
The Pennsylvania State University

The Graduate School

PRESERVING SYSTEM INTEGRITY IN COMMODITY

COMPUTERS

A Dissertation in

Computer Science and Engineering

by

Xi Xiong

c 2012 Xi Xiong

Submitted in Partial Ful�llment

of the Requirements

for the Degree of

Doctor of Philosophy

December 2012

The dissertation of Xi Xiong was reviewed and approved� by the following:

Peng Liu

Professor of Information Science and Technology
The Pennsylvania State University
Dissertation Advisor, Chair of Committee

Sencun Zhu

Associate Professor of Computer Science and Engineering
The Pennsylvania State University
Co-Chair of Committee

Trent Jaeger

Associate Professor of Computer Science and Engineering
The Pennsylvania State University

David Miller

Professor of Electrical Engineering
The Pennsylvania State University

Lee Coraor

Associate Professor of Computer Science and Engineering
The Pennsylvania State University
Director of Graduate A�airs

� Signatures are on �le in the Graduate School.

Abstract

Today people rely more and more on commodity computer systems for storing and
processing information. To make computer systems more trustworthy, it is highly
demanding that these systems could have integrity protection mechanism as the
security basis of computing. In this dissertation, we propose proactive and reactive
approaches to preserve system integrity for commodity computer systems.

First, we explore reactive techniques to recover OS-level objects (e.g., processes
and �les) in an intruded computer system which already has integrity compro-
mise. We design and implement SHELF, an intrusion recovery system that aims
to preserve business continuity, availability and recovery accuracy. SHELF tracks
activities of a computer system so that it can precisely determine which object of
the system is compromised upon given an infection symptom. During the recovery
phase, SHELF preserves accumulated clean state of infected objects, and it helps
benign objects maintain their availability level to reducesystem downtime.

The e�ort of repairing OS-level applications and �les, however, must depends
on a trusted and uncompromised OS kernel to provide correct functionality and
abstractions. As commodity OS kernels are more and more becoming favorable tar-
gets for attackers, it is necessary to have proactive protection mechanism to secure
the OS kernel and provide solid foundation for use-space security approaches. We
study the problem of securing untrusted code executing in the kernel space, which
is the major venue for OS kernel integrity compromise. We design and implement
HUKO, a hypervisor-based integrity protection system that protects commodity
OS kernels from untrusted extensions. In HUKO, untrusted extensions can safely
run in the kernel space to provide desired functionality, but they are also con�ned
by access control mechanisms, which signi�cantly limit theattacker's ability to
compromise the integrity of OS kernel.

Based on the hypervisor architecture provided by HUKO, we further propose
SILVER, a comprehensive framework that o�ers transparent protection domain

iii

primitives to achieve �ne-grained access control and secure communication between
programs in OS kernel. SILVER provides OS kernel developers the ability to spec-
ify security properties of their own code and data at the granularity of individual
functions and data objects. Moreover, SIVER helps developers to prevent attacks
exploiting kernel program communication, which cannot be e�ectively handled by
typical isolation systems. To achieve such mechanism, we propose a novel resource
management scheme of kernel data objects according to theirsecurity properties.
Based on this organization, SILVER enforces access control and communication
safety using hypervisor-based memory protection and run-time checks.

iv

Table of Contents

List of Figures viii

List of Tables ix

Acknowledgments x

Chapter 1
Introduction 1
1.1 Overview of our approach . 2
1.2 Preserving Business Continuity and Availability in an Intrusion Re-

covery System . 4
1.3 Protection of Kernel Integrity for Commodity OS from Untrusted

Extensions . 5
1.4 Fine-grained and Transparent Protection Domain Primitives in Com-

modity OS Kernel . 7
1.5 Summary of Contributions . 8

Chapter 2
Background and Related Work 9
2.1 What are the Security Goals? . 9
2.2 What Kind of Protection to o�er? 11
2.3 What are Techniques for Enforcing Protection? 13
2.4 Related Work on Operating System Kernel Security 17
2.5 Previous Approaches for Repairing a Computer System 21

Chapter 3
SHELF: Preserving Business Continuity and Availability in an

Intrusion Recovery System 24

v

3.1 Model and Assumptions . 26
3.2 Overview of Our Approach . 27
3.3 Design of SHELF . 29

3.3.1 State Recording and Restore 30
3.3.2 Logging and Dynamic Damage Assessment 32
3.3.3 Quarantine and Recovery 34

3.4 Implementation Issues . 35
3.4.1 User Mode Linux . 35
3.4.2 Reconstruction and Monitoring 37
3.4.3 State Recording and Rollback 38

3.5 Evaluation . 39
3.5.1 Damage Assessment . 39
3.5.2 Performance . 40
3.5.3 Discussion and Limitation 42

3.6 Summary . 43

Chapter 4
Protection of Kernel Integrity for Commodity OS from Un-

trusted Extensions 45
4.1 Kernel Integrity Threat Model . 48
4.2 HUKO Overview . 50

4.2.1 Design Principles . 50
4.2.2 Design Overview . 51

4.3 Architecture Design and Implementation 56
4.3.1 Hardware-Assisted Paging Overview 56
4.3.2 Object Labeling . 57
4.3.3 Isolation Component . 59
4.3.4 Kernel Stack Integrity . 62
4.3.5 Mediation and Enforcement 64
4.3.6 Modi�cations to Xen . 68

4.4 Evaluation . 69
4.4.1 Deploying HUKO . 69
4.4.2 Protection E�ectiveness . 71
4.4.3 Performance Overhead . 73

4.5 Limitations and Future Work . 74
4.6 Summary . 76

Chapter 5
SILVER: Fine-Grained Privilege Separation in OS Kernel 77
5.1 Introduction . 77

vi

5.2 Approach Overview . 80
5.2.1 Motivating Examples . 80
5.2.2 Threat Model . 81
5.2.3 Protection Domain in SILVER 82
5.2.4 Abstract Model . 84

5.3 System Design and Implementation 86
5.3.1 Overall Design . 86
5.3.2 The VMM Layer Design . 88
5.3.3 OS Subsystem Design . 90

5.3.3.1 Kernel memory allocator 90
5.3.3.2 Support for secure communication 92
5.3.3.3 Reference validation and object accounting 94

5.4 Evaluation . 95
5.4.1 Prototype Implementation 95
5.4.2 Protection Domain Deployment 96
5.4.3 Security Analysis . 98
5.4.4 Security Experiments . 100
5.4.5 Performance Evaluation . 102

5.5 Limitations and Future Work . 106
5.6 Summary . 107

Chapter 6
Conclusion 109

Bibliography 111

vii

List of Figures

3.1 Overview of SHELF's workow. 28
3.2 SHELF's architecture . 31

4.1 The protection state transition diagram. 53
4.2 Overview of the HUKO Architecture. 58
4.3 The multiple HAP tables for achieving isolation and mediation. . . 61
4.4 The transparent separated stack design supported by multi-HAP. . 62
4.5 The EPT violation handling diagram of HUKO. 67

5.1 The architecture of the SILVER framework. 87
5.2 SILVER leverages memory virtualization to make protection domains

transparent to the kernel space. 89
5.3 The layout of two slabs of the same slub cache involved in aservice-

based communication. 91
5.4 Application benchmark performance, normalized to native Linux/Xen.

107

viii

List of Tables

3.1 Dependency Rules . 33
3.2 Quarantine Policies . 36
3.3 Damage Assessment Statistics . 39
3.4 Runetime Overhead of SHELF . 43
3.5 Storage consumption . 43

4.1 A sample MAC policy for untrusted kernel extensions. 55
4.2 Protection e�ectiveness of HUKO against a collection of malicious

extensions. 70
4.3 Performance results of application-level benchmarks.. 73

5.1 Micro-benchmarks results for dynamic data management APIsof SIL-
VER, average of 1000 runs. The data object size of allocationis 192
bytes. 106

5.2 Micro-benchmarks results for control transfer events in SILVER, average
of 1000 runs. 106

ix

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my PhD advisor
Professor Peng Liu, for his continuous support and enormousguidance on my
academic study. He has inuenced and inspired me in so many ways, not only
technically, but also philosophically. I have always admired his great personality:
his dedication, enthusiasm and persistence.

I would also like to thank my committee member Sencun Zhu, Trent Jaeger,
and David Miller for their helpful advice, feedback and discussion on my thesis
work. Particularly, I learned a lot from attending Dr. Jaeger's lectures and I
am amazed by his remarkable expertise on foundation and principles of operating
system security.

In the summer of 2011, I did an internship at Microsoft Research Redmond.
It was an extremely rewarding experience to remember. I would like to thank my
mentors Jon Howell, Bryan Parno and John Douceur for hosting such a wonderful
internship. I am really impressed and inspired by their extraordinary technical
skills, profound knowledge and great hospitality.

I would like to thank my co-authors and colleagues, ShengzhiZhang, Donghai
Tian, Xiaoqi Jia, Jun Shao, Jun Wang and other labmates at Cyber Security Lab,
for their collaboration and discussion on various researchtopics. I am also thankful
to my friends at State College. Specially, I would like to thank Hengjing Yan, for
making my life so colorful and enjoyable than ever.

Finally, I would like to express my deepest thanks to my parents, Zuoliang
Xiong and Ye Liu, for bring me to this wonderful world, and for their endless love,
support and constant encouragement in my entire life.

x

Dedication

This dissertation is dedicated to my mother Ye Liu and fatherZuoliang Xiong, for
their love and support throughout my life.

xi

Chapter 1
Introduction

As the size and complexity of operating systems and applications are increasing,

it is more and more di�cult to achieve security in commodity computer systems.

Among all the security principles, one of the most important principles is integrity,

which means that the state and functions (e.g., code, data, control/data ows) of

a system must be faithfully represented and carried out through its entire life

cycle. There are many types of attacks on integrity that threaten users greatly.

For example, (1) malwares (e.g., viruses, trojans, and worms) that compromise

programs, data and con�gurations on victim's systems; (2) attacks that leverage

code injection or data corruption to change the control and data ow of victim

applications in undesired ways; (3) OS kernel rootkits and malicious device drivers

manipulating metadata of OS objects to hide malicious activities.

Preserving integrity in a commodity system is a challengingtask. A commodity

computer system typically consists of several layers of subsystems with completely

di�erent semantics, and subsystems usually need to depend on (or trust) others

in order to achieve correctness or security. For example, itis meaningless for an

application to preserve the integrity of one of its �le in case that the OS kernel,

where all the �le system metadata are stored, is already compromised and manip-

ulated by an attacker. Hence, there is a chain of research questions to consider for

these layers, for example: (1) How to secure the computer hardware from being

tampered by an attacker? (2) How to protect the integrity of the OS kernel, espe-

cially in a commodity system where there are many untrusted programs running

in the monolithic kernel environment? (3) How to design an OS-level mechanism

2

that enables system-wide integrity protection with the principle of least privilege,

such that a compromised application would never hurt other part of the OS? (4)

How to preserve the integrity of an application software in terms of not only static

code and data, but also control transfers and data ows during execution?

These questions denote an important part of major research issues on protecting

system integrity of a single host, yet there are even more related research issues in

networking and distributed systems. Each one of these problems is a signi�cant

research topic, and achieving a secure system would requireeach of these questions

to be addressed properly.

However, even if we have a \secure" system as described above,sometimes it

still turns out to be that intrusions are inevitable in practice. Thus, in order to

preserve integrity for computer systems, especially for critical infrastructures, we

must consider the research problem in another important aspect: in case that a

computer system has already been detected to have integritycompromise, how

to recover system integrity from intrusions, and how to achieve this accurately,

e�ciently and without too much cost?

This thesis presents technical approaches to address a portion of problems

described above. Our research has a strong emphasis on solving problems with

commodity systems. However, it is worthy to mention that there are a number

of research projects focusing on clean-slate designs of secure computer systems,

which enforce their security principles from the scratch design. Examples of such

projects in recent years include new secure hardware and architectures [1, 2], new

secure operating system [3, 4], and new programming languages [5, 6]. While

we applaud these research e�orts, we also notice that it is infeasible to apply

these approaches directly to commodity computer systems, primarily because of

restrictions on practical deployment and adaptation of legacy code. Hence, it is

also necessary to have approaches solving practical problem directly for commodity

systems.

1.1 Overview of our approach

In this thesis, we describe security techniques designed and developed to achieve

better integrity guarantee for commodity computer systems, in both proactive and

3

reactive manner. In speci�c, we mainly focus on two of the research problems

stated previously: recovery from computer intrusions and integrity protection in

OS kernel. The following statements summarize the thesis ofmy work:

� Reactive mechanisms can be developed to repair the integrity of a compro-

mised computer system with high precision while minimizingthe state loss

and service downtime.

� By leveraging contemporary hardware and virtualization technologies, a hypervisor-

based approach can e�ectively protect commodity OS kernelsfrom untrusted

kernel extensions in regards to both code, data and control transfer integrity.

� A set of security primitives can help programmers to achievesecure, �ne-

grained sharing and communication in commodity OS kernel without funda-

mental changes of the programming paradigm.

First, at the OS abstraction level, we explore reactive mechanism to repair a

compromised computer system, which is the problem of intrusion recovery. We

consider research questions such as: (1) How to minimize the loss of clean state

while wiping out all the damages to the system? (2) How to reduce the downtime

and maintain certain level of availability during the recovery procedure? To study

such questions, we design and implement SHELF, an intrusion recovery system

that aims to preserve business continuity, availability and recovery accuracy.

SHELF, as well as other OS-level security mechanisms, must rely on a trusted

OS kernel not compromised by attackers. The security of the OS kernel is crucial

not only because it is the piece of software with highest privilege, but also for

the fact that other OS and application-level security mechanisms depend on it to

function correctly. However, in practice, commodity OS kernels are becoming a

favorable target for security attacks, and more and more vulnerabilities of kernel

programs are being discovered and exploited. Hence, in orderto keep reactive

recovery mechanisms like SHELF correct and e�ective, it is desirable that the OS

kernel could employ proactive protection mechanisms to preserve its integrity. We

study the challenge of preserving integrity of commodity OSkernel - the Trusted

Computing Base (TCB) for commodity computer systems.

4

In commodity systems, attacks against the OS kernel are often too stealthy

to be detected. The cause of such vulnerability is mainly because of untrusted

programs (e.g., third party device drivers) executing in the kernel space. In order

to enhance the security of commodity OS kernel in the presence of untrusted code,

we design and implement HUKO, a hypervisor-based integrity protection system

that protects commodity OS kernels from untrusted extensions.

Given the strong isolation and mandatory protection provided by HUKO, we

�nally explore the question of how to design a set of securityprimitives so that

OS kernel developers could bene�t from it to build kernel programs that are in-

herently secure while enjoying the advantages of protection comprehensiveness,

access control granularity and developer exibility. Based on the hypervisor ar-

chitecture provided by HUKO, we propose SILVER, a comprehensive framework

that o�ers transparent protection domain primitives to achieve �ne-grained access

control and secure communication between programs in OS kernel. Compared to

the mandatory protection provided by HUKO, SILVER allows principals in OS

kernel with various trust relationship to exchange information, delegate privilege

and export services in a more explicit, �ne-grained, and controlled manner. More-

over, SIVER can also prevent attacks on kernel API integrity and confused deputy,

which neither can be e�ectively handled by typical isolation systems.

In the following sections, we give an overview of each technical approach.

1.2 Preserving Business Continuity and Avail-

ability in an Intrusion Recovery System

The �rst problem we are focusing on is recovery from computerintrusions. The goal

is to restore infected OS-level objects such as processes and �les in a compromised

system to clean state. Although the goal seems to be straightforward, even with

a secured OS kernel, intrusion recovery is still a non-trivial job, especially for

systems that run continuous services. Firstly, since today's intrusion detection

system (IDS) is not fast and perfect, the time of detection ofan intrusion symptom

could be long time after the actually beginning of the intrusion. Given such a long

time window for attack escalation, it is di�cult to tell how t he intrusion propagate

5

throughout the system and which part of the system is infected. For this reason,

current intrusion recovery techniques often do not preserve the accumulated useful

state of system objects (e.g., processes and �les) during recovery, which results in

great loss of useful e�ort and benign data.

Moreover, current intrusion recovery systems ([7, 8, 9, 10,11]) generally require

a dedicated recovery routine which largely increases the system downtime and

decreases the availability level. This is also undesirable, especially for mission

critical infrastructures such as servers and data centers.Business continuity and

availability are crucial to them, and a small amount of stateloss or downtime may

cause great loss of money.

To address these shortcomings, in Chapter 3, we describe thedesign and im-

plementation of SHELF, an on-the-y intrusion recovery prototype system that

provides a comprehensive solution to preserve business continuity, availability and

recovery accuracy. SHELF preserves accumulated clean states for infected applica-

tions and �les so that they can continue with the most recent pre-infection states

after recovery. Moreover, SHELF leverages OS-aware taint tracking techniques to

swiftly determine the sources of intrusion and assess system-wide damages caused

by the intrusion. SHELF uses quarantine methods to prevent infection propaga-

tion so that uninfected and recovered objects can provide availability during the

recovery phase. We integrate SHELF prototype in a virtualization environment to

achieve user transparency and protection.

Chapter 3 also describes the evaluation of the SHELF prototype. We demon-

strate SHELF's ability to dynamically assess damages after intrusion symptoms

are detected and we also measure its run-time performance. Our evaluation shows

that SHELF can perform accurate recovery on-the-y e�ectively with an accept-

able performance overhead.

1.3 Protection of Kernel Integrity for Commod-

ity OS from Untrusted Extensions

As stated in Section 1.1, in order to have OS-level security mechanisms (e.g.,

intrusion recovery systems, anti-virus, host-based IDS...) function correctly, the

6

integrity of OS kernel must be protected to provide a solid security foundation.

Hence, the next problem we are focusing on is to enhance the security of commodity

OS kernel. In commodity operating systems, kernel-level extensions are widely

used to extend the kernel's functionality. However, the extension interface is also

the most prevalent source leveraged by attackers to tamper the integrity of the

OS kernel. For example, attackers can install malicious extensions such as kernel

rootkits to hide their activities in the system. These rootkits, once installed by the

attacker, are often too stealthy to be detected. On the otherhand, the existence

of buggy third-party device drivers exposes many vulnerabilities which can be

exploited by attackers to inject their malicious code into the kernel space. These

untrusted extensions threaten the kernel integrity greatly, yet unfortunately in

many cases users have to let them run in order to provide the desired functionalities

and availability. Therefore, preserving the OS kernel integrity from the presence

of untrusted extensions remains a challenging problem.

We develop HUKO, a hypervisor-based protection framework to secure the

execution of untrusted kernel extension. HUKO allows users toexecute untrusted

extensions in the kernel space to provide desired functionalities. The behaviors of

untrusted extensions, however, are con�ned by mandatory access control policies,

which signi�cantly limit the attacker's ability to comprom ise the integrity of OS

kernel. The protection o�ered by HUKO covers multiple aspect of system integrity

issues, which include code/data integrity, architecturalstate integrity, control ow

integrity and stack integrity.

To guarantee such multi-aspect protection and enforcement, HUKO leverages

contemporary hardware virtualization features to transparently isolate untrusted

extensions from the OS kernel. Moreover, HUKO overcomes the challenge of me-

diation overhead by introducing a novel design named subject-aware protection

state transition to eliminate unnecessary privilege transitions caused by mediating

allowed accesses. Our approach is practical because it requires little change for

either OS kernel or extensions, and it can inherently support multiple commodity

operating systems and legacy extensions.

We describe the design, implementation and evaluation of HUKOin detail in

Chapter 4.

7

1.4 Fine-grained and Transparent Protection Do-

main Primitives in Commodity OS Kernel

HUKO provides strong memory isolation and uses mandatory policies to con�ne

activities of untrusted kernel extensions. However, even with strong isolation (e.g.,

memory protection, SFI) enforced, untrusted code in OS kernel could still subvert

the integrity of OS kernel by abusing communication with OS kernel. For example,

in commodity OSes like Linux, attackers could manipulate parameters passed to

legitimated kernel API functions to launch confused deputy attacks. Hence, it is

desirable to have a secure communication mechanism in commodity OS kernel. On

the other hand, mandatory policies are limited in both granularity and exibility

for expressing access control rules that are close to program semantics. For kernel

program developers, it is better to have security primitives that could express their

own security concerns embedded in their programs, rather than having them set

up by administrator and enforced externally.

Previous research e�orts such as micro-kernel [12] and language-based operat-

ing systems [5] o�ers clean-slate model (e.g., multi-server IPC protocol and lan-

guage contracts) to help developers ensure safe communication. However, these

approaches are di�cult to apply to commodity OSes, as they require developers

to change both the development and the deployment paradigm of their software

completely.

To address these challenges, Chapter 5 presents SILVER, a framework that of-

fers transparent protection domain primitives to achieve �ne-grained access control

and secure communication between OS kernel and extensions.In SILVER, kernel

program developers leverage SILVER's secure primitives to add light-weight anno-

tations to their source code. These annotations indicates security properties (e.g.,

integrity levels and capability) of data objects and functions of the program. As a

result, �ne-grained access control policies and communication rules will be inferred

and enforced by SILVER at run-time. To achieve this, SILVER provides clear re-

source management of kernel data objects according to theirsecurity properties.

Based on this organization, it achieves access control enforcement and commu-

nication safety using hypervisor-based memory protectionand run-time checks.

Protection domains in SILVER are transparent, which allows developers to pre-

8

serve traditional programming paradigms (e.g., shared address space, function calls

and reference passing) while obtaining desired protection. The primitives can be

deployed incrementally and selectively, and protected programs are still compatible

with unmodi�ed kernel programs.

In Chapter 5, we describe the security model, design and implementation of

the SILVER architecture. We also show how to apply SILVER to existing ker-

nel programs for establishing protection and secure communication. Finally, we

demonstrate SILVER's protection e�ectiveness by using security case studies of

real-world threats to the Linux kernel.

1.5 Summary of Contributions

This dissertation makes the following contributions.

� A novel intrusion recovery approach that can comprehensively assess the

damage to a compromised computer system and recover it to clean state

with minimum loss of business continuity and availability.

� An run-time protection framework leveraging contemporary virtualization

techniques for securing the execution of untrusted extensions and preserving

the integrity of commodity OS kernel.

� A set of security primitives and OS enhancements designed for kernel pro-

gram developers to achieve �ne-grained access control and secure communi-

cation.

Chapter 2
Background and Related Work

This chapter presents the background and related researches in system integrity

protection, access controls and integrity recovery. First, in section 2.1, we state

our security goals in designing our approaches. Section 2.2reviews various kinds of

protection and access control systems, with a discussion ofhow HUKO and SILVER

leverage these protection principles. In Section 2.3, we describe speci�c techniques

that could be used to achieve such access control systems andenforce protection

domains. We then present various categories of related workon operating system

kernel security in Section 2.4. Finally we review background and research e�ort

on intrusion recovery systems in Section 2.5.

2.1 What are the Security Goals?

In this section, we discuss what kind of security propertiesand requirements we

would like to achieve in our systems. De�ning clear securitygoals will provide

principle-level guidelines for us to design and evaluate our systems.

Information Flow Integrity. Information ow model is probably the most fa-

mous classic model for describing security requirements such as secrecy and in-

tegrity. In information ow model, subjects and objects in the system are labeled

into di�erent categories, and information can potentiallyow between subjects and

objects via read and write operations. The model speci�es constrains on where

and how the information can ow. Denning [13] generalized the information ow

10

security problem using a lattice model, and Bell-LaPadula (BLP) [14] model and

Biba [15] model provide speci�c requirements for secrecy and integrity protection,

respectively. In this thesis, our major concern is integrity, and our major security

goals are aligned with information ow integrity models [15, 16, 17].

Control Flow Integrity. In general, control ow integrity means that program

execution must follow the same control-ow pattern [18] as intended by the pro-

grammer. For example, one requirement of CFI is that the onlyway to get into

a function is through its entry point, and functions must return to the proper

address of the caller site. These properties guarantee thatcontrol transfers in

a program are not hijacked by attacks such as stack smashing,return-to-libc or

return-oriented programming [19].

Principle of Least Privilege. The principle of least privilege [20] requires all

security principals and components in a computer system canonly have just enough

information and resources to ful�ll their tasks. Therefore, it limits the damage to

the entire system in case that some principals or componentsare compromised by

the attacker. In the context of OS kernel security, unfortunately most commodity

OSes fail to achieve this principle since the core kernel anduntrusted extensions

are of the same exact privilege.

Minimize Trusted Computing Base. In today's commodity applications and

operating systems, the growing complexity and size make these software vulnerable

to varies kinds of attacks. Hence, it is desirable that we could reduce their trusted

computing base (TCB), which is the portion of code that the software must trust

and rely on in terms of security. For example, the 2.6.24 Linux kernel contains more

than 6 million lines of code, making vulnerabilities inevitable. In this thesis, we

reduce the TCB of commodity OSes by sandboxing and shepherding the execution

of kernel extensions that are much more likely to contain bugs/vulnerabilities with

more exposure to attacks.

11

2.2 What Kind of Protection to o�er?

Having the security goals identi�ed and established, naturally the next question

would be: what kind of protection we need to o�er to a computersystem in order

to achieve these security goals? Historically, the center ofgravity of the solution is

the access control mechanism, which is also the primary topic stated in this thesis.

In this section, we review major types of access control systems used in secure

operating system construction, and describe how HUKO and SILVER incorporate

these di�erent mechanisms.

Discretionary Access Control (DAC) [21] system is a type of access control

system in which security principals could specify access permissions of their own

objects. A typical example of DAC system is traditional UNIX �le permissions.

In UNIX, every �le in the operating system has an owner, which denotes the

associated security principal. The owner of a �le is capableof controlling read,

write, and execute privileges of the �le with regards to security principals such as

the owner, users in owner's group and other public users.

DAC grants users with full control of their resources. However, DAC system

alone cannot e�ectively enforce security goals of secrecy and integrity. The primary

reason is that, in DAC, the protection state is completely decided by individual

users, which also indicates that untrusted principals could easily inuence the

protection policy and make undesirable changes to the protection state eventu-

ally. This motivates the creation of Mandatory Access Control (MAC) systems, in

which security policies are decided by administrators or security experts. In MAC

systems, subjects (e.g., users and processes) and objects (e.g., �les, sockets and

devices...) are labeled with their security attributes by the administrator. When-

ever there is an access to an object issued by a subject, the action will be mediated

by a reference monitor [22], which will examine security properties of the subject

and object, and make authorization decisions according to access control policies

de�ned by administrator.

The reference monitor is an important concept and an essential component

in protection systems. In speci�c, it must hold several necessary properties to

guarantee the enforcement of access controls, as stated in [23, 24]:

� Complete Mediation. All security-sensitive operations must be mediated by

12

the reference monitor.

� Tamperproof. The mediation and enforcement mechanism cannot be sub-

verted or abused by untrusted principals.

� Veri�able. The protection system could be analyzed and veri�ed for its

correctness and completeness.

Implementations of MAC systems can be dated back to Honeywell's SCOMP

[25], which o�ers operating system support to enforce multi-level security. In recent

years, SELinux [26] and TrustedBSD [27] are two representative MAC systems

designed to enforce MAC policies for commodity operating systems such as Linux

and FreeBSD. These mechanisms are achieved by placing various authorization

hooks (e.g., LSM [28]) into the OS kernel, which supports dynamic policy set up

and con�gurations.

The protection system in HUKO is designed to be a MAC system: subjects

and objects in HUKO are clearly identi�ed and labeled. The reference monitor

is implemented in the hypervisor layer isolated from the guest operating system,

making it di�cult for attackers to penetrate and tamper with . Security sensitive

operations, including cross-domain data access and control ow transfers, are in-

tercepted by the hypervisor because of hardware protectionmechanisms such as

page table permissions. Labeling can only be done by the administrator as well

as the trusted helper component, and access control policesare represented by a

�xed access matrix hard-coded in the program.

While mandatory access control systems are e�ective to enforce system-wide

policies and protect system resources, it still has the following shortcomings:

Firstly, in MAC systems, security polices are completely decided by security ex-

pert and administrator intervention. Software developersand users are not allowed

to specify or modify policies at the development or deployment phase. As a result,

it is di�cult for MAC systems to support exible and �ne-grai ned policies that

are close to program semantic and security needs. For example, to support various

kinds of applications with reasonable granularity and exibility, SELinux policies

in current commodity systems involves more than thousands of types and autho-

rization/transition rules, which are often too complex to be con�gured properly.

13

Secondly, it is di�cult for MAC systems to address ambient authority in an ap-

plication communicating with other principals, which often makes the application

vulnerable to attacks such as confused deputy.

To address these shortcomings, new protection systems are proposed to allow

the delegation of part of security decisions to developers and users. For example,

by binding permissions to references to individual data objects, capability systems

[29, 30, 31] enable programmers to assign permissions to their processes and data

objects more precisely. Singularity [5] allows programmers to specify language-

based veri�able contract to secure the communication channel with other prin-

cipals. Decentralized information ow control (DIFC) systems such as Asbestos

[3], Histar [4] and Flume [32] allows users and developers to create security cate-

gories and labels for their own security concerns. The protection state is no longer

centrally controlled only by the administrator, instead, it is partially decentral-

ized to security principals. The enforcement of labeling, tainting and declassi�ca-

tion/endorsement rules, however, is still controlled by the reference monitor.

Like other MAC systems, HUKO also has shortcomings in supporting �ne-

grained and exible policies, and attackers could still exploit kernel APIs to launch

confused deputy attacks despite of memory isolation. Theseshortcomings motivate

the SILVER framework. SILVER is built on top of HUKO's mandatory protection

mechanism such as isolation, labeling and hypervisor-level reference monitor. In

addition, with its OS subsystem, SILVER allows OS kernel developers to specify

security properties of their data objects and functions. Those security properties

are maintained explicitly in SILVER's OS subsystems, and they directly impact

resource allocation and security decisions.

2.3 What are Techniques for Enforcing Protec-

tion?

In this section, we look deeper into techniques that actually enforce isolation and

access control.

OS-level Protection Techniques. Multics [33] is the �rst major e�ort for build-

ing an advanced operating system. It proposed and developedmany fundamen-

14

tal and crucial concepts, which signi�cantly inuence the design of subsequent

computer system in many years. In the realm of protection andsecurity, these

revolutionary concepts include but not limited to: hardware-supported hierarchi-

cal rings of protection, protection domains and gates, and OS support for access

control lists (ACL) and multi-level security policies. Protection rings in Multics

provide separation of privilege as well as fault tolerance/handling, and it inspired

contemporary hardware-assisted virtualization leveraged by HUKO and SILVER.

System call interception [34, 35, 36] is another OS-level con�nement and mod-

eration techniques. By mediating activities at the system call level, the reference

monitor makes authorizing decisions, allowing or denying system calls issued by

processes. The solution is simple and easy to be deployed. However, some security

sensitive activities (e.g., memory mapping, ipc) are di�cult to mediate at the sys-

tem call level, and some are di�cult to get enough information to make security

decisions. Moreover, the mechanism itself is easy to be bypassed or tampered with,

making it demanding to have a more resilient and comprehensive protection.

To achieve completeness and exibility, modern operating systems adopt a

technique named hook placement: inside the OS kernel, for every security-sensitive

operation, softwarehooksare placed along the execution paths. The coverage of

placement ensures complete mediation property of the reference monitor, and the

exibility of software hooks enables dynamic loading and changing various security

policies on the y. The most notable example of this categoryis the LSM [28],

which enables many advanced OS-level access control system[37, 26, 32] to be

built atop.

As previously stated, OS-level reference monitors can e�ectively mediate security-

sensitive activities at the operating system abstraction level, where subjects and

objects are system resources such as �les, processes and network connections. How-

ever, they are limited at the program abstraction level, in case that programmers

need to establish protection and access control inside their own programs. More-

over, the same protection cannot be applied to protect the OSkernel, since the OS

kernel does not operate on OS-abstractions (in fact, it holds the meta data that

de�ne such abstraction) and there is no way to place authorization hooks for direct

memory accessing kernel objects. In the following, we review techniques that focus

on enforcing access control and isolation at the program scope.

15

Memory Protection. In modern operating systems, virtual memory o�ers ad-

dress space isolation for di�erent processes, and this is usually achieved by hardware-

based memory protection such as segmentation and paging. Invirtualization,

memory protection techniques is often used to isolated virtual machines from each

other. Shadow page tables (SPT) is a common techniques for hypervisors to man-

age guest-to-machine mapping and enforce isolation, yet ithas shortcomings of

unnecessary VM exits during page table updates. To facilitate paging in virtual-

ization, hardware-assisted paging (HAP) is proposed by AMD [38] and Intel [39]

in recent years. HAP extends the original paging mechanism by adding another

layer of page tables and translation, and it leverages dedicated hardware to do

page table walks and compute page table entries. Due to thesereasons, HAP is

very desirable for enforcing isolation in a transparent manner.

While HAP is commonly used to establish isolation between multiple instances

of guest virtual machines, HUKO and SILVER novelly adopted to enforce isolation

and memory protection in the kernel address space of a singleguest. Speci�cally,

we create multiple HAP tables for each protection domain in OS kernel to enable

memory isolation and we leverage HAP permissions to enforce integrity protection

and mediate protection domain transfers. In this way, we ensure that the entire

reference monitor mechanism is isolated and protected fromthe guest layer, and

achieving this does not need to a�ect the OS-level paging mechanism as it is using

another layer of indirection.

Although memory protection systems e�ectively take advantages of advanced

hardware features, it still have shortcomings. The �rst shortcoming is granularity.

In commodity operating systems on commodity hardware, the page size is usually

4KB or higher and permissions can only be set up per page basis. This is usually

undesirable since there are various kinds of data objects residing on the same page

in both program stack and heaps. Research e�orts such as Mondrix [40, 1] could

provide �ner granularity

The second shortcoming is the \semantic gap". In speci�c, there is a semantic

gap between the page layout and the programmer's view of application data. It is

extremely unreasonable and errot-prone to require a programmer to align their data

along page boundaries and setting up page permissions by themselves. Thus, how

to e�ectively let programmers take advantages of the memoryprotection provided

16

by hardware remains a challenging problem.

We designed SILVER to address these challenges for protection in commodity

OS kernel. The OS subsystem of SILVER handles the translationfrom security

properties of program data to page permissions, and it leverages a novel organiza-

tion and placement mechanism to achieve access control granularity. We further

discuss the design and implementation of SILVER in 5.

Software Fault Isolation Besides hardware protection, there are also software

solutions for enforcing isolation. A notable solution is software fault isolation (SFI)

[41, 18, 42, 43, 44], which leverages software approaches such as binary rewriting

and compilers to isolate a piece of untrusted code from the main program usually

residing in the same address space. The restricted environment that contains

untrusted code is usually called a \sandbox". The software approach does not rely

on hardware protection mechanism to perform address space isolation, however, it

still guarantees that any unsafe instruction would not haveundesirable e�ect to

outside of sandbox.

Compared to hardware protection, SFI systems have their advantages. First,

SFI approaches have exibility in deployment and development process. It is self-

contained, and requires little support from speci�c hardware, virtual machines or

operating systems. Second, although SFI introduced additional inline checks for

memory access, it avoids costly protection domain switchesin hardware protection

mechanisms. According to previous experiments [42, 44], this could be a potential

performance gain, especially in case that the sandboxed code interact frequently

with the main program.

One downside of SFI is that malicious software module can subvert SFI's pro-

tection mechanism by abusing legitimate interfaces, for example, calling functions

in wrong order or with undesired parameters. As shown in Chapter 5, this could

lead to confused deputy attacks in OS kernel. LXFI [45] is a SFIsystem that

addresses this problem by requiring developers to declare capability for its data

objects and functions. Another downside is due to SFI's self-contained nature: the

mechanism is agnostic to outside accesses. Thus, it is possible to launch TOCT-

TOU (time of check to time of use) attacks to exploit those inline access checks used

in SFI systems, especially in a multi-threaded and concurrent usage environment.

17

Language-based Approaches Language-based approaches can help program-

mers enforce �ne-grained access control in regard to program internal data and

semantics. Typically these approaches integrate securitynotions into the type sys-

tems of the programming language, and/or use veri�cation methods and compiler-

inserted checks to enforce security policies and access control. Jif [46] and Joe-E

[47] are Java language extensions that implements DIFC and capability security

primitives, respectively. Laminar [48] is a Java language-based DIFC system with

the OS support to handle OS abstractions. Singularity [5] isa research operating

system which leverages language (C# extension) support andstatic veri�cation to

achieve isolation and controlled communication. The downside of language-based

approaches is that they often require fundamental changes to the programming

paradigm, and it generally takes signi�cant e�ort to make legacy programs to

adapt a new language.

2.4 Related Work on Operating System Kernel

Security

The idea and design of HUKO and SILVER draw inspiration from a variety of topics

of past research work related to OS kernel reliability, protection and security. In

this section, we review these speci�c previous research e�orts.

Kernel integrity protection. There are a number of previous research e�orts

aiming at protecting the integrity of the operating system kernel, such as code

integrity protection [49, 50, 51], data integrity protection [52, 53] and control

data/ow integrity protection [54, 55, 56]. Secvisor [49] is a hypervisor based

protection system which guarantees the life-time code integrity of the kernel. It

leverages advanced features from AMD processors, which are analogous to those

used in HUKO. HUKO di�ers from Secvisor in the following aspects:Firstly, Secvi-

sor is intended to prohibit any untrusted code executing in the kernel space, while

HUKO does allow untrusted kernel extensions running securelyto provide func-

tionality and availability. Thus HUKO needs to enforce additional protection such

as data integrity and control ow integrity to restrict the b ehavior of untrusted

extensions. Secondly, Secvisor's tiny hypervisor design renders the system a very

18

small TCB, which grants the system a more secure foundation which is easier to

be veri�ed. In comparison, HUKO is based on Xen hypervisor with alarger TCB,

yet it saves deployment and con�guration e�ort for existingXen virtual machines.

Kernel malware analysis. Several recent projects such as Panorama [57], K-

Tracer [58], HookFinder [59], HookMap [60], and Poker [61] focus on analyzing

the behavior of kernel-level malwares. These research workare complementary

to HUKO protection system because they provide extensive knowledge of how

malwares damage the integrity of the kernel. These knowledge would further help

HUKO to enforce more e�ective access control policies on various kinds of kernel

objects to o�er comprehensive protection.

Device driver isolation. Another major category of related research work is

on isolating buggy device drivers to improve the reliability of operating systems.

Examples of these systems include Nooks [62], MINIX 3 [63], andSafeDrive [64].

Micro-kernel OSes [12, 63, 65, 66] removes device drivers from kernel space and

execute them as userspace server applications. Opal [67] isa micro-kernel based

system which supports multiple protection domains for the entire application uni-

verse within a single address space. However, despite their elegant design, it is

generally di�cult to retro�t these approaches in commodity OSes. Mondrix [68] is

a hardware protection approach for compartmentalizing Linux and providing mem-

ory isolation for unsafe kernel extensions. Access control in Mondrix can achieve

the granularity of memory words but it requires a speci�c designed processor ar-

chitecture to support its protection mechanism. Such systems are mainly targeted

for fault resistance and dependability, and they could e�ectively prevent system

crashes caused by design defects and programming mistakes of device drivers.

Nooks [62] is a comprehensive protection layer that leverages hardware pro-

tection to isolate faulty device drivers within Linux kernel and recover them after

failures.Our system resembles Nooks since both approaches establish hardware-

enforced protection domains to isolate kernel components.However, by the time

Nooks was designed, there was no supporting hardware features such like NX bits,

EPT, VPID, IOMMU, etc. By leveraging these advanced features,HUKO sig-

ni�cantly reduces the amount of OS modi�cations and has a better performance.

Also, HUKO o�ers more protection from malicious extensions, e.g., it preserves

19

architectural state from being modi�ed by untrusted extensions. Since its pri-

mary focus is fault resistance rather than security, Nooks does not address attacks

such as manipulating architectural state. As a VMM-based approach, HUKO has

a smaller TCB and attack surface compared with OS-based approaches. Also,

Nooks does not provide the exibility to specify security properties of individual

data. Language-based approaches such like SafeDrive provide type enforcement

and prevent memory errors, though they often require the source code of extension

for recompilation, which limits their applicability for bi nary drivers. In contrast,

HUKO can support unmodi�ed legacy extensions.

Mandatory access control. HUKO enforces mandatory access control policies

over subjects and objects in the OS kernel. There are many systems that are

designed for improving operating system security by addingmandatory access

control, e.g., LOMAC [17], SELinux [26], AppArmor [37], UMIP [69] and Loki [2].

These systems provide exible, powerful and �ne-grained protection to preserve

system-level integrity. However, they are all enforcing MACat the OS abstraction

level and cannot be applied to mediate the activities of kernel-level objects.

Address space separation. As part of our design, HUKO isolates untrusted ex-

tensions from the OS kernel using the memory virtualizationmechanism provided

by VMMs. There are also a number of systems achieving di�erentresearch goals

using various techniques that isolate two entities which previously belong to the

same address space. MMP [40, 1] achieves address space isolation and �ne-grained

permission mapping by extending the hardware architecture. XFI [42] provides

permission management within system address spaces using binary rewriting. Na-

tiveClient [44] o�ers sandboxing and isolation to native x86 modules by leveraging

x86 segmentation and code validation. SIM [70] proposes a secure In-VM moni-

toring approach which places the kernel-level monitor in a protected address space

using shadow paging. Overshadow [71] and Bastion [72] leverages multiple shadow

tables to protect application data from the rest of the system. In comparison,

HUKO focuses on protecting the integrity of the OS kernel. Also HUKO is based

on hardware-assisted paging rather than software-based shadow paging mechanism

to reduce the number of VMEXITs and improve the TLB performance.

SILVER leverages a VMM as another layer of indirection to mediate cross-

20

protection-domain activities. VMMs are also widely used forprotection systems

to enhance the security of application and OS kernel. TrustVisor [73] protect the

integrity and secrecy of an application even in case that theOS kernel is com-

promised. Secvisor [49] and NICKLE [50] are hypervisor-based systems which

guarantee that any unauthorized code will not be executed inthe operating sys-

tem kernel. Hooksafe [54] protects kernel control data (i.e., hooks) from being

tampered by kernel-level rootkits. In comparison, SILVER aims to provide a more

comprehensive protection with the integrity guarantee of both code, data and con-

trol ows.

Protection domains. In practice, protection domains are widely used for ad-

dressing security problems such as securing program extensions [74], privilege sep-

aration [31], implementing secure browsers [75, 76], safely executing native code in

a browser [74, 44] and mobile application deployment [77]. In this section, we re-

view previous research e�orts related to protection domains and OS kernel security,

categorized by the approach to achieve their goals.

One major mechanism to achieve protection is through software fault isolation

[41, 42, 43, 44], which rewrites binary code to restrict the control and data access

of the target program. XFI [42] leverages SFI to enable a host program to safely

execute extension modules in its address space by enforcingcontrol ow integrity

(CFI [18]) and data integrity requirements. While these approaches are e�cient

and e�ective for securing program extensions, they have di�culties for inferring

and verifying system-wide resource and multi-principal access control rules in a

static manner. Moreover, protection domains could also be achieved by language-

based approaches. Singularity [5] is an experimental operating system that achieves

strong isolation and controlled communication by advancedlanguage features such

as type checking and static veri�cation without any hardware protection support.

Compared with Singularity, SILVER achieves similar high-level goals for data ob-

ject management by relying on a complete run-time approach,which emphasizes

on compatibility with commodity OSes and avoids the complexe�ort of static

resource veri�cation.

LXFI [45] is probably the closest related work with SILVER. It addresses the

problem of data integrity and API integrity in SFI systems, using a completely dif-

21

ferent approach (compiler rewriting) than SILVER. Comparedto LXFI, SILVER's

run-time approach is more resilient to attacks that fully compromise a untrusted

module and execute arbitrary code. Moreover, security enforcement of SILVER

is more tamper-proof since the isolation and access controlare carried out by the

hypervisor.

Run-time protection approaches are mostly achieved by access control mecha-

nisms to constrain the behavior of untrusted programs. Depending on the abstrac-

tion and granularity levels, these approaches mediate security-sensitive abstrac-

tions ranging from segmentation [78, 79, 44] and paging protection [62], system

calls interposition [80, 74] to high-level APIs such as JNI calls [81]. These events

are regulated by a set of access control policies.

2.5 Previous Approaches for Repairing a Com-

puter System

In this section, we review previous research approaches that are related to restoring

the integrity of a compromised computer system.

There are two previous research works which are mostly related to the SHELF

system: Taser [11] and RFS [10]. They both have the ability totrack the informa-

tion ow by analyzing the runtime log and to perform selective recovery afterwards.

The primary di�erence between them and SHELF is that Taser andRFS are only

focused on repairing the persistent data on a compromised system. They do not

keep the useful process state during the recovery procedure. Moreover, they have

dedicated recovery routines that do not preserve availability during recovery. In

contrast, SHELF is an on-the-y solution that coordinates both �le and process

recovery to achieve business continuity and availability.

Taser assumes an immutable �le system state at the beginningof the recovery

procedure. Usually it is achieved by rebooting the system into a dedicated recovery

environment, which means all the running services are forced to shutdown and their

useful states are wiped out. On the other hand, SHELF cares innocent processes

and keeps positive inuence of even infected process instead of restarting them.

RFS uses a backward recovery strategy. It achieves recoveryby undoing the

22

contaminated operations so that the �le system can rollbackto a clean state. It

has the advantage for avoiding the e�ort for periodical checkpointing. However, we

argue that backward recovery is not suitable for recoveringprocess states. While

it is relatively easy to construct undo log for �le systems, rolling back process

state by performing undo operations is hard to achieve because the process state

is changed by sequences of instructions, which are hard to record and reverse.

For the aspect of system construction, both Taser and RFS adopt a host-based

architecture. Taser is implemented as a Linux kernel moduleand a backend system.

RFS requires modi�cation to the Linux kernel. In contrast, SHELF is a complete

user space solution which does not require any privilege level or changes on host

system. Moreover, SHELF is a VM-based system that can provide additional

resistance to attacks than those host-base approaches.

There are other techniques that can be used for recovery purpose, like journaling

�le systems [82], process checkpointing and rollback ([83,84]), process migration

[85] and replayable systems ([86, 87]). Compared with SHELF,these systems

have limited ability to assess damage automatically, whichincludes detangling

bad operations from good ones and performing selective forward correction. Our

recovery idea is also inspired by Liu's work on intrusion tolerant database systems

that can continue its transaction processing even in the presence of active attacks

[88].

Intrusion detection systems provide intrusion symptoms toSHELF as the start-

ing point of the recovery procedure. There are various kindsof systems performing

intrusion detection by di�erent techniques. For example, signatures of system call

sequence are studied by many researchers to detect intrusions ([89, 90]). For virtual

machine based methods, Gar�nkel [91] proposes an intrusiondetection architec-

ture through VM-based introspection. VMwatcher [92] is a system that detects

malwares through VM-based OS-level semantic view reconstruction.

SHELF is focused on recovering user-space processes and persistent data. Nooks

[62] is a complementary system to SHELF, whose aim is to protect and recover

from kernel damage or failures. Also there are other techniques that can be applied

to protect the integrity of the operating system kernel, such as VM-based active

monitoring [93] and Panorama [94].

Information ow analysis techniques are widely used for intrusion detection

23

([89, 95]), malware analysis [94], and intrusion recovery systems ([11, 10]). SHELF

uses a method similar to BackTracker [95] to perform automatically damage as-

sessment. Nowadays, �ne-grained dynamic analysis techniques are widely used

for system security purposes ([96, 94]). Although �ne-grained analysis can track

damage more precisely and comprehensively, those schemes exact very heavy per-

formance penalty so that they are not suitable for on-the-yrecovery solutions like

SHELF.

Chapter 3
SHELF: Preserving Business

Continuity and Availability in an

Intrusion Recovery System

In this chapter, we focus on the problem of integrity recovery. Speci�cally, we study

how to preserve business continuity, availability and recover accuracy in repairing

a computer system that has already been compromised.

Nowadays, business continuity and availability are increasingly crucial to servers

and data centers. In some business services like online banking and MMO game

hosting, a small amount of loss of business continuity and availability may cause

great loss of money. Intrusion recovery is an important security task that servers

and data centers have to perform when the system is compromised by intruders.

Unfortunately, current intrusion recovery systems do not bear the concerns of busi-

ness continuity and availability in their design principles. For example, snapshot-

based �le system ([7, 97]), one-button-recovery feature ofsome laptop computers

([8, 9]) and Norton Ghost require rebooting the entire systemor remounting �le

systems during the recovery procedure. Research e�orts on automatic recovery

([10], [11], [98], [99], [95]) reduce human e�orts in analyzing the impact of intru-

sions as well as providing higher accuracy in recovering infected �les and removing

malwares. However, they still have the following shortcomings in preserving busi-

ness continuity and availability.

Firstly, current intrusion recovery techniques often do not preserve useful ap-

25

plication states when they perform recovery. The primary focus for many recovery

systems ([10], [11], [98], [99]) is on recovering persistent data (e.g. �les and registry)

and removing malwares. In their methods, all the changes made by the intrusion,

including applications that are infected, are detected andwiped out from the sys-

tem. In such case, services provided by infected applications are discontinued and

all the useful states of these services are completely lost even though these services

are restarted after recovery. This could cause a great loss of business continuity in

commercial systems.

Secondly, current intrusion recovery systems ([7, 8, 9, 10,11]) generally require

a dedicated recovery routine which largely increases the system downtime and

decreases the availability level. Usually the recovery routine begins with one or

several actions of the following: (1) restarting the whole system, (2) unmounting

�le systems, (3) closing outgoing connections, (4) shutting down applications and

services. After that, the system dedicates to the recovery procedure, which takes a

long period of time if there are lots of infected �les. This results in a considerable

system downtime and availability loss.

To address the above limitations, in this chapter, we describe the design and

implementation of SHELF, an on-the-y intrusion recovery prototype system that

provides a comprehensive solution to preserve business continuity, availability and

recovery accuracy. SHELF has three unique features: First, to maximize busi-

ness continuity, SHELF preserves accumulated useful statesfor applications and

data, even if they are infected by the intrusion. At the recovery phase, instead of

restarting an infected object, SHELF enables it to continue from the most recent

pre-infection state. Second, by synthesizing backward taint tracking and forward

taint tracking techniques, SHELF can swiftly determine the system-wide damage

caused by the intrusion when infection symptoms are detected. In other words,

SHELF has good recovery accuracy that can dynamically distinguish changes made

by the attacker from those made by legitimate users. Third, SHELF maintains a

reasonable availability level for the system during the recovery phase. This means

that uninfected objects remain intact and can continue functioning while infected

objects are being recovered. To achieve this, SHELF leverages dynamic quaran-

tine and de-quarantine techniques and adopts a transparentbackground recovery

procedure.

26

We implement SHELF on top of a light-weight virtual machine, which is the

User Mode Linux [100]. SHELF performs most of its functionalities at the VMM

layer. Thus it provides a transparent environment which imposes minimal interfer-

ence on the guest. SHELF also makes good use of security bene�ts provided by the

virtual machine to achieve better isolation and protectionthan existing host-based

methods.

In summary, this work makes three main contributions. First, we propose an

on-the-y intrusion recovery framework with the concern ofbusiness continuity,

availability and recovery accuracy. Second, we design and implement SHELF,

which is a prototype of our approach. SHELF comprehensively leverages tech-

niques such as application-level state recording and rollback, backward/forward

taint tracking and infection quarantine in a virtualization environment. Third,

we evaluate SHELF's recovery performance using real world intrusions and bench-

marks. Our results show that SHELF can perform accurate on-the-y recovery

e�ectively with an acceptable performance overhead.

3.1 Model and Assumptions

In this work, we assume a UNIX-like operating system in which most OS-level

entities can be abstracted into two kinds of objects: processes and �les. Aprocess

object is a running instance of an application. For a stateful application, its state

is usually determined by the run-time state of the corresponding process object.

A �le object can be used for representing various kinds of OS-level entities such as

regular �les in the persistent storage, volatile memory mapping areas, sockets for

managing network connections, pipes for doing IPC and many device interfaces.

The operating system provides a uniform set of operations (such as theread, write

system calls) towards �le objects, making it convenient forus to track the state

changes of �les. We use the terminology \objects" throughout this chapter to refer

processes and �les in the system.

Normally intrusions begin from one or several objects in the system, then prop-

agate to other objects via object interaction events. In ourmodel, we name these

objects which initiate the intrusion \attack seeds". In most cases, attack seeds are

created by attackers and their behavior is malicious from the very beginning of the

27

intrusion. An attack seed can be a process, for instance, a malicious login shell cre-

ated from backdoor or injected codes, a service program compromised by remote

attacks or worms, or an illegal ssh session. Also, attack seeds can be �les such

as viruses, malwares, user-level rootkits, undesired install packages or corrupted

data. As time goes by, attack seeds create attack objects and infect other inno-

cent objects in the system via certain OS events (e.g. IPC, read/write or socket

operations). In this way, the intrusion is propagated throughout the system.

Generally an intrusion recovery system requires an intrusion detection system

(IDS) to discover the intrusion and initiate the recovery procedure. The IDS is

responsible for detecting one or several objects that are compromised by the intru-

sion. In our model, we name these victim objectsintrusion symptoms. Examples

of intrusion symptoms can be applications that received malformed network pack-

ets, modi�ed system binaries or data, and malware processesor �les. Note that

we do not assume the IDS is fast or perfect, nor we need it to provide us with the

attack seeds. In fact, due to the limitations of current techniques, the detection

of the intrusion often happens after attack escalation and is far from enough to

assess the system-wide damage. SHELF does backward taint tracking to identify

the source of the intrusion. We describe these issues in Section 3.3.2.

To systematically evaluate the impact of an intrusion, SHELFclassi�es all the

objects in a compromised system into three categories:

malicious objects : Objects created directly or indirectly by the attacker.

Malicious objects include attack seeds and objects that arecreated by malicious

processes and infected processes.

infected objects : Objects that are originally good but are infected by inter-

acting with malicious objects or infected objects in the system.

uninfected objects : Good objects in the system which are not yet infected

by the intrusion.

3.2 Overview of Our Approach

As previously stated, the basic goal of SHELF is to preserve business continu-

ity, availability and recovery accuracy in an automatic intrusion recovery system.

To preserve business continuity, SHELF periodically records accumulated useful

28

xx

x

xx

xxx xx xxx xx

Normal run Damage assessment
phase

Recovery phase Normal run

Removed

intrusion begins anomaly detected

intrusion begins

running
unavailable or
quarantined

state recording state restore legitimate changes undesired changes

xx

uninfected object malicious object infected object

finish recovery

finish recovery

uninfected
application

infected
application

malicious
application

infected
file

Figure 3.1. Overview of SHELF's workow. The upper part of the �gure shows that
SHELF applies di�erent policies for recovering di�erent ki nds of objects. The solid line means
the object is functional and the dashed line means that the object is not available during that
period. The lower part of the �gure demonstrates a system-wide view of objects. The intrusion
starts from a malicious object (attack seed), and then propagates to other objects. During the
recovery phase, SHELF quarantines malicious and infected objects from uninfected objects to to
prevent propagation of the infection (as indicated by the red-colored X symbols) . Objects are
in turn healed and de-quarantined so that the system becomesclean.

states for each stateful running application in concern. Thus during recovery, a

compromised application can be restored to the most recent clean state to avoid

signi�cant business continuity loss which in many situations can be caused by

blindly restarting a stateful application in a stateless way. Regarding �les that

are infected by the intrusion, SHELF �rst restores them to a previously recorded

clean version, then replays the state-changing operationstowards them until their

content reaches the state just before they are infected by intrusion. The recovery

activities of infected �les and application processes are carefully synchronized to

eliminate inconsistency between repaired �le and process states.

On the other hand, SHELF coordinates system-wide damage tracking and quar-

antine operations to precisely determine and quarantine malicious and infected

objects in the system quickly after the intrusion symptoms are detected. In con-

29

trast, uninfected applications could keep running with caution during the recovery

procedure and uninfected �les can be properly accessed. In this way, the overall

system availability is maintained to a desirable extent.

As Figure 3.1 shows, SHELF always operates on three phases: thenormal run

phase, the damage assessment phase, and the recovery phase.During the normal

run phase, SHELF does the periodically state recording for each object in the sys-

tem. Simultaneously, SHELF logs essential system-wide events to track the objects

and their interactions at multiple levels. A taint analysisengine is responsible for

dynamically analyzing and maintaining the dependencies among objects. When

intrusion symptoms are detected by the IDS or an administrator, SHELF enters

the damage assessment phase and it swiftly determines the malicious objects and

infected objects from the maintained object dependencies.Based on the classi�-

cation of objects and pre-de�ned policies, SHELF prepares scripts for performing

quarantine and recovery on each object. After that, SHELF begins the recovery

phase. During the recovery phase, all the uninfected objects remain their function-

ality while the infected and malicious objects are quarantined. Quarantined objects

are deactivated so that they are incapable of infecting other objects. Furthermore,

operations that access the quarantined objects are also regulated. Quarantined

objects are then properly recovered according to the recovery policies, which we

discuss in detail in Section 3.3.3. Once an object is healed,SHELF de-quarantines

it so that it can interact with other uninfected objects in the system. The recovery

phase is completed when all the quarantined objects are eliminated or recovered.

After that the system enters the normal run phase again.

3.3 Design of SHELF

Figure 3.2 shows the framework of our system. In SHELF there are three separated

layers in the system: the guest layer, the VMM layer and the host layer. SHELF's

components are in the VMM layer and the host layer, which are isolated from

the guest layer that is vulnerable to attacks. These components include: (1) the

state recording and restore module, (2) the logging and reconstruction module, (3)

the dynamic damage assessment engine, (4) the quarantine enforcer, and (5) the

recovery engine. We describe each of the components below.

30

3.3.1 State Recording and Restore

The state recording and restore component is responsible for periodically record-

ing states of objects in the normal run phase and rolling backinfected objects

to previously recorded clean states in the recovery phase. The basic technique

used here is the checkpoint and rollback mechanism, which isnot new. However,

considering our speci�c on-the-y recovery environment, our design should have

properties such as exibility, correctness and e�ciency.

In order to provide exibility for handling object-level recovery and to optimize

storage consumption, SHELF allows asynchronous checkpoints when performing

state recording, which means that we can record the states ofdi�erent objects in

the system at separate time points. Also we assign di�erent checkpoint intervals

to di�erent applications and �les.

The next concern is correctness. One major problem with asynchronous check-

points is that inter-dependent processes and �les often reach di�erent states after

recovery. This can cause incorrect results and cascaded rollback among those un-

synchronized objects. For example, a �le may su�er from a double-replay error

- legitimate �le operations are replayed, but they will be executed again by the

rolled-back process.

To address this problem, for two processes that have inter-dependencies, SHELF

records their states at the same time to eliminate inconsistencies. For process-�le

inconsistencies, we propose two solutions. The �rst is to shorten the �le operation

replay period of each related �le until its state after replay is synchronized with the

least recent recorded state of the related process. In otherwords, during recovery,

a �le is rolled-forward to the same time as the related process rather than the time

just before it is infected. Hence the double-replay error is avoided. However, this

method sacri�ces a certain amount of useful state. The othersolution uses deter-

ministic replay [86] to advance the rollbacked process state to the last uninfected

state. This method minimizes the useful state loss, but it needs to add new facil-

ities for deterministic recording and replay. Currently weuse the �rst method to

solve the synchronization problem, and we plan to implementthe second solution

as our future work.

In the production environment where SHELF runs, we must require that SHELF's

mechanism has good performance, in terms of runtime overhead and storage con-

31

Backend
Host

VMM
Layer

Guest
Layer

State Recording &
Restore Module

Logging &
Reconstruction

Module
Quarantine Enforcer Recovery Engine

Dynamic Damage
Assessment Engine Recovery

Script

Recorded State

Quarantined ObjectsUninfected Objects

Figure 3.2. SHELF's architecture

sumption. In SHELF's design, when recording the state of a guest application,

SHELF creates a backup process in the host layer to store a snapshot of the entire

address space of the guest process. By preserving the recorded state in host mem-

ory, we not only avoid the cost of disk access, but also isolate the recorded state

from the guest system for better security. The creation of the backup process is

in a copy-on-write page sharing fashion, which is similar tothe fork operation in

UNIX systems. The di�erence with the fork is that standard fork operations do

page sharing at a single abstraction level, while SHELF does page sharing across

two abstraction levels: the virtual environment layer (i.e., the guest layer) and

the host layer. Usually these two layers use di�erent page tables and are isolated

from each other. We describe the implementation of thiscross-layerpage sharing

technique in Section 3.4.3. Adopting this technique, the time taken by performing

a state recording operation towards a guest process is almost equivalent to a single

fork operation on host. The time to rollback a process to a recorded state is al-

most instant. The memory consumption is also largely minimized by copy-on-write

sharing mechanism.

32

3.3.2 Logging and Dynamic Damage Assessment

The dynamic damage assessment capability is achieved by tracking the inter-

dependencies between objects in run-time. Through these dependencies, we know

how the infection is initiated and how it propagates from oneobject to another.

The facility for this functionality consists of two parts: the logging and reconstruc-

tion module implemented at the VMM layer, and the dynamic damage assessment

engine located at the host layer.

Logging and Dependency Tracking The logging and reconstruction module

logs the events that may cause object inter-dependencies during the normal run

phase. For performance and availability reasons, we mainlymonitor and analyze

execution ows and data ows at the system call level. We adopt similar depen-

dency rules as used in other works ([95, 11, 99]) which utilize dependency tracking

techniques, and we list these rules in Table 3.1. SHELF uses a virtual machine

to audit various kinds of system calls corresponding to the events that cause ob-

ject inter-dependencies. SHELF also needs to reconstruct object and system call

information from the VMM layer to identify an object in its lif etime and prepare

replay or undo data for recovery. These information includes system call names

and arguments, �lenames/paths, inode numbers, process PIDs, write contents, and

so forth. SHELF also records the timestamp for each system call entry.

Using these recorded object inter-dependencies, SHELF generates and main-

tains dependency graphs [95] during the normal run phase. Ina dependency graph,

each vertex represents an object in the system, while each graph edge represents

the event that causes objects dependency. Each graph vertexis associated with

an object ID and each graph edge is associated with a timestamp of the event.

Since the graph may grow very large and produce false-positive results on taint

propagation, SHELF performs graph pruning to reduce the storage size and false-

dependencies. For example, we do not consider situations like independent process

termination, irrelevant signals, or accessing dummy objects like stdin / stdout and

/dev/null .

Backward and Forward Taint Tracking

The dynamic damage assessment engine implemented on the host layer does

33

Table 3.1. Dependency Rules
Dependency Events System calls

File ! Process
Read or execute �le
object

read, readv, execve,
socketcall(recv),etc.

Process! File
Create or write �le
object

write, writev, create,
socketcall(send),unlink,
etc.

Process! Pro-
cess

Process creation, IPC,
shared memory

fork, pipe, mmap, kill,
etc.

backward and forward taint tracking to determine both malicious and infected

objects in the system. It operates on two steps: �rst, upon receiving intrusion

symptoms reported by the IDS, SHELF performs backward taint tracking starting

from the intrusion symptoms to trace the chains of events that are on the intrusion

path, and eventually identi�es the source of the intrusion (attack seeds). In the

second step, SHELF performs the forward taint tracking starting from the attack

seeds to comprehensively assess the system-wide damage andclassify objects for

quarantine and recovery.

The reason to perform backward taint tracking is that the intrusion detection

may often happen after attack escalation so that the intrusion symptoms reported

by IDS are not necessarily the source of intrusion. In general, we use a method

similar to the BackTracker [95] paper to determine the attack seeds. The technique

mainly performs a backward search on the maintained dependency graph, and uses

�ltering rules to �nd the source of the intrusion. In SHELF's environment where

attackers cannot get physical access to the system, we can re�ne the attack seeds

to processes that have opening connections to the outside, for example,httpd ses-

sions. Moreover, administrators can also specify the set ofvulnerable services and

vulnerable ports to further re�ne this procedure. Besides attack seeds, SHELF also

records the intrusion timestamp, which is identi�ed as the relative time when the

attack seeds perform the �rst action which eventually propagates to the intrusion

symptoms detected (e.g. executing injected codes).

Once the attack seeds are decided, the next step is the forward taint tracking.

At �rst SHELF marks the attack seed as tainted, and assigns itsinfection times-

tamp to be the intrusion timestamp that is determined duringthe backward taint

tracking step. Then SHELF performs a forward search on the �ltered dependency

34

graph. For each dependency event that is represented by a graph edge, we do

the following check: if there exists dependency A! B and A has been marked as

tainted, we mark B as tainted only when A's infected timestampis smaller than

the timestamp of that dependency event. SHELF keeps doing this procedure until

there is no more new tainted object in the system. At the same time, SHELF deter-

mines malicious objects and infected objects from the tainted object set according

to the following rules: (1) The attack seeds are classi�ed asmalicious objects. (2)

Objects that are created by tainted objects are classi�ed asmalicious objects. (3)

Other remained tainted objects are infected objects.

3.3.3 Quarantine and Recovery

The motivation of the quarantine procedure is to prevent themalicious and infected

objects from infecting other objects in the system during the recovery phase. Thus

uninfected objects and objects that are repaired and de-quarantined can continue

functioning to provide availability. The quarantine enforcer in SHELF is imple-

mented at the VMM layer. During the quarantine procedure, it manipulates the

operating system kernel to perform the quarantine task according to quarantine

policies.

Table 3.2 shows the default policies and mechanisms that SHELF adopts in the

quarantine procedure. For malicious objects, there is no need to recover them and

they should be destroyed completely. For infected objects which are worthy to be

recovered, we must ensure: (1) They should be suspended or deactivated because

they are currently in corrupted states. (2) Operations thataccess the quarantined

infected objects should be regulated to prevent the infection from propagating to

other objects.

One important issue is that regulating the operations that access quarantined

objects may a�ect the availability of the system. This happens when a quarantined

object is accessed by an uninfected or de-quarantined process. If we let the pro-

cess wait until the quarantined object is repaired and de-quarantined, the process

would lose availability during the waiting period. To minimize this availability

loss, besides the waiting policy, SHELF has an alternative deny policy for regulat-

ing the operations during the quarantine period. In speci�c, if SHELF detects a

35

system call that accesses a quarantined object, SHELF would intercept that sys-

tem call from the VMM layer so that the system call would never reach the guest

kernel, then SHELF modi�es the system call return value to an error value which

informs the guest process that this access attempt is denied. Though this may af-

fect the correctness of some applications, in our observation, most service-oriented

and user-oriented applications return a failed request message and can continue to

deal with other requests correctly.

While quarantining infected objects in the system, SHELF recovers them. The

recovery engine at the VMM layer, cooperating with the state recording and restore

module, performs the recovery procedure. As mentioned in Section 3.3.1, the

primary task for recovering an object is to restore the object state to the most

recently before-infection-state. Once an object is recovered, SHELF de-quarantines

it so that it can resume its pre-intrusion functions as if it was an uninfected object.

Also, in order to assure correctness, dependent processes and �les are clustered into

groups: objects that are in the same group are simultaneously de-quarantined and

rolled-back to the states with the same timestamp.

3.4 Implementation Issues

We implement SHELF prototype to demonstrate its capability to perform on-the-

y recovery. The VMM in SHELF's design is User Mode Linux (UML) [100], which

is a light-weight VMM. Leveraging SHELF's techniques in UML poses a variety

of challenges. In this section, we �rst briey describe the key architecture of UML

and the virtualization techniques that our prototype takesadvantage of. Then we

discuss our primary implementation issues through the restof the section.

The total amount of code in our prototype is approximately 3900 lines, which

include 2310 lines of code for the VMM layer components and 1600 lines of the

host layer components. We did not make changes to the guest system.

3.4.1 User Mode Linux

User Mode Linux (UML) is a VMM that lets a guest Linux kernel run in the user

mode. UML adopts a OS-on-OS structure, which ports the entireLinux system

36

Table 3.2. Quarantine Policies
Objects Policies Mechanism

Malicious Objects Destroy objects

Process: send SIGKILL
signal.

File: remove the �le.

Infected Objects

Suspend and

disallow access

Process: remove from
the scheduling queue
(run-list), disallow
reading the shared
memory region.

File: Nullify or block
system calls that read,
write or execute the �le.

Uninfected Objects
and De-quarantined
Objects

Regulate access: wait

Regulate access: deny

Block the violating sys-
tem call until the object
is de-quarantined.

Nullify the violating
system call and return
a permission denied
error.

from hardware interfaces to host OS services like system calls. We intensively

studied the structure of UML running on the SKAS0 mode. From theviewpoint

of the host, the UML kernel is a user process which has a complete separated

address space from its guest processes. Each guest process has a corresponding

host process that is traced by the UML kernel process. The UML kernel remotely

manipulates address spaces and handles page fault for its guest processes. This

is done by inserting stub pages that contain system call information and signal

handlers into the address space of the corresponding host process, right above its

stack. UML is also responsible for handling system calls issued by guest processes.

In SHELF, to establish communication channels between the host and the

VMM layer, we modi�ed the uml mconsoleprotocol to send control commands and

receive responses. In addition, we create �les that are memory-mapped between

both host layer components and the VMM to transfer non-control data.

37

3.4.2 Reconstruction and Monitoring

In order to track the inter-dependencies of objects in the system at the normal run

phase, SHELF must perform the following actions: �rst, SHELF identi�es each

object in the system at run-time, which we call dynamic reconstruction; Second,

SHELF monitors and records system events that cause inter-dependencies.

To accurately identify objects, we need to preserve OS-aware information (e.g.

to reconstruct process descriptors, �le paths and inode numbers) at run-time while

doing monitoring. In virtual machine systems, usually there is a semantic gap [101]

when we are trying to get OS-level semantics from the VMM layer. In UML's

design, the VMM and the guest Linux kernel are within the same address space

on host, making the e�ort to bridge this semantic gap easier.By adding some

codes to the VMM, we are able to directly refer OS kernel data structures. We

retrieve each process descriptor (task struct) from the all-task double linked

list, and the inode number of �le objects from the open �le table (files struct).

Moreover, SHELF keeps track of events that are related to the object creation

and destruction. In this way, SHELF maintains a list of concerned objects in the

system. For each object, SHELF associates it with a unique id (i.e., the hashed

value of the object's PID or inode number) and two timestampsfor recording the

creation and destruction time of that object.

Besides the object list, SHELF also maintains a list of eventsthat cause inter-

dependencies of objects. To monitor and record these events, we modi�es the VMM

of UML by adding new functions to its system call interceptionfacility. When a

system call is issued by a guest process, the VMM which is tracing that guest

process viaptrace will be noti�ed by a special signalSIGTRAP + 0x80, and a trap

handler will take control. From the trap handler, we intercept system calls and

retrieve system call numbers and arguments from the register sets, which reside

in the thread �eld of the process descriptor of that guest process. Furthermore,

since the VMM and other guest processes are in separated address spaces on the

host, we have to useptrace with PTRACEPEEKDATAoption to retrieve system call

information like �le paths and writing content from the host address spaces.

38

3.4.3 State Recording and Rollback

In SHELF, regarding process state recording, the snapshot ofa process state con-

sists of the kernel part and the user part. The kernel part includes the process

descriptor, thread info structure, the kernel stack, pending signals and open �le

handlers, etc. Moreover, SHELF records some architecture-dependent data struc-

tures that are UML-speci�c such asmmucontext . SHELF reconstructs these data

structures and stores them in a data structure namedthread control block .

SHELF keepsthread control block s in the host memory for isolation and good

performance. During the recovery phase, each entry of thethread control block

is copied back into the corresponding data structure of the guest kernel.

On the other hand, the user part of the snapshot, which is the entire address

space of the process, is often very large and costly to record. As mentioned in

3.4.1, each running guest application in UML has a corresponding host process to

provide the address space for it. To make a snapshot of a guestprocess, SHELF

�rstly creates a backup process on host which shares the address space with the

host process that the guest application corresponds to. Themethod is similar

to the fork , but it is done by the VMM and uses UML's trampoline code so

that the backup process has stub pages and is ptraced by the VMM. The backup

process is invisible to the guest kernel and is forced to sleep upon its creation. In

order to restore the address space of an infected guest application during recovery,

SHELF changes thecontext->mm id of the infected guest process to the PID

of the backup process on host. Thus the guest kernel will recognize the backup

process as the new address space provider. Then SHELF invokesthe switch mm

routine to modify the guest page table entries for establishing new mappings. After

reinstating the thread control block , SHELF activates the backup process and

sends a SIGKILL signal to destroy the disengaged host process which corresponds

to the infected address space. By adopting this cross-layerpage sharing mechanism,

the state recording time of a guest application is largely reduced (1ms - 10ms for

most applications), and the state restore operation is almost instant.

To achieve background recovery, SHELF does not replay the �lestate changing

events at the VMM layer. Alternatively, it invokes a user mode helper process to do

that job. Thus the recovery routine can be scheduled along with other uninfected

and repaired processes in the system.

39

Table 3.3. Damage Assessment Statistics
Backward Taint tracking Forward Taint tracking

Intrusion Infected Symptoms Attack Seed
Malicious
Files

Malicious
Processes

Infected
Files

Infected
Processes

Events logged

Malware install
Modi�ed system bi-
nary (netstat)

remoted login
(sshd)

14 15 21 4 453K

Internet worm
Malware script
(1i0n.sh)

bind program that
has TSIG vulnera-
bility

85 27 20 6 1604K

3.5 Evaluation

In this section, we describe the experimental evaluation ofour SHELF prototype.

We have two goals for our evaluation. First, we want to test SHELF's ability to

dynamically assess damages after intrusion symptoms are detected. Second, we

want to measure the performance of SHELF. This includes the e�ciency of state

recording, the run-time overhead during the normal run phase, and the availability

level of the damage assessment phase and the recovery phase.

Our experiments are conducted on a machine with a 2.13 GHz Intel Core Duo

2 CPU with 2 GB memory. The host operating system is Fedora 7 with Linux

kernel version 2.6.22.9. The version of User Mode Linux kernel is 2.6.24.2 (SKAS0)

and the guest system is Ubuntu Hardy Heron. The guest memory is con�gured to

be 1024M.

3.5.1 Damage Assessment

We evaluate SHELF's damage assessment capability by launching two real attacks

against honey-pot systems that are protected by SHELF. Then we measure the

results of SHELF's damage assessment. We describe each scenario below.

Malware install The attacker logs into the system byssh using an unprivileged

user account. Then she launches thesendmail local escalation exploit to gain

root access. The attacker uses that root shell to download the ARK rootkit,

which replaces system binaries with backdoored versions. These binaries include

syslogd , login , sshd, ls , ps, netstat , etc. The attacker uses a modi�ed version

of netstat to hide all the connections for her own uid. The IDS of the system

40

detects the modi�cation of system binaries by the integritycheck, then it noti�es

SHELF to begin the damage assessment phase.

Internet worm Our victim machine which runs thebind service is attacked by the

lion internet worm via exploiting a bu�er overow vulnerability of the service. The

worm runs several shell scripts to do the following in turn: adding itself to startup,

deleting related system logs, rewriting several system programs to trojans, scanning

and attacking vulnerable hosts, reading the password �les (/etc/password and

/etc/shadow) and sending them out through themail program, downloading code

from a remote site and �nally leaving an open root shell open.The IDS detects a

malware script (/dev/.lib/1i0n.sh) as an intrusion symptom.

Table 3.3 shows the results of SHELF's damage assessment. Starting from

an intrusion symptom, SHELF successfully performed backward taint tracking to

distinguish the attack seed, which is the login session of that malicious user and

the hackedbind service respectively. After that, SHELF performed forward taint

tracking to identify di�erent kinds of objects in the system. The statistics are also

shown in Table 3.3.

3.5.2 Performance

Runtime overhead. During the normal run phase, SHELF records dependency-

making events for every process it monitors. Also it does reconstruction to provide

OS-aware information for object identi�cation and future analysis. Furthermore,

a taint propagation graph is maintained for keeping track ofinter-dependencies

of objects. These three operations make up the system running overhead which

degrades the overall performance of the system. (In our measurement, the process

state recording usually takes less than 10ms so that it makesup little portion of

the runtime overhead.) In most cases, the auditing overheadis not constant and

it largely depends on applications that we trace. In general, SHELF poses a larger

overhead to I/O-intensive applications than computational-intensive applications.

We focus on the situation when the system is heavily-loaded with �le system

operations. We run the following workloads as benchmarks toevaluate the run-

41

time overhead: (1) Extracting a Linux 2.6.24.2 source tarball (.tar.bz format). (2)

Building a Linux 2.6.24.2 UML kernel from source. (3)dbench 3.0: A �lesystem

performance benchmark which measures the throughput of thesystem as a �le

server (single client, 300s). (4)Apache abtest, which benchmarks the system

performance as a HTTP server by measuring the average response time and the

transfer rate. We set up 200 concurrent clients, with each client generating 2000

requests to obtain a 95KB �le from a web server that runs in SHELF system.

We set the process state recording interval to be 2 seconds. We conduct these

benchmarks 10 times separately in three environments: hostmachine, UML and

our SHELF system. In workload (5) we do not test the performance of native

Linux since the UML uses TUN/TAP device for virtual networking so that the

networking performance is not comparable to the native hostwhich has direct

network access. Table 3.4 shows the results of our conductedexperiments. We can

see that the overhead introduced by SHELF is from 1.076x to 1.65x.

Storage consumption. In order to record system call results as well as �le state

modi�cations (e.g. user space content forwrite system call) for future selective

event replay, SHELF requires relatively large disk space forstoring the logged

events. Table 3.5 shows the raw and compressed event log �le sizes for the two

workloads we described above. We can see that the compression of the log data can

e�ectively reduce the storage consumption of SHELF. One advantage of SHELF

over host-based approaches is that the event log is stored atthe host �le system

so that it does not consume the disk space that allocated to the guest system.

Availability. From the point that intrusion symptoms are detected to the time

when the three sets of objects are determined, SHELF must suspend all the sus-

picious processes in the system to prevent taint propagation during the damage

assessment phase. Fortunately, this system down time is very short in most cases.

Essentially, SHELF �rst searches the object dependency graph backwardly to de-

cide the attack seeds, then searches the object dependency graph forwardly to

determine malicious and infected objects. The time complexity can be expressed

asO(j E j + j V j) since each vertex and each edge will be explored twice in the

worst case. To further reduce the damage assessment cost, SHELF dynamically

42

maintains and prunes the object dependency graph and forces�ltering rules for

�nding the attack seeds. In our measurement, for attacks that we evaluated which

involve less than 500 objects, the damage assessment phase is 0.17 seconds at most.

Moreover, we simulated a random object dependency graph which has 1000 objects

and 100000 dependencies (this is too dense for real cases), the damage assessment

time is 1.18 seconds. We believe that optimization of the analysis algorithm and

adding more �ltering rules can further reduce the system downtime e�ectively.

Regarding applications that are functional during the recovery phase, the avail-

ability level is still less than the normal run phase since SHELF is doing background

recovery jobs which hurt the system performance. We measurethe throughput of

the dbench and the Apache abwhile the system is performing intensive recovery

jobs. The results are 32.92MB/s for thedbench and 17333Kb/s for theApache

ab. Compared to the throughput under the normal run phase, the losses are 21.4%

and 12.4% respectively.

3.5.3 Discussion and Limitation

Porting SHELF to other virtual machines. SHELF's functionalities can be

ported to other virtualization environments, as long as thevirtual machine monitor

satis�es the following requirements: (1) It is convenient to intercept and record

system calls at the VMM layer. (2) It is convenient to access the guest process

address space and the guest �le system with the help of the VMM.(3) It is possible

to reconstruct user-level objects and kernel-level data structures at the VMM layer.

To our knowledge, current open source virtual machines suchas Xen and KVM

satisfy these requirements so that SHELF can be ported to these virtualization

environments without much e�ort.

Detecting and subverting SHELF. To achieve the on-the-y intrusion recovery

in a more attack-resilient and elegant way, SHELF adopts a virtualization-based

system architecture. Although it is generally di�cult to penetrate a virtual ma-

chine, studies show the possibility that some virtual machines can be detected and

eventually subverted by exploiting their design defects and software bugs. More

43

Benchmark
Native
Kernel

UML SHELF
SHELF's
addon
overhead

Kernel
Decompression

19.52s 31.89s 52.46s 1.65x

Kernel Build 217s 379s 410s 1.08x
Dbench
throughput

294.18
MB/s

63.36
MB/s

41.91
MB/s

1.52x

Apache ab re-
sponse time

N/A 44.73ms 48.11ms 1.076x

Apache ab
transfer rate

N/A
21290
Kb/s

19797
Kb/s

1.075x

Table 3.4. Runetime Overhead of SHELF

Benchmark
Events
Logged

Log Size
(Raw data)

Log Size
(Compressed)

Kernel
Decompression

133308 541.0MB 82.7MB

Kernel Build 1344712 445.1MB 89.1MB

Table 3.5. Storage consumption

speci�cally, regarding the User Mode Linux, we can detect theexistence of VMM

by issuing special instructions to query stats from the processor or by examining

kernel debug information. Moreover, a proof-of-concept code is proposed to crash

the UML kernel [102]. We believe that these problems can be �xed by improving

the design and software quality of the VMM.

3.6 Summary

Preserving business continuity and availability in an automatic intrusion recovery

system is a highly-desired but very challenging goal to achieve. In this chapter,

we proposed SHELF, an VM-based on-the-y intrusion recovery prototype system

that provides a comprehensive solution to preserve business continuity, availability

and recovery accuracy. One unique feature of SHELF is that it can do coordinated

�le/process state recording, damage tracking, quarantineand recovery without

sacri�cing too much availability. Our evaluation showed that SHELF can perform

accurate recovery on-the-y e�ectively with an acceptableperformance overhead.

44

We believe that a system such as SHELF can provide accurate recovery results

and e�ectively reduce human e�orts in computational environments that have

requirements of business continuity and availability.

Chapter 4
Protection of Kernel Integrity for

Commodity OS from Untrusted

Extensions

Kernel-level extensions are widely supported in commodityoperating systems to

extend the kernel's functionality. However, the extension interface could also be

leveraged by attackers to tamper the integrity of the OS kernel. For example,

attackers can install malicious extensions such as kernel rootkits to hide their ac-

tivities in the system. On the other hand, the existence of buggy third-party device

drivers exposes many vulnerabilities which can be exploited by attackers to inject

their malicious code into the kernel space. These untrustedextensions threaten

the kernel integrity greatly, yet unfortunately in many cases users have to let them

run in order to provide the desired functionalities and availability. Therefore, pre-

serving the OS kernel integrity from the presence of untrusted extensions remains

a challenging problem.

Previous research e�orts on protecting the OS kernel primarily target at one

aspect of kernel integrity protection, such as code integrity [49, 50], data integrity

[52, 53] and control ow/data integrity [54, 55, 56]. While these approaches are

e�ective against certain categories of attacks, the lack ofmulti-aspect protection

renders the system's incapability to deal with multiple types of malicious activities.

For example, systems that only guarantee the integrity of kernel code and hooks

are vulnerable to DKOM (Direct Kernel Object Manipulation) attacks. Similarly,

46

protecting kernel code and data is not enough for defeating new control ow attacks

such as return-oriented rootkits [19, 103]. Moreover, current approaches are also

limited in countering advanced attacks such as direct kernel stack manipulation in

commodity systems, in which the attacker manipulates control and/or non-control

data in the kernel stack shared by all code entities in the OS kernel.

Another di�culty is about making the protection scheme practical and generic.

Several proposals [49, 50, 51] preserve kernel code integrity by preventing untrusted

code from executing in the kernel space to defeat code injection and malwares.

However, they also eliminate all the benign functionalitiesand availability provided

by untrusted extensions. Quite a few security approaches [55, 52, 61, 104, 105]

utilize the knowledge of kernel data structures to achieve �ne-grained auditing

and intrusion detection. However, these approaches are dependent upon data

structure semantics of a speci�c kernel, making them di�cult to adapt di�erent

OS kernels with another version or from other venders. Moreover, the performance

overhead induced by dynamically reconstructing and tracking �ne-grained kernel

objects makes these approaches not that suitable for an online protection system.

To achieve tamperproof and transparency in a system that protects the OS

kernel, a common approach is to leverage the virtual machinemonitor (VMM),

which provides another layer of indirection. In such systems, to protect a security

sensitive-kernel object, the VMM intercepts all the events that access this object

and validates each event based on the protection policy. This approach is e�ective

for protecting a small number of crucial objects in the kernel. However, severe

performance problem arises once the quantity of protected objects becomes large,

say, the entire kernel code and data area. The reason is that,no matter how VMMs

are trapping these events (e.g., via instruction instrumentation or page protection),

performing mediation for each event will always cause control transfers between the

VMM and the guest, which will need multiple time-consuming privilege transitions

(e.g., ring faults or VMEXITs). Researchers have proposed techniques such as

hook indirection [54] to mitigate the performance problems for hook protection.

However, this approach is only useful for protecting objectsthat are scattered

across page boundaries, yet still cannot be applied to the entire kernel code and

data.

This chapter presents HUKO, a hypervisor-based integrity protection system

47

designed to protect commodity operating system kernels from untrusted exten-

sions. HUKO allows users to execute untrusted extensions in the kernel space to

provide desired functionalities. The behaviors of untrusted extensions, however,

are con�ned by mandatory access control policies, which signi�cantly limit the

attacker's ability to compromise the integrity of the kernel. In order to achieve

multi-aspect protection, HUKO leverages hardware assisted paging to transpar-

ently isolate untrusted extensions from the OS kernel so that it could mediate all

interactions (including memory modi�cation, control transfers and DMA) between

extensions and the kernel. Regarding kernel stack integrity, HUKO's approach in-

cludes a VMM-levelprivate stack with lazy synchronization to o�er a transparent

and e�cient stack separation and permission management forunmodi�ed OS ker-

nels. To address the challenge of mediation performance, HUKOintroduces a

design namedsubject-aware protection state transitionto eliminate unnecessary

privilege transitions caused by mediating benign accesses. HUKO is a practical

approach because it requires little change for either OS kernel or extensions. Also

it does not depend on semantic knowledge of kernel data structures so that it can

inherently support multiple commodity operating systems and legacy extensions.

We have implemented HUKO prototype based on the open source Xen hyper-

visor. To facilitate HUKO's design, we leverage contemporaryhardware virtual-

ization techniques such as Intel's EPT, VPID and VT-d1 [39, 106]. We evaluated

HUKO's protection e�ectiveness by running malicious kernel extensions in both

Linux and Windwos. Our experiments show that HUKO can protect the kernel

integrity in the presence of various kinds of malicious extensions, including DKOM

and return-oriented rootkits. In terms of mediation performance, the evaluation

results show that the average performance overhead in application level bench-

marks is ranged from less than 1% to 21%. Even for extreme cases when HUKO

isolates the entireext3 �le system (the largest module in our Linux OS) from the

kernel, the mediation overhead for extracting a Linux kernel tarball is about 21%,

with the protection state transfer rate at 390,000 per second.

We believe that HUKO provides a generic and transparent framework for run-

ning untrusted code in OS kernel with enhanced integrity protection for commodity

systems. Also, this framework could be used to enforce mandatory access control

1AMD also has similar techniques with di�erent names.

48

policies inside commodity OS kernels with an acceptable impact on performance.

The remainder of this chapter is organized as follows. We �rst describe the

threat model, the integrity properties that HUKO enforces andour assumptions

in Section 4.1. Section 4.2 provides an overview of the design of HUKO. Section 4.3

details the design and implementation of the entire architecture. Our evaluation

experiments for both the protection e�ectiveness and performance of HUKO are

shown in Section 4.4. We discuss limitations and future workof our system in

Section 4.5. Finally, Section 4.6 concludes.

4.1 Kernel Integrity Threat Model

In this work, we focus on attacks that the adversary utilizesthe kernel extension

interface to compromise the kernel integrity, which is the most common method

to attack a commodity OS kernel. To speci�cally illustrate the threats, we present

three di�erent attack scenarios as follows: (1) The attacker gains the root privilege

of the entire system, then he loads malicious extensions such as kernel-level rootkits

into the OS kernel. (2) The attacker exploits a vulnerability existed in a benign

kernel extension (e.g., a buggy device driver) to inject malicious code and therefore

changes the extension's behavior. (3) A careless normal user loads an unveri�ed

kernel extension (e.g., a third-party device driver), which contains malicious code.

There are various ways in which these malicious code could damage the control ow

integrity and data integrity of the kernel, for example, direct modi�cation of kernel

code, modifying control data (e.g., system call table, IDT and function pointers),

modifying non-control data (e.g., process descriptors and�le system metadata),

writing to the kernel space via malicious DMA requests, and stack manipulation

(e.g., return-oriented attacks).

We classify subjects in an operating system kernel into three categories. The

�rst category is the OS kernel, which HUKO aims to protect. The second category

consists of trusted kernel extensions, which are kernel extensions trusted by the

system administrator. Generally their code need to be attested and veri�ed to

guarantee security. The third category is untrusted extensions, which are exten-

sions that may be compromised or inherently malicious. Rootkits and unveri�ed

device drivers belong to this category.

49

HUKO protects the integrity of the OS kernel by enforcing the following prop-

erties in a mandatory protection system:

� Kernel code/data integrity : code, static data and dynamic data of the

OS kernel are protected from being modi�ed by untrusted extensions via

direct memory access or DMA access.

� Architectural state integrity : architectural environment describing the

execution state of the OS kernel such as segment registers, control registers

and certain ag registers cannot be altered by untrusted extensions.

� Control ow integrity : (1) control transfers from untrusted extensions to

the OS kernel, including function calls, jumps and preemptions, are restricted

to a set of kernel service functions namedtrusted entry points (TEPs) spec-

i�ed by the OS provider or the administrator; (2) function call consistencies

such as call-return consistency are strictly enforced.

� Stack integrity : (1) malicious code cannot be injected into stack frames

belonging to the OS kernel; (2) For an untrusted extension, manipulating

control data (i.e., function pointers, return addresses) in its own stack frames

cannot subvert control ow integrity stated above; (3) non-control data (i.e.,

saved registers, parameters and variables) and control data in stack frames

owned by OS kernel or other extensions cannot be corrupted byan untrusted

extension.

For practical and usability reasons, the default mandatoryaccess control policy

of HUKO does not prohibit the OS kernel from reading information from untrusted

extensions, which is di�erent from classic integrity models such as Biba. However,

if there is a need to satisfy this strict integrity requirement, the exible mediation

and enforcement mechanism in HUKO can still support system administrators to

write policies with appropriate exceptions to enforce the \no read down" property.

HUKO is designed to be an added-on layer which provides an enhanced integrity

protection for various operating system kernels with an a�ordable performance

cost. As a design principle, HUKO relies on as little semantics of any speci�c kernel

50

as possible. On the other side, HUKO is not the elixir for every kernel security

threats. For example, HUKO is limited in verifying the correctness of function

parameters and general data passed between the OS kernel andextensions, which

could open certain avenues that impact kernel integrity in indirect ways. Also

our system does not prevent the untrusted extension from abusing the privilege

granted by the OS kernel in current stage. We discuss these limitations and possible

solutions in Section 4.5.

This work is focused on protecting the integrity of OS kernels. Other security

issues, such as attacks on secrecy (e.g., information leakage) and availability (e.g.,

interrupt ooding, abuse of resource) of OS kernels are not in the scope of this work.

Also, this work concentrates on dealing with threats from thekernel extension

interface, and we assume that the hardware is trusted for theOS kernel. Regarding

attacks to the kernel directly from the userspace, HUKO prevents untrusted kernel

extensions from executing user-level content and prohibits user programs to write

kernel memory. Previous work such as Secvisor [49] providesin-depth research

on protecting the OS kernel from userspace intrusions usinga hypervisor, and we

believe that its method can be e�ectively integrated with HUKOto achieve a more

comprehensive protection. At last, in HUKO system, the hypervisor is the trusted

computing base which we assume its integrity is preserved.

4.2 HUKO Overview

4.2.1 Design Principles

The following paragraphs describe three major principles which motivated our

research and guided our design process of the HUKO system.

� Multi-aspect Protection. The architecture must guarantee that the ker-

nel integrity properties stated in Section 4.1 are enforcedwith mandatory

protection. Security-sensitive operations that involve interactions between

untrusted extensions and the OS kernel, including memory reference, DMA,

control transfers and stack modi�cation, must be mediated and validated

upon mandatory integrity policies.

51

� Performance. The architecture must not have high performance impact

due to mediation, object reconstruction/tracking or enforcing protection.

� Ease-of-Adoption. The architecture should support multiple commodity

operating systems and any unmodi�ed legacy kernel extension. The architec-

ture should not change the semantics of either OS or the extensions. Also, the

architecture should be a layered approach which requires little deployment

e�orts.

4.2.2 Design Overview

HUKO provides a transparent protection environment for commodity OS kernels in

which untrusted kernel extensions can run with an enhanced protection. In HUKO

system, we name all the kernel objects that are supposed to beprotected by our

mechanismsecurity-sensitive objects. These objects are labeled and tracked by the

labeling component in HUKO's hypervisor. Depending on the various purposes

of deploying HUKO integrity protection, security-sensitiveobjects can be labeled

as 1) the entire kernel code and data region, or 2) a given set of kernel objects

that may be tampered by attackers to achieve speci�c goals, for example, hiding

a malicious process by manipulating hooks and process descriptors. To guarantee

multi-aspect protection and generality, in our design, by default we label and track

the entire kernel code and data region as security-sensitive objects.

The following paragraphs abstractly explain various challenges we faced in de-

signing the system as well as key features of HUKO.

Mediation Overhead. Regarding how to achieve the mandatory access control

mechanism, an intuitive way is to intercept every access to security-sensitive ob-

jects, then to validate whether the access is permitted by the policy or not. This

approach is straightforward and convenient for out-of-boxed monitoring, however,

it is not practical because the mediation overhead is considerable even if the number

of objects to be monitored is relatively small. We observed that many security-

sensitive objects in the kernel are highly frequently accessed by operating system

kernel itself. For example, in Linux, task struct is a typical security-sensitive

52

data object because it can be manipulated by rootkits to perform process hiding

and privilege escalation. On the other hand,task struct is also a crucial ac-

counting and scheduling data structure which would be modi�ed several times by

the scheduler during each context switch. Posing mediationon these legal accesses

through an external reference monitor (i.e., VMM) causes enormous amount of

unnecessary privilege transitions (e.g., page faults, ring faults andVMEXIT), which

result in serious impact on performance.

To overcome this limitation, HUKO adopts a design namedsubject-aware state

transition which divides the system workow into multiple protection states. The

behavior of the protection mechanism is determined by the current protection

state, which is further determined by precisely distinguishing the type of current

subject in the guest system context. Speci�cally, if the current subject is an

untrusted extension, HUKO does complete mediation on all accesses to security-

sensitive objects in order to protect the kernel integrity.By contrast, in the case

when the OS kernel is executing, HUKO poses minimal interposition on object

accesses. It only needs to audit control transfer events that cause a protection

state transition. In this way, the total number of privilege transitions caused by

mediation is signi�cantly reduced, which grants HUKO much better mediation

performance. Table 4.1 illustrates an example of di�erent protection behaviors

that are associated with di�erent protection states. From it we could see that

the number of events that lead to privilege transitions (presented in grey cells) is

minimized due to the subject-aware state transition mechanism in HUKO.

Figure 4.1 is the state diagram which shows the various protection states of

HUKO system as well as the state transition events. Currently HUKO has four

protection states, which correspond to the OS kernel, trusted extensions, untrusted

extensions, and the user space, respectively. The state transition events include

inter-subject function calls, various types of jump, interrupt handling, preemptions,

system calls and associated returns from these routines. Mediating these events

is essential to guarantee comprehensive control ow integrity, which we further

discuss in Section 4.3.5. Tracking the state transition is mainly achieved by the

isolation mechanism in HUKO, which we describe in Section 4.3.3.

Transparent Isolation. As we stated above, HUKO should have the ability

53

1 2

3

4 5
6

7

8

1

2

53

64

87

Figure 4.1. The protection state transition diagram.

to (1) distinguish the current subject in the guest context,(2) track all state

transition events, (3) support di�erent access control policies for di�erent subject

categories, and (4) mediate data modi�cation ows and control ows between

subject categories. Achieving these is non-trivial for commodity monolithic-kernel

operating systems (e.g., Linux and Windows) since the OS kernel and its extensions

reside within the same address space, and it is even more challenging especially

considering our two design principles: external approach and good performance.

To tackle this challenge, we design anisolation componentin HUKO's VMM

to transparently isolate the extensions from the OS kernel.The isolation mech-

anism leverages hardware-assisted paging (HAP), which is a hardware-based vir-

tualization technique supported by many modern processors. In our scheme, the

enhanced memory virtualization component in HUKO's VMM maintains separate

sets of HAP tables for each protection state in the system. These sets of HAP

tables are synchronized with each other so that their corresponding entries are

mapped to the same machine frame. Moreover, regarding security-sensitive ob-

jects, di�erent HAP tables are reecting di�erent access rights according to the

subject category and mandatory access control policies. Switching between these

HAP tables is swift because it only involves a change to the HAP base pointer.

54

In addition, HUKO signi�cantly reduces the number of TLB ushes involved in

each HAP table switch by utilizing Intel's Virtual-Processor Identi�ers (VPIDs)

technology. The multiple HAP table design renders e�cient andpractical isola-

tion between the OS kernel and extensions, and it enforces separate access control

policies for each type of subject accessing various kernel objects such as dynamic

data structures, I/O bu�ers and kernel functions. Regarding kernel stack integrity,

HUKO leverages the multiple HAP tables to achieve a VMM-levelprivate stack

with lazy synchronization mechanism to o�er a transparent and e�cient stack

separation, which we discuss in Section 4.3.4.

Object Labeling. In mandatory protection systems, objects are labeled indicat-

ing their security properties to facilitate mediation. HUKO doesobject labelingin

order to let the VMM identify security sensitive objects in the kernel. The label-

ing procedure is at the page granularity in the way that the labeling component

assigns labels to the speci�c physical pages that contain security sensitive objects.

There are two reasons for this. First, according to our design principles, HUKO is

intended to rely on as little semantic knowledge of operating system as possible.

Second, for a hypervisor-based approach, �ne-grained dynamic object tracking in

kernel often introduces too much reconstruction and tracking overhead, which is

not practical for an online protection system. On the other hand, to ameliorate

problems caused by the protection granularity gap, HUKO has mixed page labeling

mechanism for handling pages that contain mixed code and data, as well as pages

that are shared by both kernel and extensions.

Another issue is about how to track dynamic data for both kernel and ex-

tensions. To address this, HUKO inserts a trusted driver (labeled as a trusted

extension) into the operating system to notify the hypervisor about the allocation

and reclamation of the kernel memory. The driver is also aware of the owner sub-

ject of each page and reports updates to the hypervisor during runtime. We further

discuss mixed page handling and dynamic content tracking inSection 4.3.2.

Protection Workow. Table 4.1 shows a sample protection policy that regu-

lates the data accesses as well as code executions of untrusted extensions. In this

policy, the policy maker needs to specify a set of kernel functions as the trusted

55

Object Label
Subject Category / Protection State

OS Kernel Trusted Extensions Untrusted Extensions
Read Write Execute Read Write Execute Read Write Execute

Trusted Entry Points allow allow allow allow allow audit allow allow deny audit allow

Other OS Code allow allow allow allow allow audit allow allow deny deny

OS Data allow allow allow allow allow audit allow allow deny deny

Trusted Extension allow allow audit allow allow allow allow allow deny deny

Untrusted Extension allow allow audit allow allow allow audit allow allow allow allow

Private Stack Frames allow allow deny allow allow deny allow allow deny

Other Stack Frames allow allow deny allow allow deny allow deny deny

Trusted DMA allow allow allow allow allow audit allow allow deny deny

Shared DMA allow allow allow allow allow allow allow allow allow

User Space Content allow allow audit allow allow allow audit allow allow allow deny

Table 4.1. A sample MAC policy for preventing extensions from writing to kernel or
executing unauthorized kernel code. The shaded cells indicate the corresponding events
are mediated by the VMM and involve privilege transitions. Other events do not cause
privilege transitions in HUKO. The write operation include s both normal write and DMA
write. The not-listed \user" protection state is simply con �gured to deny any write to
the kernel space.

entry points. In practice, trusted entry points can be exported functions in the

kernel symbol table or picked speci�cally by the system administrator. To preserve

control ow integrity, besides kernel function calls, kernel preemption and return

instructions should also be considered, which we will discuss in Section 4.3.5. In

addition, this policy also prevents untrusted extensions from directly writing to the

OS kernel or any trusted extensions, no matter the write is performed via memory

instructions or DMA transfers.

HUKO enforces mandatory access control over the entire life period of any

untrusted extension. To achieve this, HUKO tracks the lifetime of an extension

by hooking the extension allocation, loading and unlinkingroutine of the kernel.

These events will be trapped to the hypervisor and the labeling component will

manipulate the corresponding page labels to perform dynamic tracking. Unless

speci�ed by the administrator, HUKO labels all newly loaded extensions as un-

trusted. During the protection process, if any event that violates the access control

policy happens, HUKO will trigger a protection alarm from the hypervisor and pro-

vide essential information (e.g., type of policy violationand the execution context)

to the system administrator for making proper security decisions.

56

4.3 Architecture Design and Implementation

Figure 4.2 provides the overview of the HUKO Architecture. There are four major

components corresponding to principle functionalities inHUKO's design: object

labeling, transparent isolation, stack integrity protection, as well as mediation and

enforcement. In the following subsections we �rst provide abrief background on

Hardware-Assisted Paging (HAP) technology used in our prototype. Then we

discuss each major component in detail. In Section 4.3.6, webriey describe the

implementation of HUKO prototype on the Xen hypervisor.

4.3.1 Hardware-Assisted Paging Overview

To achieve memory virtualization, a common design for VMMs isto load shadow

page tables (SPT) into the hardware MMU, which translate fromguest linear ad-

dresses (GLA) to machine-physical addresses (MPA). However, to maintain this

indirect mapping, the hypervisor must intercept and do SPT synchronization upon

guest CR3 switches and each update of the guest page table (GPT). The hardware-

assisted paging (HAP) technology is introduced to avoid the software overhead in-

curred under shadow paging. One implementation of HAP is Intel's Extended page

tables (EPT) technology [39]. When this feature is turned on, the ordinary IA-32

page tables (referenced by control register CR3) translatefrom GLA to guest-

physical addresses (GPA). In addition, the hardware MMU maintains a separate

set of page tables (the EPT tables) which translate from guest-physical addresses

(GPA) to the machine-physical addresses (MPA) that are used toaccess machine

memory. As a result, guest OS can be allowed to modify its own IA-32 page tables

and directly handle page faults. This allows a VMM to avoid theVMEXITs asso-

ciated with shadow paging, which are a major source of virtualization overhead.

The reason why HUKO is built atop hardware assisted paging rather than

the software-based shadow paging mechanism is two fold. The�rst reason is for

better performance, which we just stated. Secondly, in SPT,access rights in SPT

entries are synchronized with the corresponding GPT entries. Hence, changing the

access rights in SPT entries for our protection purpose may potentially a�ect the

correctness of guest OS for handling its own access rights. By contrast, in HAP,

access rights in HAP entries and access rights in GPT entries are two completely

57

di�erent sets. Moreover, the HAP violation handling is transparently separated

from the page fault handling mechanism of the guest OS, whichmakes it more

exible and easier to guarantee correctness.

4.3.2 Object Labeling

As shown in Table 4.1, in order to enforce the MAC policy, HUKO assigns various

kinds of security labels to di�erent kernel objects. The object labeling component

is responsible for identifying kernel objects from the physical memory and man-

aging security properties of these objects. As stated in Section 4.2.2, based on

our design principles, HUKO directly associates object labels to the corresponding

HAP entries. In speci�c, the labeling component makes use of a set of reserved bits

in EPT entries. These reserved bits are never utilized by default so that changing

these bits does not a�ect the hypervisor's functionalities. By encoding labels using

these bits, HUKO currently can support 32 di�erent potential object labels, pro-

viding exibility and extendability to the protection scheme. This mechanism also

reduces the time and memory space involved in every mediation and authorization

action.

Handling Mixed Pages. In a commodity operating system kernel such as

Linux, memory regions for kernel code, kernel data and extensions are usually

page aligned, which facilitates the labeling procedure in HUKO. However, there

are still existences of mixed pages in which di�erent objects co-exist together. To

ensure comprehensiveness and correctness of the protection, the labeling compo-

nent must be able to track objects within two categories of mixed pages: (1) pages

containing both kernel code and kernel data, and (2) pages containing both the

kernel and extensions.

A major type of mixed pages in the kernel is large sized page (e.g., 2MB su-

perpage). In most cases, di�erent objects reside in the samesuperpage, yet their

boundaries are still aligned to the 4KB address regions. Based on this observation,

given a large mixed page, HUKOsplits the corresponding EPT superpage entry

into multiple subpage entries (e.g., 2MB page entry to 512 4KB sub-entries) and

assigns individual object labels to each subpage. Splitting EPT superpage entries

58

Labeling Component

HAP
Violations

Mediation and
Enforcement
Component

return
addr.
stack

Exceptions

MAC
Policies

HUKO VMM

Kernel Space

Labeling
helper

Trusted
extensions

User Space

Hardware

private
kernel
stack

saved
env. /
regs

Figure 4.2. Overview of the HUKO Architecture.

improves the granularity of labeling and eliminates a majority of mixed page prob-

lems without changing the guest page table (GPT) entries. Onthe other hand,

regarding mixed pages of 4KB size, HUKO assigns each of them with a mixed

label. For example, considering a mixed page that has a mixedlabel of both ker-

nel data and extension code, the hypervisor would trap all events that modify this

page regardless of the current protection state. Then HUKO examines the physical

address to see if it is in the range of extension text area and �nally determines the

object identity.

Tracking Dynamic Contents. Associating kernel objects to HAP page frames

requires dynamically tracking of these objects. For staticobjects such as ker-

nel code, static kernel data (including global variables),and trusted entry points,

HUKO tracks them by leveraging the kernel symbol table (e.g.,Systemmap�le in

Linux). On the other hand, for dynamic contents such as dynamic kernel data,

59

stack and heap region, and loadable extensions, it is di�cult and time consuming

to track them at the hypervisor layer because of the semanticgap. HUKO tackles

this problem by loading a trusted extension namedlabeling helperinto the guest

kernel. The labeling helper is responsible for letting the hypervisor be aware of the

allocation and deallocation of kernel dynamic pages as wellas the owner subject

of each kernel page. This component is the only OS-dependentpart in our system

and we implemented a prototype in Linux. Speci�cally, dynamic data owned by an

extension come from two major sources in Linux: (1) the page frame allocator for

allocating bulk of pages, and (2) the SLAB allocator for allocating �xed sized of

registered cache objects. For both cases, the labeling helper hooks the allocation

and deallocation events and gathers information from the SLAB allocator (i.e.,

kmemcache alloc), the free page allocator, and theload module routine. This

information includes owner subject of the page (e.g., OS kernel or extension), the

content type (e.g., kernel data or extension code), the guest page frame number,

the virtual address range (for handling mixed pages), and the timestamp of each

event. Then the labeling helper passes these information toHUKO via the hyper-

call interface, and the labeling component labels the corresponding EPT entries

accordingly. To guarantee tamperproof, the labeling helper itself is labeled as a

trusted extension at the load time so that it is protected by HUKO. Furthermore,

HUKO prohibits read accesses to the labeling helper to preventthe leakage of

protection information.

4.3.3 Isolation Component

The isolation component in HUKO is responsible for achieving complete mediation

by establishing separate address spaces for di�erent categories of subjects (i.e., the

OS kernel, trusted extensions and untrusted extensions) toreside in. Subjects can

freely access code and data in their own address spaces without interposition from

the hypervisor. However, inter-address-space activities such as data writing and

control transfer must be mediated and controlled by the VMM.

Multi-HAP Construction. The isolation component is built upon our enhanced

memory virtualization mechanism namedmulti-HAP . Multi-HAP enables exten-

60

sions and the kernel to share the same virtual-to-physical mapping of the entire

kernel space, while it also enables the hypervisor to set di�erent object access

rights for di�erent subject categories. In this scheme, thehypervisor maintains

separate sets of HAP tables for each protection state (refer toFigure 4.1) in the

system.2 Figure 4.3 illustrates the architecture of the multi-HAP mechanism. For

simplicity, only two sets of HAP tables are shown here, corresponding to the OS

kernel state and the untrusted extension state, respectively. There is a HAP base

pointer which points to the root level of a HAP table. During a protection state

switch, HUKO changes the value of the HAP base pointer to another HAPtable

root, which represents another set of access rights. The access rights in HAP table

entries are determined by the object label of the entry as well as the access control

policy, and are updated when any object label changes.

To intercept control transfer events between di�erent subject categories, for

each protection state, HUKO manipulates the execution bit of its HAP table entries

so that all the pages that do not belong to the subject category (corresponding

to the protection state) are not executable. Attempts to execute content on these

pages would cause HAP violations and are handled by the hypervisor. Section

4.3.5 describes this procedure in detail.

Synchronization. An important di�erence between multi-HAP and user-level

page tables managed by the kernel is that, each HAP table in multi-HAP must

maintain the entire mapping of the whole kernel space, rather than the address

space associated with the protection state. This is becauseHUKO should allow

the OS kernel and extensions to read each other's address space freely without

any interposition. Therefore, the isolation component should always synchronize

the entire kernel address mappings among HAP tables. We modifythe hypervisor

code so that changes to one HAP table (including allocating a new entry, changing

an entry and removing an entry) always propagate to other HAP tables.

Optimize TLB Flushes. Considering the enormous function calls and returns

between the OS kernel and extensions, the protection state transition rate in

HUKO is very high (see Section 4.4.3). If the hypervisor ushesTLB on every

2It can be extended to support separate HAP tables for each subject, if needed.

61

Machine
Physical
Memory

R 1
W 1
X 1

R 1
W 1
X 1

R 1
W 1
X 0

R 1
W 0
X 0

R 1
W 0
X 0

R 1
W 1
X 1

Label:
kernel code
(superpage)

HAP
Table

Label:
kernel data

Label:
extension data

Protection
State

OS Kernel Untrusted Extensions

HAP
Base

Pointer Protection State
Switch

Figure 4.3. The multiple HAP tables for achieving isolation and mediation.

page table switch during a state transition, the performance degradation due to

the TLB misses caused by ushing is substantial. To mitigatethis problem, HUKO

takes advantage of Intel's Virtual-processor identi�ers (VPIDs) technology, which

enables a logical processor of the hypervisor to manage cache information for mul-

tiple linear-address spaces. In HUKO's VMM, we associate each protection state

with a 16-bit VPID so that mappings and access rights are tagged according to

the VPID in the address translating cache. During the state transition time, the

EPT table switch does not cause ush of the entire translating cache - it only

ushes entries with speci�c VPIDs, which signi�cantly reduces the TLB misses

and improves the performance.

Preserving Architectural State. Sometimes malicious or compromised ex-

tensions could subvert certain invariants of the architectural state to ful�l their

attacks. For example, a malicious extension could change the GSsegment selec-

tor to point to its own version of processor data area (pda), which provides the

kernel with incorrect information about the kernel stack, MMU state and IRQ

processing. Therefore, HUKO must enforcing the integrity of system environment

by preserving these invariants of architectural state.

Our approach takes advantage of the fact that, during a privilege transition,

62

Stack Reference: Guest Linear Address

Guest Page Table

Guest Physical Address

Protection
State Switch

OS HAP
Table

Untrusted
Extension
HAP Table

Machine
Physical
Address

Machine
Physical
Address

parameters

return addr.

parameters

return addr.

old EBP

local variables
EBP

state_frame_base

dynamic area

return addr. ESP
state_current_limit

older frames older frames

Kernel Stack: OS Kernel
Protection State

Private Stack: Untrusted
Extension Protection State

state_frame_base

state_current_limit

Synchronization

Figure 4.4. The transparent separated stack design supported by multi-HAP. The �gure
illustrates the two stacks at the time of protection state tr ansfer in case an untrusted
extension is making a call to the OS kernel. The shaded indicates the active stack frames
(owned by the untrusted extension) which are going to propagate to the OS kernel stack.

the architectural state is saved in the virtual machine descriptor (i.e., VMCSfor Intel

VT) and a virtual CPU struct (i.e., vcpu for Xen) of the VMM for future reloading.

Hence we could straightforwardly integrate the architectural state protection with

our subject-aware protection state design. In speci�c, at the time when the kernel

enters untrusted extension protection state, HUKO saves the architectural state

from the VMCSand vcpu to its own memory space. When the kernel is switching

from untrusted extension state back to the OS kernel state, HUKO restores all the

architectural state invariants by writing the saved valuesto the virtual machine

descriptor and the virtual CPU struct.

4.3.4 Kernel Stack Integrity

Besides code, static and heap data, there is another important avenue which mali-

cious extensions could exploit to subvert OS kernel integrity: the kernel stack. In

speci�c, adversaries could perform the following actions to compromise the prop-

erty of stack integrity stated in Section 4.1: (1) injectingmalicious code into the

stack; (2) manipulating control data (i.e., function pointers, return addresses) in its

own stack frames to subvert control ow integrity of the OS kernel. For instance,

return-oriented and jump-oriented attacks belong to this category; (3) corrupting

63

non-control and control data (i.e., saved registers, parameters and variables) in

stack frames owned by OS kernel or other extensions. For example, a malicious

extension could change the local variables and function parameters on the stack

frame to let a certain kernel function return a false data value, or it may manipu-

late kernel IRQ and exception stack frames to change the behavior that OS kernel

handles interrupts and exceptions.

For case (1), by setting the NX bit of corresponding HAP entries of kernel stack

frames, HUKO ensures that code on kernel stack frames could never be executed.

Regarding case (2), HUKO mediates the protection state transfers and maintains

a dedicated return address stack to guarantee the control ow integrity, which we

will describe in Section 4.3.5. To defend against attacks incategory (3), HUKO

grants untrusted extensions read permission to the entire kernel stack, but only

gives them write permission to its own stack frames.

To e�ciently manage kernel stack permissions in an unmodi�ed commodity

OS (e.g, Linux) is a non-trivial job, because of the following reasons: �rst, in

such system, there is only one kernel stack for all kernel control paths associated

with each user thread. Moreover, the stack frames are not page-aligned, making it

di�cult to set permissions for individual stack frames using current architecture.

On the other hand, in terms of performance, it is not a�ordable to validate each

stack modi�cation made by untrusted extensions because stack modi�cations are

too frequent.

The stack protection design of HUKO overcomes the above limitations. In order

to preserves single kernel stack semantic and support unmodi�ed commodity OSes,

during the protection state of untrusted extensions, HUKO creates and maintains

a private copy of the current kernel stack at the VMM layer, which is transparent

and not observable from the guest OS. By manipulating GPA to MPA mappings

in the Multi-HAP table, HUKO casts the same linear address range of the kernel

stack to di�erent machine frames for OS kernel and untrustedextensions. In

this way, an untrusted extension is given a \faked" view thatit shares the same

kernel stack with other code entities in the kernel, however, its stack operations

are automatically redirected to the private kernel stack copy placed on shadow

machine frames reserved by HUKO. On the other hand, to protect stack integrity

in an e�cient manner, HUKO adopts a \lazy synchronization" design: instead

64

of checking permissions each time the stack is accessed, HUKO only performs

stack synchronization when current protection state is switching between untrusted

extensions and the OS kernel. During synchronization, HUKO propagates stack

modi�cations from the private stack to the real kernel stackwith the following rule

enforced: only changes made to its own stack frames are propagated to the real

kernel stack, while updates outside its own stack frames arediscarded.

In the following we use Linux as an example to illustrate the private stack

design achieved by multi-HAP tables, which is shown in Figure 4.4. In Linux, each

user process is associated with a two-page sized kernel stack. The scope of the

current kernel stack can be determined by theESPregister and the per-CPU data

structure pointed by theGSsegment selector. HUKO maintains two data values for

each protection state:state frame base and state current limit , respectively.

These two values designate the active stack frames associated with each protection

state, and only in these stack frames modi�cations are propagated to the other

stack. During each protection state transfer, HUKO updatesstate frame base

and state current limit based on the values ofEBPand ESPregisters at that

time point.

4.3.5 Mediation and Enforcement

The goal of the mediation and enforcement component is to audit all the write ow

and control transfer events between untrusted extensions and the kernel. Also it

is responsible for validating these events to enforce integrity protection according

to mandatory access control policies.

EPT Violation Handling. HUKO relies on the EPT violation mechanism to

achieve mediation and protection enforcement. Figure 4.5 depicts the work ow

of how HUKO handles various kinds of EPT violations. When an EPTviolation

occurs, HUKO �rst checks if the physical frame is labeled as a valid kernel object.

If yes, then it checks if the violation is caused by our protection mechanism or

by emulated MMIO and log-dirty events. An EPT violation caused by HUKO's

protection mechanism indicates a sensitive control transfer event or a sensitive data

access. To properly handle it, HUKO �rst examines the following information: (1)

65

the quali�cation bits which reveal the actual type of the violation, (2) the current

state, and (3) the label of the faulting frame. Then it determines whether to allow

the operation or to trigger a protection alarm based on information collected and

the access control policies.

As we stated in Section 4.2.2, subjects in HUKO can freely read and write

their own code and data. Also, inter-subject read accesses are always allowed

in our default policy. These allowed events do not cause any EPT violation so

that they cannot be logged by the hypervisor. However, for forensics purposes,

the system administrator may want to audit some types of crucial events yet still

allow these events to happen. Hence, HUKO adds another action named audit

allow to enable logging of these speci�c data accesses. To implement the audit

allow mechanism, HUKO sets the access rights in the corresponding EPT entries

so that audit-allowed events would cause EPT violations andbe audited by the

hypervisor. Then HUKO emulatesthe o�ending instructions without changing the

previously set access rights. In this way, the audit allow operation is completed

and the EPT entries can still be used to trap further events ofthe same kind.

Protecting Control Flow Integrity. As previously stated, HUKO sets the ex-

ecution bits of multi-HAP entries so that only untrusted extension code can be

executed in the untrusted extension protection state. Whenan execution violation

indicating a control transfer from an untrusted extension to the OS kernel occurs,

HUKO enforces the control ow integrity rules under the following conditions: (1)

the untrusted extension is calling the kernel viacall and jmp instructions. In

this case, HUKO allows the operation only when the violating address belongs to

a trusted entry point. This prevents untrusted extensions from accessing unau-

thorized kernel functions or jumping to arbitrary positions in the kernel. (2) The

kernel preempts the untrusted extension for higher priority interrupts. In this case,

HUKO ensures that the violating address belongs to an interrupt handler routine

in the IDT table. (3) The extension returns to the kernel froma previous call.

This could be leveraged by return-oriented rootkits to divert the control ow to

a sequence of return-oriented instructions in the kernel. To tackle this problem,

HUKO maintains a separate return address stack to keep track ofthe call/return

sequences between the OS kernel and untrusted extensions. In this way, we guar-

66

antee the return address to the kernel must correspond to theaddress of the kernel

code that made the call. Also, the sequence of return addresses must satisfy the

last-in-�rst-out property. Considering the fact that most return-oriented attacks

need an initial return to the �rst return-oriented instruct ion sequence, our approach

provides an e�ective counter method.

Handling DMA writes. Besides memory writes performed by CPU instructions,

DMA is another way for extensions to write data into the kernel memory. Previous

proposals [62] have limited capability of handling DMA because the data transfer is

not controlled by the processor or memory controller. Fortunately, the introduction

of hardware IOMMUs (Intel's VT-d and AMD's IOMMU) brings the possibility to

e�ciently mediate and control DMA memory access. When used in virtualization,

the IOMMU can enable pass-through device models which support independent

address translations using IOMMU page tables for DMA activities.

In HUKO prototype, we leverage the DMA remapping mechanism provided by

Intel's VT-d technology [106] to protect the kernel integrity from DMA writes.

Currently we explicitly set the IOMMU page tables so that pages labeled as OS

kernel and trusted extensions cannot be used in DMA. On the other hand, HUKO

allows DMA activities on the pages that are labeled as untrusted extensions. Our

ongoing work employs multiple IOMMU page tables and switch facilities for dif-

ferent protection states, which is very similar to the multi-HAP mechanism. This

scheme introduces new DMA object labels shown in Table 4.1 and allows the kernel

and all extensions to do DMA in a protected manner. Another more exible opti-

mization is to integrate the IOMMU page tables with the multi-HAP page tables

so that IOMMU can utilize the guest-to-machine physical address translation as

well as access control enforcement provided by the multi-HAP mechanism.

Supporting Exceptions. Given the complexity of commodity operating system

kernels and the variety of enormous extensions in the wild, it is necessary for

HUKO to support exceptions for access control enforcement. There are three

types of exceptions in HUKO. The �rst type o�ers an untrusted extension the

privilege to write into speci�c objects in the kernel. The second type allows an

untrusted extension to make certain calls to the kernel, butnot through trusted

67

check
valid label

caused
by HUKO

Yes

No (User Pages)

No (MMIO or
logdirty case)

check violation
qualification

Yes

execution

check state and
label for code

execution

Yes
(code execution)

check for
trusted entry
point or valid

return address

Yes

allow access, perform
state transition, Multi-

HAP switch, and return

trigger protection
alarm: illegal

control transfer

No

No (illegal execution
of data) make authorization

decisions
according to state

and label

Log the event,
emulate the

access instruction,
and return

trigger protection
alarm: illegal code/

data access

write other

allow audit
allow

allowed operations
never cause EPT

violation

deny

Xen’s default EPT
violation handling

routine

Figure 4.5. The EPT violation handling diagram of HUKO.

entry points. The third type of exception is about exportingwrite permissions in

kernel stack frames. These exceptions are provided by the administrator to achieve

speci�c needs on exibility and performance, and they are stored and protected in

the VMM memory space. Section 4.4.1 provides a further discussion in Linux OS.

In our current prototype implementation HUKO uses mixed page labels to

handle exceptions. Pages that contain exception objects are labeled as \mixed

exception", and the hypervisor will check the virtual address upon each violation to

determine whether the event is an exception. This approach has bad performance

in case the number of exceptions is large or exceptions occurfrequently. We have

an optimized design for handling exceptions and mixed pages. In that scheme,

HUKO copies all the exception objects onto a set of allocated exception pages.

By dynamic patching of instructions, HUKO redirects all the operations accessing

68

exception objects to the corresponding copy on the exception pages at the run

time. This method reduces the total number of EPT violationson exception pages

and mixed pages. We plan to implement this optimization in our future work.

4.3.6 Modi�cations to Xen

We implemented HUKO by modifying the Xen hypervisor (version 3.4.2 x86-64

HVM Guest), which is a full-edged open source hypervisor commonly used in

various enterprise systems. The HAP mechanism used in the isolation and label-

ing component is based on Intel's EPT, yet it does not requiremuch e�ort to adapt

AMD's NPT. The total amount of code added to the Xen hypervisor isapproxi-

mately 3,300 lines. And the Linux implementation of the labeling helper trusted

extension consists of about 450 lines of code.

A major e�ort of our prototype implementation is to extend the memory virtu-

alization sub-system of Xen to support the multi-HAP mechanism. In HUKO pro-

totype, each HAP table is essentially a four-level EPT paging structure. The root-

level index of each paging structure is stored in an array namedhuko phys table index ,

which is placed in the architecture-speci�c per-domain structure arch domain. To

construct multi-HAP tables, HUKO �rst traverses all the existing physical-to-

machine (p2m) mappings from the domain'spage list . Then it allocates EPT

entries using free pages maintained byp2mfreelist , which are Xen's reserved

pages for storing p2m mappings. The security label of each GFN is stored in bits

61:57 of the corresponding EPT entry and managed by the labeling component.

HUKO then decides the access rights of an EPT entry from its security label, the

MAC policy as well as the protection state which it belongs to. HUKO keeps this

allocation process until all HAP tables are established. During each state tran-

sition, HUKO switches among multiple EPT paging structures bychanging the

EPTP pointer and associated VPID in the VMCS �elds.

For each protection state, we introduced a security controlblock (SCB) which is

linked to the domainstructure. The SCB stores essential information for tracking

a protection state, such as the identity of the current subject, the virtual address

range of the subject's code and data, the previous protection state, the address of

the last entry point, a copy of stack pointers, and a link to its return address stack.

69

To achieve mediation and policy enforcement, we added additional routines to the

paging violation handler of EPT and the Vt-d pass-through (IOMMU) driver,

which are ept handle violation() and iommupage fault() , respectively. We

exported two new hypercalls to the labeling helper for delivering run-time infor-

mation to the labeling component.

4.4 Evaluation

In this section, we describe the deployment and experimental evaluation of the

HUKO prototype. There are two goals of our evaluation. The �rstis to evaluate

HUKO's e�ectiveness for defending against various real-world malicious extensions

that damage the OS kernel integrity in di�erent ways. The second goal is to

measure the performance cost introduced by HUKO using both application-level

and micro benchmarks.

All experiments were conducted on a Dell PowerEdge T310 Server with a

2.4GHz Intel Xeon X3430 and 4GB memory. The Xen hypervisor version is 3.4.2.

The dom0 system is fedora 12 with kernel version 2.6. We used a64bit Ubuntu

Linux (8.04.4) with kernel version 2.6.24 as our guest OS. AllLinux partitions

were con�gured to use theext3 �le system. For Windows experiment, we chose

Windows XP SP2 as our guest system.

4.4.1 Deploying HUKO

As stated in Section 4.2.1, HUKO is intended to minimize the required e�ort for

deploying the protection system. Instead of establishing protection domains at

the OS layer [62] or at the hardware architecture layer [1], the implementation

of almost all the functionalities (i.e., memory protectionand access control) in

HUKO is at the virtualization layer, which makes the protection mechanism guest-

independent, adaptive, and easy-to-undeploy. Moreover, HUKO does not enforce

access control for speci�c kernel objects, and it only has several generic types for

object labeling. While this approach sacri�ces the bene�tsof semantic-rich access

control at �ner granularity, it does o�er a much easier con�guration compared to

rich-typed protection system such as SELinux [26]. In the following paragraphs

70

Untrusted Extension Behavior Violation Triggered Violating Object Label

EnyeLKM add binary code to kernel Illegal code access OTHER OS CODE

all-root
DKOM (modify task struct)

Illegal data access OS DATA
modify control data (sys call table)

adore-ng modify function pointers Illegal data access OS DATA
hp DKOM (modify task struct linked list) Illegal data access OS DATA

lvtes call unauthorized function (module free) Invalid code execution OTHER OS CODE
return-oriented extension modify return addr. on the stack Invalid return address Return addr. stack

FUTo (Windows) DKOM (modify PspCidTable) Illegal data access OS DATA
TCPIRP (Windows) modify function pointers Illegal data access OS DATA
basic int (Windows) add binary code to kernel Illegal code access OTHER OS CODE

Table 4.2. Protection e�ectiveness of HUKO against a collection of malicious extensions.

we use the Linux OS as an example to briey describe the deployment of HUKO.

The �rst step is to set up the basic information about kernel layout, objects

and TEPs. In Linux, most of these information could be acquired from the kernel

symbol table associated with the speci�c kernel. For example, the address range

of Linux kernel code is determined by kernel symboltext and etext . Similarly,

the boundaries of initialized and uninitialized kernel static data can be identi�ed

by symbol edata and end. At runtime, the labeling helper is responsible for

collecting dynamic information for object labeling. For instance, the code and

data range for an extension could be retrieved from the accounting data structure

modulewhen the extension is being loaded into the kernel.

In Linux, most kernel APIs and global data are exported to the kernel symbol

tables using theEXPORTSYMBOLmacro. The address of kernel symbols can also

be retrieved in the System.map�le. In this way we could collect all the entry

addresses for exported kernel functions. In our current prototype, we treat all the

exported kernel APIs as the Trusted Entry Points (TEPs). In our future work, we

are expecting to extend HUKO to achieve the least privilege property, by which

we infer and enforce the set of kernel APIs that a speci�c extension can call. We

do a further discussion on this issue in Section 4.5.

Besides common settings, administrators sometimes also need to provide extension-

speci�c exceptions to make an extension run correctly. There are mainly three

types of exceptions in a HUKO system. The �rst type of exceptions consists of

non-exported functions. In Linux, certain kernel functions are not explicitly ex-

ported, instead, they are accessed by direct address reference or address assigning

71

to function pointers. Fortunately, these cases are not recommended nowadays and

getting rare in recent Linux kernels. To deal with them, the administrator should

manually speci�c the entry address of these kernel APIs as TEPs. The second

category of exceptions consists of OS kernel data of which the kernel intention-

ally grants write permission to extensions. In many cases, the shared data are

used as various kinds of bu�ers and caches in the kernel, and they are usually

still page-aligned. The labeling helper noti�es the hypervisor when these data are

allocated, and HUKO assignsShared Data type to these pages in the multi-HAP

table to allow write access for both OS kernel and untrusted extension protection

states. Shared data that are not page-aligned with non-shared kernel data are re-

quired to set up exceptions using mixed pages. Regarding write-sharing for kernel

global variables, the administrator could specify their address in the exceptions

according to the kernel symbol table. The third category of exceptions belongs to

stack permission which OS kernel needs to grant extensions write permission to

its local variables on the stack. For example, OS kernel could pass the address of

a local variable to an extension in parameters during a function call. To address

these situations, the administrator should specify the addresses of functions that

require stack exceptions and how many previous frames need to be modi�ed by

each function. Then at the time that control returns to thesefunctions, instead of

synchronizing only its own stack frames of the extension, HUKOsynchronizes all

the necessary previous stack frames speci�ed by the given exception.

4.4.2 Protection E�ectiveness

We evaluated the e�ectiveness of HUKO for kernel integrity protection with a col-

lection of malicious extensions on both Windows and Linux. These extensions

include 8 real-world rootkits and one self-implemented malicious extension for

return-oriented attacks, which are shown in Table 4.2. As a result, all of these

malicious extensions triggered protection alarms once they attempted to damage

the kernel integrity. In the following paragraphs we describe three representative

experiments in detail.

Code Integrity. EnyeLKM [107] is a Linux kernel rootkit which modi�es the

72

kernel text by putting \salts" inside system call and sysenter entry handlers.

With HUKO protection, an illegal code modi�cation alarm was triggered when

either set idt handler or set sysenter handler was called. Both functions were

trying to add binary text to kernel object labeled asOTHEROSCODE.

Data Integrity. The all-root [108] rootkit is a simple DKOM Linux kernel

rootkit that modi�es both control and non-control data to achieve privilege escala-

tion. In its initialization routine init module, this rootkit replaces thesys getuid

entry of the sys call table with its own function give root , which changes the

uid, gid, euid and egid �eld of the currenttask struct to 0 (root). In this attack,

the �rst modi�ed data belongs to static control data while the latter belongs to

dynamic non-control data. When we launched this attack in a system protected

by HUKO, it immediately triggered a protection alarm indicating an illegal data

access (caused by the �rst modi�cation) from untrusted extensions to an object

labeled asOSDATA. In order to test the second data modi�cation, we deliberately

made decisions to allow the �rst modi�cation and let the system continue to run.

Then we executed agetuid system call from the user space to trigger the malicious

replacement function. Again, HUKO triggered an illegal data access alarm, which

was also caused by directly modifying dynamic non-control kernel data (labeled as

OSDATA) at the \untrusted extension" protection state.

Control Flow Integrity. Besides malicious extensions that modify control-data

(e.g., function pointers) or make illegal call/jump to the kernel, the return-oriented

attack is another way of tampering control ows in the kernel. To evaluate HUKO's

e�ectiveness in countering such attacks, we implemented a return-oriented mali-

cious extension in our experiment. Upon called, this extension modi�es its return

address on the stack to an arbitrary point in the kernel text area, which is recog-

nized as a return-instruction gadget. We loaded this extension to a Linux system

protected by HUKO. As a result, HUKO successfully prevented the control ow

diversion caused by the modi�ed return address, since the LIFO property of the

return address stack was no longer kept.

73

Benchmark
Untrusted
Extensions

Number of
Protection State
Transitions

Native
Performance

HUKO
Performance

Relative
Performance

Dhrystone 2 8139too + ext3 N/A 10; 855; 484 lps 10; 176; 782 lps 0:94
Whetstone 8139too + ext3 N/A 2; 270MWIPS 2; 265MWIPS 1:00
Lmbench
(pipe bandwidth)

8139too + ext3 N/A 2; 535MB/s 2; 213MB/s 0:87

Apache Bench
(throughput)

8139too 56; 037 2; 261KB/s 1; 955KB/s 0:86

Kernel
Decompression

ext3 17; 471; 989 35; 271 ms 44; 803 ms 0:79

Kernel Build ext3 148; 823; 045 2; 804 s 3; 106 s 0:90

Table 4.3. Performance results of application-level benchmarks.

4.4.3 Performance Overhead

To measure the performance cost introduced by HUKO, we ran a setof benchmarks

to compare the performance of a guest system protected by HUKO with one that

does not. For each benchmark, we labeled one or several relevant kernel extensions

as untrusted so that they were isolated from the kernel. For all workloads we

enforced the sample policy showed in Table 4.1. To fully testHUKO's performance

overhead under stressed conditions, we chose two largest and most active kernel

extensions in our Linux system:8139too and ext3 . The 8139too is the network

interface card driver and theext3 extension is the �le system module. These

extensions are invoked multiple times for each network I/O requests or �le system

operations so that they have the highest control transfer rates with the OS kernel.

Hence, marking them as untrusted generally represents the worst-case performance

of HUKO when the system is performing I/O intensive tasks.

The application benchmarks and their con�guration are presented as follows:

(1) Dhrystone 2 of the Unix Bench suite [109] using register variables. (2) Double-

Precision Whetstone of the Unix Bench. (3) LmBench [110] pipebandwidth mea-

suring the performance of IPC interface provided by the kernel. (4) Kernel De-

compression by extracting a Linux 2.6.24 kernel gzipped tarball using tar -xzf

command. (5) Building a 2.6.24 Linux kernel using default con�gurations. (6)

Apache Bench con�gured to have 5 concurrent clients issuing 20 http requests

(16KB HTML) per client.

74

Table 4.3 presents the results of these application level benchmarks. The second

column indicates which extension is labeled as untrusted, while the third column

shows the total number of protection state transitions in each workload. Some

numbers are not available because the corresponding workload is part of a con-

tinuous benchmark suite. From the results, we can see that the performance of

HUKO system is from 0.79 to 1.00 of the baseline. We also found that the perfor-

mance overhead added-on by HUKO largely depends on the frequency of control

transfers between untrusted extensions and the kernel. Hence, if the workload

is CPU-bound, the performance cost is minimal. The overhead gets higher only

when an untrusted extension is responsible for highly frequent operations such as

disk I/O. In the kernel decompression experiment, the protection state transfer

rate reaches about 39,0000 per second, which renders HUKO the worst case of

performance: 0.79 of the baseline.

Besides application level benchmarks, we also performed several micro-benchmark

tests on process creation with Lmbench. We labeledext3 and 8139too as un-

trusted extensions in our system protected by HUKO. Regardingthe test item

process fork + exit , it took HUKO system 100.31�s to complete the opera-

tion while the native system took 92.87�s . For process fork + execve , HUKO

system spent 377.47�s compared to the native time of 296.47�s . For process

fork + /bin/sh -c , it took HUKO system 884.57�s compared to the native time

of 697.38�s .

4.5 Limitations and Future Work

We believe that HUKO provides a transparent security layer which greatly en-

hances the integrity protection for commodity operating system kernels. Nonethe-

less, it also has limitations in defending against certain security threats. In the

following, we discuss these limitations and possible solutions as our future direc-

tion.

Kernel APIs. In HUKO system, controls from untrusted extensions to the OS

kernel are restricted to a set of trusted entry points, whichare essentially legitimate

kernel APIs that exported to kernel extensions. However, in commodity operating

75

systems, the kernel is usually not designed to tolerate or defend against malicious

extensions, which may results in the lack of robustness and security of kernel APIs.

Moreover, programming languages used to build commodity OSkernels security

do not support features like type enforcement. For these reason, it is possible that

attackers can exploit the \legitimate" kernel interface tosubvert the integrity of

kernel. Examples of such attacks include: (1) calling legitimate kernel APIs with

undesired object reference to compromise kernel objects, (2) abuse of privileges,

(e.g., video cam driver accesses kernel APIs for the networking stack), and (3)

exploiting memory and type bugs of the kernel API functions. Comprehensively

addressing these issues would require major design improvements on speci�c kernel

(e.g., [30, 5, 66]), such as kernel object model, access control model, type enforce-

ment, veri�cation and privilege separation. In addition, these approaches can be

layered atop HUKO, which serves as a VMM-level reference monitor for mediating

kernel object access, checking API calls and their parameters.

To obtain a better mandatory security policy, we are lookingfor a deeper

understanding of the behavior of the OS kernel. In speci�c, we are interested in

�guring out security-sensitive kernel data along the execution path of each TEP.

This could be achieved by static program analysis with security annotations. Based

on the properties such as privilege, availability level andresource category of these

kernel data, we could achieve a good classi�cation of TEPs interms of resource

manipulation and privilege. In this way, the security and resource semantics of

TEPs are further revealed, which could help improve the security of TEPs whose

privileges are originally uni�ed in commodity OSes.

Information ow. Another category of possible attacks is through explicit and

implicit information ow. For instance, OS kernel may explicitly grant write access

to extensions on its own data objects (e.g., via shared memory, API or messages),

on the other hand, extensions may write low integrity data tosome places where

kernel may read afterwards. Both situations violate the traditional integrity model.

It is known that there is no existing information ow control inside commodity OS

kernels since tracking �ne-grained information ow is costly in regard to current

programming language and architecture. Alternatively, we plan to investigate

applying end points such as input �lters and veri�ers between OS kernel and ex-

76

tensions to regulate the function parameters and information passed to the OS

kernel.

4.6 Summary

We have presented the design, implementation and evaluation of HUKO, a hypervisor-

based layered system that comprehensively protects the integrity of commodity OS

kernels from untrusted extensions. HUKO leverages several contemporary hard-

ware virtualization techniques as well as its novel software design to achieve its

design principles: multi-aspect protection, acceptable performance and ease-of-

adoption. Our experiments show that HUKO can e�ectively protect the kernel in-

tegrity from various kinds of malicious extensions with an acceptable performance

overhead. We believe that HUKO provides a practical frameworkfor running un-

trusted extensions in OS kernel with enhanced integrity protection for commodity

systems.

Chapter 5
SILVER: Fine-Grained Privilege

Separation in OS Kernel

5.1 Introduction

As commodity operating systems are becoming more and more secure in terms

of privilege separation and intrusion containment at the OSlevel, attackers have

an increasing interest of directly subverting the OS kernelto take over the entire

computer system. Among all avenues towards attacking the OS kernel, untrusted

kernel extensions (e.g., third-party device drivers) are the most favorable targets

to be exploited, as they are of the same privilege as the OS kernel but much more

likely to contain vulnerabilities. From the security prospective, these untrusted

extensions should be treated asuntrusted principals in the kernel space. In order

to prevent untrusted extensions from subverting kernel integrity, many research

approaches [62, 42, 43, 111] are proposed to isolate them from the OS kernel.

These approaches enforce memory isolation and control ow integrity protection

to improve kernel security and raise the bar for attackers. However, in many situa-

tions, strong isolation along is still inadequate and inexible to secure interactions

between OS kernel and untrusted principals, for the following reasons:

Firstly, in commodity OSes such as Linux, kernel APIs (i.e., kernel functions le-

gitimately exported to extensions) are not designed for thepurpose of safe commu-

nication. Thus, even if untrusted extensions are memory-isolated and constrained

78

to transfer control to OS kernel only through designated kernel functions, attackers

can still subvert the integrity of the OS kernel by manipulating parameter inputs

of these functions. For example, an untrusted extension could forge references to

data objects that it actually has no privilege to access. By providing such refer-

ences as input of certain kernel functions, attackers couldtrick the OS kernel to

modify its own data objects in undesired ways.

Secondly, either OS-based or VMM-based memory protection mechanism can

only enforce page-level granularity on commodity hardware, which provides av-

enues for attackers exploiting such limitation. For example, attackers can leverage

bu�er/integer overow attacks to compromise data objects of OS kernel by over-

owing adjacent data objects from a vulnerable driver in thesame memory slab.

It is di�cult for a page-level access control mechanism to address this problem for

its inability to treat data objects on the same page di�erently.

Finally, current isolation techniques are limited to support sharing and trans-

fer of data ownership in a exible and �ne-grained manner. Considering situations

that the OS kernel would like to share a single data object with an untrusted device

driver, or accept a data object prepared by a driver, in case of strong isolation,

it often requires the administrator to manually provide exceptions/marshaling to

move data across isolation boundaries. Although there are clean-slate solutions

such as multi-server IPCs in micro-kernels [12] and language-based contracts [5]

to address this problem, these approaches are di�cult to apply to commodity sys-

tems, for the reason that they both require developers to change the programming

paradigm fundamentally.

To address these shortcomings, we have the following insight: beside isolation,

protection systems should provide a clear resource management of kernel objects,

as well as a general method for secure communication. In OS-level access control

mechanism such as LSM [28], the kernel maintains meta-information (e.g., process

descriptors and inodes) for OS-level objects like processes, �les and sockets, and

it also provides run-time checks for security-sensitive operations. Such mechanism

enables powerful reference monitors such as SeLinux [26] and Flume [32] to be built

atop. In contrast, there is little security meta data maintained for kernel-level data

objects, nor security checks for communication between OS kernel and untrusted

kernel principals.

79

This chapter presents the design and implementation of SILVER, a framework

that o�ers transparent protection domain primitives to achieve �ne-grained access

control and secure communication between OS kernel and extensions. SILVER's

key designs are two-fold: (1) SILVER manages all the dynamic kernel data objects

based on theirsecurity properties, and achieves �ne-grained access control with the

support of memory protection and run-time checks; (2) Communication between

OS kernel and various untrusted kernel extensions is governed and secured by a set

of uni�ed primitives based on existing information ow integrity models without

changing programming paradigm signi�cantly. Protection domains in SILVER are

enforced by the underlying hypervisor so that they are transparent to kernel space

programs. Hence, from the perspective of kernel developers,the kernel environ-

ment remains as a single shared address space, and developers can still follow the

conventional programming paradigm that uses function calls and reference passing

for communication. Kernel program developers could utilize SILVER to ensure

neither the integrity of their crucial data would be tampered nor their code would

be abused by untrusted or vulnerable kernel extensions, thus prevent attacks such

as privilege escalation and confuse-of-deputy.

SILVER employs several novel designs to enable our protection domain mech-

anism. First, in SILVER, protection domains are constructedby leveraging hard-

ware memory virtualization to achieve transparency and tamper-proof. The hypervisor-

based reference monitor ensures that security-sensitive cross-domain activities such

as protection domain switches will eventually be captured as exceptions in virtu-

alization. Second, we propose a new kernel slab memory allocator design, which

takes advantages of SILVER's virtualization features such as page labeling and

permission control, with a new organization and allocationscheme based on ob-

ject security properties. The new memory management subsystem exports API

to developers to allow them managing security properties ofits allocated objects,

and enforce access control rules throughout their life time. Finally, SILVER in-

troduces two new communication primitives: transfer-based communication and

service-based communication for securing data exchange and performing reference

validation during cross-domain function calls.

We have implemented a prototype of SILVER for the Linux kernel. Our sys-

tem employs a two-layer design: a VMM layer for enforcing hardware isolation,

80

reference monitoring and providing architectural supportfor page-level security

labeling, as well as an OS-subsystem for achieving the high-level protection mech-

anism and o�ering APIs to kernel programs. We have adapted real-world Linux

device drivers to leverage SILVER's protection domain primitives. The evaluation

results reveal that SILVER is e�ective against various kindsof kernel threats with

a reasonable overhead on memory consumption and run-time performance.

The rest of this chapter is organized as follows. Section 5.2illustrates the

threats and presents our solution using an abstract security model. Section 5.3

describes the design and implementation of SILVER architecture in detail. Section

5.4 covers the evaluation of our prototype from aspects of deployment, security and

performance. We explain the limitations of our prototype and propose our future

work in Section 5.5. Section 5.6 concludes.

5.2 Approach Overview

In this section we �rst present several examples of kernel threats to illustrate

shortcomings stated in Section 5.1. We then describe our threat model, and give

an overview of our approach.

5.2.1 Motivating Examples

Kernel heap bu�er overow. Jon [112] illustrates a vulnerability in the Linux

Controller Area Network (CAN) kernel module which could be leveraged to trigger

controllable overow in the SLUB memory allocator and eventually achieve privi-

lege escalation. The exploit takes advantage of how dynamicdata are organized in

slab caches by the SLUB allocator. In speci�c, the attack overows a can frame

data object allocated by the CAN module and then overwrites a function pointer

in a shmid kernel object, which is owned by the core kernel and placed next to

the can frame object. Although there are many ways to mitigate this particular

attack (e.g., adding value check and boundary check), the fundamental cause of

such kind of attack is that the OS kernel is not able to distinguish data objects

with di�erent security properties. In this case, data object shmid kernel is owned

81

by OS kernel principal, and it is of high integrity because itcontains function

pointers that OS kernel would call with full privilege. On the other hand, data

object can frame is created and owned by the vulnerable Controller Area Network

kernel module principal with a lower integrity level. Unfortunately, Linux kernel

does not manage the owner principal and integrity level of dynamic data objects,

which results in placing these two data objects on the samekmalloc-96 SLUB

cache with the vulnerability.

Kernel API attacks. As mentioned in Section 5.1, even with strong isolation

and control ow integrity protection, untrusted extensions can still subvert the

integrity of OS kernel through manipulating kernel APIs. Forexample, let us con-

sider a compromised NIC device driver in Linux which has already been contained

by sandboxing techniques such as hardware protection or SFI. Due to memory iso-

lation, the untrusted driver cannot directly manipulate kernel data objects (e.g.,

process descriptors) in kernel memory. However, the attacker could forge a refer-

ence to a process descriptor and cast it asstruct pci dev * type, which he would

use as a parameter to invoke a legitimate function (e.g.,pci enable device). By

carefully adjusting the o�set, the attacker could trick the OS kernel to modify

that particular process descriptor (e.g., change theuid of the process to be zero

to perform privilege escalation) and misuse its own privilege. We consider such

threat as a confused deputy problem caused by insu�cient security checks in Linux

kernel APIs. Thus, to ensure kernel API security, upon receiving a reference from

caller, a kernel function should distinguish the security principal that provides the

reference, as well as determine whether that principal has the permission to access

the data object associated with the reference.

5.2.2 Threat Model

In SILVER, kernel developers leverage protection domain primitives to protect

the integrity of OS kernel in case that untrusted extensionsare compromised by

attacker. A compromised extension may attempt to subvert a protection domain

in many di�erent ways, which may include: (1) directly modifying code/data via

write instruction or DMA; (2) control ow attacks that call/j ump to unauthorized

code in kernel; (3) memory exploits such as stack smashing orbu�er overows;

82

(4) confused deputy attack via reference forgery; (5) tampering architectural state

such as crucial registers. We discuss how SILVER is designed to defend against or

mitigate these attacks throughout the rest of the chapter.

In this chapter, we primarily focus on the protection ofintegrity. Although we

are not seeking for a comprehensive secrecy protection against private information

leakage, SILVER could indeed prevent untrusted principals directly read crucial

data (e.g., crypto keys) from a protection domain.

SILVER employs a VMM for reference monitoring and protecting the integrity

of its components in the OS subsystem. Hence we assume that theVMM is trusted

and cannot be compromised by the attacker.

5.2.3 Protection Domain in SILVER

In SILVER, protection domains can help the OS kernel and othertrusted enti-

ties collaborating with untrusted code without worrying about the compromise

of integrity so that they can exchange information, delegate privilege and export

services in a more explicit, secure, and controlled manner.In the following para-

graphs, we give an overview of the design goals of our approach.

Data management based on security properties. SILVER maintains secu-

rity metadata for dynamic data objects in the kernel to keep track of their security

properties. For example, for each dynamic objects allocated, besides basic in-

formation such as address and size, SILVER also maintain records of its owner

principal and integrity level. Moreover, kernel data objects are managed based

on these security properties, and the organization scheme takes advantage of la-

beling and memory protection primitives provided by SILVER's hypervisor. Such

organization guarantees that security-sensitive events will be completely mediated

by the reference monitor, which would make security decisions based on security

properties of principal and data objects. In this way, SILVERachieves data ob-

ject granularity in protection domain construction and security enforcement, and

addresses challenges stated in Section 5.1.

For example, with SILVER, the kernel bu�er overow attack in Section 5.2.1

would no longer succeed, since data objectshmid kernel with security prop-

erty < OS kernel, high integrity> would never be placed adjacent to data object

83

can frame with security property < CAN module, low integrity> . Thus, through

compromising the vulnerable CAN module, the attacker can only overow low in-

tegrity data objects that only CAN module has write access to,but never hurt the

integrity of security-sensitive kernel data. Moreover, the kernel API attack in Sec-

tion 5.2.1 could also be prevented by SILVER, since SILVER is able to determine

whether the caller principal has the access permission to the data object referred

by the pointer parameter passed.

Security controlled by developers. Many run-time protection systems ([67,

62, 26, 80, 44]) rely on mandatory access control mechanismsin which the ac-

cess control rules are completely decided by the protectionsystem or the system

administrator. However, mandatory protection itself generally has di�culties in

achieving �ne-grained policies that closely express the application semantics. In

speci�c, constructing dynamic MAC policies for multi-principal interaction requires

complex e�ort such as role assigning, state de�nition and type enforcement, which

may be too di�cult for system administrators to con�gure correctly. To address

this shortcoming, SILVER allows kernel developers to control security properties

of its own code and data in a �ne granularity to achieve exibility.

We illustrate security decisions controlled by program developers as follows: (1)

by leveraging extended allocation APIs, developers can specify which data objects

are security-sensitive while others can be globally sharedwith untrusted principals

by assigning integrity labels to its data objects; (2) developers could control the

delegation of data object ownership and access permissionswith other principals by

relying on SILVER's transfer-based communication primitive; (3) developers could

ensure data integrity when providing service to or requesting service from other

principals by using the service-based communication primitive; (4) developers can

control which services (functions) to be exported to which principals by creating

entry points both statically and at run-time; (5) developers could use endorsement

functions and reference checking primitives to validate received data and reference;

(6) developers (and system administrators) could accommodate trust relationships

with protection domain hierarchy.

Noted that although SILVER's primitive could help both participating security

principals to achieve secure communication, the security of a protection domain

84

does not rely on other domain's con�guration or security status. Forexample,

as long as the OS kernel programmer properly use SILVER's primitives to en-

force isolation and secure communication, the integrity ofOS kernel would not be

compromised by any untrusted extension which may either fail to use SIVER's

primitives correctly or be totally compromised by attacker.

Practical deployment. SILVER requires existing kernel programs to modify

their code to leverage the security bene�ts of protection domains, but its deploy-

ment e�orts are still practical. Firstly, compared with language-based approaches,

SILVER does not require the program to be rewritten entirely. Instead, it only

requires the adaptation of a few extended kernel APIs. Moreover, the deployment

procedure of SILVER can beselective and incremental. For instance, one can

leverage SILVER's extended APIkmalloc pd to declare security-sensitive data for

extra security guarantee. However, it can also keep using theoriginal kmalloc

to leave that allocated object unprotected. Secondly, in contrast to approaches

(e.g., micro-kernels) that change the programming paradigm completely, trans-

parent protection domains in SILVER preserve programming conventions in the

commodity OS kernel as much as possible. For example, kernelentities still rely

on function calls and pointer passing for data communication, and we do not want

to replace them with multi-servers and message-passing mechanisms.

5.2.4 Abstract Model

In this section we present an abstract model, describing ourapproach in a few for-

mal notations. The basic access control rules of our model follow existing integrity

protection and information ow models [15, 16, 32] with a fewadaptations. In

SILVER, a kernel protection domain represents an execution entity in the kernel

space. Examples of kernel protection domains include the OSkernel, device drivers

and other kernel extensions. In SILVER, kernel protection domains are declared

by the developer who would like to protect the integrity of its program from being

tampered by other programs in kernel.

In our model, a kernel protection domain is de�ned as a three-tuple: S = <

p; D; G > , where: (1) p is the principal associated with the domain. For each

protection domainS in kernel, p is unique and immutable so that it can be used as

85

the identi�er of the protection domain. Thus, we denote a protection domain with

principal p asSp. (2) D is the set of data object owned by the principal. Every data

object is associated with an integrity level, which can be either high, low or global

shared. We denote the subset of high integrity data objects as D + and the subset

of low integrity data objects asD � so that D = f D + ; D � g. For programmers,

high integrity label usually means that the labeled data areprivate or security-

sensitive, and thus not meant to be manipulated by others. Low integrity labels, on

the other hand, are often applied to data of low importance, shared with untrusted

principal or received but not yet validated and endorsed. (3) G is the set of entry

point objects, which are essentially entrance addresses through which a principal

could transfer its control to another principal. Entry points are speci�ed by the

developer on a per-principal basis, yet some of them can alsobe declared as global

shared. For the global shared data objects and entry points,SILVER virtually

organizes them in to a global low-integrity protection domain denoted asS� . We

de�ne the set of rules that govern protection domain activities as follows:

� Data creation. A principal p can create data objects of either integrity

level in its own protection domain. p can also degrade any high integrity

data object d 2 Dp
+ to low integrity level so that d 2 Dp

� .

� Integrity protection. A data object can only be possessed by only one

principal at any time. A principal p can write to a data objectd i� d 2 Dp.

p can read fromd i� d 2 Dp
+ . While p cannot read d 2 Dp

� directly, p

has the capability to increase the integrity level ofd via an endorsement API

provided by SILVER.

� Data communication. In SILVER, data communications are achieved by

moving data objects from one protection domain to another. In order to

send data to another principalq, p can move its data objectd 2 Dp to low

integrity part of domain Sq so that d 2 Dq
� . However, to ensure thatd is

safe in regard to the integrity ofq, d is kept to be in low integrity and cannot

be read byq until q sanitizes and endorses the input data and renderd high

integrity (d 2 Dq
+).

� Cross-domain calls. Another important method for inter-domain commu-

86

nication is through calling remote functions exported by other principals.

Exporting functions to a principal q is achieved by creating entry point ob-

jects in q's domain. To prevent the abuse of code of a protection domain

principal, SILVER guarantees that calling through entry points granted by

p is the only way to transfer control to principal p. Data transfers through

cross-domain calls must obey the previous data communication rules.

Protection domain hierarchy. Besides mutually untrusted principals, SILVER

introduces protection domain hierarchy to accurately express one-way trust, which

is more common in practice (e.g., OS kernel and untrusted extensions). In speci�c,

SILVER allows one principalq or sysadmin to designate another domainSp as the

parent protection domainof domain Sq. The restriction of control/data ow rules

for parent-child domains are relaxed in the following ways:(1) p can directly create

high integrity data d within its child domain Sq so that d 2 Dq
+ ; (2) p have the full

write access permission to all the data object inDq. High-integrity data objects of

p are also considered as high-integrity data forq (Dp
+ � Dq

+), thus can be read

by q directly; (3) p can call arbitrary functions owned by principalq. Noted that

the global shared virtual protection domainS� is the child domain of all other

protection domains in the kernel.

5.3 System Design and Implementation

5.3.1 Overall Design

To design a run-time system which enforces our model stated in Section 5.2.4, we

have faced several design questions. The �rst question is onhow to achieve a refer-

ence monitor for activities in the kernel space, where thereis no hooks for mediating

kernel object access, and no explicit \context switches" for distinguishing kernel

principals. Another major challenge comes from achieving data object granularity

for principal security control. In a commodity OS such as Linux, all the dynamic

data objects owned by various principals are placed on a single heap without dis-

tinction. There is only one global namespace (i.e., virtualaddress) from which any

code can refer to any object in the kernel space. Moreover, there is little meta

87

Figure 5.1. The architecture of the SILVER framework.

information for describing security properties of kernel objects. Hence, we need to

develop new designs to support �ne-grained policies and achieve accountability.

To address the above questions, SILVER exploits several architectural (hard-

ware and virtualization) features to achieve strong isolation and a coarse-grained,

OS-agnostic access control mechanism based on page permissions. On top of these

facilities, we design a subsystem for Linux kernel to achieve accountability and

�ne-grained security control. The kernel subsystem includes a speci�cally designed

kernel memory allocator implementing the core functionality of protection domain

primitives, a kernel object registry for accounting kernelobjects and supporting

reference check, and a set of kernel APIs exported to principals for controlling

security properties of their data, performing secure communication and granting

capability to other principals. Figure 5.1 illustrates theoverall design of SILVER's

architecture, with the components of SILVER in gray. The entire framework is di-

vided into two layers: the VMM layer and OS subsystem layer, respectively. The

reference monitor and architectural-related mechanisms are placed in the VMM

layer to achieve transparency and tamper-proof.

88

5.3.2 The VMM Layer Design

The VMM layer components consist the bottom-half of the SILVERarchitecture.

These components are responsible for enforcing hardware protection to establish

protection domain boundaries, as well as providing architectural-level primitives

(e.g., page permission control, control transfer monitoring) for upper-layer compo-

nents in the OS-subsystem.

Principal isolation. In SILVER, each principal is con�ned within a dedi-

cated, hardware-enforced virtual protection domain realized by the hypervisor.

The protection domain separation is achieved by creating multiple sets of HAP

(hardware-assisted paging)1 tables for memory virtualization, one table dedicated

for each virtual protection domain. Using such layer of indirection, each principal

could have its ownrestricted view of the entire kernel address space, while the

shared address space paradigm is still preserved (Figure 5.2). Furthermore, by

leveraging IOMMU tables, the VMM enables a principal to control DMA activ-

ities within its protection domain by explicitly exporting DMA-write permission

to other principals and designating DMA-writable pages in its address space. The

VMM prohibits any other DMA writes to the protection domain. Finally, to pre-

vent untrusted code tampering with the architectural state(e.g., control registers,

segment selectors, and page table pointer) of other protection domains or the OS

kernel, the hypervisor saves all the corresponding hardware state of one protec-

tion domain before the control transfers to another subject, and restores the saved

invariant values once the control is switching back.

Mapping security labels to page permissions. The hypervisor in SILVER

also provides a page-based access control mechanism using hardware virtualization.

In speci�c, it exports a small hypercall interface to the OS subsystem of SILVER,

allowing it to associate security labels to kernel physicalpages. The low-level access

control primitives are implemented by mapping security labels to page permissions

(i.e., read, write, execute) in each principal's HAP table, which de�nes whether

certain pages can be accessed by the principal via which permissions. In section

5.3.3, we further describe how SILVER achieves �ne-grained data access control

1A contemporary processor feature which adds another layer of hardware page tables for
guest-physical-to-machine-physical translation in memory virtualization.

89

Guest Virtual
Address
Space

Machine Phys ical
Address
Space

Guest Page Table HAP Table

. HUQHO�SURJUDP ¶V�
perspective

Memory
virtualization

Conventional protection
domains

(e.g, Multics , Microkernel, Nooks...)

6,/ 9(5 ¶V�
protection domains

mapping &
permiss ions

mapping &
permiss ions

Guest Phys ical
Address
Space

Figure 5.2. SILVER leverages memory virtualization to make protection domains trans-
parent to the kernel space.

on top of these page-based mechanisms.

Securing control ow transfer. By setting up NX (execution disable) bits on

corresponding HAP table entries representing pages owned by other principals, the

hypervisor is able to intercept all control transfers from/to a protection domain

through execution exceptions. Therefore, the reference monitor is fully aware which

principal is currently being executed by the processor. Thereference monitor

then validates the < initiating principal, exception address> against the control

transfer capability and the set of entry points designated by the owner principal of

the protection domain, and denies all the illegal control transfers. To ensure the

stack isolation and data safety during cross-domain calls,whenever a call is made

by the protected code to an untrusted principal, the hypervisor forks aprivate

kernel stack from the current kernel stack for untrusted execution, and it changes

the untrusted principal's HAP table mapping of the stack pagesto point to the

new machine frames of the private stack. Since both virtual address and (guest)

physical address of the stack are kept the same, untrusted code will have the

illusion that it operates on the real kernel stack so that theoriginal kernel stack

semantics are preserved. After the call �nishes, the hypervisor joins the two stacks

by propagating legit changes from the private stack to the real kernel stack frames,

guaranteeing that only modi�cations to its own stack framesare committed. In

this way, SILVER enforces that all principals have read permission to the entire

kernel stack, but only have write permission to their own stack frames.

90

5.3.3 OS Subsystem Design

The OS subsystem is responsible for achieving �ne-grained protection domain

mechanism and providing APIs to kernel programs. It leverages the architectural

primitives provided by the VMM layer by issuing hypercalls tothe VMM.

5.3.3.1 Kernel memory allocator

The kernel memory allocator in SILVER is responsible for managing dynamic ker-

nel objects according to the rules de�ned in Section 5.2.4, as well as providing

primitives to kernel principals for controlling security properties of their data ob-

jects. It leverages the hypercall interface provided by theVMM layer for labeling

physical page frames and manipulating page permissions fordi�erent principals.

Based on these mechanisms, the allocator achieves the following key functionality:

(1) it allows principals to dynamically create objects within speci�ed protection

domain and integrity levels. For example, a principal couldcreate a high integrity

object within its protection domain for holding crucial data, or it could create an

object in its child domains; (2) It enables a principal to endorse or decrease the

integrity level of its objects at run time; (3) It allows a principal to transfer its

data objects to be a low-integrity data object in a contracted protection domain for

passing data; (4) It restricts principals from accessing the global name space (i.e.,

kernel virtual address) to refer objects outside of its domain and provide access

control according to the rules.

Our design is an extension to the SLUB allocator [113] of Linux, which man-

ages the dynamic allocation and deallocation of kernel objects. The SLUB al-

locator maintains a number of SLUB caches, distinguished by size for allocation

e�ciency. There are two kinds of SLUB caches in the system: general purpose

SLUB caches (e.g.,kmalloc-32) and caches which are explicitly de�ned for fre-

quently allocated data structures (e.g.,task struct). A SLUB cache allocates

kernel objects from organized physical pages namedslabs, which are initialized to

have multiple instances of a speci�c type of objects. Each slab has afreelist

pointer for maintaining a list of available objects. A slub can have four allocation

states: cpu slab (the current active slab for a given cpu),partial slab (portion

of the objects are used),full slab (slab objects fully used) andnewslab (all

91

...Free
Object

metadata

Used
Object

Free
Object

Used
Object

freelist

...Free
Object

metadata

Free
Object

Used
Object

freelist

partial_list

fork

Free
Object

principal p: rw-
principal q: ---join

1

2

3

principal p: ---
(can create object)
principal q: rw-
(read by endo rsement func.)

slab perm.

slab perm.

Label:
<p, high>

Label:
<q, low>

Figure 5.3. The layout of two slabs of the same slub cache involved in a service-based
communication.

objects are available).

Organization. SILVER enhanced the Linux SLUB allocator by introducing

heterogeneity to slabs for SLUB caches. In SILVER, each slab isassociated with

an extra label < principal, integrity > , and according to the label, it is restricted

to contain kernel objects of the speci�ed integrity level owned by the principal.

The memory allocator achieves the slab access control by issuing hypercalls to the

VMM layer, labeling and setting up page permissions. Figure 5.3 illustrates the

organization of twopartial slabs from the same SLUB cache but with di�erent

owner principal and integrity levels. Their heterogeneouslabels will eventually

result in di�erent page permissions in principals' HAP table,preventing principals

from accessing objects that are disallowed by the access control rules. In general,

for one principalp, there could be two kinds of slabs in each SLUB cache: domain

high (for storing data objects that belongs toDp
+), and domain low (for storing

data objects that belongs toDp
�). Moreover, in SILVER, there is a special global

low slab for containing kernel objects of protection domainS� de�ned in Section

5.2.4.

92

Allocation and Deallocation. The kernel memory allocator in SILVER pro-

vides a family of secure allocation APIs (e.g.,kmalloc pd()) for protection domain

principals. These APIs follow the similar semantics ofkmalloc family functions in

Linux, except for having two extra parameters to designate the principal ID and

integrity level of the object allocation. The work ow of the allocation procedure

is described in Algorithm 1. One major di�erence between our allocation scheme

and the original SLUB allocation algorithm is on the slab selection strategy, since

SILVER must guarantee to pick the slab that matches the security criteria rather

than to choose the �rst available objects fromcpu slab or partial slabs . Once a

new slab is created, SILVER must register the label to the VMM toestablish prin-

cipal access control before using it. On the other hand, the deallocation procedure

is similar as the SLUB allocator, but it needs to check whetherthe requesting prin-

cipal has the permission for freeing objects on the requested slab. If not, the free

operation will be denied. The memory allocator also provides APIs to principals

for changing the integrity level of their domain objects so that they have the ability

to endorse their received data by implementing their endorsement functions.

Aside from slab objects, there is another major kind of dynamic data used

by kernel programs: pages directly allocated by the free page allocator. Since this

kind of data is already page-aligned, SILVER treats each of them as an object that

occupies an entire slab (or multiple slabs), and labels the corresponding pages in

the same way as the slab labeling. The access control strategies for allocated pages

is also uni�ed with the slab mechanism. Accordingly, we extend the APIs of the

free page allocator to enable secure allocation and data communication.

5.3.3.2 Support for secure communication

As a major task, the OS subsystem in SILVER is responsible for o�ering secure

primitives to principals for exchanging data, with the strong guarantee of integrity.

The data communication is governed by the rules de�ned in Section 5.2.4. Accord-

ing to the model, using direct memory sharing to pass high-integrity data is pro-

hibited in SILVER 2. Instead, SILVER provides primitives for two primary types

of data communication: transfer-basedcommunication andservice-basedcommu-

2Although principals can still declare unprotected data sharing via the special S� domain.

93

Algorithm 1 The procedure for handling allocation requests from a protection
domain principal

1: if label < principal; integrity > of current cpu slab matches <
requesting principal; integrity > of the requested object and freelist is
not empty then

2: return the �rst available object in the freelist
3: end if
4: Try to �nd a partial slab with the matching label
5: if partial slab found then
6: Activate this partial slab as the current cpu slab
7: return the �rst available object in the freelist
8: else
9: Allocate and initialize a newslab from the page frame allocator

10: Associate label< requesting principal, integrity > to the slab's page struct
11: Issue ahypercall to SILVER's hypervisor to label the corresponding physical

pages and set up permissions in principals' HAP tables
12: Activate this newslab and return object as of Line 6-7
13: end if

nication. In transfer-based communication, a principalp sends one of its own data

object d to another principal q. After that, d will become a (low-integrity) data

object of Sq, and can no longer be accessed byp.

In SILVER's implementation, The data object transfer is conducted by the

memory allocator by moving data object from one slab to another. In this case,

principal p will invoke the API call pd transfer object , providing its object and

q's principal id as input. The memory allocator locates the particular slab (label:

< p, high=low >) that contains d, removing d from that slab, and copyingd to a

slab with the label < q, low > of the same SLUB cache. The API call will return

a new object reference whichp could pass toq (but p can no longer dereference

to d due to slab access control). Upon receiving the reference,q will leverage

SILVER's reference validation primitives (described in Section 5.3.3.3) to ensure

that the reference is legal, and �nally endorsed to complete the transfer. Noted

that in transfer-based communication, since the object ownership is surrendered,

the sending principal must release all the references to theobject before calling

the pd transfer object , the same way as it is calling thekfree function.

Service-based communication represents the semantic thata principal requests

another principal to process its data object, rather than giving up the ownership

94

permanently. This kind of communication is mostly carried out by cross-domain

calls, and it needs to be achieved in a di�erent way other thantwo back-and-forth

transfer-based communication. The primary di�erence is that in service-based

communication, the original stored location of the data object is not released during

the transfer process, instead, a shadow copy of the object iscreated to be used

by the domain that provides the service. After the service call is completed, the

updated value of the object is copied back to the original location.

SILVER also implements service-based communication based on the SLUB al-

locator: when a principalp is requesting another principalq to process its own

object d, SILVER will �rst fork object d from its current slab to a new objectd�

in a < q, low > slab in the same SLUB cache, and then use the reference of the

forked object as the parameter of the cross-domain call. Before the call returns,

all the references ofd in Sp would dereference to the originald in p's slab. Once

the call returns, SILVER will join the d� with d if d� can be endorsed, committing

changes made byq, and freed� from q's slab. Figure 5.3 shows the procedure of

the corresponding slab operations. By proxying data duringcross-domain calls,

service-based communication not only improves security ofdata exchange, but also

provides guarantee of consistency, since changes would notcommitted to the pro-

tection domain until the call is �nished and updated data objects are endorsed.

We describe how to adapt existing programs to leverage the two communication

primitives in Section 5.4.2.

Noted that in most cases there is no extra hypervisor operation involved during

the communication procedure, since both two slabs are pre-allocated so that no

labeling/relabeling is required.

5.3.3.3 Reference validation and object accounting

In commodity OS kernel like Linux, fetching data from another principal is usually

achieved by obtaining a reference (i.e., pointer of virtualaddress) to the particular

data object. Object references can be passed between principals through function

call parameters, function call return values, and reading exported symbols.

As stated in Section 5.2.1, the absence of reference validation in function pa-

rameters could leave avenues for attackers. In order to support reference valida-

95

tion, SILVER must be able to track security information of kernel data objects at

run-time so that given any reference, SILVER could identify the object that the

reference points to. To further support type-enforcement and bound checking, the

type and size information of protected objects must also be known at run-time.

By extending the SLUB tracking mechanism, we implemented an accountable re-

source management layer named object registry, for managing protected objects.

The object registry maintains additional metadata for eachprotected object, and

updates metadata upon allocation, deallocation, and communication events. The

metadata include allocation principal, owner principal, object size, integrity level,

object type and the time of allocation. The object type can beobtained because

the SLUB allocator follows a type-based organization, and for generic-sized types,

we use the allocation request function/location (the function that calls kmalloc)

as well as the object size to identify the type of the object.

SILVER ensures that references passed through the

pd transfer object API and service-based communication functions through des-

ignated parameters must be owned by the sender principal. Inaddition, the object

registry o�ers basic primitives to principals for implementing their own reference

validation schemes.

5.4 Evaluation

In this section, we �rst describe the implementation of our prototype, then we

show how to apply SILVER to existing kernel programs for establishing protection

domains. In Section 5.4.4, we demonstrate SILVER's protection e�ectiveness using

security case studies of di�erent kernel threats. We evaluate the performance of

SILVER in Section 5.4.5.

5.4.1 Prototype Implementation

We have built a proof-of-concept prototype of SILVER. The VMM layer is an

extension of the HUKO hypervisor [111], which is based on Xen 3.4.2 x86-64. The

HAP table implementation requires hardware-virtualizationfeatures of processors,

and our prototype is based on Intel's EPT (Extended Page Table) [39], which is

96

supported by most Intel processors in recent years. The low-level page labels

are stored in unused bites of each EPT entry. We extended HUKO'smandatory

protection states and added new labeling and control hypercalls to support VMM

layer protection enforcement. We also added data marshaling mechanism in kernel

function call mediation.

In SILVER, the operating systems are deployed as a Xen DomU in HVM mode.

The OS subsystem of SILVER is developed to use with Linux kernel 2.6.24.6 on

x86-64 architecture. Principal programs are loaded via theLKM (Loadable Ker-

nel Module) interface, and we modi�ed theload module routine to register their

program layout with the hypervisor and initialize the protection environment. Pro-

tection domain metadata are maintained in various locations. For each security

principal we maintain a security identi�er prid in the module struct, and we en-

code the slab label< principal, integrity > as additional ags in the corresponding

page struct . The object registry is organized in a search tree with the object

address as the key value. In addition, to facilitate monitoring for the administra-

tor, we export the run-time status of protection domains in the kernel, including

object information and exported functions, to a virtual directory in the /proc/

�le system.

5.4.2 Protection Domain Deployment

In this section we describe how to adapt existing kernel programs to leverage

primitives provided by SILVER. The �rst step is to establish the protection by

declaring a speci�c LKM as a domain principal using thepd initialize() routine,

which will return an unique principal id. Entry points of thi s domain need to be

initialized by pd ep create API.

The second step involves modifying the declaration or creation of security-

sensitive program data. There are four kinds of data object associated with a

kernel program: global object, stack object, heap object and page object. For

static data and stack data, SILVER could automatically recognize them and treat

them private to their principal so that modi�cation by other principals must be

carried out by calling wrapper functions. For heap and page objects, developers

could specify their security property to control how they could be accessed by

97

other principals through calling kmalloc pd and get free pages pd API with

an integrity label. For example, unprotected memory sharing of low integrity

data could be declared using theGBLOWag. Noted that this process could be

performedincrementally and selectively.

The next step is to handle data communication. The major taskis to convert

functions that handle exchange of high-integrity data to exploit transfer-based and

service-based communication primitives. The example codebelow is a fragment of

alloc skb function that returns an allocated network bu�er to NIC driver using

transfer-based communication. By adding �ve lines of code at the end of the

function, the owner principal of thesk buff object changes accordingly.

out:

- return skb;

+ if(is protected(prid = get caller prid()))

+ transfer skb = pd transfer object(skb, prid, PD HIGH, sizeof(struct

sk buff));

+ else

+ transfer skb = pd degrade object(skb, GB LOW);

+ return transfer skb;

Service-based communication is used in a similar manner, the data proxying is

accomplished by SILVER automatically, but the developer needs to register the

function signature and mark the transferring parameter at both the beginning and

the end of function using SILVER's APIs. To support reference validation, SIL-

VER provides routine that automatically checks whether a designated parameter

reference belongs to the caller principal.

We have converted a number of Linux kernel functions and extensions using

SILVER's primitive to secure their interactions. The extensions include the Real-

tek RTL-8139 NIC driver, the CAN BCM module, Media IndependentInterface

module, the emulated sound card driver, and two kernel modules written by us

for attacking experiments. For all cases, the total amount of modi�cation incurs

changing less than 10% lines of original code.

98

5.4.3 Security Analysis

In this section, we evaluate the security of SILVER by performing security analysis

to show how SILVER helps a properly-con�gured principal defend against various

kinds of security threats from other untrusted principals in the kernel. Here we

assume thatq is the attacker principal, andq has the capability to communicate

with the victim principal p.

We discuss each of the attacks as follows.

� Directly modifying code/data. q could conduct this attack by using

either using store instructions or DMA writes via arbitraryaddressing meth-

ods (physical or virtual address). The attack cannot be achieved since the

code and all data object (except stack data) ofp are only placed on physi-

cal pages that labeledp as the owner principal, and these pages are set to

be non-writable in q's HAP table in the VMM. Also, the DMA writes are

restricted into p's DMA zones by the IOMMU.

� Control ow attacks. q may attempt to divert the control ow to arbitrary

positions in p's text by call/jmp/return instructions. However, according to

Section 5.3.2, control transfers between protection domains are mediated by

the hypervisor, which guarantees that entry points exported by p are only

entrances to invokep.

� Stack manipulation. As all kernel programs share the same kernel stack in

the context of each user process,q may attempt to manipulate stack frames

of other principals in the kernel. SILVER enforces that a principal's stack

frame is read-only to other principals by employing a VMM-level private

stack during the cross-domain calls (refer to Chapter 4 Section 4.3.4 for the

detailed mechanism). Hence, any changesq made to p's stack frames are

discarded during the protection domain switch so that the stack integrity of

p is preserved.

� Tampering architectural state. As described in Section 5.3.2, the archi-

tectural state is preserved by the VMM during protection domain switches.

As a result,q's attempt to manipulate p's architectural state (e.g., installing a

99

new page table) will be invalid at the time that protection domain is switched

back to p.

� Memory related exploits. A typical attack path to commodity kernels

is �rst exploiting a bu�er/integer overow vulnerability o f a device driver

function which accesses one of its objects on the slab. Then by overowing

that object, the attacker can also corrupt objects (e.g., function pointers)

owned by the OS kernel or other kernel programs adjacently placed on the

same slab.

Although SILVER cannot eliminate the vulnerabilities causedby lack of

bound/type checking, it can still mitigate the e�ect of these attacks. First,

even if principalp's data are corrupted, it is almost infeasible to corrupt data

object of any other principal q since in SILVER, one slab can only contain

objects owned by one principal. As a result, the attacker can only compro-

mise data objects owned by the kernel program that has the vulnerability.

Moreover, damage of data corruption or code injection is still contained in

the exact protection domain since the attacker can only exercise the privilege

of the victim principal in terms of data access and control transfers.

However, in the rare case that the vulnerability is in the OS kernel itself

and exposed to attackers directly, SILVER cannot stop the kernel from be-

ing compromised since such compromised OS kernel could exercise its full

privilege without violating access control policy of SILVER.

� Exploit Communication. A malicious principal q could exploit communi-

cation activities with principal p for privilege escalation. The attack leverages

the fact that p and q may exchange data in certain legal channels (e.g., func-

tion parameters and shared memory) butq failed to validate its input. For

example,p may needq to provide a callback function pointer or data refer-

ence but does not validate that the function or data is actually owned by q,

which would cause confused deputy vulnerability as described in 5.2.1.

SILVER does not o�er direct input validation by itself, as program input

depends too heavily on semantics of the program. Instead, SILVER helps

programmers to achieve input validation and communicationsafety by pro-

100

viding them with two security features: 1) enforcing protection domain isola-

tion: data object can only be owned by one principal at a time;2) reference

validation: given any reference, SILVER returns the owner principal and in-

tegrity level associated with the object that the referenceactually referring

to. These two features enables programs to detect forged references more

conveniently and we demonstrated their applications for securing function

parameters in cross-domain calls.

However, just enforcing reference validation on function parameters alone

does not guarantee communication safety completely. Consider that q passes

p a reference of its own struct-type data in function parameters, which is

legitimate for function parameter validation. However, thestruct contains

a callback function pointer that was forged (not owned) byq, which would

cause privilege escalation once got invoked byp. Besides thestruct type,

there are even more complicated types of data involved in communication,

such as dynamic arrays, linked list and trees, and program semantics can

be more complicated as well. In such cases, programmers would be required

to provide validation speci�cations case by case, yet SILVER's primitives

can still be served as basic building blocks for implementing complex input

validation speci�cations.

A malicious principal could also attempt to subvert the OS subsystem of SIL-

VER to disable or corrupt the protection domain mechanism itself. However, since

the reference monitor is achieved at the VMM layer and the codeand data of OS

subsystem is also labeled by the VMM, any interactions between the OS subsys-

tem and untrusted principals would be mediated by the hypervisor. The hypervisor

enforces the data and control integrity requirements [111]to ensure that the OS

subsystem can not be tampered.

5.4.4 Security Experiments

In this section we evaluate the e�ectiveness of security protection provided by

SILVER mechanism with both real-world and synthetic attacks.

Kernel SLUB overow. In Section 5.2.1, we mention an exploit described by

101

Jon Oberheide (CVE-2010-2959) to the vulnerable CAN Linux kernel module that

achieves privilege escalation through overowing dynamicdata in the SLUB cache

and corrupting crucial kernel control data in the same SLUB cache. We ported

the vulnerable module to our Linux system, implemented and tested our exploit

based on the attack code provided by Jon Oberheide. We then tested our attack in

case the module is secured by SILVER's primitives. We designated the vulnerable

CAN BCM module to be an untrusted principal and placed it into an untrusted

protection domain. As result, dynamic data (e.g.,op->frames) allocated by the

CAN module are labeled with untrusted principal. According toSILVER's SLUB

memory allocation scheme, these data object are placed on dedicated slabs for

the untrusted CAN module principal, and they could never be adjacent to a high

integrity kernel object shmid kernel in the SLUB cache, despite any allocation

pattern carried out by the attacker. For this reason, the attack can never succeed

in our experiment.

Moreover, in case the attacker successfully compromise thevulnerable kernel

module (e.g., be able to execute injected code), it still cannot tamper the integrity

of OS kernel since the entire kernel module can only exercisepermissions of an

untrusted principal. In our experiment, we deliberately injected malicious code into

the OS kernel, performing malicious activities such as modifying security-sensitive

kernel data and calling functions that are not exported to the protection domain.

All of these attack attempts raised security violation in SILVER's reference monitor

and were therefore denied.

Kernel NULL pointer dereference. The key idea of NULL pointer derefer-

ence is to leverage the vulnerability that a kernel module does not check whether

a function pointer is valid before invoking that function pointer. As the result,

the control will jump to the page at address zero, where the attacker maps a pay-

load page containing the malicious code from user space before hand. Once get

executed, the payload code could modify crucial kernel dataor invoke kernel func-

tions to achieve malicious goals such as privilege escalation. Such vulnerabilities

are quite common in buggy extensions and even the core kernelcode (CVE-2009-

2692, CVE-2010-3849, CVE-2010-4258).

In our experiment, dereferencing a NULL pointer in a buggy untrusted module

102

could not succeed in SILVER, primarily for two reasons. Firstly, in SILVER,

executing user-level code by an untrusted principal is prohibited according to access

control rules. This is because NX bits are set for user pages inthe untrusted

principal HAP table. Hence, even if the zero page is successfully mapped in user

space, executing the payload code would still be blocked by the reference monitor

with an execution exception. Secondly, even if the attack code got executed, it is

still executed on behalf of untrusted principal with restricted permissions. As a

result, attacking e�orts such as privilege escalation (e.g., setting the task->uid ,

calling the commit creds function) would be intercepted by the reference monitor

and the integrity of core OS kernel is preserved.

Attacks through Kernel API. In Section 5.2.1, we show that even with pro-

tection schemes like memory isolation or SFI, attackers canstill compromise ker-

nel integrity by launching confuse-of-deputy attacks overlegitimated kernel APIs.

Noted that this kind of attacks is very rare in practice, for the reason that currently

few Linux systems employ protection/sandboxing approaches inside OS kernel so

that kernel attackers do not need to resort to this approach at all. To demonstrate

SILVER's protection e�ectiveness against kernel API attacks, we implemented a

kernel API attack module based on the RTL-8139 NIC driver. The attacking mod-

ule provides a crafted reference ofstruct pci dev * and uses it as input to the

exported routine pci enable device . The reference is actually pointing to a cal-

culated o�set of the current process descriptor. By callinglegitimate kernel API

with such reference, the uid to current process will be set to0 (root). SILVER

prevents such attack by looking up the security property of the object referred by

the actual pointer value. The reference monitor then detected that the caller prin-

cipal actually does not owned the data object provided, and it raised an exception

denying the attack attempt.

5.4.5 Performance Evaluation

In this section, we measure the performance overhead introduced by using SIL-

VER's protection domain primitives. Our evaluation has three purposes: �rst, we

would like to measure the time overhead of calling the extended or new APIs of

SILVER by relying on a set of micro-benchmarks. Second, we would like to use

103

macro-benchmarks to measure the overall performance impact on throughput when

a kernel NIC driver is protected. Finally, we would like to measure the memory

overhead to see how much extra memory does SILVER consumed forprotecting

a typical kernel program. All experiments have been performed on a HP laptop

computer with a 2.4GHz Intel i5-520M processor and 4GB of memory. The VMM

layer is based on Xen 3.4.2 with a Linux 2.6.31 Dom0 kernel. TheOS kernel en-

vironment was con�gured as a HVM guest running Ubuntu 8.04.4 (kernel version

2.6.24.6) with single core and 512MB memory.

Run-time performance. Table 5.1 reports the microbenchmark results of se-

lected APIs of SILVER. The �rst four rows denote the performance of the native

Linux kernel SLUB memory allocator running on unmodi�ed Xen. The fast path

happens when the object requested is exactly available at the current cpu slab .

The rest of rows shows the performance of SILVER's dynamic data management

primitives. There are three major sources of overhead addedby SILVER's run-time

system: (1) \context switch" between protection domains, (2) labeling a physical

page through hypercalls, and (3) updating the object registry and data marshal-

ing. Row 5 and 6 show the overhead of allocation and free when the caller is kernel

itself, which only incurs overhead caused by (3). Row 7-8 show the overhead of

calling kmalloc pd and kfree by protection domains other than kernel. In this

case, besides overhead (3), a protection domain switch (1) is also involved, and

page labeling (2) happens occasionally when a new slab is required. The relatively

expensive guest-VMM switches in (1) and (2) make allocations/free operations by

untrusted principals much more expensive. In future work, we plan to optimize

the untrusted allocation performance by maintaining cached pool of labeled pages.

Table 5.2 demonstrates the performance cost of cross-domain activities in SIL-

VER. These penalties do not exist in the native Linux kernel, as Linux kernel

does not distinguish protection domains and it uses function calls and pointers

for communication. Although it is di�cult to do a fair compari son, in general

the performance of communication primitives in SILVER prototype is also much

slower than optimized IPC in micro-kernel systems (e.g., IDL [114] for stub code

generating, L4Ka::Pistachio [65]) because of the cost of anadditional hypervisor

layer. We consider part of the extra performance penalties of SILVER as trade-

104

o� for achieving compatibility with existing monolithic kernel, transparency to

programmers and �ner-grained control.

We summarize the decomposition of SILVER's overhead as follows:

� \Context switch" between protection domains. A protectiondomain switch

is usually caused by an exception (e.g., cross-domain callswill trigger execu-

tion violation) that traps to the hypervisor. A guest-to-VMM switch involves

costly VMEXIT operations, which save architecture context ofthe guest do-

main and prepare the context for the hypervisor. The hypervisor will go

through its exception handling paths, and eventually determine that the ex-

ception is caused by a protection domain switch. Then it willload the HAP

table for the other protection domain with necessary invalidation of TLB en-

tries for the previous HAP table. Finally the hypervisor will return from the

exception, invoking a VMM-to-guest switch with costly VMENTER opera-

tions. Protection domain switch happens every time when control transfers

from one kernel program to another, and it could be very frequent in many

cases. For example, OS kernel will invoke the NIC driver once it receives an

interrupt from the NIC device or needs to send a packet.

� Labeling a physical page through hypercalls. This operation also requires

hypervisor intervention by invoking VMEXIT and VMENTER instruc tions.

However, labeling a physical page does not need to switch the HAPtable

or invalidate TLB entries, instead, it requires a page tablewalk and a HAP

entry update. Labeling/relabeling a physical page happensless frequently

during execution, usually only when a new slab is created or an old slab is

destroyed. Hence, the actual number of labeling operations are far less than

the number of allocation/free requests due to the slab cachemechanism.

� Data copying and metadata keeping. Data copy happens when relabeling of

a data object occurs, and this is often associated with communication such as

cross-domain calls. To relabel a data object, SILVER �rst needs to allocate

a shadow object on the target slab matching the new label, then it copies

the data object to the new slab, and �nally releasing the old data object. In

105

the meanwhile, SILVER needs to keep track of the changes by maintaining

meta on the corresponding slab as well as the object registry.

To perform evaluation on application performance, we use SILVER to contain

a 8139too NIC driver, and leverage secure communication primitives toprotect all

of its object creation and data exchanges with the Linux kernel. For each packet

to process,8139too invokes the kernel routine alloc skb to create socket bu�ers

and deliver to the networking stack, which happens very frequently. We use the

following macro-benchmarks to evaluate performance impact of SILVER towards

di�erent applications: (a) Dhrystone 2 integer performance; (b) building a Linux

2.6.30 kernel with defcon�g; (c) apache ab (5 concurrent client, 2000 requests of

8KB web page) and (d)netperf benchmark (TCPSTREAM, 32KB message size,

transmit). Figure 5.4 illustrates the normalized performance results compared to

native Linux on unmodi�ed Xen. In our experiments, for CPU-intensive appli-

cations and I/O-intensive applications that do not use network, the overall per-

formance is not much a�ected. However, in test cases that the network I/O is

saturated, SILVER brings larger performance overhead in terms of throughput.

This is primarily caused by very frequent protection domainswitches and transfer-

based communication. We measured protection domain switchrate of the apache

test to be around 32; 000 per second. The overall performance also depends on how

much data are speci�ed as security-sensitive, how often security-sensitive data are

created and the frequency of protected communication with untrusted principals.

Fortunately, with SILVER, many of these security propertiesare controlled by

the programmer so that she can manage the balance between security and perfor-

mance. Hence, we expect SILVER to have better run-time performance in case

of protecting only crucial data rather than the entire program. We also believe

that our prototype can be greatly improved by optimizing Xen's VMEXIT and

page fault exception handling to create a specialized path for SILVER's protection

domain switch to avoid the unnecessary cost of VM switches.

Memory consumption. Compared with the original SLUB allocator, SILVER

consumes more slabs (pages) for separating data objects of di�erent principals

and integrity levels. To measure the extra memory overhead,during our Apache

106

Linux (Xen)

kmalloc SLUB fast path 1:4�s
kmalloc SLUB slow path 7:7�s
kfree SLUB fast path 0:7�s
kfree SLUB slow path 6:2�s

SILVER kmalloc 16:2�s
(called by kernel) kfree 14:4�s
SILVER (called kmalloc pd average 56:7�s
by other principal) kfree average 64:1�s

Table 5.1. Micro-benchmarks results for dynamic data management APIsof SILVER,
average of 1000 runs. The data object size of allocation is 192 bytes.

pd transfer object
size: 1KB

51:9�s

service-based function
forking data size:1KB

75:7�s

general protection
domain switch

25:5�s

Table 5.2. Micro-benchmarks results for control transfer events in SILVER, average of
1000 runs.

ab test, we sampled the total number of slabs in use by the memoryallocator

for 20 times, and compared the average number of active slubswith the same

measurement using the original SLUB allocator. It turned outto be that fully

protecting 8139too driver only takes 12 extra slabs (48KB of kernel memory) on

average in our web server test. This is due to the short lifetime of dynamic objects

and the on-demand allocation scheme which only creates a speci�c slab upon the

�rst request of a corresponding object.

5.5 Limitations and Future Work

Our current prototype has several limitations. First, for afew functions, we found

di�culties in directly applying service-based communication on them, as they move

complex data structures across function calls instead of transferring a single data

object. Dealing with these functions may require us to manually write data mar-

shalling routines. Fortunately, most of these functions are provided by the OS

kernel, which usually con�gures as the parent domain of the caller principal and

107

0.0

0.2

0.4

0.6

0.8

1.0

Dhrystone 2 Kernel build Apache ab Netperf TCP

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Figure 5.4. Application benchmark performance, normalized to native Linux/Xen.

can directly operates on these data structures without datamarshalling.

Compared with language-based and other static isolation approaches, SILVER's

run-time mechanism is more accurate in resource tracking than static inference.

However, our approach also has shortcomings for not providing veri�cation and

automatic error detection to programmers. For example, programmers must pay

extra attention for not creating dangling pointers when using object transfer and

endorsement primitives of SILVER, since these operations will release the original

object in the same way askfree function. We plan to incorporate kernel reference

counting [115] to help programmers manage their referencesof protection domain

data objects. Moreover, adapting kernel programs to use SILVER requires certain

understanding of security properties of their data and functions, and the entire

procedure might be complex for converting very large programs. Hence, we also

would like to explore automatic ways to transform an existing program to use

SILVER given a security speci�cation.

5.6 Summary

In this chapter, we have described the design, implementation and evaluation of

SILVER, a framework to achieve transparent protection primitives that provide

108

�ne-grained access control and secure interactions between OS kernel and untrusted

extensions. We believe that SILVER is an e�ective approach towards controlled

privilege separation, by which developers could protect their programs and mitigate

the damage to OS kernel caused by attacks exploiting a vulnerability in untrusted

extensions.

Chapter 6
Conclusion

In this thesis, we demonstrate technical approaches that help commodity comput-

ers preserve system integrity both proactively and reactively.

We have demonstrated that a computer system could leverage intrusion recov-

ery techniques to preserve its system integrity in a reactive manner. We develop

SHELF, a system that restores clean state for system objects after detected com-

promise. SHELF uses taint tracking to record object dependencies so that it could

precisely restore benign state of infected objects to preserve business continuity

and achieve recovery accuracy. Moreover, at the recovery stage, SHELF uses quar-

antine techniques to contain the infection so that uninfected objects can maintain

their availability.

Motivated by the need of protecting the integrity of operating system kernels,

we design and implement HUKO architecture to secure the execution of untrusted

kernel extensions. With HUKO, untrusted extensions are transparently isolated

from the OS kernel using memory virtualization techniques.Their interactions

with the OS kernel are completely mediated and enforced by mandatory access

control policies.

To help the OS kernel achieve better privilege separation and controlled commu-

nication, we design and implement SILVER, an architecture and a set of kernel-

level primitives which o�er a more general and �ne-grained protection domain

mechanism for principals in commodity kernel environment.In SILVER, security

principals in the OS kernel can specify security propertiesof their data and com-

munication with other principals. Compared to other approaches, SILVER does

110

not require shifting the programming paradigm or fundamental changes to the

program structure.

In conclusion, these techniques provide commodity operating systems a better

integrity guarantee on security-sensitive data of both users and the system, even

in the presence of untrusted code and intrusions.

Bibliography

[1] Witchel, E. , J. Rhee , and K. Asanovi �c (2005) \Mondrix: memory
isolation for linux using mondriaan memory protection," inSOSP '05: Pro-
ceedings of the twentieth ACM symposium on Operating systems principles,
ACM, New York, NY, USA, pp. 31{44.

[2] Zeldovich, N. , H. Kannan , M. Dalton , and C. Kozyrakis (2008)
\Hardware Enforcement of Application Security Policies UsingTagged Mem-
ory." in OSDI 2008, USENIX Association, pp. 225{240.

[3] Efstathopoulos, P. , M. Krohn , S. VanDeBogart , C. Frey ,
D. Ziegler , E. Kohler , D. Mazi �eres , F. Kaashoek , and R. Mor-
ris (2005) \Labels and Event Processes in the Asbestos OperatingSystem,"
in SOSP '05.

[4] Zeldovich, N. , S. Boyd-Wickizer , E. Kohler , and D. Mazi �eres
(2006) \Making Information Flow Explicit in HiStar," in OSDI '06.

[5] F •ahndrich, M. , M. Aiken , C. Hawblitzel , O. Hodson , G. Hunt ,
J. R. Larus , and S. Levi (2006) \Language support for fast and reliable
message-based communication in singularity OS," inProceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Computer Systems 2006,
EuroSys '06, ACM, New York, NY, USA, pp. 177{190.
URL http://doi.acm.org/10.1145/1217935.1217953

[6] Myers, A. C. and B. Liskov (1997) \A decentralized model for infor-
mation ow control," in Proceedings of the sixteenth ACM symposium on
Operating Systems Principles, SOSP '97, ACM, New York, NY, USA, pp.
129{142.
URL http://doi.acm.org/10.1145/268998.266669

[7] \Restoring Files and File Systems: ufsdump and ufsrestore,"
http://docs.sun.com/app/docs/doc/805-7228/6j6q7uf1k?a=view.

112

[8] \ThinkVantage Rescue and Recovery: One button recovery,"
http://www.pc.ibm.com/us/think/thinkvantagetech/res cuerecovery.html.

[9] \HP StorageWorks One-Button Disaster Recovery Solution,"
http://h18006.www1.hp.com/products/storageworks/drs/summary.html.

[10] Zhu, N. and T. cker Chiueh (2003) \Design, Implementation, and Evalu-
ation of Repairable File Service," inInternational Conference on Dependable
Systems and Networks (DSN).

[11] Goel, A. , K. Po , K. Farhadi , Z. Li , and E. de Lara (2005) \The Taser
Intrusion Recovery System," inSOSP '05: Proceedings of the twentieth ACM
symposium on Operating systems principles.

[12] Liedtke, J. (1995) \On Micro-kernel Construction," in SOSP '95.

[13] Denning, D. E. (1976) \A lattice model of secure information ow," Com-
mun. ACM, 19(5), pp. 236{243.

[14] Bell, D. E. and L. J. LaPadula (1973)Secure Computer Systems: Math-
ematical Foundations, Tech. Rep. MTR-2547, The Mitre Corporation.

[15] Biba, K. J. (1977) Integrity Considerations for Secure Computer Systems,
Tech. Rep. MTR-3153, The Mitre Corporation.

[16] Clark, D. D. and D. R. Wilson (1987) \A Comparison of Commercial
and Military Computer Security Policies," IEEE Symposium on Security and
Privacy.

[17] Fraser, T. (2000) \LOMAC: Low Water-Mark Integrity Protection for
COTS Environments," in SP '00: Proceedings of the 2000 IEEE Symposium
on Security and Privacy, IEEE Computer Society, Washington, DC, USA,
p. 230.

[18] Abadi, M. , M. Budiu , U. Erlingsson , and J. Ligatti (2005) \Control-
ow Integrity," in CCS '05.

[19] Shacham, H. (2007) \The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86)," in CCS '07: Pro-
ceedings of the 14th ACM Conference on Computer and Communications
Security, ACM, New York, NY, USA, pp. 552{561.

[20] Saltzer, J. H. and M. D. Schroeder (1975) \The protection of informa-
tion in computer systems,"Proceedings of the IEEE, 63(9), pp. 1278{1308.

[21] Department of Defense (1985)Trusted Computer System Evaluation Criteria,
dOD 5200.28-STD (supersedes CSC-STD-001-83).

113

[22] Anderson, J. P. (1972) Computer Security technology planning study,
Tech. rep., Deputy for Command and Management System, USA.
URL http://csrc.nist.gov/publications/history/ande72.pd f

[23] Irvine, C. E. (1999) \The Reference Monitor Concept as a Unifying Princi-
ple in Computer Security Education," inIN PROCEEDINGS OF THE IFIP
TC11 WG 11.8 FIRST WORLD CONFERENCE ON INFORMATION SE-
CURITY EDUCATION , pp. 27{37.

[24] Jaeger, T. (2008) Operating System Security, Morgan and Claypool Pub-
lishers.

[25] Fraim, L. J. (1983) \Scomp: A Solution to the Multilevel Security Prob-
lem," Computer, 16(7), pp. 26{34.

[26] \NSA. Security enhanced linux," http://www.nsa.gov/selinux/.

[27] Watson, R. , W. Morrison , C. Vance , and B. Feldman (2003)
\The TrustedBSD MAC Framework: Extensible Kernel Access Control for
FreeBSD 5.0," inUSENIX Annual Technical Conference, FREENIX Track,
pp. 285{296.

[28] Wright, C. , C. Cowan , S. Smalley , J. Morris , and G. Kroah-
Hartman (2002) \Linux Security Modules: General Security Support for
the Linux Kernel," in Proceedings of the 11th USENIX Security Symposium.

[29] Bomberger, A. C. , W. S. Frantz , A. C. Hardy , N. Hardy , C. R.
Landau , and J. S. Shapiro (1992) \The KeyKOS Nanokernel Architec-
ture," in Proceedings of the Workshop on Micro-kernels and Other Kernel
Architectures.

[30] Shapiro, J. S. , J. M. Smith , and D. J. Farber (1999) \EROS: a fast
capability system," in Proceedings of the seventeenth ACM symposium on
Operating systems principles, SOSP '99, ACM, New York, NY, USA, pp.
170{185.
URL http://doi.acm.org/10.1145/319151.319163

[31] Watson, R. N. M. , J. Anderson , B. Laurie , and K. Kennaway (2010)
\Capsicum: Practical Capabilities for UNIX," in USENIX Security'10.

[32] Krohn, M. , A. Yip , M. Brodsky , N. Cliffer , M. F. Kaashoek ,
E. Kohler , andR. Morris (2007) \Information Flow Control for Standard
OS Abstractions," in SOSP '07.

114

[33] Corbat �o, F. J. and V. A. Vyssotsky (1965) \Introduction and overview
of the multics system," inProceedings of the November 30{December 1, 1965,
fall joint computer conference, part I, AFIPS '65 (Fall, part I), ACM, New
York, NY, USA, pp. 185{196.

[34] \ptrace documentation," http://lwn.net/Articles/44 6593/.

[35] Goldberg, I. , D. Wagner , R. Thomas , and E. A. Brewer (1996)
\A secure environment for untrusted helper applications con�ning the Wily
Hacker," in Proceedings of the 6th conference on USENIX Security Sym-
posium, Focusing on Applications of Cryptography - Volume 6, SSYM'96,
USENIX Association, Berkeley, CA, USA, pp. 1{1.
URL http://dl.acm.org/citation.cfm?id=1267569.1267570

[36] Provos, N. (2003) \Improving host security with system call policies," in
Proceedings of the 12th conference on USENIX Security Symposium - Volume
12, SSYM'03, USENIX Association, Berkeley, CA, USA, pp. 18{18.
URL http://dl.acm.org/citation.cfm?id=1251353.1251371

[37] \Apparmor," http://www.novell.com/linux/security/ apparmor/.

[38] \AMD-V Nested Paging," http://developer.amd.com/assets/NPT-WP-
1%201-�nal-TM.pdf.

[39] \Intel 64 and IA-32 Architectures Software Devel-
oper's Manual Volume 3B: System Programming Guide,"
http://www.intel.com/Assets/PDF/manual/253669.pdf.

[40] Witchel, E. , J. Cates , and K. Asanovi �c (2002) \Mondrian memory
protection," in ASPLOS-X: Proceedings of the 10th international conference
on Architectural support for programming languages and operating systems,
ACM, New York, NY, USA, pp. 304{316.

[41] Wahbe, R. , S. Lucco , T. E. Anderson , and S. L. Graham (1993)
\E�cient Software-based Fault Isolation," in SOSP '93.

[42] Erlingsson, U. , M. Abadi , M. Vrable , M. Budiu , and G. C. Nec-
ula (2006) \XFI: software guards for system address spaces," inOSDI '06:
Proceedings of the 7th symposium on Operating systems design and imple-
mentation, USENIX Association, Berkeley, CA, USA, pp. 75{88.

[43] Castro, M. , M. Costa , J.-P. Martin , M. Peinado , P. Akritidis ,
A. Donnelly , P. Barham , and R. Black (2009) \Fast Byte-granularity
Software Fault Isolation," in SOSP '09.

115

[44] Yee, B. , D. Sehr , G. Dardyk , J. B. Chen , R. Muth , T. Ormandy ,
S. Okasaka , N. Narula , and N. Fullagar (2009) \Native Client: A
Sandbox for Portable, Untrusted x86 Native Code,"Security and Privacy,
IEEE Symposium on, 0, pp. 79{93.

[45] Mao, Y. , H. Chen , D. Zhou , X. Wang , N. Zeldovich , and M. F.
Kaashoek (2011) \Software fault isolation with API integrity and mult i-
principal modules," in SOSP '11.

[46] Myers, A. C. \JFlow: practical mostly-static information ow control, "
POPL '99.

[47] Mettler, A. , D. Wagner , and T. Close \Joe-E: A Security-Oriented
Subset of Java," inNDSS '10.

[48] Roy, I. , D. E. Porter , M. D. Bond , K. S. McKinley , andE. Witchel
\Laminar: practical �ne-grained decentralized information ow control,"
PLDI '09.

[49] Seshadri, A. , M. Luk , N. Qu , and A. Perrig (2007) \SecVisor: A
Tiny Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity
OSes," inSOSP '07: Proceedings of twenty-�rst ACM SIGOPS Symposium
on Operating Systems Principles, ACM, New York, NY, USA, pp. 335{350.

[50] Riley, R. , X. Jiang , and D. Xu (2008) \Guest-Transparent Prevention
of Kernel Rootkits with VMM-Based Memory Shadowing," inRAID '08:
Proceedings of the 11th International Symposium on Recent Advances in In-
trusion Detection, Springer-Verlag, Berlin, Heidelberg, pp. 1{20.

[51] Litty, L. , H. A. Lagar-Cavilla , and D. Lie (2008) \Hypervisor Sup-
port for Identifying Covertly Executing Binaries," in SS'08: Proceedings of
the 17th USENIX Security Symposium, USENIX Association, Berkeley, CA,
USA, pp. 243{258.

[52] Baliga, A. , V. Ganapathy , and L. Iftode (2008) \Automatic Infer-
ence and Enforcement of Kernel Data Structure Invariants,"in ACSAC '08:
Proceedings of the 2008 Annual Computer Security Applications Conference,
IEEE Computer Society, Washington, DC, USA, pp. 77{86.

[53] Srivastava, A. , I. Erete , and J. Giffin (2009) Kernel Data Integrity
Protection via Memory Access Control, Tech. Rep. GT-CS-09-04, Georgia
Institute of Technology.

[54] Wang, Z. , X. Jiang , W. Cui , and P. Ning (2009) \Countering Kernel
Rootkits with Lightweight Hook Protection," in CCS '09: Proceedings of the

116

16th ACM Conference on Computer and Communications Security, ACM,
New York, NY, USA, pp. 545{554.

[55] Petroni, N. L., Jr. and M. Hicks (2007) \Automated Detection of Per-
sistent Kernel Control-ow Attacks," in CCS '07: Proceedings of the 14th
ACM Conference on Computer and Communications Security, ACM, New
York, NY, USA, pp. 103{115.

[56] Wei, J. , B. D. Payne , J. Giffin , and C. Pu (2008) \Soft-Timer Driven
Transient Kernel Control Flow Attacks and Defense," inACSAC '08: Pro-
ceedings of the 2008 Annual Computer Security ApplicationsConference,
IEEE Computer Society, Washington, DC, USA, pp. 97{107.

[57] Yin, H. , D. Song , M. Egele , C. Kruegel , and E. Kirda (2007)
\Panorama: Capturing System-wide Information Flow for Malware Detec-
tion and Analysis," in CCS '07: Proceedings of the 14th ACM Conference on
Computer and Communications Security, ACM, New York, NY, USA, pp.
116{127.

[58] Lanzi, A. , M. Sharif , and W. Lee (2009) \K-Tracer: A System for Ex-
tracting Kernel Malware Behavior," in Network and Distributed System Se-
curity Symposium.

[59] Yin, H. , Z. Liang , andD. Song. (2008) \HookFinder: Identifying and Un-
derstanding Malware Hooking Behaviors." inProceedings of the 15th Annual
Network and Distributed System Security Symposium (NDSS'08).

[60] Wang, Z. , X. Jiang , W. Cui , and X. Wang (2008) \Countering Per-
sistent Kernel Rootkits through Systematic Hook Discovery," in RAID '08:
Proceedings of the 11th International Symposium on Recent Advances in In-
trusion Detection, Springer-Verlag, Berlin, Heidelberg, pp. 21{38.

[61] Riley, R. , X. Jiang , and D. Xu (2009) \Multi-aspect Pro�ling of Kernel
Rootkit Behavior," in EuroSys '09: Proceedings of the 4th ACM European
Conference on Computer systems, ACM, New York, NY, USA, pp. 47{60.

[62] Swift, M. M. , B. N. Bershad , and H. M. Levy (2003) \Improving the
Reliability of Commodity Operating Systems," in SOSP '03: Proceedings
of the nineteenth ACM Symposium on Operating Systems Principles, ACM,
New York, NY, USA, pp. 207{222.

[63] Herder, J. , H. Bos , B. Gras , P. Homburg , and A. Tanenbaum (2009)
\Fault Isolation for Device Drivers," in IEEE/IFIP International Conference
on Dependable Systems and Networks, 2009. DSN '09.

117

[64] Zhou, F. , J. Condit , Z. Anderson , I. Bagrak , R. Ennals , M. Har-
ren , G. Necula , and E. Brewer (2006) \SafeDrive: safe and recoverable
extensions using language-based techniques," inProceedings of the 7th sym-
posium on Operating systems design and implementation, OSDI '06, USENIX
Association, Berkeley, CA, USA, pp. 45{60.
URL http://portal.acm.org/citation.cfm?id=1298455.12984 61

[65] \L4Ka::Pistachio," http://www.l4ka.org/65.php.

[66] Klein, G. , K. Elphinstone , G. Heiser , J. Andronick , D. Cock ,
P. Derrin , D. Elkaduwe , K. Engelhardt , R. Kolanski , M. Nor-
rish , T. Sewell , H. Tuch , and S. Winwood (2009) \seL4: Formal Ver-
i�cation of an OS Kernel," in SOSP '09: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, ACM, New York, NY,
USA, pp. 207{220.

[67] Chase, J. S. , H. M. Levy , M. J. Feeley , and E. D. Lazowska (1994)
\Sharing and Protection in a Single-Address-Space Operating System,"ACM
Trans. Comput. Syst., 12, pp. 271{307.

[68] Witchel, E. , J. Rhee , and K. Asanovi �c (2005) \Mondrix: Memory
Isolation for Linux using Mondriaan Memory Protection," in SOSP '05.

[69] Li, N. , Z. Mao , and H. Chen (2007) \Usable Mandatory Integrity Pro-
tection for Operating Systems," inSP '07: Proceedings of the 2007 IEEE
Symposium on Security and Privacy, IEEE Computer Society, Washington,
DC, USA, pp. 164{178.

[70] Sharif, M. I. , W. Lee , W. Cui , and A. Lanzi (2009) \Secure In-VM
Monitoring using Hardware Virtualization," in CCS '09: Proceedings of the
16th ACM Conference on Computer and Communications Security, ACM,
New York, NY, USA, pp. 477{487.

[71] Chen, X. , T. Garfinkel , E. C. Lewis , P. Subrahmanyam , C. A.
Waldspurger , D. Boneh , J. Dwoskin , and D. R. Ports (2008) \Over-
shadow: a Virtualization-based Approach to Retro�tting Protection in Com-
modity Operating Systems," in ASPLOS XIII: Proceedings of the 13th In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, ACM, New York, NY, USA, pp. 2{13.

[72] Champagne, D. and R. B. Lee (2010) \Scalable Architectural Support
for Trusted Software," in The 16th IEEE International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India.

118

[73] McCune, J. M. , Y. Li , N. Qu , Z. Zhou , A. Datta , V. Gligor , and
A. Perrig \TrustVisor: E�cient TCB Reduction and Attestation," in Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy.

[74] Douceur, J. R. , J. Elson , J. Howell , and J. R. Lorch (2008)
\Leveraging Legacy Code to Deploy Desktop Applications on the Web,"
in OSDI'08.

[75] \Sandbox in Chrome," http://dev.chromium.org/developers/design-
documents/sandbox.

[76] Wang, H. J. , C. Grier , A. Moshchuk , S. T. King , P. Choudhury ,
and H. Venter (2009) \The Multi-principal OS Construction of the Gazelle
Web Browser," in USENIX Security '09.

[77] \Android: Security and Permissions," http://developer.android.com/guide/topics/security/securit

[78] Chiueh, T.-c. , G. Venkitachalam , and P. Pradhan (1999) \Integrat-
ing Segmentation and Paging Protection for Safe, E�cient and Transparent
Software Extensions," inSOSP '99.

[79] Ford, B. and R. Cox (2008) \Vx32: Lightweight User-level Sandboxing
on the x86," in USENIX ATC .

[80] Garfinkel, T. , B. Pfaff , and M. Rosenblum (2004) \Ostia: A Dele-
gating Architecture for Secure System Call Interposition,"in NDSS'04.

[81] Siefers, J. , G. Tan , and G. Morrisett (2010) \Robusta: Taming the
Native Beast of the JVM," in CCS '10.

[82] Prabhakaran, V. , A. C. Arpaci-Dusseau , and R. H. Arpaci-
Dusseau (2005) \Analysis and evolution of journaling �le systems," in
ATEC '05: Proceedings of the annual conference on USENIX Annual Tech-
nical Conference, pp. 8{8.

[83] Srinivasan, S. , C. Andrews , S. Kandula , and Y. Zhou (2004) \Flash-
back: A Light-weight Extension for Rollback and Deterministic Replay for
Software Debugging," inATEC '04: Proceedings of the annual conference on
USENIX Annual Technical Conference, USENIX Association, pp. 3{3.

[84] Qin, F. , J. Tucek , J. Sundaresan , and Y. Zhou (2005) \Rx: treating
bugs as allergies|a safe method to survive software failures," SIGOPS Oper.
Syst. Rev., 39(5), pp. 235{248.

119

[85] Osman, S., D. Subhraveti , G. Su, and J. Nieh (2002) \The Design
and Implementation of Zap: A System for Migrating ComputingEnviron-
ments," in Proc. of the Fifth Symposium on Operating Systems Design and
Implementation (OSDI).

[86] Dunlap, G. W. , S. T. King , S. Cinar , M. A. Basrai , and P. M. Chen
(2002) \ReVirt: enabling intrusion analysis through virtual-machine logging
and replay," in OSDI '02: Proceedings of the 5th symposium on Operating
systems design and implementation.

[87] Konuru, R. , H. Srinivasan , and J.-D. Choi (2000) \Deterministic Re-
play of Distributed Java Applications," Parallel and Distributed Processing
Symposium, International, 0, p. 219.

[88] Liu, P. , P. Ammann , and S. Jajodia (2000) \Rewriting Histories: Re-
covering from Malicious Transactions,"Distrib. Parallel Databases, 8(1), pp.
7{40.

[89] Bhatkar, S. , A. Chaturvedi , and R. Sekar (2006) \Dataow Anomaly
Detection," IEEE Symposium on Security and Privacy,, 0, pp. 48{62.

[90] Gao, D. , M. K. Reiter , and D. Song (2004) \Gray-box extraction of ex-
ecution graphs for anomaly detection," inProc. of the 11th ACM conference
on Computer and Communications Security, pp. 318{329.

[91] Garfinkel, T. and M. Rosenblum (2003) \A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection," inProc. Network and
Distributed Systems Security Symposium.
URL citeseer.ist.psu.edu/garfinkel03virtual.html

[92] Jiang, X. , X. Wang , and D. Xu (2007) \Stealthy malware detection
through vmm-based "out-of-the-box" semantic view reconstruction," in Proc.
of the 14th ACM conference on Computer and Communications Security, pp.
128{138.

[93] Payne, B. D. , M. Carbone , M. Sharif , and W. Lee (2008) \Lares: An
Architecture for Secure Active Monitoring Using Virtualization," in Proc. of
the 2008 IEEE Symposium on Security and Privacy, pp. 233{247.

[94] Yin, H. , D. Song , M. Egele , C. Kruegel , and E. Kirda (2007)
\Panorama: capturing system-wide information ow for malware detection
and analysis," inProc. of the 14th ACM conference on Computer and Com-
munications Security, pp. 116{127.

120

[95] King, S. T. and P. M. Chen (2003) \Backtracking intrusions," in Proc. of
the nineteenth ACM symposium on Operating systems principles, pp. 223{
236.

[96] Newsome, J. and D. Song (2005) \Dynamic Taint Analysis for Automatic
Detection and Analysis and Signature Generation of ExploitsCommodity
Software," in Proc. of the Twelth Symposium on Network and Distributed
Security (NDSS).

[97] Soules, C. A. N. , G. R. Goodson , J. D. Strunk , and G. R. Ganger
(2003) \Metadata E�ciency in Versioning File Systems," in FAST '03: Pro-
ceedings of the 2nd USENIX Conference on File and Storage Technologies,
pp. 43{58.

[98] Hsu, F. , H. Chen , T. Ristenpart , J. Li , and Z. Su (2006) \Back to
the Future: A Framework for Automatic Malware Removal and System Re-
pair," in ACSAC '06: Proceedings of the 22nd Annual Computer Security
Applications Conference, IEEE Computer Society, Washington, DC, USA,
pp. 257{268.

[99] Jain, S. , F. Shafique , V. Djeric , and A. Goel (2008) \Application-
level isolation and recovery with solitude,"SIGOPS Oper. Syst. Rev., 42(4),
pp. 95{107.

[100] \The User-Mode Linux Kernel Homepage," http://user-mode-
linux.sourceforge.net/.

[101] Chen, P. M. and B. D. Noble (2001) \When Virtual Is Better Than
Real," in HOTOS '01: Proceedings of the Eighth Workshop on Hot Topics
in Operating Systems, IEEE Computer Society, p. 133.

[102] \Detecting and Crashing UML Honeypots,"
http://quuxlabs.com/ gerard/pub/hack-lu-uml.pdf.

[103] Hund, R. , T. Holz , and F. Freiling (2009) \Return-Oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms," in Security'09:
Proceedings of the 18th USENIX Security Symposium.

[104] Carbone, M. , W. Cui , L. Lu , W. Lee , M. Peinado , and X. Jiang
(2009) \Mapping Kernel Objects to Enable Systematic Integrity Checking,"
in CCS '09: Proceedings of the 16th ACM Conference on Computer and
Communications Security, ACM, New York, NY, USA, pp. 555{565.

[105] Dolan-Gavitt, B. , A. Srivastava , P. Traynor , and J. Giffin (2009)
\Robust Signatures for Kernel Data Structures," inCCS '09: Proceedings

121

of the 16th ACM Conference on Computer and Communications Security,
ACM, New York, NY, USA, pp. 566{577.

[106] \Intel Virtualization Technology for Directed
I/O," ftp://download.intel.com/technology/computing
/vptech/Intel(r) VT for Direct IO.pdf.

[107] \EnyeLKM," http://www.packetstormsecurity.com/UNI X/penetration
/rootkits/enyelkm-1.3-no-objs.tar.gz.

[108] \All-root," http://packetstormsecurity.org/UNIX/pen etration /rootkits/all-
root.c.

[109] \Unixbench," http://ftp.tux.org/pub/benchmarks/S ystem/unixbench/.

[110] \LMbench," http://www.bitmover.com/lmbench/.

[111] Xiong, X. , D. Tian , and P. Liu. (2011) \Practical Protection of Kernel
Integrity for Commodity OS from Untrusted Extensions." in NDSS'11.

[112] \Linux Kernel CAN SLUB Overow," http://jon.oberheide .org/blog/2010/09/10/linux-
kernel-can-slub-overow/.

[113] \The SLUB allocator," http://lwn.net/Articles/22998 4/.

[114] Haeberlen, A. , J. Liedtke , Y. Park , L. Reuther , and V. Uhlig
(2000) \Stub-code Performance is Becoming Important," inProceedings of
the 1st conference on Industrial Experiences with Systems Software - Volume
1, WIESS'00, USENIX Association, Berkeley, CA, USA, pp. 4{4.

[115] McKenney, P. E. (2007) Overview of Linux-Kernel Reference Counting,
Tech. Rep. N2167=07-0027, IBM Beaverton.

Vita

Xi Xiong

Xi Xiong was born in China. He received his BS degree in Computer Science
and Engineering from University of Science and Technology ofChina in 2007. He
joined the Ph.D. program of Department of Computer Science and Engineering at
Pennsylvania State University in 2007. He is currently a Ph.D.candidate at the
Cyber Security Lab under the supervision of Professor Peng Liu. His research in-
terests include various topics in operating system security, sandboxing techniques,
intrusion analysis and recovery.

He is a student member of ACM and ACM SIGSAC.

