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ABSTRACT 
 

The Appalachian Mountains are home to remarkable diversity compared to other temperate 

climates. Paleoecological and contemporary ecological and biogeographical investigations have 

contributed considerably to our understanding of vegetative adaptation to climate change over 

geologic time and today. Some of these investigations have pointed to intrinsic characteristics of the 

mountains that helped plant species adapt to change over geologic time scales. In this dissertation, 

the geography of Appalachian forests is reviewed (Chapter 1) and the role of topography in 

supporting migratory adaptation is explained, qualitatively and quantitatively (Chapter 2). 

Geographic factors supporting dispersal, establishment, and regeneration are combined and analyzed 

using a network approach to identify critical habitat pathways for plant migration (Chapter 3). Forest 

fire regimes under historical and future climate conditions are analyzed and vegetation and carbon 

storage effects are evaluated (Chapter 4). The preponderance of the evidence presented here support 

the conclusion that, at large spatial extents, long temporal scales, and high biotic levels, Appalachian 

forests are relatively resilient to the scope of stressors anticipated in the coming century, although 

interactions between stressors can not be ruled out (Chapter 5). The predicted degree of temperature 

and precipitation in this region will have very noticeable effects on species composition and 

ecosystem processes, but this research highlights aspects of the Appalachians that support 

adaptation to climatic change. The complex topography provides a high diversity of microclimates 

that can support biodiversity through global warming and with small investments in land 

conservation to improve connectivity natural migratory adaptation may be successful in many places. 

This research predicts an increase in wildfire frequency and extent, with a consequent decrease in 

severity. These shifts in fire regimes have the potential to lower carbon storage and change species 

dominance slowly by selecting more fire-adapted species.   
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Introduction 

Forests are valued worldwide for their wildlife habitat value, timber production, and 

increasingly for their role in the global carbon budget (Sedjo 1992; Turner et al. 1995; Goodale et al. 

2002; Ryan et al. 2010). In many places, as along the Appalachian Trail, they also have recreational 

value (Willis & Benson 1989; Krieger 2001). Global climate change will cause a number of shifts in 

forests including species composition and phenology of the annual cycles (Walther et al. 2002; 

Parmesan & Yohe 2003; Parmesan 2007), and disturbance regimes like wildfire that affect stand age 

and biomass among other forest traits (Dale et al. 2001). The magnitude of change, and perhaps 

more importantly, the pace, may interfere with the role forests play in earth systems, interrupting the 

services other organisms rely upon. This dissertation contributes to the understanding of 

migration and fire disturbance, both processes by which forest composition changes 

especially in response to climate change. 

The Appalachian Mountains provide an opportunity to study forest ecosystems along a 

latitudinal gradient from 35 to 46 degrees north latitude. However, this large spatial extent also 

presents a number of challenges that limit the kinds of research questions that can be attempted. 

Traditionally, ecological studies have been designed to hold key variables constant to simplify 

inferences about cause and effect. Variation in soil substrate, temperature and precipitation regimes, 

and land use history across the north-south Appalachian transect make these kinds of controlled 

studies nearly impossible at this continental scale (but see (Cogbill et al. 2002, Cogbill et al. 1997, S. 

K. Wiser 1998). Biogeographical approaches have much to offer, but “a general failure of ecological 

theory to deal adequately with geographical scale” continues to inhibit consensus on processes that 

explain spatial patterns of ecological communities at greater than landscape extents (Levin 1992; 

Whittaker, Willis, & Field 2001; Wiens & Donoghue 2004). Nonetheless, anthropogenic climate 
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change promises to provide a continental scale disturbance with complicated and cascading effects 

across scales (O’Brien, Sygna, & Haugen 2

Alo

004). 

ngside the challenges of spatial 

scale, understanding dynamic responses 

ms 

n, 

& 

 1.1).  

s 

 

h 

s 

n 

to a nearly unprecedented rapid global 

climate change presents temporal 

challenges as well. Stommel diagra

provide scalar context for research 

projects and conceptual model 

development (Steele 1978; Urba

O’Neill, & Shugart 1987; Delcourt 

Delcourt 1988; Peterson, Allen, & 

Holling 1998; Schneider 2001) (Fig.

Much of what is known about biological 

responses to climate change over large 

spatial extents and geologic time scales i

drawn from the study of responses to Quaternary climate trends (Prentice, Bartlein, & Webb 1991). 

These studies typically spanned large spatial and temporal scales, up to tens of degrees of latitude 

and thousands to a million years. The velocity of current climate change is rapid by comparison to

the drivers of Quaternary climate change (Prentice et al. 1991; Loarie et al. 2009) calling for researc

at large spatial scales, but with responses expected over shorter time periods. Furthermore, 

biological scales ranging from species to biomes, are an equally important research context. Method

for defining biomes are wide-ranging and dependent upon research questions and spatial resolutio

and extent, thus scaling between them is complicated, at best (Williams et al. 2004). In this 

Figure 1.1. Stommel diagram to explain scale context 
for ecosystem processes. (Peterson et al., 1998) 
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dissertation, the research questions and the methodological approaches were designed to 

address the spatio-temporal and trophic scales most relevant to questions of forest 

management during a period of rapid climate change. 

Methods and perspectives from a wide range of fields can help resolve these multi-scalar 

challenges (Meentemeyer 1989). Quantitative metrics for characterizing topography have been 

developed by geomorphologists outside the context of ecological research questions (Thompson 

1941; Hurtrez,, Sol, & Lucazeau, 1999; Hoechstetter et al. 2008; Lu 2008; Dinesh 2009), but these 

metrics, like hypsography and fractal dimension, capture patterns that may be very relevant to 

ecology. Graph theory (network theory) has been conceived as a useful tool for analyzing ecological 

relationships (spatial and hierarchical) but application has been limited (Harary 1969; Urban & Keitt 

2001; McRae et al. 2008). In this research I develop and evaluate geomorphological and 

network approaches to understand migratory opportunities as an adaptation response to 

climate change at the broad extent of the Appalachian Mountains. 

My research is rooted in literature drawn from biogeography, geology, meteorology, forestry, 

and ecology. The literature specific to the methods, approaches, and assumptions of each of the 

chapters is reviewed in the chapter introductions. Here, I focus instead on a strong description of 

the study area’s past, present, and future, summarizing the work of others who have also chosen to 

study the Appalachian forests. This background information provides an important foundation for 

the prediction of forest response to climatic change. 

Study area – physical geography 

The mountains of the Appalachian range stretch from Alabama through Maine in the eastern 

United States and continue north through the Gaspe Peninsula of Quebec in Canada to 
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Newfoundland – a distance of 3000 km and 15° latitude(Brooks 1965; Constantz 1993; Graham 

1999) (Fig. 1.2). The mountain range has cycled through periods of orogeny and erosion.  

 

Gaspe Peninsula

Allegheny Front 

Southern Appalachians 

Great Smoky Mountains

Figure 1.2. Appalachian topography. High elevations are shown in red, transitioning down to low 

elevations through green. 
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Orogeny is an important context for understanding regional climate and vegetation history. The 

Appalachian Mountains formed at the eastern edge of Laurentia during the Neoproterozoic and 

Paleozoic eras (Hibbard, Van Staal et al. 2007; Hibbard 2009). Approximately 550 million years ago 

(Ma) - 750 Ma rifting along the axis of the Grenville orogen opened Iapetus, a proto-Atlantic ocean, 

breaking up the supercontinent of Rodinia.  This initial event was followed by the Taconic orogeny 

(490-450 Ma), the result of Laurentia’s collision with a chain of islands or microcontinents in the 

Iapetus, that had been separated from Laurentia by the Taconic Seaway (Hibbard, Van Staal, & 

Rankin 2007). The Taconic orogeny took place along the entire range, from present-day Alabama to 

Newfoundland (Hibbard 2009). Some have speculated that a collision with South America happened 

at this time, while others remain unconvinced (Dalziel 2005; Hibbard et al. 2007). The Cherokee 

orogeny in the Southern Appalachians, occurred between 460-430 Ma and involved collisions with 

land masses associated with Gondwana (Hibbard, van Staal, & Rankin 2010). Just after this, the 

Salinic and Acadian orogenies (440-420 and 420-380 Ma) in the northern Appalachians attached 

Ganderia and Avalonia to the Appalachian Range (Hibbard 2009), and the new continent is called 

Laurasia. Around 370-350 Ma, some believe the Fammenian event attached Meguma (Nova Scotia) 

to the northern Appalachians and Suwanee in the deep south (Hibbard 2009). Finally, the 

Alleghanian orogeny from 335-260 Ma marks the collision of Gondwana with North America 

forming the super continent Pangaea (Hibbard 2009). Uplift of the current eroded mountain range 

occurred 20-30 Ma. These most recent major orogenic events are probably responsible for much of 

the topographic structure of the mountains we observe today, particularly the ridge and valley 

province. 

The rock formations composing the Appalachian Mountains are native to Laurentia (the 

Laurentian Realm), rocks that were formed in the basin of the Iapetus ocean (Iapetus Realm), and 

rocks that formed in microcontinents in the vicinity of Gondwana (the peri-Gondwanan Realm) 
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(Hibbard, van Staal et al. 2006) (Fig. 1.3). Each of the orogenic events described above are 

associated with uplifting the native rocks or bringing the non-native rocks from the site of their 

genesis to their current locations in the Appalachian Mountain Range. The result is two provinces: 

the Appalachian Plateau and Valley and Ridge Provinces underlain by Paleozoic sedimentary rocks, 

and the Blue Ridge, Piedmont and Northern Appalachian Provinces underlain by Precambrian and 

Early Paleozoic metamorphic and igneous rocks.

 

Figure 1.3. Lithotectonic map of the Appalachian Orogen. Hibbard, van Staal et al. 2006. 

Soils in the Southern Appalachians and eastward on the piedmont and coastal plains are 

classified as Ultisols, almost exclusively Udults, which are well-drained and low in organic matter 

(Soil Survey Staff 1999). The soils are associated with mixed forests but have been cleared for use as 

cropland with soil amendment. The soils in the high elevations in the Southern Appalachians and 

the Allegheny Plateau are Inceptisols, primarily Udepts, which are well drained and commonly 

support forest vegetation but are also used for cropland or pasture. In the northern Appalachians 

large areas of Spodosols, mostly Orthods, support forests. These soils are well-drained but have a 

moderate accumulation of organic matter. The Alfisols to the west of the Appalachians also occur to 
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a limited extent along the ridges and in the mid-Atlantic states (Udalfs), and very small patches of 

Entisol are also present in the region (various suborders). 

The Appalachian Mountains are nearly continuous from north to south, even though the 

elevations are not comparable throughout and spatial topographic patterns vary. Higher maximum 

elevations are found in the southern Appalachians. The highest peak, Mount Mitchell in North 

Carolina, reaches an elevation of 2,037 m. Base elevations are also higher in the southern 

Appalachians than the northern Appalachians so elevation range (relief) is comparable between the 

southern and northern Appalachians. The mid-Atlantic, particularly northern Pennsylvania, has the 

weakest relief as the base elevations are relatively high and the maximum elevations are low. 

A number of authors have proposed boundaries for the Appalachians based on topography or 

geology. Nearly all authors agree that the southern extent falls in northern Alabama or Georgia. A 

very well-defined transition from piedmont hills to much steeper mountains defines the southern tip 

and eastern edge of the range over most of its length. The northern boundary is defined variously in 

the vicinity of Maine (Constantz 1993), the Gaspe Peninsula (Brooks 1965), or where 

Newfoundland meets the Atlantic Ocean (Weidensaul 1994; Hibbard et al. 2006). The western 

extent is not easily defined on the basis of topography because the adjacent land is also high 

elevation. However, the western edge of the range might be defined by relief because land to the 

west becomes much flatter and does not have “mountain flavor” (Constantz 1993). 

Climate varies on a continental scale, but also on local and regional scales. In general the 

southern end of the range has warmer temperatures, longer growing seasons, and less precipitation. 

Lower elevations generally have warmer temperatures and longer growing seasons but less 

precipitation. The entire range is classified as Humid Temperate. 
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Warmer temperatures characterize the southern extent of the range as compared with the 

northern extent of the range and the lower elevations as compared to the higher elevations. For 

example, average high temperatures in Blairsville, GA, elevation 584 m, are warmer than Pinkham 

Notch, NH, elevation 610 m, by an average of 13 °C in the winter (November-April) and by an 

average of 8 °C in the summer (May – October). In general, higher elevations are colder than nearby 

lower elevations. High temperatures on Mt. Washington, NH, (elevation 1906 m) are colder than 

Pinkham Notch, NH, (elevation 610 m) by an average of 10 °C throughout the year. Within Great 

Smoky Mountains National Park Clingman’s Dome, TN (elevation 2025 m) is colder than 

Gatlinburg, TN (elevation 622 m) by an average of 11 °C. 

Consistent with these temperature trends, southern regions and lower elevations have longer 

growing seasons and higher minimum temperatures as compared to northern regions and high 

elevations. Blairsville, GA has low temperatures above freezing for almost 9 months while Pinkham 

Notch, NH, has low temperatures above freezing for just 6 months. Southeast and south-facing 

slopes are warmer and drier than other aspects.1 Higher elevations generally have more precipitation. 

For example, Clingman’s Dome, TN, (elevation 2025 m) records 208 cm of precipitation while 

nearby Gatlinburg, TN (elevation 622 m) records 137 cm.2 

In general, the entire Appalachian range is expected to become warmer in the future, with 

greater changes in the northeastern U.S. than the southeastern U.S. Based on the results of 16 

general circulation models presented by the Nature Conservancy through the Climate Wizard 

Browser, by the 2080’s under a low emission scenario (B1), temperatures are expected to increase by 

1.5-2 °C, with some models predicting just 1 °C of warming and some predicting more than 3 °C of 

warming. Under a high emissions scenario (A2), predicted increases in temperature range from 3 °C 

                                                 
1 http://www.fs.fed.us/colormap/ecoreg1_provinces.conf?679,220 accessed on November 8, 2008 
2 http://www.nps.gov/grsm/planyourvisit/weather.htm#wc accessed on November 8, 2008 
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warmer in the south to 4 °C warmer in the north, by the 2080s, with some models predicting as little 

as 1.5 °C warming in the south or as much as 5 °C warming in the north. In the low emissions 

scenario, in the same time frame, precipitation is expected to increase slightly throughout the region, 

by roughly 5%, although some models (INM-CM3.0, IPSL-CM4, and MIROC3.2 (medres)) predict 

up to 10% less precipitation in the south. Predictions for the high emissions scenario show the same 

trends, increases in precipitation of roughly 10% throughout the region although the same three 

models predict less precipitation in the southern U.S. by up to 25% (MIROC3.2(medres)). Warming 

trends in the 20th century and biological responses consistent with these trends have already been 

observed (Beckage et al. 2008). 

Study area - biogeography 

Despite forest fragmentation due to human development, especially within the energy sector, 

forest cover remains dominant (Fry et al. 2011). The Appalachian forests have relatively high 

biodiversity (255 bird species, 78 mammals, 58 reptiles, and 76 amphibians) considering the 

temperate climate (Graham 1999; Mittermeier et al. 2003). The Great Smoky Mountains alone is 

home to over 30 species of salamanders and more tree species than all of Europe (Mittermeier et al. 

2003). The assemblages of species in any given place are determined by the combined effects of 

climate, topography, soils, topographic aspect, fire, timber harvest, insect pest, and land use history, 

factors that vary across space and through time. The notion of equilibrium has all but been 

discarded and species are known to respond individually (Prentice et al. 1991; Williams et al. 2004). 

An example of the interaction of these controlling variables lies in comparisons of species 

composition of Northern Hemisphere forests. North America, Europe, the Middle East, and the Far 

East have experienced similar trends in climatic conditions over geologic time, but differences in 

topography (in large part as a climatic control) and human land use have resulted in different 
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vegetative compositions and patterns (Graham 1999). In Europe, the gymnosperm, broad-leaved 

deciduous forest disappeared after being caught between an advancing Fennoscandian ice sheet 

from the north, glaciers on the east-west trending Pyrennes-Alp range to the south around the 

beginning of the Quaternary period (Graham 1999). What refuge populations remained were 

unsuccessful in reforesting the region due to agricultural expansion or later arid conditions (Graham 

1999). These constraints in Europe did not apply in eastern North America or east Asia where 

temperate forests with Quercus-Acer-Betula-Picea south to north gradients persist today (White 1983).  

The description of species distributions in the eastern North American deciduous forests was 

based initially on observed species inventories ((Braun 1950) provides a very thorough description). 

But palynological techniques developed throughout the 1980’s revised theories of migration based 

on fossil pollen from sediment cores taken from lakebeds and wetlands throughout the eastern U.S. 

(Delcourt 1979; Davis 1983; Prentice et al. 1991) These studies revealed northward range shifts of 

plants as the Laurentide glacier, which extended south to 39 degrees N approximately 18-20 

thousand years before present (Davis 1981), receded. This fossil pollen data suggested species had 

completely retreated to the southern United States (outside of the Appalachians) during glaciation 

(Soltis et al. 2006), and migration routes and rates in response to climatic warming were then 

inferred by comparing these deep southern populations with their current distributions. Northward 

range expansion rates based on palynological evidence are on the order of 100-400 m/year (Davis 

1981). But some saw an inconsistency with known seed dispersal mechanisms (Clark et al. 1998), 

while others found plausible explanations for long distance dispersal events (Clark 1998). With the 

development of genetic tests to distinguish populations having originated from different places, an 

entirely new assessment of phylogeography revealed that small isolated populations survived further 

north than previously assumed reducing the required dispersal rates to just 50 m2 yr-1 (McLachlan, 

Clark, & Manos 2005). Dispersal rates derived from the variety of phytogeography approaches are 

11 
 



not fast enough to keep pace with the anticipated rapid climatic warming over the next century 

(Davis & Shaw 2001; McLachlan et al. 2005). 

Regardless of how these species distributions came to be, a number of ecological classification 

schemes provide a useful way to describe unique features of ecosystems. In general, these systems 

incorporate climate, plant functional groups or sometimes species, and representation of form (e.g. 

forest, woodland, and grassland). In the US Forest Service’s 2007 update of the 1994 Ecomap based 

on the climatic classification of the United States (Bailey 1976; McNab & Avers 1994) (Fig. 1.4), the 

Appalachians are hierarchically classified as Humid Temperate (domain level), spanning the 

Subtropical, Hot Continental, and Warm Continental climate divisions (division level), and bridging 

five forest types (province level) from south to north: Southeastern Mixed Forest, Central 

Appalachian Broadleaf Forest-Coniferous Forest, Eastern Broadleaf Forest, Northeastern Mixed 

Forest, and the Adirondack-New England Mixed Forest--Coniferous Forest—Alpine Meadow. At a 

slightly more detailed level than Ecomap’s provinces, Omernik classifies Appalachian ecoregions 

(level 3) in 11 categories (Fig. 1.5): Piedmont, Blue Ridge, Ridge and Valley, Central Appalachians, 

western Allegheny Plateau, Northern Piedmont, North Central Appalachians, Northern Appalachian 

Plateau and Uplands, Northeastern Highlands, Eastern Great Lakes and Hudson Lowlands, 

Laurentian Plains and Hills (Omernik 1987). The MAPSS biogeography module follows this 

standard approach, first classifying a pixel on the basis of climate, then carbon in biomass (forest, 

savannah, or grassland) and then by plant functional group. Nearly the entire Appalachians map as 

temperate forest, ranging from warm mixed in the south, through deciduous broadleaf, with cool 

mixed to the north (Neilson 1995) (Fig. 1.6). 
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Figure 1.4. Ecomap provinces (Bailey 1976; McNab & Avers 1994) 
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Figure 1.5. Omernik ecoregional classification (Omernik 1987) 
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Figure 1.6. MC1 potential vegetation for a 30-year historical period (Neilson 1995). 

The most complete picture of current species distributions is provided by the Forest Inventory 

Analysis Data, sampled by the USFS with a frequency of 5 years, in long term plots around the 

country (Bechtold, Patterson, & Editors 2005). These data have been mapped into seven forest 

types in the Appalachians (Prasad et al. 2007) based on earlier Society of American Foresters work 

(Eyre 1980) (Fig. 1.7). In the Southern Appalachians, “Oak-Hickory” dominates, but “Oak-Pine and 

Loblolly-Shortleaf Pine” extend into the mountains from the lower elevations. “Maple-Beech-Birch” 

is dominant in the highest elevations of the Mid-Atlantic and throughout New England, but “White-

Red-Jack Pine” appears in Vermont and New Hampshire and “Spruce-Fir” becomes dominant in 

Maine. 
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Figure 1.7. Forest types mapped by USDA Forest Service Tree Atlas. 

Future distributions of tree species in the Appalachian Mountains have been predicted primarily 

through a variety of species distribution approaches, although some species-specific process-based 

models are being developed (Morin & Thuiller 2009). The niche approach extrapolates future 

species distributions based on current understandings of species’ environmental requirements, but 

relies on the assumption that current distributions are in equilibrium with current climate, that 
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species’ migration mechanisms will keep pace with changing environmental conditions, and that 

competition in any given place or time will not be substantially different than current competitive 

relationships (Morin, Augspurger, & Chuine 2007; Zurell et al. 2009; Elith, Kearney, & Phillips 

2010). In contrast, the process-based approaches can include information about the species’ 

adaptation strategies and competitive relationships in addition to their climatic requirements, if this 

detailed information is available.  

One example of a niche-based or bioclimate envelope model is DISTRIB, a statistical approach 

that uses the predictive data mining tool Random Forests to train the model based on a species’ 

preferred conditions today, and then maps those conditions in future climate scenarios to determine 

species assemblages in any given place (Prasad, Iverson, & Liaw 2006). The fact that species have 

not maintained compositional organization through changing climate in the past (Prentice et al. 

1991; Williams et al. 2004) supports the niche model approach, that treats species individually, but 

the absence of competitive interactions or dispersal mechanisms in niche models is perhaps a 

significant limitation (Pearson & Dawson 2003). Range shifts predicted by DISTRIB for the forest 

types above include strong advancement of the oak-hickory forest type northward into New 

England replacing maple-beech-birch, and an expansion of oak-pine in the southern Appalachians 

(McKenney-Easterling et al. 2000; Iverson et al. 2008). 

Study area – human geography  

The human geography of the Appalachians as it relates to its natural environment is a complex 

study in and of itself (Smethurst 2000; Nesbitt & Weiner 2001), but two human activities have had 

direct effects on Appalachian forests. While large scale biogeographical shifts may be largely driven 

by earth system processes, human land use (including timber production) and fire management 

(both setting and suppressing fires) have influenced forest structure and composition.  
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Logging was an extremely significant disturbance in many parts of the Appalachian forests, 

particularly during the 1800’s and early 1900’s. During the peak of timber harvest and land-clearing 

for agriculture in the mid 1800’s, more than 80% of the landscape was open in central New England 

(Foster 1992). During the latter half of the 19th century, agricultural lands were abandoned and the 

process of natural reforestation saw species-specific recruitment advantages in former agricultural 

fields, logged forests, and standing forests. In part because of the longevity of trees, these 

successional dynamics closely tied to human land use patterns have long-term imprints on forest 

species composition and other characteristics (Christensen 1989). Historical geography is as 

important as paleoecology in the clues provided for understanding forest dynamics (Foster 2002). 

While much is known about logging and other human influences on forests, fire regimes have 

been more difficult to reconstruct because fire scars in tree rings provide the only record of 

annually-resolved fire-history and they are only available back to the 17th century (Clark 1997b; 

McEwan, Dyer, & Pederson 2011). Charcoal in sediment cores, which are more widely available, is 

representative of large areas, not individual burns, so it has been difficult to discern causal 

relationships between fire frequency or severity and species abundance (Clark et al. 1997). 

Nonetheless, much is known about historical ignition sources, seasonality, and climatic variability, 

and associations with species have been vigorously debated. 

The role of fire in pre-European and post-European settlement has been considerably explored 

and debated (Abrams 1992; Foster et al. 2002; Abrams 2003) with discussions focused at 

understanding the anthropogenic and climatic drivers of vegetative changes and subsequent 

consequences for fire regimes. Most studies have shown that historical and present-day fire regimes 

in the Appalachians are strongly influenced by humans through accidental and intentional ignition 

and fire suppression as opposed to natural ignition sources. Evidence of prescribed fire by Native 

Americans has been reported (Cronon 1983; Denevan 1992; Delcourt & Delcourt 1997; Brose et al. 
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2001) but others have downplayed these fires as being merely accidental (Russell 1981). Euro-

American settlers continued to introduce an ignition source during land conversion and logging 

practices in the 1800’s often involved fire to reduce slash residue and these fires often spread (Foster 

1988). About 1930 the dominant human influence on fire became suppression (Nowacki & Abrams 

2008).  

The historical frequency of the human-set fires is difficult to determine, for reasons mentioned 

above, but a strong correlation with climatic conditions hints that fire frequency may have been 

governed by climate trends at long time scales (Neil Pederson, pers. comm.). Based on lake charcoal 

records in New England, fire frequency appears to have been strongly controlled by climate over the 

past 3500 years (Foster et al. 2002) resulting in variation in fire-dependent vegetation, e.g. pitch-pine 

or white pine in areas where climate was conducive for fire, and northern hardwood species where 

conditions were less suitable (Parshall & Foster 2002).  

Fires are strongly seasonal, burning in the early spring before leaf-out when dry winter air has 

caused low fuel moisture or in the fall when deciduous leaves drop, increasing fuel loads and 

allowing sunlight to reach the forest floor, further drying fuels (Lafon, Hoss, & Grissino-Mayer 

2005). Fire severity is typically limited to consumption of litter and fine fuels, resulting in seedling 

and sapling mortality but mature trees are rarely killed and canopy fires are limited to xeric ridges 

with forests that provide ladder fuels. The topographic complexity of the Appalachian Mountains 

introduces a finer scale spatial imprint on fire frequency and severity, however, as shallow soil 

depths, south-facing solar aspects, and wind exposure can lower fuel moisture levels and 

consequently increase fire risk. 

While fire regimes in the eastern United States are less frequent and severe than other parts of 

the country (Finney et al. 2010) (due to higher average annual precipitation and higher 
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decomposition rates of fuel), fire has nonetheless been an important factor in determining the tree 

species composition of forests. It has been suggested that the higher fire frequencies of historical 

anthropogenic fire ignitions have been associated with the dominance of oak historically and that 

subsequent fire suppression has resulted in current observations of mesophication (Abrams 1992, 

1998; Delcourt 1998; Brose et al. 2001; Abrams 2003). However, others have noted that climate has 

also played an important role in governing fire and species composition (Foster et al. 2002; McEwan 

et al. 2011) particularly temporal variability in precipitation (as opposed to total annual precipitation) 

(Lafon & Quiring 2012). Alternative explanations for the oak-maple transition, including forest 

clearing and successional dynamic responses, species composition shifts after American chestnut 

(Castanea dentata) decline, and herbivory and fruigivory pressures on oak seedlings and acorns are 

also plausible (McEwan et al. 2011). 

Despite the paucity of evidence over long time periods and large areas fuel models have 

associated the eastern U.S. with low to moderate spread rates and low flame lengths yielding low 

severity fires with very low risk of crown fire (Scott & Burgan 2005). Fire regimes vary across the 

mountain range. The northern Appalachians are estimated to have very long fire return intervals, on 

the order of 200 years, while southern Appalachian forests have shorter fire return intervals, perhaps 

35 years (Rollins & Frame 2006) and in some places as short as 10 years (Shumway, Abrams, & 

Ruffner 2001). Fire suppression has not increased fire risk in the eastern U.S. as much as it has in the 

western U.S., but shrubby species like rhododendron (Kalmia latifolia L.) and mountain laurel 

(Rhododendron maximum L.) have increased in abundance as a result of canopy and fire disturbances  

and may support higher fire severity in the future as a result (Nowacki & Abrams 2008). 

Additionally, some tree species (like pitch pine Pinus rigida Mill. and table mountain pine Pinus pungens 

Lam.) are strongly associated with higher fire severity (Waldrop & Brose 1999; Brose & Waldrop 

2006). 
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Overall a strong association of fire in oak and chestnut forests of New England and central 

Pennsylvania has been supported (Fuller et al. 1998; Foster et al. 2002; Abrams 2003). Maps of fire 

return intervals are consistent with these estimates (Fig. 1.8). The northern Appalachians are 

mapped in Fire Regime Groups V and III, corresponding to fire return intervals greater than 200 

years and between 35 and 200 years respectively with moderate severity. Within an approximate 250-

year window, 10 fires were detected in a 2000 ha area in southwestern New Hampshire with almost 

no spatial overlap pointing to long fire return intervals of at least 100 years and for the most part 

exceeding 250 years (Foster 1988). In the southern Appalachians Fire Regime Groups III and I have 

shorter return intervals, on the order of 35 years with low to moderate severity (Rollins & Frame 

2006). Others have estimated more frequent fires (on the order of 10 year return intervals) in central 

Appalachians (Shumway et al. 2001). Fuel models in the Appalachians are mapped primarily as TL6 

(moderate load, less compact, with moderate spread rate and low flame length) and TL2 (low load, 

compact, with very low spread rate and very low flame length), with other fuel models with similar 

fire behavior characteristics (Scott & Burgan 2005) (Fig. 1.9). Fires associated with these fuels can 

influence species composition by favoring species that can survive low-intensity fire in the sapling 

stage. Unlike logging, these fires are less likely to introduce successional opportunities by creating 

large clearings. 
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Figure 1.8. Fire Regime Groups mapped for the conterminous U.S. specifying expected fire return 

intervals and fire severity. 
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Figure 1.9. Scott and Burgan fuel models mapped for the conterminous U.S. (Scott & Burgan 2005) 
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Dissertation Motivation 

I am interested in the influence of terrain on species’ distributions in the context of global 

climate change because of its potential to provide microclimate refugia. Much work on diversity 

gradients across latitudes and elevations has been done over the last two centuries, but most has 

taken a static view toward the relationship. I am interested in the role of terrain as species’ 

distributions change. This perspective is motivated by the anticipated rapid climate change and 

paleoecological studies in the eastern US that have resulted in conflicting hypotheses of species 

range shifts since the last glacial maximum. A study of chloroplast DNA in red maple (Acer rubrum) 

and American beech (Fagus grandifolia) (McLachlan et al. 2005) found that these two species could 

not have migrated as fast as previously estimated and could not have originated in the deep south as 

deduced from fossil pollen records (e.g. (Davis 1983; Delcourt, Delcourt, & Webb 1983). 

McLachlan et al. (2005) suggests that Appalachian terrain might have provided refugia much further 

north than previously assumed possible for small populations that became the source populations 

for post-glacial northward migration. Other researchers have also found evidence for climate refugia 

in the Appalachians (Delcourt & Delcourt 1998; Williams et al. 2004; McKenney et al. 2007). This 

suggestion, combined with the very different trajectories of migration resulting from the two 

research approaches, in part led to current research questions that make up Chapters 2 and 3 of this 

dissertation. 

Does topographic complexity correlate with biodiversity patterns in the Appalachians? 

Can graph theory (network theory), applied to geospatial variables affecting plant 

migration, reveal routes of least resistance for northward migration in response to 

climate change? 
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These questions are focused on the role of terrain in supporting species persistence and in 

influencing seed dispersal mechanisms. But changes in forest composition in the Appalachians will 

not be dictated by dispersal processes alone, but also by disturbances that effect regeneration, like 

fire. 

In what ways will fire regimes be different under future climate scenarios? 

How do forest types respond to changes in fire regimes and/or climate? 

Are there implications for the role of Appalachian forests in global carbon cycling? 

These research questions also address important land management questions in the 

Appalachian region. For example, three of five risks and vulnerabilities identified by the Natural 

Resources Working Group in the Pennsylvania Climate Adaptation Working Group include shifts in 

species composition, interaction of stresses and disturbances, and barriers to connectivity 

(Pennsylvania Climate Change Action Plan 2009). Literature reviews here and in following chapters reveal 

considerable knowledge about current conditions including tree species distributions and 

composition, land cover and other barriers to connectivity, and predictions of change that are well 

informed by past and present biogeophysical relationships. Nonetheless, improved forecasts of 

biological response to climate change can significantly improve probabilities of successful natural 

resource management during a period of rapid climatic change. 
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Introduction 

As climate changes, plant species’ survival has historically been contingent upon genetic and/or 

migratory adaptation (Davis & Shaw 2001; Walther et al. 2002). Topography is important in 

determining species’ distributions and migratory responses to climate change because, over a wide 

range of spatial scales, climate gradients are generated by elevation, slope, aspect, and surface shape 

(Loarie et al. 2009).  More specifically, topographic heterogeneity is linked to species richness 

(Rahbek & Graves 2001; Kreft & Jetz 2007) through microclimate diversity (Rahbek & Graves 2001; 

Loarie et al. 2009; Anderson & Ferree 2010). However, few studies have investigated the linkage 

between terrain complexity and species richness at regional or continental scales (but see (Rahbek & 

Graves 2001; Coblentz & Riitters 2004; Anderson & Ferree 2010)) – and none have attempted to 

map the adaptive capacity of landscapes based on topography. We analyzed topographic metrics in 

the Appalachian Mountains (eastern U.S.) and found that measures of topographic roughness 

correlated with tree species diversity.  Furthermore, places known for biological rarity or endemism 

were associated with terrain that minimizes habitat area loss corresponding to increasing elevation. 

These metrics combined with the increasing availability of topographic datasets present a potentially 

powerful and accessible tool for conservation planning worldwide. The metrics developed and 

applied in this study can be used to identify places where the physical setting is inherently supportive 

of migratory adaptation especially considering projected climatic shifts. Understanding how 

biodiversity is generated and sustained is increasingly critical to inform conservation strategies that 

strive to meet global biodiversity targets (2010 Biodiversity Indicators Partnership 2010) and 

optimize landscape connectivity (Loss, Terwilliger, & Peterson 2011), such as assisted migration 

(Loss et al. 2011) and site prioritization (Brooks et al. 2006; Anderson & Ferree 2010). 
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Extending from Georgia to Maine (U.S.), the Appalachian Mountains provide latitudinal and 

elevational gradients along which to investigate the relationship between topography and 

biodiversity. We calculated the following measures of topographic pattern that may be uniquely 

related to species migration as a climate adaptation: 1) roughness metrics that indicate microclimate 

and habitat diversity and the potential to provide refugia under changing climate conditions, 2) area 

loss with elevation as a consequence of mountain shape (also known as hypsography) that constrains 

upslope migration in response to climate warming, and 3) distance between mountains to indicate 

the degree to which topography may impede northward migration for species with limited dispersal 

distances. Each metric was compared to a tree species diversity index based on the Forest Inventory 

and Analysis dataset (Iverson et al. 2008). We found that measures of topographic roughness were 

correlated with tree species diversity in the Appalachian Mountains, while area loss with elevation 

and mountain-to-mountain distance were not correlated. 

Linkages between topography and species distributions have long been hypothesized. Early 

biogeographers noted that mountainous topography was associated with higher species richness 

(Willdenow 1811). This relationship between topography and biodiversity may be explained by the 

fact that topography is a strong determinant of a number of important physical habitat features, 

including weather patterns (windward versus leeward sites, decreasing temperature with elevation, 

precipitation), solar insolation, soil depth and type, and hydrology. Consequently, complex 

topographies provide a high density and diversity of climate and soil conditions as a result of the 

close proximities of land surfaces with differing aspect, exposure, altitude, and slope (Peterson, 

Schreiner, & Buckingham 1997; Anderson & Ferree 2010). Over geologic time, areas with complex 

topographies may allow more species to survive by providing microclimate refugia (Willis & 

Bhagwat 2009; Dobrowski 2011) into which species can disperse to find suitable conditions under 

changing climate (Guisan & Zimmermann 2000). The complex topographies of the deeply incised 
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valleys and dense drainage patterns of the weathered Appalachian Mountains may provide evidence 

of this topographic role. Chloroplast DNA evidence suggests that mountains provided refugia for 

tree species during glacial periods facilitating post-glacial northward migration (McLachlan, Clark, & 

Manos 2005).  

Under climate change, the altitude-for-latitude temperature model (1˚C/167 m altitude 

compared to 1˚C/145 km latitude) and the climatic sensitivity of vegetation along altitudinal 

gradients make upslope migration an important early indicator of migratory response to warming 

(Jump, Mátyás, & Peñuelas 2009) as species find suitable temperature regimes at higher and higher 

elevations. However, habitable area decreases with elevation resulting in increased competition for 

resources and consequently smaller populations – with the potential for extirpation or extinction 

(Peters & Darling 1985; Lomolino 2001; Peterson 2003). The weaker latitudinal temperature 

gradients require long-distance migrations (Loarie et al. 2009), but northward migration may be 

facilitated by linear landscape features or fine-scale terrain patterns with short distances between 

mountains. The southwest-northeast orientation of the Appalachian Mountains may also have 

facilitated migration over geologic time unlike east-west mountain ranges like the Swiss Alps (Hewitt 

2000). 

Because topography can be seen as an integrator of important habitat determinants and digital 

elevation models are available in North America (Bolstad, Swank, & Vose 1998), and increasingly 

globally (e.g. ASTER GDEM(METI-NASA 2009)), topographic metrics may provide a convenient 

indicator of biodiversity and ecological adaptation to climate change, contributing to conservation 

management worldwide. Previous studies of topographic metrics have focused on mean elevation, 

elevation range (relief), slope, aspect, or solar insolation (Bolstad et al. 1998; Odom & McNab 2000; 

Rahbek & Graves 2001; Hofer et al. 2008) and some have extended the analysis to include 

topographic complexity or roughness (Coblentz & Riitters 2004). Another approach has been to use 
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species-area relationships to explore whether or not species richness declines with elevation, finding 

instead that maximum species richness is likely at an intermediate elevation and that species density 

(after accounting for losses of habitat area with elevation) may be nearly constant across an 

elevational transect (Lomolino 2001). Connectedness of topographic features has also been 

investigated but associations with species richness are mixed (White & Miller 1988; Coblentz & 

Riitters 2004).  

Methods 

We evaluated 24 topographic metrics that we considered to be related to climate change 

adaptation (Table 1) and explored correlations with measures of biodiversity (Shannon Index, 

richness, and dominance). These topographic metrics were calculated for 662 50 km x 50 km 

(250,000 ha) samples of elevation from the National Elevation Dataset, enveloping the Appalachian 

Mountains. The sample points were selected from a grid with 25 km spacing between central nodes 

(Appendix Fig. A.2). The 250,000 hectare extent was chosen to include more than one mountain in 

almost every topographic sample.  Metrics describing topographic roughness, area loss with 

elevation, and nearest neighbor distances were calculated using ArcMap 10.0, FRAGSTATS 3.3 

(McGarigal et al. 2002), R, and Python (see Appendix A). Sensitivity analyses were performed to test 

the effect of NED resolution, sample location (Appendix Fig. A.3) (see Appendix A), and elevation 

sample spatial extent (Appendix Fig. A.4).  In general, these sensitivity analyses demonstrate that the 

results reported here are robust – variability of terrain metrics associated with sample size, location, 

and resolution is small compared to the variability among regions (see Appendix A). 

Datasets representing biodiversity over large geographic areas, such as the Appalachian 

Mountains, are difficult to generate and present a challenge for correlating physical and biological 

characteristics (Rahbek & Graves 2001). Here we used the Forest Inventory Analysis Dataset (FIA), 
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which provided a consistent sampling methodology over the entire study area (Iverson et al. 2008). 

The Shannon Diversity Index was calculated as the sum of (IV * ln(IV)) for all species present in a 

plot, where IV is the importance value of the species based on basal area and number of stems (Fig. 

2.1). Species richness (total number of species) (Fig. 2.2) and species dominance (maximum 

importance value) (Fig. 2.3) were also considered as alternate measures of biodiversity. Spearman’s 

rho was used to measure correlation between topographic metrics and tree species diversity 

measures (Appendix Fig. A.7a-c).



Table 2.1. Descriptions of topographic metrics including methods, tools, relevance, and literature. 

Metric Definition Tools1 Ecological Relevance References

Elevation 
Range 

Maximum Elevation –
Minimum Elevation 
within a sample area 

ArcGIS 10.0, Raster 
Statistics 

A greater elevation range (sometimes called 
relief) provides a wider range of climate spaces 
for temperature and precipitation. 

(Lu 2008, Pérez et al. 2008)

Standard 
Deviation of 
Elevation 

Standard deviation of 
elevations within a 
sample area 

ArcGIS 10.0, Raster 
Statistics 

Similar to Elevation range, but indicating the 
degree of variability across the sample area 

(Coblentz and Riitters 
2004, Hoechstetter et al. 
2008, Hofer et al. 2008, Lu 
2008) 

Rugosity 3-dimensional surface 
area / 2-dimensional 
surface area 

ArcGIS 10.0, 3D 
Analyst, Surface 
Volume Tool 

Higher values are found in areas with greater 
altitudinal variation and gentler slopes, which 
may provide a wider range of climate spaces.  

(Lu 2008)

Density of 
Topographic 
Contours 

 FRAGSTATS 3.3, 
(Area/Density/Edge 
Metrics), Patch 
Density 

This metric provides an indication of slope 
and elevation range. Higher densities represent 
areas with a higher diversity of climate niches.  

(Dinesh 2009, Lu 2008)

Fractal 
Dimension 

2*ln(0.25*Patch 
Perimeter) / ln(Patch 
Area) 

FRAGSTATS 3.3 
(Shape Metrics), 
Fractal Dimension 
Index 

Fractal dimension has been evaluated for 
topography (Gilbert 1989, Mark and Aronson 
1984) but not using contour lines which 
should provide an integrated index of aspect 
variability (Coblentz and Riitters 2004, Pérez 
et al. 2008) and landform variability (coves and 
noses) (Odom and McNab 2000). These 
topographic characteristics govern sun and 
wind exposure, and effect hydrology and soil 
depth, so the variability therein should 
represent the density of diverse habitats. 

(O’Neill et al. 1988)

Perimeter to Patch Perimeter (m) / FRAGSTATS 3.3 
(Shape Metrics), 

Ecological relevance is similar to fractal (Dinesh 2009)

40 
 



41 
 

Area Ratio Patch Area (m2) Perimeter to Area 
Ratio 

dimension

Shape Patch perimeter / 
minimum possible 
patch perimeter for the 
same area 

FRAGSTATS 3.3 
(Shape Metrics), Shape 
Index 

Ecological relevance is similar to fractal 
dimension 

(Dinesh 2009)

Nearest 
Neighbor 

Distance between 
patches of the same 
elevation 

FRAGSTATS 3.3, 
(Isolation/Proximity 
Metrics), Euclidean 
Nearest Neighbor 
Distance 

If species are adapted to a temperature at a 
given elevation, northward migration may 
require wind-dispersed seed to cross valleys to 
sites at the same elevation (Ware 1999). Rare 
long distance seed dispersal events on the 
order of 100-300 m may result from uplifting 
wind conditions (R. Nathan et al. 2002), but 
more common maximum distances are 
approximately 50 m (R Nathan and Muller-
Landau 2000). 

(Hoechstetter et al. 2008)

Hypsography3 Rate of change of 3-
dimensional surface 
area with increasing 
elevation 

ArcGIS 10.0, 3D 
Analyst, Surface 
Volume Tool 

Habitat area contracts at higher and higher 
elevations (R. L. Peters and Darling 1985). 
Species migrating upslope may experience 
greater competition for resources. 

(Hurtrez, et al. 1999, 
Ohmori 1993, Strahler 
1952, H. D. Thompson 
1941) 

 

1. ArcGIS 10.0 produced by ESRI. FRAGSTATS 3.3 produced by Kevin McGarigal and others (McGarigal et al. 2002). Additional 

tools and processes were written in Python (2.6 and 2.7) using arcpy and rpy with R (R Development Core Team 2011). 



Shannon Index of Tree Diversity

 

Figure 2.1. Map of tree species diversity. This map of the Shannon Diversity Index is based on 

Forest Inventory Analysis Data courtesy of Louis Iverson et al. (Iverson et al. 2008). 
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Figure 2.2. Map of species richness based on Forest Inventory Analysis Data courtesy of Louis 

Iverson et al. (Iverson et al. 2008). 
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Figure 2.3. Map of species dominance (maximum IV) based on Forest Inventory Analysis Data 

courtesy of Louis Iverson et al. (Iverson et al. 2008). 
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Results 

Topographic roughness was correlated positively with tree species biodiversity.  The density of 

contour lines defining topographic elevation gradients (indicative of average slope) showed the 

strongest correlation with tree species diversity (Fig. 2.4a) (Spearman’s rho 0.69, p <0.0001; 

Appendix Fig. A.7a). Within the study area, the roughest terrain was found in western West Virginia 

and the Tennessee-North Carolina border (including Great Smoky Mountains National Park) (Fig. 

2.4a) where Shannon diversity indices and species richness were high (in the top 10% and 20% 

respectively) (Fig. 2.1 and 2.2), and species dominance was low (in the bottom 33%) (Fig. 2.3). The 

smoothest terrain was found in the mid-Atlantic and northeastern regions, as well as at the eastern 

edges of the study area where the mountains transition to foothills. These areas had higher 

individual species dominance, lower species counts, and lower Shannon diversity indices. 

Change in area with elevation was not correlated with tree species diversity (Spearman’s rho -

0.128, p<0.0005; Appendix Fig. A.7a) across the study area. However, it may still be a useful 

topographic metric for identifying biologically important places. Roan Mountain, Tennessee, Great 

Smoky Mountains National Park on the North Carolina/Tennessee border, Mount Rogers, Virginia, 

and the White Mountains, Vermont, are known for their high biodiversity, rarity, or endemism and 

are located in places with low losses of area with increasing elevation (Fig. 2.1 and Fig. 2.4b). Loss of 

habitat area with increasing elevation is related to elevation range (or relief), but not linearly 

(Appendix Fig. A.8). Distances between mountain features are closest in the southern Appalachians 

where mountains have smaller extents than in the northern Appalachians (Fig. 2.4c), but across the 

entire Appalachian region, nearest neighbor distances between mountains were not correlated with 

tree species richness (Spearman’s rho -0.28, p<0.0001; Appendix Fig. A.7a). We expected that 

mountains that were close together would facilitate intermountain migration through wind-dispersal 

and thus increase biodiversity, but our results do not support this. 
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Figure 2.4. Maps of terrain metrics representative of each of the three classes of metrics, roughness, 

loss of habitat. Higher saturation represents areas that are hypothesized to be relatively more 

supportive of ecological adaptation to climate change as opposed to the lighter areas where species 

may be more vulnerable to climate change. a) topographic roughness (density of contour patches 

shown here) show higher degrees of roughness in the southern Appalachians indicating higher 

densities of microclimate and diverse habitats. b) hypsography – the lower loses of habitat with 

increasing elevation fall along the spine of the Appalachians where upslope migration will provide 

opportunities for climate adaptation. c) nearest neighbor distance – distances between similar 

elevations are shortest in the foothills or plateaus around the mountains potentially providing greater 

opportunities for latitudinal migration. 
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Discussion 

Topography is only one of a number of very important factors (e.g. geology, soils, land use, and 

disturbance history) influencing biodiversity (Anderson & Ferree 2010), and thus it cannot be the 

only indicator of a land unit’s conservation value. For example, human impacts are weakest where 

terrain inhibits access and this may explain why topographic roughness was positively correlated 

with tree species richness while other topographic metrics were not. However, because other 

important factors in biodiversity are strongly correlated with topography, topography may integrate 

these patterns in a way that can simplify predictive forecasts of potential biodiversity patterns. 

Biodiversity datasets at large spatial extents are limited (Rahbek & Graves 2001). The FIA data 

used in this study is invaluable because it is generated using uniform protocols at a continental scale. 

However, FIA data is not a surrogate for potential biodiversity because it only includes tree species, 

may not adequately represent the range of elevations in the Appalachians, has a coarse sampling rate 

(1/5000 acres). Biodiversity datasets that better represent high elevations or broader taxa would be 

necessary to further evaluate the role of habitat contraction with elevation in upslope migration.  

Topographic metrics offer a promising geographic index of climate vulnerability that could 

serve as a baseline for conservation site prioritization, planning for managed relocations between 

protected areas, and identification of important migration corridors. For example, the mid-Atlantic 

region of the study area had low relief and large average inter-mountain distances, indicating that 

topography may introduce a barrier to northward dispersal. Furthermore, a high degree of forest 

fragmentation due to agriculture and recent increases in energy extraction (coal, natural gas, and 

wind) in this region continue to threaten habitat connectivity, potentially interfering with migratory 

adaptive responses to climate change (McDonald et al. 2009). A network approach can incorporate 
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these confounding factors to build on topographic analyses and reveal preferential pathways for 

migration (Chapter 3 of this Dissertation). 

The positive species-area relationship is a foundation of biogeographical understanding of 

species diversity. Despite having standardized the data by 2-dimensional area, our results still show 

evidence of this tenet as cells with greater surface area (3-dimensional area, measured here as 

rugosity) were correlated with cells with high species richness (Spearman’s rho 0.56, p<0.0001; log-

transformed data had an r2 of 0.27; Appendix Fig. A.7b and A.9). In fact, all measures of terrain 

complexity, or roughness, were strongly correlated with tree species diversity, supporting Loarie et 

al.’s expectation (2009) that mountainous landscapes may shelter species under changing climate and 

McLachlan’s suggestion (McLachlan et al. 2005) that the Appalachian Mountains specifically 

provided refugia for tree species during the last glacial maximum. The results are also consistent 

with the work of Anderson and Ferree (Anderson & Ferree 2010) who argue that geophysical 

conditions that currently support high biodiversity are likely to continue to be home to a high 

diversity of species regardless of climatic change. In addition, our results showing that intermountain 

distance is not related to species diversity seem to agree with White and Miller’s (1988) conclusion 

that intermountain distance has not caused ecological isolation. 

The magnitude of anthropogenic climate change may not be as great a threat as the pace, which 

is often determined to exceed the natural adaptation capacity of many species, potentially resulting in 

a sharp loss of biodiversity (Davis & Shaw 2001). The approach described here is a step toward an 

era of conservation planning informed by the static snapshots that species inventories provide, but 

also incorporating information about landscape features that support or suppress species dispersal, 

establishment, and successful regeneration. 
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Abstract 

Over geologic time, climatic change has driven biogeographical shifts of plants, but determining 

historical migration routes or rates has been challenging. Predicting migratory responses to modern 

climate change has additional complexity because the change is expected to be rapid compared to 

historical climate change and habitats are more fragmented. Here, we provide an alternative 

assessment of migration potential that relies on geospatial data describing site suitability for species’ 

establishment and mechanisms of species’ dispersal – defining the pattern and process of successful 

migration. Analyzing the migration potential of species through the Appalachian mountains, we 

considered key mechanisms that govern establishment (e.g., pH, elevation, and forest cover) and 

dispersal (e.g., wind speed). We used a network analysis approach to map alternative networks based 

on each permeability factor. Results indicated that the southern Appalachians are broadly supportive 

of migration for wind-dispersed, high elevation plant communities. However, wind-dispersal and site 

suitability constrain migration through the mid-Atlantic along the Allegheny front and the Allegheny 

plateau. Network analyses such as this can be used to develop effective and efficient conservation 

for any focal species or community because results integrate a variety of migration preferences and 

highlight critical habitats. 

Introduction 

Current plant species’ distributions reflect the cumulative effect of multiple long-distance 

migration events over geologic time (Prentice, Bartlein, & Webb 1991; Nathan & Muller-Landau 

2000; Schurr et al. 2009), and future species’ ranges are predicted to shift rapidly poleward in 

response to anthropogenic warming over the next century (e.g., Lawler et al. 2009, Thomas et al. 

2004, Walther et al. 2002). Yet biogeography and ecology have not deconstructed the mechanisms 

and processes that determine spatial distributions making it difficult to predict future migratory 
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responses (Wiens & Donoghue 2004). Furthermore, habitat fragmentation and loss as a result of 

human land use may inhibit species’ resilience to these changes through migration (Johnson & Webb 

1989; Malcolm et al. 2002; Higgins, Lavorel, & Revilla 2003; Svenning & Skov 2007) and concerns 

for biodiversity preservation have been raised if migration rates are slower than the velocity of 

climate change (Pitelka 1997; Malcolm et al. 2002; Scheller & Mladenoff 2005; Svenning & Skov 

2007; Nathan et al. 2011). Therefore, attention has been focused on facilitating natural migration by 

enhancing landscape connectivity (Loss, Terwilliger, & Peterson 2011; Renton, Shackelford, & 

Standish 2012). 

Facilitating natural migration requires an improved understanding of how plants migrate, (by 

what vectors, e.g. wind, water flow, gravity, and animal dispersal), and where plants regenerate, (for 

example, where conditions are suitable for germination, establishment, maturity, and reproduction).  

Dispersal and establishment are typically species-specific, and this has led researchers to choose 

focal or “surrogate” species for connectivity studies (Baldwin et al. 2010; Theobald et al. 2012). Yet, 

to date, there are no regional approaches to conservation and ecosystem management that can be 

used to generalize species’ ability to adapt to climate change including aspects of both habitat 

condition that may influence establishment together with species movement and dispersal potential.  

In general, landscape-level connectivity assessments use land use classifications to determine 

habitat patches and/or movement probabilities because nearly all species are affected by habitat 

fragmentation or loss associated with human development (Goetz, Jantz, & Jantz 2009; Baldwin et 

al. 2010; Anderson, Clark, & Olivero Sheldon 2012) and there is a strong theoretical basis for 

predicting the effects of fragmentation on species’ persistence (King & With 2002; Fahrig 2003). 

However, this simplification to patch-level analysis of fragmentation blurs the distinction between 

how plants migrate and where they establish, each of which may need to be represented by distinct 

variables or different data forms.  For example, spatially heterogeneous patterns of site suitability 
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may be represented by geospatial “vector” data (polygons) while dispersal vectors may be best 

represented by raster data (meshes or grids). A single focus on habitat patches to describe the 

permeability of the landscape limits the exploration of migration pathways to site suitability rather 

than including movement vectors.  This likely oversimplifies natural migratory adaptation to climate 

change that requires successful dispersal, establishment, reproduction, and regeneration in new 

places with suitable conditions. In cases where mechanistic dispersal vectors are known, connectivity 

models can reflect more specific migration requirements and preferences. Thus, an approach is 

needed recognizing that relatively static physical conditions (like topography and soils) will continue 

to support biological diversity or rare species (Anderson & Ferree 2010), but that also embraces the 

idea that movement through these landscapes depends on dispersal vectors. Unlike other indices of 

landscape connectivity (Saura & Pascual-Hortal 2007) our approach integrates unlimited numbers of 

geospatial variables, including mechanistic data layers. 

A practical approach for analyzing landscape connectivity employs graph (or network) theory 

(Cantwell & Forman 1993; Urban & Keitt 2001) to assess the degree of connectivity between 

habitats, the relative cost of moving from one habitat to another, or the spatial patterns of 

preferential pathways through a landscape. Most simply, graphs (networks) are comprised of nodes 

connected by edges (Harary 1969) which can be used to represent habitats (nodes) and movement 

probabilities (edges), thus merging pattern (patch size and shape) with process (dispersal) (Urban & 

Keitt 2001; Baldwin et al. 2010). This general framework has been applied to a wide range of 

connectivity questions across multiple spatial scales and community levels (Goetz et al. 2009; 

Baldwin et al. 2010; Anderson et al. 2012; Theobald et al. 2012). With the increasing availability of 

geospatial data and the development of computational tools (see (Kupfer 2012) for a review) it has 

become practical to model migration pathways using network theory. 
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While most seed dispersal distances are shorter than a few dozen meters, rare long-distance 

dispersal has a disproportionate effect on the dynamics of plant distributions, so the concerns 

described above have driven seed dispersal investigations to focus on long-distance-dispersal 

mechanisms (Schurr et al. 2009). In fact, Nathan et al. (2011) determined that mean horizontal wind 

speed was the only important geographically variable parameter in determining the spread rate of 

wind-dispersed species. 

From the standpoint of seedling establishment, geologic substrate has been hypothesized as 

being an important determinant of broad-scale biodiversity patterns due to associated soil chemical 

processes including pH (Anderson & Ferree 2010). Land cover determines many site characteristics 

that are relevant to regeneration including soil chemistry, soil moisture, and light availability 

(Härdtle, von Oheimb, & Westphal 2003). Topography is an important factor in determining site 

suitability since it influences temperature and precipitation that govern microclimatic conditions 

(Rahbek & Graves 2001; Loarie et al. 2009). 

Considering wind-dispersal and acidic habitat preferences as key factors influencing migration 

potential, we used Fraser fir (Abies fraseri), intermediate balsam fir (bracted or Canaan fir) (A. 

balsamea var. phanerolepis Fern.), and Carolina hemlock (Tsuga caroliniana)) as the basis for our network 

analysis.   These species are currently found in high elevation habitats in the southern Appalachian 

Mountains (U.S.A.), and are at risk of extinction as a result of climate change (Delcourt & Delcourt 

1998; Potter, Hargrove, & Koch 2010).  Fraser fir and Carolina hemlock are found on highly acidic 

sites and all three species have lightweight seeds that are dispersed in the fall primarily by wind (See 

Appendix A). Both of the high elevation habitats chosen as network endpoints are largely within 

federally owned lands. The southern patch is within Great Smoky Mountains National Park, the 

Nantahala National Forest and the Pisgah National Forest and smaller embedded wilderness areas. 

The northern patch is almost completely within the White Mountain National Forest and associated 
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embedded wilderness areas. A network approach is used to identify the most advantageous 

migration pathways between these endpoints considering both dispersal vectors and regeneration 

potential, demonstrating that the approach is capable of integrating pattern (where) and process 

(how). Specifically, we ask: how do migration networks differ in spatial pattern and resistance 

distance when based on dispersal vectors, establishment conditions, and their interaction?  

Factors affecting migration of high-elevation, wind-dispersed plants have different spatial 

patterns (datasets are listed in Table 3.1). The southern Appalachians have higher elevations (up to 

1862 m based on the GTOP30 GDEM dataset used in this study) than the rest of the study area, 

although the northern Appalachians have almost equal relief as a result of lower base elevations.  

The Allegheny Front, a prominent topographic feature that stretches from West Virginia through 

northeastern Pennsylvania marks the eastern edge of the Allegheny plateau and the parallel ridges of 

the Ridge and Valley province from Virginia through Pennsylvania have high average annual wind 

speeds (estimated to be greater than 7.5 m/s (16.8 mph) at 50 m above land surface). Mapped wind 

speed magnitudes are most accurate in grassy areas with low slope, because vegetative and 

topographic roughness can decrease estimated wind speed by one or more power classes, but 

relatively high wind speeds on ridges in the mid-Atlantic have been verified (Elliott et al. 1987). 

Forest cover is common, especially at high elevations and in areas with less urban or agricultural land 

use such as the southern Appalachians. Soil pH ranges from 3.2 to 7.8 throughout the study area 

with acidic conditions (pH of 4-5) found at high elevations and pockets in southern New York State. 

Methods 

We used Circuitscape (v. 3.5) to generate maps of movement probabilities (current densities) 

and calculate resistance distance (an indication of the relative ease of movement) (McRae & Shah 

2009) (See Appendix B). Circuitscape creates an electrical circuit analog in which network nodes 
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represent landscape locations and conductance between nodes represents the ease of movement 

(permeability). Analysis of the circuit is performed by introducing 1 Amp (A) of current at a cluster 

of cells over 1000 m elevation in the southern Appalachians while another high elevation cluster of 

cells in the northern Appalachians is set to ground (0 Volt (V)). Effective resistance between these 

endpoints (source and sink nodes) is calculated by Circuitscape according to Ohm’s Law 

(Voltage=Current * Resistance (V=IR)). For all analyses, an 8-neighbor rule was used to create 

“edges” between adjacent raster cells in the permeability datasets (circuit nodes) and average 

conductance of adjacent nodes in the landscape permeability datasets was assigned to the edges 

between adjacent raster cells.  

Dispersal vectors and regeneration potential were considered separately and in combination to 

determine potential migration pathways between places with similar habitat conditions. Landscape 

permeability (based on single variables or averages of multiple variables) was provided to 

Circuitscape as a raster of conductivity values and was prepared from publicly available geospatial 

data (Table 3.1). To minimize edge effects, the network domain was extended beyond the 

Appalachian Mountains from -85.5 degrees longitude to the east coast of the U.S. and north to 32.3 

degrees latitude (Fig 3.1). Datasets were cropped to this domain before resampling to 5 km 

resolution, and standarding the scale (data processing is explained in Table 3.2).  
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Table 3.1. Network Permeability Datasets 

 Role Magnitude Source 
Wind Dispersal vector. High wind speeds 

can disperse seed further and 
support natural migration of wind-
dispersed seeds 

0 – 11.9 m/s 
mean wind 
speed 50 m 
above the land 
surface 

National Renewable 
Energy Lab (NREL) 
Wind Class (Elliott et 
al. 1987) at 200 m 
resolution. 

Forest Cover Regeneration Suitability. NLCD 
values 41, 42, and 43 are forested 
land covers and support natural 
migration of forest species 

22.7% of the 
study area is in 
forested land 
cover 

National Land Cover 
Dataset 2006 
(NLCD) (Fry et al. 
2011) at 30 m  
resolution. 

Elevation Regeneration Suitability. High 
elevations are more supportive of 
natural migration of high elevation 
species. 

0 – 1862 m GTOP30 GDEM (30 
arc second 
resolution) 
 

Soil pH Regeneration Suitability. Low pH 
soils are more supportive of natural 
migration of acid-loving species 

3.2-7.8 SSURGO (prepared 
at 4 km resolution by 
Mathew Peters et al, 
unpublished.) 

 

Table 3.2. Data preparation steps 

Step 1 Crop to domain 20 U.S. States north of 32.3 degrees latitude to the Canadian 
border and east of -85.5 degrees longitude to the Atlantic coast. 

Step 2 Resample (up or 
downscaling to 5 
km) 

− Elevation data native resolution was 1 km. (Block Statistics 
using maximum value.) 

− pH data native resolution was 4 km. (Resampled using cell 
center.) 

− wind data, native resolution was 200 m. (Block Statistics using 
average.) 

− NLCD data native resolution was 30 m. Forested cover 
reclassified to 10, all other cover reclassified to 1, Block 
Statistics using average. 

Step 3 Rescale (1 – 10) Rescaled value = 1 + (raw value-min. raw value) / scale factor 
Scale factor = range of raw values/range of rescaled values(9)) 
(Rescaling facilitates comparison between permeability analyses.) 

Step 4 Combined layers Layers were combined by averaging conductance values 
 

Maps of current (Amps) reveal different critical migration pathways based on different dispersal 

vectors and establishment conditions. High currents, and thus high migration potential, are found if 

1) the cells are marginally conductive, but the adjacent cells (alternative pathways) are completely 
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inhospitable leaving the marginal pathway critically important or 2) the cells are very conductive, and 

even though the surrounding area is also suitable, migration is more likely to take place in the highly 

conductive area. Along with the current map, Circuitscape provides the effective resistance of the 

network (a single resistance value equal to the combination of all edge resistances) allowing 

comparisons of permeability among network analyses. 

Results 

In general, lower currents (0.009 to 0.016 Amps) were mapped in the southern Appalachians 

where conditions are broadly supportive of migration, no advantageous pathway emerges, and flow 

is diffuse (Fig. 3.1). In contrast, the Allegheny Front in the Mid-Atlantic region concentrates current 

(0.017 to 0.022 Amps) because high wind speeds, high elevations, forested land cover, and low pH 

provide more suitable conditions for the focal species than the plateau to the west or the valleys to 

the east. 
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Fig. 3.1. Map showing relative importance of habitats for tree migration based on wind speed, 

elevation, and forest cover. Orange, red, and brown show places where higher currents indicate a 

concentration of migration (higher probabilities of flow). 
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Results suggest that on average, dispersal vectors and establishment suitability result in 

comparable network structures across the region as a whole.  Network simulations using elevation, 

forest cover, and wind to define permeability (separately and in combination) show very small 

differences in mean current (~0.014 Amps), a partial consequence of the normalization of the 

permeability datasets (maximum conductance was set to 10) (Table 3.2 and 3.3, Fig. 3.2). Somewhat 

surprisingly, comparisons between permeability factors showed almost no difference in the standard 

deviation of the current. However, effective resistance better discriminates among networks. High 

wind speeds are isolated throughout the mountain range resulting in a high resistance distance of 

0.941 Ω, but the mountain range is more continuously forested, resulting in a low resistance distance 

of 0.216 Ω. The relatively high elevational difference between the peaks and valleys compensates in 

some part for the lower elevations of the mid-Atlantic and this spatial pattern results in an 

intermediate resistance distance of 0.442 Ω. As in the combined permeability circuit map, maximum 

currents (other than around the endpoints) indicate concentrated migration potential and potentially 

critical landscape characteristics for migration based on each permeability factor (Fig. 3.2 and Table 

3.3). 
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Fig. 3.2. Maps showing results for permeability datasets (forest land cover, high elevation, pH, and 

wind speed) evaluated independently.   
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Table 3.3 Current and resistance results for individual and combined permeability datasets. 

 Mean 
Current 
(Amps) 

Maximum Concentrated Current 
(Amps) 

Standard 
Deviation 

Resistance 
Distance1 
(Ω) 

Forest Cover 
(Fig. 3.2a) 

0.0140 0.0230
Vicinity of the Hudson River in southern 
NY where the Sterling Forest Corporation 
and Harriman, Bear Mountain, Palisades, 
and Clarence Fahnestock Mem. State Parks 
protect forest cover in an otherwise heavily 
developed area. 

0.0832 0.216

High Elevation 
(Fig. 3.2b) 

0.0139 0.0203
Vicinity of Dolly Sods Wilderness, 
Monongahela N.F. (part of the Allegheny 
front) 

0.0832 0.442

pH 
(Fig. 3.2c) 

0.0125 0.0353
On the Hudson River in southern NY 

0.0677 0.373

Wind 
(Fig. 3.2d) 

0.0143 0.3155
On the Allegheny Front east of the Canaan 
Valley National Wildlife Refuge and the 
Dolly Sods Wilderness, but not within 
public ownership. 

0.0835 0.941

Wind, Forest 
Cover 

0.0142 0.0209
Southern portion of Green Mountain 
National Forest, VT 

0.0835 0.342

High Elevation, 
Forest Cover 

0.0140 0.0208
Southern portion of Green Mountain 
National Forest, VT 

0.0832 0.287

Wind, High 
Elevation, Forest 
Cover  
(Fig. 1) 

0.0141 0.0197
Allegheny Front in Pennsylvania mostly in 
state lands, (Gallitzin State Forest and 
Game Lands) 

0.0835 0.368

Wind, High 
Elevation, Forest 
Cover, pH 

0.0125 0.0298
Vicinity of the Hudson River in southern 
NY 

0.0677 0.479

1. Resistance distance is the effective resistance between the two endpoint nodes (the southern 
and northern ends of the Appalachian network). Effective resistance is the value of a single 
resistor that could be equivalently substituted for the configuration of resistances in the 
network of many nodes. 
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Discussion 

Many of the areas of maximum migration potential identified are located within or at least near 

existing protected areas – but this association is the result of an auto-correlation since protected 

areas are more likely to be forested than adjacent lands, and forest cover was one of the 

determinants of permeability. Still, the network simulations identify a few landscapes that may be 

important for migration but are not already protected, particularly the Allegheny Front in West 

Virginia and Pennsylvania, and parts of southern New York. 

A number of factors must be considered when preparing a network model of landscape 

connectivity. First, many physical conditions are auto-correlated (soil characteristics and topography 

for example) and some conditions can arguably be considered more important than others. When 

justified, it is possible to weight conductance layers in the combined network conductance layer to 

promote the importance of some variables over others. To the extent that trends in dispersal 

mechanisms are known, migration networks under future conditions may also be predicted. For 

example, wind speeds are expected to decline by ~10% in the Northern Hemisphere with increases 

in forest cover and climate change (Breslow & Sailor 2002; Vautard et al. 2010). As we have shown, 

variables affecting regeneration may be incorporated either as determinants of suitable habitat 

(patches between which current flows) or as continuous measures of permeability (the conductance 

surface that determines the ease of flow. 

To characterize migration potential for other species complexes of interest, spatial datasets 

documenting patterns of dispersal vectors or suitability will need to be prepared. For example, blue 

jays are known dispersers of fagaceous seeds, selecting viable seed and caching seed in the ground in 

places that are suitable for germination and establishment (Johnson & Webb 1989). A permeability 

layer based on blue jay abundance could be combined with regeneration condition layers for these 

trees to map migration pathways. The study reported here has specific application for wind-
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dispersed high-elevation plant species, but perhaps more importantly it demonstrates an approach 

for analyzing migration potential at large spatial scales for a wide range of species if dispersal vectors 

and regeneration conditions are known. 

Results of simulations based on different permeability layers have different implications for 

conservation management. Of the four permeability factors investigated here, only forest cover can 

be actively managed, unlike wind, elevation and soil pH. Reforestation programs could enhance 

migration potential by expanding the area of suitable sites for regeneration but are unlikely to have 

any influence on the physical template at broad scales. Yet, accounting for the fixed nature of the 

geophysical template can help prioritize landscape protection resources to align with the migration 

potentials. For example, energy development (coal, natural gas, and wind) in the region is likely to 

accelerate habitat fragmentation, which could interfere with climate-driven migration (McDonald et 

al. 2009). Prioritization of energy extraction activities that minimizes impact in regions that have 

narrow and concentrated migration pathways may reduce ecological impacts. 

Habitat prioritization is a critical goal of conservation agencies, but is rarely performed at 

landscape or regional scales and often neglects the need to consider both dispersal and habitat 

suitability metrics together.  Given the availability of land use and land cover datasets, fragmentation 

is often considered as a surrogate for dispersal (Iverson, Schwartz, & Prasad 2004).  Indeed, 

independent analyses of least resistive migration pathways based on land use and land cover in the 

mid-Atlantic and northern Appalachians confirmed the importance of the Allegheny front, the 

Allegheny plateau in Pennsylvania, areas in southern New York State, and western Massachusetts 

and southern Vermont as critically important habitat for migration potential (Anderson et al. 2012; 

Theobald et al. 2012) (Fig. 3.3). While the study described here included landscape layers that 

represented a mechanistic dispersal process, the results coincidentally showed similar spatial 

patterns. 
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Figure 3.3. Results of Circuitscape analysis by Anderson, Clark and Sheldon showing areas with high 

current flow. Mapped focal areas have been identified by the Nature Conservancy as priorities for 

conservation for reasons other than probability of migratory advantage. 
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Influence of fire and climate on vegetation and carbon storage in the Appalachians 
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Introduction 

For 20,000 years, when not glaciated, the Appalachians have been forested (Davis 1981). As 

glaciers retreated, plant species migrated northward through species-specific dispersal processes and 

rates (Prentice, Bartlein, & Webb 1991) resulting in new community compositions. Paleoecological 

studies have mapped species range shifts over this time period (Delcourt, Delcourt, & Webb 1983; 

Davis & Shaw 2001; McLachlan, Clark, & Manos 2005). At all temporal scales, climate also 

influences successional dynamics by triggering episodic disturbances like wildfire (Jackson et al. 

2009). At the same time, climatic changes affect fire regimes by changing fuel moisture among other 

factors, and fire is known to affect vegetation distributions (Foster et al., 1997).  

Understanding these changes in climate, vegetation, and fire are particularly important because 

forests play a significant role in the global carbon cycle, storing ~45% of terrestrial carbon, 

contributing ~50% of terrestrial net primary production, and sequestering large amounts of carbon 

annually equivalent to ~33% of anthropogenic carbon emission (Bonan 2008). Temperate forests 

account for 6.9% of the forest area in the world and store 6.4% of the forest carbon (Watson et al. 

2000). Forest fires can abruptly change the carbon status of a forest (Running 2008) and interactions 

between fire and climate represent a key unknown in climate change predictions (Bonan 2008). 

Much work has focused on developing management prescriptions to maximize net carbon 

sequestration in forests, but within the U.S. this work has been focused in the western states where 

some areas experience severe fires that release carbon abruptly through combustion of dead and live 

woody biomass and over a period of time as trees killed by the fire decompose (Kashian et al. 2006; 

Hurteau & North 2009). Forest ecosystems with long fire return intervals can be carbon neutral 

because even though fires are often severe and release much of the carbon in the system, regrowth is 

rapid and uninterrupted by disturbance and carbon is quickly re-absorbed (Smithwick et al. 2009; 

Hurteau & North 2009). In the context of anthropogenic climate change, it is important to improve 
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the capability of models to predict forest carbon storage, and the accuracy of such predictions 

requires the incorporation of disturbances like wildfire, and their effects on stored carbon. 

Carbon storage in forests is linked to vegetation. Biogeographical descriptions of the Appalachian 

forests describe vegetation that aligns with temperature gradients from south to north and low 

elevations to high elevations (Bailey 1976; Eyre 1980; McNab & Avers 1994; Prasad et al. 2007). The 

southern Appalachians are characterized by oak (Quercus sp.) and hickory (Carya sp.) dominated 

forests while hardwoods (Acer sp., Fagus sp., Betula sp.) are found in the northern Appalachians. Based 

on well-established relationships constructed by correlating species’ distributions with climate regime 

patterns, warming climates are projected to result in potential range shifts or extinctions (Iverson & 

Prasad 1998; Williams & Jackson 2007; Iverson et al. 2008) and some of these changes have already 

been observed (Parmesan & Yohe 2003; Parmesan 2006; Beckage et al. 2008; Woodall et al. 2009). 

However, while much is known about biogeographical responses to climate change in the eastern 

U.S., the relationship with fire has been more difficult to reconstruct because fire scars in tree rings 

provide the only record of annually-resolved fire-history and they are only available back to the 17th 

century (Clark 1997b; McEwan, Dyer, & Pederson 2011). Charcoal in sediment cores, which are 

more widely available, is representative of large areas, not individual burns, so it has been difficult to 

discern causal relationships between fire frequency or severity and species abundance (Clark 1997a). 

Nonetheless, much is known about historical ignition sources, seasonality, and climatic variability, 

and associations with species have been vigorously debated. 

Most studies have shown that historical and present-day fire regimes in the Appalachians are 

strongly influenced by humans through accidental and intentional ignition and fire suppression as 

opposed to natural ignition sources. Evidence of prescribed fire by Native Americans has been 

reported (Cronon 1983; Denevan 1992; Delcourt & Delcourt 1997; Brose et al. 2001) but others 
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have downplayed these fires as being merely accidental (Russell 1981). Euro-American settlers 

continued to introduce an ignition source during land conversion and logging practices in the 1800’s 

often involved fire to reduce slash residue and these fires often spread (Foster 1988). About 1930 

the dominant human influence on fire became suppression (Nowacki & Abrams 2008).  

The historical frequency of the human set fires is difficult to determine, for reasons mentioned 

above, but a strong correlation with climatic conditions hints that fire frequency may have been 

governed by climate trends at long time scales (Neil Pederson, pers. comm.). Fires are strongly 

seasonal, burning in the early spring before leaf-out when dry winter air has caused low fuel 

moisture or in the fall when deciduous leaves drop, increasing fuel loads and allowing sunlight to 

reach the forest floor, further drying fuels (Lafon, Hoss, & Grissino-Mayer 2005). Fire severity is 

typically limited to consumption of litter and fine fuels, resulting in seedling and sapling mortality 

but mature trees are rarely killed and flames almost never transition to the canopy. The topographic 

complexity of the Appalachian Mountains introduces a finer scale spatial imprint on fire frequency 

and severity, however, as shallow soil depths, south-facing solar aspects, and wind exposure can 

lower fuel moisture levels and consequently increase fire risk. 

Despite the paucity of evidence over long time periods and large areas fuel models have 

associated the eastern U.S. with low to moderate spread rates and low flame lengths yielding low 

severity fires with very low risk of crown fire (Scott & Burgan 2005). Fire regimes vary across the 

mountain range. The northern Appalachians are estimated to have very long fire return intervals, on 

the order of 200 years, while southern Appalachian forests have shorter fire return intervals, perhaps 

35 years (Rollins & Frame 2006) and in some places as short as 10 years (Shumway, Abrams, & 

Ruffner 2001). Fire suppression has not increased fire risk in the eastern U.S. as much as it has in the 

western U.S., but shrubby species like rhododendron (Kalmia latifolia L.) and mountain laurel 

(Rhododendron maximum L.) have increased in abundance as a result of canopy and fire disturbances  
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and may support higher fire severity in the future as a result (Nowacki & Abrams 2008). 

Additionally, some tree species (like pitch pine Pinus rigida Mill. and table mountain pine Pinus pungens 

Lam.) are strongly associated with higher fire severity (Waldrop & Brose 1999; Brose & Waldrop 

2006). 

The humid temperate climate of the Appalachian Mountains is expected to become warmer in 

the future, with greater changes in the northeastern U.S. than the southeastern U.S. Based on the 

results of 16 general circulation models accessed through the Nature Conservancy’s Climate Wizard, 

under a low emission scenario (B1), temperatures are expected to increase by 1.5-2° C, with some 

models predicting just 1° C of warming and some predicting more than 3° C of warming. Under a 

high emissions scenario (A2), predicted increases in temperature range from 3° C warmer in the 

south to 4° C warmer in the north, by the 2080s, with some models predicting as little as 1.5° C 

warming in the south or as much as 5° C warming in the north. In the low emissions scenario, in the 

same time frame, precipitation is expected to increase slightly throughout the region, by roughly 5%, 

although some models (INM-CM3.0, IPSL-CM4, and MIROC3.2 (medres)) predict up to 10% less 

precipitation in the south. Predictions for the high emissions scenario show the same trends, 

increases in precipitation of roughly 10% throughout the region although the same three models 

predict less precipitation in the southern U.S. by up to 25% (MIROC3.2 (medres)). More extreme 

droughts will result from either a reduction in precipitation or an increase in temperature (and 

consequent evapotranspiration) or both (Barber, Juday, & Finney 2000). 

A major challenge in modeling interactions between climate, fire regimes, and vegetation lies in 

matching spatial, temporal, and biotic scales between landscape and modeling realms to accurately 

represent the future. For example, the topographic diversity and absence of homogeneous forest 

stands results in intricate spatial patterns of fire susceptibility and fire sizes which can not easily be 
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represented by the coarse spatial grain of a dynamic global vegetation model (DGVM). Furthermore, 

feedbacks generated by species-specific fire effects can not be investigated using DGVM’s that 

model at plant functional group levels. Response lags that occur in reality are difficult to model 

despite the long temporal record of the dynamics of response because doing so requires codifying 

more response mechanisms and increasing either the temporal grain or extent. Computational 

limitations of DGVMs simply prohibit fine scale incorporation of spatial, temporal, and biotic 

patterns and processes – yet forecasting climate-fire-vegetation dynamics in places like the 

Appalachians at large enough spatial extents to improve models of global carbon cycling remains an 

important goal. 

Given the importance of forest carbon under anthropogenic climate change and the lack of 

understanding of interactions between climate, forests, and fire, we simulated future climate 

scenarios using a DGVM (MC1) to answer the following questions: 

In what ways will fire regimes be different under future climate scenarios? 

How do forest types respond to changes in fire regimes and/or climate? 

Do changes in fire regimes or climate have implications for the role of Appalachian 
forests in global carbon cycling? 

Methods 

Dynamic global vegetation models (DGVMs) integrate models that forecast potential 

biogeographic distributions of vegetation (based on plant functional types (PFTs) or biomes) with 

ecosystem process models that simulate ecosystem biogeochemistry (Cramer et al. 2001).  Fire has 

previously been incorporated into these models to simulate postfire succession and subsequent 

changes to PFT distributions at relatively broad scales (Thonicke et al. 2001; Lenihan et al. 2003; 

Bachelet et al. 2005; Lenihan et al. 2008). MC1 is a deterministic physiologically-based 
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biogeographical model (MAPPS) with an emergent fire module (MCFire) and a modified 

biogeochemical module based on CENTURY that predicts vegetation lifeform (but not species) and 

fire regimes (Bachelet et al. 2001). Fire incidence and behavior is influenced by the fuel load 

generated by the vegetation type and by the fuel moisture, which is effected by the climate. Climate 

also influences the vegetation type through specific biogeographical rules related to temperature and 

precipitation thresholds, and fire influences vegetation type by changing the carbon balances in live, 

dead, and soil pools. 

Although it is possible to run MC1 at 4 km resolution for the entire Appalachian range, 

computational limitations favored the selection of four 120 km by 120 km domains in the following 

locations: the highlands of Georgia just southwest of the Great Smoky Mountains, central 

Pennsylvania including the ridge and valley province, central New York, and northeastern Maine 

(Fig. 4.1). These domains encompass the full range of forest types, topographic and soil variability, 

and climate conditions present in the Appalachians and thus provided a tractable arena in which to 

test model sensitivity. For the remainder of the chapter, these domains are referred to by their state 

names. 
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Figure 4.1. Locations of domains with forest biogeography from Ecomap. 
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Two parameters influence the incidence of emergent fire. The ‘fine fuel moisture code’ (FFMC) 

and the ‘buildup index’ (BUI) are used by the Canadian Wildland Fire Information System to 

account for the effects of fuel moisture on fire behavior (Stocks et al. 1989). The fine fuel moisture 

code is a numeric rating of the moisture content of litter (typically in the range of 80-90), the higher 

the number the lower the moisture content and the higher the flammability, and influences the 

seasonality of fire events. The buildup index, a drought index, is a numeric rating of the total 

amount of fuel available for combustion (typically in the range 20-70). In MC1, when daily FFMC or 

BUI rise above the user-defined threshold parameters, fire events are triggered. These parameters 

were used to manipulate fire regimes under historical climate conditions to investigate the role of 

fire in vegetation and carbon dynamics independent of climate change. Under future scenarios both 

indices increase and are therefore responsible for the increased incidence of fire in future 

simulations. 

Elevation and soil datasets for the eastern U.S were produced at 4 km resolution and used for all 

MC1 simulations. MC1 simulations were prepared with equilibrium and spinup phases that are run 

for 3000 and 1000 years respectively using detrended historical data to develop potential vegetation 

and all other biogeochemical conditions. Climate variables including monthly precipitation, and 

maximum, minimum, and mean temperature were provided as input datasets. Historical simulations 

used PRISM climate data (1895-2005 (114 years)) at 4km resolution (Daly et al. 2000, 2002). To 

predict changes in fire regimes for the 21st century we used a range of future climate scenarios that 

provided the necessary input variables and bracketed the expected change: CSIRO (mk3.5), Hadley 

(CM3), and MIROC (3.2) under the SRES A2 scenario (100 years) including maximum temperature, 

minimum temperature, precipitation, and vapor pressure.  Other simulation options are specified in 

Appendix D. Parameter values that were customized for the Appalachians including fire module 

reference trees and CENTURY parameters are provided in Appendix E. 
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To understand fire regimes under historical and future conditions, and the combined effect of 

shifts in fire regimes and warming on vegetation types and carbon storage, we ran MC1 under a 

range of fire and climate conditions (Fig. 4.2). We tested a wide range of FFMC and BUI threshold 

parameters (74-90 and 40-75 respectively) to determine which values generated fire regimes that best 

matched historical fire regimes in each of the domains (parameterization). This sensitivity analysis 

also permitted us to isolate the effect of fire from the effect of climate in the future by selecting the 

threshold parameter level with historical climate that provided an analogous fire regime to that 

generated under future climate conditions (Fig. 4.2 upper left). Finally, we simulated historical and 

future climates with fire suppression (no emergent fire) to test the effect of climate alone on 

vegetation types and carbon pools (Fig. 4.2 bottom).  

 

Figure 4.2. Fire and climate relationships between simulations. 

To summarize fire regimes, vegetation distributions, and carbon storage, we produced the 

following annual output variables for all cells. 

• Burn_year, flag indicating the occurrence of fire 
• PART_BURNyr, % area of the cell that burned during a fire event 
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• Ffmc_ann_max, maximum ffmc value during the year 
• Bui_ann_max, maximum bui value during the year 
• Bio_consume_live, carbon in live biomass consumed by fire 
• Bio_consume_dead, carbon in dead biomass consumed by fire 
• FIRE_KILLEDyr, carbon in live biomass killed by fire 
• C_SOMyr, soil carbon 
• C_ECOSYSyr, total ecosystem carbon 
• C_NONVEGyr, soil and litter carbon 
• C_FORESTyr, live tree carbon 
• NPPyr, net primary production 
• VTYPEyr, potential vegetation type 

 

A fire severity index reflecting the role fire plays in successional dynamics was also developed 

(Eq. 4.1). 

 
Eq. 4.1

 
∑ +

=
fires Forest

edLiveConsumLiveKilled
cell Carbon

CarbonCarbonrnedCellAreaBuFireIndex )(*%

The fire index increases as fire size increases and as the portion of live biomass killed or 

consumed increases. This index and all other reported statistics were produced using custom python 

scripts (Appendix F-H). 

Results 

Threshold parameter sensitivity. In general, as fine fuel moisture code (FFMC) and build up 

index (BUI) threshold parameters are lowered, more cells meet the fire criteria and larger areas of 

the domains burn at least once during the simulation period (Table 4.1). Fire size (the area within a 

cell that burns) decreases as the number of fires per cell increases, and fire severity, as judged by tree 

biomass killed by fire, also decreases but our fire severity index response is moderated by 
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compensating responses of fire size and total forest carbon. Carbon in live trees increases with fewer 

fires across the domain. 
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Table 4.1 Fire regime results for threshold parameter sensitivity analysis under historical climate and 

future climate with the selected base threshold parameter setting (FFMC=88, BUI=73). 

Simulation 
(FFMC / 

BUI)1 

Fire Extent 
(%)2 

Number of 
fires3 

Fire size4 
(portion) 

Live trees 
killed by fire5 

(gC*m-2) 

Forest 
carbon6 

(gC*m-2) 

Fire Severity 
Index7 

Maine 
90 / 75 15 5 0.57 1340 8837 0.44
88 / 73 15 5 0.57 1340 8837 0.44
86 / 70 55 2 0.78 1937 7989 0.40
82 / 65 78 3 0.70 1651 7162 0.43
78 / 60 90 4 0.56 1238 6526 0.42
74 / 55 92 9 0.34 695 6194 0.33
74 / 40 92 48 0.05 102 6224 0.06

CSIRO A2 96 3 0.54 1543 8539 0.36
Hadley A2 69 1 0.77 2304 9798 0.35
MIROC A2 0 1 0.14 268 10029 0.006

New York 
90 / 75 0 0 0 0  0
88 / 73 0 1 1 1815 6832 0.33
86 / 70 40 5 0.37 703 6460 0.15
82 / 65 64 7 0.35 665 6233 0.14
78 / 60 76 10 0.3 588 6141 0.13
74 / 55 82 14 0.21 429 6084 0.10
74 / 40 92 44 0.05 103 6011 0.03

CSIRO A2 93 17 0.15 301 6101 0.38
Hadley A2 90 10 0.30 646 6288 0.43
MIROC A2 80 6 0.46 897 5915 0.39

Pennsylvania 
90 / 75 0 0 0 0  0
88 / 73 0 1 0.91 1706 5459 0.32
86 / 70 31 3 0.52 981 4222 0.19
82 / 65 38 6 0.31 554 3882 0.12
78 / 60 40 10 0.18 323 3861 0.08
74 / 55 41 17 0.09 158 3893 0.04
74 / 40 44 52 0.02 33 3949 0.01

CSIRO A2 67 11 0.15 280 5030 0.30
Hadley A2 50 4 0.19 944 4979 0.35
MIROC A2 24 1 0.95 1965 5968 0.37

Georgia 
90 / 75 14 2 0.81 1575 7677 0.46
88 / 73 14 2 0.78 1504 7676 0.44
86 / 70 46 7 0.35 743 7428 0.18
82 / 65 74 9 0.33 734 7173 0.16
78 / 60 82 12 0.16 575 7100 0.13
74 / 55 90 16 0.19 426 7033 0.10
74 / 40 97 43 0.04 93 6989 0.03

CSIRO A2 98 22 0.15 363 7617 0.43
Hadley A2 97 24 0.13 385 7474 0.44
MIROC A2 94 7 0.35 871 7650 0.47
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1. In each domain, the first 7 rows labeled with the threshold pairings are the historical simulations 
and the three future simulations were all run with the 88 / 73 threshold pair. 

2. Fire extent is the number of cells in the domain that had at least one fire, divided by the total 
number of cells in the domain. 

3. The number of fires is the average number of fire events in cells that had fires during the 114 
year historical period or the 100 year future simulation period. 

4. Fire size is the average fraction of a cell burned by a fire during a given event. One cell is 4km x 
4km (1600 ha or 3954 acres) 

5. Live trees killed by fire is the average (across fires and cells) carbon in live biomass killed by fire. 
6. Forest carbon is the average carbon in live trees in all cells whether they burned or not. 
7. As calculated by the algorithm provided in Equation 4.1. 

 

Threshold parameterization. Across the domains, some interesting results emerge (Table 4.1). 

Based on other estimates of fire return intervals and fire severities explored above, setting the FFMC 

threshold parameter to 88 and the BUI threshold parameter to 73 yields 5 fires in 114 years in 

Maine, 1 in 114 years in New York and Pennsylvania, and 2 fires in 114 years fires in Georgia. Based 

on the fire return intervals and severities predicted by the LandFire model results and the Scott and 

Burgan fuel models (Scott & Burgan 2005; Rollins & Frame 2006), these predictions may be too 

frequent in Maine, about right in New York and Pennsylvania, and too infrequent in Georgia. 
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Table 4.2 Fire regime results for the benchmark threshold pair in four domains. 

Historic
al 

(88 / 73) 

Fire 
Extent 

(%)2 

Number 
of fires3 

Fire 
size4 

(portio
n) 

Live trees 
killed by fire5 

(gC*m-2)

Forest 
carbon6 

(gC*m
-2) 

Fire 
Severity 
Index7 

Maine 15 5 0.57 1340 8837 0.44

New 
York 0 1 1 1815 6832 0.33

Pennsylv
ania 0 1 0.91 1706 5459 0.32

Georgia 14 2 0.78 1504 7676 0.44

1. Fire extent is the number of cells in the domain that had at least one fire, divided by the total 
number of cells in the domain. 

2. The number of fires is the average number of fire events in cells that had fires over the 114 year 
historical period. 

3. Fire size is the average fraction of a cell burned by a fire during a given event. One cell is 4km x 
4km (1600 ha or 3954 acres) 

4. This is measured by the average (across fires (over time) and cells) carbon in live biomass killed 
by fire. 

5. This is the average carbon in live trees in all cells whether they burned or not. 
6. As calculated by the algorithm provided in Equation 4.1. 
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Question 1. In what ways will fire regimes be different under future climate scenarios?  

Predictions of future fire regimes based on future climate are mixed (See Table 4.1 for detailed 

results). Fire frequency decreases in Maine (from 5 fires in 114 years to 3 fires under CSIRO and 1 

fire under Hadley and MIROC in 100 years). In New York, Pennsylvania, and Georgia, the fire 

frequency increases from 1 fire in 114 years to 6-17 in 100 years, 1-11 in 100 years, and 7-24 in 100 

years, respectively. In all states MIROC predicts the lowest frequencies (no change in Pennsylvania), 

and with the exception of Georgia, CSIRO predicts the highest frequency. 

Linked with these changes in future fire frequencies, fire severity is predicted to go down when 

fire frequency increases, and vice versa. In New York 1815 gC m-2 live trees killed by fire under 

historical conditions dropped to 300-900 gC m-2 trees killed. In Pennsylvania live trees killed by fire 

fell from 1706 gC m-2 to 280-944 gC m-2 for CSIRO and Hadley, but increased to 1965 gC m-2 for 

MIROC. In Georgia, live trees killed fell from 1504 gC m-2 to 363-871 gC m-2. Maine, where fire 

frequencies rose, had an increase in trees killed by fire from 1340 gC m-2 to 1543-2304 gC m-2 for 

CSIRO and Hadley, but a unique decline in trees killed by fire under the MIROC scenario to 268 gC 

m-2. 

Where future simulations predict changes in fire regimes they usually indicate an increase in the 

total area within the domain that experiences burns (this is not the same as fire size.) CSIRO and 

Hadley predict and increase in the percent of the domain in Maine from 54-81%. These two models 

predict an increase of 90-93% in New York, 60-67% in Pennsylvania, and 83-84% in Georgia. 

MIROC predicts and increase in the domain burned in New York (80%) and Georgia (80%), but 

weaker effects in Pennsylvania (24%) and a decline in burned area in Maine (-15%)  

Question 2: How do forest types respond to changes in fire regimes and/or climate? 
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Fire suppression and choice of FFMC and BUI threshold parameters had no effect on the 

dominant vegetation type (indicating that fire has little or no effect on forest type) but decreased 

forest cover from 97 to 87 % under CSIRO and 93 to 77 % under Hadley in Pennsylvania (no 

changes in other states). However, future warming can cause shifts in different dominant vegetation 

type (Table 4.3). In Maine, predicted forest type changes from temperate evergreen needleleaf forest 

to temperate cool mixed forest, in New York the historical forest is a temperate deciduous broadleaf 

forest and only the MIROC future climate causes a shift to temperate warm mixed forest, in 

Pennsylvania the temperate deciduous broadleaf forest becomes more dominant under future 

scenarios, and in Georgia the historical dominance of temperate deciduous broadleaf forest shifts to 

a temperate warm mixed forest. All four domains were dominantly forested (as opposed to 

woodland, shrubland, or grassland) in every cell averaged over time. There was a shift toward a 

uniformly temperate climate in Maine and in Georgia a shift toward subtropical with the warmer 

future scenarios. 
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Table 4.3. Vegetation type for each domain under historical and future climate conditions. In cases 

where the fire suppression simulation showed different results they are reported in parentheses. 

 Dominant Vegetation Type1 Percent area of 
dominant type2

Percent 
classified as 
Temperate3 

Percent 
classified as 
Forest4 

Maine 
Historical Temperate Evergreen Needleaf 

Forest 
96 79 100 

CSIRO A2 Temperate Cool Mixed Forest 69  95 99 (100) 
Hadley A2 Temperate Cool Mixed Forest 62 94 99 (100) 
MIROC A2 Temperate Cool Mixed Forest 78 98 100 

New York 
Historical Temperate Deciduous Broadleaf 

Forest 
100 100 100 

CSIRO A2 Temperate Deciduous Broadleaf 
Forest 

78 98 100 

Hadley A2 Temperate Deciduous Broadleaf 
Forest 

86 81 99 (100) 

MIROC A2 Temperate Warm Mixed Forest 43 54 95 (100) 
Pennsylvania5 

Historical Temperate Deciduous Broadleaf 
Forest 

83 100 92 

CSIRO A2 Temperate Deciduous Broadleaf 
Forest 

93 (99) 93 (100) 87 (97) 

Hadley A2 Temperate Deciduous Broadleaf 
Forest 

88 (95) 90 (93) 77 (93) 

MIROC A2 Temperate Deciduous Broadleaf 
Forest 

76  100 95 

Georgia 
Historical Temperate Deciduous Broadleaf 

Forest 
99 100 100 

CSIRO A2 Temperate Warm Mixed Forest 75 89 100 
Hadley A2 Temperate Warm Mixed Forest 67 64 99 (100) 
MIROC A2 Temperate Warm Mixed Forest 74 34 100 
1. Dominance was determined by finding the average dominant vegetation classification for each cell over 

the simulation time period, and then finding the most common average dominant vegetation classification 
among domain cells. 

2. Percent area is the number of cells with the same average dominant vegetation classification divided by 
the total number of cells. 

3. Percent classified as temperate is the average over domain cells of the percent of time the cell spent in a 
temperate vegetation classification. (Vegetation classes 8 – 18) 

4. Percent classified as forest is the average over domain cells of the percent of time the cell spent in a forest 
vegetation classification. (Vegetation classes 4, 7 – 11, 19 – 22, and 36) 

5. In Pennsylvania, some ridges are classified as Coniferous xeromorphic woodland. The percent woodland 
in this domain is 3% (historical), and 1.8, 3.3, and 0 % (CSIRO, Hadley, and MIROC, respectively). 
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Question 3: Do changes in fire regimes or climate have implications for the role of Appalachian 

forests in global carbon cycling?Across all domains and simulations, and for all carbon pools, fires 

decreased total ecosystem carbon storage (below ground (live and dead), soil, above ground (live and 

dead)) (Fig. 4.3a-d). However, the fire effect was minor under historical climate and fire regimes, and 

more significant in future scenarios, especially in New York and Georgia where all three future 

climate predictions resulted in roughly 35% less carbon due to increased future fire than would be 

stored in the absence of fire. 

 

0
10000
20000
30000
40000
50000
60000
70000
80000

H
is

to
ric

al

H
is

to
ric

al
-n

o 
fir

e C
S

IR
O

C
S

IR
O

-n
o 

fir
e

H
ad

le
y

H
ad

le
y-

no
 fi

re

M
IR

O
C

M
IR

O
C

-n
o 

fir
e

E
co

sy
st

em
 C

ar
bo

n 
(g

C
/m

2)

Ecosystem Carbon in Maine

0
10000
20000
30000
40000
50000
60000
70000

H
is

to
ric

al

H
is

to
ric

al
-n

o …

C
S

IR
O

C
S

IR
O

-n
o 

fir
e

H
ad

le
y

H
ad

le
y-

no
 fi

re

M
IR

O
C

M
IR

O
C

-n
o 

fir
e

E
co

sy
st

em
 C

ar
bo

n 
(g

C
/m

2)

Ecosystem Carbon in New 
York

0
10000
20000
30000
40000
50000
60000

H
is

to
ric

al

H
is

to
ric

al
-n

o …

C
S

IR
O

C
S

IR
O

-n
o 

fir
e

H
ad

le
y

H
ad

le
y-

no
 fi

re

M
IR

O
C

M
IR

O
C

-n
o 

fir
e

E
co

sy
st

em
 C

ar
bo

n 
(g

C
/m

2)

Ecosystem Carbon in 
Pennsylvania

0
10000
20000
30000
40000
50000
60000
70000
80000

H
is

to
ric

al

H
is

to
ric

al
-…

C
S

IR
O

C
S

IR
O

-n
o 

fir
e

H
ad

le
y

H
ad

le
y-

no
 fi

re

M
IR

O
C

M
IR

O
C

-n
o 

fir
e

E
co

sy
st

em
 C

ar
bo

n 
(g

C
/m

2)

Ecosystem Carbon in 
Georgia

Figure 4.3. Ecosystem carbon under historical and future climate scenarios with and without fire for 

each of the test domains. a) Maine, b) New York, c) Pennsylvania, d) Georgia. 
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Discussion 

Parameterizing a fire model in the east presents a number of challenges. First, records on which 

to base estimates of fire frequency and severity are sparse. Secondly, many areas have fire return 

intervals greater than the historical climate data used in these simulations. Because of this, 

considerable uncertainty remains in the choice of a fine fuel moisture code threshold parameter of 

88 and a build-up index threshold parameter of 73. Furthermore, because these threshold 

parameters are set at the command line when the simulation is executed, they cannot be customized 

on the basis of forest type, one pair must be set for the entire domain. The short simulation times 

relative to “natural” fire return intervals make it difficult to parameterize the model, but our results 

showing fires are too frequent in Maine and not frequent enough in Georgia imply that defining 

thresholds based in some way on forest type or species composition may generate more accurate fire 

regimes throughout the region. 

These simulations clearly point to a greater effect from warming temperatures than from fire 

effects on forest type. Historical climate with no fire, historical fire, and inflated fire (by lowering 

FFMC and BUI threshold parameters) show strong increases in fire frequency as expected, but 

almost no differences in dominant vegetation type (although the higher fire regimes can in some 

cases result in lower forest cover.) Future climate showed almost no effect of fire regimes on 

vegetation classification. We show that fire regime shifts in these forests, such as a decrease in fire 

severity with increasing fire frequency, seem to represent negative feedbacks that limit the fire 

effects on vegetation. 

Fire does appear to reduce potential carbon storage in Appalachian forests under future 

scenarios due to the increase in fire frequency. This presents a potential positive feedback with 

global climate change as the warming promotes fires and fires release carbon, which could promote 
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more warming. On the other hand, it may present an opportunity for forest management to mitigate 

carbon releases from forest fire. Fire suppression can result in unintended increases in fire severity in 

many forests due to fuel build-up, but this is less of a problem in eastern forests where production 

and decay rates are balanced and this leads to lower fuel loads (Graham & McCarthy 2006). If this 

fuel decay continues under future climate conditions, these results suggest that fire suppression and 

thus carbon storage may be a viable management action in the interest of terrestrial carbon storage, 

since fire suppression did not result in more severe fires within the study areas. 

There remain a number of uncertainties. Fire regimes in the southern Appalachians are the 

combined result of climate and vegetation. As these fire-adapted and fire-promoted species migrate 

northward, fire frequencies may increase in the mid-Atlantic thus enhancing the selection of fire-

adapted species and accelerating the forest compositional shift. However, if fires are driven more by 

climate than vegetation and fuels, this interaction will be minimized. In this case the greater impact 

on Appalachian forests would be an increased risk of severe and or widespread drought – the effects 

of which may not be captured by the future climate models and scenarios driving this study. 

Dynamic interactions are complex, and correlation between variables does not imply causation. 

Nonetheless, exploring these temporal correlations (Fig. 4.4 a-c) may provide some insight into the 

question of whether or not fires are more influenced by climate or vegetation in this region. In the 

1925 fire (north-central Maine) (Fig. 4.4a), vegetation type switched from temperate evergreen 

needleaf forest to boreal evergreen needleleaf forest roughly concurrently (Fig. 4.4b). In this case, 

vegetation shift could not have triggered a fire, at least not in any real sense. More likely, low 

precipitation in 1921, 1924, and 1925 triggered the fire in 1925 (Fig. 4.4c). The fires in 1987 also 

followed drought years in 1985-1987, but in this case the shift to boreal evergreen needleaf 

preceeded the fire event and was persistent from 1982-1989. Although this location reverted to 
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temperate evergreen needleleaf forest briefly, it returned to the boreal forest type from 1993-1997, 

during which the 1995 fire took place.  

This very limited evidence leaves open the question of whether or not fire events are more 

influenced by climate or vegetation – a question that is certainly not new in the field of fire science. 

Answers to this question would help shed light on potential feedbacks between climate, species 

composition, and fire regimes and would improve the prediction of future forest condition in the 

Appalachians. 

The results described here demonstrate the importance of regional-scale studies. While much 

finer grained topographic patterns strongly affect fire behavior and fire extent in ways that can not 

be captured in a DGVM, the coarser spatial scale employed here facilitates an exploration of climate, 

fire, and vegetation relevant to predicting trends in earth systems over the next century. 

Heterogenity of climate and fire effects on vegetation exists at all scales. In this research the MIROC 

climate scenario in particular predicted different magnitude and direction of change in fire regimes 

across the four locations in the eastern U.S. The importance of the predictions of a small shift in 

from forest to woodland in Pennsylvania and dramatic losses of carbon in most areas under future 

climate depends on the scalar perspective (over long time periods and large areas, and viewed at 

biotic levels above the species level). The absence of abrupt shifts in vegetation type is a promising 

indicator of a resilient forest system, but the strong predicted increase in fire frequency will require 

adjustments in forest fire management in the near term. 
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Figure 4.4. Time series of results from MC1 for north-central Maine showing a) vegetation type 

(temperate evergreen needleaf forest (VTYPE=8) and boreal evergreen needleleaf forest 

(VTYPE=4)), b) precipitation, and c) incidence of fire during the historical period. 
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Given the anticipated rapid climate change, there is a great urgency to understand the dynamics 

of complex natural systems and apply theory to the practice of natural resource stewardship with 

more accuracy and efficiency than ever before (Heller & Zavaleta 2009). Goals for natural resource 

management have often been based on static snapshots of resource conditions because it is 

impossible to “manage” nature while “allowing” the state transitions associated with vegetative 

succession or disturbances like fire. Resilience theory has helped provide a framework for 

understanding change in ecosystems, but practical application has remained challenging. 

 The notion of resilience, introduced by C.S. Holling in 1973, provides an important theoretical 

framework for these investigations because it shows how interactions between biota and physical 

drivers can lead to seemingly abrupt transitions between states. (Holling 1973) defined resilience as a 

property of the system that “determines the persistence of relationships within a system and is a 

measure of the ability of the system to absorb changes of state variables, driving variables, and 

parameters, and still persist”; by contrast, stability was defined as “the ability of a system to return to 

an equilibrium state after a temporary disturbance.” In an exploration of possible behavior Holling 

(1973) identified domains of attraction containing locally stable states. 

Since 1973, numerous explorations of these ideas have contributed conceptual developments. 

Engineering resilience (recovery time) has been distinguished from ecological resilience (amount of 

disturbance necessary to cause a state change) (Gunderson 2000). Within ecological resilience, 

numerous papers have explored the idea of thresholds (tipping points) separating alternative stable 

states with the goal of understanding how, why, and when ecosystems may be driven into new states 

(Muradian 2001; Scheffer et al. 2001; Peters et al. 2004; Burkett et al. 2005; Groffman et al. 2006; 

Dakos et al. 2008) and whether or not such state changes represent a shift in variables (e.g. 

community composition or functional relationships) or a shift in parameters (the underlying basis 

that defines state stability) (Beisner, Haydon, & Cuddington 2003).  
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Holling’s (1973) definition of resilience requires an ecosystem to persist – but what constitutes 

persistence? In the context of a single species, persistence means survival over extinction or extirpation. 

But in the context of a forest community, persistence depends on what is valued. A forest products 

company may consider any future state in which forest growth rates meet logging goals to represent 

a resilient forest, regardless of the species composition, while an organization working to preserve 

biodiversity would consider minimal losses of species richness to represent a resilient forest. Hunters 

might consider the forest resilient if it can continue to provide adequate habitat for game species, 

and hikers and other outdoor enthusiasts might see the forest as relatively unchanged if the 

foundation species remained dominant. Truly, to see a forest as resilient is to judge that the past and 

future states are equivalent by some metric and through some lens (Carpenter et al. 2001). 

A more modern definition, “Resilience is the capacity of a system to absorb disturbance and 

reorganize while undergoing change so as to still retain essentially the same function, structure, 

identity, and feedbacks” (Walker et al. 2004) permits change with a judgment of whether or not 

“essentially” the same functions are maintained. For eastern forests, this kind of definition has been 

reinterpreted. “Ecosystem health and sustainability… can be defined and measured in terms of 

carbon, nutrient, and water cycling rates and pool sizes, resistance and resilience to catastrophic 

disturbances.” (Vose 2000) The additional specificity of this definition helps bridge from theory to 

practice, but judgments of the sensitivity of the system to changes in measurement remain. 

Considering the rapid anthropogenic climate change confronting ecosystems over the next 100 

years, feared catastrophic ecosystem shifts (Breshears, López-Hoffman, & Graumlich 2011), and 

potential feedbacks within the global carbon cycle (Cox et al. 2000; Kurz et al. 2008), shifts between 

ecosystem states with vastly different carbon storage capacity are a top concern for the planet 

(Watson et al. 2000). Carbon storage varies in forests worldwide (Table 5.1). 

102 
 



Table 5.1. Carbon storage by biome type globally. Adapted from Watson et al. (2000). 

 Carbon  
Biome Area Vegetation 

(Gt C) 
Soils 
(Gt C) 

Total 
(Gt C) 

Total per Area 
(Gt C per 106 km2)

Temperate 
Forests 

10.4 59 100 159 15.3

Tropical forests 17.6 212 216 428 24.3

Boreal forests 13.7 88 471 559 40.8

Tropical savannas 22.5 66 264 330 14.6

Temperate 
grasslands 12.5 9 295 304 24.3

Deserts and 
semideserts 45.5 8 191 199 4.4

Tundra 9.5 6 121 127 13.3

Wetlands 3.5 15 225 240 68.6

Croplands 16.0 3 128 131 8.2

Total 151.2 466 2011 2477 16.4

Temperate Forest 
by percentage 

6.9 % 12.7 % 5.0 % 6.4 % 

 

Temperate forests have relatively low soil carbon but relatively high vegetative carbon. When 

compared with other forest types, temperate forests have roughly average carbon storage on a per 

area basis. Dynamic Global Vegetation Models focus predictions on state changes at the level of 

plant functional types because shifts between forest and grassland (for example) have strong effects 

on the carbon cycle, but also because prediction of species-level state changes continues to be 

computationally limited. While carbon releases from current fire regimes in the Appalachians seem 

to be limited, future carbon storage under more frequent fire intervals may be lower than at present 

(see Chapter 4). 

Our actions today (land development, forest harvest, fire suppression or prescription, air 

pollution and atmospheric deposition, greenhouse gas emissions, forest management, natural 

resources stewardship etc.) all play a role in determining what these future forests will look like and 

what services they provide (Folke et al. 2004). At the present time, however, we lack the ability to 
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generate a synthetic and comprehensive understanding of the interactions between these human 

actions and ecosystem responses. Without this understanding, and an open debate regarding which 

forest characteristics are most valued, determining management goals and plans to reach them is 

nearly impossible. First assessing, and then building Appalachian forest resilience is fundamental to 

successfully managing these forests through a century of potentially rapid climate change (Scheffer 

et al. 2001).  

While the concept of resilience has become a standard approach for thinking about the sensitivity 

of systems to perturbations, regime shifts have been easier to demonstrate with theoretical models 

than empirical observation (Scheffer et al. 2001). This is due, in part, to interactions of phenomena 

across scales of space, time, and ecological organization that disguise underlying mechanisms with 

layers of complexity (Scheffer et al. 2001; Peters et al. 2004). While shifts in species composition as a 

result of climate, fire, disease, or pests might be seen by some as a sign of non-resilient responses at 

short time scales, these shifts may be seen by others as the adaptive responses of a resilient forest to 

external stresses on long time scales (Peterson, Allen, & Holling 1998; Carpenter et al. 2001; 

Smithwick 2011). In fact, high diversity has been seen as a stabilizing characteristic because it can 

provide functional redundancy that permits species to substitute for each other and satisfy the 

requirement that the system maintain functional processes (MacArthur 1955; Peterson et al. 1998). 

To the extent that functional redundancy can be provided by species interacting with the ecosystem 

at different scales, the redundancy offers a greater degree of stability and/or resilience (Tilman 1997; 

Peterson et al. 1998). 

Despite the recognized difficulties in applying concepts of resilience to specific systems, progress 

has been made in bridging theory and real-world ecological dynamics. Carpenter et al. (2001) used 

two case studies to demonstrate that when resilience is defined in terms of a disturbance and a 
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response, model and field measures can be used to predict thresholds. (Lenton et al. 2008) identify 

eight “policy-relevant tipping points” (e.g. arctic summer sea ice) for which critical values for single 

control parameters can be used to assess transition timescales and the degree of reversibility of the 

key impacts. Importantly, the crossing of one threshold can immediately trigger other thresholds, 

especially at other scales, to be crossed in a cascading fashion (Kinzig et al. 2006). 

Despite complexity inherent in multi-scalar resilience assessments, Scheffer et al. demonstrate 

that the strongest cases for “alternative stable states” involve observations of repeated shifts, studies 

of feedback mechanisms, and models showing that these mechanisms can explain the repeated 

shifts. Similar to the framework of Carpenter et al. (2001), I investigate historical examples of 

disturbances affecting Appalachian forests, to understand resilience in the context of global climate 

change. For each example resilience is determined in the context of the spatial and temporal scales, a 

disturbance and the ecological response. 

Quaternary Forest Regrowth - Glaciation displaced temperate species to refugia in the 

southern U.S. and migration (among other ecosystem dynamics) has generated the forest 

distributions we are familiar with today. 

Spatial Scale: Global 
Temporal Scale: 1.5 Ma to present 

Disturbance: Global Climate 
Change 

Ecological 
Response: 

Forest Regrowth 

 

Paleoecological approaches have provided much detailed description of forests in the eastern 

U.S. over the last 1.5 Ma (the Quaternary Period) (Davis & Shaw 2001) and these long-term records 

are better sources of data on which to base a description of “natural” conditions and inform 

planning for long-term management of resources (Willis & Birks 2006). While climatic change is 

105 
 



clearly an important driver of species’ range shifts, forest composition at any given time represents 

the combined effect of climate with species-specific diseases, migration rates, accommodation to 

stages of soil formation, and anthropogenic impacts (Graham 1999). During the quaternary period, 

deciduous forests in eastern North America and east Asia survived significant climate changes while 

similar forests in Europe did not. The resilience of the North American and Asian deciduous forests 

has been attributed to topography that facilitated migration and the absence of competing 

anthropogenic land uses(Graham 1999; Hewitt 2000). European deciduous forests had neither 

advantage, and it may be argued that climate change coupled with land use change drove ecosystems 

from one domain of attraction to another. 

Southern Appalachian Multi-Year Dustbowl Drought – The dustbowl drought was spatially 

extensive and multi-year. In this example, forest impacts were documented in great detail near 

Asheville, NC, where species-specific tree mortality occurred on specific landforms, but impacts 

were restricted to the scale of a forest stand. 

Spatial Scale: Experimental Forest 
Temporal Scale: 1925-1929 

Disturbance: Regional Drought 
Ecological Response: Tree Mortality 

 

The dust-bowl drought with below average precipitation from 1921 to 1927, and with 1925 

annual precipitation just 32 % of the 27-year average in Asheville, NC, caused leaves to brown and 

even fall on ridges and upper slopes in Bent Creek Experimental Forest; about half of the drought-

affected trees died within 4 years of drought or secondary causes (Hursh & Haasis 1931). Species 

showed very different responses to the drought. For example, black oak (Quercus velutina), red oak 

(Quercus rubra), and scarlet oak (Quercus coccinea) had severe leaf damage during the drought and 

almost 100% mortality 4 years later, while chestnut oak (Quercus prinus), pine species (Pinus sp.), and 
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hickory species (Carya sp.) showed less evidence of injury and almost 100% survived. The strongest 

drought effect was in shallow soils with bedrock outcrops, and the high clay content presumably 

made the 5% oven-dry soil moisture completely unavailable to the trees. Hursh and Haasis (1931) 

also implicated disease, noting that the climatic conditions may have disturbed natural resistance of 

scarlet oak to the shoestring fungus associated with the roots. Because these significant shifts in 

species composition were confined to specific landforms, the long-term and broader-extent effect of 

the drought does not constitute a shift from one state to another, and it can be argued the ecosystem 

is seen as resilient to this level of drought. But if instead, the value of the ecosystem is focused on 

non-tree species with shorter lifespans and/or small territories, the drought-induced mortality may 

demonstrate a lack of resilience to drought. 

Land-clearing for timber and/or agriculture – European settlement was associated with 

widespread clearing for agriculture, timber-production, and fuel. After abandonment, most of these 

lands have regrown forests, although legacy effects continue. 

Spatial Scale: Nested, local - regional 
Temporal Scale: 1850 – present 

Disturbance: Land-clearing 
Ecological Response: Forest Regrowth 

 

Clearing of temperate forests has occurred world-wide for timber harvest or land conversion to 

agriculture, amounting to a reduction in forest cover of about 600 x 106 ha (Houghton 1995). In the 

eastern U.S., forests were cleared for agricultural land conversion, timber harvest, and fuel (Williams 

1982). Land cover typically reverts to a forested condition when abandoned (Compton & Boone 

2000), but a number of legacy effects remain. Severe and abrupt disturbances, like clear-cutting, can 

accelerate background successional processes resulting in abrupt changes in species composition 

(Abrams & Scott 1989). Natural reforestation of abandoned lands has, in fact, resulted in 
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demonstrable shifts in species composition including homogenization (Foster, Motzkin, & Slater 

1998). 

Understory communities appear to have long-term reductions in cover and diversity (Duffy & 

Meier 1992; Wyatt & Silman 2010) but others have concluded the effects are strongly determined by 

disturbance intensity and colonizing species (Belote, Jones, & Wieboldt 2011). In the Great Smoky 

Mountains, regeneration forests of at least 80 years of age in areas with histories of concentrated 

settlement have significantly less down deadwood coarse debris, while logging histories did not leave 

such strong legacy effects in the coarse woody debris (Webster & Jenkins 2005). Forest clearing also 

has long-term (80-110 yr) effects on above-ground biomass (192 Mg/ha in forests with disturbance 

history vs. 261 Mg/ha in old-growth forests), forest floor organic matter (more in burned and 

logged sites than under old-growth stands), and nitrogen cycling (nitrification rates were lower in 

forests with disturbance history than old-growth stands) (Goodale & Aber 2001). Logging also 

leaves a legacy in the spatial patterning of nutrient distributions (Likens et al. 1970; Fraterrigo et al. 

2005; McLauchlan et al. 2007). The combined effects of changes in overstory and understory species 

composition and soil conditions including soil chemistry following agricultural abandonment have 

been associated with increased invasion of non-native plants (Kuhman, Pearson, & Turner 2011). 

American chestnut canker, eastern hemlock wooly adelgid – The Appalachian forests 

experienced a significant decline in a dominant species when American chestnuts were devastated by 

canker. Today, the hemlock wooly adelgid could inflict a similar impact if eastern hemlock does not 

survive the spread of this non-native insect pest. 

Spatial Scale: Regional 
Temporal Scale: 1900 – present 

Disturbance: Species-specific disease 
and pest 

Ecological Response: Tree Mortality 
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American chestnut (Castanea dentata) was co-dominant with oak for at least 1400 years until 

chestnut blight, a wind-dispersed canker pathogen (Cryphonectria parasitica), was noticed in 1904 in 

New York. Within 50 years,  chestnut trees were reduced to an understory tree across its range 

(Ellison et al. 2005). Following the decline of American chestnut, eastern hemlock (Tsuga candensis) 

expanded (Ellison et al. 2005). But in 1951 the hemlock wooly adelgid (Adelges tsugae), originally from 

southern Japan, was reported near Richmond, VA and has now spread south to Georgia, north to 

Maine, and west to Kentucky and Tennessee. Given current rates of mortality and lack of effective 

control, hemlock may be eliminated from much of its range within a few decades (Ford et al. 2012). 

The consequences of this loss of a dominant species are functional, and arguably represent a system 

that is not resilient, at least on a short-time scale. Infested stands are less productive, have stronger 

seasonal hydrology, and accelerated rates of decomposition and nutrient cycling (Martin 2012). 

Because the species has a wide geographic range encompassing a wide range of conditions, 

successional trajectories do not appear to be directed toward a single replacement species (Ellison et 

al. 2005). Other examples of species-level threats include the emerald ash-borer on ash trees and the 

gypsy moth that attacks oaks preferentially. 

Does the past demonstrate resilience in the future? 

In each of the examples above, species composition was affected by disturbance but the site 

returned to forested cover. Furthermore, forest types remained within the range of oak-hickory, 

hardwood, and mixed deciduous-evergreen. Translated to the ball and cup heuristic (Gunderson 

2000), species composition or forest types are nearby shallow cups with weak stability, while the 

entire basin of forest types is separated from a basin of savannah or grasslands by a high, well-

defined ridge and stronger stability. Reductions in the adaptive capacity of an ecosystem (Gunderson 
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2000) can be seen as making the cups shallower and transitions between cups easier (Martin 2012). 

Thresholds may be approached abruptly through disturbances (especially concurrent with extreme 

conditions) or slowly as conditions trend continuously. 

The Appalachians have a number of intrinsic characteristics that enhance resilience – a high 

species diversity means that general plant functional types can remain constant even when one or 

another species succumbs to a stress (e.g. the impact of chestnut and now hemlock decline) (e.g. 

Tilman 1997); a high degree of topographic complexity over small spatial extents provides a density 

of microclimates that support this high diversity of species even under changing climatic conditions 

(demonstrated in Chapter 2 of this dissertation); and the orientation of the mountain range along the 

vector of climate change (past, present, and future) facilitates migration (demonstrated by 

paleoecological research and expanded in Chapter 3). From the perspective of the global carbon 

cycle, if there is an alternative ‘stable’ state to the current forested state for the Appalachians, none 

of the diverse historical disturbances described above have caused the ecosystem to cross a 

threshold. 

In general, it would appear that ecosystems are more resilient when assessed at large scales. A 

given stressor make eliminate a species (low biotic level) but leave a forest (high biotic level) with 

otherwise similar leaf area, litter, or soil conditions. In just a year (short time scale), people can clear 

large patches of forest, but after 100 years of abandonment (long time scales) the forest (high biotic 

level) has grown back, although soil and nutrient processes may lag still. Finally, while disturbances 

with small spatial extents may be severe and ecosystems in these locations will be radically altered, 

when the ecosystem is viewed at a large spatial extent, the overall function of the forest seems to be 

maintained. 
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The historical examples presented above can help us predict the degree to which forest responses 

will be resilient to given changes – but the interactions are complex, and in some cases 

unprecedented (O’Brien, Sygna, & Haugen 2004). If ecosystem stressors of the past did not drive 

the Appalachian forests permanently toward a non-forested state, this may not be an assurance that 

future conditions will not (Foster et al. 1997). Compounded perturbations and the ecological 

surprises they generate will become more common as more pervasive anthropogenic impacts overlay 

rapid global climate change (Paine, Tegner, & Johnson 1998). In particular, even if the magnitude of 

climate change is unremarkable, a fast pace of change could cause regime shifts that would not take 

place if thresholds were approached more slowly (e.g. equilibriums can develop if vegetation 

responses are short relative to the period of climate change (Webb 1986)). Conversely, extremely 

rapid climate change (in terms of trends or frequency of disturbance) could kill individuals and 

interfere with genetic or migratory adaptation processes if these responses require comparatively 

long time periods. The comparison of time scales of climate change and response processes 

highlights the vulnerability of trees which typically require 20-30 years to reach reproductive age and 

conversely the advantage of insects, some of which can have multiple generations in one year. 

In the eastern U.S. we can anticipate 3-4 °C warming over the next 100 years, with more warming 

in the northeastern U.S. than the southeastern U.S. and smaller changes in precipitation of up to 

10% increase, although there is a possibility the southeastern U.S. might receive less rainfall . Tree 

species are expected to migrate northward, uniquely, in response to warming temperatures. While 

there is considerable concern that historical migration rates are slower than the velocity of climate 

change (Malcolm et al. 2002; Svenning & Skov 2007), temperature increases of 3-4 C, alone, may 

threaten only the species inhabiting small spatial extents, particularly those on mountain tops.  
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But temperature does not act alone. Warmer temperatures increase evapotranspiration rates, 

thereby decreasing soil moisture and causing drought stress in trees (Barber, Juday, & Finney 2000). 

While there is a predicted increase in precipitation in the Appalachians, it is unclear if this will be 

sufficient to compensate for the potential water deficit associated with increased temperature and 

evapotranspiration. Even if the net hydrologic effect is neutral in average years, extreme events will 

undoubtedly expose the forests to infrequent severe droughts. This effect may be gradual or abrupt 

and no forest type or climate zone is invulnerable (Allen et al. 2010). Even in humid forests, drought 

can cause tree mortality as seen historically in the dust bowl example described above (Hursh & 

Haasis 1931) and more recently in the Amazon during the 2005 and 2010 droughts (Lewis et al. 

2011). The prospect of a change in drought severity or frequency presents a potential challenge to 

historic Appalachian resilience. 
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There are at least three explanations for drought-induced forest-mortality: 1) extreme drought 

and heat cause cavitation of water columns in the xylem, 2) water stress weakens trees by limiting 

metabolism resulting in carbon deficits, and 3) warm periods support population growth of pests 

and diseases allowing them to overwhelm weakened host trees (Adams et al. 2010; Allen et al. 2010). 

One such example is the increase in red maple (Acer rubrum) over oak species (Quercus sp.) that 

may represent a decline in forest resilience because while red maple may survive predicted climate 

change, it is susceptible to Asian longhorned beetle (Dodds & Orwig 2011; Martin 2012). Direct tree 

mortality is another concern. Trees that reach maturation under historical conditions with infrequent 

drought may be particularly poorly adapted to survive extreme droughts because below-ground 

architecture has not been optimized for water extraction. Furthermore, drought-stressed trees 

consume carbohydrate reserves more quickly but cannot photosynthesize due to closed stomata 

making trees more and more vulnerable to pest outbreaks or diseases (Williams et al. 2012). 

Obviously, wildfire becomes more frequent and/or more severe under drought conditions when all 

fuels have lower moisture content. 

In this dissertation I have developed and applied tools that contribute to an improved 

understanding of Appalachian forests and can be used to develop management strategies across this 

region: 

1) Describing the role of topography in supporting species survival of global climate 

change over geologic time, both quantitatively and qualitatively. These results are broadly 

applicable to montane geographies world-wide, and can be used locally to prioritize 

conservation activities and maximize biodiversity conservation. 

2) Offering a network theory approach to integrate spatially heterogeneous factors 

describing migration potential. This method is applicable in any geographic setting where 

113 
 



relevant data can be used to predict migration pathways. In the Appalachians it has 

highlighted the potential importance of the Allegheny Front for northward migration of 

plants with wind-dispersed seeds. 

3) Exploring fire regimes and future climates in the Appalachians with the conclusion 

that these forests are unlikely to undergo abrupt transitions over the next 100 years when 

considered at large spatial extents, long temporal scales, and high biotic levels. Localized 

abrupt transitions are possible where soil and climate conditions increase likelihood of severe 

storms or fires or other disturbances or where single species are strongly dominant and 

potentially limit functional redundancy. Predicted increases in fire frequency can slowly 

change dominant forest species by suppressing saplings that are vulnerable to fire.  

There is no question that Appalachian forests will change – in species composition, disturbance 

regimes, habitat quality, species diversity, timber production, and many other ways. All of these 

characteristics are ecosystem services that are valued to differing degrees by different stakeholders. 

Whether or not the forests of the future are “desirable” is a human judgment, and it can be based 

either on our needs and desires or on what we understand to be best for all species. In general, most 

species will be able to adapt to slow changes, regardless of the direction or magnitude. My research 

and the examples explored in this chapter demonstrate that the Appalachians have intrinsic 

properties (high legacy biodiversity, high topographic complexity, and others) that damp responses 

to climate change – improving persistence for all species. 
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Appendix A: Supplementary Figures, Methods, and Results 

 

Figure A1. Summary of Results. Shannon Diversity Index is mapped on the left, and the best 
topographic predictor of diversity, density of contour lines is mapped on the right. 
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Figure A2. Map of study area with locations of 50 km x 50 km elevation samples. 
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Figure A3. Example of sensitivity analysis using 7 randomly generated locations for elevation 
sampling in New Hampshire. 
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Figure A4. Example of sensitivity analysis using 5 elevation sample sizes ranging from 10 km x 
10 km to 100 km x 100 km. 
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Figure A5. Species Richness. This is the number of tree species based on FIA data, higher 
numbers (red) represent greater diversity.  
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Figure A6. Maximum Importance Value. This is the highest importance value for a species in 
each cell based on FIA data. Lower numbers (red) represent cells that are not dominated by any 
species and are therefore more diverse.  
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Figure A7a Correlations (spearman Rho) between terrain metrics and Shannon Diversity Index. 
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Figure A7b. Correlations (spearman Rho) between terrain metrics and Species Richness.  
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Figure A7c. Correlations (spearman Rho) between terrain metrics and Maximum IV.  
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Figure A8. The relationship between elevation range and change in habitat area with elevation 
(hypsography).  

129 
 



Figure A9. Species Richness as a function of rugosity (3-dimensional area divided by 2-
dimensional area) in log-log scale. This is similar to a species-area relationship showing an 
increase in species richness in cells with larger 3-dimensional surface area. 
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Supplementary Methods 

The National Elevation Dataset provides a continuous topographic surface to study linkages 

between terrain and species diversity. National Elevation Datasets (NED) tiles for the 

Appalachian region were downloaded from the USGS Seamless DataServer and merged in 

ArcGIS 10.0 (using the MosaictoNewRaster tool). NED resolution of 1 arc second, or 

approximately 30 m, was used throughout the domain, with a reported vertical accuracy of +/- 

2.44 m (root mean square error) 31. A grid with 25 km spacing (Fig. A2) was used as center 

points for 250,000 ha (50 km x 50 km) extracted samples of the NED (using the ArcGIS 10.0 

clip tool). With 25 km spacing and 50 km edge dimensions, each sample overlaps its neighbors 

by 50%. The 25 km grid spacing provides an adequate spatial resolution to characterize the study 

area, while the 250,000 ha sample area is large enough to capture whole mountain features. 

Sensitivity analysis, described below, was performed to assess the effect of the elevation data 

resolution, sample size, and location on the metrics. 

Several authors have reviewed techniques for quantitative description of topographic surfaces  

including shape irregularity metrics that link habitat patch shape irregularity to forest 

biodiversity32. Others have specifically identified terrain complexity (surface roughness) as 

important in analyses of landscape structure and have reviewed available metrics 33, 34.  Previous 

studies of topographic metrics have focused on mean elevation, elevation range (relief), slope, 

aspect, or solar insolation5, 23, 25, 26 and some have extended the analysis to include topographic 

complexity or roughness7. Another approach has been to use species-area relationships to 

understand declining richness with elevation20. Connectedness of features has also been 

investigated7, 27.  Of the metrics reviewed in the literature, those that quantify an aspect of terrain 

that is related to species’ adaptive responses to climate change, or to biodiversity in general were 
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selected for this study. Table S1 defines these selected metrics, describes the tools or methods 

used to measure them, explains the hypothetical ecological implications of the measured 

topographic characteristics, and provides references documenting prior applications of the 

metrics. 

 



 

Metric Definition Tools1 Ecological Relevance References 
Elevation 
Range 

Maximum 
Elevation – 
Minimum 
Elevation within a 
sample area 

ArcGIS 10.0, 
Raster Statistics 

A greater elevation range (sometimes called 
relief) provides a wider range of climate 
spaces for temperature and precipitation. 

34, 35 

Standard 
Deviation of 
Elevation 

Standard deviation 
of elevations 
within a sample 
area 

ArcGIS 10.0, 
Raster Statistics 

Similar to Elevation range, but indicating the 
degree of variability across the sample area 

7, 25, 33, 34

Rugosity 3-dimensional 
surface area / 2-
dimensional 
surface area 

ArcGIS 10.0, 3D 
Analyst, Surface 
Volume Tool 

Higher values are found in areas with greater 
altitudinal variation and gentler slopes, which 
may provide a wider range of climate spaces.  

34 

Density of 
Topographic 
Contours 

 FRAGSTATS 3.3, 
(Area/Density/Edge 
Metrics), Patch 
Density 

This metric provides an indication of slope and 
elevation range. Higher densities represent 
areas with a higher diversity of climate niches. 

34,36 

Fractal 
Dimension 

2*ln(0.25*Patch 
Perimeter) / 
ln(Patch Area) 

FRAGSTATS 3.3 
(Shape Metrics), 
Fractal Dimension 
Index 

Fractal dimension has been evaluated for 
topography 37,38 but not using contour lines 
which should provide an integrated index of 
aspect variability5,7 and landform variability 
(coves and noses)26. These topographic 
characteristics govern sun and wind exposure, 
and effect hydrology and soil depth, so the 
variability therein should represent the density 
of diverse habitats. 

39 
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Perimeter to 
Area Ratio 

Patch Perimeter 
(m) / Patch Area 
(m2) 

FRAGSTATS 3.3 
(Shape Metrics), 
Perimeter to Area 
Ratio 

Ecological relevance is similar to fractal 
dimension 

36 

Shape Patch perimeter / 
minimum possible 
patch perimeter for 
the same area 

FRAGSTATS 3.3 
(Shape Metrics), 
Shape Index 

Ecological relevance is similar to fractal 
dimension 

36 

Nearest 
Neighbor 

Distance between 
patches of the same 
elevation 

FRAGSTATS 3.3, 
(Isolation/Proximity 
Metrics), Euclidean 
Nearest Neighbor 
Distance 

If species are adapted to a temperature at a 
given elevation, northward migration may 
require wind-dispersed seed to cross valleys to 
sites at the same elevation 40. Rare long 
distance seed dispersal events on the order of 
100-300 m may result from uplifting wind 
conditions 41, but more common maximum 
distances are approximately 50 m 42. 

33 

Hypsography45 Rate of change of 
3-dimensional 
surface area with 
increasing 
elevation 

ArcGIS 10.0, 3D 
Analyst, Surface 
Volume Tool 

Habitat area contracts at higher and higher 
elevations50. Species migrating upslope may 
experience greater competition for resources. 

43–46 

 

2. ArcGIS 10.0 produced by ESRI. FRAGSTATS 3.3 produced by Kevin McGarigal and others29. Additional tools and processes 

were written in Python (2.6 and 2.7) using arcpy and rpy with R 47. 



As some have pointed out 33, 48 the patch mosaic paradigm has not been well-suited to analyses of 

continuous data, like topography. In this study, topographic contours are used to create patches 

and patch shape is analyzed to quantify and compare topographic complexity. “Patches” are 

areas between contour lines, generated by classifying sample areas (Reclassify_3D in Arc GIS 

10.0). Instead of mean values, area-weighted mean values for Fractal Dimension, Shape, and 

Nearest Neighbor metrics were used to prevent the numerous small topographic contour patches 

from overwhelming the average and masking the characteristics of the largest contours which are 

more representative of the area49. 

Hypsography has previously been used most by geomorphologists to compare the erosional state 

of mountains and indicate their age 46, 50. ArcGIS was used to calculate the 3-dimensional area 

below elevations from 0 to 2200 m in 50 m increments. Traditionally, a hypsography curve is a 

plot of area (on the x axis (often normalized)) and elevation (on the y-axis, also normalized). 

Here, the slope of a graph of area vs. elevation, calculated using R’s linear model ignoring the 

tails (between 5% and 95% of the cumulative surface area), represents the rate of change of 3-

dimensional area per 100 m elevation gain. Only one grid point had a total elevation change of 

less than 50 m and its slope was assigned the maximum value (to indicate a loss of 100% of the 

area in 50 m). 

Several tests were used to understand the effect of sample location, size, and NED resolution on 

fractal dimension and change in area with elevation. To test the effect of elevation sample 

location, a cluster of 7 points was randomly generated inside a circle of radius 25 km, in each of 

five test landscapes in North Carolina, West Virginia, Pennsylvania, New York, and New 

Hampshire (example Fig. A3). 50 km x 50 km NED sample areas were based on these random 

points and terrain metrics were generated for each elevation sample. The purpose of this test was 
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to determine whether or not there could have been a bias in the results related to the placement of 

the grid. In these same five test landscapes, 10000 km2 (100 km x 100 km) sample areas, and 

four nested 50 km x 50 km sample areas, 16 25 km x 25 km sample areas, 25 20 km x 20 km 

sample areas, and 100 10 km x  10 km sample areas were analyzed to determine the effect of 

sample size on terrain metrics (Fig. A4). These different sized elevation samples were used to 

determine the scaling properties of the metrics. In North Carolina and Pennsylvania, in addition 

to the 1 arc-second NED, resolutions of 1/3rd arc second and 1/9th arc second were used to 

understand the effect of grain size on terrain metrics. 

Tree species diversity was derived from the Forest Inventory Analysis Data and processed to 

provide importance values for each of 134 species in a 20 km x 20 km grid covering the eastern 

U.S.11 For each 20 km x 20 km cell in the raw data, the Shannon Diversity index (IV*log(IV)) 

(Fig. A1), the number of species (simple measure of richness) (Fig. A5), and the maximum 

importance value (measure of homogeneity) (Fig. A6), were calculated and interpolated to 10.9 

km resolution using the inverse distance weighting tool in ArcGIS 10.0, and then values were 

extracted for each terrain analysis grid point. Some grid points have very low Shannon Diversity 

Indices and might be considered outliers because the low diversity is probably an indication of 

land use or land use history that reduced the number of tree species found in these places. 

(Several are near major urban areas like Atlanta, GA, Hagerstown, MD, and Pittsburgh, York, 

and Lancaster, PA.) Nonetheless, the reported results include all grid points. Most of the terrain 

metric datasets were non-normal so the relationship between terrain variables and diversity 

indices was determined using spearman correlation coefficients calculated between each 

topographic metric and the Shannon Diversity Index. P-values were low, on the order of 1 x 10 -3 

and lower (Fig. A7a-c). 
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Supplementary Notes 

The three measures of diversity, Shannon diversity index, species richness, and maximum 

importance value are related. The Shannon diversity index increases as the number of species in 

a cell increases but as the maximum importance value goes down. This explains why species 

richness and the Shannon Diversity index had opposite relationships with terrain metrics (Figs. 

A7a-c). Relationships between measures of topographic roughness and biodiversity can be fit by 

a linear model. For example, the relationship between Shannon index and density of contour 

patches has a slope of 0.98 (r2 = 0.43), demonstrating a very close relationship between tree 

species diversity and topographic complexity. The intercept of 2.3 may indicate a base level of 

biodiversity that exists independent of topographic complexity.  

The main paper highlights the relationship between the density of contour patches and the 

Shannon index because this represents the most strongly correlated result. However, other 

measures of topographic roughness (rugosity, shape, fractal dimension, and perimeter to area 

ratio) were also positively correlated with tree species diversity, with Spearman’s rho of 0.56, 

0.59, 0.61, and 0.63 respectively (p<0.0001) (Fig. A7a), and these roughness metrics also 

correlated well with species richness (Fig. A7b). By contrast, measures of area loss with 

elevation and the nearest neighbor distances are not correlated with species diversity (Fig. A7a).  

Despite the weak relationship between area loss with elevation and tree species diversity, 

relationships with other indications of diversity, rarity, or endemism were evident. For example, 

a cluster of four nodes on the northwestern side of Great Smoky Mountains National Park 

accounted for five out of the six lowest losses of area with elevation in the entire Appalachian 

region losing only 6% of the land surface per 100 m elevation gain. In contrast, flatter areas, like 

the foothills or the mid-Atlantic, have much higher losses of area with elevation (as much as 100 
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% per 100 m). Interestingly, although absolute elevation range is related to loss of area with 

elevation gain (Spearman’s rho -0.85, p<0.0000) the relationship is non-linear (Supplementary 

Fig. A8).  

Sensitivity of metrics to choices of sample area location, sample area size, and elevation data 

resolution were tested.  Results indicated greater differences among regions than within regions. 

For example, the rate of change of habitat area with increasing elevation had a coefficient of 

variation (CV) (of the 7 randomly placed elevation samples within each test landscape) ranging 

from 6.5 in the New York test landscape to 32.6 in the North Carolina test landscape,  (the 

average CV across the test landscapes was 21.2). By contrast, the variability in the rate of change 

of habitat area with increasing elevation between test landscapes had a coefficient of variation of 

41.4 (North Carolina had an average loss of habitat area with elevation of 14.4 while New 

York’s was 40.5). Thus while the exact location of an elevation sample in a given region affects 

the terrain metrics values, this effect is minor compared to the differences among the regions. 

Other metrics were similar. For example, fractal dimension had generally much lower variability 

within a test landscape, with CV ranging from 0.37 to 0.40, while the CV between the test 

landscapes was 2.54.  

When investigating the effect of elevation sample size (10, 20, 25, 50, and 100 km samples), we 

found relatively small differences between 50 km and 100 km samples in all but the West 

Virginia test area, but losses of habitat area with elevation were greater the smaller the sample 

size for 10, 20, and 25 km samples in all landscapes, In New York, Pennsylvania, and North 

Carolina, coefficient of variation increased with the smaller sample sizes (NY: 0.09-0.27; PA: 

0.15-0.71; NC: 0.31-0.81), while in New Hampshire it decreased (0.18-0.04) and in West 

Virginia it was relatively constant (~0.40-0.43). By contrast, larger elevation sample sizes tended 
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to have higher fractal dimensions (9.0-10.6 %) although standard error was quite low within the 

sets of sample elevation sizes (0.004).  

 Tests of elevation data resolution (1 arc-second, 1/3rd arc-second, and 1/9th arc-second) 

were incomplete because computational limitations prevented FRAGSTATS runs on the 1/9th 

arc-second dataset. Comparisons of the three resolution datasets yielded higher losses of area 

with increasing elevation in higher resolution samples in North Carolina (12.6 for the 1/9th arc 

second sample vs. 10.0 for the 1 arc second sample) but the opposite trend in Pennsylvania (26.7 

for the 1/9th arc second sample vs. 28.2 for the 1 arc second sample). These limited results 

suggest that elevation data resolution does not appear to introduce a bias in terrain metrics. These 

results are consistent with Hurtrez (1999)43 who found that hypsography was resolution 

independent and scale dependent. 
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Appendix B: High Elevation Species Information 

 Scientific 
name 

Age of 
reproduction 

Season of 
seed 
release 

Dispersal 
vector 

Dispersal 
distance 

Soil 
pH 

Soil type Elevation Notes

Fraser 
fir 

Abies fraseri 15 years September-
October 

wind 274 m (50%) 

1.6 km 
(maximum) 

3.5-4.2 Inceptisol 1372 m min, 
1676 m 
common, 
2037 m max 

Greatest 
threat is 
balsam 
wooly 
adelgid 

Balsam 
fir 

Abies 
balsamea 

20-30 years August -
November 

Wind and 
rodents 

25 – 60 m 
(common), 160 
m (maximum) 

Wide 
range, 
but soil 
types 
are all 
typically 
acidic 

Spodosol, 
Inceptisol, 
and Histosol 

Carolina 
hemlock 

Tsuga 
caroliniana 

~25 years September 
- Winter 

wind 3.5-4.5 Podzolization 400-1220 m Threatened 
by hemlock 
wooly 
adelgid 

Data for fraser and balsam fir are from Silvics of North America, data for Carolina hemlock is from www.conifers .org “The 

Gymnosperm Database” and the Forest Service Fire Effects Information System.  

Coladonato, Milo 1993. Tsuga caroliniana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research 

Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2012, June 19]. 
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Appendix C: Description of Circuitscape 

Circuitscape is a free open-source software program that reads raster data characterizing the ease of 

movement through a landscape and interprets the raster cells as nodes in a circuit with the cell 

values representing electric conductance or resistance between nodes. Modeling connectivity using 

electrical circuit theory has a number of advantages, particularly for the study described here. First, 

models of permeability that range continuously between complete barriers and perfectly connected 

places are best represented by raster fields of continually varying values. This raster grid translates 

readily into an electrical circuit where nodes are not discreet habitat patches, but data points in a 

surface. Second, effective electrical resistance goes down as more alternative pathways are provided 

(McRae et al. 2008). This is important for an ecological network modeling seed dispersal and 

regeneration because migration potential (conductance) is greatly enhanced when pathways are wider 

or more numerous. Third, it assumes the movement through the network proceeds according to a 

random walk rather than showing preference for least-cost paths as if “knowing” the network 

strengths and weaknesses at the outset (McRae et al. 2008). Finally, measures of landscape 

connectivity are relevant and intuitive. A very good measure of connectivity is the resistance distance 

defined as the effective resistance between a pair of nodes (McRae et al. 2008). Current at a node 

within a circuit model is proportional to the probability of movement through the node. Nodes with 

high current are pinch points – critical nodes for network connectivity (McRae et al. 2008). 
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Appendix D: MC1 command line options 

Command line options for each of the simulation phases: 

Equilibrium 

./mc1 -Y 3000 -r $lv_row_range -c $lv_col_range -P Input/USeast4km -G WWETAC --
set_code_flag ALT_TREE_ALLOMETRY --set_code_flag ALT_FUEL_LOAD --ffmc_EN 
$lv_ffmc_EN --ffmc_EN_DB $lv_ffmc_EN_DB --bui_EN $lv_bui_EN --bui_EN_DB 
$lv_bui_EN_DB --mask_file mask_east.nc -B Input/ModelParameters_63 -J co2ramp_3000 -N 1 -0 
0.041666667 -1 47.56304169 -2 -86.97917175 -Cm -m 2 -E 10. -g 0.67 -f spinupVars.txt -o 
../../Output/FS/Manuscript/EQ_NEA_08282012 -t -2   

Spinup 

./mc1 -Y 1000 -r $lv_row_range -c $lv_col_range -P Input/USeast4km -G WWETAC --
set_code_flag ALT_TREE_ALLOMETRY --set_code_flag ALT_FUEL_LOAD --ffmc_EN 
$lv_ffmc_EN --ffmc_EN_DB $lv_ffmc_EN_DB --bui_EN $lv_bui_EN --bui_EN_DB 
$lv_bui_EN_DB --mask_file mask_east.nc -B Input/ModelParameters_63 -J co2ramp_3000 -N 1 -0 
0.041666667 -1 47.56304169 -2 -86.97917175 -Cm -m 3 -E 10 -F 1 -f spinupVars.txt -o 
../../Output/FS/Manuscript/SU_NEA_08282012 -b 
../../Output/FS/Manuscript/EQ_NEA_08282012_bgc.nc -t -4 -i 1 -d 13456  

 
Historical 

./mc1 -Y 114 -A 1895 -r $lv_row_range -c $lv_col_range -P Input/USeast4km -G WWETAC --
set_code_flag ALT_TREE_ALLOMETRY --set_code_flag ALT_FUEL_LOAD --ffmc_EN 
$lv_ffmc_EN --ffmc_EN_DB $lv_ffmc_EN_DB --bui_EN $lv_bui_EN --bui_EN_DB 
$lv_bui_EN_DB --mask_file mask_east.nc -B Input/ModelParameters_63 -J 
co2ramp_SRESa2_200 -N 1 -0 0.041666667 -1 47.56304169 -2 -86.97917175 -Cm -m 4 -F 1 -E 10 -
f OutputVars_bareminimum.txt -o 
../../Output/FS/Manuscript/Hist_NEA_09092012_withSpeciesFD -b 
../../Output/FS/Manuscript/SU_NEA_08282012_bgc.nc -t 12 -i 12 -d 13456 --depth-ratio-input   

Specifics: 

-Y: duration of the simulation, years 

-A: The first calendar year of the simulation 

-r:  restrict the simulation to a range of rows 

-c: restrict the simulation to a range of columns 

-P: path to the input files 

-G: biogeography rule system (VEMAP, LYNX, NA8km, CA08, YOSE, WWETAC, 
VINCERA, US50km) I am using the WWETAC rules  

--set_code_flag: A new tree allometry system was developed by Dave King and offers significant 
improvements for deciduous forests. 

144 
 

http://mask_east.nc/
http://mask_east.nc/
http://mask_east.nc/


 

--set_code_flag: A new fuel local calculation developed by Dave King changes the calculation of 
dead wood. The standard MC1 calculation allocates dead wood to the 1, 10, 100, and 1000 hr fuel 
classes by %, and the new algorithm sets 1-hr fuel equal to litter + standing grasses, 10-hr and 100-
hr fuel equals 50% of the dead fine wood and 100-hr fuel = dead coarse wood. 

--ffmc_EN and EN_DB: fine fuel moisture code threshold settings for Evergreen Needleleaf 
and Deciduous Broadleaf 

--bui_EN and EN_DB: buildup index threshold settings for Evergreen Needleleaf and 
Deciduous Broadleaf 

--mask_file: reduce computational time by restricting the model domain to a focal area. 

-B: path to CENTURY parameter files 

-J: CO2 ramp filename 

-N: nitrogen limitation; 0=limited, 1=unlimited. (MC1 has never been parameterized for limited 
N conditions (Dominique Bachelet, pers. comm.) 

-0: cell spacing in decimal degrees 

-1: latitude of northwest corner (reference datum) in decimal degrees (row 0) 

-2: longitude of northwest corner (reference datum) in decimal degrees (column 0) 

-C: Calculate PET (m = Marks, p = Penman-Monteith) 

-m: mode (1=MAPSS EQ; 2=CENTURY EQ; 3=MC transient seeded by mode 2; 4= MC 
transient seeded by mode 3) 

-F: Fire mode (0=scheduled; 1=fire model) 

-E: max Efold value 

-f: file containing list of variables to include in output file. Careful, the more you choose, the 
slower this will run! 

-o: output filename 

-b: netcdf file to initialize one-step runs (like starting spinup, and using EQ to initialize it) 

-t: Month start for bgc output 

-i: Month interval for bgc output 

-d: size (bytes) of the data_point structure saved for warmstart 

--depth-ratio-input: including this flag tells MC1 to read depth_ratio data from a netcdf file with a 
specific value for each cell. This option is specific to the MC1 version used in this study. 
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Appendix E: MC1 parameterization 

MC1 is a hybrid model which employs the biogeochemical model CENTURY, the 
biogeographical model MAPSS, and the fire module MCFire. Each of these models relies on 
parameter sets that define rates, relationships, and characteristics of variables that interact through 
the functions at the heart of each of the models. 

CENTURY calls external parameter files with a specific MC1 format. We updated tree.100 
values based on parameterization for eastern forests provided by Cindy Keough (Natural Resource 
Ecology Laboratory, Colorado State University) (personal communication). Of importance were 
changes in the decomposition rate of dead fine wood which was increased by more than 50% from 
0.9 to 1.5 while decomposition of dead large wood and dead coarse roots were decreased from 0.4 
to 0.2 and 0.1 respectively. 

SUPRT -DN- -EN- -DB- -EB-  
1.0     'DECID' 
10000. 10000. 10000. 10000. 10000. 'PRDX(3)' 
250. 250. 250. 250. 250. 'PRDX(4)' 
26.0 15. 26. 30. 30. 'PPDF(1)' 
45.0 30. 45. 45. 45. 'PPDF(2)' 
1.5 0.5 1.50 1.0 1.0 'PPDF(3)' 
2.5 5.0 2.5 2.5     3 'PPDF(4)' 
30.0 100.0 100.0 20.0 20.0 'CERFOR(1,1,1)' 
396.0 396.0 396.0 396.0 396.0 'CERFOR(1,1,2)' 
40.0 40.0 40.0 40.0 40.0 'CERFOR(1,1,3)' 
45.0 50.0 50.0 35.0 35.0 'CERFOR(1,2,1)' 
500.0 500.0 500.0 500.0 500.0 'CERFOR(1,2,2)' 
83. 83. 83. 83. 83. 'CERFOR(1,2,3)' 
204. 310. 310. 120.0 120.0 'CERFOR(1,3,1)' 
500.0 500.0 500.0 500.0 500.0 'CERFOR(1,3,2)' 
70. 70. 70. 70. 70. 'CERFOR(1,3,3)' 
250.0 900.0 600.0 200.0 150.0 'CERFOR(1,4,1)' 
479. 479. 479. 479. 479. 'CERFOR(1,4,2)' 
131. 131. 131. 131. 131. 'CERFOR(1,4,3)' 
150. 600. 600. 150. 150. 'CERFOR(1,5,1)' 
833. 833. 833. 833. 833. 'CERFOR(1,5,2)' 
100. 100. 100. 100. 100. 'CERFOR(1,5,3)' 
70.0 100.0 100.0 30.0 30.0 'CERFOR(2,1,1)' 
396.0 396.0 396.0 396.0 396.0 'CERFOR(2,1,2)' 
40.0 40.0 40.0 40.0 40.0 'CERFOR(2,1,3)' 
70.0 81.0 81.0 60.0 60.0 'CERFOR(2,2,1)' 
500.0 500.0 500.0 500.0 500.0 'CERFOR(2,2,2)' 
83. 83. 83. 83. 83. 'CERFOR(2,2,3)' 
250. 310. 310. 250. 180. 'CERFOR(2,3,1)' 
500.0 500.0 500.0 500.0 500.0 'CERFOR(2,3,2)' 
70. 70. 70. 70. 70. 'CERFOR(2,3,3)' 
500.0 800.0 800.0 500.0 300.0 'CERFOR(2,4,1)' 
479. 479. 479. 479. 479. 'CERFOR(2,4,2)' 
131. 131. 131. 131. 131. 'CERFOR(2,4,3)' 
400. 80. 80. 400. 300. 'CERFOR(2,5,1)' 
833. 833. 833. 833. 833. 'CERFOR(2,5,2)' 

146 
 



 

100. 100. 100. 100. 100. 'CERFOR(2,5,3)' 
59.0 90.0 90.0 59.0 40.0 'CERFOR(3,1,1)' 
396.0 396.0 396.0 396.0 396.0 'CERFOR(3,1,2)' 
40. 40. 40. 40. 40. 'CERFOR(3,1,3)' 
50.0 80.0 80.0 50.0 76.0 'CERFOR(3,2,1)' 
500.0 500.0 500.0 500.0 500.0 'CERFOR(3,2,2)' 
83. 83. 83. 83. 83. 'CERFOR(3,2,3)' 
99. 300. 300. 99. 84. 'CERFOR(3,3,1)' 
500.0 500.0 500.0 500.0 500.0 'CERFOR(3,3,2)' 
70. 70. 70. 70. 70. 'CERFOR(3,3,3)' 
140.0 900.0 900.0 140.0 155.0 'CERFOR(3,4,1)' 
479. 479. 479. 479. 479. 'CERFOR(3,4,2)' 
40.0 40.0 40.0 40.0 40.0 'CERFOR(3,4,3)' 
83. 550. 550. 83.0 155.0 'CERFOR(3,5,1)' 
833. 833. 833. 833. 833. 'CERFOR(3,5,2)' 
100. 100. 100. 100. 100. 'CERFOR(3,5,3)' 
1.5     'DECW1' 
0.02     'DECW2' 
0.1     'DECW3' 
0.28 0.37 0.37 0.28 0.25 'FCFRAC(1,1)' 
0.21 0.34 0.34 0.21 0.25 'FCFRAC(2,1)' 
0.1 0.10 0.10 0.1 0.10 'FCFRAC(3,1)' 
0.33 0.18 0.18 0.33 0.30 'FCFRAC(4,1)' 
0.08 0.01 0.01 0.08 0.10 'FCFRAC(5,1)' 
0.28 0.37 0.37 0.28 0.34 'FCFRAC(1,2)' 
0.21 0.34 0.34 0.21 0.25 'FCFRAC(2,2)' 
0.1 0.10 0.10 0.1 0.11 'FCFRAC(3,2)' 
0.33 0.18 0.18 0.33 0.22 'FCFRAC(4,2)' 
0.08 0.01 0.01 0.08 0.08 'FCFRAC(5,2)' 
0.02 0.00 0.03 0.00 0.07 'LEAFDR(1)' 
0.02 0.00 0.03 0.00 0.07 'LEAFDR(2)' 
0.02 0.00 0.03 0.00 0.07 'LEAFDR(3)' 
0.02 0.00 0.03 0.00 0.07 'LEAFDR(4)' 
0.02 0.00 0.03 0.00 0.07 'LEAFDR(5)' 
0.02 0.00 0.03 0.00 0.07 'LEAFDR(6)' 
0.02 0.00 0.03 0.06 0.07 'LEAFDR(7)' 
0.02 0.00 0.03 0.06 0.07 'LEAFDR(8)' 
0.02 0.00 0.03 0.06 0.07 'LEAFDR(9)' 
0.02 0.00 0.03 0.06 0.07 'LEAFDR(10)' 
0.02 0.00 0.03 0.00 0.07 'LEAFDR(11)' 
0.02 0.00 0.10 0.00 0.07 'LEAFDR(12)' 
0.008 0.012 0.004 0.01 0.007 'BTOLAI' 
1500.0 2000.0 2000.0 1500.0 1000.0 'KLAI' 
-0.47000    'LAITOP' 
6. 10. 10. 6. 6. 'MAXLAI' 
1.0     'MAXLDR' 
0.8000     'FORRTF(1)' 
0.0     'FORRTF(2)' 
0.0     'FORRTF(3)' 
1500.00     'SAPK' 
0.0     'SWOLD' 
0.20300     'WDLIG(1)' 
0.08000     'WDLIG(2)' 
0.25000     'WDLIG(3)' 
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0.25000     'WDLIG(4)' 
0.25000     'WDLIG(5)' 
1.0 1.0 0.0 1.0 0.0 'WOODDR(1)' 
0.032 0.05 0.05 0.04 0.03 'WOODDR(2)' 
0.040 0.01 0.01 0.01 0.01 'WOODDR(3)' 
0.0012 0.0008 0.0008 0.002 0.002 'WOODDR(4)' 
0.0021 0.001 0.001 0.004 0.004 'WOODDR(5)' 
0.000       'SNFXMX(2)' 
-26     'DEL13C' 
1.25     'CO2IPR' 
0.75     'CO2ITR' 
1.25     'CO2ICE(1,1,1)' 
1.0     'CO2ICE(1,1,2)' 
1.0     'CO2ICE(1,1,3)' 
1.25     'CO2ICE(1,2,1)' 
1.0     'CO2ICE(1,2,2)' 
1.0     'CO2ICE(1,2,3)' 
1.0     'CO2IRS' 
1.0     'BASFC2' 
400.0     'BASFCT' 
2400.0 4800.0 4800.0 2400.0 2400.0 'SITPOT' 
 
 

MCFire 

MC1 was developed in western forests and most users keep the black oak and Douglas fir 
parameters to characterize deciduous broadleaf and evergreen needleleaf trees respectively. We 
reduced the tree sizes by substituting chestnut oak for black oak - diameter at breast height (dbh) 
changed from 349 to 100 cm and maximum height changed from 3960 to 2400 cm. We also reduced 
tree size for evergreen needleleaf trees by substituting white pine for Douglas fir – dbh changed 
from 220 to 100 cm and maximum height changed from 8000 to 4000 cm. 
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Appendix F: Program to calculate fire regime statistics from MC1 fire output variables. 

# This program reads MC1 netcdf output files and calculates a fire index for all active cells. 
# The file is in subversion repository under a project called MCD. 
 
# Open code modules 
import numpy 
import scipy 
from scipy.io import netcdf 
import csv 
 
 
# Set local directories and filename stubs 
cellid_data_dir = '/Users/elizabethcrisfield/MC1/input/USeast4km/' 
input_data_dir = '/Users/elizabethcrisfield/MCD/data_interaction/' 
output_data_dir = '/Users/elizabethcrisfield/MCD/data_interaction/fire_index/' 
#scenarios = 'Hist_', 'csiroa2_', 'hadleya2_' 
scenarios = 'Hist_', 'fake' 
#time_steps = '30_1', '30_2', '30_3', '10_4' 
time_steps = '99y', 'fake' 
hist_filename_stub = '09092012_year_original_discard' 
 
 
hist_done = 'not_done_yet' 
# INITIATE LOOP THROUGH SENARIOS 
for scenario in scenarios: 
print scenario 
output_filename_stats = output_data_dir + scenario + "99y_annual_fire_stats.csv" 
output_file_stats_open = open(output_filename_stats, 'w') 
output_file_stats = csv.writer(output_file_stats_open, delimiter=',') 
output_file_stats.writerow("scenario, year, date, burn cell count, average forest carbon, average 

part burn, average biomass consumed, average fire killed, average fire index, maximum fire index") 
# INITIATE LOOP THROUGH 30-YEAR TIME STEPS 
for ts in time_steps: 
if (scenario == 'Hist_' and hist_done == 'done'): 
print "Hist is done" 
continue 
else: 
# I/O 
if (scenario == 'Hist_'): 
input_file = input_data_dir + scenario + hist_filename_stub + ".nc" 
else: 
input_file = input_data_dir + scenario + ts + ".nc" 
#Read netcdf file 
raw_nc_file = netcdf.netcdf_file(input_file,'r') 
mask_temp = raw_nc_file.variables['mask'] 
mask = mask_temp[:] 
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nlat = raw_nc_file.dimensions['lat']-2 
nlon = raw_nc_file.dimensions['lon'] 
rows = range(nlat) 
cols = range(nlon) 
 
year_temp = raw_nc_file.variables['year'] 
year_labels = year_temp[:] 
no_years = len(year_labels) 
print no_years 
years = range(no_years) 
 
burn_year_temp = raw_nc_file.variables['burn_year'] 
burn_year = burn_year_temp[:] 
 
part_burn_temp = raw_nc_file.variables['PART_BURNyr'] 
part_burn = part_burn_temp[:] 
 
bio_consume_live_temp = raw_nc_file.variables['bio_consume_live'] 
bio_consume_live = bio_consume_live_temp[:] 
 
fire_killed_temp = raw_nc_file.variables['FIRE_KILLEDyr'] 
fire_killed = fire_killed_temp[:] 
 
C_FOREST_temp = raw_nc_file.variables['C_FORESTyr'] 
C_FOREST = C_FOREST_temp[:] 
 
raw_nc_file.close() 
# MAIN 
# Initialize variables 
forest_carbon = {} 
cumul_fire_index = {} 
burns = {} 
average_part_burn = {} 
average_bio_consume_live = {} 
average_fire_killed = {} 
average_fire_index = {} 
max_fire_index = {} 
# INITIATE LOOP THROUGH YEARS 
for y in years: 
if ts == "30_1": 
date = y 
first_years = no_years 
if ts == "30_2": 
date = y + first_years 
if ts == "30_3": 
date = y + first_years + 30 
if ts == "10_4": 
date = y + first_years + 60 
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if ts == "99y": 
date = y 
cell_count = 0 
active_cell_count = 0 
max_fire_index_temp = 0 
cumul_fire_index_year = 0 
burn_count = 0 
forest_carbon_list = [] 
part_burn_list = [] 
bio_consume_live_list = [] 
fire_killed_list = [] 
# INITIATE LOOP THROUGH ROWS 
for row in rows: 
# INITIATE LOOP THROUGH COLUMNS 
for col in cols: 
cell_count += 1 
# Screen for active cells 
if mask[row,col] == 1: 
active_cell_count += 1 
forest_carbon_list.append(C_FOREST[y,row,col]) 
if C_FOREST[y,row,col] > 5000: 
# Screen for burn years 
if burn_year[y,row,col] == 1: 
burn_count += 1 
# # Calculate fire index 
fire_index_cell = part_burn[y,row,col]*(bio_consume_live[y,row,col] + fire_killed[y,row,col]) / 

C_FOREST[y,row,col] 
#print fire_index_cell 
if fire_index_cell > max_fire_index_temp: 
max_fire_index_temp = fire_index_cell 
cumul_fire_index_year += fire_index_cell 
part_burn_list.append(part_burn[y,row,col]) 
bio_consume_live_list.append(bio_consume_live[y,row,col]) 
fire_killed_list.append(fire_killed[y,row,col]) 
forest_carbon[y] = numpy.mean(forest_carbon_list) 
if burn_count > 0: 
burns[y] = burn_count 
average_part_burn[y] = numpy.mean(part_burn_list) 
average_bio_consume_live[y] = numpy.mean(bio_consume_live_list) 
average_fire_killed[y] = numpy.mean(fire_killed_list) 
average_fire_index[y] = cumul_fire_index_year/active_cell_count 
max_fire_index[y] = max_fire_index_temp 
else: 
burns[y] = 0 
average_part_burn[y] = 0 
average_bio_consume_live[y] = 0 
average_fire_killed[y] = 0 
average_fire_index[y] = 0 
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max_fire_index[y] = 0 
# OUTPUT 
domain_stats = scenario, y, date, burns[y], forest_carbon[y], average_part_burn[y], 

average_bio_consume_live[y], average_fire_killed[y], average_fire_index[y], max_fire_index[y] 
print domain_stats 
output_file_stats.writerow([domain_stats]) 
if (scenario == 'Hist_' and hist_done == 'not_done_yet'): 
hist_done = 'done' 
output_file_stats_open.close() 
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Appendix G: Python script to summarize dominant vegetation classes. 

# This program reads MC1 netcdf output files and calculates vegetation classification statistics 
for all active cells. 

# The file is in subversion repository under a project called MCD. 
 
# Open code modules 
import numpy 
import scipy 
from scipy.io import netcdf 
from collections import Counter 
import csv 
 
 
# Set local directories and filename stubs 
cellid_data_dir = '/Users/elizabethcrisfield/MC1/input/USeast4km/' 
input_data_dir = '/Users/elizabethcrisfield/MC1/output/Manuscript_Sensitivity/Historical/' 
#input_data_dir = '/Users/elizabethcrisfield/MC1/output/Manuscript_Sensitivity/Future/' 
output_data_dir = '/Users/elizabethcrisfield/MCD/data_interaction/fire_index/sensitivity/' 
  
scenarios = 'Hist_ME_8873_nofire', 'Hist_ME_9075_042', 'Hist_ME_8873_042', 

'Hist_ME_8670_042', 'Hist_ME_8265_042', 'Hist_ME_7860_042', 'Hist_ME_7455_042', 
'Hist_ME_7440_042', 'csiroa2_8873_ME', 'csiroa2_8873_ME_nofire', 'hadleya2_8873_ME', 
'hadleya2_8873_ME_nofire', 'miroca2_8873_ME', 'miroca2_8873_ME_nofire', 
'Hist_NY_8873_nofire', 'Hist_NY_8873_042', 'Hist_NY_8670_042', 'Hist_NY_8265_042', 
'Hist_NY_7860_042', 'Hist_NY_7455_042', 'Hist_NY_7440_042', 'csiroa2_8873_NY', 
'csiroa2_8873_NY_nofire', 'hadleya2_8873_NY', 'hadleya2_8873_NY_nofire', 'miroca2_8873_NY', 
'miroca2_8873_NY_nofire', 'Hist_PA_8873_nofire', 'Hist_PA_8873_042', 'Hist_PA_8670_042', 
'Hist_PA_8265_042', 'Hist_PA_7860_042', 'Hist_PA_7455_042', 'Hist_PA_7440_042', 
'csiroa2_8873_PA', 'csiroa2_8873_PA_nofire', 'hadleya2_8873_PA', 'hadleya2_8873_PA_nofire', 
'miroca2_8873_PA', 'miroca2_8873_PA_nofire', 'Hist_GAh_8873_nofire', 'Hist_GAh_9075_042', 
'Hist_GAh_8873_042', 'Hist_GAh_8670_042', 'Hist_GAh_8265_042', 'Hist_GAh_7860_042', 
'Hist_GAh_7455_042', 'Hist_GAh_7440_042', 'csiroa2_8873_GAh', 'csiroa2_8873_GAh_nofire', 
'hadleya2_8873_GAh', 'hadleya2_8873_GAh_nofire', 'miroca2_8873_GAh', 
'miroca2_8873_GAh_nofire', 'Hist_GAl_8873_nofire', 'Hist_GAl_9075_042', 
'Hist_GAl_8873_042', 'Hist_GAl_8670_042', 'Hist_GAl_8265_042', 'Hist_GAl_7455_042', 
'Hist_GAl_7440_042', 'csiroa2_8873_GAl', 'csiroa2_8873_GAl_nofire', 'hadleya2_8873_GAl', 
'hadleya2_8873_GAl_nofire' 

 
# INITIATE LOOP THROUGH SENARIOS 
for scenario in scenarios: 
# I/O 
input_file = input_data_dir + scenario + "_year.nc" 
# Read netcdf file 
raw_nc_file = netcdf.netcdf_file(input_file,'r') 
# print raw_nc_file.variables 
mask_temp = raw_nc_file.variables['mask'] 
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mask = mask_temp[:] 
nlat = raw_nc_file.dimensions['lat']-2 
# print nlat 
nlon = raw_nc_file.dimensions['lon'] 
# print nlon 
# row_max = mask_temp.shape[0] 
# col_max = mask_temp.shape[1] 
rows = range(nlat) 
cols = range(nlon) 
 
year_temp = raw_nc_file.variables['year'] 
year_labels = year_temp[:] 
no_years = len(year_labels) 
years = range(no_years) 
 
burn_year_temp = raw_nc_file.variables['burn_year'] 
burn_year = burn_year_temp[:] 
 
VTYPE_temp = raw_nc_file.variables['VTYPEyr'] 
VTYPE = VTYPE_temp[:] 
 
raw_nc_file.close() 
 
output_filename_main = output_data_dir + "fire_index_" + scenario + ".csv" 
output_file_main_open = open(output_filename_main, 'w') 
output_file_main = csv.writer(output_file_main_open, delimiter=',') 
output_file_main.writerow("cell_id, fire_index") 
# MAIN 
# Initialize variables 
percent_time_woodland = {} 
dominant_vtype = {} 
percent_time_forest = {} 
percent_time_temperate = {} 
cell_count = 0 
active_cell_count = 0 
burn_cell_count = 0 
# INITIATE LOOP THROUGH ROWS 
for row in rows: 
# INITIATE LOOP THROUGH COLUMNS 
for col in cols: 
cell_count += 1 
cell_id = cell_count 
vtype_list = [] 
# Screen for active cells 
if mask[row,col] == 1: 
active_cell_count += 1 
vtype4 = 0 
vtype5 = 0 
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vtype6 = 0 
vtype7 = 0 
vtype8 = 0 
vtype9 = 0 
vtype10 = 0 
vtype11 = 0 
vtype12 = 0 
vtype13 = 0 
vtype14 = 0 
vtype15 = 0 
vtype16 = 0 
vtype17 = 0 
vtype18 = 0 
vtype19 = 0 
vtype20 = 0 
vtype21 = 0 
vtype22 = 0 
vtype23 = 0 
vtype24 = 0 
vtype25 = 0 
vtype26 = 0 
vtype27 = 0 
vtype28 = 0 
vtype29 = 0 
vtype36 = 0 
vtype37 = 0 
vtype38 = 0 
 
# INITIATE LOOP THROUGH YEARS 
for y in years: 
vtype_list.append(VTYPE[y,row,col]) 
if VTYPE[y,row,col] == 4: 
vtype4 +=1 
elif VTYPE[y,row,col] == 5: 
vtype5 += 1 
elif VTYPE[y,row,col] == 7: 
vtype7 += 1 
elif VTYPE[y,row,col] == 8: 
vtype8 += 1 
elif VTYPE[y,row,col] == 9: 
vtype9 += 1 
elif VTYPE[y,row,col] == 10: 
vtype10 += 1 
elif VTYPE[y,row,col] == 11: 
vtype11 += 1 
elif VTYPE[y,row,col] == 12: 
vtype12 += 1 
elif VTYPE[y,row,col] == 13: 
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vtype13 += 1 
elif VTYPE[y,row,col] == 14: 
vtype14 += 1 
elif VTYPE[y,row,col] == 15: 
vtype15 += 1 
elif VTYPE[y,row,col] == 16: 
vtype16 += 1 
elif VTYPE[y,row,col] == 17: 
vtype17 += 1 
elif VTYPE[y,row,col] == 18: 
vtype18 += 1 
elif VTYPE[y,row,col] == 19: 
vtype19 += 1 
elif VTYPE[y,row,col] == 20: 
vtype20 += 1 
elif VTYPE[y,row,col] == 21: 
vtype21 += 1 
elif VTYPE[y,row,col] == 22: 
vtype22 += 1 
elif VTYPE[y,row,col] == 23: 
vtype23 += 1 
elif VTYPE[y,row,col] == 24: 
vtype24 += 1 
elif VTYPE[y,row,col] == 25: 
vtype25 += 1 
elif VTYPE[y,row,col] == 26: 
vtype26 += 1 
elif VTYPE[y,row,col] == 27: 
vtype27 += 1 
elif VTYPE[y,row,col] == 28: 
vtype28 += 1 
elif VTYPE[y,row,col] == 29: 
vtype29 += 1 
elif VTYPE[y,row,col] == 36: 
vtype36 += 1 
elif VTYPE[y,row,col] == 37: 
vtype37 += 1 
elif VTYPE[y,row,col] == 38: 
vtype38 += 1 
else: print 'trouble - VTYPE wasnt defined' 
dominant = 0  
maximum_vtype = max(vtype4, vtype5, vtype7, vtype8, vtype9, vtype10, vtype11, vtype12, 

vtype13, vtype14, vtype15, vtype16, vtype17, vtype18, vtype19, vtype20, vtype21, vtype22, vtype23, 
vtype24, vtype25, vtype26, vtype27, vtype28, vtype29, vtype36, vtype37, vtype38) 

if vtype4 == maximum_vtype: dominant = 4 
elif vtype5 == maximum_vtype: dominant = 5 
elif vtype7 == maximum_vtype: dominant = 7 
elif vtype8 == maximum_vtype: dominant = 8 

156 
 



 

elif vtype9 == maximum_vtype: dominant = 9 
elif vtype10 == maximum_vtype: dominant = 10 
elif vtype11 == maximum_vtype: dominant = 11 
elif vtype12 == maximum_vtype: dominant = 12 
elif vtype13 == maximum_vtype: dominant = 13 
elif vtype14 == maximum_vtype: dominant = 14 
elif vtype15 == maximum_vtype: dominant = 15 
elif vtype16 == maximum_vtype: dominant = 16 
elif vtype17 == maximum_vtype: dominant = 17 
elif vtype18 == maximum_vtype: dominant = 18 
elif vtype19 == maximum_vtype: dominant = 19 
elif vtype20 == maximum_vtype: dominant = 20 
elif vtype21 == maximum_vtype: dominant = 21 
elif vtype22 == maximum_vtype: dominant = 22 
elif vtype23 == maximum_vtype: dominant = 23 
elif vtype24 == maximum_vtype: dominant = 24 
elif vtype25 == maximum_vtype: dominant = 25 
elif vtype26 == maximum_vtype: dominant = 26 
elif vtype27 == maximum_vtype: dominant = 27 
elif vtype28 == maximum_vtype: dominant = 28 
elif vtype28 == maximum_vtype: dominant = 29 
elif vtype36 == maximum_vtype: dominant = 36 
elif vtype37 == maximum_vtype: dominant = 37 
elif vtype38 == maximum_vtype: dominant = 38 
 
dominant_vtype[cell_id] = dominant 
percent_time_temperate[cell_id] = (vtype8 + vtype9 + vtype10 + vtype11 + vtype12 + vtype13 

+ vtype14 + vtype15 + vtype16 + vtype17 + vtype18)/len(years)   
percent_time_forest[cell_id] = (vtype4 + vtype7 + vtype8 + vtype9 + vtype10 + vtype11 + 

vtype19 + vtype20 + vtype21 + vtype22 + vtype36)/len(years) 
percent_time_woodland[cell_id] = (vtype5 + vtype12 + vtype13 + vtype14 + vtype15 + 

vtype23 + vtype24 + vtype25 + vtype26 + vtype37)/len(years) 
else: 
dominant_vtype[cell_id] = -9999 
percent_time_temperate[cell_id] = -9999   
percent_time_forest[cell_id] = -9999 
percent_time_woodland[cell_id] = -9999 
percent_temperate = 0 
percent_woodland = 0 
percent_forest = 0 
domain_dominant_vtype_list = [] 
percent_temperate_list = [] 
percent_forest_list = [] 
percent_woodland_list = [] 
# STATS 
cell_count = 0 
active_cell_count = 0 
for row in rows: 
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for col in cols: 
cell_count += 1 
cell_id = cell_count 
if mask[row,col] == 1: 
active_cell_count += 1 
domain_dominant_vtype_list.append(dominant_vtype[cell_id]) 
percent_temperate_list.append(percent_time_temperate[cell_id]) 
percent_forest_list.append(percent_time_forest[cell_id]) 
percent_woodland_list.append(percent_time_woodland[cell_id]) 
domain_dominant_vtype_counter = Counter(domain_dominant_vtype_list) 
domain_dominant_temp = domain_dominant_vtype_counter.most_common(1) 
domain_dominant_temp2 = domain_dominant_temp[0] 
domain_dominant_vtype = domain_dominant_temp2[0] 
domain_dominant_vtype_cells = domain_dominant_temp2[1] 
domain_dominant_vtype_percent = 100*domain_dominant_vtype_cells/active_cell_count 
# print domain_dominant_vtype, domain_dominant_vtype_percent 
percent_temperate = numpy.mean(percent_temperate_list) 
percent_forest = numpy.mean(percent_forest_list) 
percent_woodland = numpy.mean(percent_woodland_list) 
# OUTPUT 
domain_vtype_stats = scenario, domain_dominant_vtype, domain_dominant_vtype_percent, 

percent_temperate, percent_forest, percent_woodland 
print domain_vtype_stats 
output_file_main_open.close() 
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Appendix H: Python script to calculate carbon pool statistics. 

# This program reads MC1 netcdf output files and calculates a fire index for all active cells. 
# The file is in subversion repository under a project called MCD. 
 
# Open code modules 
import numpy 
import scipy 
from scipy.io import netcdf 
import csv 
 
 
# Set local directories and filename stubs 
cellid_data_dir = '/Users/elizabethcrisfield/MC1/input/USeast4km/' 
input_data_dir = '/Users/elizabethcrisfield/MC1/output/Manuscript_Sensitivity/Historical/' 
#input_data_dir = '/Users/elizabethcrisfield/MC1/output/Manuscript_Sensitivity/Future/' 
output_data_dir = '/Users/elizabethcrisfield/MCD/data_interaction/fire_index/sensitivity/' 
  
#scenarios = 'Hist_ME_9075_042', 'Hist_ME_8873_042', 'Hist_ME_8670_042', 

'Hist_ME_8265_042', 'Hist_ME_7860_042', 'Hist_ME_7455_042', 'Hist_ME_7440_042', 
'csiroa2_8873_ME', 'hadleya2_8873_ME', 'miroca2_8873_ME', 'Hist_NY_8873_042', 
'Hist_NY_8670_042', 'Hist_NY_8265_042', 'Hist_NY_7860_042', 'Hist_NY_7455_042', 
'Hist_NY_7440_042', 'csiroa2_8873_NY', 'hadleya2_8873_NY', 'miroca2_8873_NY', 
'Hist_PA_8873_042', 'Hist_PA_8670_042', 'Hist_PA_8265_042', 'Hist_PA_7860_042', 
'Hist_PA_7455_042', 'Hist_PA_7440_042', 'csiroa2_8873_PA', 'hadleya2_8873_PA', 
'miroca2_8873_PA', 'Hist_GAh_9075_042', 'Hist_GAh_8873_042', 'Hist_GAh_8670_042', 
'Hist_GAh_8265_042', 'Hist_GAh_7860_042', 'Hist_GAh_7455_042', 'Hist_GAh_7440_042', 
'csiroa2_8873_GAh', 'hadleya2_8873_GAh', 'miroca2_8873_GAh', 'Hist_GAl_9075_042', 
'Hist_GAl_8873_042', 'Hist_GAl_8670_042', 'Hist_GAl_8265_042', 'Hist_GAl_7455_042', 
'Hist_GAl_7440_042', 'csiroa2_8873_GAl', 'hadleya2_8873_GAl' 

scenarios = 'Hist_ME_8873_nofire', 'Hist_ME_9075_042', 'Hist_ME_8873_042', 
'Hist_ME_8670_042', 'Hist_ME_8265_042', 'Hist_ME_7860_042', 'Hist_ME_7455_042', 
'Hist_ME_7440_042', 'csiroa2_8873_ME', 'csiroa2_8873_ME_nofire', 'hadleya2_8873_ME', 
'hadleya2_8873_ME_nofire', 'miroca2_8873_ME', 'miroca2_8873_ME_nofire', 
'Hist_NY_9075_042', 'Hist_NY_8873_nofire', 'Hist_NY_8873_042', 'Hist_NY_8670_042', 
'Hist_NY_8265_042', 'Hist_NY_7860_042', 'Hist_NY_7455_042', 'Hist_NY_7440_042', 
'csiroa2_8873_NY', 'csiroa2_8873_NY_nofire', 'hadleya2_8873_NY', 'hadleya2_8873_NY_nofire', 
'miroca2_8873_NY', 'miroca2_8873_NY_nofire', 'Hist_PA_8873_nofire', 'Hist_PA_9075_042', 
'Hist_PA_8873_042', 'Hist_PA_8670_042', 'Hist_PA_8265_042', 'Hist_PA_7860_042', 
'Hist_PA_7455_042', 'Hist_PA_7440_042', 'csiroa2_8873_PA', 'csiroa2_8873_PA_nofire', 
'hadleya2_8873_PA', 'hadleya2_8873_PA_nofire', 'miroca2_8873_PA', 'miroca2_8873_PA_nofire', 
'Hist_GAh_8873_nofire', 'Hist_GAh_9075_042', 'Hist_GAh_8873_042', 'Hist_GAh_8670_042', 
'Hist_GAh_8265_042', 'Hist_GAh_7860_042', 'Hist_GAh_7455_042', 'Hist_GAh_7440_042', 
'csiroa2_8873_GAh', 'csiroa2_8873_GAh_nofire', 'hadleya2_8873_GAh', 
'hadleya2_8873_GAh_nofire', 'miroca2_8873_GAh', 'miroca2_8873_GAh_nofire', 
'Hist_GAl_8873_nofire', 'Hist_GAl_9075_042', 'Hist_GAl_8873_042', 'Hist_GAl_8670_042', 
'Hist_GAl_8265_042', 'Hist_GAl_7455_042', 'Hist_GAl_7440_042', 'csiroa2_8873_GAl', 
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'csiroa2_8873_GAl_nofire', 'hadleya2_8873_GAl', 'hadleya2_8873_GAl_nofire', 
'miroca2_8873_GAl', 'miroca2_8873_GAl_nofire' 

 
# INITIATE LOOP THROUGH SENARIOS 
for scenario in scenarios: 
# I/O 
input_file = input_data_dir + scenario + "_year.nc" 
# Read netcdf file 
raw_nc_file = netcdf.netcdf_file(input_file,'r') 
# print raw_nc_file.variables 
mask_temp = raw_nc_file.variables['mask'] 
mask = mask_temp[:] 
nlat = raw_nc_file.dimensions['lat']-2 
# print nlat 
nlon = raw_nc_file.dimensions['lon'] 
# print nlon 
# row_max = mask_temp.shape[0] 
# col_max = mask_temp.shape[1] 
rows = range(nlat) 
cols = range(nlon) 
 
year_temp = raw_nc_file.variables['year'] 
year_labels = year_temp[:] 
no_years = len(year_labels) 
years = range(no_years) 
 
burn_year_temp = raw_nc_file.variables['burn_year'] 
burn_year = burn_year_temp[:] 
 
part_burn_temp = raw_nc_file.variables['PART_BURNyr'] 
part_burn = part_burn_temp[:] 
 
bio_consume_live_temp = raw_nc_file.variables['bio_consume_live'] 
bio_consume_live = bio_consume_live_temp[:] 
 
bio_consume_dead_temp = raw_nc_file.variables['bio_consume_dead'] 
bio_consume_dead = bio_consume_dead_temp[:] 
 
fire_killed_temp = raw_nc_file.variables['FIRE_KILLEDyr'] 
fire_killed = fire_killed_temp[:] 
 
C_SOM_temp = raw_nc_file.variables['C_SOMyr'] 
C_SOM = C_SOM_temp[:] 
C_NONVEG_temp = raw_nc_file.variables['C_NONVEGyr'] 
C_NONVEG = C_NONVEG_temp[:] 
 
C_FOREST_temp = raw_nc_file.variables['C_FORESTyr'] 
C_FOREST = C_FOREST_temp[:] 
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C_ECOSYS_temp = raw_nc_file.variables['C_ECOSYSyr'] 
C_ECOSYS = C_ECOSYS_temp[:] 
VTYPE_temp = raw_nc_file.variables['VTYPEyr'] 
VTYPE = VTYPE_temp[:] 
 
raw_nc_file.close() 
 
output_filename_main = output_data_dir + "fire_index_" + scenario + ".csv" 
output_file_main_open = open(output_filename_main, 'w') 
output_file_main = csv.writer(output_file_main_open, delimiter=',') 
output_file_main.writerow("cell_id, fire_index") 
# MAIN 
# Initialize variables 
soil_carbon = {} 
nonveg_carbon = {} 
forest_carbon = {} 
ecosystem_carbon = {} 
cumul_fire_index = {} 
average_fire_index = {} 
cumul_vtype = {} 
burns = {} 
average_vtype = {} 
average_part_burn = {} 
average_bio_consume_live = {} 
average_fire_killed = {} 
cell_count = 0 
active_cell_count = 0 
burn_cell_count = 0 
# INITIATE LOOP THROUGH ROWS 
for row in rows: 
# INITIATE LOOP THROUGH COLUMNS 
for col in cols: 
cell_count += 1 
cell_id = cell_count 
cumul_fire_index_cell = 0 
burn_count = 0 
soil_carbon_list = [] 
nonveg_carbon_list = [] 
forest_carbon_list = [] 
ecosystem_carbon_list = [] 
vtype_list = [] 
part_burn_list = [] 
bio_consume_live_list = [] 
fire_killed_list = [] 
# Screen for active cells 
if mask[row,col] == 1: 
active_cell_count += 1 
# INITIATE LOOP THROUGH YEARS 
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for y in years: 
soil_carbon_list.append(C_SOM[y,row,col]) 
nonveg_carbon_list.append(C_NONVEG[y,row,col]) 
forest_carbon_list.append(C_FOREST[y,row,col]) 
ecosystem_carbon_list.append(C_ECOSYS[y,row,col]) 
vtype_list.append(VTYPE[y,row,col]) 
soil_carbon[cell_id] = numpy.mean(soil_carbon_list) #average soil carbon for the cell over the 

entire period of record 
nonveg_carbon[cell_id] = numpy.mean(nonveg_carbon_list) #average nonveg carbon for the 

cell over the entire period of record 
forest_carbon[cell_id] = numpy.mean(forest_carbon_list) #average forest carbon for the cell 

over the entire period of record 
ecosystem_carbon[cell_id] = numpy.mean(ecosystem_carbon_list) #average ecosystem carbon 

for the cell over the entire period of record 
else: 
soil_carbon[cell_id] = numpy.mean(soil_carbon_list) #average soil carbon for the cell over the 

entire period of record 
nonveg_carbon[cell_id] = numpy.mean(nonveg_carbon_list) #average nonveg carbon for the 

cell over the entire period of record 
forest_carbon[cell_id] = numpy.mean(forest_carbon_list) #average forest carbon for the cell 

over the entire period of record 
ecosystem_carbon[cell_id] = numpy.mean(ecosystem_carbon_list) #average ecosystem carbon 

for the cell over the entire period of record 
else: 
soil_carbon[cell_id] = -9999 
nonveg_carbon[cell_id] = -9999 
forest_carbon[cell_id] = -9999 
ecosystem_carbon[cell_id] = -9999 
total_vtype_temp = 0 
total_average_soil_carbon_temp = 0 
total_average_nonveg_carbon_temp = 0 
total_average_forest_carbon_temp = 0 
total_average_ecosystem_carbon_temp = 0 
# STATS 
cell_count = 0 
for row in rows: 
for col in cols: 
cell_count += 1 
cell_id = cell_count 
if mask[row,col] == 1: 
total_average_soil_carbon_temp += soil_carbon[cell_id] 
total_average_nonveg_carbon_temp += nonveg_carbon[cell_id] 
total_average_forest_carbon_temp += forest_carbon[cell_id] 
total_average_ecosystem_carbon_temp += ecosystem_carbon[cell_id] 
soilc = total_average_soil_carbon_temp / active_cell_count 
nonvegc = total_average_nonveg_carbon_temp / active_cell_count 
forestc = total_average_forest_carbon_temp / active_cell_count 
ecosystemc = total_average_ecosystem_carbon_temp / active_cell_count 
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# OUTPUT 
cell_count = 0 
carbon_stats = scenario, soilc, nonvegc, forestc, ecosystemc 
print carbon_stats 
output_file_main_open.close() 
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	Introduction
	Carbon storage in forests is linked to vegetation. Biogeographical descriptions of the Appalachian forests describe vegetation that aligns with temperature gradients from south to north and low elevations to high elevations (Bailey 1976; Eyre 1980; McNab & Avers 1994; Prasad et al. 2007). The southern Appalachians are characterized by oak (Quercus sp.) and hickory (Carya sp.) dominated forests while hardwoods (Acer sp., Fagus sp., Betula sp.) are found in the northern Appalachians. Based on well-established relationships constructed by correlating species’ distributions with climate regime patterns, warming climates are projected to result in potential range shifts or extinctions (Iverson & Prasad 1998; Williams & Jackson 2007; Iverson et al. 2008) and some of these changes have already been observed (Parmesan & Yohe 2003; Parmesan 2006; Beckage et al. 2008; Woodall et al. 2009).
	The humid temperate climate of the Appalachian Mountains is expected to become warmer in the future, with greater changes in the northeastern U.S. than the southeastern U.S. Based on the results of 16 general circulation models accessed through the Nature Conservancy’s Climate Wizard, under a low emission scenario (B1), temperatures are expected to increase by 1.5-2° C, with some models predicting just 1° C of warming and some predicting more than 3° C of warming. Under a high emissions scenario (A2), predicted increases in temperature range from 3° C warmer in the south to 4° C warmer in the north, by the 2080s, with some models predicting as little as 1.5° C warming in the south or as much as 5° C warming in the north. In the low emissions scenario, in the same time frame, precipitation is expected to increase slightly throughout the region, by roughly 5%, although some models (INM-CM3.0, IPSL-CM4, and MIROC3.2 (medres)) predict up to 10% less precipitation in the south. Predictions for the high emissions scenario show the same trends, increases in precipitation of roughly 10% throughout the region although the same three models predict less precipitation in the southern U.S. by up to 25% (MIROC3.2 (medres)). More extreme droughts will result from either a reduction in precipitation or an increase in temperature (and consequent evapotranspiration) or both (Barber, Juday, & Finney 2000).

	Methods
	Results
	Fire suppression and choice of FFMC and BUI threshold parameters had no effect on the dominant vegetation type (indicating that fire has little or no effect on forest type) but decreased forest cover from 97 to 87 % under CSIRO and 93 to 77 % under Hadley in Pennsylvania (no changes in other states). However, future warming can cause shifts in different dominant vegetation type (Table 4.3). In Maine, predicted forest type changes from temperate evergreen needleleaf forest to temperate cool mixed forest, in New York the historical forest is a temperate deciduous broadleaf forest and only the MIROC future climate causes a shift to temperate warm mixed forest, in Pennsylvania the temperate deciduous broadleaf forest becomes more dominant under future scenarios, and in Georgia the historical dominance of temperate deciduous broadleaf forest shifts to a temperate warm mixed forest. All four domains were dominantly forested (as opposed to woodland, shrubland, or grassland) in every cell averaged over time. There was a shift toward a uniformly temperate climate in Maine and in Georgia a shift toward subtropical with the warmer future scenarios.
	Question 3: Do changes in fire regimes or climate have implications for the role of Appalachian forests in global carbon cycling?Across all domains and simulations, and for all carbon pools, fires decreased total ecosystem carbon storage (below ground (live and dead), soil, above ground (live and dead)) (Fig. 4.3a-d). However, the fire effect was minor under historical climate and fire regimes, and more significant in future scenarios, especially in New York and Georgia where all three future climate predictions resulted in roughly 35% less carbon due to increased future fire than would be stored in the absence of fire.
	Figure 4.3. Ecosystem carbon under historical and future climate scenarios with and without fire for each of the test domains. a) Maine, b) New York, c) Pennsylvania, d) Georgia.
	Discussion
	References
	The historical examples presented above can help us predict the degree to which forest responses will be resilient to given changes – but the interactions are complex, and in some cases unprecedented (O’Brien, Sygna, & Haugen 2004). If ecosystem stressors of the past did not drive the Appalachian forests permanently toward a non-forested state, this may not be an assurance that future conditions will not (Foster et al. 1997). Compounded perturbations and the ecological surprises they generate will become more common as more pervasive anthropogenic impacts overlay rapid global climate change (Paine, Tegner, & Johnson 1998). In particular, even if the magnitude of climate change is unremarkable, a fast pace of change could cause regime shifts that would not take place if thresholds were approached more slowly (e.g. equilibriums can develop if vegetation responses are short relative to the period of climate change (Webb 1986)). Conversely, extremely rapid climate change (in terms of trends or frequency of disturbance) could kill individuals and interfere with genetic or migratory adaptation processes if these responses require comparatively long time periods. The comparison of time scales of climate change and response processes highlights the vulnerability of trees which typically require 20-30 years to reach reproductive age and conversely the advantage of insects, some of which can have multiple generations in one year.
	In the eastern U.S. we can anticipate 3-4 °C warming over the next 100 years, with more warming in the northeastern U.S. than the southeastern U.S. and smaller changes in precipitation of up to 10% increase, although there is a possibility the southeastern U.S. might receive less rainfall . Tree species are expected to migrate northward, uniquely, in response to warming temperatures. While there is considerable concern that historical migration rates are slower than the velocity of climate change (Malcolm et al. 2002; Svenning & Skov 2007), temperature increases of 3-4 C, alone, may threaten only the species inhabiting small spatial extents, particularly those on mountain tops. 
	But temperature does not act alone. Warmer temperatures increase evapotranspiration rates, thereby decreasing soil moisture and causing drought stress in trees (Barber, Juday, & Finney 2000). While there is a predicted increase in precipitation in the Appalachians, it is unclear if this will be sufficient to compensate for the potential water deficit associated with increased temperature and evapotranspiration. Even if the net hydrologic effect is neutral in average years, extreme events will undoubtedly expose the forests to infrequent severe droughts. This effect may be gradual or abrupt and no forest type or climate zone is invulnerable (Allen et al. 2010). Even in humid forests, drought can cause tree mortality as seen historically in the dust bowl example described above (Hursh & Haasis 1931) and more recently in the Amazon during the 2005 and 2010 droughts (Lewis et al. 2011). The prospect of a change in drought severity or frequency presents a potential challenge to historic Appalachian resilience.
	There are at least three explanations for drought-induced forest-mortality: 1) extreme drought and heat cause cavitation of water columns in the xylem, 2) water stress weakens trees by limiting metabolism resulting in carbon deficits, and 3) warm periods support population growth of pests and diseases allowing them to overwhelm weakened host trees (Adams et al. 2010; Allen et al. 2010). One such example is the increase in red maple (Acer rubrum) over oak species (Quercus sp.) that may represent a decline in forest resilience because while red maple may survive predicted climate change, it is susceptible to Asian longhorned beetle (Dodds & Orwig 2011; Martin 2012). Direct tree mortality is another concern. Trees that reach maturation under historical conditions with infrequent drought may be particularly poorly adapted to survive extreme droughts because below-ground architecture has not been optimized for water extraction. Furthermore, drought-stressed trees consume carbohydrate reserves more quickly but cannot photosynthesize due to closed stomata making trees more and more vulnerable to pest outbreaks or diseases (Williams et al. 2012). Obviously, wildfire becomes more frequent and/or more severe under drought conditions when all fuels have lower moisture content.
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