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Abstract

Today people rely more and more on commodity computer systsrfor storing and
processing information. To make computer systems more ttu®rthy, it is highly
demanding that these systems could have integrity protecth mechanism as the
security basis of computing. In this dissertation, we prose proactive and reactive
approaches to preserve system integrity for commodity comfer systems.

First, we explore reactive techniques to recover OS-levdijects (e.g., processes
and les) in an intruded computer system which already has tegrity compro-
mise. We design and implement SHELF, an intrusion recovery sgm that aims
to preserve business continuity, availability and recovgraccuracy. SHELF tracks
activities of a computer system so that it can precisely deteine which object of
the system is compromised upon given an infection symptom.ubing the recovery
phase, SHELF preserves accumulated clean state of infectdgjexts, and it helps
benign objects maintain their availability level to reducesystem downtime.

The e ort of repairing OS-level applications and les, howeer, must depends
on a trusted and uncompromised OS kernel to provide correatrfctionality and
abstractions. As commodity OS kernels are more and more beaamfavorable tar-
gets for attackers, it is necessary to have proactive protian mechanism to secure
the OS kernel and provide solid foundation for use-space sgty approaches. We
study the problem of securing untrusted code executing in ¢hkernel space, which
is the major venue for OS kernel integrity compromise. We dgs and implement
HUKO, a hypervisor-based integrity protection system that potects commodity
OS kernels from untrusted extensions. In HUKO, untrusted extesions can safely
run in the kernel space to provide desired functionality, buthey are also con ned
by access control mechanisms, which signi cantly limit theattacker's ability to
compromise the integrity of OS kernel.

Based on the hypervisor architecture provided by HUKO, we fuhter propose
SILVER, a comprehensive framework that o ers transparent mtection domain



primitives to achieve ne-grained access control and se@icommunication between
programs in OS kernel. SILVER provides OS kernel developefsetability to spec-
ify security properties of their own code and data at the grararity of individual
functions and data objects. Moreover, SIVER helps develoeto prevent attacks
exploiting kernel program communication, which cannot be ectively handled by
typical isolation systems. To achieve such mechanism, weopiose a novel resource
management scheme of kernel data objects according to theécurity properties.
Based on this organization, SILVER enforces access contraidacommunication
safety using hypervisor-based memory protection and rumrte checks.
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Chapter

Introduction

As the size and complexity of operating systems and applicatis are increasing,
it is more and more di cult to achieve security in commodity computer systems.
Among all the security principles, one of the most important pnciples is integrity,
which means that the state and functions (e.g., code, dataputrol/data ows) of
a system must be faithfully represented and carried out thtgh its entire life
cycle. There are many types of attacks on integrity that thraten users greatly.
For example, (1) malwares (e.g., viruses, trojans, and wosnthat compromise
programs, data and con gurations on victim's systems; (2) teacks that leverage
code injection or data corruption to change the control and ata ow of victim
applications in undesired ways; (3) OS kernel rootkits and aticious device drivers
manipulating metadata of OS objects to hide malicious actitres.

Preserving integrity in a commodity system is a challengintask. A commodity
computer system typically consists of several layers of systems with completely
di erent semantics, and subsystems usually need to depend ¢or trust) others
in order to achieve correctness or security. For example, ig meaningless for an
application to preserve the integrity of one of its le in cae that the OS kernel,
where all the le system metadata are stored, is already compmised and manip-
ulated by an attacker. Hence, there is a chain of research qgtiess to consider for
these layers, for example: (1) How to secure the computer harare from being
tampered by an attacker? (2) How to protect the integrity of tre OS kernel, espe-
cially in a commodity system where there are many untrustedrpgrams running
in the monolithic kernel environment? (3) How to design an O&vel mechanism



that enables system-wide integrity protection with the pmciple of least privilege,
such that a compromised application would never hurt otheragrt of the OS? (4)
How to preserve the integrity of an application software in tens of not only static
code and data, but also control transfers and data ows durgy execution?

These questions denote an important part of major researcksues on protecting
system integrity of a single host, yet there are even more a¢éd research issues in
networking and distributed systems. Each one of these prahs is a signi cant
research topic, and achieving a secure system would requeech of these questions
to be addressed properly.

However, even if we have a \secure" system as described ab@@mnetimes it
still turns out to be that intrusions are inevitable in practice. Thus, in order to
preserve integrity for computer systems, especially foritical infrastructures, we
must consider the research problem in another important aspt: in case that a
computer system has already been detected to have integrigpmpromise, how
to recover system integrity from intrusions, and how to aclkive this accurately,
e ciently and without too much cost?

This thesis presents technical approaches to address a paont of problems
described above. Our research has a strong emphasis on sglioroblems with
commodity systems. However, it is worthy to mention that thee are a number
of research projects focusing on clean-slate designs ofusecomputer systems,
which enforce their security principles from the scratch agggn. Examples of such
projects in recent years include new secure hardware and latectures [1, 2], new
secure operating system [3, 4], and new programming langeag[5, 6]. While
we applaud these research e orts, we also notice that it is fimasible to apply
these approaches directly to commodity computer systemsrimarily because of
restrictions on practical deployment and adaptation of le@cy code. Hence, it is
also necessary to have approaches solving practical prabldirectly for commodity
systems.

1.1 Overview of our approach

In this thesis, we describe security techniques designeddadeveloped to achieve
better integrity guarantee for commodity computer systemsn both proactive and



reactive manner. In specic, we mainly focus on two of the rearch problems
stated previously: recovery from computer intrusions anchiegrity protection in
OS kernel. The following statements summarize the thesis wiy work:

Reactive mechanisms can be developed to repair the integritf a compro-
mised computer system with high precision while minimizinghe state loss
and service downtime.

By leveraging contemporary hardware and virtualization tehnologies, a hypervisoj
based approach can e ectively protect commodity OS kernefsom untrusted
kernel extensions in regards to both code, data and contrabinsfer integrity.

A set of security primitives can help programmers to achieveecure, ne-
grained sharing and communication in commodity OS kernel thiout funda-
mental changes of the programming paradigm.

First, at the OS abstraction level, we explore reactive meeanism to repair a
compromised computer system, which is the problem of intriee recovery. We
consider research questions such as: (1) How to minimize tlsg of clean state
while wiping out all the damages to the system? (2) How to rededhe downtime
and maintain certain level of availability during the recoery procedure? To study
such questions, we design and implement SHELF, an intrusioeaovery system
that aims to preserve business continuity, availability ad recovery accuracy.

SHELF, as well as other OS-level security mechanisms, mustyren a trusted
OS kernel not compromised by attackers. The security of the®kernel is crucial
not only because it is the piece of software with highest pilege, but also for
the fact that other OS and application-level security mechasms depend on it to
function correctly. However, in practice, commodity OS kergls are becoming a
favorable target for security attacks, and more and more voérabilities of kernel
programs are being discovered and exploited. Hence, in orderkeep reactive
recovery mechanisms like SHELF correct and e ective, it is deable that the OS
kernel could employ proactive protection mechanisms to @gerve its integrity. We
study the challenge of preserving integrity of commodity O&ernel - the Trusted
Computing Base (TCB) for commodity computer systems.



In commodity systems, attacks against the OS kernel are oftedoo stealthy
to be detected. The cause of such vulnerability is mainly baase of untrusted
programs (e.g., third party device drivers) executing in th kernel space. In order
to enhance the security of commodity OS kernel in the presanof untrusted code,
we design and implement HUKO, a hypervisor-based integrity ptection system
that protects commodity OS kernels from untrusted extensits.

Given the strong isolation and mandatory protection provied by HUKO, we
nally explore the question of how to design a set of securitprimitives so that
OS kernel developers could benet from it to build kernel prgrams that are in-
herently secure while enjoying the advantages of protectiocomprehensiveness,
access control granularity and developer exibility. Bas# on the hypervisor ar-
chitecture provided by HUKO, we propose SILVER, a comprehengvramework
that o ers transparent protection domain primitives to achieve ne-grained access
control and secure communication between programs in OS ket. Compared to
the mandatory protection provided by HUKO, SILVER allows prindgpals in OS
kernel with various trust relationship to exchange inform@on, delegate privilege
and export services in a more explicit, ne-grained, and ctrolled manner. More-
over, SIVER can also prevent attacks on kernel API integrity ath confused deputy,
which neither can be e ectively handled by typical isolatio systems.

In the following sections, we give an overview of each techal approach.

1.2 Preserving Business Continuity and Avail-
ability in an Intrusion Recovery System

The rst problem we are focusing on is recovery from comput@ntrusions. The goal
is to restore infected OS-level objects such as processed d&s in a compromised
system to clean state. Although the goal seems to be straighitivard, even with
a secured OS kernel, intrusion recovery is still a non-triai job, especially for
systems that run continuous services. Firstly, since tod&y intrusion detection
system (IDS) is not fast and perfect, the time of detection ain intrusion symptom
could be long time after the actually beginning of the intruen. Given such a long
time window for attack escalation, it is di cult to tell how t he intrusion propagate



throughout the system and which part of the system is infecte For this reason,
current intrusion recovery techniques often do not preseevhe accumulated useful
state of system objects (e.g., processes and les) duringcogery, which results in
great loss of useful e ort and benign data.

Moreover, current intrusion recovery systems ([7, 8, 9, 101]) generally require
a dedicated recovery routine which largely increases thessgm downtime and
decreases the availability level. This is also undesirablespecially for mission
critical infrastructures such as servers and data center8usiness continuity and
availability are crucial to them, and a small amount of statdoss or downtime may
cause great loss of money.

To address these shortcomings, in Chapter 3, we describe ftihesign and im-
plementation of SHELF, an on-the-y intrusion recovery probtype system that
provides a comprehensive solution to preserve businesstoanty, availability and
recovery accuracy. SHELF preserves accumulated clean stater infected applica-
tions and les so that they can continue with the most recent pe-infection states
after recovery. Moreover, SHELF leverages OS-aware taintaitking techniques to
swiftly determine the sources of intrusion and assess systavide damages caused
by the intrusion. SHELF uses quarantine methods to prevent faction propaga-
tion so that uninfected and recovered objects can provide alability during the
recovery phase. We integrate SHELF prototype in a virtualizgon environment to
achieve user transparency and protection.

Chapter 3 also describes the evaluation of the SHELF prototg We demon-
strate SHELF's ability to dynamically assess damages aftentrusion symptoms
are detected and we also measure its run-time performanceur@valuation shows
that SHELF can perform accurate recovery on-the-y e ectivédy with an accept-
able performance overhead.

1.3 Protection of Kernel Integrity for Commod-
ity OS from Untrusted Extensions

As stated in Section 1.1, in order to have OS-level security miegnisms (e.g.,
intrusion recovery systems, anti-virus, host-based IDS).. function correctly, the



integrity of OS kernel must be protected to provide a solid serrity foundation.
Hence, the next problem we are focusing on is to enhance thewsdg of commodity
OS kernel. In commodity operating systems, kernel-level exsions are widely
used to extend the kernel's functionality. However, the extesion interface is also
the most prevalent source leveraged by attackers to tampehe integrity of the
OS kernel. For example, attackers can install malicious extsions such as kernel
rootkits to hide their activities in the system. These rootks, once installed by the
attacker, are often too stealthy to be detected. On the othelnand, the existence
of buggy third-party device drivers exposes many vulnerdtiies which can be
exploited by attackers to inject their malicious code into lhe kernel space. These
untrusted extensions threaten the kernel integrity greayl yet unfortunately in
many cases users have to let them run in order to provide thesieed functionalities
and availability. Therefore, preserving the OS kernel intgrity from the presence
of untrusted extensions remains a challenging problem.

We develop HUKO, a hypervisor-based protection framework toesure the
execution of untrusted kernel extension. HUKO allows users &xecute untrusted
extensions in the kernel space to provide desired functiditees. The behaviors of
untrusted extensions, however, are con ned by mandatory aess control policies,
which signi cantly limit the attacker's ability to comprom ise the integrity of OS
kernel. The protection o ered by HUKO covers multiple aspect fosystem integrity
issues, which include code/data integrity, architecturastate integrity, control ow
integrity and stack integrity.

To guarantee such multi-aspect protection and enforcemertiUKO leverages
contemporary hardware virtualization features to transpeently isolate untrusted
extensions from the OS kernel. Moreover, HUKO overcomes theatlenge of me-
diation overhead by introducing a novel design named subjeaware protection
state transition to eliminate unnecessary privilege trangons caused by mediating
allowed accesses. Our approach is practical because it riegg! little change for
either OS kernel or extensions, and it can inherently suppomultiple commodity
operating systems and legacy extensions.

We describe the design, implementation and evaluation of HUK@ detail in
Chapter 4.



1.4 Fine-grained and Transparent Protection Do- 1
main Primitives in Commodity OS Kernel

HUKO provides strong memory isolation and uses mandatory poles to con ne
activities of untrusted kernel extensions. However, even thistrong isolation (e.g.,
memory protection, SFI) enforced, untrusted code in OS keehcould still subvert
the integrity of OS kernel by abusing communication with OSérnel. For example,
in commodity OSes like Linux, attackers could manipulate pameters passed to
legitimated kernel API functions to launch confused deputy ttacks. Hence, it is
desirable to have a secure communication mechanism in contitp OS kernel. On
the other hand, mandatory policies are limited in both granlarity and exibility
for expressing access control rules that are close to prograemantics. For kernel
program developers, it is better to have security primitive that could express their
own security concerns embedded in their programs, ratherdah having them set
up by administrator and enforced externally.

Previous research e orts such as micro-kernel [12] and larage-based operat-
ing systems [5] o ers clean-slate model (e.g., multi-senvéPC protocol and lan-
guage contracts) to help developers ensure safe communmat However, these
approaches are di cult to apply to commodity OSes, as they rguire developers
to change both the development and the deployment paradignf their software
completely.

To address these challenges, Chapter 5 presents SILVER, anfiework that of-
fers transparent protection domain primitives to achieve ne-grained access control
and secure communication between OS kernel and extensiofis SILVER, kernel
program developers leverage SILVER's secure primitives tdalight-weight anno-
tations to their source code. These annotations indicatesaurity properties (e.g.,
integrity levels and capability) of data objects and functons of the program. As a
result, ne-grained access control policies and communiaan rules will be inferred
and enforced by SILVER at run-time. To achieve this, SILVER pruides clear re-
source management of kernel data objects according to theeecurity properties.
Based on this organization, it achieves access control em@ment and commu-
nication safety using hypervisor-based memory protectioand run-time checks.
Protection domains in SILVER are transparent, which allows evelopers to pre-



serve traditional programming paradigms (e.g., shared adess space, function calls
and reference passing) while obtaining desired protectioffhe primitives can be
deployed incrementally and selectively, and protected pgoams are still compatible
with unmodi ed kernel programs.

In Chapter 5, we describe the security model, design and ingphentation of
the SILVER architecture. We also show how to apply SILVER to exsting ker-
nel programs for establishing protection and secure commioation. Finally, we
demonstrate SILVER's protection e ectiveness by using sedty case studies of
real-world threats to the Linux kernel.

1.5 Summary of Contributions

This dissertation makes the following contributions.

A novel intrusion recovery approach that can comprehensiyeassess the
damage to a compromised computer system and recover it to ahestate
with minimum loss of business continuity and availability.

An run-time protection framework leveraging contemporary wtualization
techniques for securing the execution of untrusted extensis and preserving
the integrity of commodity OS kernel.

A set of security primitives and OS enhancements designed fernel pro-
gram developers to achieve ne-grained access control aretgre communi-
cation.



Chapter

Background and Related Work

This chapter presents the background and related researshin system integrity
protection, access controls and integrity recovery. Firstin section 2.1, we state
our security goals in designing our approaches. Section 2eRiews various kinds of
protection and access control systems, with a discussiorhofiv HUKO and SILVER

leverage these protection principles. In Section 2.3, westeibe speci ¢ techniques
that could be used to achieve such access control systems amfiorce protection
domains. We then present various categories of related wook operating system
kernel security in Section 2.4. Finally we review backgrodnand research e ort
on intrusion recovery systems in Section 2.5.

2.1 What are the Security Goals?

In this section, we discuss what kind of security propertieand requirements we
would like to achieve in our systems. De ning clear securitgoals will provide
principle-level guidelines for us to design and evaluate ogystems.

Information Flow Integrity. Information ow model is probably the most fa-
mous classic model for describing security requirementschuas secrecy and in-
tegrity. In information ow model, subjects and objects in he system are labeled
into di erent categories, and information can potentially ow between subjects and
objects via read and write operations. The model speci es mstrains on where
and how the information can ow. Denning [13] generalized #hinformation ow
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security problem using a lattice model, and Bell-LaPadulaBLP) [14] model and
Biba [15] model provide speci ¢ requirements for secrecy éimtegrity protection,
respectively. In this thesis, our major concern is integt and our major security
goals are aligned with information ow integrity models [1516, 17].

Control Flow Integrity. In general, control ow integrity means that program
execution must follow the same control- ow pattern [18] asntended by the pro-
grammer. For example, one requirement of CFl is that the onlyay to get into
a function is through its entry point, and functions must retirn to the proper
address of the caller site. These properties guarantee thabntrol transfers in
a program are not hijacked by attacks such as stack smashingturn-to-libc or
return-oriented programming [19].

Principle of Least Privilege. The principle of least privilege [20] requires all
security principals and components in a computer system canly have just enough
information and resources to ful ll their tasks. Thereforeit limits the damage to
the entire system in case that some principals or componerdge compromised by
the attacker. In the context of OS kernel security, unfortuately most commodity
OSes fail to achieve this principle since the core kernel amdtrusted extensions
are of the same exact privilege.

Minimize Trusted Computing Base. In today's commodity applications and
operating systems, the growing complexity and size make gesoftware vulnerable
to varies kinds of attacks. Hence, it is desirable that we calireduce their trusted
computing base (TCB), which is the portion of code that the dtware must trust
and rely on in terms of security. For example, the 2.6.24 Limkernel contains more
than 6 million lines of code, making vulnerabilities inevable. In this thesis, we
reduce the TCB of commodity OSes by sandboxing and shepheargithe execution
of kernel extensions that are much more likely to contain bsgvulnerabilities with
more exposure to attacks.
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2.2 What Kind of Protection to o er?

Having the security goals identi ed and established, natuly the next question
would be: what kind of protection we need to o er to a computesystem in order
to achieve these security goals? Historically, the center gfavity of the solution is
the access control mechanism, which is also the primary tapstated in this thesis.
In this section, we review major types of access control sgsts used in secure
operating system construction, and describe how HUKO and SIL\REincorporate
these di erent mechanisms.

Discretionary Access Control (DAC) [21] system is a type of aess control
system in which security principals could specify accessrpassions of their own
objects. A typical example of DAC system is traditional UNIX le permissions.
In UNIX, every le in the operating system has an owner, which destes the
associated security principal. The owner of a le is capablef controlling read,
write, and execute privileges of the le with regards to secity principals such as
the owner, users in owner's group and other public users.

DAC grants users with full control of their resources. HoweveDAC system
alone cannot e ectively enforce security goals of secreaydaintegrity. The primary
reason is that, in DAC, the protection state is completely dgded by individual
users, which also indicates that untrusted principals codleasily in uence the
protection policy and make undesirable changes to the prat#on state eventu-
ally. This motivates the creation of Mandatory Access ContdlaMAC) systems, in
which security policies are decided by administrators or serity experts. In MAC
systems, subjects (e.g., users and processes) and objeetg.( les, sockets and
devices...) are labeled with their security attributes by lhe administrator. When-
ever there is an access to an object issued by a subject, thé@twill be mediated
by a reference monitor [22], which will examine security properties of the subject
and object, and make authorization decisions according taeess control policies
de ned by administrator.

The reference monitor is an important concept and an esseaiticomponent
in protection systems. In specic, it must hold several nessary properties to
guarantee the enforcement of access controls, as stated28,[24]:

Complete Mediation. All security-sensitive operations muse mediated by
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the reference monitor.

Tamperproof. The mediation and enforcement mechanism cawinbe sub-
verted or abused by untrusted principals.

Veri able. The protection system could be analyzed and vegd for its
correctness and completeness.

Implementations of MAC systems can be dated back to HoneywslISCOMP
[25], which o ers operating system support to enforce muHevel security. In recent
years, SELinux [26] and TrustedBSD [27] are two represenie@ MAC systems
designed to enforce MAC policies for commodity operating sigms such as Linux
and FreeBSD. These mechanisms are achieved by placing vasicauthorization
hooks (e.g., LSM [28]) into the OS kernel, which supports damic policy set up
and con gurations.

The protection system in HUKO is designed to be a MAC system: sjdtts
and objects in HUKO are clearly identi ed and labeled. The ref@nce monitor
is implemented in the hypervisor layer isolated from the gsé operating system,
making it di cult for attackers to penetrate and tamper with . Security sensitive
operations, including cross-domain data access and comtrow transfers, are in-
tercepted by the hypervisor because of hardware protectianechanisms such as
page table permissions. Labeling can only be done by the adstrator as well
as the trusted helper component, and access control polica® represented by a
xed access matrix hard-coded in the program.

While mandatory access control systems are e ective to emé@ system-wide
policies and protect system resources, it still has the folwing shortcomings:

Firstly, in MAC systems, security polices are completely aéded by security ex-
pert and administrator intervention. Software developerand users are not allowed
to specify or modify policies at the development or deploymephase. As a result,
it is di cult for MAC systems to support exible and ne-grai ned policies that
are close to program semantic and security needs. For exampio support various
kinds of applications with reasonable granularity and exbility, SELinux policies
in current commodity systems involves more than thousandd types and autho-
rization/transition rules, which are often too complex to & con gured properly.
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Secondly, it is di cult for MAC systems to address ambient auhority in an ap-
plication communicating with other principals, which often makes the application
vulnerable to attacks such as confused deputy.

To address these shortcomings, new protection systems aregosed to allow
the delegation of part of security decisions to developersigusers. For example,
by binding permissions to references to individual data oegts, capability systems
[29, 30, 31] enable programmers to assign permissions toitlprocesses and data
objects more precisely. Singularity [5] allows programneito specify language-
based veri able contract to secure the communication chamh with other prin-
cipals. Decentralized information ow control (DIFC) sysems such as Asbestos
[3], Histar [4] and Flume [32] allows users and developers teate security cate-
gories and labels for their own security concerns. The praton state is no longer
centrally controlled only by the administrator, instead, t is partially decentral-
ized to security principals. The enforcement of labelingatnting and declassi ca-
tion/endorsement rules, however, is still controlled by th reference monitor.

Like other MAC systems, HUKO also has shortcomings in supponty ne-
grained and exible policies, and attackers could still eXpit kernel APIs to launch
confused deputy attacks despite of memory isolation. Theskortcomings motivate
the SILVER framework. SILVER is built on top of HUKO's mandatory protection
mechanism such as isolation, labeling and hypervisor-léveference monitor. In
addition, with its OS subsystem, SILVER allows OS kernel del@pers to specify
security properties of their data objects and functions. Tbse security properties
are maintained explicitly in SILVER's OS subsystems, and thedirectly impact
resource allocation and security decisions.

2.3 What are Techniques for Enforcing Protec-
tion?

In this section, we look deeper into techniques that actugllenforce isolation and
access control.

OS-level Protection Techniques. Multics [33] is the rst major e ort for build-
ing an advanced operating system. It proposed and developetny fundamen-
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tal and crucial concepts, which signi cantly in uence the asign of subsequent
computer system in many years. In the realm of protection andecurity, these
revolutionary concepts include but not limited to: hardwae-supported hierarchi-
cal rings of protection, protection domains and gates, and ®support for access
control lists (ACL) and multi-level security policies. Prdection rings in Multics
provide separation of privilege as well as fault toleranckandling, and it inspired
contemporary hardware-assisted virtualization leverageby HUKO and SILVER.

System call interception [34, 35, 36] is another OS-levelrcnement and mod-
eration techniques. By mediating activities at the systematl level, the reference
monitor makes authorizing decisions, allowing or denyingystem calls issued by
processes. The solution is simple and easy to be deployed. Ewsv, some security
sensitive activities (e.g., memory mapping, ipc) are di clt to mediate at the sys-
tem call level, and some are di cult to get enough informatiom to make security
decisions. Moreover, the mechanism itself is easy to be bgpad or tampered with,
making it demanding to have a more resilient and comprehemsi protection.

To achieve completeness and exibility, modern operatingystems adopt a
technique named hook placement: inside the OS kernel, foreey security-sensitive
operation, softwarehooksare placed along the execution paths. The coverage of
placement ensures complete mediation property of the reégice monitor, and the
exibility of software hooks enables dynamic loading and @nging various security
policies on the y. The most notable example of this categorys the LSM [28],
which enables many advanced OS-level access control sys{@n, 26, 32] to be
built atop.

As previously stated, OS-level reference monitors can e @atly mediate security]]
sensitive activities at the operating system abstractionelvel, where subjects and
objects are system resources such as les, processes andowtconnections. How-
ever, they are limited at the program abstraction level, in @se that programmers
need to establish protection and access control inside thewn programs. More-
over, the same protection cannot be applied to protect the O&rnel, since the OS
kernel does not operate on OS-abstractions (in fact, it hatdthe meta data that
de ne such abstraction) and there is no way to place authoraion hooks for direct
memory accessing kernel objects. In the following, we rewi¢éechniques that focus
on enforcing access control and isolation at the program g



15

Memory Protection. In modern operating systems, virtual memory o ers ad-
dress space isolation for di erent processes, and this isuadly achieved by hardwared}
based memory protection such as segmentation and paging. Virtualization,
memory protection techniques is often used to isolated viral machines from each
other. Shadow page tables (SPT) is a common techniques forp@yvisors to man-
age guest-to-machine mapping and enforce isolation, yethis shortcomings of
unnecessary VM exits during page table updates. To facilitatpaging in virtual-
ization, hardware-assisted paging (HAP) is proposed by AMD [3&nd Intel [39]
in recent years. HAP extends the original paging mechanism byd@ing another
layer of page tables and translation, and it leverages dedied hardware to do
page table walks and compute page table entries. Due to thesmasons, HAP is
very desirable for enforcing isolation in a transparent maner.

While HAP is commonly used to establish isolation between muie instances
of guest virtual machines, HUKO and SILVER novelly adopted to eiorce isolation
and memory protection in the kernel address space of a singleest. Speci cally,
we create multiple HAP tables for each protection domain in OSeknel to enable
memory isolation and we leverage HAP permissions to enforceeigrity protection
and mediate protection domain transfers. In this way, we ense that the entire
reference monitor mechanism is isolated and protected frotine guest layer, and
achieving this does not need to a ect the OS-level paging memnism as it is using
another layer of indirection.

Although memory protection systems e ectively take advantges of advanced
hardware features, it still have shortcomings. The rst shdcoming is granularity.
In commodity operating systems on commodity hardware, thegge size is usually
4KB or higher and permissions can only be set up per page basiis is usually
undesirable since there are various kinds of data objectsiding on the same page
in both program stack and heaps. Research e orts such as Mand[40, 1] could
provide ner granularity

The second shortcoming is the \semantic gap". In speci c, tre is a semantic
gap between the page layout and the programmer's view of apation data. It is
extremely unreasonable and errot-prone to require a prograner to align their data
along page boundaries and setting up page permissions byriselves. Thus, how
to e ectively let programmers take advantages of the memorgrotection provided
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by hardware remains a challenging problem.

We designed SILVER to address these challenges for proteation commodity
OS kernel. The OS subsystem of SILVER handles the translatidnom security
properties of program data to page permissions, and it lexages a novel organiza-
tion and placement mechanism to achieve access control guarity. We further
discuss the design and implementation of SILVER in 5.

Software Fault Isolation  Besides hardware protection, there are also software
solutions for enforcing isolation. A notable solution is $tware fault isolation (SFI)
[41, 18, 42, 43, 44], which leverages software approacheshsas binary rewriting
and compilers to isolate a piece of untrusted code from the magprogram usually
residing in the same address space. The restricted envirommh that contains
untrusted code is usually called a \sandbox". The softwarepgroach does not rely
on hardware protection mechanism to perform address spaselation, however, it
still guarantees that any unsafe instruction would not havaindesirable e ect to
outside of sandbox.

Compared to hardware protection, SFI systems have their aditages. First,
SFI approaches have exibility in deployment and developnré process. It is self-
contained, and requires little support from speci ¢ hardwee, virtual machines or
operating systems. Second, although SFI introduced addifial inline checks for
memory access, it avoids costly protection domain switchashardware protection
mechanisms. According to previous experiments [42, 44],4hgould be a potential
performance gain, especially in case that the sandboxed eoidteract frequently
with the main program.

One downside of SFI is that malicious software module can sudst SFI's pro-
tection mechanism by abusing legitimate interfaces, for ample, calling functions
in wrong order or with undesired parameters. As shown in Chagt 5, this could
lead to confused deputy attacks in OS kernel. LXFI [45] is a SHystem that
addresses this problem by requiring developers to declarapability for its data
objects and functions. Another downside is due to SFI's salbntained nature: the
mechanism is agnostic to outside accesses. Thus, it is pbksto launch TOCT-
TOU (time of check to time of use) attacks to exploit those inhe access checks used
in SFI systems, especially in a multi-threaded and concumeusage environment.
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Language-based Approaches Language-based approaches can help program-
mers enforce ne-grained access control in regard to prognainternal data and
semantics. Typically these approaches integrate securityptions into the type sys-
tems of the programming language, and/or use veri cation nkods and compiler-
inserted checks to enforce security policies and accesstian Jif [46] and Joe-E
[47] are Java language extensions that implements DIFC an@pmability security
primitives, respectively. Laminar [48] is a Java languageased DIFC system with
the OS support to handle OS abstractions. Singularity [5] ia research operating
system which leverages language (C# extension) support asthatic veri cation to
achieve isolation and controlled communication. The dowite of language-based
approaches is that they often require fundamental changes the programming
paradigm, and it generally takes signi cant e ort to make lggacy programs to
adapt a new language.

2.4 Related Work on Operating System Kernel
Security

The idea and design of HUKO and SILVER draw inspiration from a vaety of topics
of past research work related to OS kernel reliability, pratction and security. In
this section, we review these speci c previous research e®.

Kernel integrity protection. There are a number of previous research e orts
aiming at protecting the integrity of the operating system krnel, such as code
integrity protection [49, 50, 51], data integrity protecton [52, 53] and control
data/ ow integrity protection [54, 55, 56]. Secvisor [49] $ a hypervisor based
protection system which guarantees the life-time code irgety of the kernel. It
leverages advanced features from AMD processors, which aralagous to those
used in HUKO. HUKO di ers from Secvisor in the following aspectsFirstly, Secvi-
sor is intended to prohibit any untrusted code executing intte kernel space, while
HUKO does allow untrusted kernel extensions running securetg provide func-
tionality and availability. Thus HUKO needs to enforce additonal protection such
as data integrity and control ow integrity to restrict the b ehavior of untrusted
extensions. Secondly, Secvisor's tiny hypervisor desigenders the system a very
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small TCB, which grants the system a more secure foundationhich is easier to
be veri ed. In comparison, HUKO is based on Xen hypervisor with &arger TCB,
yet it saves deployment and con guration e ort for existingXen virtual machines.

Kernel malware analysis.  Several recent projects such as Panorama [57], K-
Tracer [58], HookFinder [59], HookMap [60], and Poker [61] fos on analyzing
the behavior of kernel-level malwares. These research wake complementary
to HUKO protection system because they provide extensive knéedge of how
malwares damage the integrity of the kernel. These knowleglgvould further help
HUKO to enforce more e ective access control policies on vause kinds of kernel
objects to o er comprehensive protection.

Device driver isolation. Another major category of related research work is
on isolating buggy device drivers to improve the reliabilft of operating systems.
Examples of these systems include Nooks [62], MINIX 3 [63], aBafeDrive [64].
Micro-kernel OSes [12, 63, 65, 66] removes device drivei@nirkernel space and
execute them as userspace server applications. Opal [67& imicro-kernel based
system which supports multiple protection domains for thergire application uni-
verse within a single address space. However, despite thdegant design, it is
generally di cult to retro t these approaches in commodity OSes. Mondrix [68] is
a hardware protection approach for compartmentalizing Lumx and providing mem-
ory isolation for unsafe kernel extensions. Access contral Mondrix can achieve
the granularity of memory words but it requires a speci ¢ dagned processor ar-
chitecture to support its protection mechanism. Such systes are mainly targeted
for fault resistance and dependability, and they could e dovely prevent system
crashes caused by design defects and programming mistakiedavice drivers.
Nooks [62] is a comprehensive protection layer that leveragbardware pro-
tection to isolate faulty device drivers within Linux kerné and recover them after
failures.Our system resembles Nooks since both approachetaklish hardware-
enforced protection domains to isolate kernel componentsiowever, by the time
Nooks was designed, there was no supporting hardware feasiseich like NX bits,
EPT, VPID, IOMMU, etc. By leveraging these advanced featuresHUKO sig-
ni cantly reduces the amount of OS modi cations and has a ba¢r performance.
Also, HUKO o ers more protection from malicious extensions, g., it preserves
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architectural state from being modi ed by untrusted extengns. Since its pri-
mary focus is fault resistance rather than security, Nooks @s not address attacks
such as manipulating architectural state. As a VMM-based appach, HUKO has
a smaller TCB and attack surface compared with OS-based amaches. Also,
Nooks does not provide the exibility to specify security prperties of individual

data. Language-based approaches such like SafeDrive pdeviype enforcement
and prevent memory errors, though they often require the soee code of extension
for recompilation, which limits their applicability for binary drivers. In contrast,

HUKO can support unmodi ed legacy extensions.

Mandatory access control. HUKO enforces mandatory access control policies
over subjects and objects in the OS kernel. There are many sy®s that are
designed for improving operating system security by addinghandatory access
control, e.g., LOMAC [17], SELinux [26], AppArmor [37], UMIP [®] and Loki [2].
These systems provide exible, powerful and ne-grained ptection to preserve
system-level integrity. However, they are all enforcing MAGt the OS abstraction
level and cannot be applied to mediate the activities of keatlevel objects.

Address space separation. As part of our design, HUKO isolates untrusted ex-
tensions from the OS kernel using the memory virtualizatiomechanism provided
by VMMs. There are also a number of systems achieving di eremesearch goals
using various techniques that isolate two entities which pwiously belong to the
same address space. MMP [40, 1] achieves address spacdimoland ne-grained
permission mapping by extending the hardware architectureXFl [42] provides
permission management within system address spaces usingaby rewriting. Na-
tiveClient [44] o ers sandboxing and isolation to native x8 modules by leveraging
x86 segmentation and code validation. SIM [70] proposes s In-VM moni-
toring approach which places the kernel-level monitor in arptected address space
using shadow paging. Overshadow [71] and Bastion [72] leages multiple shadow
tables to protect application data from the rest of the systm. In comparison,
HUKO focuses on protecting the integrity of the OS kernel. Also HUR is based
on hardware-assisted paging rather than software-basedslow paging mechanism
to reduce the number of VMEXITs and improve the TLB performance

SILVER leverages a VMM as another layer of indirection to media cross-
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protection-domain activities. VMMs are also widely used foprotection systems
to enhance the security of application and OS kernel. Trustgor [73] protect the
integrity and secrecy of an application even in case that th©®S kernel is com-
promised. Secvisor [49] and NICKLE [50] are hypervisor-basasystems which
guarantee that any unauthorized code will not be executed ithe operating sys-
tem kernel. Hooksafe [54] protects kernel control data (i,ehooks) from being
tampered by kernel-level rootkits. In comparison, SILVER ans to provide a more
comprehensive protection with the integrity guarantee of &th code, data and con-
trol ows.

Protection domains.  In practice, protection domains are widely used for ad-
dressing security problems such as securing program exiens [74], privilege sep-
aration [31], implementing secure browsers [75, 76], sgfekecuting native code in
a browser [74, 44] and mobile application deployment [77]n this section, we re-
view previous research e orts related to protection domagand OS kernel security,
categorized by the approach to achieve their goals.

One major mechanism to achieve protection is through softn&afault isolation
[41, 42, 43, 44], which rewrites binary code to restrict theoatrol and data access
of the target program. XFI [42] leverages SFI to enable a hostggram to safely
execute extension modules in its address space by enforatogtrol ow integrity
(CFI [18]) and data integrity requirements. While these appaches are e cient
and e ective for securing program extensions, they have dculties for inferring
and verifying system-wide resource and multi-principal @ess control rules in a
static manner. Moreover, protection domains could also belseved by language-
based approaches. Singularity [5] is an experimental openg system that achieves
strong isolation and controlled communication by advanceldnguage features such
as type checking and static veri cation without any hardwae protection support.
Compared with Singularity, SILVER achieves similar high-ieel goals for data ob-
ject management by relying on a complete run-time approachkyhich emphasizes
on compatibility with commodity OSes and avoids the complex ort of static
resource veri cation.

LXFI [45] is probably the closest related work with SILVER. It addresses the
problem of data integrity and API integrity in SFI systems, usng a completely dif-
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ferent approach (compiler rewriting) than SILVER. Comparedo LXFI, SILVER's
run-time approach is more resilient to attacks that fully canpromise a untrusted
module and execute arbitrary code. Moreover, security emt@ment of SILVER
is more tamper-proof since the isolation and access conteok carried out by the
hypervisor.

Run-time protection approaches are mostly achieved by a@secontrol mecha-
nisms to constrain the behavior of untrusted programs. Depding on the abstrac-
tion and granularity levels, these approaches mediate seity-sensitive abstrac-
tions ranging from segmentation [78, 79, 44] and paging peation [62], system
calls interposition [80, 74] to high-level APIs such as JNI dal[81]. These events
are regulated by a set of access control policies.

2.5 Previous Approaches for Repairing a Com-
puter System

In this section, we review previous research approachestlaae related to restoring
the integrity of a compromised computer system.

There are two previous research works which are mostly reéat to the SHELF
system: Taser [11] and RFS [10]. They both have the ability twack the informa-
tion ow by analyzing the runtime log and to perform selectie recovery afterwards.
The primary di erence between them and SHELF is that Taser andRFS are only
focused on repairing the persistent data on a compromisedsggm. They do not
keep the useful process state during the recovery proceduhMdoreover, they have
dedicated recovery routines that do not preserve availabiy during recovery. In
contrast, SHELF is an on-the-y solution that coordinates b¢h le and process
recovery to achieve business continuity and availability.

Taser assumes an immutable le system state at the beginnirgj the recovery
procedure. Usually it is achieved by rebooting the system imia dedicated recovery
environment, which means all the running services are fort® shutdown and their
useful states are wiped out. On the other hand, SHELF cares inoent processes
and keeps positive in uence of even infected process inddeaf restarting them.

RFS uses a backward recovery strategy. It achieves recovday undoing the
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contaminated operations so that the le system can rollbacko a clean state. It
has the advantage for avoiding the e ort for periodical chégointing. However, we
argue that backward recovery is not suitable for recoveringrocess states. While
it is relatively easy to construct undo log for le systems, olling back process
state by performing undo operations is hard to achieve becseithe process state
is changed by sequences of instructions, which are hard t@oed and reverse.

For the aspect of system construction, both Taser and RFS aplba host-based
architecture. Taser is implemented as a Linux kernel modus:nd a backend system.
RFS requires modi cation to the Linux kernel. In contrast, $HIELF is a complete
user space solution which does not require any privilege &\or changes on host
system. Moreover, SHELF is a VM-based system that can providedditional
resistance to attacks than those host-base approaches.

There are other techniques that can be used for recovery pusge, like journaling
le systems [82], process checkpointing and rollback ([884]), process migration
[85] and replayable systems ([86, 87]). Compared with SHELEese systems
have limited ability to assess damage automatically, whicincludes detangling
bad operations from good ones and performing selective fana correction. Our
recovery idea is also inspired by Liu's work on intrusion tefant database systems
that can continue its transaction processing even in the psence of active attacks
[88].

Intrusion detection systems provide intrusion symptoms t&HELF as the start-
ing point of the recovery procedure. There are various kinag systems performing
intrusion detection by di erent techniques. For example, ignatures of system call
sequence are studied by many researchers to detect intrusq[89, 90]). For virtual
machine based methods, Gar nkel [91] proposes an intrusiaetection architec-
ture through VM-based introspection. VMwatcher [92] is a sysim that detects
malwares through VM-based OS-level semantic view reconsttion.

SHELF is focused on recovering user-space processes andgiers data. Nookd{l
[62] is a complementary system to SHELF, whose aim is to proteand recover
from kernel damage or failures. Also there are other technigsi that can be applied
to protect the integrity of the operating system kernel, sut as VM-based active
monitoring [93] and Panorama [94].

Information ow analysis techniques are widely used for imtision detection
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([89, 95]), malware analysis [94], and intrusion recoverystems ([11, 10]). SHELF
uses a method similar to BackTracker [95] to perform automigklly damage as-
sessment. Nowadays, ne-grained dynamic analysis technegiare widely used
for system security purposes ([96, 94]). Although ne-graed analysis can track
damage more precisely and comprehensively, those schem@gtevery heavy per-
formance penalty so that they are not suitable for on-the- yrecovery solutions like
SHELF.



Chapter 3

SHELF: Preserving Business

Continuity and Availability in an
Intrusion Recovery System

In this chapter, we focus on the problem of integrity recovgr Speci cally, we study
how to preserve business continuity, availability and reser accuracy in repairing
a computer system that has already been compromised.

Nowadays, business continuity and availability are increaggly crucial to server§
and data centers. In some business services like online bagkand MMO game
hosting, a small amount of loss of business continuity and alability may cause
great loss of money. Intrusion recovery is an important sedty task that servers
and data centers have to perform when the system is comproeiksby intruders.
Unfortunately, current intrusion recovery systems do not bar the concerns of busi-
ness continuity and availability in their design principle. For example, snapshot-
based le system ([7, 97]), one-button-recovery feature sbme laptop computers
([8, 9]) and Norton Ghost require rebooting the entire systeror remounting le
systems during the recovery procedure. Research e orts omtamatic recovery
([20], [11], [98], [99], [95]) reduce human e orts in analyry the impact of intru-
sions as well as providing higher accuracy in recoveringaasted les and removing
malwares. However, they still have the following shortcomgs in preserving busi-
ness continuity and availability.

Firstly, current intrusion recovery techniques often do nbpreserve useful ap-
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plication states when they perform recovery. The primary ftus for many recovery
systems ([10], [11], [98], [99]) is on recovering persidtdata (e.g. les and registry)
and removing malwares. In their methods, all the changes madby the intrusion,
including applications that are infected, are detected andiped out from the sys-
tem. In such case, services provided by infected applicat®are discontinued and
all the useful states of these services are completely loger though these services
are restarted after recovery. This could cause a great lossbusiness continuity in
commercial systems.

Secondly, current intrusion recovery systems ([7, 8, 9, 101]) generally require
a dedicated recovery routine which largely increases thessgm downtime and
decreases the availability level. Usually the recovery rome begins with one or
several actions of the following: (1) restarting the wholeystem, (2) unmounting
le systems, (3) closing outgoing connections, (4) shuttopdown applications and
services. After that, the system dedicates to the recovery @cedure, which takes a
long period of time if there are lots of infected les. This rsults in a considerable
system downtime and availability loss.

To address the above limitations, in this chapter, we dest@ the design and
implementation of SHELF, an on-the- y intrusion recovery pototype system that
provides a comprehensive solution to preserve businesstouity, availability and
recovery accuracy. SHELF has three unique features: Firstp tmaximize busi-
ness continuity, SHELF preserves accumulated useful statew applications and
data, even if they are infected by the intrusion. At the recosry phase, instead of
restarting an infected object, SHELF enables it to continuerém the most recent
pre-infection state. Second, by synthesizing backward tditracking and forward
taint tracking techniques, SHELF can swiftly determine the gstem-wide damage
caused by the intrusion when infection symptoms are detecte In other words,
SHELF has good recovery accuracy that can dynamically disgguish changes made
by the attacker from those made by legitimate users. Third, ELF maintains a
reasonable availability level for the system during the revery phase. This means
that uninfected objects remain intact and can continue furtoning while infected
objects are being recovered. To achieve this, SHELF leveraggynamic quaran-
tine and de-quarantine techniques and adopts a transparebtickground recovery
procedure.
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We implement SHELF on top of a light-weight virtual machine, vhich is the
User Mode Linux [100]. SHELF performs most of its functionalis at the VMM
layer. Thus it provides a transparent environment which impses minimal interfer-
ence on the guest. SHELF also makes good use of security beagtovided by the
virtual machine to achieve better isolation and protectiorthan existing host-based
methods.

In summary, this work makes three main contributions. Firstwe propose an
on-the-y intrusion recovery framework with the concern ofbusiness continuity,
availability and recovery accuracy. Second, we design anchplement SHELF,
which is a prototype of our approach. SHELF comprehensivelgverages tech-
nigues such as application-level state recording and radltk, backward/forward
taint tracking and infection quarantine in a virtualization environment. Third,
we evaluate SHELF's recovery performance using real worldriasions and bench-
marks. Our results show that SHELF can perform accurate on-&1y recovery
e ectively with an acceptable performance overhead.

3.1 Model and Assumptions

In this work, we assume a UNIX-like operating system in which mb©S-level
entities can be abstracted into two kinds of objects: process and les. Aprocess
objectis a running instance of an application. For a stateful apptation, its state
is usually determined by the run-time state of the correspaling process object.
A le object can be used for representing various kinds of OS-level er# such as
regular les in the persistent storage, volatile memory maung areas, sockets for
managing network connections, pipes for doing IPC and manyevdice interfaces.
The operating system provides a uniform set of operationsu@h as theread, write
system calls) towards le objects, making it convenient fous to track the state
changes of les. We use the terminology \objects" throughduhis chapter to refer
processes and les in the system.

Normally intrusions begin from one or several objects in the/stem, then prop-
agate to other objects via object interaction events. In oumodel, we name these
objects which initiate the intrusion \attack seeds. In most cases, attack seeds are
created by attackers and their behavior is malicious from thvery beginning of the
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intrusion. An attack seed can be a process, for instance, a ne@us login shell cre-
ated from backdoor or injected codes, a service program commised by remote
attacks or worms, or an illegal ssh session. Also, attack seechn be les such
as viruses, malwares, user-level rootkits, undesired iaitpackages or corrupted
data. As time goes by, attack seeds create attack objects anafact other inno-
cent objects in the system via certain OS events (e.g. IPC,ad/write or socket
operations). In this way, the intrusion is propagated throghout the system.

Generally an intrusion recovery system requires an intrusn detection system
(IDS) to discover the intrusion and initiate the recovery pocedure. The IDS is
responsible for detecting one or several objects that arengpromised by the intru-
sion. In our model, we name these victim objectgitrusion symptoms Examples
of intrusion symptoms can be applications that received miarmed network pack-
ets, modi ed system binaries or data, and malware processes les. Note that
we do not assume the IDS is fast or perfect, nor we need it to pide us with the
attack seeds. In fact, due to the limitations of current techiques, the detection
of the intrusion often happens after attack escalation andsifar from enough to
assess the system-wide damage. SHELF does backward taintckiag to identify
the source of the intrusion. We describe these issues in $ect3.3.2.

To systematically evaluate the impact of an intrusion, SHELFclassi es all the
objects in a compromised system into three categories:

malicious objects : Objects created directly or indirectly by the attacker.
Malicious objects include attack seeds and objects that ameated by malicious
processes and infected processes.

infected objects : Objects that are originally good but are infected by inter-
acting with malicious objects or infected objects in the sysm.

uninfected objects : Good objects in the system which are not yet infected
by the intrusion.

3.2 Overview of Our Approach

As previously stated, the basic goal of SHELF is to preserve bosss continu-
ity, availability and recovery accuracy in an automatic intusion recovery system.
To preserve business continuity, SHELF periodically recosdaccumulated useful



28

intruson begm anomaly detm
| [

Normal run Damage assessment, Recovery phase | Normal run
uninfected v, s¢ | Sl phase . | ¢ ¢ 3¢ 3¢
application /N N N | 7N /N 7N [

|
| |
) | finish recovery |
infected \/ | || N N N L N
application /N | 7~ /N /N RS
| |
| |
dici ! l
malicious %&l ................................... | IEURUUUTUURRIUPRO Removed |
applicaton I | | |
|
|
finish recovery |
infected v
file ~
intrusion begirs
([ ] ([ ce O
° 5 e ©5 00 o)ye 00 @ © 5
A A A A

O O O @)

o | T oy [ og | 135 |15 | 0%k (103 || o

o © 5 © 5 © © % ° % % o} %oo o ©

O O O ©) @) @) @) O
. unavalable or . - :
running -+ quarartined Xstate recording O state resore Dlegmmate clarges I undesired changes

Q uninfectedobject @ malicious dbject O infected object

Figure 3.1. Overview of SHELF's work ow. The upper part of the gure shows that
SHELF applies di erent policies for recovering di erent ki nds of objects. The solid line means
the object is functional and the dashed line means that the olect is not available during that
period. The lower part of the gure demonstrates a system-wie view of objects. The intrusion
starts from a malicious object (attack seed), and then propgates to other objects. During the
recovery phase, SHELF quarantines malicious and infectedljects from uninfected objects to to
prevent propagation of the infection (as indicated by the red-colored X symbols) . Objects are
in turn healed and de-quarantined so that the system becomeslean.

states for each stateful running application in concern. Tus during recovery, a
compromised application can be restored to the most receriean state to avoid
signi cant business continuity loss which in many situatios can be caused by
blindly restarting a stateful application in a stateless wa Regarding les that
are infected by the intrusion, SHELF rst restores them to a peviously recorded
clean version, then replays the state-changing operatiotmvards them until their
content reaches the state just before they are infected bytinsion. The recovery
activities of infected les and application processes areaefully synchronized to
eliminate inconsistency between repaired le and procestates.

On the other hand, SHELF coordinates system-wide damage tkasg and quar-
antine operations to precisely determine and quarantine rhieious and infected
objects in the system quickly after the intrusion symptoms r& detected. In con-
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trast, uninfected applications could keep running with cation during the recovery
procedure and uninfected les can be properly accessed. Img way, the overall
system availability is maintained to a desirable extent.

As Figure 3.1 shows, SHELF always operates on three phases: tloemal run
phase, the damage assessment phase, and the recovery phBseing the normal
run phase, SHELF does the periodically state recording for @aobject in the sys-
tem. Simultaneously, SHELF logs essential system-wide et&ito track the objects
and their interactions at multiple levels. A taint analysisengine is responsible for
dynamically analyzing and maintaining the dependencies amg objects. When
intrusion symptoms are detected by the IDS or an administrar, SHELF enters
the damage assessment phase and it swiftly determines thelitiaus objects and
infected objects from the maintained object dependencie8ased on the classi -
cation of objects and pre-de ned policies, SHELF preparesrguts for performing
guarantine and recovery on each object. After that, SHELF begs the recovery
phase. During the recovery phase, all the uninfected objeatemain their function-
ality while the infected and malicious objects are quarantied. Quarantined objects
are deactivated so that they are incapable of infecting oth@bjects. Furthermore,
operations that access the quarantined objects are also wdgged. Quarantined
objects are then properly recovered according to the recoyepolicies, which we
discuss in detail in Section 3.3.3. Once an object is heal&HELF de-quarantines
it so that it can interact with other uninfected objects in the system. The recovery
phase is completed when all the quarantined objects are elimated or recovered.
After that the system enters the normal run phase again.

3.3 Design of SHELF

Figure 3.2 shows the framework of our system. In SHELF thereathree separated
layers in the system: the guest layer, the VMM layer and the hotayer. SHELF's

components are in the VMM layer and the host layer, which are atated from

the guest layer that is vulnerable to attacks. These componts include: (1) the

state recording and restore module, (2) the logging and retsiruction module, (3)

the dynamic damage assessment engine, (4) the quarantindaeoer, and (5) the
recovery engine. We describe each of the components below.
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3.3.1 State Recording and Restore

The state recording and restore component is responsible feeriodically record-
ing states of objects in the normal run phase and rolling badkfected objects
to previously recorded clean states in the recovery phase.hd basic technique
used here is the checkpoint and rollback mechanism, whichriet new. However,
considering our speci ¢ on-the-y recovery environment, ar design should have
properties such as exibility, correctness and e ciency.

In order to provide exibility for handling object-level recovery and to optimize
storage consumption, SHELF allows asynchronous checkpainvhen performing
state recording, which means that we can record the states diferent objects in
the system at separate time points. Also we assign di erent elakpoint intervals
to di erent applications and les.

The next concern is correctness. One major problem with aggshronous check-
points is that inter-dependent processes and les often refa di erent states after
recovery. This can cause incorrect results and cascadedlratk among those un-
synchronized objects. For example, a le may su er from a ddale-replay error
- legitimate le operations are replayed, but they will be egcuted again by the
rolled-back process.

To address this problem, for two processes that have inteegendencies, SHELF
records their states at the same time to eliminate inconsesticies. For process- le
inconsistencies, we propose two solutions. The rst is to shten the le operation
replay period of each related le until its state after replg is synchronized with the
least recent recorded state of the related process. In othsords, during recovery,
a le is rolled-forward to the same time as the related procegather than the time
just before it is infected. Hence the double-replay error israided. However, this
method sacri ces a certain amount of useful state. The othesolution uses deter-
ministic replay [86] to advance the rollbacked process s@to the last uninfected
state. This method minimizes the useful state loss, but it r&ls to add new facil-
ities for deterministic recording and replay. Currently weuse the rst method to
solve the synchronization problem, and we plan to implemenke second solution
as our future work.

In the production environment where SHELF runs, we must reqte that SHELF's]}
mechanism has good performance, in terms of runtime overlleand storage con-
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Figure 3.2. SHELF's architecture

sumption. In SHELF's design, when recording the state of a gsteapplication,
SHELF creates a backup process in the host layer to store a sshpt of the entire
address space of the guest process. By preserving the reedrdtate in host mem-
ory, we not only avoid the cost of disk access, but also isodathe recorded state
from the guest system for better security. The creation of # backup process is
in a copy-on-write page sharing fashion, which is similar tthe fork operation in
UNIX systems. The di erence with thefork is that standard fork operations do
page sharing at a single abstraction level, while SHELF doesage sharing across
two abstraction levels: the virtual environment layer (i.e the guest layer) and
the host layer. Usually these two layers use di erent page téds and are isolated
from each other. We describe the implementation of thisross-layer page sharing
technique in Section 3.4.3. Adopting this technique, the timtaken by performing
a state recording operation towards a guest process is alrhequivalent to a single
fork operation on host. The time to rollback a process to a recordestate is al-
most instant. The memory consumption is also largely minimed by copy-on-write
sharing mechanism.
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3.3.2 Logging and Dynamic Damage Assessment

The dynamic damage assessment capability is achieved by dkang the inter-
dependencies between objects in run-time. Through thesepémdencies, we know
how the infection is initiated and how it propagates from on@bject to another.
The facility for this functionality consists of two parts: the logging and reconstruc-
tion module implemented at the VMM layer, and the dynamic damge assessment
engine located at the host layer.

Logging and Dependency Tracking  The logging and reconstruction module
logs the events that may cause object inter-dependenciesritig the normal run
phase. For performance and availability reasons, we mainigonitor and analyze
execution ows and data ows at the system call level. We addpsimilar depen-
dency rules as used in other works ([95, 11, 99]) which utdizlependency tracking
techniques, and we list these rules in Table 3.1. SHELF uses @mtwal machine
to audit various kinds of system calls corresponding to thevents that cause ob-
ject inter-dependencies. SHELF also needs to reconstructjett and system call
information from the VMM layer to identify an object in its lif etime and prepare
replay or undo data for recovery. These information includesystem call names
and arguments, lenames/paths, inode numbers, process P$Dwrite contents, and
so forth. SHELF also records the timestamp for each system kahtry.

Using these recorded object inter-dependencies, SHELF geates and main-
tains dependency graphs [95] during the normal run phase. ddependency graph,
each vertex represents an object in the system, while eaclagh edge represents
the event that causes objects dependency. Each graph vertiexassociated with
an object ID and each graph edge is associated with a timestpnof the event.
Since the graph may grow very large and produce false-pog#tiresults on taint
propagation, SHELF performs graph pruning to reduce the stage size and false-
dependencies. For example, we do not consider situationelindependent process
termination, irrelevant signals, or accessing dummy objeclike stdin / stdout and
/devinull

Backward and Forward Taint Tracking
The dynamic damage assessment engine implemented on thetHager does
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Table 3.1. Dependency Rules

Dependency Events System calls
. Read or execute le read, readv, execve
File ! Process .
object socketcall(recv),etc.
write, writev, create,
. Create or write le socketcall(send),unlink,
Process! File )
object etc.
Process! Pro- | Process creation, IPC| fork, pipe, mmap, Kkill,
cess shared memory etc.

backward and forward taint tracking to determine both malicous and infected
objects in the system. It operates on two steps: rst, upon e®iving intrusion
symptoms reported by the IDS, SHELF performs backward taintracking starting
from the intrusion symptoms to trace the chains of events thiare on the intrusion
path, and eventually identi es the source of the intrusion &ttack seeds). In the
second step, SHELF performs the forward taint tracking staimg from the attack
seeds to comprehensively assess the system-wide damagectassify objects for
quarantine and recovery.

The reason to perform backward taint tracking is that the intusion detection
may often happen after attack escalation so that the intrusin symptoms reported
by IDS are not necessarily the source of intrusion. In genérave use a method
similar to the BackTracker [95] paper to determine the attdcseeds. The technique
mainly performs a backward search on the maintained depenmdsy graph, and uses
Itering rules to nd the source of the intrusion. In SHELF's environment where
attackers cannot get physical access to the system, we cameethe attack seeds
to processes that have opening connections to the outsider €xample,httpd ses-
sions. Moreover, administrators can also specify the setwiflnerable services and
vulnerable ports to further re ne this procedure. Besidesttack seeds, SHELF also
records the intrusion timestamp, which is identi ed as the elative time when the
attack seeds perform the rst action which eventually propgates to the intrusion
symptoms detected (e.g. executing injected codes).

Once the attack seeds are decided, the next step is the forddaint tracking.
At rst SHELF marks the attack seed as tainted, and assigns itgnfection times-
tamp to be the intrusion timestamp that is determined duringthe backward taint
tracking step. Then SHELF performs a forward search on the #red dependency
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graph. For each dependency event that is represented by a pghaedge, we do
the following check: if there exists dependency!AB and A has been marked as
tainted, we mark B as tainted only when A's infected timestamps smaller than
the timestamp of that dependency event. SHELF keeps doing gprocedure until
there is no more new tainted object in the system. At the saméte, SHELF deter-
mines malicious objects and infected objects from the taietl object set according
to the following rules: (1) The attack seeds are classi ed analicious objects. (2)
Objects that are created by tainted objects are classi ed amalicious objects. (3)
Other remained tainted objects are infected objects.

3.3.3 Quarantine and Recovery

The motivation of the quarantine procedure is to prevent thenalicious and infected
objects from infecting other objects in the system during threcovery phase. Thus
uninfected objects and objects that are repaired and de-g@atined can continue
functioning to provide availability. The quarantine enfocer in SHELF is imple-
mented at the VMM layer. During the quarantine procedure, it nanipulates the
operating system kernel to perform the quarantine task acating to quarantine
policies.

Table 3.2 shows the default policies and mechanisms that SHERdopts in the
qguarantine procedure. For malicious objects, there is no @& to recover them and
they should be destroyed completely. For infected objectshweh are worthy to be
recovered, we must ensure: (1) They should be suspended ocadwated because
they are currently in corrupted states. (2) Operations thataccess the quarantined
infected objects should be regulated to prevent the infecin from propagating to
other objects.

One important issue is that regulating the operations that ecess quarantined
objects may a ect the availability of the system. This happas when a quarantined
object is accessed by an uninfected or de-quarantined prese If we let the pro-
cess wait until the quarantined object is repaired and de-@uantined, the process
would lose availability during the waiting period. To minimze this availability
loss, besides the waiting policy, SHELF has an alternative ag policy for regulat-
ing the operations during the quarantine period. In specicif SHELF detects a
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system call that accesses a quarantined object, SHELF wouldtercept that sys-
tem call from the VMM layer so that the system call would nevereach the guest
kernel, then SHELF modi es the system call return value to anreor value which
informs the guest process that this access attempt is deniethough this may af-
fect the correctness of some applications, in our obsenati, most service-oriented
and user-oriented applications return a failed request m&sge and can continue to
deal with other requests correctly.

While quarantining infected objects in the system, SHELF rawers them. The
recovery engine at the VMM layer, cooperating with the stateacording and restore
module, performs the recovery procedure. As mentioned in $en 3.3.1, the
primary task for recovering an object is to restore the objécstate to the most
recently before-infection-state. Once an object is recaeel, SHELF de-quarantines
it so that it can resume its pre-intrusion functions as if it vas an uninfected object.
Also, in order to assure correctness, dependent processes s are clustered into
groups: objects that are in the same group are simultaneoysle-quarantined and
rolled-back to the states with the same timestamp.

3.4 Implementation Issues

We implement SHELF prototype to demonstrate its capability b perform on-the-
y recovery. The VMM in SHELF's design is User Mode Linux (UML) [1®], which
is a light-weight VMM. Leveraging SHELF's techniques in UML poss a variety
of challenges. In this section, we rst brie y describe the &y architecture of UML
and the virtualization techniques that our prototype takesadvantage of. Then we
discuss our primary implementation issues through the resif the section.

The total amount of code in our prototype is approximately 300 lines, which
include 2310 lines of code for the VMM layer components and I6lOnes of the
host layer components. We did not make changes to the guesstgm.

3.4.1 User Mode Linux

User Mode Linux (UML) is a VMM that lets a guest Linux kernel run inthe user
mode. UML adopts a OS-on-OS structure, which ports the entirkinux system



Table 3.2. Quarantine Policies

Objects

Policies

Mechanism

Malicious Objects

Destroy objects

Process: send SIGKILL
signal.

File: remove the le.

Infected Objects

Suspend and

disallow access

Process: remove from
the scheduling queue
(run-list ), disallow
reading the shared
memory region.

File: Nullify or block
system calls that read,
write or execute the le.

Uninfected Objects
and De-quarantined
Objects

Regulate access: wait

Regulate access: den

y

Block the violating sys-
tem call until the object
is de-quarantined.

Nullify the violating
system call and return
a permission denied
error.

36

from hardware interfaces to host OS services like system Isal We intensively
studied the structure of UML running on the SKASO mode. From theviewpoint

of the host, the UML kernel is a user process which has a comgeteparated

address space from its guest processes. Each guest procassahcorresponding
host process that is traced by the UML kernel process. The UML kgel remotely

manipulates address spaces and handles page fault for iteeguprocesses. This
is done by inserting stub pages that contain system call infmation and signal
handlers into the address space of the corresponding hosbpess, right above its
stack. UML is also responsible for handling system calls igiliby guest processes.
In SHELF, to establish communication channels between the &band the
VMM layer, we modi ed the uml_mconsoleprotocol to send control commands and

receive responses. In addition, we create les that are mememapped between
both host layer components and the VMM to transfer non-contiodata.
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3.4.2 Reconstruction and Monitoring

In order to track the inter-dependencies of objects in the syem at the normal run
phase, SHELF must perform the following actions: rst, SHELF denti es each
object in the system at run-time, which we call dynamic recatruction; Second,
SHELF monitors and records system events that cause inter{glendencies.

To accurately identify objects, we need to preserve OS-aveainformation (e.g.
to reconstruct process descriptors, le paths and inode numers) at run-time while
doing monitoring. In virtual machine systems, usually thex is a semantic gap [101]
when we are trying to get OS-level semantics from the VMM layerin UML's
design, the VMM and the guest Linux kernel are within the samedalress space
on host, making the e ort to bridge this semantic gap easier.By adding some
codes to the VMM, we are able to directly refer OS kernel data rsictures. We
retrieve each process descriptotgsk _struct ) from the all-task  double linked
list, and the inode number of le objects from the open le talke (files _struct ).
Moreover, SHELF keeps track of events that are related to thebgect creation
and destruction. In this way, SHELF maintains a list of concared objects in the
system. For each object, SHELF associates it with a unique id.€., the hashed
value of the object's PID or inode number) and two timestamp$or recording the
creation and destruction time of that object.

Besides the object list, SHELF also maintains a list of eventbat cause inter-
dependencies of objects. To monitor and record these evente modi es the VMM
of UML by adding new functions to its system call interceptiorfacility. When a
system call is issued by a guest process, the VMM which is tragi that guest
process vigptrace will be noti ed by a special sighalSIGTRAP + 0x8@nd a trap
handler will take control. From the trap handler, we intercgt system calls and
retrieve system call numbers and arguments from the registsets, which reside
in the thread eld of the process descriptor of that guest process. Furtheore,
since the VMM and other guest processes are in separated addrspaces on the
host, we have to usetrace with PTRACBEEKDAT@ption to retrieve system call
information like le paths and writing content from the host address spaces.
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3.4.3 State Recording and Rollback

In SHELF, regarding process state recording, the snapshot @fprocess state con-
sists of the kernel part and the user part. The kernel part iHaodes the process
descriptor, thread _info structure, the kernel stack, pending signals and open le
handlers, etc. Moreover, SHELF records some architecturegkendent data struc-
tures that are UML-speci ¢ such asmmicontext . SHELF reconstructs these data
structures and stores them in a data structure namedhread _control _block .
SHELF keepsthread _control _block s in the host memory for isolation and good
performance. During the recovery phase, each entry of titteread _control _block
is copied back into the corresponding data structure of theugst kernel.

On the other hand, the user part of the snapshot, which is thenére address
space of the process, is often very large and costly to records mentioned in
3.4.1, each running guest application in UML has a correspand host process to
provide the address space for it. To make a snapshot of a guesbcess, SHELF
rstly creates a backup process on host which shares the a@ds space with the
host process that the guest application corresponds to. Thmethod is similar
to the fork , but it is done by the VMM and uses UML's trampoline code so
that the backup process has stub pages and is ptraced by the VMNIhe backup
process is invisible to the guest kernel and is forced to gbeepon its creation. In
order to restore the address space of an infected guest apation during recovery,
SHELF changes thecontext->mm.id of the infected guest process to the PID
of the backup process on host. Thus the guest kernel will repoze the backup
process as the new address space provider. Then SHELF involtes switch _mm
routine to modify the guest page table entries for establighg new mappings. After
reinstating the thread _control _block , SHELF activates the backup process and
sends a SIGKILL signal to destroy the disengaged host proseshich corresponds
to the infected address space. By adopting this cross-laygge sharing mechanism,
the state recording time of a guest application is largely deiced (1ms - 10ms for
most applications), and the state restore operation is alngbinstant.

To achieve background recovery, SHELF does not replay the Eate changing
events at the VMM layer. Alternatively, it invokes a user mode blper process to do
that job. Thus the recovery routine can be scheduled along thiother uninfected
and repaired processes in the system.
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Backward Taint tracking Forward Taint tracking
Intrusion Infected Symptoms | Attack Seed I\/!ahmous Malicious quected Infected Events logged
Files Processes | Files Processes

Malware install || MOdi ed system bi- | remoted login 11 14 15 21 4 453K

nary (netstat ) (sshd)

Malware script | bind program that
Internet worm (1i0n.sh ) has TSIG vulnera- 85 27 20 6 1604K

bility

3.5 Evaluation

In this section, we describe the experimental evaluation our SHELF prototype.
We have two goals for our evaluation. First, we want to test SHE-'s ability to
dynamically assess damages after intrusion symptoms aretetded. Second, we
want to measure the performance of SHELF. This includes the eiency of state
recording, the run-time overhead during the normal run phas and the availability
level of the damage assessment phase and the recovery phase.

Our experiments are conducted on a machine with a 2.13 GHz Ih€ore Duo
2 CPU with 2 GB memory. The host operating system is Fedora 7 thi Linux
kernel version 2.6.22.9. The version of User Mode Linux ketme2.6.24.2 (SKASO)
and the guest system is Ubuntu Hardy Heron. The guest memory isrcgured to
be 1024M.

3.5.1 Damage Assessment

We evaluate SHELF's damage assessment capability by launayitwo real attacks
against honey-pot systems that are protected by SHELF. Thenevmeasure the
results of SHELF's damage assessment. We describe each soerelow.
Malware install The attacker logs into the system byssh using an unprivileged
user account. Then she launches theendmail local escalation exploit to gain
root access. The attacker uses that root shell to download éhARK rootkit,
which replaces system binaries with backdoored versionshdse binaries include
syslogd, login , sshd, Is , ps, netstat , etc. The attacker uses a modi ed version
of netstat to hide all the connections for her own uid. The IDS of the sysin
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detects the modi cation of system binaries by the integritycheck, then it noti es
SHELF to begin the damage assessment phase.

Internet worm  Our victim machine which runs thebind service is attacked by the
lion internet worm via exploiting a bu er over ow vulnerability of the service. The
worm runs several shell scripts to do the following in turn: @ding itself to startup,
deleting related system logs, rewriting several system gi@ams to trojans, scanning
and attacking vulnerable hosts, reading the password legdtc/password and
/etc/shadow ) and sending them out through themail program, downloading code
from a remote site and nally leaving an open root shell openlThe IDS detects a
malware script (/dev/.lib/1iOn.sh ) as an intrusion symptom.

Table 3.3 shows the results of SHELF's damage assessment. rt8tg from
an intrusion symptom, SHELF successfully performed backwditaint tracking to
distinguish the attack seed, which is the login session ofahmalicious user and
the hackedbind service respectively. After that, SHELF performed forward tiat
tracking to identify di erent kinds of objects in the system The statistics are also
shown in Table 3.3.

3.5.2 Performance

Runtime overhead. During the normal run phase, SHELF records dependency-
making events for every process it monitors. Also it does rewiruction to provide
OS-aware information for object identi cation and future analysis. Furthermore,
a taint propagation graph is maintained for keeping track ofnter-dependencies
of objects. These three operations make up the system rungimverhead which
degrades the overall performance of the system. (In our measment, the process
state recording usually takes less than 10ms so that it makesp little portion of
the runtime overhead.) In most cases, the auditing overhead not constant and
it largely depends on applications that we trace. In generaBHELF poses a larger
overhead to I/O-intensive applications than computation&intensive applications.
We focus on the situation when the system is heavily-loadeditiv le system
operations. We run the following workloads as benchmarks ®valuate the run-



41

time overhead: (1) Extracting a Linux 2.6.24.2 source tarbiia(.tar.bz format). (2)
Building a Linux 2.6.24.2 UML kernel from source. (3dbench 3.0: A lesystem
performance benchmark which measures the throughput of theystem as a le
server (single client, 300s). (4Apache abtest, which benchmarks the system
performance as a HTTP server by measuring the average respongne and the
transfer rate. We set up 200 concurrent clients, with eachieht generating 2000
requests to obtain a 95KB le from a web server that runs in SHEE system.
We set the process state recording interval to be 2 seconds.eWonduct these
benchmarks 10 times separately in three environments: hastachine, UML and
our SHELF system. In workload (5) we do not test the performarmc of native
Linux since the UML uses TUN/TAP device for virtual networking sothat the
networking performance is not comparable to the native hoswhich has direct
network access. Table 3.4 shows the results of our conductegberiments. We can
see that the overhead introduced by SHELF is from 1.076x to Bb&.

Storage consumption. In order to record system call results as well as le state
modi cations (e.g. user space content fowrite system call) for future selective
event replay, SHELF requires relatively large disk space fatoring the logged
events. Table 3.5 shows the raw and compressed event log Iees for the two
workloads we described above. We can see that the compressibthe log data can
e ectively reduce the storage consumption of SHELF. One adutage of SHELF
over host-based approaches is that the event log is storedtae host le system
so that it does not consume the disk space that allocated to eéhguest system.

Availability. ~ From the point that intrusion symptoms are detected to the tine
when the three sets of objects are determined, SHELF must sesyul all the sus-
picious processes in the system to prevent taint propagaticduring the damage
assessment phase. Fortunately, this system down time is yeshort in most cases.
Essentially, SHELF rst searches the object dependency grabackwardly to de-
cide the attack seeds, then searches the object dependencgpd forwardly to
determine malicious and infected objects. The time compligx can be expressed
asO(j Ej+ jVj) since each vertex and each edge will be explored twice in the
worst case. To further reduce the damage assessment cost, SHElynamically
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maintains and prunes the object dependency graph and forcd®ring rules for
nding the attack seeds. In our measurement, for attacks thtave evaluated which
involve less than 500 objects, the damage assessment pha$eli7 seconds at most.
Moreover, we simulated a random object dependency graph whihas 1000 objects
and 100000 dependencies (this is too dense for real casd®s),damage assessment
time is 1.18 seconds. We believe that optimization of the alyais algorithm and
adding more ltering rules can further reduce the system domime e ectively.

Regarding applications that are functional during the recgery phase, the avail-
ability level is still less than the normal run phase since SHE is doing background
recovery jobs which hurt the system performance. We measutee throughput of
the dbench and the Apache abwhile the system is performing intensive recovery
jobs. The results are 32.92MB/s for thedbench and 17333Kb/s for the Apache
ab. Compared to the throughput under the normal run phase, theokses are 21.4%
and 12.4% respectively.

3.5.3 Discussion and Limitation

Porting SHELF to other virtual machines. SHELF's functionalities can be
ported to other virtualization environments, as long as theirtual machine monitor
satis es the following requirements: (1) It is convenientd intercept and record
system calls at the VMM layer. (2) It is convenient to access thguest process
address space and the guest le system with the help of the VMNRB) It is possible
to reconstruct user-level objects and kernel-level datarsictures at the VMM layer.
To our knowledge, current open source virtual machines suels Xen and KVM
satisfy these requirements so that SHELF can be ported to thesirtualization
environments without much e ort.

Detecting and subverting SHELF. To achieve the on-the- y intrusion recovery
in a more attack-resilient and elegant way, SHELF adopts a \twalization-based
system architecture. Although it is generally di cult to penetrate a virtual ma-
chine, studies show the possibility that some virtual maches can be detected and
eventually subverted by exploiting their design defects ahsoftware bugs. More
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Native SHELF's
Benchmark UML SHELF addon

Kernel

overhead
Kemel 19525 |31.80s |5246s | 1.65x
Decompression
Kernel Build 217s 379s 410s 1.08x
Dbench 294.18 63.36 41.91 1 59%
throughput MB/s MB/s MB/s '
Apache ab re-| .\ 44.73ms | 48.11ms | 1.076x
sponse time
Apache ab 21290 19797
transfer rate N/A Kb/s Kb/s 1.075x
Table 3.4. Runetime Overhead of SHELF

Events Log Size Log Size
Benchmark Logged (Raw data) (Compressed)
Kernel

. 133308 541.0MB 82.7MB

Decompression
Kernel Build 1344712 445.1MB 89.1MB

Table 3.5. Storage consumption

speci cally, regarding the User Mode Linux, we can detect thexistence of VMM
by issuing special instructions to query stats from the prassor or by examining
kernel debug information. Moreover, a proof-of-concept de is proposed to crash
the UML kernel [102]. We believe that these problems can be geby improving
the design and software quality of the VMM.

3.6 Summary

Preserving business continuity and availability in an autmatic intrusion recovery
system is a highly-desired but very challenging goal to a&ve. In this chapter,
we proposed SHELF, an VM-based on-the- y intrusion recoveryrptotype system
that provides a comprehensive solution to preserve busisesontinuity, availability
and recovery accuracy. One unique feature of SHELF is that iea do coordinated
le/process state recording, damage tracking, quarantin@nd recovery without
sacri cing too much availability. Our evaluation showed ttat SHELF can perform
accurate recovery on-the- y e ectively with an acceptableperformance overhead.
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We believe that a system such as SHELF can provide accurate ogery results
and e ectively reduce human e orts in computational envirmments that have
requirements of business continuity and availability.



Chapter |

Protection of Kernel Integrity for
Commodity OS from Untrusted
Extensions

Kernel-level extensions are widely supported in commodityperating systems to
extend the kernel's functionality. However, the extensiomterface could also be
leveraged by attackers to tamper the integrity of the OS keml. For example,
attackers can install malicious extensions such as kernelotkits to hide their ac-
tivities in the system. On the other hand, the existence of lggy third-party device
drivers exposes many vulnerabilities which can be exploitdy attackers to inject
their malicious code into the kernel space. These untrustezktensions threaten
the kernel integrity greatly, yet unfortunately in many ca®s users have to let them
run in order to provide the desired functionalities and avéability. Therefore, pre-
serving the OS kernel integrity from the presence of untrustl extensions remains
a challenging problem.

Previous research e orts on protecting the OS kernel primdy target at one
aspect of kernel integrity protection, such as code intedyi[49, 50], data integrity
[52, 53] and control ow/data integrity [54, 55, 56]. While hese approaches are
e ective against certain categories of attacks, the lack ahulti-aspect protection
renders the system's incapability to deal with multiple tyges of malicious activities.
For example, systems that only guarantee the integrity of kael code and hooks
are vulnerable to DKOM (Direct Kernel Object Manipulation) attacks. Similarly,
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protecting kernel code and data is not enough for defeatingw control ow attacks
such as return-oriented rootkits [19, 103]. Moreover, cuent approaches are also
limited in countering advanced attacks such as direct kerhsetack manipulation in
commodity systems, in which the attacker manipulates condt and/or non-control
data in the kernel stack shared by all code entities in the OSeknel.

Another di culty is about making the protection scheme practical and generic.
Several proposals [49, 50, 51] preserve kernel code intgdyy preventing untrusted
code from executing in the kernel space to defeat code inject and malwares.
However, they also eliminate all the benign functionalitieand availability provided
by untrusted extensions. Quite a few security approaches5[552, 61, 104, 105]
utilize the knowledge of kernel data structures to achievene-grained auditing
and intrusion detection. However, these approaches are dedent upon data
structure semantics of a speci c kernel, making them di cut to adapt di erent
OS kernels with another version or from other venders. Moreer, the performance
overhead induced by dynamically reconstructing and tracky ne-grained kernel
objects makes these approaches not that suitable for an ardi protection system.

To achieve tamperproof and transparency in a system that prects the OS
kernel, a common approach is to leverage the virtual machirmaonitor (VMM),
which provides another layer of indirection. In such systesyto protect a security
sensitive-kernel object, the VMM intercepts all the eventshat access this object
and validates each event based on the protection policy. Thapproach is e ective
for protecting a small number of crucial objects in the kerne However, severe
performance problem arises once the quantity of protectedbjects becomes large,
say, the entire kernel code and data area. The reason is thay matter how VMMs
are trapping these events (e.g., via instruction instrumeation or page protection),
performing mediation for each event will always cause coptrtransfers between the
VMM and the guest, which will need multiple time-consuming pvilege transitions
(e.g., ring faults or VMEXITS). Researchers have proposed tegiques such as
hook indirection [54] to mitigate the performance problems for hook protean.
However, this approach is only useful for protecting objectthat are scattered
across page boundaries, yet still cannot be applied to thetea kernel code and
data.

This chapter presents HUKO, a hypervisor-based integrity ptection system
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designed to protect commodity operating system kernels frountrusted exten-
sions. HUKO allows users to execute untrusted extensions inettkernel space to
provide desired functionalities. The behaviors of untrustd extensions, however,
are con ned by mandatory access control policies, which sigcantly limit the
attacker's ability to compromise the integrity of the kerné In order to achieve
multi-aspect protection, HUKO leverages hardware assistedaging to transpar-
ently isolate untrusted extensions from the OS kernel so that it could medlie all
interactions (including memory modi cation, control transfers and DMA) between
extensions and the kernel. Regarding kernel stack integritHUKO's approach in-
cludes a VMM:-levelprivate stackwith lazy synchronization to o er a transparent
and e cient stack separation and permission management farnmodi ed OS ker-
nels. To address the challenge of mediation performance, HUKi@Gtroduces a
design namedsubject-aware protection state transitionto eliminate unnecessary
privilege transitions caused by mediating benign accessedUKO is a practical
approach because it requires little change for either OS k& or extensions. Also
it does not depend on semantic knowledge of kernel data sttures so that it can
inherently support multiple commodity operating systems ad legacy extensions.

We have implemented HUKO prototype based on the open source Xeyper-
visor. To facilitate HUKO's design, we leverage contemporarigardware virtual-
ization techniques such as Intel's EPT, VPID and VT-d [39, 106]. We evaluated
HUKQO's protection e ectiveness by running malicious kernel xensions in both
Linux and Windwos. Our experiments show that HUKO can protect he kernel
integrity in the presence of various kinds of malicious extsions, including DKOM
and return-oriented rootkits. In terms of mediation perfomance, the evaluation
results show that the average performance overhead in amaiiion level bench-
marks is ranged from less than 1% to 21%. Even for extreme casghen HUKO
isolates the entireext3 le system (the largest module in our Linux OS) from the
kernel, the mediation overhead for extracting a Linux kerrdarball is about 21%,
with the protection state transfer rate at 390,000 per secdn

We believe that HUKO provides a generic and transparent framesk for run-
ning untrusted code in OS kernel with enhanced integrity ptection for commodity
systems. Also, this framework could be used to enforce mandgat access control

1AMD also has similar techniques with di erent names.
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policies inside commodity OS kernels with an acceptable iragt on performance.

The remainder of this chapter is organized as follows. We tslescribe the
threat model, the integrity properties that HUKO enforces andour assumptions
in Section 4.1. Section 4.2 provides an overview of the desgf HUKO. Section 4.3
details the design and implementation of the entire architgéure. Our evaluation
experiments for both the protection e ectiveness and perfmance of HUKO are
shown in Section 4.4. We discuss limitations and future wor&f our system in
Section 4.5. Finally, Section 4.6 concludes.

4.1 Kernel Integrity Threat Model

In this work, we focus on attacks that the adversary utilizeshe kernel extension
interface to compromise the kernel integrity, which is the st common method
to attack a commodity OS kernel. To speci cally illustrate the threats, we present
three di erent attack scenarios as follows: (1) The attackegains the root privilege
of the entire system, then he loads malicious extensions bBuas kernel-level rootkits
into the OS kernel. (2) The attacker exploits a vulnerabiliy existed in a benign
kernel extension (e.g., a buggy device driver) to inject malous code and therefore
changes the extension's behavior. (3) A careless normal ussads an unveri ed
kernel extension (e.g., a third-party device driver), whit contains malicious code.
There are various ways in which these malicious code coulddage the control ow
integrity and data integrity of the kernel, for example, diect modi cation of kernel
code, modifying control data (e.g., system call table, IDT rad function pointers),
modifying non-control data (e.g., process descriptors ante system metadata),
writing to the kernel space via malicious DMA requests, andiack manipulation
(e.g., return-oriented attacks).

We classify subjects in an operating system kernel into theecategories. The
rst category is the OS kernel, which HUKO aims to protect. The scond category
consists of trusted kernel extensions, which are kernel exisions trusted by the
system administrator. Generally their code need to be atttsd and veri ed to
guarantee security. The third category is untrusted extemsns, which are exten-
sions that may be compromised or inherently malicious. Rddats and unveri ed
device drivers belong to this category.
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HUKO protects the integrity of the OS kernel by enforcing the fllowing prop-
erties in a mandatory protection system:

Kernel code/data integrity . code, static data and dynamic data of the
OS kernel are protected from being modi ed by untrusted extesions via
direct memory access or DMA access.

Architectural state integrity . architectural environment describing the
execution state of the OS kernel such as segment registemntcol registers
and certain ag registers cannot be altered by untrusted exnsions.

Control ow integrity : (1) control transfers from untrusted extensions to
the OS kernel, including function calls, jumps and preempins, are restricted
to a set of kernel service functions namettlusted entry points (TEPS) spec-
i ed by the OS provider or the administrator; (2) function cdl consistencies
such as call-return consistency are strictly enforced.

Stack integrity : (1) malicious code cannot be injected into stack frames
belonging to the OS kernel; (2) For an untrusted extension, amipulating
control data (i.e., function pointers, return addresseshiits own stack frames
cannot subvert control ow integrity stated above; (3) noneontrol data (i.e.,
saved registers, parameters and variables) and control dain stack frames
owned by OS kernel or other extensions cannot be corrupted ag untrusted
extension.

For practical and usability reasons, the default mandatorpaccess control policy
of HUKO does not prohibit the OS kernel from reading informatio from untrusted
extensions, which is di erent from classic integrity modal such as Biba. However,
if there is a need to satisfy this strict integrity requiremaet, the exible mediation
and enforcement mechanism in HUKO can still support system adnistrators to
write policies with appropriate exceptions to enforce theno read dowr property.

HUKO is designed to be an added-on layer which provides an enlcad integrity
protection for various operating system kernels with an aable performance
cost. As a design principle, HUKO relies on as little semantic$ any speci c kernel
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as possible. On the other side, HUKO is not the elixir for everyeknel security
threats. For example, HUKO is limited in verifying the correchess of function
parameters and general data passed between the OS kernel antensions, which
could open certain avenues that impact kernel integrity inndirect ways. Also
our system does not prevent the untrusted extension from abing the privilege
granted by the OS kernel in current stage. We discuss thesmitations and possible
solutions in Section 4.5.

This work is focused on protecting the integrity of OS kernsl Other security
issues, such as attacks on secrecy (e.g., information legdgaand availability (e.qg.,
interrupt ooding, abuse of resource) of OS kernels are nat the scope of this work.
Also, this work concentrates on dealing with threats from thekernel extension
interface, and we assume that the hardware is trusted for tH@S kernel. Regarding
attacks to the kernel directly from the userspace, HUKO preves untrusted kernel
extensions from executing user-level content and prohibiuser programs to write
kernel memory. Previous work such as Secvisor [49] providesdepth research
on protecting the OS kernel from userspace intrusions usiaghypervisor, and we
believe that its method can be e ectively integrated with HUKOto achieve a more
comprehensive protection. At last, in HUKO system, the hypeiigor is the trusted
computing base which we assume its integrity is preserved.

4.2 HUKO Overview

4.2.1 Design Principles

The following paragraphs describe three major principleshich motivated our
research and guided our design process of the HUKO system.

Multi-aspect Protection. The architecture must guarantee that the ker-
nel integrity properties stated in Section 4.1 are enforcedith mandatory

protection. Security-sensitive operations that involventeractions between
untrusted extensions and the OS kernel, including memoryference, DMA,
control transfers and stack modi cation, must be mediated rad validated

upon mandatory integrity policies.
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Performance.  The architecture must not have high performance impact
due to mediation, object reconstruction/tracking or enfocing protection.

Ease-of-Adoption.  The architecture should support multiple commodity
operating systems and any unmodi ed legacy kernel extensioThe architec-
ture should not change the semantics of either OS or the ext&@ans. Also, the
architecture should be a layered approach which requirestle deployment
e orts.

4.2.2 Design Overview

HUKO provides a transparent protection environment for commaity OS kernels in
which untrusted kernel extensions can run with an enhancedqiection. In HUKO
system, we name all the kernel objects that are supposed to peotected by our
mechanismsecurity-sensitive objectsThese objects are labeled and tracked by the
labeling component in HUKO's hypervisor. Depending on the vaius purposes
of deploying HUKO integrity protection, security-sensitiveobjects can be labeled
as 1) the entire kernel code and data region, or 2) a given sdtle®rnel objects
that may be tampered by attackers to achieve specic goalspif example, hiding
a malicious process by manipulating hooks and process dgsors. To guarantee
multi-aspect protection and generality, in our design, by efault we label and track
the entire kernel code and data region as security-senséiwbjects.

The following paragraphs abstractly explain various chahges we faced in de-
signing the system as well as key features of HUKO.

Mediation Overhead. Regarding how to achieve the mandatory access control
mechanism, an intuitive way is to intercept every access t@eurity-sensitive ob-
jects, then to validate whether the access is permitted by ghpolicy or not. This
approach is straightforward and convenient for out-of-b@d monitoring, however,

it is not practical because the mediation overhead is congidhble even if the number
of objects to be monitored is relatively small. We observechat many security-
sensitive objects in the kernel are highly frequently accesd by operating system
kernel itself. For example, in Linux,task _struct is a typical security-sensitive
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data object because it can be manipulated by rootkits to pesfm process hiding
and privilege escalation. On the other handtask _struct is also a crucial ac-
counting and scheduling data structure which would be moded several times by
the scheduler during each context switch. Posing mediatiam these legal accesses
through an external reference monitor (i.e., VMM) causes enoous amount of
unnecessary privilege transitions (e.g., page faults, grfaults and VMEXIY, which
result in serious impact on performance.

To overcome this limitation, HUKO adopts a design namedubject-aware state
transition which divides the system work ow into multiple protection gates. The
behavior of the protection mechanism is determined by the ment protection
state, which is further determined by precisely distinguling the type of current
subject in the guest system context. Speci cally, if the cuent subject is an
untrusted extension, HUKO does complete mediation on all acg®es to security-
sensitive objects in order to protect the kernel integrity.By contrast, in the case
when the OS kernel is executing, HUKO poses minimal interpogit on object
accesses. It only needs to audit control transfer events thaause a protection
state transition. In this way, the total number of privilege transitions caused by
mediation is signi cantly reduced, which grants HUKO much beter mediation
performance. Table 4.1 illustrates an example of di erent netection behaviors
that are associated with di erent protection states. From i we could see that
the number of events that lead to privilege transitions (preented in grey cells) is
minimized due to the subject-aware state transition mechasm in HUKO.

Figure 4.1 is the state diagram which shows the various pration states of
HUKO system as well as the state transition events. Currently HUR has four
protection states, which correspond to the OS kernel, trustl extensions, untrusted
extensions, and the user space, respectively. The staterisition events include
inter-subject function calls, various types of jump, interupt handling, preemptions,
system calls and associated returns from these routines. diting these events
is essential to guarantee comprehensive control ow intety, which we further
discuss in Section 4.3.5. Tracking the state transition is anly achieved by the
isolation mechanism in HUKO, which we describe in Section 433.

Transparent Isolation. As we stated above, HUKO should have the ability
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Figure 4.1. The protection state transition diagram.

to (1) distinguish the current subject in the guest context,(2) track all state
transition events, (3) support di erent access control paties for di erent subject
categories, and (4) mediate data modi cation ows and conwl ows between
subject categories. Achieving these is non-trivial for commaity monolithic-kernel
operating systems (e.g., Linux and Windows) since the OS kel and its extensions
reside within the same address space, and it is even more &hading especially
considering our two design principles: external approachnd good performance.
To tackle this challenge, we design arsolation componentin HUKO's VMM
to transparently isolate the extensions from the OS kernelThe isolation mech-
anism leverages hardware-assisted paging (HAP), which is arthware-based vir-
tualization technique supported by many modern processor$n our scheme, the
enhanced memory virtualization component in HUKO's VMM mainténs separate
sets of HAP tables for each protection state in the system. Thesets of HAP
tables are synchronized with each other so that their cormeending entries are
mapped to the same machine frame. Moreover, regarding satusensitive ob-
jects, di erent HAP tables are re ecting di erent access rights according to the
subject category and mandatory access control policies. iBling between these
HAP tables is swift because it only involves a change to the HAP bagointer.



54

In addition, HUKO signi cantly reduces the number of TLB ushes involved in
each HAP table switch by utilizing Intel's Virtual-Processor tenti ers (VPIDs)
technology. The multiple HAP table design renders e cient andpractical isola-
tion between the OS kernel and extensions, and it enforcegpaeate access control
policies for each type of subject accessing various kernbjects such as dynamic
data structures, 1/0 bu ers and kernel functions. Regardimy kernel stack integrity,
HUKO leverages the multiple HAP tables to achieve a VMM-leveprivate stack
with lazy synchronization mechanism to o er a transparent ad e cient stack
separation, which we discuss in Section 4.3.4.

Object Labeling. In mandatory protection systems, objects are labeled indit
ing their security properties to facilitate mediation. HUKO cbesobject labelingin
order to let the VMM identify security sensitive objects in the kernel. The label-
ing procedure is at the page granularity in the way that the laeling component
assigns labels to the speci ¢ physical pages that containcsgity sensitive objects.
There are two reasons for this. First, according to our desigorinciples, HUKO is
intended to rely on as little semantic knowledge of operatghsystem as possible.
Second, for a hypervisor-based approach, ne-grained dym& object tracking in
kernel often introduces too much reconstruction and trackg overhead, which is
not practical for an online protection system. On the other &nd, to ameliorate
problems caused by the protection granularity gap, HUKO has meéd page labeling
mechanism for handling pages that contain mixed code and @datas well as pages
that are shared by both kernel and extensions.

Another issue is about how to track dynamic data for both kerdeand ex-
tensions. To address this, HUKO inserts a trusted driver (labed as a trusted
extension) into the operating system to notify the hypervigr about the allocation
and reclamation of the kernel memory. The driver is also awarof the owner sub-
ject of each page and reports updates to the hypervisor dugmuntime. We further
discuss mixed page handling and dynamic content tracking fBection 4.3.2.

Protection Work ow. Table 4.1 shows a sample protection policy that regu-
lates the data accesses as well as code executions of ungdstxtensions. In this
policy, the policy maker needs to specify a set of kernel furans as the trusted
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Subject Category / Protection State
Object Label OS Kernel Trusted Extensions Untrusted Extensions
Read ‘ Write ‘ Execute Read ‘ Write ‘ Execute Read ‘ Write ‘ Execute
Trusted Entry Points allow allow allow allow allow audit allow allow deny audit allow
Other OS Code allow allow allow allow allow audit allow allow deny deny
OS Data allow allow allow allow allow audit allow allow deny deny
Trusted Extension allow allow audit allow allow allow allow allow deny deny
Untrusted Extension allow allow audit allow allow allow audit allow allow allow allow
Private Stack Frames allow allow deny allow allow deny allow allow deny
Other Stack Frames allow allow deny allow allow deny allow deny deny
Trusted DMA allow allow allow allow allow audit allow allow deny deny
Shared DMA allow allow allow allow allow allow allow allow allow
User Space Content allow allow audit allow allow allow audit allow allow allow deny

Table 4.1. A sample MAC policy for preventing extensions from writing to kernel or
executing unauthorized kernel code. The shaded cells indite the corresponding events
are mediated by the VMM and involve privilege transitions. Other events do not cause
privilege transitions in HUKO. The write operation include s both normal write and DMA
write. The not-listed \user" protection state is simply con gured to deny any write to
the kernel space.

entry points. In practice, trusted entry points can be expded functions in the
kernel symbol table or picked speci cally by the system admistrator. To preserve
control ow integrity, besides kernel function calls, kerel preemption and return
instructions should also be considered, which we will disssiin Section 4.3.5. In
addition, this policy also prevents untrusted extensiongdm directly writing to the
OS kernel or any trusted extensions, no matter the write is prmed via memory
instructions or DMA transfers.

HUKO enforces mandatory access control over the entire life ni@d of any
untrusted extension. To achieve this, HUKO tracks the lifetine of an extension
by hooking the extension allocation, loading and unlinkingoutine of the kernel.
These events will be trapped to the hypervisor and the labely component will
manipulate the corresponding page labels to perform dynamntracking. Unless
speci ed by the administrator, HUKO labels all newly loaded etensions as un-
trusted. During the protection process, if any event that \olates the access control
policy happens, HUKO will trigger a protection alarm from the lypervisor and pro-
vide essential information (e.g., type of policy violatiorand the execution context)
to the system administrator for making proper security desions.
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4.3 Architecture Design and Implementation

Figure 4.2 provides the overview of the HUKO Architecture. Ther are four major
components corresponding to principle functionalities itHUKO's design: object
labeling, transparent isolation, stack integrity protecion, as well as mediation and
enforcement. In the following subsections we rst provide arief background on
Hardware-Assisted Paging (HAP) technology used in our prototyya Then we
discuss each major component in detail. In Section 4.3.6, Wwe&e y describe the

implementation of HUKO prototype on the Xen hypervisor.

4.3.1 Hardware-Assisted Paging Overview

To achieve memory virtualization, a common design for VMMs it load shadow
page tables (SPT) into the hardware MMU, which translate fronguest linear ad-
dresses (GLA) to machine-physical addresses (MPA). Howeven maintain this
indirect mapping, the hypervisor must intercept and do SPTynchronization upon
guest CR3 switches and each update of the guest page table (GPThe hardware-
assisted paging (HAP) technology is introduced to avoid the #ware overhead in-
curred under shadow paging. One implementation of HAP is IntelExtended page
tables (EPT) technology [39]. When this feature is turned anthe ordinary 1A-32
page tables (referenced by control register CR3) translateom GLA to guest-
physical addresses (GPA). In addition, the hardware MMU matains a separate
set of page tables (the EPT tables) which translate from guephysical addresses
(GPA) to the machine-physical addresses (MPA) that are used taccess machine
memory. As a result, guest OS can be allowed to modify its own 132 page tables
and directly handle page faults. This allows a VMM to avoid the/MEXITs asso-
ciated with shadow paging, which are a major source of virtliaation overhead.
The reason why HUKO is built atop hardware assisted paging raén than
the software-based shadow paging mechanism is two fold. Thst reason is for
better performance, which we just stated. Secondly, in SPRccess rights in SPT
entries are synchronized with the corresponding GPT entise Hence, changing the
access rights in SPT entries for our protection purpose maytentially a ect the
correctness of guest OS for handling its own access rightsy Bontrast, in HAP,
access rights in HAP entries and access rights in GPT entrieseatwo completely
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di erent sets. Moreover, the HAP violation handling is transm@rently separated
from the page fault handling mechanism of the guest OS, whiahakes it more
exible and easier to guarantee correctness.

4.3.2 Object Labeling

As shown in Table 4.1, in order to enforce the MAC policy, HUKO aggs various

kinds of security labels to di erent kernel objects. The olgct labeling component
is responsible for identifying kernel objects from the physal memory and man-
aging security properties of these objects. As stated in Sewt 4.2.2, based on
our design principles, HUKO directly associates object lalzeto the corresponding
HAP entries. In speci c, the labeling component makes use of atf reserved bits
in EPT entries. These reserved bits are never utilized by dailt so that changing

these bits does not a ect the hypervisor's functionalitiesBy encoding labels using
these bits, HUKO currently can support 32 di erent potential dject labels, pro-

viding exibility and extendability to the protection scheme. This mechanism also
reduces the time and memory space involved in every mediatiand authorization

action.

Handling Mixed Pages. In a commodity operating system kernel such as
Linux, memory regions for kernel code, kernel data and extsions are usually
page aligned, which facilitates the labeling procedure in HUB. However, there
are still existences of mixed pages in which di erent objestco-exist together. To
ensure comprehensiveness and correctness of the protexctibe labeling compo-
nent must be able to track objects within two categories of eed pages: (1) pages
containing both kernel code and kernel data, and (2) pagesntaining both the
kernel and extensions.

A major type of mixed pages in the kernel is large sized pagedge 2MB su-
perpage). In most cases, di erent objects reside in the sarsaperpage, yet their
boundaries are still aligned to the 4KB address regions. Baon this observation,
given a large mixed page, HUKGsplits the corresponding EPT superpage entry
into multiple subpage entries (e.g., 2MB page entry to 512 4Ksub-entries) and
assigns individual object labels to each subpage. SplitgrEPT superpage entries



58

User Space

Kernel Space

OS Kernel

1 Untrusted

v Extensions
Trusted Labeling

extensions helper

HUKO VMM v

Labeling Component

i 4

Isolation sei‘(/e‘/’ Mediation and
Component | regs |yonone | Enforcement oMAC
olations component olicies
Multi-HAP | IOMMU et | private : xcentons
Tables Tables addr. | kernel
stack stack

Hardware

Figure 4.2. Overview of the HUKO Architecture.

improves the granularity of labeling and eliminates a majaly of mixed page prob-
lems without changing the guest page table (GPT) entries. Othe other hand,
regarding mixed pages of 4KB size, HUKO assigns each of themtwd mixed
label. For example, considering a mixed page that has a mixé&bel of both ker-
nel data and extension code, the hypervisor would trap all emts that modify this
page regardless of the current protection state. Then HUKO eranes the physical
address to see if it is in the range of extension text area andally determines the
object identity.

Tracking Dynamic Contents. Associating kernel objects to HAP page frames
requires dynamically tracking of these objects. For statiobjects such as ker-
nel code, static kernel data (including global variablesgnd trusted entry points,
HUKO tracks them by leveraging the kernel symbol table (e.gSystemmaple in
Linux). On the other hand, for dynamic contents such as dynaim kernel data,



59

stack and heap region, and loadable extensions, it is di ctiland time consuming
to track them at the hypervisor layer because of the semantgap. HUKO tackles
this problem by loading a trusted extension namethbeling helperinto the guest
kernel. The labeling helper is responsible for letting theylpervisor be aware of the
allocation and deallocation of kernel dynamic pages as wal the owner subject
of each kernel page. This component is the only OS-dependegairt in our system

and we implemented a prototype in Linux. Speci cally, dynant data owned by an
extension come from two major sources in Linux: (1) the pageafne allocator for
allocating bulk of pages, and (2) the SLAB allocator for allaating xed sized of

registered cache objects. For both cases, the labeling helfhooks the allocation
and deallocation events and gathers information from the @B allocator (i.e.,

kmentache_alloc ), the free page allocator, and thdoad -module routine. This

information includes owner subject of the page (e.g., OS k&l or extension), the
content type (e.g., kernel data or extension code), the gugsage frame number,
the virtual address range (for handling mixed pages), and ¢htimestamp of each
event. Then the labeling helper passes these information lUKO via the hyper-

call interface, and the labeling component labels the cosponding EPT entries
accordingly. To guarantee tamperproof, the labeling helpaetself is labeled as a
trusted extension at the load time so that it is protected by HUKO. Furthermore,

HUKO prohibits read accesses to the labeling helper to prevetiie leakage of
protection information.

4.3.3 Isolation Component

The isolation component in HUKO is responsible for achievingpmplete mediation
by establishing separate address spaces for di erent categs of subjects (i.e., the
OS kernel, trusted extensions and untrusted extensions) teside in. Subjects can
freely access code and data in their own address spaces withaterposition from
the hypervisor. However, inter-address-space activitiesich as data writing and
control transfer must be mediated and controlled by the VMM.

Multi-HAP Construction. The isolation component is built upon our enhanced
memory virtualization mechanism namednulti-HAP . Multi-HAP enables exten-
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sions and the kernel to share the same virtual-to-physical apping of the entire
kernel space, while it also enables the hypervisor to set érent object access
rights for di erent subject categories. In this scheme, thdwypervisor maintains
separate sets of HAP tables for each protection state (refer tgure 4.1) in the
system? Figure 4.3 illustrates the architecture of the multi-HAP meclnism. For
simplicity, only two sets of HAP tables are shown here, correspding to the OS
kernel state and the untrusted extension state, respectiye There is a HAP base
pointer which points to the root level of a HAP table. During a potection state
switch, HUKO changes the value of the HAP base pointer to another HARble
root, which represents another set of access rights. The ass rights in HAP table
entries are determined by the object label of the entry as wels the access control
policy, and are updated when any object label changes.

To intercept control transfer events between di erent subgct categories, for
each protection state, HUKO manipulates the execution bit ots HAP table entries
so that all the pages that do not belong to the subject categpr(corresponding
to the protection state) are not executable. Attempts to exeute content on these
pages would cause HAP violations and are handled by the hypesar. Section
4.3.5 describes this procedure in detail.

Synchronization.  An important di erence between multi-HAP and user-level
page tables managed by the kernel is that, each HAP table in mulHAP must

maintain the entire mapping of the whole kernel space, rathéhan the address
space associated with the protection state. This is becaus®JKO should allow
the OS kernel and extensions to read each other's address apdreely without
any interposition. Therefore, the isolation component shudd always synchronize
the entire kernel address mappings among HAP tables. We moditye hypervisor
code so that changes to one HAP table (including allocating a weentry, changing
an entry and removing an entry) always propagate to other HAP tales.

Optimize TLB Flushes.  Considering the enormous function calls and returns
between the OS kernel and extensions, the protection stateansition rate in
HUKO is very high (see Section 4.4.3). If the hypervisor ushe$LB on every

2|t can be extended to support separate HAP tables for each suject, if needed.
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Figure 4.3. The multiple HAP tables for achieving isolation and mediation.

page table switch during a state transition, the performare degradation due to
the TLB misses caused by ushing is substantial. To mitigat¢his problem, HUKO

takes advantage of Intel's Virtual-processor identi ers (VPDs) technology, which
enables a logical processor of the hypervisor to manage @ahformation for mul-

tiple linear-address spaces. In HUKO's VMM, we associate eaclofection state

with a 16-bit VPID so that mappings and access rights are tagdeaccording to
the VPID in the address translating cache. During the state @nsition time, the

EPT table switch does not cause ush of the entire translatig cache - it only
ushes entries with speci c VPIDs, which signi cantly reduces the TLB misses
and improves the performance.

Preserving Architectural State. Sometimes malicious or compromised ex-
tensions could subvert certain invariants of the architectral state to ful | their
attacks. For example, a malicious extension could changeeticeSsegment selec-
tor to point to its own version of processor data areapda), which provides the
kernel with incorrect information about the kernel stack, MMU state and IRQ
processing. Therefore, HUKO must enforcing the integrity ofystem environment
by preserving these invariants of architectural state.

Our approach takes advantage of the fact that, during a prilege transition,
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Figure 4.4. The transparent separated stack design supported by multHAP. The gure

illustrates the two stacks at the time of protection state transfer in case an untrusted
extension is making a call to the OS kernel. The shaded indidas the active stack frames
(owned by the untrusted extension) which are going to propagte to the OS kernel stack.

the architectural state is saved in the virtual machine desiptor (i.e., VMC$r Intel
VT) and a virtual CPU struct (i.e., vcpu for Xen) of the VMM for future reloading.
Hence we could straightforwardly integrate the architectual state protection with
our subject-aware protection state design. In speci c, atie time when the kernel
enters untrusted extension protection state, HUKO saves therchitectural state
from the VMC@&nd vcpu to its own memory space. When the kernel is switching
from untrusted extension state back to the OS kernel state, HUB restores all the
architectural state invariants by writing the saved valueso the virtual machine
descriptor and the virtual CPU struct.

4.3.4 Kernel Stack Integrity

Besides code, static and heap data, there is another impontaavenue which mali-
cious extensions could exploit to subvert OS kernel intedyi the kernel stack. In
speci ¢, adversaries could perform the following action®tcompromise the prop-
erty of stack integrity stated in Section 4.1: (1) injectingmalicious code into the
stack; (2) manipulating control data (i.e., function pointers, return addresses) in its
own stack frames to subvert control ow integrity of the OS kenel. For instance,
return-oriented and jump-oriented attacks belong to this ategory; (3) corrupting
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non-control and control data (i.e., saved registers, paragters and variables) in
stack frames owned by OS kernel or other extensions. For exaley a malicious
extension could change the local variables and function @ameters on the stack
frame to let a certain kernel function return a false data vale, or it may manipu-

late kernel IRQ and exception stack frames to change the betar that OS kernel

handles interrupts and exceptions.

For case (1), by setting the NX bit of corresponding HAP entriesfernel stack
frames, HUKO ensures that code on kernel stack frames could eebe executed.
Regarding case (2), HUKO mediates the protection state trarsfs and maintains
a dedicated return address stack to guarantee the control vointegrity, which we
will describe in Section 4.3.5. To defend against attacks wategory (3), HUKO
grants untrusted extensions read permission to the entireeknel stack, but only
gives them write permission to its own stack frames.

To e ciently manage kernel stack permissions in an unmodi d commodity
OS (e.g, Linux) is a non-trivial job, because of the followmp reasons: rst, in
such system, there is only one kernel stack for all kernel ¢ool paths associated
with each user thread. Moreover, the stack frames are not pagligned, making it
di cult to set permissions for individual stack frames usirg current architecture.
On the other hand, in terms of performance, it is not a ordal¢ to validate each
stack modi cation made by untrusted extensions because sfamodi cations are
too frequent.

The stack protection design of HUKO overcomes the above limttans. In order
to preserves single kernel stack semantic and support unmed commodity OSes,
during the protection state of untrusted extensions, HUKO crates and maintains
a private copy of the current kernel stack at the VMM layer, whth is transparent
and not observable from the guest OS. By manipulating GPA to MA mappings
in the Multi-HAP table, HUKO casts the same linear address rangef ahe kernel
stack to dierent machine frames for OS kernel and untrustedextensions. In
this way, an untrusted extension is given a \faked" view thatt shares the same
kernel stack with other code entities in the kernel, howevgeits stack operations
are automatically redirected to the private kernel stack quy placed on shadow
machine frames reserved by HUKO. On the other hand, to protectack integrity
in an e cient manner, HUKO adopts a \lazy synchronization" dedgn: instead



64

of checking permissions each time the stack is accessed, HUK@yoperforms

stack synchronization when current protection state is swahing between untrusted
extensions and the OS kernel. During synchronization, HUKO ppagates stack
modi cations from the private stack to the real kernel stackwith the following rule

enforced: only changes made to its own stack frames are prgpted to the real
kernel stack, while updates outside its own stack frames adéscarded.

In the following we use Linux as an example to illustrate the nvate stack
design achieved by multi-HAP tables, which is shown in Figure4. In Linux, each
user process is associated with a two-page sized kernel lstadhe scope of the
current kernel stack can be determined by th&SPregister and the per-CPU data
structure pointed by the GSsegment selector. HUKO maintains two data values for
each protection state:state _frame_base and state _current _limit , respectively.
These two values designate the active stack frames assoethtvith each protection
state, and only in these stack frames modi cations are progated to the other
stack. During each protection state transfer, HUKO updatestate _frame_base
and state _current _limit based on the values oEBPand ESPregisters at that
time point.

4.3.5 Mediation and Enforcement

The goal of the mediation and enforcement component is to aitidll the write ow
and control transfer events between untrusted extensionsi@ the kernel. Also it
is responsible for validating these events to enforce intély protection according
to mandatory access control policies.

EPT Violation Handling. HUKO relies on the EPT violation mechanism to
achieve mediation and protection enforcement. Figure 4.%epicts the work ow
of how HUKO handles various kinds of EPT violations. When an EPWiolation
occurs, HUKO rst checks if the physical frame is labeled as a hd kernel object.
If yes, then it checks if the violation is caused by our protéion mechanism or
by emulated MMIO and log-dirty events. An EPT violation causel by HUKO's
protection mechanism indicates a sensitive control transfevent or a sensitive data
access. To properly handle it, HUKO rst examines the followig information: (1)
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the quali cation bits which reveal the actual type of the vidation, (2) the current
state, and (3) the label of the faulting frame. Then it deternmes whether to allow
the operation or to trigger a protection alarm based on infenation collected and
the access control policies.

As we stated in Section 4.2.2, subjects in HUKO can freely read émwrite
their own code and data. Also, inter-subject read accesses always allowed
in our default policy. These allowed events do not cause anyPE violation so
that they cannot be logged by the hypervisor. However, for fensics purposes,
the system administrator may want to audit some types of crual events yet still
allow these events to happen. Hence, HUKO adds another actionmed audit
allow to enable logging of these specic data accesses. To implemnthe audit
allow mechanism, HUKO sets the access rights in the correspamgl EPT entries
so that audit-allowed events would cause EPT violations antie audited by the
hypervisor. Then HUKO emulatesthe o ending instructions without changing the
previously set access rights. In this way, the audit allow @pation is completed
and the EPT entries can still be used to trap further events ofhe same kind.

Protecting Control Flow Integrity. As previously stated, HUKO sets the ex-
ecution bits of multi-HAP entries so that only untrusted extersion code can be
executed in the untrusted extension protection state. Whean execution violation
indicating a control transfer from an untrusted extensiona the OS kernel occurs,
HUKO enforces the control ow integrity rules under the followng conditions: (1)
the untrusted extension is calling the kernel viecall and jmp instructions. In
this case, HUKO allows the operation only when the violating attess belongs to
a trusted entry point. This prevents untrusted extensionsrbm accessing unau-
thorized kernel functions or jumping to arbitrary positiors in the kernel. (2) The
kernel preempts the untrusted extension for higher priomtinterrupts. In this case,
HUKO ensures that the violating address belongs to an interraghandler routine
in the IDT table. (3) The extension returns to the kernel froma previous call.
This could be leveraged by return-oriented rootkits to dive the control ow to

a sequence of return-oriented instructions in the kernel. oltackle this problem,
HUKO maintains a separate return address stack to keep track e call/return
sequences between the OS kernel and untrusted extensionsthis way, we guar-



66

antee the return address to the kernel must correspond to tlaeldress of the kernel
code that made the call. Also, the sequence of return addressaust satisfy the
last-in- rst-out property. Considering the fact that most return-oriented attacks
need an initial return to the rst return-oriented instruct ion sequence, our approach
provides an e ective counter method.

Handling DMA writes. Besides memory writes performed by CPU instructions,
DMA is another way for extensions to write data into the kernememory. Previous
proposals [62] have limited capability of handling DMA beasse the data transfer is
not controlled by the processor or memory controller. Fortoately, the introduction
of hardware IOMMUSs (Intel's VT-d and AMD's IOMMU) brings the possibility to

e ciently mediate and control DMA memory access. When usedhi virtualization,
the IOMMU can enable pass-through device models which suppindependent
address translations using IOMMU page tables for DMA actities.

In HUKO prototype, we leverage the DMA remapping mechanism puided by
Intel's VT-d technology [106] to protect the kernel integriy from DMA writes.
Currently we explicitly set the IOMMU page tables so that pags labeled as OS
kernel and trusted extensions cannot be used in DMA. On the o¢h hand, HUKO
allows DMA activities on the pages that are labeled as untrtsd extensions. Our
ongoing work employs multiple IOMMU page tables and switchatilities for dif-
ferent protection states, which is very similar to the muliHAP mechanism. This
scheme introduces new DMA object labels shown in Table 4.1dallows the kernel
and all extensions to do DMA in a protected manner. Another mer exible opti-
mization is to integrate the IOMMU page tables with the multtHAP page tables
so that IOMMU can utilize the guest-to-machine physical adaess translation as
well as access control enforcement provided by the multi-HAP eohanism.

Supporting Exceptions.  Given the complexity of commodity operating system
kernels and the variety of enormous extensions in the wildt is necessary for
HUKO to support exceptions for access control enforcement. €he are three
types of exceptions in HUKO. The rst type o ers an untrusted exension the
privilege to write into speci ¢ objects in the kernel. The seond type allows an
untrusted extension to make certain calls to the kernel, buhot through trusted
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Figure 4.5. The EPT violation handling diagram of HUKO.

entry points. The third type of exception is about exportingwrite permissions in
kernel stack frames. These exceptions are provided by thenaidistrator to achieve
speci ¢ needs on exibility and performance, and they are sred and protected in
the VMM memory space. Section 4.4.1 provides a further dis@isn in Linux OS.
In our current prototype implementation HUKO uses mixed pageabels to
handle exceptions. Pages that contain exception objectseatabeled as imixed
exceptiort, and the hypervisor will check the virtual address upon edcviolation to
determine whether the event is an exception. This approactab bad performance
in case the number of exceptions is large or exceptions octiequently. We have
an optimized design for handling exceptions and mixed page# that scheme,
HUKO copies all the exception objects onto a set of allocated @ption pages.
By dynamic patching of instructions, HUKO redirects all the ogrations accessing
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exception objects to the corresponding copy on the excepiigpages at the run
time. This method reduces the total number of EPT violation®n exception pages
and mixed pages. We plan to implement this optimization in aufuture work.

4.3.6 Modi cations to Xen

We implemented HUKO by modifying the Xen hypervisor (version 3.2 x86-64
HVM Guest), which is a full- edged open source hypervisor comomly used in
various enterprise systems. The HAP mechanism used in the &tobn and label-
ing component is based on Intel's EPT, yet it does not requinauch e ort to adapt

AMD's NPT. The total amount of code added to the Xen hypervisor isapproxi-
mately 3,300 lines. And the Linux implementation of the lab&hg helper trusted
extension consists of about 450 lines of code.

A major e ort of our prototype implementation is to extend the memory virtu-
alization sub-system of Xen to support the multi-HAP mechanismin HUKO pro-
totype, each HAP table is essentially a four-level EPT pagingrsicture. The root-
level index of each paging structure is stored in an array nadhuko_phys_table _index ]
which is placed in the architecture-speci ¢ per-domain sticture arch_domain To
construct multi-HAP tables, HUKO rst traverses all the existing physical-to-
machine (p2m) mappings from the domain'pagelist . Then it allocates EPT
entries using free pages maintained bg2mfreelist , which are Xen's reserved
pages for storing p2m mappings. The security label of each ®Hs stored in bits
61:57 of the corresponding EPT entry and managed by the lali@j component.
HUKO then decides the access rights of an EPT entry from its sedty label, the
MAC policy as well as the protection state which it belongs toHUKO keeps this
allocation process until all HAP tables are established. Durg each state tran-
sition, HUKO switches among multiple EPT paging structures bychanging the
EPTP pointer and associated VPID in the VMCS elds.

For each protection state, we introduced a security contrddlock (SCB) which is
linked to the domainstructure. The SCB stores essential information for trackig
a protection state, such as the identity of the current sub, the virtual address
range of the subject's code and data, the previous protectistate, the address of
the last entry point, a copy of stack pointers, and a link to is return address stack.
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To achieve mediation and policy enforcement, we added addmal routines to the
paging violation handler of EPT and the Vt-d pass-through (I®AMU) driver,

which are ept _handle _violation() and iommupagefault() , respectively. We
exported two new hypercalls to the labeling helper for dekring run-time infor-
mation to the labeling component.

4.4 Evaluation

In this section, we describe the deployment and experimeitavaluation of the
HUKO prototype. There are two goals of our evaluation. The rstis to evaluate
HUKO's e ectiveness for defending against various real-watimalicious extensions
that damage the OS kernel integrity in di erent ways. The seond goal is to
measure the performance cost introduced by HUKO using both alpgation-level
and micro benchmarks.

All experiments were conducted on a Dell PowerEdge T310 Serweith a
2.4GHz Intel Xeon X3430 and 4GB memory. The Xen hypervisor versios 3.4.2.
The domO system is fedora 12 with kernel version 2.6. We useddb4bit Ubuntu
Linux (8.04.4) with kernel version 2.6.24 as our guest OS. Allinux partitions
were con gured to use theext3 le system. For Windows experiment, we chose
Windows XP SP2 as our guest system.

4.4.1 Deploying HUKO

As stated in Section 4.2.1, HUKO is intended to minimize the redued e ort for
deploying the protection system. Instead of establishingrgtection domains at
the OS layer [62] or at the hardware architecture layer [1],he implementation
of almost all the functionalities (i.e., memory protectionand access control) in
HUKO is at the virtualization layer, which makes the protection mechanism guest-
independent, adaptive, and easy-to-undeploy. Moreover, HW@Kdoes not enforce
access control for speci c kernel objects, and it only has\eal generic types for
object labeling. While this approach sacri ces the bene to©f semantic-rich access
control at ner granularity, it does o er a much easier con guration compared to
rich-typed protection system such as SELinux [26]. In the lowing paragraphs
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Untrusted Extension \ Behavior | Violation Triggered [ Violating Object Label
EnyeLKM add binary code to kernel lllegal code access OTHER OS CODE
DKOM (modify task _struct
all-root modify congrol d:ga (sys,call,t;ble) lllegal data access OS DATA
adore-ng modify function pointers lllegal data access OS DATA
hp DKOM (modify task _struct linked list) lllegal data access OS DATA
Ivtes call unauthorized function (module_free) | Invalid code execution OTHER OS CODE
return-oriented extension modify return addr. on the stack Invalid return address Return addr. stack
FUTo (Windows) DKOM (modify PspCidTable) lllegal data access OS DATA
TCPIRP (Windows) modify function pointers lllegal data access OS DATA
basicint (Windows) add binary code to kernel Illegal code access OTHER OS CODE

Table 4.2. Protection e ectiveness of HUKO against a collection of malcious extensions.

we use the Linux OS as an example to brie y describe the deplognt of HUKO.

The rst step is to set up the basic information about kernel dyout, objects
and TEPs. In Linux, most of these information could be acquéd from the kernel
symbol table associated with the speci c kernel. For examg@)] the address range
of Linux kernel code is determined by kernel symbatext and _etext . Similarly,
the boundaries of initialized and uninitialized kernel stac data can be identi ed
by symbol _edata and _end. At runtime, the labeling helper is responsible for
collecting dynamic information for object labeling. For istance, the code and
data range for an extension could be retrieved from the acading data structure
module when the extension is being loaded into the kernel.

In Linux, most kernel APIs and global data are exported to the &nel symbol
tables using theEXPOR$YMBOinacro. The address of kernel symbols can also
be retrieved in the System.map le. In this way we could collect all the entry
addresses for exported kernel functions. In our current patype, we treat all the
exported kernel APIs as the Trusted Entry Points (TEPS). In ou future work, we
are expecting to extend HUKO to achieve the least privilege pperty, by which
we infer and enforce the set of kernel APIs that a speci ¢ extsion can call. We
do a further discussion on this issue in Section 4.5.

Besides common settings, administrators sometimes als@deo provide extensiorj
speci ¢ exceptions to make an extension run correctly. Therare mainly three
types of exceptions in a HUKO system. The rst type of exception consists of
non-exported functions. In Linux, certain kernel functios are not explicitly ex-
ported, instead, they are accessed by direct address refere or address assigning




71

to function pointers. Fortunately, these cases are not resonended nowadays and
getting rare in recent Linux kernels. To deal with them, the dministrator should
manually specic the entry address of these kernel APIs as TEP The second
category of exceptions consists of OS kernel data of whichetlikernel intention-
ally grants write permission to extensions. In many casesheé shared data are
used as various kinds of bu ers and caches in the kernel, antlely are usually
still page-aligned. The labeling helper noti es the hypengor when these data are
allocated, and HUKO assignsShared Data type to these pages in the multi-HAP
table to allow write access for both OS kernel and untrustedkeension protection
states. Shared data that are not page-aligned with non-sted kernel data are re-
quired to set up exceptions using mixed pages. Regarding t@rsharing for kernel
global variables, the administrator could specify their adress in the exceptions
according to the kernel symbol table. The third category ofxeeptions belongs to
stack permission which OS kernel needs to grant extensionsite/ permission to
its local variables on the stack. For example, OS kernel caupass the address of
a local variable to an extension in parameters during a funioin call. To address
these situations, the administrator should specify the aadsses of functions that
require stack exceptions and how many previous frames neexllie modi ed by
each function. Then at the time that control returns to theseunctions, instead of
synchronizing only its own stack frames of the extension, HUK&ynchronizes all
the necessary previous stack frames speci ed by the giverception.

4.4.2 Protection E ectiveness

We evaluated the e ectiveness of HUKO for kernel integrity prtection with a col-
lection of malicious extensions on both Windows and Linux. flese extensions
include 8 real-world rootkits and one self-implemented malous extension for
return-oriented attacks, which are shown in Table 4.2. As a selt, all of these
malicious extensions triggered protection alarms once thattempted to damage
the kernel integrity. In the following paragraphs we desdoe three representative
experiments in detail.

Code Integrity.  EnyeLKM [107] is a Linux kernel rootkit which modi es the
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kernel text by putting \salts" inside system_call and sysenter _entry handlers.
With HUKO protection, an illegal code modi cation alarm was triggered when
eitherset _idt _handler or set _sysenter _handler was called. Both functions were
trying to add binary text to kernel object labeled asOTHERSCODE

Data Integrity. The all-root  [108] rootkit is a simple DKOM Linux kernel
rootkit that modi es both control and non-control data to achieve privilege escala-
tion. In its initialization routine init _module this rootkit replaces thesys_getuid
entry of the sys_call _table with its own function give _root , which changes the
uid, gid, euid and egid eld of the currenttask _struct to O (root). In this attack,
the rst modi ed data belongs to static control data while the latter belongs to
dynamic non-control data. When we launched this attack in aystem protected
by HUKO, it immediately triggered a protection alarm indicating an illegal data
access (caused by the rst modi cation) from untrusted extasions to an object
labeled asOSDATAIn order to test the second data modi cation, we deliberatiy
made decisions to allow the rst modi cation and let the sysem continue to run.
Then we executed ayetuid system call from the user space to trigger the malicious
replacement function. Again, HUKO triggered an illegal data azess alarm, which
was also caused by directly modifying dynamic non-controkknel data (labeled as
OSDATAat the \untrusted extension™ protection state.

Control Flow Integrity. Besides malicious extensions that modify control-data
(e.g., function pointers) or make illegal call/jump to the lernel, the return-oriented
attack is another way of tampering control ows in the kernel To evaluate HUKO's

e ectiveness in countering such attacks, we implemented @&turn-oriented mali-
cious extension in our experiment. Upon called, this extermsi modi es its return
address on the stack to an arbitrary point in the kernel text eea, which is recog-
nized as a return-instruction gadget. We loaded this exteim to a Linux system
protected by HUKO. As a result, HUKO successfully prevented the otrol ow
diversion caused by the modi ed return address, since the EO property of the
return address stack was no longer kept.
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Untrusted Numbe.r of Native HUKO Relative
Benchmark . Protection State

Extensions N Performance Performance Performance

Transitions

Dhrystone 2 8139too + ext3 | N/A 10,8554841ps | 10,176 782Ips | 0:94
Whetstone 8139too + ext3 | N/A 2:270MWIPS | 2:265MWIPS | 1:00
Lmbench 8139t00 + ext3 | N/A 2:535MB/s | 2:213MB/s | 0:87
(pipe bandwidth)
Apache Bench | g, 46,1, 56037 2: 261 KB/s 1: 955KB/s 0:86
(throughput)
Kernel | ext3 17 471 989 35271 ms | 44803 ms | 0:79
Decompression
Kernel Build ext3 148 823 045 2:804 s 3:106 s 0:90

Table 4.3. Performance results of application-level benchmarks.

4.4.3 Performance Overhead

To measure the performance cost introduced by HUKO, we ran a seftbenchmarks
to compare the performance of a guest system protected by HUKQtlwone that
does not. For each benchmark, we labeled one or several rafg\kernel extensions
as untrusted so that they were isolated from the kernel. Forllaworkloads we
enforced the sample policy showed in Table 4.1. To fully tesfUKO's performance
overhead under stressed conditions, we chose two largest anost active kernel
extensions in our Linux system:8139too and ext3. The 8139too is the network
interface card driver and theext3 extension is the le system module. These
extensions are invoked multiple times for each network I/Oaquests or le system
operations so that they have the highest control transfer tas with the OS kernel.
Hence, marking them as untrusted generally represents the stbcase performance
of HUKO when the system is performing I/O intensive tasks.

The application benchmarks and their con guration are preanted as follows:
(1) Dhrystone 2 of the Unix Bench suite [109] using register nables. (2) Double-
Precision Whetstone of the Unix Bench. (3) LmBench [110] pigeandwidth mea-
suring the performance of IPC interface provided by the keeh (4) Kernel De-
compression by extracting a Linux 2.6.24 kernel gzipped taall using tar -xzf
command. (5) Building a 2.6.24 Linux kernel using default cogurations. (6)
Apache Bench con gured to have 5 concurrent clients issuingd zhttp requests
(16KB HTML) per client.
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Table 4.3 presents the results of these application leveld@marks. The second
column indicates which extension is labeled as untrusted hile the third column
shows the total number of protection state transitions in ezh workload. Some
numbers are not available because the corresponding woddbois part of a con-
tinuous benchmark suite. From the results, we can see thatehperformance of
HUKO system is from 0.79 to 1.00 of the baseline. We also foundatithe perfor-
mance overhead added-on by HUKO largely depends on the freqagrof control
transfers between untrusted extensions and the kernel. Hencf the workload
is CPU-bound, the performance cost is minimal. The overheacets higher only
when an untrusted extension is responsible for highly fregot operations such as
disk 1/O. In the kernel decompression experiment, the protdion state transfer
rate reaches about 39,0000 per second, which renders HUKO therst case of
performance: 0.79 of the baseline.

Besides application level benchmarks, we also performeges@l micro-benchmarlj
tests on process creation with Lmbench. We labeleekt3 and 8139too as un-
trusted extensions in our system protected by HUKO. Regardinthe test item
process fork + exit , it took HUKO system 100.31 s to complete the opera-
tion while the native system took 92.87s . For process fork + execve , HUKO
system spent 377.47s compared to the native time of 296.47s . For process
fork + /bin/sh -c , ittook HUKO system 884.57s compared to the native time
of 697.38s .

4.5 Limitations and Future Work

We believe that HUKO provides a transparent security layer wich greatly en-
hances the integrity protection for commodity operating sstem kernels. Nonethe-
less, it also has limitations in defending against certainesurity threats. In the

following, we discuss these limitations and possible salons as our future direc-
tion.

Kernel APIs. In HUKO system, controls from untrusted extensions to the OS
kernel are restricted to a set of trusted entry points, whiclare essentially legitimate
kernel APIs that exported to kernel extensions. However, in acumodity operating
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systems, the kernel is usually not designed to tolerate orféad against malicious
extensions, which may results in the lack of robustness anecsirity of kernel APIs.
Moreover, programming languages used to build commodity O&rnels security
do not support features like type enforcement. For these rean, it is possible that
attackers can exploit the \legitimate" kernel interface tosubvert the integrity of
kernel. Examples of such attacks include: (1) calling legmate kernel APIs with
undesired object reference to compromise kernel object) @buse of privileges,
(e.g., video cam driver accesses kernel APIs for the netwar§i stack), and (3)
exploiting memory and type bugs of the kernel API functions. @mprehensively
addressing these issues would require major design impmoents on speci ¢ kernel
(e.g., [30, 5, 66]), such as kernel object model, access oaninodel, type enforce-
ment, veri cation and privilege separation. In addition, these approaches can be
layered atop HUKO, which serves as a VMM-level reference monitimr mediating
kernel object access, checking API calls and their paramesger

To obtain a better mandatory security policy, we are lookingfor a deeper
understanding of the behavior of the OS kernel. In speci c, avare interested in
guring out security-sensitive kernel data along the exedion path of each TEP.
This could be achieved by static program analysis with sedty annotations. Based
on the properties such as privilege, availability level antesource category of these
kernel data, we could achieve a good classi cation of TEPs terms of resource
manipulation and privilege. In this way, the security and reource semantics of
TEPs are further revealed, which could help improve the segty of TEPs whose
privileges are originally uni ed in commodity OSes.

Information ow. Another category of possible attacks is through explicit and
implicit information ow. For instance, OS kernel may explcitly grant write access
to extensions on its own data objects (e.g., via shared mempAPI or messages),
on the other hand, extensions may write low integrity data tasome places where
kernel may read afterwards. Both situations violate the trditional integrity model.

It is known that there is no existing information ow control inside commodity OS
kernels since tracking ne-grained information ow is cody in regard to current
programming language and architecture. Alternatively, we lpn to investigate
applying end points such as input lters and veri ers betwere OS kernel and ex-
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tensions to regulate the function parameters and informain passed to the OS
kernel.

4.6 Summary

We have presented the design, implementation and evaluatiof HUKO, a hypervisorj
based layered system that comprehensively protects the égrity of commodity OS
kernels from untrusted extensions. HUKO leverages severalntemporary hard-
ware virtualization techniques as well as its novel softwardesign to achieve its
design principles: multi-aspect protection, acceptableepformance and ease-of-
adoption. Our experiments show that HUKO can e ectively protet the kernel in-
tegrity from various kinds of malicious extensions with aneceptable performance
overhead. We believe that HUKO provides a practical frameworfor running un-
trusted extensions in OS kernel with enhanced integrity ptection for commodity
systems.



Chapter

SILVER: Fine-Grained Privilege
Separation in OS Kernel

5.1 Introduction

As commodity operating systems are becoming more and more gecin terms
of privilege separation and intrusion containment at the O3evel, attackers have
an increasing interest of directly subverting the OS kerneb take over the entire
computer system. Among all avenues towards attacking the O%rel, untrusted
kernel extensions (e.g., third-party device drivers) arene most favorable targets
to be exploited, as they are of the same privilege as the OS kel but much more
likely to contain vulnerabilities. From the security prospective, these untrusted
extensions should be treated asntrusted principals in the kernel space. In order
to prevent untrusted extensions from subverting kernel imtgrity, many research
approaches [62, 42, 43, 111] are proposed to isolate themmirthe OS kernel.
These approaches enforce memory isolation and control owtégrity protection
to improve kernel security and raise the bar for attackers. Hever, in many situa-
tions, strong isolation along is still inadequate and in edle to secure interactions
between OS kernel and untrusted principals, for the followg reasons:

Firstly, in commodity OSes such as Linux, kernel APIs (i.e.,drnel functions le-
gitimately exported to extensions) are not designed for theurpose of safe commu-
nication. Thus, even if untrusted extensions are memoryeakated and constrained
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to transfer control to OS kernel only through designated keel functions, attackers
can still subvert the integrity of the OS kernel by manipulaing parameter inputs

of these functions. For example, an untrusted extension dduforge references to
data objects that it actually has no privilege to access. Byrpviding such refer-
ences as input of certain kernel functions, attackers coutdck the OS kernel to

modify its own data objects in undesired ways.

Secondly, either OS-based or VMM-based memory protection ol@nism can
only enforce page-level granularity on commodity hardwarevhich provides av-
enues for attackers exploiting such limitation. For exampl, attackers can leverage
bu er/integer over ow attacks to compromise data objects & OS kernel by over-
owing adjacent data objects from a vulnerable driver in thesame memory slab.
It is di cult for a page-level access control mechanism to adress this problem for
its inability to treat data objects on the same page di erenly.

Finally, current isolation techniques are limited to suppd sharing and trans-
fer of data ownership in a exible and ne-grained manner. Casidering situations
that the OS kernel would like to share a single data object witan untrusted device
driver, or accept a data object prepared by a driver, in case gtrong isolation,
it often requires the administrator to manually provide exeptions/marshaling to
move data across isolation boundaries. Although there areeahn-slate solutions
such as multi-server IPCs in micro-kernels [12] and languadpased contracts [5]
to address this problem, these approaches are di cult to agp to commodity sys-
tems, for the reason that they both require developers to chge the programming
paradigm fundamentally.

To address these shortcomings, we have the following indigheside isolation,
protection systems should provide a clear resource managammof kernel objects,
as well as a general method for secure communication. In G&4dl access control
mechanism such as LSM [28], the kernel maintains meta-infoation (e.g., process
descriptors and inodes) for OS-level objects like processdes and sockets, and
it also provides run-time checks for security-sensitive epations. Such mechanism
enables powerful reference monitors such as SeLinux [26d &tume [32] to be built
atop. In contrast, there is little security meta data maintaned for kernel-level data
objects, nor security checks for communication between O®rkel and untrusted
kernel principals.
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This chapter presents the design and implementation of SILME a framework
that o ers transparent protection domain primitives to achieve ne-grained access
control and secure communication between OS kernel and ex¢eéons. SILVER's
key designs are two-fold: (1) SILVER manages all the dynami@knel data objects
based on theirsecurity properties and achieves ne-grained access control with the
support of memory protection and run-time checks; (2) Commmication between
OS kernel and various untrusted kernel extensions is govexhand secured by a set
of uni ed primitives based on existing information ow integrity models without
changing programming paradigm signi cantly. Protection @mains in SILVER are
enforced by the underlying hypervisor so that they are tramarent to kernel space
programs. Hence, from the perspective of kernel developetise kernel environ-
ment remains as a single shared address space, and devebpan still follow the
conventional programming paradigm that uses function calland reference passing
for communication. Kernel program developers could utile SILVER to ensure
neither the integrity of their crucial data would be tamperel nor their code would
be abused by untrusted or vulnerable kernel extensions, thyprevent attacks such
as privilege escalation and confuse-of-deputy.

SILVER employs several novel designs to enable our protegtidomain mech-
anism. First, in SILVER, protection domains are constructedy leveraging hard-
ware memory virtualization to achieve transparency and taper-proof. The hypervisorj
based reference monitor ensures that security-sensitive@gs-domain activities such
as protection domain switches will eventually be capturedsaexceptions in virtu-
alization. Second, we propose a new kernel slab memory aditor design, which
takes advantages of SILVER's virtualization features suchsapage labeling and
permission control, with a new organization and allocatioischeme based on ob-
ject security properties. The new memory management subsys exports API
to developers to allow them managing security properties @ allocated objects,
and enforce access control rules throughout their life timeFinally, SILVER in-
troduces two new communication primitives: transfer-basecommunication and
service-based communication for securing data exchangelgrerforming reference
validation during cross-domain function calls.

We have implemented a prototype of SILVER for the Linux kernel Our sys-
tem employs a two-layer design: a VMM layer for enforcing hawehre isolation,
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reference monitoring and providing architectural supporfor page-level security
labeling, as well as an OS-subsystem for achieving the hitgwvel protection mech-
anism and o ering APIs to kernel programs. We have adapted réavorld Linux
device drivers to leverage SILVER's protection domain prirtives. The evaluation
results reveal that SILVER is e ective against various kindf kernel threats with
a reasonable overhead on memory consumption and run-timerfpemance.

The rest of this chapter is organized as follows. Section 5illustrates the
threats and presents our solution using an abstract secyritmodel. Section 5.3
describes the design and implementation of SILVER architaate in detail. Section
5.4 covers the evaluation of our prototype from aspects ofgleyment, security and
performance. We explain the limitations of our prototype ad propose our future
work in Section 5.5. Section 5.6 concludes.

5.2 Approach Overview

In this section we rst present several examples of kernel tbats to illustrate
shortcomings stated in Section 5.1. We then describe our tat model, and give
an overview of our approach.

5.2.1 Motivating Examples

Kernel heap bu er over ow. Jon [112] illustrates a vulnerability in the Linux
Controller Area Network (CAN) kernel module which could be levexged to trigger
controllable over ow in the SLUB memory allocator and eventally achieve privi-
lege escalation. The exploit takes advantage of how dynandata are organized in
slab caches by the SLUB allocator. In specic, the attack oveaws a can_frame
data object allocated by the CAN module and then overwrites aufiction pointer
in a shmid_kernel object, which is owned by the core kernel and placed next to
the can_frame object. Although there are many ways to mitigate this particlar
attack (e.g., adding value check and boundary check), therfidamental cause of
such kind of attack is that the OS kernel is not able to distingish data objects
with di erent security properties. In this case, data objet shmid_kernel is owned
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by OS kernel principal, and it is of high integrity because itcontains function
pointers that OS kernel would call with full privilege. On the other hand, data
object can_frame is created and owned by the vulnerable Controller Area Network
kernel module principal with a lower integrity level. Unforunately, Linux kernel
does not manage the owner principal and integrity level of dymic data objects,
which results in placing these two data objects on the samenalloc-96 SLUB
cache with the vulnerability.

Kernel API attacks. As mentioned in Section 5.1, even with strong isolation
and control ow integrity protection, untrusted extensions can still subvert the
integrity of OS kernel through manipulating kernel APIs. Forexample, let us con-
sider a compromised NIC device driver in Linux which has alrdg been contained
by sandboxing techniques such as hardware protection or SElue to memory iso-
lation, the untrusted driver cannot directly manipulate kenel data objects (e.g.,
process descriptors) in kernel memory. However, the attackeould forge a refer-
ence to a process descriptor and cast it aguct pci _dev * type, which he would
use as a parameter to invoke a legitimate function (e.goci _enable _device ). By
carefully adjusting the o set, the attacker could trick the OS kernel to modify
that particular process descriptor (e.g., change thaid of the process to be zero
to perform privilege escalation) and misuse its own privigee. We consider such
threat as a confused deputy problem caused by insu cient sadty checks in Linux
kernel APIs. Thus, to ensure kernel API security, upon receing a reference from
caller, a kernel function should distinguish the security fincipal that provides the
reference, as well as determine whether that principal hasd permission to access
the data object associated with the reference.

5.2.2 Threat Model

In SILVER, kernel developers leverage protection domain pnitives to protect
the integrity of OS kernel in case that untrusted extensionare compromised by
attacker. A compromised extension may attempt to subvert arptection domain
in many di erent ways, which may include: (1) directly modifying code/data via
write instruction or DMA; (2) control ow attacks that call/j ump to unauthorized
code in kernel; (3) memory exploits such as stack smashing law er over ows;
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(4) confused deputy attack via reference forgery; (5) tampieg architectural state
such as crucial registers. We discuss how SILVER is designeddefend against or
mitigate these attacks throughout the rest of the chapter.

In this chapter, we primarily focus on the protection ofntegrity. Although we
are not seeking for a comprehensive secrecy protection agaiprivate information
leakage, SILVER could indeed prevent untrusted principalsikctly read crucial
data (e.g., crypto keys) from a protection domain.

SILVER employs a VMM for reference monitoring and protectingtie integrity
of its components in the OS subsystem. Hence we assume that YHdM is trusted
and cannot be compromised by the attacker.

5.2.3 Protection Domain in SILVER

In SILVER, protection domains can help the OS kernel and othetrusted enti-
ties collaborating with untrusted code without worrying alout the compromise
of integrity so that they can exchange information, delegat privilege and export
services in a more explicit, secure, and controlled manndn the following para-
graphs, we give an overview of the design goals of our approac

Data management based on security properties. SILVER maintains secu-
rity metadata for dynamic data objects in the kernel to keepriack of their security
properties. For example, for each dynamic objects allocakebesides basic in-
formation such as address and size, SILVER also maintain rede of its owner
principal and integrity level. Moreover, kernel data objects are managed based
on these security properties, and the organization schemakes advantage of la-
beling and memory protection primitives provided by SILVERS hypervisor. Such
organization guarantees that security-sensitive eventsilihbe completely mediated
by the reference monitor, which would make security decisis based on security
properties of principal and data objects. In this way, SILVERachieves data ob-
ject granularity in protection domain construction and searity enforcement, and
addresses challenges stated in Section 5.1.

For example, with SILVER, the kernel bu er over ow attack in Section 5.2.1
would no longer succeed, since data objeshmid kernel with security prop-
erty <OS kernel, high integrity> would never be placed adjacent to data object
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can_frame with security property < CAN module, low integrity>. Thus, through
compromising the vulnerable CAN module, the attacker can oplover ow low in-

tegrity data objects that only CAN module has write access tdyut never hurt the

integrity of security-sensitive kernel data. Moreover, th kernel API attack in Sec-
tion 5.2.1 could also be prevented by SILVER, since SILVER is Bbto determine
whether the caller principal has the access permission toetldata object referred
by the pointer parameter passed.

Security controlled by developers. Many run-time protection systems ([67,
62, 26, 80, 44]) rely on mandatory access control mechanismswhich the ac-
cess control rules are completely decided by the protectiaystem or the system
administrator. However, mandatory protection itself geneally has di culties in
achieving ne-grained policies that closely express the plcation semantics. In
speci ¢, constructing dynamic MAC policies for multi-principal interaction requires
complex e ort such as role assigning, state de nition and fge enforcement, which
may be too di cult for system administrators to con gure correctly. To address
this shortcoming, SILVER allows kernel developers to contfecurity properties
of its own code and data in a ne granularity to achieve exibility.

We illustrate security decisions controlled by program delopers as follows: (1)
by leveraging extended allocation APIs, developers can sggavhich data objects
are security-sensitive while others can be globally sharedth untrusted principals
by assigning integrity labels to its data objects; (2) devebers could control the
delegation of data object ownership and access permissiarith other principals by
relying on SILVER's transfer-based communication primitie; (3) developers could
ensure data integrity when providing service to or requesty service from other
principals by using the service-based communication pritive; (4) developers can
control which services (functions) to be exported to whichmmcipals by creating
entry points both statically and at run-time; (5) developes could use endorsement
functions and reference checking primitives to validate ceived data and reference;
(6) developers (and system administrators) could accommaig trust relationships
with protection domain hierarchy.

Noted that although SILVER's primitive could help both participating security
principals to achieve secure communication, the securityf a protection domain
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does notrely on other domain's con guration or security status. Forexample,
as long as the OS kernel programmer properly use SILVER's prities to en-
force isolation and secure communication, the integrity ddS kernel would not be
compromised by any untrusted extension which may either faio use SIVER's
primitives correctly or be totally compromised by attacker

Practical deployment. SILVER requires existing kernel programs to modify
their code to leverage the security bene ts of protection doains, but its deploy-
ment e orts are still practical. Firstly, compared with language-based approaches,
SILVER does not require the program to be rewritten entirely. Instead, it only
requires the adaptation of a few extended kernel APIs. Moreex; the deployment
procedure of SILVER can beselective and incremental. For instance, one can
leverage SILVER's extended APkmalloc _pdto declare security-sensitive data for
extra security guarantee. However, it can also keep using tlgiginal kmalloc
to leave that allocated object unprotected. Secondly, in otrast to approaches
(e.g., micro-kernels) that change the programming paradcig completely, trans-
parent protection domains in SILVER preserve programming owentions in the
commodity OS kernel as much as possible. For example, kereetities still rely
on function calls and pointer passing for data communicatip and we do not want
to replace them with multi-servers and message-passing magisms.

5.2.4 Abstract Model

In this section we present an abstract model, describing oapproach in a few for-
mal notations. The basic access control rules of our modelléov existing integrity
protection and information ow models [15, 16, 32] with a fewadaptations. In
SILVER, a kernel protection domain represents an executiomsty in the kernel
space. Examples of kernel protection domains include the ®&rnel, device drivers
and other kernel extensions. In SILVER, kernel protection doains are declared
by the developer who would like to protect the integrity of it program from being
tampered by other programs in kernel.

In our model, a kernel protection domain is de ned as a threewple: S =<
p;D;G >, where: (1) p is the principal associated with the domain. For each
protection domainS in kernel, p is unique and immutable so that it can be used as
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the identi er of the protection domain. Thus, we denote a prtection domain with
principal pasS,. (2) D is the set of data object owned by the principal. Every data
object is associated with an integrity level, which can betkier high, low or global
shared. We denote the subset of high integrity data objects®* and the subset
of low integrity data objects asD so thatD = fD*;D g. For programmers,
high integrity label usually means that the labeled data argprivate or security-
sensitive, and thus not meant to be manipulated by others. kwintegrity labels, on
the other hand, are often applied to data of low importance hared with untrusted
principal or received but not yet validated and endorsed. 3G is the set of entry
point objects, which are essentially entrance addressesdhgh which a principal
could transfer its control to another principal. Entry poirts are speci ed by the
developer on a per-principal basis, yet some of them can als® declared as global
shared. For the global shared data objects and entry point§ILVER virtually
organizes them in to a global low-integrity protection domia denoted asS . We
de ne the set of rules that govern protection domain activies as follows:

Data creation. A principal p can create data objects of either integrity
level in its own protection domain. p can also degrade any high integrity
data objectd 2 D, to low integrity level so thatd 2 D, .

Integrity protection. A data object can only be possessed by only one
principal at any time. A principal p can write to a data objectdi d2 D,.

p can read fromd i d 2 D,". While p cannot readd 2 D, directly, p
has the capability to increase the integrity level ofl via an endorsement API
provided by SILVER.

Data communication. In SILVER, data communications are achieved by
moving data objects from one protection domain to another. nl order to
send data to another principalg, p can move its data objectd 2 D, to low
integrity part of domain Sy so thatd 2 D, . However, to ensure thatd is
safe in regard to the integrity ofqg, d is kept to be in low integrity and cannot
be read byq until g sanitizes and endorses the input data and rendérhigh
integrity (d2 D4").

Cross-domain calls. Another important method for inter-domain commu-
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nication is through calling remote functions exported by dter principals.
Exporting functions to a principal g is achieved by creating entry point ob-
jects in s domain. To prevent the abuse of code of a protection domain
principal, SILVER guarantees that calling through entry ponts granted by

p is the only way to transfer control to principal p. Data transfers through
cross-domain calls must obey the previous data communicai rules.

Protection domain hierarchy. Besides mutually untrusted principals, SILVER
introduces protection domain hierarchy to accurately exgss one-way trust, which
is more common in practice (e.g., OS kernel and untrusted exisions). In speci c,
SILVER allows one principalq or sysadmin to designate another domai8, as the
parent protection domainof domainSy. The restriction of control/data ow rules
for parent-child domains are relaxed in the following wayqZ) p can directly create
high integrity data d within its child domain S, so thatd 2 D4"; (2) p have the full
write access permission to all the data object iD,. High-integrity data objects of
p are also considered as high-integrity data fay (D," D), thus can be read
by g directly; (3) p can call arbitrary functions owned by principalg. Noted that
the global shared virtual protection domainS is the child domain of all other
protection domains in the kernel.

5.3 System Design and Implementation

5.3.1 Overall Design

To design a run-time system which enforces our model stated $ection 5.2.4, we
have faced several design questions. The rst question is baw to achieve a refer-
ence monitor for activities in the kernel space, where ther®no hooks for mediating
kernel object access, and no explicit \context switches" fadistinguishing kernel
principals. Another major challenge comes from achieving @eobject granularity
for principal security control. In a commodity OS such as Liax, all the dynamic
data objects owned by various principals are placed on a siagheap without dis-
tinction. There is only one global namespace (i.e., virtualddress) from which any
code can refer to any object in the kernel space. Moreover et is little meta
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Figure 5.1. The architecture of the SILVER framework.

information for describing security properties of kernellgects. Hence, we need to
develop new designs to support ne-grained policies and aelle accountability.

To address the above questions, SILVER exploits several attectural (hard-
ware and virtualization) features to achieve strong isolan and a coarse-grained,
OS-agnostic access control mechanism based on page peronss On top of these
facilities, we design a subsystem for Linux kernel to achievaccountability and
ne-grained security control. The kernel subsystem incluek a speci cally designed
kernel memory allocator implementing the core functiondyi of protection domain
primitives, a kernel object registry for accounting kernebbjects and supporting
reference check, and a set of kernel APIs exported to princlpafor controlling
security properties of their data, performing secure commication and granting
capability to other principals. Figure 5.1 illustrates theoverall design of SILVER's
architecture, with the components of SILVER in gray. The ente framework is di-
vided into two layers: the VMM layer and OS subsystem layer, spectively. The
reference monitor and architectural-related mechanismgeaplaced in the VMM
layer to achieve transparency and tamper-proof.
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5.3.2 The VMM Layer Design

The VMM layer components consist the bottom-half of the SILVERarchitecture.
These components are responsible for enforcing hardwaretection to establish
protection domain boundaries, as well as providing architéural-level primitives
(e.g., page permission control, control transfer monitarg) for upper-layer compo-
nents in the OS-subsystem.

Principal isolation. In SILVER, each principal is con ned within a dedi-
cated, hardware-enforced virtual protection domain reaed by the hypervisor.
The protection domain separation is achieved by creating riple sets of HAP
(hardware-assisted paging)tables for memory virtualization, one table dedicated
for each virtual protection domain. Using such layer of indection, each principal
could have its ownrestricted view of the entire kernel address space, while the
shared address space paradigm is still preserved (Figur)5. Furthermore, by
leveraging IOMMU tables, the VMM enables a principal to contol DMA activ-
ities within its protection domain by explicitly exporting DMA-write permission
to other principals and designating DMA-writable pages in & address space. The
VMM prohibits any other DMA writes to the protection domain. Finally, to pre-
vent untrusted code tampering with the architectural state(e.g., control registers,
segment selectors, and page table pointer) of other protemt domains or the OS
kernel, the hypervisor saves all the corresponding hardveastate of one protec-
tion domain before the control transfers to another subjecaind restores the saved
invariant values once the control is switching back.

Mapping security labels to page permissions. The hypervisor in SILVER
also provides a page-based access control mechanism usargware virtualization.

In speci c, it exports a small hypercall interface to the OS @gbsystem of SILVER,
allowing it to associate security labels to kernel physicalhges. The low-level access
control primitives are implemented by mapping security labls to page permissions
(i.e., read, write, execute) in each principal's HAP table, wich de nes whether
certain pages can be accessed by the principal via which pé&gaions. In section
5.3.3, we further describe how SILVER achieves ne-grainedath access control

LA contemporary processor feature which adds another layer fohardware page tables for
guest-physical-to-machine-physical translation in memoy virtualization.
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Figure 5.2. SILVER leverages memory virtualization to make protection domains trans-
parent to the kernel space.

on top of these page-based mechanisms.

Securing control ow transfer. By setting up NX (execution disable) bits on
corresponding HAP table entries representing pages owned ki@r principals, the
hypervisor is able to intercept all control transfers fromfo a protection domain
through execution exceptions. Therefore, the reference nitor is fully aware which
principal is currently being executed by the processor. Theeference monitor
then validates the <initiating principal, exception address against the control
transfer capability and the set of entry points designatedybthe owner principal of
the protection domain, and denies all the illegal control ansfers. To ensure the
stack isolation and data safety during cross-domain callghenever a call is made
by the protected code to an untrusted principal, the hypengor forks aprivate
kernel stack from the current kernel stack for untrusted exaition, and it changes
the untrusted principal's HAP table mapping of the stack pageso point to the
new machine frames of the private stack. Since both virtualdaress and (guest)
physical address of the stack are kept the same, untrusteddso will have the
illusion that it operates on the real kernel stack so that theoriginal kernel stack
semantics are preserved. After the call nishes, the hypesor joins the two stacks
by propagating legit changes from the private stack to the e kernel stack frames,
guaranteeing that only modi cations to its own stack framesare committed. In
this way, SILVER enforces that all principals have read permsion to the entire

kernel stack, but only have write permission to their own sizk frames.
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5.3.3 OS Subsystem Design

The OS subsystem is responsible for achieving ne-grainedopection domain
mechanism and providing APIs to kernel programs. It leveragehe architectural
primitives provided by the VMM layer by issuing hypercalls tothe VMM.

5.3.3.1 Kernel memory allocator

The kernel memory allocator in SILVER is responsible for maigang dynamic ker-
nel objects according to the rules de ned in Section 5.2.4sawvell as providing
primitives to kernel principals for controlling security poperties of their data ob-
jects. It leverages the hypercall interface provided by thgMM layer for labeling
physical page frames and manipulating page permissions fiirerent principals.
Based on these mechanisms, the allocator achieves the feillg key functionality:
(2) it allows principals to dynamically create objects witln speci ed protection
domain and integrity levels. For example, a principal couldreate a high integrity
object within its protection domain for holding crucial dat, or it could create an
object in its child domains; (2) It enables a principal to endrse or decrease the
integrity level of its objects at run time; (3) It allows a principal to transfer its
data objects to be a low-integrity data object in a contractd protection domain for
passing data; (4) It restricts principals from accessing thglobal name space (i.e.,
kernel virtual address) to refer objects outside of its donma and provide access
control according to the rules.

Our design is an extension to the SLUB allocator [113] of Linyxvhich man-
ages the dynamic allocation and deallocation of kernel olojs. The SLUB al-
locator maintains a number of SLUB caches, distinguished byze for allocation
e ciency. There are two kinds of SLUB caches in the system: gemal purpose
SLUB caches (e.g.kmalloc-32 ) and caches which are explicitly de ned for fre-
guently allocated data structures (e.g.task _struct ). A SLUB cache allocates
kernel objects from organized physical pages namslkbs which are initialized to
have multiple instances of a speci c type of objects. Eachatl has afreelist
pointer for maintaining a list of available objects. A slub an have four allocation
states: cpu_slab (the current active slab for a given cpu)partial _slab (portion
of the objects are used)full _slab (slab objects fully used) andnewslab (all
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Figure 5.3. The layout of two slabs of the same slub cache involved in a seice-based
communication.

objects are available).

Organization. SILVER enhanced the Linux SLUB allocator by introducing
heterogeneity to slabs for SLUB caches. In SILVER, each slabdssociated with
an extra label < principal, integrity>, and according to the label, it is restricted
to contain kernel objects of the speci ed integrity level owed by the principal.
The memory allocator achieves the slab access control byusgy hypercalls to the
VMM layer, labeling and setting up page permissions. Figure.®illustrates the
organization of twopartial _slabs from the same SLUB cache but with di erent
owner principal and integrity levels. Their heterogeneoubels will eventually
result in di erent page permissions in principals' HAP table preventing principals
from accessing objects that are disallowed by the accessteolnrules. In general,
for one principalp, there could be two kinds of slabs in each SLUB cache: domain
high (for storing data objects that belongs toD,"), and domain low (for storing
data objects that belongs toD,, ). Moreover, in SILVER, there is a special global
low slab for containing kernel objects of protection domai® de ned in Section
5.2.4.
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Allocation and Deallocation. The kernel memory allocator in SILVER pro-
vides a family of secure allocation APIs (e.gkmalloc _pd() ) for protection domain
principals. These APIs follow the similar semantics dimalloc family functions in
Linux, except for having two extra parameters to designatehe principal ID and
integrity level of the object allocation. The work ow of the allocation procedure
is described in Algorithm 1. One major di erence between ourllacation scheme
and the original SLUB allocation algorithm is on the slab set#ion strategy, since
SILVER must guarantee to pick the slab that matches the secuyi criteria rather
than to choose the rst available objects frontpu_slab or partial _slabs. Once a
new slab is created, SILVER must register the label to the VMM t@stablish prin-
cipal access control before using it. On the other hand, thesdllocation procedure
is similar as the SLUB allocator, but it needs to check whethehe requesting prin-
cipal has the permission for freeing objects on the requedtslab. If not, the free
operation will be denied. The memory allocator also provideAPIs to principals
for changing the integrity level of their domain objects sohat they have the ability
to endorse their received data by implementing their endagsment functions.

Aside from slab objects, there is another major kind of dynamidata used
by kernel programs: pages directly allocated by the free pagllocator. Since this
kind of data is already page-aligned, SILVER treats each of &m as an object that
occupies an entire slab (or multiple slabs), and labels th@mresponding pages in
the same way as the slab labeling. The access control straeegfor allocated pages
is also uni ed with the slab mechanism. Accordingly, we extehthe APIs of the
free page allocator to enable secure allocation and data aoomication.

5.3.3.2 Support for secure communication

As a major task, the OS subsystem in SILVER is responsible for ering secure
primitives to principals for exchanging data, with the strag guarantee of integrity.
The data communication is governed by the rules de ned in Seéon 5.2.4. Accord-
ing to the model, using direct memory sharing to pass highiegrity data is pro-

hibited in SILVER 2. Instead, SILVER provides primitives for two primary types
of data communication: transfer-basedcommunication andservice-baseccommu-

2Although principals can still declare unprotected data shaing via the special S domain.
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Algorithm 1 The procedure for handling allocation requests from a pratgon
domain principal
1. if label < principal;integrity > of current cpu.slab matches <
requesting_principal; integrity >  of the requested object and freelist is
not empty then
2: return the rst available object in the freelist
3: end if
4: Tryto nd a partial _slab with the matching label
5: if partial _slab found then
6: Activate this partial _slab as the current cpu_slab
7
8
9

:  return the rst available object in the freelist
. else

Allocate and initialize a newslab from the page frame allocator

10:  Associate label<requestingprincipal, integrity > to the slab's page struct

11: Issue ahypercall to SILVER's hypervisor to label the corresponding physical
pages and set up permissions in principals' HAP tables

12:  Activate this newslab and return object as of Line 6-7

13: end if

nication. In transfer-based communication, a principab sends one of its own data
object d to another principal g. After that, d will become a (low-integrity) data
object of S5, and can no longer be accessed py

In SILVER's implementation, The data object transfer is condcted by the
memory allocator by moving data object from one slab to ano#r. In this case,
principal p will invoke the API call pd_transfer _object , providing its object and
g's principal id as input. The memory allocator locates the paicular slab (label:
< p, high=low >) that contains d, removingd from that slab, and copyingd to a
slab with the label< g, low > of the same SLUB cache. The API call will return
a new object reference whiclp could pass toq (but p can no longer dereference
to d due to slab access control). Upon receiving the referenagwill leverage
SILVER's reference validation primitives (described in Séion 5.3.3.3) to ensure
that the reference is legal, and nally endorse to complete the transfer. Noted
that in transfer-based communication, since the object ovenship is surrendered,
the sending principal must release all the references to tlobdject before calling
the pd._transfer _object , the same way as it is calling th&kfree function.

Service-based communication represents the semantic tlaprincipal requests
another principal to process its data object, rather than ging up the ownership
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permanently. This kind of communication is mostly carried ot by cross-domain
calls, and it needs to be achieved in a di erent way other thatwo back-and-forth

transfer-based communication. The primary di erence is tat in service-based
communication, the original stored location of the data olgct is not released during
the transfer process, instead, a shadow copy of the objectaseated to be used
by the domain that provides the service. After the service dals completed, the
updated value of the object is copied back to the original lation.

SILVER also implements service-based communication basea the SLUB al-
locator: when a principalp is requesting another principalq to process its own
object d, SILVER will rst fork object d from its current slab to a new objectd
in a <q, low > slab in the same SLUB cache, and then use the reference of the
forked object as the parameter of the cross-domain call. Beé the call returns,
all the references ofl in S, would dereference to the originatl in p's slab. Once
the call returns, SILVER will join the d with dif d can be endorsed, committing
changes made by, and freed from g's slab. Figure 5.3 shows the procedure of
the corresponding slab operations. By proxying data duringross-domain calls,
service-based communication not only improves security @ata exchange, but also
provides guarantee of consistency, since changes would coinmitted to the pro-
tection domain until the call is nished and updated data obgcts are endorsed.
We describe how to adapt existing programs to leverage the ancommunication
primitives in Section 5.4.2.

Noted that in most cases there is no extra hypervisor operatianvolved during
the communication procedure, since both two slabs are préescated so that no
labeling/relabeling is required.

5.3.3.3 Reference validation and object accounting

In commodity OS kernel like Linux, fetching data from anotheprincipal is usually
achieved by obtaining a reference (i.e., pointer of virtualddress) to the particular
data object. Object references can be passed between piad¢s through function
call parameters, function call return values, and readingxported symbols.

As stated in Section 5.2.1, the absence of reference validatiin function pa-
rameters could leave avenues for attackers. In order to supp reference valida-
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tion, SILVER must be able to track security information of kenel data objects at
run-time so that given any reference, SILVER could identify ie object that the
reference points to. To further support type-enforcementral bound checking, the
type and size information of protected objects must also benkwn at run-time.
By extending the SLUB tracking mechanism, we implemented arceountable re-
source management layer named object registry, for managiprotected objects.
The object registry maintains additional metadata for eactprotected object, and
updates metadata upon allocation, deallocation, and commication events. The
metadata include allocation principal, owner principal, bject size, integrity level,
object type and the time of allocation. The object type can bebtained because
the SLUB allocator follows a type-based organization, and f@eneric-sized types,
we use the allocation request function/location (the fundbn that calls kmalloc)
as well as the object size to identify the type of the object.

SILVER ensures that references passed through the
pd_transfer _object API and service-based communication functions through des-
ignated parameters must be owned by the sender principal. &ddition, the object
registry o ers basic primitives to principals for implemeting their own reference
validation schemes.

5.4 Evaluation

In this section, we rst describe the implementation of our pototype, then we
show how to apply SILVER to existing kernel programs for estaishing protection
domains. In Section 5.4.4, we demonstrate SILVER's proteoti e ectiveness using
security case studies of di erent kernel threats. We evalte the performance of
SILVER in Section 5.4.5.

5.4.1 Prototype Implementation

We have built a proof-of-concept prototype of SILVER. The VMM ayer is an
extension of the HUKO hypervisor [111], which is based on Xen 2486-64. The
HAP table implementation requires hardware-virtualizationfeatures of processors,
and our prototype is based on Intel's EPT (Extended Page Tab) [39], which is



96

supported by most Intel processors in recent years. The Idewvel page labels
are stored in unused bites of each EPT entry. We extended HUKOmandatory
protection states and added new labeling and control hypealts to support VMM
layer protection enforcement. We also added data marshajjimechanism in kernel
function call mediation.

In SILVER, the operating systems are deployed as a Xen DomU in HVMaule.
The OS subsystem of SILVER is developed to use with Linux ker2.6.24.6 on
x86-64 architecture. Principal programs are loaded via theKM (Loadable Ker-
nel Module) interface, and we modi ed theload _module routine to register their
program layout with the hypervisor and initialize the protection environment. Pro-
tection domain metadata are maintained in various locatio;® For each security
principal we maintain a security identi er prid in the module struct, and we en-
code the slab labek principal, integrity > as additional ags in the corresponding
pagestruct . The object registry is organized in a search tree with the ¢dct
address as the key value. In addition, to facilitate monitang for the administra-
tor, we export the run-time status of protection domains in he kernel, including
object information and exported functions, to a virtual diectory in the /proc/
le system.

5.4.2 Protection Domain Deployment

In this section we describe how to adapt existing kernel progms to leverage
primitives provided by SILVER. The rst step is to establish the protection by
declaring a speci ¢ LKM as a domain principal using th@d_initialize() routine,
which will return an unique principal id. Entry points of this domain need to be
initialized by pd_ep_create API.

The second step involves modifying the declaration or creah of security-
sensitive program data. There are four kinds of data objectsaociated with a
kernel program: global object, stack object, heap object dnpage object. For
static data and stack data, SILVER could automatically recogize them and treat
them private to their principal so that modi cation by other principals must be
carried out by calling wrapper functions. For heap and pagebgects, developers
could specify their security property to control how they cold be accessed by
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other principals through calling kmalloc _pd and __get _free _pages pd API with
an integrity label. For example, unprotected memory sharm of low integrity
data could be declared using th&BLOWag. Noted that this process could be
performedincrementally and selectively

The next step is to handle data communication. The major tasks to convert
functions that handle exchange of high-integrity data to exoit transfer-based and
service-based communication primitives. The example coblelow is a fragment of
alloc _skb function that returns an allocated network bu er to NIC driver using
transfer-based communication. By adding ve lines of codet dhe end of the
function, the owner principal of thesk_buff object changes accordingly.

out:

- return skb;

+ if(is _protected(prid = get _caller _prid()))

+ transfer _skb = pd transfer _object(skb, prid, PD _HIGH, sizeof(struct
sk_buff));

+ else

+ transfer _skb = pd degrade_object(skb, GB _LOW);

+ return transfer _skb;

Service-based communication is used in a similar manner,etldata proxying is
accomplished by SILVER automatically, but the developer neks to register the
function signature and mark the transferring parameter at bth the beginning and
the end of function using SILVER's APIs. To support referencealidation, SIL-
VER provides routine that automatically checks whether a degnated parameter
reference belongs to the caller principal.

We have converted a number of Linux kernel functions and exisions using
SILVER's primitive to secure their interactions. The exten®ns include the Real-
tek RTL-8139 NIC driver, the CAN BCM module, Media Independentinterface
module, the emulated sound card driver, and two kernel modesg written by us
for attacking experiments. For all cases, the total amountfanodi cation incurs
changing less than 10% lines of original code.
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5.4.3 Security Analysis

In this section, we evaluate the security of SILVER by perforing security analysis
to show how SILVER helps a properly-con gured principal defed against various
kinds of security threats from other untrusted principals m the kernel. Here we
assume thatq is the attacker principal, andqg has the capability to communicate
with the victim principal p.

We discuss each of the attacks as follows.

Directly modifying code/data. g could conduct this attack by using
either using store instructions or DMA writes via arbitrary addressing meth-
ods (physical or virtual address). The attack cannot be ackved since the
code and all data object (except stack data) gb are only placed on physi-
cal pages that labeledy as the owner principal, and these pages are set to
be non-writable in gs HAP table in the VMM. Also, the DMA writes are
restricted into p's DMA zones by the IOMMU.

Control ow attacks. g may attempt to divert the control ow to arbitrary
positions in p's text by call/jmp/return instructions. However, according to
Section 5.3.2, control transfers between protection donmas are mediated by
the hypervisor, which guarantees that entry points expore by p are only
entrances to invokep.

Stack manipulation.  As all kernel programs share the same kernel stack in
the context of each user procesg,may attempt to manipulate stack frames
of other principals in the kernel. SILVER enforces that a prigipal's stack
frame is read-only to other principals by employing a VMM-lesl private
stack during the cross-domain calls (refer to Chapter 4 Seéat 4.3.4 for the
detailed mechanism). Hence, any changesmade to p's stack frames are
discarded during the protection domain switch so that the sick integrity of

p is preserved.

Tampering architectural state. As described in Section 5.3.2, the archi-
tectural state is preserved by the VMM during protection doman switches.
As a result,g's attempt to manipulate p's architectural state (e.g., installing a
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new page table) will be invalid at the time that protection danain is switched
back to p.

Memory related exploits. A typical attack path to commodity kernels
is rst exploiting a bu er/integer over ow vulnerability o f a device driver
function which accesses one of its objects on the slab. Theyn dver owing
that object, the attacker can also corrupt objects (e.g., foction pointers)
owned by the OS kernel or other kernel programs adjacentlygded on the
same slab.

Although SILVER cannot eliminate the vulnerabilities causedby lack of
bound/type checking, it can still mitigate the e ect of these attacks. First,
even if principal p's data are corrupted, it is almost infeasible to corrupt dad
object of any other principal q since in SILVER, one slab can only contain
objects owned by one principal. As a result, the attacker camty compro-
mise data objects owned by the kernel program that has the \ndrability.
Moreover, damage of data corruption or code injection is #ticontained in
the exact protection domain since the attacker can only exase the privilege
of the victim principal in terms of data access and control ainsfers.

However, in the rare case that the vulnerability is in the OS kael itself
and exposed to attackers directly, SILVER cannot stop the keel from be-
ing compromised since such compromised OS kernel could ek its full
privilege without violating access control policy of SILVER

Exploit Communication. A malicious principal g could exploit communi-
cation activities with principal p for privilege escalation. The attack leverages
the fact that p and g may exchange data in certain legal channels (e.g., func-
tion parameters and shared memory) but failed to validate its input. For
example,p may needq to provide a callback function pointer or data refer-
ence but does not validate that the function or data is actuél owned by q,
which would cause confused deputy vulnerability as descet in 5.2.1.

SILVER does not o er direct input validation by itself, as program input
depends too heavily on semantics of the program. Instead,L8ER helps
programmers to achieve input validation and communicatiosafety by pro-
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viding them with two security features: 1) enforcing protetton domain isola-

tion: data object can only be owned by one principal at a time2) reference
validation: given any reference, SILVER returns the owner prcipal and in-

tegrity level associated with the object that the referencactually referring

to. These two features enables programs to detect forged eefnces more
conveniently and we demonstrated their applications for saring function

parameters in cross-domain calls.

However, just enforcing reference validation on function pameters alone
does not guarantee communication safety completely. Codsr that g passes
p a reference of its own struct-type data in function paramets, which is
legitimate for function parameter validation. However, thestruct contains

a callback function pointer that was forged (not owned) byg, which would

cause privilege escalation once got invoked Ipy Besides thestruct type,

there are even more complicated types of data involved in cominication,

such as dynamic arrays, linked list and trees, and programmeantics can
be more complicated as well. In such cases, programmers wioé required
to provide validation speci cations case by case, yet SILVER primitives

can still be served as basic building blocks for implementgncomplex input
validation speci cations.

A malicious principal could also attempt to subvert the OS dosystem of SIL-
VER to disable or corrupt the protection domain mechanism i&slf. However, since
the reference monitor is achieved at the VMM layer and the codnd data of OS
subsystem is also labeled by the VMM, any interactions betwedhe OS subsys-
tem and untrusted principals would be mediated by the hypersor. The hypervisor
enforces the data and control integrity requirements [111p ensure that the OS
subsystem can not be tampered.

5.4.4 Security Experiments

In this section we evaluate the e ectiveness of security piection provided by
SILVER mechanism with both real-world and synthetic attacks

Kernel SLUB over ow. In Section 5.2.1, we mention an exploit described by
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Jon Oberheide (CVE-2010-2959) to the vulnerable CAN Linux kael module that
achieves privilege escalation through over owing dynamidata in the SLUB cache
and corrupting crucial kernel control data in the same SLUB @he. We ported
the vulnerable module to our Linux system, implemented andested our exploit
based on the attack code provided by Jon Oberheide. We thersted our attack in
case the module is secured by SILVER's primitives. We desiged the vulnerable
CAN BCM module to be an untrusted principal and placed it into @ untrusted
protection domain. As result, dynamic data (e.g.pp->frames) allocated by the
CAN module are labeled with untrusted principal. According taSILVER's SLUB
memory allocation scheme, these data object are placed ondibated slabs for
the untrusted CAN module principal, and they could never be gdcent to a high
integrity kernel object shmid kernel in the SLUB cache, despite any allocation
pattern carried out by the attacker. For this reason, the athck can never succeed
in our experiment.

Moreover, in case the attacker successfully compromise thelnerable kernel
module (e.g., be able to execute injected code), it still cant tamper the integrity
of OS kernel since the entire kernel module can only exercisermissions of an
untrusted principal. In our experiment, we deliberately ifected malicious code into
the OS kernel, performing malicious activities such as mdying security-sensitive
kernel data and calling functions that are not exported to tke protection domain.
All of these attack attempts raised security violation in SIVER's reference monitor
and were therefore denied.

Kernel NULL pointer dereference. The key idea of NULL pointer derefer-
ence is to leverage the vulnerability that a kernel module @&s not check whether
a function pointer is valid before invoking that function panter. As the result,
the control will jump to the page at address zero, where the t&icker maps a pay-
load page containing the malicious code from user space befband. Once get
executed, the payload code could modify crucial kernel data invoke kernel func-
tions to achieve malicious goals such as privilege escatati Such vulnerabilities
are quite common in buggy extensions and even the core kernetle (CVE-2009-
2692, CVE-2010-3849, CVE-2010-4258).

In our experiment, dereferencing a NULL pointer in a buggy untrsted module
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could not succeed in SILVER, primarily for two reasons. Firgf, in SILVER,
executing user-level code by an untrusted principal is prdsited according to access
control rules. This is because NX bits are set for user pages time untrusted
principal HAP table. Hence, even if the zero page is successfuthapped in user
space, executing the payload code would still be blocked hyet reference monitor
with an execution exception. Secondly, even if the attack de got executed, it is
still executed on behalf of untrusted principal with restrcted permissions. As a
result, attacking e orts such as privilege escalation (e.gsetting the task->uid ,
calling the commit.creds function) would be intercepted by the reference monitor
and the integrity of core OS kernel is preserved.

Attacks through Kernel API. In Section 5.2.1, we show that even with pro-
tection schemes like memory isolation or SFI, attackers cagtill compromise ker-
nel integrity by launching confuse-of-deputy attacks ovelegitimated kernel APIs.
Noted that this kind of attacks is very rare in practice, for the reason that currently
few Linux systems employ protection/sandboxing approackdnside OS kernel so
that kernel attackers do not need to resort to this approachtall. To demonstrate
SILVER's protection e ectiveness against kernel API attackswe implemented a
kernel API attack module based on the RTL-8139 NIC driver. Thetéacking mod-
ule provides a crafted reference dftruct pci _dev * and uses it as input to the
exported routine pci _enable _device . The reference is actually pointing to a cal-
culated o set of the current process descriptor. By callindegitimate kernel API
with such reference, the uid to current process will be set 1 (root). SILVER
prevents such attack by looking up the security property oftte object referred by
the actual pointer value. The reference monitor then deteetl that the caller prin-
cipal actually does not owned the data object provided, and raised an exception
denying the attack attempt.

5.4.5 Performance Evaluation

In this section, we measure the performance overhead intnozked by using SIL-
VER's protection domain primitives. Our evaluation has thre purposes: rst, we
would like to measure the time overhead of calling the exteed or new APIs of
SILVER by relying on a set of micro-benchmarks. Second, we wddike to use
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macro-benchmarks to measure the overall performance impaa throughput when
a kernel NIC driver is protected. Finally, we would like to mesure the memory
overhead to see how much extra memory does SILVER consumed footecting
a typical kernel program. All experiments have been perforrdeon a HP laptop
computer with a 2.4GHz Intel i5-520M processor and 4GB of memyo The VMM
layer is based on Xen 3.4.2 with a Linux 2.6.31 DomO kernel. Ti@S kernel en-
vironment was con gured as a HVM guest running Ubuntu 8.04.4 (keel version
2.6.24.6) with single core and 512MB memory.

Run-time performance. Table 5.1 reports the microbenchmark results of se-
lected APIs of SILVER. The rst four rows denote the performane of the native
Linux kernel SLUB memory allocator running on unmodi ed Xen. The fast path
happens when the object requested is exactly available atetcurrent cpu_slab .
The rest of rows shows the performance of SILVER's dynamic gamanagement
primitives. There are three major sources of overhead addeg SILVER's run-time
system: (1) \context switch" between protection domains, Z) labeling a physical
page through hypercalls, and (3) updating the object regigt and data marshal-
ing. Row 5 and 6 show the overhead of allocation and free whdretcaller is kernel
itself, which only incurs overhead caused by (3). Row 7-8 skhdhe overhead of
calling kmalloc _pd and kfree by protection domains other than kernel. In this
case, besides overhead (3), a protection domain switch (%) also involved, and
page labeling (2) happens occasionally when a new slab isuiegd. The relatively
expensive guest-VMM switches in (1) and (2) make allocatiofiiee operations by
untrusted principals much more expensive. In future work, & plan to optimize
the untrusted allocation performance by maintaining cacliepool of labeled pages.
Table 5.2 demonstrates the performance cost of cross-domactivities in SIL-
VER. These penalties do not exist in the native Linux kernel, & Linux kernel
does not distinguish protection domains and it uses functiocalls and pointers
for communication. Although it is dicult to do a fair compari son, in general
the performance of communication primitives in SILVER prottype is also much
slower than optimized IPC in micro-kernel systems (e.g., ID[114] for stub code
generating, L4Ka::Pistachio [65]) because of the cost of additional hypervisor
layer. We consider part of the extra performance penaltied 8ILVER as trade-
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o for achieving compatibility with existing monolithic kernel, transparency to
programmers and ner-grained control.
We summarize the decomposition of SILVER's overhead as foils:

\Context switch" between protection domains. A protectiondomain switch
is usually caused by an exception (e.g., cross-domain calidl trigger execu-
tion violation) that traps to the hypervisor. A guest-to-VMM switch involves
costly VMEXIT operations, which save architecture context othe guest do-
main and prepare the context for the hypervisor. The hypersor will go
through its exception handling paths, and eventually detenine that the ex-
ception is caused by a protection domain switch. Then it wilload the HAP
table for the other protection domain with necessary invatiation of TLB en-
tries for the previous HAP table. Finally the hypervisor will return from the
exception, invoking a VMM-to-guest switch with costly VMENTER opera-
tions. Protection domain switch happens every time when ctol transfers
from one kernel program to another, and it could be very fregmt in many
cases. For example, OS kernel will invoke the NIC driver oncereceives an
interrupt from the NIC device or needs to send a packet.

Labeling a physical page through hypercalls. This operatioalso requires
hypervisor intervention by invoking VMEXIT and VMENTER instruc tions.

However, labeling a physical page does not need to switch the HA&ble

or invalidate TLB entries, instead, it requires a page tablevalk and a HAP

entry update. Labeling/relabeling a physical page happensss frequently
during execution, usually only when a new slab is created onald slab is
destroyed. Hence, the actual number of labeling operationseafar less than
the number of allocation/free requests due to the slab caclmeechanism.

Data copying and metadata keeping. Data copy happens whenrakeling of
a data object occurs, and this is often associated with commigation such as
cross-domain calls. To relabel a data object, SILVER rst neds to allocate
a shadow object on the target slab matching the new label, thet copies
the data object to the new slab, and nally releasing the old ata object. In
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the meanwhile, SILVER needs to keep track of the changes by mtiining
meta on the corresponding slab as well as the object registry

To perform evaluation on application performance, we use ISMER to contain
a 8139too NIC driver, and leverage secure communication primitives tprotect all
of its object creation and data exchanges with the Linux kesl. For each packet
to process 8139too invokes the kernel routine__alloc _skb to create socket bu ers
and deliver to the networking stack, which happens very fregntly. We use the
following macro-benchmarks to evaluate performance imgaof SILVER towards
di erent applications: (a) Dhrystone 2 integer performane; (b) building a Linux
2.6.30 kernel with defcon g; (c) apache ab (5 concurrent elint, 2000 requests of
8KB web page) and (d)netperf benchmark (TCPSTREAM2KB message size,
transmit). Figure 5.4 illustrates the normalized performace results compared to
native Linux on unmodi ed Xen. In our experiments, for CPU-ineensive appli-
cations and I/O-intensive applications that do not use netark, the overall per-
formance is not much a ected. However, in test cases that theetwork 1/O is
saturated, SILVER brings larger performance overhead in ters of throughput.
This is primarily caused by very frequent protection domairswitches and transfer-
based communication. We measured protection domain switchte of the apache
test to be around 32000 per second. The overall performance also depends on how
much data are speci ed as security-sensitive, how often seity-sensitive data are
created and the frequency of protected communication withnirusted principals.
Fortunately, with SILVER, many of these security propertiesare controlled by
the programmer so that she can manage the balance betweenusiéz and perfor-
mance. Hence, we expect SILVER to have better run-time perfoance in case
of protecting only crucial data rather than the entire progam. We also believe
that our prototype can be greatly improved by optimizing Xens VMEXIT and
page fault exception handling to create a specialized patbrfSILVER's protection
domain switch to avoid the unnecessary cost of VM switches.

Memory consumption. Compared with the original SLUB allocator, SILVER
consumes more slabs (pages) for separating data objects oérént principals
and integrity levels. To measure the extra memory overheaduring our Apache
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kmalloc SLUB fast path 14s

. kmalloc SLUB slow path 7:7s
Linux (xen) kfree SLUB fast path 0:7s
kfree SLUB slow path 6:2s

SILVER kmalloc 162s
(called by kernel) kfree 144s
SILVER (called kmalloc _pd average 56:7 s
by other principal) kfree average 64:1s

Table 5.1. Micro-benchmarks results for dynamic data management APIsof SILVER,
average of 1000 runs. The data object size of allocation is 2%bytes.

pd_transfer _object .
size: 1KB 519s
service-based function

. . 757
forking data size:1KB STs
gener_al prqtectlon 255
domain switch

Table 5.2. Micro-benchmarks results for control transfer events in SLVER, average of
1000 runs.

ab test, we sampled the total number of slabs in use by the memosllocator
for 20 times, and compared the average number of active slubgth the same
measurement using the original SLUB allocator. It turned outo be that fully
protecting 8139too driver only takes 12 extra slabs (48KB of kernel memory) on
average in our web server test. This is due to the short lifetie of dynamic objects
and the on-demand allocation scheme which only creates a speslab upon the
rst request of a corresponding object.

5.5 Limitations and Future Work

Our current prototype has several limitations. First, for afew functions, we found
di culties in directly applying service-based communicaton on them, as they move
complex data structures across function calls instead ofamsferring a single data
object. Dealing with these functions may require us to manllg write data mar-
shalling routines. Fortunately, most of these functions & provided by the OS
kernel, which usually con gures as the parent domain of theatler principal and
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Figure 5.4. Application benchmark performance, normalized to native Linux/Xen.

can directly operates on these data structures without datenarshalling.

Compared with language-based and other static isolation pppaches, SILVER's
run-time mechanism is more accurate in resource trackingah static inference.
However, our approach also has shortcomings for not providjnveri cation and
automatic error detection to programmers. For example, pgrammers must pay
extra attention for not creating dangling pointers when usig object transfer and
endorsement primitives of SILVER, since these operations livielease the original
object in the same way akfree function. We plan to incorporate kernel reference
counting [115] to help programmers manage their referencafsprotection domain
data objects. Moreover, adapting kernel programs to use MER requires certain
understanding of security properties of their data and furnions, and the entire
procedure might be complex for converting very large progmes. Hence, we also
would like to explore automatic ways to transform an existig program to use
SILVER given a security speci cation.

5.6 Summary

In this chapter, we have described the design, implementati and evaluation of
SILVER, a framework to achieve transparent protection printives that provide
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ne-grained access control and secure interactions betwe®S kernel and untrusted
extensions. We believe that SILVER is an e ective approach wards controlled
privilege separation, by which developers could protect #ir programs and mitigate
the damage to OS kernel caused by attacks exploiting a vulradaility in untrusted
extensions.



Chapter

Conclusion

In this thesis, we demonstrate technical approaches that lpecommodity comput-
ers preserve system integrity both proactively and reactaly.

We have demonstrated that a computer system could leverag#rusion recov-
ery techniques to preserve its system integrity in a reacé&vmanner. We develop
SHELF, a system that restores clean state for system objectiex detected com-
promise. SHELF uses taint tracking to record object dependeies so that it could
precisely restore benign state of infected objects to prege business continuity
and achieve recovery accuracy. Moreover, at the recoverage, SHELF uses quar-
antine techniques to contain the infection so that uninfeetd objects can maintain
their availability.

Motivated by the need of protecting the integrity of operathg system kernels,
we design and implement HUKO architecture to secure the exedonh of untrusted
kernel extensions. With HUKO, untrusted extensions are trammrently isolated
from the OS kernel using memory virtualization techniques.Their interactions
with the OS kernel are completely mediated and enforced by madatory access
control policies.

To help the OS kernel achieve better privilege separation drcontrolled commu-
nication, we design and implement SILVER, an architecture aha set of kernel-
level primitives which o er a more general and ne-grained ptection domain
mechanism for principals in commodity kernel environmentln SILVER, security
principals in the OS kernel can specify security propertiesf their data and com-
munication with other principals. Compared to other approahes, SILVER does



110

not require shifting the programming paradigm or fundameratl changes to the
program structure.

In conclusion, these techniques provide commodity operatj systems a better
integrity guarantee on security-sensitive data of both use and the system, even
in the presence of untrusted code and intrusions.
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