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ABSTRACT 

The cirrus-level contrails (condensation trails) produced by jet aircraft likely have 

contributed to recent climate changes on regional and sub-regional scales in the U.S. and 

Europe.  Accordingly, there is growing concern about reducing the impacts of contrails 

on climate, especially the surface temperature, through improved forecasting—in real 

time—of when and where they are most likely to occur.  This research develops a 

climatology of upper troposphere (UT) meteorological conditions associated with 

multiple occurrences of contrails, or outbreaks, for sub-regions of the U.S. in the mid-

season months of 2000-2002.  The climatology consists of composites (i.e., multi-case 

averages) of UT variables developed using the National Centers for Environmental 

Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis data, 

and is the first step in designing and verifying a retro-prediction method for contrail 

outbreaks.  For mapping the UT climatology of contrail outbreaks, the study develops an 

objective (GIS-based) regionalization of the conterminous U.S. from the overlaps of 

outbreak areas in the 2000-2002 period.  The regionalization reveals that the high-

frequency areas of contrail outbreaks vary spatially according to mid-season month, 

although the Midwest U.S. has the maximum frequencies on average for the year. The 

UT composites of meteorological variables indicate that contrail outbreaks tend to occur 

in advance (to the east) of baroclinic weather systems (troughs, fronts, jet streams), which 

have associated upward vertical motion, moistening of the air, a thicker upper 

troposphere (i.e., higher and colder tropopause), and horizontal wind shear.  However, 

statistical analyses (e.g., contingency, logit modeling) of UT conditions associated with 
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contrail outbreaks, reveal that the utility of particular meteorological variables and their 

associated map characteristics (magnitude, pattern, gradient) in retro-predicting outbreaks 

for the 2000-2002 study period differs by sub-region and mid-season month.  Using the 

statistical model results of which UT variables are the best retro-predictors for each sub-

region and mid-season month, the research conducts a verification study that involves 

retro-predicting contrail outbreaks for July and October in 2008, and January and April 

2009.  The results of the verification study are mostly positive.  They reveal that a 

relatively simple map-based method of retro-predicting contrail outbreaks is successful in 

certain U.S. sub-regions and mid-season months (e.g., the Central region in April).  

Further verification studies are needed to refine the method and make it suitable for 

forecasting contrail outbreaks.  
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Chapter 1 
 

Introduction 

 

The cirrus-level clouds produced by the engines of jet airplanes indicate a direct 

anthropogenic influence on the upper-troposphere (UT).  These aviation-generated 

condensation trails (contrails) can occur singly but more often are evident as clusters – 

outbreaks – over regions characterized by a high density of commercial aircraft (e.g., 

Europe, the U.S.).  Contrails and contrail outbreaks are becoming an important issue in 

climate change studies at regional and sub-regional-scales, and potentially also globally, 

because of their demonstrated role in reducing the diurnal temperature range (DTR) at 

Earth’s surface.  Obtaining improved knowledge of the synoptic climatology of contrail 

outbreaks (i.e., their regional and sub-regional scale occurrences on monthly to seasonal 

time scales) serves to both better understand this important anthropogenic forcing on 

climate, and provide a basis for improving the prediction of outbreaks in real time so that 

their strongest effects potentially may be reduced.  The latter is becoming an important 

policy issue for some governments in Europe, because contrail outbreaks may intensify 

the effects of global warming (e.g., Williams et al. 2003).  It is anticipated that the results 

of the present study will contribute to a similar debate in the U.S., involving the Federal 

Aviation Administration (FAA) and commercial airlines. 

Contrails are ice crystal clouds at cirrus altitudes produced by the emission of 

water vapor and particulates from the engine exhaust of jet aircraft (Travis et al. 1997, 
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DeGrand et al. 1999), and comprise both the visible condensate of these aircraft 

emissions and sublimated ambient moisture (DeGrand et al. 1999, Travis et al. 2006, 

Carleton et al. 2008).  Given their composition and altitude, contrails have characteristics 

broadly similar to natural cirrus clouds, although they contain a higher density of smaller 

ice crystals, especially soon after formation.  Accordingly, contrail effects on the 

shortwave and longwave radiation streams both are enhanced relative to clear-sky 

conditions.  The ability of contrails to reflect incoming solar radiation, which decreases 

the surface insolation receipt, potentially cools the surface in the daytime (DeGrand et al. 

2000, Travis et al. 2004).  However, contrails may increase the surface temperature at 

night relative to clear-sky conditions because of the cloud greenhouse effect (Travis et al. 

2004).   This combination of daytime cooling and nighttime warming, or contrail “cloud 

forcing,” decreases the DTR (Travis et al. 2002, 2004).  The reduced DTR due to contrail 

outbreaks is broadly similar to some other human impacts on near-surface climate at 

regional and sub-regional scales (e.g., urbanization, irrigation). 

Figure 1-1 shows a satellite IR image taken on a day in September 1995 over the 

Midwest U.S., and shows a widespread contrail outbreak composed of numerous 

individual contrails.  The analysis of many such high-resolution satellite images 

(DeGrand et al. 2000; Travis et al. 2007; Carleton et al. 2008) shows that contrail 

incidence over the U.S. typically is highest during the transition seasons and lowest 

during the summer months.  Winter tends to have contrail frequencies in between these 

maxima and minima.  The seasonal variation in contrail occurrence coincides with the 

latitudinal migration of the polar front jet stream.  The transition seasons typically are 

associated with the strongest horizontal temperature gradients, and therefore steepest 
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pressure/height gradients, over the U.S., and thereby produce the greatest baroclinicity.  

Comparing the extreme seasons, winter has the higher incidence of contrail formation 

because of the strong temperature/height gradients concentrated over the southern states 

and the Gulf of Mexico, whereas in summer the baroclinicity associated with the jet 

stream moves into southern Canada (DeGrand et al. 2000, Travis et al. 2006, Carleton et 

al. 2008).  At that time of year, contrails and contrail outbreaks over the U.S. mostly 

occur in association with the cirrus anvils associated with deep convection.    

 

Figure 1-1:  AVHRR thermal IR image of contrail outbreak over Midwest U.S. on 
September 15, 1995.  From Travis et al. (2004). 
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Although contrail outbreaks occur in every U.S. region, climatologically the 

Midwest has the highest frequency of occurrence (DeGrand et al. 2000; Carleton et al. 

2008).  This results from the combination of frequent favorable meteorological conditions 

associated with contrail formation in the UT, and the region’s location beneath the 

dominant transcontinental flight corridor connecting major East Coast and West Coast 

cities (Changnon 1981; DeGrand et al. 2000; Carleton et al. 2008).  The U.S. Northeast, 

Southeast and Northwest regions all have relatively high frequencies of contrail 

outbreaks, but the importance of favorable meteorological conditions in the UT seems to 

differ between regions; that is, there is an apparent geography to contrail outbreak 

occurrence (DeGrand et al. 2000, Carleton et al. 2008).  This outbreak geography and its 

associated UT climatological conditions require clarification and characterization. 

Contrail Formation 

The pioneering study of contrail formation (Appleman 1953) utilized three 

assumptions for necessary conditions in the UT: (1) the saturation of water vapor with 

respect to ice; (2) the immediate freezing of water droplets after formation; and (3) an ice 

crystal content value of 0.004 g m-3.  These assumptions led Appleman to create the first 

conceptual forecast model of contrail formation using measurements of UT conditions as 

the predictive variables; specifically, the ambient pressure, temperature, and relative 

humidity (Hanson and Hanson 1995).  Although this “model” has been refined 

subsequently (e.g., Jiusto and Pilie 1964; Schrader et al. 1997), Appleman’s study was 
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important in that it provided the basis for most, if not all, current contrail prediction 

studies.   

Clearly, the ability to predict when and where contrails and contrail outbreaks will 

occur requires an understanding of the UT meteorological conditions in conjunction with 

the presence of jet aircraft.  As exhaust particles emitted by jet engines mix with the 

ambient air, the decrease in a wake parcel’s absolute humidity is directly proportional to 

its decrease in temperature (Schrader 1997).  In Figure 1-2, the straight line on the graph 

represents the jet engine emission and has a slope equal to the ratio of water vapor added 

by the engine exhaust to the increase in temperature from the heat added to the air parcel 

by the engine.  This ratio is defined as the engine contrail factor, which typically has been 

found to range from 0.0295 g kg-1 K-1 to 0.049 g kg-1 K-1 (Schrader 1997, p.1725).  

Contrail formation in a sub-saturated environment is generally dependent upon the 

ambient temperature.  Supersaturated environments are rare, but similarly depend upon 

ambient temperature for contrail formation (DeGrand et al. 2000).  When the air is 

supersaturated with respect to ice, contrails can form if T < -39ºC.  Although ice 

supersaturation typically requires RH > 150 percent for natural cirrus formation, contrail 

cirrus (i.e., cirrus and cirrostratus resulting from the merger of contrails in an outbreak) 

requires low humidity values because aircraft exhaust temporarily raises the associated 

local values of relative humidity with respect to liquid water to above 100 percent 

(Minnis et al. 2004).  These UT conditions (high humidity, low temperatures) are most 

often encountered in the UT over Earth’s middle latitude regions.  Commonly associated 

with high humidity is upward vertical motion, due to the fact that rising (sinking) air 

typically results in moistening (drying) due to adiabatic expansion (compression).   
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Figure 1-2: Plot of temperature vs. vapor pressure.  Saturation vapor pressure with 
respect to water represented by upper dashed line.  Saturation vapor pressure with respect 
to ice represented by lower dashed line.  Straight line represents path of aircraft wake 
parcel, emitted at highest values of temperature and vapor pressure and decreasing in 
both over time.  From Schrader (1997). 
 

Previous studies that have examined UT contributions to contrail formation have 

focused on the determination of the critical air temperature, or the temperature at which 

the existing ambient air mass is saturated for water vapor, thereby promoting contrail 

formation with any additional water emitted from the jet engines (Hanson and Hanson 

1995).  Derivation of the critical temperature is achieved by determining a line with a 

slope equal to the contrail factor, and the tangent point to the saturation vapor pressure 

curve (Figure 1-2).  This derivation is based on the Goff-Gratch formulation, one of the 

primary saturation vapor pressure formulations used for computing water vapor pressure 

over liquid water and ice (Volmel 2006).  
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Contrail Persistence 

Once a jet contrail forms, an additional set of favorable atmospheric conditions is 

required for persistence on time scales longer than a few minutes.  Contrail persistence is 

important climatically, and also for their detection using satellite data.  Although fresh 

contrails are detectable in satellite images (e.g., Figure 1-1), older contrails may become 

indistinguishable from natural cirrus clouds as the ice crystals comprising them disperse 

over wider areas.  The latter process is accompanied by an increase in cloud particle sizes 

from their previously small (<10 µm) radius, and by a reduced particle density per unit 

volume (DeGrand et al. 2000) that may be aided by the influence of strong horizontal 

wind shear.  The vertical thinning and horizontal spreading that accompanies persisting 

contrails tends to occur most frequently in association with baroclinic waves and the jet 

stream (DeGrand et al. 2000).  As a result, contrails often also occur in conjunction with 

natural cirrus clouds (Carleton et al. 1986, Travis et al. 2006).  Travis et al. (2006) found 

that the greatest contrail frequency increases coincided with the greatest decreases of 

tropopause temperature – and increases in tropopause height – in the eastern half of the 

U.S., occurring since about the mid-1970s.  Coincident with the tropopause rising and 

cooling between the 1970s and today has been an increased average thickness associated 

with a warmer troposphere.   

For the mid-season months (January, April, July, October) of 1977-79, DeGrand 

et al (2000) determined the associations of individual contrails over the conterminous 

U.S. with the synoptic-scale circulation using a classification scheme.  This scheme was 

based upon one developed originally by Carleton and Lamb (1986), and distinguishes 
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between baroclinic and barotropic, or equivalent barotropic, circulation types.  It was 

found that 75 percent of contrails occur in association with natural cirrus, 38 percent of 

which are associated with the jet stream.  The present study expands upon such studies by 

examining contrail outbreak associations with UT variables.  Because outbreaks occur on 

sub-regional scales (Carleton et al. 2008), a composite (i.e., map averaging technique) is 

suitable for determining outbreak associations with UT meteorological variables, as well 

as the relationships between these variables.  From the foregoing discussion, the UT 

variables that can be used to characterize outbreaks are air temperature (T), relative 

humidity (RH), vertical motion, or omega (ω), and zonal (i.e., west-east component) of 

the total wind (U).  

Study Objectives 

There are two main objectives of this research:  

1. To provide reliable “climate diagnostics” (i.e., typically occurring UT 

meteorological conditions) of contrail outbreak atmospheric 

environments for those sub-regions of the conterminous U.S. having 

high frequencies of outbreaks in a given mid-season month (January, 

April, July, October); 

2. To develop and apply such a climatology-based method that can 

reliably predict contrail outbreak occurrences in those sub-regions of 

high frequency, and that can potentially be used in near-real time by the 

FAA and U.S. airlines.  
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To achieve Objective 1, I determine the geographical and seasonal dependencies 

of UT meteorological conditions associated with contrail outbreaks for the mid-season 

months of 2000-2002,  using a composite (i.e., multi-case average) approach applied to 

reanalysis data on UT meteorological variables from the National Centers for 

Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR).  

The contrail outbreak inventory for 2000-2002 was developed by Travis et al. (2007) and 

used by them to determine temporal changes in contrail occurrence between the 1970s 

and early 2000s.  Although climate diagnostics of contrail outbreaks were determined for 

the 2000-2002 period by Carleton et al. (2008), these were for U.S. sub-regions identified 

subjectively on the basis of previous contrail studies (e.g., DeGrand et al. 2000), and for 

all mid-season months combined.  In the present study, I use a GIS to objectively 

determine U.S. sub-regions having high frequencies of contrail outbreaks separately for 

each mid-season month.  The resulting mid-season month and sub-region specific climate 

diagnostics (i.e., UT meteorological composites) accompanying outbreaks provide a basis 

for ultimately predicting contrail outbreaks on daily and sub-daily timescales (Objective 

2).  

To help realize Objective 2, I use the UT composite information derived in 

Objective 1 to develop a simple visual-rules based map method of identifying contrail 

outbreak-favorable areas on daily-averaged meteorological analyses.  The UT variable(s) 

that are evaluated for a given region and mid-season month are determined from 

statistical analyses (e.g., logit modeling) for the 2000-2002 period, and the retro-
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predictions1 are verified by comparison with satellite-image analyses of outbreaks in the 

high-frequency regions for July and October 2008, and January and April 2009.    

 The remainder of this thesis is divided into four chapters.  Chapter 2 discusses the 

data and methods used to develop the outbreak regionalization, UT composite analysis, 

and statistical analysis of the 2000-2002 high-frequency regions.  Chapter 3 gives the 

results of the analyses performed using the data and methods described in Chapter 2.  

Discussion of the results and their significance in context of the study objectives are also 

included in Chapter 3.  Chapter 4 discusses the retro-prediction technique applied to mid-

season months for 2008-09, as well as the results and significance of this application.  

Finally, Chapter 5 summarizes the study results, and identifies future research that should 

be undertaken to help achieve reliable short-term (6-36 hr) forecasting of contrail 

outbreaks for the conterminous U.S. 

 

 
 
 

                                                      
1 Backwards prediction of an event that has occurred in the past 
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Chapter 2 
 

Data and Methods for Contrail Outbreak Climatology 

 

This chapter examines the data and methods used in this study. It is divided into 

four sections. The first one presents the methodology used to develop the contrail 

outbreak regions. The next section describes the data and methods used to create 

composite maps of UT meteorological conditions associated with outbreaks. The third 

section discusses the four statistical measures used to determine the skill of retro-

predicting the occurrence of contrail outbreaks.  The concluding section covers the 

methods used to apply the retro-prediction techniques to an independent dataset and 

therefore to confirm the validity of the analysis. 

Regionalization Methodology 

Overview 

Although previous studies have mapped frequency data on contrails at high 

spatial resolution (1ox1o) according to mid-season months (e.g., DeGrand et al. 2000; 

Travis et al. 2004, 2007), this study is the first to develop an objective regionalization of 

contrail outbreaks for the conterminous U.S. in those months.  This approach differs 

substantially from the regionalization method utilized in Carleton et al. (2008), for 

example, which developed a set of 10 regions for the U.S. based on those prior spatial 
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climatologies of contrails.  In the Carleton et al. (2008) study, the regions are fixed, 

meaning they do not change by mid-season month, and generally follow the boundaries 

of surrounding groups of states.  The current study maps the outbreak data for each mid-

season month (January, April, July, October), and creates regions based on where the 

highest frequencies of outbreaks occur for similar months in 2000-2002.  Regions are 

determined by those grid cells having the greatest number of overlaps of coordinate 

boxes (latitude/longitude) enclosing outbreaks.  The result is a regionalization unique to 

each mid-season month.  

GIS analysis 

Contrail outbreak box coordinates (upper left latitude and longitude, lower right 

latitude and longitude), approximated to the nearest degree, were acquired for the 2000-

2002 mid-season months from Dr. David Travis at the University of Wisconsin – 

Whitewater.  These coordinates are for all outbreaks identified on the AVHRR and 

MODIS IR imagery in those months.  The latitude/longitude data were entered into a 

Microsoft Excel spreadsheet, which facilitated the creation of polygons representing 

outbreaks in ArcGIS (below).  Figure 2-1 shows a sample of the arrangement of box 

coordinate data in Excel.  A total of four spreadsheets of box coordinate points were 

created, one for each mid-season month (all 3 years included). 
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Figure 2-1: Section of a sample Excel spreadsheet with box coordinate pairs.  Each pair 
has a unique label number, the first of each pair being the upper left coordinate, and the 
second being the lower right.  Longitudes are multiplied by -1 because they lie within the 
Western Hemisphere. 
 

To spatially visualize outbreak occurrences in 2000-2002, a shapefile of the U.S. 

was acquired from the 2007 TIGER/Line Shapefiles download utility provided by the 

U.S. Census Bureau.  After importing the shapefile into ArcMap, the 48 contiguous states 

and the District of Columbia were selected for the creation of a new data layer that would 

be utilized as the base map for the analysis.  The next step required the overlay of a 1º by 

1º grid onto the USA shapefile.  The Hawth’s Analysis Tools application was used to 
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produce this grid.  Once the grid was created and displayed over the map, the contrail 

outbreak box coordinate data were added, with the spatial reference set to North 

American Datum of 1983 (NAD83).  The result was a series of points at various grid 

intersections, with every pair of points labeled with a common number for ease of 

identification when creating outbreak extent polygons (below). 

To create rectangular polygons representing contrail outbreak locations and 

extents, a new (empty) shapefile was made in ArcCatalog and added to ArcMap.  The 

result of this procedure was a shapefile with a series of polygons across various places on 

the USA map for which outbreaks occurred, with multiple areas of overlap being 

identified (Figure 2-2).  In total, four shapefiles were created, one for each mid-season 

month. 

 

 

Brent Yarnal
There should be no physical gap in the text here.
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Figure 2-2: Example of GIS shapefile consisting of multiple polygons, each representing 
the spatial extent of a contrail outbreak in the period 2000-2002.  The polygon boundaries 
align with the 1º latitude by 1º longitude grid. 
 

The grid covering the entire U.S. was set as the zonal polygon layer, and the 

shapefile of the outbreak extent rectangles was set as the summary polygon layer to be 

summed within the zonal polygon layer.  This procedure allowed for a value to be given 

to each grid cell, based on the number of overlaps of contrail outbreak polygons in that 

cell.  The count of outbreaks within each grid cell was created as a new attribute in the 

grid’s attribute table.  To enhance the visual display, a green-to-red color scheme was set 

to represent low-to-high values of outbreak frequencies: green represents low numbers of 

outbreaks, red represents high numbers.  Uncolored (white) grid cells had no outbreaks 

observed for that mid-season month during the 2000-2002 study period.  
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Experimentation with coarser spatial resolution 

Although the aforementioned coordinate box overlay analysis provides insights 

into the mid-season month spatial climatology of contrail outbreaks for the conterminous 

U.S., some subjectivity remains in terms of designating sub-regions visually.  To test 

whether sub-regions could be more readily identified if the mapped overlay data were 

displayed at a coarser resolution, a filtering method in ArcGIS was applied to each of the 

mid-season summary maps to create larger cells from the original 1º by 1º data, (i.e., a 

spatial smoothing procedure comparable to the running mean in time series analysis).  

After conversion to raster format, the polygon of the 1º by 1º grid was altered using the 

Aggregate tool in Spatial Analyst, in which the mean of 9 grid cells was calculated and 

displayed accordingly to its value in a new grid cell covering a 3º latitude by 3º longitude 

area.  An example of the resulting new map for the month of April is shown in Figure 2-

3.  

 

Figure 2-3: April 2000-2002 contrail outbreak occurrences showing filtered (spatial 
mean) values across a 3º latitude by 3º longitude grid 
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Comparing the original 1º by 1º resolution overlay maps to those at the 3º by 3º 

resolution reveals a broadly similar spatial pattern of outbreaks results.  Furthermore, no 

clear pattern emerges as to where precisely the boundaries of the sub-regions having the 

most frequent outbreaks can be drawn.  For this reason, the sub-region boundaries were 

determined using the original 1º by 1º resolution overlay maps.  This has the advantage 

that inter-regional and inter-seasonal variances of outbreaks could differ by single 

degrees of latitude and longitude rather than by increments of three degrees.  

Designation of sub-regions 

For ease of analysis, and given that the NCEP-NCAR reanalysis data on UT 

variables are to be composited, sub-regions were designated as rectangular areas.  

Furthermore, sub-region boundaries are set at whole degrees of latitude and longitude.  

Attempts were made to include all grid cells that showed three or more outbreak 

occurrences for a particular 2000-2002 mid-season month.  On each mid-season map, 

sub-region boundaries were drawn to include those multi-state areas comprising an 

outbreak overlap cluster.  Accordingly, rectangular areas were large, each encompassing 

about 30 1º by 1º grid cells or more.  It is worth noting that some high-frequency areas 

within a given sub-region may overlap.  The emphasis on identifying those sub-regions 

having higher frequencies of outbreak overlaps in the 2000-2002 period means that the 

entire country has not been regionalized (cf. Carleton et al. 2008).  This regionalization 

identified those U.S. sub-regions that are the most susceptible to contrail outbreaks, and 

for which prediction of outbreak occurrence would be most meaningful climatically.  
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Although the regionalization was a somewhat subjective process, and the exact 

boundaries of sub-regions could have been designated differently in size and number on 

each mid-season map, the overall subjectivity was reduced compared to previous studies 

by imposing sub-region boundaries after objectively determining a contrail outbreak 

climatology from overlapping coordinate boxes. 

The above procedure to determine outbreak high-frequency sub-regions in the 

2000-2002 study period, and for which the NCEP-NCAR reanalysis data are composited 

to generate UT climate diagnostics (below), resulted in the following sub-region locations 

by mid-season months. For January, three sub-regions are identified:  Midwest (100ºW-

80ºW, 37ºN-45ºN); Southeast (86ºW-74ºW, 32ºN-38ºN); and South (98ºW-78ºW, 25ºN-

35ºN).  April is the only month for which six sub-regions were designated, due to the 

high numbers of outbreaks covering much of the U.S.: Central (98ºW-84ºW, 35ºN-46ºN); 

Northeast (85ºW-71ºW, 37ºN-44ºN); South (91ºW-78ºW, 30ºN-36ºN); Upper South 

(90ºW-81ºW, 34ºN-39ºN); Pacific North (125ºW-116º, 40ºN-47ºN); and Pacific South 

(124ºW-113ºW, 32ºN-39ºN).  In July, three high-frequency sub-regions were identified: 

Northeast (85ºW-69ºW, 40ºN-47ºN); East (88ºW-73ºW, 32ºN-42ºN); and West (125ºW-

111ºW, 35ºN-45ºN).  For October, three sub-regions were designated: Midwest/Upper 

South (96ºW-79ºW, 35ºN-46ºN); South (91ºW-81ºW, 28ºN-36ºN); and Northwest 

(121ºW-112ºW, 42ºN-48ºN).  The spatial extents of these sub-regions are visualized in 

Figures 2-4a-d.   
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Figure 2-4a: Map showing high-frequency sub-regions of contrail outbreaks for January 
2000-2002 
 

 

Figure 2-4b: Map showing high-frequency sub-regions of contrail outbreaks for April 
2000-2002 
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Figure 2-4c: Map showing high-frequency sub-regions of contrail outbreaks for July 
2000-2002 

 

Figure 2-4d: Map showing high-frequency sub-regions of contrail outbreaks for October 
2000-2002 
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As indicated above, outbreak sub-regions are dynamic in that they change size 

and location between mid-season months.  Even those regions with the same name in any 

two mid-season months (e.g., the Northeast in April and July) have slightly different 

spatial coverages.  This strategy has implications for the analysis of NCEP-NCAR data: 

because each sub-region pertains to a particular mid-season month, daily-averaged data 

for that month can be composited rather than daily anomalies from the long-term monthly 

means.   

Composite Methodology Applied to NCEP/NCAR Reanalysis Data 

Overview 

This section describes the data and methods used to create composite maps of UT 

meteorological conditions associated with outbreak, non-outbreak, and pre-outbreak days 

(defined below) for the 2000-2002 study period.  These composites comprise the climate 

diagnostics of contrail outbreaks derived for U.S. sub-regions having high frequencies of 

outbreaks, and also form the basis for the retro-prediction method. 

 

Data and composites 

The meteorological UT composites were developed using the Daily Mean 

Composites webpage of the Physical Sciences Division, provided by NOAA’s Earth 

System Research Laboratory (http://www.cdc.noaa.gov/data/composites/day).  To 

determine the outbreak dates in each sub-region for each mid-season month, I identified 



22 

 

which polygons––representative of an outbreak on any given day in 2000-2002––fell 

both entirely or partially within the sub-region in the 1º by 1º grid map of the 

conterminous U.S.  Those outbreak polygons lying mostly outside of a sub-region, but 

that had a few grid cells located within the sub-region, were included in the composites.  

Having compiled a list of outbreak dates in mid-season months of 2000-2002 for each 

sub-region, composites for each of the four UT variables (temperature, RH, omega, and 

zonal wind) were generated through the PSD website.  Each region/mid-season month 

had a unique set of individual outbreak days comprising its composites of the UT 

variables.  Each composite was downloaded in NetCDF format to permit further 

manipulation using the Grid Analysis and Display System (GrADS) software.  GrADS 

can display the differences between two input NetCDF files, as well as display two or 

more variables per map, which is useful for showing spatial relationships among 

variables.  To help consolidate the number of output maps, and to better display 

relationships between UT variables, the composite temperature, RH, omega, and zonal 

wind appear as a common plot for each sub-region.  To facilitate interpretation, and to 

permit inter-comparison of composite UT maps between regions, each variable was set to 

a common interval for isoline plotting in the GrADS software: temperature at 0.5 ºC; 

relative humidity at 1.0 percent; omega at 0.01 Pa s-1; and zonal wind at 1.0 m s-1. 

To determine the average meteorological conditions in the UT by sub-region in a 

given mid-season month (section Designation of sub-regions, above), composite maps 

were generated for: (1) outbreak days; (2) non-outbreak days; and (3) pre-outbreak days 

(i.e., outbreak day minus 1).  In addition, for a given variable, difference maps between 

any two composites were generated and visually compared (e.g., outbreak minus non-
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outbreak days for the Midwest in April; outbreak minus pre-outbreak for the South in 

January).  For each sub-region and mid-season month, daily-averaged data at 300 hPa on 

the four variables previously identified as important for contrail outbreak occurrence and 

persistence (i.e., temperature, relative humidity, omega, and zonal wind) were 

composited.  The 300 hPa level was chosen as the average lower-height representative of 

aircraft flight level, and was the highest level for which RH data were available.  As 

indicated previously, for each variable and region, the composite mean rather than the 

composite anomaly was derived because data from different mid-season months were not 

being combined.  

Of the fifteen outbreak high-frequency sub-regions identified earlier, a total of six 

were chosen for the comparison of composites between outbreak and non-outbreak days 

using the NCEP-NCAR reanalysis data.  Each sub-region selected had the maximum 

number of outbreaks (2000-2002) in that mid-season month.  A secondary consideration 

in this selection process was to compare several different sub-regions of the country (e.g., 

the Midwest, the South, the West) in terms of their respective UT meteorological 

conditions.  Because the Midwest generally had the maximum number of outbreaks, this 

sub-region was analyzed for three of the four mid-season months.  Accordingly, the sub-

regions and months selected for the composite analysis were: (1) Midwest in January, (2) 

South in January, (3) Central in April, (4) Pacific South in April, (5) East in July, and (6) 

Midwest/Upper South in October. 

Because of the need to determine whether the outbreak composites for a given 

region and mid-season month are sufficiently different from the atmospheric conditions 

on non-outbreak days—and for which UT variables––it is appropriate to develop 



24 

 

“undisturbed” composites based on days representing normal (i.e., non-outbreak) 

conditions.  For this purpose, non-outbreak dates were determined and compiled into a 

separate database.  I excluded the dates one day before outbreak dates (i.e., day-1) from 

the undisturbed composite database as their associated atmospheric conditions were used 

subsequently to evaluate whether there are consistent UT differences between outbreak 

days and the days before.   Similarly, of the remaining non-outbreak dates, I stipulated 

that no two consecutive days could be used in the composite because of the need to 

obtain an independent (i.e., non-temporally correlated) sample database.   

After I developed the UT mid-season month composites for non-outbreak days, I 

downloaded the respective NetCDF files, opened them in GrADS, and displayed them in 

similar map format to the composites for outbreak days.  I did this to examine the UT 

conditions for “normal” or undisturbed days.   

To characterize and compare the UT conditions one day in advance of outbreaks 

(i.e., pre-outbreak, or day-1) to the average outbreak and non-outbreak conditions, I 

generated composites for the day immediately before each outbreak day (Appendix A).  

Similar to the derivation of composites on outbreak and non-outbreak days, I created 

these composites for the six regions of maximum frequency for their respective mid-

season month, using the same isoline intervals as those in the outbreak composites.   

I also generated difference maps of the composites (i.e., outbreak minus non-

outbreak) using the GrADS software to obtain insights into how distinctive are the 

outbreak composites compared to the non-outbreak composites.  Just as was done 

separately for the outbreak and non-outbreak composites, I created two maps for each of 

the six high-frequency regions; one showing both temperature and RH, the other showing 
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both omega and zonal wind.  In the difference maps, positive (negative) values indicate 

greater magnitudes of a given UT variable on outbreak (non-outbreak) days. 

Map criteria for visually determining outbreak likelihood  

To determine whether the differences in UT conditions depicted on the 

composites for outbreak days and non-outbreak days (by sub-region, mid-season month) 

permit skillful retro-prediction of contrail outbreak occurrences, the following three map 

criteria were considered: magnitude, pattern, and gradient.  Magnitude differences refer 

to the change in a given UT variable’s actual value (e.g., maximum, minimum) within the 

sub-region under consideration.  Pattern differences are those in which the general 

arrangement of high-to-low values (e.g., location of maxima and minima, orientation of 

isolines) of a UT variable change across the region, but for which exact magnitudes are 

not explicitly considered because the magnitudes themselves do not change much 

between composites.  Gradient differences, a form of magnitude difference, involve 

broadly similar patterns on outbreak and non-outbreak days, but the horizontal change in 

the values—as given by the isoline spacing—is either tightened or relaxed over the 

region.  These three visual map criteria are not necessarily mutually exclusive; two or all 

three criteria may change between composites.  In many cases, the outbreak minus non-

outbreak differences were apparent by visually comparing each composite map side by 

side.  To better distinguish the differences of outbreak days from non-outbreak days for 

more similar patterns (e.g., very small magnitude changes), the difference maps were 

utilized to interpret these changes.  Although another investigator may not have 
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interpreted the map differences as I did, I attempted to highlight only the most notable 

differences using the three map criteria.  Such a simple visual map-based technique has 

the advantage of being relatively easily and quickly used, greatly facilitating its potential 

application as a contrail prediction method in real-time.  There is confidence in this 

method because of the statistical analyses that are performed and presented later.  

Retro-prediction of contrail outbreaks using NCEP-NCAR daily-averaged reanalyses  

To evaluate the visual map-based method of retro-predicting contrail outbreaks 

using the magnitude, pattern and gradient characteristics evident on the regional 

composites of outbreak versus non-outbreak days, I undertook a day-by-day inspection of 

the daily-averaged (i.e., 4x6 hr) UT maps for each variable in all months of the 2000-

2002 study period.  The occurrence of a contrail outbreak is a binary phenomenon; that 

is, for each UT variable of interest (temperature, RH, omega, and zonal wind), the map 

for that day was classified as either favorable or not favorable for a contrail outbreak to 

occur according to its respective magnitude, pattern, or gradient criterion.  The daily 

mean plot of a given variable was deemed favorable for a contrail outbreak if it more 

closely resembled the composite map on outbreak days for that region, contrasted with 

the non-outbreak composite.  For example, the visual assessment for the Midwest sub-

region in January was performed using each day’s map of 300 hPa temperature for 

January 1, 2000, then for January 2, 2000, and for each succeeding day through January 

31, 2000; then for January 1, 2001 through January 31, 2001, and repeated for January 1, 

2002 through January 31, 2002.  This same process was repeated for RH300, for 
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omega(300), and for zonal wind at 300 hPa.  In total, the January Midwest region had 

372 individual interpretations, 93 for each of the four UT variables, for which each 

variable had three months of 31 days each.  To reduce any bias on my part in determining 

outbreak-favorable conditions, I did not consult the dataset containing the actual outbreak 

dates, or those that went into the composites of non-outbreak days until after the analysis 

was completed.   

To compare the retro-predicted and actual outbreak dates in the study period, I 

created an MS Excel spreadsheet with rows representing each day of the month for three 

years of the same mid-season month (e.g., January 2000, January 2001, January 2002), 

and columns representing each of the four UT variables.  Whenever I deemed a daily-

averaged map to be favorable––meaning that it met the criteria mentioned above either 

completely or very closely––I placed an “X” in the cell corresponding to that day and 

variable.  I left the cell blank when I deemed a map to be unfavorable.  Once this process 

was completed for all four variables in a given region, I highlighted the dates on which 

outbreaks had occurred, and compared statistically both sets of data (outbreak 

favorability, actual outbreak occurrence) to determine which UT variable(s) perform best 

for a given sub-region and mid-season month.  The process was completed for all six 

regions. 

Statistical Analysis of Contrail Outbreak Retro-Prediction 

This section describes the statistical measures I used to determine which of the 

four UT variables considered (i.e., temperature, RH, omega, u) show skill in retro-
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predicting the occurrence of contrail outbreaks for the 2000-2002 mid-season months and 

sub-regions evaluated.  For this purpose, I apply four statistical measures of skill that are 

used to determine the success rate of meteorological forecasts compared to a verification 

analysis (Wilks 1995).  Each of these measures has its advantages and disadvantages 

when applied to contrail outbreak retro-prediction (see below), so I use all four of them 

and discuss their relative merits for determining skill by mid-season month and study 

sub-region in the Results section of the thesis.  To begin, I created contingency tables for 

each UT variable within each region and mid-season month to determine individual 

associations of favorability versus occurrence, and from which I computed the Chi-

squared statistics of distribution and success measures.  Then, I applied a binary logistic 

regression to the outbreak favorability and occurrence data to determine which 

variable(s) are significant in terms of their main effects (single variable significance) and 

also their two-way interactions of variables (multiplication of two variables).  The results 

of these statistical analyses for sub-regions and mid-season months guide the retro-

prediction study for recent months not used to develop the 2000-2002 UT composites 

(July and October 2008, January and April 2009). 

Background 

The type of dichotomous event represented by a contrail outbreak lends itself to 

verification of categorical forecasts of discrete predictands.  A categorical forecast is one 

in which only one set of possible events will occur.  A discrete predictand is one that 

takes just one finite set of values (Wilks 1995, p. 238).  Accordingly, I apply binary 
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forecast––and retro-prediction––verifications to this study, using contingency analysis, 

four measures of forecast skill, and binary logistic regression (below). 

Contingency analysis 

First, I analyzed the success of each UT variable in determining outbreak 

occurrence or non-occurrence for the sub-regions and mid-season months of 2000-2002.  

Categorical data with discrete predictands can be verified using a contingency table, a 

plot of intersections of forecast categories and observation categories (Stanski et al. 

1989).  Here, the favorability of any one UT variable (temperature, RH, omega, and zonal 

wind) is the forecast category and the occurrence of a contrail outbreak is the observation 

category.  Like outbreak occurrence, the favorability of a UT variable is also binary, 

meaning the variable is either favorable or not favorable.  With two forecast categories 

(favorability: Yes, No) and two observation categories (occurrence: Yes, No), the 

contingency table contains four forecast combinations: Hit (both Yes), Miss (Forecast: 

No, Observation: Yes), False Alarm (Forecast: Yes, Observation: No), and Correct 

Negative (both No) (Table 2-1).  A total of 24 such contingency tables were created, one 

for each UT variable (4), for each of the six regions of interest. 

 

 
Predicted 
 

No 
 

Occurrence 
Hit 

 
Miss 

 

No 
False 
Alarm 

Correct 
Negative 

 
Table 2-1: Contingency table with two binary axes and four resultant cells 
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A Chi-squared (χ2) test is performed on each of the contingency tables to identify 

which UT variables for a given sub-region and mid-season month are most significant for 

predicting contrail outbreaks.  The Chi-squared test can be used to determine the validity 

of categorical variables (here, forecast Yes or No, observation Yes or No) compared to an 

estimation of what their relationship would be as a function of chance (Stockburger 

1996).  I computed the Chi-squared statistic for each of the 24 contingency tables: 
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where O is the observed value in a given cell in the contingency table, and E is the 

expected value for that cell. 

The E value of a cell frequency is computed: 
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where n is the total number of observations; here the number of days (93 for January, 

July, October; 90 for April). 

The degrees of freedom for a Chi-squared test of a contingency table (e.g., 

Hammond & McCullagh 1978) are calculated as follows: 

 

( ) ( )1#1# −×−= ColumnsRowsdf  
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In every contingency table in this study, df = (2 – 1) * (2 – 1) = 1. 

At the 0.05 significance level, the critical value of Chi-squared with one degree of 

freedom is 3.84.  The larger a Chi-squared value, the less likely are the cell frequencies to 

be randomly distributed and, therefore, the less likely that the named categories (here, 

forecasts and observations, yes and no) are valid or reasonable (Hammond & McCullagh 

1978).  Thus, a Chi-squared statistic greater than 3.84 indicates a lesser probability of 

random distribution.   

The binary categorical forecasts represented by the 2 x 2 contingency tables can 

be tested using several skill, or accuracy, measures (Wilks 1995, Chapter 7).  These 

measures determine the success of using any one variable (here, UT map) to successfully 

retro-predict outbreaks, although each measures the accuracy slightly differently (e.g., the 

false alarm rate versus the hit rate).  The first measure I discuss is the “hit rate” (H), 

which gives the accuracy of predicting an outbreak occurrence or a non-occurrence.  The 

result is the fraction of correct forecasts.  The H is calculated: 

 

n
ativeCorrectNegHit

H
+

=  

 

where n is the number of events; here, the number of days in the three study years (2000-

2002) for any common mid-season month (e.g., January 2000, January 2001, January 

2002).  Thus, for each hit rate calculated for January, July, and October, n = (31 days)*(3 

years) = 93.  For each H calculated for April, n = (30 days)*(3 years) = 90.  The best 
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possible H (i.e., maximum success) has a value of unity, and the worst possible H (no 

success) has a value of zero. 

A broadly similar measure to H is the “threat score,” or critical success index 

(CSI).  The CSI measures the success of only the correctly predicted occurrences (Hit, or 

both “Yes”), not the correctly predicted non-occurrences (Correct Negative) (Wilks 1995, 

Chapter 7).  The CSI is calculated: 

 

MissFalseAlarmHit
Hit

CSI
++

=  

 

The best possible CSI (maximum success) has a value of unity, and the worst possible 

CSI (no success) is zero. 

The next accuracy measure I consider is the “probability of detection” (POD).  

The POD is a fraction representing the accuracy of a forecast, whether predicted (Yes) or 

not (No), for when the forecast event is observed (Wilks 1995, Chapter 7).  When applied 

here, the POD considers only contrail outbreak days: 

 

MissHit
Hit

POD
+

=  

 

The best possible POD has a value of unity, and the worst possible POD is zero. 

The fourth measure of skill I use to determine a UT variable’s ability to retro-

predict an outbreak (i.e., favorability) is the false alarm rate (FAR).  The FAR is the 
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fraction of forecasts predicting an event but for which the event does not occur (Wilks 

1995); that is, FAR measures failure (or a lack of skill) in terms of the number of times a 

“Yes” prediction corresponds to a “No” observation, and is calculated: 

 

FalseAlarmHit
FalseAlarm

FAR
+

=  

 

In contrast to the other success measures just described, the best possible FAR is zero, 

and the worst possible FAR has a value of unity. 

Another useful forecast verification tool measures the bias (B), or the 

correspondence between the frequency of “Yes” predictions and the frequency of “Yes” 

observations (Wilks 1995, Chapter 7).  The B is a ratio calculated: 

 

MissHit
FalseAlarmHit

B
+

+
=  

 

An unbiased dataset has a B value of unity, because the number of predictions and 

number of observations are the same.  A value of B greater than unity, for which the 

“Yes” predictions outnumber the observations, is an over-prediction.  Conversely, a value 

less than one, for which the forecasts are fewer than the observations, is an under-

prediction. 
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Binary logistic regression 

To verify the statistical significances of UT variables for each sub-region for 

predicting contrail outbreaks as determined by the contingency analysis, I performed a 

binary logistic regression on the “favorability” dataset (that which deems daily mean UT 

maps as being similar to the outbreak composites) to determine which combinations of 

UT variables (e.g., RH and temperature, RH and omega) were most successful in retro-

predicting outbreaks in the high-frequency sub-regions by mid-season months of 2000-

2002.  Logistic regression estimates the probability of an event’s occurrence, and is often 

used to determine the relationship between discrete binary responses (Yes, No) and a set 

of explanatory variables (SAS 2009).  Forecasts of the probability of occurrence 

commonly transform the predictand into a binary with a value of zero (not occurring) or 

one (occurring) (Wilks 1995).  Here, the predictand is the occurrence of a contrail 

outbreak.  Binary logistic regression is used specifically when the dependent variable is 

dichotomous (Yes, No) and the independent variables are of any type (Garson 2009). 

I used the SAS statistical software to fit the favorability and outbreak data to a 

logistic regression model.  Because the predictand (outbreak occurrence) and predictor 

variables (UT temperature, RH, omega, and zonal wind) are binary, they each take on 

values of zero or one.  Five categories were input to the model: Response, T, RH, Omega, 

and U Wind.  The Response category represents contrail outbreak occurrences and is the 

dependent variable; a value of one represents an occurrence, a value of zero represents no 

occurrence.  Categories T, RH, Omega, and U Wind are the independent variables, with a 

value of one representing favorable for contrail outbreak occurrences, and zero 
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representing unfavorable.  Each data line, comprising the five categories, corresponded to 

one day in the dataset, and has five values (1 or 0) representative of the Response and UT 

variable categories. 

I input the above transformed data into the PROC LOGISTIC procedure in SAS, 

which fits the logistic regression to the data and outputs maximum likelihood estimates 

for each of the independent (UT) variables.  The table “Analysis of Maximum Likelihood 

Estimates” displays parameter estimates, standard errors, and the results of the Wald Chi-

squared test and associated p-values.  Each p-value is the probability that the test statistic 

will be equal to or greater than the actual observed value when the null hypothesis is true 

(Neter 1985).  In this study, the test statistic is the value given by the Wald Chi-squared 

test.  Because I want to reject the null hypothesis that the UT variables are related with 

outbreak occurrences by a random chance distribution, variables with lower p-values are 

more significant.  A p-value less than the test level of 0.05 means that the null hypothesis 

can be rejected. 

Two-way UT variable interactions 

Given that many meteorological variables are inter-correlated (e.g., RH and 

omega; U and omega), it is possible that more than one UT variable may successfully 

predict contrail outbreaks in a given sub-region and mid-season month.  I indicated 

earlier that the South sub-region in January had no single UT variable significantly 

associated with contrail outbreak occurrences.  Thus, to confidently predict outbreaks for 

this region in January using UT variables (temperature, RH, omega, and zonal wind), it is 
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necessary to determine whether or not favorable conditions occur when considering two 

or more variables simultaneously.  For this purpose, I fitted a binary logistic regression 

with two-way variable interaction to the favorability and outbreak data.  A two-way 

interaction involves an added term in the logit regression model that is the cross product 

of the two independent variables (Neter et al. 1985).  The general regression model for 

two separate variables has the form: 

 

22110 XXY βββ ++=  

 

where β0, β1, β2 are the regression coefficients.  The interaction model for X1 and X2 is: 

 

21322110 XXXXY ββββ +++=  

 

I computed the interaction model separately for all six regions of maximum outbreak 

frequency using the PROC LOGISITIC procedure in the SAS software, but with cross 

product terms––signifying variable interactions––as follows: RH*Omega, RH*T, 

RH*UWind, Omega*T, Omega*UWind, and T*UWind.  The maximum likelihood 

estimates were output for each of the main effects (i.e., individual) UT variables, as well 

as for the two-way interaction terms. 
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Retro-Prediction of Outbreaks for 2008-09 

 It is important to verify the skill of the UT variables in retro-predicting contrail 

outbreak occurrences for by testing them on an independent dataset not used to develop 

the UT composites.  For this purpose, I performed a retro-prediction on the six high-

frequency sub-regions for four recent mid-season months: the East in July 2008; the 

Midwest/Upper South in October 2008, the Midwest and the South in January 2009, and 

the Central and Pacific South in April 2009.  The methods of this analysis are described 

below. 

Retro-prediction method 

The retro-prediction method was carried out similarly to the statistical analysis of 

UT variable favorability for 2000-2002.  As in that analysis, the map data on UT 

conditions comprise daily NCEP/NCAR reanalyses for each UT variable (temperature, 

RH, omega, and zonal wind), and were downloaded from NOAA’s CDC website 

(http://www.cdc.noaa.gov/data/gridded).  I imported the NCEP-NCAR data into GrADS 

for visualization.  The method of determining outbreak favorability was the same as I 

used for the 2000-2002 retro-prediction, except that I inspected only the maps of the UT 

variable(s) shown by the statistical analysis for that sub-region and mid-season month to 

be statistically significant.   

http://www.cdc.noaa.gov/data/gridded
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Retro-prediction verification 

 To verify the outbreak retro-predictions for sub-regions in mid-season months of 

2008 and 2009, I, along with the assistance of Matthew Aghazarian, interpreted visually 

the multi-band AVHRR images for the U.S. that are available approximately 5-8 times 

per day.  These images were downloaded from the NOAA Satellite and Information 

Service (http://www.class.ngdc.noaa.gov), and imported into the ERDAS-Imagine 

software for visualization and manipulation (e.g., band subtraction, zoom, outbreak 

coordinate extraction).  For each image, the presence or absence of a contrail outbreak 

was determined using the criteria of finding several visible contrails located in close 

proximity to one another, as described by Carleton and Lamb (1986).  For each outbreak, 

the upper-left and lower-right coordinates (in degrees latitude and longitude) of a 

bounding box that completely encloses the contrails were determined (cf. Carleton et al. 

2008), and recorded in a spreadsheet.  These actual observations were then compared to 

the retro-predictions to determine the success of using significant UT variables from 

2000-2002 for 2008-2009.  Results of this comparison are described in Chapter 4.   

http://www.class.ngdc.noaa.gov/
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Chapter 3 
 

Results and Discussion of Contrail Outbreak Climatology 

 

In this chapter, I present the results of the analyses described in Chapter 2 and 

discuss their implications for the real-time prediction of contrail outbreaks.  First, I 

discuss the results of the objective regionalization of contrail outbreaks for mid-season 

months of 2000-2002.  Second, I discuss the results of the composite analysis of UT 

variables for the six U.S. sub-regions that have high frequencies of outbreaks in the 2000-

2002 study period.  Third, I present the results of the statistical analyses of UT variables 

in context of their ability to retro-predict contrail outbreaks for sub-regions and mid-

season months in the study period 2000-2002.   

Regionalization of the conterminous U.S. by outbreak frequency 

The objectively-derived GIS maps of contrail outbreak overlaps for mid-season 

months (Figures 3-1a-d) reveal the following characteristics.  For January (2000-2002), 

there were relatively few outbreaks compared to the other mid-season months.  However, 

in this month, outbreak occurrences were concentrated primarily over two locations: the 

Midwest (from the Mississippi River through central Ohio), and the South (from western 

Louisiana through north central Florida).  Specifically in the South, there were two grid 

cells each having seven occurrences (total for the three January months), the maximum 
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frequency for this month.  Both of these outbreak high-frequency regions display very 

strong patterns that span many more degrees of longitude than degrees of latitude.  The 

most likely reason for this geographical pattern of contrail outbreaks involves the mean 

positions of both the subtropical and polar jet streams: in January, both jet streams 

typically are strongest and at their southernmost positions for the year.  The polar front jet 

frequently is associated with a recurring series of synoptic-scale upper level troughs, and 

areas of horizontal wind shear and baroclinic instability occur around the mean center of 

the jet.  These areas of baroclinicity increase the likelihood of upward vertical motion, 

which increases the relative humidity in the UT, in many instances, to that of ice 

supersaturation, which is are needed for contrail persistence.  Reasonably large numbers 

of outbreak occurrences also occur over the Carolinas, northern Georgia, and eastern 

Tennessee, a sub-region that falls in between the two maxima latitudinally, and is 

centered more to the east longitudinally.  This positioning could be the result of the 

southward (northward) oscillations of the polar (subtropical) jet stream.  Most areas of 

the western U.S. and New England did not experience any outbreaks in the January 

months of 2000-2002, although cases of individual contrails likely occurred, as shown by 

Travis et al. 2007.  

The outbreak summary map for April shows much higher frequencies than that 

for January, with the maximum of 13 outbreaks total for the three April months located 

over northwestern Indiana and northeastern Illinois.   This concentration represents the 

highest number of contrail outbreak occurrences in all mid-season months for the 2000-

2002 study period.  Surrounding this absolute maximum is a larger-scale region 

comprising nine or more outbreaks in all grid cells of northern Illinois, northern Indiana, 
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southwestern Michigan, and extreme southern Wisconsin.  This distinct Midwest 

maximum results from the mean position of the polar front jet stream over the northern 

U.S. in the spring (DeGrand et al. 2000).  Large numbers of contrail outbreaks also occur 

in a sub-region comprising eastern Ohio and western Pennsylvania, and in a separate sub-

region covering Kentucky, Tennessee, and western North Carolina.  As was evident in 

the outbreak map for January, both of these sub-regions exhibit greater longitudinal than 

latitudinal extent.  Also in April, the western U.S. sees the highest frequency of contrail 

outbreaks of all mid-season months, at least for the 2000-2002 study period.  Relative 

maxima of contrail outbreaks occur in central California and western Oregon, with 

several grid cells showing four to five occurrences total for the three April months.  The 

moderate numbers of outbreak occurrences in the Pacific coast sub-region is likely due to 

increased activity of the jet streams, especially when highly meridional long-wave and 

blocking patterns occur. 

In July, there are fewer contrail outbreaks than in April, and the spatial coverage 

is reduced across the conterminous U.S.  However, outbreaks are highly concentrated in 

the central Appalachians, including portions of North Carolina, Virginia, West Virginia, 

Kentucky, and Tennessee.  This pattern is most likely attributed to the onshore 

(southeasterly) flow of moisture from the summertime Bermuda high (Mearns et al. 

2003), aiding Appalachian-induced orographic convection.  Indeed, the synoptic 

climatology of individual contrails for 1977-79 presented by DeGrand et al. (2000) 

showed that the majority of contrails in July occur in and near the cirriform anvil clouds 

resulting from deep convection.  Also in July, much of the Northeast sub-region and the 

eastern Midwest, have relatively high outbreak frequencies, with multiple grid cells 
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showing six or more occurrences total, and a majority of grid cells with five or more 

occurrences.  In contrast, most of the Great Plains extending westward to the Pacific 

Ocean did not have any contrail outbreaks during the July months of 2000-2002, although 

one sub-region comprising much of northern California and northern Nevada saw two 

total outbreaks.  In general, it can be said of July that although the absolute maximum of 

contrail outbreaks occurs in the central Appalachians, the mean latitude of outbreak 

occurrences is at its most northerly in this month.  This feature can be seen in the many 

grid cells of moderate frequencies in the Northeast and the relatively few in the 

Southeast, and is directly attributable to the northernmost mean position of the polar jet 

stream during the summer (DeGrand et al. 2000). 

The contrail outbreak map for October (2000-2002) shows a pattern broadly 

similar to that of the other transition-season mid-month, April.  However, there are 

differences of detail between these two months, the most notable being the relative 

absence of outbreaks in the western U.S. in October compared to April.  The states of 

Illinois, Indiana, and Ohio again comprise the sub-region of highest outbreak frequencies, 

with the absolute maximum located in eastern Indiana.  In this regard, a more minor 

difference between the distributions in October and April is that high outbreak 

frequencies do not extend as far east, with the region of relative maximum ending in 

eastern Ohio rather than in central Pennsylvania in October.  Overall, the mean position 

of the subtropical jet stream (STJ) reflects similar spatial climatologies of outbeaks in 

October as it does in April. 
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Figure 3-1a: January contrail outbreak occurrences at 1º by 1º resolution for 2000-2002. 

 

Figure 3-1b: April contrail outbreak occurrences at 1º by 1º resolution for 2000-2002. 
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Figure 3-1c: July contrail outbreak occurrences at 1º by 1º resolution for 2000-2002. 

 

Figure 3-1d: October contrail outbreak occurrences at 1º by 1º resolution for 2000-2002 
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Composite UT Conditions for Outbreak and Non-Outbreak Days   

This section presents the results of the composite analysis of NCEP-NCAR 

reanalysis UT data for the high-frequency sub-regions, by mid-season month.  According 

to previous studies, a higher and, therefore, colder tropopause is a favorable environment 

for contrail formation (Travis et al. 2006). Also favorable are an increased thickness (i.e., 

warming) between geopotential levels in the troposphere (resulting from ridging and 

subsidence of air), stronger upward vertical motion, and stronger westerly winds 

(Carleton et al. 2008).  Thus, synoptically, warm-cored high pressure and strong 

meridional gradients of vertical motion and UT humidity have been found to be 

associated with most contrail outbreaks, although these combinations show some 

dependence on sub-region within the U.S. (Carleton et al. 2008).  The following results 

verify these previous findings.   

For the Midwest sub-region in January (Figure 3-2a), there are small magnitude 

differences in 300 hPa temperature (T300) between the composite map of outbreak days 

and that of non-outbreak days.  The largest temperature difference is 1ºC in the far 

northwest corner of the sub-region.  In terms of the relative humidity (RH300), the 

magnitude differences are largest over Michigan and the Great Lakes region, with some 

areas having an average increase of 9 percent or more on composite outbreak days 

compared with non-outbreak days.  For omega (Figure 3-2b), there is a distinct 

concentric pattern of ascending motion over much of the sub-region on outbreak days, 

with a maximum located over northern Missouri.  The outbreak composite map of 300 

mb zonal wind has a much more meridional pattern of isolines contrasted with non-
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outbreak days, and these decrease in magnitude from east to west.  Collectively, these 

composites for the Midwest in January suggest a mean troposopheric ridge in the eastern 

part of the sub-region on outbreak days, when zonal winds are also strongest.  The west 

side of an upper-air ridge is a key area for warm air advection and positive vorticity 

advection, and therefore for upper-level divergence needed for the persistence of contrails 

in baroclinic conditions (e.g., DeGrand et al. 2000).   

Also in January, only for the South sub-region (Figure 3-3a), the composite map 

of T300 on contrail outbreak days reveals relatively small temperature differences. These 

are largest (greater than 1ºC) over the area encompassing South Carolina, Georgia, and 

eastern Alabama.  The composites signify cooler air in the UT on outbreak days in this 

area.  For RH300, both the composite map on outbreak days and the difference map 

(outbreak composite minus non-outbreak composite), show a distinct pattern reversal 

such that outbreak days have moister air over the Gulf of Mexico (particularly in the 

western Gulf) and drier air inland, while non-outbreak days have the moisture maximum 

located well inland, with drier air over the Gulf.  For UT omega on outbreak days (Figure 

3-3b), a meridional gradient of decreasing positive values (i.e., reduced subsidence) from 

east to west is evident, which is distinctly different from the pattern on non-outbreak 

days.  The map of zonal wind at 300 hPa shows stronger westerlies nearly everywhere in 

the sub-region on outbreak days, particularly over peninsular Florida.  Considered 

together, the UT composites suggest that outbreaks for the South sub-region in January 

are associated with the west side of an upper-level ridge.  The subsidence decreases and 

relative humidities increase (i.e., greater instability) on moving further westward.  

Moreover, contrail outbreaks show some association with the strong winds associated 
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with the STJ, especially over Florida.  The latter is consistent with the average location of 

the STJ in January, and with the synoptic climatology results for this mid-season month 

described in DeGrand et al. (2000). 

For the month of April in the Central sub-region (Figure 3-4a), large UT 

temperature differences between outbreak and non-outbreak days occur in the eastern and 

southeastern areas, amounting to 1.5ºC cooler on outbreak days.  The composite plot of 

RH300 on outbreak days shows a clear pattern of drier air in the south and moister air to 

the north, as well as stronger gradients than those appearing on the composite map of 

non-outbreak days.  For omega (Figure 3-4b), a strong difference is evident between 

outbreak and non-outbreak days: air is rising on non-outbreak days, and sinking on 

outbreak days.  This result seems contradictory to what would be expected for contrail 

persistence.  The composite maps of UT zonal wind depict substantially weaker 

westerlies across the region on outbreak days compared to non-outbreak days.  This result 

suggests either a weak total wind (i.e., vector wind) or considerable meridional (north-

south) flow in the UT when outbreaks are present, although the latter scenario is more 

likely due to its association with baroclinic activity.  Given the large RH gradients on 

outbreak days, that UT humidity increases northward, and that subsidence also increases 

northward, it seems likely that the Central sub-region experiences increased instability 

when a more northerly flow is present.  Such a pattern of UT moisture, vertical motion of 

air, and wind is indicative of the western side of a trough.  Indeed, both Changnon et al. 

(1981) and DeGrand et al. (2000) show that individual contrails can occur in and west of 

a trough.  The present results indicate that multiple occurrences of contrails (i.e., 

outbreaks) also occur in association with troughs, at least in the Central U.S. sub-region. 
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For the Pacific South sub-region in April (Figure 3-5a), UT temperatures are 

higher on outbreak days than non-outbreak days, particularly over the inland desert areas, 

with the northwestern portion of the sub-region showing an average increase of 1.8ºC and 

higher.  The outbreak composite of RH300 shows a greatly strengthened west-east 

gradient relative to that on non-outbreak days, comprising an average minimum of 26 

percent located in the east to a maximum of 53 percent in the west.  The composite 

patterns of omega (Figure 3-5b) also are strongly different between outbreak and non-

outbreak days for this sub-region: on outbreak days there is strong subsidence of air in 

eastern areas but strong ascendance in the northwest.  The composites of UT zonal wind 

for outbreak and non-outbreak days show broadly similar magnitudes and gradients; 

however, there is a clear pattern reversal on outbreak days, when magnitudes generally 

decrease to the southward.  A distinctive feature of the outbreak composite of UT zonal 

wind for the Pacific South sub-region in April is the “col” or “saddle point” pattern 

occurring over the western portion.  All four of the UT composites on outbreak days 

seem to imply weak stability, particularly as given by the dramatic increase in RH and 

upward vertical motion.  Furthermore, the reversal in the pattern of zonal wind strength 

between north and south on outbreak versus non-outbreak days suggests an upper-level 

high located to the east and an upper-level low to the westward, yielding a region of more 

meridional flow and enhanced upper-level divergence on outbreak days. 

In July, the U.S. sub-region of maximum contrail outbreak frequencies is the East.  

In that sub-region, the composite map of UT temperature (Figure 3-6a) shows generally 

small differences between outbreak and non-outbreak days, although the extreme 

northeastern portion sees an average decrease of 1.5ºC on outbreak days.  The composite 
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map of RH300 on outbreak days shows a distinct maximum of moisture located over 

eastern Tennessee, but drier air elsewhere, particularly off the coast of South Carolina 

and over Lake Erie.  The UT composite omega map for outbreak days (Figure 3-6b) 

shows a greater range of values across the region, and therefore a stronger gradient, 

contrasted with non-outbreak days (Figure 3-12b).  In general, positive values of UT 

omega (subsidence) occur in the northwest, with negative values (ascendance) in the 

southeast of the sub-region.  The composite map of UT zonal winds for outbreak days 

shows weaker westerlies in the far northwestern corner of the region, but stronger 

westerlies over the Atlantic, east of North Carolina’s Outer Banks.  These patterns may 

suggest that the mean center of the STJ lies to the north of the region during this month. 

In October, for the Midwest/Upper South sub-region (Figure 3-7a), the horizontal 

gradients of UT temperature are highly different between outbreak and non-outbreak 

days: weaker (stronger) on outbreak (non-outbreak) days, and with a north-south 

difference of about 5ºC (7.5ºC).  The RH300 on both the outbreak and non-outbreak 

composite plots have similar magnitudes but with different patterns; on outbreak days, 

moister air in the west and north and drier air elsewhere.  The composite map of UT 

omega on contrail outbreak days (Figure 3-7b) shows a much weaker spatial gradient 

than on non-outbreak days.  Moreover, the composite difference map (omega on outbreak 

days minus omega on non-outbreak days) indicates the greatest values over the 

Mississippi River region, comprising positive omega (subsiding motion) on outbreak 

days, but negative values (ascending motion) on non-outbreak days.  The composite map 

of zonal winds for the Midwest/Upper South in October shows substantially weaker 

westerlies on outbreak days contrasted with non-outbreak days, particularly over 
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Missouri, Illinois, Indiana, and western Kentucky.  Similar to what was observed in this 

sub-region in April, the greater subsidence rather than ascendance on outbreak composite 

days is contradictory to what is expected for contrail formation and persistence.  

However, as in April, the UT zonal winds are weaker on outbreak days than on non-

outbreak days.  This likely means that there is an upper-tropospheric high or ridge giving 

enhanced subsidence, which also explains the reduced westerlies.  This finding is 

consistent with what Carleton et al. (2008) found for the Midwest (on average for the 4 

mid-season months combined). 

 

 
Figure 3-2a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
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Figure 3-2b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 
Figure 3-3a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
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Figure 3-3b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 
 

 
Figure 3-4a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
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Figure 3-4b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 
 

 
Figure 3-5a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
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Figure 3-5b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 
Figure 3-6a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
 

Brent Yarnal
This caption is on the wrong page.
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Figure 3-6b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 
Figure 3-7a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 

Brent Yarnal
This caption is on the wrong page.



56 

 

 

 
Figure 3-7b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 
 

 

Figure 3-8a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
 

Brent Yarnal
This caption is ont ehe wrong page.
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Figure 3-8b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 

Figure 3-9a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
 

Brent Yarnal
Ditto.
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Figure 3-9b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 

Figure 3-10a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
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Figure 3-10b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 

Figure 3-11a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
 

Brent Yarnal
Ditto.
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Figure 3-11b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 
 

 

Figure 3-12a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 

Brent Yarnal
Ditto.
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Figure 3-12b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 

Figure 3-13a: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
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Figure 3-13b: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, 
m/s). 
 

 

Figure 3-14a: 2000-2002 difference maps of temperature (colored, Cº) and RH (black, 
%). 

Brent Yarnal
Ditto.
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Figure 3-14b: 2000-2002 difference maps omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 

Figure 3-15a: 2000-2002 difference maps of temperature (colored, Cº) and RH (black, 
%). 

Brent Yarnal
Ditto.
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Figure 3-15b: 2000-2002 difference maps omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 

Figure 3-16a: 2000-2002 difference maps of temperature (colored, Cº) and RH (black, %) 
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Figure 3-16b: 2000-2002 difference maps omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 

Figure 3-17a: 2000-2002 difference maps of temperature (colored, Cº) and RH (black, %) 
 

Brent Yarnal
Ditto.
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Figure 3-17b: 2000-2002 difference maps omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 

Figure 3-18a: 2000-2002 difference maps of temperature (colored, Cº) and RH (black, %) 

Brent Yarnal
Ditto.
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Figure 3-18b: 2000-2002 difference maps omega (colored, Pa/s) and zonal wind (black, 
m/s). 

 

Figure 3-19a: 2000-2002 difference maps of temperature (colored, Cº) and RH (black, %) 

Brent Yarnal
Ditto.



68 

 

 

Figure 3-19b: 2000-2002 difference maps omega (colored, Pa/s) and zonal wind (black, 
m/s). 
 

 

Table 3-1 summarizes the differences in UT variables in terms of map magnitude, 

pattern, or gradient, between composites of outbreak days (Figures 3-2 through 3-7) and 

non-outbreak days (Figures 3-8 through 3-13) in each of the six high-frequency regions. 

By visual comparison with each day’s average UT analysis, these criteria are used to 

determine the favorability of a sub-region in a given mid-season month to contrail 

outbreak occurrence.  
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Table 3-1: Primary UT variable differences of outbreak day composites with respect to 
non-outbreak day composites 
 
Midwest in January 

RH300 
 

     Omega(300) T300 U(300) 

Magnitude: 
-40ºC+ over the 
Great Lakes states, -
45ºC+ over 
Michigan 

 

Pattern: 
negative values 
(ascendance) 
centered over 
northern Missouri, 
Iowa, western IL 

Magnitude: 
-49ºC or greater 
over Minnesota and 
South Dakota 

 

Pattern: 
increasing eastward, 
gradients meridional 

 

 

South in January 

RH300 
 

      Omega(300) T300 U(300) 

Pattern: 
moister over Gulf 
of Mexico, drier to 
the north over land 

Pattern: 
decreasing positive 
values (subsidence) 
from east to west 

Magnitude: 
cooler in the 
northeast (-43.5ºC 
or lower) 

Magnitude: 
stronger over 
peninsular Florida 

 
 

Central in April 

RH300 
 

     Omega(300) T300 U(300) 

Pattern: 
drier in the south, 
moister in the north 

 

Pattern: 
stronger positive 
values (subsidence) 
everywhere 

Magnitude: 
-41.5ºC or greater 
everywhere 

 

Magnitude: 
less than 29 m/s 
everywhere 

 
 

Pacific South in April 

RH300 
 

     Omega(300) T300 U(300) 

Gradient: 
strong across 
Nevada and 
California, from low 
in the east to high in 
the west  

Pattern: 
very strong 
subsidence in the 
east, very strong 
ascendance in the 
northwest 

Magnitude: 
warmer over land (-
42.5ºC or greater) 

 

Pattern: 
decreasing 
southward 

 

Brent Yarnal
This part of the table spills onto the next page. Can’t do that.
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East in July 

RH300 
 

      Omega(300) T300 U(300) 

Pattern: 
moister over 
Tennessee, 
Kentucky, western 
North Carolina, 
western and central 
Virginia; drier 
elsewhere 

Gradient & Pattern: 
moderately strong 
gradient (0.06 
Pa/s+); more 
positive values in 
the northwest, more 
negative values in 
the southeast 

Magnitude: 
less than -36.5ºC in 
northeast from 
Maryland northward 

 

Magnitude: 
less than 13 m/s in 
northwestern 
Indiana, greater than 
11 m/s off the North 
Carolina Outer 
Banks 

 
 

Midwest/Upper South in October  

RH300 
 

       Omega(300) T300 U(300) 

Pattern: 
moister in the west 
and north, drier 
elsewhere 

 

Magnitude: 
positive values 
(subsidence) over 
AR, MOi, IL, Lake 
Michigan 

Gradient: 
weaker (difference 
of 5ºC or less) from 
north to south 

 

Magnitude: 
25 m/s or less over 
most of the region 

 

Statistical Analysis of Contrail Outbreak Retro-Prediction 

This section shows and explains the results of the statistical analyses performed to 

determine which of the four UT variables of interest (temperature, RH, omega, U wind) 

are most skillful at retro-predicting contrail outbreaks.  Statistical analyses were based on 

the resulting tables (Appendix B, Tables B1 through B6) that were created to compare the 

retro-predicted and actual outbreak dates in the 2000-2002 study period based on 

individual UT variable favorability.   
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Contingency tables 

 The 24 contingency tables created for each UT variable (4), for each of the six 

regions of interest, are shown in Tables 3-2a-f.  Also shown for each table are the 

marginal totals of “Yes” and “No” for both forecasts and observations.  The lower right 

corner of each table gives the sum of either the row or column marginal totals, which is 

the number of days in the dataset.  Tables 3-3a-f show the values of each of the four 

accuracy measures, as well as the B values (bias), for each of the four UT variables, 

within each of the six sub-regions of interest.  Please note that for variable T300 for the 

Pacific South sub-region in April, I present both a full (four-cell) contingency table, as 

well as a two-cell table, which combines the success categories (Hit, Correct Negative) 

into one cell, and the failure categories (Miss, False Alarm) into the other.  I created the 

latter table because many of the values in each of the four cells are fewer than 5 

occurrences, which violates the assumptions of the standard Chi-squared test. 
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January Midwest   
    
RH Predicted No Σ 
Occurrence 7 9 16 
No 27 50 77 
Σ 34 59 93 
    
Omega Predicted No Σ 
Occurrence 9 7 16 
No 21 56 77 
Σ 30 63 93 
    
T Predicted No Σ 
Occurrence 9 7 16 
No 24 53 77 
Σ 33 60 93 
    
U Wind Predicted No Σ 
Occurrence 1 15 16 
No 16 61 77 
Σ 17 76 93 

Table 3-2a: Contingency table for T, RH, Omega, U Wind for January Midwest 

 

January South   
    
RH Predicted No Σ 
Occurrence 12 13 25 
No 25 43 68 
Σ 37 56 93 
    
Omega Predicted No Σ 
Occurrence 11 14 25 
No 22 46 68 
Σ 33 60 93 
    
T Predicted No Σ 
Occurrence 12 13 25 
No 26 42 68 
Σ 38 55 93 
    
U Wind Predicted No Σ 
Occurrence 14 11 25 
No 28 40 68 
Σ 42 51 93 

Table 3-2b: Contingency table for T, RH, Omega, U Wind for January South 

Brent Yarnal
This table spills onto the next page. In fact, all of these tables do. You need to put them each on their own page. Each must be centered vertically. And each must be centered horizontally��––here and throughout the thesis.
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April Central   
    
RH Predicted No Σ 
Occurrence 15 14 29 
No 15 46 61 
Σ 30 60 90 
    
Omega Predicted No Σ 
Occurrence 13 16 29 
No 19 42 61 
Σ 32 58 90 
    
T Predicted No Σ 
Occurrence 20 9 29 
No 32 29 61 
Σ 52 38 90 
    
U Wind Predicted No Σ 
Occurrence 22 7 29 
No 36 25 61 
Σ 58 32 90 

Table 3-2c: Contingency table for T, RH, Omega, U Wind for April Central 

 

April Pacific South   
    
RH Predicted No Σ 
Occurrence 3 5 8 
No 21 61 82 
Σ 24 66 90 
    
Omega Predicted No Σ 
Occurrence 5 3 8 
No 10 72 82 
Σ 15 75 90 
    
T Predicted No Σ 
Occurrence 4 4 8 
No 18 64 82 
Σ 22 68 90 
    
U Wind Predicted No Σ 
Occurrence 3 5 8 
No 25 57 82 
Σ 28 62 90 

Table 3-2d: Contingency table for T, RH, Omega, U Wind for April Pacific South 
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July East    
    
RH Predicted No Σ 
Occurrence 11 13 24 
No 9 60 69 
Σ 20 73 93 
    
Omega Predicted No Σ 
Occurrence 8 16 24 
No 12 57 69 
Σ 20 73 93 
    
T Predicted No Σ 
Occurrence 19 5 24 
No 66 3 69 
Σ 85 8 93 
    
U Wind Predicted No Σ 
Occurrence 3 21 24 
No 10 59 69 
Σ 13 80 93 

Table 3-2e: Contingency table for T, RH, Omega, U Wind for July East 
 

October    
Midwest/Upper South   
    
RH Predicted No Σ 
Occurrence 13 14 27 
No 11 55 66 
Σ 24 69 93 
    
Omega Predicted No Σ 
Occurrence 10 17 27 
No 22 44 66 
Σ 32 61 93 
    
T Predicted No Σ 
Occurrence 11 16 27 
No 17 49 66 
Σ 28 65 93 
    
U Wind Predicted No Σ 
Occurrence 11 16 27 
No 21 45 66 
Σ 32 61 93 

Table 3-2f: Contingency table for T, RH, Omega, U Wind for October Midwest/U South
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January 
Midwest χ2 
RH 0.430833 
Omega 5.090341 
T 3.64019 
U Wind 1.872043 

Table 3-3a: Chi-squared scores for January Midwest 

 

January South χ2 
RH 0.963188 
Omega 0.850884 
T 0.640871 
U Wind 1.621869 

Table 3-3b: Chi-squared scores for January South 

 

April Central χ2 
RH 6.512154 
Omega 1.745907 
T 1.452569 
U Wind 2.434273 

Table 3-3c: Chi-squared scores for April Central 

 

April 
PacSo χ2 
RH 0.526954 
Omega 13.28049 
T 17 
U Wind 0.167226 

Table 3-3d: Chi-squared scores for April Pacific South 

 

July East χ2 
RH 11.34147 
Omega 2.680881 
T 6.155155 
U Wind 0.058805 

Table 3-3e: Chi-squared scores for July East 

Brent Yarnal
As noted above, Center all tables horizontally on the page with text centered, too.
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October 
MUS χ2 
RH 9.918378 
Omega 0.116462 
T 2.044214 
U Wind 0.675911 

Table 3-3f: Chi-squared scores for October Midwest/Upper South 

Chi-squared statistics and accuracy measures 

The Chi-squared statistics for each UT variable by sub-region are shown in Tables 

3-4a-f.  For the Midwest in January, the only map variable that is statistically significant 

is omega300  (χ2 = 5.09), indicating an association with the favorability of occurrence of 

contrail outbreaks in the 2000-2002 period.  Also in January, except for the South sub-

region, no variables individually are significantly associated with outbreak events.  For 

the Central sub-region in April, RH300 is the significant variable associated with contrail 

outbreaks (χ2 = 6.51).  Also in April, except for the Pacific South sub-region, omega300 

and T300 are both significantly associated with contrail outbreak occurrences ( χ2 values 

= 13.28 and 17.0, respectively).  For the East sub-region in July, RH300 is significantly 

associated with outbreaks (χ2 = 11.34), while temperature (χ2= 6.15) is less so.  For the 

Midwest/Upper South sub-region in October, RH300 is the only UT variable strongly 

associated with outbreak occurrences (χ2 = 9.91). 

 

 

 



77 

 

January Midwest     
 RH Omega T U Wind 
Predicted/Occurred 7 9 9 1 
Predicted/Not 27 21 24 16 
Not 
Predicted/Occurred 9 7 7 15 
Not/Not 50 56 53 61 
     
Hit Rate 0.612903 0.698925 0.666667 0.666667 
TS or CSI 0.162791 0.243243 0.225 0.03125 
POD 0.4375 0.5625 0.5625 0.0625 
FAR 0.794118 0.7 0.727273 0.941176 
     
Bias 2.125 1.875 2.0625 1.0625 
Table 3-4a: Accuracy measures and biases for January Midwest 

 

January South     
 RH Omega T U Wind 
Predicted/Occurred 12 11 12 14 
Predicted/Not 25 22 26 28 
Not 
Predicted/Occurred 13 14 13 11 
Not/Not 43 46 42 40 
     
Hit Rate 0.5914 0.6129 0.580645 0.580645 
TS or CSI 0.24 0.234043 0.235294 0.264151 
POD 0.48 0.44 0.48 0.56 
FAR 0.675676 0.666667 0.684211 0.666667 
     
Bias 1.48 1.32 1.52 1.68 

Table 3-4b: Accuracy measures and biases for January South 
 

April Central     
 RH Omega T U Wind 
Predicted/Occurred 15 13 20 22 
Predicted/Not 15 19 32 36 
Not 
Predicted/Occurred 14 16 9 7 
Not/Not 46 42 29 25 
     
Hit Rate 0.677778 0.6111 0.5444 0.5222 
TS or CSI 0.340909 0.270833 0.327869 0.338462 
POD 0.517241 0.448276 0.689655 0.758621 
FAR 0.5 0.59375 0.615385 0.62069 
     
Bias 1.034483 1.103448 1.793103 2 

Table 3-4c: Accuracy measures and biases for April Central 
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April Pacific South     
 RH Omega T U Wind 
Predicted/Occurred 3 5 4 3 
Predicted/Not 21 10 18 25 
Not 
Predicted/Occurred 5 3 4 5 
Not/Not 61 72 64 57 
     
Hit Rate 0.711111 0.866667 0.755556 0.666667 
TS or CSI 0.103448 0.277778 0.153846 0.090909 
POD 0.375 0.625 0.5 0.375 
FAR 0.875 0.666667 0.818182 0.892857 
     
Bias 3 1.875 2.75 3.5 

Table 3-4d: Accuracy measures and biases for April Pacific South 
 

July East     
 RH Omega T U Wind 
Predicted/Occurred 11 8 19 3 
Predicted/Not 9 12 66 10 
Not 
Predicted/Occurred 13 16 5 21 
Not/Not 60 57 3 59 
     
Hit Rate 0.763441 0.698925 0.236559 0.666667 
TS or CSI 0.333333 0.222222 0.211111 0.088235 
POD 0.458333 0.333333 0.791667 0.125 
FAR 0.45 0.6 0.776471 0.769231 
     
Bias 0.833333 0.833333 3.541667 0.541667 

Table 3-4e: Accuracy measures and biases for July East 
 

October Midwest/Upper South    
 RH Omega T U Wind 
Predicted/Occurred 13 10 11 11 
Predicted/Not 11 22 17 21 
Not 
Predicted/Occurred 14 17 16 16 
Not/Not 55 44 49 45 
     
Hit Rate 0.731183 0.580645 0.645161 0.602151 
TS or CSI 0.342105 0.204082 0.25 0.229167 
POD 0.481481 0.37037 0.407407 0.407407 
FAR 0.458333 0.6875 0.607143 0.65625 
     
Bias 0.888889 1.185185 1.037037 1.185185 

Table 3-4f: Accuracy measures and biases for October Midwest/Upper South 
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To evaluate the success of which UT variables were deemed favorable 

(unfavorable) in relation to contrail outbreak occurrences (non-occurrences), the accuracy 

measures of the UT variables found to be significant by the Chi-squared test are 

examined.  This involves comparing the statistical values of the H, CSI, POD, and FAR 

measures of skill for each of the six sub-regions of interest, and interpreting them for the 

significant UT variables associated with contrail outbreaks in the 2000-2002 study 

period.  This allows for us to see the specific criteria which contributed to a UT variable’s 

overall success, in terms of how it performed within each of the four contingency 

categories (Hit, Miss, False Alarm, Correct Negative). 

For the Midwest sub-region in January, when the omega300 map pattern  was 

found to be the significant variable, the Hits (H) value is 0.70, meaning that 70 percent of 

the days in the dataset consist of either Hits (i.e., Yes for retro-prediction, Yes for 

observation) or Correct Negatives (both No).  However, the critical success index (CSI) 

is considerably lower (0.24), indicating that most of the success in H comes from 

correctly not predicting an outbreak, rather than in correctly predicting one.  The 

probability of detection (POD) value (0.56) indicates that just over half the time that 

outbreaks occurred in January, a “Yes” prediction was correctly made on the basis of the 

omega300 pattern..  However, the False Alarm Rate (FAR) of 0.7 means that 70 percent 

of the time that an outbreak was predicted using omega300, it did not occur.  Overall 

however, the ability of omega300 to retro-predict contrail outbreaks for this sub-region in 

this month seems to be reasonably good, due to an overall high H value and a POD above 

0.5. 
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The South sub-region in January, for which the Chi-squared test determined that 

no single UT variable is significantly associated with contrail outbreaks, is not evaluated 

using the 4 skill measures.  Instead, this relationship of UT variables to outbreaks in this 

sub-region/month is examined further using single-variable binary logistic regression and 

logit modeling for multi-variable interaction statistics (next section). 

For the Central sub-region in April, when the RH300 map pattern is the 

significant UT variable associated with contrail outbreak occurrences, the corresponding 

H value is 0.67, indicating that an outbreak occurrence or non-occurrence was correctly 

predicted two-thirds of the time.  However, similar to the Midwest in January, the lower 

CSI (= 0.34) means that most of these correct retro-predictions were for outbreak non-

occurrences.  The POD value of 0.51 indicates that RH300 predicted “Yes” for an 

outbreak on only about half of the actual outbreak days.  However, the FAR (0.5) means 

that only half the time an outbreak was predicted it did not occur.  The ability of RH300 

to retro-predict contrail outbreaks for this sub-region in this month seems to be fair, given 

a relatively good POD and Hit Rate, and an average FAR. 

For the Pacific South region in April, both omega300 and T300 were determined 

to be significantly associated with contrail outbreak occurrences in the 2000-2002 study 

period.  However, because I determined that T300 has a very high bias (B) value (= 2.75), 

I do not be consider it to be a suitable UT variable for outbreak retro-prediction; at least, 

on its own.  For the omega300 map pattern, the H value of 0.87 is the highest of the four 

UT variables across all sub-regions studied by mid-season months.  Thus, for a 

significant majority of days in April, an outbreak occurrence or non-occurrence in the 

Pacific South was correctly retro-predicted on the basis of the omega300 map pattern.  
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However, this impressive result is tempered by the corresponding CSI value (0.27), 

which indicates that most of these correct retro-predictions were for non-occurrences 

rather than occurrences of outbreaks.  The POD value (= 0.625) is moderately high, and 

means that over 60 percent of the time when an outbreak occurred, it was also retro-

predicted on the basis of omega300.  However, the FAR value of 0.67 indicates that two-

thirds of the “Yes” retro-predictions of outbreaks yielded a non-occurrence, meaning that 

omega300 was over-predicted.  Omega300 seems to be a good UT variable for retro-

predicting contrail outbreaks for this sub-region in this month, despite a high FAR. 

For the East sub-region in July, the Chi-squared test indicated that RH300 and 

T300 are significantly associated with contrail outbreaks in the 2000-2002 study period.  

The H value for the RH300 map pattern is 0.76, meaning that over three-quarters of the 

retro-predictions (either Yes or No) were successful.  However, the CSI value of 0.33 

means that RH300 more correctly retro-predicted outbreak non-occurrences than 

occurrences.  The POD (0.46) is moderately low, indicating that fewer than half of the 

outbreak occurrences were predicted as “Yes.”  However, the FAR value of 0.45 means 

that RH300 performed quite well in not falsely retro-predicting a contrail outbreak.  

RH300 should ideally be a successful variable for retro-prediction for this month and 

sub-region, given the high Hit Rate and low FAR. 

Although the T300 magnitude was significantly associated with contrail outbreaks 

in the East during July 2000-2002, the H value (0.24) is very low, indicating that three-

quarters of the time neither outbreaks nor non-outbreaks were correctly retro-predicted.  

Also, the B value of 3.54 means that contrail outbreaks were over-predicted on the basis 

of the T300 magnitude.  Given this poor performance, UT temperature is not a useful 
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individual retro-predictor of contrail outbreaks for the East region in July, and I do not 

consider it further. 

For the Midwest/Upper South region in October, when the RH300 map is 

significantly associated with contrail outbreak occurrences in 2000-2002, the 

corresponding H value (0.73) indicates a 73 percent success rate for both outbreak and 

non-outbreak retro-predictions.  However, the CSI value (0.34) means that most of these 

correct retro-predictions were for outbreak non-occurrences rather than for occurrences.  

The POD value (0.48) indicates that slightly fewer than half of the outbreak occurrences 

actually were associated with a “Yes” retro-prediction.  The FAR measure performed 

reasonably well (= 0.45), meaning that less than half the time an outbreak was retro-

predicted when did one not occur. With a high H value and relatively low FAR, RH300 

should be a good retro-predictor for outbreaks during this month for this sub-region. 

Binary logistic regression 

The binary logistic regression analysis was performed to provide another set of 

measures (in addition to those from the contingency analyses) for retro-predicting 

outbreaks.  Similarities in the results of this analysis (Tables 3-5a-f) to contingency help 

to solidify which UT variables should be used for forecasting outbreaks within each of 

the six high-frequency sub-regions.  For the Midwest sub-region in January, the table 

indicates that only the omega300 map pattern has a p-value lower than the 5 percent test 

level (p = 0.0076).  This finding indicates that the relation between prediction of this 

variable and actual outbreak occurrence is substantially better than random chance.  For 
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the South sub-region in January, there are no significant p-values for the single variable 

logistic regression, indicating that no UT variables, when used for prediction, perform 

better than chance distribution.  For the Central sub-region in April, the p-value for the 

RH300 map pattern is the significant UT variable (p = 0.049).  This indicates that the use 

of RH in prediction is slightly better than random chance, as it is lower than 0.05.   For 

the Pacific South sub-region in April, the omega300 map pattern is the significant 

variable (p = 0.0070).  As this is significantly lower than the test level of 0.05, omega 

appears to be a good retro-predictor for outbreaks.  The East sub-region in July has two 

significant UT variables according to their p-values: RH300 (p = 0.0044), and T300 (p = 

0.0334).  These results indicate that they are both ideal for retro-prediction of contrail 

outbreaks.  Finally, for the Midwest/Upper South sub-region in October, RH300 is the 

significant UT variable (p-value  = 0.0050). This is a value much lower than the test 

level, and is therefore a good variable for retro-prediction of outbreaks, at least as 

determined from the events in 2000-2002.    
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Table 3-5a: January Midwest SAS LOGISTIC output, single-variable 

 

 

Table 3-5b: January South SAS LOGISTIC output, single-variable 
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Table 3-5c: April Central SAS LOGISTIC output, single-variable 

 

 

Table 3-5d: April Pacific South SAS LOGISTIC output, single-variable 



86 

 

 

Table 3-5e: July East SAS LOGISTIC output, single-variable 

 

 

Table 3-5f: October Midwest/U South SAS LOGISTIC output, single variable 
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The Chi-squared statistics calculated from the contingency tables (previous 

section) and the p-values generated by running the favorability data in binary form 

through the LOGISTIC procedure give identical results as to the significant UT variables, 

associating contrail outbreak favorability with actual occurrences in the study period.  

These results confirm that the composite maps of those UT variables found to be 

significant by region and mid-season month can reasonably be compared to a daily mean 

UT map when retro-predicting contrail outbreaks using the simple visual map pattern 

technique that I propose.  Once again, these variables and map criteria are: omega300 

map pattern for the Midwest sub-region in January; RH300 map pattern for the Central 

sub-region in April; omega300 map pattern for the Pacific South sub-region in April; the 

RH300 map pattern and T300 gradient for the East sub-region in July; and RH300 map 

pattern for the Midwest/Upper South sub-region in October.  The fact that RH300 and 

omega300 are the dominant UT variables associated with contrails in the six sub-regions 

of highest outbreak frequency indicates the dependence of moisture on the vertical 

motion of air (e.g., Carleton et al. 2008), with moistening in the UT typically 

accompanying air that is rising.     

Two-way UT variable interactions   

A binary logistic regression with two-way interactions of UT variables was 

performed in order to see if combinations of two variables, as opposed to single UT 

variables alone, were successful in predicting outbreak occurrences.  The results of this 

analysis are shown in Tables 3-6a-f.  For the South sub-region in January (Table 3-6b), 
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the most noteworthy interaction term is UT Omega*T (p-value  = 0.0552).  This value is 

considered significant, even though slightly above 0.05, because test levels can be 

expected to increase when additional terms are added to the model.  Accordingly, UT 

omega and temperature will be used in combination for the verification study for mid-

season months of 2008 and 2009 (Chapter 4).  Among the remaining five regions and 

mid-season months, two more interaction terms are determined to be significant.  For the 

East sub-region in July (Table 3-6e), RH*T is significant (p-value  = 0.0484).  However, 

recall from the analysis of single variable interactions that RH and temperature are 

significant individually, and therefore, the favorability of either mapped variable (RH300 

or T300) should adequately retro-predict a contrail outbreak for a given day.  The other 

significant interaction term (Table 3-6f) occurs for T*UWind in the Midwest/Upper 

South sub-region in October (p < 0.0174).  Because the only UT significant variable in 

the single-variable analysis for this region and mid-season month was RH, I will use 

either (1) RH only or (2) UT temperature and zonal wind in combination for the outbreak 

verification study. 
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Table 3-6a: January Midwest SAS LOGISTIC output, two-way interaction 

 

Table 3-6b: January South SAS LOGISTIC output, two-way interaction 
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Table 3-6c: April Central SAS LOGISTIC output, two-way interaction 

 

Table 3-6d: April Pacific South SAS LOGISTIC output, two-way interaction 
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Table 3-6e: July East SAS LOGISTIC output, two-way interaction 

 

Table 3-6f: October Midwest/U South SAS LOGISTIC output, two-way interaction 
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Summary 

Using contingency Chi-squared tests, four measures of statistical skill, and binary 

logistic regression for both single variable and two-way variable interactions, I 

determined the mapped UT variables (out of temperature, RH, omega, and zonal wind) 

and their combinations that are most closely associated with retro-predicted contrail 

outbreaks in the high-frequency sub-regions for mid-season months of 2000-2002.  These 

variables and their combinations are as follows: for the Midwest sub-region in January, 

omega300 map pattern; for the South sub-region in January, both omega300 map pattern 

and T300 magnitude; for the Central sub-region in April, RH300 map pattern; for the 

Pacific South sub-region in April, omega300 map pattern; for the East sub-region in July, 

either RH300 map pattern or T300 magnitude; and for the Midwest/Upper South sub-

region in October, only RH300 map pattern or the combination of T300 magnitude and 

zonal wind magnitude.  Accordingly, these variables and variable combinations are used 

in the retro-prediction verification study for mid-season months of 2008 and 2009 

undertaken in the next chapter. 

In general, the results of this chapter yielded the following:  

 

1. RH300 and omega300 are most frequently associated with contrail 

outbreaks in the high-frequency sub-regions because they are inter-

related variables.  Greater UT moisture—as given by the higher values 

of relative humidity––is required for persisting contrails and outbreaks 
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(e.g., Carleton et al. 2008), and this enhanced moisture content is most 

likely to occur in areas where air is rising (negative omega). 

 

2. Chi-squared tests and the binary logit model give similar results as do 

those UT variables most closely associated with contrail outbreaks (by 

sub-region and mid-season month), indicating a robustness to the 

results and increasing the confidence with which they can be used in 

the verification study for 2008-09 (Chapter 4). 

 

3. The skill score results suggest that the simple map-based interpretation 

method of retro-predicting contrail outbreaks––indicated by the criteria 

of variable magnitude, pattern, or horizontal gradient on the composite 

analyses—is moderately successful.  The April regions (Central and 

Pacific South) seemed to have the most success when retro-predicting 

outbreaks in terms of composite similarity, while the South region in 

January performed the least well with this method.  A simpler method 

that is relatively quick to use is preferable to one that is complex or 

time-consuming to use and, therefore, is the one more likely to be 

adopted for use in forward prediction of contrail outbreaks in real time. 
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Chapter 4 
 

 Retro-Prediction of Contrail Outbreaks for 2008 and 2009 Mid-Season 
Months  

In this chapter, I report and discuss the results of the retro-prediction procedure 

for 2008 and 2009.  This retro-prediction used the UT variables, individually or in 

combination, that were found to be statistically significant when retro-predicting contrail 

outbreaks for the 2000-2002 mid-season months, applied to the same high-frequency 

regions for July and October 2008 and January and April 2009.  I also visualize and 

discuss some of the relations between contrail outbreak frequency, duration, and size, as 

derived from the analysis of AVHRR images for these months.   

Retro-prediction results 

 As shown in Chapter 3, the significant variables by region resulting from the 

statistical analysis of the 2000-2002 datasets are: either RH or temperature for the East in 

July; only RH or the combination of temperature and zonal wind for the Midwest/Upper 

South in October; omega300 for the Midwest in January; both omega and temperature for 

the South in January; and RH for the Central U.S. in April and omega300 for the Pacific 

South in April.  As described in Chapter 2, the retro-prediction process was completed for 

each of the six aforementioned regions in April and January 2009 and October and July 

2008.  Retro-predictions for contrail outbreaks were made based on combinations of UT 

variables found to be statistically significant.  Tables 4-1a-f show the resulting 

comparisons of retro-predictions to actual outbreak occurrences.  Cells in yellow 
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represent days for which one or more outbreaks were predicted.  Cells in blue represent 

days on which outbreaks actually occurred.  Green cells represent days for which there 

was a retro-prediction and an observation.  Un-colored cells represent days for which 

there was neither an outbreak retro-prediction nor an observation.  Therefore, as in the 

analysis for 2000-2002, the latter two categories indicate successful retro-prediction in 

that a contrail was successfully predicted or successfully not predicted. 

 

2008 RH T 
1   X 
2   X 
3   X 
4   X 
5 X X 
6 X   
7   
8   
9 X   

10     
11 X   
12 X   
13 X   
14     
15   X 
16   
17     
18     
19   
20   
21 X   
22   
23 X   
24     
25 X   
26     
27   
28   X 
29   X 
30     
31   

Table 4-1a: Retro-prediction table for East sub-region in July 2008 
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2008 RH  T UWind 
1    X 
2 X   X X 
3 X       
4     
5 X       
6 X   X   
7     X X 
8     X X 
9   X  

10 X   X   
11    X 
12 X     X 
13       X 
14   X  
15   X  
16         
17         
18     
19 X     X 
20         
21         
22 X       
23     
24     
25     
26   X  
27 X       
28 X     X 
29         
30     X X 
31 X   X X 

Table 4-1b:  Retro-prediction table for Midwest/Upper South sub-regions in October 
2008 
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2009 RH 
1   
2   
3  
4 X 
5 X 
6 X 
7   
8  
9  

10  
11 X 
12  
13 X 
14  
15   
16  
17  
18   
19  
20  
21  
22  
23  
24  
25 X 
26 X 
27   
28   
29  
30  

Table 4-1c:  Retro-prediction table for Central sub-region in April 2009 
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2009 Omega 
1  
2  
3  
4   
5  
6  
7 X 
8  
9 X 

10  
11   
12  
13   
14  
15  
16  
17  
18  
19   
20  
21  
22  
23  
24 X 
25  
26  
27   
28  
29  
30  

Table 4-1d:  Retro-prediction table for Pacific South sub-region in April 2009 
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2009 Omega 
1 X 
2  
3 X 
4 X 
5  
6  
7  
8  
9  

10 X 
11  
12   
13  
14  
15  
16  
17 X 
18  
19  
20  
21  
22   
23  
24  
25 X 
26 X 
27 X 
28  
29  
30  
31  

Table 4-1e: Retro-prediction table for Midwest sub-region in January 2009 
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2009 Omega T 
1   X 
2  X 
3   
4     
5 X   
6   
7   
8     
9 X  

10     
11     
12   
13     
14  X 
15   X 
16  X 
17 X X 
18   X 
19   X 
20  X 
21 X X 
22  X 
23 X X 
24   
25   
26     
27     
28     
29     
30   
31 X X 

Table 4-1f:  Retro-prediction table for South sub-region in January 2009 

 

 The verification study to retro-predict contrail outbreaks for the East sub-region in 

July 2008 (Table 4-2a) showed modest success.  Recall that the UT map criteria I used 

for this month and sub-region were either a favorable pattern of RH300, or favorable 

magnitudes of T300.  The combined Hit Rate (Hit + Correct Negative) for the East sub-

region in July 2008 was 0.51, meaning that I only correctly retro-predicted half of the 

days having outbreaks.  The number of Hits was reasonably good, with eight days having 
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“Yes” retro-prediction and “Yes” occurrences of outbreaks.  However, the CSI of 0.34 

indicates that only about one of every three “Yes” occurrences corresponded to a “Yes” 

retro-prediction on those days.  The POD measure performed reasonably well (= 0.57), 

indicating that slightly over half of the days on which outbreaks occurred I correctly 

retro-predicted.  In contrast, there were a fairly high number of days (9) on which False 

Alarms occurred (FAR = 0.52).  Like the Midwest/Upper South region in October 2008, 

the verification for this month was fair, with no very good accuracy measures. 

The retro-prediction of contrail outbreaks for the Midwest/Upper South sub-

region in October 2008 (Table 4-2b) had limited success on the basis of determining 

favorability using RH300 map pattern or the combined favorability of T300 gradient and 

U(300) magnitude. I correctly retro-predicted outbreaks for six days of the month; 

however, there were just as many Misses as Hits, with 6 days having a “No” retro-

prediction but a “Yes” occurrence.  In addition, there were more days (8) having False 

Alarms––a “Yes” retro-prediction of an outbreak but a “No” occurrence––giving this 

month and sub-region a FAR = 0.57.  The CSI of 0.3 indicates that only 30 percent of the 

“Yes” retro-predictions correctly correspond to the “Yes” observations.  The POD of 0.5 

means that I correctly retro-predicted exactly half of the days on which outbreaks 

occurred.  Combining the correct forecasts (Hit + Correct Negative), the Hit rate for this 

sub-region in October 2008 was 0.54, meaning that retro-predictions were successful on 

just over half the days in the month.  The overall verification for this month was only fair, 

as none of the accuracy measure scores ranged above good. 

 The retro-prediction of contrail outbreaks undertaken for the Midwest sub-region 

in January 2009 (Table 4-2c), which used the map pattern of omega300, resulted in 
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moderate success.  Three days were verified as Hits, meaning they had both “Yes” retro-

predictions and “Yes” observations.  The calculated CSI was 0.30, meaning that only 30 

percent of the total “Yes” retro-predictions and “Yes” observations occurred on the same 

day––a poor result.  However, the POD value was reasonably good, at 0.6, meaning that 

more often than not, contrail outbreaks were retro-predicted correctly for the days on 

which they occurred.  Because a greater number of “Yes” retro-predictions yielded “No” 

observations than “Yes” observations, the FAR for this sub-region in January 2009 was 

somewhat high at 0.625.  However, the relatively high number of days with Correct 

Negatives (“No” retro-prediction of contrail outbreak verified as “No” observation of an 

outbreak) helped to bring the Hit (success) rate to a respectable 0.77.   Overall, the 

verification for this month is good, given a high Hit Rate and relatively high POD.  

The retro-prediction of contrail outbreaks for the South sub-region in January 

2009 (Table 4-2d) was unsuccessful in comparison to those undertaken for the July 2008, 

October 2008, and April 2009 mid-season months and associated sub-regions of high 

outbreak frequency.  Recall that the UT map-based criterion for outbreak retro-prediction 

in this sub-region is the omega300 pattern in combination with the magnitude of T300 

(both favorable).  Using this criterion, I deemed only four days to be favorable for 

contrail outbreaks in the South during January 2009; however, the satellite image 

verification showed 15 days with outbreaks.  Furthermore, only one day (January 23) had 

both a “Yes” retro-prediction and “Yes” observation.  As a result, the CSI––indicating 

how well the “Yes” retro-predictions correspond to the “Yes” observations––is extremely 

poor, at 0.055.  The POD, which measures the accuracy of retro-prediction for the day 

when the event is observed, was also very low, at 0.067.  Interestingly, because three out 
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of four days on which “Yes” retro-predictions were made actually saw outbreaks, the 

FAR was high at 0.75.  In contrast, because 13 days in the month had successful retro-

predictions of non-occurrences of contrail outbreaks (Correct Negative), the Hit rate was 

somewhat poor, at 0.45.  The verification for this month was poor overall. 

The retro-prediction of contrail outbreaks for the Central sub-region in April 2009 

(Table 4-2e) using RH300 map pattern showed reasonable success.  The Hit Rate (H) 

value of 0.7 means that 70 percent of the time the retro-prediction for the presence or 

absence of contrail outbreaks was correct.  Five of the seven days for which outbreaks 

were retro-predicted had a verifying contrail outbreak on the satellite imagery; therefore, 

the FAR score was very good, at 0.28.  Of the days for which outbreaks occurred but 

were not predicted, seven days observed outbreaks in the sub-region while the remaining 

16 did not.  The CSI for this sub- region in April 2009 was 0.36, meaning that over one of 

every three “Yes” retro-predictions corresponded to a “Yes” observation.  In addition, the 

POD—the prediction success measured only in terms of days for which the forecast event 

was observed––was 0.41.  Overall, the verification for this month and sub-region is good. 

The retro-prediction undertaken for the Pacific South region in April 2009 using 

omega300 map pattern (Table 4-2f) also showed reasonable success according to the skill 

score statistics.  The hit rate value of 0.8 means that 80 percent of the time the retro-

prediction of contrail outbreak presence or absence was correct.  Of the three days for 

which “Yes” retro-predictions were made, two outbreaks occurred (April 7, April 9), 

giving a fairly good FAR (= 0.33).  However, there were five days for which contrail 

outbreaks were observed but not retro-predicted.  As a result, the CSI, which measures 

the correspondence between “Yes” retro-predictions and “Yes” observations, was low 
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(0.25), as was the POD, which measures the fraction of successful retro-predictions for 

“Yes” observation days (0.28).  Conversely, there were 22 days for which outbreaks were 

correctly not retro-predicted (i.e., Correct Negative).  Thus, the verification for this 

month and sub-region is mixed, but reasonably good overall given the high Hit Rate and 

FAR. 

 Forecast No 
Occurrence 8 6 
No 9 8 
   
CSI 0.347826  
POD 0.571429  
FAR 0.529412  
   
Hit Rate 0.516129  

Table 4-2a: Contingency table and accuracy measures for the East sub-region in July 
2008 

 

 Forecast No 
Occurrence 6 6 
No 8 11 
   
CSI 0.3  
POD 0.5  
FAR 0.571429  
   
Hit Rate 0.548387  

Table 4-2b: Contingency table and accuracy measures for Midwest/Upper South region 
in October 2008 

 

 Forecast No 
Occurrence 3 2 
No 5 21 
   
CSI 0.3  
POD 0.6  
FAR 0.625  
   
Hit Rate 0.774194  

Table 4-2c: Contingency table and accuracy measures for Midwest sub-region in January 
2009 

Brent Yarnal
As before, you can’t have tables running from one page to the next, unless it is a single, giant table. And then, you have to find natural breaks.
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 Forecast No 
Occurrence 1 14 
No 3 13 
   
CSI 0.055556  
POD 0.066667  
FAR 0.75  
   
Hit Rate 0.451613  

Table 4-2d: Contingency table and accuracy measures for South sub-region in January 
2009 

 

 Forecast No 
Occurrence 5 7 
No 2 16 
   
CSI 0.3571429  
POD 0.4166667  
FAR 0.2857143  
   
Hit Rate 0.7  

Table 4-2e: Contingency table and accuracy measures for Central sub-region in April 
2009 

 

 Forecast No 
Occurrence 2 5 
No 1 22 
   
CSI 0.25  
POD 0.285714  
FAR 0.333333  
   
Hit Rate 0.8  

Table 4-2f: Contingency table and accuracy measures for Pacific South sub-region in 
April 2009 
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Addition of non-significant UT variables 

 Given the above mixed retro-prediction results of the 2008 and 2009 verification 

study, I investigated which additional (not statistically significant) UT variables would 

have successfully detected contrail outbreaks on days for which they occurred but were 

not retro-predicted.   For these additional analyses, I downloaded the NCEP/NCAR 

reanalysis data from the CDC website, imported them into GrADS, and viewed each on a 

day-to-day basis within the month of concern, similar to the way I interpreted the maps of 

statistically significant variables.  The results are shown in Appendix C. 

 The East sub-region in July 2008 does not detect any additional outbreak 

occurrences using U300.  However, the addition of omega300 includes four more 

outbreaks that were not accounted for by the RH300-or-T300 criteria.  Nonetheless, 

because omega300 favorability adds more to the number of False Alarms than it does to 

the number of Hits, the retro-prediction skill is significantly decreased for this region and 

month if omega is incorporated into the retro-prediction criteria.  “Yes” retro-predictions 

would be made for 23 of the 31 days in the month. 

 For the Midwest/Upper South sub-region in October 2008, three of the four UT 

variables analyzed in this study are used, as the criteria for the retro-prediction of 

outbreaks on any given day were either only the favorability of RH300 or the 

combination of T300 and U300 favorability.  Neither changing the criteria to RH, T, or U 

Wind, nor to all three simultaneously, improves the retro-prediction.  By adding 

omega300, only two more of the missed outbreaks (“no” retro-prediction and “yes” 
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occurrence) were detected.  This finding does not merit the addition of omega to increase 

retro-prediction success. 

 For the Midwest sub-region in January 2009, T300, U300, and RH300 all showed 

little success in detecting outbreaks that were not associated with omega favorability.  

Worth noting, however, is that omega300 and RH300 had similar patterns of favorability 

throughout the month, meaning that, on most days, either both would be present 

simultaneously or neither would be present.  We can recall that the criteria for the UT 

variables’ favorability, based on the composites of outbreak days for 2000-2002, were 

relatively high values of RH and negative values of omega (ascendance) over the region.  

Therefore, the occurrence of these two phenomena together agree with the properties of 

synoptic-scale dynamics––that rising air is associated with upper-level divergence and 

condensation, and therefore a moistening of the UT.  

 Retro-prediction of contrail outbreaks for the South sub-region in January 2009 

can be improved not by using the same two variables of significance used in the retro-

prediction simultaneously, but by using them interchangeably (i.e., either/or).  A 

contingency table was created that accounted for using either omega300 or T300 in 

outbreak retro-prediction (Table 4-3a), and success measures were calculated based on 

this table.  Compared to the contingency table requiring both variables to be 

simultaneously favorable for retro-prediction, although still not as successful as in other 

regions, the CSI and POD improved drastically, at 0.25 and 0.4 respectively.  This 

finding means that there is a one in four correspondence rate between “yes” retro-

predictions and “yes” occurrences, and a 40 percent retro-prediction success rate among 

the days for which outbreaks did occur.  Although the FAR was improved as well, to 0.6, 
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the increase in the number of False Alarm days took away from the number of Correct 

Negatives, thereby leading to a reduced Hit Rate (Hit + Correct Negative) of 0.42.  The 

addition of RH300 and U300 do not aid significantly in the detection of more outbreak 

occurrences. 

 For the Central sub-region in April 2009, when omega300 is added to RH300––

the only other UT variable found to be statistically significant in the 2000-2002 base 

period––the result was only slightly improved compared to RH300 alone.  Changing the 

criteria for retro-prediction (to increase the chance of detection) to either favorability of 

RH300 or favorability of omega300 added two more days of Hits (“Yes” retro-prediction 

and “Yes” observation) to the month, but also added two more False Alarm days (“Yes” 

retro-prediction and “No” observation, FAR = 0.36).  The resulting contingency table 

(Table 4-3b) shows that the CSI, which measures the correspondence between “Yes” 

retro-predictions and “Yes” observations, increased to 0.44 (0.36 for RH only).  The 

POD, which measures successful retro-predictions only on those days on which outbreaks 

occurred, also improved to 0.58 (0.42 for RH only).  The Hit Rate, or ratio of correct 

retro-predictions, remained the same, at 0.7.  

 For the Pacific South sub-region in April 2009, the addition of RH300 to 

omega300 aids significantly in the improvement of outbreak retro-prediction in this 

region.  After having added the RH favorability column in the table, a contingency table 

(Table 4-3c) was created for which the criteria for retro-predicting “yes” for an outbreak 

on any particular day were either the favorability of omega or the favorability of RH.  A 

series of success measures were computed based on this contingency table.  All seven of 

the days on which outbreaks occurred had “yes” predictions, yielding a POD perfect 
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score of 1.  The calculated CSI was 0.5, meaning that there was a 50 percent 

correspondence rate of “yes” retro-predictions to “yes” observations, reflecting the fact 

that there were twice as many “yes” retro-predictions as there were occurrences, given 

the perfect POD.  Thus, the FAR was also 0.5, an improvement from the previous (omega 

only) FAR of 0.33.  Although the hit rate was slightly reduced, to 0.77, the addition of 

RH to omega vastly improved the detection of outbreaks when they occurred. 

 
 Forecast No 
Occurrence 6 9 
No 9 7 
   
CSI 0.25  
POD 0.4  
FAR 0.6  
   
Hit Rate 0.419355  

Table 4-3a: Contingency table and success measures for South sub-region in January 
2009, using either/or instead of both omega and T together 

 Forecast No 
Occurrence 7 5 
No 4 14 
   
CSI 0.4375  
POD 0.5833333  
FAR 0.3636364  
   
Hit Rate 0.7  

Table 4-3b: Contingency table and accuracy measures for Central sub-region in April 
2009, with non-significant UT variables added 

 
 Forecast No 
Occurrence 7 0 
No 7 16 
   
CSI 0.5  
POD 1  
FAR 0.5  
   
Hit Rate 0.766667  

Table 4-3c: Contingency table and accuracy measures for Pacific South sub-region in 
April 2009, with non-significant UT variables added 
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Contrail Duration, Size, and Frequency Statistics for 2008 and 2009 Mid-season 
Months 

 

 In addition to verifying the contrail outbreak retro-prediction analysis for mid-

season months of 2008 and 2009, satellite-based image interpretation permits me to 

comment upon some basic characteristics of contrail outbreaks in the six high-frequency 

sub-regions of the U.S.  Determining outbreak attributes such as duration and size 

requires a high temporal resolution of images, which was not available in the 2000-2002 

base dataset of contrail outbreaks.  Moreover, these outbreak attributes have not 

previously been presented for the U.S., although such statistics for contrails (i.e., whether 

single or comprising larger outbreaks) are available for the trans-Atlantic flight corridors 

(Bakan et al. 1994). 

 Figures 4-1 through 4-6 show the relations between outbreak duration and 

outbreak frequency.  Four duration classes are indicated according to the temporal 

sampling of the satellite imagery: 0 to 3 hours, 3 to 6 hours, 6 to 9 hours, and 9 to 12 

hours.  It can be seen that the great majority (87.5 percent) of outbreaks last between 0 

and 3 hours.  More specifically, all outbreaks over the Midwest in January 2009, the 

Central sub-region in April 2009, the Pacific South sub-region in April 2009, and the East 

sub-region in July 2008, lasted between 0 and 3 hours.  For the South sub-region in 

January 2009, where most outbreaks (77.78 percent) lasted between 0 and 3 hours, there 

were two outbreaks (11.1 percent) that lasted between 3 and 6 hours, and two outbreaks 

that lasted between 6 and 9 hours.  Similarly, in the Midwest/Upper South sub-region in 

October 2008, most outbreaks (65.2 percent) also lasted between 0 and 3 hours; however, 
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five outbreaks (21.7 percent) lasted 3 to 6 hours, two lasted 6 to 9 hours (8.7 percent), 

and one lasted 9 to 12 hours (4.3 percent).  Thus, most outbreaks have durations of 

between zero and three hours, and the frequency of outbreaks decreases sharply with 

increased duration.  This result most likely reflects the fact that the UT supersaturation of 

air supporting jet contrail persistence (as described in Chapter 1), only lasts for a few 

hours or less.  These time scales represent the larger meso-scales, and these scales are 

embedded within the larger synoptic (several day, approximately 1000 km size) scales 

represented by frontal systems, jet maxima, and medium-scale cyclone waves.  
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Figure 4-1: July 2008 East histogram showing duration vs. number of occurrences  
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October 2009 Midwest/Upper South
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Figure 4-2: October 2008 Midwest/U South histogram showing duration vs. number of 
occurrences  

January 2009 South
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Figure 4-3: January 2009 South histogram showing duration vs. number of occurrences  
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January 2009 Midwest
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Figure 4-4: January 2009 Midwest histogram showing duration vs. number of occurrences  

 

April 2009 Central
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Figure 4-5: April 2009 Central histogram showing duration vs. number of occurrences  
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April 2009 Pacific South
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Figure 4-6: April 2009 Pacific South histogram showing duration vs. number of occurrences  

 

 

 

 The next set of histograms (Figures 4-7 through 4-12) show the UTC time ranges 

within the day during which contrail outbreaks occurred in each of the analyzed sub-

regions for mid-season months of 2008-2009.   This analysis demonstrates when the 

highest (and lowest) concentrations of outbreaks occur during any given day.  The 24-

hour (diurnal) time scale is divided into four 6-hr time windows: 0000 to 0600, 0600 to 

1200, 1200 to 1800, and 1800 to 0000 UTC.  All sub-regions, with the exception of the 

Pacific South (April 2009), span the Eastern and Central time zones of the U.S.  This 

convention means that the diurnal time windows correspond, respectively, to the 

overnight hours, early morning, the midday hours, and afternoon/evening.  The Pacific 
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South sub-region comprises the U.S. Pacific Time Zone, but also extends slightly into the 

Mountain Time Zone to the east.  Therefore, the four diurnal time ranges for the Pacific 

South correspond, respectively, to the evening/nighttime hours, the early morning hours, 

late morning, and the afternoon.   

 Across the six sub-regions of high contrail outbreak frequencies, the 0600 to 1200 

UTC time range has the least number of outbreaks.  This time window corresponds 

roughly to early morning local time.  In the South sub-region in January 2009 and the 

Midwest/Upper South sub-region in October 2008, this time range had the fewest number 

of outbreaks of the four ranges of the day.  However, in the Central and Pacific South 

sub-regions in April 2009, the 06-12 UTC time window was tied with the 00 to 06 UTC 

window for the least number of outbreaks on average diurnally.  Overall, the time 

window having the highest frequency of outbreaks was that of 18 to 00 UTC, which 

corresponds to around 1-7 pm local time.  In all but the East sub-region in July 2008, this 

diurnal window had a higher number of outbreaks than each of the other three during the 

day.  For the East in July 2008, the highest number of outbreaks occurred in the 1200 to 

1800 time range, or around 8 am-2 pm local time.  These results indicate that, generally, 

contrail outbreaks occur most during the late morning and midday hours and least during 

the early morning hours.  This diurnal variation of contrail outbreak maxima and minima 

broadly agrees with previous observations that contrail occurrence peaks in the mid- to 

late morning hours (Minnis et al. 1997, Palikonda et al. 2004).  This maximum is likely 

due to the high frequencies of jet aircraft flights during the morning and early afternoon 

hours (Minnis et al. 1997).  This finding suggests that contrail observations by time of 

day are not only a function of UT conditions, but of commercial aircraft flight frequency.  
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This diurnal pattern of contrail outbreaks is slightly different from that shown for the 

northern North Atlantic (Bakan et al. 1994), where most contrails occur in the afternoon 

hours––at least, for the summer season studied by these authors. 
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Figure 4-7: July 2008 East histogram showing 6-hour time range vs. number of occurrences 
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October 2008 Midwest/Upper South
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Figure 4-8: October 2008 Midwest/U South histogram showing 6-hour time range vs. number of 
occurrences 

January 2009 South
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Figure 4-9: January 2009 South histogram showing 6-hour time range vs. number of occurrences 
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January 2009 Midwest
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Figure 4-10: January 2009 Midwest histogram showing 6-hour time range vs. number of 
occurrences 

April 2009 Central
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Figure 4-11: April 2009 Central histogram showing 6-hour time range vs. number of occurrences 
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April 2009 Pacific South
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Figure 4-12: April 2009 Pac South histogram showing 6-hour time range vs. number of 
occurrences 
 
 

 Finally, outbreak sizes are compared to their time (hour range) durations.  This is 

to test the hypothesis that larger outbreaks are of longer duration, as increases in spatial 

scales of physical phenomena are directly related to increases in their temporal scales.  

These data are represented by categorical scatterplots (Figures 4-13 through 4-18).  The 

height of each dot along the Y-axis represents an outbreak’s size (in square km), and is 

plotted continuously against the discrete time ranges (0 to 3 hours, 3 to 6 hours, 6 to 9 

hours, 9 to 12 hours) located along the X-axis.  The South sub-region in January 2009 

shows that, on average, the spatial extent of outbreaks remains the same, and possibly 

decreases, as time durations increase.  In the Midwest/Upper South sub-region in October 

2008, a similar pattern is apparent, as the average size of outbreak appears to remain 
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somewhat the same as temporal durations increase.  The Midwest sub-region in January 

2009, the Central and Pacific South sub-regions in April 2009, and the East sub-region in 

July 2008 have no outbreaks greater in temporal extent than the 0 to 3 hour time range.  I 

can conclude from this analysis that contrail outbreaks that last for longer periods are not 

necessarily larger in spatial extent than those that last for shorter periods.  This is an 

unexpected result due to the fact that, generally, spatial scales of natural phenomena 

increase with increasing temporal scales.  However, it is worth considering that contrails 

are anthropogenic, and therefore may not possess the same physical attributes and 

processes that natural entities have.   
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Figure 4-13: July 2008 East scatterplot showing outbreak duration vs. size 
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October 2008 Midwest/Upper South
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Figure 4-14: October 2009 Midwest/U South scatterplot showing outbreak duration vs. size 

January 2009 Midwest
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Figure 4-15: January 2009 Midwest scatterplot showing outbreak duration vs. size 
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January 2009 South
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Figure 4-16: January 2009 South scatterplot showing outbreak duration vs. size 

April 2009 Central
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Figure 4-17: April 2009 Central scatterplot showing outbreak duration vs. size 
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April 2009 Pacific South
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Figure 4-18: April 2009 Pacific South scatterplot showing outbreak duration vs. size 

Summary 

 The retro-prediction for 2008 and 2009 had moderate success in the use of the 

statistically significant UT variables in that over 50 percent of the time––in other words, 

more times than not––retro-predictions for either outbreaks or no outbreaks for that day 

were successful when verified with the observations.  The exception to this was the South 

region in January 2009, which had an overall success rate less than 50 percent.  

Conversely, the two April 2009 regions had a high rate of success as outbreaks were 

retro-predicted correctly over 70 percent of the time.  In several cases, however, success 

was improved with the addition of one more non-statistically significant UT variable. 
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 Analysis also demonstrated that most contrail outbreaks tend to last between zero 

to three hours, and decrease in number with increasing time; i.e., there are fewer 

outbreaks that last between three to six hours, and still fewer that last six to nine hours, 

and so on.  Diurnally, outbreaks occur most frequently in late morning and afternoon.  

Finally, the average sizes of outbreaks remain fairly constant as time increases. 

 

 
 

 



125 

 

Chapter 5 
 

Summary and Future Work 

 

This study has addressed the primary and secondary study objectives stated in the 

thesis introduction: (1) to create climate diagnostics of outbreaks for six high-frequency 

contrail outbreak regions, and (2) to develop a prediction method for contrail outbreaks 

based on climatological composites.  

For Objective 1, I developed climate diagnostics of contrail outbreaks for the high 

outbreak frequency sub-regions of the U.S. for each of the mid-season months (January, 

April, July, October) in 2000-2002.  I achieved this by performing an objective 

regionalization of contrail outbreak locations using a GIS technique of overlapping 1º by 

1º grid cells.   

For Objective 2, I selected the six highest frequency sub-regions for 

climatological analysis comprising composites of UT variables (temperature, RH, omega, 

and zonal wind) associated with contrail outbreaks from the 15 high-frequency sub-

regions identified across the four mid-season months.  These composites are the average 

of the daily mean values for each variable on days for which outbreaks occurred within 

that region.  I generated similar composites for non-outbreak days and also pre-outbreak 

days (i.e., the outbreak day minus 1) for each sub-region and mid-season month in the 

2000-2002 base period.  I compared outbreak to non-outbreak composite patterns for 

each variable using difference mapping to determine the UT map criteria (magnitude, 
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pattern, and gradient) for retro-predicting contrail outbreaks in the six high-frequency 

sub-regions. 

For the retro-prediction of contrail outbreaks for the 2000-2002 study period, I 

compared each daily mean map (average of the 4x6 hr maps) of each UT variable with 

the outbreak composite.  Based on the closeness of the daily map to its respective 

outbreak composite map, given by the magnitude, pattern, or gradient criteria, I deemed 

that day either favorable or unfavorable for a contrail outbreak.  From these results, I 

computed chi-squared statistics (for statistical significance) and a number of skill score 

measures (hit rate, critical success index, probability of detection, false alarm rate) 

relating the retro-predicted outbreak favorability to the satellite-observed outbreak 

occurrences.  I also computed one-way and two-way binary logistic regressions from the 

favorability versus observation results both to verify the statistical significances of each 

UT variable, and to yield the “best” variable(s) for each sub-region and mid-season 

month (which I used for an independent retro-prediction verification analysis of 

outbreaks in mid-season months of 2008 and 2009). 

The retro-predictions I undertook for the four most recent mid-season months––

July and October 2008, and January and April 2009––were for the same six high-

frequency sub-regions identified for the 2000-2002 study period.  I verified the retro-

predictions by interpreting AVHRR multi-band satellite imagery for outbreaks, and 

developed skill score statistics by sub-region and mid-season month.  Because the 

AVHRR imagery was available at fairly high temporal resolutions, I determined outbreak 

duration and aerial extent statistics by sub-region for the 2008 and 2009 mid-season 

months studied.   
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The regionalization analysis shows that, in general, the geographic distribution 

and frequency of contrail outbreaks is broadly similar to that shown in previous studies 

that relied upon a subjective regionalization (e.g., DeGrand et al. 2000; Carleton et al. 

2008).  However, I showed that there is a variation in location of the high-frequency 

outbreak regions by mid-season month (2000-2002).  This variation indicates a 

dependence on the seasonal movement of the subtropical and polar front jet streams.  The 

maps of contrail outbreaks by mid-season month for 2000-2002 compare very closely 

with those for individual contrails presented by Travis et al. (2007).  Overall, the eastern 

half of the conterminous U.S. experiences many more outbreak events than does the 

western half of the country (e.g., Carleton et al. 2008), as more warm air advection 

associated with a moister UT generally is available (Travis et al. 2006).  In the West, 

April is the most significant mid-season month for outbreaks in the Pacific states.  As 

found in previous studies (Changnon 1981; DeGrand et al. 2000; Carleton et al. 2008), 

the Midwest has the highest frequency of outbreaks and is the region of absolute 

maximum occurrence in three out of four mid-season months.   

The two UT variables most frequently associated with contrail outbreaks in the 

high-frequency sub-regions are RH300 and omega300, probably due to the fact that they 

are inter-related variables.  Greater UT moisture—as given by the higher values of 

relative humidity––is required for persisting contrails and outbreaks (e.g., Carleton et al. 

2008), and this requirement is most likely to be met in areas where air is rising (negative 

omega).  Relative humidity patterns were significant in most of the mid-season months 

and corresponding regions, with increased moisture taking place on outbreak days.  

Likewise, omega (vertical velocity) in general behaved as expected across mid-season 
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months with changes from subsidence to ascendance, or a decrease in values of 

subsidence from east to west.  Overall, the composites agree with the previous findings 

that contrail outbreaks accompany environments that are increasing in moisture, zonal 

wind speed, and horizontal wind shear, and changing vertical motion from subsidence to 

ascendance, as mentioned in the thesis introduction. 

The Chi-squared tests and the binary logit model give similar results as to those 

UT variables most closely associated with contrail outbreaks (by sub-region and mid-

season month).  This indicates a robustness to the results and increases the confidence 

with which they could be used in the retro-prediction verification study for 2008-09 

(Chapter 4).   This robustness occurred despite the fact that the individual UT variables 

and variable combinations found to be statistically significant appeared to be somewhat 

random, as the comparison of similar regions (e.g., Midwest in January, Central in April) 

and similar seasons (e.g., the transition seasons of April and October) had very different 

criteria as to which variables were most accurate for use in predicting outbreaks.  RH and 

omega, however, were most frequent among the significant UT variables in terms of their 

favorability, or, in other words, their similarities in daily mean conditions to those of the 

outbreak composites for 2000-2002. 

In terms of the retro-prediction applied to the 2008 and 2009 mid-season months 

using the criteria of variable magnitude, pattern, or horizontal gradient on the composite 

analyses, the measures suggest moderate success.  The April regions (Central and Pacific 

South) had the most success when predicting outbreaks in terms of composite similarity, 

while the South region in January performed the least success with this method.  
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The retro-prediction for 2008 and 2009 had moderate success in the use of the 

statistically significant UT variables in that over 50 percent of the time; in other words, 

more times than not, retro-predictions for either outbreaks or no outbreaks for that day 

were successful when verified with the observations.  The exception to this rule was the 

South region in January 2009, which had an overall success rate less than 50 percent.  

Conversely, the two April 2009 regions had a high rate of success as outbreaks were 

retro-predicted correctly over 70 percent of the time.  In several cases however, success 

was improved with the addition of one more non-statistically significant UT variable. 

Future Work 

 As a first step towards the eventual successful forward prediction (i.e., 

forecasting) of contrail outbreaks in real-time, this study demonstrates the validity of a 

simple visual (i.e., subjective) technique of comparing composite UT maps—a synoptic 

climatology––with daily-averaged UT maps for retro-prediction purposes.  Although 

certain of the retro-prediction verification results (by sub-regions in 2008-09 mid-season 

months) were mixed, others were more successful.  Further verification studies are 

needed to refine the method developed here, and to make it suitable for forward 

prediction of contrail outbreaks in near-real time.  This future work might involve adding 

contrail outbreak data for the mid-season months of 2003-2006, along with its associated 

UT conditions, to comprise a considerably longer-term (7-year) synoptic climatology.  

Additional information about contrail outbreaks that may help improve the ability to 

retro-predict and ultimately forecast their occurrence concerns their vertical extent.  The 
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associated UT conditions could be assessed by analyzing temperature and/or dew point 

lapse rates for atmospheric layers on thermodynamic diagrams for available sounding 

data. Finally, there is a continuing need to determine the climatic impacts of contrail 

outbreaks, particularly on surface diurnal temperatures ranges and their interactions with 

other anthropogenic forcings of climate change. 
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Appendix A 
 

Composites of 2000-2002 Pre-Outbreak Days 

 

 
Figure A1: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
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Figure A2: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, m/s) 
 

 
Figure A3: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
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Figure A4: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, m/s). 

 
Figure A5: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
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Figure A6: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, m/s) 

 
Figure A7: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
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Figure A8: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, m/s) 

 
Figure A9: 2000-2002 composites of temperature (colored, Cº) and RH (black, %). 
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Figure A10: 2000-2002 composites of omega (colored, Pa/s) and zonal wind (black, m/s). 
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Appendix B 
 

2000-2002 UT Favorability vs. Outbreak Occurrence Tables 

 

2000 RH Omega T U Wind 
1 X  X  
2 X X   
3 X X  X 
4    X 
5   X  
6   X     
7     
8  X  X 
9  X   

10     
11         
12 X    
13   X  
14   X  
15 X  X  
16 X  X  
17 X X X  
18   X  
19  X   
20     
21     
22 X X  X 
23     
24     
25   X  
26     
27     
28 X X   
29 X X   
30     
31     

2001         
1     
2     
3   X X   
4   X  
5 X  X  
6   X  

Brent Yarnal
This is a case when, indeed, you can have tables run continuously from page to page.  Good. Nonetheless, you still need to center the table horizontally on the page.
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7     
8         
9   X  

10   X X   
11 X X  X 
12 X    
13     
14 X X   
15     
16     
17 X X     
18  X   
19 X   X 
20     
21     
22     X   
23 X X   
24    X 
25     
26 X X     
27     
28 X X  X 
29 X X X X 
30   X  
31     

2002         
1     
2         
3   X  
4 X   X   
5 X X  X 
6 X  X X 
7   X  
8 X  X  
9 X  X  

10 X X X   
11     
12   X  
13     
14     
15     
16 X X   
17  X   
18     
19  X  X 
20 X  X  
21    X 
22    X 
23       X 
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24 X X  X 
25    X 
26     X   
27 X  X  
28 X X X   
29 X X X  
30 X X X   
31 X X X   

Table B1: Favorability table (X = favorable; highlight = outbreak) for January Midwest sub-
region 

 

2000 RH Omega T U Wind 
1     
2  X   
3  X   
4 X    
5    X 
6 X X   
7     
8     
9     

10 X   X 
11 X   X 
12 X     X 
13 X    
14 X    
15   X     
16  X X  
17 X  X  
18  X X  
19   X  
20  X X X 
21  X X X 
22 X  X  
23 X    
24 X  X  
25   X X 
26       X 
27 X X  X 
28 X  X X 
29     X X 
30   X X 
31   X X 

2001         
1 X  X X 
2 X X X X 
3 X   X X 
4   X X 
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5     X   
6  X   
7   X  
8 X   X X 
9 X  X X 

10 X X X X 
11   X X 
12    X 
13     
14         
15 X X     
16  X   
17 X X  X 
18  X   
19  X   
20         
21   X  
22   X X 
23   X X 
24   X X 
25 X     X 
26 X X X X 
27 X   X X 
28 X   X X 
29  X   
30 X X     
31       X 

2002         
1 X  X X 
2   X X 
3 X  X X 
4 X   X X 
5   X X X 
6    X 
7 X   X 
8   X X 
9   X X   

10   X     
11 X X   
12 X X  X 
13 X  X X 
14 X   X 
15     
16  X   
17   X     
18     
19     
20         
21     
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22 X X   
23  X   
24  X   
25     
26 X    
27 X    
28     
29   X     
30  X   
31  X   

Table B2: Favorability table (X = favorable; highlight = outbreak) for January South sub-region 

 

2000 RH Omega T U Wind 
1  X X  
2     
3     
4    X 
5 X X X X 
6 X X X  
7 X   X X 
8   X X 
9   X X X 

10 X X X   
11   X  
12     X   
13 X   X X 
14 X   X X 
15 X X X X 
16 X X X X 
17     X X 
18 X     X 
19 X X  X 
20 X   X 
21 X  X X 
22       X 
23  X X X 
24   X X 
25 X X X X 
26     X   
27 X X X X 
28     X X 
29   X X X 
30  X X X 

2001         
1   X X 
2  X X  
3   X X 
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4 X   X X 
5 X X   X 
6     
7    X 
8    X 
9   X X X 

10    X 
11  X  X 
12 X    
13 X  X  
14 X   X   
15 X  X  
16   X  
17   X X 
18 X   X X 
19   X   X 
20    X 
21    X 
22    X 
23    X 
24   X  
25   X X 
26 X X X X 
27 X X X X 
28  X X X 
29       X 
30  X  X 

2002         
1 X X X  
2 X  X  
3   X  
4   X  
5   X  
6 X X X X 
7  X X X 
8    X 
9    X 

10 X X X X 
11 X X X X 
12   X X 
13   X X 
14   X X 
15 X X X X 
16   X   X 
17    X 
18    X 
19         
20         
21     
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22     
23  X   
24    X 
25         
26     
27     
28 X    
29  X   
30  X   

Table B3: Favorability table (X = favorable; highlight = outbreak) for April Central sub-region 

 

2000 RH Omega T U Wind 
1     
2     
3   X X 
4  X X X 
5 X   X X 
6     
7 X    
8   X     
9 X   X 

10     
11 X    
12 X X   
13  X   
14     
15 X    
16   X  
17   X  
18   X  
19 X       
20   X     
21     
22 X    
23    X 
24    X 
25    X 
26   X X 
27  X X X 
28 X    
29     
30 X    

2001         
1 X X X X 
2    X 
3     
4     
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5     
6 X    
7     
8     
9     

10     
11     
12 X    
13 X   X 
14    X 
15 X   X 
16 X X X X 
17   X  
18   X X   
19     
20     
21     
22     
23     
24    X 
25    X 
26 X X X  
27   X  
28 X    
29 X    
30   X X 

2002         
1   X  
2     
3     
4     
5 X    
6     
7     
8  X   
9 X X   X 

10   X X 
11   X X 
12    X 
13 X    
14     X X 
15   X  
16    X 
17    X 
18    X 
19     
20 X    
21 X    
22     
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23  X   
24   X X   
25     
26     
27     
28  X  X 
29   X X 
30     

Table B4: Favorability table (X = favorable; highlight = outbreak) for April Pacific South sub-
region 

 

2000 RH Omega T U Wind 
1   X  
2   X  
3   X  
4 X   X   
5     X   
6   X  
7   X  
8  X X  
9   X X 

10   X X 
11 X X X X 
12 X  X  
13   X  
14   X  
15   X  
16   X  
17   X  
18     X   
19  X X X 
20  X X X 
21   X  
22   X  
23 X  X  
24   X  
25   X  
26     X   
27 X  X  
28   X  
29 X  X X 
30   X X 
31   X X 

2001         
1 X   X X 
2   X  
3   X  
4   X  



150 

 

5   X  
6   X  
7   X X   
8  X X  
9   X X 

10     X   
11     X   
12         
13   X  
14         
15   X X   
16 X X X   
17   X  
18   X  
19   X  
20   X  
21  X X  
22   X  
23   X  
24   X  
25   X  
26  X X  
27   X X 
28     X X 
29   X  
30   X  
31     X X 

2002         
1   X  
2 X    
3 X       
4 X    
5     
6   X     
7         
8   X  
9   X  

10   X  
11   X  
12 X   X   
13 X  X  
14 X X X   
15 X X X   
16 X   X   
17 X X X   
18   X  
19   X  
20 X   X   
21  X X  
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22  X X  
23   X  
24  X X  
25   X  
26   X  
27  X X  
28  X X  
29   X  
30 X  X  
31 X X X   

Table B5: Favorability table (X = favorable; highlight = outbreak) for July East sub-region 

 

2000 RH Omega T U Wind 
1 X X  X 
2 X X   
3 X       
4     
5     
6     
7  X   
8  X   
9 X X   X 

10   X   X 
11  X  X 
12 X X   X 
13 X   X X 
14     X   
15     
16     
17     
18  X X X 
19   X X 
20   X X 
21   X X 
22  X X X 
23 X  X X 
24   X X 
25     X X 
26 X  X X 
27   X X 
28  X  X 
29 X     X 
30    X 
31 X     X 

2001         
1   X X 
2   X X X 
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3     X   
4 X   X   
5   X  
6     
7   X     
8 X       
9 X  X X 

10   X X 
11     
12    X 
13    X 
14   X X 
15     
16     
17 X X   
18 X X X   
19         
20  X   
21     X   
22 X       
23     
24     
25  X   
26  X   
27  X   
28  X X X 
29 X   X X 
30 X   X X 
31  X  X 

2002         
1     
2 X  X  
3   X  
4     
5 X X   
6  X   
7  X   
8     
9     

10     
11   X   X 
12 X X X   
13   X     
14   X     
15         
16         
17  X   
18 X    
19     
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20         
21 X    
22     
23  X   
24     
25     
26     
27     
28     
29     
30 X X   
31  X   

Table B6: Favorability table (X = favorable; highlight = outbreak) for October Midwest/Upper 
South sub-region 

 

 

Appendix C 
 

2008 and 2009 Retro-Prediction Tables with Non-Significant UT Variable 
Favorability 

2009 Omega  T U RH 
1 X    X 
2      
3 X  X   
4 X  X   
5      
6      
7   X X  
8   X   
9   X   

10 X    X 
11      
12       
13    X  
14      
15      
16      
17 X    X 
18   X   
19   X   
20   X   
21   X  X 



154 

 

 

Table C1: Retro-prediction table for January 2009 Midwest sub-region showing favorability of 
non-statistically significant UT variables 

 

 

 

 

2009 Omega T  RH U 
1   X  X X 
2  X    
3      
4       X 
5 X      
6      
7      
8        
9 X     

10        
11        
12      
13      X X 
14  X    
15   X  X X 
16  X    
17 X X    
18   X    
19   X   X 
20  X    
21 X X    
22  X    
23 X X    
24      
25      
26        
27        
28        

22    X  X 
23   X  X 
24      
25 X    X 
26 X     
27 X    X 
28     X 
29      
30      
31   X   
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29        
30      
31 X X    

Table C2: Retro-prediction table for January 2009 South sub-region showing favorability of non-
statistically significant UT variables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2009 RH  U T Omega 
1     X  
2     X  
3    X  
4 X   X  
5 X     
6 X   X  
7    X X X 
8    X X 
9    X  

10   X X  
11 X   X X 
12   X X  
13 X  X X  
14   X X  
15      X 
16   X X  
17   X X  
18    X X  
19   X   
20   X X  
21   X X  
22   X X X 
23   X X  
24   X X  
25 X     
26 X  X   
27    X   
28       
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29   X   
30   X   

Table C3: Retro-prediction table for April 2009 Central sub-region showing favorability of non-
statistically significant UT variables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2009 Omega  RH 
1    
2    
3    
4    X 
5    
6    
7 X   
8    
9 X  X 

10    
11    X 
12   X 
13    X 
14    
15    
16   X 
17    
18    
19    X 
20   X 
21   X 
22    
23   X 
24 X   
25    
26    
27    X 
28    
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29    
30   X 

Table C4: Retro-prediction table for April 2009 Pacific South sub-region showing favorability of 
non-statistically significant UT variables 

 

 

 

 

 

 

 

 

2008 RH T  Omega U 
1   X   X 
2   X   X 
3   X    
4   X    
5 X X   X 
6 X    X X 
7    X  
8      
9 X      

10      X  
11 X    X  
12 X    X  
13 X      
14        
15   X  X  
16    X  
17      X  
18      X  
19      
20      
21 X      
22      
23 X      
24        
25 X      
26      X  
27    X  
28   X  X  
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29   X  X X 
30        
31      

Table C5: Retro-prediction table for October 2008 Midwest/Upper South sub-region showing 
favorability of non-statistically significant UT variables 

 

 

 

 

 

 

 

 

2008 RH  T UWind  Omega 
1    X   
2 X   X X   
3 X         
4       
5 X         
6 X   X     
7     X X   
8     X X   
9   X    

10 X   X     
11    X   
12 X     X   
13       X   
14   X    
15   X    
16           
17           
18       
19 X     X   
20           
21          X 
22 X         
23       
24       
25       
26   X    
27 X         
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28 X     X   
29          X 
30     X X   
31 X   X X   

Table C6: Retro-prediction table for July 2008 East sub-region showing favorability of non-
statistically significant UT variables 

 

 

 


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGEMENTS
	Chapter 1��Introduction
	Contrail Formation
	Contrail Persistence
	Study Objectives

	Chapter 2��Data and Methods for Contrail Outbreak Climatology
	Regionalization Methodology
	Overview
	GIS analysis
	Experimentation with coarser spatial resolution
	Designation of sub-regions

	Composite Methodology Applied to NCEP/NCAR Reanalysis Data
	Overview
	Map criteria for visually determining outbreak likelihood
	Retro-prediction of contrail outbreaks using NCEP-NCAR daily-averaged reanalyses

	Statistical Analysis of Contrail Outbreak Retro-Prediction
	Background
	Contingency analysis
	Binary logistic regression
	Two-way UT variable interactions

	Retro-Prediction of Outbreaks for 2008-09
	Retro-prediction method
	Retro-prediction verification


	Chapter 3��Results and Discussion of Contrail Outbreak Climatology
	Regionalization of the conterminous U.S. by outbreak frequency
	Composite UT Conditions for Outbreak and Non-Outbreak Days
	Statistical Analysis of Contrail Outbreak Retro-Prediction
	Contingency tables
	Chi-squared statistics and accuracy measures
	Binary logistic regression
	Two-way UT variable interactions
	Summary


	Chapter 4�� Retro-Prediction of Contrail Outbreaks for 2008 and 2009 Mid-Season Months
	
	Retro-prediction results
	Addition of non-significant UT variables

	Contrail Duration, Size, and Frequency Statistics for 2008 and 2009 Mid-season Months
	Summary


	Chapter 5��Summary and Future Work
	Future Work

	References
	Appendix A��Composites of 2000-2002 Pre-Outbreak Days
	Appendix B��2000-2002 UT Favorability vs. Outbreak Occurrence Tables
	Appendix C��2008 and 2009 Retro-Prediction Tables with Non-Significant UT Variable Favorability


