ON THE APPLICABILITY OF DYNAMIC STATE VARIABLE MODELS TO
MULTIPLE-GENERATION PRODUCT DECISIONS: CASE STUDIES

A Dissertation in
Industrial Engineering
by
Chun-yu Lin

© 2012 Chun-yu Lin

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

December 2012
The dissertation of Chun-yu Lin was reviewed and approved* by the following:

Gul E. Okudan Kremer
Associate Professor of Industrial and Manufacturing Engineering
Dissertation Adviser
Chair of Committee

Timothy W. Simpson
Professor of Industrial and Manufacturing Engineering

Andris Freivalds
Professor of Industrial and Manufacturing Engineering

Charles D. Ray
Associate Professor of Wood Operations

Paul Griffin
Peter and Angela Dal Pezzo Department Head Chair of Industrial and Manufacturing Engineering

*Signatures are on file in the Graduate School.
ABSTRACT

In today’s market economy, multiple-generation product strategies are commonly used by companies in numerous industries. Multiple-generation products involve a single product line that is modified and dispersed over a time period. As an example, Apple recently released four generations of iPhones—a strategy that resulted in great market success. Adopting such a strategy elongates the entire life cycle of a product and relaxes its development time span, thus allowing companies to better utilize their resources and technologies to plan for better products.

This research proposes a new framework to aid companies in designing a forward-looking, multiple-generation product line at the early product design stage. It adopts recent developments from the behavioral ecology field where a product line is considered to be a living organism, while related potential market events and decisions are regarded as behaviors. Within this framework, the problem is modeled using a dynamic state variable model in which the behaviors of the multiple-generation product line are assumed to occur stochastically. The results indicate optimal operational strategies related to the life cycle of the product line and can be used to predict both the performance and the optimal introduction timing for each generation.

The proposed framework includes two market scenarios. One scenario is the complete replacement scenario, the situation in which the successive product generation fully substitutes the current one. The second scenario, the cannibalization scenario, assumes that multiple-generation of products cannibalize sales in the same market. We propose different models for each market scenario and provide several illustrative case studies to show the validity of the proposed models. For the complete replacement scenario, we implement IBM mainframe product line data and compare the output results to those from the published work using the same data. We use the Apple iPhone product line to verify three instances of the cannibalization scenario. These include a) applying limit terms of data to predict the overall lifetime performance of an on-
going multiple-generation product line, b) predicting the lifetime performance of a brand new product line based on an existing or on-going product line, and c) applying limit terms of sales data to predict the lifetime performance of a multiple-generation product line involving a single evolving technology. The results indicate that the proposed framework can closely predict the lifetime performance of a multiple-generation product line.
TABLE OF CONTENTS

LIST OF FIGURES ... v

LIST OF TABLES ... vi

ACKNOWLEDGEMENTS .. vii

Chapter 1 Introduction ... 1

1.1 Existing Quantitative Models of Multiple-Generation Product Lines 2
1.2 Life-History Models ... 4
1.3 Cases of Successive Product Generations ... 5
 1.3.1 Gillette’s Shaving Product Line .. 5
 1.3.2 PC Microprocessors and Home Video Game Platforms 6
1.4 Research Objective ... 7
1.5 Organization of the Proposal ... 8

Chapter 2 Literature Review .. 10

2.1 Related Works on Multiple-Generation Products ... 10
 2.1.1 Multiple-Generation Product Strategy ... 10
 2.1.2 Product Transition ... 13
 2.1.3 Product Rollover .. 14
 2.1.4 Existing Quantitative Models of Multiple-Generation Product Lines 14
 2.1.5 Product Upgradability ... 16
 2.1.6 Quantitative Models for Multiple-Generation Product Decisions 13
 2.1.6.1 Behavioral Models .. 18
2.1.6.2 Dynamic Competition Models .. 20

2.2 Dynamic State Life-History Models in Ecology 24

2.3 Related Works on Dynamic State Variable Models in Behavioral Ecology ... 25

2.4 Quantitative Models for Product Similarity Assessment 28

2.5 Logistic Curves in Technology Forecast 29

2.6 Research Questions .. 31

2.7 Research Target .. 31

Chapter 3 Methodology (I) – Full Substitution Scenario 33

3.1 The Basic Model ... 33

3.2 Case Study (I) – IBM Mainframe Systems 40

Chapter 4 Methodology (II) – The Cannibalization Scenario 52

4.1 Model Construction ... 52

4.1.1 The Cannibalization Model .. 53

4.1.1 Sales Increase Scenario .. 57

4.1.1 Sales Decrease Scenario .. 62

4.1.2 Monte Carlo Forward Iteration ... 65

4.2 Case Study II: Forecasting an On-going Multiple-Generation Product Line ... 67

4.3 Case Study III: Forecasting a Brand New Multiple-Generation Product Line ... 78

4.3.1 Functional Similarity Examination .. 78

4.3.2 Model Setting .. 81
LIST OF FIGURES

Figure 1-1: The 100 year innovation timeline of Gillette (Adopted from Dacko et al., 2008) ... 6

Figure 1-2: The timeline for multiple generations of PC microprocessors and home video game platforms (Adopted from Ofek and Sarvary, 2003) ... 7

Figure 2-1: The four windows composed of different levels of the two rhythms. (Adopted from Dacko et al., 2008) ... 11

Figure 2-2: The relation diagram with detailed factors of the two rhythms. (Adopted from Dacko et al., 2008) ... 12

Figure 3-1: The interface of the program “Multiple-Generation Product Line Simulator” .. 44

Figure 3-2: The output strategy map from the program “Multiple-Generation Product Line Simulator” .. 45

Figure 3-3: The decision space for each of the four strategies ... 45

Figure 3-4: A simulated product line life cycle from the Monte Carlo forward iteration .. 47

Figure 3-5: The comparison of lifetime predictions among our simulated result, the real data and the output from the diffusion and substitution model ... 48

Figure 3-6: The introduction states from different introduction threshold settings 50

Figure 4-1: Sales statistics of the iPhone generations .. 69

Figure 4-2: Sales trends for individual generations ... 69

Figure 4-3: The simulated iPhone product line lifecycles ... 73

Figure 4-4: The strategy map of the sales increase scenario output from the cannibalization model .. 74
Figure 4-5: Simulated iPhone product line lifecycles...84

Figure 4-6: A simulated lifecycle of iPhone product line based on the basic technology substitution status $Y(t)$ constraint settings...105
LIST OF TABLES

Table 2- 1: The comparison of the eight quantitative models..23
Table 3-1: The comparison between dynamic state variable model settings in ecology and in multiple-generation product line...34
Table 3-2: All the parameters in the model...35
Table 3-3: The circulation data of four generations of IBM mainframe computer systems (Adopted from Mahajan and Muller (1996))..41
Table 3- 4: Sales increment/decrement analysis for each generation.................................42
Table 3-5: The regression results for four different types of sales tendency for the first three generation of IBM mainframe systems...44
Table 3-6: The best introduction year for introducing generation 3..................................49
Table 3-7: The best introduction year for introducing generation 4.................................49
Table 3-8: Comparison between the proposed model, Mahajan and Muller (1996) and the real data ..49
Table 4-1: Cannibalization model parameters ..55
Table 4-2: Sales statistics for the Apple iPhone product line as of June 2012 (Wikipedia. http://en.wikipedia.org/wiki/File:IPhone_sales_per_quarter_simple.svg)........68
Table 4-3: Sales per product generations ...70
Table 4-4: Settings for three of the strategies ..72
Table 4-5: Parameter settings for the three time-dependent symmetric functions72
Table 4-6: The six sets of average successive product generation introduction timings from six different product line lifecycle durations comparing to real Apple iPhone multiple-generation product line ...75
Table 4-7: The sensitivity analysis for the expected profit gain (EP).................................76
Table 4-8: Comparison of introduction timings under different introduction threshold settings

Table 4-9: Technological similarity matrix (TSM) for the Apple iPhone and three other MGP lines

Table 4-10: Settings for three sales increase strategies

Table 4-11: Parameter settings for the three time-dependent symmetric functions

Table 4-12: Six sets of average successive product generation introduction timings from six different product line lifecycle durations comparing to the actual Apple iPhone MGP line

Table 4-13: Technology evolution model parameters

Table 4-14: The numbers of cell phones with 2G/3G mobile network capabilities from 2003 to 2008

Table 4-15: The comparison of \(f/(1-f) \) between the real data and the outputs from the Fisher-Pry model

Table 4-16: Settings for three of the strategies

Table 4-17: Parameter settings for the three time-dependent symmetric functions

Table 4-18: Introduction timings comparison with the real iPhone product line with different FA and CA settings

Table 4-19: The timings that the target technology is adopted by the product line

Table 4-20: Comparison between shorter life-span T settings with the real iPhone data
Chapter 1

Introduction

Products involving multiple generations are increasingly common in the marketplace. Multiple generations are sequential introductions of a product; that is, the original model enters the market first after which its successors are introduced over time, each featuring newer technologies, features, appearances and usability but with essentially unchanged core foundations (Saakjarvi and Lampinen, 2005; Krankel et., 2006). As an example, Gillette first introduced the safety razor with disposable blades in 1901. For more than a century, the company planned and maintained this product line by periodically introducing successive generations of new razors featuring extended technologies. By doing so, Gillette has successfully remained profitable in the razor business.

In today’s rapidly changing and technology-intensive markets, firms frequently adopt multiple-generation product (MGP) strategies (Ofek and Sarvary, 2003). For a corporate entity, the proper planning for its products is critical to help ensure the company’s long-term success.

In 2001, Morgan et al. modeled an active competition scenario in a fast-moving market and found that applying a forward-looking MGP strategy is significantly more profitable (40% higher) than introducing a single generation of a product, and it is more profitable (26% higher) than sequentially introducing a single generation product. General Electric (GE) recognized that focusing R&D on successive generations of a product ensured more effective product sales strategies (Edelheit, 2004). Thus, instead of developing a single product with limited time and technology available, GE has focused on building forward-looking MGP strategies for all its product lines, and periodically reviews and adjusts those strategies to ensure they are on the right
track. For instance, when GE introduced its then-revolutionary 4-slice LightSpeed CAT scanner, the company’s developers already had design ideas in mind for its future 8-slice and 16-slice models.

Since MGPs may span years or even decades, it is logical to regard them as a whole entity rather than consider each generation separately. Given the vagaries of the market, it is very difficult to assess or model each generation’s product life cycle. Therefore, applying single product line thinking to multiple-generations of a product is appropriate. Moreover, for companies that develop forward-looking MGP strategies, using single product line thinking can reduce the analytic complexity involved and can better interpret the overall behavior of MGPs.

In this chapter, we first present two model types that are currently used for quantitative analysis pertaining to MGP decisions. Then, we present a model from the biological sciences and explain its application potential for generating a practical prediction method within such decision contexts.

1.1 Existing Quantitative Models of Multiple-Generation Product Lines

Existing quantitative models constructed for MGPs aim at analyzing and interpreting the behavior or modeling the dynamic competition in the market. Logically, these are termed behavioral models and dynamic competition models.

Behavioral models that analyze MGP lines currently do so by: 1) applying the Bass diffusion model to explain and predict demand diffusion, substitution effects, and timing strategy (Norton and Bass, 1987; Mahajan and Muller, 1996; and Bardhan and Chanda, 2008); 2) applying optimization techniques to maximize profits while considering the trade-offs among critical criteria (Morgan et al., 2001); 3) merging both of the previous techniques (Krankel et al., 2006); and/or 4) using regression analysis to forecast product life time and sales volumes (Huang and Tzeng, 2008). Restrictively, these behavioral models require the number of generations to be pre-
determined since they either apply to a given generation of a product or they simply consider the transition between any two consecutive generations.

Dynamic competition models consider that the market is a competitive environment and generates varying degrees of competition. Thus, they help formulate competitive scenarios and derive market strategies related to the introduction of successive product generations. These models may use game theory to analyze competitive advantage or the effects of advertising that influence companies when making successive product introduction decisions (Ofek and Sarvary, 2003). Or, they may apply an optimization method to determine prime timing and pricing strategies under different market competition structures for introducing a successive product generation (Arslan et al., 2009).

Both types of quantitative models aim at specific strategic purposes (e.g., demand diffusion, timing decisions) and can only work on a pre-determined number of generations of a product. Given Edelheit’s observation about GE benefitting from the development of forward-looking MGP lines, it is likely worthwhile for other companies to adopt MGP strategies instead of concentrating on a single design early in the product design stage. Yet in fact, developing such strategies at an early design stage is a highly uncertain process; parameters and predicted performance can only be assessed roughly or referred from historical data. In addition, the number of product generations is an unknown factor, which is also a critical concern for early design planners.

Both behavioral and dynamic competition models rely not only on historical data but also on terms of actual market sales information, and both require the number of generations to be pre-determined. Therefore, neither type of quantitative models can be applied effectively when designers begin to develop a plan for a forward-looking MGP line – that is, one which can also allow follow-up actions including forecasting and periodically monitoring the performance of the fore-planned product line.
While searching for an appropriate model that could meet these requirements, we found that biologists investigate problems which display similar conditions to those of consumer products. In biology, researchers explore problems concerning the life-history of an organism, and attempt to predict and monitor the trade-off among various critical characteristics such as fertility and mortality rates, while also maximizing the organism’s fitness during its entire lifetime. These kinds of problems are typically solved using dynamic models referred to as life-history models.

1.2 Life-History Models

The broad definition of life history theory includes age-specific fecundity and mortality patterns, as well as the entire sequence of changes that an organism undergoes during its life (Lande, 1982). According to Hill (1993), the theory was developed to explain variations among living organisms in terms of their fertility, growth, maturity, and death, and to investigate the biological trade-offs among these parameters. Clark and Mangel (2000) examined the constraints and trade-offs occurring in life history, linking the physicochemical states of living organisms with their environments based on evolutionary fitness. The main objective of life history theory is to have organisms maximize fitness over their lifetimes (Rogers and Smith, 1993). Lande (1982, p. 607) noted that optimization is reliant on “a properly identified quantity maximized by evolution and an appropriate set of constraints, and satisfies the required time and genetic variations for the population to reach an optimum.” Historically, many life history models based on optimization methods have been developed to predict the prospective population by maximizing some measure of fitness subject to certain constraints.

Life history evolution possesses properties parallel to MGP lines. In both fields, all the activities are limited to a finite time interval. The processes in both include conception, growth, maturity, fertility, and death. While life history theory aims at understanding how to maximize an
organism’s fitness, MGP lines aim at maximizing a company’s overall profits. Based on these similarities, life history models may be used as the foundation for developing new models for optimizing MGP lines.

Many examples of MGP lines exist in the market. In the following section we illustrate several cases that have been addressed in the literature.

1.3 Cases of Successive Product Generations

1.3.1 Gillette’s Shaving Product Line

Gillette’s innovation timeline for its shaving product line over the last 100 years is shown in Figure 1-1. Dacko et al. (2008, p. 442) noted that “Gillette regularly introduced breakthrough innovation followed by a series of incremental innovations. By planning and managing new product introductions across successive generations, Gillette was able to sustain its market performance.”
1.3.2 PC Microprocessors and Home Video Game Platforms

Figure 1-2, adopted from Ofek and Sarvary (2003), shows the generations of products for PC microprocessors and for home video game platforms. It illustrates that across three decades, both products spawned several generations: specifically, Intel sequentially introduced seven generations of PC microprocessors, and Nintendo successively introduced four generations of game consoles.
There are many other examples of MGP lines in the market. For instance, automotive companies issue different product lines geared toward different market segments. Each product line typically involves multiple generations of car models, some of which may last indefinitely. For example, the German car manufacturer Audi AG has had its famous A4 model on the market since 1994 — a remarkable run for an automobile. In the next section, we provide the research objectives.

1.4 Research Objectives

In today’s increasingly competitive market, it is critical for companies to have a systematic and effective way to plan and further manage their MGP lines. As noted previously, most existing research on MGP lines concentrates on one specific direction: either optimal timing strategies or dynamic competence strategies. At this time, to the best of our knowledge, no prior work attempts to develop a quantitative model that can simultaneously predict behavior and
performance while providing decision-makers with real-time control and management insights for a forward-looking MGP line.

Specific biological research investigates dynamic life cycle changes in organisms through the use of life-history models. Because of the parallels between the life cycle changes in an organism and those in a marketplace product, the application of life-history models to MGP lines may be an effective and valuable tool for companies to use in strategic planning.

In this research, an MGP line is regarded as an organism. A dynamic programming technique, adapted from biology’s life-history optimization model, is applied to simulate the life cycle of this product line. The model considers different market scenarios using varied product generation transition policies, forecasting objectives and concerns for the technology evolution.

The proposed model aims at generating optimal lifetime strategies to help companies achieve maximum profits throughout the life cycle of a specific product line, while simultaneously providing them with better control and management capabilities. Using the proposed model, companies will be able to periodically adjust their strategies to react to changing market situations and to prevent potential loss caused by imperfect decisions.

1.5 Roadmap of this thesis

Chapter 2 presents a literature review addressing the following topics: a) related works on MGPs; b) dynamic state life history models in ecology; c) related works on dynamic state variable models in behavioral ecology; d) quantitative models for product functional similarity; and e) logistic curves in technology forecast. In addition, this study introduces a new product line life cycle model involving multiple generations based on a dynamic programming-based life-history model under two different scenarios. In Chapter 3 we introduce the basic model, which is based on the assumption that a successive product generation fully substitutes for the current product generation. In Chapter 4 we present the cannibalization model, which considers multiple-
generations of products that compete simultaneously in the market. In both Chapters 3 and 4, an explanation of the approach we used is followed by a case study and an evaluation of the method’s applicability. In the final sections of those chapters, we incorporate the element of technology evolution concern into both models and formulate new technology evolution models for both substitution scenarios. Finally, Chapter 5 concludes this document with our plan for future work.
Chapter 2

Literature Review

In this chapter, we review literature spanning five relevant areas. Section 2.1 covers related work regarding MGPs. Section 2.2 covers literature on dynamic state variable models (DSVMs). In Section 2.3, the relevant works relating DSVMs to life-history problems are introduced. Section 2.4 provides a literature review on quantitative models for product function similarity. Finally, a research brief about logistic curve usage in technology forecasting is provided in Section 2.5.

2.1 Related Work on Multiple Generations of Products

2.1.1 Multiple-Generation Product Strategies

Edelheit (2004), a former Senior Vice President of Research and Development at GE, elucidated how R&D led GE to its long-term success in the market. He noted that research became very specialized and strategic in the 1990s. In response, GE began focusing on developing MGPs for every product line. Adopting an MGP strategy gave the company a wider horizon from which to generate more thorough product plans, and enabled it to apply better technology capabilities. In addition, Edelheit suggested that forming a multi-functional team which involved R&D, marketing, and sales people to work on MGP projects could reduce the time span and communication difficulties common during the development process.

Dacko et al. (2008) proposed a strategic framework to help companies determine introduction strategies for successive generations of products. Their proposed framework suggested a company needs to consider two rhythms—a new product readiness rhythm and a
market receptivity rhythm—when making a successive product introduction decision. The significance and priority of the two rhythms vary according to the product market. The authors investigated two levels for each rhythm—an active level and a passive level—and then analyzed the resulting four-window grid representing different types of markets (See Figure 2-1). To apply the method, a company must determine which window its product is located in and then develop the affiliated MGP strategy. To help companies identify the correct strategies, Dacko et al. (2008) analyzed various vital operational factors (e.g., dynamic capabilities, strategic intent, market perspectives) and interpreted them with substantial propositions for each window. The complete relational diagram with all factors incorporating the two rhythms is shown in Figure 2-2. This proposed framework can enable companies to inspect and analyze their current business status, and to build healthier long-term introduction strategies for their MGP lines.

![Figure 2-1: The four windows composed of different levels of the two rhythms. (Adopted from Dacko et al., 2008)](image)
Edelheit (2004) and Dacko et al. (2008) appear to be the only researchers reporting their investigation of MGP strategies. From this existing pair of papers, we have identified two main points companies should take into account when developing new product lines. First, the use of forward-looking MGP strategies typically results in better products and leads to greater market success. Second, a company’s market position must be assessed to properly determine which introduction strategies fulfill its operational constraints and market expectations.
2.1.2 Product Transition within Multiple Generation of Products

The common traits of quicker time to market and shorter product life cycles of today's products force companies to face more frequent product transitions (Erhun et al., 2007). Research on product transition aims at aiding companies in better managing product transition within a line of products in order to fulfill companies' specific objectives (e.g. optimal timing, maximize profits, maintaining market shares, etc.).

Deltas and Zacharias (2006) investigated pricing strategies and brand identification among customers making the transition from the 486 to the Pentium computer processor. The authors looked at a three-year transition period (1993-1995), tracked 486 and Pentium computer models from ten major manufacturers, and applied two different regression approaches to analyze pricing strategies.

Erhun et al. (2007) proposed a framework incorporating risk analysis to help companies determine appropriate strategies during product transitions. Eight factors from two risk categories (demand risk and supply risk) were introduced to analyze the risk levels involved in the transition across product generations. The proposed framework was later applied to the analysis of a real bumpy product transition case between two generations of microprocessors from Intel.

Yang et al. (2011) studied the optimal new product launch time for maximizing the overall profits from the product life cycle (PLC) perspective. They proposed quantitative models to derive the optimal introduction timing using combinations of the product portfolio, presenting two illustrative examples to verify their proposed models.

Existing prior works investigating product transition within multiple generations of products mostly aimed at strategies for the transition between only two consecutive product generations. However, from a more comprehensive view of the whole product line perspective, to manage a multiple-generation product line effectively simultaneously planning for all the transitions within the product line is necessary; this is intended in this dissertation.
2.1.3 Product Rollover Strategies for Multiple-Generation Products Lines

Product rollover is a process that introduces new products and phases out old ones (Li and Gao, 2006). Lim and Tang (2006) investigated price and timing strategies for product rollover. They proposed a model considering two types of product rollover strategies: 1) single-product rollover and 2) dual-product rollover. They applied the proposed model to generate the optimal prices of both products as well as optimal timings for introducing the new product and phasing out the old one.

Gaonkar and Viswanadham (2005) developed a mixed integer programming (MIP) model to coordinate new product introduction and product rollover decisions for MGPs by using a web-based collaborative environment to simultaneously consider both manufacturing and supply chain criteria. Their proposed model can aid companies in selecting suppliers and in scheduling production and product shipments across the targeted MGP line.

Li and Gao (2008) inspected the effects of two information-sharing scenarios on product rollover using a solo-roll strategy involving a manufacturer and a retailer, using a periodic-review inventory system. They found that if the information system was coordinated, the information sharing would profitably benefit both supply chain partners.

Prior research on rollover strategies examined the impact of different product rollover settings to the inter-generation decisions as well as the impact of these decisions on the entire manufacturing system. The settings of product rollover conditions are critical to multiple-generation product lines. In this dissertation, we will also include different product rollover strategies in our multiple-generation product line planning framework.

2.1.4 Product Evolution within Multiple-Generation Product Lines

In this section, we present summaries on relevant papers that look into the evolution
between product generations in a multiple-generation product line. We focus on the evolution from one product generation to the next rather than the evolution of technologies across product generations.

Bryan et al. (2007) proposed a new two-phase approach which they referred to as the co-evolution of product families and assembly systems, as a methodology incorporating joint design and reconfiguration of product families and assembly systems across MGP lifetimes. In the first phase, the initial generation of a product family and its assembly system is designed. Then the initial product family, the required design changes, and the re-configuration of their constraints are taken into consideration during the second phase in order to design the next generation of a product family.

Ko and Hu (2009) applied MIP to model a manufacturing system that can tackle stochastic generational product evolution while fulfilling manufacturing concerns including minimizing costs, maximizing repeated assignments and minimizing idle time. The authors also proposed a new decomposition procedure to effectively solve this large optimization problem with less computational complexity.

Liu and Özer (2009) proposed a decision framework for managing generational product replacements for a product family under stochastic technology evolution. In the model, the main focus is the interaction among three major concerns: technology evolution, product replacement cost and product profitability. The authors also looked into the scenario that how technology follower should make product replacement and pricing decisions reacting to the arrival of innovations from technology leader.

Orbach and Fruchter (2011) proposed a model to forecast the sales and product evolution of a product category involving several generations. Their model inspects the interdependency between the improvement in product attributes and the evolution of cumulative adoption levels across generations, with the preference data collected during a conjoint study. Implementing the
proposed model, they developed a case study on the hybrid car market.

Existing papers on product evolution concentrated on either the stochastic evolution of the successive product generation, or the evolution of technologies and demands within a multiple-generation product line. However, we do not see any published approach that is capable of forecasting the evolution timing of the successive product generation as well as considering the profitability and the evolution of major technologies within the product line.

2.1.5 Product Upgradability

We found that research literature on product adaptability and product upgradability has two main foci. One looks at the design methodologies for product upgradability, while the other investigates the evaluation process for product adaptability or product upgradability.

Xing et al. (2007) introduced the product upgradability and reusability evaluator (PURE), a fuzzy set theory based approach, to assess product upgrade potential during remanufacturing. In their study, the overall upgradability potential of a product was assessed using three key measures: 1) compatibility to generational variety (CGV), 2) fitness for extended utilization (FEU), and 3) life cycle oriented modularity (LOM).

Li et al. (2008) proposed a grey relational analysis based approach to measure product adaptability related to three concerns: 1) extendibility of functions, 2) upgradability of modules, and 3) customizability of components. An illustrative example of a mixer design implementing the proposed methodology was provided. In the analysis, design candidates generated according to adaptable design principles were further evaluated using different life-cycle assessment measures.

Umemori et al. (2001) proposed a design methodology for upgradable products. It takes into account uncertainty caused by long-term planning, and it aids designers in building a long-
term upgrade plan and reaching a robust design solution, realizing the required upgrade plan with the use of Set Based Theory.

Ishigami et al. (2003) extended the work of Umemori et al. (2001) and presented a design methodology for upgradability considering changes of functions. The authors introduced the function-behavior-state model (FBS) originally developed by Umeda et al. (1996) to map upgrade functions to physical structure of a design solution.

Based on the product adaptability and upgradability literature noted above, most of the focus to date has been on investigating design methodology. However, very limited research has looked into the product upgradability toward users. One exception is by Lippitz (1999), who introduced an analytical model for looking at optimal upgrade timing to best maximize value for certain U.S. Department of Defense acquisitions. However, this study only formulated a deterministic model for the upgrade problem and did not take into account future uncertainty.

Existing research focused either on the design methodology or the evaluation process toward product upgradability. In multiple-generation product lines, the upgradability across generations should also be a critical concern. In fact, product upgradability within multiple-generation product lines is difficult to assess since there is too much uncertainty involved. Multiple-generation product lines usually have longer life-spans, and the physical design for a future product generation is unknown. In addition, multiple-generation product lines usually involve multiple technologies each may evolve on their own pace. Thus, we do not consider the product upgradability when considering multiple-generation product lines, but investigate the evolution of technology from a product line perspective for a multiple-generation product lines.

2.1.6 Quantitative Models for Multiple-Generation Products

Numerous quantitative models for MGPs have been constructed. We categorized the research papers on MGPs into two main categories according to their objectives. One group is the
behavioral models, which aims at forecasting lifetime performances and modeling the lifetime behaviors of MGPs. The other group is the dynamic competition models, which attempts to explore relative operational tactics and competition strategies toward a dynamic competitive market environment. We summarize the work in each of these categories next.

2.1.6.1 Behavioral Models

Quantitative behavioral models attempt to simulate and predict the behavior of an MGP line. Behavior indicates the demand shift for every generation of a product and for the entire product line as well. To properly assess the tendencies of demands, the Bass diffusion model is applied by most of the models in this section.

Norton and Bass (1987) applied the Bass diffusion model to study the sales behavior of high-tech MGPs. The authors assumed that technologies are updated over time and that older technologies are gradually replaced by newer ones. Based on this assumption, they proposed a model which considers that for each product generation the demand diffuses over time, and that successive generations will substitute a certain non-revertible population of users from the entire user population for the current generation of the product. In addition, the model can be applied to forecast the future demand change of the entire MGP. The proposed model was tested on three actual data sets: 1) four generations of dynamic random access memory (DRAM) products, 2) three generations of static random access memory (SRAM) products, and 3) eight-bit microprocessor (MPU) and microcontroller (MCU) products. It was then used to forecast the future demand for each of the three MGP lines. Results provided evidence that the proposed model could interpret and forecast the behavior of high-tech MGPs.

Mahajan and Muller (1996) extended the research of Norton and Bass. They proposed a new demand behavioral model that considered both the adoption and substitution effects of durable technological products. Veering off from the Bass diffusion model for evaluating the
substitution effect, the new model not only dealt with substitution between two consecutive generations, but also considered conditions under which substitution occurred across generations, which they called the “leapfrog” effect. The authors derived optimal timing strategies from the proposed demand behavioral model. A case study of the IBM mainframe involving four generations demonstrated how the prediction using the proposed model compared to the actual data. The study came up with a “Now or at Maturity Rule” which states that it is optimal to introduce a new generation of product instantly, if available; otherwise, it is better to postpone the introduction time until the previous generation is in the maturity stage of its life cycle.

Bardhan and Chanda (2008) also developed a model based on the Bass diffusion model and considered both adoption and substitution effects. For each generation, the authors divided the cumulative adopters into two different types — first time purchasers and repeat purchasers — and modeled them separately. In addition, their proposed model took into account the “leapfrog” effect. At the end of the study, they applied both the proposed model and the Norton-bass model to a set of IBM GP system sales data and found that their proposed model provided a better fit to the actual data.

Morgan et al. (2001) studied the quality and time-to-market trade-offs for MGP. An improvement in quality was assumed to accompany an increase in product development cost. The authors constructed an optimization model for a forward-looking MGP line aimed at maximizing profits while considering costs, the firm’s quality, its competitive quality and its market share with an active competitor. Their proposed launch model was compared to launch models for a pure single-generation and a sequential single-generation. The results indicated that applying a forward-looking MGP launch strategy was significantly more profitable than adopting either a pure or a sequential strategy, but that it logically involves a longer product development time.

Krankel et el. (2006) applied a dynamic programming technique to construct a multiple-stage decision model for examining successive product generation introduction timing strategies.
20

The model incorporated Bass diffusion elements to predict future market demands and was based on two assumptions: 1) the technology level is additive, and 2) the new generation completely replaces the previous generation of a product. By changing several parameters, the authors examined the relative effects of the technology level and cumulative sales to determine the introduction timing threshold for successive product generations.

Huang and Tzeng (2008) proposed an innovative regression analysis method to forecast product lifetime and yearly shipment of MGPs. The entire forecast was based on historical data. Using their method’s first stage, the product life time of each product generation was predicted using a fuzzy piecewise regression technique. After that, the yearly product shipment of each generation was assessed. They developed an empirical study by applying the proposed methodology to forecast the product life cycle of 16Mb DRAM, based on data from six generations of DRAM products.

In the next section, we introduce the dynamic competition models related to MGP lines.

2.1.6.2 Dynamic Competition Models

Ofek and Sarvary (2003) considered the dynamic competition between market leaders and followers. They developed a multi-period Markov game model (seeking Markov Perfect Nash Equilibrium) and used it to examine the influences of innovative advantage and reputation advantage in R&D for market leaders, as well as the relative strategies that followers should adopt. In addition, the authors examined the advertising effect on R&D for both market leaders and followers.

Arslan et al. (2009) investigated optimal product pricing policy and introduction timing for MGP scenarios under both monopoly and duopoly market competitions. The authors first applied optimization techniques to model two successive product introduction scenarios (complete replacement or coexisting) in a monopoly environment. Next, a game theory-based
model involving high competition between two firms was developed to model complete replacement in a duopoly market. The goal of their model was to discover the optimal response functions of the two firms as well as to establish the existence of Nash equilibria. They also reviewed two product introduction policies: 1) the rollback policy, and 2) the generation skipping policy.

Table 2-1 presents the main features of all eight quantitative models, both behavioral and dynamic competition, along with the Bass diffusion model. The critical differences can be clearly distinguished. Among the behavioral models, the Bass diffusion model was commonly used to approximate the demand movement. Various substitution rules were considered. For example, the basic Bass diffusion model assumes the demand for earlier generations is gradually substituted by the demand for later generations; building on that theory, Mahajan and Muller (1996) incorporated the practical situation of cross-generation substitution into the core model. However, the use of the Bass diffusion model requires inputting several terms of real sale data, and the accuracy of the demand forecasting results are highly dependent on the parameters of that input information. In addition, when using the Bass diffusion model, the number of product generations is pre-determined. These two features make the Bass and Bass-based approaches inappropriate for generating MPG strategies to use during the early product design stages.

Among the dynamic competition models, the existing models specialize in seeking strategies related to various aspects such as pricing, introduction timing, and advertising under different market environments. The models commonly use game theory to evaluate appropriate behaviors for a company toward its market competitors. These models can provide constructive direction for forming competitive strategies in accordance with various types of market environments. Unfortunately, dynamic competition models tend to consolidate theoretical assumptions and are not practical for application to real world situations. Therefore, they do not qualify for modeling a line of MGP.
For our purposes, we require a method that uses historical data, possesses a low level of implementation complexities and computational difficulties, and is highly autonomous. Also, it must dynamically adjust the employed strategy toward the market environment while simultaneously optimizing its overall performance. As none of the above quantitative models possesses all these capacities, we turned to search for quantitative methods in other areas.

In the life history domain within the field of biology, numerous quantitative models have been introduced to explain how to select the optimal strategy to help an organism, at any given point throughout its life-span, to maximize its overall fitness. Among these models, dynamic state variable models (DSVMs) operationalized by stochastic dynamic programming are commonly applied to exemplify the behavior of an organism throughout its life. Different from other quantitative models, DSVMs generate an optimal decision at various decision points according to both the physical constraints and an organism’s physiological state at those decision points. Thus, DSVMs can better simulate the behavior of an organism toward a changing environment and indicate the optimal decision path. We determined that using the DSVM approach on an MGP line should yield good results since it can regard the entire product line as an entity and simulate its potential behaviors. Additionally, because stochastic dynamic programming applies probabilities to account for uncertainty, the DSVM approach should better predict demand using the input of actual sales data.
Table 2-1: The comparison of the eight quantitative models

<table>
<thead>
<tr>
<th>Research</th>
<th>Model Type</th>
<th>Main Focus</th>
<th>Methodology</th>
<th>Inter-generations Substitution Rule</th>
<th>Case Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norton and Bass</td>
<td>Behavioral Model</td>
<td>To model and predict the diffusion and substitution phenomena of multiple</td>
<td>Apply the Bass diffusion model.</td>
<td>Gradual substitution.</td>
<td>Multiple generations of DRAM, SRAM, and MPU/MCU products.</td>
</tr>
<tr>
<td>Mahajan and Muller</td>
<td>Behavioral Model</td>
<td>1. To model and predict the diffusion and substitution phenomena of multiple</td>
<td>Propose a new model extended from the Bass diffusion model.</td>
<td>Gradual substitution, partial cross</td>
<td>IBM Mainframe computer systems.</td>
</tr>
<tr>
<td>(1998)</td>
<td></td>
<td>generation of products.</td>
<td></td>
<td>generation substitution (leap-frogging) and partial cannibalization.</td>
<td></td>
</tr>
<tr>
<td>Bardhan and Chanda</td>
<td>Behavioral Model</td>
<td>To model and predict the diffusion and substitution phenomena of multiple</td>
<td>Propose a new model incorporating the Bass diffusion model.</td>
<td>Gradual substitution and partial cross generation substitution.</td>
<td>IBM GP computer systems.</td>
</tr>
<tr>
<td>Morgan et al.</td>
<td>Behavioral Model</td>
<td>Quality and time-to-market trade-offs between single product generation and</td>
<td>Construct a mixed integer programming model.</td>
<td>None</td>
<td>Arrange a full factorial experiment design testing different setting of parameters.</td>
</tr>
<tr>
<td>(2006)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang and Tseng</td>
<td>Behavioral Model</td>
<td>To predict the product life time and annual shipment of each generation of</td>
<td>Propose a novel two-stage fuzzy piecewise regression method.</td>
<td>None</td>
<td>Product life cycle of 16Mb DRAM.</td>
</tr>
<tr>
<td>Otse and Savvary</td>
<td>Dynamic Competition Model</td>
<td>Dynamic competitive advantages between a market leader and competitors.</td>
<td>Construct a game theory model seeking Markov Perfect Nash Equilibrium (MPNE).</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>(2003)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arslan et al.</td>
<td>Dynamic Competition Model</td>
<td>1. Different types of market competitions. 2. Different replacement strategies. 3. Optimal Pricing strategies.</td>
<td>1. Optimization models are constructed for the monopoly market. 2. A game theory model is built for the duopoly market.</td>
<td>Both complete replacement and coexisting scenarios.</td>
<td>None</td>
</tr>
<tr>
<td>(2009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2 Dynamic State Life History Models in Ecology

As noted in Chapter 1, life history theory looks at the trade-offs among a number of conditions (e.g., growth, maturity, mortality) that an organism faces when making reproduction timing decisions and aims to maximize its fitness throughout its lifespan. It normally assumes that the influences of those conditions are mainly related to an organism’s age (McNamara and Houston, 1996). Clark (1993, p. 205) indicated that “[A]n optimal life history profile for a living organism is to maximize the sum of its current reproduction and expected future reproductive success at each age.” He also noted that since the 1970s, when dynamic programming was first proven capable of formulating life-history scenarios, it has become a major quantitative tool for investigating the optimal reproduction strategies in the ecology domain.

However, there are limitations to adopting an age-based thinking of life-history theory. First, age-based theory can only generate gross yearly allocation decisions, such as the optimal yearly reproductive performance. It has difficulty digging into more detailed fine-scale decisions, such as how to interpret the behavioral phenomena of living organisms (Houston et al., 1988). In fact for a broader perspective of life history theory, many behavioral phenomena (such as foraging, predator avoidance and host selection) should be regarded as life-history traits since they all influence the survival and reproduction of an organism (Clark, 1993). Second, age-based life history theory is unable to handle inter-generational effects. For instance, it cannot take into account a condition under which parents try to increase their average parental care for each offspring by producing fewer children (McNamara and Houston, 1996).

To better explain the decisions an organism confronts in both short-term and long-term movements throughout its lifespan, Houston et al. (1988) proposed a framework for adopting state-based thinking in life-history theory. In the proposed framework, there are four components: 1) a set of variables that represent the state of an organism; 2) a set of actions performed by an organism; 3) dynamics that indicate the status between actions and states; and 4) a state-
dependent reward function that reveals future reproductive success in terms of the state of the organism at the end of a certain time interval. The major difference between traditional age-based models and the newly proposed model is the use of state-dependent variables, which traditional age-based life history models do not contain.

To clarify the term “state” as used in this work, we note that a state variable of an organism may contain numerous components, including its body mass and condition, somatic energy reserves, territory size and quality, foraging skills, parasite load, number of offspring being cared for, the status of its immune system, and age (Clark, 1993; McNamara and Houston, 1996).

In a state-based life history model, stochastic dynamic programming replaces dynamic programming as its optimization approach. According to Houston et al. (1988) and Clark (1993), using a state-based model offers four advantages over using an age-based model: first, dynamic state variables have direct biological meaning and are closer to reality; second, multiple behavioral choices can be analyzed in one unitary model; third, the model can truly reflect actual environmental conditions based on the stochastic setting; and fourth, the constraints set for the variables are directly fitted into the model. On the other hand, a state-based approach still has limitations including low sensitivity to fitness, and the most highly accurate models require numerous variables and involve high computational complexity (Houston et al., 1988; Clark, 1993).

In the next section, the related works addressing the application of DSVMs in life history analysis, particularly those in behavioral ecology, are discussed.

2.3 Related Works of Dynamic State Variable Models in Behavioral Ecology

DSVMs have been proven practical in modeling the behaviors of organisms. Unlike other dynamic models, for each time segment, the decision is made according to a stochastically
selected and pre-defined state. In reality, organisms attempt to adapt to highly changeable environments and behave in terms their physiological statuses. Thus modeling organisms’ behaviors using DSVMs can simulate how they make decisions under a dynamic environment in order to optimize their life and maximize overall fitness.

Houston et al. (1988) first suggested using DSVMs based on stochastic dynamic programming to analyze the behavior of an organism in terms of maximizing its fitness. They demonstrated their proposal using an example of habitat selection among animals. Instead of considering yearly variations, the model focused on the state identified as “transition of the animals’ energy reserve.” By looking at its energy reserve condition, the animal can apply the optimal strategy when choosing its habitat in order to maximize survival probability. After developing this simple example, the authors introduced several existing applications of DSVMs using three types of forage-related cases: foraging among African lions, forage strategy for small birds in winter, and the strategy between forage and courtship of song birds.

McNamara and Houston (1996) interpreted DSVMs as either state-based or state-dependent life-history approaches. They distinguished the state-based approach from the traditional age-based approach and noted the disadvantage of the age-based approach when applied to explain life histories. In addition, they constructed three simplified models considering trade-offs among four factors (maternal survival, maternal condition, offspring survival and offspring condition), and each model addressed optimal reproduction strategy, inter-generational effects, and the effect of maternal rank inheritance.

Mangel and Clark (2000) explained the techniques required to construct and solve basic DSVMs along with ways to analyze the acquired results. In addition, they classified existing research into ten categories and introduced the noted models and cases in each relative category.

Sherratt et al. (2004) formulated a state-dependent model to analyze the forage strategies predators should adopt when the Müllerian mimicry effect exists in their prey. Müllerian mimicry
indicates the condition under which an unpalatable prey mimics another unpalatable prey. A mimic prey may pretend to be the model which is less distasteful. In their study, the authors assumed that different prey contain different levels of toxin, and that a mimic prey tends to mimic a model prey possessing higher toxins. Each predator is assumed to have a constant toxin burden. Therefore, a predator needs to consider its current toxin burden and energy reserve level before making a forage decision. The authors constructed two models to figure out the optimal forage strategy for a certain predator. In the first model, only one single form of toxin was recognized, and the toxin effect was considered to be additive. For the second model, two toxins were identified. In both models, a predator may unluckily encounter no prey at all, or may decide to attack any of the four different prey types it encounters: 1) model control prey: an alternative prey that contains the same level of toxin as the model prey; 2) mimic control prey: an alternative prey that contains the same level of toxin as the mimic prey; 3) model/mimic prey: a prey phenotype that is either the model prey or the mimic prey; or 4) alternative palatable prey: an alternative non-toxic prey that the predator prefers over the rest of the prey. The authors used stochastic dynamic programming to identify the optimal strategies based on backward induction, and discovered the optimal decision rules from forward iteration.

Fenton and Rands (2004) applied a state-dependent approach to model the behavior of macro-parasites during their infective stages. The main objective for a macro-parasite is to find a host and start reproduction. Therefore, during the infective stage, a macro-parasite can decide to adopt either the ambush strategy (rest and reduce the energy consumption) or the cruise strategy (try to find a host while consuming more energy). In the model, a macro-parasite is assumed to die if it uses up all its energy, or if it is not able to find a host by the end of its infective stage. Stochastic dynamic programming was used to identify the optimal parasite infection strategies.

Purcell and Brodin (2007) built a state-dependent stochastic dynamic programming model to investigate the migration strategies of the black brant (Branta bernicla nigricans). In the
autumn, these birds migrate from arctic areas to the Izembek Lagoon on the Alaskan peninsula. When the winter comes, most fly south to the west coast of mainland Mexico or the Canadian Pacific coast, while roughly 5% of the population remains in Izembek. In the spring, the 95% typically migrate back to Izembek. Recently, an increasing number of black brants have begun to stay in the Izembek region rather than migrating. In their model, the authors investigated the main factors resulting in the three migration strategies (migrating to one of two locations in the south, or not migrating). In addition, six external factors were integrated: 1) winter departing day; 2) individual condition; 3) the effect of winds and body fat deposits; 4) behavior through the day; 5) different winter strategies; and 6) the potential effect of global warming.

In the next section, we provide a review of the literature about using quantitative models to assess product similarity.

2.4 Quantitative Models for Product Similarity Assessment

In the existing literature, only a handful of papers have focused on quantitative techniques for distinguishing functional similarity between products. McAdams et al. (1999) proposed a matrix approach for identifying product similarity based on customer needs. It applied functional analysis for a group of products to identify their function structures, including basic functions and flows, and then rated all the functions based on customer needs. The resulting product function matrix with customer needs ratings was then normalized to determine individual functional scores. The authors provided a case study applying the proposed approach to 68 consumer products.

McAdams and Wood (2002) proposed a quantitative metric to identify product similarity for design-by-analogy systems. The proposed similarity metric expresses products as basic functions and flows, and then evaluates functional importance according to customer needs. The
authors demonstrated their design-by-analogy process incorporating the product similarity metric in an electrical guitar pickup sander design case study.

Kalyanasundaram and Lewis (2011) proposed a function-based matrix approach to verify the similarity between two products based on their component levels in order to integrate them into reconfigurable products. The proposed approach includes a three-phase process. First, the functional structure for the reconfigurable product is generated from parent products. Next, the function sharing and functional similarity of the two parent products are verified. Finally, the functions from each of the parent products are mapped to its components and the component-sharing potential for components from the two parent products is identified. The authors presented a case study applying the proposed approach for combining a power drill and a dust buster into a reconfigurable product.

Within the area of product family study, research has investigated commonality among products in a product family. Thevenot and Simpson (2006) reviewed six product commonality indices and proposed a framework to incorporate them into the product family redesign process. Subsequently, Thevenot and Simpson (2007) compared two product dissection experiments to examine the potential variation when using data gathered from the product dissection process with the implementation of the product line commonality index (PCI).

Based upon relevant prior work, this dissertation presents the development of a simplified product similarity strategy for use when the modeled MGP line is brand new.

2.5 Logistic Curves in Technology Forecast

Logistic curves, also known as the S-curves, have been used extensively in various applications to model competition between subsystems (Marchetti, 1987). Marchetti categorized the competition scenarios between subsystems fitted with logistic curves into three main cases: 1) self competition: a single species competes against itself with access to limited resources; 2) one-
to-one competition: a new species enters a niche which belongs to another; and 3) multiple competitions: multiple-species compete in the same niche, and new species sequentially enter the niche while obsolete ones gradually fade out. Subsequently, Modis (2007) indicated that in competition, logistic growth is natural growth. He applied logistic curves to more than 15,000 historical time series data points and concluded that the action of a natural law generates well established logistic growth.

Fisher and Pry (1971) first introduced logistic curves to forecast the evolution of technology. They proposed a simple model to forecast the substitution process between two technologies. Their model was based on the one-to-one competition scenario, and it assumed that the percentage of the substitution ratio between the new and the old technology was proportional to the remaining share of the old to be substituted, and that the substitution would continue until its completion. The authors provided numerous illustrative cases, from the substitution between synthetic fiber and cotton to the substitution between detergents and natural soap, to validate the effectiveness of the model.

Marchetti and Nakicenovic (1979) proposed the multiple-competition model to deal with the scenario that multiple technologies compete in the market. The model is generalized from the Fisher-Pry model. However, differing from the Fisher-Pry model, they considered that the lifecycle of a technology is not fully logistic, and that the substitution process of a technology usually terminates before completion. They assumed every technology undergoes three different substitution phases—growth, saturation, and senescence—and only the growth and senescence phases follow the logistic substitution. The model was later applied to verify the substitution of primary energy sources in the world.

In the following sections, we provide the research questions and the research target for this study.
2.6 Research Questions

As per our literature review, we assert that the existing quantitative models fall short in responding to the decision needs for MGP lines. As per our review of life history models and the parallels between MGPs and living organisms, we hypothesize that DSVMs can be used to effectively predict the strategy for an MGP line. From this hypothesis, two research questions flow:

1. Can a dynamic state variable model based framework appropriately predict the behaviors of a multiple-generation product line?

2. Could the proposed framework provide companies with the abilities to adjust their operational strategies according to market contingencies?

2.7 Research Target

In this research, the main objective is to develop a framework that can help companies to properly plan and manage an MGP line against high market variability and to predict the performance of this product line. Adapting a concept from behavioral ecology, the framework considers a product line as a living organism and models all potential decisions toward this product line. The problem is modeled as a DSVM. All potential exterior events are assumed to appear randomly. Since the DSVM analysis can incorporate random events, stochastic dynamic programming is applied to solve the problem in two ways; backward iteration is used to look for the optimal strategies, and forward iteration is used to verify the acquired optimal strategies.

The proposed framework includes two scenarios. In the first scenario (full substitution), we consider that when a successive product generation is introduced to the market, the current product generation is withdrawn from the market immediately. The details of this scenario are introduced in Chapter 3. The second scenario (cannibalization) considers the situation in which
the current product generation remains in the market when its successor enters the market. This scenario is addressed in Chapter 4.

The proposed framework is applied to two data sets. The first contains data on four generations of an IBM mainframe computer product line, adopted from Mahajan and Muller (1996). Using the set, we intend to verify the validity of the full substitution scenario under the proposed framework and then compare the optimal timing strategy derived from our framework to previous findings. For the second data set, the proposed framework incorporating cannibalization is applied to Apple Incorporation’s iPhone product line to compare the timing decision and the predicted performance.
Chapter 3

Methodology (I) – Full Substitution Scenario

In this chapter, we introduce our proposed methodology for the full substitution scenario. The proposed methodology is then applied to a case study of IBM mainframe systems.

3.1 The Basic Model

In this research, we propose a framework that incorporates two distinct market scenarios. The core of this framework is a DSVM based on stochastic dynamic analysis. The goal of this framework is to enable companies to simulate their product line configurations and formative market strategies when planning for MGP lines during early product design stages.

The proposed framework regards an MGP line as a living organism and considers a company’s planned market strategies as potential behaviors. When applying the DSVM to this framework, we identified the “state” as the main decisive measure and necessarily time dependent. In the field of ecology, states are usually defined as an organism’s energetic reserve level or fat reserve level. In the proposed framework, states indicate the profit earned in each time period, and that profit is considered to be dependent between every two consecutive time periods. Table 3-1 shows a direct comparison between the different settings in the DSVM in ecology and in MPG lines.
Table 3-1: The comparison between dynamic state variable model settings in ecology and in multiple-generation product lines

<table>
<thead>
<tr>
<th>Subject</th>
<th>General life history model in ecology</th>
<th>Multiple-generation product line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Maximize fitness</td>
<td>Maximize profit</td>
</tr>
<tr>
<td>State</td>
<td>Energetic reserve level</td>
<td>Profit earned in each time period</td>
</tr>
<tr>
<td>Behavior</td>
<td>Foraging, rest or reproduction</td>
<td>Growth, decay or introducing the successive generation of product</td>
</tr>
</tbody>
</table>

In our model, the objective is to maximize the total profit earned throughout the entire life cycle of the MGP line. The model can simulate the entire scenario and indicate the optimal strategies and number of product generations a company should plan for during an entire product line’s lifecycle. In this section we only present the basic model, which does not consider many complicated scenarios such as cannibalism or market fluctuations. Our basic model is based on the following assumptions. First, a company plans to release an MGP line within a specific time period, starting at $t = 1$ and ending at $t = T$. Second, the occurrence of events in period $t+1$ result in either an increase or a decrease in profit, and are based on the pre-determined probabilities of the chosen strategy and profit in the previous time period (t). Third, all moves are based on pre-determined rules. For example, the alternative strategy for introducing the next generation of a product arises only if the current profit level meets a pre-determined threshold H. Fourth, in our model, the successive generation is assumed to fully substitute for the current generation. Last, each generation of the product is assumed to have an equal unit price which is 1 unit; thus, revenue is linear to product sales volume. Table 3-2 includes all the parameters in the model. Next, we introduce the basic model.
Table 3-2: All the parameters in the model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Threshold for introducing the successive generation of product. Unit is state.</td>
</tr>
<tr>
<td>IL</td>
<td>Initial sales level. Unit is state.</td>
</tr>
<tr>
<td>P_{Agg}</td>
<td>Probability for profit increase when applying the aggressive strategy.</td>
</tr>
<tr>
<td>P_{Con}</td>
<td>Probability for profit increase when applying the conservative strategy.</td>
</tr>
<tr>
<td>P_{Decr}</td>
<td>Probability for profit decrease.</td>
</tr>
<tr>
<td>A_1</td>
<td>The more sales increment when applying the aggressive strategy. Unit is state.</td>
</tr>
<tr>
<td>A_2</td>
<td>The less sales increment when applying the aggressive strategy. Unit is state.</td>
</tr>
<tr>
<td>C_1</td>
<td>The more profit increment when applying the conservative strategy. Unit is state.</td>
</tr>
<tr>
<td>C_2</td>
<td>The less profit increment when applying the conservative strategy. Unit is state.</td>
</tr>
<tr>
<td>D_1</td>
<td>The less profit decrement when applying the decrease strategy. Unit is state.</td>
</tr>
<tr>
<td>D_2</td>
<td>The more profit decrement when applying the decrease strategy. Unit is state.</td>
</tr>
<tr>
<td>UP</td>
<td>Unrealized profit under the strategy if introducing the successive generation of product.</td>
</tr>
<tr>
<td>C_{Agg}</td>
<td>Cost involved when adopting the aggressive increasing strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Con}</td>
<td>Cost involved when adopting the conservative increasing strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Decr}</td>
<td>Cost involved when adopting the decreasing strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Intro}</td>
<td>Costs involved in introducing the successive generation of product. Unit is state.</td>
</tr>
<tr>
<td>C_{Det}</td>
<td>Deletion costs of current generation of product. Unit is state.</td>
</tr>
<tr>
<td>T</td>
<td>Entire (multiple-generation) product life span. Unit is year.</td>
</tr>
<tr>
<td>$X(t)$</td>
<td>Amount of profit at the start of time period t. Unit is state.</td>
</tr>
<tr>
<td>U_b</td>
<td>Upper bound for profit in any time period t. Unit is state.</td>
</tr>
<tr>
<td>L_b</td>
<td>Lower bound for profit in any time period t. Unit is state.</td>
</tr>
</tbody>
</table>

First, we define the function $F(x, t)$ as:

$$F(x, t) = \text{maximum expected profit between time period } t \text{ and time period } T,$$

which is the expected end of life of the MGP line. Given that $X(t) = x$.

(Eq. 3-1)

$F(x, t)$ represents the optimal strategy selected in each time period t. The actual optimal profit of the entire product line is acquired by $F(x, T)$ at the last time period.

After defining $F(x, t)$, next we need to consider the optimal profit values corresponding to the strategy chosen at each time period t preceding time period T. Let
\(V_i(x, t) \) = the optimal profit when strategy \(i \) is selected for time period \(t \) from time period \(t+1 \) onward, given that \(X(t) = x \).

(Eq. 3-2)

In our model, we consider four different strategies. At each time period \(t \), the company can choose from two strategies to increase its profit, one strategy to decrease its profit, or it can introduce the next generation of product. Among the strategies with increment tendencies, we include an aggressive strategy and a conservative strategy. When choosing the aggressive strategy to increase profit during the term, the company must pay more in expenses for promoting its current generation of product, but doing so might return a higher sales increment. We introduce the two profit increase strategies and the profit decrease strategy.

1. The aggressive strategy when profit is in an increasing manner:

\[
X_1(t + 1) = \begin{cases}
 x - C_{Agg} + A_1 & \text{with probability } P_{Agg} \\
 x - C_{Agg} + A_2 & \text{with probability } (1 - P_{Agg})
\end{cases}
\]

where \(A_1 > A_2 \).

(Eq. 3-3)

The aggressive strategy is the condition under which a company aims to achieve the highest sales increase for the target product generation during one time period of its growth lifecycle stage. To reach the goal, the company must invest more effort and expense into promoting the product generation to arouse customer interest and influence purchase decisions. Therefore, selecting the aggressive strategy involves a high level of advertising and promotion costs, but it could potentially bring in the highest sales as well as profits.
Equation 3-3 indicates the potential state shifts with relative occurrence probabilities when selecting the aggressive strategy. For the first condition, the profit increases rapidly from its current state to a higher state than the second situation with a probability, P_{Agg}. The following equation, Eq. 3-4, presents the stochastic dynamic programming formulation of the optimal profit when selecting the aggressive strategy:

$$V_1(x,t) = P_{\text{Agg}} F(x - C_{\text{Agg}} + A_1, t + 1) + (1 - P_{\text{Agg}}) F(x - C_{\text{Agg}} + A_2, t + 1)$$

(Eq. 3-4)

2. The conservative strategy when profit is in an increasing manner:

$$X_2(t + 1) = \begin{cases}
 x - C_{\text{Con}} + C_1 & \text{with probability } P_{\text{Con}} \\
 x - C_{\text{Con}} + C_2 & \text{with probability } (1 - P_{\text{Con}})
\end{cases}$$

where $C_1 > C_2$

(Eq. 3-5)

The conservative strategy is usually adopted under two market scenarios. In the first the target product generation is still in its growth lifecycle stage, but the company is reluctant to incur high expenses to promote that product generation. In this situation, product sales still go up but in a mild manner. In the second scenario, the market demand is nearly saturated and there is limited space for high sales gain. This situation usually occurs when the product generation is in its maturity lifecycle stage. Accordingly, the company will still advertise and promote the product generation, but it will show a lower sales increase than it would using the aggressive strategy.

Equation 3-5 indicates the two possible conditions when selecting the conservative strategy. Profit may slightly increase from its current state with a probability, P_{Con}. Equation 3-6
provides the optimal profit when selecting the conservative strategy in the stochastic dynamic programming form.

\[
V_2(x, t) = P_{\text{Con}} F(x - C_{\text{Con}} + C_1, t + 1) + (1 - P_{\text{Con}}) F(x - C_{\text{Con}} + C_2, t + 1) \quad (\text{Eq. 3-6})
\]

It is noted that the relation between \(A_1, A_2, C_1 \) and \(C_2 \) is: \(A_1 > C_1 \geq A_2 \geq C_2 \).

3. The strategy for profit drop:

\[
X_3(t + 1) = \begin{cases}
x - C_{\text{Decr}} - D_1 & \text{with probability } P_{\text{Decr}} \\
x - C_{\text{Decr}} - D_2 & \text{with probability } (1 - P_{\text{Decr}})
\end{cases}
\]

where \(D_1 < D_2 \)

\[
(\text{Eq. 3-7})
\]

The strategy for profit drop usually takes place when the market demand for the product generation is saturated and there is no room for sales increase. When this occurs, however, the successive product generation may be still under development and not yet ready to be introduced to the market.

When selecting the strategy for generating a profit drop, profit may drop deeply with a probability \(P_{\text{Decr}} \) or drop moderately with a probability, \((1 - P_{\text{Decr}}) \) (Equation 3-7). Equation 3-8 shows the stochastic dynamic programming formulation for optimal profit under the profit drop strategy:

\[
V_3(x, t) = P_{\text{Decr}} F(x - C_{\text{Decr}} - D_1, t + 1) + (1 - P_{\text{Decr}}) F(x - C_{\text{Decr}} - D_2, t + 1) \quad (\text{Eq. 3-8})
\]
In addition, for each time period \(t \), profit is constrained between a set of boundaries, \(U_b \) and \(L_b \).

Alternatively, the company may choose to introduce the successive generation of the product rather than to apply any of the three strategies if the current profit exceeds the threshold \(H \). Introducing the successive generation of a product may incur the costs of deleting the current generation of the product. However, it may bring the company the highest return as future profit. Since this model assumes the successive generation will completely substitute for the current generation in the market, we also assume that at the time of its introduction, profit would drop to its initial level. This immediate drop in profit and unrealized expected future benefits may be regarded as unrealized profit and should be included when evaluating the corresponding optimal profit of this strategy. Equation 3-11, Equation 3-12 and Equation 3-13 show the formulations for these conditions. Note that Equation 3-13 indicates the company cannot choose to introduce the successive generation if current profit does not reach the threshold \(H \).

If \(X(t) \geq H \),

\[
X_4(t+1) = IL \tag{Eq. 3-11}
\]

\[
V_4(x,t) = F(IL,t + 1) + UP - C_{det} \tag{Eq. 3-12}
\]

Otherwise,

\[
V_4(x,t) = 0 \tag{Eq. 3-13}
\]
In addition, for each time period t, since $F(x, t)$ is the maximum expected profit given that $X(t) = x$, $F(x, t)$ should be assigned the maximal expected revenue values for the following four strategies:

$$
F(x, t) = \max \{V_1(x, t), V_2(x, t), V_3(x, t), V_4(x, t)\}
$$

(Eq. 3-14)

3.2 Case Study I – IBM Mainframe Systems

To verify our model, we tested it on a published case study. The data for this case is adopted from Mahajan and Muller (1996). The systems are four successive generations of IBM mainframe computers that appeared in the market across a 24-year timespan (1955-1978) with sales of 301,226 units. Table 3-3 presents the adopted dataset, showing the number of systems in use by year. We can see that the highest and the lowest volume of any single generation was 19,412 for the third generation in 1970 (highest) and 3 for the second generation in 1959 (lowest).

From Table 3-3, we observe one trait that the sales for current product generation drop immediately when a successive product generation is introduced to the market. Rationally, the scenario did not involve a full substitution strategy among product generations. In this case study, since our model requires the input of data from a fully substituted MGP line, we only used the positive sales differences between two consecutive time periods into the two increasing strategies, which is exactly the data before the successive generation became available for each product. As for the negative sales differences, they are set to the decrease strategy. The detailed sales differences between every consecutive time period are shown in Table 3-4. Therefore, the strategy settings for this case study would not conflict to the full substitution assumption.

To demonstrate our proposed methodology, we transferred this dataset into a dynamic state model. First, we defined the number of states to use in the model. Clark and Mangel (2000) indicated the potential for using up to 100 states. Thus, we regarded all numbers as product sales, and we considered that using 30 states could sufficiently discriminate the sales number for each
year. We assumed no knowledge of unit prices and costs; accordingly, we simply used sales to imply profit and set all costs to be 0. Therefore, in this case each state approximately equals 650 units of computer systems.

Table 3-3: The circulation data of four generations of IBM mainframe computer systems (Adopted from Mahajan and Muller (1996))

<table>
<thead>
<tr>
<th>Introduction Time</th>
<th>Year</th>
<th>Generation 1</th>
<th>Generation 2</th>
<th>Generation 3</th>
<th>Generation 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1955</td>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>1956</td>
<td>560</td>
<td></td>
<td></td>
<td></td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>1957</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>1958</td>
<td>1680</td>
<td></td>
<td></td>
<td></td>
<td>1680</td>
</tr>
<tr>
<td>2</td>
<td>1959</td>
<td>2542</td>
<td>3</td>
<td></td>
<td></td>
<td>2545</td>
</tr>
<tr>
<td></td>
<td>1960</td>
<td>2640</td>
<td>880</td>
<td></td>
<td></td>
<td>3520</td>
</tr>
<tr>
<td></td>
<td>1961</td>
<td>2350</td>
<td>2510</td>
<td></td>
<td></td>
<td>4860</td>
</tr>
<tr>
<td></td>
<td>1962</td>
<td>1820</td>
<td>4725</td>
<td></td>
<td></td>
<td>6545</td>
</tr>
<tr>
<td></td>
<td>1963</td>
<td>1170</td>
<td>7720</td>
<td></td>
<td></td>
<td>8890</td>
</tr>
<tr>
<td></td>
<td>1964</td>
<td>750</td>
<td>10940</td>
<td></td>
<td></td>
<td>11690</td>
</tr>
<tr>
<td>3</td>
<td>1965</td>
<td>455</td>
<td>13090</td>
<td>625</td>
<td></td>
<td>14170</td>
</tr>
<tr>
<td></td>
<td>1966</td>
<td>303</td>
<td>13330</td>
<td>3881</td>
<td></td>
<td>17514</td>
</tr>
<tr>
<td></td>
<td>1967</td>
<td>203</td>
<td>9977</td>
<td>8125</td>
<td></td>
<td>18305</td>
</tr>
<tr>
<td></td>
<td>1968</td>
<td>170</td>
<td>6896</td>
<td>13110</td>
<td></td>
<td>20176</td>
</tr>
<tr>
<td></td>
<td>1969</td>
<td>49</td>
<td>4646</td>
<td>17687</td>
<td></td>
<td>22382</td>
</tr>
<tr>
<td></td>
<td>1970</td>
<td>29</td>
<td>3297</td>
<td>19412</td>
<td></td>
<td>22738</td>
</tr>
<tr>
<td>4</td>
<td>1971</td>
<td>14</td>
<td>2916</td>
<td>17529</td>
<td>806</td>
<td>21265</td>
</tr>
<tr>
<td></td>
<td>1972</td>
<td>6</td>
<td>2384</td>
<td>14909</td>
<td>2922</td>
<td>20221</td>
</tr>
<tr>
<td></td>
<td>1973</td>
<td>4</td>
<td>2079</td>
<td>10475</td>
<td>5887</td>
<td>18445</td>
</tr>
<tr>
<td></td>
<td>1974</td>
<td>4</td>
<td>1676</td>
<td>8060</td>
<td>8440</td>
<td>18180</td>
</tr>
<tr>
<td></td>
<td>1975</td>
<td>3</td>
<td>1397</td>
<td>6450</td>
<td>9335</td>
<td>17185</td>
</tr>
<tr>
<td></td>
<td>1976</td>
<td></td>
<td>1107</td>
<td>5919</td>
<td>9046</td>
<td>16072</td>
</tr>
<tr>
<td></td>
<td>1977</td>
<td>894</td>
<td>5118</td>
<td>10450</td>
<td></td>
<td>16462</td>
</tr>
<tr>
<td></td>
<td>1978</td>
<td>829</td>
<td>4641</td>
<td>11348</td>
<td></td>
<td>16818</td>
</tr>
</tbody>
</table>

Next we formulated our stochastic dynamic programming model. To solve it, we applied backward iteration and started from the last term $F(x, T)$. The end condition, $F(x, T)$, was also required for this iteration. According to Table 3-3, IBM sold 11,348 of the newest generation of systems in 1978 and 301,226 systems in total over the entire 24 years. After transferring these numbers into our defined states, we had $x = 17$ and $F(17, 24) = 11,348/650 \approx 463$. Since we now had $F(17, 24) = 463$, we needed a way to generate the end condition for all other states. We
expected the end conditions to increase from 463 as states go up from 17 and to decrease as states move downward. To fulfill the above requirements, we developed a simple non-linear function to derive $F(x, T)$ for every state x. The equation for the end condition is as follows:

$$\text{End Condition (EC)} = 463 \left[1 + \left(\frac{x - 17}{30} \right)^3 \right] \quad (\text{Eq. 3-15})$$

Next, we defined the parameters to use in the model for the four strategies. Table 3-4 shows the yearly sales increment and decrement for each generation, achieved by calculating the sales difference between every two consecutive years for each generation.

In Table 3-4, we can see two common features across the first three generations. First, the sales increment suddenly shrinks before entering to the sales peak. Second, the sales decrement becomes moderate after decreasing rapidly for several years. The fourth generation does not reach its sales peak until 1978, thus obscuring any trends. We used regression analysis to determine both types of increment slopes as well as the decrement slopes for these three generations. The results are shown in Table 3-5.

In Table 3-5, we can see that sales volumes are transferred into relative shifts in states. We identified the steep increase in sales as the aggressive increase strategy, the moderate increase as the conservative increase strategy, and both the steep decrease and moderate decrease as the decrease strategy. By selecting only the extreme value, we now had $(A_1, A_2, C_1, C_2, D_1, D_2) = (7, 1, 3, 0, 0, 4)$. As for the probabilities of $P_{\text{Agg}}, P_{\text{Con}}$ and P_{Decr}, we used $P_{\text{Agg}} = 0.5$, $P_{\text{Con}} = 0.33$ and $P_{\text{Decr}} = 0.67$ based on the occurrence tendencies from Table 3-5.

As for the strategy of introducing a newer product, IBM issued successive generations of its mainframe system in 1959, 1965, and 1971, where the sales of the then-current generation reached 2,542, 13,090 and 17,529, respectively. However, the sales level of the first generation
when introducing the second generation was significantly lower than those for the other two generations; hence, in our model we used the sales level of the second generation for the year in which the third generation comes to the market as our introduction threshold, \(H \). Thus, \(H \) is set as state 20. First year sales for every generation of product ranged from 3 to 806, so we set the initial sales level as state 1. As for the unrealized profit, we needed to use a value higher than state 19; thus, we simply set \(UP = 25 \). In addition, the \(U_b \) and \(L_b \) for each was state 30 and state 1.

<table>
<thead>
<tr>
<th>Gen. 1</th>
<th>Gen. 2</th>
<th>Gen. 3</th>
<th>Gen. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>560</td>
<td>1000</td>
<td>1680</td>
</tr>
<tr>
<td>2542</td>
<td>2640</td>
<td>2350</td>
<td>1820</td>
</tr>
<tr>
<td>750</td>
<td>455</td>
<td>303</td>
<td>203</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1107</td>
<td>894</td>
</tr>
</tbody>
</table>

Table 3-4: Sales increment/decrement analysis for each generation

To solve this model, we wrote a program called the “Multiple-Generation Product Line Simulator” using Excel VBA. The VBA code for the program is provided in Appendix A. Figure 3-1 illustrates the interface of the program, and Figure 3-2 shows the output result from the program. Figure 3-2 indicates the optimal strategy that should be implemented at every state for
each time period before entering the next term. Figure 3-3 is graphed from Figure 3-2 and clearly
displays the decision space for all four strategies. Each color indicates the best strategy to
implement in order to maximize overall profits for a certain time and state. The program also
provides the optimal expected sales when starting with initial sales at state 1, which is 537.8530.

Table 3-5: The regression results for four different types of sales tendency for the first three generation of
IBM mainframe systems

<table>
<thead>
<tr>
<th>Type of Slope</th>
<th>Gen. 1 In Sales</th>
<th>Gen. 1 In State</th>
<th>Gen. 2 In Sales</th>
<th>Gen. 2 In State</th>
<th>Gen. 3 In Sales</th>
<th>Gen. 3 In State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steep Increase</td>
<td>582.4</td>
<td>+1</td>
<td>2306.82</td>
<td>+4</td>
<td>4335.3</td>
<td>+7</td>
</tr>
<tr>
<td>Moderate Increase</td>
<td>98</td>
<td>0</td>
<td>240</td>
<td>0</td>
<td>1725</td>
<td>+3</td>
</tr>
<tr>
<td>Steep Decrease</td>
<td>-423.96</td>
<td>-1</td>
<td>-2539.7</td>
<td>-4</td>
<td>-2790.03</td>
<td>-4</td>
</tr>
<tr>
<td>Moderate Decrease</td>
<td>-30.71</td>
<td>0</td>
<td>-319.57</td>
<td>0</td>
<td>-622.8</td>
<td>-1</td>
</tr>
</tbody>
</table>

Figure 3-1: The interface of the program “Multiple-Generation Product Line Simulator”
Figure 3-2: The output strategy map from the program “Multiple-Generation Product Line Simulator”

State	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 3-3: The decision space for each of the four strategies
To predict the possible moves of the MGP line according to the optimal strategy map generated by our model, we applied the Monte Carlo forward iteration to simulate the lifetime of this MGP line. The algorithm for this iteration is as follows:

1. At time $t = 1$, start at the initial state, which is state 1 in this case.
2. Move following the optimal strategies shown in Figure 3-2. If the best strategies are strategy 1 to 3, generate a random variable r, where $0 \leq r \leq 1$.
 a. If the best strategy is strategy 1:
 i. If $r \leq P_{Agg}$, then $X(t+1) = X - C_{Agg} + A_1$
 ii. If $r > P_{Agg}$, then $X(t+1) = X - C_{Agg} + A_2$
 b. If the best strategy is strategy 2:
 i. If $r \leq P_{Con}$, then $X(t+1) = X - C_{Con} + C_1$
 ii. If $r > P_{Con}$, then $X(t+1) = X - C_{Con} + C_2$
 c. If the best strategy is strategy 3:
 i. If $r \leq P_{Decr}$, then $X(t+1) = X - C_{Decr} - D_1$
 ii. If $r > P_{Decr}$, then $X(t+1) = X - C_{Decr} - D_2$
3. If the best strategy is strategy 4, then set $X(t+1) = 1$.

After simulating the iteration, we acquired a set of product line life cycle prediction results. We again used Excel VBA and created a new program called the “Monte Carlo Forward Iteration Simulator” to perform the iteration on existing optimal strategies. The program code is provided in Appendix B. Figure 3-4 illustrates the predicted product line life cycle generated from the iteration, showing that there are four generations of the product, and that the successive generations are introduced to the market in years 5, 12 and 18.
To validate the forecasting performance of our proposed model, we compared our results to those from Mahajan and Muller (1996). We first compared our lifetime predictions to Mahajan and Muller's and to the real data. We set the introduction years matching the real data as years 1, 6, 11 and 17, and then ran 50 Monte Carlo forward iterations based on the strategy map in Figure 3-2. We removed 23 unfeasible simulated predictions that included unexpected introduction years. For the remaining 27 predictions, we calculated the average states for each year. The comparison of our simulated results, the diffusion and substitution model output from Mahajan and Muller (1996), and the real data is shown in Figure 3-5. Note that we transferred all volumes of the mainframe systems from Mahajan and Muller and the real data into relative states, and we revealed only the volume data before the introduction of each successive product generation.
In Figure 3-5, we can see that for the entire second generation and the first four years of the fourth generation, our simulated lifetime prediction was fairly close to the real data. Interestingly, the diffusion and substitution model did not provide the same level of accuracy as our model. However, for the first and the third product generation, the model output from Mahajan and Muller (1996) generated a better prediction than our approach.

Next we compared the acquired introduction years for the third and the fourth generation from the iteration to real data and the optimal introduction years suggested by Mahajan and Muller (1996). We used the iteration to simulate 50 product line lifecycles, and selected only those lifecycles that included four generations of the product. The introduction years for the third and the fourth product generations for the 24 remaining product line lifecycles are summarized in Table 3-6 and Table 3-7. For each generation, we calculated the weighted-sum for each year, added up all the weighted-sum values, divided the acquired value by 24, and then rounded it up to the nearest integer value. The average introduction years of our proposed model for the third and the fourth generation of the product are year 12 (1966) and year 18 (1972). Table 3-8 illustrates
the direct comparison between our results to the optimal results from Mahajan and Muller and to the real data.

Table 3-6: The best introduction year for introducing generation 3

<table>
<thead>
<tr>
<th>Year</th>
<th>Times</th>
<th>Weight sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 (1963)</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>10 (1964)</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>11 (1965)</td>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>12 (1966)</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>13 (1967)</td>
<td>6</td>
<td>78</td>
</tr>
<tr>
<td>14 (1968)</td>
<td>4</td>
<td>56</td>
</tr>
<tr>
<td>15 (1969)</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Average Year 11.9166667

Table 3-7: The best introduction year for introducing generation 4

<table>
<thead>
<tr>
<th>Year</th>
<th>Times</th>
<th>Weight sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 (1967)</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>14 (1968)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15 (1969)</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>16 (1970)</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>17 (1971)</td>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td>18 (1972)</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>19 (1973)</td>
<td>8</td>
<td>152</td>
</tr>
<tr>
<td>20 (1974)</td>
<td>2</td>
<td>40</td>
</tr>
</tbody>
</table>

Average Year 17.7083333

Table 3-8: Comparison between the proposed model, Mahajan and Muller (1996) and the real data

<table>
<thead>
<tr>
<th></th>
<th>Introduction Year for Generation 3</th>
<th>Introduction Year for Generation 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed model</td>
<td>1966</td>
<td>1972</td>
</tr>
<tr>
<td>Real data</td>
<td>1965</td>
<td>1971</td>
</tr>
</tbody>
</table>

From Table 3-8, we can see that our proposed method generated a set of years which are both only one year off from the actual introduction years. Mahajan and Muller (1996) used different parameters and generated two pairs of optimal introduction years. In one pair, both results are two years earlier than the real data (1963, 1969), and in the other, both are one year
earlier (1964, 1970). In point of fact, identifying which prediction was better is difficult since we do not have detailed revenue information to apply further financial analysis. However, our approach has several advantages over that of Mahajan and Muller's. First, our proposed framework can automatically generate introduction years for every product generation. Mahajan and Muller’s model requires repetitive optimization procedures for the current and the successive product generation to determine the introduction time for each generation; additionally, the input parameters for every optimization procedure need to be generated separately. Thus, our model is intuitive and less time-consuming when generating introduction timings than Mahajan and Muller’s model. Second, our approach has much less computational complexity. Compared to Mahajan and Muller’s method, which requires additional in-depth information input and multiple differential equations to achieve optimal introduction timings, our proposed approach is based on stochastic dynamic programming and requires relatively low computation complexity.

In addition, we do an additional sensitivity analysis on five different introduction threshold (H) settings to see how would the introduction states vary with time. The result is shown in figure 3-6.

![Figure 3-6: The introduction states from different introduction threshold settings](image)
We can see that since we consider H has a constant value, the introduction states remain the same value as the H setting most of the time. However, when H is equal or higher than State 20 at $t = 20$, introducing a successive product generation becomes much stricter since the introduction states all jump up to State 25. In addition, when time is over $t = 20$, the product line lifetime is close to the end and introducing a successive product generation is no longer an ideal strategy to apply.

In this case study, we input only approximate data to achieve the acceptable results shown above. Further sensitivity analyses on parameters are still required to see how we can better predict the actual data and how parameter settings affect the results. We try different ways to generate values used in every strategy, and we apply different settings to formulate the end condition.
Chapter 4

Methodology (II) – The Cannibalization Scenario

In this chapter, we introduce the proposed methodology with the second scenario, which entails cannibalization. In it, MGPs compete simultaneously in the same market. The cannibalization model is introduced in Section 4.1. Using this model, we consider two types of applications. For the first, the cannibalization model is applied to forecast the lifetime performance of an on-going MGP line based on limited existing sales data. This application is discussed in Section 4.2. For the second application, presented in Section 4.3, the same model is applied to forecast the lifetime performance of a brand new product line not yet introduced to the market, using the sales data of a similar existing product line. In Section 4.4, we introduce the technology evolution model, in which cannibalization is incorporated with technology evolution concern.

4.1 Model Construction

Like the full substitution scenario, the cannibalization model includes two stages. For the first, we formulated a DSVM to predict the sales behaviors of the entire MGP line. With the solution of the DSVM, we obtained strategy maps for the product line, identifying the best time-state strategy for any given product generation to adopt within the entire product line lifecycle. We consider these strategy maps to be the core value for applying DSVMs on MGP lines. They directly indicate the best strategic move for a company to adopt at each time and market state to achieve the highest profits. For the second stage, we applied Monte Carlo forward iteration to simulate predicted lifecycle performances for the MGP line. In this chapter, unlike in Chapter 3, we have moved the setting explanation of the iteration to an independent sub-section that follows formulation of the model. There are two reasons for this
move. First, we modified the settings and procedures of the typical Monte Carlo forward iteration to work with the cannibalization scenario. Second, the modified iteration is repetitively applied throughout all the sections in this chapter.

4.1.1 The Cannibalization Model

The core of the cannibalization model is the DSVM. The model is based on the following assumptions. First, we assume a company plans to launch a new multi-generation product line to the market between a certain time interval \(t = 1 \) to \(t = T \). Second, from time period \(t \) to \(t+1 \), sales of each product generation currently in the market may either increase or decrease, following a stochastic process based on the strategy it selects. Third, all moves are based on pre-determined rules. In a DSVM, the objective is not assumed to be moving randomly but acting within the preselected strategies. Fourth, each product generation is independent from every other in sales tendency. Fifth, cannibalization occurs among product generations; that is, when the company releases a new generation of the product, the existing product generations are not withdrawn from the market, and multiple generations of the product may coexist in the same market, lessening each others’ profit. Sixth, when a successive generation comes into the market, the existing product generations no longer grow in sales but rather start to decay. Seventh, the overall sales behavior of the MGP line is assumed to be symmetric across the time period, \((T+1)/2\). This assumption is derived from both the diffusion of innovations by Rogers (1995) and observations from real product lines. Rogers (1993) indicated that the distribution of the adoption of innovations by individuals follows a bell-shaped curve. In addition, we observed the sales behaviors of several terminated or still on-going MGP lines (e.g., IBM Mainframe systems, Apple iPhones, etc.) and found that both the life cycle sales for every individual product generation and the overall product lines approach a symmetric bell-shaped. And the last, every product generation is assumed to have a common unit price of 1 unit; thus, product sales volume can directly represent revenue. Table 4-1 includes all the parameters we used in the DSVM. In our model,
we used one DSVM with mixed strategies, including both sales increase and sales decrease scenarios. However, the choice of strategy for each state and time was separate and independent for each scenario. Therefore, each scenario had its own unique objective function under the same state and time. As the proposed DSVM involved the cannibalization condition, we now start introducing the cannibalization model and the various strategies involved.

To begin with the cannibalization model, we first define the expected profit function $F_i(x, t)$ as:

\[
F_i(x, t) = \text{maximum expected profit between time period } t \text{ and the expected end of life of the multiple-generation product line for sales scenario } i, \text{ given that } X(t) = x.
\]

(Eq. 4-1)

In this model, since we only have two different sales scenarios (increase or decrease), there are two cases for i. These are $F_1(x, t)$ and $F_2(x, t)$, each representing the optimal strategy at state x in time period t of the sales increase scenario and sales decrease scenario. The actual optimal profit of the entire product line, $F_i(x, T)$, is acquired by summation of all the expected profits at the last time period.

After defining $F_i(x, t)$, we need to clarify the expected profit values corresponding to the strategy chosen at state x and time period t, preceding time period T.

Let,

\[
J(x, t) = \text{the optimal profit when strategy } j \text{ is selected for time period } t \text{ from time period } t+1 \text{ onward, given that } X(t) = x.
\]

(Eq. 4-2)
Table 4-1: Cannibalization model parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Th(t)$</td>
<td>Threshold for introducing the successive generation of product at time period t. Unit is state.</td>
</tr>
<tr>
<td>$Agg(t)$</td>
<td>Product sales when applying aggressive increase strategy at time period t. Unit is state.</td>
</tr>
<tr>
<td>P_{Con}</td>
<td>Probability for profit increase when applying the conservative strategy.</td>
</tr>
<tr>
<td>P_{osc}</td>
<td>Probability for profit increase or decrease when applying the oscillation strategy.</td>
</tr>
<tr>
<td>P_{Intro}</td>
<td>Probability for profit decrease when applying the successive product generation introduction strategy.</td>
</tr>
<tr>
<td>P_{Con}</td>
<td>Probability for the rapid sales converge when applying the converge strategy.</td>
</tr>
<tr>
<td>B_1</td>
<td>The more profit increment when applying the conservative strategy. Unit is state.</td>
</tr>
<tr>
<td>B_2</td>
<td>The less profit increment when applying the conservative strategy. Unit is state.</td>
</tr>
<tr>
<td>C_1</td>
<td>The more profit increment or the less profit decrement when applying the oscillation strategy. Unit is state.</td>
</tr>
<tr>
<td>C_2</td>
<td>The more profit decrement when applying the oscillation strategy. Unit is state.</td>
</tr>
<tr>
<td>I_1</td>
<td>The less profit decrement when applying the successive product generation introduction strategy. Unit is state.</td>
</tr>
<tr>
<td>I_2</td>
<td>The more profit decrement when applying the successive product generation introduction strategy. Unit is state.</td>
</tr>
<tr>
<td>EP</td>
<td>Expected profit gain under the strategy if introducing the successive generation of product.</td>
</tr>
<tr>
<td>D_1</td>
<td>Rate of the more profit decrement when applying the decrease strategy. Unit is state.</td>
</tr>
<tr>
<td>D_2</td>
<td>Rate of the less profit increment when applying the decrease strategy. Unit is state.</td>
</tr>
<tr>
<td>D_3</td>
<td>Constant decrease rate of the convergence strategy.</td>
</tr>
<tr>
<td>C_{Agg}</td>
<td>Cost involved when adopting the aggressive increase strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Con}</td>
<td>Cost involved when adopting the conservative increase strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{osc}</td>
<td>Cost involved when adopting the oscillation increase strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Decr}</td>
<td>Cost involved when adopting the decrease strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Cv}</td>
<td>Cost involved when adopting the converge strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Intro}</td>
<td>Costs involved in introducing the successive generation of product. Unit is state.</td>
</tr>
<tr>
<td>T</td>
<td>Entire (multiple-generation) product life span. Unit is season.</td>
</tr>
<tr>
<td>$X(t)$</td>
<td>Amount of profit at the start of time period t. Unit is state.</td>
</tr>
<tr>
<td>Cg</td>
<td>Convergence threshold for the sales decrease scenario. Unit is state.</td>
</tr>
<tr>
<td>Cv</td>
<td>The rapid sales converge in the converge strategy. Unit is state.</td>
</tr>
<tr>
<td>γ_{crit}</td>
<td>The critical level for product sales in sales increase model. Unit is state.</td>
</tr>
<tr>
<td>γ_{crit}</td>
<td>The critical level for product sales in sale decrease model. Unit is state.</td>
</tr>
</tbody>
</table>

To construct a DSVM, it is necessary to understand the potential behaviors of the targeted object that is modeled. These potential behaviors must be transferred into corresponding strategies. To develop appropriate strategies, we observed the sales behaviors of several technology-intense MGP lines (mobile phones, tablets and computers) and found several common traits. First, the initial sales period of a product generation varies with time. The introduction sales are normally relatively low in the first few generations and start growing as the product line moves toward its maturity stage. After the product line passes its peak, the introduction sales gradually decline. Second, when a product generation is in its growth stage, sales increase substantially. Third, sales may have subtle variations during the
growth stage or when at the peak of sales, with either minor increments or decrements. This situation might also occur when a company attempts to delay the introduction of the successive generation and allows the current generation to remain in the market. Fourth, when a successive generation is introduced to the market, sales of the previous generation simultaneously drop significantly. Fifth, when a generation is replaced by its successor, its sales start dropping quickly. Last, when a product generation is close to its end of life, sales decline marginally and gradually converge to zero. We found that our observed sales traits could be appropriately interpreted from the viewpoint of typical product life cycle stages. The first situation could reflect a product generation in its introduction stage. The second situation, rapid growth in sales, could reflect the conditions during the growth stage. When a product generation enters its maturity stage, the market is saturated; product sales might reflect the third sales situation with subtle movements or start entering the decline stage, during which the successive generation is introduced to the market. Moreover, the last two observed sales decay situations could be regarded as the front and rear portion of the decline stage, respectively. Hence, we tried to form our strategies from the product life cycle point of view by incorporating observed sales traits.

To tackle this problem, we adopted a concept proposed by Thietart and Vivas (1984). They formulated quantitative criteria for product life cycle stages after analyzing the market growth of 1100 businesses across a four-year period with correction for inflation. They determined that if a business has a growth rate between 0 to 4.5%, it is in the maturity stage of its life cycle; if the growth rate is above 4.5%, the business is in the growth stage; if the market growth rate is negative, the business is in the decline stage of its life cycle. Note that business growth indicates the change in total sales.

In this study, we propose six general strategies for MGP lines based on our observations and these quantitative criteria for product life cycle stages. At each state and time period, the company can select from among four sales increase strategies for its current
product generation and from two sales decrease strategies for older product generations in the process of fading out from the market.

To model different sales tendencies, we separated the strategies into two scenarios: 1) the sales increase scenario, and 2) the sales decrease scenario. For the sales increase scenario, at each time period t, the company can either select from three strategies to grow or oscillate in sales, or it can choose to introduce the successive generation. Thus, the four sales increase strategies include an aggressive increase strategy, a conservative increase strategy, an oscillation increase strategy and a successive product generation introduction strategy. For the sales decrease scenario, the company may select from three sales decrease strategies having different levels of sales drops. The three strategies include an aggressive decrease strategy, an oscillation decrease strategy and a convergence strategy. It is noted that the six strategies are observed from technology-intense product lines; thus, we suggest the appropriateness of applying these strategies on product lines in technology-intense industries. Next, we introduce the strategies of the two scenarios, respectively.

4.1.1.1 Sales Increase Scenarios

In this section, we provide further explanation on the four sales increase strategies.

1. The Aggressive Increase Strategy

$$X_{1}(t + 1) = \begin{cases} x + Agg(t) & \text{if } x = 1 \\ 0 & \text{Otherwise} \end{cases}$$

(Eq. 4-3)

The aggressive strategy is the sales performance of the first time period, when a new generation of a product is introduced to the market. The aggressive strategy represents the introduction stage of product life cycle. In this model, we set state 1 as the critical state and observed that when the new generation introduction strategy is applied to the current
generation, the new generation is at the critical state simultaneously and waits to be introduced to the market. In the following time period, the new generation follows the aggressive strategy and jumps to the corresponding state. Therefore, the aggressive increase strategy only occurs when a new generation is at state 1. In fact, the introduction sales performance of a new generation should vary with time and the stage of the product line lifecycle. To better fit observed real world sales conditions, we defined the sales performance of the aggressive increase strategy as a polynomial function $Agg(t)$, which varies with time t and is symmetric with respect to $(T+1)/2$. In addition, this strategy cannot be selected when a product generation is no longer at state 1. Equation 4-4 presents the stochastic dynamic programming formulation of the optimal profit when selecting the aggressive strategy:

$$V_t(x,t) = \begin{cases} F(x + Agg(t+1), t+1) - C_{Agg} & \text{If } x = 1 \\ 0 & \text{Otherwise} \end{cases}$$

(Eq. 4-4)

2. The Conservative Increase Strategy

If $x \neq 1$,

$$X_2(t+1) = \begin{cases} x + B_1 & \text{with probability } P_{Con} \\ x + B_2 & \text{with probability } (1 - P_{Con}) \end{cases}$$

Where $B_1 > B_2$

(Eq. 4-5)

We consider the conservative increase strategy as the situation in which the product generation has a rapid sales increase over 4.5%. This strategy is adopted when a generation is in the growth stage of its life cycle. Equation 4-5 indicates the two possible conditions when selecting the conservative strategy. If the current state of a generation is not at state 1, its product sales may increase from their current state to a much higher state B_1 with a probability, P_{Con}, or they may increase to a slightly higher state with a probability, $(1 - P_{Con})$.
Equation 4-6 provides the optimal profit when selecting the conservative strategy in the stochastic dynamic programming form.

$$V_2(x,t) = \begin{cases}
P_{\text{con}}F(x+B_1,t+1) & \text{If } x \neq 1 \text{ and } x \leq UB(t) \\
+(1-P_{\text{con}})F(x+B_2,t+1)-C_{\text{con}} & \\
0 & \text{Otherwise}
\end{cases}$$

(Eq. 4-6)

3. The Oscillation Increase Strategy

If $x \neq 1$,

$$X_3(t+1) = \begin{cases}
 x + C_1 & \text{with probability } P_{\text{Osc}} \\
 x + C_2 & \text{with probability } (1 - P_{\text{Osc}})
\end{cases}$$

Where $C_1 > C_2$

(Eq. 4-7)

The oscillation increase strategy is defined as the condition when a product generation enters the maturity stage of its life cycle and has a sales growth under 4.5%. We also consider this strategy may include negative sales, which differs from the original definition from Thietart and Vivas (1984). The reason for this twist is we observe that sales may slightly oscillate between positive and negative growth when a generation is in its maturity stage. Therefore, when selecting this strategy, profit may slightly increase or decrease in the amount of C_1 with a probability P_{Osc}, or it may drop moderately in the amount of C_2 with a probability, $(1 - P_{\text{Decre})}$ (Equation 4-7). Note that C_1 may be positive or negative, but C_2 is negative. Equation 4-8 illustrates the stochastic dynamic programming formulation for optimal profit under the oscillation increase strategy.
If \(x \neq 1 \),

\[
V_{1}(x,t) = \begin{cases}
P_{osc}F(x+C_{1},t+1)
+ (1-P_{osc})F(x+C_{2},t+1) - C_{osc} & \text{if } x \neq 1 \\
0 & \text{Otherwise}
\end{cases}
\]

(Eq. 4-8)

For each time period \(t \), product sales should stand above a lower bound constraint \((x_{crit})\). As such, \(x_{crit} \) is the critical level of product sales, and any generation with a state smaller than or equal to \(x_{crit} \) is considered to be withdrawn from the market. As mentioned previously, \(x_{crit} \) is set as state 1.

4. The Successive Product Generation Introduction Strategy

The successive product generation introduction strategy embodies the conditions under which a successive generation enters the market while the current generation enters the decline stage of its life cycle. Under this strategy, the company may decide to introduce the successive product generation if the current product sales exceeds the introduction threshold, \(Th(t) \). In this model, we assume the lifecycle of a product line is a symmetric bell-shaped distribution. Thus, sales of a product line start growing from its introduction and peak at the middle of the product line’s lifetime. After that, the product line enters the decline stage and the sales drop continually toward the end of life. Realistically, the introduction threshold should vary with the sales level rather than setting as a constant rate. Therefore in this model, we consider the product introduction threshold is dynamic and follows a polynomial function which varies with time and is symmetric at \(t = (T+1)/2 \). Introducing the successive generation may incur a certain amount of introduction costs. On the other hand, it may potentially bring the company the highest gain in return as future profit. Since our model incorporates cannibalization, product sales for the target generation do not fall to the critical state but drop to a pair of lower states, and eventually follow a set of stochastic probabilities when the
successive generation is introduced to the market. Equation 4-9 relates to the condition when the current sales level exceeds the product introduction threshold, \(Th(t) \), the product sales may drop \(I_1 \) state with a probability of \(P_\text{intro} \), or decrease \(I_2 \) state with a probability of \((1 - P_\text{intro}) \). Equation 4-10 shows the stochastic dynamic programming function for optimal profit under the successive product generation introduction strategy. In it, \(EP \) is the expected profit gain when introducing the successive generation. However, if current sales are within the threshold, the company should opt not to introduce the successive generation since doing so would not benefit the company in the long run but might significantly harm its profitability.

If \(x \geq Th(t) \),

\[
X_4(t + 1) = \begin{cases}
 x + I_1 & \text{with probability } P_\text{intro} \\
 x + I_2 & \text{with probability } (1 - P_\text{intro})
\end{cases}
\]

Where \(0 > I_1 > I_2 \)

(Eq. 4-9)

\[
V_4(x, t) = \begin{cases}
 EP[P_\text{intro}F(x + I_1, t + 1) + (1 - P_\text{intro})F(x + I_2, t + 1)] - C_\text{intro} & \text{If } x \geq Th(t) \\
 0 & \text{Otherwise}
\end{cases}
\]

(Eq. 4-10)

For each time period \(t \), since \(F_i(x, t) \) is the maximum expected profit given that \(X(t) = x \), \(F_i(x, t) \) should be assigned the maximal expected revenue value for the above four strategies in the sales increase scenario:

\[
F_i(x, t) = \max \{ V_1(x, t), V_2(x, t), V_3(x, t), V_4(x, t) \}
\]

(Eq. 4-11)
4.1.1.2 Sales Decrease Scenarios

In describing the sales decrease model, we consider two separate decrease strategies. This scenario represents the sales conditions when a product generation is in its decline stage and gradually fades out of the market. At each time period t, the company can select either the decrease strategy or the converge strategy. Next, we introduce the two sales decrease strategies.

1. The Decrease Strategy

If $x > C_g$,

$$X_{s}(t+1) = \begin{cases}
\frac{x + D_1}{x + D_2} & \text{with probability } P_{\text{Dec}} \\
& \text{with probability } (1 - P_{\text{Dec}})
\end{cases}$$

Where $0 > D_1 > D_2$

(Eq. 4-12)

In the decrease strategy, if the current state of the target product generation exceeds the convergence threshold (C_g), then the sales may drop either slightly by D_1 state or significantly by D_2, each with a probability of P_{Dec} or $(1 - P_{\text{Dec}})$. Equation 4-13 presents the stochastic dynamic programming formulation of the optimal profit when choosing the decrease strategy:

$$V_s(x,t) = \begin{cases}
P_{\text{Dec}}F(x + D_1, t + 1) + (1 - P_{\text{Dec}})F(x + D_2, t + 1) - C_{\text{Dec}} & \text{If } x > C_g(t) \\
0 & \text{Otherwise}
\end{cases}$$

(Eq. 4-13)
2. The Convergence Strategy

If \(x \geq C_g \),

\[
X_g(t + 1) = D_g x(t)
\]

Otherwise

\[
X_b(t + 1) = \begin{cases}
D_b x(t) & \text{with probability } P_{Cv} \\
 x - C_v & \text{with probability } (1 - P_{Cv})
\end{cases}
\]

(Eq. 4-14)

We define “convergence” as the condition when the product sales gradually move toward “zero” sales and the target product generation is about to be removed from the market. We consider convergence includes two scenarios. In the first, when product sales are above the convergence threshold (Cb), they slowly converge. We assume sales no longer drop by constant states but diminish following a certain discount rate. In the second scenario, when the current state is equal to or lower than the convergence threshold (Cb), sales drop in two different ways. They may rapidly converge by Cv states with a probability of \(P_{Con} \), or they may still drop following the same discount rate with a probability of \(1 - P_{Con} \). This scenario represents the situation where a product generation is approaching its end of life, at which time the company may either retain it in the market or directly withdraw it. When the current state of a product generation is lower than the critical state, it is removed from the market. Equation 4-15 provides the optimal profit when selecting the convergence strategy in the stochastic dynamic programming form.

If \(x \geq C_g \),

\[
V_b(x, t) = F(D_b x(t), t + 1) \cdot C_v \quad \text{If } x > C_g
\]
Otherwise

\[
V_{6}(x, t) = P_{\text{Con}} F(x(t) - C_{V}, t + 1) + (1 - P_{\text{Con}}) F(D_{3}x(t), t + 1) - C_{V}
\]

(Eq. 4-15)

For each time period \(t \), since \(F_{2}(x, t) \) is the maximum expected profit \(X(t) = x \), \(F_{2}(x, t) \) should be assigned the maximal expected revenue values for the above two strategies in the sales decrease scenario:

\[
F_{2}(x, t) = \max \{V_{5}(x, t), V_{6}(x, t)\}
\]

(Eq. 4-16)

After formulating this cannibalization model, backward iteration is used to solve it. We start from the last term \(t = T \) and move backward in time. Thus, the end condition \(F_{i}(x, T) \), the total expected future profit for the product line, must be given. We assume \(F_{i}(x, T) \) is a function \(K(x) \), and we define it in the case study section.

The cannibalization model outputs two optimal time-state strategy maps for both scenarios, indicating the optimal strategy to apply for a targeted product generation at each time and state under either of the two sales scenarios. Tactic-wise, these strategy maps allow the company to develop long-term product line strategies or to adjust its strategies toward dynamic market changes.

In this section, we propose six strategies considering product lifecycle stages to use in the dynamic variable model. These strategies look only at the typical movements a product generation normally engages in according to its lifecycle stage in the market. Companies can develop alternate strategies, incorporating their specific requirements or concerns. For this study, we only simplify the complexity of pricing by setting an equal unit price across all
strategies. Companies can set strategies with product unit prices to determine which should be applied at different states and times, and can input a distinct setting of strategies into the model to verify and ensure their market tactics.

4.1.2 Monte Carlo Forward Iteration

Having defined the cannibalization model, we proceed to the second stage, the Monte Carlo forward iteration. The reason for conducting the iteration at this point is to generate the lifecycle predictions of the MGP line based on output from the strategy maps output of the cannibalization model. The simulated lifecycles generated by this iteration can be regarded as the optimized lifecycle prediction for the target MGP line, based on the pre-determined input strategies which include the observed terms of sales trend.

Typically the Monte Carlo forward iteration simulates the behavior of an object throughout the entire observation duration. In this study, we apply a modified version to simulate the behaviors of all generations in a product line within the product line lifecycle. The simulation process starts from the beginning of the first generation at t = 1. For generation k, when the successive t generation introduction strategy is adopted, product generation k+1 emerges in the market and generation k starts to decay. When a product generation is in its growth, we refer to the strategy map from the sales increase scenario. Otherwise, we consult the strategy map from the sales decrease scenario. The algorithm of the Monte Carlo forward iteration for this study is explained next.

To begin with, generate a random variable r, where 0 ≤ r ≤ 1. Let xₖ and x'ₖ to represent the integer state and the real state of product generation k at time t, respectively. The difference between xₖ and x'ₖ is that xₖ is the integer portion of the x'ₖ. For a product generation that is between states s and s+1 at time t, we consider that the product generation should follow the best strategy of the integer portion of its actual state, which is state s, since it does not actually stand on state s+1. However, when considering its future move, we still use its real state to decide the potential changes in states. Moreover, let yₖ be the market
entrance time for product generation k, and $y_1 = 1$. Below, we show the decision process for
the Monte Carlo forward iteration applied in this case.

1. At time $t = 1$, the iteration starts from product generation 1. $x_1 = \lfloor x_1 \rfloor = \lfloor Agg(1) \rfloor$. We choose the integer part of the real state $Agg(1)$ as our initial state.

2. Find the optimal strategy from the sales increase scenario, which is $F_1(x_k, t) = i$ for product generation k. Action taken follows the optimal strategy.

3. If $i = 1$, then follow the aggressive increase strategy. $x' = Agg(t), x_k = \lfloor x_k \rfloor$. If $t = t_{\text{max}}$, end simulation. Otherwise, $t = t + 1$ and go to step 2.

4. If $i = 2$, then follow the conservative increase strategy:
 a. If $r \leq P_{\text{Con}}$, then $x'_k = x'_k + B_1, x_k = \lfloor x_k \rfloor$.
 b. If $r > P_{\text{Con}}$, then $x'_k = x'_k + B_2, x_k = \lfloor x_k \rfloor$.

If $t = t_{\text{max}}$ end simulation. Otherwise, $t = t + 1$ and go to step 2.

5. If $i = 3$, then follow the oscillation increase strategy:
 a. If $r \leq P_{\text{Osc}}$, then $x'_k = x'_k + C_1, x_k = \lfloor x_k \rfloor, z'_k = z'_k + C_1$.
 b. If $r > P_{\text{Osc}}$, then $x'_k = x'_k + C_2, x_k = \lfloor x_k \rfloor, z'_k = z'_k + C_2$.

If $t = t_{\text{max}}$ end simulation. Otherwise, $t = t + 1$ and go to step 2.

6. If $i = 4$, then follow the new product introduction strategy:
 a. If $r \leq P_{\text{Intro}}$, then $x'_k = x'_k + I_1, x_k = \lfloor x_k \rfloor$.
 b. If $r > P_{\text{Intro}}$, then $x'_k = x'_k + I_2, x_k = \lfloor x_k \rfloor$.
If $t = t_{\text{max}}$, end simulation. Otherwise, $t = t + 1$, $x_{k+1} = x'_{k+1} = I$, $y_{k+1} = t + I$. Go to step 6.

7. Find the optimal strategy from the sales decrease scenario, which is $F_2(x_k, t) = j$ for product generation k. Moving follows the optimal strategy.

8. If $j = 5$, then follow the converge strategy. If $x_k > C_g$, then $x'_{k} = x'_{k} * D_3$ and $x_k = \lfloor x'_k \rfloor$.

 Otherwise,
 a. If $r \leq P_{Cv}$, $x'_{k} = x'_{k} - C_v, x_k = \lfloor x'_k \rfloor$.
 b. If $r > P_{Cv}$, $x'_{k} = x'_{k} * D_3, x_k = \lfloor x'_k \rfloor$.

9. If $x_k < 1$, the end simulation because the product generation is lower than the critical state and is withdrawn from the market. $t = y_k + 1$, $k = k + 1$, and go to step 2. If $t = t_{\text{max}}$, end simulation. Otherwise, $t = t + 1$ and go to step 6.

Using the Monte Carlo forward iteration, the system automatically generated the necessary generations of products based on the decision maps of the two scenarios output from the DSVM. We recorded all x_k during the simulation procedure, and acquired the lifecycle prediction of the entire MGP line by depicting all the x_k values in the end of the simulation.

In the next section, we provide an illustrative case study implementing the cannibalization model on an on-going MGP line – Apple Inc.’s iPhone product line.

4.2 Case Study II: Forecasting an On-going Multiple-generation Product Line

In this section, we describe our attempt to implement the proposed framework on an on-going real world MGP line. We chose Apple Inc.’s famous product line, the Apple
iPhones, as our objective. The iPhone product line is a very typical MGP line. The iPhones are introduced to the market one after another in a sequence, retaining the same core functions, and updating the improved or up-to-date technologies in newer models. For instance, between the first and fourth generations of the iPhone, the designers continually improved various aspects of the product including mobile network transmission speed, screen resolution, CPU speed, ram capacity, and camera pixels.

Since 2007, Apple Inc. has released five generations of iPhones and sold more than 200 million units globally. Table 4-2 provides quarterly sales statistics for the Apple iPhone product line until 2012 third quarter (Q3), acquired from Wikipedia. In this case study, we try to implement the proposed framework using the first 17 terms of sales from Table 3 to forecast the lifetime sales behavior and successive product generation introduction timings for the entire iPhone product line. Figure 4-1 is graphed based on the sales figures provided in Table 4-2, but includes the generation information. We can observe the four generations of iPhones. In Figure 4-1, we see that during certain quarters, more than one generation was in the market. Overlapping generations are marked with equal sales because Apple Inc. does not disclose distinguishable sales information for individual generations when multiple generations are competing simultaneously in the market.

Table 4-2: Sales statistics for the Apple iPhone product line as of June 2012 (Wikipedia. http://en.wikipedia.org/wiki/File:IPhone_sales_per_quarter_simple.svg)

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Q1 (Oct-Dec)</th>
<th>Q2 (Jan-Mar)</th>
<th>Q3 (Apr-Jun)</th>
<th>Q4 (Jul-Sep)</th>
<th>Total Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td>270,000</td>
<td>1,119,000</td>
<td>1,389,000</td>
</tr>
<tr>
<td>2008</td>
<td>2,315,000</td>
<td>1,703,000</td>
<td>717,000</td>
<td>6,890,000</td>
<td>11,625,000</td>
</tr>
<tr>
<td>2009</td>
<td>4,363,000</td>
<td>3,793,000</td>
<td>5,208,000</td>
<td>7,367,000</td>
<td>20,731,000</td>
</tr>
<tr>
<td>2010</td>
<td>8,737,000</td>
<td>8,752,000</td>
<td>8,398,000</td>
<td>14,102,000</td>
<td>39,989,000</td>
</tr>
<tr>
<td>2011</td>
<td>16,240,000</td>
<td>18,650,000</td>
<td>20,340,000</td>
<td>17,070,000</td>
<td>72,300,000</td>
</tr>
<tr>
<td>2012</td>
<td>37,040,000</td>
<td>35,100,000</td>
<td>26,000,000</td>
<td></td>
<td>98,140,000</td>
</tr>
</tbody>
</table>
To implement the DSVM based framework, we needed the sales details for every existing product generation in order to analyze the sales trend for the MGP line. We used a simple but effective way to distinguish the sales of overlapping generations. When a new generation emerged, we considered that 60% of that quarter’s sales belonged to the new generation and the balance to the previous generations. For the following quarters, the sales for previous generations were always reduced 20% from the preceding quarter. Table 4-3 shows the resultant sales after separating the overlapping product generations. Figure 4-2 shows the same data in graphical form.

To model the DSVM for this case study, we start by introducing the basic model parameters we used. First we define the unit of time t and the total lifecycle duration, T.

We consider one accounting quarter as a basic time unit. Since the Apple iPhone product line is still in the market and its planned lifecycle duration is unknown, we ran six lifecycle durations ($T = 30, 35, 40, 45, 50$ and 55) to observe any differences in lifecycle predictions. In addition, we used 150 states in the model, each representing 200,000 units of sales. Although Clark and Mangel (2000) suggested it is better to use fewer than 100 states when applying the DSVMs, we determined that 150 states would provide better separation for sales and generate more in-depth decisions.
Table 4-3: Sales per product generations

<table>
<thead>
<tr>
<th>Period</th>
<th>Quarter</th>
<th>Gen. 1</th>
<th>Gen. 2</th>
<th>Gen. 3</th>
<th>Gen. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2007Q3</td>
<td>270,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2007Q4</td>
<td>1,119,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2008Q1</td>
<td>2,315,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2008Q2</td>
<td>1,703,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2008Q3</td>
<td>717,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2008Q4</td>
<td>0</td>
<td>6,890,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2009Q1</td>
<td></td>
<td>4,363,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2009Q2</td>
<td></td>
<td>3,793,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2009Q3</td>
<td></td>
<td>5,208,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2009Q4</td>
<td>2946800</td>
<td>4420200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2010Q1</td>
<td>2357440</td>
<td>6,379,560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2010Q2</td>
<td>1885952</td>
<td>6,866,048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2010Q3</td>
<td>1508762</td>
<td>6,889,238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2010Q4</td>
<td>0</td>
<td>5640800</td>
<td>8461200</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2011Q1</td>
<td>4512640</td>
<td>11,727,360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2011Q2</td>
<td>3610112</td>
<td>15,039,888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2011Q3</td>
<td>2880909</td>
<td>17,449,910</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-2: Sales trends for individual generations

Strategies need to be determined next. For this case study, we analyzed the data from Table 4-3 and decided to use five strategies: all four strategies from the sales increase scenario plus the convergence strategy from the sales decrease scenario. The reason we excluded the decrease strategy is because the way we separate the sales data is the exact same way we set the convergence strategy. Thus, for this case study, it is not necessary to use the decrease strategy.

The value settings for the five strategies were based on the following rules. First, all introduction sales for each generation of iPhone were taken into account when determining
the aggressive strategy. Second, if the sales growth between two consecutive time periods was above 4.5% and at the same time the successive generation was not yet in the market, all sales except the introduction sales in Table 4-3, belonged to the conservative increase strategy. Third, if the sales growth between two consecutive time periods was less than 4.5% and at the same time the successive generation was not yet in the market, we considered it to represent the oscillation strategy. Last, during the time period the successive generation was introduced to the market, sales drops were set to the successive product generation introduction strategy.

In addition, for strategies involving probabilities, we first calculated the mean for all sales within each strategy. Next, we calculated the sub-means for sales beyond and beneath the mean relatively to acquire the higher and lower values used in each strategy. We also calculated the number of sales beyond and beneath the mean divided by the total number of sales within each strategy to obtain the relative probabilities.

Table 4-4 shows the settings for three strategies (conservative increase, oscillation increase and successive product generation introduction) where the unit is the state. The successive introduction strategy is more complicated than the other two. Table 4-4 reveals only the potential sales variations when applying this strategy; we still need to consider two critical parameters. One is the introduction threshold function ($Th(t)$) and the other is the expected profit gain (EP). The first, $Th(t)$, is a symmetric function. We chose all preceding time periods as observation points, and we set the mildest slope between the sales volume of the latest observation point to all the other points to be $Th(t)$. The detailed slope and intercept values for $Th(t)$ are shown in Table 4-5. As for the EP, we simply define it as the sales increment rate between the total sales in the time period where a successive product generation is introduced to the market over the total sales in the previous quarter. We connect all the EP ratios we observed from the data in Table 4-3, and assume EP is linear and varies with time as well.

The other strategies, which are not included in Table 4-4, are the aggressive strategy and the convergence strategy. For the latter, we set the converge rate (D_3) = 0.8, the
convergence threshold (Cg) as state 7.54, and the rapid convergence rate (Cv) = 5.56 states. For the aggressive strategy, we used the time and sales differences between the first and fourth generations of iPhones at the each of its introduction time period to generate the slope and intercept for $t \leq (T+1)/2$, and use symmetric settings for $t > (T+1)/2$. The detailed slopes and intercepts of the aggressive strategy can be seen in Table 4-5. In addition, the cannibalization model assumed costs only relate to the sales increase strategies. We set the cost of using the successive introduction strategy at 10 states of product sales amount, and set the cost at 1 state for other strategies to sufficiently discriminate the cost differences.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Parameter</th>
<th>Increase Rate</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservative Increase Strategy</td>
<td>B_1</td>
<td>11.19</td>
<td>0.625</td>
</tr>
<tr>
<td></td>
<td>B_2</td>
<td>7.42</td>
<td>0.375</td>
</tr>
<tr>
<td>Oscillation Increase Strategy</td>
<td>C_1</td>
<td>1.00</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>C_2</td>
<td>-5.87</td>
<td>0.800</td>
</tr>
<tr>
<td>Successive Product Generation Introduction Strategy</td>
<td>I_1</td>
<td>-6.24</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>I_2</td>
<td>-11.31</td>
<td>0.500</td>
</tr>
</tbody>
</table>

Table 4-5: Parameter settings for the three time-dependent symmetric functions

<table>
<thead>
<tr>
<th>Function</th>
<th>For $t \leq (1+t)/2$</th>
<th>For $t \geq (1+t)/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slope</td>
<td>Intercept</td>
</tr>
<tr>
<td>Agg(t)</td>
<td>3.15</td>
<td>-1.80</td>
</tr>
<tr>
<td>Th(t)</td>
<td>2.10</td>
<td>7.13</td>
</tr>
</tbody>
</table>

The total expected future sales $K(x)$ needs to be given in order to solve the cannibalization model. We assumed the iPhone product line sells 100 states of units per time period. We further supposed that the sales variance would be 20%. T is the total lifecycle duration, x indicates the state, and unit profit margin is U. Thus, $K(x)$ will be:

$$K(x) = 100 \times 200,000 \times T \times U \times 0.8$$
$$+ [100 \times 200,000 \times T \times U \times (0.2 \times 2) / 150]x$$
$$= 16,000,000TU + 53,333.33TUx$$
After defining all the model settings, strategies and boundaries used in this case study, we ran the cannibalization model followed by the Monte Carlo forward iteration with our Excel-VBA based program. The code for the program can be seen in Appendix C. Figure 4-3 includes six simulated lifecycles based on different lifecycle durations for the iPhone product line. The cannibalization model outputs two strategy maps from both of the sales scenarios, and Figure 4-4 is the strategy map derived from the sales increase scenario. In Figure 4-4, the x-axis is time and y-axis is state, and each color represents a sales increase strategy to be applied at a certain time and state.

Figure 4-3: The simulated iPhone product line lifecycles
4.2.1 Model Validation

To see the introduction timing prediction performance between our proposed framework and the real data, we ran 50 iterations for each lifecycle durations and calculated the average introduction timing for every product generation in each of the six trials. Table 4-6 includes the average output results and the real introduction quarters of the iPhone product.
line. In Table 4-6, we can see that the actual fifth and sixth generations of iPhones were released in the 19th and 22nd quarter; the results are close to our predicted lifecycle durations of 30 quarters. Additionally, we can see one common trait in Table 4-6: the longer the planned product line lifecycle duration, the longer the individual lifecycle span for those generations released near the center of the entire duration. For example, from T = 30 to T = 55, the duration span becomes longer between the generation 4 and 5 and between generations 5 and 6. This feature can be easily explained. When a product line is in the center of its lifecycle duration, it is usually at the maturity stage. At this time, the sales volume is usually at peak levels and market demands are considerably stable. Thus, the company should sustain the current product generation in the market for a longer time to extend the benefits and increase its market share.

The introduction timing output from the cannibalization model is an average value drawn from 50 simulated lifecycles. If a company followed the strategy maps, it might have a different lifecycle behavior based on the stochastic model setting. The optimal strategy at each time and state provided in each strategy maps is the most profitable strategy that could benefit companies in the long-run. If companies have distinct concerns or market plans, applying non-optimal strategy is also workable. But it only indicates that this move will not result in the highest profits.

Table 4-6: The six sets of average successive product generation introduction timings from six different product line lifecycle durations comparing to real Apple iPhone multiple-generation product line

<table>
<thead>
<tr>
<th></th>
<th>Gen 1</th>
<th>Gen 2</th>
<th>Gen 3</th>
<th>Gen 4</th>
<th>Gen 5</th>
<th>Gen 6</th>
<th>Gen 7</th>
<th>Gen 8</th>
<th>Gen 9</th>
<th>Gen 10</th>
<th>Gen 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 30</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>19.12</td>
<td>23.1</td>
<td>26.1</td>
<td>28.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = 35</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>21.1</td>
<td>25.32</td>
<td>28.82</td>
<td>31.82</td>
<td>34.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = 40</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>23.06</td>
<td>28.04</td>
<td>32.04</td>
<td>35.16</td>
<td>38.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = 45</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.04</td>
<td>30.54</td>
<td>35.04</td>
<td>38.7</td>
<td>41.7</td>
<td>44.1</td>
<td></td>
</tr>
<tr>
<td>T = 50</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.1</td>
<td>31.66</td>
<td>36.78</td>
<td>40.84</td>
<td>44.36</td>
<td>47.36</td>
<td>49.51</td>
</tr>
<tr>
<td>T = 55</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.18</td>
<td>32.94</td>
<td>38.86</td>
<td>43.74</td>
<td>47.7</td>
<td>50.76</td>
<td>53.26</td>
</tr>
<tr>
<td>Actual</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>19</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition, we performed two additional sensitivity analyses. For the first sensitivity analysis, we test different settings of the expected profit gain (EP) to see how value changes
would impact introduction timings. Originally we set EP as a linear connection between every pair of sales increase ratios when the successive product generation was introduced to the market. As shown in Table 4-7, we tested different settings of EP, from the original dynamic value changing with time to constant threshold value. We can see that changes in EP would significantly affect the introduction decisions for successive product generations. In the original setting, EP ranges from the lowest value 1.415 to the highest value 9.609. Thus, changing in EP not only influences the introduction timing for a certain product generation, but also impacts the introduction decisions for the entire product line.

Table 4-7: The sensitivity analysis for the expected profit gain (EP)

<table>
<thead>
<tr>
<th></th>
<th>Gen 1</th>
<th>Gen 2</th>
<th>Gen 3</th>
<th>Gen 4</th>
<th>Gen 5</th>
<th>Gen 6</th>
<th>Gen 7</th>
<th>Gen 8</th>
<th>Gen 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant Threshold Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average ($EP = 4.234$)</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>23.14</td>
<td>28.16</td>
<td>32.16</td>
<td>35.32</td>
<td>38.06</td>
</tr>
<tr>
<td>Highest ($EP = 9.609$)</td>
<td>10.84</td>
<td>16.72</td>
<td>20.78</td>
<td>24.26</td>
<td>28.4</td>
<td>32.44</td>
<td>35.66</td>
<td>38.8</td>
<td></td>
</tr>
<tr>
<td>Lowest ($EP = 1.415$)</td>
<td>17.36</td>
<td>24.54</td>
<td>29.38</td>
<td>33.26</td>
<td>36.26</td>
<td>38.74</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the second sensitivity analysis, we attempted to investigate the assumption about the introduction threshold (H). In the cannibalization model, we assume the introduction threshold is a symmetric function where $t = (T+1)/2$. Here we compare four different settings of H to see the impact on introduction timings. The four different H settings are: 1) original assumption (symmetric setting), 2) non-symmetric setting, 3) symmetric threshold generated from regression, and 4) non-symmetric threshold generated from regression. The results for $T = 40$ are shown in Table 4-8. It is noted that for the non-symmetric threshold settings, the threshold values increase progressively as time moves on. Therefore, introducing a successive product generation becomes more and more difficult in the latter stages of the product line lifecycle. Besides, we can see that the symmetric threshold generated from the regression output provides a very close prediction as the original threshold setting.
Table 4-8: Comparison of introduction timings under different introduction threshold settings

<table>
<thead>
<tr>
<th></th>
<th>Gen 1</th>
<th>Gen 2</th>
<th>Gen 3</th>
<th>Gen 4</th>
<th>Gen 5</th>
<th>Gen 6</th>
<th>Gen 7</th>
<th>Gen 8</th>
<th>Gen 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>23.06</td>
<td>28.04</td>
<td>32.04</td>
<td>35.16</td>
<td>38.04</td>
</tr>
<tr>
<td>Non Symmetric</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.30</td>
<td>34.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetric Regression</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>23.10</td>
<td>28.10</td>
<td>32.10</td>
<td>35.22</td>
<td>38.06</td>
</tr>
<tr>
<td>Non Symmetric Regression</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>14</td>
<td>25.38</td>
<td>36.18</td>
<td></td>
</tr>
</tbody>
</table>

Based on the data input and the use of carefully developed strategies, the proposed framework can be applied to forecast the sales behavior and introduction timings for the Apple iPhone product line with effective results. It has the following advantages. First, it has low application difficulty. Although the model requires the input of a variety of strategies, those can be easily observed or differentiated from limited terms of data or adjusted using historical data. Once the strategies are built and input to the framework, it can generate useful information to assist companies in developing long-term MGP strategies. Second, the proposed framework has low computational complexity. Although the model is based on a stochastic dynamic programming technique with the application of backward iteration, the problem solving process is intuitive and exempts user from heavy computations. Third, the proposed framework needs no input of the exact introduction timings for every product generation to make lifecycle sales predictions. This feature helps makes our model superior to other forecasting methods. It greatly increases the applicability of the proposed framework. Fourth, as the MGP line is still on-going, the company can continuously collect the latest sales data, adjust the input strategies and rerun this framework. This feature ensures the company will generate accurate predictions and enables it to constantly fine-tune its MGP strategies in response to any sudden market variations. Last, the model can enable users to test different cannibalization market scenarios by setting different sales decrease strategies and to investigate price differences according to different strategies.

However, the proposed framework also has a potential limitation. In order to make very accurate predictions of sales and introduction timings, it demands considerable amount of raw data and requires careful data analysis to develop appropriate strategies.
In the next section, we apply the cannibalization model to forecast a brand new MGP line based on sales data from an existing product line. As an illustrative case study, we use Apple’s iPhone product line to predict its iPad product line.

4.3 Case Study III: Forecasting a Brand New Multiple-Generation Product Line

In this section, we attempt to predict a new MGP line according to the market information acquired from an on-going MGP line. The process of applying the cannibalization model to forecast a new product line is slightly different from that for an existing product line. When predicting a new product line mapping by using the sales from an existing and on-going product line, we need to perform an additional technological analysis on the major specifications of the two product lines. The reason for verifying technological similarity at the beginning is to ensure the lines have high similarity in technological capabilities and product type so that it is feasible to use sales data from one to predict results for the other. Next we introduce a quantitative approach to verify technological similarity between MGP lines.

4.3.1 Technological Similarity Examination

The first stage of this case study involves verifying the technological similarity between the new MGP line and the reference existing product line. We propose an approach based on the concept of the function sharing matrix from Kalyanasundaram and Lewis (2011), which also incorporates a new rating system to verify functional similarity between product lines. Kalyanasundaram and Lewis analyzed product function structures and relative function flows involved with the two objective products, and then they introduced a function sharing matrix that decomposed the studied products into three segments: 1) the principal flow chunk, 2) the variant flow chunk, and (3) the auxiliary chunk. In this study, we do not investigate the product structures of the two objective products but instead focus on the functions. Therefore, we adopt the concept of the function sharing matrix and introduce a technological similarity
matrix (TSM). In the TSM, we distinguish the technologies involved in a product line according to the three suggested categories: 1) principal, 2) variant, and 3) auxiliary technologies. To simplify the use of TSM and to increase the numbers of product lines for comparison at a time, we eliminate the pair-wise comparison feature and directly compare the technological similarity from the reference MGP line to the new and other product lines. It should be noted that the technologies we compare across different product lines are only the core technologies that remain unchanged within each product line. Of additional note, the reason we compare the reference product line to the new product line is that we assume that the new product line has more novel technologies than the existing one; accordingly, to identify the technological similarity we need only to consider the existing prevalent technologies. Table 4-9 illustrates the TSM used in this study.

We classified the major technologies of the iPhone product line into three technological groups, and the result is shown in Table 4-9. Because the iPhone is a smartphone product line, the key elements of basic cell phone operations are categorized as the principal technologies. Lesser critical elements are grouped into the variant technologies, and the remainders are considered the auxiliary technologies. To quantitatively distinguish the technological similarity, we propose a simple way to calculate the technological similarity index. To minimize the subjectivity in judgment ratings, we use a three-level scoring system. If the target technology is exactly the same between any product line and the reference product line, we assign a score of 2. If the target technology is similar (perform similar tasks) but not exactly the same, a score of 1 is given. Furthermore, if the target technology is totally different from the product line, then a score of 0 is assigned. After evaluating all the technologies, we sum up the scores for each product line and divide by the overall score of the reference product line, which is 2 times the number of technologies. The existing reference product line will have the highest technological similarity index, which is 1. The higher the score in the index, the more similar the two product lines are. Note that in this case study, we consider all three technological groups to have equal importance.
Table 4-9: Technological similarity matrix (TSM) for the Apple iPhone and three other MGP lines

<table>
<thead>
<tr>
<th></th>
<th>Apple iPhone (Reference Product Line)</th>
<th>Samsung Galaxy S</th>
<th>iPad</th>
<th>Asus Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phone (2G/3G)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Data Connectivity (2G/3G/4G)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Touch Screen</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Camera</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Operation System</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Variant technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>App Market</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>GPS</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Wifi</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Auxiliary technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screen Size (Within 5")</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total Score</td>
<td></td>
<td>20</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Functional Similarity Score</td>
<td>1</td>
<td>0.9</td>
<td>0.85</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Table 4-9 shows that the Samsung Galaxy S product line is the most similar to the iPhone product line in terms of technology capabilities, and that the iPad product line is the next most similar. We were unable to locate the necessary sales information for analyzing the Samsung Galaxy S product line because Samsung does not disclose detailed sales reports for individual product lines; therefore, this study uses the Apple iPad as its target new product line, and predicts its sales and product line behavior using sales data from the iPhone product line.

After performing the technological analysis, we need to determine the strategies and data sets for use in the cannibalization model according to the characteristic of the reference product line. In this study, since we still use the Apple iPhone product line as our reference product line, we still use the same set of sales data as well as the same five strategies from the previous case study. In the following section, we provide the detailed model setting for this case study.
4.3.2 Model Setting

In this section, we address our implementation of the proposed framework to forecast Apple Inc.’s popular MGP line, the Apple iPads, using the sales data of its successful product line, the Apple iPhones. Similar to the previous case study, we use the same four strategies from the sales increase scenario and only the convergence strategy from the sales decrease strategy in the cannibalization model. Furthermore, in this current study, we use the same 17 terms of sales data from the Apple iPhones with adjustments to forecast the Apple iPad product line.

To create the dynamic state model for this case study, we started by introducing the basic model parameters. First we defined the unit of time t and the total lifecycle duration, T. We considered one accounting quarter as a basic time unit. Since we had no information for the planned lifecycle duration of the Apple iPad product line, we ran six different lifecycle durations ($T = 30, 35, 40, 45, 50$ and 55) to determine the differences in lifecycle predictions. In addition, different from the previous case study, we used 150 states in the model, where each state represents 500,000 units of sales.

Next, we need to determine the value settings for the five strategies. Since we did not know the original demand forecast for the iPad product line, we used a simple way to determine a scale difference between the two product lines. We used the real first seven periods of sales of iPads (from 2010 Q2 to 2012 Q1) for comparison with the real first seven terms of sales for iPhones (from 2007 Q4 to 2009 Q1), and found the total sales of iPad product lines to be 3.18 times of the iPhone product line. Given this ratio, we re-scaled the parameters setting from those we applied in the previous section. Table 4-10 shows the settings for all three strategies (conservative increase, oscillation increase and successive product generation introduction), where the unit is the state. The successive product generation introduction strategy is more complicated than the others, and Table 4-10 reveals only the potential sales variations when applying this strategy. For the successive product generation introduction strategy, we needed to consider two critical parameters: the
introduction threshold function \((\text{Th}(t))\) and the expected profit gain (EP). The former, \(\text{Th}(t)\), is a symmetric function. We chose all the preceding time periods as observation points, and set the mildest slope between the sales volume of the latest observation point to all the other points at \(\text{Th}(t)\). The detailed slope and intercept values for \(\text{Th}(t)\) are shown in Table 4-11. We defined \(\text{EP}\) simply as the sales increment rate between the total sales in the time period where a successive product generation is introduced to the market over the total sales in the previous quarter. We connected all the \(\text{EP}\) ratios we observed from the data in Table 4-3 in Section 4-2, and we assumed \(\text{EP}\) to be linear and to vary with time.

Two strategies not included in Table 4-10 are the aggressive strategy and the convergence strategy. For the convergence strategy, we set the converge rate \((D_3) = 0.8\), the convergence threshold \((C_g)\) as state 9.6, and the rapid convergence rate as \((C_v) = 7.08\) states. For the aggressive strategy, we used the time and sales differences between the first and fourth generations of iPhones at the introduction for each time period to generate the slope and intercept for \(t \leq (T+1)/2\), and we used symmetric settings for \(t > (T+1)/2\). The detailed slopes and intercepts of the aggressive strategy are shown in Table 4-11. In addition, we assumed costs in the cannibalization model to be due only to sales increase strategies. We set the cost of using the successive product generation introduction strategy to be 10 states of product sales amount, and we set state 1 for the other three strategies.

Table 4-10: Settings for three sales increase strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Parameter</th>
<th>Increase Rate</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservative Increase Strategy</td>
<td>(B_1)</td>
<td>14.23</td>
<td>0.625</td>
</tr>
<tr>
<td></td>
<td>(B_2)</td>
<td>9.44</td>
<td>0.375</td>
</tr>
<tr>
<td>Oscillation Increase Strategy</td>
<td>(C_1)</td>
<td>1.27</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>(C_2)</td>
<td>-7.47</td>
<td>0.800</td>
</tr>
<tr>
<td>Successive Product Generation Introduction Strategy</td>
<td>(I_1)</td>
<td>-7.94</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>(I_2)</td>
<td>-14.39</td>
<td>0.500</td>
</tr>
</tbody>
</table>
Table 4-11: Parameter settings for the three time-dependent symmetric functions

<table>
<thead>
<tr>
<th>Function</th>
<th>For $t \leq (1+t)/2$</th>
<th>For $t \geq (1+t)/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slope</td>
<td>Intercept</td>
</tr>
<tr>
<td>Agg(t)</td>
<td>4.01</td>
<td>-2.29</td>
</tr>
<tr>
<td>Thr(t)</td>
<td>2.67</td>
<td>9.06</td>
</tr>
</tbody>
</table>

The total expected future sales $K(x)$ needed to be given to solve the cannibalization model. We assumed the iPhone product line sells 100 states of units per time period. We further supposed that the sales variance would be 20%. T is the total lifecycle duration, x indicates the state, and unit profit margin is U. Thus, $K(x)$ will be:

$$K(x) = 100 \times 500,000 \times T \times U \times 0.8$$
$$+ [100 \times 500,000 \times T \times U \times (0.2 \times 2) / 150]x$$

(Eq. 4-18)
$$= 40,000,000TU + 133,333.33TUx$$

After defining the model settings, strategies and boundaries, we ran the cannibalization model and then the Monte Carlo forward iteration using the same Excel-VBA based program in Appendix C. The cannibalization model yielded two strategy maps from both sales scenarios. Figure 4-5 is the strategy map derived from the sales increase scenario data. In Figure 4-5, the x-axis is time and y-axis is state, and each color represents a sales increase strategy to be applied at a certain time and state. Figure 4-5 shows the simulated lifecycles at $T = 35$ for the iPad product line.
4.3.3 Model Validation

To determine the introduction timing prediction performance between our proposed framework and the actual data, we ran 50 Monte Carlo forward iterations for each of the six product line lifecycle durations and calculated the average introduction timing for every product generation in each of the six trials. Table 4-12 shows the average output results and the real introduction quarters for the iPhone product line. In Table 4-12, we observe a common trait among different simulated lifecycle durations. As a product line has a longer lifecycle duration, the product generation locates near the middle of the product line lifetime tends to have a longer individual lifecycle. For example, from $T = 30$ to $T = 55$, the introduction period for the fifth generation occurred between periods 19 to 27. This feature can be explained as such: when a product line is in the center of its lifecycle duration, it is usually at the maturity stage of its overall lifecycle. During this time period, its sales volume is usually at peak levels and its market demand is considerably stable. Thus, the company would prefer to sustain the current product generation in the market for a longer time to extend the benefits and to increase its market share.
Table 4-12: Six sets of average successive product generation introduction timings from six different product line lifecycle durations comparing to the actual Apple iPhone MGP line

<table>
<thead>
<tr>
<th>iPad</th>
<th>Gen 1</th>
<th>Gen 2</th>
<th>Gen 3</th>
<th>Gen 4</th>
<th>Gen 5</th>
<th>Gen 6</th>
<th>Gen 7</th>
<th>Gen 8</th>
<th>Gen 9</th>
<th>Gen 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 30</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>19.12</td>
<td>23.1</td>
<td>26.1</td>
<td>28.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = 35</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>21.2</td>
<td>25.58</td>
<td>28.88</td>
<td>31.88</td>
<td>33.9</td>
<td></td>
</tr>
<tr>
<td>T = 40</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>23.26</td>
<td>28.24</td>
<td>32.24</td>
<td>35.38</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td>T = 45</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.12</td>
<td>30.62</td>
<td>34.94</td>
<td>38.6</td>
<td>41.6</td>
<td>43.86</td>
</tr>
<tr>
<td>T = 50</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>27.08</td>
<td>33.16</td>
<td>38.12</td>
<td>42.12</td>
<td>45.22</td>
<td>48.08</td>
</tr>
<tr>
<td>Actual</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The proposed framework used in this study is capable of applying the observed 17 terms of sales data from the Apple iPhone product line with appropriate adjustments to forecast the sales behavior and introduction timings for the Apple iPad MGP line, which is a product line with high functional similarity. As noted previously, the proposed framework has four distinct advantages; it has low application difficulty, it has low computational complexity, the introduction timing for every product generation is automatically predicted from the proposed framework and need not be given, and it forecasts a new product line using sales data from an existing product line, allowing companies to construct future product and market strategies for the product line well in advance. Moreover, when the product line has been introduced and is active in the market, the company can apply the proposed framework to directly forecast more accurate future sales performance and potential product line behavior for the entire product line. And, as noted earlier, the model can enable users to prepare for market cannibalization situations in advance by setting different cannibalization scenarios into sales decrease strategies, helping users test different pricing strategies under different market situations.

The proposed framework does carry a potential challenge. To make very accurate predictions of sales and introduction timings, it demands considerable raw data and requires careful data analysis to develop appropriate strategies.

In the next section, the technology evolution model is introduced.
4.4 Technology Evolution Model

We start by formulating the basic technology evolution model, which embeds the technology evolution concern into the cannibalization model and considers only a single technology evolving over time. In this model, in addition to using state variable $X(t)$ to record the sales status, we introduce a new state variable $Y(t)$ to record the change of the technology substitution status during the lifecycle of the MGP line.

To begin with, we first define the expected profit function $F_i(x, y, t)$ as:

$$F_i(x, y, t) = \text{maximum expected profit between time period } t \text{ and the expected end of life of the MGP line for sales scenario } i, \text{ given that } X(t) = x \text{ and } Y(t) = Y.$$

(Eq. 4-19)

In this model, there are two cases for i since we consider two different sales scenarios (increase or decrease). These are $F_1(x, y, t)$ and $F_2(x, y, t)$, each representing the optimal profit of the sales increase scenario and sales decrease scenario when product sale is in state x and technology evolution status is in state y in time period t. The actual optimal profit of the entire product line $F_i(x, y, T)$ is acquired by summation of all the expected profits at the last time period.

After defining $F_i(x, y, t)$, we need to clarify the expected profit values corresponding to the strategy chosen at state x and y, and time period t, preceding time period T. Let,

$$V_j(x, y, t) = \text{the optimal profit when strategy } j \text{ is selected for time period } t \text{ from time period } t+1 \text{ onward, given that } X(t) = x \text{ and } Y(t) = Y.$$

(Eq. 4-20)

Forming strategies corresponding to potential sales behaviors is the next step after the model definition. In this model, we adopt the same six strategies and two sales scenarios from
the cannibalization model. The sales increase scenario aims at the sales variation for the
target product generation in the period between its market debut and the introduction of its
successor. It offers a choice of the four strategies analyzed previously: aggressive increase,
conservative increase, oscillation increase, and successive product generation introduction.
The sales decrease scenario aims at the sales situation when a target product generation
gradually decays toward the end of its life. Likewise, it offers two strategies: decrease and
convergence. The settings of the seven strategies used in this technology evolution model are
somewhat different from those in the cannibalization model. Below, we introduce the
strategies of the two scenarios, respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Th(t)$</td>
<td>Threshold for introducing the successive generation of product at time period t. Unit is state.</td>
</tr>
<tr>
<td>$Agg(t)$</td>
<td>Product sales when applying aggressive increase strategy at time period t. Unit is state.</td>
</tr>
<tr>
<td>P_{Con}</td>
<td>Probability for profit increase when applying the conservative strategy.</td>
</tr>
<tr>
<td>P_{Osc}</td>
<td>Probability for profit increase or decrease when applying the oscillation strategy.</td>
</tr>
<tr>
<td>P_{Intro}</td>
<td>Probability for profit decrease when applying the successive product generation introduction strategy.</td>
</tr>
<tr>
<td>P_{Cv}</td>
<td>Probability for the rapid sales convergence when applying the converge strategy.</td>
</tr>
<tr>
<td>B_1</td>
<td>The more profit increment when applying the conservative strategy. Unit is state.</td>
</tr>
<tr>
<td>B_2</td>
<td>The less profit increment when applying the conservative strategy. Unit is state.</td>
</tr>
<tr>
<td>C_1</td>
<td>The more profit increment or the less profit decrement when applying the oscillation strategy. Unit is state.</td>
</tr>
<tr>
<td>C_2</td>
<td>The more profit decrement when applying the oscillation strategy. Unit is state.</td>
</tr>
<tr>
<td>I_1</td>
<td>The less profit decrement when applying the successive product generation introduction strategy. Unit is state.</td>
</tr>
<tr>
<td>I_2</td>
<td>The more profit decrement when applying the successive product generation introduction strategy. Unit is state.</td>
</tr>
<tr>
<td>EP</td>
<td>Expected profit gain under the strategy if introducing the successive generation of product.</td>
</tr>
<tr>
<td>D_1</td>
<td>Rate of the more profit decrement when applying the decrease strategy. Unit is state.</td>
</tr>
<tr>
<td>D_2</td>
<td>Rate of the less profit increment when applying the decrease strategy. Unit is state.</td>
</tr>
<tr>
<td>D_{Dec}</td>
<td>Constant decrease rate of the oscillation decrease strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Agg}</td>
<td>Cost involved when adopting the aggressive increase strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Con}</td>
<td>Cost involved when adopting the conservative increase strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Osc}</td>
<td>Cost involved when adopting the oscillation strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Dec}</td>
<td>Cost involved when adopting the decreasing strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Cv}</td>
<td>Cost involved when adopting the converge strategy. Unit is state.</td>
</tr>
<tr>
<td>C_{Intro}</td>
<td>Costs involved in introducing the successive generation of product. Unit is state.</td>
</tr>
<tr>
<td>T</td>
<td>Entire (multiple-generation) product life span. Unit is season.</td>
</tr>
<tr>
<td>$X(t)$</td>
<td>Amount of profit at the start of time period t. Unit is state.</td>
</tr>
<tr>
<td>C_{g}</td>
<td>Convergence threshold for the sales decrease scenario. Unit is state.</td>
</tr>
<tr>
<td>C_{v}</td>
<td>The rapid sales convergence in the converge strategy. Unit is state.</td>
</tr>
<tr>
<td>x_{crit}</td>
<td>The critical level for product sales in sales increase model. Unit is state.</td>
</tr>
<tr>
<td>y_{crit}</td>
<td>The critical level for product sales in sale decrease model. Unit is state.</td>
</tr>
</tbody>
</table>
4.4.1 Sales Increase Scenarios

In this section, we provide further explanation about the four sales increase strategies.

1. The Aggressive Increase Strategy

\[
X_{t+1} = \begin{cases}
 x + \text{Agg}(t) & \text{if } x = 1 \\
 0 & \text{Otherwise}
\end{cases}
\]

\[
Ad(t+1) = Y(t) + k
\]

\[
E(t+1) = \begin{cases}
 E(t) + k & \text{If } E(t) < \text{TE} \\
 y_{\text{crit}} & \text{Else}
\end{cases}
\]

\[
Y_{t+1} = \min[Ad(t+1), E(t+1)]
\]

(Eq. 4-21)

The aggressive strategy only takes place at the time period when a product generation enters the market. In this model, for the sales status \(X(t)\), we still define State 1 as the critical
state, and the successive product generation ready to be introduced to the market must wait at
the critical state. When the debut decision is made, the successive product generation follows
the aggressive strategy and jumps to the corresponding state. Therefore, the aggressive
increase strategy only occurs when a new generation of the product is at State 1. The
introduction sales performance of a new product generation should vary with time and the
stage of the product line lifecycle. To better fit the real world conditions, we define the sales
performance of the aggressive increase strategy into a polynomial function $Agg(t)$, which
varies with time t and is symmetric with respect to $(T+1)/2$. In addition, the aggressive
increase strategy cannot be selected when a product generation is no longer at state 1. As for
the technology substitution status $Y(t+1)$ at time $t+1$, we consider two conditions, $E(t+1)$ and
$Ad(t+1)$. $E(t+1)$ is the actual technology substitution status at time $t+1$, and it has a critical
threshold TE, which is the technology evolution threshold. If $E(t+1)$ stands above TE, it
means the next generation of technology evolves and could be applied to products. Once the
new technology is available, $E(t+1)$ returns to the critical level and moves to represent the
substitution status of the new technology. Meanwhile, $Ad(t+1)$ indicates the adjusted
technology substitution status at time $t+1$. The reason we use two different variables is that
$E(t+1)$ reveals only the actual technology substitution status of the market; accordingly, we
use $Ad(t+1)$ to record the generations of technologies adopted by the products. Note that we
assume the rate of technology substitution is linear in this study; thus, both $E(t+1)$ and $Ad(t+1)$
grow linearly with a constant rate k. For $Y(t+1)$, we select the lower value from $E(t+1)$ and
$Ad(t+1)$. Equation 4-22 presents the stochastic dynamic programming formulation of the
optimal profit when selecting the aggressive strategy:

$$
V_i(x, y, t) = \begin{cases}
F(x + Agg(t+1), \min(Ad(t'+1), E(t+1)), t+1) - C_{Agg} & \text{If } x = 1 \\
0 & \text{Otherwise}
\end{cases}
$$

(Eq. 4-22)
2. The Conservative Increase Strategy

If \(x \neq 1 \),

\[
X_2(t+1) = \begin{cases}
 x + B_1 & \text{with probability } P_{\text{Con}} \\
 x + B_2 & \text{with probability } (1 - P_{\text{Con}})
\end{cases}
\]

Where \(B_1 > B_2 \)

\[
Ad(t+1) = Y(t) + k
\]

\[
E(t+1) = \begin{cases}
 E(t) + k & \text{If } E(t) < \text{TE} \\
 Y_{\text{Crit}} & \text{Else}
\end{cases}
\]

\[
Y_2(t+1) = \min[Ad(t+1), E(t+1)]
\]

(Eq. 4-23)

Equation 4-23 indicates the two possible conditions when selecting the conservative strategy. For sales state \(X(t+1) \), if the current state of a product generation is not at State 1, product sales may increase from their current state to a much higher state \(B_1 \) with a probability, \(P_{\text{Con}} \), or to a slightly higher state with a probability, \((1 - P_{\text{Con}}) \). In addition, the technology substitution status for the next time period is selected from the lower value between the adjusted and the actual technology substitution status elements. Equation 4-24 provides the optimal profit when selecting the conservative strategy in the stochastic dynamic programming form. This strategy is not considered if the technology substitution status stands between the enforced adoption threshold \(FA \) and the delayed adoption threshold \(DA \). The reasoning is that if it falls between \(FA \) and \(DA \), it means that the current technology is widely prevalent but that the company does not have a product incorporating this generation of technology. Thus, the company must release a new product generation with this mainstream technology to catch up with its competitors and to maintain its market position.
When selecting the oscillation increase strategy, sales may slightly increase or decrease in the amount of C_1 with a probability P_{Osc}, or drop moderately in the amount of C_2 with a probability, $(1 - P_{Osc})$. It is noted that C_1 may be positive or negative, but C_2 is negative. Moreover, the technology substitution status for the next time period is still chosen from the lower value between the adjusted technology substitution status and the actual technology substitution status. Equation 4-26 is the stochastic dynamic programming formulation for optimal profit under the oscillation increase strategy.
As with the conservative increase strategy, the oscillation increase strategy is not taken into account if the technology substitution status stands between the enforced adoption threshold FA and delayed adoption threshold DA.

\[
V_t(x, y, t) = \begin{cases}
 P_{osc} F(x + C_1, \min[Ad(t+1), E(t+1)], t+1) & \text{If } x \neq 1 \text{ and } y < FA \\
 (1 - P_{osc}) F(x + C_2, \min[Ad(t+1), E(t+1)], t+1) - C_{osc} & \text{If } x \neq 1 \text{ and } y \geq DA \\
 0 & \text{Otherwise}
\end{cases}
\]

(Eq. 4-26)

In addition, for each time period \(t\), product sales are constrained between a set of boundaries \(x_{crit}\) and the highest state. \(x_{crit}\) is the critical level of product sales, and any product generation with a state smaller or equal to \(x_{crit}\) which is State 1, is considered to be withdrawn from the market. Similarly, technology substitution status is bounded between the critical state \(y_{crit}\) and the highest state at each time period \(t\). \(y_{crit}\) is the critical state of technology substitution status, and it is defined to be State 1. Every time a new technology emerges or when a new generation of product is equipped with the latest technology, the technology substitution status returns to the critical state \(y_{crit}\).

4. The Successive Product Generation Introduction Strategy

The company may decide to introduce the successive product generation rather than applying any of the possible strategies if the current product sales exceed the introduction threshold \(Th(t)\). In this model, we consider that threshold should be dynamic and follow a polynomial function that varies with time and is symmetric at \(t = (T+1)/2\). As with our prior example, introducing the successive generation may incur introduction costs, or, it may yield the highest gain in return as future profit. Additionally, as previously, since our model incorporates cannibalization, sales for the target product generation do not fall to the critical state but drop to a pair of lower states and follow a set of stochastic probabilities when a successive generation of product is introduced to the market. Equation 4-27 shows that when
the current product sales level exceeds the product introduction threshold $Th(t)$, product sales may drop I_1 state with a probability of P_{intro}, or decrease I_2 state with a probability of $(1 - P_{\text{intro}})$.

The technology substitution status for this strategy varies with different conditions, of which there are five. First, if the technology substitution status is less than the early adoption threshold EA, the company can only introduce the successive product generation with existing technology. Second, if the technology substitution status stands upon the early adoption threshold EA but beneath the catch-up adoption threshold CA, the company can choose to release the successive generation of product with either the existing technology or the newly mature technology. We use a pair of probabilities P_{New} and $(1 - P_{\text{New}})$ to represent the chance of implementing the new or extant technology in the successive product generation respectively. Third, if the technology substitution status stands above the catch-up adoption threshold CA but below the enforced adoption threshold FA, the company has to implement the latest available technology when releasing the competitive successive generation of product in order to catch up with the market leaders. Fourth, if the technology substitution status is higher than the enforced adoption threshold FA but lower than the delayed adoption threshold DA, all the other sales increase strategies are exclusive at this time and the company must release the successive product generation with the extant mature and prevalent technology. For the last condition, if the technology substitution status is higher than the delayed adoption threshold DA, then the company would consider bypassing the current generation of technology and delay the introduction of the successive product generation until the next generation of technology is available. Equation 4-28 is the stochastic dynamic programming function for the optimal profit under the successive product generation introduction strategy. In Equation 4-28, EP is the expected profit gain when introducing the successive generation of the product. On the other hand, if current product sales are within the threshold, then the company should not decide to introduce the successive generation of the product since doing this would not benefit the company in the long run but may significantly harm its profitability.
If $x \geq Th(t)$,

$$X_s(t+1) = \begin{cases} x + I_1 & \text{with probability } P_{\text{intro}} \\ x + I_2 & \text{with probability } (1 - P_{\text{intro}}) \end{cases}$$

Where $0 > I_1 > I_2$

If $y < EA$

$$Ad(t+1) = Y(t) + k$$

$$E(t+1) = \begin{cases} E(t) + k & \text{if } E(t) < TE \\ y_{CrA} & \text{else} \end{cases}$$

$$Y_s(t+1) = \min[Ad(t+1), E(t+1)]$$

If $EA \leq y < CA$

If the new generation of technology is not adopted,

$$Ad(t+1) = Y(t) + k$$

$$E(t+1) = \begin{cases} E(t) + k & \text{if } E(t) < TE \\ y_{CrA} & \text{else} \end{cases}$$

$$Y_s(t+1) = \min[Ad(t+1), E(t+1)] \text{ with probability } (1 - P_{\text{New}})$$

If the new generation of technology is adopted,

$$Ad(t+1) = y_{CrA}$$
\[E(t+1) = \begin{cases} E(t) + k & \text{If } E(t) < TE \\ y_{Crit} & \text{Else} \end{cases} \]

\[Y_4(t+1) = y_{Crit} \quad \text{with probability } P_{New} \]

If \(CA \leq y < FA \)

\[Ad(t+1) = y_{Crit} \]

\[E(t+1) = \begin{cases} E(t) + k & \text{If } E(t) < TE \\ y_{Crit} & \text{Else} \end{cases} \]

\[Y_4(t+1) = y_{Crit} \]

If \(FA \leq y < DA \)

\[Ad(t+1) = y_{Crit} \]

\[E(t+1) = \begin{cases} E(t) + k & \text{If } E(t) < TE \\ y_{Crit} & \text{Else} \end{cases} \]

\[Y_4(t+1) = y_{Crit} \]

If \(y \geq DA \)

\[Ad(t+1) = Y(t) + k \]
For each time period t, since $F_i(x, y, t)$ is the maximum expected profit given that $X(t) = x$ and $Y(t) = y$, $F_i(x, y, t)$ should be assigned the maximal expected revenue value for the above four strategies in the sales increase scenario:

$$F_i(x, y, t) = \max \{V_1(x, y, t), V_2(x, y, t), V_3(x, y, t), V_4(x, y, t)\}$$ \hspace{1cm} \text{(Eq. 4-29)}$$

4.4.2 Sales Decrease Scenarios

In the sales decrease model, we consider two different strategies. At each time period t, the company can select either the decrease strategy or the converge strategy. It is noted that in the sales decrease scenarios, technology substitution status equals the actual technology substitution status. This is because technology evolution does not affect the obsolete product generations. Here, we introduce the two sales decrease strategies.
1. The Decrease Strategy

If $x > C_g$,

$$X_s(t+1) = \begin{cases}
 x + D_1 & \text{with probability } P_{\text{Dec}} \\
 x + D_2 & \text{with probability } (1 - P_{\text{Dec}})
\end{cases}$$

Where $0 > D_1 > D_2$

$$E(t+1) = \begin{cases}
 E(t) + k & \text{If } E(t) < TE \\
 y_{Cg} & \text{Else}
\end{cases}$$

$$Y_s(t+1) = E(t+1)$$

(Eq. 4-30)

In the decrease strategy, if the current state of the target product generation exceeds the convergence threshold C_g, then the sales may drop either slightly by D_1 state or significantly by D_2, each with a probability of P_{Dec} or $(1 - P_{\text{Dec}})$. Equation 4-31 presents the stochastic dynamic programming formulation of the optimal profit when choosing the decrease strategy:

$$V_5(x, y, t) = \begin{cases}
 P_{\text{Dec}} F(x + D_1, E(t+1), t+1) & \text{If } x > C_g(t) \\
 + (1 - P_{\text{Dec}}) F(x + D_2, E(t+1), t+1) - C_{\text{Dec}} & \text{Otherwise}
\end{cases}$$

(Eq. 4-31)

2. The Convergence Strategy

If $x \geq C_g$,

$$X_s(t+1) = D_3 x(t)$$

Otherwise
In this study, we define “convergence” as the condition when product sales gradually move toward “zero”, where the target product generation is about to be removed from the market. We consider that convergence includes two scenarios. For the first scenario, when the product sales stand above the convergence threshold C_b, they slowly converge. We assume that the product sales no longer drop by constant states but diminish following a certain discount rate. For the second scenario, when the current state is equal or lower than the converge threshold C_b, the product sales drop in two different ways. In this scenario, the product sales may rapidly converge by C_v states with a probability of P_{Con}, or may still drop following the same discount rate with a probability of $(1-P_{Con})$. This scenario represents the situation when a product generation is close to its end of life, and the company may retain it in the market for a while or may directly withdraw it. When the current state of a product generation is lower than the critical state, it is removed from the market. Equation 4-33 provides the optimal profit when selecting the convergence strategy in the stochastic dynamic programming form.

If $x \geq C_g$,

$$V_6(x, y, t) = F(D_3x(t), E(t+1), t + 1) - C_{Cv}$$ \text{If } x > C_g$$
Otherwise

\[
\begin{align*}
\text{If } x - C_v & \geq 1 \\
V_6(x, y, t) & = P_{\text{con}} F(x(t) - C_v, E(t+1), t+1) + (1 - P_{\text{con}}) F(D_2x(t), E(t+1), t+1) - C_{cv}
\end{align*}
\]

(Eq. 4-33)

For each time period \(t\), since \(F_2(x, y, t)\) is the maximum expected profit given that \(X(t) = x\) and \(Y(t) = y\), \(F_2(x, y, t)\) should be assigned the maximal expected revenue values for the above two strategies in the sales decrease scenario:

\[
F_2(x, y, t) = \max \{V_5(x, y, t), V_6(x, y, t)\}
\]

(Eq. 4-34)

After formulating this model, backward iteration is used to solve it. When applying the backward iteration, we start from the last term \(t = T\) and move backward in time. Thus, the end condition \(F_i(x, y, T)\), which is the total expected future profits for the product line, must be given. We assume \(F_i(x, y, T)\) is a function \(K(x)\), and we define it in the case study section.

The technology evolution model also outputs the two optimal time-state strategy maps for both scenarios, indicating the optimal strategy the company should apply for a targeted product generation at each time and state under either of the two sales scenarios. The strategy maps allow the company to develop long-term product line strategies or to adjust its strategies toward dynamic market changes.

In the next section, we demonstrate a case study applying the technology evolution model to the Apple iPhone product line.

4.5 Case Study IV: Technology Evolution Model
In this section, we again take Apple’s iPhone product line as our target to demonstrate the technology evolution model. In this study, we still use the 17 periods of observed data to forecast the sales behavior and successive product generation introduction timings for the entire iPhone product line. In addition, we use 150 states in the model, where each state represents 200,000 units of sales, and \(T = 50 \).

In the technology evolution model, the most critical element is how to model the technology substitution status. There are two main problems when formulating the evolution of technology. First, the assessment of the market status for a certain technology may be troublesome because the acquisition of data is very difficult. Second, technology may not evolve linearly.

After searching through the literature, we figured out ways to tackle the above two problems. To acquire macroscopic data for the cell phone market, we located research from Kim (2009), who surveyed 1074 cell phone models from major manufacturers (including Nokia, Motorola, Sony-Ericsson, Samsung and LG, whose combined market share from 2002 to 2008 ranges from 74.5% to 81%) and analyzed the relationships between several specifications and market shares for each manufacturers. We adopted Kim’s cell phone market survey data and tried to abstract the usable market trend information to use in the technology evolution model. In order to demonstrate the technology evolution model, we needed to select one technology as our target to monitor its evolution. In this case study, we chose mobile network generation as our objective technology. Mobile network is the kernel of cell phones, and it also confines the development of cell phones. The first generation (1G) mobile network was introduced to the market in 1979. In March 2011, LTE Advanced was formally selected as the standard for the fourth generation (4G) mobile network, and is expected to be operational globally in 2013. Between the development of 1G and 4G, the network download speed evolved from 29 kbyte/s to 1gbyte/s (1 million kbyte/s). The dramatic growth of network transmission speed pushed mobile phone manufacturers to
develop new products with advanced functions and applications corresponding to the latest available technology.

Formulating the evolution of mobile network is complex since it is non-linear and hard to predict. As we assume such evolution grows linearly in our model setting, modeling appropriately became a critical concern. We decided to adopt the technology substitution model proposed by Fisher and Pry (1971) to formulate the evolution of mobile network into the technology evolution model. Fisher and Pry proposed a simple substitution model that looks at the substitution between new and previous generations of technologies rather than simply monitoring the objective new generation of technology. Following Equation 4-35 and Equation 4-36 are the formulations of the Fisher-Pry model:

\[f/(1-f) = \exp \left(2\alpha (t-t_0) \right) \] \hspace{1cm} (Eq. 4-35)

\[t = t_{0.9} - t_{0.1} = \frac{2.2}{\alpha} \] \hspace{1cm} (Eq. 4-36)

In Equation 4-35, \(f \) is the substitution rate, \(\alpha \) is half the annual fractional growth in the early years, and \(t_0 \) is the time where \(f = 1/2 \). In the equation 4-36, \(t_{0.1} \) and \(t_{0.9} \) are the time periods when the substitution rate is at 0.1 and 0.9 respectively. The \(f/(1-f) \) values output from the Fisher-Pry model from a “S-shaped” logistic curve, and they are log-linear. According to the setting requirements of the technology evolution model and the cell phone data set, the Fisher-Pry model would be a perfect fit to be incorporated into the technology evolution model.

We investigated the cell phone data and found that 3G phones started to emerge in 2003. After that, 3G phones gradually substituted 2G phones and progressively became the mainstream technology. Thus we decided to choose the data from 2003 to 2008 as our observed interval and we applied the Fisher-Pry model to it. For the parameters used in the Fisher-Pry model, we set \(t_0 = 2009, t_{0.1} = 2005 \), thus \(t_{0.9} = 2013 \) and \(\alpha = 0.275 \).
Table 4-14 shows the numbers of cell phones released by the major manufacturers between 2003 and 2008 with 2G/3G mobile network capabilities. Table 4-15 is the comparison of the \(f/(1-f) \) values between the real data and the outputs from the Fisher-Pry model, where the row “Real \(f/(1-f) \)” indicates the real data and the row “Projected \(f/(1-f) \)” is the calculation output from the Fisher-Pry model.

Table 4-14: The numbers of cell phones with 2G/3G mobile network capabilities from 2003 to 2008

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G Phones</td>
<td>101</td>
<td>122</td>
<td>215</td>
<td>188</td>
<td>218</td>
<td>183</td>
</tr>
<tr>
<td>3G Phones</td>
<td>1</td>
<td>6</td>
<td>28</td>
<td>51</td>
<td>86</td>
<td>71</td>
</tr>
</tbody>
</table>

Table 4-15: The comparison of \(f/(1-f) \) between the real data and the outputs from the Fisher-Pry model

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Real (f/(1-f))</td>
<td>0.01</td>
<td>0.0517</td>
<td>0.1497</td>
<td>0.3723</td>
<td>0.6515</td>
<td>0.633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projected (f/(1-f))</td>
<td>0.0369</td>
<td>0.0639</td>
<td>0.1108</td>
<td>0.192</td>
<td>0.3329</td>
<td>0.5769</td>
<td>1.733</td>
<td>3.004</td>
<td>5.207</td>
<td>9.0250</td>
<td></td>
</tr>
</tbody>
</table>

However, to use this data in the technology evolution model, there is one more problem. In the technology model, the unit of time is an accounting season, but in Table 4-15 the unit of time is a year. We used an easy way to assess the seasonal \(f/(1-f) \) values. Using year 2005 as an example, we set the first to fourth season each as 2004.25, 2004.5, 2004.75 and 2005, respectively. Since \(f/(1-f) \) values depict a logistic curve, \(\log f/(1-f) \) values form a straight line. A technology can have a market portion from 0 to 100%; the \(f/(1-f) \) values mostly fall between 0.01 to 100. Thus, the main body of the \(\log f/(1-f) \) line will stand between -2 and 2. As \(\log f/(1-f) \) is a linear function, we can assess the seasonal unit of the technology substitution rate \(k \) from \(\log f/(1-f) \) and \(k = 0.0597 \). In this case study, we adjust \(\log f/(1-f) \) values and set them into the \(E(t) \). We add 2 to all the \(\log f/(1-f) \) values and define \(E(t) \) to range between 0 and 4. In addition, since we have \(k = 0.0597 \) and \(E(t) \) ranges from 0 to 4, we separate \(Y(t) \) into 67 states and each state is \(k \). When a new technology is available, \(E(t) \) drops to the critical state \(y_{\text{Crit}} \), which is 0. Besides, as we know the 4G will become available in 2013, we set the \(\log f/(1-f) \) from 2012 as the technology evolution threshold (TE) and TE is at State 46.
For the constraints of $Y(t)$, we try to use different combinations of constraints to see if there is any effect to the introduction timings products and the adoption of new technology. For the basic setting, we set EA is $f = 0.1$, CA is $f = 0.3$, EA is $f = 0.5$, DA is $f = 0.7$. Also, we try two variable settings. We fix CA and set EA to reflect six different situations from $f = 0.35$ to $f = 0.65$, and fix EA and set CA to be in a set of different conditions from $f = 0.15$ to 0.45.

The strategy settings in the technology evolution model remain the same as those in the cannibalization model. Table 4-16 shows the settings for three strategies where the unit is one state. The successive product generation introduction strategy is more complicated, and Table 4-16 reveals only the potential sales variations when applying this strategy. The two additional parameters for the successive product generation introduction strategy are the introduction threshold function ($Th(t)$), and the expected profit gain (EP). The introduction threshold function, $Th(t)$, is a symmetric function as well as the sales function for the aggressive increase strategy $Agg(t)$. For the aggressive strategy, we use the time and sales differences between the first and the fourth generations of iPhones at the each of its introduction time period to generate the slope and intercept. The detailed slope and intercept values for $Th(t)$ and $Agg(t)$ are shown in Table 4-17. As for the EP, we simply define it as the sales increment rate between the total sales in the time period where a successive product generation is introduced to the market over the total sales in the previous quarter. We connect all the EP ratios we observed from iPhone’s sales, and assume EP is linear and varies with time as well.

As for the convergence strategy, we set the converge rate as (D_3) = 0.8, the convergence threshold (Cg) as state 7.54, and the rapid convergence rate (Cv) = 5.56 states. In addition, we assume costs only involve the sales increase strategies. We set the cost of using the successive product generation introduction strategy to be 10 states of product sales amount and 1 state for the rest of the three strategies.

Table 4-16: Settings for three of the strategies
Table 4-17: Parameter settings for the three time-dependent symmetric functions

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Parameter</th>
<th>Increase Rate</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservative Increase Strategy</td>
<td>B_1</td>
<td>11.19</td>
<td>0.625</td>
</tr>
<tr>
<td></td>
<td>B_2</td>
<td>7.42</td>
<td>0.375</td>
</tr>
<tr>
<td>Oscillation Increase Strategy</td>
<td>C_1</td>
<td>1.00</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>C_2</td>
<td>-5.87</td>
<td>0.800</td>
</tr>
<tr>
<td>Successive Product Generation Introduction Strategy</td>
<td>I_1</td>
<td>-6.24</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>I_2</td>
<td>-11.31</td>
<td>0.500</td>
</tr>
</tbody>
</table>

The total expected future sales $K(x)$ needs to be given in order to solve the cannibalization model. We assume the iPhone product line sells 100 states of units per time period. We further suppose that the sales variance would be 20%. T is the total lifecycle duration, x indicates the state, and unit profit margin is U. Thus, $K(x)$ will be:

$$K(x) = 100 \times 200,000 \times T \times U \times 0.8 \times \left[[100 \times 200,000 \times T \times U \times (0.2 \times 2)/150]x \right]$$
$$= 16,000,000TU + 53,333.33TUx$$

After defining all the model settings, strategies and boundaries used in this case study, we need to solve this technology evolution model. We apply the backward iteration to solve DSVMs from both the sales increase and sales decrease scenario. After the backward iteration, we receive the optimal strategic maps from both sales scenarios. For the next step, we apply the Monte-Carlo forward iteration to obtain the potential lifetime prediction of the iPhone product line. We developed an Excel-VBA based software to do the computation for the model, and the code is provided in Appendix D. Figure 4-6 is a set of prediction output from the Monte-Carlo forward iteration. Table 4-18 is the introduction timings for the iPhone product line with different EA and CA setting. In Table 4-18, the real introduction timings for the real iPhone product line is also included. We can see that the model predictions are very different from reality, the reason is that in this illustrative case study we choose to use a much...
longer time-span $T = 50$ to see how technology evolves under a longer life-span. In fact, the longer the observation time we can have more in-depth information about how technology changes according to the constraint settings. In Table 4-18, we can see that change CA almost has no effect to the introduction timing decisions. On the other hand, change FA to extreme values would force the MGP line to react in a different way. In Table 4-19, we can see that any minor change in technology constraints would significantly change the time when the latest technology is implemented to the product line. In Table 4-20, we can see that if we set $T = 28$ and $T = 30$ with all the same basic constraints, the predictions output from the technology evolution model would be very close to the real iPhone product line.

Figure 4- 6: A simulated lifecycle of iPhone product line based on the basic technology substitution status $Y(t)$ constraint settings
Table 4-18: Introduction timings comparison with the real iPhone product line with different FA and CA settings

<table>
<thead>
<tr>
<th></th>
<th>Gen 1</th>
<th>Gen 2</th>
<th>Gen 3</th>
<th>Gen 4</th>
<th>Gen 5</th>
<th>Gen 6</th>
<th>Gen 7</th>
<th>Gen 8</th>
<th>Gen 9</th>
<th>Gen 10</th>
<th>Gen 11</th>
<th>Gen 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA = 35%</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.16</td>
<td>31.74</td>
<td>36.74</td>
<td>41.04</td>
<td>44.62</td>
<td>47.62</td>
<td>49.08</td>
</tr>
<tr>
<td>FA = 40%</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>14</td>
<td>25.24</td>
<td>31.74</td>
<td>36.74</td>
<td>40.84</td>
<td>44.52</td>
<td>47.52</td>
<td>49.64</td>
</tr>
<tr>
<td>FA = 45%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.18</td>
<td>31.76</td>
<td>36.84</td>
<td>40.92</td>
<td>44.51</td>
<td>47.48</td>
<td>49.52</td>
<td></td>
</tr>
<tr>
<td>FA = 50%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.34</td>
<td>31.76</td>
<td>36.84</td>
<td>40.92</td>
<td>44.56</td>
<td>47.56</td>
<td>49.66</td>
<td></td>
</tr>
<tr>
<td>FA = 55%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.2</td>
<td>31.78</td>
<td>36.84</td>
<td>40.96</td>
<td>44.52</td>
<td>47.52</td>
<td>49.69</td>
<td></td>
</tr>
<tr>
<td>FA = 60%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.26</td>
<td>31.72</td>
<td>36.78</td>
<td>40.84</td>
<td>44.48</td>
<td>47.46</td>
<td>49.58</td>
<td></td>
</tr>
<tr>
<td>FA = 65%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.2</td>
<td>31.8</td>
<td>36.88</td>
<td>41.04</td>
<td>44.54</td>
<td>47.52</td>
<td>49.68</td>
<td></td>
</tr>
</tbody>
</table>

Real iPhone

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>6</th>
<th>10</th>
<th>14</th>
<th>19</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA = 35%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.24</td>
<td>31.86</td>
</tr>
<tr>
<td>FA = 40%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.26</td>
<td>31.84</td>
</tr>
<tr>
<td>FA = 45%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.42</td>
<td>31.9</td>
</tr>
<tr>
<td>FA = 50%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.34</td>
<td>31.76</td>
</tr>
<tr>
<td>FA = 55%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.26</td>
<td>31.74</td>
</tr>
<tr>
<td>FA = 60%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.26</td>
<td>31.64</td>
</tr>
<tr>
<td>FA = 65%</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>25.26</td>
<td>31.86</td>
</tr>
</tbody>
</table>

Table 4-19: The timings that the target technology is adopted by the product line

<table>
<thead>
<tr>
<th></th>
<th>3G</th>
<th>4G</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA = 35%</td>
<td>2</td>
<td>46.36</td>
</tr>
<tr>
<td>FA = 40%</td>
<td>5</td>
<td>41.06</td>
</tr>
<tr>
<td>FA = 45%</td>
<td>6</td>
<td>38.58</td>
</tr>
<tr>
<td>FA = 50%</td>
<td>6</td>
<td>40.98</td>
</tr>
<tr>
<td>FA = 55%</td>
<td>6</td>
<td>43.14</td>
</tr>
<tr>
<td>FA = 60%</td>
<td>6</td>
<td>38.64</td>
</tr>
<tr>
<td>FA = 65%</td>
<td>6</td>
<td>41.3</td>
</tr>
<tr>
<td>CA = 15%</td>
<td>6</td>
<td>47.3</td>
</tr>
<tr>
<td>CA = 20%</td>
<td>6</td>
<td>49.7</td>
</tr>
<tr>
<td>CA = 25%</td>
<td>6</td>
<td>41.34</td>
</tr>
<tr>
<td>CA = 30%</td>
<td>6</td>
<td>40.98</td>
</tr>
<tr>
<td>CA = 35%</td>
<td>6</td>
<td>46.46</td>
</tr>
<tr>
<td>CA = 40%</td>
<td>6</td>
<td>40.94</td>
</tr>
<tr>
<td>CA = 45%</td>
<td>7.08</td>
<td>38.46</td>
</tr>
</tbody>
</table>

Table 4-20: Comparison between shorter life-span T settings with the real iPhone data

<table>
<thead>
<tr>
<th></th>
<th>Gen 1</th>
<th>Gen 2</th>
<th>Gen 3</th>
<th>Gen 4</th>
<th>Gen 5</th>
<th>Gen 6</th>
<th>Gen 7</th>
<th>Gen 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real iPhone</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>19</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = 28</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>18.82</td>
<td>22.44</td>
<td>25.44</td>
<td>27.54</td>
</tr>
<tr>
<td>T = 30</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>19.12</td>
<td>23.1</td>
<td>26.1</td>
<td>28.4</td>
</tr>
</tbody>
</table>
Chapter 5

Conclusion and Future Work

In this chapter, we provide the conclusion as well as the future research directions for this research.

5.1 Conclusion

In this work, we propose a new framework to support the analysis of MGP lines. In the proposed framework, we apply a DSVM to formulate the lifetime behaviors of MGP lines. The proposed framework considers two substitution scenarios between consecutive product generations. In the first scenario, the successor fully substitutes the market position of the current product generation. In the second scenario, multiple generations of products directly compete with each other in the same market. In this study, several real-world case studies are provided to validate our proposed frameworks. A case involving IBM mainframe computer systems is adopted to demonstrate the basic model, and the on-going sales data of Apple iPhones is analyzed to verify different applications of the cannibalization model.

In addition, we bring the concern of technology evolution into the proposed framework. For most MGP lines, especially for technology products, one or more technologies involved in the product line evolve over time. The status of technology evolution may cause companies to rethink their market strategies, especially product introduction decisions. Thus, companies should continuously monitor the latest available technologies in the market to ensure they adopt the correct strategies. In this study, we look into the situation where one single technology evolves over time in a MGP line from both substitution scenarios.
The proposed framework centers on a DSVM. This model outputs a set of time-state strategy maps for the target product line. In the next stage, Monte Carlo forward iteration is adopted to simulate a complete lifecycle of the product line. When properly analyzing raw sales data and transforming it into well defined strategies, the proposed framework can generate a close lifetime prediction for the target MGP line.

The proposed framework has four major contributions. First, it has real market data applicability. Real market scenarios can be analyzed using proper strategies under the proposed framework. Second, it can automatically generate key measures. With the input of properly set strategies, the proposed framework can automatically output the best time-state strategies, introduction timings, and potential lifetime behaviors for every product generation within a MGP line. Third, it has low applicability difficulty for companies to implement. Companies can easily model their current market environment with the proposed framework. Since companies possess more detailed and accurate market data and knowledge to input, the proposed framework can return credible forecasting performance. Fourth, the proposed framework provides a virtual environment for companies to verify potential market strategies in advance prior to directly implementing them in the market. In addition, the proposed framework can assist companies in developing more flexible market strategies toward the dynamic market environment through the lifecycle of MGP lines. With the strategy maps output from the DSVM, companies are able to fit their current market status to the relative state and adopt the optimal strategy to ensure profitability.

5.2 Limitations of the Research

The proposed framework also has limitations. First, to acquire highly accurate predictions, it requires the input of very precise and adequate market and operational data to properly deduce accurate strategies from product sales trends. Second, for forecasting the behaviors of an on-
going product line, the longer the observation time span, the more accurate the predictions. Third, for forecasting a new product line, close predictions can only mirror a highly similar product line. Fourth, the proposed framework generates forecasts based on the past sales trend. Thus, if the market has unexpected shifts (e.g., the emergence of breakthrough technology), the proposed framework is not able to reflect those changes. Fifth, the proposed framework has difficulty with modeling a market scenario involving interactions among multiple competitors.

5.3 Future Research Direction

In our future work, we will focus on three directions. First, we will incorporate the concern of multiple-technology evolutions into the existing framework. In this study, we investigated a situation in which only a single technology evolves over the lifecycle of a MGP lines. However, most of the real-world MGP lines involve more than one evolving technology. As multiple evolving technologies involve in a product line, their interactions and priorities need to be taken into concern. Second, we will look at how cannibalization can affect the sales and profits of MGP lines. Simulation-based techniques are a potential approach to combine with our proposed framework in order to examine different strategies for preventing cannibalization. Third, various strategy settings will be examined. We will formulate actual market traits into strategies so that the proposed framework can generate more realistic and valuable decisions for companies. For instance, we will test strategies with different marketing considerations, investigate the price differences, etc.

Moreover, we will consolidate the proposed framework by validating several constraint and threshold settings. Unverified assumptions will also be validated with additional sensitivity analyses.
References

Pennsylvania State University.

Rogers CM, Smith JNM. 1993. Life-History Theory in the Nonbreeding Period: Trade-offs in

Appendix A

VBA Code of the Program “Multiple-Generation Product Line Simulator”

Sub simulator()
 Dim a1 As Double
 Dim a2 As Double
 Dim d1 As Double
 Dim d2 As Double
 Dim c1 As Double
 Dim c2 As Double
 Dim up As Double
 Dim paii As Double
 Dim pcii As Double
 Dim pd As Double
 Dim t As Double
 Dim h As Double
 Dim il As Double
 Dim ciagg As Double
 Dim cd As Double
 Dim cicon As Double
 Dim xp1 As Double
 Dim xpp1 As Double
 Dim xp2 As Double
Dim xpp2 As Double
Dim xp3 As Double
Dim xpp3 As Double
Dim xp4 As Double
Dim state(30, 2, 100) As Double
Dim com(1, 2) As Double
Dim f(30, 100) As Double
Dim det As Double

Load UserForm1
Load UserForm2

UserForm1.Show

t = UserForm2.TextBox1.Value
a1 = UserForm2.TextBox12.Value
a2 = UserForm2.TextBox13.Value
d1 = UserForm2.TextBox14.Value
d2 = UserForm2.TextBox15.Value
c1 = UserForm2.TextBox18.Value
c2 = UserForm2.TextBox19.Value
up = UserForm2.TextBox16.Value
ciagg = UserForm2.TextBox24.Value
cicon = UserForm2.TextBox25.Value
cd = UserForm2.TextBox27.Value
h = UserForm2.TextBox31.Value
paii = UserForm2.TextBox33.Value
pcii = UserForm2.TextBox34.Value
il = UserForm2.TextBox35.Value
pd = UserForm2.TextBox36.Value
det = UserForm2.TextBox37.Value

Sheets("sheet1").Select
Cells(1, 1) = "State"
Cells(1, 2) = "Agg Increase"
Cells(1, 3) = "Con Increase"
Cells(1, 4) = "Decrease"
Cells(1, 5) = "Intro New"

For i = 1 To 30
 f(i, t) = 463 * (1 + ((i - 17) / 30) ^ 3)
Next

For i = 1 To t - 1
 For j = 1 To 30
 Cells(j + 1, 1) = j
 Next
 xp1 = j + a1 - ciagg
 xpp1 = j + a2 - ciagg
If \(xpp1 \geq 1 \) And \(xp1 \leq 30 \) Then

\[
\text{Cells}(j, 2) = paii * f(xp1, t - i + 1) + (1 - paii) * f(xpp1, t - i + 1)
\]

Else

\[
\text{Cells}(j, 2) = 0
\]

End If

\[
xp2 = j + c1 - cicon
\]

\[
xpp2 = j + c2 - cicon
\]

If \(xpp2 \geq 1 \) And \(xp2 \leq 30 \) Then

\[
\text{Cells}(j, 3) = pcii * f(xp2, t - i + 1) + (1 - pcii) * f(xpp2, t - i + 1)
\]

Else

\[
\text{Cells}(j, 3) = 0
\]

End If

\[
xp3 = j - d1 - cd
\]

\[
xpp3 = j - d2 - cd
\]

If \(xpp3 \geq 1 \) And \(xp3 \leq 30 \) Then

\[
\text{Cells}(j, 4) = pd * f(xp3, t - i + 1) + (1 - pd) * f(xpp3, t - i + 1)
\]

Else

\[
\text{Cells}(j, 4) = 0
\]

End If

\[
\text{If } j \geq h \text{ Then}
\]

\[
xp4 = il
\]

\[
\text{Cells}(j, 5) = up + f(xp4, t - i + 1) - det
\]
Else

Cells(j, 5) = 0

End If

com(1, 1) = 0
com(1, 2) = 0
For k = 1 To 4
If com(1, 1) < Cells(j, k + 1) Then
com(1, 1) = Cells(j, k + 1)
com(1, 2) = k
End If
Next

state(j, 1, t - i) = com(1, 1)
state(j, 2, t - i) = com(1, 2)
f(j, t - i) = com(1, 1)

Next j
Next i

For i = 1 To t - 1
Cells(1, i + 1) = i
For j = 1 To 30
Cells(j + 1, 1) = j
Cells(j + 1, i + 1) = state(j, 2, i)

Next j
Next i
Next

Next

MsgBox "The optimal expected profit is " & state(il, 1, 1)

End Sub
Appendix B

VBA Code of the Program “Monte Carlo Forward Iteration Simulator”

Sub Monte_carlo()

Dim os(24) As Double
Dim r As Double

For k = 1 To 50

Sheets("sheet1").Select

os(1) = 1
r = Rnd()
If r > 0.5 Then
 os(2) = 1 + 7
Else
 os(2) = 1 + 1
End If

For i = 2 To 23

Select Case Cells(os(i), i)
Case 1

End Select

End Sub
r = Rnd()
If r > 0.5 Then
 os(i + 1) = os(i) + 7
Else
 os(i + 1) = os(i) + 1
End If

Case 2
r = Rnd()
If r <= 0.33 Then
 os(i + 1) = os(i) + 3
Else
 os(i + 1) = os(i)
End If

Case 3
r = Rnd()
If r <= 0.67 Then
 os(i + 1) = os(i)
Else
 os(i + 1) = os(i) - 4
End If

Case Else
os(i + 1) = 1
End Select

Next i

Sheets("sheet2").Select
For i = 1 To 24

Cells(1, i + 1) = i
Cells(k + 1, i + 1) = os(i)

Next i
Next k

Cells(1, 1) = "Time"
Cells(2, 1) = "Optimal State"

End Sub
Appendix C

VBA Code of the Cannibalization Model with the Monte Carlo Forward Iteration

Sub new_model()
 Dim icon1 As Double
 Dim icon2 As Double
 Dim iagg1 As Double
 Dim iosc1 As Double
 Dim iosc2 As Double
 Dim intro1 As Double
 Dim intro2 As Double
 Dim intro1p As Double
 Dim intro2p As Double
 Dim it1 As Double
 Dim it2 As Double
 Dim pi1 As Double
 Dim pi2 As Double
 Dim pi3 As Double
 Dim pi4 As Double
 Dim ex As Double
 Dim ci1 As Double
 Dim ci2 As Double
 Dim ci3 As Double
 Dim ci4 As Double
Dim exc As Double
Dim dec1 As Double
Dim dec2 As Double
Dim dcon As Double
Dim conth As Double
Dim pd1 As Double
Dim pd2 As Double
Dim pd3 As Double
Dim cd1 As Double
Dim cd2 As Double
Dim in1 As Double
Dim in3 As Double
Dim in2(200, 100) As Double
Dim a1i As Double
Dim a2i As Double
Dim x(1, 2) As Double
Dim y(1, 2) As Double
Dim z(200) As Double
Dim inc(200, 100, 10) As Double
Dim dec(200, 100, 10) As Double
Dim a1(200) As Double
Dim a2(200) As Double

Dim s1(200, 100, 2) As Double
Dim s2(200, 100, 2) As Double
Dim s3(200, 100) As Integer
Dim s4(200, 100, 10, 2) As Double

Dim counter(10, 1) As Integer
Dim counter2(1, 2) As Double

Dim state As Integer
Dim t As Integer
Dim gn(200, 100, 2) As Double
Dim ste(200, 100, 2) As Double
Dim r As Double

Dim th(100) As Double
Dim z0 As Double
Dim z1 As Double
Dim z2 As Double
Dim mi1 As Double
Dim mi2 As Double
Dim mi3 As Double
Dim mi4 As Double
Dim ct As Double
Dim cin As Double
Dim ma1 As Double
Dim ma2 As Double
Dim ma3 As Double
Dim ma4 As Double
Dim u1 As Double
Dim u2 As Double
Dim u3 As Double
Dim u4 As Double
Dim minc As Double
Dim maxc As Double
Dim iy(50, 20) As Integer
Dim tp As Double
Dim run As Integer
Dim av As Double
Dim emp As Integer

'=====================
finish variables declaration
=====================

'=====================Variable value assignment==========================

'--------------
System parameters

t = 40
state = 150

'--------------Increase stragegy-------------------------------
icon1 = 7.42
icon2 = 11.19
iosc1 = -5.87
iosc2 = 1
it1 = -11.31
it2 = -6.24

'------------Cost for increase strategy------------

ci1 = 200
ci2 = 200
ci3 = 200
ci4 = 2000

'-------------------------------

'----------Probability for increase strategy----------

pi2 = 0.375
pi3 = 0.8
pi4 = 0.5

'-------------------------------

'--------Decrease strategy-------------------

'dec1 =
dec2 =
dcon = -5.5644
conth = 7.5438

pd3 = 0.8

'-------------------------------

'----------Cost for decrease strategy----------
cd1 = 0
cd2 = 0

'--
'--------------Probability for decrease strategy--------------
'pd1 =
pd2 = 0.5
'--

'--------------Constraints-------------------------------------
'--

'Slopes for Aggressive strategy
ma1 = 3.1505 * 200000
ma2 = -1.8 * 200000
ma3 = -ma1
ma4 = ma1 * (t + 1) + ma2

'Slopes for Introduction threshold function
mi1 = 2.1015 * 200000
'mi1 = 771549.8
mi2 = 7.1261 * 200000
'mi2 = -3140649

mi3 = -mi1
mi4 = mi1 * (t + 1) + mi2

'Slopes for Upper bound function
u1 = 5.3687 * 200000
u2 = 2.2377 * 200000
u3 = -u1
u4 = u1 * (t + 1) + u2

'Forward iteration runs
run = 50

'Expected overall profits
a1i = 100 * t * 200000
a2i = a1i * 0.2 * 2 / state
For i = 1 To state
 a1(i) = a1i * 0.8 + i * a2i
 s1(i, t, 1) = a1(i)
 s2(i, t, 1) = a1(i)
Next

'=============finish variable values assignment==============

'=============Dynamic State Variable starts===============================
For i = 1 To t - 1
 For j = 1 To state

'Increase
'-------------Aggressive Increase--------------------------------------
If \((t - i) \leq (t + 1) / 2\) Then

\[iagg1 = (ma1 \times (t - i) + ma2) / 200000 \]

Else

\[iagg1 = (ma3 \times (t - i) + ma4) / 200000 \]

End If

If \(iagg1 \geq state\) Then

\[iagg1 = state \]

End If

If \(iagg1 < 0\) Then

\[iagg1 = 0 \]

End If

If \(j = 1\) Then

\[z1 = s1(\text{Int}(j + iagg1), t + 1 - i, 1) \times (1 - (j + iagg1 - \text{Int}(j + iagg1))) \]
\[z2 = s1(\text{Int}(j + iagg1 + 1), t + 1 - i, 1) \times (j + iagg1 - \text{Int}(j + iagg1)) \]
\[\text{inc}(j, t - i, 1) = z1 + z2 - ci1 \]
\[s4(j, t - i, 1, 1) = \text{inc}(j, t - i, 1) \]
\[s4(j, t - i, 1, 2) = 1 \]
\[\text{inc}(j, t - i, 2) = 0 \]
\[\text{inc}(j, t - i, 3) = 0 \]
\[\text{inc}(j, t - i, 4) = 0 \]
\[s_4(j, t - i, 2, 1) = 0 \]
\[s_4(j, t - i, 2, 2) = 2 \]
\[s_4(j, t - i, 3, 1) = 0 \]
\[s_4(j, t - i, 3, 2) = 3 \]
\[s_4(j, t - i, 4, 1) = 0 \]
\[s_4(j, t - i, 4, 2) = 4 \]

'Decrease Strategy when \(j = 1 \)
\[\text{dec}(j, t - i, 1) = 0 \]
\[s_4(j, t - i, 5, 1) = 0 \]
\[s_4(j, t - i, 5, 2) = 5 \]

\[\text{in}_1 = \text{Int}(pd_3 \times j) \]
\[\text{in}_3 = 0 \]
\[z_1 = \text{a}_1(\text{in}_1) \times (1 - (pd_3 \times j - \text{in}_1)) + \text{a}_1(\text{in}_1 + 1) \times (pd_3 \times j - \text{in}_1) \]
\[z_2 = 0 \]
\[\text{dec}(j, t - i, 2) = (1 - pd_2) \times z_1 + pd_2 \times z_2 - cd_2 \]
\[s_4(j, t - i, 6, 1) = \text{dec}(j, t - i, 2) \]
\[s_4(j, t - i, 6, 2) = 6 \]
\[s_2(j, t - i, 2) = 2 \]

\[x(1, 1) = \text{inc}(j, t - i, 1) \]
\[x(1, 2) = 1 \]
\[s_1(j, t - i, 1) = x(1, 1) \]
\[s_1(j, t - i, 2) = x(1, 2) \]
Else 'j<>1

inc(j, t - i, 1) = 0
s4(j, t - i, 1, 1) = 0
s4(j, t - i, 1, 2) = 1

'--------------Conservative Increase-----------------------

If (t - i) <= (t / 2) Then
ub = (u1 * (t - i) + u2) / 200000
Else
ub = (u3 * (t - i) + u4) / 200000
End If

If j <= ub Then
If j + icon1 <= state Then
z1 = pi2 * (s1(Int(j + icon1), t + 1 - i, 1) * (1 - (j + icon1 - Int(j + icon1))) + s1(Int(j + icon1 + 1),
 t + 1 - i, 1) * (j + icon1 - Int(j + icon1)))
If j + icon2 <= state Then
z2 = (1 - pi2) * (s1(Int(j + icon2), t + 1 - i, 1) * (1 - (j + icon2 - Int(j + icon2))) + s1(Int(j + icon2 + 1),
 t + 1 - i, 1) * (j + icon2 - Int(j + icon2)))
Else
z2 = 0
End If
End If

inc(j, t - i, 2) = z1 + z2 - ci2 * j * 0.05
s4(j, t - i, 2, 1) = z1 + z2 - ci2 * j * 0.05
s4(j, t - i, 2, 2) = 2

Else
z1 = 0
If j + icon2 <= state Then
z2 = (1 - pi2) * (s1(Int(j + icon2), t + 1 - i, 1) * (1 - (j + icon2 - Int(j + icon2))) + s1(Int(j + icon2 + 1), t + 1 - i, 1) * (j + icon2 - Int(j + icon2)))
Else
z2 = 0
End If
End If

If z1 + z2 >= ci2 Then
inc(j, t - i, 2) = z1 + z2 - ci2
s4(j, t - i, 2, 1) = z1 + z2 - ci2
s4(j, t - i, 2, 2) = 2
Else
s4(j, t - i, 2, 1) = 0
s4(j, t - i, 2, 2) = 2
End If

Else
inc(j, t - i, 2) = 0
\[s4(j, t - i, 2, 1) = 0 \]
\[s4(j, t - i, 2, 2) = 2 \]
End If

'-------------Increase Oscillation--------------------------------------

If \(j + \text{iosc1} \geq 1 \) Then
\[z1 = \pi_3 \times (s1(\text{Int}(j + \text{iosc1}), t + 1 - i, 1) \times (1 - (j + \text{iosc1} - \text{Int}(j + \text{iosc1}))) + s1(\text{Int}(j + \text{iosc1} + 1), t + 1 - i, 1) \times (j + \text{iosc1} - \text{Int}(j + \text{iosc1}))) \]
If \(j + \text{iosc2} \leq \text{state} \) Then
\[z2 = (1 - \pi_3) \times (s1(\text{Int}(j + \text{iosc2}), t + 1 - i, 1) \times (1 - (j + \text{iosc2} - \text{Int}(j + \text{iosc2}))) + s1(\text{Int}(j + \text{iosc2} + 1), t + 1 - i, 1) \times (j + \text{iosc2} - \text{Int}(j + \text{iosc2}))) \]
Else
\[z2 = (1 - \pi_3) \times s1(\text{state}, t + 1 - i, 1) \]
End If

\[\text{inc}(j, t - i, 3) = z1 + z2 - \text{ci3} \]
\[s4(j, t - i, 3, 1) = z1 + z2 - \text{ci3} \]
\[s4(j, t - i, 3, 2) = 3 \]
End If
'------------Intro Strategy---

If \((t - i) < \frac{(t + 1)}{2}\) Then

\[
\text{th}(t - i) = \frac{(\text{mi}_1 * (t - i) + \text{mi}_2)}{200000}
\]

Else

\[
\text{th}(t - i) = \frac{(\text{mi}_3 * (t - i) + \text{mi}_4)}{200000}
\]

End If

If \(j + \text{it}_1 > \text{state}\) Then

\[
\text{intro}_1p = \text{state}
\]

Else

\[
\text{intro}_1p = j + \text{it}_1
\]

End If

If \(j + \text{it}_2 > \text{state}\) Then

\[
\text{intro}_2p = \text{state}
\]

Else

\[
\text{intro}_2p = j + \text{it}_2
\]

End If

If \(\text{th}(t - i) > 0\) Then

If \(j \geq \text{th}(t - i) \text{ And } j + \text{it}_1 \geq 1\) Then
If intro1p >= 1 Then
If intro1p < state Then
 z1 = pi4 * (s1(Int(intro1p), t + 1 - i, 1) * (1 - (intro1p - Int(intro1p))) + s1(Int(intro1p + 1), t + 1 - i, 1) * (intro1p - Int(intro1p)))
Else
 z1 = pi4 * s1(state, t + 1 - i, 1)
End If
Else
 z1 = 0
End If

If intro2p >= 1 Then
If intro2p < state Then
 z2 = (1 - pi4) * (s1(Int(intro2p), t + 1 - i, 1) * (1 - (intro2p - Int(intro2p))) + s1(Int(intro2p + 1), t + 1 - i, 1) * (intro2p - Int(intro2p)))
Else
 z2 = (1 - pi4) * s1(state, t + 1 - i, 1)
End If
Else
 z2 = 0
End If

z0 = (z1 + z2)

tp = t - i

'---
If \(tp < 5 \) Then \(\ 't-i<5 \)
\[
\text{inc}(j, t-i, 4) = (z0) * (t - i) * 0.749177 - ci4
\]
\[
s4(j, t-i, 4, 1) = \text{inc}(j, t-i, 4)
\]
\[
s4(j, t-i, 4, 2) = 4
\]

Else

If \(tp \leq 9 \) Then \(\ '5<=t-i<9 \)
\[
\text{inc}(j, t-i, 4) = (z0) * ((-2.0487324) * (t - i) + 19.853146) - ci4 'single
\]
\[
s4(j, t-i, 4, 1) = \text{inc}(j, t-i, 4)
\]
\[
s4(j, t-i, 4, 2) = 4
\]

Else

If \(tp \leq 13 \) Then \(\ '9<=t-i<13 \)
\[
\text{inc}(j, t-i, 4) = (z0) * (0.066164 * (t - i) + 0.819081) - ci4 'single'
\]
\[
s4(j, t-i, 4, 1) = \text{inc}(j, t-i, 4)
\]
\[
s4(j, t-i, 4, 2) = 4
\]

Else \('t-i>=13 \)
\[
\text{inc}(j, t-i, 4) = (z0) * 1.6792 - ci4 'single
\]
\[
s4(j, t-i, 4, 1) = \text{inc}(j, t-i, 4)
\]
\[
s4(j, t-i, 4, 2) = 4
\]

End If
End If

End If

'-----------------------------------

Else

inc(j, t - i, 4) = 0
s4(j, t - i, 4, 1) = 0
s4(j, t - i, 4, 2) = 4
End If

Else

inc(j, t - i, 4) = 0
s4(j, t - i, 4, 1) = 0
s4(j, t - i, 4, 2) = 4
End If

'--------Decrease Strategy---

dec(j, t - i, 1) = 0
s4(j, t - i, 5, 1) = 0
s4(j, t - i, 5, 2) = 5

'--------Converge Strategy---
If $j > \text{conth}$ Then

$$in1 = \text{Int}(pd3 \cdot j)$$

$$\text{dec}(j, t - i, 2) = s1(in1, t + 1 - i, 1) \cdot (1 - (pd3 \cdot j - in1)) + s1(in1 + 1, t + 1 - i, 1) \cdot (pd3 \cdot j - in1) - \text{cd2}$$

$$s4(j, t - i, 6, 1) = \text{dec}(j, t - i, 2)$$

$$s4(j, t - i, 6, 2) = 6$$

Else

If $j - \text{dcon} >= 1$ Then

$$in1 = \text{Int}(pd3 \cdot j)$$

$$in3 = \text{Int}(j - \text{dcon})$$

$$z1 = s1(in1, t + 1 - i, 1) \cdot (1 - (pd3 \cdot j - in1)) + s1(in1 + 1, t + 1 - i, 1) \cdot (pd3 \cdot j - in1)$$

$$z2 = s1(in3, t + 1 - i, 1) \cdot (1 - (j - \text{dcon} - in3)) + s1(in3 + 1, t + 1 - i, 1) \cdot (j - \text{dcon} - in3)$$

$$\text{dec}(j, t - i, 2) = (1 - pd2) \cdot z1 + pd2 \cdot z2 - \text{cd2}$$

$$s4(j, t - i, 6, 1) = \text{dec}(j, t - i, 2)$$

$$s4(j, t - i, 6, 2) = 6$$

Else

$$in1 = \text{Int}(pd3 \cdot j)$$

$$in3 = 0$$

$$z1 = s1(in1, t + 1 - i, 1) \cdot (1 - (pd3 \cdot j - in1)) + s1(in1 + 1, t + 1 - i, 1) \cdot (pd3 \cdot j - in1)$$

$$z2 = 0$$
dec(j, t - i, 2) = (1 - pd2) * z1 + pd2 * z2 - cd2
s4(j, t - i, 6, 1) = dec(j, t - i, 2)
s4(j, t - i, 6, 2) = 6

End If
End If

'--
'---Rank--------------
'---

'Increase
x(1, 1) = inc(j, t - i, 1)
x(1, 2) = 1
For m = 1 To 3
If inc(j, t - i, m + 1) >= x(1, 1) Then
x(1, 1) = inc(j, t - i, m + 1)
x(1, 2) = m + 1
End If
Next
s1(j, t - i, 1) = x(1, 1)
s1(j, t - i, 2) = x(1, 2)

'Decrease
If dec(j, t - i, 2) >= dec(j, t - i, 1) Then
s2(j, t - i, 1) = dec(j, t - i, 2)
s2(j, t - i, 2) = 2
Else
s2(j, t - i, 1) = \text{dec}(j, t - i, 1)

s2(j, t - i, 2) = 1

End If

End If

Next

Next

'================End the Dynamic State Variable Model================

'===

'-------------Paste Best Strategies-----------------------------

Sheets("sheet1").Select
For i = 1 To state
For j = 1 To t
Cells(state + 1 - i, j) = s1(i, j, 2)
Next
Next

Sheets("sheet2").Select
For i = 1 To state
For j = 1 To t
Cells(state + 1 - i, j) = s2(i, j, 2)
Sheets("sheet3").Select

For i = 1 To state
 For j = 1 To t
 If s2(i, j, 2) = 1 Then
 s3(i, j) = 5
 Else
 s3(i, j) = 6
 End If
 Next
Next

'===

Sheets("sheet3").Select

For i = 1 To state
 For j = 1 To t
 If s2(i, j, 2) = 1 Then
 s3(i, j) = 5
 Else
 s3(i, j) = 6
 End If
 Next
Next

'===

'----------Forward Iteration--

For h = 1 To run 'Runs of simulation

'Clearing all the parameters
 For r = 1 To k
For v = 1 To t
in2(r, v) = 0
For f = 1 To 2
 gn(r, v, f) = 0
 ste(r, v, f) = 0
Next
Next
Next

For i = 1 To t
For k = 1 To 15

 r = Rnd()
 If i = 1 Then
 '---
 in2(1, 1) = (ma1 * 1 + ma2) / 200000
 gn(1, 1, 1) = Int(in2(1, 1))
 gn(1, 1, 2) = s1(gn(1, 1, 1), 1, 2)
 iy(h, 1) = 1
 '---
 Else 'i<>1
 'increase
If \(gn(k, i - 1, 2) \geq 1 \) Then

Select Case \(gn(k, i - 1, 2) \)

Case 1
If \(i \leq (t + 1) / 2 \) Then
\[
in2(k, i) = \frac{ma1 \cdot i + ma2}{200000}
\]
Else
\[
in2(k, i) = \frac{ma3 \cdot i + ma4}{200000}
\]
End If
If \(in2(k, i) \geq state \) Then
\[
in2(k, 1) = state
\]
End If
\[
\text{gn}(k, i, 1) = \text{Int}(\text{in2}(k, i))
\]
\[
\text{gn}(k, i, 2) = s1(\text{gn}(k, i, 1), i, 2)
\]

Case 2
If \(r < pi2 \) Then
\[
in2(k, i) = in2(k, i - 1) + icon1
\]
\[
\text{gn}(k, i, 1) = \text{Int}(\text{in2}(k, i))
\]
\[
\text{gn}(k, i, 2) = s1(\text{gn}(k, i, 1), i, 2)
\]
Else
\[
in2(k, i) = in2(k, i - 1) + icon2
\]
\[
\text{gn}(k, i, 1) = \text{Int}(\text{in2}(k, i))
\]
\[gn(k, i, 2) = s_1(gn(k, i, 1), i, 2) \]

End If

Case 3

If \(r < \pi_3 \) Then

\[in_2(k, i) = \text{in}_2(k, i - 1) + \text{iosc}_1 \]

If \(\text{in}_2(k, i) \geq \text{state} \) Then

\[\text{in}_2(k, 1) = \text{state} \]

End If

\[gn(k, i, 1) = \text{Int}(\text{in}_2(k, i)) \]

\[gn(k, i, 2) = s_1(gn(k, i, 1), i, 2) \]

Else

\[\text{in}_2(k, i) = \text{in}_2(k, i - 1) + \text{iosc}_2 \]

If \(\text{in}_2(k, i) \geq \text{state} \) Then

\[\text{in}_2(k, 1) = \text{state} \]

End If

\[gn(k, i, 1) = \text{Int}(\text{in}_2(k, i)) \]

\[gn(k, i, 2) = s_1(gn(k, i, 1), i, 2) \]

End If

Case 4

If \(r < \pi_4 \) Then

\[\text{in}_2(k, i) = \text{in}_2(k, i - 1) + \text{it}_1 \]

If \(\text{in}_2(k, i) \leq 1 \) Then

\[\text{in}_2(k, i) = 1 \]
End If

gn(k, i, 1) = Int(in2(k, i))

gn(k, i, 2) = s3(gn(k, i, 1), i)

Else

in2(k, i) = in2(k, i - 1) + it2

If in2(k, i) <= 1 Then

in2(k, i) = 1

End If

gn(k, i, 1) = Int(in2(k, i))

gn(k, i, 2) = s3(gn(k, i, 1), i)

End If

If i <= (t + 1) / 2 Then

in2(k + 1, i) = (ma1 * i + ma2) / 200000

Else

in2(k + 1, i) = (ma3 * i + ma4) / 200000

End If

gn(k + 1, i, 1) = Int(in2(k + 1, i))

gn(k + 1, i, 2) = s1(gn(k + 1, i, 1), i, 2)

iy(h, k + 1) = i

' decrease

'--------Dec---------------------------------

Case 5

If gn(k, i - 1, 1) >= 1 Then
If $r < pd1$ Then

\[in2(k, i) = in2(k, i - 1) + dec1 \]

\[gn(k, i, 1) = \text{Int}(in2(k, i)) \]

\[gn(k, i, 2) = s3(gn(k, i, 1), i) \]

Else

\[in2(k, i) = in2(k, i - 1) + dec2 \]

\[gn(k, i, 1) = \text{Int}(in2(k, i)) \]

\[gn(k, i, 2) = s3(gn(k, i, 1), i) \]

End If

Else

\[gn(k, i, 1) = 0 \]

\[gn(k, i, 2) = 0 \]

End If

'----------Con-------------------------------------

Case 6

If $gn(k, i - 1, 1) > \text{conth}$ Then

\[in2(k, i) = in2(k, i - 1) * pd3 \]

\[gn(k, i, 1) = \text{Int}(in2(k, i)) \]

\[gn(k, i, 2) = s3(gn(k, i, 1), i) \]

Else 'gn(k, i - 1, 1) <= conth
If \(gn(k, i - 1, 1) + dcon \geq 1 \) Then

If \(r \leq pd2 \) Then

\(in2(k, i) = in2(k, i - 1) + dcon \)

\(gn(k, i, 1) = \text{Int}(in2(k, i)) \)

\(gn(k, i, 2) = s3(gn(k, i, 1), i) \)

Else

\(in2(k, i) = in2(k, i - 1) \times pd3 \)

\(gn(k, i, 1) = \text{Int}(in2(k, i)) \)

\(gn(k, i, 2) = s3(gn(k, i, 1), i) \)

End If

Else '\(gn(k, i - 1, 1) + dcon < 1 \)

If \(gn(k, i - 1, 1) \geq 1 \) Then

If \(r \leq pd2 \) Then

\(in2(k, i) = 0 \)

\(gn(k, i, 1) = 0 \)

\(ste(k, i, 1) = 0 \)

\(gn(k, i, 2) = 0 \)

Else

\(in2(k, i) = in2(k, i - 1) \times pd3 \)

\(gn(k, i, 1) = \text{Int}(in2(k, i)) \)

\(gn(k, i, 2) = s3(gn(k, i, 1), i) \)

End If
Else 'gn(k, i - 1, 1) < 1

 gn(k, i, 1) = 0
 ste(k, i, 1) = 0
 gn(k, i, 2) = 0
 End If
 End If
 End If
 End Select
 '--

 End If
 End If ' i constraint

Next
Next

Next h

'--------End Forward Iteration-------------------------------------
'---

'---

'--------Output Report---

Sheets("sheet3").Select
ActiveSheet.UsedRange.ClearContents

ActiveSheet.ChartObjects.Delete

For i = 1 To 15
 For j = 1 To t
 Cells(1, j + 2) = j
 Cells(i + 1, j + 2) = gn(i, j, 1)
 Next
 Cells(i + 1, 1) = "Generation" & i
Next

For i = 1 To 15
 For j = 1 To t
 If Cells(i + 1, j + 2) = 0 Then
 If Cells(i + 1, j + 3) <> 0 Or Cells(i + 1, j + 1) <> 0 Then
 Cells(i + 1, j + 2) = 0
 Else
 Cells(i + 1, j + 2) = ""
 End If
 End If
 Next
Next
Cells(1, 2) = 0
Cells(2, 2) = 0

ActiveSheet.ChartObjects.Add(250, 300, 600, 300).Select
ActiveChart.ChartType = xlLine
ActiveChart.SetSourceData Source:=ActiveSheet.Range(Cells(1, 1), Cells(16, t + 2)),
PlotBy:=xlRows 'categorylabels:=1, serieslabels:=1, Categorytitle:="Time", valuetitle:="State"

Cells(100, 1) = ""

'Sheets("sheet5").Select
'For i = 1 To 4
'For j = 1 To state
'Cells(j, i) = inc(state - j + 1, 5, i)
'Next
'Next

'Sheets("sheet4").Select
ActiveSheet.UsedRange.ClearContents

For i = 1 To run
Cells(1, i + 1) = i
For j = 1 To 15
Cells(j + 1, i + 1) = iy(i, j)
For i = 1 To 15
 Cells(i + 1, 1) = "Gen." & i
Next

For i = 1 To 15
 av = 0
 emp = 0
 For j = 1 To run
 If Cells(i + 1, j + 1) <> 0 Then
 av = av + Cells(i + 1, j + 1)
 Else
 Cells(i + 1, j + 1) = ""
 av = av
 emp = emp + 1
 End If
 Next j
 If emp < run Then
 Cells(i + 1, run + 2) = av / (run - emp)
 Else
 Cells(i + 1, run + 2) = ""
 End If
Next i
'Charts.Add After:=Worksheets("Sheet3")

'Charts("chart1").ChartWizard Source:=Worksheets("sheet3").Range("A1:AP16"),
Gallery:=xlLine, PlotBy:=xlRows, categorylabels:=1, serieslabels:=1, Categorytitle:="Time",
valuetitle:="State"

'==
End Sub
Appendix D

VBA Code of the Technology Evolution Model with the Monte Carlo Forward Iteration

Sub new_model()
 Dim icon1 As Double
 Dim icon2 As Double
 Dim iagg1 As Double
 Dim iosc1 As Double
 Dim iosc2 As Double
 Dim intro1 As Double
 Dim intro2 As Double
 Dim intro1p As Double
 Dim intro2p As Double
 Dim it1 As Double
 Dim it2 As Double
 Dim pi1 As Double
 Dim pi2 As Double
 Dim pi3 As Double
 Dim pi4 As Double
 Dim ex As Double
 Dim ci1 As Double
 Dim ci2 As Double
 Dim ci3 As Double
 Dim ci4 As Double
Dim exc As Double
Dim dec1 As Double
Dim dec2 As Double
Dim dcon As Double
Dim conth As Double
Dim pd1 As Double
Dim pd2 As Double
Dim pd3 As Double
Dim cd1 As Double
Dim cd2 As Double
Dim in1 As Double
Dim in3 As Double
Dim in2(200, 100) As Double
Dim a1i As Double
Dim a2i As Double
Dim x(1, 2) As Double
Dim y(1, 2) As Double
Dim z(200) As Double
Dim inc(200, 100, 10) As Double
Dim dec(200, 100, 10) As Double
Dim a1(200) As Double
Dim a2(200) As Double

Dim s1(200, 100, 2) As Double
Dim s2(200, 100, 2) As Double
Dim s3(200, 100) As Integer
Dim s4(200, 100, 10, 2) As Double

Dim counter(10, 1) As Integer
Dim counter2(1, 2) As Double

Dim state As Integer
Dim t As Integer
Dim gn(200, 100, 2) As Double
Dim ste(200, 100, 2) As Double
Dim r As Double
Dim r2 As Double

Dim th(100) As Double
Dim z0 As Double
Dim z1 As Double
Dim z2 As Double
Dim mi1 As Double
Dim mi2 As Double
Dim mi3 As Double
Dim mi4 As Double
Dim ct As Double
Dim cin As Double
Dim ma1 As Double
Dim ma2 As Double
Dim ma3 As Double
Dim ma4 As Double
Dim u1 As Double
Dim u2 As Double
Dim u3 As Double
Dim u4 As Double
Dim minc As Double
Dim maxc As Double
Dim iy(50, 20) As Integer
Dim tp As Double
Dim run As Integer
Dim av As Double
Dim emp As Integer
Dim et(100) As Double
Dim adt(100) As Double
Dim ev As Double
Dim yt(100) As Double
Dim ea As Double
Dim ca As Double
Dim fa As Double
Dim da As Double
Dim pnew As Double
Dim te As Double
Dim adtcounter(100, 2)

'================================finish variables declaration==================

'================================Variable value assignment==================

'---------System parameters---
t = 50
state = 150

'---------Increase stragegy--
icon1 = 7.42
icon2 = 11.19
iosc1 = -5.87
iosc2 = 1
it1 = -11.31
it2 = -6.24

'---------Cost for increase stragegy---------------------------------
ci1 = 200
ci2 = 200
ci3 = 200
ci4 = 2000

'==--------

'---------Probability for increase strategy---------------------------
pi2 = 0.375
pi3 = 0.8
pi4 = 0.5

-------------------Decrease strategy-----------------------
'dec1 =
dec2 =
dcon = -5.5644
conth = 7.5438
pd3 = 0.8

-------------------Cost for decrease strategy-----------------
'cd1 =
'cd2 =

-------------------Probability for decrease strategy---------
'pd1 =
'pd2 = 0.5

-------------------Constraints------------------------------

'Slopes for Aggressive strategy
ma1 = 3.1505 * 200000
ma2 = -1.8 * 200000
ma3 = -ma1
\[ma4 = ma1 \times (t + 1) + ma2 \]

'Slopes for Introduction threshold function

\[m_i1 = 2.1015 \times 200000 \]
\['m_i1 = 771549.8 \]
\[m_i2 = 7.1261 \times 200000 \]
\['m_i2 = -3140649 \]

\[m_i3 = -m_i1 \]
\[m_i4 = m_i1 \times (t + 1) + m_i2 \]

'Slopes for Upper bound function

\[u_1 = 5.3687 \times 200000 \]
\[u_2 = 2.2377 \times 200000 \]
\[u_3 = -u_1 \]
\[u_4 = u_1 \times (t + 1) + u_2 \]

'Technology Variables

\[\eta(1) = 2 - 0.7166 + 3 \times 0.0597 \]
\[\epsilon = 0.0597 \]
\[\epsilon_a = 2 - 0.9542 \]
\[\epsilon_a = 2 - 0.368 \]
\[fa = 2 \]
\[da = 2 + 0.368 \]
\[te = 2 + 0.7166 \]
pnew = 0.5

'-------------------------------
'-----------------------------
'Forward iteration runs
run = 50
'-------------------------------
'-----------------------------
'Expected overall profits
a1i = 100 * t * 200000
a2i = a1i * 0.2 * 2 / state
For i = 1 To state
a1(i) = a1i * 0.8 + i * a2i
s1(i, t, 1) = a1(i)
s2(i, t, 1) = a1(i)
Next
'---------------------------finsih variable values assignmen---------------------------

'-------------------------------Dynamic State Variable Model starts-------------------
For i = 1 To t - 1
For j = 1 To state

'-------------------------------Increase--
'--------------Aggressive Increase---
If \((t - i) \leq (t + 1) / 2\) Then

\[iagg1 = \frac{(ma1 \times (t - i) + ma2)}{200000} \]

Else

\[iagg1 = \frac{(ma3 \times (t - i) + ma4)}{200000} \]

End If

If \(iagg1 \geq \text{state}\) Then

\[iagg1 = \text{state} \]

End If

If \(iagg1 < 0\) Then

\[iagg1 = 0 \]

End If

If \(j = 1\) Then

\[z1 = s1(\text{Int}(j + iagg1), t + 1 - i, 1) \times (1 - (j + iagg1 - \text{Int}(j + iagg1))) \]

\[z2 = s1(\text{Int}(j + iagg1 + 1), t + 1 - i, 1) \times (j + iagg1 - \text{Int}(j + iagg1)) \]

\[\text{inc}(j, t - i, 1) = z1 + z2 - ci1 \]

\[s4(j, t - i, 1, 1) = \text{inc}(j, t - i, 1) \]

\[s4(j, t - i, 1, 2) = 1 \]

\[\text{inc}(j, t - i, 2) = 0 \]

\[\text{inc}(j, t - i, 3) = 0 \]

\[\text{inc}(j, t - i, 4) = 0 \]
\[s_4(j, t - i, 2, 1) = 0 \]
\[s_4(j, t - i, 2, 2) = 2 \]
\[s_4(j, t - i, 3, 1) = 0 \]
\[s_4(j, t - i, 3, 2) = 3 \]
\[s_4(j, t - i, 4, 1) = 0 \]
\[s_4(j, t - i, 4, 2) = 4 \]

'Decrease Strategy when \(j = 1 \)
\[\text{dec}(j, t - i, 1) = 0 \]
\[s_4(j, t - i, 5, 1) = 0 \]
\[s_4(j, t - i, 5, 2) = 5 \]

\[\text{in}_1 = \text{Int}(pd_3 \times j) \]
\[\text{in}_3 = 0 \]

\[z_1 = a_1(\text{in}_1) \times (1 - (pd_3 \times j - \text{in}_1)) + a_1(\text{in}_1 + 1) \times (pd_3 \times j - \text{in}_1) \]
\[z_2 = 0 \]
\[\text{dec}(j, t - i, 2) = (1 - pd_2) \times z_1 + pd_2 \times z_2 - cd_2 \]
\[s_4(j, t - i, 6, 1) = \text{dec}(j, t - i, 2) \]
\[s_4(j, t - i, 6, 2) = 6 \]
\[s_2(j, t - i, 2) = 2 \]

\[x(1, 1) = \text{inc}(j, t - i, 1) \]
\[x(1, 2) = 1 \]
\[s_1(j, t - i, 1) = x(1, 1) \]
\[s_1(j, t - i, 2) = x(1, 2) \]
Else 'j<>1

inc(j, t - i, 1) = 0
s4(j, t - i, 1, 1) = 0
s4(j, t - i, 1, 2) = 1

'------------Conservative Increase---------------------

If (t - i) <= (t / 2) Then
ub = u1 * (t - i) + u2
Else
ub = u3 * (t - i) + u4
End If

If j <= ub Then

If j + icon1 <= state Then
z1 = pi2 * (s1(Int(j + icon1), t + 1 - i, 1) * (1 - (j + icon1 - Int(j + icon1))) + s1(Int(j + icon1 + 1),
t + 1 - i, 1) * (j + icon1 - Int(j + icon1)))
If j + icon2 <= state Then
z2 = (1 - pi2) * (s1(Int(j + icon2), t + 1 - i, 1) * (1 - (j + icon2 - Int(j + icon2))) + s1(Int(j + icon2 + 1),
t + 1 - i, 1) * (j + icon2 - Int(j + icon2)))
Else
z2 = 0
End If

\[inc(j, t - i, 2) = z1 + z2 - ci2 \times j \times 0.05 \]

\[s4(j, t - i, 2, 1) = z1 + z2 - ci2 \times j \times 0.05 \]

\[s4(j, t - i, 2, 2) = 2 \]

Else

\[z1 = 0 \]

If \(j + \text{icon2} \leq \text{state} \) Then

\[z2 = (1 - \pi2) \times (s1(\text{Int}(j + \text{icon2}), t + 1 - i, 1) \times (1 - (j + \text{icon2} - \text{Int}(j + \text{icon2}))) + s1(\text{Int}(j + \text{icon2} + 1), t + 1 - i, 1) \times (j + \text{icon2} - \text{Int}(j + \text{icon2}))) \]

Else

\[z2 = 0 \]

End If

End If

If \(z1 + z2 \geq ci2 \) Then

\[inc(j, t - i, 2) = z1 + z2 - ci2 \]

\[s4(j, t - i, 2, 1) = z1 + z2 - ci2 \]

\[s4(j, t - i, 2, 2) = 2 \]

Else

\[inc(j, t - i, 2) = 0 \]

\[s4(j, t - i, 2, 1) = 0 \]

\[s4(j, t - i, 2, 2) = 2 \]

End If

Else
inc(j, t - i, 2) = 0
s4(j, t - i, 2, 1) = 0
s4(j, t - i, 2, 2) = 2
End If

'-------------Increase Oscillation-------------------------------
If j + iosc1 >= 1 Then
z1 = pi3 * (s1(Int(j + iosc1), t + 1 - i, 1) * (1 - (j + iosc1 - Int(j + iosc1))) + s1(Int(j + iosc1 + 1), t + 1 - i, 1) * (j + iosc1 - Int(j + iosc1)))
If j + iosc2 <= state Then
z2 = (1 - pi3) * (s1(Int(j + iosc2), t + 1 - i, 1) * (1 - (j + iosc2 - Int(j + iosc2))) + s1(Int(j + iosc2 + 1), t + 1 - i, 1) * (j + iosc2 - Int(j + iosc2)))
Else
z2 = (1 - pi3) * s1(state, t + 1 - i, 1)
End If

inc(j, t - i, 3) = z1 + z2 - ci3
s4(j, t - i, 3, 1) = z1 + z2 - ci3
s4(j, t - i, 3, 2) = 3
Else
inc(j, t - i, 3) = 0
s4(j, t - i, 3, 1) = 0
s4(j, t - i, 3, 2) = 3
'--------------Intro Strategy-----------------------------

If (t - i) < (t + 1) / 2 Then
th(t - i) = (mi1 * (t - i) + mi2) / 200000
Else
th(t - i) = (mi3 * (t - i) + mi4) / 200000
End If

If j + it1 > state Then
intro1p = state
Else
intro1p = j + it1
End If

If j + it2 > state Then
intro2p = state
Else
intro2p = j + it2
End If

If th(t - i) > 0 Then

If j >= th(t - i) And j + it1 >= 1 Then
If intro1p >= 1 Then

If intro1p < state Then

\[z_1 = \pi_4 \ast (s_1(\text{Int}(\text{intro1p}), t + 1 - i, 1) \ast (1 - (\text{intro1p} - \text{Int}(\text{intro1p}))) + s_1(\text{Int}(\text{intro1p} + 1), t + 1 - i, 1) \ast (\text{intro1p} - \text{Int}(\text{intro1p}))) \]

Else

\[z_1 = \pi_4 \ast s_1(\text{state}, t + 1 - i, 1) \]

End If

Else

\[z_1 = 0 \]

End If

If intro2p >= 1 Then

If intro2p < state Then

\[z_2 = (1 - \pi_4) \ast (s_1(\text{Int}(\text{intro2p}), t + 1 - i, 1) \ast (1 - (\text{intro2p} - \text{Int}(\text{intro2p}))) + s_1(\text{Int}(\text{intro2p} + 1), t + 1 - i, 1) \ast (\text{intro2p} - \text{Int}(\text{intro2p}))) \]

Else

\[z_2 = (1 - \pi_4) \ast s_1(\text{state}, t + 1 - i, 1) \]

End If

Else

\[z_2 = 0 \]

End If

\[z_0 = (z_1 + z_2 - \text{ci}_4) \]

\[t_p = t - i \]
If $tp < 5$ Then 't-i<5

$inc(j, t - i, 4) = (z0) * (t - i) * 0.749177$

$s4(j, t - i, 4, 1) = inc(j, t - i, 4)$ '

$s4(j, t - i, 4, 2) = 4$

Else

If $tp <= 9$ Then '5<=t-i<9

$inc(j, t - i, 4) = (z0) * ((-2.0487324) * (t - i) + 19.853146) 'single$

$s4(j, t - i, 4, 1) = inc(j, t - i, 4)$

$s4(j, t - i, 4, 2) = 4$

Else

If $tp <= 13$ Then '9<=t-i<13

$inc(j, t - i, 4) = (z0) * (0.066164 * (t - i) + 0.819081) 'single'$

$s4(j, t - i, 4, 1) = inc(j, t - i, 4)$

$s4(j, t - i, 4, 2) = 4$

Else 't-i>13

$inc(j, t - i, 4) = (z0) * 1.6792 'single$

$s4(j, t - i, 4, 1) = inc(j, t - i, 4)$

$s4(j, t - i, 4, 2) = 4$
End If

End If

End If

Else

inc(j, t - i, 4) = 0

s4(j, t - i, 4, 1) = 0

s4(j, t - i, 4, 2) = 4

End If

Else

inc(j, t - i, 4) = 0

s4(j, t - i, 4, 1) = 0

s4(j, t - i, 4, 2) = 4

End If

'----------Decrease Strategy---

dec(j, t - i, 1) = 0

s4(j, t - i, 5, 1) = 0

s4(j, t - i, 5, 2) = 5

'----------Converge Strategy---
If \(j > \text{conth} \) Then

\[
in1 = \text{Int}(pd3 \times j)
\]

\[
dec(j, t - i, 2) = s1(in1, t + 1 - i, 1) \times (1 - (pd3 \times j - in1)) + s1(in1 + 1, t + 1 - i, 1) \times (pd3 \times j - in1) - cd2
\]

\[
s4(j, t - i, 6, 1) = dec(j, t - i, 2)
\]

\[
s4(j, t - i, 6, 2) = 6
\]

Else

If \(j - \text{dcon} >= 1 \) Then

\[
in1 = \text{Int}(pd3 \times j)
\]

\[
in3 = \text{Int}(j - dcon)
\]

\[
z1 = s1(in1, t + 1 - i, 1) \times (1 - (pd3 \times j - in1)) + s1(in1 + 1, t + 1 - i, 1) \times (pd3 \times j - in1)
\]

\[
z2 = s1(in3, t + 1 - i, 1) \times (1 - (j - \text{dcon} - in3)) + s1(in3 + 1, t + 1 - i, 1) \times (j - \text{dcon} - in3)
\]

\[
dec(j, t - i, 2) = (1 - pd2) \times z1 + pd2 \times z2 - cd2
\]

\[
s4(j, t - i, 6, 1) = dec(j, t - i, 2)
\]

\[
s4(j, t - i, 6, 2) = 6
\]

Else

\[
in1 = \text{Int}(pd3 \times j)
\]

\[
in3 = 0
\]

\[
z1 = s1(in1, t + 1 - i, 1) \times (1 - (pd3 \times j - in1)) + s1(in1 + 1, t + 1 - i, 1) \times (pd3 \times j - in1)
\]

\[
z2 = 0
\]
\[\text{dec}(j, t - i, 2) = (1 - \text{pd}2) \times z1 + \text{pd}2 \times z2 - \text{cd}2 \]

\[\text{s4}(j, t - i, 6, 1) = \text{dec}(j, t - i, 2) \]

\[\text{s4}(j, t - i, 6, 2) = 6 \]

End If

End If

'---'

'--------------Rank---'

'Increase

\[x(1, 1) = \text{inc}(j, t - i, 1) \]

\[x(1, 2) = 1 \]

For m = 1 To 3

If \(\text{inc}(j, t - i, m + 1) \geq x(1, 1) \) Then

\[x(1, 1) = \text{inc}(j, t - i, m + 1) \]

\[x(1, 2) = m + 1 \]

End If

Next

\[\text{s1}(j, t - i, 1) = x(1, 1) \]

\[\text{s1}(j, t - i, 2) = x(1, 2) \]

'Decrease

If \(\text{dec}(j, t - i, 2) \geq \text{dec}(j, t - i, 1) \) Then

\[\text{s2}(j, t - i, 1) = \text{dec}(j, t - i, 2) \]

\[\text{s2}(j, t - i, 2) = 2 \]
Else
s2(j, t - i, 1) = dec(j, t - i, 1)
s2(j, t - i, 2) = 1
End If

End If

Next
Next

'==============End the Dynamic State Variable Model=====================

'-----------------------Forward Iteration-------------------------------

For h = 1 To run 'Runs of simulation

'Clearing all the parameters
For r = 1 To k
For v = 1 To t
in2(r, v) = 0
For f = 1 To 2
gn(r, v, f) = 0
ste(r, v, f) = 0

'
For j = 1 To t
yt(j) = 0
adt(j) = 0
Next
For m = 2 To t
et(m) = 0
Next
x(1, 1) = 0
'x(1, 2) = 0

For i = 1 To t
For k = 1 To 15
r = Rnd()
If i = 1 Then
'---
in2(1, 1) = (ma1 * 1 + ma2) / 200000 + 1
gn(1, 1, 1) = Int(in2(1, 1))
adt(1) = et(1)
yt(1) = et(1)

If yt(1) >= fa And yt(1) < da Then
inc(Int(in2(1, 1)), 1, 1) = 0
inc(Int(in2(1, 1)), 1, 2) = 0
inc(Int(in2(1, 1)), 1, 3) = 0
End If

If yt(1) >= da Then
inc(Int(in2(1, 1)), 1, 4) = 0
End If

x(1, 1) = inc(Int(in2(1, 1)), 1, 1)

For m = 1 To 3
If inc(Int(in2(1, 1)), 1, m + 1) >= x(1, 1) Then
x(1, 1) = inc(Int(in2(1, 1)), 1, m + 1)
x(1, 2) = m + 1
End If
Next

gn(1, 1, 2) = x(1, 2)
iy(h, 1) = 1

'--
Else 'i<>1
'increase
If gn(k, i - 1, 2) >= 1 Then

Select Case gn(k, i - 1, 2)

Case 1
If i <= (t + 1) / 2 Then
 in2(k, i) = (ma1 * i + ma2) / 200000
Else
 in2(k, i) = (ma3 * i + ma4) / 200000
End If

gn(k, i, 1) = Int(in2(k, i))

adt(i) = yt(i - 1) + ev
If et(i - 1) < te Then
 et(i) = et(i - 1) + ev
Else
 et(i) = 0
End If

If adt(i) > et(i) Then
 yt(i) = et(i)
Else
\[y_t(i) = a_d t(i) \]

End If

If \(y_t(i) \geq f_a \) And \(y_t(i) < d_a \) Then

inc(Int(in2(k, i)), i, 1) = 0
inc(Int(in2(k, i)), i, 2) = 0
inc(Int(in2(k, i)), i, 3) = 0

End If

If \(y_t(i) \geq d_a \) Then

inc(Int(in2(k, i)), i, 4) = 0

End If

If in2(k, i) \geq state Then

in2(k, i) = state

End If

\[x(1, 1) = \text{inc(Int(in2(k, i)), i, 1)} \]

For m = 1 To 3

If inc(Int(in2(k, i)), i, m + 1) \geq x(1, 1) Then

x(1, 1) = inc(Int(in2(k, i)), i, m + 1)
x(1, 2) = m + 1

End If

Next
\[gn(k, i, 2) = x(1, 2) \]

Case 2

If \(r < \pi_2 \) Then

\[in_2(k, i) = in_2(k, i - 1) + icon_1 \]

Else

\[in_2(k, i) = in_2(k, i - 1) + icon_2 \]

End If

\[gn(k, i, 1) = \text{Int}(in_2(k, i)) \]

\[x(1, 1) = \text{inc}(ext{Int}(in_2(k, i)), i, 1) \]

\[\text{adt}(i) = yt(i - 1) + ev \]

If \(\text{et}(i - 1) < \text{te} \) Then

\[\text{et}(i) = \text{et}(i - 1) + ev \]

Else

\[\text{et}(i) = 0 \]

End If

If \(\text{adt}(i) > \text{et}(i) \) Then

\[yt(i) = \text{et}(i) \]

Else

\[yt(i) = \text{adt}(i) \]

End If
If yt(i) \(\geq\) fa And yt(i) < da Then

\[
\text{inc}(\text{Int}(\text{in2}(k, i)), i, 1) = 0
\]

\[
\text{inc}(\text{Int}(\text{in2}(k, i)), i, 2) = 0
\]

\[
\text{inc}(\text{Int}(\text{in2}(k, i)), i, 3) = 0
\]

End If

If yt(i) \(\geq\) da Then

\[
\text{inc}(\text{Int}(\text{in2}(k, i)), i, 4) = 0
\]

End If

For m = 1 To 3

If inc(Int(in2(k, i)), i, m + 1) \(\geq\) x(1, 1) Then

\[
x(1, 1) = \text{inc}(\text{Int}(\text{in2}(k, i)), i, m + 1)
\]

\[
x(1, 2) = m + 1
\]

End If

Next

\[
gn(k, i, 2) = x(1, 2)
\]

Case 3

If r < pi3 Then

\[
in2(k, i) = \text{in2}(k, i - 1) + \text{iosc}1
\]

If in2(k, i) \(\geq\) state Then

\[
in2(k, i) = \text{state}
\]

End If
Else

in2(k, i) = in2(k, i - 1) + iosc2

If in2(k, i) >= state Then

in2(k, i) = state

End If

End If

\[gn(k, i, 1) = \text{Int}(in2(k, i)) \]

\[x(1, 1) = \text{inc}(\text{Int}(in2(k, i)), i, 1) \]

\[\text{adt}(i) = yt(i - 1) + \text{ev} \]

If et(i - 1) < te Then

et(i) = et(i - 1) + ev

Else

et(i) = 0

End If

If adt(i) > et(i) Then

yt(i) = et(i)

Else

yt(i) = adt(i)

End If

If yt(i) >= fa And yt(i) < da Then

inc(Int(in2(k, i)), i, 1) = 0
inc(Int(in2(k, i)), i, 2) = 0
inc(Int(in2(k, i)), i, 3) = 0
End If

If yt(i) >= da Then
inc(Int(in2(k, i)), i, 4) = 0
End If

For m = 1 To 3
If inc(Int(in2(k, i)), i, m + 1) >= x(1, 1) Then
x(1, 1) = inc(Int(in2(k, i)), i, m + 1)
x(1, 2) = m + 1
End If
Next
gn(k, i, 2) = x(1, 2)

Case 4
If r < pi4 Then
in2(k, i) = in2(k, i - 1) + it1
If in2(k, i) <= 1 Then
in2(k, i) = 1
End If
Else
in2(k, i) = in2(k, i - 1) + it2
If in2(k, i) <= 1 Then
in2(k, i) = 1
End If
End If

gn(k, i, 1) = Int(in2(k, i))
If s2(gn(k, i, 1), i, 2) = 1 Then
gn(k, i, 2) = 5
Else
gn(k, i, 2) = 6
End If

'New product generation is introduced
If i <= (t + 1) / 2 Then
in2(k + 1, i) = (ma1 * i + ma2) / 200000
Else
in2(k + 1, i) = (ma3 * i + ma4) / 200000
End If
gn(k + 1, i, 1) = Int(in2(k + 1, i))

'Y(t-1)< EA
If yt(i - 1) < ea Then
adt(i) = yt(i - 1) + ev
If et(i - 1) < te Then
et(i) = et(i - 1) + ev
Else
et(i) = 0
End If

If adt(i) > et(i) Then
yt(i) = et(i)
Else
yt(i) = adt(i)
End If
End If

'EA <= Y(t-1) < CA
If yt(i - 1) >= ea And yt(i - 1) < ca Then

If r < pnew Then
yt(i) = 0
adt(i) = 0
If et(i - 1) < te Then
et(i) = et(i - 1) + ev
Else
et(i) = 0
End If

Else
adt(i) = yt(i - 1) + ev
If et(i - 1) < te Then
et(i) = et(i - 1) + ev

Else
et(i) = 0
End If

If adt(i) > et(i) Then
yt(i) = et(i)
Else
yt(i) = adt(i)
End If
End If
End If
End If
End If

'CA <= Y(t-1) < FA
If yt(i - 1) >= ca And yt(i - 1) < fa Then
yt(i) = 0
adt(i) = 0
If et(i - 1) < te Then
et(i) = et(i - 1) + ev
Else
et(i) = 0
End If
End If
End If

'FA <= Y(t-1) < DA
If \(yt(i - 1) \geq fa \) And \(yt(i - 1) < da \) Then
\[yt(i) = 0 \]
\[adt(i) = 0 \]
If \(et(i - 1) < te \) Then
\[et(i) = et(i - 1) + ev \]
Else
\[et(i) = 0 \]
End If
End If

'y(t-1) > DA
If \(yt(i - 1) \geq da \) Then
\[adt(i) = yt(i - 1) + ev \]
If \(et(i - 1) < te \) Then
\[et(i) = et(i - 1) + ev \]
Else
\[et(i) = 0 \]
End If
End If
End If

If \(yt(i) \geq fa \) And \(yt(i) < da \) Then
\[\text{inc(Int(in2(k + 1, i)), i, 1)} = 0 \]
\[\text{inc(Int(in2(k + 1, i)), i, 2)} = 0 \]
\[\text{inc(Int(in2(k + 1, i)), i, 3)} = 0 \]
End If
If \(y(i) \geq da \) Then
\[
\text{inc}(\text{Int}(\text{in}(k + 1, i)), i, 4) = 0
\]
End If

\[
x(1, 1) = \text{inc}(\text{Int}(\text{in}(k + 1, i)), i, 1)
\]

For \(m = 1 \) To 3
If \(\text{inc}(\text{Int}(\text{in}(k + 1, i)), i, m + 1) \geq x(1, 1) \) Then
\[
x(1, 1) = \text{inc}(\text{Int}(\text{in}(k + 1, i)), i, m + 1)
\]
\[
x(1, 2) = m + 1
\]
End If
Next
\[
\text{gn}(k + 1, i, 2) = x(1, 2)
\]
\[
i(y(h, k + 1) = i
\]
'
'decrease
'
----------Dec-------------------------------

Case 5
If \(\text{gn}(k, i - 1, 1) \geq 1 \) Then
If \(r < \text{pd}1 \) Then
\[
\text{in}(k, i) = \text{in}(k, i - 1) + \text{dec}1
\]
\[
\text{gn}(k, i, 1) = \text{Int}(\text{in}(k, i))
\]
If \(\text{s}2(\text{gn}(k, i, 1), i, 2) = 1 \) Then
\begin{align*}
gn(k, i, 2) &= 5 \\
\text{Else} \\
gn(k, i, 2) &= 6 \\
\text{End If} \\
\text{Else} \\
in2(k, i) &= in2(k, i - 1) + \text{dec2} \\
gn(k, i, 1) &= \text{Int}(in2(k, i)) \\
\text{If } s2(gn(k, i, 1), i, 2) = 1 \text{ Then} \\
gn(k, i, 2) &= 5 \\
\text{Else} \\
gn(k, i, 2) &= 6 \\
\text{End If} \\
\text{End If} \\
\text{Else} \\
gn(k, i, 1) &= 0 \\
gn(k, i, 2) &= 0 \\
\text{End If} \\
\text{'----------Con-----------------------------'} \\
\text{Case 6} \\
\text{If } gn(k, i - 1, 1) > \text{conth Then} \\
in2(k, i) &= in2(k, i - 1) * \text{pd3}
gn(k, i, 1) = Int(in2(k, i))

If s2(gn(k, i, 1), i, 2) = 1 Then

gn(k, i, 2) = 5
Else

gn(k, i, 2) = 6
End If

Else 'gn(k, i - 1, 1) <= conth

If gn(k, i - 1, 1) + dcon >= 1 Then

If r <= pd2 Then

in2(k, i) = in2(k, i - 1) + dcon

gn(k, i, 1) = Int(in2(k, i))

If s2(gn(k, i, 1), i, 2) = 1 Then

gn(k, i, 2) = 5
Else

gn(k, i, 2) = 6
End If

Else

in2(k, i) = in2(k, i - 1) * pd3

gn(k, i, 1) = Int(in2(k, i))

If s2(gn(k, i, 1), i, 2) = 1 Then

gn(k, i, 2) = 5
Else
gn(k, i, 2) = 6
End If

End If

Else 'gn(k, i - 1, 1) + dcon < 1
If gn(k, i - 1, 1) >= 1 Then
If r <= pd2 Then
in2(k, i) = 0
gn(k, i, 1) = 0
ste(k, i, 1) = 0
gn(k, i, 2) = 0
Else
in2(k, i) = in2(k, i - 1) * pd3
gn(k, i, 1) = Int(in2(k, i))
If s2(gn(k, i, 1), i, 2) = 1 Then
gn(k, i, 2) = 5
Else
gn(k, i, 2) = 6
End If
End If
End If

Else 'gn(k, i - 1, 1) < 1
gn(k, i, 1) = 0
ste(k, i, 1) = 0

gn(k, i, 2) = 0
End If
End If
End If
End If
End If
End Select
'

End If
End If ' i constraint

Next
Next
Next

For m = 1 To t
If adt(m) = 0 Then
If adtcounter(h, 1) = 0 Then
adtcounter(h, 1) = m
Else
adtcounter(h, 2) = m
End If
End If
End If
Next
Next h

'------------End Forward Iteration-----------------------------
'--
'--
'--
'------------Output Report--------------------------------------

Sheets("sheet1").Select
ActiveSheet.UsedRange.ClearContents

Cells(2, 1) = "Y(t)"
Cells(3, 1) = "Ad(t)"
Cells(4, 1) = "E(t)"

For i = 1 To t
 Cells(1, i + 1) = i
 Cells(2, i + 1) = yt(i)
 Cells(3, i + 1) = adt(i)
 Cells(4, i + 1) = et(i)
Next

For i = 1 To run
 Cells(6, 2) = Cells(6, 2) + adtcounter(i, 1)
 Cells(7, 2) = Cells(7, 2) + adtcounter(i, 2)
Next
Cells(6, 3) = Cells(6, 2).Value / run
Cells(7, 3) = Cells(7, 2).Value / run

Sheets("sheet3").Select
ActiveSheet.UsedRange.ClearContents
ActiveSheet.ChartObjects.Delete

For i = 1 To 15
 For j = 1 To t
 Cells(1, j + 2) = j
 Cells(i + 1, j + 2) = gn(i, j, 1)
 Next
 Cells(i + 1, 1) = "Generation" & i
Next

For i = 1 To 15
 For j = 1 To t
 If Cells(i + 1, j + 2) = 0 Then
 If Cells(i + 1, j + 3) <> 0 Or Cells(i + 1, j + 1) <> 0 Then
 Cells(i + 1, j + 2) = 0
 Else
 Cells(i + 1, j + 2) = ""
 End If
 End If
 Next
End For
End If
End If

Next

Next

Cells(1, 2) = 0
Cells(2, 2) = 0

ActiveSheet.ChartObjects.Add(250, 300, 600, 300).Select
ActiveChart.ChartType = xlLine
ActiveChart.SetSourceData Source:=ActiveSheet.Range(Cells(1, 1), Cells(16, t + 2)),
PlotBy:=xlRows 'categorylabels:=1, serieslabels:=1, Categorytitle:="Time", valuetitle:="State"

Cells(100, 1) = ""

Sheets("sheet4").Select
ActiveSheet.UsedRange.ClearContents

For i = 1 To run
 Cells(1, i + 1) = i
For j = 1 To 15
 Cells(j + 1, i + 1) = iy(i, j)
Next
Next
For i = 1 To 15
 Cells(i + 1, 1) = "Gen." & i
Next

For i = 1 To 15
 av = 0
 emp = 0
 For j = 1 To run
 If Cells(i + 1, j + 1) <> 0 Then
 av = av + Cells(i + 1, j + 1)
 Else
 Cells(i + 1, j + 1) = ""
 av = av
 emp = emp + 1
 End If
 Next j
 If emp < run Then
 Cells(i + 1, run + 2) = av / (run - emp)
 Else
 Cells(i + 1, run + 2) = ""
 End If
Next i

'===
End Sub
Appendix E

Basic Model Model with Technology Evolution Concern

In this section, we expand the basic model developed in Section 3.1 by integrating a consideration of the evolving technology. Assume a company plans to release a multiple-generation product line that possesses \(j \) major technologies evolving over time. These evolutions are highly connected with all decisions regarding the introduction of each successive generation of the product. Thus, the company must constantly keep an eye on the market status of the evolutions as well as on its own R&D capabilities for applying them to successive products. Of note, our main concern is whether or not the company’s R&D capacity is behind the evolution speed of the developing technologies. The reasoning is that if the company possesses higher level technologies than its peer companies, the timing decision for successive product generation is dependent simply on the maturity of the technology and its individual market strategies.

To model the evolution of technology and the growth of a company’s R&D capabilities, we base our methodology for quantifying the degree of a specific technology on Krankel et al. (2006), who assumed technology is additive and used integers to indicate levels for both technology and R&D factors.

1. **Single Evolving Technology**

We assume that the multiple-generation product line contains only a single critical technology evolving over its entire product line life span \(T \). The market evolution speed of this technology is assumed to grow linearly and continuously. The company’s R&D section tracks the evolution of the technology and accumulates the capabilities for incorporating the technology into its products. The increase rate of the company’s R&D capabilities is also assumed to be linear. In general, when a newer generation of a technology is matured in the market, it takes some time for
that version to be implemented in new products. For this reason, we assume that when the newer
generation is ready in time period t, the company should release it within a time interval w;
otherwise, the company will begin to suffer a penalty-like sales drop after time period $(t+w)$. To
match real market conditions, we define w as the interval from the time when the technology
becomes available until the time the first product integrated with this technology enters the
market. The amount of sales drop after the time period $(t+w)$ is assumed to increase linearly and
to acquire a profit drop rate (PD) multiplied by the number of time periods passing $(t+w)$. Table
3-9 indicates all the parameters used in the model.

To model this scenario, we start by defining the function $F(x, y, z, n, t)$ as follows:

$$F(x, y, z, n, t) = \text{maximum expected profit between time period } t \text{ and time period } T,$$

which is the expected end of life of the entire multiple-generation product line. Given that $X(t) = x, Y(t) = y, Z(t) = z \text{ and } N(t) = n.$

(Eq. 1)

$F(x, y, z, n, t)$ is the optimal strategy selected in each time period t. The overall optimal
profit of the entire product line is $F(x, y, z, n, T)$ at the last time period.

After defining $F(x, y, z, n, t)$, we need to consider the resulting optimal profit values
for every available strategy at each time period t preceding time period T. Let

$$V_i(x, y, z, n, t) = \text{the optimal profit when strategy } i \text{ is selected for time period } t \text{ from time period } t+1 \text{ onward}, X(t) = x, Y(t) = y, Z(t) = z \text{ and } N(t) = n.$$

(Eq. 2)
Table 1: Parameters used in the model with single evolving technology

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>Threshold for introducing a successive generation of the product. Unit is state.</td>
</tr>
<tr>
<td>(IL)</td>
<td>Initial sales level. Unit is state.</td>
</tr>
<tr>
<td>(P_{Agg})</td>
<td>Probability for profit increase when applying the aggressive strategy.</td>
</tr>
<tr>
<td>(P_{Con})</td>
<td>Probability for profit increase when applying the conservative strategy.</td>
</tr>
<tr>
<td>(P_{Decr})</td>
<td>Probability for profit decrease.</td>
</tr>
<tr>
<td>(A_1)</td>
<td>Rate of the more sales increment when applying the aggressive strategy. Unit is state.</td>
</tr>
<tr>
<td>(A_2)</td>
<td>Rate of the less sales increment when applying the aggressive strategy. Unit is state.</td>
</tr>
<tr>
<td>(C_1)</td>
<td>Rate of the more profit increment when applying the conservative strategy. Unit is state.</td>
</tr>
<tr>
<td>(C_2)</td>
<td>Rate of the less profit increment when applying the conservative strategy. Unit is state.</td>
</tr>
<tr>
<td>(D_1)</td>
<td>Rate of the less profit decrement when applying the decrease strategy. Unit is state.</td>
</tr>
<tr>
<td>(D_2)</td>
<td>Rate of the more profit decrement when applying the decrease strategy. Unit is state.</td>
</tr>
<tr>
<td>(UP)</td>
<td>Unrealized profit under the strategy if introducing the successive generation of product.</td>
</tr>
<tr>
<td>(C_{Agg})</td>
<td>Cost involved when adopting the aggressive increasing strategy. Unit is state.</td>
</tr>
<tr>
<td>(C_{Con})</td>
<td>Cost involved when adopting the conservative increasing strategy. Unit is state.</td>
</tr>
<tr>
<td>(C_{Decr})</td>
<td>Cost involved when adopting the decreasing strategy. Unit is state.</td>
</tr>
<tr>
<td>(C_{Intro})</td>
<td>Costs involved in introducing a successive generation of the product. Unit is state.</td>
</tr>
<tr>
<td>(C_{Det})</td>
<td>Deletion costs of the current generation of the product. Unit is state.</td>
</tr>
<tr>
<td>(PD)</td>
<td>Penalty rate resulting in a sales drop when the successive generation of the product does not come to market within the implementation interval (w).</td>
</tr>
<tr>
<td>(w)</td>
<td>Sales drop exemption window for introducing a successive generation of the product with updated technology. Unit is state.</td>
</tr>
<tr>
<td>(T)</td>
<td>Entire (multiple-generation) product life span. Unit is season.</td>
</tr>
<tr>
<td>(X(t))</td>
<td>Amount of profit at the start of time period (t). Unit is state.</td>
</tr>
<tr>
<td>(Y(t))</td>
<td>Evolution status of the technology in the market. Unit is state.</td>
</tr>
<tr>
<td>(Z(t))</td>
<td>Accumulation of the company’s R&D capabilities. Unit is state.</td>
</tr>
<tr>
<td>(N(t))</td>
<td>Time interval between when the newer generation of technology is matured in the market and when the company introduces a successive generation of the product with the updated technology. Unit is state.</td>
</tr>
<tr>
<td>(U_b)</td>
<td>Upper bound for profit in any time period (t). Unit is state.</td>
</tr>
<tr>
<td>(L_b)</td>
<td>Lower bound for profit in any time period (t). Unit is state.</td>
</tr>
<tr>
<td>(n)</td>
<td>Implementation interval for the updated technology. Unit is state.</td>
</tr>
<tr>
<td>(MT)</td>
<td>Market evolution speed of the critical technology. Unit is state.</td>
</tr>
<tr>
<td>(RC)</td>
<td>Rate of company’s R&D capabilities increase for integrating the critical technology.</td>
</tr>
</tbody>
</table>

In this model, we apply the four strategies developed in Section 3.1. Here, however, the strategies are determined by the four state variables \(X(t), Y(t), Z(t) \) and \(N(t) \). In the remainder of this section, we explain each of the strategies with detailed state shifts.

1. The aggressive strategy when profit is in an increasing manner
When a company applies the aggressive strategy to the current generation of the product, profit rises significantly. In addition, the levels of both the technology in the market and the company’s R&D capabilities increase following a certain pattern. In our analysis, we let them both start at the initial conceptual state 0 and move toward being fully prepared at state 1. Time interval $N(t)$ is dependent on the status of the technology evolution level in the market; it starts recording only when the newer generation of technology has become mature.

Therefore, according to the evolutionary status of the technology in the market, there are three different stochastic functions that can be developed for acquiring the expected optimal profit when choosing the aggressive strategy. When the next generation product is still in development, choosing the aggressive strategy will simply highly increase the profit; the expected profit for this scenario is shown in Equation 3-22. However, when the new generation of
technology is ready, two different situations may exist. If the company does not release the new generation within the sales drop exemption window \(w \), selecting the aggressive strategy will cost it an amount of sales drop equaling a multiple of the length of time over \(w \) (See Equation 3-23). Otherwise, the company will gain only the maximum margin of profit without suffering any additional cost or loss (See Equation 3-24).

If \(Y(t) < 1 \),

\[
V_1(x, y, z, n, t) = P_{Agg} F(x - C_{Agg} + A_1, y + MT, z + RC, 0, t + 1) + \\
(1 - P_{Agg}) F(x - C_{Agg} + A_2, y + MT, z + RC, 0, t + 1)
\]

(Eq. 7)

Otherwise,

If \(N(t) \leq w \),

\[
V_1(x, y, z, n, t) = P_{Agg} F(x - C_{Agg} + A_1, y + MT, z + RC, n + 1, t + 1) + \\
(1 - P_{Agg}) F(x - C_{Agg} + A_2, y + MT, z + RC, n + 1, t + 1)
\]

(Eq. 8)

Otherwise,

\[
V_1(x, y, z, n, t) = P_{Agg} F(x - C_{Agg} + A_1, y + MT, z + RC, n + 1, t + 1) + \\
(1 - P_{Agg}) F(x - C_{Agg} + A_2, y + MT, z + RC, n + 1, t + 1) - (n - w)PD
\]

(Eq. 9)

2. The conservative strategy when profit is in an increasing manner

\[
X_2(t + 1) = \begin{cases}
 x - C_{Con} + C_1 & \text{with probability } P_{Con} \\
 x - C_{Con} + C_2 & \text{with probability } (1 - P_{Con})
\end{cases}
\]
Where \(C_1 > C_2 \).

\[
Y_2(t + 1) = y + MT
\]

(Eq. 11)

\[
Z_2(t + 1) = z + RC
\]

(Eq. 12)

\[
N_2(t + 1) = \begin{cases}
0 & \text{If } y \leq 1 \\
N + 1 & \text{If } y \geq 1
\end{cases}
\]

(Eq. 13)

Selecting the conservative increasing strategy presents situations similar to those developed from selecting the aggressive strategy. Again, there are three equal scenarios. Equation 3-29 represents the situation in which the new generation of technology is not matured. Equation 3-30 and Equation 3-31 represent the situation occurring when the updated technology comes to market and the company is not able to introduce the successive generation of product with the updated technology within (Eq. 30) and beyond (Eq. 31) the sales drop exemption window \(w \).

If \(Y(t) < 1 \),

\[
V_2(x, y, z, n, t) = P_{Con}F(x - C_{Con} + C_1, y + MT, z + RC, 0, t + 1) + (1 - P_{Con})F(x - C_{Con} + C_2, y + MT, z + RC, 0, t + 1)
\]

(Eq. 14)

Otherwise,

If \(N(t) \leq w \),
\[V_2(x, y, z, n, t) = P_{\text{Con}} F(x - C_{\text{Con}} + C_1, y + MT, z + RC, n + 1, t + 1) + \\
(1 - P_{\text{Con}}) F(x - C_{\text{Con}} + C_2, y + MT, z + RC, n + 1, t + 1) \]

(Eq. 15)

Otherwise,

\[V_2(x, y, z, n, t) = P_{\text{Con}} F(x - C_{\text{Con}} + C_1, y + MT, z + RC, n + 1, t + 1) + \\
(1 - P_{\text{Con}}) F(x - C_{\text{Con}} + C_2, y + MT, z + RC, n + 1, t + 1) - (n - w)PD \]

(Eq. 16)

3. The strategy for profit drop

\[
X_3(t + 1) = \begin{cases}
 x - C_{\text{Decr}} - D_1 & \text{with probability} \ P_{\text{Decr}} \\
 x - C_{\text{Decr}} - D_2 & \text{with probability} \ (1 - P_{\text{Decr}})
\end{cases}
\]

where \(D_1 < D_2 \)

(Eq. 17)

\[Y_3(t + 1) = y + MT \]

(Eq. 18)

\[Z_3(t + 1) = z + RC \]

(Eq. 19)

\[N_3(t + 1) = \begin{cases}
 0 & \text{If} \ y \leq 1 \\
 n + 1 & \text{If} \ y > 1
\end{cases} \]

(Eq. 20)

Selecting the conservative increasing strategy also presents situations similar to those of the previous two strategies. However, it illustrates the inverse manner with profit decrease. The
three scenarios remain the same. Equation 3-36 represents the situation in which the new generation of technology is not ready. Equation 3-37 and Equation 3-38 represent the situation in which the updated technology is ready and the company does not introduce the successive generation of product within (Eq. 37) and beyond (Eq. 38) the sales drop exemption window \((w)\).

If \(Y(t) < 1\),

\[
V_3(x, y, z, n, t) = P_{De} F(x - C_{De} - D_1, y + MT, z + RC, 0, t + 1) + (1 - P_{De}) F(x - C_{De} - D_2, y + MT, z + RC, 0, t + 1)
\]

(Eq. 21)

Otherwise,

If \(N(t) \leq w\),

\[
V_3(x, y, z, n, t) = P_{De} F(x - C_{De} - D_1, y + MT, z + RC, n + 1, t + 1) + (1 - P_{De}) F(x - C_{De} - D_2, y + MT, z + RC, n + 1, t + 1)
\]

(Eq. 22)

Otherwise,

\[
V_3(x, y, z, n, t) = P_{De} F(x - C_{De} - D_1, y + MT, z + RC, n + 1, t + 1) + (1 - P_{De}) F(x - C_{De} - D_2, y + MT, z + RC, n + 1, t + 1) - (n - w)PD
\]

(Eq. 23)

4. The successive product generation introduction strategy

The company may introduce the successive generation of the product under one of three different scenarios. First, when profit reaches the threshold \(H\) but the new generation is not yet available, the company can choose to introduce the successive generation product with existing
technology. Second, when profit reaches the threshold H and the updated technology is ready but the company still does not have the relative R&D capabilities to implement the updated technology, the company can choose to introduce the successive generation product with a previous version of the technology. Third, when profit reaches the threshold H, the updated technology is already in the market, and the company does possess the requisite R&D capabilities, the company can choose to release the successive generation with the new integrated technology. In addition, when the new technology is implemented in a successive generation product, we force both $Y(t)$ and $Z(t)$ to minus 1 to represent that they are both back to a development status. In addition, we follow the assumption in Section 3.1 that when introducing the successive generation of the product, profit would drop to the initial level, and profit is constrained between a set of boundaries U_b and L_b for each time period t.

Here we introduce each of the three scenarios with four possible conditions:

a.) If $X(t) \geq H$ and $Y(t) \leq 1$

$$X_4(t + 1) = IL \quad (Eq. 24)$$

$$Y_4(t + 1) = y + MT \quad (Eq. 25)$$

$$Z_4(t + 1) = z + RC \quad (Eq. 26)$$

$$N_4(t + 1) = 0 \quad (Eq. 27)$$

The stochastic function for the optimal expected profit is:
\[V_4(x, y, z, p, t) = F(IL, y + MT, z + RC, 0, t + 1) + UP - C_{Det} \]

(Eq. 28)

b.) If \(X(t) \geq H \), \(Y(t) \geq 1 \) and \(Z(t) < 1 \),

\[X_4(t + 1) = IL \]

(Eq. 29)

\[Y_4(t + 1) = y + MT \]

(Eq. 30)

\[Z_4(t + 1) = z + RC \]

(Eq. 31)

\[N_4(t + 1) = n + 1 \]

(Eq. 32)

The stochastic function for the optimal expected profit is:

If \(N(t) > w \)

\[V_4(x, y, z, n, t) = F(IL, y + MT, z + RC, n + 1, t + 1) + UP - C_{Det} \]

(Eq. 33)

Otherwise

\[V_4(x, y, z, p, t) = F(IL, y + MT, z + RC, n + 1, t + 1) + UP - C_{Det} - (n - w)PD \]

(Eq. 34)

c.) If \(X(t) \geq H \), \(Y(t) \geq 1 \) and \(Z(t) \geq 1 \),
\[X_4(t + 1) = IL \]
\[(Eq. 3-35) \]

\[Y_4(t + 1) = y + MT - 1 \]
\[(Eq. 3-36) \]

\[Z_4(t + 1) = z + RC - 1 \]
\[(Eq. 3-37) \]

\[N_1(t + 1) = 0 \]
\[(Eq. 3-38) \]

The stochastic function for the expected profit is:

\[V_4(x, y, z, p, t) = F(IL, y + MT - 1, z + RC - 1, 0, t + 1) + UP - C_{Det} \]
\[(Eq. 3-39) \]

In addition, for each time period \(t \), since \(F(x, y, z, n, t) \) is the maximum expected profit given that \(X(t) = x, Y(t) = y, Z(t) = z, N(t) = n \), \(F(x, y, z, n, t) \) should be assigned the maximal expected revenue values for the following four strategies:

\[F(x, y, z, n, t) = \max \{ V_1(x, y, z, n), V_2(x, y, z, n), V_3(x, y, z, n), V_4(x, y, z, n) \} \]
\[(Eq. 3-40) \]

In this study, we do not provide the case study for this basic model with technology evolution concern. From the IBM mainframe system case study, we do not have technology related information from the data. However, in Chapter 4, we formulate the technology evolution
model for the cannibalization scenario and provide a case study implementing the sales data from the Apple iPhone product line. In fact, technology evolution model could be considered an extension from this model. When removing the cannibalization settings, the technology evolution model could generate the same results as this model.
VITA

Chun-yu Lin

Chun-yu Lin was born in Taiwan on June 5, 1982. He received his Bachelor degree from National Chao-Tung University, Hsinchu, Taiwan in 2004. He came to Pennsylvania State University for his Master and PhD study in 2006, and received his Master degree in 2009. During his PhD study, he has published several research papers in academic journals and presented his works in several international conferences. In 2012, his publication “Application of Dynamic State Variable Models on Multiple-Generation Product Lines with Cannibalization across Generations” received the best paper award from the Engineering Management (EM) track of the Industrial and Systems Engineering Research Conference (ISERC).