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Abstract

In some cases, the maximum likelihood method fails to yield a consistent esti-

mator. We describe why the ML method breaks down with some examples and explore

how usual MLE can be modified to get consistency. The doubly-smoothed maximum

likelihood estimation (DSMLE) is proposed based on kernel smoothing and minimum

distance estimation. We show how it works and prove its universal consistency. Some

computational aspects are discussed with fundamental guidelines for the choice of a ker-

nel and a tuning parameter. Under this theoretical basis, the proposed method is applied

to some important statistical models such as normal mixture models, measurement error

models.
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Chapter 1

Background

1.1 Research Objectives

For a long time, the maximum likelihood method has gained its popularity in the

sense that corresponding estimators are consistent, asymptotically efficient and normally

distributed under some regularity conditions. However, in most cases, the ML estimator

is not robust to outliers and in some cases, it is not even consistent when a given model

does not satisfy some regularity conditions.

In this thesis, we study how we can modify the maximum likelihood method in a

general sense in order to produce a reasonable estimator when the ML method breaks

down. We suggest the minimum distance estimation with kernel smoothing and prove its

universal consistency. Although one of the good aspects in the distance based estimation

is to give us robust estimators, in this thesis we will concentrate on why the usual ML

method does not work using some examples and how the proposed method can repair

MLE.

There are several known cases that show the ML estimator is not consistent in

different statistical problems. For example, Roeder et al. (1996) indicated that the

semiparametric mixture model in a measurement error model produces inconsistent ML

estiamtes when there is an additional error-free covariate. van der Laan (1996) discussed
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the non-uniqueness of the non-parametric ML estimate for the bivariate survivor func-

tion. Kiefer and Wolfowitz (1956) also indicated the unboundedness of the likelihood in

a finite normal mixture model.

These examples imply that the ML method is not always a good choice for a

reasonable estimator. If the ML procedure does not work, first we should understand its

reason and if one understands why the usual MLE does not work, then one can hope to

find a natural choice for the transformation of data or model. There are some reasons

why the ML estimate breaks down. One of the reasons could be discreteness of data

or discontinuity of a model. Another possible reason could be an unbounded likelihood.

Therefore, we can naturally think about kernel smoothing as a tool to regularize the

model or data so that we can remove the irregular part of the model or likelihood. In

this case, the initial estimation problem will be distorted and this could cause a bias or

information loss. The question is how we can construct estimating procedure without

distorting the initial statistical problem.

In Part I, we address the failure of the ML method using several well-known ex-

amples and discuss why these failures occur. Then we describe the proposed method

called doubly-smoothed maximum likelihood estimation (DSMLE) with its universal con-

sistency. We also discuss some computational aspects of DSMLE and a simple example

to show how DSMLE rectifies the failure of the ML procedure. In Part II, we introduce

the semiparametric mixture approach in the measurement error problem. A long lasting

unsolved problem in this approach is the inconsistency of the ML method when there

are additional error free covariates as well as covariates measured with error. We apply

the proposed method to solve this inconsistency problem and show its consistency.
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1.2 Minimum distance estimation for the parametric models

In a distance point of view, the ML method is to compare data and a certain

family of models then it finds the closest model to the data in a given family of models.

Thus the distance based method can be viewed as the generalized version of the ML

approach and in some case, the MLE is a minimizer of the Kullback-Leibler distance

between a model and observed data. The minimum distance estimation has been used

under various distances and purposes. In this section, we review the minimum distance

estimation in the parametric model.

1.2.1 Discrete model

Suppose the sample space of a random variable X is discrete and the model density

for X, mθ(x), is a family of discrete parametric probability densities on X where θ ∈ Ω.

Let dn(x) be the proportion of the n observations which have value x. Then dn(x) is the

empirical density function.

Based on this framework, the minimum distance estimators are constructed by

minimizing a certain statistical distance between the empirical density dn and the para-

metric model density mθ(x) over θ ∈ Ω. There are some well-known statistical distances

such as Kullback-Leibler (KL), Hellinger (HD), and Pearson’s chi-square (PCS). The

forms of these distances are

KL(dn,mθ) =
∑

x

mθ(x) ln
(

mθ(x)
dn(x)

)
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PCS(dn,mθ) =
∑

x

dn(x)
(dn(x)−mθ(x))2

mθ(x)

HD(dn,mθ) =
∑

x

(√
dn(x)−

√
mθ(x)

)2

In addition to these well-known distances, Cressie and Read (1984) introduced a class of

disparity measures called family of power divergences (PWD). This family is defined as

PWD(dn,mθ) =
∑

x

d(x)
(d(x)/mθ(x))λ − 1

λ(λ + 1)

Lindsay (1994) also introduced blended families of disparities such as blended weighted

Hellinger distances (BWHD) and blended weighted chi-square distances (BWCS). They

are defined by

BWCS(dn,mθ) =
∑ {dn(x)−mθ(x)}2

2{αdn(x) + (1− α)mθ(x)}

BWHD(dn,mθ) =
∑ {dn(x)−mθ(x)}2

2{α√
dn(x) + (1− α)

√
mθ(x)}2

Although we call them distance, we do not require them to be actual metrics in

the mathematical sense. For instance, Kullback-Leibler distance is not symmetric and

does not satisfy the triangle inequality. However, all distances should be nonnegative

and zero-distance should mean two densities are same with probability one. With these

two properties, statistical distances can be used in important statistical purposes.

If we interpret the statistical distance as a loss between data and a model, statisti-

cal distance can be used as an important model selection tool. Another important usage

of statistical distance is an estimation. In this case, we could get robustness and first
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order efficiency. Lindsay (1994) studied these robustness and the first order efficiency by

introducing residual adjustment function.

1.2.2 Continuous model

When we have a continuous model, the aforementioned distance based estimation

cannot directly applied to the continuous model because the data is always discrete while

the model is not.

The minimum distance estimation for the continuous case is first studied by Beran

(1977). He proposed to estimate an unknown parameter θ by minimizing the Hellinger

distance between the model density mθ(x) and the nonparametric density estimator f̂n.

In his paper, he showed the minimum Hellinger distance estimator (MHDE) could obtain

robustness with first order efficiency. Since then, several authors followed up on his work

such as Tamura and Boos (1989) and Simpson (1987, 1989).

These methods require that the estimated kernel density f̂n should be consistent

for the true model density. To get this consistency property, we need some complicated

conditions for the kernel and tuning parameter in estimating the kernel density estimate

f̂n. However, Basu and Lindsay (1994) showed that if mθ is replaced with m
∗
θ

which is

mθ smoothed with the same kernel used in f̂n, we do not need complicated conditions.

Moreover, we still get robustness and, at least in some cases, first order efficiency. Here

we briefly describe their methodology.
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Suppose mθ(x) is a continuous model density and X1, · · · , Xn are random sample

from mθ(x). Using a kernel Kh(·), we can construct a kernel density estimator

f̂n(t) =
∫

Kh(t− x)dF̂n(x) (1.1)

where h is a tuning parameter and F̂n(x) is the empirical distribution obtained from the

sample. By applying the same kernel with the same tuning parameter h to the model

density, we have a smoothed model density

m
∗
θ
(t) =

∫
Kh(t− x)mθ(x)dx. (1.2)

Now, find θ that minimizes density based distance between m
∗
θ
(t) and f̂n(t) such as the

squared Hellinger distance

HD(f̂n(t),m∗
θ
(t)) =

∫ (√
f̂n(t)−

√
m∗

θ
(t)

)
2

dt

and the Kullback-Leibler distance

KL(f̂n(t),m∗
θ
(t)) =

∫
ln

(
f̂n(t)
m∗

θ
(t)

)
f̂n(t)dt.

One of the advantages of this method is that it does not require to let the tuning

parameter h go to zero. That is, for a fixed h, the sequence of the estimators based on

such a statistical distance is consistent.
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1.3 Quadratic distance

Lindsay et al. (2007) introduced a new family of distances called quadratic dis-

tance. This section presents their foundational work on quadratic distance. Since the

quadratic distance is based on the nonnegative definite kernel, here we first define the

nonnegative kernel and then the quadratic distance.

Definition 1.1. If the quadratic form
∫∫

K(s, t)dσ(s)dσ(t) is nonnegative for all bounded

signed measure σ, the kernel K(s, t) is called nonnegative definite (NND). Moreover, if

this nonnegativity holds for all σ satisfying the condition
∫

dσ(s) = 0, K(s, t) is called

conditionally nonnegative definite (CNND).

Definition 1.2. Given a CNND KG(s, t), possibly depending on G, the K-based quadratic

distance between two probability measures F and G is defined as

DK(F, G) =
∫∫

KG(s, t)d(F −G)(s)d(F −G)(t).

Many statistical distances have the quadratic distance form. For example, if we

let A1, · · · , An be a partition of the sample space into m bins, the Pearson’s chi-square

can be represented as

∑

i

(F (Ai)−G(Ai))
2

G(Ai)
,

if we define the kernel as

KG(x, y) =
m∑

i=1

I(x ∈ Ai)I(y ∈ Ai)
G(Ai)

.
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If we define the kernel as K(s, t) = I(s = t), the L2 distance can be represented by

∫∫
I(x = y)(f(x)− g(x))(f(y)− g(y))dxdy.

Although some of statistical distances are not the quadratic distance form, such as

Kullback-Leibler and Hellinger, most smooth distances are at least locally quadratic(see

Lindsay et al. (2007)). Thus this new family of distances can be viewed as a generalized

version of many statistical distances.

Definition 1.3. The G-centered kernel K, denoted by K̃
G, is defined as

K̃
G(x, y) = K(x, y)−

∫
K(x, y)dG(x)−

∫
K(x, y)dG(y) +

∫∫
K(x, y)dG(x)dG(y)

An important property of the centered kernel is that the K-based quadratic distance

between F and G can be written as

DK(F,G) =
∫∫

K̃
G(x, y)dF (x)dF (y). (1.3)

This representation plays an important role in the spectral decomposition theorem and

enables one to estimate the empirical spectral degrees of freedom that will explained in

the following subsections.

1.3.1 Spectral decomposition and spectral degrees of freedom

The spectral decomposition theory illuminates an important asymptotic property

of the quadratic distance. That is, for the true model τ and the empirical distribution
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F̂n, we have

nDK(F̂ , τ) w−→
∞∑

i=1

λiZ
2

i

where Zi’s are independent N(0, 1) and λi ≥ 0,
∑∞

i=1
λi < ∞ Thus, the limiting dis-

tribution of nDK(F̂ , τ) is an infinite sum of the independent scaled χ
2

1
. Based on this

spectral decomposition, we approximate this to one scaled χ
2

sDOF
with an appropriate

degrees of freedom sDOF.

nDK(F̂ , τ) w−→
∞∑

i=1

λiZ
2

i
≈ cχ

2

sDOF

By matching the first two moments (Satterthwaite, 1941), we can find c and spectral

degrees of freedom, sDOF.

c =

∑
λ

2

i∑
λi

, sDOF =

(∑
λi

)2

∑
λ2

i

(1.4)

For detail, see Lindsay et al. (2007). Thus, sDOF has a similar meaning to the usual

degrees of freedom in χ
2 goodness-of-fit test.

1.3.2 Estimating spectral degrees of freedom

From the spectral decomposition of the τ -centered kernel (Lindsay et al., 2007,

Theorem 3.1), we have

∫
K̃

τ

h
(x, x)dτ(x) =

∞∑

i=1

λi and
∫∫ (

K̃
τ

h
(x, y)

)
2
dτ(x)dτ(y) =

∞∑

i=1

λ
2

i
. (1.5)
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Combining (1.4) and (1.5), the sDOF can be written as

sDOF =

(∑∞
i=1

λi

)
2

∑∞
i=1

λ2

i

=

(∫
K̃

τ

h
(x, x)dτ(x)

)
2

∫∫ (
K̃τ

h
(x, y)

)
2
dτ(x)dτ(y)

.

However, we don’t know the true distribution τ . For a given data set, one can es-

timate sDOF as follows. First the numerator
∫

K̃
τ

h
(x, x)dτ(x) can be estimated by

1
n

∑n

i=1
K̃

F̂

h
(xi, xi). Second, using a U -statistic,

∫∫ (
K̃

τ

h
(x, y)

)
2
dτ(x)dτ(y) can be esti-

mated by

2
n(n− 1)

n∑

i=1

∑

j<i

(
K̃

F̂

h
(xi, xj)

)
2

.

Therefore sDOF can be empirically estimated by

(
1
n

∑n

i=1
K̃

F̂

h
(xi, xi)

)2

2
n(n−1)

∑n

i=1

∑
j<i

(
K̃F̂

h
(xi, xj)

)
2

1.4 Mixtures

In section 1.2.2, Basu and Lindsay (1994)’s estimator does not often have the

closed form as a result of kernel smoothing. Thus in many cases, we need a numerical al-

gorithm to estimate parameters. When the model includes only parametric components,

the minimizing problem in the distance based estimation can be implemented using some

standard minimizing methods such as the Newton-Raphson method. However, if we need

to estimate non-parametric component, the estimation would be complicated.
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In this case, if we express the smoothed model density (1.2) as a mixture form,

m
∗
θ
(t) =

∫
Kh(t− x)mθ(x)dx =

∫
Kh(t− x)dMθ(x)

where Mθ(x) is the distribution function of mθ(x), some well known mixture algorithms

can be easily applied.

In this section, we briefly introduce the mixture NPMLE theorem (Lindsay, 1995)

in the nonparametric mixture models and several algorithms to estimate the NPMLE.

1.4.1 The mixture NPMLE theorem

Suppose that we have a mixture density

f(x;Q) =
∫

f(x; φ)dQ(φ),

where Q is a mixing distribution and f(x; φ) is a atomic density. The mixture likelihood

function is then L(Q) =
∏n

i=1
f(xi; Q), which we want to maximize. The first part of

the mixture MLE theorem mentions that (1) the nonparametric maximum likelihood

estimator Q̂ exists, (2) Q̂ is necessarily discrete and (3) the number of support points

for Q̂ is no more than sample size n.

The second part is a gradient characterization. Maximization of L(Q) over all

possible Q is a very difficult problem, especially for the computation because we do

not even know the number of support points for Q as well as the location of support

points and their weights. The gradient characterization gives us a simpler way to find

the NPMLE Q̂. Suppose that Q0 is a candidate for the NPMLE Q̂, and that Q1 is any
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other distribution. By letting Qα = (1− α)Q0 + αQ1, we can construct an intermediate

distribution between Q0 and Q1, where 0 ≤ α ≤ 1. Now the nonparametric likelihood

becomes a one-parameter likelihood function L
∗(α) = L(Qα). If d

dα ln L
∗(α)|α=0 is posi-

tive, then we know not only there exists α such that L(Qα) > L(Q0) but also Q0 is not

the NPMLE of Q. We define the directional derivative of lnL
∗(α) at α = 0 to be

DQ0
(Q1) =

n∑

i=1

(
f(xi;Q1)
f(xi;Q0)

− 1
)

=
∫

DQ0
(δφ)dQ1(φ),

where δφ is Dirac delta function whose support is on φ. The second part of FTNPMLE

says a much stronger result. Q0 is MLE if and only if DQ0
(δφ) ≤ 0 for all φ.

The third part says the support point properties. That is, if ξ is a support point

for Q̂ which maximizes likelihood, then DQ̂(ξ) = 0. The last part is about the uniqueness

of the fitted vector of likelihood values. If we define the fitted vector of likelihood values

as L(Q̂) = (L1(Q̂), · · · , Ln(Q̂)), then L(Q̂) is uniquely determined. This result does not

directly mean that Q̂ is unique, it can be however used to prove the uniqueness of Q̂ in

various situations.

1.4.2 EM algorithm

Because a mixture model can be viewed as a component missing problem, we can

apply the EM algorithm. To apply the EM algorithm, we assume k-finite mixture for

f(x;Q), where Q is a mixing distribution. Let φ1, · · · , φk be the support points of Q
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and let π1, · · · , πk be the corresponding weights. The mixture density is then

f(x; Q) =
k∑

j=1

πjf(x; φj).

If we define a multinomial indicator vector Vi such that

Vij =





1 if xi comes from f(x; φj)

0 otherwise

where i = 1, · · · , n and j = 1, · · · , k, then Vi has a multinomial distribution with param-

eters (π1, · · · , πk), and the joint distribution of (xi, zi) and the conditional distribution

vi given xi each are

p(xi, vi) =
k∏

j=1

πjf(xi;φj)
vij

p(vi|xi) =
k∏

j=1

(
πjf(xi; φj)∑k

m=1
πmf(xi; φm)

)
vij

Since we do not observe Vij directly, we need the EM algorithm to maximize log-likelihood

function with two steps, the E-step and the M-step. To simplify notation, let us define

V
(t)

ij
as

V
(t)

ij
:= E(Vij |xi; π

(t)
, φ

(t)) =
π

(t)

j
f(xi; φ

(t)

j
)

∑k

m=1
π(t)

m
f(xi;φ

(t)

m
)
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In the E-step, we calculate the conditional expectation of the full log-likelihood

function given xi and (φ(t)
, π

(t)) :

n∑

i=1

E(ln p(xi, vi)|xi; π
(t)

, φ
(t)) =

n∑

i=1

E




k∑

j=1

zij ln
(
π

(t)

j
f(xi|φ

(t)

j
)
)
| xi




=
n∑

i=1

k∑

j=1

v
(t)

ij
ln

(
π

(t)

j
f(xi|φ

(t)

j
)
)

=
n∑

i=1

k∑

j=1

v
(t)

ij
ln π

(t)

j
+

n∑

i=1

v
(t)

ij
ln f(xi|φ

(t)

j
)

In the M-step, (π(t)
, φ

(t)) is updated to (π(t+1)
, φ

(t+1)) by maximizing the expected

log-likelihood over (π, φ) :

π
(t+1)

j
=

∑n

i=1
v

(t)

ij

n

φ
(t+1)

j
= arg max

φj

n∑

i=1

v
(t)

ij
ln f(xi|φ

(t)

j
)

The EM algorithm is usually used in the finite mixture models. However, the EM

algorithm can be also used in the estimation of NPMLE assuming the mixing distribution

has finite number of support points hence multinomial distribution. In this case, we need

to determine the number of support points beforehand.

1.4.3 Gradient based algorithms

To compute the NPMLE of the mixing distribution, there are several well-known

gradient based methods such as vertex direction method (VDM) (Bohning, 1985), vertex

exchange method (VEM) (Bohning, 1986), and intra-simplex direction method (ISDM)
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(Lesperance and Kalbfleisch, 1992). All these methods detect the violation of the second

part of the mixture NPMLE theorem: Q0 is NPMLE if and only if DQ0
(∆φ) ≤ 0 for all

φ.

VDM and VEM find the global maximizer φ̂ of the gradient function. If the gradi-

ent function is greater than zero at φ̂, then these algorithms add the global maximum as

a new support point and determine the corresponding weight in each step. In this case,

one typical difficulty is that the gradient function has several modes, and sometimes it

is too bumpy. This feature of the gradient function makes it difficult to find the global

maximizer. So, a fine grid is needed to find the global maximum which takes much time,

especially for the large sample size and a finer grid.

ISDM uses a more clever way to accelerate these algorithms. That is, ISDM finds

all local maxima and adds these all local maximizers as new support points. However,

we still need grid search. To lessen this computational difficulty in finding new set of

support points, Yang (2004) suggested splitting rule. Suppose that we have a current

mixing distribution with support points {φ1, · · · , φn}. Then for the gradient function

DQ̂n
(φ) we have DQ̂n

(φj) = 0, D
′
Q̂n

(φj) = 0, and D
′′
Q̂n

(φj) ≤ 0 from the third part of

the mixture NPMLE theorem. Thus, if D
′′
Q̂n

(φj) > 0, we would say that a local violation

occurs at φj . When this violation occurs at φj , we can know DQ̂n
(φ) is greater than 0

in the neighborhood of φj , which implies that at least one more support point in the

neighborhood of φj is required. To do so, we split φj into φj1 and φj2 and assign half the

weight of φj . This splitting rule could greatly reduce the computing time in updating

the support points for NPMLE.



Part I

A universally consistent modification of maximum

likelihood
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Chapter 2

Introduction

Although the many successes of the maximum likelihood method make it seem like

a nearly foolproof way to create good estimators, there are reasonable models where the

estimators fail to be consistent. These models are both parametric and semiparametric.

In this Part I, we will give several examples of this and investigate why it occurs. We

here consider a simple amendment to maximum likelihood that makes it universally

consistent. By this we mean that the consistency does not depend on any regularity

conditions about the model under investigation. The simple amendment to maximum

likelihood involves kernel smoothing; moreover, the estimators can be made arbitrarily

close to maximum likelihood by moving the bandwidth to zero.

Many results about consistency are focused on the consistency of parameter esti-

mators. Results of this type always depend on a series of regularity conditions because

the parametrization of a class of distributions is just a way to label the distributions, and

so it is essentially arbitrary. That is, there exist arbitrarily silly ways to parametrize.

Our notion of universal consistency requires that we separate the concept of consistency

from the concept of parametrization.

To explain this, let us first suppose that {Y1, · · · , Yn} is a random sample from

some unknown probability measure Mτ . Suppose further that Mτ is one element of a

class of probability distributions, M. If we suppose that M is indexed by a parameter
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θ, so M = {Mθ}, then estimation of θ by θ̂n provides an estimator of the true parameter

θτ . Translated into the world of distributions, the true parameter corresponds to some

true distribution Mτ = Mθτ
and θ̂n to an estimator M̂n of Mτ , where M̂n = Mθ̂n

. If

the method of estimation is parametrization invariant, like maximum likelihood, then

M̂n does not depend on the method of parametrization θ. If we say that the method

of estimation is consistent whenever M̂n converges to Mτ , in some suitable metric, then

consistency is a question free of parametrization. We will call this distributional consis-

tency.

This consistency notion is independent of the dimension of the parameter space or

a choice of metrics on the parameter space. We will here consider models both parametric

and semiparametric, and from that point of view, it is best to call θ the model index

rather than the parameter, recognizing that there are many possible ways to index the

class of models.

Before we present our main result, in the next section, we show some motivating

examples that lead us to inconsistent MLE’s.

2.1 Motivating examples

To motivate our estimation method, we present three well known examples in

which maximum likelihood fails to give consistent estimators even though consistent

estimators exist. Our first example is a parametric model.

Example 2.1. Two-component normal mixture (Kiefer and Wolfowitz, 1956)

Consider a two-component normal mixture with unknown means, variances and class
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probability µ1, µ2, σ1, σ2, ρ. Then the likelihood of a sample from this density is given

by :

L(θ,x) =
∏

i


 ρ√

2πσ2

1

exp

(
−(xi − µ1)

2

2σ2

1

)
+

1− ρ√
2πσ2

2

exp

(
−(xi − µ2)

2

2σ2

2

)


If we do not assume equal variance, this likelihood is unbounded and its global maximum

is ∞ : let µ2 = x1 and let σ
2

2
go to zero. Therefore likelihood is not bounded and the

parameter values that give the infinite spikes cannot be used to construct a consistent

sequence of estimators.

As a simple amendment, now suppose that each Xi was replaced by X
∗
i

=

Xi +
√

hZi, where Zi’s are i.i.d. N(0, 1). In this measurement error model, from the

convolution property of normal densities the density for X
∗
i

is

∫
N(x∗; x, h)

{
ρN(x;µ1, σ

2

1
) + (1− ρ)N(x;µ2, σ

2

2
)
}

dx

= ρN(x∗; µ1, σ
2

1
+ h) + (1− ρ)N(x∗;µ2, σ

2

2
+ h)

and the likelihood is then

L(θ, x∗) =
∏

i


 ρ√

2π(σ2

1
+ h)

exp


−

(x∗
i
− µ1)

2

2(σ2

1
+ h)


 +

1− ρ√
2π(σ2

2
+ h)

exp


−

(x∗
i
− µ2)

2

2(σ2

2
+ h)





 .

Then we can see that this likelihood is bounded above, showing that adding measurement

error is a means to remove infinite spikes from parametric likelihood functions. The

basic idea of the proposed method in this thesis achieves this. Because the main reason
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of this inconsistency came from the irregularity of model, we need to regularize the

model. In this example, we can see adding a measurement error to the original variable

or equivalently kernel smoothing can regularize the given model. We will discuss this

example in chapter 6 with a simplified normal mixture model after describing our main

result.

Our next example involves a nonparametric maximum likelihood estimator. A

consistent example of the nonparametric type is the empirical distribution function F̂

which can be derived as the maximum likelihood estimator of a completely unknown

distribution. If one were to allow arbitrary continuous densities, then the likelihood

would again be unbounded. However, if we allow only discrete densities p(x), then there

is a unique global maximum p̂ which satisfies p̂(xi) = 1/n, assuming the data has no ties.

In this same sense, the Kaplan-Meier estimator is the nonparametric MLE for censored

univariate survival data, and is consistent (Kaplan and Meier, 1958). In multivariate

censored data, however, the method can fail, and so becomes our second example.

Example 2.2. The bivariate Kaplan-Meier estimator

Let T = (T1, T2) be the pair of survival times with distribution F (t1, t2) and let C =

(C1, C2) be the pair of censoring times with distribution G(c1, c2). Assuming T and

C are independent, suppose that we observe (T̃1, T̃2) = (min(T1, C1),min(T2, C2)) and

(δ1, δ2) = (I(T1 < C1), I(T2 < C2)) instead of T and C. In this case, the usual Kaplan-

Meier estimator is not unique. The Kaplan-Meier estimator is inconsistent due to the

singly censored data points.
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The problem with singly censored points can be easily explained using a redistribution-

to-the-right algorithm for maximum likelihood introduced by Efron (1967). In Figure

2.1(a), the point A is doubly right censored and other points are not censored, and the

algorithm would equally redistribute the mass of point A to the data points (B, C) found

in the upper quadrant of the point A. However, in Figure 2.1(b), the T1-coordinate of

point A is observed but T2-coordinate is right censored. In this case, the mass of point

A can be redistributed to any point on the dotted line. Therefore, the NPMLE is not

unique.

If the distribution of (T1, T2) is continuous, then with probability one we gain

no further observations along the dotted line and so the ambiguity persists. If there

is positive probability of single censoring, then there exist a multitude of inconsistent

MLEs.
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(a) (b)

Fig. 2.1. NPMLE of survival time when (a) bivariate data only includes doubly censored
or doubly uncensored data (b) bivariate data includes singly censored censored data
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A singly censored data point could be described as having one coordinate observed

precisely and the other vaguely.

Example 2.3. Error-in-variables

Consider a bivariate random variable (X, Z) with unknown distribution function G(x, z).

Suppose Z has no measurement error but random variable X can not be directly ob-

served, instead one observes W which is X perturbed by some measurement error. Sup-

pose that the measurement error distribution of W |X = x is completely known, say

f(w|x), and that W and Z are independent given X. Then the joint density of (X,W,Z)

is f(w|x, z)g(x, z) = f(w|x)g(x, z). Now let us consider the estimation of the nonpara-

metric distribution G. As in the preceding example, we restrict attention to G discrete.

Because X is not observed the observed likelihood is

L(G) =
n∏

i=1

∫
f(wi|x)g(x, zi)dx.

Assuming that G is discrete we can rewrite the likelihood of the sample as

L(G) =
n∏

i=1

∫
f(wi|x = ξ)I(z = zi)dG(ξ, z). (2.1)

In this case, if the data have no ties and f(wi|x = ξ) is completely known unimodal

density f(w− x) with mode 0, then the ML estimate for G is the empirical distribution

of (W,Z), which clearly converges to the wrong distribution (Roeder et al., 1996; Gaydos,

1997).
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An explanation for this inconsistency is that the joint conditional density, f(wi|x =

ξ)I(z = η), is continuous for W but discontinuous for Z. Because of this mixed form

of continuous and discrete variables, when the ML procedure estimates the conditional

distribution of X|Z = zi, it fails to pool information across Z observations. This can

be seen in Figure 2.2. In Figure 2.2(a), if Z observations are discrete, given each zi,

there will be several W observations. This allows ML method to consistently estimate

the conditional distribution of X given Z. However, in Figure 2.2(b), if Z is continuous,

there will be only one observation for each Z observation with probability one even for

infinite sample size. So ML method fails to pool information across different Z obser-

vations. Consequently, the NPMLE of G is unique but inconsistent. However, if both

X and Z had been measured with error, there would have no inconsistency. We will

study this example in Part II to show how this inconsistency can be solved using the

doubly-smoothed maximum likelihood method.

In all three of our examples we can see that maximum likelihood failed due to

inhomogeneity in measurement accuracy. In every case, if we blurred the data by adding

artificial measurement error, the inconsistency would disappear. Recently, Luo et al.

(2006) suggest adding noise for variable selection in a regression setting. Of course, the

problem of using maximum likelihood after adding artificial measurement error to data

is that the answer one attains would not only lose information but also be simulation

dependent for the same data set. The method we consider removes this problem. In

the next chapter, we describe the doubly-smoothed maximum likelihood procedure and

show its universal consistency.
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Fig. 2.2. Estimation of conditional distribution of X given Z = zi when (a) Z is discrete
and (b) Z is continuous
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Chapter 3

Doubly-smoothed maximum likelihood estimation

In the aforementioned examples, the inconsistency of MLE is due to the failure of

some regularity conditions that are typically used in the general consistency proof. We

ask how to regularize the model while losing little efficiency.

One simple amendment is to smooth the model or the data so that the model or

data is regularized. The risk is that this could cause serious bias and extra variation

depending on the degree of blurring. Thus determining the optimal degree of blurring is

another major issue across various models. To minimize this undesirable blurring effect

from having regularized either model or data, we suggest smoothing both model and

data with the same degree of smoothing. By this means, we change data and model in

a parallel way in order to not only cure the defect of the ML method but also reduce

the bias caused by blurring. Moreover, it can make the choice of smoothing parameter

a less difficult problem. That is, the consistency of our method does not depend on the

choice of a tuning parameter and the proposed method is quite robust to the choice of a

tuning parameter.

3.1 Description of method

Suppose X1, · · · , Xn is a random sample from unknown probability measure Mτ

on Rd. Now using a kernel Kh(x, t), we can construct nonparametric kernel density
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estimator

f̂
∗
n
(t) =

∫
Kh(x, t)dF̂n(x) =

1
n

n∑

i=1

Kh(xi, t)

where h is a tuning parameter which controls smoothness and F̂n(x) is the empirical

distribution based on X1, · · · , Xn. By applying the same kernel to the model density,

the smoothed model density is defined as

m
∗(t; Mθ) =

∫
Kh(x, t)dM(x; θ) (3.1)

where M(x; θ) is a distribution function of m(x; θ). We can think of m
∗ as the density

of a new variable T that arises from viewing X with the measurement error density

Kh(x, t). In this case, smoothed kernel density can be considered as a nonparametric

estimator for the density of new variable T . For our methodology, We will rely on the

following basic assumptions for the kernel.

(K1) Kernel regularity: The kernel Kh(x, t) defined on Rd × Rd is bounded above

and is continuous in x for each t with Kh(x, t) → 0 for each t ∈ Rd as

|x| → ∞.

(K2) Kernel identifiability: If
∫

Kh(x, t)dM1(x) =
∫

Kh(x, t)dM2(x) except for

a set of t of Lebesgue measure zero, then M1 = M2 a.e.

The first kernel assumption is very common assumption in the literature. The

second kernel assumption is needed in our consistency proof, as it assures that the weak

convergence of kernel smoothed probability measure will imply the convergence of the
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original probability measure. When any kernel in the exponential family is used, this

assumption is easily verified using the uniqueness of the Laplace transformation.

Under these assumptions, we can see that smoothed kernel density f̂
∗
n
(t) con-

verges, for each t, to the smoothed model density m
∗(t;Mθ) on a set of probability one

for each t because the empirical distribution F̂n converges weakly to M(x; θ) on a set of

probability one. This convergence is independent of the value of the tuning parameter

h as long as the same kernel and tuning parameter are used for data and model.

Now, the doubly-smoothed maximum likelihood estimator of θ (DSMLE) is de-

fined as the minimizer of the Kullback-Leibler distance between the smoothed model

density and the smoothed kernel density:

θ̂n = arg min
θ

KL(f̂∗
n
(t),m∗(t; Mθ)) = arg min

θ

∫
ln

(
f̂
∗
n
(t)

m∗(t; Mθ)

)
f̂
∗
n
(t)dt. (3.2)

We can also easily verify that minimizing (3.2) is equivalent to maximizing

l
∗(θ) =

∫
lnm

∗(t; Mθ)f̂
∗
n
(t)dt =

∫
lnm

∗(t; Mθ)dF̂
∗
n
(t). (3.3)

We call (3.3) doubly-smoothed log-likelihood function because (3.3) will approach the

usual log-likelihood function as the tuning parameter goes to zero.

Now, the corresponding doubly-smoothed maximum likelihood estimator of the

distribution is Mθ̂n
. Although we could consider other statistical distances such as



28

Hellinger, chi-square, and so on, in this thesis we consider the Kullback-Leibler dis-

tance because of its relationship to the maximum likelihood method. Generally speak-

ing, if we let h tend to zero the DSMLE will approach the maximum likelihood esti-

mator. Moreover, in a discrete model with degenerate kernel smoothing, minimizing

KL(f̂n(t),m∗(t; Mθ)) exactly yields the maximum likelihood estimator of θ.

If the model index θ is vector-valued, then solving (3.2) is often equivalent to the

solving estimating equation

∫
∇θ ln m

∗(t; Mθ)f̂n(t)dt = 0. (3.4)

The statistical theory of estimating equations then leads to the consistency and asymp-

totic normality of this minimum distance estimator of θ. Basu and Lindsay (1994)

studied the consistency and efficiency of this estimator.

However, in the case that the model index θ contains nonparametric components

as in Example 2.2 and 2.3, the consistency of the estimator has not been established. In

the next section, we show the DSMLE θ̂n is very generally consistent for an essentially

arbitrary model.

3.2 Consistency of M̂
n

Our proof is based on almost sure convergence so we need a formal probability

framework. We consider a probability space (Ω,A,P) with elements ω and a sequence

{Xn} of random vectors defined on Ω. The basic result we need is that the empirical

distribution function F̂
ω

n
(x) = 1

n

∑
I(Xi(ω) ≤ x) converges weakly to Mθτ

for ω in a set
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Ω0 ⊂ Ω satisfying P (Ω0) = 1 due to Glivenko-Cantelli theorem. The reader should note

that for a fixed ω, the sequences we consider in this section are not stochastic so we are

able to use non-stochastic limiting results.

For the proof of consistency, we will first show the weak convergence of M(x; θ̂n)

to M(x; θτ ) on a set of probability one. We consider the consistency of the estimated

model index θ̂n to the true θτ in the next section. For the convenience of notation, from

now on we use Mn instead of M(x; θ̂n). Similarly Mτ means M(x; θτ ).

By consistency we will mean that M̂
ω

n
converges weakly to Mτ for a set of ω

having probability one. This corresponds to showing that d(M̂ω

n
,Mτ ) → 0 for any

metric d(·, ·) on the space of probability measures on (Rd
,Bd) that metricizes weak

convergence (Billingsley, 1995). We will need the following lemma in our main theorem.

Let x
+ = max{x, 0} and x

− = max{−x, 0}.

Lemma 3.1. Assuming (K1), for ω ∈ Ω1, a set having probability one, and for f̂
∗
n
(t) =

∫
Kh(t, x)dF̂

ω

n
(x), we have

lim sup
n

∫ [
ln m

∗(t; Mτ )
]−

f̂
∗
n
(t)dt →

∫ [
lnm

∗(t; Mτ )
]−

m
∗(t; Mτ )dt (3.5)

lim sup
n

∫ [
lnm

∗(t; Mk)
]
+

f̂
∗
n
(t)dt →

∫ [
lnm

∗(t; M0)
]
+

m
∗(t;Mτ )dt (3.6)
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Proof : To prove (3.5), first we apply Fubini’s theorem for the nonnegative function.

∫ [
ln m

∗(t; Mτ )
]−

f̂
∗
n
(t)dt =

∫ [
ln m

∗(t;Mτ )
]− ∫

Kh(t, x)dF̂
ω

n
(x)dt

=
∫∫ [

ln m
∗(t;Mτ )

]−
Kh(t, x)dtdF̂

ω

n
(x) (3.7)

=
1
n

∑

i

∫ [
lnm

∗(t; Mτ )
]−

Kh(t, xi)dt (3.8)

If
∫ [

ln m
∗(t; Mτ )

]−
m
∗(t; Mτ )dt = ∞, equation (3.5) holds from SLLN (Chung, 1974,

Theorem 5.4.2). Now suppose
∫ [

ln m
∗(t;Mτ )

]−
m
∗(t; Mτ )dt < ∞. Using the strong law

of large numbers and Fubini theorem again (3.8) converges to

∫∫ [
lnm

∗(t;Mτ )
]−

Kh(t, x)dtdMτ (x) =
∫ [

ln m
∗(t; Mτ )

]− ∫
Kh(t, x)dMτ (x)dt

=
∫ [

ln m
∗(t; Mτ )

]−
m
∗(t; Mτ )dt

on a set Ω′
1

of probability one. For equation (3.6), we apply the extended version

of the dominated convergence theorem. The boundedness of the kernel Kh implies

that m
∗(t;M) is bounded above, and so there exists positive number Uh such that

[
ln m

∗(t;Mn)
]+

< Uh for all n. Then, for each n,
[
ln m

∗(t; Mn)
]+

f̂
∗
n
(t) < Uhf̂

∗
n
(t), so we

use Uhf̂
∗
n
(t) as a dominating sequence. It satisfies Uf̂

∗
n
(t) → Uhm

∗(t; Mτ ) for all t ∈ Rd

on Ω0 from the consistency of F̂
ω

n
(t), where

∫
Uhm

∗(t;Mτ )dt = Uh < ∞ . Now, the

extended version of dominated convergence theorem implies (3.6). Let Ω1 = Ω0 ∩ Ω′
1

to

finish the result. ¤

For the next theorem, we assume that the maximizer of the doubly-smoothed

log-likelihood function exists. To assure the existence of this maximizer, we may need
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some assumptions on the class of model distribution M such as the compactness of M

in the weak topology. However, this theorem still applies to any sequence of M̂n’s such

that l
∗(Mn) ≥ l

∗(Mτ ); there always exists such a sequence as long as Mτ ∈ M. Hence,

in the next theorem, the maximizer Mn of l
∗(or the minimizer of KL(f̂∗

n
, m

∗)) can be

interpreted as either the global maximizer or a sequence satisfying l
∗(Mn) ≥ l

∗(Mτ ).

Theorem 3.1. Let M = {Mθ} be a class of model distributions indexed by θ. Suppose

that (X1, · · · , Xn) is a random sample from true distribution Mτ ∈ M. Suppose (K1)

and (K2) are satisfied, then the minimizer M̂n of KL(f̂∗
n
,m

∗) weakly converges to Mτ

on a set of probability one.

Proof : Fix ω ∈ Ω1. Since M̂n = M̂
ω

n
is a sequence of distributions on Rd, for any

subsequence {m} ⊂ {n} by Helly’s selection principle we can always select a further sub-

sequence {k} ⊂ {m} such that M̂k is vaguely convergent to a subprobability measure M0.

If we can show that M0 = Mτ , then we are done by the method of subsequences (Chung,

1974, Theorem 4.3.4). One can easily justify the following sequence of inequalities.

0 ≥ lim inf
k

∫
ln

(
m
∗(t; Mτ )

m∗(t; M̂k)

)
f̂
∗
k
(t)dt

= lim inf
k

∫ ([
ln m

∗(t;Mτ )
]+ −

[
ln m

∗(t; Mτ )
]− −

[
ln m̂

∗(t; M̂k)
]+

+
[
ln m

∗(t; M̂k)
]−)

f̂
∗
k
(t)dt

≥ lim inf
k

∫ ([
ln m

∗(t;Mτ )
]+

+
[
ln m

∗(t; M̂k)
]−)

f̂
∗
k
(t)dt

− lim sup
k

∫ ([
ln m

∗(t;Mτ )
]−

+
[
ln m

∗(t; M̂k)
]+)

f̂
∗
k
(t)dt

≥
∫

lim inf
k

([
ln m

∗(t;Mτ )
]+

+
[
ln m

∗(t; M̂k)
]−)

f̂
∗
k
(t)dt

− lim sup
k

∫ [
ln m

∗(t;Mτ )
]−

f̂
∗
k
(t)dt− lim sup

k

∫ [
ln m

∗(t; M̂k)
]+

f̂
∗
k
(t)dt (3.9)
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We have the first inequality because M̂k is a minimizer of KL(f̂∗
k
,m

∗). The second

inequality holds because lim infk{ak + bk} ≥ lim infk{ak} + lim infk{bk}, and the third

inequality holds by Fatou’s Lemma. The first integral in the last expression of (3.9) is

equal to

∫ ([
ln m

∗(t; Mτ )
]+

+
[
ln m

∗(t;M0)
]−)

m
∗(t;Mτ )dt

because for the given ω, m
∗(t; M̂k) converges to m

∗(t;M0) and f
∗
k
(t) converges to m

∗(t; Mτ ).

From the lemma 3.1, the second integral converges to

∫ ([
ln m

∗(t; Mτ )
]−

+
[
ln m

∗(t;M0)
]+)

m
∗(t;Mτ )dt

So the last expression in (3.9) converges to

∫ ([
ln m

∗(t;Mτ )
]+ −

[
ln m

∗(t; Mτ )
]− −

[
ln m

∗(t;M0)
]+

+
[
ln m

∗(t; M0)
]−)

m
∗(t; Mτ )dt

=
∫

ln
[
m
∗(t;Mτ )

m∗(t; M0)

]
m
∗(t; Mτ )dt ≥ 0 (3.10)

The last inequality comes from the information inequality and the fact that M0 is

a subprobability measure. Therefore, equality holds in the information inequality, which

means m
∗(t; Mτ ) = m

∗(t;M0) on a set of t-values with probability one under m
∗(t;M0).

From the kernel identifiability condition (K2), m
∗(t; Mτ ) = m

∗(t; M0) implies Mτ = M0.

Therefore, every vaguely convergent subsequence of M̂m vaguely converges to Mτ . This

implies M̂m weakly converges to Mτ (Chung, 1974, Theorem 4.3.4). This also implies

that M̂n weakly converges to Mτ . ¤
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3.3 Consistency of index θ

Theorem 3.1 establishes the consistency of the estimated probability measure

M̂n but not the consistency of the model index θ̂n. However, using this theorem the

consistency of the model index is often easily established. For the consistency of θ̂n, we

need first to identify a metric for convergence, say d(θ0, θ1), which would ordinarily be

Euclidian distance when θ is a vector. We then need two model index assumptions.

(M1) Model identifiability : The model index θ is identifiable in the probability

measure Mθ

(M2) Model continuity : M(x; θn) → M(x; θ0) implies that d(θn, θ0) → 0.

Corollary 3.1. If the kernel assumptions and model index assumptions hold, then the

minimizer θ̂n of KL(f̂∗
n
,m

∗) is consistent.

The natural metrics d(·, ·) to apply to model indices which are themselves distri-

butions, as in examples 2.2 and 2.3, are those metricizing weak convergence. One can

then apply subsequence arguments to prove consistency. For a simple example, sup-

pose one wishes to prove consistency of G estimation in example 3 when Gτ is the true

distribution. If the sequence Gn is not weakly convergent to Gτ , then we could find

a subsequence {m} ⊂ {n} such that Gm converges vaguely to subdistribution G1 with

G1 6= Gτ .

This implies MGm
converges vaguely to MG1

. However, Theorem 4.2 implies

MGn
converges weakly to MGτ

. This, together with identifiability and continuity of
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model index θn raises a contradiction to the convergence of M̂n. Similar technique can

be applied when model index θ includes both vector valued parameters and distributions.

Unlike the usual ML estimator that requires several regularity conditions on the

model, if we smooth both the model and the data, we do not require any regularity

conditions such as continuity and boundedness of the model. This explains how our

methodology can cure an inconsistent ML estimator. Moreover, this proof does not

require a specific form of θ. That is, θ can be a set of parameters or non-parametric

distributions or both. So it can be easily applied to other consistency studies for the

nonparametric model or semi-parametric model. Finally, this proof implies that the

consistency does not depend on the choice of tuning parameter.
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Chapter 4

Choice of kernel and tuning parameter

4.1 Choice of kernel

As we have discussed, kernel smoothing can be used as a means of regularizing

a model which is irregular in some sense. Although any kernel satisfying the kernel

assumptions (K1) and (K2) can be used for our estimation, in practice there may exist

the most appropriate kernel for any given problem. However, since the objective of using

a kernel is not for estimating densities but for obtaining two regularized densities based

on the model and the data, the corresponding tuning parameter plays a more important

role than the kernel does.

If one thinks the choice of the kernel does not affect estimation as much as tuning

parameter selection, we may choose a kernel which makes the calculations easier because

numerical integration is required otherwise. That is, it might be a good idea to use

the kernel that makes the smoothed model density closed form just as one often uses a

conjugate prior in Bayesian world. This is not always possible, but in many cases, such

a kernel can be found. For example, if we use the normal kernel with the normal model

density to construct a smoothed model density, we know that smoothed model density

is also normal because of the convolution property of normal densities.
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4.2 Choice of tuning parameter

In this section, we suggest a reasonable range for the tuning parameter using

spectral degrees of freedom suggested by Lindsay et al. (2007); Ray and Lindsay (2007).

Note that our objective of this section is not to give an optimal choice of a tuning

parameter in a general sense but to give a method to construct an appropriate range for

the tuning parameter because the choice of a tuning parameter should be different over

different problems.

The most popular approach to choosing a tuning parameter would be a model-

specific method which selects the tuning parameter that makes the mean squared error

small. However, if our purpose is to find the consistent solution from a certain estimation

problem which has an inconsistent MLE, we should focus on the tuning parameter that

can correct the failure of MLE. Of course, the consistency will hold for any fixed tuning

parameter, but there will exist an appropriate range of a tuning parameter based on a

given finite sample problem. If one can find the range that produce a reasonable solution,

the smallest value in the range should be the answer because we do not want to be far

away from MLE as long as the problem of MLE is fixed. Now the question is how small

it should be.

Before we answer this question, let us consider the role of the tuning parameter

in the χ
2 goodness-of-fit test. Choosing the tuning parameter in our estimation problem

is analogous to choosing the number of bins in a histogram. In DSMLE, we smooth both

data and model and then compare two smoothed densities to minimize the Kullback-

Leibler distance because we think the smoothing can be used as a tool to prevent this
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failure. If we choose a large tuning parameter, the resulting estimators could be robust

and successfully cure the failure of MLE, but they would not detect some important

discrepancies between original model density and empirical density, which lead us a bias

or information loss. On the other hand, if we choose a small tuning parameter, the

resulting estimators could be more efficient than those with a large tuning parameter

but we could fail to construct a consistent sequence of estimators for the model index θ

because the model or data is not sufficiently regularized.

Although choosing the tuning parameter should play a minor role in our estima-

tion problem, for above reasons, it is desirable to suggest, at the least, a reasonable range.

And sDOF, introduced in section 1.3.1, can give a rough guideline for this purpose with

a good theoretical and intuitive bases.

4.2.1 Connection between quadratic distance and DSMLE

To illustrate the connection between the quadratic distance and DSMLE, let f̂
∗
n

be the smoothed kernel density based on sample and let m
∗
θ

be the smoothed model

density based on the model density m. In the minimum distance estimation, suppose we

use the doubly-smoothed L2 distance between f̂
∗
n

and m
∗
θ
:

∫ (
f̂
∗
n
(t)−m

∗(t)
)

2
dt (4.1)
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Then, from Lindsay et al. (2007, Proposition 1), this L2 distance can be written as the

quadratic distance form:

DH(F̂n,Mθ) =
∫

H(x, y)d(F̂n −Mθ)(x)d(F̂n −Mθ)(y) (4.2)

where H(x, y) =
∫

Kh(t, x)Kh(t, y)dt. Hence the L2 distance between two smoothed

densities also has the form of a quadratic distance with the kernel H.

Now the quadratic distance (4.2) between the empirical distribution F̂n based on

data and the model distribution Mθ represents the departure of the model from the data.

The minimum distance estimation based on L2 distance finds the model that minimizes

this departure in an assumed class of models. Minimum distance estimation based on

the Kullback-Leibler distance, while not identical, might be expected to have similar

behavior under possible choices of a tuning parameter.

Roughly speaking, if the quadratic distance captures the discrepancy between data

and a model, minimum distance estimation should also be reasonable. For this reason, we

hypothesize that if an appropriate tuning parameter is chosen for the quadratic distance,

the minimum distance estimator is also appropriate, at least, in a distance point of view.

Since there is a simple and easy degrees of freedom calculation for the L2 distance, we

will use it here.

4.2.2 General strategy

In the χ
2 goodness-of-fit test, a rough rule for the degrees of freedom in one

dimensional data is that it should be greater than 5 and less than n/5, where n is the
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number of observations. Applying this rough rule to our sDOF, a reasonable range for

the sDOF can be obtained. Thus for a given tuning parameter h, if estimated sDOF

is less than the lower bound of this range, h is too large. If sDOF is greater than the

upper bound of this range, h is too small. If we accept this rule, this rule can also give

a guideline for the choice of the tuning parameter in our estimation.

When it is very difficult to find an appropriate method to choose the tuning

parameter, sDOF always gives simple and dimensionless information for the tuning pa-

rameter just as the usual degrees of freedom does. Although the sDOF gives the range

of a tuning parameter rather than one optimal value, this is not so sensitive issue in our

estimation because DSMLE is quite robust to the choice of the tuning parameter, at

least within the chosen range of the tuning parameter based on sDOF.

Probably, in some cases, there would be some clues to determine an optimal

tuning parameter based on a given problem. However, even in this case, it might require

numerical search on the predetermined grid points to choose a tuning parameter because

the estimator is usually not an explicit form. If the area of grid is large or a fine grid is

required, the computing time will dramatically increase. In such a case, sDOF is also a

very useful tool to narrow the range of values to consider.
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Chapter 5

Computation

DSMLE can be obtained by minimizing Kullback-Leibler distance between smoothed

model density and smoothed kernel density. However, an explicit expression for (3.2)

is often difficult to derive due to some of integrals. In this case, numerical integration

methods are required such as Simpson’s rule, Gaussian quadrature formula and so on.

However, these numerical integrations often increase computational complexity espe-

cially for the high dimensional data and nonparametric estimation. In this chapter, we

suggest two useful ways to carry out the proposed estimation procedure.

5.1 Simulation based integration

Regarding numerical integration, the easiest way would be Monte-Carlo inte-

gration because it is intuitively easy to understand and program. For DSMLE, using

Monte-Carlo integration can turn minimizing the Kullback-Leibler distance problem into

a likelihood maximizing problem, but with a Monte-Carlo sample and the smoothed

model density. In this case we can borrow some well-known optimizing techniques from

ML estimation such as Newton-Raphson type methods and EM type methods.

To explain this, let us consider maximizing (3.3) that is equivalent to minimizing

Kullback-Liebler distance between the smoothed model density and the smoothed kernel
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density:

l
∗(θ) =

∫
lnm

∗(t; Mθ)f̂
∗
n
(t)dt =

∫
ln

(
m
∗(t, Mθ)

) 1
n

n∑

i=1

Kh(xi, t)dt

=
1
n

n∑

i=1

∫
ln

(
m
∗(t,Mθ)

)
Kh(xi, t)dt (5.1)

If we apply the Monte-Carlo integration to each integral, for each xi, we generate b

Monte-Carlo observation (ti1, · · · , tib) from Kh(xi, t). Then (5.1) can be approximated

by

1
n

n∑

i=1

1
b

b∑

j=1

ln(m∗(tij ,Mθ)) (5.2)

Under this numerical integration in (5.2), the initial minimizing problem is reduced to

finding MLE when a model is m
∗(t;Mθ) and data is given by {tij ; i = 1, · · · , n, j =

1, · · · , b}. Hence standard optimization methods can be used. Similar methods can be

found in Wang (2004) and Mcfadden (1989).

One good aspect of this method is that we can use known statistical packages

to estimate θ̂
DSMLE assuming the model is m

∗ and the data is {tij ; i = 1, · · · , n, j =

1, · · · , b} as long as the smoothed model density has a known explicit form. The fact

that it is equivalent to finding MLE with m
∗ and a Monte-Carlo sample enables us to

easily estimate DSMLE of nonparametric distribution. For instance, if Mθ is just an

unknown nonparametric distribution M , the smoothed model density is

m
∗(t;M) =

∫ (
Kh(x, t)

)
dM(x)
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and the smoothed likelihood l
∗(M) can be rewritten as

1
nb

n∑

i=1

b∑

j=1

ln(m∗(tij ;M)) =
1
nb

n∑

i=1

b∑

j=1

ln
(∫

Kh(x, tij)dM(x)
)

(5.3)

Then we can see that the initial problem is reduced to finding NPMLE of a mixing

distribution M(x) with a mixture density
∫

Kh(t, x)dM(x) based on the Monte-Carlo

sample {tij ; i = 1, · · · , n, j = 1, · · · , b}. In this case, the EM-algorithm (Laird, 1978) will

be the simplest programming approach to estimate MMLE of M(x). Other approaches

involve gradient based methods such as vertex exchange method (VEM) (Bohning, 1985),

and intra-simplex direction method (ISDM) (Lesperance and Kalbfleisch, 1992).

Although applying the Monte-Carlo method can give a simple way to estimate

MMLE, the computing time depends on the size of Monte-Carlo sample for each datum.

Since we generate b Monte-Carlo samples for each data point, the computer program

runs as if the total number of data points increases by b times. If we need to use very

slow algorithm like EM, the computing time could become huge. This can be worse for

high dimensional data. In the next section, we suggest another method to approximate

the integral that avoids this simulation based integration.

5.2 Local Laplace approximation

Another good tool which does not depend on simulation based integration is

Laplace approximation. This basically relies on the Taylor expansion of the logarithmic

function of the integrand. In maximizing l
∗(θ), we need to calculate each integral for

a fixed xi in the summand. In order to approximate this integral, we borrow the idea
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of Laplace approximation. Unlike usual Laplace approximation, we do not use Taylor

expansion for whole integrand, but instead use Taylor expansion only for ln(m∗(t; Mθ))

at each xi.

Then, for each data point xi, the smoothed model density ln
(
m
∗(t,Mθ)

)
can be

approximated for t near xi by

c0i + c1i(t− xi) + c2i(t− xi)
2

where

c0i = ln
(
m
∗(xi, Mθ)

)
c1i =

∂

∂t
ln

(
m
∗(t,Mθ)

)
|t=xi

c2i =
1
2

∂
2

∂t2
ln

(
m
∗(t,Mθ)

)
|t=xi

Now, the each summand in (5.1) is approximated by

∫
ln

(
m
∗(t,Mθ)

)
Kh(xi − t)dt ≈

∫ (
c0i + c1i(t− xi) + c2i(t− xi)

2
)

Kh(xi − t)dt

= c0i + c1iEKh
(T ) + c2iV arKh

(T ) (5.4)

Since in many cases, the moment of Kh can be explicitly calculated, without any

further numerical calculation, (5.4) can be calculated explicitly. For instance, if normal

kernel is applied for Kh(t−x) with variance h, (5.4) is simply c0i+c2ih and the smoothed

likelihood (5.1) is approximated by

1
n

n∑

i=1

(
c0i + c2ih

)
=

1
n

n∑

i=1

(
ln

(
m
∗(xi,Mθ)

)
+

h

2
∂

2

∂t2
ln

(
m
∗(t, Mθ)

)
|t=xi

)
. (5.5)



44

Therefore, the objective function to maximize can be approximated by (5.5) and

the first term in the summand represents the log-likelihood based on the smoothed model

density and unsmoothed data and the second term represents the correction term due

to data smoothing.

Maximizing (5.5) with respect to θ can be done using general optimization tech-

niques. However, unlike Monte-Carlo integration, the approximate objective function

can not be interpreted as a likelihood function. So we might not use known statistical

packages. Moreover if the EM-type algorithm is required, it is not clear how to incorpo-

rate EM algorithm with (5.5) due to the correction term. If this is the case, we might

need to stick to Monte-Carlo integration or use other types of algorithm to maximize

(5.5) such as MM algorithms (Hunter, 2003; Hunter and Lange, 2004).
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Chapter 6

Illustrative example and conclusion

In this chapter, we show the applicability of the DSMLE using a mixture model

announced in Example 2.1. Studying this example has some difficulties because the

likelihood function is unbounded and has several modes. Moreover, due to possible label

switching problems, it is hard to see the efficiency of estimators based on simulation.

Since there are five parameters, it is also difficult to investigate the shape of likelihood

function in a graphical way. For these reasons, we consider a simplified normal mixture

model whose likelihood is unbounded like Example 2.1.

6.1 Simulation study with a simplified normal mixture

Let us consider a two-component normal mixture model assuming the mean and

variance of the first component are known to be zero and one. Assuming further we

know the mixing proportion is 0.5, the simplified normal mixture density is

f(x; µ, σ
2) =

0.5√
2π

exp

(
−x

2

2

)
+

0.5√
2πσ2

exp

(
−(x− µ)2

2σ2

)
(6.1)

Now, one can easily show the likelihood function of µ and σ
2 is not bounded similar to

that of Example 2.1.

Hathaway (1985) suggested the constrained MLE that restricted the parameter

space to Ω = {(µ, σ
2) : −∞ < µ < ∞, σ

2 ≥ c} to resolve this unbounded likelihood
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problem. But if the true parameter is not included in Ω, the constrained MLE can lie

on the boundary of Ω. Tan et al. (2006) suggested the sequentially constrained MLE by

letting c go to zero and proved that it is consistent when log cn > −k(log2
n). Although

the constrained MLE gives a simple amendment to remove infinite spike in the likelihood,

determining the sequence cn or c is still a big practical issue.

In the doubly-smoothed maximum likelihood method, if a normal kernel is used

with tuning parameter h, the smoothed model density is

m
∗(x; µ, σ

2) =
0.5√

2π(1 + h)
exp

(
− x

2

2(1 + h)

)
+

0.5√
2π(σ2 + h)

exp

(
− (x− µ)2

2(σ2 + h)

)

Therefore the likelihood function based on m
∗(x; µ, σ

2) is now bounded above. Using

smoothed model density has similar effect to that of the constrained MLE. However,

because the doubly-smoothed maximum likelihood method also requires kernel smoothed

data, the problem in the constrained MLE does not arise.

Figure 6.1 shows the log-likelihood function of (µ, σ
2). As we expected, there are

infinite spikes near σ
2 = 0 when µ is at each data point. Moreover, as Day (1969) indi-

cated, we can see some spurious maximizers near σ
2 = 0 which make the likelihood very

irregular. Figure 6.2 shows the smoothed log-likelihood function of (µ, σ
2) by applying

normal kernel with h = 0.025. This contour plot looks much more regular in the sense

that not only all infinite spikes are removed but also most spurious maximizers vanish.

As we mentioned earlier, the constrained MLE has a risk to exclude true σ
2 as well

as infinite spikes and spurious maximizers if the constrained parameter space does not

contain true parameter. Figure 6.3 and 6.4 show this does not happen under DSMLE.
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Fig. 6.1. Contour plot of log-likelihood function with true µ = 2 and σ
2 = 1, shown in two

different scales
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Fig. 6.2. Contour plot of smoothed log-likelihood function with tuning parameter h = 0.025
and true µ = 2 and σ

2 = 1, shown in two different scales
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Figure 6.3 shows the likelihood based on the simulated sample from (6.1) with µ = 2

and σ
2 = 0.1. The maximum occurs around the true parameter µ = 2 and σ

2 = 0.1.

But this is not the actual maximizer because likelihood is not bounded. Figure 6.4

shows the doubly-smoothed log-likelihood using normal kernel with h = 0.2. Unlike

the constrained MLE smoothed log-likelihood preserves its true maximizer removing the

irregular likelihood part near σ
2 = 0 even though the tuning parameter h is greater than

true σ
2.
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Fig. 6.3. Contour plot of log-likelihood function with true µ = 2 and σ
2 = 0.1, shown in two

different scales

Now in order to investigate the effect of the tuning parameter on the bias and

variance, we did another simulation. For this simulation, n = 100, n = 300, and n = 500

samples are drawn from (6.1) with µ = 2 and σ
2 = 0.1. For various tuning parameters,

EM algorithm was applied. Table 6.1 and 6.2 show the bias with standard deviation of
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Fig. 6.4. Contour plot of smoothed log-likelihood function with tuning parameter h = 0.2 and
true µ = 2 and σ

2 = 0.1, shown in two different scales

µ̂ and σ̂
2 based on 1000 replications. Note that for h = 0 we use true parameter values

as a starting value of the algorithm, so the presented estimators are not actual MLE but

they can be believed to be the consistent roots of the likelihood function.

In these tables, we can see that the bias and standard deviation decrease as n

increases and this implies the consistency of DSMLE for each fixed h. We can also notice

that the estimators are quite robust over different tuning parameters and that smoothing

both model and data causes a very small amount of information loss.

For the complete investigation, we also increased the tuning parameter up to 10

though it is not shown in the tables. This is very large degree of smoothing because

true σ
2 is 1. In this case, we experienced that the biases do not decrease as n increases.

This phenomenon comes from the error in numerical integration because the magnitude

of numerical error increases as the tuning parameter increases. Therefore we need to be
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careful in numerical integration if a large tuning parameter is used. In this case, the

number of Monte-Carlo sample should be increased for the simulation based integration

or higher order approximation is required in the local Laplace approximation discussed

in chapter 5.

Table 6.1. The bias(std) of µ̂ based on different tuning parameters

Tuning
0 0.001 0.01 0.05 0.1 0.3 0.5

n = 100 -0.0158 -0.0158 -0.0160 -0.0166 -0.0173 -0.0183 -0.0179
(0.2129) (0.2129) (0.2128) (0.2124) (0.2125) (0.2147) (0.2188)

n = 300 -0.0038 -0.0039 -0.0040 -0.0044 -0.0067 -0.0051 -0.0031
(0.1180) (0.1180) (0.1180) (0.1180) (0.1151) (0.1197) (0.1221)

n = 500 -0.0026 -0.0026 -0.0026 -0.0028 -0.0029 -0.0020 0.0007
(0.0895) (0.0895) (0.0895) (0.0895) (0.0897) (0.0910) (0.0928)

6.2 Conclusion and future work

Throughout Part I, we studied several examples that cause inconsistent ML es-

timators and a general modification tool for the ML method. The main reason of this

inconsistency of MLE would be the inhomogeneity of measurement accuracy. In such

cases, we showed kernel smoothing both data and model can resolve this undesirable

feature of MLE for any statistical model. We also discussed the choice of a kernel and a

tuning parameter as a rough guideline and potential computational strategies.

In some ways, our consistency results are quite strong. They show almost sure

convergence for virtually any statistical model, completely without regularity conditions.

However, we did pay a price in the weakness of the measure we used for convergence. For
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Table 6.2. The bias(std) of σ̂
2 based on different tuning parameters

Tuning
0 0.001 0.01 0.05 0.1 0.3 0.5

n = 100 0.0037 0.0038 0.0041 0.0052 0.0066 0.0092 0.0091
(0.3164) (0.3165) (0.3167) (0.3179) (0.3199) (0.3272) (0.3352)

n = 300 -0.0036 -0.0036 -0.0034 -0.0026 0.0012 -0.0011 -0.0046
(0.1713) (0.1713) (0.1713) (0.1717) (0.1713) (0.1756) (0.1808)

n = 500 0.0002 0.0002 0.0003 0.0006 0.0009 -0.0006 -0.0057
(0.1325) (0.1325) (0.1325) (0.1327) (0.1330) (0.1354) (0.1393)

example, the empirical CDF F̂n converges to the true distribution in other strong metrics

such as Kolmogorov-Smirnov measure but DSMLE can not guarantee the convergence

to the true distribution under other strong metrics based on our proof. Hence we need

more research for the convergence of DSMLE under other metrics.

We suggest two ways to carry out the estimation numerically: Monte-Carlo ap-

proximation and local Laplace approximation. The Monte-Carlo approximation method

would be painful for a large data set and the local Laplace approximation can not be

used for the model that includes missing values or requires EM optimization, like the

mixture model. In the latter case, we believe MM algorithms (Hunter, 2003; Hunter and

Lange, 2004) could resolve this problem; this will be another interesting future work. In

addition, for the fast and accurate computation, further research is required.

In a simplified mixture example, we suggested DSMLE to solve unbounded likeli-

hood but we did not mention the choice of a tuning parameter for the kernel. Although

the simulation study shows DSMLE is quite robust to the choice of a tuning parameter,

we should make the tuning parameter as small as we can because the purpose of this
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modification is not to construct a new estimation procedure but to repair the ML esti-

mation. Hence we should answer how small it should be. We can think that the tuning

parameter that removes all the infinite spikes at σ
2 = 0 would be good enough. However,

there are also several local modes near σ
2 = 0 generated from a set of close points as

Day (1969) indicated. As we see in the simulation study, a large tuning parameter can

also remove these spurious maxima, but we do not know how large it should be. We

should study the nature of these spurious maxima in order to determine the optimal

tuning parameter.



Part II

Measurement error problem
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Chapter 7

Introduction

In many scientific studies, researchers are interested in finding the functional

relationship between response variable Y and covariate X. The measurement error

problem arises when the true covariate X is not observed and instead another covariate

W is available such that W represents X with an error. In this case, our objective is

still finding the functional relationship between the true response variable Y and the

unobserved true covariate X, not Y and W .

For example, suppose that we want to study the effect of low-density lipoprotein

(LDL) on the probability of heart disease, as previously discussed by Roeder et al. (1996).

Because measuring LDL is very expensive, we measure total cholesterol instead of LDL.

Now, LDL is a true predictor that we can not measure, and total cholesterol is another

predictor which represents LDL.

As a second example, the NHANES-I Epidemiologic Study Cohort data set (Jones

et al., 1987) is a cohort study originally consisting of 8,596 women who were interviewed

about their nutrition habits and later examined for evidence of cancer. The response

variable Y indicates the presence of breast cancer and the predictor variable X is “long-

term” saturated fat intake. Because X is not observed, instead of observing X, 24-hour

recall W was measured, that is, each participant’s diet in the previous 24 hours was

recalled and nutrition variables computed.
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Under these settings, if we ignore measurement error and fit Y directly on W ,

the result could be very misleading. So the model that can take the measurement error

into account is required. We call the model that specifies the relationship between the

true covariate X and another observed variable W as a measurement error model. The

measurement error model can be known from outside studies or fitted from a complete

data set. In the next section, we briefly introduce some commonly used measurement

error assumptions.

7.1 Measurement error models

The measurement error model explains the relationship between the true covari-

ate X and the observable covariate W . For the simplest model, let us consider the

relationship W = X + U where U is called a measurement error. In this measurement

error model, the measurement error U is added to the true covariate X so it is called

the additive measurement error model. Similarly, the multiplicative measurement error

model is W = XU . A more general model is a regression type measurement error model,

W = α0 + α1X + U .

In this thesis, we do not restrict attention to any specific form for the measurement

error model. However, there are two important types of assumptions on the measure-

ment error structure: classical versus Berkson type measurement error modeling and

differential versus non-differential measurement error.
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7.1.1 Berkson type and Classical measurement error model

The Berkson type measurement error model describes the conditional distribution

of X given W . When W is fixed by design, it is more reasonable to model X given W .

For example, if W is fixed amount of herbicide applied to a plant and X is the actual

amount of herbicide absorbed by the plant. Then W is fixed by design and the true

unknown X varies due to both the application and the plant absorption process. Hence

it is natural to model X|W .

The classical measurement error model determines the conditional distribution of

W given X. For example if we assume W = X + U , where U follows N(0, σ
2

u
), then the

conditional distribution W given X is the normal distribution with mean X and variance

σ
2

u
. That is, we assume that W is a measure of X with error. In this thesis we assume

this classical measurement error model.

7.1.2 Differential and Non-differential measurement error

Another important measurement error model choice is between differential and

non-differential measurement error. We say that non-differential measurement error

occurs when W and Y are independent given X. In other words, if the true predictor

X is observed, then W does not give any additional information for prediction. Thus

measurement error U and the other variables in the model are independent. In this case,

we call W a surrogate for X. Otherwise, the model has differential error.

One advantage of the non-differential measurement assumption is that it enables

one to estimate parameters without the true covariates X. Throughout this thesis, non-

differential measurement error is assumed.
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7.2 Attenuation in linear regression

In this section, we discuss the effect of measurement errors in the linear regression

problem. To simplify our discussion, we consider a simple linear regression model in the

next example.

Example 7.1. In a simple linear regression model

Y = β
x

0
+ β

x

1
X + ε,

suppose that X is not observed instead we observe W which is related to X. We assume

an additive measurement error model: W = X + U , where the random variable U has

mean zero and variance σ
2

u
and U is independent to other variables. So we assume an

additive non-differential classical measurement error model. If we ignore the measure-

ment error U and regress Y directly on W , Y = β
w

0
+ β

w

1
W , then the estimated slope

coefficient is

β̂
w

1
=

∑
wiyi − nw̄ȳ∑
(wi − w̄)2

=
∑

(xi − x̄)2∑
(wi − w̄)2

×
∑

wiyi − nw̄ȳ∑
(xi − x̄)2

(7.1)

=
∑

(xi − x̄)2∑
(wi − w̄)2

×
∑

(xi + ui)yi − n(x̄ + ū)ȳ∑
(xi − x̄)2

(7.2)

=
∑

(xi − x̄)2∑
(wi − w̄)2

×
∑

xiyi − nx̄ȳ +
∑

uiyi − nūȳ∑
(xi − x̄)2

(7.3)

=
σ

2

x

σ2

w

(
β̂

x

1
+

∑
uiyi − nūȳ∑
(xi − x̄)2

)
(7.4)
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where β̂
x

1
is the least square estimator of β

x

1
based on {(X1, Y1), · · · , (Xn, Yn)}. The

second term in the parenthesis of (7.4) strongly converges to zero becuase of the inde-

pendence of Y and U . Thus (7.4) strongly converges to

σ
2

x

σ2

w

=
σ

2

x

σ2

x
+ σ2

u

β
x

1

Therefore the naive estimator β̂
w

1
is not consistent for β

x

1
unless the measurement

error vanishes. More specifically, the absolute value of the estimated slope parameter

attenuates to zero as long as σ
2

u
> 0.

This attenuation is a typical phenomenon in the linear regression problems and

some nonlinear regression problems. However, this attenuation does not always happen

and its amount of attenuation is hard to study in more complex situations such as the

model with non-additive measurement error structure and non-linear models. In the

next section, we categorize some known general methods and discuss their limitation.

7.3 Functional modeling versus structural modeling

In the measurement error problem, the essential concern is how we can model the

unobserved variable X with the other variables. There are two representations of the

unobserved covariate X which lead to two types of measurement error modeling (Carroll

et al., 2006): functional modeling and structural modeling. In functional modeling, the

unobserved X’s are considered either as unknown parameters or as random variables

from an unknown distribution. This assumption enables us to make no or minimal

assumptions on the unobserved true covaraite X. If Xi’s are considered as unknown
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nuisance parameters, the likelihood is then

L(θ, X1, · · · , Xn) =
n∏

i=1

f(Yi,Wi|Xi, θ) (7.5)

Although this model makes minimal assumptions about the set of unobserved true co-

variates, maximizing likelihood with respect to θ and Xi’s is often difficult because the

number of parameters increases as the sample size increases. Moreover, it is well known

that the resulting estimate for θ is not consistent (Neyman and Scott, 1948). For these

reasons, with this model, the maximum likelihood estimation can not be directly used.

On the other hand, if Xi’s are viewed as a random sample from an unknown

distribution GX , then it is natural to factor the joint density of all relevant variables as

f(w, y, x) = f(w|y, x)f(y|x)g(x). (7.6)

where g(x) is the density function induced by GX . The joint density of observable

variable (Y, W ) becomes then

f(w, y) =
∫

f(w|y, x)f(y|x)g(x)dx. (7.7)

The first term of the integrand in (7.7) is called the measurement error model, the second

term is the outcome model or response model which is the model of interest, and the

third term is the model for the population of the true covariate X. If we do not specify

the distribution of X, this modeling makes no assumption for X.
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In structural modeling, one assumes a specific parametric model for X. In this

case, there is a general concern about the parametric specification of the unknown co-

variate X. Heckman and Singer (1984) used some parametric distributions and they

found that estimated θ’s can be quite different across different parametric distributional

assumptions. That means the estimator is not robust to the parametric assumptions.

Recently, Huang et al. (2006) devised a diagnostic tool to assess the effects of model

missspecification so that we can choose an appropriate parametric model for the covari-

ate distribution.

Because of these robustness problems in structural modeling, some authors re-

cently have developed flexible models to alleviate a strong assumption on the covariate

distribution; see, for example, Carroll et al. (1999); Richardson et al. (2002); Gustafson

et al. (2002). These developments blur the distinction between functional modeling and

structural modeling because even though these are distributional assumptions on the

covariate distribution, the estimators’ properties do not much depend heavily on those

assumptions. Just the same, these models need the specification of a distribution for X

and are determined by that choice of X.

If we want to completely remove this modeling issue for X, the best idea would

be functional modeling assuming that X’s are the random sample from an unspecified

distribution. Roeder et al. (1996) combined a parametric model for the response model

and a nonparametric model for f(x) by leaving f(x) unspecified. In a similar line, Schafer

(2001) discussed the general applicability of this semiparametric model. Roeder et al.

(1996)’s approach completely removes the misspecifination problems and its performance
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is at least as good as other proposals. In the next section, we briefly introduce Roeder

et al. (1996)’s approach, and then the limitation that becomes the motif of this part II.

7.4 Semi-parametric mixture approach

To study the relationship between the response variable Y and true but unob-

served predictor X, we will assume a parametric conditional distribution for Y given X,

denoted by fβ(y|x), and a parametric conditional distribution for W given X, denoted

by fα(w|x).

Under the non-differential measurement error assumption, the conditional joint

distribution of (Y, W ), given X, is fθ(y, w|x) = fβ(y|x)fα(w|x), where θ = (α, β). Then

the joint density of (Y, W ) is

fθ(y, w) =
∫

fα(w|y, x)fβ(y|x)g(x)dx

=
∫

fα(w|y, x)fβ(y|x)dGX(x)

where GX(x) and gX(x) are the distribution function and density function for X. This

can be also viewed as the mixture density with a mixing distribution GX(x). If we do

not specify the distribution GX(x), this model involves a parametric component θ and

a nonparametric component GX , and hence is a semiparametric mixture density.

Now, let us consider more general situation. Suppose that we have an additional

error free covariate Z measured without error as well as X measured with error. Thus,

there are two types of covariates; one is measured with error and the other is measured

without error. Now the joint density of (Y,W,Z) can be also written as a mixture form
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using an indicator function:

fθ(y, w, z;G) =
∫∫

fθ(y, w, z|x = ξ, z = ζ)dGX,Z(ξ, ζ)

=
∫∫

fβ(y|x = ξ, z = ζ)f(w, z|x = ξ, z = ζ)dGX,Z(ξ, ζ)

=
∫∫

fβ(y|x = ξ, z = ζ)fα(w|x = ξ)I(z = ζ)dGX,Z(ξ, ζ) (7.8)

where GX,Z is the joint distribution function of (X, Z). Hence this model does not

depend on specific modeling for the unobserved covariate distribution X.

Although this semiparametric mixture approach can completely remove the mis-

specification problem and show good performance when there is no error free covariate

Z, as notified in Roeder et al. (1996), if there is an additional error free covariate Z and

Z is a continuous random variable, the nonparametric ML estimate for the joint distri-

bution of (X, Z) converges to GW,Z , not GX,Z . Curiously, this inconsistency problem

does not happen if Z is also measured with error or is discrete.

Unfortunately, since Roeder et al. (1996) indicated the inconsistency problem of

this model, to the best of our knowledge, there has been no literature which discussed this

inconsistency problem. As a consequence, this semiparametric mixture approach cannot

be directly applied to the practical usage even though their method is fully robust to the

specification of the covariate distribution.

In the next chapter, we will dwell on this inconsistency problem more carefully

and explain how we can settle down this long lasting problem.
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Chapter 8

Doubly-smoothed maximum likelihood

8.1 Inconsistency of ML estimate

In this section, we follow up on Gaydos (1997)’s work to show the inconsistency of

ML estimate in a simple model. Suppose that we want to estimate the joint distribution

of (X, Z) where X is not observed directly. Now, suppose {(wi, zi);n = 1, · · · , n } is an

IID sample of size n from the joint distribution of (W,Z), where W is a surrogate. The

joint density of (W,Z) has then a simpler form than that of (7.8).

fW,Z(w, z) =
∫∫

f(w|x = ξ)I(z = ζ)dGX,Z(ξ, ζ)

Theorem 8.1. If random variable (W,Z) has the joint density

∫∫
f(w|x = ξ)I(z = ζ)dGX,Z(ξ, ζ)

and f(w|x) = f(w − x) is a unimodal density with mode 0. Then, the maximum like-

lihood estimate of GX,Z(x, z), the joint distribution of (X, Z), converges weakly to the

distribution of (W,Z) with probability one.

Proof : Let QX|Z and PX be the distribution of X given Z and marginal distribution

of Z. Also let qX|Z and pX be the probability mass function of QX|Z and PX . Due to

Lindsay(1983), we know that the nonparametric estimator of GX,Z is necessarily discrete.
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So without loss of generality, we can think qX|Z and pX are discrete probability mass

function. Then, the likelihood can be written as

n∏

i=1

P (W = wi, Z = zi) =
n∏

i=1

∑
x

f(wi − x)qX|Z=zi
(x)pZ(zi)

Now, this likelihood can be broken into two factors,
∏n

i=1

∑
x f(wi − x)qX|Z=zi

(x) and

∏n

i=1
pZ(zi). For the second factor, we know the ML estimate for PZ is simply the em-

pirical distribution of Z1, · · · , Zn. For the first factor, since Z is a continuous random

variable, each zi is distinct. For a fixed Z = zi, there is only one term in the likeli-

hood depending on qX|Z=zi
. Therefore maximization problem is reduced to maximizing

∑
x f(wi − x)qX|Z=zi

(x) for each i. From the unimodality with mode 0 assumption of

f(w|x = ξ), it is maximized when we put all mass at x = wi. Therefore, conditional

distribution of X given Z = zi has all mass at x = wi. The resulting ML estimator of

GX,Z is then just the empirical distribution of (W1, Z1), · · · , (Wn, Zn). Consequently,

ML estimate for GX,Z converges to the distribution of (W,Z), not (X,Z). ¤

This proof gives us several implications. First, we can see that the inconsistency of

the ML procedure is caused by the inability of the ML method to pool the information

available in the wi across the zi categories. Second, this inability of the ML method

comes mainly from the discreteness of zi observations even when they have a common

continuous distribution. That is, zi observation is too sharp to pool information in

estimating qX|Z . This suggest that, for a remedy of this phenomenon, we may need to

use a smoothed density to avoid the sharpness of Z observation.
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8.2 Doubly-smoothed maximum likelihood method

In part I, we explained the doubly-smoothed maximum likelihood method with

its universal consistency property. In the following two subsections, we discuss its appli-

cability for the measurement error problem.

8.2.1 Nonparametric estimation of covariate distribution

In this subsection, we will focus only on the estimation of the covariate distri-

bution G and then we will describe full estimating procedure in the next subsection.

Consider a bivariate random variable (X, Z) with an unknown distribution function

G(x, z). Suppose the random variable X can not be directly observed instead another

random variable W is observed with measurement error while Z is measured without er-

ror. Assuming the measurement error distribution is completely known to be f(w|x), the

joint density of (X, W,Z) is f(w|x, z)g(x, z) = f(w|x)g(x, z) under the non-differential

measurement error assumption. The marginal density for (W,Z) is then

mG(w, z) =
∫

f(w|x)g(x, z)dx =
∫∫

f(w|x)I(z′ = z)dG(x, z
′) (8.1)

and this is the model density.

Now, first we construct a smoothed model density by applying a kernel density

Kh(·, ·) with a tuning parameter h that controls smoothness of K(·, ·) to the model

density mG(w, z):
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m
∗
G
(t1, t2) =

∫∫
Kh(t1 − w, t2 − z)mG(w, z)dwdz

=
∫∫

Kh(t1 − w, t2 − z)
∫∫

f(w|x)I(z′ = z)dG(x, z
′)dwdz

=
∫∫∫

Kh(t1 − w, t2 − z)f(w|x)I(z′ = z)dwdzdG(x, z
′)

=
∫∫∫

Kh(t1 − w, t2 − z
′)f(w|x)dwdG(x, z

′)

and we construct a smoothed kernel density by applying the same kernel density Kh(·, ·)

with the same tuning parameter h to the given data:

f̂
∗
n
(t1, t2) =

1
n

n∑

i=1

Kh(t1 − wi, t2 − zi)

By this means, we construct two bounded and continuous densities; m
∗
G
(t1, t2)

and f
∗
n
(t1, t2). The smoothed model density is based on the model mG(t1, t2) and the

smoothed kernel density is based on the observed data (w1, z1), · · · , (wn, zn). As we indi-

cated in section 8.1, the inconsistency of Ĝ is caused by the sharpness of z observations.

Smoothing data could enable us to pool information across different z observations so

that we can create a consistent sequence of Ĝn’s.

However, smoothing cause bias if we smooth only data. Therefore we smooth not

only the data but also the model with the same kernel and tuning parameter. By this

means, we blur both the data and the model but in a parallel way and this blurring

generate two regularized densities in the sense of continuous and bounded density.
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From another point of view, the smoothed model density and smoothed kernel

density can be viewed as two possible densities for the new random variable (T1, T2)

which is generated by adding an error to the original random variable (W,Z). Thus for

the random variable (T1, T2), there are two possible densities which are the model based

density m
∗
G
(t1, t2) and the data based density f̂

∗
n
(t1, t2).

With these two newly generated densities, the doubly-smoothed log-likelihood

function is

∫∫
ln

[
m
∗(t1, t2; G)

]
f̂
∗
n
(t1, t2)dt1dt2. (8.2)

The DSMLE of G is the maximizer of (8.2) and from the universal consistency property

of DSMLE, it is consistent.

8.2.2 Estimating both parametric and nonparametric components

Now let us consider the full estimation with parametric components as well as non-

parametric components. The joint density for (Y, X, W,Z) is f(w|y, x, z)fθ(y|x, z)g(x, z) =

f(w|x)fθ(y|x, z)g(x, z) under the non-differential measurement error assumption. Simi-

larly to section 8.2.1, the joint marginal density of (Y, W,Z) is

mθ,G(y, w, z) =
∫

f(w|x)fθ(y|x, z)g(x, z)dx =
∫∫

f(w|x)fθ(y|x, z)I(z′ = z)dG(x, z
′),

and the smoothed kernel density f̂
∗
n
(y, t1, t2) is

f̂
∗
n
(y, t1, t2) =

1
n

n∑

i=1

Kh(t1 − wi, t2 − zi)I(y = yi) (8.3)
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where Kh is a kernel density and h is a tuning parameter for Kh. Note that we do not use

smoothing for the Y variable. So the smoothed kernel density f̂
∗
n

is continuous in t1 and

t2, but discrete in y. As we discussed in section 8.1, the failure of ML procedure mainly

comes from the nonparametric estimation of the covariate distribution of X and Z.

For this reason, smoothing Y variable doesn’t appear necessary, although does provide

us with a consistent estimator, using the consistency of DSMLE. Because smoothing a

variable means adding blurring error to the original variable, it could cause efficiency loss

and increase computational difficulty. Therefore we do not want to smooth all variables

unless it is necessary.

Next, applying the same kernel to the model density, we construct a smoothed

model density. The smoothed model density m
∗
θ,G

(y, t1, t2) is

m
∗
θ,G

(y, t1, t2) =
∫∫

Kh(t1 − w, t2 − z)mθ,G(y, w, z)dwdz (8.4)

=
∫∫∫

Kh(t1 − w, t2 − z
′)f(w|x)fθ(y|x, z

′)dwdG(x, z
′) (8.5)

where G(x, z) is the distribution function for (X,Z). In this case, the Kullback-Leibler

distance between two densities can not be established because the smoothed kernel den-

sity is the hybrid form of discrete and continuous variables. For this partial smoothing,

we suggest the new objective function that is similar to the Kullback-Leibler distance:

Q(f̂∗
n
,m

∗) =
∑

i

∫∫
ln

(
f̂
∗
n
(t1, t2, yi)

m∗(t1, t2, yi; θ, G)

)
f̂
∗
n
(t1, t2, yi)dt1dt2. (8.6)
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Now minimizing Q with respect to (θ,G) can lead us to a hybrid version of DSMLE.

Note that this is also equivalent to maximizing

∫ ∑

i

ln
(
m
∗(t1, t2, yi; θ, G)

)
f̂
∗
n
(t1, t2, yi)dt1dt2 (8.7)

The objective function Q is not exactly the Kullback-Leibler distance between

m
∗ and f̂

∗
n
. However, for each yi the summand represents the Kullback-Leibler distance

between f̂
∗ and m

∗. On the other hand, (8.7) does not have the same form as (8.2), but

if we rewrite (8.7) with a counting measure P (y) = 1
n

∑
i δyi

(y), it can be also expressed

as the form of (8.2).

Though it looks using Q is a natural extension of the Kullback-Leibler distance,

the universal consistency in Part I cannot directly applied due to its hybrid form. In

the next section, we show that the proposed method with partial smoothing could still

give a consistent estimator but with some regularity conditions which are involved in

unsmoothed variables.

8.3 Consistency under partial smoothing

Suppose (X1, Y1), · · · , (Xn, Yn) is a random sample from an unknown probability

measure Mτ on Rd1 × Rd2 with the corresponding true probability density m(x, y; θτ )

with the model index θτ . If we smooth only X variable, the smoothed model density is

m
∗(t, y; Mθ) =

∫
Kh(t, x)m(x, y; θ)dx
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and the smoothed kernel density is

f̂
∗
n
(t, y) =

1
n

∑

i

Kh(t, xi)δyi
(y) =

∫
Kh(t, x)δyi

(y)dF̂n(x, y)

where δyi
(y) is the Dirac measure with unit mass at yi and F̂n(x, y) is the empirical

distribution based on sample. Under this partial smoothing, the objective function is

Q(f̂∗
n
,m

∗) =
∑

i

∫
ln

(
f̂
∗
n
(t, yi)

m∗(t, yi; Mθ)

)
f̂
∗
n
(t, yi)dt,

and estimating procedure can be done by minimizing Q(f̂∗
n
,m

∗) with respect to θ or

equivalently maximizing

∑

i

∫
ln

(
m
∗(t, yi;Mθ)

)
f̂
∗
n
(t, yi)dt.

For the proof of consistency, we split the proof into two cases: (1) Y is discrete with

finite support (2) Y is continuous. In this section, we prove the model consistency like

Theorem 3.1 for each case and then Corollary 3.1 can be applied to finish the consistency

of the hybrid version of DSMLE. Throughout the following section, we will assume the

two kernel assumptions, (K1) and (K2) from section 3.1.

8.3.1 Y is discrete with finite support

In this section we consider the case where the unsmoothed variable Y is discrete

with finite support points y
(1)

, · · · , y
(s). The consistency proof is essentially same as

that of section 3.2. Moreover, we still do not need any regularity condition for a given
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model. However, we need some technical lemmas that enable us to interchange limits

and integrals in the main theorem.

Lemma 8.1. If M̂n
v−→ M0, then for each t

1
n

n∑

i=1

[
ln m

∗(t, yi; M̂n)
]−

Kh(t, xi)
a.s.−→

∫∫ [
lnm

∗(t, y; M0)
]−

Kh(t, x)dMτ

Proof :

lim
n

s∑

j=1

1
n

n∑

i=1

I
(
yi = y

(j)
) [

ln m
∗(t, yi; M̂n)

]−
K(t, xi)

=
s∑

j=1

lim
n

[
ln m

∗(t, y(j); M̂n)
]− 1

n

n∑

i=1

I
(
yi = y

(j)
)

K(t, xi)

=
s∑

j=1

lim
n

[
ln m

∗(t, y(j); M̂n)
]−

lim
n

1
n

n∑

i=1

I
(
yi = y

(j)
)

lim
n

∑n

i=1
I

(
yi = y

(j)
)

K(t, xi)
∑n

i=1
I

(
yi = y(j)

)

(8.8)

In the last equality,
∑n

i=1
I

(
yi = y

(j)
)

could be zero for a finite n. However, with proba-

bility tending to one, we can ignore this situation because for each j {y(j) : j = 1, · · · , s}

is the set of support. Now, the first limit in (8.8) converges to
[
lnm

∗(t, y(j); M0)
]−

because

m
∗(t, y(j); Mn) =

∫
Kh(t, y(j))dMn

→
∫

Kh(t, y(j))dM0 = m
∗(t, y(j); M0).
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from the kernel assumption (K1) and M̂n
v→ M0. The second and third limits al-

most surely converges to P
(
Y = y

(j)
)

and
∫

Kh(t, x)dMτ (x|y = y
(j)) from SLLN where

Mτ (x|y) is the true conditional distribution of X given Y . Therefore the last expression

in (8.8) almost surely converges to

s∑

j=1

[
ln m

∗(t, y(j); M0)
]−

P
(
Y = y

(j)
)∫

Kh(t, x)dMτ

(
x|y = y

(j)
)

=
∫∫ [

lnm
∗(t, y;M0)

]−
Kh(t, x)dMτ (x|y)dMτ (y)

=
∫∫ [

lnm
∗(t, y;M0)

]−
Kh(t, x)dMτ (x, y)

where Mτ (y) is the true marginal distribution of Y . ¤

Lemma 8.2. If M̂n
v−→ M0,

∫
1
n

n∑

i=1

[
ln m

∗(t, yi; M̂n)
]
+

Kh(t, xi)dt
a.s.−→

∫∫∫ [
ln m

∗(t, y; M0)
]
+

Kh(t, x)dMτ (x, y)dt

(8.9)

Proof :

lim
n

∫
1
n

n∑

i=1

[
lnm

∗(t, yi; M̂n)
]
+

Kh(t, xi)dt

=
s∑

j=1

lim
n

∫
1
n

n∑

i=1

[
ln m

∗(t, yi; M̂n)
]
+

Kh(t, xi)I
(
yi = y

(j)
)

dt

=
s∑

j=1

lim
n

∑n

k=1
I

(
yk = y

(j)
)

n
lim
n

∫ n∑

i=1

[
ln m

∗(t, y(j); M̂n)
]
+ Kh(t, xi)I

(
yi = y

(j)
)

∑n

k=1
I

(
yk = y(j)

) dt

(8.10)
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To interchange limit and integral sign in (8.10), we will use the extended version of the

dominated convergent theorem. The boundedness of the kernel Kh from (K1) implies

that m
∗(t, y; M̂n) is bounded above for a fixed h and y, and so there exists positive num-

ber U(h, y) such that
[
ln m

∗(t, y; M̂n)
]
+

< U(h, y). Therefore the integrand is bounded

by

U
(
h, y

(j)
) ∑n

i=1
Kh(t, xi)I

(
yi = y

(j)
)

∑n

i=1
I

(
yi = y(j)

) . (8.11)

So we use (8.11) as a dominating sequence. Moreover, we can easily check

U
(
h, y

(j)
) ∑n

i=1
Kh(t, xi)I

(
yi = y

(j)
)

∑n

i=1
I

(
yi = y(j)

) a.s.−→ U
(
h, y

(j)
)∫

Kh(t, x)dMτ (x|y = y
(j))

and
∫

U
(
h, y

(j)
)∫

Kh(t, x)dMτ

(
x|y = y

(j)
)

dt = U
(
h, y

(j)
)

< ∞.

Now, applying the extended version of the dominated convergence theorem, the order

of the second limit and integral sign in (8.10) can be interchanged. With the similar

argument to the previous lemma, (8.10) almost surely converges to

s∑

j=1

P
(
y = y

(j)
) ∫ [

ln m
∗(t, y(j); M0)

]
+

Kh(t, x)dMτ (x|y = y
(j))dt

=
∫ [

ln m
∗(t, y;M0)

]
+

Kh(t, x)dMτ (x, y)dt

¤
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Lemma 8.3.

∫
1
n

n∑

i=1

[
ln m

∗(t, yi;Mτ )
]−

Kh(t, xi)dt
a.s.−→

∫∫∫ [
ln m

∗(t, y; Mτ )
]−

Kh(t, x)dMτdt

(8.12)

Proof : If
∫∫∫ [

lnm
∗(t, y;Mτ )

]−
Kh(t, x)dMτdt = ∞, equation (8.12) holds from (Chung,

1974, Theorem 5.4.2). Otherwise, (8.12) holds from Fubini theorem and SLLN. ¤

Theorem 8.1. Let M = {Mθ(x, y)} be a class of model distributions indexed by θ.

Suppose that {(X1, Y1), · · · , (Xn, Yn)} is a random sample from the true distribution

M(x, y; θτ ) ∈M. If Y has a finite number of support points, then the minimizer M̂n of

the objective function Q weakly converges to Mτ on a set of probability one.

Proof : Since M̂n = M̂
ω

n
is a sequence of distributions on Rd1×Rd2 , for any subsequence

{m} ⊂ {n} by Helly’s selection principle we can always select a further subsequence

{k} ⊂ {m} such that M̂k vaguely convergent to subprobability measure M0. If we can

show that M0 = Mτ , then we are done by the method of subsequences (Chung, 1974,

Theorem 4.3.4). We can then justify the following sequence of inequalities.

0 ≥ lim inf
k

∑

i

∫
ln

(
m
∗(t, yi;Mθτ

)

m̂∗
n
(t, yi;Mθk

)

)
f
∗(t, yi)dt

= lim inf
k

∫
1
k

k∑

i=1

ln

(
m
∗(t, yi; Mτ )

m̂(t, yi; M̂k)

)
Kh(t, xi)dt
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≥ lim inf
k

∫
1
k

k∑

i=1

[
ln m

∗(t, yi; Mτ )
]
+

Kh(t, xi)dt

+ lim inf
k

∫
1
k

k∑

i=1

[
ln m

∗(t, yi; M̂k)
]−

Kh(t, xi)dt

− lim sup
k

∫
1
k

k∑

i=1

[
ln m

∗(t, yi; Mτ )
]−

Kh(t, xi)dt

− lim sup
k

∫
1
k

k∑

i=1

[
ln m

∗(t, yi; M̂k)
]
+

Kh(t, xi)dt

≥ lim inf
k

1
k

k∑

i=1

∫ [
ln m

∗(t, yi; Mτ )
]
+

Kh(t, xi)dt

+
∫

lim inf
k

1
k

k∑

i=1

[
ln m

∗(t, yi; M̂k)
]−

Kh(t, xi)dt

− lim sup
k

∫
1
k

k∑

i=1

[
ln m

∗(t, yi; Mτ )
]−

Kh(t, xi)dt

− lim sup
k

∫
1
k

k∑

i=1

[
ln m

∗(t, yi; M̂k)
]
+

Kh(t, xi)dt

From SLLN, the first expression in the last expression converges to

∫∫∫
ln

[
m
∗(t, y; Mτ )

]
+

Kh(t, x)dtdMτ .

From the Fubini’s theorem for the nonnegative function and the previous lemmas, the

last expression converges to
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∫∫∫ ([
ln m

∗(t, y; Mτ )
]
+

+
[
ln m

∗(t, y; M0)
]−)

Kh(t, x)dtdMτ

−
∫∫∫ [

ln m
∗(t, y; Mτ )

]−
Kh(t, x)dtdMτ −

∫∫∫ [
ln m

∗(t, y; M0)
]
+

Kh(t, x)dtdMτ

=
∫∫∫

ln

(
m
∗(t, y; Mτ )

m̂(t, y; M̂n)

)
Kh(t, x)dtdM(x, y; θτ )

=
∫∫

ln

(
m
∗(t, y;Mτ )

m̂(t, y; M̂n)

)∫
Kh(t, x)m(x, y; θτ )dxdtdy

=
∫∫

ln

(
m
∗(t, y;Mτ )

m̂(t, y; M̂n)

)
m
∗(t, y; Mτ )dtdy ≥ 0

The same argument in Theorem 3.1 finishes the proof. ¤

8.3.2 Y is continuous

In this section, we assume the unsmoothed variable Y is continuous. In this case,

we need following regularity conditions for the model m(x, y; θ):

(R1) m(x, y; θ) is continuous in (y, θ) for each x with a suitable metric.

(R2) There exists a measurable function m(x) such that m(x, y; θ) ≤ m(x)

where
∫

m(x)dx < ∞.

The first condition is similar to the model continuity condition (M2) in section 3.3 and it

is easy to verify this condition for a given model. The second condition is slightly stronger

than the usual regularity conditions in the consistency study. However, this can be also

easily verified in many models of interest. As a simple example, if the conditional density

Y given X is normal and the marginal density for X is f(x), then the joint density for
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(X, Y ) is

f(x, y) = f(y|x)f(x) =
1√

2πσ2
exp

{
−(y − θx)2

2σ2

}
f(x) ≤ 1√

2πσ2
f(x)

Hence f(x, y) satisfies (R2).

Lemma 8.4. Assuming (R1) and (R2), if yn → y and θn → θ0, then

lim inf
n

∫∫ ([
lnm

∗(t, y;Mτ )
]
+

+
[
ln m

∗(t, y; M̂n)
]−)

Kh(t, x)dF̂n(x, y) (8.13)

≥
∫∫ ([

ln m
∗(t, y;Mτ )

]
+

+
[
ln m

∗(t, y; M0)
]−)

Kh(t, x)dM(x, y; θτ ) (8.14)

Proof : From the given two conditions and DCT, we can easily prove for each t,

m
∗(t, yn; Mn) =

∫
Kh(t, x)m(x, yn; θn)dx →

∫
Kh(t, x)m(x, y, θ0)dx = m

∗(t, y; M0).

(8.15)

Using Skorohod construction theorem, we can build a probability space (Ω,B,P) on

which (Xn, Yn) → (X, Y ) with probability one. Thus, (8.13) can be expressed as

lim inf
n

∫∫ ([
lnm

∗(t, Yn; Mτ )
]
+

+
[
lnm

∗(t, Yn; M̂n)
]−)

Kh(t,Xn)dP (8.16)

≥
∫∫

lim inf
n

([
ln m

∗(t, Yn; Mτ )
]
+

+
[
ln m

∗(t, Yn; M̂n)
]−)

Kh(t, Xn)dP (8.17)

=
∫∫ ([

lnm
∗(t, Y ; Mτ )

]
+

+
[
lnm

∗(t, Y ; M0)
]−)

Kh(t,X)dP (8.18)

=
∫∫ ([

lnm
∗(t, y;Mτ )

]
+

+
[
ln m

∗(t, y; M0)
]−)

Kh(t, x)dM(x, y; θτ ) (8.19)
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We have the inequality in (8.17) from Fatou’s Lemma. From (R1) and (K1), the equation

(8.18) holds. ¤

Lemma 8.5.

lim sup
n

∫∫∫ [
ln m

∗(t, y;Mτ )
]−

Kh(t, x)dtdF̂ (x, y)

=
∫∫∫ [

ln m
∗(t, y; Mτ )

]−
Kh(t, x)dtdM(x, y; θτ ) a.s.

Proof : Similar to the proof of Lemma 8.3. ¤

Lemma 8.6. Assuming (R1) and (R2), if θn −→ θ0,

lim sup
n

∫∫∫ [
ln m

∗(t, y; M̂n)
]
+

Kh(t, x)dtdF̂n(x, y)

=
∫∫∫ [

ln m
∗(t, y; M0)

]
+

Kh(t, x)dtdM(x, y; θτ ) a.s.

Proof : Using Skorohod construction theorem again like previous lemma,

lim
n

∫∫∫ [
ln m

∗(t, y; M̂n)
]
+

Kh(t, x)dtdF̂n(x, y)

= lim
n

∫∫∫ [
lnm

∗(t, Yn; M̂n)
]
+

Kh(t,Xn)dtdP (8.20)

Now, we use dominated convergence theorem. From the kernel assumption, Kh(t,Xn) ≤

Uh where Uh is a positive real number. Because m
∗(t, Y ; M̂n) =

∫
Kh(t, x)m(x, y; θ)dt ≤

∫
Uhm(x)dx < ∞,

[
ln m

∗(t, Yn; M̂n)
]
+

is bounded above by
[
ln

∫
Uhm(x)dx

]+ = R. So

integrand in (8.20) is bounded by RKh(t,Xn) and
∫

RKh(t, Xn)dt = R < ∞. Using the
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extended version of DCT, (8.20) converges to

∫∫∫
lim
n

[
lnm

∗(t, Yn; M̂n)
]
+

Kh(t,Xn)dtdP

=
∫∫∫ [

ln m
∗(t, Y ; M̂0)

]
+

Kh(t,X)dtdP

=
∫∫∫ [

ln m
∗(t, y; M̂0)

]
+

Kh(t, x)dtdM(x, y; θτ )

¤

Theorem 8.2. Let M = {Mθ(x, y)} be a class of model distributions indexed by θ sat-

isfying (R1) and (R2). Suppose that {(X1, Y1), · · · , (Xn, Yn)} is a random sample from

true distribution Mτ ∈M and Y is continuous. Then the minimizer M̂n of the objective

function Q weakly converges to Mτ on a set of probability one.

Proof : Applying the same method of subsequences used in Theorem 3.1 and 8.1, we

can then justify the following inequalities:

0 ≥ lim inf
k

1
k

k∑

i=1

∫
ln

(
m
∗(t, yi;Mθτ

)

m̂∗(t, yi; Mθk
)

)
f̂
∗
k
(t, yi)dt

= lim inf
k

1
k

k∑

i=1

∫
ln

(
m
∗(t, yi;Mτ )

m̂(t, yi; M̂k)

)
Kh(t, xi)dt

= lim inf
k

∫∫∫
ln

(
m
∗(t, y; Mτ )

m̂(t, y; M̂k)

)
Kh(t, x)dtdF̂k(x, y)

≥ lim inf
k

∫∫∫ ([
lnm

∗(t, y; Mτ )
]
+

+
[
ln m

∗(t, y; M̂k)
]−)

Kh(t, x)dtdF̂k(x, y)

− lim sup
k

∫∫∫ [
ln m

∗(t, y; Mτ )
]−

Kh(t, x)dtdF̂k(x, y)

− lim sup
k

∫∫∫ [
ln m

∗(t, y; M̂k)
]
+

Kh(t, x)dtdF̂k(x, y) (8.21)
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Using Lemma 8.4, 8.5, and 8.6 and the same argument of Theorem 8.1, the last expression

in (8.21) converges to

∫∫
ln

(
m
∗(t, y;Mτ )

m̂(t, y; M̂n)

)
m
∗(t, y; Mτ )dtdy ≥ 0

The same argument in Theorem 3.1 will apply to finish the proof. ¤
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Chapter 9

Computation

Finding the maximizer in equation (8.7) involves some computational difficulties

because we need to maximize (8.7) with respect to the parametric components and

the nonparametric component simultaneously. Moreover, due to kernel smoothing, the

numerical integration is also required. This chapter builds on the algorithm discussed in

chapter 5. We will first describe how to estimate the covariate distribution and then the

complete estimation for both the parameters and the covariate distribution.

9.1 Estimation of covariate distribution

Let us first consider the nonparametric estimation of the covariate distribution G

in section 8.2.1. The doubly-smoothed log-likelihood that we maximize can be written

as

∫∫
ln

[
m
∗(t1, t2; G)

]
f̂
∗
n
(t1, t2)dt1dt2 =

1
n

∫∫
ln

[
m
∗(t1, t2; G)

]
Kh(t1 − wi, t2 − zi)dt1dt2.

(9.1)

For numerical integration, we suggest the Monte-Carlo integration. By this means, we

can use some well-known mixture algorithms to estimate the covariate distribution G

nonparametrically.
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To apply the Monte-Carlo integration, for each i, generate b Monte-Carlo sample

(
T1i1, T2i1

)
, · · · ,

(
T1ib, T2ib

)
from Kh(t1 − wi, t2 − zi). Then (9.1) can be approximated

by

1
nb

n∑

i=1

b∑

j=1

ln
[
m
∗(t1ij , t2ij ; G)

]
. (9.2)

Because the smoothed model density m
∗(t1, t2; G) =

∫∫
Kh(t1 − w, t2 − z

′)f(w|x)I(z′ =

z)dG(x, z
′) can be viewed as a mixture density with the atomic density Kh(t1 − x, t2 −

z)f(w|x)I(z′ = z) and mixing distribution G, if we think the simulated Monte-Carlo

samples
(
T1i1, T2i1

)
, · · · ,

(
T1ib, T2ib

)
as random samples from the density m

∗(t1, t2; G),

the initial maximization problem is reduced to estimating the nonparametric mixing or

latent distribution G under the mixture density m
∗(t1, t2;G).

When we estimate the nonparametric distribution of G, we need to choose a set

of support points for G. However, because it is not possible to choose support points

without extra information, predetermined grid points are required. If the support points

are not fixed, the EM algorithm can be also used to estimate both the support points

and corresponding weights by determining the number of support points beforehand.

However its computational complexity will greatly increase.

As an alternative way to find the nonparametric mixing distribution G, some gra-

dient based methods will be useful such as VEM (Bohning, 1985) and ISDM (Lesperance

and Kalbfleisch, 1992), as discussed in chapter 5.

In our case, if we only have covariates measured with error, either the EM algo-

rithm or a gradient based algorithm can be applied. If there is an additional error free
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covariate Z, the EM algorithm will be more useful than gradient based algorithm be-

cause we already have the information for the support points of Z. That is, all distinct Z

observations would be good candidates for the the support points for Z. If EM-algorithm

is used, we need to only estimate support points for X while the support points of Z are

fixed at each Z observation. In this case, the weight for each pair of support point for

(X, Z) will be fixed with 1/n.

There are two advantages of this estimating scheme. First, because the program

does not have to determine the support points for Z and corresponding weights, the

computational burden will be greatly lessened. Second, because we know the NPMLE

of the marginal distribution of Z is the empirical distribution based on Z1, · · · , Zn, we

also hope the marginal distribution of Z induced by the resultant estimator would be

the same empirical distribution. This can be achieved without any computational effort

because the marginal distribution is always fixed to be the empirical distribution.

However, despite of this computational convenience, we are not sure if the resul-

tant estimator is a real minimizer of the objective function Q. This might be true when

X and Z are independent. But if they are not independent, the information from the

estimated distribution of X could be helpful to estimate the nature of Z variable. Thus

if we fix the support points for Z without considering the information from X, there

might be some information loss. We propose to investigate this further in the future.
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9.2 Combining algorithms for the parametric and nonparametric com-

ponents of the model

Now let us consider the full model in section 8.2.2. The basic procedure is same

as that of section 9.1 but we have to estimate the parameter θ as well as G. So we need

two stage iterative process to estimate θ and G simultaneously. For the estimation of

(θ, G), we suggest following algorithm.

1. For the initial nonparametric estimator for G(x, z), choose the empirical distribu-

tion based on
{
(wi, zi) : i = 1, · · · , n

}
and for the initial estimator for θ, use the

maximum likelihood estimator ignoring measurement error.

2. For fixed θ̂
Current, estimate Ĝ(x, z) using the algorithm in section 9.1.

3. For fixed Ĝ(x, z), maximize the approximated objective function (9.2) over θ.

4. Iterate step 2 and 3 until the approximated objective function converges under

predetermined stopping rule.

9.3 The choice of tuning parameter h

For the choice of the tuning parameter h, we need to think about the initial

objective of this study. Because kernel smoothing was used to repair the failure of the

MLE, a reasonable direction would be to choose the tuning parameter that assures one

to have an improved estimator. Moreover, because the main failure of the MLE is the

wrongly estimated covariate distribution and the estimated marginal distribution of Z

is always correct based on the proposed algorithm, it would be desirable to choose the
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tuning parameter that enables the estimation to find the correct marginal distribution

of X.

To asses the validity of the estimated marginal distribution of X, we need to

check if the estimated marginal distribution is close to the true distribution of X. Of

course we don’t know the true distribution because X is not observed. However we

have the information that characterize the relationship between X and W . That is,

although we do not know the true marginal distribution of X, it is assumed that the

measurement error distribution W |X is known and W is observed. So we can extract

some information for the true distribution of X from the known measurement error

distribution and observed Wi’s. If Ĝ is close to true G, the information from the known

measurement error distribution and the estimated marginal distribution of X must agree.

A simple way to extract information could be the moment based information such as

the expectation and variance of X. Under this argument, our suggestion is choosing h

which makes those information agree.

For example, if an additive normal measurement error is assumed, that is W =

X+U where U ∼ N(0, σ2) with known σ
2, then V ar(W ) = V ar(X)+σ

2. So the variance

of X can be estimated by V̂ ar1(X) = V̂ ar(W )−σ
2 where V̂ ar(W ) is the sample variance

from W1, · · · ,Wn. Now from the estimated Ĝ, another variance estimator for X can be

calculated by V̂ ar2(X) = V arĜ(X). Therefore the reasonable choice for h would be the

one that minimize a certain distance between V̂ ar1(X) and V̂ ar2(X). For instance, if

X is scalar valued, choose h that minimize

∣∣∣V̂ ar1(X)− V̂ ar2(X)
∣∣∣ . (9.3)
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To find the tuning parameter h that minimizes the distance between V̂ ar1(X) and

V̂ ar2(X), we may need to use a grid search within a predetermined grid. If the range

of h is very wide or fine grid points are used, the burden of computation will increase.

Even for the small set of grid points for h, computing time could be long because the

distance can be calculated only after Ĝn is estimated with fixed h on the grid. In this

case, we can narrow the possible range of h using sDOF as discussed in section 4.2. If

this range of sDOF too wide, linear or quadratic interpolation method can be used. From

our experience, V̂ ar1(X)− V̂ ar2(X) is approximately linear or quadratic in h within the

appropriate range of h based on sDOF. Hence the linear or quadratic interpolation can

be used to find h that makes (9.3) close to zero. We will show this in the next chapter

under some simulated sample.
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Chapter 10

Simulation study

This chapter builds on the algorithms discussed in chapter 9 and applies them

to a simple measurement error problem. In this simulation study, we consider a linear

regression model with an additive measurement error though the proposed method can

be easily extended to any measurement error model or any nonlinear regression model.

10.1 Estimation of non-parametric component

For the first simulation study, we focus only on estimating the covariate distri-

bution G in section 8.2.1. For the simulation experiment, we generate (X, W,Z) using

following scheme and then we assume that W and Z are only observed, but X is not.

1. Generate ui, zi independently from N(0, σ
2

u
), N(0, 1), respectively.

2. Generate xi such that xi =





−2 with probability e
zi

1+ezi

2 with probability 1
1+ezi

3. Generate wi = xi + ui

With this simulation design, the unobserved true covariate X has only two support

points, −2 and 2. In this simulation, it is important to check if the estimated marginal

covariate distribution of X is close to the estimated one. Because X has only two

support points, we can clearly compare the true marginal cumulative distribution of X
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with estimated one graphically. Assuming that the distribution of U is completely known

to be N(0, 0.2) by setting σ
2

u
= 0.2, the observed likelihood is then

∏

i

fW,Z(wi, zi) =
∏

i

∫
fW |X(wi|x)I(zi = ζ)dGX,Z(ξ, ζ)

In order to apply the proposed methodology, the bivariate normal kernel

MV N








x

z


 , h ˆCov




W

Z








is used for both the model and the data because it can provide us with closed form of the

smoothed model density, as discussed in section 4.1. Then the smoothed model density

and smoothed kernel density are

m
∗
G
(t1, t2) =

∫∫
MV N








t1

t2


 ;




x

z


 ,


h ˆCov




W

Z


 +




σ
2

u
0

0 0











dG(x, z)

and

f̂
∗
n
(y, t1, t2) =

1
n

n∑

i=1

MV N








t1

t2


 ;




wi

zi


 , h ˆCov




W

Z








I(y = yi)

The estimated marginal cumulative distribution of X is shown in Figure 10.1

over different tuning parameter values h=0.0001, 0.001, 0.01, 0.1, 1, and 10 based on

one sample with n = 200. In each plot, dotted line, dashed line and solid line represent
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Fig. 10.1. Estimated marginal cumulative distribution of X
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Table 10.1. The choice of tuning parameter h

h 0.0001 0.001 0.01 0.1 1 10
sDOF 67.88 41.60 17.23 5.11 1.46 0.73

V̂ ar1(X)− V̂ ar2(X) -0.1238 -0.0737 -0.0253 0.026 0.2504 2.3993

empirical distribution of W , the empirical distribution of X and estimated distribution of

X, respectively. As h decreases, we can see that the estimated distribution of X becomes

close to the empirical distribution of W , obviously wrong, as we showed in Theorem 8.1.

When h is very large, it also shows an inappropriate estimator for the distribution of

X due to the large amount of smoothing. Based on Figure 10.1, an appropriate tuning

parameter h could be between 0.01 and 0.1.

To choose a tuning parameter h as discussed in section 9.3, we calculate

V̂ ar1(X) − V̂ ar2(X) for each h shown in Table 10.1. This table implies that h should

be between 0.01 and 0.1. This agrees with the conclusion from Figure 10.1. We can also

see that this range agrees with the rule discussed in section 4.2 because the appropriate

range for sDOF is 5 to 200/5=40. Moreover, within this range, V̂ ar1(X) − V̂ ar2(X)

is almost linear(or quadratic) in h shown in Figure 10.2. This fact enables us to find

the optimal h by linear(quadratic) interpolation. Figure 10.2 suggests that h = 0.04 is

optimal for the choice of the tuning parameter.

10.2 Estimation of both parametric and non-parametric component

Now we consider the full estimation with both the parametric component and

nonparametric component. For this simulation study, We assume a linear regression



91

0.02 0.04 0.06 0.08 0.1
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

h

Fig. 10.2. Tuning parameter h versus ̂V ar1(X)− ̂V ar2(X)
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model

Y = β0 + βxX + βzZ + ε, ε ∼ N(0, σ2

ε
) (10.1)

where Y is a response variable, X is a covariate measured with error, and Z is an

additional covariate measured without error. We assume that X is not observed but

instead the surrogate measure W is observed. And we assume additive measurement

error W = X + U , U ∼ N(0, σ2

u
) and also assume that σ

2

u
is known.

For the simulation experiment, we fix β0 = 1, βx = 2, βz = 4, σ
2

ε
= 1, and

generate (X, W,Z, Y ) using following scheme.

1. Generate εi, ui, zi independently from N(0, 1), N(0, σ
2

u
), N(0, 1), respectively.

2. Generate xi such that xi =





−2 with probability e
zi

1+ezi

2 with probability 1
1+ezi

3. Generate wi = xi + ui

4. Generate yi = 1 + 2xi + 4zi + εi

For the proposed method, we define the smoothed model density m
∗(y, t1, t2) and

the smoothed kernel density f̂
∗
n
(y, t1, t2) using bivariate normal kernel as below.

m
∗
β,G

(y, t1, t2) =
∫∫

N(y; X ′
β, σ

2

ε
)MV N








t1

t2


 ;




x

z


 ,


h ˆCov




W

Z


 +




σ
2

u
0

0 0











dG(x, z)

(10.2)
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where β = (β0, βx, βz)
′, X = (1, x, z)′ and the smoothed kernel density is

f̂
∗
n
(y, t1, t2) =

1
n

n∑

i=1

MV N








t1

t2


 ;




wi

zi


 , h ˆCov




W

Z








I(y = yi) (10.3)

Now, first we fix σ
2

u
= 0.1 and generate three different data sets with n = 50, n = 100,

and n = 200. For each data set, we used tuning parameters h = 0.1, h = 0.03, h = 0.005

based on the proposed decision rule in section 9.3.

Table 10.2. Estimates for β

n = 50 n = 100 n = 200
β0 βx βz β0 βx βz β0 βx βz

β� 1.0000 2.0000 4.0000 1.0000 2.0000 4.0000 1.0000 2.0000 4.0000
β̃1 1.0421 2.0154 3.9339 1.0042 1.9759 3.9391 0.9205 2.0254 4.0036
β̃2 1.1907 1.5970 3.4712 1.1136 1.6262 3.6328 0.9366 1.6848 3.6724
β̂ 1.0784 2.0896 3.9629 1.0229 1.9548 3.9431 0.8916 2.0044 3.9958

Table 10.2 shows the parameter estimators from each data set with the true

parameter value β� . First, using the true covariates and response, {Yi, Xi, Zi, i =

1, · · · , 50}, we estimated β̃1 using the linear regression model (10.1). So β̃1 is our target

estimator. Second, ignoring the measurement error, we regress Y on (W,Z), then β̃2 is

an estimator under the model Y = β0 + β1W + β2Z + ε hence β̃2 is the MLE. Next,

applying the algorithm in section 9.2, we estimated DSMLE, β̂, based on the proposed

approach.

The slopes of β̃2 are biased and attenuated to 0 compared to the target estimator

β̃1, as discussed in section 7.2. Generally speaking, in the linear measurement error model
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under additive measurement error, there are well known results for this attenuation with

both X and Z (Carroll et al., 2006). That is,




β̃2x

β̃2z


 =




Σxx + Σuu Σxz

Σzx Σzz




−1 





Σxx Σxz

Σzx Σzz







β̃1x

β̃1z


 +




Σuε

0







where Σab means the covariance matrix between random variable A and B. Thus the

MLE does not work in this result but DSMLE does.

Because the first simulation experiment is restricted to only three data sets, in

the second simulation experiment, we replicate the first simulation 50 times for n = 50

over two different amounts of measurement error σ
2

u
= 0.1 and 0.5. Mean and MSE of β

are calculated based on 50 repetitions of the simulation. RMSE is the ratio of the MSE

of β̃1 to β̂. These are shown in Table 10.3 and 10.4.

Table 10.3. Comparison between target estimator β̃1 and DSMLE when β� = (1, 2, 4),
σ

2

u
= 0.1

β0 βx βz
Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE

β̃1 0.9786 0.0252 1 1.9981 0.0057 1 4.0358 0.0266 1
β̂ 0.9536 0.0321 1.27 2.0343 0.0082 1.44 4.0726 0.0378 1.42

10.3 Conclusion and future work

Throughout Part II, we have considered semiparametric mixture methods to es-

timate both the parameters and joint distribution of the true predictors when we have
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Table 10.4. Comparison between target estimator β̃1 and DSMLE when β� = (1, 2, 4),
σ

2

u
= 0.5

β0 βx βz
Mean MSE RMSE Mean MSE RMSE Mean MSE RMSE

β̃1 0.9762 0.0236 1 2.0084 0.0056 1 4.0229 0.0222 1
β̂ 0.9469 0.0569 2.41 2.0476 0.0191 3.41 4.0700 0.0828 3.73

additional error free covariates. The measurement errors are assumed to have a gen-

eral parametric distribution under the non-differential error structure. In this case, the

usual ML method breaks down when it estimates the covariate distribution due to the

non-homogeneity of the accuracy of measurement. We applied the doubly-smoothed

maximum likelihood estimation to repair this failure of the MLE and showed the DSM-

LEs of both parameters and covariate distribution are consistent.

We also discussed a simple algorithm to estimate both parametric and nonpara-

metric components simultaneously. Although it provides us with a simple way to im-

plement the proposed method, the computing time is still problematic. For example,

when we estimated only the covariate distribution with n = 200, the elapsed computing

time varied between 1600 seconds (26 minutes) and 3800 seconds (63 minutes) depend-

ing on the choice of the tuning parameter. All routines were coded in MATLAB and

run on Pentium 4 CPU 3GHz with 1GB RAM. For the full estimation, if the proposed

algorithm is applied, the required computing time will be at least ten times more than

that of estimation of covariate distribution only. To resolve this computational difficulty,

further research is necessary.
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In the simulation study, we have focused only on showing the consistency of the

DSMLE because the main objective of this study is to modify the failure of the ML

method. However, the advantage of the semiparametric mixture model in the mea-

surement error problem is its complete robustness to the choice of covariate distribution.

Therefore, we need to compare DSMLE to other structural modeling approaches in order

to see the robustness and efficiency of DSMLE.

Since the proposed estimator involves several non-explicit integrals, studying the

efficiency is difficult especially when the model includes nonparametric components. In

the measurement error problem, the model index involves a nonparametric distribution

as well as vector-valued parameters. For the inference of the parameter of interest, we

need to know the asymptotic distribution of DSMLE. So developing asymptotic theory

for the DSMLE would be important future work.

For the estimation of the covariate distribution, we suggested using the EM algo-

rithm to estimate X supports while fixing Z supports and corresponding weight. This

method appears to be reasonable and makes the estimation simple. However, we need

to be careful because we do not know if the resultant estimator is a real maximizer of

the doubly-smoothed likelihood. So more computational investigation is required.
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