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ABSTRACT 

This thesis describes the structure evolution, diffusivity and viscosity of Al 80Ni20, 

Al 80Cu20, Al1-xZrx (x=0.4, 0.5. 0.6 and 0.67) and Ni1-xWx (x=0.1 and 0.2) melts through 

ab initio molecular dynamics (AIMD) at different temperatures, providing fundamental 

information in characterizing the glass formability. 

The structure evolution is characterized in terms of pair correlation function, 

structure factor, coordinate numbers, Honeycutt-Anderson bond pair and Voronoi 

polyhedra.  The short range ordering structures in the metal melts can be presented based 

on the analysis of Honeycutt-Anderson bond pair and Voronoi polyhedra. Self diffusivity 

and intrinsic diffusivity are calculated from the Einstein relation based on the mean 

square displacement of atoms.  Viscosity is evaluated using Stock-Einstein relation 

derived for the motion of a macroscopic particle in a viscous medium. Our predicted pair 

correlation function, structure factor, diffusivity and viscosity are compared with 

available experimental data, such as high energy X-ray diffraction and quasielastic 

neutron scattering, showing favorable agreement. 
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iv 

 

 

TABLE OF CONTENTS  

LIST OF FIGURES ................................................................................................................. vi 

LIST OF TABLES ................................................................................................................... xi 

ACKNOWLEDGEMENTS ..................................................................................................... xii  

Chapter 1 Introduction ............................................................................................................. 1 

1.1. Motivation ................................................................................................................ 1 
1.2. Objectives ................................................................................................................. 3 

Chapter 2 Computational Methodology ................................................................................... 4 

2.1. Introduction .............................................................................................................. 4 
2.2. Ab initio molecular dynamics (AIMD)  .................................................................... 4 
2.3. Structure evolution analysis based on AIMD results ............................................... 8 

2.3.1.Pair correlation function and structure factor .................................................. 8 
2.3.2.Coordination number ....................................................................................... 11 
2.3.3.Honeycutt-Anderson bond pair analysis ......................................................... 12 
2.3.4.Voronoi tessellation ......................................................................................... 13 

2.4. Kinetic properties prediction based on AIMD results .............................................. 14 
2.4.1.Diffusivity ....................................................................................................... 14 
2.4.2.Viscosity .......................................................................................................... 16 
2.4.3.Fragility ........................................................................................................... 16 

2.5. Implementation......................................................................................................... 17 
2.5.1.Supercell of N-body system ............................................................................ 17 
2.5.2.Atomic position in the supercell ...................................................................... 18 
2.5.3.AIMD input and output files ........................................................................... 19 

2.6. Summary ................................................................................................................... 19 

Chapter 3 Atomic structure and diffusivity in liquid Al80Ni20 ................................................. 27 

3.1. Introduction .............................................................................................................. 27 
3.2. Computational details ............................................................................................... 28 
3.3. Results and Discussions ........................................................................................... 29 

3.3.1.Pair correlation functions and structure factors ............................................... 29 
3.3.2.Local structure analysis ................................................................................... 31 
3.3.3.Diffusion coefficients ...................................................................................... 33 

3.4. Conclusion ................................................................................................................ 35 

Chapter 4 Structure, diffusivity and viscosity of liquid Al80Cu20 ............................................ 48 

4.1. Introduction .............................................................................................................. 48 
4.2. Computational details ............................................................................................... 49 
4.3. Results and discussion .............................................................................................. 51 

4.3.1.Local Structure Analysis ................................................................................. 51 
4.3.2.Diffusivity ....................................................................................................... 53 



v 

 

 

4.3.3.Viscosity .......................................................................................................... 56 
4.4. Conclusions .............................................................................................................. 57 

Chapter 5 Effect of composition on atomic structure, diffusivity and viscosity of liquid 

Al -Zr alloys ...................................................................................................................... 73 

5.1. Introduction .............................................................................................................. 73 
5.2. Computational details ............................................................................................... 74 
5.3. Results and Discussions ........................................................................................... 75 

5.3.1.Local Structure Analysis ................................................................................. 75 
5.3.2.Diffusion Coefficients and Viscosity .............................................................. 78 

5.4. Conclusion ................................................................................................................ 81 

Chapter 6 Contribution of tungsten to the structure and diffusivity of liquid Ni-W alloys ..... 95 

6.1. Introduction .............................................................................................................. 95 
6.2. Computational details ............................................................................................... 96 
6.3. Results and Discussions ........................................................................................... 97 

6.3.1.Pair correlation function and coordination number ......................................... 97 
6.3.2.Local structure analysis ................................................................................... 99 
6.3.3.Diffusivity ....................................................................................................... 101 

6.4. Conclusion ................................................................................................................ 102 

Chapter 7 Conclusions and Future work .................................................................................. 114 

7.1. Conclusion ................................................................................................................ 114 
7.2. Future work .............................................................................................................. 115 

Appendix ï Input files for AIMD calculation .......................................................................... 116 

References ................................................................................................................................ 122 

 



vi 

 

 

LIST OF FIGURES 

Figure 2.1 Roadmap of the proposed computational methodology compared with 

potential experiments. ...................................................................................................... 20 

Figure 2.2 Schematic diagrams of typical Honeycutt-Anderson bond pairs and their 

corresponding potential constructed clusters ................................................................... 21 

Figure 2.3 The relation between Honeycutt-Anderson bond pairs (1441, 1551 and 1661) 

and potential crystallography structures ........................................................................... 22 

Figure 2.4 AIMD result of Al80Ni20 at 2000K, (a) mean-squared displacements (MSD); 

(b) and (c) tracer diffusivities of Ni and Al derived from ñrandom walkò (<|r(t)-

r(0)|
2
>=6Dt) at finite time, comparing with mean values and standard deviation in 

green. ................................................................................................................................ 23 

Figure 2.5 Graphic representation of the equation of state calculations for liquid metal 

Ni400Al 100 alloy at 1830K [11] .......................................................................................... 24 

Figure 2.6 Variation in the external pressure of vit1 alloy (Zr41.2Ti13.8Cu12.5Ni10Be22.5) with 

time at 1250K [20] ........................................................................................................... 24 

Figure 2.7 Variation in the external pressure as a function of simulation time in (a) 

Al 80Ni20 at 2000K and (b) Al80Cu20 at 1000K, comparing with the mean value with 

standard deviation in blue. ............................................................................................... 25 

Figure 2.8 Variation of atomic number density with the temperature during AIMD 

simulation for Mg65Cu25Y10 alloy [18] ............................................................................. 26 

Figure 3.1. Pair correlation function of the liquid Al80Ni20 alloy (a) gtotal(r), with each 

curve shifted by 0.5, and the reduced partial pair correlation functions (b)GAlAl , (c) 

GAlNi , and (d) GNiNi with the experimental [86] and the MD [61] data superimposed. .... 36 

Figure 3.2. Faber-Ziman structure factor of the liquid Al80Ni20 alloy at various 

temperatures shifted by 0.5 between neighboring curves: (a) total structure factor, 

STotal(q); and partial structure factor (b) Al-Al, SAlAl (q); (c) Al-Ni, SAlNi(q); and (d) 

Ni-Ni, SNiNi(q).  The experimental results (red stars in the figures) are determined at 

1330K about 70K higher than the liquidus temperature [86]. .......................................... 37 

Figure 3.3. Bhatia-Thornton structure factor of liquid Al80Ni20 with the neutron scattering 

data [86] and the MD data [32]: (a) various structure factors at 1330 K; and structure 

factors at various temperatures; (b) number-number, SNN(q); (c) number-

concentration, SNC(q); (d) concentration-concentration, SCC(q). Note that the 

multiplication by 1/cicj is used to increase the amplitude of SCC(q) leading the 



vii  

 

 

asymptotic value SCC(q)=1 for ¤­q . The plots at different temperatures are 

shifted from each other in steps of 0.5 in (b) and 0.1 in (c) and (d). ................................ 38 

Figure 3.4. Percentages of average coordination number (CN) at various temperatures, (a) 

coordination numbers between 7 and 12; (b) coordination numbers between 13 and 

17. ..................................................................................................................................... 39 

Figure 3.5. Percentages of bond pairs as a function of temperature, (a) various bond pairs; 

(b) the variation of icosahedral type (1551, 1541 and 1431), FCC and HCP type 

(1422 and 1421), BCC type (1441 and 1661), and random type (1311,  1321 and 

others).  The other bond pairs less than 1% are not shown. ............................................. 40 

Figure 3.6. Percentages of various Voronoi polyhedra grouped in terms of coordination 

number as a function of temperature. ............................................................................... 41 

Figure 3.7. Icosahedra medium-range order with the Ni atoms in the center of icosahedra 

(golden, darker) and other positions (red, lighter), and Al atoms in the center 

(yellow, darker) and other positions (blue, lighter).  The icosahedra are linked by 

vertex-shared (VS), face-shared (FS), and intercross-shared (IS) atoms. ........................ 42 

Figure 3.8. Mean-squared displacements of Al and Ni from AIMD simulations at 2000K, 

1900K, 1800K and 1330K from the super-cell with 200 atoms and 2200K, 1500K 

from the supercell with 150 atoms. .................................................................................. 43 

Figure 3.9. Tracer diffusion coefficients of Al and Ni in liquid Al80Ni20 compared with 

self-diffusion coefficient of pure Ni by Meyer et al.  [100] using quasielastic neutron 

scattering (QNS) and Zhang et al. [101] by AIMD and the experimental and MD 

data in liquid Al80Ni20 by Maret et al.[86] and Horbach et al.[32] . ................................. 44 

Figure 3.10. Thermodynamic factors in liquid Al80Ni20 as a function of temperature 

calculated from the thermodynamic database by Dupin et al.[102], MD simulations 

by Horbach et al.[32] , and current AIMD simulations. .................................................. 45 

Figure 3.11. Manning dynamic correlation factor as a function of simulation time step 

with the initial step considered as the reference state, )0(iu . ......................................... 46 

Figure 3.12. Interdiffusion coefficient in liquid Al80Ni20 calculated by the Darken 

equation with thermodynamic factors shown in Figure 3.10, compared with the MD 

and experimental results by Horbach et al. [32]............................................................... 47 

Figure 4.1 Generalized pair correlation functions of pure Cu and Al80Cu20 at 1000K 

obtained by AIMD calculation,  the high energy X-ray diffraction  of Al83Cu17 at 

1023K [109], and the quasielastic neutron scatting experiment of pure Al at 1023K 

[65]. .................................................................................................................................. 62 

Figure 4.2 Pair correlation functions of liquid Al80Cu20 alloy at different temperatures, (a) 

the generalized PCFs, (b) Al-Al partial PCF; (c) Al-Cu partial PCF; (d) Cu-Cu 

partial PCF. ...................................................................................................................... 63 



viii  

 

 

Figure 4.3 Variation of the percentages of average coordination number with temperature ... 64 

Figure 4.4 Temperature dependence of (a) the quatanty of various types of bond pairs, 

and (b) icosahedra type bond pairs (1551, 1541 and 1431), FCC and HCP type (1422 

and 1421), BCC type (1441 and 1661), and random type (1311,  1321 and others).  

Note: the other bond pairs less than 1% are not shown here. ........................................... 65 

Figure 4.5The content of various Voronoi polyhedra at different temperature ....................... 66 

Figure 4.6 Mean square displacements of Al and Cu at different temperature ........................ 67 

Figure 4.7 Intrinsic diffusion coefficients of Al and Cu in liquid Al80Cu20 calculated by 

different potential in this work, comparison to previous reported results are shown 

here. .................................................................................................................................. 68 

Figure 4.8 Variation of thermodynamic factor with the content of Cu in binary Al-Cu 

alloys at 983K; (b) Temperature dependence of the thermodynamic factor in 

Al 80Cu20. ........................................................................................................................... 69 

Figure 4.9 Variation of the dynamic correlation factors with the initial step, )0(iu .............. 70 

Figure 4.10 Interdiffusion coefficient in Al80Cu20 calculated by the Darken equation in 

this work and  compared results by Zhang et.al.[28]. ...................................................... 71 

Figure 4.11 (a) The viscosities, and (b) the logarithm of viscosities calculated by different 

potentials compared with the results of Wang [30] and Brillo [29]. ................................ 72 

Figure 5.1. Generalized pair correlation functions of liquid Al-Zr alloys shifted by 0.5 

between neighboring curves with the experimental data of pure Al at 1323 K (1050 

°C) and Zr at 2290 K (2017 °C) reported by Waseda [110] and Schenk [122] 

superimposed. .................................................................................................................. 83 

Figure 5.2. Generalized pair correlation functions of liquid Al-Zr alloys shifted by 0.5 

between neighboring curves at various temperatures, (a) Al3Zr2, (b) AlZr, (c) Al2Zr3 

and (d) AlZr2. ................................................................................................................... 84 

Figure 5.3. Variation of the main bond pairs (>1%) as a function of temperature, (a) 

Al 3Zr2, (b) AlZr, (c) Al2Zr3 and (d) AlZr2. ....................................................................... 85 

Figure 5.4. Percentage of Voronoi polyhedra at different temperatures, (a) Al3Zr2, (b) 

AlZr, (c) Al2Zr3 and (d) AlZr2. ......................................................................................... 86 

Figure 5.5. Variation of Zr-centered polyhedra at Tm of each alloy normalized to each 

type of polyhedron as a function of Zr concentration. ..................................................... 87 

Figure 5.6. Local atomic structure around a perfect icosahedron <0, 0, 12, 0> at Tm, (a) 

Al 3Zr2, (b) AlZr, (c) Al2Zr3 and (d) AlZr2, with polyhedra linked by vertex-shared 

(VS), edge-shared (ES), face-shared (FS), and intercross-shared (IS) atoms (see text 

for atom designations). ..................................................................................................... 88 



ix 

 

 

Figure 5.7. Mean-squared displacements (MSDs) at temperatures corresponding to 

1.4Tm, 1.3Tm, 1.2Tm, 1.1Tm and Tm of individual alloys with the arrow showing 

the decreasing of temperature, (a) Al3Zr2; (b) AlZr; (c) Al2Zr3; (d) AlZr2....................... 89 

Figure 5.8: Self- and tracer diffusion coefficients of Al (a) and Zr (b) alloys with lines 

fitted by an Arrhenius relation, 
TkQ BeDD

/

0

-
= with D0 and Q listed in Table 5.1. ........ 90 

Figure 5.9. Self- and tracer diffusion coefficients of Al and Zr at 2000 K (1727 °C), 2100 

K (1827 °C), and 2200 K (1927 °C) as a function of Zr content calculated from 

Arrhenius relations (symbols). The inset picture shows the self-diffusion coefficient 

ratio (DAl/DZr). .................................................................................................................. 91 

Figure 5.10. Thermodynamic factors as a function of temperature calculated from the 

thermodynamic database by Wang et al.[121]. ................................................................ 92 

Figure 5.11. Interdiffusion coefficient calculated by the Darken equation with self-

diffusion coefficients of pure Al and Zr superimposed [116]. ......................................... 93 

Figure 5.12. Viscosity calculated from the Stokes-Einstein equation with data of pure Al 

and Zr from previous AIMD simulations[116] and experimental data of pure Al by 

Assael et al.[117] and Sun et al.[118] superimposed. ...................................................... 94 

Figure 6.1 Total pair correlation functions of Ni-W alloys at 2500K along with our 

AIMD data of pure W at 3000K and the data of pure Ni at different temperatures 

reported by Waseda [110] and Zhang [101].  The curves of different systems are 

shifted from each other in steps of 0.5. ............................................................................ 104 

Figure 6.2 Pair correlation functions of liquid Ni-10W at various temperatures, (a) total 

pair correlation functions, g(r); (b), (c) and (d) the partial pair correlation functions, 

)(rgNiNi , )(rgNiW and )(rgWW .  The curves at different temperatures are shifted 

from each other in step of 0.5........................................................................................... 105 

Figure 6.3 Pair correlation functions at various temperatures of liquid Ni-20W, (a) total 

pair correlation functions, g(r); (b), (c) and (d) the partial pair correlation functions, 

)(rgNiNi , )(rgNiW and )(rgWW .  The curves at different temperatures are shifted 

from each other in step of 0.5........................................................................................... 106 

Figure 6.4 Average coordination Number (CN) distribution around all atoms at various 

temperatures with open and solid symbols for Ni-10W and Ni-20W, respectively. ........ 107 

Figure 6.5 Variation of bond pair with temperature, (a) (b) the percentage of various 

types of bond pairs of Ni-10W and Ni-20W, respectively; (c) Variation of 

icosahedra type bond pairs (1551, 1541 and 1431), FCC and HCP type (1422 and 

1421), BCC type (1441 and 1661), and random type (1311,  1321 and others). ............. 108 

Figure 6.6 Average frequency of Voronoi polyhedra at various temperatures. ....................... 109 



x 

 

 

Figure 6.7 Variation of Voronoi polyhedral index with the same coordination number as a 

function of temperature with open and solid symbols for Ni-10W and Ni-20W, 

respectively.  . .................................................................................................................. 110 

Figure 6.8 Icosahedra medium-range order with CN=12 Voronoi polyhedra at 1500K, (a) 

Ni-10W; (b) Ni-20W. Atoms in the center, the normal and the shared positions are 

marked in the green, the golden and the blue colors for Ni, the pink, the red and the 

black colors for W. ........................................................................................................... 111 

Figure 6.9 Mean-squared displacements (MSDs) of Ni and W in both alloys at different 

temperatures. .................................................................................................................... 112 

Figure 6.10 Diffusion coefficients of liquid W, Ni and Ni-xW (x=10, 20) in comparison 

with the AIMD data of Ni-20W and Ni-5.4W by Woodward [11]. ................................. 113 
 



xi 

 

 

LIST OF TABLES  

Table 4.1 The pre-exponential factor (D0) and the activation enthalpy (H) for the intrinsic 

diffusion coefficient of Cu in liquid Al-Cu and Ni in liquid Al-Ni through Arrhenius 

equation ............................................................................................................................ 59 

Table 4.2 Diffusivity data and viscosity calculated by PAW-GGA potential of liquid 

Al 80Cu20 ............................................................................................................................ 60 

Table 4.3 The fragility of liquid Al80Cu20 via VFT fitting ....................................................... 61 

Table 5.1 Prefactor and activation energy for tracer diffusion coefficients and viscosity ....... 82 
 

 



xii  

 

 

ACKNOWLEDGEMENTS  

I would like to thank the following people and institutions for their help and 

support to make this possible: 

Dr. Zi-Kui Liu and Dr. Xi Dong Hui for providing me the great opportunity to be 

an exchanging student from University of Science and Technology Beijing to the 

Pennsylvania State University, whose enthusiasms and knowledge in academic research 

always motivates me to aim higher in order to build solid foundation in computational 

material science;  

Dr. Long Qing Chen and Dr. Tarasankar DebRoy for their time, suggestions and 

encouragements during serving on my thesis committee; 

Dr. Suveen N. Mathaudhu, Dr. Laszlo J. Kecskes and Dr. Kristopher A. Darling 

for their valuable comments and suggestions in improving my capability to successfully 

finish objectives in the project;  

Dr. Shun Li Shang, Dr. Yi Wang, and all the other members in Phase Research 

Lab for their patient guidance during my research; 

 The National Natural Science Foundation of China (Grant Nos. 50431030 and 

50871013) and National Basic Research Program of China (Grant No. 2007CB613901) 

for funding the work in Al-based alloys; 



xiii  

 

 

The Army Research Laboratory of United States for funding the work in Ni-W 

alloys (Project No. W911NF-08-2-0); 

The China Scholarship Council for awarding the scholarship (File No. [2008] 

3072) to support my partial stipend in United States for 48 month;  

Finally, I would like to express my special thanks to my parents, Mrs. Xiu Ying 

Ge and Mr. Xiu Liang Wang for their unconditional love and support. I am especially 

grateful to my wife Yan Liu for her endless love, support and understanding. I want to 

thank my son En Ze Wang and my daughter En Jia Wang for bringing me daily happy 

life. Special thank you to my older sister Jing Wang and parents in-law Mrs. Dong Xue 

Gu and Mr. Xiu Er Liu for their great support. 

 

 



 

 

Chapter 1 Introduction  

1.1. Motivation  

Metallic glasses are an important group of materials with properties significantly 

different from their crystal counterparts since only short range ordering structures exist 

instead of long rang ordering [1-4].  Once the nucleation of crystalline phases from liquid 

is prohibited during quenching, metallic glasses can form.  One way to understand the 

tardiness of crystallization is to study how atomic structures of liquid evolve as the 

temperature decreases along with the atomic mobility in the liquid.  They have been 

typically obtained through classic molecular dynamics (MD) simulations [5-9].  In recent 

years, with the development of more efficient algorithms and higher computing powers, 

the ab initio molecular dynamics simulations (AIMD) introduced by Car and Parrinello 

[10] are becoming more widely used [11-14].  The advantage of the AIMD approach over 

the classic MD approach is that the atomic forces in AMID simulations are calculated on 

the fly based on the density functional theory [15].  In a series of studies, we have used 

the AIMD approach to derive the detailed atomic structures in a wide range of simple and 

complex alloys with tendency to form bulk metallic glasses (BMG) [16-22], 

demonstrating the great potential of the AIMD approach. 

The diffusivity and viscosity of the metallic liquids are important physical 

properties in understanding the kinetic behavior of various processes such as nucleation, 

crystal growth, the formation of metallic glasses (MGs) et [23, 24].  The strong/fragile (f) 
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feature of liquid has been applied to indicate the sensitivity of liquid viscosity to 

temperature, and in turn to evaluate the glass forming ability (GFA) of a certain system 

[4, 25]. Approaching the glass transition temperature during solidification, the viscosities 

of liquids increase drastically. Based on the Angellôs classification, the Ὕ-scaled ɖ of 

metallic glass-forming liquid is in the middle of strong (e.g. SiO2, f=20) and fragile (e.g. 

o-terphenyl, f=80) limits [3, 26, 27].  By using the X-ray radiography (XRR) and QNS 

method[28], the diffusivity of Al80Cu20 have been investigated . The viscosity was also 

measured by the mean of oscillating cup viscometry [29, 30].  In recent years, the 

employment of quasielastic neutron scattering (QNS) measurements enhanced the 

capability and accuracy of liquid diffusivity and viscosity. Therefore, it is a potential 

approach to predict the GFA of a specific alloy through investigating the viscosity from 

AIMD calculations. 

 It is still an open question to evaluate the contribution of the thermal chemical 

driving force to the inter diffusion coefficient.  In 1948, Darken [31] proposed a 

phenomenological interdiffusion coefficient equation through the tracer diffusion 

coefficient, intrinsic diffusion coefficient and the thermal dynamic factor. This equation 

has been tested successfully in a number of solid metallic systems, which is also applied 

for liquid metallic alloys, such as Al-Ni [32], Al-Cu [33], Al-Co [34], Cu-Ni [33], Co-Ni 

[34], Nb-Zr [35], Na-K[36] etc.  The contribution of the vacancies is considered by 

applying the vacancy flow effect factor, which is the so called ñManningò factor [37, 38].  

However, a recent work performed by Zhang et al pointed out that the interdiffusion 

coefficient in the liquid Al-Cu could not be represented via the Darken equation [28].  
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Thus, it is essential to evaluate the connection between tracer diffusion coefficients and 

inter diffusion coefficient through Darken equation. 

1.2.  Objectives 

The goals of the project is to investigate the contributions of alloying elements on 

structure evolution, diffusivity and viscosity of Al -based and Ni-based metal melts, 

providing a novel procedure to discover a new advanced material with good glass 

forming ability.  

The organization of this thesis is as following:   

 In chapter 2, computational methodologies describing the structure evolution and 

predicting the kinetic properties from AIMD results at finite temperatures are discussed. 

In Chapter 3, atomic structures and diffusivity in liquid Al80Ni20 are discussed. Through 

comparing with the relate experiment, the accuracy of our predicted pair correlation 

function, structure factor and diffusivity are evaluated. In Chapter 4, atomic structures, 

diffusivity and viscosity in liquid are studied. In Chapter 5, effect of composition on 

atomic structures, diffusivity and viscosity of liquid Al-Zr alloys are presented. In 

Chapter 6, contribution of tungsten to the structure and diffusivity of liquid Ni-W alloys 

are predicted. Chapter 7 summarizes the contribution of the present work and discusses 

the future work.  



 

 

Chapter 2 Computational Methodology 

2.1. Introduction  

 The main purpose of this thesis to understand the structure evolution, diffusivity 

and viscosity of Al-base and Ni based metal melts through ab initio molecular dynamics 

(AIMD).  According to our proposed procedure in discovering properties of metal 

materials in liquid state, roadmap of the computational methodology compared with 

potential experiments is shown in Figure 2.1.  It can be seen that the structure evolution of 

metal melts at different temperatures can be characterized in terms of pair correlation 

functions (PCF), structure factors (SF), coordination number (CN), Honeycutt-Anderson 

bond pair and Voronoi polyhedra analysis, shown as route 1.  Comparing with the 

extended X-ray absorbing fine structure (EXAFS) or high energy X-ray diffraction, our 

predicted results of PCF and SF can be evaluated, shown as route 2.  Since the thermal 

chemical driving force is a significant factor in predicting the inter diffusion coefficient, 

it could be a potential way to justify our predicted results of PCF and SF after comparing 

kinetic properties between our prediction and experiments, shown as route 3.  In section 

2.2 and 2.3, the computational methodology discovering the structure evolution, 

diffusivity and viscosity through ab initio molecular dynamics calculations is described.  

2.2. Ab initio molecular dynamics (AIMD)  

 Molecular dynamics (MD) simulation is a technique to investigate equilibrium 

and transport properties of many-body systems, which has become a widely used 
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computational method in studying structure evolution [12, 13, 17, 19, 20, 39-41] and 

kinetic properties (such as self -diffusion coefficient and viscosity) [9, 39, 42-44] of the 

liquid and super-cooling liquid alloys.  While the conventional molecular dynamics (MD) 

simulations use a modified Johnson potential,[45] embedded atom potential[46] or the 

Sutton-Chen (SC) many-body potential,[47]  AIMD simulations are based on the density-

function theory (DFT)[48] and the pseudopotential method,[49, 50] following the 

approach introduced by Car and Parrinello [10].  The motion of particles in the system is 

captured through ñon-the-flyò solution of the quantum mechanical electronic structure 

problem by applying the laws of classical mechanics.  Therefore, the electron density or 

the electronic wavefunction associated to each motion step of particles is the fundamental 

in the AIMD simulations. 

 In principle, the time-independent stationary Schrödinger Equation describes the 

quantum mechanical behavior of particles by defining their relative wave functions, from 

which the total energy can be determined, shown as 

 

Equation 2.1     ὌɊ ὉɊ 

 

where HĔis the Hamiltonian operator, ꜝ the wavefunction and E the total energy of the 

system.  However, it is impossible to get the exact solution of Equation 2.1 in the N-body 

system until applying some approximations.  Otherwise variables (electron coordinates) 

are too many and cannot be separated in the N-body electron wavefunction ꜝ.   

 Based on the so-called Born-Oppenheimer approximation [10] (or adiabatic 

approximation), the motion of electron and nuclei can be considered separately because 
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of the large mass difference between electron and nuclear.  Therefore, it is possible to 

solve the problem of electron motion for fixed positions of nuclei since the Hamiltonian 

operator in Equation 2.1 can be rewrote as electronic Hamiltonian ( eleHĔ , in atomic 

unites).  Following the Hohenberg-Kohn-Sham theorem [51, 52], (i) the external potential 

is an unique functional of the electron density and (ii) the exact ground state density of 

electron dominates the minimize of the total energy, the total energy can be described as 

a function of electron density ( )(r
C

r ) as 

 

Equation 2.2  Ὁ Ὁὴὶᴆ Ὕὴὶᴆ Ὁ ὴὶᴆ Ὁ ὴὶᴆ Ὁ ὴὶᴆ  

 

where Ὕὴὶᴆ  is the kinetic energy of the electrons without interactions, Ὁ ὴὶᴆ  the 

external potential energy of the ions applying on the electron and Ὁ ὴὶᴆ  the 

interaction energy of electrons. Ὁ ὴὶᴆ  is the exchange and correlation energy, which 

can be solved by using the Local Density Approximation (LDA)  or Generalized Gradient 

Approximation (GGA).  Thus, the total energy of N-body system can be obtained through 

applying proper pseudopotential, which describing all electrostatic and quantum-

mechanical interactions of valence electrons with the cores and producing true potential 

and valence orbitals outside a particular core region but remaining weaker and smoother 

inside.  

 In the view of quantum mechanics, particles in the N-body system can also be 

described by their position R
C

 and momenta ( VMP
CC

= ) and the potential is assumed to be 
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a function of their positions only )(RU
C

. The Hamiltonian operator ( HĔ) of this system 

can be written as  

 

Equation 2.3     Ὄ ὌὙᴆȟὖᴆ В
ᴆ

ὟὙᴆ 

 

where Mi is the mass of particle i. According to Newtonôs second law, the force working 

on particle i can be derived as 

  

Equation 2.4     ὓὙᴆ
ᴆ

ᴆ
 

 

At the same time, the equation of motion can also be derived using the Lagrange 

formalism as 

  

Equation 2.5    flὙᴆȟὙᴆ В
ᴆ
ὟὙᴆ 

 

Based on energy conservation condition, the time dependence Hamiltonian operator ( tHĔ

) can be written as 

Equation 2.6     Ὄ Ὄ ὙᴆȟὙᴆ Ὁ 
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Therefore, particle positions of the N-body system can be determined via ab initio 

molecular dynamics under a particular ensembles average, such as microcanonical 

(NVE), canonical (NVT) or isothermal-isobaric (NPT) ensemble.  

2.3. Structure evolution analysis based on AIMD results 

2.3.1. Pair correlation function and structure factor 

 The partial pair correlation function,Ç Ò, is defined as follows [18, 20, 53, 54]
 
 

 

Equation 2.7    Ç Ò ộВ
ȟЎ

ˊ Ў
Ớ 

 

where V denotes the volume of the supercell, Ni and Nj are the numbers of i and j atoms 

in the supercell, Î ÒȟЎÒ is the number of j atoms in the sphere shell from r to Ò ЎÒ of 

the i atom, and the bracket < > represents the time average of different configurations 

obtained from molecular dynamics simulations.  The total pair correlation function, 

Ὣ Òȟ is the weighted sum of the partial pair correlation functions, [18, 55] 

 

Equation 2.8  Ç Ò В В      

ộ Ớ
Ç Ò В В ÷ Ç Ò 

 

where ộÆÑỚ ВÃÆÑ  with Æ Ñ being the atomic scattering factor, Ã  the mole 

fraction of element i, and Ñ τ́ȾɚÓÉÎɗ the transferred momentum at the diffraction 

angle ɗ and the x-ray wavelength ɚ.  Neutron scattering measurements give the atomic 
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scattering factor of Al and Ni being 3.45 and 10.31, respectively [56].  The weight factor 

÷  is typically treated as a constant independent of r, but composition dependent, equal 

in reciprocal and real space as in the case of neutron scattering experiments [57].  The 

reduced pair correlation function,' Ò, and reduced generalized correlation function, 

'Ò, are given as [55, 58] 

 

Equation 2.9    ' Ò τ́ɟÒÇ Ò ρ 

 

Equation 2.10    'Ò Ç Ò τʌʍÒ  

 

where ʍ is the average atomic density in the supercell, and ʍ the atomic density in the 

spherical shell with a radius of r and the total structure factor of 3 Ñ.  For binary 

systems, Faber and Ziman [59] showed that 3 Ñ can be obtained from the scattered 

intensity per atom through the following equation  

 

Equation 2.11   3 Ñ
ộ Ớộ Ớ

ộ Ớ
В В ÷ 3 Ñ 

 

where 3 Ñ is the partial structure factor between atoms i and j obtained from the 

Fourier transform of Ç Ò, as follows: [20, 60-62] 
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Equation 2.12   3 Ñ ρ ᷿ τʌʍÒ Ç Ò ρ ÄÒ
Ŝ

 

 

On the other hand, Bhatia and Thornton [63]
  
represented the scattering function 

of a binary alloy in terms of three structure factors: the number-number structure factor, 

Ὓ Ñ , the number-concentration structure factor, Ὓ Ñ , and the concentration-

concentration structure factor Ὓ Ñ).  At temperatures above the Debye temperature and 

in the long-wavelength limit (qĄ0), Ὓ π and Ὓ π denote the mean square thermal 

fluctuations in the atom number and concentration, respectively, and Ὓ π represents 

the correlation between these two fluctuations [62, 63].  They can be calculated from the 

Faber-Ziman structure factors from Equation 2.12 

 

Equation 2.13   3 Ñ Ã3 Ñ Ã3 Ñ ςÃÃ3 Ñ 

Equation 2.14   3 Ñ ÃÃÃ 3 Ñ 3 Ñ Ã 3 Ñ 3 Ñ  

Equation 2.15   3 Ñ ÃÃρ ÃÃ 3 Ñ 3 Ñ ς3 Ñ  

 

Ὓ π is related to the second derivative of the molar Gibbs energy - g [32, 63] through 

the thermodynamic factor, F,  
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Equation 2.16    ū
 
 

 

 Comparing PCF and SF curves obtained by AIMD simulation and the extended 

X-ray absorbing fine structure (EXAFS) or high energy X-ray diffraction in pure 

elements (liquid Na [64], Li [65], Ge [65], Al [65], Cu [42, 66], Zr [53, 67], et. al.) and 

alloys (liquid GaSb [44], InSb [44], Al 80Ni20 [22, 61, 68, 69], Al80Mn20 [61, 69], Zr2Ni 

[70], Zr41.2Ti13.8Cu12.5Ni10Be22.5 [20], et. al.) the capability of AIMD in reproducing the 

reliable data as same as experiments can be seen.  

2.3.2. Coordination number 

The partial coordination number, :, is defined as the number of j atoms in the first 

neighboring sphere centered at i atom with the radius rmin and can be calculated from the 

partial pair correlation functions using the following equation [18] 

 

Equation 2.17   : ᷿ τʌÒʍÇ ÒÄÒ 

 

where Ò  is the cutoff distance defined by the first-minimum position of Ç Ò, and ɟ 

the average atomic density of element j.  The average coordination number of element i 

can be obtained as  ὤ Вὤ .  The average coordination number of a solution can be 

estimated by  ὤ ὧὤ ὤ ὧὤ ὤ  [71], which can also be calculated in 
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terms of Voronoi index ộὲȟὲȟὲȟὲȟȣỚ where ὲ denotes the number of k-edged face 

of a Voronoi polyhedron, with : Вὲ being the average coordination number [12, 20]. 

2.3.3. Honeycutt-Anderson bond pair analysis 

For the bond pair analysis, the method proposed by Honeycutt and Anderson[72] 

is used with the local environment represented by the indexes i, j, k and l.  When the 

distance between root pair (atoms A and B) is less than their óbondingô distance measured 

by the first minimum position of Ç Ò, the two atoms are called a bond pair, with i=1, 

otherwise i=2.  The index j represents the number of common nearest-neighbor atoms 

forming bonds with the root pair, the index k denotes the number of bonds among the 

neighboring atoms; and the index l is a parameter used to distinguish local structures 

when i, j, k are the same.  Schematic diagrams of typical Honeycutt-Anderson bond pairs and 

their corresponding potential constructed clusters are displayed as Figure 2.2.  According to this 

notation, 1551, 1541 and 1431 represent the icosahedral type of clusters, 1441 and 1661 

the BCC-type bond pairs, 1421 and 1422 the FCC and HCP-type bond pairs, and 1311 

and 1321 the disordered atomic arrangements [5, 13, 20, 42, 72, 73].  Taking BCC as an 

example, the connection between bonds (1441 and 1661) and BCC structure is shown 

clearly in Figure 2.3, i.e., the {001} is constructed by 1441 bonds and {111} by 1661 

bonds. 
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2.3.4. Voronoi tessellation  

 Voronoi tessellation is the other more directional approach than the method of 

Honeycutt-Anderson bond pairs in displaying the geometrical construction of atomic 

local orders [74].  Based on the coordination of the local nearest-neighbor, the Voronoi 

index >< 3,,,, 6543 nnnn  designates and differentiates the type of the coordinate 

polyhedra, where in  denotes the number of i-edged face of the Voronoi polyhedra and 

äi in is the total coordinate number [12, 20, 39].  It is necessary to point out the main 

difference between Honeycutt-Anderson bond pairs and Voronoi tessellation.  Atoms 

involved in Honeycutt-Anderson bond pairs are classified by (i) whether or not they are 

near-neighbors, (ii) the number of near-neighbors they have in common, and (iii) the 

near-neighbor relationships among the shared neighbors [72].  While atoms in the 

Voronoi polyhedra are identified by the topological difference, (i) the coordination 

number and (ii) the number of edge of the faces [74].  

 

 Structure evolution with the change of composition and temperature in terms of 

coordination number, Honeycutt-Anderson bond pair and Voronoi tessellation has been 

applied in the study of various materials, such as Zr [67], Al [5], Cu [5], Al 80Ni20 [22, 

69], Al80Mn20 [69], Ni81B19 [12], Ni80P20 [12], Zr84Pt16 [12], Ni63Nb37 [12], Al 89La6Ni5 

[75], Ag70Cu30 [76], Cu60Zr40 [77], Mg65Cu25Y10 [18], et. al..  Through AIMD 

calculations, various short rang order (SRO) or long range order (LRO) structure 

characterized in atomic-level can be directly used to reveal the structure evolution.   
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2.4. Kinetic properties prediction based on AIMD results 

2.4.1. Diffusivity  

In MD simulations, the self-diffusion coefficient of atom i can be determined 

through Stock-Einstein relation shown as following [32, 39, 42, 78, 79] 

 

Equation 2.18   $ ÌÉÍOŜ
ộ Ớ

ÌÉÍOŜ
ộВ Ớ

 

 

where ộ2 ÔỚ is the mean-square displacement of component i, . the number of atom i, 

2 the coordinates of the j
th
 atom i, Ô the origin of time, and В 2 Ô Ô 2 Ô  

the ensemble average of the square displacement of atom i.  In a binary A-B system, 

Darken [31] derived the relation between the interdiffusion coefficient and self-diffusion 

coefficients as  

 

Equation 2.19    $ Ã$ Ã$ F 

 

where ū is the thermodynamic factor.  Bardeen [80] and Manning [37] modified the 

Darken equation by adding a dynamic correlation factor to take into account the flux 

difference of different atoms.  The dynamic correlation factor, l, can be calculated from 

the velocity correlation functions, shown as follows, [32]  
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Equation 2.20   Ò Ô В В ộëᴆ Ôɇëᴆ πỚȟÉ Ê  ×ÈÅÎ  Ë Ì 

 

Equation 2.21   l ρ ᷿ Ò Ô Ò Ô ςÒ ÔÄÔ
Ŝ

 

 

where ëᴆ Ô denotes the velocity vector of i
th
 atom of the k species at time t, and ộɇỚ the 

time average.  Equation 2.19 is thus modified as 

 

Equation 2.22    $ Ã$ Ã$ Ül 

 

 It is essential to mention that the MSD within the time shorter than 0.1 ps is 

proportional to the square of time and independent of temperature, as expected for 

ballistic motion and vibration [23].  At longer times, the MSD increases with T, which is 

characteristic of a thermally activated process such as long-range diffusion.  In this work, 

only the simulation result after 0.5 ps and with MSD starting at 2 Å
2
 ending at over 4 Å

2
 

are used to evaluate diffusion coefficient.  Taken MSDs of Al and Ni in liquid Al80Ni20 at 

2000K shown in Figure 2.4(a) as example, tracer diffusivities of Ni and Al derived from 

first derivative at finite time will be obtained firstly.  And then, the mean values with 

standard deviation in green shown in Figure 2.4 (b) and (c) are used to compare with 

available experimental results.   
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2.4.2. Viscosity 

The macroscopic shear viscosity ɖ, on the other hand, could be easily acquired using 

the Stokes-Einstein equation derived for the motion of a macroscopic particle in a viscous 

medium and shown as [29, 81, 82] 

 

Equation 2.23     ʂ  

 

where T is the absolute temperature; the constant c depends on the specific boundary 

condition on the surface of the sphere, for slip boundary condition c = 4 and for non-slip 

boundary condition c = 6; Ò  is an effective hydrodynamic particle radius defined as the 

distance of the first peak of the generalized pair coordination functions (ὫÒ) or could be 

defined as the average value of the nearest-neighbor distances of the A-A and B-B 

particle.   

2.4.3. Fragility  

The fragility of the metallic liquids is a highly variable quantity. The viscosity 

obtained in the supercooled liquid can be described well with the Vogel-Fulcher-

Tammann (VFT) relation as [2, 25, 83, 84]  

 

Equation 2.24     ʂ ʂÅØÐ  
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where 0h, f and T0 are coefficients; f  quantifies the ñ fragilityò of the liquid, since it 

determines the degree of departure from the Arrhenius law.   

2.5. Implementation 

In the following, details of the system setup parameters and the results analysis 

are discussed.   

 2.5.1. Supercell of N-body system 

 Since density of the investigated N-body system is one of intrinsic properties, it 

should be considered as the first input parameter or output results in AIMD calculations.  

The lattice parameter of the N-body cubic supercell (L) can be written as 

Equation 2.25    
AN

NM
L

r
=3

 

where N is the number of atoms in the system; ɟ the density; NA the Avogadro constant 

and M the average atomic mass.  As can be seen it is difficult to set the initial lattice 

parameter on the conditional that the density of new system is unknown.  In principle, the 

equilibrium volume can be predicted via equations of states (EOS) [11, 85].  In this 

approach, several volumes will be generated firstly and the Pressure-Volume relationship 

can be obtained finally.  The lattice parameter of the fitted equilibrium volume will be 

used for the further calculations.  For example, graphic representations of the equation of 

state calculations for liquid metal Ni400Al100 alloy at 1830K are shown in Figure 2.5 [11].   
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On the contrary, based on the density data, the lattice parameter got through 

Equation 2.25 can be applied directly in the calculation.  After the relaxation at finite 

temperature, the equilibrium volume can be obtained.  For instance, variation in the 

external pressure of vit1 alloy (Zr41.2Ti13.8Cu12.5Ni10Be22.5) with time at 1250K shown in 

Figure 2.6 displays that the equilibrium has been acquired since the average value of 

pressure is almost zero.  In Figure 2.7, comparing with mean value with standard 

deviation in blue, it can be seen that variation in the external pressure as a function of 

simulation time in (a) Al80Ni20 at 2000K and (b) Al80Cu20 at 1000K.  It will be a 

challenge to get the average value of pressure equals to zero since the canonical (NVT) 

ensemble average is under taken.  As can been seen from Figure 2.8, the predicted atomic 

number density of Mg65Cu25Y10 alloy agrees with the available experimental data at 

200K, with a difference about 5.5% [18].  Thus, the approach of adjusting the external 

pressure close to zero can be valid to predict the equilibrium state of the system. 

2.5.2. Atomic position in the supercell 

 Based on the periodic boundary condition, a preliminary configuration will be 

prepared for the metal melts, in which hundreds atoms distribute randomly.  Therefore, 

the bulk materials with numerous atoms can be investigated via AIMD simulations.  

Within the capability of our computer resources, 200 atoms are generally used in this 

work.  For the given atom i with the coordinate of ),,( iiii zyxr  in the supercell with 

lattice parameter of ),,( cbaL , its coordinates in the bulk space will be

ncmblazyxrR iiiii +++= ),,( .  Here, l, m, n are integer numbers ( ¤-¤= ,,, nml ). 
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 2.5.3. AIMD input and output files  

 Input files for AIMD calculations via VASP package are INCAR, POSCAR, 

POTCAR and KPOINTS (the detail information can be found in the Appendix part). The 

basic setting parameters are included in INCAR.  The coordinate of each atom in the 

supercell lists in the POSCAR one by one.  The pseudopotential for each atomic species 

is combined into the POTCAR file in the corresponding order of the atomic species in 

POSCAR.  KPOINTS contains the k-point coordinates and the weights or mesh size for 

creating the k-point grid.  The Gamma centered scheme is applied in the calculation of 

metal melts [12, 44]. 

 After finishing the AIMD calculation, only the coordinate of each atom at 

different time (simulation steps) in the OUTCAR file is used in analyzing the structure 

evolution and the kinetic properties.  The other output files will not mentioned in this 

work.  

2.6. Summary 

 Through state-of-the-art AIMD calculations, both the structure evolution and the 

kinetic properties of the metal melts can be obtained and analyzed.  More importantly, 

contributions of alloying elements to these properties discovered/solved in atomic-level 

structure support fundamental information in developing the new advanced alloys.  
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Figure 2.1 Roadmap of the proposed computational methodology compared with 

potential experiments.  
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Figure 2.2 Schematic diagrams of typical Honeycutt-Anderson bond pairs and their 

corresponding potential constructed clusters 
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Figure 2.3 The relation between Honeycutt-Anderson bond pairs (1441, 1551 and 1661) 

and potential crystallography structures 
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Figure 2.4 AIMD result of Al80Ni20 at 2000K, (a) mean-squared displacements (MSD); 

(b) and (c) tracer diffusivities of Ni and Al derived from ñrandom walkò (<|r(t)-

r(0)|
2
>=6Dt) at finite time, comparing with mean values and standard deviation in green. 
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Figure 2.5 Graphic representation of the equation of state calculations for liquid metal 

Ni400Al100 alloy at 1830K [11] 

 

Figure 2.6 Variation in the external pressure of vit1 alloy (Zr41.2Ti13.8Cu12.5Ni10Be22.5) 

with time at 1250K [20] 
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Figure 2.7 Variation in the external pressure as a function of simulation time in (a) 

Al 80Ni20 at 2000K and (b) Al80Cu20 at 1000K, comparing with the mean value with 

standard deviation in blue.  
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Figure 2.8 Variation of atomic number density with the temperature during AIMD 

simulation for Mg65Cu25Y10 alloy [18] 



 

 

Chapter 3  
Atomic structure and diffusivity in liquid Al 80Ni20 

3.1. Introduction  

The chemical and structural short-range ordering and diffusion coefficients in Al-

Ni alloys have been studied via neutron scattering and MD simulations.  Maret et.al [86] 

and Gruner et.al [57] investigated the structure factors through the neutron scattering, 

demonstrating the existence of chemical short-range ordering.  Jakse et.al [43, 61, 69] 

observed the strong short-range ordering tendency of the Al80Ni20 liquid by using AIMD 

simulations.  Furthermore, Horbach et.al [32] and Griesche et.al [87] explored the 

interdiffusion coefficient from the measured tracer diffusion coefficients via Darken 

equation with the Manning factor. However, the influence of short-range ordering and the 

thermodynamic factor on chemical diffusion in liquid has not been well studied. 

 In the present work, we carry out AIMD simulations for liquid Al80Ni20 to 

understand its atomic structures and atomic diffusion coefficients in our efforts of 

developing low density Al-based metallic glasses.  The results from the current in-depth 

analysis of AIMD simulations are compared with both experimental data and MD 

simulations in the literatures.  Furthermore, both dynamic correlation factor and 

thermodynamic factor are evaluated from the AIMD simulations and used in calculating 

the interdiffusion coefficients.  It is demonstrated that the AIMD simulations, even 

though with shorter simulation time and smaller supercell sizes than classic MD 
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simulations, generate reliable structural and diffusion data in comparison with 

experimental results.   

3.2. Computational details 

The AIMD simulations in the present work are conducted by employing the 

Vienna ab initio simulation package (VASP) [88, 89] with the generalized gradient 

approximation [90] for the exchange correlation functional and the projector augmented 

wave [91] method for the electron-ion interaction.  The Newtonôs equation of motion is 

solved via the Verletôs algorithm with a time step of 5 fs, and the simulations were 

performed at the G point only with a low precision as commonly used in AIMD 

simulations [11, 12, 91, 92].  All the calculations are carried out in canonical ensemble, 

i.e constant volume and temperature, with atomic configuration relaxation and 

temperature controlled by a Nose thermostat [93].  The wave functions are sampled on 

1×1×1 k -point mesh in terms of the Monkhorst-Pack scheme[94].  The plane wave cutoff 

energy is 269.6 eV, and the energy convergence criterion of electronic self-consistency is 

chosen as 1×10
-4

 meV/atom for all the calculations (both default values).  At each 

temperature, the supercell volume is systematically varied through the relaxation setting 

ñISIF = 7ò in VASP, and the equilibrium volume is obtained when the pressure equals 

zero. 

The cubic supercell of the Al80Ni20 alloy is initially constructed with 200 atoms 

randomly distributed.  The initial configuration is equilibrated at a temperature well 

above the melting point to ensure an equilibrium liquid state.  AIMD simulations are 
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carried out at 2000, 1900, 1800 and 1330 K, respectively, with an equilibrated time of 10 

ps.  AIMD calculations with a supercell of 150 atoms are also carried out, showing 

almost identical results as the supercell of 200 atoms.  All results reported in this paper 

are from the supercell with 200 atoms except specified otherwise.  2000 configurations 

are collected at each temperature for diffusion analysis, and the last hundred 

configurations are used for structure analysis with the pair correlation function, structure 

factor, coordination number, bond pair analysis, and Voronoi tessellation methods.  The 

mean square displacements are used for calculating the diffusion coefficients according 

to the Einsteinôs relation. 

The positions of individual atoms and their atomic environments are analyzed 

after each AIMD simulation step, and the resulting pair correlation functions, structure 

factors, coordination numbers, bond pairs, mean-square displacements, dynamic 

correlation factor, and diffusion coefficients are presented in the next section. 

3.3. Results and Discussions 

3.3.1. Pair correlation functions and structure factors 

Figure 3.1 shows the pair correlation functions as a function of temperature with 

Figure 3.1(a) for gtotal(r), and Figure 3.1(b), (c) and (d) for ' Ò, ' Ò and 

' Ò, respectively, along with available experimental neutron scattering data at 

1330K [86] and classic MD simulations at 1320K [61] in the literature.  Remarkable 

agreement between the current AIMD simulations and experimental data can be observed 

except the height of the first peak in GNiNi, which is probably due to the supercell size.  
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The classic MD simulation results seem different from the experimental data because the 

atomic density was not included in evaluating the reduced pair correlation function (see 

Equation 2.9).  The total structure factors, 3 Ñ, and the partial structure factors, 

3 Ñ,  3 Ñ , and   3 Ñ, are shown in Figure 3.2, again compared excellently 

with data from neutron scattering measurements with slight differences in 3 Ñ and 

the third peak of 3 Ñ. 

Figure 3.3 shows the Bhatia-Thornton structure factors derived from the Faber-

Ziman structure factors (Equation 2.13 to Equation 2.15) in comparison with the 

experimental data [86] and the MD simulation results [32] in the literature.  At high 

temperatures, the atoms are randomly distributed, and the concentration-concentration 

Bhatia-Thornton structure factor,Ὓ Ñ , varies slightly with respect to temperature.  At 

low temperatures, the number of clusters or short-range ordering increases, and the 

positions of the first peaks of both  Ὓ Ñ and the Ὓ Ñ  move to smaller q, and the 

widths of their splitting second peaks decrease, but their intensities increase, e.g. 

Ὓ Ñ πȢρυ at 1800K and Ὓ Ñ πȢρω at 1330K at the same Ñ ςȢτφ ᴠ  , as 

shown in Figure 3.3(c) and Figure 3.3(d).  The  differences in the peak positions and 

intensities of  Ὓ  between MD data and our results at 2000K shown in Figure 3.3(c) is 

due to the different formalism of Bhatia-Thorntonôs structure factor used in the ref. [32] 

and in the present work.  It should be noted that the Bhatia-Thornton formalism [63] is 

usually used in analysis of neutron scattering experiments [71, 86] as did in the present 

work, enabling a fair comparison with experimental data.  The splitting peak in the 

structure factor describes repeating structural units involving neighboring clusters [32].  
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The fluctuation of the concentration could be extracted from the limit of Ὓ ÑO π , 

and the small value of Ὓ Ñ π reveals a strong ordering tendency. 

3.3.2. Local structure analysis  

Figure 3.4 plots the distribution of average coordination number as a function of 

temperature.  It is observed that the coordination numbers of majority atoms are between 

11 and 14.  The average coordination number changes from 10.0(1) with Ò τȢπς Å 

at 2200K to 10.1(4) with Ò σȢτσÅ at 1330K, indicating the distance between the 

first nearest neighbors and the centered atom is decreasing with the temperature in order 

to keep the closed packed structure. 

The percentages of various bound pairs and their summations into icosahedral, 

FCC and HCP, and BCC groups are shown in Figure 3.5.  It depicts that the icosahedral 

bond pairs are dominant at temperatures above the melting temperature, followed by the 

FCC and HCP-type bond pairs and the BCC-type bond pairs.  The icosahedral clusters 

prevent the formation of a long-range period lattice and contribute to the formation of 

many disordered icosahedra and their associated inter-cluster voids [95].  Our AIMD 

results are in agreement with the AIMD simulations by Jakse and Pasturel [96], who 

reported that the sum of the 1551 and 1541 bond pairs increases to more than 46% at 

1220K, and the sum of 1441, 1431, 1421 and 1422 bond pairs decreases to 40%, which 

are 26% and 41% at 1330K in our simulations, respectively. 

The local atomic packing in liquid Al80Ni20 is further explored by the Voronoi 

tessellation method, shown in Figure 3.6.  In binary systems, it has been found [12, 19, 



32 

 

20] that the preferred polyhedron type depends on the ratio of solute to solvent (Ὑᶻ) 

atomic sizes i.e. the Frank-Kasper type with Ὑᶻ ρȢς, the icosahedral type with Ὑᶻ

πȢωπς, the bi-capped square Archimedean antiprism type with Ὑᶻ πȢψσυ, and the 

tricapped trigonal prism packing type with Ὑᶻ πȢχσς.  In liquid Al80Ni20, Ὑᶻ equals to 

0.89 (ὶ=1.82 Å, ὶ =1.62 Å), indicating the tendency to form icosahedral type clusters.  

It is observed in Figure 3.6that Voronoi polyhedra with the index of <0, 2, 8, 1>, <0, 2, 8, 

2>, <0, 3, 6, 1>, <0, 3, 6, 2>, <0, 3, 6, 3> and <0, 3, 6, 4> are the major polyhedra, 

among which the percentages of <0, 2, 8, 1>, <0, 2, 8, 2>, and <0, 3, 6, 3> polyhedra are 

the highest.  Furthermore, the amount of the perfect icosahedron with the index of <0, 0, 

12, 0> increases dramatically at low temperatures.  We can thus conclude that the 

icosahedral structure, including the defective ones <0, 2, 8, 2>, <0, 2, 8, 1> and <0, 3, 6, 

3>, is the dominant structure in liquid Al80Ni20, in agreement with the bond pair analysis 

discussed above. 

The aforementioned clusters can form local ordering structures through vertex-, 

edge-, face- and intercross-sharing of neighboring clusters.  These sharing schemes lead 

to correlation peaks in the partial pair correlation functions [75, 97].  Figure 3.7 shows an 

icosahedral medium range ordering at 2000 K, consisting of two <0, 3, 6, 3> and two <0, 

0, 12, 0>.  Comparing this icosahedral medium-range ordering with the partial correlation 

functions, Al atoms can be found from an Al- or Ni-center nearest neighbor shell and the 

extended nearest neighbor shell, so both ' Ò and ' Ò have the first and second 

peaks (see Figure 3.1).  Furthermore, at 1500K and 1330K, there is clearly third peak in 

the Ç Ò in Figure 3.1(a), indicating the icosahedra medium-range ordering at low 

temperatures.  Since the Ni atoms are far from each other, the height of the first peak of 
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' Ò is smaller than the extended peaks see Figure 3.1(d).  Additionally, the shoulder 

peaks in the structure factor around the second peak in 3  Ñ in Figure 3.2(a) indicate 

the existence of chemical short-range ordering [57, 98]. 

3.3.3. Diffusion coefficients 

Figure 3.8 shows the mean-square displacements of Al and Ni as a function of 

time at various temperatures obtained in the present work.  For time below 0.1 ps, the 

mean-square displacement is proportional to t
2
, as expected for ballistic motion [23].  For 

longer times the mean-square displacement increases linearly with time, which is the 

indication of long-range diffusion [23].  The mean-square displacements starting at 2 Å
2
 

or later than 0.5 ps and ending at larger than 4 Å
2
 are used for diffusion analysis.  The 

ὰὲὈ ὺίȢρȾὝ curve is shown in Figure 3.9 and agrees very well with the result from the 

quasi-elastic neutron scattering experiments [32].  Both our simulations and the 

experiments [99] show that the DNi in binary alloys is higher than the self-diffusion 

coefficient of pure liquid Ni [100, 101] and is close to DAl.  This can be understood 

through cluster ordering discussed in the previous section.  As shown in Figure 3.7, many 

Ni atoms are located in polyhedron centers, and the displacements of polyhedra are thus 

largely determined by the bonding between polyhedral, i.e. Al atoms.  Consequently, the 

migrations of Ni and Al are collaborative, resulting in similar self-diffusion coefficients 

close to that of Al. 

To calculate interdiffusion coefficients, the thermodynamic factor and dynamic 

correlation factor need to be evaluated.  The thermodynamic factor can be obtained from 
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Ὓ Ñ in MD and AIMD simulations [32] or from the thermodynamic database [102].  

The results thus obtained are compared in Figure 3.10 as a function of temperature.  It 

can be seen that the thermodynamic factor obtained from the thermodynamic database is 

about double of those obtained from MD simulations in the literature, while the values 

from the present AIMD simulations are between.  The dynamic correlation factor 

evaluated from the current AIMD simulations is plotted in Figure 3.11 with the initial 

step considered as the reference state, ëᴆπ , showing that the Manning dynamic 

correlation factor l in Equation 2.21 approaches unity with increasing simulation time.  

The diffusion mechanism in liquid Al80Ni20 thus appears to be the same as for viscous 

flow [30] and strongly affected by local chemical ordering [103], similar to the 

conclusion by Tang et.al. [24] when examining the characteristics of Be diffusion in Zr-

based BMG alloys where the diffusion process of Be involves a group of atoms. 

The interdiffusion coefficients calculated using the thermodynamic factors 

obtained from three sources are plotted in Figure 3.12 with the experimental data and MD 

simulation results in the literature superimposed [32].  It is observed that the 

interdiffusion coefficients calculated by the Darken relation using the thermodynamic 

factors from the thermodynamic database and current AIMD simulations are both within 

the experimental uncertainty range, while the thermodynamic factor from the MD 

simulations in the literature gives much lower interdiffusion coefficients in comparison 

with the experimental data. 
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3.4. Conclusion 
In summary, the atomic configurations and diffusion coefficients in liquid 

Al 80Ni20 are obtained by means of the AIMD simulations with following conclusions: 

¶ The generalized pair correlation functions and Faber-Ziman total and partial 

structure factors show a good agreement with the experimental data. 

¶ The bond pair analysis shows that the icosahedral bond pairs are dominant, 

followed by the FCC- and HCP-type bond pairs and the BCC-type bond pairs.  

The percentage of the perfect icosahedral clusters increases as the temperature 

decreases. 

¶ The predicted tracer diffusion coefficients of Al and Ni via the mean square 

displacements are almost equal, in agreement with the quasielastic neutron 

scattering data in the literature. 

¶ The Manning dynamic correlation factor is found to approach unity with 

increasing simulation time.  The interdiffusion coefficients obtained from Darken 

equation show good agreement with experimental data. 
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Figure 3.1. Pair correlation function of the liquid Al80Ni20 alloy (a) gtotal(r), with each 

curve shifted by 0.5, and the reduced partial pair correlation functions (b)GAlAl , (c) GAlNi, 

and (d) GNiNi with the experimental [86] and the MD [61] data superimposed. 
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Figure 3.2. Faber-Ziman structure factor of the liquid Al80Ni20 alloy at various 

temperatures shifted by 0.5 between neighboring curves: (a) total structure factor, 

STotal(q); and partial structure factor (b) Al-Al, SAlAl (q); (c) Al-Ni, SAlNi(q); and (d) Ni-Ni, 

SNiNi(q).  The experimental results (red stars in the figures) are determined at 1330K 

about 70K higher than the liquidus temperature [86]. 

  












































































































































































