number
of slave nodes are attempting to communicate with the master node. This bottleneck is
more accurately modeled by the simulation model, as indicated by the significantly lower
error rates.

Also note in Table 7.2 the efficiency values recorded during this experiment. There is a
clear peak in efficiency, where using fewer processors is underutilizing the system but using
more processors increases resource contention. Consider how this compares to the processor
count upper bound, which calculates the number of processors to saturate the master node.
For demonstration, lets select the DTLZ2 case where TA = 0.000029, TC = 0.000006, and
TA = 0.01. From (7.5), the processor count upper bound is 244. However, as seen in Table
7.2, the peak efficiency occurs with approximately 32 processors. Maximizing the efficiency
of the MOEA will require using fewer processors than the analytical model suggests.

This suggests that in situations where a large processor count is available and TF is
too small to run efficiently, better resource utilization may be possible with hierarchical
topologies (Cantú-Paz, 2000; Coello Coello et al., 2007). Instead of running a single, large
master-slave MOEA, the hierarchical topology runs several smaller, concurrently-running
master-slave instances. Each of these instances runs on a distinct subset of the available
processors. Our parallel performance simulation model can be used to determine the size of
these subsets to maximize efficiency.

Comparison with Synchronous Model

Building on our validated results for the simulation model, we now compare the scalability of
the master-slave Borg MOEA to the synchronous MOEA developed by Cantú-Paz (Cantú-
Paz, 2000). The analytical model developed by Cantú-Paz provides the following formula
for the runtime of the parallel, synchronous MOEA:

T Sync
P =

N

P

(
TF + PTC + T Sync

A

)
(7.8)

Note that again we assume that each node processes only one solution per generation. Thus,
P is both the processor count and population size. It is possible to have nodes evaluate more
than one solution, potentially increasing efficiency when TF and/or P is small. Cantú-Paz
explores this in detail (Cantú-Paz, 2000). Also note that, in general, T Sync

A ≈ PTA since the
synchronous algorithm has to process all P offspring at once.

117

Table 7.2: Table comparing the experimental results to the analytical and simulation models.
All times are in seconds. Errors are percent deviation from experimental times.

Experimental Results Analytical Model Simulation Model
Problem P TA TC TF Time Efficiency Time Error Time Error

DTLZ2

16 0.000023 0.000006 0.001 9.2 0.69 7.1 23% 7.2 22%
32 0.000025 0.000006 0.001 6.3 0.51 3.5 45% 5.6 12%
64 0.000027 0.000006 0.001 5.8 0.28 1.7 71% 6.0 4%

128 0.000029 0.000006 0.001 6.3 0.13 0.9 86% 6.4 2%
256 0.000031 0.000006 0.001 6.9 0.06 0.5 93% 6.8 2%
512 0.000037 0.000006 0.001 7.9 0.03 0.3 97% 8.0 2%

1024 0.000045 0.000006 0.001 9.4 0.01 0.2 98% 9.6 3%
16 0.000023 0.000006 0.01 67.5 0.93 67.1 1% 67.1 1%
32 0.000025 0.000006 0.01 33.1 0.95 32.5 2% 32.5 2%
64 0.000027 0.000006 0.01 16.6 0.94 16.0 4% 16.0 4%

128 0.000029 0.000006 0.01 8.8 0.89 8.0 10% 8.0 10%
256 0.000031 0.000006 0.01 6.9 0.57 4.0 43% 6.8 2%
512 0.000037 0.000006 0.01 7.8 0.25 2.0 75% 8.0 3%

1024 0.000045 0.000006 0.01 9.4 0.10 1.0 90% 9.6 3%
16 0.000023 0.000006 0.1 667.8 0.94 667.1 1% 667.4 1%
32 0.000025 0.000006 0.1 323.1 0.97 322.8 1% 323.0 1%
64 0.000027 0.000006 0.1 159.0 0.98 158.9 1% 159.0 0%

128 0.000029 0.000006 0.1 79.0 0.99 78.8 1% 78.9 1%
256 0.000031 0.000006 0.1 39.5 0.99 39.3 1% 39.3 1%
512 0.000037 0.000006 0.1 19.9 0.98 19.6 2% 19.7 2%

1024 0.000045 0.000006 0.1 11.5 0.85 9.8 15% 10.0 14%

UF11

16 0.000055 0.000006 0.001 12.3 0.54 7.5 40% 11.6 6%
32 0.000057 0.000006 0.001 11.2 0.29 3.7 67% 12.0 8%
64 0.000059 0.000006 0.001 11.5 0.14 1.8 85% 12.4 8%

128 0.000061 0.000006 0.001 11.8 0.07 0.9 93% 12.4 6%
256 0.000064 0.000006 0.001 13.3 0.03 0.5 97% 13.4 1%
512 0.000068 0.000006 0.001 14.2 0.01 0.3 98% 14.2 0%

1024 0.000078 0.000006 0.001 16.3 0.01 0.2 99% 16.1 2%
16 0.000055 0.000006 0.01 68.5 0.92 67.5 2% 67.6 2%
32 0.000057 0.000006 0.01 35.2 0.89 32.7 8% 32.8 7%
64 0.000059 0.000006 0.01 18.4 0.85 16.1 13% 16.3 12%

128 0.000061 0.000006 0.01 12.6 0.62 8.0 37% 12.4 2%
256 0.000064 0.000006 0.01 13.4 0.29 4.0 71% 13.4 0%
512 0.000068 0.000006 0.01 14.2 0.14 2.0 86% 14.2 0%

1024 0.000078 0.000006 0.01 16.2 0.06 1.0 94% 16.1 1%
16 0.000055 0.000006 0.1 668.7 0.94 667.5 1% 667.8 1%
32 0.000057 0.000006 0.1 323.4 0.97 323.0 1% 323.2 1%
64 0.000059 0.000006 0.1 159.3 0.98 159.0 1% 159.0 1%

128 0.000061 0.000006 0.1 79.2 0.99 78.9 1% 79.0 1%
256 0.000064 0.000006 0.1 39.8 0.98 39.3 2% 39.4 2%
512 0.000068 0.000006 0.1 20.8 0.94 19.6 6% 19.7 6%

1024 0.000078 0.000006 0.1 16.6 0.59 9.8 41% 16.3 2%

118

Processor Count

�
�

���
��
��
��

10
1

10
2

10
3

10
4

10
�4

10
�3

10
�2

10
�1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Synchronous Efficiency

Processor �ount

�
�

�
���
��
��
��

10
1

10
2

10
3

10
4

10
�4

10
�3

10
�2

10
�1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Asynchronous Efficiency

Figure 7.8: Predicted efficiency of a synchronous MOEA (using the model developed by Erick
Cantú-Paz (Cantú-Paz, 2000)) compared against the predicted efficiency of an asynchronous
MOEA using the simulation model. TF ranges from 0.0001 up to 1 second, and P ranges
from 2 to 16, 384 processors. The coloring shows the efficiency, with highest efficiency in the
red regions and worst efficiency in the blue regions. Note the log scale of the x- and y- axes.

Figure 7.8 shows the predicted efficiency from both models across a range of TF and P
values. TF ranges from 0.0001 up to 1 second, and P ranges from 2 to 16384 processors.
Complex engineered systems design has been strongly limited by computational barriers
where evaluation times greatly exceed 1 second or more (Bloebaum and McGowan, 2010),
so understanding scaling limits with large TF and P is important. For both models, TA and
TC are fixed at 0.000060 and 0.000006 seconds, respectively.

Note that the synchronous MOEA is able to achieve higher efficiency with smaller TF

and P . The asynchronous model appears to have a lower bound processor count of 16 and a
lower bound TF of 0.01 seconds. However, the asynchronous model is able to scale to larger
processor counts than the synchronous model with the same TF . As discussed, this is a result
of the asynchronous model not requiring synchronization barriers at each generation. This
provides the first theoretical results that explain in detail the conditions necessary for the
asynchronous model to efficiently scale to larger processor counts than the commonly used
synchronous model.

Another substantial difference between the synchronous and asynchronous MOEA is
the impact on performance of highly-variable function evaluation times (TF). Since the
synchronous MOEA must wait for all slaves to complete each generation, all nodes sit idle
waiting for the longest running evaluation to complete. The asynchronous MOEA, on the
other hand, is able to immediately send another offspring to a slave as soon as it finishes
the previous evaluation. So, when TF is highly variable, we expect the efficiency of the
synchronous model to decline while the asynchronous model remains unchanged.

119

7.2.3 Runtime of the Multi-Master Borg MOEA

Recall from Chapter 6 that the multi-master Borg MOEA is a hierarchical extension of the
master-slave Borg MOEA. Each of the islands in the multi-master Borg MOEA runs an
independent instance of the master-slave Borg MOEA. Therefore, the model developed in
Section 7.2.2 can be extended to predict the efficiency of the multi-master Borg MOEA.
The only additional overhead of the multi-master Borg MOEA is the messages between the
master nodes and the controller.

The master has two communication patterns with the controller. First, the master sends
periodic updates of the recently-discovered ǫ-dominant solutions to the controller. With its
default settings, these update messages are sent every 10000 NFE. Second, when the master
is struggling, it requests help and receives guidance from the controller. These messages are
more difficult to model as they occur unpredictably.

Additionally, these two messages introduce different loads onto the master and controller
node. During an update, the controller must add the transferred solutions to the global
ǫ-dominance archive. During a help / guidance message, the master must add the solutions
contained within the guidance packet to its local ǫ-dominance archive. Inserting k solutions
into an ǫ-dominance archive has a runtime complexity of O(kMN), where M is the number
of objectives and N is the size of the ǫ-dominance archive. This tends to be significantly more
expensive than the transmission of those solutions between the nodes. As an example, on a
high performance network such as the one used by the TACC Ranger system, transmitting
250 solutions takes approximately 0.00025 seconds. Adding 250 solutions to an ǫ-dominance
archive introduces an overhead of approximately 0.01 seconds.

This implies that updates are cheap for masters but expensive for the controller, and
help / guidance messages are expensive for masters but cheap for the controller. Since
help / guidance messages are only used when a master is struggling, we claim the overhead
incurred by the master is acceptable since the outcome of a successful global restart benefits
the algorithm. This leaves the update messages as the remaining potential bottleneck.

We can apply queueing theory to model the overhead experienced by the controller node
as the number of islands increases (Heidelberger and Trivedi, 1982). This is accomplished
using an M/M/1 queue. The M/M/1 queue requires estimating the interarrival rate, which
is the frequency that new jobs arrive in the queue, and the service rate, which is the fre-
quency that queued jobs are processed and removed from the queue. The two “M”s in the
name M/M/1 queue indicate that the interarrival and service rates are modeled as Markov
processes. The interarrival rate is based on the update frequency, which by default is 10000
NFE, the evaluation time of solutions (TF + 2TC + TA), and the number of master nodes.
The service rate is based on the number of solutions in the update message and how quickly
they can be processed by the controller node. Given these two rates, we can calculate the
average wait time with

average wait time =
λ/µ

µ− λ
, (7.9)

where λ is the interarrival rate and µ is the service rate. If µ > λ, then the average wait
time is undefined since the queue will grow indefinitely.

120

Table 7.3: The average wait time of messages in the controller.

Islands TF = 0.001 TF = 0.01 TF = 0.1
2 1.86×10−5 1.98×10−6 1.99×10−7

4 3.74×10−5 3.97×10−6 3.99×10−7

8 7.51×10−5 7.94×10−6 7.99×10−7

16 0.000151 1.59×10−5 1.59×10−6

32 0.000307 3.18×10−5 3.19×10−6

64 0.000634 6.39×10−5 6.39×10−6

128 0.001355 0.000128 1.28×10−5

256 0.003137 0.000260 2.56×10−5

512 0.009142 0.000535 5.14×10−5

1024 0.213333 0.001131 0.000103

As an example, suppose we estimate the service rate to be µ = 0.01, TC = 0.000006, and
TA = 0.00006 seconds (these times are representative of numerical test problems like DTLZ2
and UF11). The calculated average wait times for various TF are shown in Table 7.3. For the
small island counts, the controller is unburdened. Only when TF is small and the number of
islands is large does the average wait time begin to become significant. On many real-world
problems where TF ≥ 0.1, the multi-master Borg MOEA can easily support one thousand
islands. Additionally, the controller is not a bottleneck except when TF is extremely small
and the number of islands is extremely large. We can therefore use the master-slave discrete
event simulation model to predict the efficiency of individual islands when the average wait
time of the controller is small.

7.3 Ideal Configuration

In this chapter, we explored the impact of the configuration of the parallel Borg MOEA on
search quality. In Section 7.1, we identified a strong correlation between parallel efficiency
and hypervolume speedup. To maximize hypervolume speedup (i.e., solution quality), we
want to maximize the parallel efficiency of the Borg MOEA. Then, in Section 7.2 we built
an analytical and discrete event simulation model for predicting the efficiency of the parallel
Borg MOEA. With these tools, we propose the following strategy for configuring the Borg
MOEA.

First, we determine the ideal processor count for the master-slave Borg MOEA. This is
accomplished using the proposed discrete event simulation model. This requires the collection
of timing data to estimate TA and TC . Given these time estimates, running the discrete event
simulation model with various processor counts will determine which processor count, P ∗,
yields the maximum predicted parallel efficiency. If P ∗ is greater than the number of available
processors, then it is recommended to run the master-slave Borg MOEA on all available
processors. While the master-slave Borg MOEA will not run at maximum efficiency, it will

121

run at the maximum achievable efficiency given the available processors. If P ∗ is less than
the number of available processors, then is is recommended to run the multi-master Borg
MOEA on the largest number of processors that is a multiple of P ∗, with the number of
islands equal to this multiple. This ensures that each island in the multi-master is running
with P ∗ processors with the maximum predicted parallel efficiency.

7.4 Conclusion

In this study, we analyzed the scalability of the master-slave and multi-master Borg MOEA.
We first experimentally analyzed the parallel efficiency (naive speedup) and hypervolume
speedup of various configurations of the parallel Borg MOEA. In doing so, we identified the
correlation between maximizing parallel efficiency and maximizing hypervolume speedup,
a result that corroborates the analysis from Chapter 4 and Chapter 5 that demonstrated
Borg’s key parametric sensitivity to NFE.

Next, we developed an analytical model of the parallel processing time and derived the
processor count lower and upper bounds. This analytical model is limited by its inability to
model the interactions between the master and slave nodes that introduce resource contention
and additional overhead. To more accurately model the parallel Borg MOEA, we developed
a discrete event simulation model using the SimPy simulation package for Python. From this
model, we can accurately model the parallel processing time, efficiency, and ideal processor
count to maximize efficiency.

Finally, we propose a strategy for using the discrete event simulation model to config-
ure the parallel Borg MOEA for specific problems. This strategy aims to maximize the
hypervolume speedup by maximizing the efficiency of the parallel Borg MOEA.

122

Chapter 8

Case Study: Risk-Based Water
Supply Portfolio Planning

This chapter is drawn from the following paper: “Hadka, D., Reed, P.M., and Madduri,
K. Large-Scale Parallelization of the Borg MOEA for Addressing the Design of Complex
Engineered Systems. Evolutionary Computation, In Review.”

This chapter explores the application of the Borg MOEA on a real-world complex engi-
neered system: a severely constrained, six objective risk-based water supply portfolio plan-
ning problem called the LRGV problem (Kasprzyk et al., 2009, 2011). This problem features
many of the challenging problem properties discussed in Chapter 6. It is many-objective,
multi-modal, non-linear, contains a mix of discrete and real decision variables, is severely
constrained, and has stochastic objectives with expensive function evaluation times. In Reed
et al. (2012), all of the tested state-of-the-art MOEAs struggle to solve this problem reliably,
including the serial Borg MOEA. Using this problem, we demonstrate that the parallel vari-
ants of the Borg MOEA developed in Chapter 6 significantly improve speed of convergence,
solution quality, and reliability.

The remainder of this chapter is organized up as follows. Section 8.1 introduces the
LRGV problem. Section 8.2 discusses the experimental setup of this study where the two
parallel variants of the Borg MOEA are run on the TACC Ranger system. Section 8.3
presents the results from this parallel analysis. Finally, Section 8.4 summarizes the findings
of this chapter.

8.1 Introduction

This section introduces a challenging complex engineered system used to test the effective-
ness, efficiency, and reliability of the parallel variants of the Borg MOEA. Urban water
supply management is the act of securing and allocating water resources to a locale under
varying environmental and economic conditions. Population growth, increased urbanization,
water scarcity due to droughts, and climate change are factors that challenge water supply
management and increase the risk of critical water supply failures (Kundzewicz et al., 2007;

123

Frederick and Schwarz, 1999; Lane et al., 1999; Vorosmarty et al., 2000; Milly et al., 2008;
Brekke et al., 2009). A number of approaches can be taken to facilitate increases in demand
and mitigate the impact of supply fluctuations. The municipality can undertake structural
improvements, such as building new reservoirs, and non-structural adaptations, such as pur-
chasing water on water markets (Anderson and Hill, 1997). Water markets aim to allocate
water resources to their highest-value use by transferring volumes of water across regions or
user sectors (Israel and Lund, 1995; Hadjigeorgalis, 2008).

In this case study, water supplies can be purchased using three market mechanisms:
permanent rights, leases, and options. Permanent rights represent the purchase of a fixed
percentage of the stream inflows to a reservoir. Leases facilitate short-term transfers of water
from agricultural users to a city, but prices fluctuate with supply and demand. For instance,
the onset of drought conditions can lead to a spike in prices. Alternatively, options reserve
volumes of water at a fixed price that can be transferred later in the year. Options that
remain unused at the end of the year are dropped, and can become costly if the city holds
many unused options at the end of the year.

Several studies considering only single-objective formulations of this problem have shown
that water markets with both options and leases can reduce the overall cost associated with
maintaining reliable urban water supplies (Lund, 1995; Wilchfort and Lund, 1997; Watkins
Jr. and McKinney, 1999; Jenkins and Lund, 2000; Characklis et al., 2006; Kirsch et al.,
2009). Kasprzyk et al. (2009) proposed the first many-objective formulation of this problem,
allowing tradeoffs between cost, reliability, surplus water, cost variability, frequency of using
leases, and unused transfers of water. They applied this problem to a city located in the
Lower Rio Grande Valley (LRGV) in southern Texas with a 10-year planning horizon. A
Monte Carlo simulation models the city using both thirty-three years of historical data from
the region with additional factors like growing population demands, variable hydrologic
conditions, and market pricing dynamics. In this study, we use the most challenging “Case
D” variant of the problem from Kasprzyk et al. (2009) and refer to it as the LRGV problem.

The LRGV problem consists of 8 decision variables, 6 objectives, and 3 constraints. The 8
decision variables shown in Table 8.1 control the use of permanent rights, options, and leases
by the simulation model. Several of these decision variables are discrete. Since the Borg
MOEA uses real-valued operators, the decision variables are rounded to the nearest integer
prior to invoking the simulation model. The simulation model outputs the 6 objectives shown
in Table 8.2. The LRGV problem is thus defined by

F (x) = (fcost(x), frel(x), fsurplus(x), fcostvar(x), fdropped(x), fleases(x)) (8.1)

where
x = (NR, NOlow

, NOhigh
, ξ, αMay-Dec, βMay-Dec, αJan-Apr, βJan-Apr). (8.2)

The 3 constraints ensure that potential solutions satisfy limits in cost variability, reliability,
and critical reliability. Reliability measures small failures that can be mitigated by water
conservation or other practices. Critical reliability measures larger failures where the city
fails to meet more than 60% of the required demand in a given month. Formally, these

124

Table 8.1: Decision variables used by the LRGV problem.

Decision Variable Type Range Description
NR Integer 30,000-60,000 Volume of permanent rights
NOlow

Integer 0-20,000 Low-volume options contracts
NOhigh

Real NOlow
− 2NOlow

High-volume options contracts
ξ Real 0.1-0.4 Low to high options threshold
αMay-Dec Real 0.0-3.0 Lease/options strategy for May-Dec (“when

to acquire”)
βMay-Dec Real αMay-Dec-3.0 Lease/options strategy for May-Dec (“how

much to acquire”)
αJan-Apr Real 0.0-3.0 Lease/options strategy for Jan-Apr (“when

to acquire”)
βJan-Apr Real αJan-Apr-3.0 Lease/options strategy for Jan-Apr (“how

much to acquire”)

Table 8.2: Objectives used by the LRGV problem.

Objective Description Direction ǫ Search Precision
fcost Cost Min 0.003
frel Reliability Max 0.002
fsurplus Surplus Min 0.01
fcostvar Cost Variability Min 0.001
fdropped Dropped Transfers Min 0.002
fleases Number of Leases Min 0.003

125

constraints are defined by

fcostvar < 1.1 (8.3)

frel > 0.98 (8.4)

Pr[Si,j > 0.6di,j] = 1.0, ∀i ∈ [1, 12] and j ∈ [1, T] (8.5)

where Si,j is the simulated supply and di,j is the simulated demand for month i in the year
j, and T = 10 is the number of simulated years. Full details of the LRGV problem are
available in Kasprzyk et al. (2009, 2011).

Since the LRGV simulation is stochastic, many Monte Carlo trials are performed when
computing the expected values for its performance objectives. Increasing the number of
Monte Carlo trials will improve the quality the estimates of the expected values for the
objectives, but also significantly increases the evaluation time. In this study, 1000 samples
are used, resulting in an evaluation time of approximately 0.14 seconds.

The first attempts to solve the LRGV problem used the ǫ-NSGA-II to discover the trade-
offs between various market strategies and their impact on cost and reliability when faced
with the uncertainty and risks inherent in water portfolio planning (Kasprzyk et al., 2009).
Reed et al. (2012) performed a rigorous assessment of several MOEAs on the LRGV problem,
identifying that all of the top serial MOEAs struggled with their attainments and controlla-
bility, many of which completely failed on this problem.

These search failures are the result of several problem characteristics. First, the LRGV
problem is a many-objective problem with a fully stochastic objective space. Many MOEAs
are unable to cope with problems with four or more deterministic objectives as they are
unable to effectively navigate and search high-dimensional spaces (Purshouse and Fleming,
2003, 2007; Hadka and Reed, 2012b). Second, the problem is severely constrained. Reed et al.
(2012) showed a random sampling baseline where the probability of randomly generating a
feasible solution for the LRGV problem is approximately 1 in 500000. This implies the
initial population will likely consist entirely of infeasible solutions, requiring the MOEA to
direct search towards feasible regions. MOEAs unable to do so will fail to generate any
Pareto approximate solutions. Third, as identified in Kasprzyk et al. (2009), the best-known
reference set consists of three disjoint regions corresponding to vastly different water planning
strategies. A successful MOEA must be able to locate and diversify across all disjoint regions
within the best known Pareto approximate set. Finally, the LRGV problem has an expensive
function evaluation time. As mentioned previously, the objective function evaluation time
in this study is approximately 0.14 seconds. This necessitates the use of parallel MOEAs in
order to discover high-quality solutions in a reasonable amount of wallclock time.

8.2 Methodology

This study compared the master-slave and multi-master Borg MOEA implementations against
the ǫ-NSGA-II algorithm originally used to explore the LRGV problem. ǫ-NSGA-II is one
of the top-performing MOEAs on the LRGV problem (Reed et al., 2012). In this study,

126

Table 8.3: The parallel MOEAs tested in this study and their salient characteristics.

Implementation Islands Initialization Style Operator
Master-Slave ǫ-NSGA-II 1 Uniform Generational SBX+PM
Master-Slave Borg 1 Latin Steady-State Multi-operator
Multi-Master Borg 2 Global Latin Steady-State Multi-operator
Multi-Master Borg 4 Global Latin Steady-State Multi-operator
Multi-Master Borg 8 Global Latin Steady-State Multi-operator
Multi-Master Borg 16 Global Latin Steady-State Multi-operator
Multi-Master Borg 32 Global Latin Steady-State Multi-operator

we are using the large-cluster master-slave ǫ-NSGA-II implementation from Reed et al.
(2008). The master-slave and multi-master Borg MOEA implementations were written in
high-performance C with the use of MPI to facilitate communication between nodes. This
code was compiled and executed on the Texas Advanced Computing Center (TACC) Ranger
system. TACC Ranger consists of 3,936 16-way symmetric multiprocessing (SMP) compute
nodes, each containing four 2.3 GHz AMD Opteron Quad-Core 64-bit processors and 32 GBs
of memory. Each core can perform 9.2 GFLOPS. In total, there are 62976 processing cores.
Throughout this dissertation, we refer to these individual processing cores as “processors”.
Nodes are connected using two large Sun InfiniBand DataCenter switches.

The master-slave and multi-master Borg MOEA implementations were executed in a
number of different configurations to compare their scalability and solution quality at large
processor counts. On TACC Ranger, submissions are limited to 16384 cores. Therefore, the
three implementations were each executed with 1024, 2048, 4096, 8192, and 16384 cores.
Additionally, the multi-master runs used different topologies with 2, 4, 8, 16 and 32 islands.
A single run of an implementation was given 10 minutes of wallclock time, and allowed to
evaluate as many objective function evaluations as it could manage. Each run was repeated
50 times with different initial random seeds so that the expected search quality and its
deviation can be calculated. A summary of the algorithms tested in this study are given in
Table 8.3.

The output of each run is the approximation set generated by the algorithm. This
approximation set is stored in a database. After all runs have been executed, the aggregation
of all approximation sets across all algorithms forms the reference set. This reference set
contains all Pareto approximate solutions discovered in this study. Using this reference set,
we can subsequently compute various performance indicators. Based our prior comprehensive
assessment of the LRGV test case for a broad suite of MOEAs (Reed et al., 2012), we have
selected to emphasize the hypervolume indicator. Our prior results have shown that the
hypervolume is sensitive to the irregular Pareto approximate set geometry of the LRGV test
case and that, in general, other measures are equivalent or easier to satisfy at high levels
of performance. Hypervolume measures the volume of objective space dominated by an
approximation set. Larger hypervolumes therefore correspond to approximation sets that
dominate more space, which in turn indicates high-quality approximation sets.

127

(a)

ce Set

n Set

Hypervolume (n)

ce Point

(c)

Figure 8.1: 2D demonstration of the hypervolume indicator. (a) The bounds of the reference
set are used to calculate the reference point; this calculation typically adds a delta so that
the boundary points contribute positive hypervolume. (b) Given an approximation set, the
hypervolume is the volume of space dominated between the approximation set points and
the reference point. (c) Demonstration of how an approximation set with good proximity
but poor diversity results in a sub-optimal hypervolume.

Figure 8.1 shows an example of how hypervolume is computed in 2D space. A reference
point is chosen based on the bounds of the reference set plus some additional delta. This
delta ensures the boundary points contribute positive volume to the overall hypervolume.
Hypervolume is normalized to the range [0, 1] such that the best possible set, the reference
set, has a hypervolume of 1. Approximation sets with hypervolumes near 1 are high-quality,
have converged in proximity to the reference set, and are diversified across the entire Pareto
front.

While hypervolume can be expensive to calculate, it offers several advantages over other
performance indicators. Its results are scaling independent, it is compatible with the domi-
nance relation, and its meaning is intuitive (Zitzler et al., 2002c). Since the LRGV problem
has six objectives, we elected to use the efficient WFG hypervolume algorithm to calculate
exact hypervolume values (While et al., 2012).

In addition to recording the end-of-run approximation set, runtime data is collected every
10,000 NFE and stored in the database. The data includes a snapshot of the approximation
set discovered by the algorithm at the current point in time, the operator probabilities
used by the Borg MOEA’s adaptive multi-operator mechanism, and local and global restart
frequencies. Identical to how we compute hypervolume for the end-of-run approximation set,
we also compute hypervolume for each snapshot. This provides a view into the dynamics
of the algorithm. We can visualize the inner workings of the parallel Borg MOEA and its

128

impact on solution quality.

8.3 Results

The LRGV problem described in Section 8.1 was solved using the large-cluster master-
slave ǫ-NSGA-II, the master-slave Borg MOEA, and several configurations of the multi-
master Borg MOEA as described in Section 8.2. This section presents the results from this
experiment. First, Section 8.3.1 investigates the time required to converge to high-quality
solutions, identifying the implementations which converged fastest and with the highest
reliability. Second, we explore the end-of-run solution quality as a result of running each
implementation for a fixed amount of time in Section 8.3.2, identifying the implementation
that produced the highest-quality result. In Section 8.3.3, we analyze the operator dynamics
introduced by the auto-adaptive multi-operator search mechanism used by the Borg MOEA.
Finally, Section 8.3.4 calculates the parallel efficiency and speedup of the implementations,
identifying the configurations that maximize their use of the underlying computing resources.

8.3.1 Convergence Speed and Reliability

Figure 8.2 shows the speed and reliability of the different parallel MOEA implementations
tested in this study. These results show the cumulative distribution functions (CDFs) for gen-
erating high-quality approximation sets with respect to wallclock time. Here, an algorithm
generates a high-quality approximation set if its hypervolume is ≥ 90% of the best-known,
reference set hypervolume. Each of the subplots in Figure 8.2 shows the results for different
processor counts. Each of the line series corresponds to one of the implementations in Ta-
ble 8.3. These line series plot at each point in time the probability that the implementation
generated high-quality approximation sets exceeding the 90% hypervolume threshold. Ideal
performance on these plots are vertical CDFs (i.e., no random seed variability) at a minimum
wallclock.

Starting with the 1024 processor subplot, we observe that none of the implementations
had a 100% probability of attaining the 90% hypervolume threshold within the wallclock al-
lowed. The closest results were provided by the 16 and 32 island multi-master Borg MOEA
implementations, which reached the hypervolume threshold with 90% probability. This is
followed closely by the 8 island multi-master Borg MOEA implementation with 85% proba-
bility, and more distantly by the 2 and 4 island multi-master Borg MOEA implementations
with 60% and 55% probability, respectively. The high failure rates for several configura-
tions of the parallel Borg MOEA confirm the difficulty of the LRGV case study as has been
observed in prior work (Reed et al., 2012). All of the multi-master Borg MOEA implemen-
tations significantly exceeded the reliability of the master-slave Borg MOEA and ǫ-NSGA-II
implementations. Note that the slopes of all of the success rate CDFs show strong random
seed variability in the time required to attain high-quality approximations of the LRGV case
study’s tradeoffs.

Additionally, by observing the position along the x-axis where the line series reached

129

100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

!lapsed Time (sec)

H
y
p
e
rv

o
lu

m
e
 S

u
c
c
e
s
s
 R

a
te

 (

>
"

 9
0

%

 I
d
e
a
l)

1024 Processors

100 200 300 400 500 600

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

!lapsed Time (sec)

H
y
p
e
rv

o
lu

m
e
 S

u
c
c
e
s
s
 R

a
te

 (

>
"

 9
0

%

 I
d
e
a
l)

2048 Processors

100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

!lapsed Time (sec)

H
y
p
e
rv

o
lu

m
e
 S

u
c
c
e
s
s
 R

a
te

 (

>
"

 9
0

%

 I
d
e
a
l)

4096 Processors

100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

!lapsed Time (sec)

H
y
p
e
rv

o
lu

m
e
 S

u
c
c
e
s
s
 R

a
te

 (

>
"

 9
0

%

 I
d
e
a
l)

8192 Processors

100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

!lapsed Time (sec)

H
y
p
e
rv

o
lu

m
e
 S

u
c
c
e
s
s
 R

a
te

 (

>
"

 9
0

%

 I
d
e
a
l)

16384 Processors

Master-Slave #-NSGA-II

Master-Slave Borg

Multi-Master Borg (2 Islands)

Multi-Master Borg (4 Islands)

Multi-Master Borg (8 Islands)

Multi-Master Borg (16 Islands)

Multi-Master Borg (32 Islands)

Legend

Figure 8.2: Probability of each parallel implementation of attaining a hypervolume >= 90%
of the reference set hypervolume on the LRGV problem. Each subplot shows the results for
different processor counts, from 1024 up to 16384 processors.

130

their maximum, we can determine the convergence speed of the algorithm. Continuing with
our analysis, we observe in the 1024 processor subplot that the 16 and 32 island multi-
master Borg MOEA implementations converged in 450 and 560 seconds, respectively. In
general, we desire MOEAs that produce the highest-quality results. As with this case, when
the quality attained by two different implementations are equivalent, we then look at the
speed of convergence. For the 1024 processor case, the 16 island multi-master Borg MOEA
implementation produced the best result.

As the processor count increases, we observe that many implementations are able to
reach the 90% hypervolume threshold with 100% probability. With 2048 processors, the 16
island multi-master Borg MOEA implementation converged fastest with 100% probability in
410 seconds. With 4096 processors, the 32 island multi-master Borg MOEA implementation
dominates, converging with 100% probability in 190 seconds. With 8192 processors, the 16
and 32 island multi-master Borg MOEA implementations perform similarly, converging with
100% probability in 50 and 80 seconds, respectively. Finally, at 16384 processors, the 16
and 32 island multi-master Borg MOEA implementations have nearly identical convergence
speeds of approximately 40 seconds. Note at 8192 and 16384 processor counts, the top
performing instances of the multi-master Borg MOEA have virtually no random variability.
Any given trial of the algorithm is 100% reliable in both solution quality and wall clock
time required. This a major benefit for operational use of the algorithm on large parallel
architectures where compute hours are often strongly constrained.

From these results, it is clear that the multi-master implementations provide significant
improvements in terms of speed and reliability over the master-slave implementations. The
master-slave Borg MOEA and ǫ-NSGA-II implementations never converged with 100% prob-
ability, regardless of how many processors were available. This failure is attributed to the
inefficiency of the master-slave implementations, which quickly become congested trying to
receive messages from so many slave nodes (Hadka et al., 2013). Furthermore, the ability
of struggling islands to request help from the controller node also is a contributor to the
superior performance of the multi-master implementations.

At higher processor counts, inefficiencies due to congestion can also be seen in the 2 and
4 island multi-master implementations. For instance, compare the 2 island multi-master
Borg MOEA for the 4096, 8192, and 16384 processor subplots. With 4096 processors, the
2 island multi-master Borg MOEA implementation is performing reasonably well. However,
its performance declines significantly with 8192 and 16384 processors. This is a result of
each island becoming congested, and it is simply unable to evaluate as many NFE as the
implementations with more islands. This shows that selecting a topology appropriate for
the processor count is critical. Our simulation-based approach for determining the optimal
topology for the multi-master Borg MOEA will be discussed later in Section 8.3.4.

8.3.2 End-of-Run Quality

In the previous section, we analyzed the results in terms of the 90% hypervolume threshold.
We fixed the performance threshold and observed the time required to reach this threshold.
In this section, we instead fix time and look at the performance of each implementation.

131

As described in Section 8.2, each implementation was run for 10 minutes. The end-of-run
hypervolume is calculated from the approximation set produced by each MOEA after 10
minutes.

Table 8.4 shows the median and standard deviation of the end-of-run hypervolume from
all 50 seeds for each implementation. Recall that a hypervolume of 1 is optimal. At 1024
processors, the multi-master Borg MOEA improvement is marginal. The hypervolume in-
creases approximately 2% when switching from the master-slave ǫ-NSGA-II to the 32 island
multi-master Borg MOEA. At larger processor counts, the improvement is more significant.
With 16384 processors, the 32 island multi-master Borg implementation produces a hyper-
volume 29% better than master-slave ǫ-NSGA-II. This implies a significant improvement in
solution quality when switching to the multi-master Borg MOEA implementation.

Across all topologies, the 16384 processor runs of 32 island multi-master Borg MOEA
resulted in the best end-of-run hypervolume. Combined with the speed and reliability results
from Section 8.3.1, this shows concretely that the multi-master Borg MOEA with a larger
number of islands produces the highest-quality results efficiently and reliably. Furthermore,
the results significantly exceed the quality of the master-slave ǫ-NSGA-II and Borg MOEA
implementations.

Table 8.4 also provides results from the Kruskal-Wallis and Mann-Whitney U tests. Both
tests determine whether differences in the medians of two sampled populations are statis-
tically significant or occurred due to random chance (Sheskin, 2004). The Kruskal-Wallis
test is first applied to all medians in the table to determine if there is a statistical difference
in the entire table. Since the Kruskal-Wallis test indicated differences were significant, the
Mann-Whitney U test is applied to each pair to determine which specific cases are significant.
Since the 32 island multi-master Borg MOEA implementation produced the best end-of-run
hypervolume, we compare the significance of this result with all other topologies. In Ta-
ble 8.4, the “significant” column contains a check mark if the end-of-run hypervolume from
that row was statistically different from the 32 island multi-master Borg MOEA result with
95% confidence. Additionally, the p-value from the Mann-Whitney U test is shown. With
95% confidence, a p-value ≤ 0.05 rejects the null hypothesis and implies that the results are
statistically significant.

These statistical tests show that there is not a statistically significant difference between
the 8, 16, and 32 island multi-master Borg MOEA implementations with 16384 processors.
However, these three implementations are statistically better than all other runs.

8.3.3 Operator Dynamics

The Borg MOEA bases its selection of search operators on archive membership and recency as
discussed in Section 6.2. Adapting its search operators at runtime allows the Borg MOEA
to favor operators that contribute more Pareto approximate solutions, leading to faster
convergence and diversification. In this section, we explore the operator dynamics on the
LRGV problem. The results in this section are based on a single, typical run. We have
confirmed that the trends observed in these results are consistent with general trends.

Figure 8.3 shows the operator probabilities from a single run of the master-slave Borg

132

Table 8.4: Table showing the median and standard deviation of the end-of-run hypervolume
results. The Kruskal-Wallis and Mann-Whitney U tests were used to test the statistical
significance of the medians. The significant column contains a X if the median from that
row is significantly different than the best result, 16384 processor multi-master Borg MOEA
(32 islands), with 95% confidence. The row containing the best result is highlighted. The
final column contains the corresponding p-value from the Mann-Whitney U test.

Processors Implementation Median Stdev Significant p-value

1024

Master-Slave ǫ-NSGA-II 0.88889 0.013124 X 1.75×10−7

Master-Slave Borg 0.89146 0.015297 X 1.75×10−7

Multi-Master Borg (2 Islands) 0.89892 0.015105 X 1.75×10−7

Multi-Master Borg (4 Islands) 0.89512 0.010933 X 1.75×10−7

Multi-Master Borg (8 Islands) 0.90447 0.015395 X 5.71×10−7

Multi-Master Borg (16 Islands) 0.90786 0.011394 X 1.75×10−7

Multi-Master Borg (32 Islands) 0.90796 0.012429 X 2.03×10−7

2048

Master-Slave ǫ-NSGA-II 0.89667 0.013536 X 1.75×10−7

Multi-Slave Borg 0.88374 0.013262 X 1.75×10−7

Multi-Master Borg (2 Islands) 0.90897 0.014425 X 3.18×10−7

Multi-Master Borg (4 Islands) 0.91225 0.013274 X 3.18×10−7

Multi-Master Borg (8 Islands) 0.91526 0.014061 X 2.74×10−7

Multi-Master Borg (16 Islands) 0.92074 0.015761 X 3.08×10−6

Multi-Master Borg (32 Islands) 0.91621 0.012114 X 2.36×10−7

4096

Master-Slave ǫ-NSGA-II 0.87477 0.014715 X 1.75×10−7

Multi-Slave Borg 0.88124 0.013009 X 1.75×10−7

Multi-Master Borg (2 Islands) 0.92561 0.012299 X 2.36×10−7

Multi-Master Borg (4 Islands) 0.92572 0.015114 X 5.27×10−6

Multi-Master Borg (8 Islands) 0.92695 0.013407 X 7.82×10−6

Multi-Master Borg (16 Islands) 0.92601 0.015314 X 1.49×10−5

Multi-Master Borg (32 Islands) 0.9332 0.013837 X 4.01×10−5

8192

Master-Slave ǫ-NSGA-II 0.8163 0.014652 X 3.61×10−7

Multi-Slave Borg 0.88813 0.015637 X 1.75×10−7

Multi-Master Borg (2 Islands) 0.91815 0.015299 X 5.71×10−7

Multi-Master Borg (4 Islands) 0.93421 0.011551 X 0.000149
Multi-Master Borg (8 Islands) 0.93698 0.016602 X 0.010163
Multi-Master Borg (16 Islands) 0.94167 0.010124 X 0.005836
Multi-Master Borg (32 Islands) 0.94194 0.012687 X 0.025419

16384

Master-Slave ǫ-NSGA-II 0.73672 0.14131 X 3.39×10−6

Multi-Slave Borg 0.8907 0.017862 X 3.39×10−6

Multi-Master Borg (2 Islands) 0.91252 0.014744 X 5.05×10−6

Multi-Master Borg (4 Islands) 0.92989 0.01303 X 0.000464
Multi-Master Borg (8 Islands) 0.94489 0.01707 0.21356
Multi-Master Borg (16 Islands) 0.94534 0.013617 0.53383
Multi-Master Borg (32 Islands) 0.94814 0.014137

133

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

 P
ro

b
a

v
o

lu
m

e

d Time (seconds)

SBX D$ P&X SPX UNDX UM

Figure 8.3: The operator probability runtime dynamics from a single run of the master-
slave Borg MOEA with 1024 processors. The solid black line traces the hypervolume of the
approximation set at each point in time.

MOEA on the LRGV problem with 1024 processors. At each point in time along the x-
axis, this plot shows the combination of search operators using the colored regions. Large
colored regions corresponding to heavier use of that operator. Additionally, the black solid
line traces the hypervolume of the approximation set at each point in time. Although it
would be expected that the specific operator probabilities and search dynamics will vary,
we have found that they are generally consistent making these results reflective of typical
search behavior. The run shown in Figure 8.3 begins with significant use of simulated binary
crossover (SBX), parent-centric crossover (PCX), and uniform mutation with probability
1/L (UM). These four operators facilitate rapid identification and convergence to the Pareto
approximate front. SBX takes over in diversifying along the Pareto front, since SBX with
a large distribution index (as with prior studies, this study uses a distribution index of
15) introduces only small perturbations resulting in small, local improvements. Also note
that there is no single activated operator, but instead there exists cooperation between
several search operators. This cooperation allows the Borg MOEA to combine the qualities
of multiple search operators when generating offspring, and can significantly improve the
quality of search (Vrugt and Robinson, 2007; Vrugt et al., 2009).

As demonstrated in this example, the use of multiple search operators significantly im-
proves the search dynamics of an MOEA. Membership and recency allow the MOEA to
quickly identify the search operators that are beneficial. We also observe that two opera-
tors, differential evolution (DE) and unimodal normal distribution crossover (UNDX), had
minimal use. While DE and UNDX were not used heavily on the LRGV problem, they have
been actively used on other problems (Hadka et al., 2012). Allowing the MOEA to determine
the appropriate selection of search operators is a significant advantage when using the Borg

134

MOEA for real-world complex engineered systems applications.
We can also explore the operator dynamics on the multi-master Borg MOEA. Recall

that each island maintains its own operator probabilities, but they can request help from the
controller. When receiving help, the island also receives updated operator probabilities that
are derived from the global ǫ-dominance archive. Figure 8.4 shows the operator dynamics
for a single run of the 16 island multi-master Borg MOEA with 1024 processors. Each of
the subplots shows the operator probabilities from a single island. The vertical black lines
indicate when the island requests help from the controller. Like Figure 8.3, the solid black
line traces the hypervolume of the approximation set at each point in time.

Many islands, as expected, only require help at the end of the run once the initial con-
vergence and diversification is complete. However, we observe that several islands benefit
from receiving help earlier in runs. For instance, Island 12 started with significant use of uni-
form mutation (UM). This selection of operator probabilities was ineffective; the algorithm
quickly determined that it was no longer making improvements and immediately asked the
controller for help. Upon receiving help, as indicated by the left-most vertical black line,
the guidance provided by the controller corrected the operator probabilities to allow search
to progress. Thereafter, the algorithm made continuous progress as indicated by the lack of
additional help messages until much later in the run. Other islands, such as Island 15, do
not require any help during a run.

This example demonstrates how the Borg MOEA can avoid bad initial seeds by relying on
the global knowledge gained by running multiple concurrent instances of the Borg MOEA.
As we saw with Island 12 in Figure 8.4, an initial bad seed can be quickly detected and
corrected without wasting significant computing resources. This contributes to the overall
improvement in search quality observed when running the multi-master Borg MOEA with
many islands.

We lastly turn to look at the improvement in search quality resulting from the island-
based model in the multi-master Borg MOEA. Both Figure 8.3 and Figure 8.4 plot the
hypervolume of the approximation set at each point in time with solid black lines. Recall
that hypervolumes near 1 indicate high-quality results. The master-slave Borg MOEA search
dynamics in Figure 8.3 show that the hypervolume quickly levels off around 0.85 and makes
no further improvements. The master-slave Borg MOEA is simply unable to attain high-
quality results. However, by running multiple islands and sharing solutions and operator
probabilities between islands as done in the multi-master Borg MOEA, hypervolume is in-
creased substantially. Figure 8.4 shows this effect. While individual islands tend to converge
slower than the master-slave run in Figure 8.3, they attain substantially better hypervolume
results later in the run.

8.3.4 Parallel Efficiency and Speedup

Finally, we explore the parallel efficiency and speedup of the various master-slave and multi-
master Borg MOEA configurations explored in this study. Since each implementation was
run for a fixed wallclock time (10 minutes), efficiency is based on the total NFE in each run.
Thus, if NFES is the total NFE for a serial run and NFEP is the total NFE for a parallel

135

0 100 200 300 400 500 600
0

0.5

1
Island 1

0 100 200 300 400 500 600
0

0.5

1
Island 2

0 100 200 300 400 500 600
0

0.5

1
Island 3

0 100 200 300 400 500 600
0

0.5

1
Island 4

0 100 200 300 400 500 600
0

0.5

1
Island 5

0 100 200 300 400 500 600
0

0.5

1
Island 6

0 100 200 300 400 500 600
0

0.5

1
Island 7

0 100 200 300 400 500 600
0

0.5

1
Island 8

0 100 200 300 400 500 600
0

0.5

1
Island 9

0 100 200 300 400 500 600
0

0.5

1
Island 10

0 100 200 300 400 500 600
0

0.5

1
Island 11

0 100 200 300 400 500 600
0

0.5

1
Island 12

0 100 200 300 400 500 600
0

0.5

1
Island 13

0 100 200 300 400 500 600
0

0.5

1
Island 14

0 100 200 300 400 500 600
0

0.5

1
Island 15

0 100 200 300 400 500 600
0

0.5

1
Island 16

 P
ro

b
a

v
o
lu

m
e

d Time (seconds)

SB' () P*' SP' +,(' +M

Figure 8.4: The operator probability runtime dynamics from a single run of the 16 island
multi-master Borg MOEA with 1024 processors. Each subplot shows the operator probabil-
ities for an island. The vertical black lines indicate when the island requested help from the
controller. Like Figure 8.3, the solid black line traces the hypervolume of the approximation
set at each point in time.

136

Table 8.5: Table showing the median NFE expended by each implementation and the parallel
efficiency.

Processors Implementation Total NFE Efficiency Predicted Efficiency

1024

Multi-Slave Borg 4293080 0.978 0.98
Multi-Master Borg (2 Islands) 4301767 0.98 0.99
Multi-Master Borg (4 Islands) 4291951 0.978 0.99
Multi-Master Borg (8 Islands) 4277744 0.975 0.98
Multi-Master Borg (16 Islands) 4242323 0.967 0.97
Multi-Master Borg (32 Islands) 4166046 0.949 0.96

2048

Multi-Slave Borg 7755607 0.884 0.91
Multi-Master Borg (2 Islands) 8610209 0.981 0.97
Multi-Master Borg (4 Islands) 8609865 0.981 0.98
Multi-Master Borg (8 Islands) 8588290 0.979 0.98
Multi-Master Borg (16 Islands) 8552526 0.975 0.97
Multi-Master Borg (32 Islands) 8478679 0.966 0.97

4096

Multi-Slave Borg 7681163 0.438 0.47
Multi-Master Borg (2 Islands) 16496460 0.94 0.91
Multi-Master Borg (4 Islands) 17174236 0.979 0.97
Multi-Master Borg (8 Islands) 17207637 0.98 0.97
Multi-Master Borg (16 Islands) 17142685 0.977 0.97
Multi-Master Borg (32 Islands) 17129074 0.976 0.96

8192

Multi-Slave Borg 7160437 0.204 0.23
Multi-Master Borg (2 Islands) 17057671 0.486 0.46
Multi-Master Borg (4 Islands) 32469898 0.925 0.92
Multi-Master Borg (8 Islands) 34009570 0.969 0.97
Multi-Master Borg (16 Islands) 34139711 0.973 0.98
Multi-Master Borg (32 Islands) 34121055 0.972 0.98

16384

Multi-Slave Borg 4470551 0.064 0.08
Multi-Master Borg (2 Islands) 14385033 0.205 0.23
Multi-Master Borg (4 Islands) 32373010 0.461 0.47
Multi-Master Borg (8 Islands) 64639837 0.921 0.91
Multi-Master Borg (16 Islands) 67101524 0.956 0.96
Multi-Master Borg (32 Islands) 67661785 0.964 0.97

run with P processors, efficiency is calculated by

efficiency =
NFEP

P · NFES

. (8.6)

The total NFE of the serial algorithm running for 10 minutes is NFES = 4285. Table 8.5
shows the total NFE expended by each parallel implementation and the calculated efficiency.

With only 1024 processors, all of the configurations have very high efficiency. As expected,
as the number of islands increases, the efficiency drops slightly due to the overhead introduced
by having additional master nodes, the controller node, and the additional communication
between these nodes.

137

10
3

10
4

2

4

8

16

32

64

-umber o/ Processors

1

u
m

b
e
r

o

2
Is

la
n
d
s

3
22
:;
:<
?
;
@

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8.5: Predicted efficiency for the multi-master Borg MOEA on the LRGV problem
from 1024 up to 65536 processors.

When the number of processors increases beyond 1024, the efficiency of the master-slave
Borg MOEA rapidly declines. With 16384 processors, the master-slave Borg MOEA is run-
ning with an efficiency of 0.064. At this point, the increased overhead and communication
burden overloads the single master node and reduces the overall NFE. Increasing the number
of islands reduces the workload on individual master nodes, spreading the NFE across multi-
ple islands. Looking at the 16384 processor case in Table 8.5, switching from the master-slave
to a 2 island multi-master configuration increases the efficiency from 0.064 to 0.205. Increas-
ing the number of islands improves the efficiency further, reaching an efficiency of 0.964 with
32 islands.

In Chapter 7, we developed a discrete event simulation model for accurately predicting
the efficiency of the master-slave and multi-master Borg MOEA. Table 8.5 shows the actual
and the predicted efficiency from this model for the LRGV problem. Timing collected from
the LRGV runs determined the inputs to the simulation model. These inputs included
estimates for the algorithm overhead, TA = 0.000105 seconds, the communication overhead,
TC = 0.000006 seconds, and objective function evaluation time, TF = 0.14 seconds. All of
these timings were collected on TACC Ranger. From Table 8.5, we see that the simulation
model can very accurately predict the parallel efficiency of the multi-master Borg MOEA.

We expect the multi-master Borg MOEA to be able to efficiently scale to very large
processor counts by increasing the number of islands as needed to remain efficient. Using
the simulation model, we can predict the efficiency of the multi-master Borg MOEA at
larger processor counts. Figure 8.5 shows the predicted efficiency for the LRGV problem.
Note the linear relationship between the number of processors and the number of islands. To
maintain high efficiency, doubling the number of processors requires the number of islands to

138

double. This maintains a fixed number of processors per island, which is chosen to yield the
maximum efficiency. We can use this simulation model to determine the optimal topology
for maximizing efficiency.

Maximizing efficiency will increase NFE, but this does not necessarily correspond to
increased search quality. It is also necessary to consider how parallelization improves overall
search quality. Figure 8.6 shows the comparative speedup attained when switching from
the master-slave to the multi-master Borg MOEA. Each subplot corresponds to a different
processor count. The lines within each subplot trace the speedup of that implementation.
The baseline is the master-slave Borg MOEA. Results are averaged over 50 random seed
trials. The speedup measures how many times faster (or slower) the multi-master Borg
MOEA is in attaining the same hypervolume. For example, if the master-slave Borg MOEA
reached a hypervolume of 0.8 in 300 seconds, and the multi-master Borg MOEA reached the
same hypervolume in 150 seconds, it would show a speedup of 2. Since the master-slave is the
baseline, it appears as a flat line with a speedup of 1. Note that these speedup measurements
are provided between runs with the same processor count — the computing power is fixed.
Thus, any speedup observed is a result of the improved convergence and diversity of a given
implementation of the parallel Borg MOEA, and is not a result of more computing power.

With 1024 processors, we see that at low hypervolume thresholds, the multi-master Borg
MOEA implementations have lower convergence speeds than the maser-slave Borg MOEA.
Only as we increase the hypervolume threshold do the multi-master Borg MOEA implemen-
tations begin to converge faster. The master-slave Borg MOEA converges very fast, but it
is limited to attaining lower hypervolume than the multi-master Borg MOEA. Note in Fig-
ure 8.6 given that the master-slave Borg MOEA baseline never attains the highest levels of
hypervolume, the multi-master Borg MOEA speedup results are conservative. At the largest
tested processor count, 16384, we see that the 16 and 32 island multi-master Borg MOEA
runs reach a speedup of 10−18 times faster than the master-slave Borg MOEA. This means
these multi-master runs are converging in 1/10th the wallclock time as the master-slave Borg
MOEA, even though the multi-slave and multi-master are given the same number of pro-
cessors. This speedup is therefore a result of algorithmic improvements in the multi-master
paradigm, allowing the algorithm to capture the same solution quality in less time. This
combined with the global restarts and guidance provided by the controller help improve the
speed, effectiveness, and reliability of the multi-master Borg MOEA.

8.4 Conclusion

The Borg MOEA was originally introduced to solve many-objective, multi-modal, non-
separable engineering problems. The success of the Borg MOEA has been demonstrated
in several studies (Hadka and Reed, 2012a,b; Hadka et al., 2012; Reed et al., 2012). Appli-
cation of the Borg MOEA is limited by its serial implementation, which is unable to rapidly
solve large-scale problems with expensive objective function evaluations.

To address this limitation, this study developed two parallel versions of the Borg MOEA.
The master-slave Borg MOEA runs a parallelized version of the serial Borg MOEA where

139

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
4096 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
2048 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20
16384 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
1024 Processors

Hypervolume

S
p
e
e
d
u
p

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
8192 Processors

Hypervolume

S
p
e
e
d
u
p

Master-Slave A-NSGA-II

Master-Slave Borg

Multi-Master Borg (2 Islands)

Multi-Master Borg (4 Islands)

Multi-Master Borg (8 Islands)

Multi-Master Borg (16 Islands)

Multi-Master Borg (32 Islands)

Legend

Figure 8.6: Hypervolume speedup of the multi-master Borg MOEA implementations com-
pared to the baseline master-slave Borg MOEA. These results are averaged over the 50
random seed trials.

140

objective function evaluations are performed in parallel. This provides direct speedup, but
is limited by inefficiencies due to the communication overhead that limits its ability to
attain very high levels of performance. The multi-master Borg MOEA is a hierarchical
extension where two or more islands run instances of the master-slave Borg MOEA in parallel.
Additionally, a global controller node maintains the global search state of the algorithm and
provides guidance to masters when they preconverge. This guidance extends the restart
mechanism and the adaptive selection of search operators of the serial Borg MOEA, allowing
for global restarts and sharing of the global search state.

Applying these parallel implementations of the Borg MOEA to a risk-based water supply
portfolio planning problem, we observed that the master-slave and multi-master Borg MOEA
produced high-quality solutions when compared to another state-of-the-art parallel MOEA,
ǫ-NSGA-II. The multi-master Borg MOEA with 32 islands produced the highest-quality
results. This is attributed to the ability of the multi-master implementation to quickly
detect preconvergence in islands and provide guidance in the form of the global ǫ-dominance
archive and global operator probabilities.

The efficiency, reliability, and search quality of the multi-master Borg MOEA have been
demonstrated running on up to 16384 processors with over 95% efficiency. We contribute
an accurate discrete event simulation of the multi-master Borg MOEA’s parallel efficiency
that shows the algorithm has the strong potential for use on emerging Petascale and planned
Exascale computing architectures (> 100000 processors). The ability to scale efficiently to
high processor counts makes the Borg MOEA a viable tool for solving extremely large-scale,
complex engineering problems. For the LRGV problem explored in this study, the 32 island
multi-master Borg MOEA solved the problem with the highest-quality results in 10 minutes
using 16384 processors. If running in serial, this would require over 109 days of computation.
This opens the possibility for solving such complex engineered systems effectively while
providing decision-makers with the ability to rapidly evaluate their tradeoffs, formulations,
and potential design solutions.

141

Chapter 9

Conclusions, Contributions, and
Future Work

Multiobjective evolutionary algorithms (MOEAs) are changing the way we think about engi-
neering optimization problems. Traditionally, decision-makers would formulate their problem
based on a priori domain knowledge. In doing so, the decision-maker is introducing decision
bias into their problem. Use of aggregate or lower-dimensional formulations of a problem
may cause decision-makers to inadvertently ignore tradeoffs that would otherwise influence
their decision preferences (i.e., cognitive myopia) (Hogarth, 1981). Additionally, highly con-
strained and aggregated formulations often yield alternatives that are strongly influenced by
the decision-maker’s preconceptions of a system, strongly limiting the discovery of tradeoffs
and design alternatives (i.e., cognitive hysteresis) (Gettys and Fisher, 1979). Both cognitive
myopia and cognitive hysteresis negatively impact the outcome from optimization.

To avoid these downfalls, Woodruff et al. (2013) proposes a many-objective visual ana-
lytics (MOVA) framework wherein problem formulation, many-objective optimization, ne-
gotiated design selection, and interactive visualization work together seamlessly, allowing
information to feedback between each stage and potentially alter the design. This approach
necessitates the exploration of higher-dimensional, many-objective spaces. It is therefore nec-
essary to employ many-objective search tools that can effectively search the high-dimensional
problem formulations, capture the complex tradeoffs between the objectives, and allow fluid
feedback between the optimization process, design selection, interactive visualization, and
problem (re)formulation. There exist a number of challenges in this regard, particularly when
solving complex engineered systems. Complex engineered systems often feature challenging
problem properties, including (1) many-objective formulations, (2) multi-modality (or false
optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives,
and (7) non-separability (also called epistasis) (Reed et al., 2012). These properties prohibit
the use of traditional optimization techniques and often require the use of metaheuristics
like MOEAs.

In this dissertation, we developed an adaptive, many-objective optimization tool called
the Borg MOEA. The Borg MOEA features a number of adaptive mechanisms allowing
the algorithm to tailor itself to local search conditions encountered during optimization.

142

It can auto-adapt its use of multiple search operators conditional on their performance, it
tracks all Pareto approximate solutions discovered during search, and it triggers adaptive
restarts to escape local optima and avoid preconvergence. This allows the Borg MOEA to
seamlessly handle many-objective formulations, multi-modality, nonlinearity, discreteness,
severe constraints, stochastic objectives, and non-separability. The effectiveness of the Borg
MOEA has been demonstrated on a number of analytical test problems and several real-
world applications throughout this dissertation. In nearly all test cases, the Borg MOEA
meets or exceeds the performance of other contemporary MOEAs.

To assist in the experimental comparison of algorithms, we developed a rigorous testing
framework to compare the relative performance of MOEAs. To this end, we proposed several
metrics for comparing different MOEAs based on their efficiency, reliability, and controlla-
bility. This framework also includes a diagnostic tool to assess the relative importance of
an MOEA’s parameters. It is well-documented that many MOEAs are sensitive to their
parameterizations, and the optimal parameterization often changes across problem domains
and even problems within a single domain (Purshouse and Fleming, 2003, 2007). Apply-
ing this diagnostic tool to the state-of-the-art MOEAs, we identified that most MOEAs
are extremely sensitive to small parameter perturbations. The Borg MOEA, because of its
auto-adaptiveness, remains insensitive to all parameters except for NFE. This trend has been
observed on over 30 analytical test problems and several real-world applications.

Since the Borg MOEA’s performance has been shown to be controllable using NFE,
we hypothesized it will benefit heavily from parallelization. Therefore, we developed two
parallel versions of the Borg MOEA. The first version, the master-slave Borg MOEA, is
a straightforward parallelization of the Borg MOEA. We observed that the master node
quickly becomes a bottleneck as the number of processors increases, and consequently we
developed a hierarchical extension called the multi-master Borg MOEA. The multi-master
Borg MOEA can scale to tens of thousands of processors and maintain high efficiency. The
multi-master Borg MOEA not only increases NFE due to increased efficiency but also results
in an overall improvement in speedup and search quality due to the dynamics introduced by
the controller node. The controller is tasked with monitoring search progress within each
island / master and will trigger global restarts and provide guidance in the form of Pareto
approximate solutions and operator preferences.

As the Borg MOEA is insensitive to parameterization, we need not be concerned about
the parameterization of each island in the multi-master Borg MOEA. However, the topology
is important for improving efficiency and search quality. To assist the design of the topology,
we developed a discrete event simulation model to predict the optimal processor count per
island in order to maximize efficiency. Using this model, we can configure the multi-master
to maximize its utilization of the underlying parallel architecture.

This dissertation culminates with the application of the Borg MOEA to a severely con-
strained, many-objective complex engineered system: a risk-based water supply portfolio
planning problem. Not only does this problem exhibit all of the challenging problem prop-
erties, its expensive function evaluation times necessitate large-scale parallelization. The
multi-master Borg MOEA scaled efficiently to 16384 processors on the TACC Ranger su-

143

percomputer to solve this problem efficiently and reliably, producing the highest-quality
solutions for this problem to date.

The Borg MOEA is changing the way we optimize complex engineered systems. It is
highly-controllable, efficient, scalable, and consistently produces high-quality solutions on
complex, many-objective problems. As a result, the Borg MOEA can be integrated within the
MOVA framework (Woodruff et al., 2013) to provide rapid feedback to the decision-makers.
Cognitive myopia and cognitive hysteresis can be eliminated through the optimization of
high-dimensional formulations of complex engineered systems, leading to a revolution in
decision-making.

9.1 Contributions

This dissertation developed the serial, master-slave, and multi-master variants of the Borg
MOEA. Throughout this work, we have provided many key contributions to the field of paral-
lel computing, evolutionary computation, and operations research. This sections summarizes
the contributions of this dissertation.

9.1.1 Technical Contributions

The following technical contributions resulted from the work in this dissertation. These
technical contributions represent novel research that contributed to the fields of parallel
computing, evolutionary computation, and operations research.

• The Borg MOEA is the first MOEA to combine ǫ-dominance, adaptive population
sizing, and auto-adaptive multioperator recombination to produce a highly adaptive
and scalable MOEA. The Borg MOEA has been shown to be superior to existing tools
using numerous test problems (see Chapters 3 and 4) and several real-world case studies
(see Chapters 5 and 8).

• Detailed investigation of the auto-adaptive multioperator recombination selection prob-
abilities in the Borg MOEA provides strong insights into the dynamics of operator /
topology interaction. In other words, researchers can use the operator selection proba-
bilities to infer information about a problem’s topology, including identifying problems
favoring mean-centric operators (simple landscape), parent-centric operators (multi-
modality), or rotationally-invariant operators (high degree of epistasis).

• The diagnostic framework presented in Chapter 4 is the first framework to statisti-
cally assess an MOEA’s search quality, reliability, controllability, and efficiency. In
particular, controllability and efficiency are two novel metrics developed for this work.

• The diagnostic framework also applies Sobol’ sensitivity analysis to ascertain the search
controls and failure modes of MOEAs by investigating the effects and interactions
between algorithm parameters. This provided the first detailed understand of the key
factors that control an MOEA’s performance.

144

• In Chapter 5, we demonstrated that the Borg MOEA outperforms all tested contempo-
rary MOEAs on a severely constrained, many-objective product family design problem.
Additionally, Chapter 5 applies the diagnostic framework from Chapter 4 to this prod-
uct family design problem, confirming that the Borg MOEA is highly controllable on
a real-world application.

• In Reed et al. (2012), we demonstrated that the Borg MOEA is a top contender on three
real-world, complex water engineering applications. These applications range from
identifying optimal water planning portfolios (the LRGV problem) to flood forecasting.
This demonstrates that the Borg MOEA is both reliable and highly competitive across
a range of problem domains.

• The master-slave and multi-master Borg MOEA developed in Chapter 6 provide highly
efficient and reliable many-objective optimization with the ability to scale to tens of
thousands of processors. Complex engineered systems can be solved efficiently, pro-
viding rapid feedback to decision-makers. As a result, the Borg MOEA is a candidate
optimization tool within the many-objective visual analytics (MOVA) framework devel-
oped by Woodruff et al. (2013). The MOVA framework aims to provide fluid feedback
between the problem formulation, many-objective search, and visualization.

• In Chapter 7, we develop the first theoretical scalability models for parallel, asyn-
chronous MOEAs. We identify the limits on scalability, processor count lower and
upper bounds, speedup, and efficiency. This work also demonstrated the ability of
simulation models to accurately model complex, parallel architectures.

• In Chapter 8 we apply the parallel Borg MOEA implementations to a complex engi-
neered system: a risk-based water supply portfolio planning problem. In doing so, we
scaled the algorithms to 16384 processors with over 95% efficiency. This problem can
be solved with high-reliability in under a minute. Without parallelization, it would
take over 114 days to execute a similar study.

• The complex engineered system optimized in Chapter 8 was used to explore the adap-
tive parameterization in the multi-master Borg MOEA. The dynamic global restarts
enabled by the controller node and its guidance is shown to fundamentally improve
the speed and quality of search.

9.1.2 Peer-Reviewed Journal Articles

The following peer-reviewed journal articles resulted from the work presented in this disser-
tation. This includes manuscripts currently being prepared for submission to top journals
in the fields of parallel computing, evolutionary computation, and civil engineering.

• Hadka, D., et al. Large-scale Parallelization of the Borg MOEA for Addressing the
Design of Complex Engineered Systems. Evolutionary Computation, In-Preparation.

145

• Reed, P., et al. Evolutionary Multiobjective Optimization in Water Resources: The
Past, Present & Future. (Editor Invited Submission to the 35th Anniversary Special
Issue), Advances in Water Resources, 2012.

• Hadka, D. and Reed, P. Diagnostic Assessment of Search Controls and Failure Modes
in Many-Objective Evolutionary Optimization. Evolutionary Computation, 20(3):423–
452, 2012.

• Hadka, D. and Reed, P. Borg: An Auto-Adaptive Many-Objective Evolutionary Com-
puting Framework. Evolutionary Computation, 2012.

9.1.3 Presentations at Conferences and Invited Talks

• Hadka, D., et al. Scalability Analysis of the Multi-Master Borg Multiobjective Evolu-
tionary Algorithm. Supercomputing, In-Preparation.

• Hadka, D., et al. Scalability Analysis of the Asynchronous, Master-Slave Borg Multiob-
jective Evolutionary Algorithm. 27th International Parallel & Distributed Processing
Symposium (IPDPS), Nature Inspired Distributed Computing Workship (NIDISC),
Boston, MA, 20-24 May 2013 (To Appear).

• Kasprzyk, J. et al. Diagnostic Evaluation of Many Objective Search for Water Supply
Portfolio Planning. World Environmental and Water Resources Congress, Cincinnati,
Ohio, 19-23 May 2013 (To Appear).

• Hadka, D., et al. Diagnostic Assessment of the Borg MOEA for Many-Objective Prod-
uct Family Design Problems. INFORMS, Phoenix, Arizona, 16 October 2012.

• Kollat, J., et al. Evolutionary Multiobjective Optimization in Water Resources: The
Past, Present, and Future. INFORMS, Phoenix, Arizona, 16 October 2012.

• Woodruff, M., et al. Auto-Adaptive Search Capabilities of the New Borg MOEA: A De-
tailed Comparison on Product Family Design Problems. 12th AIAA Aviation Technol-
ogy, Integration, and operations (ATIO) Conference and 14th AIAA/ISSMO Multidis-
ciplinary Analysis and Optimization Conference, Indianapolis, Indiana, 17 September
2012.

• Reed, P., et al. Evolutionary Multiobjective Optimization in Water Resources: The
Past, Present, and Future. International Environmental Modelling and Software Soci-
ety, Leipzig, Germany, July 2012.

• Hadka, D., et al. Diagnostic Assessment of the Borg MOEA for Many-Objective Prod-
uct Family Design Problems. WCCI 2012 World Congress on Computational Intelli-
gence, Congress on Evolutionary Computation, Brisbane, Australia, 10-15 June 2012.

146

• Reed, P., et al. A Diagnostic Assessment of Evolutionary Multiobjective Optimization
for Water Resources Systems. European Geosciences Union (EGU) General Assembly,
Vienna, Austria, 27 April 2012.

• Reed, P. and Hadka, D. Assessment of Search Controls and Failure Modes in Many-
Objective Evolutionary Optimization. INFORMS 2011 Annual Meeting, Charlotte,
NC, 14 November 2011.

• Reed, P. and Hadka, D. Diagnostic Assessment of Search Controls and Failure Modes
in Many-Objective Evolutionary Optimization. ASCEWorld Water and Environmental
Resources Congress, Palm Springs, CA, May 2011.

• Presented at the University of Exeter, the University of Sheffield and the Aerospace
Corporation by Dr. Patrick Reed. These talks focused on the work presented in
Chapter 4.

9.1.4 Patents

The motivation for securing patent protection revolves around corporate interest in such tech-
nologies. Many corporations are actively deploying MOEAs to solve real-world applications,
and such patent protection secures the intellectual property and marketability of the Borg
MOEA. The innovations underlying the Borg MOEA are patent pending with the United
States Patent and Trademark Office (USPTO) under patent application 13/356,391, filed 23
January 2012. Provisional patent application 61/766,607 for the multi-master approach to
parallelizing the Borg MOEA was filed on 19 February 2013.

9.1.5 Software

Most of the software developed in this dissertation is available freely for non-commercial
research.

• The serial Borg MOEA from Chapter 3 is available at http://www.borgmoea.org,
licensed under the Pennsylvania State University Research and Educational Use Li-
cense. This software is written in ANSI C. At the time of writing, 42 academic users
from 16 universities are currently using the serial Borg MOEA.

• The MOEA Framework is an open source Java library that supports the design, ex-
perimentation, and analysis of over 25 evolutionary and nature-inspired MOEAs. This
library also contains the diagnostic framework developed in Chapter 4. The MOEA
Framework is available at http://www.moeaframework.org, licensed under the GNU
Lesser General Public License. At the time of writing, the MOEA Framework has
been downloaded 3500 times by individuals from 72 countries since its initial release
in December 2011, currently averaging about 60− 70 downloads a week.

147

• The General Aviation Aircraft (GAA) problem tested in Chapter 5 is licensed under the
open source MIT license at http://www.coe.psu.edu/water/index.php/Benchmark_
Data. This includes C and Java implementations compatible with the Borg MOEA
and the MOEA Framework, respectively. This code was originally developed by Tim-
othy Simpson and Ruchit Shah (Shah et al., 2011) but was modified as part of this
dissertation.

• A modified version of the master-slave Borg MOEA from Chapter 6 was delivered
to the Colorado Springs Utilities for use in optimizing their complex water resources
system.

• The master-slave and multi-master Borg MOEA implementations are available by re-
quest. Please contact Patrick Reed at preed@engr.psu.edu for details.

9.2 Future Work

This section proposes several directions for future work to extend and improve the Borg
MOEA.

Real-World Case Studies
This dissertation presents two real-world case studies in Chapters 5 and 8. Comparative
studies that explore the effectiveness and behavior of the Borg MOEA, both serial and par-
allel variants, will help strengthen the results presented in this dissertation. Of interest are
problems of varying size (both in the number of decision variables and objectives), complex-
ity, and function evaluation time.

Adaptive Topology
In Chapter 7, we devised a strategy for configuring the parallel topology to maximize the
parallel efficiency and hypervolume speedup of the parallel Borg MOEA. This requires the
user to first collect timing data from the problem (function evaluation time, algorithm over-
head) and the computer architecture (communication costs). One can consider if the parallel
topology of the Borg MOEA can be adapted on-line, allowing the Borg MOEA to alter its
topology to maximize performance.

Petascale Application
While the parallel Borg MOEA was applied on up to 16384 processors, the discrete event
simulation results indicate it will remain efficient as it scales on Petascale systems (i.e.,
architectures with greater than 100000 processors). Applying the Borg MOEA on Petascale
systems will validate the experimental and analytical results presented in this dissertation,
and also demonstrate the power of the multi-master Borg MOEA.

148

Wide-Area-Network (WAN) Application
Unlike local-area-networks (LANs), wide-area-networks (WANs) are networks spread across
large geographic regions. As a result, WANs experience large communication latencies that
would render the parallel Borg MOEA extremely inefficient. WANs also tend to have het-
erogeneous hardware, which impacts function evaluation times and algorithmic overhead.
We propose investigating the application of the parallel Borg MOEA to WANs. This would
eliminate the need to request allocation time on large-scale computing architectures, and
would instead run on an ad-hoc parallel system formed by a distributed network of donated
computing time. Significant changes to how the parallel Borg MOEA is distributed across
the network would be required. For instance, to reduce communication costs, the algorithm
can partition the networked computers based on their communication costs into faster, local
subnets.

Alternative Representations
Throughout this dissertation, we explored the behavior of the Borg MOEA on real-valued
(and integer-valued) problems using six real-valued search operators. MOEAs have also
been successful on problems with discrete representations, such as binary strings and per-
mutations. We propose exploring the set of discrete search operators to determine what
combinations work effectively within the Borg framework. These operators should be se-
lected to diversify the offspring distributions, which allows the Borg MOEA to auto-adapt
its use of those operators that produce favorable offspring.

149

Appendix A

Multiobjective Problems

This appendix provides examples of the reference sets for select test problems from the
DTLZ, CEC 2009, and WFG test problem suites (Deb et al., 2002b; Zhang et al., 2009b;
Huband et al., 2006). Many of these problems are designed to be scalable to any objective
dimension. Only the 2 and 3 objective cases are shown for such problems.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(a) 2D DTLZ1

 0

 0.1

 0.2

 0.3

 0.4

 0.5 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(b) 3D DTLZ1

Figure A.1: Reference sets for the DTLZ1 test problem with 2 and 3 objectives. UF12 from
the CEC 2009 competition is a 5 objective rotated variant of DTLZ1.

150

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) 2D DTLZ2-DTLZ4

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) 3D DTLZ2-DTLZ4

Figure A.2: Reference sets for the DTLZ2, DTLZ3, and DTLZ4 test problems with 2 and
3 objectives. While these three problems share the same reference set, their objective defi-
nitions differ dramatically. For instance, DTLZ3 is considerably more difficult than DTLZ2
due to the addition of multi-modality. UF11 from the CEC 2009 competition is a 5 objective
rotated variant of DTLZ2.

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) 2D DTLZ7

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

(b) 3D DTLZ7

Figure A.3: Reference sets for the DTLZ7 test problem with 2 and 3 objectives.

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(a) 2D WFG1

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-1

 0

 1

 2

 3

 4

 5

 6

(b) 3D WFG1

Figure A.4: Reference sets for the WFG1 problem for 2 and 3 objectives. UF13 from the
CEC 2009 competition is the 5 objective variant of WFG1.

151

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) UF1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(b) UF2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(c) UF3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(d) UF4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(e) UF5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(f) UF6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(g) UF7

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

(h) UF8

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

(i) UF9

 0

 0.2

 0.4

 0.6

 0.8

 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

(j) UF10

Figure A.5: Reference sets for the unconstrained problems from the CEC 2009 competition.

152

Appendix B

Sobol’s Global Variance
Decomposition

Using the notation and terminology of Saltelli et al. (2008), given a square-integrable function
f transforming inputs X1, X2, . . . , Xn into output Y ,

Y = f(X1, X2, . . . , Xn), (B.1)

the global variance decomposition technique proposed by I. M. Sobol’ considers the following
expansion of f into terms of increasing dimension:

f = f0 +
∑

i

fi +
∑

i<j

fij +
∑

i<j<k

fijk + · · ·+ fijk...n, (B.2)

where each individual term is a function only over the inputs in its index (Saltelli et al.,
2008; Archier et al., 1997). For example, fi = fi(Xi) and fij = fij(Xi, Xj). Sobol’ proved
that the individual terms can be computed using conditional expectations, such as

f0 = E(Y), (B.3)

fi = E(Y |Xi)− f0, (B.4)

fij = E(Y |Xi, Xj)− fi − fj − f0. (B.5)

If the output Y is sensitive to input Xi, then the conditional expectation E(Y |Xi) has a
large variance across the values of Xi. Hence, the variance of the conditional expectation is
a measure of sensitivity. The first-order effects are calculated by

Si =
V [fi(Xi)]

V [Y]
=

V [E(Y |Xi)]

V [Y]
. (B.6)

The second-order effects are calculated with

Sij =
V [fij(Xi, Xj)]

V [Y]
(B.7)

=
V [E(Y |Xi, Xj)]

V [Y]
− Si − Sj. (B.8)

153

An important consequence of Sobol’s work is the computation of total-order effects. The
total effects caused by input Xi is the sum of the first-order effect Si and all higher-order
effects influenced by Xi. Thus, total-order effects are calculated by

ST
i = 1− V [E(Y |X∼i)]

V [Y]
, (B.9)

where X∼i represents all the inputs excluding Xi. Saltelli et al. (2008) developed the Monte
Carlo technique for efficiently computing the first-, second-, and total-order effects used in
this study. To validate the sensitivity results, the bootstrap technique called the moment
method produces symmetric 95% confidence intervals, as described in Archier et al. (1997)
and Tang et al. (2007). The moment method provides more reliable results with smaller
resampling sizes so long as the distribution is not skewed left or right (Archier et al., 1997).
We chose a resampling size of 2000 since it is both recommended in the literature and exper-
imentally robust (Tang et al., 2007). Interested readers should refer to the cited materials
for additional details.

154

Appendix C

Asynchronous MOEA SimPy Model

The SimPy model for the asynchronous MOEA is reproduced below.

1 from SimPy . Simulat ion import ∗
2 from random import ∗
3 from math import ∗
4 from sys import ∗
5

6 class State :
7 def i n i t (s e l f , master , s lave , masterMonitor , s laveMonitor , P

, maxNFE, Ta , Tc , Tf) :
8 s e l f . master = master
9 s e l f . s l a v e = s l a ve

10 s e l f . masterMonitor = masterMonitor
11 s e l f . s laveMonitor = slaveMonitor
12 s e l f .NFE = 0
13 s e l f .maxNFE = maxNFE
14 s e l f .P = P
15 s e l f . Ta = Ta
16 s e l f . Tc = Tc
17 s e l f . Tf = Tf
18 s e l f . TaStdev = 0.1∗Ta
19 s e l f . TcStdev = 0.1∗Tc
20 s e l f . TfStdev = 0.1∗Tf
21 s e l f . s t a r t = now()
22

23 def waitTime (s e l f) :
24 return s e l f . masterMonitor .mean ()
25

26 def durat ion (s e l f) :
27 return now()− s e l f . s t a r t

155

28

29 def speedup (s e l f) :
30 return (s e l f .maxNFE ∗ s e l f . Tf) / s e l f . durat ion ()
31

32 def e f f i c i e n c y (s e l f) :
33 return s e l f . speedup () / s e l f .P
34

35 class So lu t i on (Process) :
36 def generate (s e l f , s t a t e) :
37 ””” Simula tes popu la t i on i n i t i a l i z a t i o n ”””
38 for i in range (s t a t e .P−1) :
39 s o l u t i o n = So lu t i on ()
40 y i e l d hold , s e l f , gauss (s t a t e .Ta , s t a t e . TaStdev) + gauss (

s t a t e . Tc , s t a t e . TcStdev)
41 a c t i va t e (so lu t i on , s o l u t i o n . eva lua t e (s t a t e))
42

43 def eva lua t e (s e l f , s t a t e) :
44 ””” Simula tes one s l a v e node e va l ua t i n g and re turn ing a

s o l u t i o n ”””
45 y i e l d request , s e l f , s t a t e . s l a v e
46 begin = now()
47 y i e l d hold , s e l f , gauss (s t a t e . Tf , s t a t e . TfStdev)
48 y i e l d r e l e a s e , s e l f , s t a t e . s l a v e
49 s t a t e . s laveMoni tor . observe (now()−begin)
50

51 s o l u t i o n = So lu t i on ()
52 a c t i va t e (so lu t i on , s o l u t i o n . p roce s s (s t a t e))
53

54 def proce s s (s e l f , s t a t e) :
55 ””” Simula tes the master node r e c e i v i n g an eva lua ted s o l u t i o n

and genera t ing another ”””
56 global NFE
57

58 a r r i v e = now()
59 y i e l d request , s e l f , s t a t e . master
60 s t a t e . masterMonitor . observe (now()−a r r i v e)
61 y i e l d hold , s e l f , gauss (s t a t e .Ta , s t a t e . TaStdev) + gauss (s t a t e

. Tc , s t a t e . TcStdev)
62 s t a t e .NFE = sta t e .NFE + 1
63

64 i f s t a t e .NFE < s t a t e .maxNFE−(s t a t e .P−2) :
65 y i e l d hold , s e l f , gauss (s t a t e . Tc , s t a t e . TcStdev)

156

66 y i e l d r e l e a s e , s e l f , s t a t e . master
67 s o l u t i o n = So lu t i on ()
68 a c t i va t e (so lu t i on , s o l u t i o n . eva lua t e (s t a t e))
69 else :
70 y i e l d r e l e a s e , s e l f , s t a t e . master
71

72 def model (runSeed=1337 , P=2, MaxNFE=10000 , Ta=1, Tc=1, Tf=1000) :
73 seed (runSeed)
74 master = Resource (capac i ty=1, name="Master")
75 s l a v e = Resource (capac i ty=(P−1) , name="Slave" , monitored=True ,

monitorType=Monitor)
76 masterMonitor = Monitor ()
77 s laveMonitor = Monitor ()
78

79 i n i t i a l i z e ()
80 s t a r t = now()
81 s t a t e = State (master , s lave , masterMonitor , s laveMonitor , P,

MaxNFE, Ta , Tc , Tf)
82

83 s o l u t i o n = So lu t i on ()
84 a c t i va t e (so lu t i on , s o l u t i o n . generate (s t a t e) , at=0)
85 s imulate (un t i l=MaxNFE∗Tf ∗100)
86

87 return s t a t e

157

Bibliography

Adra, S. F. and Fleming, P. J. (2009). A Diversity Management Operator for Evo-
lutionary Many-Objective Optimisation. In Evolutionary Multi-Criterion Optimization
(EMO 2009), pages 81–94, Nantes, France.

Aguirre, H. and Tanaka, K. (2009). Space Partitioning with Adaptive ǫ-Ranking and Substi-
tute Distance Assignments: A Comparative Study on Many-Objective MNK-Landscapes.
In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation
(GECCO 2009), pages 547–554, Montreal, Canada.

Anderson, T. L. and Hill, P. J. (1997). Water Marketing: The Next Generation. Rowman
and Littlefield, Lanham, MD.

Archier, G., Saltelli, A., and Sobol, I. (1997). Sensitivity Measures, ANOVA-Like Techniques
and the Use of Bootstrap. Journal of Statistical Computation and Simulation, 58:99–120.

Bäck, T. (1994). Selective Pressure in Evolutionary Algorithms: A Characterization of
Selection Mechanisms. In Proceedings of the First IEEE Conference on Evolutionary
Computation, pages 57–62.

Bäck, T., Fogel, D. B., and Michalewicz, Z. (1997). Handbook of Evolutionary Computation.
Taylor & Francis, New York, NY.

Baker, G. L. and Gollub, J. P. (1990). Chaotic Dynamics : An Introduction. Cambridge
University Press, Cambridge, England.

Balling, R. J., Taber, J. T., Brown, M. R., and Day, K. (1999). Multiobjective Urban Plan-
ning Using Genetic Algorithms. Journal of Urban Planning and Development, 125(2):86–
99.

Bethke, A. D. (1976). Comparison of Genetic Algorithms and Gradient-Based Optimizers
on Parallel Processors: Efficiency of Use of Processing Capacity. Technical Report No.
197, Logic of Computers Group, University of Michigan, Ann Arbor, MI.

Beume, N. and Rudolph, G. (2006). Faster S-Metric Calculation by Considering Dominated
Hypervolume as Klee’s Measure Problem. In Second International Association of Science
and Technology for Development (IASTED) Conference on Computational Intelligence,
pages 231–236, San Francisco, CA.

158

Bloebaum, C. L. and McGowan, A. M. R. (2010). Design of Compex Engineered Systems.
Journal of Mechanical Design, 132(12):1–2.

Bosman, P. A. and Thierens, D. (2003). The Balance Between Proximity and Diversity in
Multiobjective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computa-
tion, 7(2):174–188.

Brekke, L. D., Maurer, E. P., Anderson, J. D., Dettinger, M. D., Townsley, E. S., Harrison,
A., and Pruitt, T. (2009). Assessing Reservior Operations Risk Under Climate Change.
Water Resources Research, 45(4).

Brill, E. D., Flach, J., Hopkins, L., and Ranjithan, S. (1990). MGA: A Decision Support
System for Complex, Incompletely Defined Problems. IEEE Transactions on Systems,
Man, and Cybernetics, 20(4):745–757.

Cantú-Paz, E. (1997). Designing Efficient Master-Slave Parallel Genetic Algorithms. IlliGAL
Report No. 97004, Illinois Genetic Algorithms Laboratory (IlliGAL), University of Illinois,
Urbana-Champaign, IL.

Cantú-Paz, E. (1998). A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles
Reseaux et Systems Repartis, 10(2):141–171.

Cantú-Paz, E. (2000). Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic
Publishers, Norwell, MA.

Cantú-Paz, E. and Goldberg, D. E. (1997a). Modeling Idealized Bounding Cases of Par-
allel Genetic Algorithms. In Proceedings of the Second Annual Conference of Genetic
Programming, pages 353–361, Stanford, CA.

Cantú-Paz, E. and Goldberg, D. E. (1997b). Predicting Speedups of Idealized Bounding
Cases of Parallel Genetic Algorithms. In Proceedings of the Seventh International Confer-
ence on Genetic Algorithms (ICGA 1997), pages 113–121, East Lansing, MI.

Characklis, G., Kirsch, B. R., Ramsey, J., Dillard, K., and Kelley, C. T. (2006). Developing
Portfolios of Water Supply Transfers. Water Resources Research, 42(5).

Coello Coello, C. A., Lamont, G. B., and Van Veldhuizen, D. A. (2007). Evolutionary
Algorithms for Solving Multi-Objective Problems. Springer Science+Business Media LLC,
New York, NY.

Corne, D. W. and Knowles, J. D. (2000). The Pareto Envelope-Based Selection Algorithm
for Multiobjective Optimization. In Proceedings of the 6th International Conference on
Parallel Problem Solving from Nature (PPSN VI), pages 839–848, Paris, France.

Corne, D. W. and Knowles, J. D. (2007). Techniques for Highly Multiobjective Optimisation:
Some Nondominated Points are Better than Others. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2007), pages 773–780, London, England.

159

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley
& Sons, Ltd., West Sussex, UK.

Deb, K. and Agrawal, R. B. (1994). Simulated Binary Crossover for Continuous Search
Space. Technical Report IITK/ME/SMD-94027, Department of Mechanical Engineering,
Indian Institute of Technology, Kanpur, India.

Deb, K. and Jain, S. (2002). Running Performance Metrics for Evolutionary Multi-Objective
Optimization. KanGAL Report No. 2002004, Kanpur Genetic Algorithms Laboratory
(KanGAL), Indian Institute of Technology, Kanpur, India.

Deb, K., Joshi, D., and Anand, A. (2002a). Real-Coded Evolutionary Algorithms with
Parent-Centric Recombination. Proceedings of the 2002 Congress on Evolutionary Com-
putation (CEC 2002), 1:61–66.

Deb, K., Mohan, M., and Mishra, S. (2003). A Fast Multi-objective Evolutionary Algorithm
for Finding Well-Spread Pareto-Optimal Solutions. KanGAL Report No. 2003002, Kanpur
Genetic Algorithms Laboratory (KanGAL), Indian Institute of Technology, Kanpur, India.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2000). A Fast Elitist Multi-
Objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197.

Deb, K. and Saxena, D. K. (2006). Searching for Pareto-Optimal Solutions through
Dimensionality Reduction for Certain Large-Dimensional Multi-Objective Optimization
Problems. In Proceedings of the 2006 IEEE Congress on Evolutionary Computation
(CEC 2006), pages 3353–3360, Vancouver, Canada.

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2001). Scalable Test Problems for Evo-
lutionary Multi-Objective Optimization. TIK-Technical Report No. 112, Computer Engi-
neering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH).

Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2002b). Scalable Multi-Objective Opti-
mization Test Problems. In Proceedings of the 2002 Congress on Evolutionary Computation
(CEC 2002), pages 825–830, Honolulu, HI.

di Pierro, F. (2006). Many-Objective Evolutionary Algorithms and Applications to Water
Resources Engineering. PhD thesis, School of Engineering, Computer Science and Math-
ematics, University of Exeter, Exeter, UK.

di Pierro, F., Khu, S.-T., and Savic, D. A. (2007). An Investigation on Preference Order
Ranking Scheme for Multiobjective Evolutionary Optimization. IEEE Transactions on
Evolutionary Computation, 11(1):17–45.

Drechsler, N., Drechsler, R., and Becker, B. (2001). Multi-Objective Optimisation Based
on Relation Favour. In Evolutionary Multi-Criterion Optimization (EMO 2001), pages
154–166, Zurich, Switzerland.

160

D’Souza, B. and Simpson, T. W. (2003). A Genetic Algorithm Based Method for Product
Family Design Optimization. Engineering Optimization, 35(1):1–18.

Edwards, A. L. (1993). An Introduction to Linear Regression and Correlation. W. H. Freeman
and Co, San Francisco, CA.

Farina, M. and Amato, P. (2004). A Fuzzy Definition of “Optimality” for Many-Criteria
Optimization Problems. IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, 34(3):315–326.

Ferringer, M. P., Spencer, D. B., and Reed, P. (2009). Many-Objective Reconfiguration of
Operational Satellite Constellations with the Large-Cluster Epsilon Non-dominated Sort-
ing Genetic Algorithm-II. In IEEE Congress on Evolutionary Computation (CEC 2009),
pages 340–349, Trondheim, Norway.

Fleming, P. J., Purshouse, R. C., and Lygoe, R. J. (2005). Many-Objective Optimiza-
tion: An Engineering Design Perspective. In Evolutionary Multi-Criterion Optimization
(EMO 2005), pages 14–32. Guanajuato, Mexico.

Fonseca, C. M. and Fleming, P. J. (1993). Genetic Algorithms for Multiobjective Optimiza-
tion: Formulation, Discussion and Generalization. In Proceedings of the Fifth International
Conference Genetic Algorithms (ICGA 1993), pages 416–423, Urbana-Champaign, IL.

Fonseca, C. M. and Fleming, P. J. (1996). On the Performance Assessment and Compar-
ison of Stochastic Multiobjective Optimizers. In Parallel Problem Solving from Nature
(PPSN IV), pages 584–593, Berlin, Germany.

Fonseca, C. M. and Fleming, P. J. (1998). Multiobjective Optimization and Multiple Con-
straint Handling with Evolutionary Algorithms — Part 1: A Unified Formulation. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 28(1):26–
37.

Franssen, M. (2005). Arrow’s Theorem, Multi-Criteria Decision Problems and Multi-
Attribute Preferences in Engineering Design. Research in Engineering Design, 16(1):42–56.

Frederick, K. D. and Schwarz, G. (1999). Socioeconomic Impacts of Climate Change on U.S.
Water Supplies. Journal of the American Water Resources Association, 35(6):1563–1583.

Fu, G., Kapelan, Z., Kasprzyk, J., and Reed, P. M. (2012). Optimal Design of Water
Distribution Systems using Many-Objective Visual Analytics. ASCE Journal of Water
Resources Planning & Management. In-Press.

Gettys, C. and Fisher, S. (1979). Hypothesis Plausibility and Hypothesis Generation. Or-
ganizational Behavior and Human Performance, 24(1):93–110.

Goh, C.-K. and Tan, K. C. (2009). Evolutionary Multi-objective Optimization in Uncertain
Environments. Springer, Berlin, Germany.

161

Goldberg, D. E. (1989a). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, Reading, MA.

Goldberg, D. E. (1989b). Sizing Populations for Serial and Parallel Genetic Algorithms. In
3rd International Conference on Genetic Algorithms (ICGA 1989), pages 70–79, Fairfax,
VA.

Goldberg, D. E. (1998). The Race, the Hurdle, and the Sweet Spot: Lessons from Genetic
Algorithms for the Automation of Design Innovation and Creativity. IlliGAL Report No.
98007, Illinois Genetic Algorithms Laboratory (IlliGAL), University of Illinois, Urbana-
Champaign, IL.

Goldberg, D. E. (2002). Design of Innovation: Lessons From and For Competent Genetic
Algorithms. Kluwer Academic Publishers, Norwell, MA.

Grassberger, P. and Procaccia, I. (1983). Measuring the Strangeness of Strange Attractors.
Physica D Nonlinear Phenomena, 9:189–208.

Hadjigeorgalis, E. (2008). Managing Drought Through Water Markets: Farmer Prefer-
ences in the Rio Grande Basin. Journal of the American Water Resources Association,
44(3):594–605.

Hadka, D., Madduri, K., and Reed, P. (2013). Scalability Analysis of the Asynchronous,
Master-Slave Borg Multiobjective Evolutionary Algorithm. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS), Nature Inspired Distributed Computing
Workshop (NIDISC), Cambridge, MA.

Hadka, D. and Reed, P. (2012a). Borg: An Auto-Adaptive Many-Objective Evolutionary
Computing Framework. Evolutionary Computation. In-Press.

Hadka, D. and Reed, P. (2012b). Diagnostic Assessment of Search Controls and Fail-
ure Modes in Many-Objective Evolutionary Optimization. Evolutionary Computation,
20(3):423–452.

Hadka, D., Reed, P., and Simpson, T. (2012). Diagnostic Assessment of the Borg MOEA
for Many-Objective Product Family Design Problems. In WCCI 2012 World Congress on
Computational Intelligence, Congress on Evolutionary Computation (CEC 2012), pages
986–995, Brisbane, Australia.

Hanne, T. (1999). On the Convergence of Multiobjective Evolutionary Algorithms. European
Journal of Operational Research, 117:553–564.

Hanne, T. (2001). Global Multiobjective Optimization with Evolutionary Algorithms: Se-
lection Mechanisms and Mutation Control. In Evolutionary Multi-Criterion Optimization
(EMO 2001), pages 197–212, Zurich, Switzerland.

162

Harik, G. R. and Lobo, F. G. (1999). A Parameter-Less Genetic Algorithm. IlliGAL Re-
port No. 99009, Illinois Genetic Algorithms Laboratory (IlliGAL), University of Illinois,
Urbana-Champaign, IL.

Heidelberger, P. and Trivedi, K. S. (1982). Queueing Network Models for Parallel Processing
with Asynchronous Tasks. In IEEE Transactions on Computers, volume C-31, pages 1099–
1109.

Hogarth, R. (1981). Beyond Discrete Biases: Functional and Dysfunctional Aspects of
Judgemental Heuristics. Psychological Bulletin, 90(1):197–217.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, MI.

Horn, J. (1995). The Nature of Niching: Genetic Algorithms and the Evolution of Optimal,
Cooperative Populations. PhD thesis, University of Illinois, Urbana-Champaign, Illinois.

Horn, J. and Nafpliotis, N. (1993). Multiobjective Optimization Using the Niched Pareto
Genetic Algorithm. IlliGAL Report No. 93005, Illinois Genetic Algorithms Laboratory
(IlliGAL), University of Illinois, Urbana-Champaign, IL.

Huband, S., Hingston, P., Barone, L., and While, L. (2006). A Review of Multiobjective
Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary
Computation, 10(5):477–506.

Hughes, E. J. (2005). Evolutionary Many-Objective Optimisation: Many Once or One Many?
In The 2005 IEEE Congress on Evolutionary Computation (CEC 2005), pages 222–227,
Edinburgh, UK.

Ikeda, K., Kita, H., and Kobayashi, S. (2001). Failure of Pareto-Based MOEAs: Does
Non-Dominated Really Mean Near Optimal? In Proceedings of the 2001 Congress on
Evolutionary Computation (CEC 2001), pages 957–962, Seoul, South Korea.

Iorio, A. and Li, X. (2008). Improving the Performance and Scalability of Differential Evo-
lution. In Proceedings of the 7th International Conference on Simulated Evolution and
Learning, pages 131–140, Melbourne, Australia.

Ishibuchi, H., Sakane, Y., Tsukamoto, N., and Nojima, Y. (2009). Adaptation of Scalarizing
Functions in MOEA/D: An Adaptive Scalarizing Function-Based Multiobjective Evolu-
tionary Algorithm. In Evolutionary Multi-Criterion Optimization (EMO 2009), pages
438–452, Nantes, France.

Ishibuchi, H., Tsukamoto, N., Hitotsuyanagi, Y., and Nojima, Y. (2008a). Effectiveness of
Scalability Improvement Attempts on the Performance of NSGA-II for Many-Objective
Problems. In Genetic and Evolutionary Computation Conference (GECCO 2008), pages
649–656, Atlanta, GA.

163

Ishibuchi, H., Tsukamoto, N., and Nojima, Y. (2008b). Behavior of Evolutionary Many-
Objective Optimization. In Tenth International Conference on Computer Modeling and
Simulation (UKSIM 2008), pages 266–271, Cambridge, England.

Ishibuchi, H., Tsukamoto, N., Sakane, Y., and Nojima, Y. (2010). Indicator-Based Evolution-
ary Algorithm with Hypervolume Approximation by Achievement Scalarizing Functions.
In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation
(GECCO 2010), pages 527–534, Portland, OR.

Israel, M. and Lund, J. R. (1995). Recent California Water Transfers: Implications for Water
Management. Natural Resources Journal, 35(1):1–32.

Jenkins, M. W. and Lund, J. R. (2000). Integrating Yield and Shortage Management Under
Multiple Uncertainties. Journal of the American Water Resources Association, 126(5):288–
297.

Kasprzyk, J., Nataraj, S., Reed, P. M., and Lempert, R. J. (2012). Many-Objective Robust
Decision Making for Complex Environmental Systems Undergoing Change. Environmental
Modelling & Software, 42:55–71.

Kasprzyk, J., Reed, P., Kirsch, B., and Characklis, G. (2011). Many-Objective de Novo
Water Supply Portfolio Planning Under Deep Uncertainty. Environmental Modelling &
Software, 34:87–104.

Kasprzyk, J. R., Reed, P. M., Kirsch, B. R., and Characklis, G. W. (2009). Managing
Population and Drought Risks using Many-Objective Water Portfolio Planning Under
Uncertainty. Water Resources Research, 45(12).

Kennedy, J. and Eberhart, R. (1995). Particle Swarm Optimization. In Proceedings of
IEEE International Conference on Neural Networks, volume 4, pages 1942–1948, Perth,
Australia.

Khare, V., Yao, X., and Deb, K. (2003). Performance Scaling of Multi-Objective Evolu-
tionary Algorithms. In Evolutionary Multi-Criterion Optimization (EMO 2003), pages
376–390, Faro, Portugal.

Kirsch, B. R., Characklis, G. W., Dillard, K., and Kelley, C. T. (2009). More Efficient
Optimization of Long-Term Water Supply Portfolios. Water Resources Research, 45(3).

Kita, H., Ono, I., and Kobayashi, S. (1999). Multi-Parental Extension of the Unimodal
Normal Distribution Crossover for Real-Coded Genetic Algorithms. In Proceedings of the
1999 Congress on Evolutionary Computation (CEC 1999), pages 1581–1588, Washington,
DC.

Knowles, J. and Corne, D. (2002). On Metrics for Comparing Non-Dominated Sets. In
Congress on Evolutionary Computation (CEC 2002), pages 711–716, Honolulu, HI.

164

Knowles, J. and Corne, D. (2007). Quantifying the Effects of Objective Space Dimension in
Evolutionary Multiobjective Optimization. In Evolutionary Multi-Criterion Optimization
(EMO 2007), pages 757–771, Matsushima, Japan.

Knowles, J. D. and Corne, D. W. (1999). Approximating the Nondominated Front Using
the Pareto Archived Evolution Strategy. Evolutionary Computation, 8:149–172.

Kollat, J., Reed, P., and Maxwell, R. (2011). Many-Objective Groundwater Monitoring Net-
work Design using Bias-Aware Ensemble Kalman Filtering, Evolutionary Optimization,
and Visual Analytics. Water Resources Research, 47(2).

Kollat, J. B. and Reed, P. M. (2006). Comparison of Multi-Objective Evolutionary Algo-
rithms for Long-Term Monitoring Design. Advances in Water Resources, 29(6):792–807.

Kollat, J. B. and Reed, P. M. (2007). A Computational Scaling Analysis of Multiobjective
Evolutionary Algorithms in Long-Term Groundwater Monitoring Applications. Advances
in Water Resources, 30(3):408–419.

Kukkonen, S. and Lampinen, J. (2005). GDE3: The Third Evolution Step of General-
ized Differential Evolution. In The 2005 IEEE Congress on Evolutionary Computation
(CEC 2005), pages 443–450, Guanajuato, Mexico.

Kundzewicz, Z., Mata, L., Arnell, N., Doll, P., Kabat, P., Jimenez, B., Miller, K. A., Oki,
T., Sen, Z., and Shiklomanov, I. (2007). Freshwater Resources and their Management. In
Climate Change 2007: Impacts, Adaptation and Vulnerability, pages 173–210, Cambridge,
England. Cambridge University Press.

Lane, M. E., Kirshen, P. H., and Vogel, R. M. (1999). Indicators of Impacts of Global
Climate Change on U.S. Water Resources. Journal of Water Resources Planning and
Management, 125(4):194–204.

Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining Convergence
and Diversity in Evolutionary Multi-Objective Optimization. Evolutionary Computation,
10(3):263–282.

Lund, J. R. (1995). Derived Estimation of Willingness to Pay to Avoid Probabilistic Short-
age. Water Resources Research, 31(5):1367–1372.

Macdonald, I. (2009). Comparison of Sampling Techniques on the Performance of Monte-
Carlo based Sensitivity Analysis. In 11th International IBPSA Conference (Building Sim-
ulation 2009), pages 992–999, Glasgow, Scotland.

Mahfoud, S. W. (1995). Niching Methods for Genetic Algorithms. PhD thesis, Department
of Computer Science, University of Illinois, Urbana-Champaign, IL.

165

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output from a Computer Code.
Technometrics, 21(2):239–245.

Miettinen, K. M. (1999). Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Norwell, MA.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R., Kundzewicz, Z. W., Lettenmaier,
D. P., and Stouffer, R. J. (2008). Stationarity is Dead: Whither Water Management?
Science, 319:573–574.

Moral, R. J., Sahoo, D., and Dulikravich, G. S. (2006). Multi-Objective Hybrid Evolutionary
Optimization with Automatic Switching. In 11th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Portsmouth, VA. AIAA Paper AIAA-2006-6976.

Nayfeh, A. H. and Balachandran, B. (1995). Applied Nonlinear Dynamics: Analytical, Com-
putational, and Experimental Methods. Wiley Inter-Science, New York, NY.

Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., Chan-Hilton, A., Karamouz,
M., Minsker, B., Ostfeld, A., Singh, A., and Zechman, E. (2010). State of the Art for
Genetic Algorithms and Beyond in Water Resources Planning and Management. Journal
of Water Resources Planning and Management, 136:412–432.

Praditwong, K. and Yao, X. (2007). How Well do Multi-Objective Evolutionary Algorithms
Scale to Large Problems. In Congress on Evolutionary Computation (CEC 2007), pages
3959–3966, Singapore.

Purshouse, R. C. and Fleming, P. J. (2003). Evolutionary Many-Objective Optimisation:
An Exploratory Analysis. In Congress on Evolutionary Computation (CEC 2003), pages
2066–2073, Canberra, Australia.

Purshouse, R. C. and Fleming, P. J. (2007). On the Evolutionary Optimization of Many
Conflicting Objectives. IEEE Transactions on Evolutionary Computation, 11(6):770–784.

Reed, P. M., Hadka, D. M., Herman, J. D., Kasprzyk, J. R., and Kollat, J. B. (2012).
Evolutionary Multiobjective Optimization in Water Resources: The Past, Present, and
Future. Advances in Water Resources, 51:438–456.

Reed, P. M., Kollat, J. B., Ferringer, M. P., and Thompson, T. G. (2008). Parallel Evo-
lutionary Multi-Objective Optimization on Large, Heterogeneous Clusters: An Applica-
tions Perspective. Journal of Aerospace Computing, Information, and Communication,
5(11):460–478.

Rudolph, G. (1998). Evolutionary Search for Minimal Elements in Partially Ordered Sets. In
Proceedings of the 7th Annual Conference on Evolutionary Programming, pages 345–353,
San Diego, CA.

166

Rudolph, G. and Agapie, A. (2000). Convergence Properties of Some Multi-Objective Evolu-
tionary Algorithms. In Congress on Evolutionary Computation (CEC 2000), pages 1010–
1016, San Diego, CA.

Saltelli, A. (2002). Making Best Use of Model Evaluations to Compute Sensitivity Indices.
Computer Physics Communications, 145:280–297.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M.,
and Tarantola, S. (2008). Global Sensitivity Analysis: The Primer. John Wiley & Sons,
Ltd., West Sussex, UK.

Saxena, D. and Deb, K. (2008). Dimensionality Reduction of Objectives and Constraints in
Multi-Objective Optimization Problems: A System Design Perspective. In IEEE Congress
on Evolutionary Computation (CEC 2008), pages 3204 –3211, Hong Kong.

Schaffer, D. J. (1984). Multiple Objective Optimization with Vector Evaluated Genetic Algo-
rithms. PhD thesis, Vanderbilt University, Nashville, TN.

Schaffer, D. J., Caruana, R. A., Eshelman, L. J., and Das, R. (1989). A Study of Control Pa-
rameters Affecting Online Performance of Genetic Algorithms for Function Optimization.
In Proceedings of the Third International Conference on Genetic Algorithms (ICGA 1989),
pages 51–60, Fairfax, VA.

Shah, R., Reed, P. M., and Simpson, T. (2011). Many-Objective Evolutionary Optimization
and Visual Analytics for Product Family Design. In Wang, L., Ng, A. H. C., and Deb, K.,
editors, Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing,
pages 137–159. Springer, London, England.

Sheskin, D. J. (2004). Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall/CRC, Boca Raton, FL.

Sierra, M. R. and Coello Coello, C. A. (2005). Improving PSO-Based Multi-objective Op-
timization Using Crowding, Mutation and ǫ-Dominance. In Evolutionary Multi-Criterion
Optimization (EMO 2005), pages 505–519, Guanajuato, Mexico.

Simpson, T. W. (2005). Methods for Optimizing Product Platforms and Product Families:
Overview and Classification. In Product Platform and Product Family Design: Methods
and Applications, pages 133–156. Springer, New York, NY.

Simpson, T. W., Chen, W., Allen, J. K., and Mistree, F. (1996). Conceptual Design of a
Family of Products Through the Use of the Robust Concept Exploration Method. In 6th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
volume 2, pages 1535–1545, Bellevue, WA.

Simpson, T. W. and D’Souza, B. (2004). Assessing Variable Levels of Platform Common-
ality within a Product Family Using a Multiobjective Genetic Algorithm. Concurrent
Engineering: Research and Applications, 12(2):119–130.

167

Simpson, T. W. and Martins, J. R. R. A. (2011). Multidisciplinary Design Optimization
for Complex Engineered Systems: Report from a National Science Foundation Workshop.
ASME Journal of Mechanical Design, 133(10):101002.

Sobol’, I. M. (2001). Global Sensitivity Indices for Nonlinear Mathematical Models and their
Monte Carlo Estimates. Mathematics and Computers in Simulation, 55:271–280.

Sobol’, I. M. and Kucherenko, S. S. (2005). Global Sensitivity Indices for Nonlinear Mathe-
matical Models. Wilmott Magazine, 2:1–6.

Srinivas, N. and Deb, K. (1994). Multiobjective Optimization using Nondominated Sorting
in Genetic Algorithms. Evolutionary Computation, 2(3):221–248.

Srivastava, R. P. (2002). Time Continuation in Genetic Algorithms. IlliGAL Report No.
2001021, Illinois Genetic Algorithms Laboratory (IlliGAL), University of Illinois, Urbana-
Champaign, IL.

Storn, R. and Price, K. (1997). Differential Evolution — A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces. Journal of Global Optimization, 11(4):341–
359.

Sülflow, A., Drechsler, N., and Drechsler, R. (2007). Robust Multi-Objective Optimization
in High Dimensional Spaces. In Evolutionary Multi-Criterion Optimization (EMO 2007),
pages 715–726, Matsushima, Japan.

Tang, Y., Reed, P., and Wagener, T. (2006). How Effective and Efficient are Multiobjective
Evolutionary Algorithms at Hydrologic Model Calibration? Hydrology and Earth System
Science, 10:289–307.

Tang, Y., Reed, P., Wagener, T., and van Werkhoven, K. (2007). Comparing Sensitivity
Analysis Methods to Advance Lumped Watershed Model Identification and Evaluation.
Hydrology and Earth System Sciences, 11(2):793–817.

Teytaud, O. (2006). How Entropy-Theorems can show that On-line Approximating High-
Dim Pareto-Fronts is too Hard. In International Conference on Parallel Problem Solving
from Nature (PPSN), Bridging the Gap between Theory and Practice (BTP) Workshop.

Teytaud, O. (2007). On the Hardness of Offline Multi-Objective Optimization. Evolutionary
Computation, 15(4):475–491.

Tsutsui, S., Yamamura, M., and Higuchi, T. (1999). Multi-Parent Recombination with
Simplex Crossover in Real Coded Genetic Algorithms. In Genetic and Evolutionary Com-
putation Conference (GECCO 1999), pages 657–664, Orlando, FL.

Venkataraman, S. and Haftka, R. T. (2004). Structural Optimization Complexity: What Has
Moore’s Law Done for Us? Structural and Multidisciplinary Optimization, 28(6):375–387.

168

Vorosmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B. (2000). Global Water
Resources: Vulnerability from Climate Change and Population Growth. Science, 289:284–
288.

Vrugt, J. A. and Robinson, B. A. (2007). Improved Evolutionary Optimization from Genet-
ically Adaptive Multimethod Search. Proceedings of the National Academy of Sciences,
104(3):708–711.

Vrugt, J. A., Robinson, B. A., and Hyman, J. M. (2009). Self-Adaptive Multimethod Search
for Global Optimization in Real-Parameter Spaces. IEEE Transactions on Evolutionary
Computation, 13(2):243–259.

Wagner, T., Beume, N., and Naujoks, B. (2007). Pareto-, Aggregation-, and Indicator-Based
Methods in Many-Objective Optimization. In Evolutionary Multi-Criterion Optimization
(EMO 2007), pages 742–756, Matsushima, Japan.

Wang, L., Ng, A. H. C., and Deb, K. (2011). Multi-Objective Evolutionary Optimisation for
Product Design and Manufacturing. Springer-Verlag, London, England.

Watkins Jr., D. W. and McKinney, D. C. (1999). Screening Water Supply Options for the
Edwards Aquifier Region in Central Texas. Journal of Water Resources Planning and
Management, 125(1):14–24.

While, L., Bradstreet, L., and Barone, L. (2012). A Fast Way of Calculating Exact Hyper-
volumes. IEEE Transactions on Evolutionary Computation, 16(1):86–95.

Wilchfort, O. and Lund, J. R. (1997). Shortage Management Modeling for Urban Water
Supply Systems. Journal of the American Water Resources Association, 123(4):250–258.

Woodruff, M., Hadka, D., Reed, P., and Simpson, T. (2012). Auto-Adaptive Search Ca-
pabilities of the New Borg MOEA: A Detailed Comparison on Product Family Design
Problems. In 12 AIAA Aviation Technology, Integration, and Operations (ATIO) Con-
ference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
Indianapolis, IN. AIAA Paper AIAA-2012-5442.

Woodruff, M., Reed, P. M., and Simpson, T. (2013). Many-Objective Visual Analytics:
Rethinking the Design of Complex Engineered Systems. Structural and Multidisciplinary
Optimization. In-Press.

Zhang, Q., Liu, W., and Li, H. (2009a). The Performance of a New Version of MOEA/D on
CEC09 Unconstrained MOP Test Instances. In Congress on Evolutionary Computation
(CEC 2009), pages 203–208, Trondheim, Norway.

Zhang, Q. and Suganthan, P. N. (2009). Final Report on CEC’09 MOEA Competition. In
Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway.

169

Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., and Tiwari, S. (2009b). Multiob-
jective Optimization Test Instances for the CEC 2009 Special Session and Competition.
Technical Report CES-487, School of Computer Science and Electronic Engineering, Uni-
versity of Essex, Colchester, UK.

Zhang, X., Srinivasan, R., and Liew, M. V. (2010). On the use of Multi-Algorithm, Genet-
ically Adaptive Multi-Objective Method for Multi-Site Calibration of the SWAT Model.
Hydrological Processes, 24(8):955–969.

Zitzler, E. and Künzli, S. (2004). Indicator-Based Selection in Multiobjective Search. In
Parallel Problem Solving from Nature (PPSN VIII), pages 832–842, Birmingham, UK.

Zitzler, E., Laumanns, M., and Thiele, L. (2002a). SPEA2: Improving the Strength Pareto
Evolutionary Algorithm For Multiobjective Optimization. International Center for Numer-
ical Methods in Engineering (CIMNE), Barcelona, Spain.

Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C. M., and da Fonseca, V. G. (2002b). Why
Quality Assessment of Multiobjective Optimizers Is Difficult. In Genetic and Evolutionary
Computation Conference (GECCO 2002), pages 666–674, New York, NY.

Zitzler, E. and Thiele, L. (1999). Multiobjective Evolutionary Algorithms: A Compara-
tive Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G. (2002c).
Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE
Transactions on Evolutionary Computation, 7(2):117–132.

170

Vita: David M. Hadka

Education

The Pennsylvania State University University Park, PA

• B.S., Computer Science with Mathematics minor · 2005
• Ph.D., Computer Science and Engineering · 2013

Experience

Applied Research Laboratory State College, PA
R&D Engineer 2005-Present

• Lead software engineer on the $48M DARPA iFAB Foundry project.

• Graduate assistant from 2005-2012 developing mission-critical tools in use by the US
DoD and defense manufacturers.

Select Publications

1. Evolutionary Computing Based Optimization. Disclosed in utility patent application
13/356,391 and provisional patent application 61/437,846.

2. Hadka, D. et al. Scalability Analysis of the Asynchronous, Master-Slave Borg Multi-
objective Evolutionary Algorithm. 27th International Parallel & Distributed Process-
ing Symposium (IPDPS), Nature-Inspired Distributed Computing (NIDISC) Work-
shop, Boston, MA, 20-24 May 2013.

3. Hadka, D. et al. Diagnostic Assessment of the Borg MOEA on Many-Objective
Product Family Design Problems. WCCI 2012 World Congress on Computational
Intelligence, Congress on Evolutionary Computation, Brisbane, Australia, 10-15 June
2012, pp. 986-995.

4. Reed, P., et al. Evolutionary Multiobjective Optimization in Water Resources: The
Past, Present & Future. Advances in Water Resources (Editor Invited Submission
to the 35th Anniversary Special Issue), 2012.

5. Hadka, D. and Reed, P. Diagnostic Assessment of Search Controls and Failure
Modes in Many-Objective Evolutionary Optimization. Evolutionary Computation,
20(3):423-452, 2012.

6. Hadka, D. and Reed, P. Borg: An Auto-Adaptive Many-Objective Evolutionary Com-
puting Framework. Evolutionary Computation, 2012.

