
The Pennsylvania State University

The Graduate School

MIXTURE MODELING FOR COMPLEX AND LARGE-SCALE

DATA WITH APPLICATIONS

A Dissertation in

Computer Science and Engineering

by

Mu Qiao

c© 2012 Mu Qiao

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

December 2012

The dissertation of Mu Qiao was reviewed and approved∗ by the following:

Jia Li

Professor of Statistics and (by courtesy) Computer Science and Engineering

Dissertation Co-Adviser, Co-Chair of Committee

Daniel Kifer

Assistant Professor of Computer Science and Engineering

Co-Chair of Committee

James Ze Wang

Professor of Information Sciences and Technology

Dissertation Co-Adviser

Jesse Barlow

Professor of Computer Science and Engineering

Xiaolong (Luke) Zhang

Associate Professor of Information Sciences and Technology

Lee Coraor

Associate Professor of Computer Science and Engineering

Chair of the Graduate Program of Computer Science and Engineering

∗Signatures are on file in the Graduate School.

Abstract

Mixture models have been applied in a wide range of engineering and scientific
fields. In practice, data are often complex and in large scale. The data may
be high dimensional, have missing values, or contain objects that are not well
defined in a vector space. The flexibility of mixture models enables us to model
the distribution of complex and large-scale data and estimate their probability
densities. In this dissertation, we present several new mixture models that extend
such application.

A two-way Gaussian mixture model (GMM) is proposed for classifying high di-
mensional data. This model regularizes the mixture component means by dividing
variables into groups and then constraining the parameters for the variables in the
same group to be identical. The grouping of the variables is not pre-determined,
but rather it is optimized as part of model estimation. A dimension reduction
property for a two-way mixture of distributions from a general exponential family
is proved. The issue of missing values that tend to arise when the dimension is ex-
tremely high is addressed. Estimation methods for the two-way Gaussian mixture
with or without missing data are derived. Experiments on several real data sets
show that the parsimonious two-way mixture often outperforms a mixture model
without variable grouping, and as a byproduct, significant dimension reduction is
achieved.

We propose a new approach for mixture modeling based only upon pairwise
distances via the concept of hypothetical local mapping (HLM). This work is mo-
tivated by increasingly commonplace applications involving complex objects that
cannot be effectively represented by tractable mathematical entities. The new
modeling approach consists of two steps. A distance-based clustering algorithm is
applied first. Then HLM takes as input the distances between the training data
and their corresponding cluster centroids and estimates the model parameters.
In the special case where all the training data are taken as cluster centroids, we

iii

obtain a distance-based kernel density. We have examined the classification per-
formance of the mixture models on many data sets. Experimental comparisons
have been made with other state-of-the-art distance-based classification methods,
for instance, k-NN, variations of k-NN, and SVM based algorithms. It is found
that HLM based algorithms are highly competitive in terms of classification ac-
curacy, and in the mean time are computationally efficient during both training
and testing. Furthermore, the HLM based modeling approach adapts readily to
incremental learning, a valuable mechanism to achieve scalability for dynamic data
arriving at a high velocity. We have developed two schemes of incremental learning
and tested them on several data sets.

Driven by demands in visual analytics, we investigate a GMM with component
means constrained in a pre-selected subspace, which allows us to visualize the
clustering or classification structure of high dimension data in a lower dimensional
subspace. We prove that the subspace containing the component means of a GMM
with a common covariance matrix also contains the modes of the density and
the class means. This finding motivates us to identify a subspace by applying
weighted principal component analysis to the modes of a kernel density and class
means. For choosing the kernel bandwidth, we acquire multiple subspaces from
the kernel densities based on a sequence of bandwidths. The GMM constrained
by each subspace is estimated, and the model yielding the maximum likelihood is
chosen. A dimension reduction property is proved in the sense of being informative
for classification or clustering. Experiments on real and simulated data sets are
conducted to examine several ways of determining the subspace and to compare
with the reduced rank mixture discriminant analysis (MDA). Our new method
with the simple technique of spanning the subspace only by class means often
outperforms the reduced rank MDA when the subspace dimension is very low,
making it particularly appealing for visualization.

Finally, to bridge the computational gap between information visualization and
data mining in visual analytics, we implement two parallel versions of hierarchi-
cal mode association clustering (HMAC), a previously proposed nonparametric
method that groups data points into a cluster if they are associated with the same
mode of a mixture-type density. Parallel HMAC runs on a cluster of compute nodes
using the message passing interface (MPI) library and dramatically improves the
speed of the original algorithm, making it feasible to perform clustering on large-
scale data.

iv

Table of Contents

List of Figures viii

List of Tables ix

Acknowledgments x

Chapter 1
Introduction 1

Chapter 2
Two-way Gaussian Mixture Models 6
2.1 Introduction . 6
2.2 Two-way Gaussian Mixture Model 9

2.2.1 Two-way Mixture with Diagonal Covariance 10
2.2.2 Two-way Mixture with Full Covariance 11

2.3 Dimension Reduction . 12
2.4 Model Estimation . 14
2.5 Experiments . 17
2.6 Summary . 25

Chapter 3
Distance-based Mixture Modeling for Classification using Hy-

pothetical Local Mapping 27
3.1 Introduction . 27
3.2 Related Work . 29
3.3 Hypothetical Local Mapping . 32

3.3.1 Estimate the distribution of a single cluster 32
3.3.2 Estimate a Mixture Model 34

v

3.3.3 Estimate a Mixture Model with Weighted Distances 35
3.4 Distance-based Clustering . 36
3.5 The Algorithm . 38
3.6 HLM Incremental Learning . 41

3.6.1 Scheme I . 41
3.6.2 Scheme II . 42

3.7 Experiments . 43
3.7.1 Data Sets . 44
3.7.2 Experimental Setup and Details 46
3.7.3 Classification Results . 47
3.7.4 Incremental Learning Results 50

3.8 Summary . 54

Chapter 4
Gaussian Mixture Models with Component Means Constrained

in Pre-selected Subspaces 55
4.1 Introduction . 55
4.2 Preliminaries and Notation . 59
4.3 GMM with Subspace Constrained Means 62

4.3.1 Modal PCA . 63
4.3.2 Extension of Modal PCA . 64
4.3.3 Dimension Reduction . 65

4.4 Model Estimation . 66
4.4.1 The Algorithm . 66
4.4.2 Variation of the Algorithm 69

4.5 Experiments . 71
4.5.1 Reduced Rank Mixture Discriminant Analysis 72
4.5.2 Classification . 73
4.5.3 Sensitivity of Subspace to Bandwidths 77
4.5.4 Model Selection . 81
4.5.5 Clustering . 83

4.6 Summary . 85

Chapter 5
Parallel Hierarchical Mode Association Clustering 88
5.1 Introduction . 88
5.2 Parallel Approach I . 90
5.3 Parallel Approach II . 91
5.4 Remarks on Parallel HMAC . 92
5.5 Experiments . 93

vi

5.6 Summary . 94

Chapter 6
Conclusions and Future Work 95
6.1 Conclusions . 95
6.2 Future Work . 97

Appendix A
Two-way Gaussian mixtures 99
A.1 Dimension Reduction Property . 99
A.2 Model Estimation . 100

Appendix B
GMM with Subspace Constrained Means 102
B.1 Proof of Theorem 3.3.1 . 102
B.2 Dimension Reduction Property . 104
B.3 Derivation of µkr in GEM . 106
B.4 Reduced Rank Mixture Discriminant Analysis 109

Appendix C
Distance-based Mixture Modeling 111
C.1 Proof of Equation (3.4) . 111

Bibliography 113

vii

List of Figures

2.1 The classification error rates obtained for the microarray data using
both MDA-n.v.c. and two-way GMM with L = 20 variable clusters.
The total number of components M ranges from 4 to 36. 19

2.2 The sizes of the word clusters for comp.os.ms-windows.misc (left)
and comp.windows.x (right). 22

3.1 The classification error rates of incremental and batch learning
methods at each learning round as the number of available training
data increases. 53

4.1 The test classification error rates at different levels of kernel band-
width . 83

4.2 Training log-likelihoods at different kernel bandwidth levels 84
4.3 Two-dimensional plot for the clustering of synthetic data, color-

coding the clusters. (a) Projections onto the two-dimensional true
discriminant subspace, with true cluster labels. (b), (c) Projections
onto the two-dimensional discriminant subspace by GMM-MPCA
and MDA-RR respectively, with predicted cluster labels. 86

5.1 The flow of parallel approach II . 92
5.2 Running time of two parallel HMAC approaches using MPI on ship

design data (left) and imagery data (right) 94

viii

List of Tables

2.1 The classification error rates in percent achieved by the two-way
GMM for the microarray data . 18

2.2 The classification error rates in percent achieved by the two-way
GMM for the three text document data sets 22

2.3 The classification error rates in percent achieved by the two-way
GMM for the imagery data . 24

2.4 The classification error rates in percent achieved by the two-way
GMM with full covariance matrices for the imagery data 25

3.1 Summary of Data Sets . 45
3.2 Classification error rates of distance-based classifiers (I) 50
3.3 Classification error rates of distance-based classifiers (II) 51
3.4 Running time of distance-based classifiers 52
3.5 Running time of HLM based incremental learning methods (seconds) 53

4.1 Classification error rates (%) for the data with moderately high
dimensions (I) . 78

4.2 Classification error rates (%) for the data with moderately high
dimensions (II) . 79

4.3 Classification error rates (%) for the data with moderately high
dimensions (III) . 80

4.4 Classification error rates (%) for the data with high dimensions . . 81
4.5 Mean closeness of subspaces by MPCA and MPCA-MEAN at dif-

ferent levels of kernel bandwidth . 82
4.6 Closeness between subspaces in clustering with different dispersions 85

ix

Acknowledgments

First and foremost I would like to thank my principal advisor, Professor Jia Li, for
her great guidance, motivation, enthusiasm, and support. She has not only taught
me many essential research skills but also scientific attitudes, especially, creativity,
visionary thinking, and the courage to solve difficult problems. Professor Li gave
me thoughtful guidance and tremendous support during the tough times in my
Ph.D. pursuit. Her enthusiasm and love for research is contagious. She has been
a role model for me in so many ways. I am truly indebted and thankful to her.

I would like to thank my co-advisor Professor James Z. Wang. Whenever I
have had questions during my Ph.D. study, he has always given me advice, shared
personal stories with me, and has encouraged and inspired me. I am very grateful
for his guidance, encouragement, and substantial support.

I would like to thank Professor Xiaolong Zhang. He led me into the visual
analytics research field and taught me how to conduct interdisciplinary research
and collaborate with people, for which I am very grateful.

I would like to thank Professor Daniel Kifer and Professor Jesse Barlow for
serving on my committee, spending much time reviewing this dissertation, and
providing many helpful comments and valuable suggestions.

I would like to acknowledge my debt to Professor John Yen for his guidance
and support during my Ph.D. study. He led me into research at first glance. I
am also thankful to Professor Damla Senturk, whose truly inspiring teaching in
statistics intrigued my interest in statistical learning.

I extend my sincere thanks to my fellow Ph.D. students and friends. I want
to thank Sooyoung Oh for his great help when I was a junior Ph.D. student. We
had many interesting and in-depth discussions. I also want to thank Eun Yeong
Ahn, Po-Chun Chen, Bi Chen, Honglu Du, Qi Fang, Liang Gou, Hyun-Woo Kim,
Haibing Liu, Xingjie Liu, Huajing Li, Qinghua Li, Xin Lu, Baojun Qiu, Neela
Sawant, Poonam Suryanarayan, Pucktada Treeratpituk, Anna Wu, Xin Yan, Lei
Yao, Wen Yao, Mao Ye, Xiao Zhang, Yu Zhang, Kang Zhao, Yu Zhao, Ding Zhou,
Shuyi Zheng, Shizhuo Zhu, and many others. Their help and collaboration have

x

made this journey far more interesting than it would otherwise have been.
I would like to thank my wife Jing Peng for her great love, care, and dedication

throughout our life together. We have so much in common and also complement
each other. She has been there for me at every step of my Ph.D. study. Her endless
love and faithful support carried me through this journey. I also owe my thanks to
my grandmother Huanrong Zhu and my younger brother Dai Qiao for their love,
care, and support.

At last, I would like to thank my father Yuzhong Qiao and my mother Dong-
bing Sun for their unconditional love, unflinching sacrifice, and infinite support.
They are my life models. From them, I learned integrity, honesty, gratitude, and
humility. They taught me to have the courage to pursue my dreams and taught
me the values that I very much cherish today.

xi

Dedication

To my mother Dongbing Sun, my father Yuzhong Qiao, and my wife Jing Peng

xii

Chapter 1
Introduction

Data in the real world are often very complex and in large scale. The data may

have high dimensions, missing values, or contain objects that are more complicated

than those in a vector space (Salton et al., 1975), for instance, sets of weighted and

unordered vectors (Li and Wang, 2008). In the big data era, we frequently face

problems with data of large volume, high variety, and fast velocity. Such complex-

ity combining with the scale of data poses tremendous challenges to the design and

development of new algorithms and tools. This dissertation contributes a set of

new mixture models that aim to model the distribution of complex and large-scale

data and estimate their probability densities, with applications in classification

and clustering.

Mixture modeling has been used in various fields, for instance, to verify speak-

ers (Reynolds et al., 2000), to classify types of limb motion (Huang et al., 2005),

to predict topics of news articles (Li and Zha, 2006), and to tag online text docu-

ments (Song et al., 2008). The prominence in broad applications held by mixture

models speaks for their appeals, which come from several intrinsic strengths of

the generative modeling approach as well as the power of mixture modeling as a

density estimation method for multivariate data.

Mixture discriminant analysis (MDA), developed by Hastie and Tibshirani

(1996), has been used widely in classification. Although discriminative approaches

to classification, for instance, support vector machine (Schölkopf et al., 1999), are

often argued to be more favorable because they optimize the classification bound-

ary directly, MDA, as a generative modeling method, holds multiple practical ad-

2

vantages including the ease of handling a large number of classes, the convenience

of incorporating domain expertise, and the minimal effort required to treat new

classes in an incremental learning environment. The mixture model, in particular,

is inherently related to clustering or quantization if each mixture component is as-

sociated with one cluster (Celeux and Govaert, 1992; Banfield and Raftery, 1993;

McLachlan and Peel, 2000). This insight was exploited by Li and Wang (2008) to

construct a mixture-type density for sets of weighted and unordered vectors that

form a metric but not vector space, providing additional evidence for the great

flexibility of mixture modeling.

In Chapter 2, under the paradigm of MDA, we propose a two-way Gaussian

mixture model (GMM) for classifying high dimensional data. This model regu-

larizes the mixture component means by dividing variables into groups and then

constraining the parameters for the variables in the same group to be identical.

The grouping of the variables is not pre-determined, but rather it is optimized

as part of the model estimation. A dimension reduction property for a two-way

mixture of distributions from a general exponential family is proved. The issue

of missing values that tend to arise when the dimension is extremely high is ad-

dressed. Estimation methods for the two-way GMM with or without missing data

are derived. Experiments on several real data sets show that the parsimonious

two-way mixture often outperforms a mixture model without variable grouping,

and as a byproduct, significant dimension reduction is achieved.

Many data are not defined in the vector space, for instance, histogram-based

descriptors, which have been widely used in image annotation (Li and Wang, 2008),

shape matching (Li et al., 2000), and computer vision tasks (Yao et al., 2012). Each

descriptor is essentially a set of weighted vectors, describing a discrete distribution.

Some data in the real world may not be effectively represented by tractable math-

ematical entities, for example, the protein data in bioinformatics, the multimedia

data that integrates images, texts, audios, and videos. Abstracting such data may

lead to information loss and inaccuracy. Instead of modeling each data object in

a mathematical format, certain distance measure may be more easily defined to

capture data information by comparing their pairwise similarities. For such type

of complex data, a distance-based mixture model via the concept of hypothetical

local mapping (HLM) is proposed in Chapter 3. HLM takes as input the distances

3

between all the training data and their corresponding cluster centroids and esti-

mates the model parameters. In the special case where all the training data are

taken as cluster centroids, we obtain a distance-based kernel density. Since only

pairwise distances are required for estimation, HLM is particularly appealing to

model the distribution of data that are complex and cannot be easily described

by a mathematical representation. Experimental results show that HLM based

algorithms are highly competitive in terms of classification accuracy and computa-

tional efficiency, comparing with other state-of-the-art distance-based classification

methods, for instance, k-NN, variations of k-NN, and SVM based algorithms. The

HLM based modeling approach lends itself readily to the incremental learning sce-

nario, which becomes increasingly important with the abundance of dynamic data

arriving at a high velocity.

In the big data era, the explosion of information not only provides abundant

resources for discovery, but also poses great challenges to human cognition, that

is, how to find meaningful knowledge or patterns from data and abstract them in

effective representations so that human brains can quickly absorb information and

possibly identify innovative findings. Visual analytics, which integrates the sci-

ences and technologies from data mining, information visualization, human com-

puter interaction, and many other domains, plays a critical role in dealing with

this challenge. It attempts to facilitate analytic reasoning through interactive vi-

sualization and the coupling of human and machine computational analysis.

The mixture model has its own specialties in visual analytics. First, as a clus-

tering or classification approach, the mixture model reveals the hidden patterns

of massive data. Second, it provides relatively rich geometric insight for visualiza-

tion. In the mode-based clustering of data, a cluster corresponds to a “bump” or

a “hill” in the probability density of a mixture model. The local maximum associ-

ated with the hill, that is, the hilltop, is referred to as the mode. A ridgeline linking

two hilltops can be found to measure the separability between clusters (Li et al.,

2007). It is proved that the ridgeline passes through all the critical points, such as

modes, antimodes, and saddle points of the mixture density of the two hills (Ray

and Lindsay, 2005). The mixture model thus provides users with heuristics about

the geometric properties of data. Third, it can serve as a data reduction tool,

which visualizes the data in an informative lower dimensional subspace (Hastie

4

and Tibshirani, 1996; Qiao and Li, 2012). Finally, the availability of fast paral-

lel algorithms for estimating mixture models bridges the gap between real-time

visualization and computationally intensive statistical modeling.

Encouraged by the favorable characteristics of mixture models for visual ana-

lytics, in Chapter 4, we investigate a GMM with component means constrained in

a pre-selected subspace, which allows us to visualize the clustering or classification

structure of high dimension data in a lower dimensional subspace. Applications

to classification and clustering are explored. An EM-type estimation algorithm is

derived. We prove that the subspace containing the component means of a GMM

with a common covariance matrix also contains the modes of the density and the

class means. This finding motivates us to identify a subspace by applying weighted

principal component analysis to the modes of a kernel density and the class means.

For choosing the kernel bandwidth, we acquire multiple subspaces from the ker-

nel densities based on a sequence of bandwidths. The GMM constrained by each

subspace is estimated, and the model yielding the maximum likelihood is chosen.

A dimension reduction property is proved in the sense of being informative for

classification or clustering. Experiments on real and simulated data sets are con-

ducted to examine several ways of determining the subspace and to compare with

the reduced rank mixture discriminant analysis (MDA). Our new method with

the simple technique of spanning the subspace only by class means often outper-

forms the reduced rank MDA when the subspace dimension is very low, making it

particularly appealing for visualization.

In Chapter 5, we introduce two parallel versions of hierarchical model asso-

ciation clustering (HMAC). HMAC is a nonparametric clustering method which

groups data points into one cluster if they are associated with the same mode in a

mixture-type density (Li et al., 2007). It has been applied to segment images for

the analysis of color combination aesthetics (Yao et al., 2012) and to perform clus-

tering on industry engineering design data in work-centered visual analytics to aid

the search for optimal designs (Yan et tal., 2012a). Our parallel implementations

of HMAC run on a cluster of compute nodes, using the message passing interface

(MPI) library. Experimental results show that PHMAC significantly reduces the

running time of the original algorithm, making it feasible to perform clustering on

large-scale data. When used in visual analytics, the fast parallel algorithms can

5

render the clustering results to the visualization component within a very short

time, which enables real time human and machine interaction.

Finally, we conclude and discuss future work in Chapter 6.

Chapter 2
Two-way Gaussian Mixture Models

2.1 Introduction

Mixture discriminant analysis (MDA), developed by Hastie and Tibshirani (1996),

has enjoyed wide spread applications. The prominence in broad applications held

by mixture models speaks for their appeals, which come from several intrinsic

strengths of the generative modeling approach to classification as well as the power

of mixture modeling as a density estimation method for multivariate data (Fraley

and Raftery, 2002). Although discriminative approaches to classification, e.g., sup-

port vector machine (Schölkopf et al., 1999), are often argued to be more favorable

because they optimize the classification boundary directly, generative modeling

methods hold multiple practical advantages including the ease of handling a large

number of classes, the convenience of incorporating domain expertise, and the min-

imal effort required to treat new classes in an incremental learning environment.

As with other approaches to classification, many research efforts on MDA re-

volve around the issue of high dimensionality. For the Gaussian mixture, the issue

boils down to the robust estimation of the component-wise covariance matrix and

mean vector. Earlier work focused more on the covariance because the maximum

likelihood estimation often yields singular or nearly singular matrices when the

dimension is high, causing numerical breakdown of MDA. The same issue arises

for linear or quadratic discriminant analysis (LDA, QDA), less seriously than for

MDA though. An easy way to tackle this problem is to use diagonal covariance

matrices. Friedman (1989) developed a regularized discriminant analysis in which

7

the component-wise covariance matrix is shrunk towards a diagonal or a common

covariance matrix across components. Banfield and Raftery (1993) decomposed the

covariance matrix into parts corresponding to the volume, orientation, and shape

of each component. Parsimonious mixture models were then proposed by assuming

shared properties in those regards for the covariances in different components.

Recently, research efforts have been devoted to constraining the mean vectors

as well. It is found that when the dimension is extremely high, for instance, larger

than the sample size, regularizing the mean vector results in better classification

even when the covariance structure is maintained highly parsimoniously or when

covariance is not part of the estimation. For instance, Guo et al. (2006) extended

the centroid shrinkage idea of Tibshirani et al. (2003) and proposed to regularize

the class means under the LDA model. Some dimensions of the mean vectors are

shrunk to common values so that they become irrelevant to class labels, achieving

variable selection. Pan and Shen (2007) employed the L1 norm penalty to shrink

mixture component means towards the global mean so that some variables in the

mean vectors are identical across components, again resulting in variable selection.

Along this line of research, Wang and Zhu (2008) proposed the L∞ norm penalty

to regularize the means and select variables.

In this work, we investigate another approach to regularizing the mixture com-

ponent means. Specifically, we divide the variables into groups and assume identi-

cal values for the means of variables in the same group under one component. This

idea was first explored by Li and Zha (2006) for a mixture of Poisson distributions

(more accurately, a product of independent Poisson distributions for multivariate

data). They called such a model a two-way mixture, reflecting the observation

that the mixture components induce a partition of the sample points, each usu-

ally corresponding to a row in a data matrix, while the variable groups form a

partition of the columns in the matrix. Another related line of research is the

simultaneous clustering or biclustering approach (Lazzeroni and Owen, 2002; Zha

et al., 2001), where sample points and their variables are simultaneously clustered

to improve the clustering effectiveness and cluster interpretability. Lazzeroni and

Owen (2002) introduced the notion of plaid model which leads to simultaneous

clustering with overlapping. Unlike two-way mixture, the simultaneous cluster-

ing approach focuses on a set of data samples and does not provide a generative

8

model for an arbitrary sample point, in a strict sense. Here, we study the two-way

mixture of Gaussians for continuous data and derive its estimation method. The

issue of missing data that tends to arise when the dimension is extremely high is

addressed. Experiments are conducted on several real data sets with moderate to

very high dimensions. A dimension reduction property of the two-way mixture of

distributions from any exponential family is proved.

Our motivation for exploring the two-way mixture is multifold. First, in engi-

neering applications, very differently from science where we seek a simple expla-

nation, black box classifiers are well accepted. In scientific studies, the features

(aka variables) often have natural meanings, for instance, each feature corresponds

to a gene; and the purpose is to reveal the relationship between the features and

some other phenomenon. Variable selection is desired because it identifies fea-

tures relevant to the phenomenon. In engineering systems, the features are often

defined and supplied artificially; and the purpose is to achieve good prediction

performance with as much information as possible. Therefore selecting features

may not be a concern, but how to combine their forces is critical. We thus focus

on a parsimonious mixture model that can be more robustly estimated, but not

implying the discard of any features. Moreover, estimating the two-way mixture

model is computationally less intensive than selecting variables using L1 or L∞

norm penalty.

Second, from model estimation perspective, assuming identical means for vari-

ables in the same group is essentially to quantize the unconstrained means of the

variables and replace those means by a smaller number of quantized values. Con-

sider the following hypothetical setup. Suppose the means of k variables X1, ...,

Xk are independently sampled from a normal distribution N (0, s2). Denote the

means by µ1, ..., µk. Suppose Xj, j = 1, ..., k, are independently sampled n times

from N (µj, σ
2), the samples denoted by x

(i)
j , i = 1, ..., n, j = 1, ..., k. Without

regularization, the maximum likelihood estimation for µj is µ̂j =
∑n

i=1 x
(i)
j /n. The

total expected squared error is E
[∑k

j=1(µj − µ̂j)2
]

= kσ2/n. On the other hand,

if the constrained estimator µ̂ =
∑k

j=1

∑n
i=1 x

(i)
j /nk is used for all the µj’s, the

total expected squared error is E
[∑k

j=1(µj − µ̂)2
]

= (k − 1)s2 + σ2/n. We see

that if s2 < σ2/n, the constrained estimator µ̂ yields lower total expected squared

error than µ̂j, j = 1, ..., k. The rationale for the quantization strategy is that if

9

we substitute µ̂j’s as the true µj’s and divide them into groups of similar values,

the µj’s in the same group are considered to be sampled from a distribution with

a small s2, and hence have a good chance of satisfying the inequality above.

The rest of this chapter is organized as follows. The two-way Gaussian mix-

ture model is formulated in Section 2.2. We consider two cases for the component

covariance matrices: diagonal for very high dimensions and unconstrained for mod-

erately high dimensions. In Section 2.3, for the two-way mixture of distributions

from any exponential family, a dimension reduction property is presented, with

proof in the Appendix. The estimation algorithm and the method to treat missing

data are described in Section 2.4. Experimental results with comparisons are pro-

vided in Section 2.5. Finally, we conclude and discuss future work in Section 2.6.

2.2 Two-way Gaussian Mixture Model

Let X = (X1, X2, ..., Xp)
t, where p is the dimension of the data, and the class label

of X be Y ∈ K = {1, 2, ..., K}. A sample of X is denoted by x = (x1, x2, ..., xp)
t.

We present the notation for a general Gaussian mixture model assumed for each

class before introducing the two-way model. The joint distribution of X and Y un-

der a Gaussian mixture is f(X = x, Y = k) = akfk(x) = ak
∑Rk

r=1 πkrφ(x|µkr,Σkr),

where ak is the prior probability of class k, satisfying 0 ≤ ak ≤ 1 and
∑K

k=1 ak = 1,

and fk(x) is the within-class density for X. Rk is the number of mixture com-

ponents used to model class k, and the total number of mixture components for

all the classes is M =
∑K

k=1Rk. Let πkr be the mixing proportions for the rth

component in class k, 0 ≤ πkr ≤ 1,
∑Rk

r=1 πkr = 1. φ(·) denotes the pdf of a

Gaussian distribution: µkr is the mean vector for component r of class k and Σkr

is the corresponding covariance matrix. To avoid notational complexity, we write

the above mixture model equivalently as follows

f(X = x, Y = k) =
M∑
m=1

πmpm(k)φ(x|µm,Σm) , (2.1)

where 1 ≤ m ≤M is the new component label assigned in a stacked manner to all

the components in all the classes. The prior probability for the mth component

πm = akπkr ifm is the new label for the rth component in the kth class. Specifically,

10

let Rk =
∑k

k′=1Rk′ and R0 = 0. Then M = RK . Let the set Rk = {Rk−1+1, Rk−1+

2, ..., Rk} be the set of new labels assigned to the Rk mixture components of class

k. The quantity pm(k) = 1 if component m “belongs to” class k and 0 otherwise.

That is, pm(k) = 1 only for m ∈ Rk, which ensures that the density of X within

class k is a weighted sum over only the components inside class k. Moreover,

denote the associated class of component m by b(m). If pm(k) = 1, b(m) = k.

Then we have ak =
∑

m∈Rk
πm and πkr = πRk−1+r

/ak.

2.2.1 Two-way Mixture with Diagonal Covariance

If the data dimension is very high, we adopt diagonal covariance matrix Σm =

diag(σ2
m,1, ..., σ

2
m,p), i.e., the variables are independent within each mixture compo-

nent. Model (2.1) becomes

f(X = x, Y = k) =
M∑
m=1

πmpm(k)

p∏
j=1

φ(xj|µm,j, σ2
m,j) . (2.2)

In Model (2.2), the variables are in general not independent within each class as

one class may contain multiple mixture components. To approximate the class con-

ditional density, the restriction of diagonal covariance matrix on each component

can be compensated by having more additive components. With diagonal covari-

ance matrices, it is convenient to treat missing values, a particularly useful trait for

applications highly prone to missing values, for instance, microarray gene expres-

sion data where more than 90% of the genes miss some measurements (Ouyang et

al., 2004). We will show that the two-way Gaussian mixture model with diagonal

covariance matrices can handle missing data effectively. On the other hand, for

moderately high dimensional data, we will propose shortly a two-way mixture with

full covariance matrices.

For Model (2.2), we need to estimate parameters µm,j and σ2
m,j for each di-

mension j in each mixture component m. When the dimension p is very high,

sometimes p � n, we may need a more parsimonious model. We now introduce

the two-way mixture model with a grouping structure imposed on the variables. In

order not to confuse with the clustering structure of samples implied by the mixture

components, we follow the naming convention used by Li and Zha (2006): “cluster”

11

refers to a variable cluster and “component” means a component in the mixture

distribution. For each class k, suppose the variables are grouped into L clusters.

The cluster identity of variable j in class k is denoted by c(k, j) ∈ {1, 2, ..., L},
k = 1, ..., K, j = 1, ..., p, referred to as the cluster assignment function. The

two-way Gaussian mixture is formulated as follows:

f(X = x, Y = k) =
M∑
m=1

πmpm(k)

p∏
j=1

φ(xj|µm,c(b(m),j), σ
2
m,c(b(m),j)) . (2.3)

Within each mixture component, variables belonging to the same cluster have

identical parameters since the second subscripts for µ and σ2 are given by the

variable cluster assignment function. Thus, for a fixed mixture component m,

only L, rather than p, µ’s and σ2’s need to be estimated. Also note that c(k, j) is

not pre-specified, but optimized as part of model estimation. In our current study,

the cluster assignment function c(k, j) depends on class label k, but extension to

a component specific assignment is straightforward.

2.2.2 Two-way Mixture with Full Covariance

When the data dimension is moderately high, one may suspect that diagonal co-

variance matrices adopted in Model (2.2) are not efficient for modeling the data and

full covariance matrices can fit the data better with a substantially fewer number

of components in the mixture. In order to exploit a two-way mixture as entailed

in (2.3), we propose to first model the within-class density by a Gaussian mixture

f(X = x, Y = k) =
∑M

m=1 πmpm(k)φ(x|µm, Σ̃k), where Σ̃k is an unconstrained

common covariance matrix across all the components in class k. Once Σ̃k is iden-

tified, a linear transform (a “whitening” operation) can be applied to X so that

the transformed data follow a mixture with component-wise diagonal covariance

matrix, more specifically, the identity matrix I. Assume Σ̃k is non-singular and

hence positive definite, we can write Σ̃k = (Σ̃
1
2
k)t(Σ̃

1
2
k), where Σ̃

1
2
k is full ranked.

Let Wk = ((Σ̃
1
2
k)t)−1 and Z = WkX. The distribution of Z and Y is

g(Z = z, Y = k) =
M∑
m=1

πmpm(k)φ(z|Wkµm, I) . (2.4)

12

In the light of the above model for Z, (2.3) is a plausible parsimonious model

to impose on Z by the idea of forming variable clusters. In fact, the covariance

matrix I in (2.4) is not as general as the diagonal covariance matrix assumed in

Model (2.3). In our study, we adopt Model (2.3) directly for Z instead of fixing

the covariance matrix to I, allowing more flexibility in modeling. In initialization,

however, it is reasonable to set the mean of Z in component m as νm = Wkµm

and the covariance matrix Σm = I.

In summary, let the two-way Gaussian mixture for Z be

g(Z = z, Y = k) =
M∑
m=1

πmpm(k)

p∏
j=1

φ(zj|νm,c(b(m),j), σ
2
m,c(b(m),j)) .

Since X = W−1
k Z, we can transform Z back to X and obtain the distribution for

the original data:

f(X = x, Y = k) =
M∑
m=1

πmpm(k)φ(x|W−1
k νm, (W

−1
k)Σm(W−1

k)t), (2.5)

where νm = (νm,c(b(m),1), ..., νm,c(b(m),p))t, and Σm = diag
(
σ2
m,c(b(m),1), ..., σ

2
m,c(b(m),p)

)
.

We thus have two options when employing the two-way Gaussian mixture: (a)

if the data dimension is too high for using a full covariance matrix, we assume

diagonal covariance matrix as in Model (2.3); (b) if a full covariance matrix is

desired, we suggest Model (2.5) which involves essentially whitening all the mixture

components and then assuming Model (2.3) for the transformed data.

As a final note, to classify a sample X = x, the Bayes classification rule is used:

ŷ = argmaxkf(Y = k|X = x) = argmaxkf(X = x, Y = k).

2.3 Dimension Reduction

In this section, we present a dimension reduction property for the two-way mix-

ture of distributions from a general exponential family. Consider a univari-

ate distribution from an exponential family assumed for the jth variable in X:

φ(xj|θ) = exp
(∑S

s=1 ηs(θ)Ts(xj)−B(θ)
)
h(xj). The parameter vector θ is re-

parameterized as the canonical parameter vector η(θ) and the cumulant generating

13

function B(θ) . T(xj) = (T1(xj), ..., TS(xj))
t is the sufficient statistic vector of xj

with size S. For a two-way mixture model, variables in the same cluster within

any class share parameters. We thus have the following model:

f(X = x, Y = k) =
M∑
m=1

πmpm(k)

p∏
j=1

φ
(
xj|θm,c(b(m),j)

)
. (2.6)

Recall that b(m) is the class which component m belongs to and c(b(m), j) is

the cluster index the jth variable belongs to. Model (2.6) implies a dimension

reduction property for the classification purpose, formally stated below.

Theorem 2.3.1. For xj’s in the lth variable cluster of class k, l = 1,..., L,

k = 1, ..., K, define Tl,k(x) =
∑

j:c(k,j)=l T(xj), where T(xj) is the sufficient

statistic vector for xj under the distribution from the exponential family. Given

Tl,k(x), l = 1,...,L, k = 1, ..., K, the class label Y is conditionally independent of

x = (x1, x2, ..., xp)
t.

This theorem results from the intrinsic fact about the exponential family: the

size of the sufficient statistic is fixed when the sample size increases. Here, to be

distinguished from the number of data points, the sample size refers to the num-

ber of variables in one cluster because within a single data point, these variables

can be viewed as i.i.d. samples. Detailed proof for the theorem is provided in

Appendix A.1.

In the above statement of the theorem, for notation simplicity, we assume the

number of variable clusters under each class is always L. It is trivial to extend

to the case where different classes may have different numbers of variable clusters.

Since the size of the sufficient statistic T(xj) is S, the total number of statistics

needed to optimally predict class label Y is SKL. In the special case of Gaussian

distribution, the size of T(xj) is S = 2, where T1(xj) = xj and T2(xj) = x2
j . In the

experiment section, we will show that similar or considerably better classification

performance can be achieved with SKL� p. If the way the variables are clustered

is identical across different classes, i.e., c(k, j) is invariant with k, the dimension

sufficient for predicting class label Y is SL since Tl,k’s are identical for different

k’s.

14

2.4 Model Estimation

To estimate Model (2.3), the EM algorithms with or without missing data are

derived.

Estimation without Missing Data: The parameters to be estimated in-

clude prior probabilities of the mixture components πm, the Gaussian parameters

µm,l, σ
2
m,l, m = 1, ..., M , l = 1, ..., L, and the cluster assignment function

c(k, j) ∈ {1, 2, ..., L}, k = 1, ..., K, j = 1, ..., p. Denote the collection of all the

parameters and the cluster assignment function c(k, j) at iteration t by ψt : ψt =

{π(t)
m , µ

(t)
m,l, σ

2(t)
m,l, c

(t)(k, j) : m = 1, ...,M, l = 1, ..., L, k = 1, ..., K, j = 1, ..., p}. Let

the training data be {(x(i), y(i)) : i = 1, ..., n}. The EM algorithm comprises the

following two steps:

1. E-step: Compute the posterior probability, qi,m of each sample i belonging

to component m.

qi,m ∝ π(t)
m pm(y(i))

p∏
j=1

φ
(
x

(i)
j |µ

(t)

m,c(t)(b(m),j)
, σ2(t)

m,c(t)(b(m),j)

)
, (2.7)

subject to
∑M

m=1 qi,m = 1 .

2. M-step: Update ψt+1 by ψt+1 = argmax
ψ′

Q(ψ′|ψt), where Q(ψ′|ψt) is given

below. Specifically, the updated parameters are given by Eqs.(2.9) ∼ (2.12)

to be derived shortly.

Q(ψ′|ψt) =
n∑
i=1

M∑
m=1

qi,m log

π′mpm(y(i))
p∏
j=1

φ
(
x

(i)
j |µ

′
m,c′(b(m),j), σ

2′
m,c′(b(m),j)

) . (2.8)

Based on (2.8), it is easy to see that the optimal π
(t+1)
m , subject to

∑M
m=1 π

(t+1)
m = 1,

are given by

π(t+1)
m ∝

n∑
i=1

qi,m , m = 1, ...,M . (2.9)

The optimization of µ
(t+1)
m,l , σ2(t+1)

m,l , m = 1, ..., M , l = 1, ..., L, and c(t+1)(k, j),

k = 1, ..., K, j = 1, ..., p, requires a numerical procedure. Our approach is to

15

optimize the Gaussian parameters and the cluster assignment function alternately,

fixing one in each turn. Let ηk,l be the number of j’s such that c(k, j) = l. In

one round, µ
(t+1)
m,l , σ2(t+1)

m,l , and c(t+1)(k, j) are updated by the following equations.

Each maximizes Q(ψt+1|ψt) when the others are fixed.

µ
(t+1)
m,l =

∑n
i=1 qi,m

∑
j:c(t)(b(m),j)=l x

(i)
j

ηb(m),l

∑n
i=1 qi,m

(2.10)

σ2(t+1)
m,l =

∑n
i=1 qi,m

∑
j:c(t)(b(m),j)=l(x

(i)
j − µ

(t+1)
m,l)2

ηb(m),l

∑n
i=1 qi,m

(2.11)

c(t+1)(k, j) = argmax
l∈{1,...,L}

n∑
i=1

∑
m∈Rk

qi,m

[
−

(x
(i)
j − µ

(t+1)
m,l)2

2σ2(t+1)
m,l

− log |σ(t+1)
m,l |

]
. (2.12)

The optimality of Eq.(2.10) and Eq.(2.11) can be shown easily as in the deriva-

tion of the EM algorithm for a usual mixture model. Given fixed Gaussian param-

eters µ
(t+1)
m,l and σ2(t+1)

m,l , Q(ψt+1|ψt) can be maximized by optimizing the cluster

assignment function c(t+1)(k, j) separately for each class k and each variable j.

See (Li and Zha, 2006) for the argument that applies here likewise. The optimal-

ity of c(t+1)(k, j) is then obvious because of the exhaustive search through all the

possible values.

Eqs.(2.10)−(2.12) can be iterated multiple times. However, considering the

computational cost of embedding this iterative procedure in the M-step, we adopt

the generalized EM (GEM) algorithm (Dempster et al., 1977), which ensures that

Q(ψt+1|ψt) ≥ Q(ψt|ψt) rather than solving maxψt+1 Q(ψt+1|ψt). Thus, Eqs.(2.10)∼
(2.12) are applied only once. To see that Q(ψt+1|ψt) ≥ Q(ψt|ψt), let ψ̃ = {π(t+1)

m ,

µ
(t+1)
m,l , σ2(t+1)

m,l , c(t)(k, j) : m = 1, ...,M, l = 1, ..., L, k = 1, ..., K, j = 1, ..., p}. It

is straightforward to show that Q(ψt+1|ψt) ≥ Q(ψ̃|ψt) ≥ Q(ψt|ψt) based on the

optimality of Eqs.(2.9)∼ (2.11) conditioned on other parameters held fixed. The

computational cost for each iteration of GEM is linear in npML.

To initialize the estimation algorithm, we first choose Rk, the number of mix-

ture components for each class k. If the training sample size of each class is roughly

16

equal, we assign the same number of components to each class for simplicity. Oth-

erwise, the number of components in a class is determined by its corresponding

proportion in the whole training data set. Then we randomly assign each sample

to a mixture component m in the given class of that sample. The posterior proba-

bility qi,m is set to 1 if sample i is assigned to component m and 0 otherwise. Also,

each variable is randomly assigned to a variable cluster l in that class. With the

initial posterior probabilities and the cluster assignment function given, an M-step

is applied to obtain the initial parameters. If any mixture component or variable

cluster happens to be empty according to the random assignment, we initialize

µm,l and σ2
m,l by the global mean and variance. During the estimation, we bound

the variances σ2
m,l away from zero using a small fraction of the global variance in

order to avoid the singularity of the covariance matrix .

Estimation with Missing Data: When missing data exist, due to the diag-

onal covariance matrices assumed in Model (2.3), the EM algorithm requires little

extra computation. The formulas for updating the parameters in the M-step bear

much similarity to Eqs. (2.9) ∼ (2.12). The key for deriving the EM algorithm

when missing data exist is to compute Q(ψt+1|ψt) = E[log f(v|ψt+1) | w, ψt], where

v is the complete data, w the incomplete, and f(·) the density function.

When there is no real missing data, EM takes the latent component identities

of the sample points as the “conceptual” missing data. When some variables

actually lack measurements, the missing data as viewed by EM contain not only the

conceptually missing component identities but also the physically missing values

of the variables. The derivation of Q(ψt+1|ψt) when real missing data exist is

provided in Appendix A.2. We present the EM algorithm below. Introduce Λ(·)
as the missing indicator function, that is, Λ(x

(i)
j) = 1 if the value of x

(i)
j is not

missing and 0 otherwise.

1. E-step: Compute the posterior probability, qi,m, i = 1, ..., n, m = 1, ..., M .

Subject to
∑M

m=1 qi,m = 1,

qi,m ∝ π(t)
m pm(y(i))×
p∏
j=1

[
Λ(x(i)

j)φ
(
x

(i)
j |µ

(t)

m,c(t)(b(m),j)
, σ2(t)

m,c(t)(b(m),j)

)
+
(

1− Λ(x(i)
j)
)]

.(2.13)

17

2. M-step: Update the parameters in ψt+1 by the following equations.

π(t+1)
m ∝

n∑
i=1

qi,m, subject to
M∑
m=1

π(t+1)
m = 1 , m = 1, ...,M . (2.14)

For each m = 1, ..., M , l = 1, ..., L, let x̃
(i)
j,m,l = Λ(x

(i)
j)x

(i)
j +(1−Λ(x

(i)
j))µ

(t)
m,l.

µ
(t+1)
m,l =

∑n
i=1 qi,m

∑
j:c(t)(b(m),j)=l x̃

(i)
j,m,l

ηb(m),l

∑n
i=1 qi,m

, (2.15)

σ2(t+1)
m,l =

∑n
i=1 qi,m

∑
j:c(t)(b(m),j)=l(x̃

(i)
j,m,l − µ

(t+1)
m,l)2 + (1− Λ(x(i)

j))σ2(t)
m,l

ηb(m),l

∑n
i=1 qi,m

. (2.16)

Let Ω1 = − (x
(i)
j −µ

(t+1)
m,l)2

2σ2(t+1)
m,l

− log |σ(t+1)
m,l |, Ω2 = −

(
µ

(t)

m,c(t)(k,j)
−µ(t+1)

m,l

)2

+σ2(t)

m,c(t)(k,j)

2σ2(t+1)
m,l

−

log |σ(t+1)
m,l |.

c(t+1)(k, j) = argmax
l∈{1,...,L}

n∑
i=1

∑
m∈Rk

qi,m[Λ(x
(i)
j)Ω1 + (1− Λ(x

(i)
j))Ω2] . (2.17)

2.5 Experiments

In this section, we present experimental results based on three data sets with

moderate to very high dimensions: (1) Microarray gene expression data; (2) Text

document data; (3) Imagery data. The two-way Gaussian mixture model (two-

way GMM), MDA without variable clustering (MDA-n.v.c.) and Support Vector

Machine (SVM) are compared for all the three data sets. Unless otherwise noted,

the covariance matrices in the mixture models are diagonal because most of the

data sets are of very high dimensions, e.g., p � n. To make our presentation

concise, we also recall that the total number of mixture components for all the

classes is always denoted by M , and the number of variable clusters in each class

is denoted by L.

Microarray Gene Expression Data: We apply the two-way Gaussian mix-

ture model to the microarray data used by Alizadeh et al. (2000). Every sample

18

in this data set contains the expression levels of 4026 genes. There are 96 samples

divided into 9 classes. Four classes of 78 samples in total are chosen for our ex-

periment, in particular, 42 diffuse large B-cell lymphoma (DLBCL), 16 activated

blood B (ABB), 9 follicular lymphoma (FL), and 11 chronic lymphocytic leukemia

(CLL). The other classes are excluded because they contain too few points. Be-

cause the sample sizes of these 4 classes are quite different, the number of mixture

components used in each class is chosen according to its proportion in the training

data set. We experiment with a range of values for the total number of components

M . The percentage of missing values in this data set is around 5.16%. The estima-

tion method in the case of missing data is used. We use five-fold cross validation

to compute the classification accuracy.

Fig.2.1 shows the classification error rates obtained by MDA-n.v.c.. The min-

imum error rate 10.90% is achieved when M = 6. Due to the small sample size,

the classification accuracy of MDA degrades rapidly when M increases. For com-

parison, Fig.2.1 also shows the classification error rates obtained by the two-way

GMM with L = 20. As we can see, the two-way GMM always yields a smaller

error rate than MDA-n.v.c. at any M . With L = 20, the two-way GMM achieves

the minimum error rate 7.26% when M = 12. In Fig.2.1, when M = 4, i.e., one

Gaussian component is used to model each class, MDA is essentially QDA and the

two-way GMM is essentially QDA with variable clustering. The error rate achieved

by QDA without variable clustering is 13.26%, while that by QDA with variable

clustering is a smaller value of 9.48%.

Table 2.1: The classification error rates in percent achieved by the two-way GMM
for the microarray data

Error rate (%) L = 5 L = 10 L = 30 L = 50 L = 70 L = 90 L = 110 n.v.c.
M = 4 8.69 7.12 9.48 10.82 10.82 11.93 11.93 13.26
M = 18 7.26 10.02 8.60 10.82 8.46 9.48 8.46 35.30
M = 36 7.35 5.83 7.17 6.15 7.34 7.48 6.23 44.65

Table 2.1 provides the classification accuracy of two-way GMM with different

values of M and L. The minimum error rate in each row is in bold font. As Table

2.1 shows, for each row, when the number of mixture components is fixed, the

lowest error rate is always achieved by the two-way GMM. According to Theorem

19

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

Total number of mixture components

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

 (
%

)

MDA−n.v.c.
Two−way GMM

Figure 2.1: The classification error rates obtained for the microarray data using
both MDA-n.v.c. and two-way GMM with L = 20 variable clusters. The total
number of components M ranges from 4 to 36.

2.3.1, this data set can be classified with accuracy 7.26% by the two-way GMM

at M = 18 and L = 5 using only 40 (2KL = 40) dimensions, significantly smaller

than the original dimension of 4026. If homogeneous variable clustering is enforced

across different classes, that is, the cluster assignment function c(k, j) is invariant

with class k, the classification accuracy is usually worse than the inhomogeneous

clustering. Due to space limitations, we will not show the numerical results. All

the results given in this section are based on inhomogeneous variable clustering.

We may use a data driven method, such as grid search and cross validation, to

find the pair of M and L that gives the smallest error rate. Under some situations,

the physical nature of the data may dominate the choices for M and L. For many

other problems, the density of the data may be well approximated by mixture

models with different values of M and L. For the purpose of classification, the

mixture structure underlying the density function has no effect. It is known that

discovering the true number of components assuming the distribution is precisely

a mixture of Gaussian is a difficult problem and is out of the scope of this work.

Effort in this direction has been made by Tibshirani and Walther (2002).

For comparison, we also apply SVM to this data set and obtain its classification

accuracy with five-fold cross validation. We use the LIBSVM package (Chang and

Lin, 2001) and the linear kernel with the default selection of the penalty parameter

C. Missing values in the microarray data are replaced by the corresponding value

20

from the nearest-neighbor sample in Euclidean distance. If the corresponding value

from the nearest-neighbor sample is also missing, the next nearest sample is used.

The classification error rate obtained by SVM is 0.00%. Although the minimum

error rate of two-way GMM listed in Table 2.1, i.e., 5.83% at M = 36 and L = 10,

is larger than that of SVM, it uses only 80 (2KL = 80) dimensions comparing with

the original dimension of 4026 used by SVM. Additionally, our focus here is not

to compete with SVM, but to show that the parsimonious two-way mixture can

outperform a mixture model without variable grouping.

Text Document Data: we perform experiments on the newsgroup data

(Lang, 1995). In this data set, there are twenty topics, each containing about 1000

documents (email messages). We use the bow toolkit to process this data set.

Specifically, the UseNet headers are stripped and stemming is applied (McCallum,

1996). A document x(i) is represented by a word count vector (x
(i)
1 , x

(i)
2 , ..., x

(i)
p),

where p is the vocabulary size. The number of words occurred in the whole news-

group data is about 78, 000. In our experiment, to classify a set of topics, we

pre-select words to include in the word count vectors since many words are only

related to certain topics and are barely useful for the topics chosen in the data

set. We use the feature selection approach described in (Li and Zha, 2006) to

select the words that are of high potential for distinguishing the classes based on

the variances of word counts over different classes. The feature selection in the

preprocessing step is not aggressive because we still retain thousands of words.

After selecting the words, we convert the word count vectors to word relative fre-

quency vectors by normalization. Roughly half of the documents in each topic are

randomly selected as training samples and the rest test samples.

We apply the two-way GMM to three different data sets, all with more than two

classes. Five topics from the newsgroup data, referred to in short as, comp.graphics,

rec.sport.baseball, sci.med, sci.space, talk.politics.guns, are used to form our first

data set. Each document is represented by a vector containing the frequencies of

1000 words obtained by the feature selection approach aforementioned. In the sec-

ond data set, we use the same topics as in the first one but increase the dimension

of the word frequency vector to 3455. Our third data set is of dimension 5000 and

contains eight topics: comp.os.ms-windows.misc, comp.windows.x, alt.atheism,

soc.religion.christian, sci.med, sci.space, sci.space, talk.politics.mideast. In all the

21

three data sets, the sample size of each topic in the training data set is around 500,

roughly equal to that of the test data set. We assign the same number of mixture

components to each class for simplicity. Only the total number of components M

is specified in the discussion.

Table 2.2 provides the classification error rates of the two-way GMM on the

three data sets with different values of M and L. When M is fixed in each row,

the difference between the lowest error rate achieved by the two-way GMM and

the error rate of MDA-n.v.c. is also calculated. These differences are under “diff ”

in the last column of each subtable. In Table 2.2a, when M = 5 and 20, the

lowest error rates obtained by the two-way GMM are equal to or smaller than the

error rates of MDA-n.v.c.. When M = 60, MDA-n.v.c. gives the overall lowest

error rate 8.54%, while the lowest error rate obtained by the two-way GMM is

9.27% at L = 50 or 110. When we increase the dimension of the word frequency

vector and the number of topics to be classified, as in the second and third data

sets, Table 2.2b and Table 2.2c show that the lowest error rate in each row is

most of the time achieved by MDA-n.v.c.. However, the differences shown under

the column of “diff ” are always less than 1%. The performance of the two-way

GMM is thus comparable to that of MDA-n.v.c., but is achieved at significantly

lower dimensions. For instance, in Table 2.2c, when M = 32, the value under

“diff ” is 0.87% and the lowest error rate of the two-way GMM is obtained at

L = 20. According to Theorem 2.3.1, at L = 20, this data set is classified using

320 (2KL = 320) dimensions versus the original dimension of 5000. Of particular

interest is when M = 5 for the first and second data sets and M = 8 for the

third data set. In those cases, a single component is assigned to each class, and

hence MDA and the two-way GMM are essentially QDA with or without mean

regularization. We find that for QDA, variable clustering results in lower error

rates for the second data set and equal error rates for the other two.

Let us examine the two-way mixture models obtained for the two classes,

comp.os.ms-windows.misc and comp.windows.x, in the third data set. Consider

for example the models with M = 32 and L = 30. Fig.2.2 shows the number of

words in each of the 30 word (aka variable) clusters for the two classes. These

word clusters are indexed in an order of descending sizes. The sizes of these word

clusters are highly uneven. In each case, the largest cluster accounts for more than

22

Table 2.2: The classification error rates in percent achieved by the two-way GMM
for the three text document data sets

(a) Data Set 1 with five classes and dimension = 1000

Error rate (%) L = 10 L = 30 L = 50 L = 70 L = 90 L = 110 n.v.c. diff
M = 5 9.19 8.95 9.07 9.27 9.15 9.15 8.95 0.00
M = 20 12.79 9.72 9.80 8.58 9.15 9.39 8.99 -0.41
M = 60 12.06 10.04 9.27 9.80 9.39 9.27 8.54 0.73

(b) Data Set 2 with five classes and dimension = 3455

Error rate (%) L = 10 L = 30 L = 50 L = 70 L = 90 L = 110 n.v.c. diff
M = 5 7.19 6.91 7.07 7.07 7.11 7.15 7.15 -0.24
M = 20 7.88 6.99 6.79 7.88 7.84 7.11 6.06 0.73
M = 60 10.91 7.03 7.43 7.72 7.43 7.35 6.42 0.61

(c) Data Set 3 with eight classes and dimension = 5000

Error rate (%) L = 5 L = 10 L = 20 L = 30 L = 40 L = 50 n.v.c. diff
M = 8 11.41 11.06 10.96 10.79 10.86 10.86 10.79 0.00
M = 32 15.58 11.71 11.11 11.66 11.24 11.91 10.24 0.87
M = 96 12.79 14.26 18.23 12.29 11.79 11.09 11.01 0.08

0 10 20 30
0

500

1000

1500

2000

2500

3000

Word cluster index

N
um

be
r

of
 w

or
ds

in
 e

ac
h

cl
us

te
r

0 10 20 30
0

500

1000

1500

2000

2500

3000

Word cluster index

N
um

be
r

of
 w

or
ds

in
 e

ac
h

cl
us

te
r

Figure 2.2: The sizes of the word clusters for comp.os.ms-windows.misc (left) and
comp.windows.x (right).

half of the words. Moreover, the largest cluster contains words with nearly zero

frequencies, which is consistent with the fact that for any particular topic class, a

majority of the words almost never occur. They are thus treated indifferently by

the model.

Classification error rates obtained by SVM for these three data sets are also

reported. We use the linear kernel with different values of the penalty parameter

C to do the classification. The value of C with the minimum cross validation

error rate on the training data set is then selected and used for the final classi-

23

fication on the test data set. The SVM classification error rates on these three

data sets are 7.98% (Data Set 1), 5.98% (Data Set 2) and 9.67% (Data Set 3),

respectively. Comparing with the results listed in Table 2.2, SVM is only slightly

better than MDA-n.v.c. and two-way GMM. However, two-way GMM achieves

these error rates with a significantly smaller number of dimensions. Also, SVM is

computationally more expensive and not scalable when the number of classes is

large. Unlike two-way GMM, SVM does not provide a model for each class, which

in some applications may be needed for descriptive purpose.

Imagery Data: The data set we used contains 1400 images each represented

by a 64 dimensional feature vector. The original images contain 256 × 384 or

384 × 256 pixels. The feature vectors are generated as follows. We first divide

each image into 16 even sized blocks (4 × 4 division). For each of the 16 blocks,

the average L,U, V color components are computed. We also add the percentage

of edge points in each block as a feature. The edges are detected by thresholding

the intensity gradient at every pixel. In summary, every block has 4 features, 64

features in total for the entire image. These 1400 images come from 5 classes

of different semantics: mountain scenery (300), women (300), flower (300), city

scene (300), and beach scene (200), where the numbers in the parenthesis indicate

the sample size of each class. Five-fold cross-validation is used to compute the

classification accuracy. We use the same number of mixture components to model

each class.

Table 2.3 lists the classification error rates obtained by the two-way GMM with

a range of values for M and L. When M is fixed, as L increases, the error rates of

the two-way GMM tend to decrease. In Table 2.3, the lowest error rate in each row

is achieved by the two-way GMM. For this data set, because 2KL > 64, dimension

reduction is not obtained according to Theorem 2.3.1. However, the total number

of parameters in the model is much reduced due to variable clustering, especially

when M is large.

Since the dimension of the imagery data is moderate, at least comparing with

the previous two data collections, we also experiment with the two-way GMM with

full covariance matrices, that is, Model (2.5) in Section 2.2. Table 2.4 provides the

classification error rates obtained by this model. When M is fixed, the lowest error

rates are achieved by two-way GMM except at M = 10 and M = 20. Comparing

24

Table 2.3 with Table 2.4, the performance of the two-way GMM with full covari-

ance matrices is slightly worse than the two-way GMM with diagonal covariance

matrices. In other applications, it has also been noted that using diagonal covari-

ance matrices often is not inferior to full covariance matrices even at moderate

dimensions. One reason is that the restriction on covariance can be compensated

by having more components. It is thus difficult to observe obvious improvement

by relaxing the covariance.

We apply SVM with a radial basis function (RBF) kernel to the imagery classifi-

cation problem. The penalty parameter C and the kernel parameter γ are identified

by a grid search using cross validation. The final SVM error rate with five-fold

cross validation is 31.00%. In Table 2.3, the minimum error rate of two-way GMM

is 32.43% at M = 40 and L = 36. Similar to the previous examples, the classifica-

tion accuracies of SVM and two-way GMM for the imagery data are very close. We

also apply a variable selection based SVM to this classification problem since the

dimension of the imagery data is moderately high. The wrapper subset evaluation

method (Kohavi and John, 1997) and forward best-first search in WEKA (Hall et

al., 2009) are employed to select the optimal subset of variables. In the wrapper

subset evaluation method, the classification accuracy of SVM is used to measure

the goodness of a particular variable subset. The final classification is obtained by

applying SVM to the data with selected variables. For the SVMs involved in the

variable selection scheme, the kernel function and the parameters are the same as

those for the SVM without variable selection. The best subset of variables is of

size 21, yielding a five-fold cross validation error rate of 34.93%. Comparing with

the minimum error rates listed in Table 3 and Table 4, i.e., 32.43% (M = 40 and

L = 36) and 33.21% (M = 40 and L = 56), the performance of SVM with variable

selection is slightly worse than that of two-way GMM.

Table 2.3: The classification error rates in percent achieved by the two-way GMM
for the imagery data

Error rate (%) L = 8 L = 12 L = 16 L = 24 L = 36 L = 48 L = 52 L = 56 n.v.c.
M = 5 45.50 44.00 44.57 44.21 44.64 43.50 43.93 43.64 43.79
M = 10 40.29 37.86 36.93 35.57 35.43 35.07 35.50 35.00 35.57
M = 20 35.21 36.29 35.64 34.93 34.79 35.07 36.00 33.93 37.36
M = 30 35.43 36.07 34.86 34.64 33.00 34.57 34.36 34.93 34.64
M = 40 38.79 37.07 36.36 34.79 32.43 35.64 36.00 35.36 36.21
M = 50 37.50 35.50 33.93 34.07 33.21 34.14 34.93 34.93 36.50

25

Table 2.4: The classification error rates in percent achieved by the two-way GMM
with full covariance matrices for the imagery data

Error rate (%) L = 8 L = 12 L = 16 L = 24 L = 36 L = 48 L = 52 L = 56 n.v.c.
M = 5 46.57 45.86 44.21 44.57 44.57 43.93 43.93 43.57 43.79
M = 10 42.86 42.71 41.86 40.43 40.00 37.79 37.14 37.50 35.71
M = 20 42.21 43.14 39.50 38.21 36.86 37.07 36.07 35.57 34.14
M = 30 43.43 42.14 41.21 39.00 38.50 36.29 35.79 36.79 35.86
M = 40 43.64 42.00 41.50 38.43 36.29 36.07 33.64 33.21 33.29
M = 50 42.79 41.07 39.07 37.71 35.93 33.86 34.14 35.29 34.57

Computational Efficiency: We hereby report the running time of two-way

GMM on a laptop with 2.66 GHz Intel CPU and 4.00 GB RAM. For the microarray

data, when M = 18 and L = 70, it takes about 30 minutes to train the classifier

on four fifths of the data and test the classifier on one fifth of the data (that is,

to finish computation for one fold in a five-fold cross validation setup). For the

text document data (2514 training samples, 2475 test samples, 5 classes, 3455

dimensions), when M = 20 and L = 50, it takes about 40 minutes to train and

test the classifier. For the imagery data, at M = 30 and L = 24, two-way GMM

with diagonal covariance matrices takes only 14 seconds to finish computation for

one fold of the five-fold cross validation. The EM algorithm converges fast and the

computational cost for each iteration is linear in npML. The longer running time

required by the microarray as well as the text document data is because of the

high dimensions and coding in Matlab. We expect much shorter running time if

the experiments are conducted using C/C++. Although the grid search of M and

L further increases the computation time, the search can be readily parallelized in

a cluster computing environment.

2.6 Summary

In this work, we proposed the two-way Gaussian mixture model for classifying

high dimensional data. A dimension reduction property is proved for a two-way

mixture of distributions from any exponential family. Experiments conducted on

multiple real data sets show that the two-way mixture model often outperforms

the mixture without variable clustering. Comparing with SVM with and without

variable selection, two-way mixture model achieves close or better performance.

Given the importance of QDA as a fundamental classification method, we also in-

26

vestigated QDA with mean regularization by variable grouping, and found that the

regularization results in better classification for all the data sets we experimented

with.

For data sets arising out of engineering systems, variables, or features, often

form natural groups according to their physical meanings. Such prior knowledge

may be exploited in the future when we create variable groups in the two-way

mixture. Another issue that can be explored is the component-wise whitening

strategy we proposed for moderately high dimensional data when diagonal covari-

ance matrices are considered too restrictive. In the current experiments, we did not

observe gain from this strategy. It is worthy to study whether the approach can be

improved by more robust estimation of covariance and whether new applications

may benefit from the approach.

Chapter 3
Distance-based Mixture Modeling

for Classification using Hypothetical

Local Mapping

3.1 Introduction

Distance-based classifiers classify objects using only the pairwise distances between

samples in the test and training data sets. Because only the pairwise distances

are required in training and prediction, the specific representation of the data

samples can be of greater variety and in certain cases even becomes irrelevant.

This is particularly appealing to classification problems where the object cannot be

described effectively by a mathematical entity that permits well-studied analytical

operations, for example, vectors. The term distance is used in a general sense here

to indicate the pairwise relationship between data samples, which can be similarity

or dissimilarity, unless otherwise noted. In addition, the distance may be loosely

defined, which is not necessarily a true metric. Distance-based classification is used

popularly in the fields of computer vision, information retrieval, bioinformatics,

etc., attracting much attention from researchers.

In this chapter, we investigate distance-based mixture modeling for classifica-

tion using hypothetical local mapping (HLM), a mechanism originally proposed by

Li and Wang (2006). HLM has been successfully applied to estimate the probabil-

28

ity distribution of images in a concept category, where each image is characterized

by its color and texture signatures, each being a set of weighted and unordered vec-

tors (Li and Wang, 2008). To estimate a mixture model, HLM takes as input the

distances between the training image signatures and their corresponding prototype

signatures. Here, by prototype, we mean the centroid of a cluster. Specifically,

given a class of objects and their pairwise distances, clustering is first applied and

each cluster of objects is locally mapped to a Euclidean space Rk, preserving the

pairwise distances to the maximum extent. In the mapped space, this cluster of

data is modeled by a Gaussian distribution with spherical covariance and a mean

vector equal to the mapped prototype. Based on the relationship between the

Gaussian and Gamma distributions, the parameters of the Gaussian distribution

and the dimension of the mapped space can be estimated by fitting a Gamma

distribution using only distances between each data point and its corresponding

prototype in the original space. The local mapping is thus bypassed, causing no

additional computation, and hence called hypothetical. Finally, a mixture model

is constructed to combine these clusters.

In the current work, we aim to explore the potential of HLM as a mixture

modeling technique in a more general setting than what has been pursued in (Li

and Wang, 2008). In the previous work, the clustering algorithm exploits the

mathematical representation of an image, and is thus not pairwise distance-based.

Although HLM only uses the distances after clustering, its performance coupled

with distance-based clustering algorithms on more general data sets is unknown.

Because the parameter fitting in HLM is computationally negligible in comparison

with the pairwise distance-based clustering performed beforehand, mixture mod-

eling by HLM is almost as fast as the clustering process itself. With the existence

of some fast distance-based clustering algorithms, HLM can be substantially faster

than several major pairwise distance-based classification methods. Other compu-

tational advantages of HLM will be discussed shortly. With this merit of HLM

in mind, we push the consideration on computational efficiency one step further.

We will propose and evaluate two incremental learning schemes of constructing

mixture models by HLM. The intrinsic characteristics of HLM lend it readily to

the incremental learning scenario, which becomes increasingly important with the

abundance of high velocity stream data.

29

Comparing with discriminative approaches, such as SVM with pairwise dis-

tances modified into kernels (Hochreiter and Obermayer, 2006; Zhang et al., 2006;

Chen et al., 2009), HLM inherits many practical advantages of the generative

modeling approach, including the ease of handling a large number of classes, the

convenience of incorporating domain expertise, and the minimal effort required to

treat new classes in an incremental manner. As a generative mixture modeling

approach, HLM also has profound differences from the mixture SDA (Cazzanti,

2007b). The assumption in the mixture SDA essentially puts pairwise constraints

between all the classes. The estimation of the probability distribution of one class

depends on the data in all the other classes, the complexity of which grows quickly

with the number of classes. In contrast, HLM is along the line of mixture modeling,

which establishes the density of each class separately. In addition, HLM is well

linked to the method of treating pairwise distances as features. Given a set of data,

if each data point is treated as a prototype, HLM will generate a mixture density

using all the pairwise distances. The resulting density thus becomes a generalized

kernel density.

The rest of this chapter is organized as follows. Related work is discussed in

Section 3.2. We introduce HLM in Section 3.3 and the distance-based clustering in

Section 3.4. The classification algorithm is described in Section 3.5. In Section 3.6,

we present two HLM based incremental learning schemes. Experimental results

with comparisons are provided in Section 3.7. Finally, we summarize the work and

conclude in Section 3.8.

3.2 Related Work

We review distance-based classification methods in the following categories.

Nearest Neighbors: One of the most popular distance-based classification

methods is k-nearest neighbor (k-NN). As a lazy learning method, k-NN does

not require the training of data. Given a test sample, its distances to all the

training samples are computed. The majority class of the k closest data points is

assigned as the class label of the test sample. K-NN has enjoyed applications in

a wide range of areas, such as image retrieval (Jacobs et al., 2000), object recog-

nition (Belongie et al., 2002) , and photography composition classification (Yao et

30

al., 2012). However, k-NN is sensitive to noisy training samples, especially when

the distance measure is not well defined. To mitigate this issue, various distance

measures or transformations have been proposed (Pekalska et al., 2001; Simard et

al., 1993; Weinshall et al., 1999). Several weighted versions of k-NN have also been

proposed in (Chen et al., 2009; Cost and Salzberg, 1993; Gupta et al., 2006), which

significantly improve the classification accuracy compared to standard k-NN. In

addition, to speed up classification, the distances between the test sample and a

set of prototypes from each class are usually used, instead of using all the training

data. The prototypes are not necessarily the original data. They can be a set

of edited condensing samples approximating the distribution of the original data.

The strategies of prototype selection are discussed in (Lam et al., 2002; Pekalska

et al., 2006; Lozano et al., 2006). If we have only one prototype from each class

with the class centroid being the prototype, the scheme is also called the nearest

centroid method.

Embed in Euclidean Space: Multi-dimensional scaling (MDS) (Young and

Householder, 1938) embeds the training and test data into a lower-dimensional

Euclidean space using the pairwise distances. Shepard (1962a,b) further proposed

nonmetric MDS which only requires the pairwise distances in rank-order. Data

can also be embedded in a pseudo-Eclidean space (Pekalska et al., 2001; Goldfarb,

1985). Standard classification methods, such as k-NN, can then be applied to the

embedded data. There are several disadvantages of this approach (Cazzanti et

al., 2008). First, the classification of new test data requires the re-computation

of the embeddings of all the data. The embedding is computationally intensive.

Second, if the distance is not a true metric, the embedding may be inappropriate.

Third, the projection of data onto lower-dimensional space may cause the loss of

information and thus cannot fully preserve the relationships between the original

data.

Treat Distances as Features: Another distance-based classification approach

is to combine the distances between a test sample and the training samples as one

feature vector. Standard classifiers, such as support vector machines (SVM) and

Fisher linear discriminant analysis (LDA), are then applied to the distance feature

vectors (Pekalska et al., 2001; Graepel et al., 1999; Duin et al., 1999). Balcan et

al. (2006) proposed a general theory of learning with distances as features, which

31

shows that there is a probabilistic upper bound on the classification error if almost

all the samples (at least a 1 − ε fraction) have on average closer distances to

random samples in the same class than to random samples in a different class.

Wang et al. (2007) further extended it to unbounded dissimilarity functions, and

constructed a convex combination of simple classifiers on the distances to achieve

a bounded classification error. A major limitation of this approach is that the

dimensionality of the feature vector is equal to the number of training data, which

can be prohibitively high. Additionally, as pointed by Chen et al. (2009), if there

is large inter-class variance relative to intra-class variance, treating distances as

features may not have sufficient discriminative power even though the classes are

well separated.

Modify Distances into Kernels: If the pairwise distance matrix between the

training samples is symmetric and positive definite, it can be treated as a kernel

and used in any kernel classifiers, for instance, support vector machines. But many

distance matrices do not have this property. Several methods for modifying dis-

tances into kernels are discussed in (Chen et al., 2009). Hochreiter and Obermayer

(2006) proposed potential support vector machines (P-SVM) which can work with

any input data matrix. However, the final kernels in these methods are all n × n
matrices, which require intensive computation for large n. A hybrid approach of

SVM and k-NN (Zhang et al., 2006) computes the pairwise distance matrix for the

union of the test sample and its k neighbors, modifies the matrix into a kernel,

and then applies standard SVM. It reduces the computational cost resulted from

training on the entire data set. One problem with modifying distances into kernels

is that special effort has to be made to transform the original distances between the

test and training samples so that they are consistent with the modified distances

in producing the kernels.

Distance-based Generative Models: This type of method was first exploited

by Li and Wang (2006) for building mixture models to annotate images. They

called it hypothetical local mapping (HLM), which requires using only distances

between each data point and its corresponding prototype. Another distance-based

generative model was proposed by Cazzanti and Gupta (2007a), namely, local

similarity discriminant analysis (local SDA). They assume that the expectation of

the similarity between a random sample x and a random class centroid µ is equal

32

to the mean of the similarities between the k nearest neighbors of x of the same

class and the class centroid µ. Suppose the number of classes is G, this poses G2

number of constraints. Given these constraints, each class-conditional distribution

is estimated by the principle of maximum entropy. Cazzanti et al. (2008) later

proposed a more generalized SDA by assuming the expectation of the descriptive

statistic of a random sample x with respect to the class conditional distribution

to be the average of the statistics of all the training data in each class. SDA and

local SDA assume essentially a single distribution for each class. For multi-modal

cases, mixture SDA was further proposed (Cazzanti, 2007b). A weighted sum of

exponential components is used to estimate the class-conditional distribution. Note

that in mixture SDA, G2 number of mixture distributions have to be estimated

due to a weighted version of the constraint in SDA. If the number of classes is

large, the quadratic growth of the number of mixture models will present a big

computational challenge.

3.3 Hypothetical Local Mapping

In this section, we introduce hypothetical local mapping (HLM) which has been

used to build a generative mixture model using the distances between each data

point and its corresponding prototype (Li and Wang, 2008). A prototype is a

representative centroid in a cluster. If restricted to be one of the data points in the

training set, a centroid is often defined as the point which has the minimum total

distance to all the other points in the same cluster. The pairwise distance may

be arbitrarily defined, subject to specific applications. Let us denote the distance

between two objects by D̃(·, ·) and the general space where data points reside by

Ω. In the following, we first introduce the estimation of data distribution in a

single cluster by HLM and then show how HLM constructs a mixture model by

combining these clusters.

3.3.1 Estimate the distribution of a single cluster

Let X = (X1, X2, ..., Xk)
t ∈ Rk, where k is the dimension of the space. Suppose

X is a multivariate random vector that follows a normal distribution N (µ,Σ):

33

µ = (µ1, ..., µk)
t is the mean vector and Σ = σ2I is the covariance matrix, where I

is the identity matrix. The pdf of N (µ,Σ) is:

ϕ(x) = (
1√

2πσ2
)ke−

‖x−µ‖2

2σ2 . (3.1)

Denote a Gamma distribution by (γ : b, s), where b is the scale parameter and s is

the shape parameter. The pdf of (γ : b, s) is

f(u) =
(u
b
)s−1e−u/b

bΓ(s)
, u ≥ 0

where Γ(·) is the Gamma function. It is known that the squared Euclidean distance

between X and the mean µ, ‖X − µ‖2, follows a Gamma distribution (γ : k
2
, 2σ2).

We assume that the neighborhood around each prototype in the original space

Ω, that is, the cluster associated with this prototype, can be locally mapped to

Rk and model the mapped data in Rk by the Gaussian density in Equation (3.1).

Expressing in terms of the Gamma distribution parameters, we have k = 2s and

σ2 = b/2. To estimate the Gamma distribution parameters, we need ‖ xi−µ ‖2 for

all data points xi in the cluster, which are mapped from the original data objects

βi, βi ∈ Ω. Because the mapping preserves the distances, ‖ xi − µ ‖2= D̃(βi, α),

where the prototype α ∈ Ω is the inverse of µ. The actual mapping from Ω to Rk

can be skipped.

Let the data point β ∈ Ω be mapped to x ∈ Rk. Note again ‖ x−µ ‖2= D̃(β, α).

Reformulating Equation (3.1) with the Gamma distribution parameters b and s,

we obtain the density for β:

g(β) = (
1√
πb

)2se−
D̃(β,α)

b .

Next, we discuss the estimation of the Gamma distribution parameters b and s.

Given a cluster of data, let the collection of distances between the prototype and

all the other data points be u = (u1, u2, ..., uN). Denote the mean ū = 1
N

∑N
i=1 ui.

34

The maximum likelihood (ML) estimator b̂ and ŝ are solutions of the equations: log ŝ− ϕ(ŝ) = log
[
ū/(
∏N

i=1 ui)
1/N
]

b̂ = ū/ŝ

where ϕ(·) is the di-gamma function (Evans et al., 2000):

ϕ(s) =
d log Γ(s)

ds
, s > 0

The above set of equations can be solved by numerical methods (Li and Wang,

2008).

3.3.2 Estimate a Mixture Model

Suppose there are M clusters (prototypes) in Ω, with prototypes {α1, α2, ..., αM}.
The overall data in Ω can be modeled by an M component mixture model. In

the following, we will use cluster and component exchangeably since every mixture

component is estimated using the data in one cluster. Let the prior probabilities

for the components be ωη, η = 1, ...,M ,
∑M

η=1 ωη = 1. The overall mixture model

for Ω is then:

φ(β) =
M∑
η=1

ωη(
1√
πbη

)2se
− D̃(β,αη)

bη . (3.2)

The prior probability ωη is estimated empirically by the percentage of data assigned

to prototype αη. It is assumed that the mapped spaces Rk of all the components

have the same dimension but possibly different variances. Therefore, all the com-

ponents share a common shape parameter but the scale parameter bη varies with

each component. That is, the clusters around each prototype are hypothetically

mapped to the same Euclidean space Rk, but with different spreadness. Note that

the distribution of mixture model can be flexible by having more additive com-

ponents. In Equation (3.2), each component distribution is similar to a Gaussian

kernel in nonparametric density estimate.

Denote the index set of data points assigned to prototype j by Cj1, j = 1, ...,M .

The total number of data points is N =
∑M

j=1 |Cj|. The prior probability ωη for

1Strictly speaking, we exclude from Cj the data point chosen as its prototype.

35

component η is estimated by |Cη|/N . Denote the ith data point by βi, and suppose

it is assigned to cluster j. Let ui = D̃(βi, αj). Suppose the mean of the distances

in cluster j is ūj = 1
|Cj |
∑

i∈Cj uj. It is shown in (Li and Wang, 2008) that the

maximum likelihood estimation for s and bj, j = 1, ...,M , is solved by the following

equations: log ŝ− ϕ(ŝ) = log
[∏M

j=1 ū
|Cj |/N
j /(

∏N
i=1 ui)

1/N
]

b̂j = ūj/ŝ, j = 1, 2, ...,M
(3.3)

The above equation assumes that ui > 0 for every i. Although this is theoret-

ically true, however, in practice, we may obtain singleton cluster (with only one

data point) due to limited data and thus some u’s are zeros. To resolve this issue,

we remove all the singleton clusters which have zero distances. In addition, we

may shrink b̂j toward a common value, which increases the robustness of parame-

ter estimation against clusters with small sample size. That is, modify b̂j = ūj/ŝ

slightly to

b̂j = λ
ūj
ŝ

+ (1− λ)
ū

ŝ
,

where λ is a shrinkage factor. The amount of shrinkage depends on the size of each

cluster. Specifically, we set λ =
|Cj |
Cj+1

, which approaches 1 when the cluster size is

large.

3.3.3 Estimate a Mixture Model with Weighted Distances

In some case we may have weights associated with the collection of distances u =

(u1, u2, ..., uN), that is, some distances may weigh more than others. Denote the

corresponding collection of weights by w = (w1, w2, ..., wN), where
∑N

i=1wi = 1.

Let ūj =

∑
i∈Cj

wiui∑
i∈Cj

wi
be the weighted mean distance for prototype j. We prove in

Appendix C.1 that the maximum likelihood estimation for s and bj, j = 1, ...,M ,

is solved by the following equations: log ŝ− ϕ(ŝ) = log

[∏M
j=1 ū

∑
i∈Cj

wi

j /
∏N

i=1 u
wi
i

]
b̂j = ūj/ŝ, j = 1, 2, ...,M .

(3.4)

36

Similar to Equation (3.3), we assume ui > 0 for every i, that is, remove all the

singleton clusters which have zero distances. Equations (3.3) in Section 3.3.2 are

equivalent to the above equations when all the wi’s equal to 1/N .

3.4 Distance-based Clustering

Before HLM is applied to build mixture models, we need first perform clustering

on the data in each class and find the cluster centroids. Let us denote the number

of data in class k by nk. Many distance-based clustering algorithms are available.

Distance-based clustering itself is a rich research topic and we do not intend to

provide a comprehensive review on the related work. In this chapter, we focus on

those with low computational complexity and good scalability to large datasets.

We discuss the following three approaches.

Agglomerative Clustering is one of the most popular distance-based clustering

methods. It starts with every data point as an individual cluster and merges

similar data points together based on their pairwise distances. The merging will

be stopped if the entire data has been contained in a root cluster or the desired

number of clusters is achieved. Agglomerative clustering has been applied to a wide

range of applications (Jain et al., 1999; Eisen et al., 1998; Beeferman and Berger,

2000). The main problem with agglomerative clustering is that it has O(n2
k) or

worse computational complexity, which is prohibitive for large data sets.

Generalized k-means minimizes the total within cluster distance, in the same

spirit as k-means, but only uses pairwise distances. Several data points are ran-

domly selected as the initial set of prototypes. The assignment of the remaining

data points to their closest prototypes yields a partition of the data set. For all

the data points in the same group, a new prototype is updated as the one with

the minimum total distance to all the other data points in the group. Then the

data points are assigned again to the new prototypes. This process continues until

a pre-determined maximum number of iterations is reached or the prototype in

each cluster has converged, resulting in a fixed partition. Suppose the number of

data points in cluster k is lk, the total computational cost for generalized k-means

is O(
∑K

k=1 l
2
k + Klk)). Since lk > K in general, its computational cost is there-

fore O(
∑K

k=1 l
2
k), whereas agglomerative clustering has O(n2

k) or worse complexity.

37

When the data set has large samples and the sizes of partitioned subsets are rela-

tively balanced, generalized k-means reduces the computational cost considerably.

Generalized k-means is also referred to as k-medoids (Hastie et al., 2001). It can

be regarded as a heuristic method to the well-known p-median problem in the op-

eration research community (Maranzana, 1964). The goal of p-median is to locate

p facilities in order to minimize the total transportation cost between the facilities

and n demand points. P -median is a combinatorial optimization problem, which

is proved to be NP-hard (Cornuejols et al., 1977). P -median naturally arises in

clustering analysis (Rao, 1971; Mulvey and Crowder, 1971), when the p “facilities”

are selected to be the most representative data points. Suppose the set of proto-

types is {µ1, ..., µk} and the assignment of data point xi, i = 1, ..., N , to cluster

j is C(i) = argmin1≤j≤k diµj . We abuse the notation k slightly here to mean the

number of prototypes. Denote the index set of data assigned to prototype j by

Cj. The total within cluster distance is defined as
∑k

j=1

∑
i∈Cj diµj . P -median is

to minimize this distance by locating appropriate centroids, that is,

min
C,{µj}k1

k∑
j=1

∑
i∈Cj

diµj . (3.5)

As a heuristic method of p-median problem, generalized k-means essentially finds

successively single facilities of k2 subsets of demand points and then update the

subsets before repeating the process.

Vertex Substitution Heuristic (VSH) was first proposed by Teitz and Bart

(1968) as another heuristic approach to p-median problem. Similar to the gen-

eralized k-means, it first randomly selects several data points as the initial set

of prototypes and assigns the remaining data points to their closest prototype.

Exchange each prototype with a data point that is currently not a prototype or

not previously tried. Select the exchange that results in the largest reduction in

Equation (3.5). This process is repeated until no further reduction can be found.

We show the details in Algorithm (1). In practice, it is found that VSH shows

more stable performance than generalized k-means (Teitz and Bart, 1968). The

worst case complexity of VSH is O(n2
k) when applied to the data in class k.

2k = p in this scenario.

38

Algorithm 1: Vertex Substitution Heuristic (VSH)

Input: Pair-wise distances between N data points; the number of prototypes k
Output: An estimate of the set of prototypes that solves Equation (3.5)
Set t = 1;
Randomly select k data points as the initial set of prototypes Vt;
begin

foreach data point vi 6∈ Vt do
Compute C(i) = argmin1≤j≤k diµj ; // assign to the nearest

prototype

end
Compute the total within cluster distance rt =

∑k
j=1

∑
C(i)=j diµj ;

foreach vb /∈
⋃

i=1,...,t
Vi and not visited do

foreach vj ∈ Vt do
Exchange vb and vj and compute the new total within cluster distance
r′t;
Compute ∆bj = r′t − rt;

end
Find the data point vj′ satisfying
∆bj′ < 0 and j′ = argmin1≤j≤k∆bj ; // has the largest distance

reduction
if there exists such a data point vj′ then

Exchange vb and vj′ and mark the new prototype set as Vt+1;
Compute rt+1;

else
Vt+1 = Vt ; // retain the previous prototype set

end
Mark vb as visited;
t = t+ 1;

end
if no more reduction in rt then

Output Vt;
Terminate;

else
Reset t = 1;
Mark all the data points as unvisited. Go back to the step begin and
repeat the above procedures;

end
end

3.5 The Algorithm

In this section, we present two approaches to classification based on HLM. For the

first approach, clustering is applied before forming a mixture density via HLM.

39

For the second approach, referred to as HLM (kernel), a mixture density is formed

without performing clustering, but instead in the fashion of a kernel density esti-

mate. We summarize the steps of HLM with clustering first:

1. Perform clustering on the data in each class k using distance-based clustering

methods and identify the cluster centroids. Obtain the distances between

each data point and its corresponding prototype.

2. Suppose the total number of prototypes for all the classes is M̄ =∑
kMk, where Mk is the number of prototypes in class k, k =

1, 2, ..., K. Let the indices of the prototypes in class k be Fk ={
M̄k−1 + 1, M̄k−1 + 2, ..., M̄k−1 +Mk

}
, where M̄k−1 = M1 +M2 + · · ·+Mk−1

for k > 1, and M̄0 = 0. Denote the set of points assigned to component η,

η = 1, ..., M̄ , by Cη.

3. Estimate a mixture model Mk for each class k:

φ(β|Mk) =
∑
η∈Fk

ωη(
1√
πbη

)2se
− D̃(β,αη)

bη . (3.6)

where bη is the scale parameter for component η and s is the common shape

parameter shared by all the components in all the classes. That is, we assume

that the cluster of data around each prototype in the data set are hypotheti-

cally mapped to a Euclidean space of the same dimension, but with possibly

different spreadness. Note that it is also straightforward to make the shape

parameter s vary with the class, that is, to have sk. The only difference be-

tween these two is that distances from all the classes are collected and input

to Equations (3.3) for the former while only distances within a class are used

in the estimation for the latter. The prior probability of each component

ωη in Equation(3.6) is estimated empirically by |Cη|/
∑

η′∈Fk |Cη′|, η ∈ Fk.
Also, estimate the prior probabilities of each class, πk, k = 1, ..., K, by their

empirical frequencies.

4. To classify a test data point t, we compute the posterior probability of t

40

belonging to each class k:

pk(t) =
πkφ(t|Mk)∑K
l=1 πkφ(t|Ml)

, k = 1, 2, ..., K . (3.7)

The class label of t is then argmax1≤k≤K pk(t).

The role of clustering conducted before mixture modeling is two-fold: as a

smoothing mechanism to suppress outliers and as a data reduction mechanism to

save computation. It is found through experiments that the first benefit is not

always true. On the contrary, treating all the original data as centroids often

outperforms a much reduced set of cluster centroids, albeit at the cost of more

computation during testing. This approach is particularly appealing when the

number of data points in a class is very small, while clustering in this case is quite

likely to lose valuable information. We thus develop a kernel version of HLM based

mixture modeling without clustering, denoted by HLM (kernel). Specifically, each

training data point is treated as a cluster centroid in the corresponding class.

Suppose the training data points are {β1, β2, ..., βN}. The number of data points

in class k is nk,
∑K

k=1 nk = N . Without loss of generality, assume the indices of

the data in class k be {βn̄k+1, ..., βn̄k+nk}, where n̄k =
∑k−1

k′=1 nk′ , for k > 1, and

n̄1 = 0. We form a nonparametric mixture model for class k:

φ(β|Mk) =

n̄k+nk∑
i=n̄k+1

(
1

nk
)(

1√
πb

)2se−
D̃(β,βi)

b .

We need to decide an appropriate scale parameter b and shape parameter s, which

are common across the clusters in all the classes. A data-driven approach is

adopted. We first form pseudo clusters by grouping each data point and its near-

est neighbor in the same class. All these “tiny” clusters, each containing one data

point besides the cluster centroid, are input to the estimation process described in

3.3.2 to determine b and s. In practice, we find that this approach to estimate the

parameters usually yields good performance.

41

3.6 HLM Incremental Learning

Data streams are common in the real world, for instance, network traffic, financial

transactions, web search, and social media feeds. They are ordered sequences of

data records that often arrive in batches with fast velocity, or in burst. It is

thus desirable to have models that can exploit immediately the available training

data and adapt efficiently with newly arrived data. Another motivating scenario

for learning models incrementally is when the entire data cannot be loaded into

memory at once. In this section, we will show that our proposed mixture models

based on HLM can be estimated conveniently in an incremental learning setup.

Two incremental learning schemes are proposed. The first scheme is more efficient

in computation, while the second scheme attempts to achieve better clustering by

combining old and new data in clustering.

3.6.1 Scheme I

In Section 3.3.2, the maximum likelihood estimation for model parameters is solved

by Equations (3.3). Note that, for each cluster j, only the size of the cluster |Cj|,
the arithmetic mean of the distances to the cluster prototype ūj, and the geometric

mean of all the distances ḡ = (
∏N

i=1 ui)
1/N , are needed in the estimation. Therefore,

in an incremental learning setting, data up to the current batch can be discarded

after those statistics are stored. Given a new batch of data, we first perform

clustering and then obtain these statistics for each cluster. The new statistics

and those from previous data are then pooled together to solve the parameters by

Equation (3.3). Note that ḡ will change since the number of data N increases when

a new batch of data arrives. Suppose the number of data that have arrived so far

is N1 and the number of data in a new batch is N2. Let N = N1 + N2. Suppose

we have stored ḡ1 = (
∏N1

i=1 ui)
1/N1 . When a new batch arrives, the geometric mean

of all the distances ḡ should be updated by ḡ = ḡ1
N1/N(

∏N
i=N1+1 ui)

1/N .

In this scheme, the clustering is performed separately on each batch of data.

Clusters (or related statistics) from the currently available data and the new batch

are pooled together to estimate a new HLM. This is motivated by the additive

nature of the mixture models. The distribution of data can be better approximated

by having more additive components.

42

3.6.2 Scheme II

A weighted clustering is performed on randomly sampled points from the data up

to the current batch and all the data in the new batch. We randomly sample a

small number of data points in each cluster obtained previously and assign them

relatively large weights. Smaller weights are given to the data points in the new

batch because they are not subject to sampling. Specifically, in the current data,

for a cluster j, if |Cj| is larger than a pre-determined threshold, denoted by v,

we randomly select v samples as well as the cluster centroid from that cluster.

Otherwise, for smaller |Cj|, all the samples from that cluster will be selected. In

practice, v can be a very small number. Denote the weight of the ith sampled data

point by wi. The weight of a randomly selected sample i′ from cluster j is updated

by

wi′ =

√
|Cj |+1

v+1
, if |Cj| > v

1.0 , if |Cj| ≤ v .

The above function will weigh heavier individual points in down sampled clusters

with |Cj| > v. On the other hand, the weight is dampened from a linear proportion

in order to lower the influence of “old” data collectively and to reduce the effect

of descreased dispersion in sampled data. When a new batch of data arrives, we

set the weight of each new data point to 1.0. A weighted clustering algorithm is

then applied to the combination of the sampled data and the data from the new

batch. The three distance-based clustering algorithms introduced in Section 3.4

can be used to perform clustering by taking a weighted distance matrix as input.

Specifically, let the distance matrix D be the original symmetric matrix of di,j

between all pairs of data points i and j and H be the same order diagonal matrix

with weights on the diagonal. The weighted distance matrix R is defined by R =

HD, which is no longer generally symmetric. The vertex substitution heuristic

(VSH) algorithm working on weighted distance matrix is introduced in (Teitz and

Bart, 1968).

After the cluster centroids are obtained, we re-assign to the nearest centroids

the data points that are neither in the new batch nor among the sampled data. In

this way, all the data that have arrived so far are partitioned into the new clusters,

43

although many do not participate in generating the centroids. The new clustering

result is used to estimate the parameters. This process is repeated at the arrival of

every new batch. Note that because the old cluster centroids have been assigned

a relatively large weight, they are more likely to become new centroids again. In

practice, we gradually increase the total number of clusters when new data arrive

to increase the odds of new data becoming cluster centroids.

3.7 Experiments

In this section, we compare HLM with several other distance-based classification

methods on various datasets. The classification methods are described briefly

below:

1. SVM: modify the n × n symmetric distance matrix into a kernel (positive

semidefinite) by spectrum clip, which clips all the negative eigenvalues to

zero (Chen et al., 2009); and use a linear or Gaussian RBF kernel on similarity

feature vectors.

2. Potential-SVM: a more generalized SVM working with any given n× n dis-

tance matrix, which is not necessarily square or positive definite (Hochreiter

and Obermayer, 2006).

3. SVM-KNN: apply standard SVM to classification using a kernel modified

from the pairwise distance matrix between the union of a test sample and its

k nearest neighbors.

4. Similarity Discriminant Analysis (SDA): a set of generative classification

methods based on similarities (or distances) are considered, that is, basic

SDA, local SDA, and mixture SDA, where each class-conditional distribution

is estimated by maximum entropy under a constraint. Both local SDA and

mixture SDA aim to reduce the model bias issue of basic SDA. However,

the computation of mixture SDA is very intensive, which may be infeasible

for a large number of classes. Since local SDA consistently performs well in

practice and is comparable to the other two (Chen et al., 2009), we select local

SDA as the representative of this particular set of methods for comparison.

44

5. k-NN: a test sample is assigned to the class most common among its k nearest

neighbors.

6. Weighted k-NN: two weight design goals are considered, that is, affinity (as-

sign larger weights to the data points that are closer to the test sample) and

diversity (assign smaller weights to highly similar data points). Specifically,

three different weight assignment approaches are tested: affinity weights,

kernel ridge interpolation weights (KRI), and kernel ridge regression weights

(KRR) (Chen et al., 2009). KRI-KNN and KRR-KNN consider both affinity

and diversity.

7. HLM (vsh, gknn, agg, kernel): the proposed mixture model using HLM, with

the clustering results obtained by VSH, generalized k-means, or agglomera-

tive clustering, or without clustering.

3.7.1 Data Sets

The information of all the tested data sets are summarized in Table 3.1. The

column entitled “Symmetric” indicates whether the distance is symmetric, and

the column entitled “Vector” indicates whether the data object is a vector. For

details of the first eight data sets, we refer interested readers to (Chen et al.,

2009). We add four more new data sets:

Imagery data has 1400 images that come from five classes of different semantics:

mountain scenery (300), women (300), flower (300), city scene (300), and beach

scene (200), where the numbers in the parentheses indicate the sample size of each

class. Each image is represented by a 64 dimensional feature vector. The distance

between images is the Euclidean distance.

Color signature has 600 images each represented by its color signature, i.e., a

set of weighted vectors (or discrete distribution). 100 images are selected from

each class of the above imagery data, with another 100 images from a new class

of semantics “man-made items”. In total, it has six classes. To form the color

signature of an image, we first convert the RGB color components of each pixel

to the LUV color components and then apply k-means on the 3-D color vectors

at all the pixels. The number of clusters in k-means is determined dynamically

by thresholding the average within cluster distance. An image segmentation is

45

obtained after arranging the cluster labels of the pixels into an image according to

the pixel positions. We refer to the collection of pixels mapped to the same cluster

as a region. For each region, its average color vector and the percentage of pixels

it contains with respect to the whole image are computed. The color signature is

thus formulated as a set of weighted vectors (v(1), p(1)), (v(2), p(2)), ..., (v(m), p(m)),

where v(j) is the mean color vector, p(j) is the associated probability, and m is the

number of regions. The mean value of m is equal to 9.98 for this data set. The

distance between images is the Mallows distance (Mallows, 1972).

Photography composition is used in (Yao et al., 2012) as the benchmark data

for composition classification. There are 150 photos that are equally divided into

three classes: horizontal, vertical, and centered. Each photo is represented by a set

of spatial relational vectors (SRV), which quantitatively characterizes its spatial

layout. Similar to the color signature data, each SRV is also a set of weighted

vectors. We refer interested readers to (Yao et al., 2012) for details of SRV. The

distance between photos is the integrated region matching (IRM) distance (Li et

al., 2000), a greedy variant of Mallows distance.

Sonar data is from the UCI machine learning repository, with 208 samples

divided into two classes (111, 97). Each sample has a 60 dimensional feature

vector. The distance between samples is the Euclidean distance.

Table 3.1: Summary of Data Sets

Name # data # classes Symmetric Vector Distance Type
Amazon-47 204 47 No No Percentage
Aural Sonar 100 2 Yes No Human judgment
Caltech-101 8677 101 Yes Yes Kernel

Face Rec 945 139 Yes No Cosine similarity
Mirex07 3090 10 Yes No Human judgment
Patrol 241 8 No No Frequency
Voting 435 2 Yes Yes Value difference metric
Protein 213 4 Yes No Sequence-alignment similarity

Color Signature 600 6 Yes No Mallows distance
Photo Composition 150 3 Yes No IRM distance

Imagery 1400 5 Yes Yes Euclidean distance
Sonar 208 2 Yes Yes Euclidean distance

Since HLM uses distances as input, for some datasets with similarities, we need

to convert them into dissimilarities, that is, distances. Specifically, if the similarity

s has an obvious upper bound u, the corresponding distance is defined as d = u−s,
otherwise, d = 1/s. On the other hand, for the algorithms taking similarities as

46

input, we also need to convert distances into similarities. In Table 3.1, we have

three different distance metrics, Mallows, IRM and Euclidean distances. Since

distances have no upper bound values, the corresponding similarities are defined

as their inverse. We use an appropriate upper bound of all the similarities as the

self-similarity of a data point. In addition, if the distance between two data points

x and y is not symmetric, for example, the data in Amazon-47 and Patrol, we use

the symmetrized distance (d(x, y) + d(y, x))/2.

3.7.2 Experimental Setup and Details

For each data set, we randomly select 20% as test and the remaining 80% as

training. The classifier parameters, such as the penalty parameter C and the RBF

parameter γ for SVM, weight λ for KRI k-NN and KRR k-NN, the neighborhood

size k for k-NN and local SDA, and the number of components in HLM, are all

selected by 10-fold cross validation on the training set. The trained model is

then applied to classify the held out test data. We repeat this process for 20

random partitions of training and test. The“one-versus-one” scheme (Hsu and

Lin, 2002) is used in the multi-classification of SVM. We assume equal number of

components in each class for HLM and the number of components is selected from

{1, 2, 3, .., 10, 12, 14, 16} by cross validation. The range of each parameter in cross

validation for the classifiers that are tested in (Chen et al., 2009) is kept the same

as the range used in that paper.

Note that in HLM, we have 2s = k, where s is the shape parameter and k is

the dimension of the mapped hypothetical space. Since the dimension of space,

k, should be an integer, we adjust the ML estimation ŝ in Equations (3.3) to

be s∗ = b2ŝ+ 0.5c. In addition, we exclude the clusters containing fewer than

three data points in the estimation of model parameters. We test three different

distance-based clustering methods introduced in Section 3.4 to obtain the cluster

centroids for HLM. The Ward’s method (Ward, 1963) is used in agglomerative

clustering. Generalized k-means algorithm is initialized by the k-center algorithm

which is also based on pairwise distances. For VSH, we select the clustering which

yields the minimum total within cluster distance with 20 random initializations.

47

3.7.3 Classification Results

The classification error rates of all the tested methods on the twelve data sets

are reported in this section. For each method, we show its mean error rate and

standard deviation across 20 random partitions of training and test.

Because the Amazon-47, Face Rec and Patrol data sets have very small number

of training data within each class, performing clustering in each class is not mean-

ingful. Among the HLM based algorithms, we thus only applied HLM (kernel) to

these data sets. For some special data sets such as Patrol, the distances between

data points only take three values: 0.0, 0.5, and 1.0. The distance between one

data point and its nearest neighbor is often 0.0, causing numerical issues for the pa-

rameter estimation in HLM. Therefore, for Patrol, we manually select the common

shape and scale parameters from the range of estimated values based upon HLM

(vsh). HLM (kernel) is similar to k-NN in the sense that both require distances

to all the training data to classify a test point. In HLM (kernel), every training

data point contributes smoothly to the decision function, while in k-NN, only the

closest k neighbors contribute. Note that local SDA is reduced to k-NN if there is

not enough data to fit distributions over the distances (Chen et al., 2009).

We experimented with fourteen classification algorithms. These algorithms fall

into several categories: k-NN and its variations, SVM based, local SDA, and HLM

based. For clarity, we present results for five representative algorithms in Table 3.2.

We choose one algorithm from each of the three categories in existing work, namely,

k-NN, local SDA, and SVM-similarities as features (rbf). These algorithms are well

known and relatively basic among their respective categories. In addition, the more

complicated versions are not evidently stronger. For the newly developed HLM

based algorithms, we show results of HLM (vsh) and HLM (kernel) in this table.

For completeness, we report the results of the other nine algorithms in Table 3.3.

For the first eight data sets listed in Table 3.1, the classification results of all the

algorithms other than the HLM based are taken directly from the results in (Chen

et al., 2009).

Based on Table 3.2, if we compare the generative modeling approaches, local

SDA, HLM (vsh), and HLM (kernel), we see that HLM (kernel) performs best on

7 data sets, local SDA performs best on 4 data sets, and HLM (vsh) performs best

on 1 data set. Taking also into consideration k-NN and SVM (rbf), HLM (kernel)

48

performs best among the five algorithms on 6 data sets, SVM (rbf) performs best

on 4 data sets, and k-NN performs best on 1 data set (tied best with HLM).

Clearly, HLM (kernel) ranks on the top most frequently. The performance of SVM

(rbf) deviates remarkably from the other algorithms on several data sets. For the

Protein data, it yields a significantly lower error rate than the others, 2.67% versus

others ranging from 17.44% to 29.88%. On the other hand, it performs much worse

than the others on Amazon-47 and Patrol. For Amazon-47, its error rate is 75.98%

while the others range from 15.61% to 16.95%; for Patrol, its error rate is 40.73%

while the others are tightly around 11.5%. Similar performance on these three data

sets, either very good or very poor, is also observed for SVM (clip), SVM (linear),

and P-SVM, as shown in Table 3.3. In a sense, the SVM-based algorithms are more

volatile. Based on the results in Table 3.3, we can see that among the three HLM

based algorithms, HLM (vsh) consistently works well while HLM (gknn) exhibits

more variation in performance. HLM (agg) is also relatively stable in performances

but is more expensive in computation.

Computational Complexity and Running Time Recall that the total

number of data is N =
∑

k nk, where nk is the number of data in class k, and the

total number of clusters (aka components) for all the classes is M̄ =
∑

kMk, where

Mk is the number of components in class k. The worst scenario complexity of the

three clustering algorithms (vsh, gknn, agg) is
∑

k n
2
k. After distances between

all the data points and their corresponding prototypes are obtained, statistics

required in Equations (3.3) can be computed in O(N). We solve Equations (3.3),

numerically, through binary search over a fixed range, which can be finished in

O(cM̄), where c is a constant time to solve a single equation. Therefore, the total

complexity of estimating mixture models for all the classes is O(N + cM̄), given

the clustering results are available. In practice, N > M̄ . So the model estimation

complexity is linear in the total number of data N . The main computational cost is

thus on clustering. In practice, we find that VSH runs very fast and returns good

clustering results. Comparing with local SDA and SVM based classifiers, HLM

(vsh) has significantly shorter running time, making it very attractive for large

scale computation. The two parameters of SVM (rbf), i.e., the penalty parameter

C and the RBF parameter γ, are selected by grid search using cross validation,

which is extremely intensive in computation. By contrast, HLM (vsh) has only

49

one parameter, the number of clusters in a class, to choose by cross validation.

HLM (kernel) has exhibited highly competitive classification performance on

most data sets. It is similar to k-NN in that the computation during classification

is mostly on getting the distances between a test point and every training point.

During training, k-NN is not totally free of computation because cross validation

is used to choose k, while HLM (kernel) only estimates two parameters by an ex-

tremely fast algorithm after one round of 1-NN is performed. However, comparing

with HLM (vsh) which exploits a possibly much smaller set of cluster centroids

than the original data, HLM (kernel) is expensive during classification for large

data sets. For such data sets, a subset of representative data points may be sam-

pled from each class and used as training data in HLM (kernel). This approach

can be further investigated in the future work.

Table 3.4 lists the running time of k-NN, local SDA, SVM (rbf), HLM (vsh),

and HLM (kernel) on several exemplary data sets. The experiments run on a 2.66

GHz Intel CPU. HLM based algorithms are implemented in C, local SDA is in

Matlab3, and the remaining algorithms are in C++4. The value listed in the table

is the average running time for one random partition of training and test data.

We conduct 20 random partitions for every data set, and within each partition,

training and testing are performed. As Table 3.4 shows, HLM (vsh) and HLM

(kernel) run significantly faster than local SDA and SVM (rbf). For most data

sets, SVM (rbf) has the longest running time while k-NN has the shortest. The

running time of HLM (kernel) is close to that of k-NN, though slightly higher on

some data sets. This is mainly due to the cost of choosing appropriate scale and

shape parameters in HLM (kernel). For local SDA, SVM (rbf), and HLM (vsh),

the classification of test data is very fast after the model has been trained. The

main computational cost is therefore on training. As aforementioned, both HLM

(kernel) and k-NN are expensive for classifying test data if the training data set

is large. For example, on the Mirex data set, the average testing time of HLM

(kernel) across 20 random partitions is 295 ms while HLM (vsh) takes only 29 ms,

about ten times faster.

3http://staff.washington.edu/lucagc/software.html. The Matlab Executable (MEX) files are
available for local SDA, which run faster but require customized installations on different plat-
forms.

4http://ee.washington.edu/research/guptalab/similaritylearning/simMLL-linux.tgz.

50

Table 3.2: Classification error rates of distance-based classifiers (I)

Classifier Amazon-47 Aural Sonar Caltech-101 Color-signature

k-NN 16.95 (4.85) 17.00 (7.65) 41.55 (0.95) 32.54 (3.26)

Local SDA 16.83 (5.11) 17.75 (7.66) 41.99 (0.52) 35.71 (2.67)

SVM-similarities as features (rbf) 75.98 (7.33) 14.25 (7.46) 38.16 (0.75) 36.58 (3.54)

HLM (vsh) NA 16.00 (5.39) 48.52 (1.08) 36.42 (3.42)

HLM (kernel) 15.61 (5.37) 13.75 (6.50) 40.18 (1.00) 31.54 (3.96)

Classifier Face Rec Imagery Mirex Patrol

k-NN 4.23 (1.43) 36.64 (3.04) 61.21 (1.97) 11.88 (4.42)

Local SDA 4.55 (1.67) 42.87 (2.52) 60.94 (1.94) 11.77 (4.62)

SVM-similarities as features (rbf) 3.92 (1.29) 47.16 (2.38) 55.72 (2.06) 40.73 (5.95)

HLM (vsh) NA 44.73 (2.71) 61.62 (1.92) NA

HLM (kernel) 3.81 (1.36) 36.64 (3.13) 69.42 (2.33) 11.46 (4.09)

Classifier Protein Photo Composition Sonar Voting

k-NN 29.88 (9.96) 25.00 (6.37) 20.24 (6.37) 5.80 (1.83)

Local SDA 17.44 (6.52) 22.67 (8.92) 20.00 (6.79) 6.38 (2.07)

SVM-similarities as features (rbf) 2.67 (2.97) 19.67 (7.14) 21.31 (5.71) 5.52 (1.77)

HLM (vsh) 23.49 (10.55) 23.50 (7.11) 24.40 (4.69) 4.89 (2.12)

HLM (kernel) 29.07 (7.52) 23.17 (8.66) 23.81 (5.05) 6.09 (1.86)

3.7.4 Incremental Learning Results

Given a data set, we randomly select 20% of the data as the held-out test and the

remaining 80% as training data used in incremental learning. Among the training

data, 20% of them are randomly selected as the initial training batch, and the rest

are divided into eight batches of equal size (10% each). One round of incremental

learning is carried out at every newly arrived batch. We experiment with the

two schemes of HLM based incremental learning, as introduced in Section 3.6.

As a comparison with a baseline, the performance of the trivial batch learning

method which retrains all the data that have arrived so far are also reported. The

Vertex Substitution Heuristic (VSH) method is used to perform clustering for all

the methods. Specifically, in HLM incremental learning scheme (II), VSH performs

the weighted clustering by taking weighted distance matrix defined in Section 3.6.2.

For both of the HLM incremental learning schemes, the number of components

(aka clusters) in each class in the initial training batch is set to 4. Because the size

of every new batch is considerable in comparison with the current data, in HLM

incremental learning scheme (I), we set the number of components in each class for

every new batch to be the same as that for the current batch, that is, 4. As noted

51

Table 3.3: Classification error rates of distance-based classifiers (II)

Classifier Amazon-47 Aural Sonar Caltech-101 Color-signature

affinity k-NN 15.00 (4.77) 15.00 (6.12) 39.20 (0.86) 32.21 (3.13)

KRI k-NN (clip) 17.68 (4.75) 14.00 (6.82) 30.13 (0.42) 31.13 (3.00)

KRR k-NN (pinv) 16.10 (4.90) 15.25 (6.22) 29.90 (0.44) 31.79 (3.36)

SVM-KNN (clip) 17.56 (4.60) 13.75 (7.40) 36.82 (0.60) 31.25 (3.45)

SVM-similarities as kernel (clip) 81.34 (4.77) 13.00 (5.34) 33.49 (0.78) 34.96 (3.91)

SVM-similarities as features (linear) 76.10 (6.92) 14.25 (6.94) 38.18 (0.78) 36.71 (3.59)

P-SVM 70.12 (8.82) 14.25 (5.97) 34.23 (0.95) 33.54 (4.06)

HLM (gknn) NA 14.50 (5.22) 52.01 (1.13) 39.79 (4.82)

HLM (agg) NA 13.75 (6.30) 48.03 (1.29) 38.42 (4.04)

Classifier Face Rec Imagery Mirex Patrol

affinity k-NN 4.23 (1.48) 35.98 (3.63) 61.15 (1.90) 11.67 (4.08)

KRI k-NN (clip) 4.15 (1.32) 35.43 (3.32) 61.20 (2.03) 11.56 (4.54)

KRR k-NN (pinv) 4.31 (1.86) 35.91 (3.54) 61.18 (1.96) 12.81 (4.62)

SVM-KNN (clip) 4.23 (1.25) 36.13 (3.60) 61.25 (1.95) 11.98 (4.36)

SVM-similarities as kernel (clip) 4.18 (1.25) 44.23 (2.87) 57.83 (2.05) 38.75 (4.81)

SVM-similarities as features (linear) 4.29 (1.36) 48.86 (2.59) 55.54 (2.52) 42.19 (5.85)

P-SVM 4.05 (1.44) 40.93 (2.33) 63.81 (2.70) 40.42 (5.94)

HLM (gknn) NA 39.79 (4.82) 81.10 (1.66) NA

HLM (agg) NA 46.27 (2.98) 61.54 (1.74) NA

Classifier Protein Photo Composition Sonar Voting

affinity k-NN 30.81 (6.61) 25.33 (7.56) 20.36 (6.00) 5.86 (1.78)

KRI k-NN (clip) 30.35 (9.71) 22.83 (8.18) 20.00 (4.90) 5.29 (1.80)

KRR k-NN (pinv) 9.53 (5.04) 22.67 (8.79) 20.71 (5.22) 5.52 (1.69)

SVM-KNN (clip) 11.86 (5.50) 21.50 (9.57) 20.00 (5.29) 5.23 (2.25)

SVM-similarities as kernel (clip) 5.35 (4.60) 19.33 (7.64) 19.29 (6.25) 4.89 (2.05)

SVM-similarities as features (linear) 3.02 (2.76) 19.33 (7.42) 20.60 (5.60) 5.40 (2.03)

P-SVM 1.86 (1.89) NA 19.29 (4.64) 5.34 (1.72)

HLM (gknn) 14.53 (12.59) 23.67 (8.02) 31.43 (5.81) 6.95 (2.67)

HLM (agg) 15.00 (13.00) 24.00 (8.86) 24.88 (6.18) 5.17 (2.37)

in Section 3.6, in HLM incremental learning scheme (II), to prevent old cluster

centroids from staying as the only centroids, we gradually increase the number of

components in each class by 2 at every learning round. To compare on a common

ground this scheme and the baseline retraining scheme, we apply the latter scheme

using the same number of components in each class at every learning round.

When the available training data increase, the corresponding classification er-

ror rates achieved by each method are shown in Figure 3.1. We denote the two

HLM based incremental learning methods by HLM-Incremental (I) and (II). HLM-

Retrain is the baseline scheme which retrains all the available data at every round.

52

Table 3.4: Running time of distance-based classifiers

Classifier Amazon-47 Color-signature Imagery Mirex

k-NN 50 ms 50 ms 400 ms 950 ms

Local SDA 6.6 s 5 min 25.0 s 9 min 55.9 s 26 min 17.0 s

SVM-similarities as features (rbf) 10.5 s 2 min 21.3 s 20 min 4.8 s 220 min 16.8 s

HLM (vsh) NA 40.2 s 4 min 47.8 s 11 min 1.3 s

HLM (kernel) 30 ms 280 ms 1.7 s 4.4 s

In HLM-Incremental (II), the threshold v for down sampling in any cluster is 4.

Similarly as in the previous experiment setup and computing environment, clusters

containing less than three data points are not used in the parameter estimation

of HLM and all the experiments are conducted on a 2.66 GHz Intel CPU. Ta-

ble 3.5 shows the total running time across all the learning rounds for each of

the incremental learning methods. HLM-Incremental (I) has the shortest running

time on all the data sets, HLM-Incremental (II) being the second fastest, while

HLM-Retrain is the slowest. The proportional reduction in computation between

HLM-Incremental (I)/(II) and HLM-Retrain is most prominent with the largest

data set, Mirex.

Based on Figure 3.1, for the Mirex data and the Color-signature data before

the last two learning rounds, when the available training data increase, the classi-

fication error rates have a clear decreasing trend. For these two data sets, HLM-

Retrain stays as the winner at most of the learning rounds. However, it is interest-

ing to note that for the Voting data, HLM-Incremental (I), albeit being the fastest,

is the winner among the three across all the rounds; and HLM-Incremental (II) out-

performs HLM-Retrain at several rounds. For Mirex and Color-signature, HLM-

Incremental (II), the second fastest scheme, performs slightly worse than HLM-

Retrain at most of the learning rounds; and the fastest scheme HLM-Incremental

(I) performs worst at almost all the learning rounds. This observation indicates a

trade-off between computational intensity and performance. For all the data sets

except Color-signature, less than 5% difference is observed between the classifica-

tion error rates obtained by HLM-Incremental (II) and HLM-Retrain at the last

learning round. HLM-Incremental (II) even performs slightly better than HLM-

Retrain on the Mirex and Voting data at the last learning round. For the Imagery

53

and Voting data, the error rate curves under all the methods fluctuate, and at

the last learning round, the error rates are only slightly better or even worse than

where they start off at the first round. The fluctuations of the error rate curves are

also observed at the last two learning rounds for Color-signature. We believe that

such counter intuitive outcomes are due to the inherent randomness of the data.

144 192 240 288 336 384 432 480
0

10

20

30

40

50

60

70

80

90

100

Number of training data

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

 (
%

)

Color−signature

HLM−Incremental (I)
HLM−Incremental (II)
HLM−Retrain

336 448 560 672 784 896 1008 1120
10

20

30

40

50

60

70

80

90

Number of training data

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

 (
%

)

Imagery

HLM−Incremental (I)
HLM−Incremental (II)
HLM−Retrain

741 988 1235 1482 1729 1976 2223 2470
0

10

20

30

40

50

60

70

80

90

100

Number of training data

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

 (
%

)

Mirex

HLM−Incremental (I)
HLM−Incremental (II)
HLM−Retrain

102 136 170 204 238 272 306 340
0

10

20

30

40

50

60

70

80

Number of training data

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

 (
%

)

Voting

HLM−Incremental (I)
HLM−Incremental (II)
HLM−Retrain

Figure 3.1: The classification error rates of incremental and batch learning methods
at each learning round as the number of available training data increases.

Table 3.5: Running time of HLM based incremental learning methods (seconds)

Classifier Color-signature Imagery Mirex Voting

HLM-Incremental (I) 0.22 0.40 0.84 0.14

HLM-Incremental (II) 1.06 2.48 2.87 0.59

HLM-Retrain 1.72 12.54 22.89 2.04

54

3.8 Summary

A distance-based mixture modeling approach based on hypothetical local mapping

(HLM) is proposed. Because only pairwise distances are needed, HLM is particu-

larly useful for data that cannot be easily described by a mathematical entity. The

application of the proposed mixture model to classification is explored. We have

compared this approach with several other state-of-the-art distance-based classifi-

cation methods on various datasets. Experimental results show that HLM based

algorithms perform competitively at low computational cost during both training

and testing. Because a mixture model is estimated for each class separately, scal-

ability is achieved for a large number of classes. HLM adapts readily to learning a

classifier in an incremental fashion. None of the local SDA, SVM, and k-NN based

classifiers can be easily modified for incremental learning. We have proposed two

incremental learning schemes for HLM and found that they perform closely to the

baseline of retraining over all the available data, but at a much faster speed.

Chapter 4
Gaussian Mixture Models with

Component Means Constrained in

Pre-selected Subspaces

4.1 Introduction

The Gaussian mixture model (GMM) is a popular and effective tool for clustering

and classification. When applied to clustering, usually each cluster is modeled by

a Gaussian distribution. Because the cluster labels are unknown, we face the issue

of estimating a GMM. A thorough treatment of clustering by GMM is referred

to (McLachlan and Peel, 2000a). Hastie and Tibshirani (1996) proposed the mix-

ture discriminant analysis (MDA) for classification, which assumes a GMM for

each class. Fraley and Raftery (2002) examined the roles of GMM for clustering,

classification, and density estimation.

As a probability density, GMM enjoys great flexibility comparing with para-

metric distributions. Although GMM can approximate any smooth density by

increasing the number of components R, the number of parameters in the model

grows quickly with R, especially for high dimensional data. The regularization of

GMM has been a major research topic on mixture models. Early efforts focused on

controlling the complexity of the covariance matrices, partly driven by the frequent

occurrences of singular matrices in estimation (Fraley and Raftery, 2002). More

56

recently, it is noted that for data with very high dimensions, a mixture model with

parsimonious covariance structures, for instance, common diagonal matrices, may

still have high complexity due to the component means alone. Methods to regular-

ize the component means have been proposed from quite different perspectives. Li

and Zha (2006) developed the so-called two-way mixture of Poisson distributions

in which the variables are grouped and the means of the variables in the same

group within any component are assumed identical. The grouping of the variables

reduces the number of parameters in the component means dramatically. In the

same spirit, Qiao and Li (2010) developed the two-way mixture of Gaussians. Pan

and Shen (2007) explored the penalized likelihood method with L1 norm penalty

on the component means. The method aims at shrinking the component means

of some variables to a common value. Variable selection for clustering is achieved

because the variables with common means across all the components are non-

informative for cluster labels. Wang and Zhu (2008) proposed the L∞ norm as a

penalty instead.

In this chapter, we propose another approach to regularizing the component

means in GMM, which is more along the line of reduced rank MDA (Hastie and

Tibshirani, 1996) but with profound differences. We search for a linear subspace in

which the component means reside and estimate a GMM under such a constraint.

The constrained GMM has a dimension reduction property. It is proved that with

the subspace restriction on the component means and under common covariance

matrices, only a linear projection of the data with the same dimension as the

subspace matters for classification and clustering. The method is especially useful

for visualization when we want to view data in a low dimensional space which best

preserves the classification and clustering characteristics.

The idea of restricting component means to a linear subspace was first explored

in the linear discriminant analysis (LDA). Fisher (1936) proposed to find a subspace

of rank r < K, where K is the number of classes, so that the projected class means

are spread apart maximally, The coordinates of the optimal subspace are derived

by successively maximizing the between-class variance relative to the within-class

variance, known as canonical or discriminant variables. Although LDA does not

involve the estimation of a mixture model, the marginal distribution of the obser-

vation without the class label is a mixture distribution. The idea of reduced rank

57

LDA was used by Hastie and Tibshirani (1996) for GMM. It was proved in Hastie

and Tibshirani (1996) that reduced rank LDA can be viewed as a Gaussian maxi-

mum likelihood solution with the restriction that the means of Gaussians lie in a

L-dimension subspace, i.e., rank{µk}K1 = L < max(K − 1, p), where µk’s are the

means of Gaussians and p is the dimension of the data. Hastie and Tibshirani

(1996) extended this concept and proposed a reduced rank version of the mixture

discriminant analysis (MDA), which performed a reduced rank weighted LDA in

each iteration of the EM algorithm.

Another related line of research is regularizing the component means of a GMM

in a latent factor space, i.e., the use of factor analysis in GMM. It was originally

proposed by Ghahramani and Hinton (1997) to perform concurrent clustering and

dimension reduction using mixture of factor analyzers; see also McLachlan and Peel

(2000b) and McLachlan et al. (2003). Factor analysis was later used to regularize

the component means of a GMM in each state of the Hidden Markov Model (HMM)

for speaker verification (Kenny et al., 2008; Povey et al., 2011). In those models,

the total number of parameters is significantly reduced due to the regularization,

which effectively prevents over fitting. Usually the EM type of algorithm is applied

to estimate the parameters and find the latent subspace.

The role of the subspace constraining the means differs intrinsically between

our approach, the reduced rank MDA and factor analysis based mixture models,

resulting in mathematical solutions of quite different nature. Within each iteration

of the EM algorithm for estimating a GMM, the reduced rank MDA finds the sub-

space with a given dimension that yields the maximum likelihood under the current

partition of the data into the mixture components. The subspace depends on the

component-based clustering of data in each iteration. Similarly, the subspaces in

factor analysis based mixture models are found through the iterations of the EM

algorithm, as part of the model estimation. However, in our method, we treat the

seek of the subspace and the estimation of the model separately. The subspace is

fixed throughout the estimation of the GMM. Mathematically speaking, we try to

solve the maximum likelihood estimation of GMM under the condition that the

component means lie in a given subspace.

Our formulation of the model estimation problem allows us to exploit multiple

and better choices of density estimate when we seek the constraining subspace. For

58

instance, if we want to visualize the data in a plane while the component means

are not truly constrained to a plane, fitting a GMM with means constrained to a

plane may lead to poor density estimation. As a result, the plane sought during

the estimation will be problematic. It is thus sensible to find the plane based on

a density estimate without the constraint. Afterward, we can fit a GMM under

the constraint purely for the purpose of visualization. Moreover, the subspace

may be specified based on prior knowledge. For instance, in multi-dimensional

data visualization, we may already know that the component (or cluster) means of

data lie in a subspace spanned by several dimensions of the data. Therefore, the

subspace is required to be fixed.

We propose two approaches to finding the unknown subspace. The first ap-

proach is the so-called modal PCA (MPCA). We prove that the modes (local max-

ima) lie in the same constrained subspace as the component means. We use the

modal EM (MEM) algorithm (Li et al., 2007) to find the modes. By exploiting the

modes, we are no longer restricted to the GMM as a tool for density estimation.

Instead, we use the kernel density estimate which avoids sensitivity to initializa-

tion. There is an issue of choosing the bandwidth, which is easier than usual in

our framework by the following strategy. We take a sequence of subspaces based

on density estimates resulting from different kernel bandwidths. We then estimate

GMMs under the constraint of each subspace and finally choose a model yielding

the maximum likelihood. Note that, each GMM is a full model for the original

data, although the component means are constrained in a different subspace. We

therefore can compare the estimated likelihood under each model. This frame-

work in fact extends beyond kernel density estimation. As discussed in (Li et al.,

2007), modes can be found using modal EM for any density in the form of a mix-

ture distribution. The second approach is an extension of MPCA which exploits

class means or a union set of modes and class means. It is easy to see that the

class means also reside in the same constrained subspace as the component means.

Comparing with modes, class means do not depend on the kernel bandwidth and

are more robust to estimate.

Experiments on the classification of several real data sets with moderate to high

dimensions show that reduced rank MDA does not always have good performance.

We do not intend to claim that our proposed method is necessarily better than

59

reduced rank MDA. However, when the constraining subspace of the component

means is of a very low dimension, we find that the proposed method with the

simple technique of finding the subspace based on class means often outperforms

the reduced rank MDA, which solves a discriminant subspace using a much more

sophisticated approach. In addition, we compare our methods with standard MDA

on the data projected to the subspace containing the component means. For data

with moderately high dimensions, our proposed method works better. Besides

classification, our method easily applies to clustering.

The rest of the chapter is organized as follows. In Section 4.2, we review some

background and notation. We present a Gaussian mixture model with subspace

constrained component means, the MPCA algorithm and its extension for finding

the subspace in Section 4.3. We also present several properties of the constrained

subspace, with detailed proofs in the appendix. In Section 4.4, we describe the

estimation algorithm for the proposed model. Experimental results are provided

in Section 4.5. Finally, we conclude and discuss future work in Section 4.6.

4.2 Preliminaries and Notation

Let X = (X1, X2, ..., Xp)
t, where p is the dimension of the data. A sample of X

is denoted by x = (x1, x2, ..., xp)
t. We present the notations for a general Gaus-

sian mixture model before introducing the mixture model with component means

constrained to a given subspace. Gaussian mixture model can be applied to both

classification and clustering. Let the class label of X be Y ∈ K = {1, 2, ..., K}.
For classification purpose, the joint distribution of X and Y under a Gaussian

mixture is

f(X = x, Y = k) = akfk(x) = ak

Rk∑
r=1

πkrφ(x|µkr,Σ) , (4.1)

where ak is the prior probability of class k, satisfying 0 ≤ ak ≤ 1 and
∑K

k=1 ak =

1, and fk(x) is the within-class density for X. Rk is the number of mixture

components used to model class k, and the total number of mixture components

for all the classes is R =
∑K

k=1 Rk. Let πkr be the mixing proportions for the

rth component in class k, 0 ≤ πkr ≤ 1,
∑Rk

r=1 πkr = 1. φ(·) denotes the pdf

60

of a Gaussian distribution: µkr is the mean vector for component r in class k

and Σ is the common covariance matrix shared across all the components in all

the classes. To classify a sample X = x, the Bayes classification rule is used:

ŷ = argmaxkf(Y = k|X = x) = argmaxkf(X = x, Y = k).

In the context of clustering, the Gaussian mixture model is now simplified as

f(X = x) =
R∑
r=1

πrφ(x|µr,Σ) , (4.2)

where R is the total number of mixture components and πr is the mixing pro-

portions for the rth component. µr and Σ denote the rth component mean and

the common covariance matrix for all the components. The clustering procedure

involves first fitting the above mixture model and then computing the posterior

probability of each mixture component given a sample point. The component with

the highest posterior probability is chosen for that sample point, and all the points

belonging to the same component form one cluster.

In this work, we assume that the Gaussian component means reside in a given

linear subspace and estimate a GMM with subspace constrained means. A new

algorithm, namely the modal PCA (MPCA), is proposed to find the constrained

subspace. The motivations of using modes to find subspace are outlined in Sec-

tion 4.3.1. Before we present MPCA, we will first introduce the modal EM algo-

rithm (Li et al., 2007) which solves the local maxima, that is, modes, of a mixture

density.

Modal EM: Given a mixture density f(X = x) =
∑R

r=1 πrfr(x), as in model

(4.2), starting from any initial data point x(0), the modal EM algorithm finds a

mode of the density by alternating the following two steps until a stopping criterion

is met. Start with t = 0.

1. Let pr = πrfr(x(t))

f(x(t))
, r = 1, ..., R.

2. Update x(t+1) = argmaxx
∑R

r=1 pr log fr(x).

The above two steps are similar to the expectation and the maximization steps

in EM (Dempster et al., 1977). The first step is the “expectation” step where

the posterior probability of each mixture component r, 1 ≤ r ≤ R, at the cur-

rent data point x(t) is computed. The second step is the “maximization” step.

61

∑R
r=1 pr log fr(x) has a unique maximum, if the fr(x)’s are normal densities. In

the special case of a mixture of Gaussians with common covariance matrix, that

is, fr(x) = φ(x | µr,Σ), we simply have x(t+1) =
∑R

r=1 prµr. In modal EM,

the probability density function of the data is estimated nonparametrically using

Gaussian kernels, which are in the form of a Gaussian mixture distribution:

f(X = x) =
n∑
i=1

1

n
φ(x | xi,Σ) ,

where the Gaussian density function is

φ(x | xi,Σ) =
1

(2π)d/2|Σ|1/2
exp(−1

2
(x− xi)tΣ−1(x− xi)) .

We use a spherical covariance matrix Σ = σ2Ip. The standard deviation σ is

also referred to as the bandwidth of the Gaussian kernel. When the bandwidth of

Gaussian kernels increases, the density estimate becomes smoother, and more data

points tend to ascend to the same mode. Different numbers of modes can thus be

found by gradually increasing the bandwidth of Gaussian kernels. The data points

are grouped into one cluster if they climb to the same mode. We call the mode as

the cluster representative.

In (Li et al., 2007), a hierarchical clustering approach, namely, Hierarchical

Mode Association Clustering (HMAC), is proposed based on mode association and

kernel bandwidth growth. Given a sequence of bandwidths σ1 < σ2 < · · · < ση,

HMAC starts with every point xi being a cluster by itself, which corresponds to

the extreme case that σ1 approaches 0. At any bandwidth σl(l > 1), the modes,

that is, cluster representatives, obtained from the preceding bandwidth are input

into the modal EM algorithm. The modes identified then form a new set of cluster

representatives. This procedure is repeated across all σl’s. For details of HMAC,

we refer interested readers to (Li et al., 2007). We therefore obtain modes at

different levels of bandwidth by HMAC. The clustering performed by HMAC is

only for the purpose of finding modes across different bandwidths and should not

be confused with the clustering or classification based on the Gaussian mixture

model we propose here.

62

4.3 GMM with Subspace Constrained Means

The Gaussian mixture model with subspace constrained means is presented in this

section. For brevity, we focus on the constrained mixture model in a classification

set-up, since clustering can be treated as a “one-class” modeling and is likewise

solved.

We propose to model the within-class density by a Gaussian mixture with

component means constrained to a pre-selected subspace:

fk(x) =

Rk∑
r=1

πkrφ(x|µkr,Σ) (4.3)

subject to

vtj · µk1 = vtj · µk2 = · · · = vtj · µkRk = cj , (4.4)

where vj’s are linearly independent vectors, j = 1, ..., q, q < p, and cj is a constant,

invariant to different classes. Without loss of generality, we can assume {v1, ...,vq}
span an orthonormal basis. Augment it to full rank by {vq+1, ...,vp}. Suppose

ν = {vq+1, ...,vp}, ν⊥ = {v1, ...,vq}, and c = (c1, c2, ..., cq)
t. Denote the projection

of a vector µ or a matrix U onto an orthonormal basis S by ProjµS or ProjUS .

We have Projµkr
ν⊥

= c over all the k and r. That is, the projections of all the

component means µkr’s onto the orthonormal basis ν⊥ coincide at c. We refer

to ν as the constrained subspace1 where µkr’s reside (or more strictly, µkr’s reside

in the subspace up to a translation), and ν⊥ as the corresponding null subspace.

Suppose the dimension of the constrained subspace ν is d, then d = p − q. With

the constraint (4.4) and the assumption of a common covariance matrix across

all the components in all the classes, essentially, we assume that the data within

each component have identical distributions in the null space ν⊥. In the following

section, we will explain how to find an appropriate constrained subspace ν.

1We abuse the notation ν slightly here. The subspace is actually spanned by ν. To simplify
notations, the same abuse also appears in other similar scenarios.

63

4.3.1 Modal PCA

We introduce in this section the modal PCA (MPCA) algorithm that finds a con-

strained subspace for the component means of a Gaussian mixture and the prop-

erties of the found subspace. We prove in Appendix B.1 the following theorem.

Theorem 4.3.1. For a Gaussian mixture model with component means constrained

in a subspace ν = {vq+1, ...,vp}, q < p, and a common covariance matrix across

all the components, the modes of the mixture density are also constrained in the

same subspace ν.

According to Theorem 4.3.1, the modes and component means of Gaussian

mixtures reside in the same constrained subspace. We use the aforementioned

MEM algorithm introduced in Section 4.2 to find the modes of the density. To avoid

sensitivity to initialization and the number of components, we use the Gaussian

kernel density estimate instead of a finite mixture model for the density. It is well

known that mixture distributions with drastically different parameters may yield

similar densities. We are thus motivated to exploit modes which are geometric

characteristics of the densities.

Let us denote the set of modes found by MEM under the kernel bandwidth

σ by G = {Mσ,1,Mσ,2, ...,Mσ,|G|}. A weighted principal component analysis is

proposed to find the constrained subspace. A weight wσ,r is assigned to the rth

mode, which is the proportion of sample points in the entire data ascending to

that mode. We therefore have a weighted covariance matrix of all the modes in G:

ΣG =

|G|∑
r=1

wσ,r(Mσ,r − µG)T (Mσ,r − µG) ,

where µG =
∑|G|

r=1 wσ,rMσ,r. The principal components are then obtained by per-

forming an eigenvalue decomposition on ΣG. Recall the dimension of the con-

strained subspace ν is d. Since the leading principal components capture the most

variation in the data, we use the first d most significant principal components to

span the constrained subspace ν, and the remaining principal components to span

the corresponding null space ν⊥.

Given a sequence of bandwidths σ1 < σ2 < · · · < ση, the modes at different

levels of bandwidth can be obtained using the HMAC algorithm introduced in

64

Section 4.2. At each level, we apply the weighted PCA to the modes, and obtain a

new constrained subspace by their first d most significant principal components. In

practice, if the number of modes found at a particular level of bandwidth is smaller

than 3, we will skip the modes at that level. For the extreme case, when σ = 0,

the subspace is actually spanned by the principal components of the original data

points. We therefore obtain a collection of subspaces, ν1, ...,νη, resulting from a

sequence of bandwidths through HMAC.

4.3.2 Extension of Modal PCA

In this section, we propose another approach to generating the constrained sub-

space, which is an extension of MPCA. Suppose the mean of class k is M′
k, we

have M′
k =

∑Rk
r=1 πkrµkr, where µkr is the rth component in class k. It is easy

to see that the class means lie in the same subspace as the Gaussian mixture

component means. From Theorem 4.3.1, we know that in Gaussian mixtures, the

modes and component means also reside in the same constrained subspace. So the

class means, modes and component means all lie in the same constrained subspace.

Comparing with the modes, class means are more robust to estimate. It is thus

natural to incorporate class means to find the subspace. In the new approach, if

the dimension d of the constrained subspace is smaller than K, the subspace is

spanned by applying weighted PCA only to class means. Otherwise, it is spanned

by applying weighted PCA to a union set of modes and class means.

Similar to modal PCA, we first assign a weight ak to the kth class mean M′
k,

which is the proportion of the number of sample points in class k over the entire

data, i.e., the prior probability of class k. Suppose the set of class means is J =

{M′
1,M′

2, · · · ,M′
K}. If d < K, we have a weighted covariance matrix of all the

class means:

ΣJ =
K∑
r=1

ak(M′
r − µJ)T (M′

r − µJ) ,

where µJ =
∑K

r=1 akM′
k. An eigenvalue decomposition on ΣJ is then performed

to obtain all the principal components. Similar to MPCA, the constrained subspace

is spanned by the first d most significant principal components. If d ≥ K, we will

put together all the class means and modes and assign different weights to them.

Suppose γ is a value between 0 and 100, we allocate a total of γ% of weight to the

65

class means, and the remaining (100−γ)% weights allocated proportionally to the

modes. That is, the weights assigned to the class mean M′
k and the mode Mσ,r

are γak% and (100− γ)wσ,r%, respectively. Then the weighted covariance matrix

of the union set of class means and modes becomes

ΣG∪J =
K∑
r=1

(γak%)(M′r − µJ)T (M′r − µJ)

+
|G|∑
r=1

((100− γ)wσ,r%)(Mσ,r − µG)T (Mσ,r − µG) .

Different weights can be allocated to the class means and the modes. For instance,

if we want the class means to play a more important role in spanning subspaces,

we can set γ > 50. Again, an eigenvalue decomposition is performed on ΣG∪J

to obtain all the principal components and the first d most significant principal

components span the constrained subspace. To differentiate this method from

MPCA, we denote it by MPCA-MEAN.

4.3.3 Dimension Reduction

The mixture model with component means under constraint (4.4) implies a dimen-

sion reduction property for the classification purpose, formally stated below.

Theorem 4.3.2. For a Gaussian mixture model with a common covariance matrix

Σ, suppose all the component mean µkr’s are constrained in a subspace spanned by

ν = {vq+1, ...,vp}, q < p, up to a translation, only a linear projection of the data

x onto a subspace spanned by {Σ−1vj|j = q + 1, ..., p} (the same dimension as ν)

is informative for classification.

In Appendix B.2, we provide the detailed proof for Theorem 4.3.2. If the

common covariance matrix Σ is an identity matrix (or a scalar matrix), the class

label Y only depends on the projection of x onto the constrained subspace ν.

However, in general, Σ is non-identity. Hence the spanning vectors, Σ−1vj, j =

q + 1, ..., p, for the subspace informative for classification are not orthogonal in

general as well. In Appendix B.2, we use the column vectors of orth({Σ−1vj|j = q+

1, ..., p}) to span this subspace. To differentiate it from the constrained subspace in

which the component means lie, we call it as discriminant subspace. The dimension

66

of the discriminant subspace is referred to as discriminant dimension, which is the

dimension actually needed for classification. The discriminant subspace is of the

same dimension as the constrained subspace. When the discriminant dimension is

small, significant dimension reduction is achieved. Our method can thus be used

as a data reduction tool for visualization when we want to view the classification

of data in a two or three dimensional space.

Although in Appendix B.2 we prove Theorem 4.3.2 in the context of classi-

fication, the proof can be easily modified to show that the dimension reduction

property applies to clustering as well. That is, we only need the data projected

onto a subspace with the same dimension as the constrained subspace ν to compute

the posterior probability of the data belonging to a component (aka cluster). Sim-

ilarly, we name the subspace that matters for clustering as discriminant subspace

and its dimension as discriminant dimension.

4.4 Model Estimation

We will first describe in Section 4.4.1 the basic version of the estimation algorithm

where the constraints on the component means are characterized by (4.4). A

natural extension to the constraint in (4) is to allow the constant cj to vary with the

class labels, thus leading to constraint characterized in (4.10). The corresponding

algorithm is described in Section 4.4.2.

4.4.1 The Algorithm

Let us first summarize the work flow of our proposed method:

1. Given a sequence of kernel bandwidths σ1 < σ2 < · · · < ση, apply HMAC to

find the modes of the density estimation at each bandwidth σl.

2. Apply MPCA or MPCA-MEAN to the modes or a union set of modes and

class means at each kernel bandwidth and obtain a sequence of constrained

subspaces.

3. Estimate the Gaussian mixture model with component means constrained in

each subspace and select the model yielding the maximum likelihood.

67

4. Perform classification on the test data or clustering on the overall data, with

the selected model from Step 3.

Remarks:

1. In our method, the seek of subspace and the estimation of the mixture model

are separate. We first search for a sequence of subspaces and then estimate

the model constrained in each subspace separately.

2. In Step 1, the identified modes are from the density estimation of the overall

data (in clustering) or the overall training data (in classification).

3. For MPCA-MEAN, if the dimension d of the constrained subspace is smaller

than K, the subspace is spanned only by class means and is therefore fixed.

We do not need to choose the subspace.

4. Some prior knowledge may be exploited to yield an appropriate subspace.

Then, we can estimate GMM under the constraint of the given subspace

directly.

Now we will derive an EM algorithm to estimate a GMM under the constraint

of a given subspace. The estimation method for classification is introduced first.

A common covariance matrix Σ is assumed across all the components in all the

classes. In class k, the parameters to be estimated include the class prior probabil-

ity ak, the mixture component prior probabilities πkr, and the Gaussian parameters

µkr, Σ, r = 1, 2, ..., Rk. Denote the training data by {(xi, yi) : i = 1, ..., n}. Let

nk be the number of data points in class k. The total number of data points n is∑K
k=1 nk. The class prior probability ak is estimated by the empirical frequency

nk/
∑K

k′=1 nk′ . The EM algorithm comprises the following two steps:

1. Expectation-step: Given the current parameters, for each class k, compute

the component posteriori probability for each data point xi within class k:

qi,kr ∝ πkrφ(xi|µkr,Σ) , subject to

Rk∑
r=1

qi,kr = 1 . (4.5)

2. Maximization-step: Update πkr,µkr, and Σ, which maximize the following

objective function (the i subscript indicates xi with yi = k):

K∑
k=1

Rk∑
r=1

(
nk∑
i=1

qi,kr

)
log πkr +

K∑
k=1

Rk∑
r=1

nk∑
i=1

qi,kr log φ(xi|µkr,Σ) (4.6)

68

under the constraint (4.4).

In the maximization step, the optimal πkr’s are not affected by the constraint

(4.4) and are solved separately from µkr’s and Σ:

πkr ∝
nk∑
i=1

qi,kr ,

Rk∑
r=1

πkr = 1 . (4.7)

Since there are no analytic solutions to µkr’s and Σ in the above constrained

optimization, we adopt the generalized EM (GEM) algorithm. Specifically, we use

a conditional maximization approach. In every maximization step of GEM, we

first fix Σ, and then update the µkr’s. Then we update Σ conditioned on the µkr’s

held fixed. This iteration will be repeated multiple times.

Given Σ, solving µkr is non-trivial. The key steps are summarized here. For

detailed derivation, we refer interested readers to Appendix B.3. In constraint

(4.4), we have vtj · µkr = cj, i.e., identical across all the k and r for j = 1, ..., q.

It is easy to see that c = (c1, ..., cq)
t is equal to the projection of the mean of the

overall data onto the null space ν⊥. However, in practice, we do not need the

value of c in the parameter estimation. Before we give the equation to solve µkr,

let us define some notations first. Assume Σ is non-singular and hence positive

definite, we can write Σ = (Σ
1
2)t(Σ

1
2), where Σ

1
2 is of full rank. If the eigen

decomposition of Σ is Σ = VΣDΣV
t
Σ, then Σ

1
2 = D

1
2
ΣV

t
Σ. Let Vnull be a p × q

orthonormal matrix (v1, ...,vq), the column vectors of which span the null space

ν⊥. Suppose B = Σ
1
2Vnull. Perform a singular value decomposition (SVD) on B,

i.e., B = UBDBV
t
B, where UB is a p × q matrix, the column vectors of which

form an orthonormal basis for the space spanned by the column vectors of B. Let

Û be a column augmented orthonormal matrix of UB. Denote
∑nk

i=1 qi,kr by lkr.

Let x̄kr =
∑nk

i=1 qi,krxi/lkr, i.e., the weighted sample mean of the component r in

class k, and x̆kr = Û t
(
Σ−

1
2

)t
· x̄kr. Define µ̆∗kr by the following Eqs. (4.8) and

(4.9):

1. for the first q coordinates, j = 1, ..., q:

µ̆∗kr,j =

∑K
k′=1

∑Rk′
r′=1 lk′r′x̆k′r′,j
n

, identical over r and k ; (4.8)

69

2. for the remaining p− q coordinates, j = q + 1, ..., p:

µ̆∗kr,j = x̆kr,j . (4.9)

That is, the first q constrained coordinates are optimized using component-pooled

sample mean (components from all the classes) while those p − q unconstrained

coordinates are optimized separately within each component using the component-

wise sample mean. Note that we abuse the term “sample mean” here to mean x̆kr,

instead of x̄kr′ . In the maximization step, the parameter µkr is finally solved by:

µkr = (Σ
1
2)tÛ µ̆∗kr .

Given the µkr’s, it is easy to solve Σ:

Σ =

∑K
k=1

∑Rk
r=1

∑nk
i=1 qi,kr(xi − µkr)t(xi − µkr)

n
.

To initialize the estimation algorithm, we first choose Rk, the number of mix-

ture components for each class k. For simplicity, an equal number of components

are assigned to each class. The constrained model is initialized by the estimated

parameters from a standard Gaussian mixture model with the same number of

components.

We have so far discussed the model estimation in a classification set-up. We

assume a common covariance matrix and a common constrained subspace for all the

components in all the classes. Similar parameter estimations can also be applied

to the clustering model. Specifically, all the data are put in one “class”. In this

“one-class” estimation problem, all the parameters can be estimated likewise, by

omitting the “k” subscript for classes. For brevity, we skip the details here.

4.4.2 Variation of the Algorithm

We have introduced the Gaussian mixture model with component means from

different classes constrained in the same subspace. It is natural to modify the

70

previous constraint in (4.4) to

vtj · µk1 = vtj · µk2 = · · · = vtj · µkRk = ck,j , (4.10)

where vj’s are linearly independent vectors spanning an orthonormal basis, j =

1, ..., q, q < p, and ck,j depends on class k. That is, the projections of all the

component means within class k onto the null space ν⊥ coincide at the constant

ck, where ck = (ck,1, ck,2..., ck,q)
t. In the new constraint (4.10), {v1, ...,vq} is the

same set of vectors as used in constraint (4.4), which spans the null space ν⊥.

Because ck varies with class k, the subspace in which the component means from

each class reside differs from each other by a translation, that is, these subspaces

are parallel.

We train a constrained model for each class separately, and assume a common

covariance matrix across all the components in all the classes. In the new constraint

(4.10), ck is actually equal to the projection of the class mean M′
k onto the null

space ν⊥. Similar to the previous estimation, in practice, we do not need the value

of ck in the parameter estimation. With the constraint (4.10), essentially, the

component means in each class are now constrained in a shifted subspace parallel

to ν. The shifting of subspace for each class is determined by ck, or the class

mean M′
k. Suppose the dimension of the constrained subspace is d. In general,

the dimension that matters for classification in this variation of the algorithm is

d + K − 1, assuming that the class means already span a subspace of dimension

K − 1.

We first subtract the class specific means from the data in the training set, that

is, do a class specific centering of the data. Similarly as the algorithm outlined

in Section 4.4, we put all the centered data from all the classes into one training

set, find all the modes under different kernel bandwidths, and then apply MPCA

to generate a sequence of constrained subspaces. The reason that we remove the

class specific means first is that they have already played a role in spanning the

subspace containing all the component means. When applying MPCA, we only

want to capture the dominant directions for the variation within the classes.

Comparing with the parameter estimation in Section 4.4, the only change that

we need to make is that the constrained q coordinates in µ̆∗kr are now identical

71

over r, but not over class k. For the first q coordinates, j = 1, ..., q, we have:

µ̆∗kr,j =

∑Rk
r′=1 lkr′x̆kr′,j

nk
, identical over r in class k .

That is, the first q constrained coordinates are optimized using component-pooled

sample mean in class k. All the other equations in the estimation remain the same.

4.5 Experiments

In this section, we present experimental results on several real and simulated data

sets. The mixture model with subspace constrained means, reduced rank MDA,

and standard MDA on the projection of data onto the constrained subspace, are

compared for the classification of real data with moderate to high dimensions. We

also visualize and compare the clustering results of our proposed method and the

reduced rank MDA on several simulated data sets.

The detailed methods tested in the experiments and their name abbreviations

are summarized as follows:

• GMM-MPCA The mixture model with subspace constrained means, in

which the subspace is obtained by MPCA.

• GMM-MPCA-MEAN The mixture model with subspace constrained

means, in which the subspace is obtained by MPCA-MEAN, as introduced

in Section 4.3.2.

• GMM-MPCA-SEP The mixture model with component means con-

strained by separately shifted subspace for each class, as introduced in Sec-

tion 4.4.1.

• MDA-RR The reduced rank mixture discriminant analysis (MDA), which

is a weighted rank reduction of the full MDA.

• MDA-RR-OS The reduced rank mixture discriminant analysis (MDA),

which is based on optimal scoring (Hastie and Tibshirani, 1996), a multiple

linear regression approach.

• MDA-DR-MPCA The standard MDA on the projection of data onto the

same constrained subspace selected by GMM-MPCA.

72

• MDA-DR-MPCA-MEAN The standard MDA on the projection of data

onto the same constrained subspace selected by GMM-MPCA-MEAN.

Remarks:

1. Since the most relevant work to our proposed method is reduced rank mixture

discriminant analysis (MDA), we briefly introduce MDA-RR and MDA-RR-

OS in Section 4.5.1.

2. In MDA-DR-MPCA or MDA-DR-MPCA-MEAN, the data are projected

onto the constrained subspace which has yielded the largest training like-

lihood in GMM-MPCA or GMM-MPCA-MEAN. Note that this constrained

subspace is spanned by ν = {vq+1, ...,vp}, which is found by MPCA or

MPCA-MEAN, rather than the discriminant subspace informative for clas-

sification. We then apply standard MDA (assume a common covariance

matrix across all the components in all the classes) to the projected training

data, and classify the test data projected onto the same subspace. Note

that, if we project the data onto the discriminant subspace spanned by

{Σ−1vj|j = q + 1, ..., p}, and then apply standard MDA to classification, it

is theoretically equivalent to GMM-MPCA or GMM-MPCA-MEAN (ignor-

ing the variation caused by model estimation). The reason that we conduct

these comparisons is multi-fold: first, we want to see if there is advantage

of the proposed method as compared to a relative naive dimension reduc-

tion scheme; second, when the dimension of the data is high, we want to

investigate if the proposed method has robust estimation of Σ; third, we

want to investigate the difference between the constrained subspace and the

discriminant subspace.

4.5.1 Reduced Rank Mixture Discriminant Analysis

Reduced rank MDA is a data reduction method which allows us to have a low

dimensional view on the classification of data in a discriminant subspace, by con-

trolling the within-class spread of component means relative to the between class

spread. We outline its estimation method in Appendix B.4, which is a weighted

rank reduction of the full mixture solution proposed by Hastie and Tibshirani

73

(1996). We also show how to obtain the discriminant subspace of the reduced rank

method in Appendix B.4.

Hastie and Tibshirani (1996) applied the optimal scoring approach (Breiman

and Ihaka, 1984) to fit reduced rank MDA, which converted the discriminant anal-

ysis to a nonparametric multiple linear regression problem. By expressing the

problem as a multiple regression, the fitting procedures can be generalized using

more sophisticated regression methods than linear regression (Hastie and Tib-

shirani, 1996), for instance, flexible discriminant analysis (FDA) and penalized

discriminant analysis (PDA). The use of optimal scoring also has some computa-

tional advantages, for instance, using fewer observations than the weighted rank

reduction. A software package containing a set of functions to fit MDA, FDA, and

PDA by multiple regressions is provided by Hastie and Tibshirani (1996).

Although the above benefits for estimating reduced rank MDA are gained from

the optimal scoring approach, there are also some restrictions. For instance, it can

not be easily extended to fit a mixture model for clustering since the component

means and covariance are not estimated explicitly. In addition, when the dimension

of the data is larger than the sample size, optimal scaling can not be used due to

the lack of degrees of freedom in regression. In the following experiment section,

we will compare our proposed methods with reduced rank MDA. Both our own

implementation of reduced rank MDA based on weighted rank reduction of the full

mixture, i.e., MDA-RR, and the implementation using optimal scoring from the

software package provided by Hastie and Tibshirani (1996), i.e., MDA-RR-OS, are

tested.

4.5.2 Classification

Eight data sets from various sources are used for classification. We summarize the

detailed information of these data below.

• The sonar data set consists of 208 patterns of sonar signals. Each pattern

has 60 dimensions and the number of classes is two. The sample sizes of the

two classes are (111, 97).

• The robot data set has 5456 navigation instances, with 24 dimensions and

four classes (826, 2097, 2205, 328).

74

• The waveform data (Hastie et al., 2001) is a simulated three-classes data of

21 features, with a waveform function generating both training and test sets

(300, 500).

• The imagery semantics data set (Qiao and Li, 2010) contains 1400 images

each represented by a 64 dimensional feature vector. These 1400 images come

from five classes with different semantics (300, 300, 300, 300, 200).

• The parkinsons data set is composed of 195 individual voice recordings,

which are of 21 dimensions and divided into two classes (147, 48).

• The satellite data set consists of 6435 instances which are square neighbor-

hoods of pixels, with 36 dimensions and six classes (1533, 703, 1358, 626,

707, 1508).

• The semeion handwritten digit data have 1593 binary images from ten

classes (0-9 digits) with roughly equal sample size in each class. Each image

is of 16 × 16 pixels and thus has 256 dimensions. Four fifths of the images

are randomly selected to form a training set and the remaining as testing.

• The yaleB face image data (Georghiades et al., 2001; Lee et al., 2005; He

et al., 2005) contains gray scale human face images for 38 individuals. Each

individual has 64 images, which are of 32 × 32 pixels, normalized to unit

vectors. We randomly select the images of five individuals, and form a data

set of 250 training images and 70 test images, with equal sample size for each

individual.

The sonar, robot, parkinsons, satellite and semeion data are from the UCI

machine learning repository. Among the above data sets, the semeion and yaleB

data have high dimensions. The other data sets are of moderately high dimensions.

For the data sets with moderately high dimensions, five-fold cross validation

is used to compute their classification accuracy except for the waveform, whose

accuracy is the average over ten simulations, the same setting used in (Hastie et

al., 2001). We assume a full common covariance matrix across all the components

in all the classes. For the semeion and yaleB data sets, the randomly split training

and test samples are used to compute their classification accuracy instead of cross

validation due to the high computational cost. Since these two data sets are of high

dimensions, for all the tested methods, we assume common diagonal covariance

75

matrices across all the components in all the classes. For simplicity, the same

number of mixture components is used to model each class for all the methods.

In our proposed methods, the constrained subspaces are found by MPCA or

MPCA-MEAN, introduced in Section 4.3.1 and 4.3.2. Specifically, in MPCA, a

sequence of subspaces are identified from the training data by gradually increasing

the kernel bandwidth σl, i.e., σ1 < σ2 < · · · < ση, l = 1, 2, ..., η. In practice, we

set η = 20 and choose σl’s equally spaced from [0.1σ̂, 2σ̂], where σ̂ is the largest

sample standard deviation of all the dimensions in the data. HMAC is used to

obtain the modes at different bandwidths. Note that in HMAC, some σl may result

in the same clustering as σl−1, indicating that the bandwidth needs to be increased

substantially so that the clustering result will be changed. In our experiments, only

the modes at the bandwidth resulting in different clustering from the preceding

bandwidth are employed to span the subspace. For the high dimensional data,

since the previous kernel bandwidth range [0.1σ̂, 2σ̂] does not yield a sequence of

distinguishable subspaces, we therefore increase their bandwidths. Specifically, for

the semeion and yaleB data, the kernel bandwidth σl is now chosen equally spaced

from [4σ̂, 5σ̂] and [2σ̂, 3σ̂], respectively, with the interval being 0.1σ̂. In GMM-

MPCA-SEP, since the modes are identified from a new set of class mean removed

data, for both the semeion and yaleB data, the kernel bandwidth σl is now chosen

equally spaced from [3.1σ̂, 5σ̂], with the interval being 0.1σ̂. For the other data

sets, σl is still chosen equally spaced from [0.1σ̂, 2σ̂]. In MPCA-MEAN, if the

dimension of the constrained subspace is smaller than the class number K, the

subspace is obtained by applying weighted PCA only to class means. Otherwise,

at each bandwidth, we obtain the subspace by applying weighted PCA to a union

set of class means and modes, with 60% weight allocated proportionally to the

means and 40% to the modes, that is, γ = 60. The subspace yielding the largest

likelihood on the training data is finally chosen as the constrained subspace.

Classification Results we show the classification results of the tested

methods in this section. The classification error rates on data sets of moderately

high dimensions are shown in Tables 4.1, 4.2, and 4.3. We vary the discriminant

dimension d and also the number of mixture components used for modeling each

class. Similarly, Table 4.4 shows the classification error rates on the semeion and

yaleB data, which are of high dimensions. For all the methods except GMM-

76

MPCA-SEP, the dimension of the discriminant subspace equals the dimension of

the constrained subspace, denoted by d. For GMM-MPCA-SEP, the dimension of

the discriminant space is actually K − 1 + d. In order to compare on a common

ground, for GMM-MPCA-SEP, we change the notation for the dimension of the

constrained subspace to d′, and still denote the dimension of the discriminant sub-

space by d = K−1+d′. The minimum number of dimensions used for classification

in GMM-MPCA-SEP is therefore K−1. In all these tables, if d is set to be smaller

than K − 1, we do not have the classification results of GMM-MPCA-SEP, which

are marked by “NA”. In addition, in Table 4.4b, the classification error rates of

MDA-RR-OS on yaleB data are not reported since the dimension p of the data

is significantly larger than the sample size n. The reduced rank MDA based on

optimal scoring approach cannot be applied due to the lack of degree freedom in

the regression step for the small n large p problem. The minimum error rate in

each column is in bold font. From the results in these tables, we summarize our

findings as follows:

• Comparing the three Gaussian mixture models with subspace constrained

means, GMM-MPCA-MEAN and GMM-MPCA-SEP usually outperform

GMM-MPCA, except on the waveform data. Since the class means are in-

volved in spanning the constrained subspace in GMM-MPCA-MEAN and

determine the shifting of the subspace for each class in GMM-MPCA-SEP,

the observed advantage of GMM-MPCA-MEAN and GMM-MPCA-SEP in-

dicates that class means are valuable for finding a good subspace.

• Comparing the proposed methods and the reduced rank MDA methods, when

the discriminant dimension is low, GMM-MPCA-MEAN and GMM-MPCA-

SEP usually perform better than MDA-RR and MDA-RR-OS. When the

discriminant dimension becomes higher, we do not observe a clear winner

among different methods. The results are very data-dependent. Note that

in GMM-MPCA-MEAN, when the discriminant dimension is smaller than

K−1 , the subspace is obtained by applying weighted PCA only to the class

means. For most data sets, when the discriminant dimension is very low,

GMM-MPCA-MEAN performs best or close to best.

• Comparing the proposed methods and the simple methods of finding the sub-

space first and then fitting MDA on the data projected onto the subspace,

77

when the data dimension is moderately high and the discriminant dimension

is very low, GMM-MPCA/GMM-MPCA-MEAN usually perform better than

MDA-DR-MPCA/MDA-DR-MPCA-MEAN. As the discriminant dimension

increases, with certain component numbers, MDA-DR-MPCA/MDA-DR-

MPCA-MEAN may have a better classification accuracy. In addition, if

the data dimension is very high, for instance, the yaleB data, MDA-DR-

MPCA/MDA-DR-MPCA-MEAN may perform better even at lower discrim-

inant dimension. As discussed in Remark 2 of this section, for MDA-DR-

MPCA/MDA-DR-MPCA-MEAN and GMM-MPCA/GMM-MPCA-MEAN,

we essentially do classification on the data in two different subspaces, i.e.,

the constrained subspace and the discriminant subspace. For GMM-MPCA/

GMM-MPCA-MEAN, under the subspace constraint, we need to estimate

a common covariance matrix, which affects the discriminant subspace, as

shown in Section 4.3.3. Generally speaking, when the discriminant dimen-

sion becomes higher or the data dimension is high, it becomes more difficult

to accurately estimate the covariance matrix. For instance, for the high di-

mensional data, we assume a common diagonal covariance matrix, so that the

covariance estimation becomes feasible and avoids singularity issue. However,

this may result in a poor discriminant subspace, which leads to worse classifi-

cation accuracy. On the other hand, when the data dimension is moderately

high and the discriminant dimension is very low, the estimated covariance

matrix is more accurate and the discriminant subspace informative for clas-

sification is empirically better than the constrained subspace.

• As a final note, when the discriminant dimension is low, MDA-DR-MPCA-

MEAN generally outperforms MDA-DR-MPCA.

4.5.3 Sensitivity of Subspace to Bandwidths

Different kernel bandwidths may result in different sets of modes by HMAC, which

again may yield different constrained subspaces. We investigate in this section the

sensitivity of constrained subspaces to kernel bandwidths.

Assume two subspaces ν1 and ν2 are spanned by two sets of orthonormal

basis vectors {v(1)
1 , ...,v

(1)
d } and {v(2)

1 , ...,v
(2)
d }, where d is the dimension. To

78

Table 4.1: Classification error rates (%) for the data with moderately high dimen-
sions (I)

(a) Robots data
Num of components d = 2 d = 5 d = 7 d = 9 d = 11 d = 13 d = 15 d = 17

3

GMM-MPCA 41.39 35.78 31.93 31.73 31.25 31.54 31.65 31.60
GMM-MPCA-MEAN 30.32 32.06 30.11 30.52 31.19 31.40 31.69 31.29
GMM-MPCA-SEP NA 30.86 30.68 30.42 29.58 30.28 30.97 30.68
MDA-RR 41.22 30.32 30.85 30.57 29.95 29.95 29.95 29.95
MDA-RR-OS 40.16 32.73 32.44 30.35 30.66 30.43 30.26 31.01
MDA-DR-MPCA 44.10 40.30 35.04 32.72 33.03 33.56 33.39 32.84
MDA-DR-MPCA-MEAN 41.22 36.42 34.71 33.83 32.75 32.44 33.47 32.26

4

GMM-MPCA 40.74 31.91 30.77 30.15 29.40 29.05 27.91 28.24
GMM-MPCA-MEAN 26.56 31.49 29.71 29.98 28.43 28.02 28.12 28.39
GMM-MPCA-SEP NA 31.41 30.19 28.45 28.92 30.13 29.54 30.39
MDA-RR 40.45 33.63 30.41 28.28 27.77 27.09 27.18 27.18
MDA-RR-OS 40.91 31.87 31.36 30.24 27.88 29.01 28.59 28.61
MDA-DR-MPCA 42.26 36.16 34.64 31.95 30.06 28.90 29.77 27.56
MDA-DR-MPCA-MEAN 39.41 34.38 34.53 31.96 29.73 29.45 28.15 28.28

5

GMM-MPCA 37.72 29.67 29.25 29.31 27.86 27.91 26.28 26.21
GMM-MPCA-MEAN 28.72 27.86 26.98 26.69 26.83 25.90 26.37 26.14
GMM-MPCA-SEP NA 26.48 27.05 27.46 27.22 26.76 26.74 27.00
MDA-RR 40.39 29.01 26.52 26.08 26.03 26.61 26.52 27.09
MDA-RR-OS 39.96 30.99 29.38 28.24 28.48 27.59 28.24 27.57
MDA-DR-MPCA 41.07 35.69 32.44 30.86 29.03 27.99 28.52 26.34
MDA-DR-MPCA-MEAN 38.34 33.10 32.18 30.13 28.56 26.70 27.05 26.28

(b) Waveform data
Num of components d = 2 d = 4 d = 6 d = 8 d = 10 d = 12 d = 14 d = 16

3

GMM-MPCA 15.70 15.64 16.12 17.10 17.76 17.80 18.24 18.64
GMM-MPCA-MEAN 16.12 16.14 16.82 17.38 17.76 17.92 17.90 18.84
GMM-MPCA-SEP NA 17.08 17.04 17.22 17.44 17.50 17.70 18.34
MDA-RR 16.00 18.48 18.64 18.58 18.58 18.58 18.58 18.58
MDA-RR-OS 15.50 17.20 18.14 17.98 18.00 17.84 18.08 17.98
MDA-DR-MPCA 14.74 15.28 15.78 16.14 16.58 17.12 17.62 17.82
MDA-DR-MPCA-MEAN 14.74 15.50 15.76 16.50 17.00 16.94 17.26 17.48

4

GMM-MPCA 15.56 16.28 16.06 16.94 17.84 17.54 18.58 19.32
GMM-MPCA-MEAN 15.84 16.70 16.90 17.28 17.96 18.34 18.36 18.84
GMM-MPCA-SEP NA 16.34 17.14 17.56 17.56 18.02 18.16 18.16
MDA-RR 15.80 18.12 18.28 19.06 19.26 19.66 19.66 19.66
MDA-RR-OS 15.50 17.54 18.36 18.36 19.34 18.92 18.72 18.88
MDA-DR-MPCA 15.18 15.78 16.00 16.36 17.12 17.64 17.64 18.26
MDA-DR-MPCA-MEAN 15.12 15.86 16.16 16.70 17.00 17.56 17.66 18.40

5

GMM-MPCA 16.44 16.72 16.42 16.96 17.56 17.86 18.66 18.52
GMM-MPCA-MEAN 16.26 16.30 17.32 17.72 18.04 17.68 18.28 19.04
GMM-MPCA-SEP NA 17.24 16.96 17.32 17.40 17.66 17.68 18.30
MDA-RR 16.76 18.18 18.26 19.14 19.16 19.70 19.78 19.78
MDA-RR-OS 15.80 17.78 18.62 19.02 19.30 18.92 18.92 18.40
MDA-DR-MPCA 15.34 15.86 15.98 16.66 17.16 16.90 17.90 18.80
MDA-DR-MPCA-MEAN 15.08 15.70 16.76 16.16 17.30 17.90 17.56 18.38

measure the closeness between two subspaces, we project the basis of one sub-

space onto the other. Specifically, the closeness between ν1 and ν2 is defined as

closeness(ν1,ν2) =
∑d

i=1

∑d
j=1(v

(1)t
i · v(2)

j)2. If ν1 and ν2 span the same subspace,∑d
j=1(v

(1)t
i · v(2)

j)2 = 1, for i = 1, 2, ..., d. If they are orthogonal to each other,∑d
j=1(v

(1)t
i · v(2)

j)2 = 0, for i = 1, 2, ..., d. Therefore, the range of closeness(ν1,ν2)

is (0, d). The higher the value, the closer the two subspaces are.

In our proposed methods, a collection of constrained subspaces are obtained

through MPCA or MPCA-MEAN at different kernel bandwidth σl’s, l = 1, 2, ..., η,

and σ1 < σ2 < · · · < ση. To measure the sensitivity of subspaces to different

bandwidths, we compute the mean closeness between the subspace found at σl

79

Table 4.2: Classification error rates (%) for the data with moderately high dimen-
sions (II)

(a) Sonar data
Num of components d = 2 d = 3 d = 5 d = 7 d = 9 d = 11 d = 13 d = 15

3

GMM-MPCA 39.29 39.78 24.56 25.48 24.51 21.61 21.11 21.13
GMM-MPCA-MEAN 35.92 23.57 23.54 24.04 23.09 22.12 21.63 21.63
GMM-MPCA-SEP NA 27.85 25.45 24.54 24.06 24.55 23.56 24.02
MDA-RR 36.48 28.82 22.08 22.08 22.08 22.08 22.08 22.08
MDA-RR-OS 45.16 25.87 22.61 24.05 20.68 23.60 22.59 23.58
MDA-DR-MPCA 42.31 38.45 19.71 18.33 19.77 22.18 20.71 17.76
MDA-DR-MPCA-MEAN 39.43 23.56 18.77 18.33 18.83 19.78 21.20 16.81

4

GMM-MPCA 40.53 38.88 20.19 20.72 18.32 18.75 17.33 19.74
GMM-MPCA-MEAN 35.08 25.45 20.20 17.83 17.37 18.26 17.31 20.71
GMM-MPCA-SEP NA 26.51 22.62 22.16 20.25 19.75 20.71 19.25
MDA-RR 46.21 27.91 23.07 19.27 19.27 19.27 19.27 19.27
MDA-RR-OS 42.80 26.35 26.44 19.23 21.62 22.10 19.25 22.58
MDA-DR-MPCA 37.50 37.42 22.11 18.33 18.82 21.21 21.23 20.26
MDA-DR-MPCA-MEAN 40.85 22.11 20.24 19.28 20.24 19.76 20.73 19.31

5

GMM-MPCA 44.77 39.78 24.56 25.48 24.51 21.61 21.11 21.13
GMM-MPCA-MEAN 35.42 27.89 21.15 19.73 18.78 19.71 18.26 18.76
GMM-MPCA-SEP NA 32.31 29.35 20.21 20.22 20.21 19.23 21.17
MDA-RR 43.70 27.38 25.91 22.06 19.67 19.67 19.67 19.67
MDA-RR-OS 35.55 29.34 24.86 22.12 20.68 22.19 21.18 20.17
MDA-DR-MPCA 36.05 35.07 21.20 19.29 20.73 23.09 20.71 18.18
MDA-DR-MPCA-MEAN 38.37 26.44 21.21 18.34 23.10 24.56 21.64 18.74

(b) Imagery data
Num of components d = 2 d = 4 d = 6 d = 8 d = 10 d = 12 d = 14 d = 16

3

GMM-MPCA 55.36 48.00 40.36 38.64 38.36 37.43 36.07 37.86
GMM-MPCA-MEAN 44.50 36.21 36.86 37.07 36.36 36.79 36.71 36.14
GMM-MPCA-SEP NA NA 35.21 34.07 35.57 35.79 35.14 35.64
MDA-RR 52.57 43.14 40.21 35.86 35.86 35.71 35.29 35.29
MDA-RR-OS 52.36 42.50 38.50 34.07 35.29 35.50 34.93 34.79
MDA-DR-MPCA 59.93 49.36 42.21 41.71 41.00 39.50 37.00 38.14
MDA-DR-MPCA-MEAN 49.36 44.14 40.86 40.93 38.64 38.50 37.79 38.07

4

GMM-MPCA 57.00 48.29 39.79 38.14 36.57 36.93 35.64 36.64
GMM-MPCA-MEAN 45.00 37.00 39.21 36.57 35.36 35.43 35.86 36.14
GMM-MPCA-SEP NA NA 35.00 35.43 35.07 35.50 35.43 35.00
MDA-RR 52.21 40.64 38.93 35.79 37.50 36.50 35.29 34.86
MDA-RR-OS 51.64 43.57 37.64 35.50 34.50 32.36 34.50 33.64
MDA-DR-MPCA 59.71 50.00 40.14 40.36 38.29 37.86 36.29 37.64
MDA-DR-MPCA-MEAN 49.71 42.36 39.71 39.71 38.64 37.43 37.21 37.93

5

GMM-MPCA 57.79 48.50 40.36 37.57 37.36 39.07 36.07 38.29
GMM-MPCA-MEAN 45.64 36.57 38.64 36.14 37.00 36.64 35.64 35.36
GMM-MPCA-SEP NA NA 35.79 35.14 34.43 34.36 35.57 35.43
MDA-RR 53.21 43.36 39.00 36.07 35.86 34.43 33.93 34.07
MDA-RR-OS 52.07 42.57 39.71 34.21 32.64 34.21 33.50 32.93
MDA-DR-MPCA 58.50 48.93 39.79 38.21 39.57 39.07 36.00 38.71
MDA-DR-MPCA-MEAN 50.00 42.86 39.21 38.36 39.00 37.57 37.64 36.21

and all the other subspaces at preceding bandwidths σl′ , l
′ = 1, 2, ..., l− 1. A large

mean closeness indicates that the current subspace is close to preceding subspaces.

Table 4.5 lists the mean closeness of subspaces by MPCA and MPCA-MEAN at

different bandwidth levels for the sonar and imagery data (the training set from

one fold in the previous five-fold cross validation setup). The first values in the

parentheses are by MPCA while the second values are by MPCA-MEAN. We vary

the dimension of the constrained subspace. The number of modes identified at

each level is also shown in the tables. As Table 4.5 shows, for both methods, the

subspaces found at the first few levels are close to each other, indicated by their

large mean closeness values, which are close to d, the dimension of the subspace.

80

Table 4.3: Classification error rates (%) for the data with moderately high dimen-
sions (III)

(a) Parkinsons data
Num of components d = 2 d = 3 d = 5 d = 7 d = 9 d = 11 d = 13 d = 15

3

GMM-MPCA 17.96 17.42 14.33 14.84 16.98 14.92 15.47 12.84
GMM-MPCA-MEAN 18.90 14.84 11.75 13.33 13.88 12.88 13.89 12.85
GMM-MPCA-SEP NA 11.75 13.29 12.26 13.34 13.85 11.25 13.34
MDA-RR 19.42 15.96 13.88 13.88 13.88 13.88 13.88 13.88
MDA-RR-OS 16.88 16.42 12.31 13.89 12.31 13.89 13.37 12.31
MDA-DR-MPCA 19.47 17.90 13.81 14.35 15.37 14.83 15.38 16.41
MDA-DR-MPCA-MEAN 19.47 17.90 13.81 14.33 15.37 15.35 15.35 15.35

4

GMM-MPCA 17.88 14.77 14.31 14.81 12.84 11.30 10.28 12.32
GMM-MPCA-MEAN 14.81 14.31 13.83 12.81 9.25 9.28 8.74 10.76
GMM-MPCA-SEP NA 11.28 11.33 12.29 11.80 10.29 9.76 9.79
MDA-RR 16.85 12.81 11.79 10.29 9.79 9.79 9.79 9.79
MDA-RR-OS 18.41 15.38 10.74 10.79 11.84 11.83 12.85 10.32
MDA-DR-MPCA 19.47 18.47 12.29 12.35 10.77 11.23 10.72 12.30
MDA-DR-MPCA-MEAN 19.47 17.43 12.29 11.81 9.72 10.24 10.72 11.76

5

GMM-MPCA 19.39 18.39 14.84 17.37 15.31 12.81 11.25 12.79
GMM-MPCA-MEAN 18.39 16.34 13.26 14.83 11.78 11.25 10.25 11.29
GMM-MPCA-SEP NA 14.81 10.75 12.25 11.75 10.75 10.25 10.78
MDA-RR 19.94 16.30 12.27 13.83 11.28 10.78 11.28 10.79
MDA-RR-OS 18.96 16.43 14.30 11.22 10.25 12.33 9.71 9.74
MDA-DR-MPCA 18.96 18.47 13.80 11.81 11.28 12.77 10.70 10.76
MDA-DR-MPCA-MEAN 18.96 19.52 12.26 11.31 9.75 12.27 10.20 9.74

(b) Satellite data
Num of components d = 2 d = 4 d = 7 d = 9 d = 11 d = 13 d = 15 d = 17

3

GMM-MPCA 16.74 15.01 14.16 14.67 14.06 13.95 13.97 13.63
GMM-MPCA-MEAN 16.94 14.10 13.53 13.77 13.95 13.78 13.66 13.68
GMM-MPCA-SEP NA NA 15.48 13.58 13.80 13.58 13.71 13.67
MDA-RR 35.18 14.41 12.84 12.96 13.46 13.60 13.66 13.53
MDA-RR-OS 34.90 13.95 13.01 13.09 12.82 13.04 13.35 13.29
MDA-DR-MPCA 17.20 14.83 13.61 13.91 13.80 13.35 13.60 13.69
MDA-DR-MPCA-MEAN 17.09 14.42 13.58 14.12 14.06 13.41 13.38 13.13

4

GMM-MPCA 17.02 14.13 13.61 13.80 13.58 12.90 12.93 12.88
GMM-MPCA-MEAN 17.31 13.41 13.50 13.53 13.24 12.94 12.91 12.87
GMM-MPCA-SEP NA NA 15.40 12.93 13.08 13.35 13.38 13.54
MDA-RR 35.06 13.35 12.60 12.77 12.74 12.73 12.63 13.05
MDA-RR-OS 34.28 13.49 11.95 12.17 11.90 12.49 11.97 12.14
MDA-DR-MPCA 17.54 14.14 13.21 13.52 13.05 12.74 12.46 12.45
MDA-DR-MPCA-MEAN 17.37 13.36 13.53 13.57 13.07 12.43 12.45 12.82

5

GMM-MPCA 16.25 13.66 12.90 13.29 12.79 12.26 11.92 12.24
GMM-MPCA-MEAN 16.77 12.93 12.85 12.96 12.40 12.18 11.89 12.24
GMM-MPCA-SEP NA NA 15.48 13.21 12.56 12.70 12.59 12.49
MDA-RR 27.43 13.27 12.85 12.34 12.15 12.18 12.29 12.28
MDA-RR-OS 30.16 13.30 12.31 12.23 11.73 11.89 11.98 11.97
MDA-DR-MPCA 16.61 13.80 12.70 12.82 12.74 12.09 11.79 12.42
MDA-DR-MPCA-MEAN 16.58 12.82 12.99 12.93 12.66 11.92 11.92 12.31

As the bandwidth σl increases, the mean closeness starts to decline, which indicates

that the corresponding subspace changes. When σl is small, the number of modes

identified by HMAC is large. The modes and their associated weights do not change

much. As a result, the generated subspaces at these bandwidths are relatively

stable. As σl increases, the kernel density estimate becomes smoother, and more

data points tend to ascend to the same mode. We thus have a smaller number of

modes with changing weights, which may yield a substantially different subspace.

Additionally, the subspace by MPCA-MEAN is spanned by applying weighted

PCA to a union set of modes and class means. In our experiment, we have allocated

81

Table 4.4: Classification error rates (%) for the data with high dimensions

(a) Semeion data
Num of components d = 2 d = 4 d = 8 d = 11 d = 13 d = 15 d = 17 d = 19

3

GMM-MPCA 53.56 29.72 18.27 19.81 18.89 19.20 18.89 18.27
GMM-MPCA-MEAN 49.54 29.10 13.31 14.86 16.72 14.86 16.72 16.10
GMM-MPCA-SEP NA NA NA 13.31 12.07 13.00 16.10 14.86
MDA-RR 45.51 26.93 15.79 14.86 13.93 15.79 14.24 13.62
MDA-RR-OS 48.36 24.92 13.93 12.41 10.60 11.10 10.59 11.41
MDA-DR-MPCA 49.54 27.86 19.20 17.03 17.03 15.79 16.72 16.41
MDA-DR-MPCA-MEAN 48.30 26.01 12.07 13.62 13.31 12.07 14.24 14.55

4

GMM-MPCA 53.56 26.32 17.03 16.10 16.10 16.10 16.10 15.17
GMM-MPCA-MEAN 51.39 25.70 11.46 11.76 12.69 13.00 14.24 15.17
GMM-MPCA-SEP NA NA NA 13.31 12.07 12.07 13.62 11.76
MDA-RR 49.23 26.01 13.93 13.62 13.00 12.07 13.62 12.07
MDA-RR-OS 48.70 24.83 14.21 11.60 10.59 11.16 9.97 11.09
MDA-DR-MPCA 46.75 26.32 17.34 16.41 16.41 15.17 16.10 15.17
MDA-DR-MPCA-MEAN 44.58 26.32 13.00 11.76 15.17 13.31 13.00 13.00

5

GMM-MPCA 51.70 24.46 15.79 13.62 15.17 15.17 13.93 13.00
GMM-MPCA-MEAN 43.03 26.63 11.15 11.46 12.38 12.07 13.31 13.00
GMM-MPCA-SEP NA NA NA 13.00 11.46 13.00 12.38 13.00
MDA-RR 48.92 25.39 13.00 12.69 11.46 10.53 12.07 12.69
MDA-RR-OS 49.16 26.53 14.21 11.10 10.60 10.53 9.84 9.96
MDA-DR-MPCA 48.61 27.24 18.58 13.93 14.24 13.62 13.93 10.84
MDA-DR-MPCA-MEAN 46.13 25.08 10.22 10.84 10.84 10.53 8.98 9.29

(b) YaleB data
Num of components d = 2 d = 4 d = 6 d = 8 d = 10 d = 12 d = 14 d = 16

3

GMM-MPCA 84.29 64.29 64.29 55.71 45.71 38.57 40.00 34.29
GMM-MPCA-MEAN 31.43 17.14 52.86 51.43 38.57 30.00 28.57 27.14
GMM-MPCA-SEP NA NA 27.14 20.00 21.43 20.00 20.00 20.00
MDA-RR 87.14 42.86 27.14 17.14 28.57 8.57 11.43 11.43
MDA-DR-MPCA 82.86 58.57 50.00 44.29 37.14 42.86 25.71 32.86
MDA-DR-MPCA-MEAN 30.00 17.14 60.00 37.14 40.00 21.43 17.14 14.29

4

GMM-MPCA 84.29 67.14 68.57 55.71 44.29 44.29 40.00 37.14
GMM-MPCA-MEAN 34.29 22.86 64.29 50.00 35.71 30.00 35.71 30.00
GMM-MPCA-SEP NA NA 31.43 25.71 28.57 27.14 24.29 25.71
MDA-RR 85.71 60.00 41.43 24.29 14.29 10.00 12.86 11.43
MDA-DR-MPCA 90.00 55.71 50.00 42.86 37.14 41.43 28.57 27.14
MDA-DR-MPCA-MEAN 25.71 21.43 60.00 35.71 32.86 11.43 11.43 12.86

5

GMM-MPCA 85.71 65.71 65.71 55.71 50.00 45.71 42.86 40.00
GMM-MPCA-MEAN 37.14 14.29 60.00 51.43 47.14 42.86 41.43 38.57
GMM-MPCA-SEP NA NA 31.43 35.71 30.00 32.86 28.57 35.71
MDA-RR 85.71 61.43 42.86 42.86 32.86 30.00 22.86 24.29
MDA-DR-MPCA 87.14 67.14 52.86 38.57 34.29 34.29 17.14 22.86
MDA-DR-MPCA-MEAN 27.14 18.57 50.00 34.29 27.14 21.43 20.00 7.14

a larger weight proportionally to class means (in total, 60%) and the class means

remain unchanged in the union set at each kernel bandwidth. Therefore, the

differences between subspaces by MPCA-MEAN are smaller than that by MPCA,

indicated by larger closeness values.

4.5.4 Model Selection

In our proposed method, the following model selection strategy is adopted. We

take a sequence of subspaces resulting from different kernel bandwidths, and then

estimate a mixture model constrained by each subspace and finally choose a model

yielding the maximum likelihood. In this section, we examine our model selec-

tion criteria, and the relationships among test classification error rates, training

82

likelihoods and kernel bandwidths.

Figure 4.1 shows the test classification error rates at different levels of kernel

bandwidth for several data sets (from one fold in the previous five-fold cross val-

idation setup), when the number of mixture components for each class is set to

three. The error rates are close to each other at the first few levels. As the kernel

bandwidth increases, the error rates start to change. Except for the waveform, on

which the error rates of GMM-MPCA and GMM-MPCA-MEAN are very close,

for the other data sets in Figure 4.1, the error rate of GMM-MPCA-MEAN at

each bandwidth level is lower than that of GMM-MPCA. Similarly, at each ker-

nel bandwidth level, the error rate of GMM-MPCA-SEP is also lower than that of

GMM-MPCA, except for the robot data. We also show the training log-likelihoods

of these methods with respect to different kernel bandwidth levels in Figure 4.2.

The training log-likelihoods are also stable at the first few levels and start to fluctu-

ate as the bandwidth increases. This is due to the possible big change in subspaces

under large kernel bandwidths.

In our model selection strategy, the subspace which results in the maximum log

likelihood of the training model is selected and then we apply the model under the

constraint of that specific subspace to classify the test data. In Figure 4.1, the test

error rate of the model which has the largest training likelihood is indicated by

an arrow. As we can see, for each method, this error rate is mostly ranked in the

middle among all the error rates at different levels of bandwidth, which indicate

that our model selection strategy helps find a reasonable training model.

Table 4.5: Mean closeness of subspaces by MPCA and MPCA-MEAN at different
levels of kernel bandwidth

(a) Sonar data
Bandwidth level 2 4 6 8 10 12 14
Num of modes 158 144 114 86 60 15 8

d = 2 (2.00, 2.00) (2.00, 2.00) (2.00, 2.00) (1.99, 1.99) (1.98, 1.98) (1.77, 1.88) (1.43, 1.80)
d = 4 (4.00, 4.00) (4.00, 4.00) (3.99, 4.00) (3.98, 3.99) (3.84, 3.94) (2.63, 3.08) (2.09, 2.96)
d = 6 (6.00, 6.00) (5.99, 5.99) (5.95, 5.99) (5.91, 5.88) (5.41, 5.47) (4.48, 4.64) (3.48, 4.13)
d = 8 (8.00, 8.00) (8.00, 8.00) (7.97, 7.97) (7.86, 7.89) (6.98, 7.00) (6.20, 6.40) (4.29, 5.18)

(b) Imagery data
Bandwidth level 2 4 6 8 10 12
Num of modes 1109 746 343 144 60 35

d = 6 (6.00, 6.00) (5.97, 5.99) (5.32, 5.86) (5.34, 5.61) (5.21, 5.32) (5.02, 5.32)
d = 8 (8.00, 8.000) (7.96, 7.96) (7.54, 7.89) (7.31, 7.76) (6.82, 7.43) (6.27, 6.85)
d = 10 (10.00, 10.00) (9.80, 9.52) (9.56, 9.48) (9.25, 9.23) (8.45, 9.01) (7.71, 8.42)
d = 12 (12.00, 12.00) (11.96, 11.96) (11.48, 11.50) (10.29, 10.89) (10.06, 10.33) (9.49, 9.87)

83

2 4 6 8 10 12

20

30

40

50

60

70

80

90

100

Kernel bandwidth level

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

s
(%

)

Robot (dimension = 7)

GMM−MPCA
GMM−MPCA−MEAN
GMM−MPCA−SEP

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

Kernel bandwidth level

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

s
(%

)

Waveform (dimension = 6)

GMM−MPCA
GMM−MPCA−MEAN
GMM−MPCA−SEP

2 4 6 8 10 12 14

20

30

40

50

60

70

80

90

100

Kernel bandwidth level

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

s
(%

)

Sonar (dimension = 3)

GMM−MPCA
GMM−MPCA−MEAN
GMM−MPCA−SEP

2 4 6 8 10 12 14

20

30

40

50

60

70

80

90

100

Kernel bandwidth level

T
es

t c
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

s
(%

)

Imagery (dimension = 10)

GMM−MPCA
GMM−MPCA−MEAN
GMM−MPCA−SEP

Figure 4.1: The test classification error rates at different levels of kernel bandwidth

4.5.5 Clustering

We present the clustering results of GMM-MPCA and MDA-RR on several sim-

ulated data sets and visualize the results in a low-dimensional subspace. The

previous model selection criteria is also used in clustering. After fitting a subspace

constrained Gaussian mixture model, all the data points having the highest poste-

rior probability belonging to a particular component form one cluster. We outline

the data simulation process as follows.

The data is generated from some existing subspace constrained model. Specif-

ically, we take the training set of the imagery data from one fold in the previous

five-fold cross validation setup and estimate its distribution by fitting a mixture

model using GMM-MPCA. We will obtain five estimated component means which

are ensured to be constrained in a two dimensional subspace. A set of 200 samples

are randomly drawn from a multivariate Gaussian distribution with the previously

estimated component means as the sample means. A common identity covariance

84

2 4 6 8 10 12
−1.55

−1.54

−1.53

−1.52

−1.51

−1.5

−1.49

−1.48
x 10

5

Kernel bandwidth level

T
ra

in
in

g
lo

g−
lik

el
ih

oo
ds

Robot (dimension = 7)

GMM−MPCA
GMM−MPCA−MEAN
GMM−MPCA−SEP

1 1.5 2 2.5 3 3.5 4 4.5 5
−9800

−9700

−9600

−9500

−9400

−9300

−9200

−9100

−9000

Kernel bandwidth level

T
ra

in
in

g
lo

g−
lik

el
ih

oo
ds

Waveform (dimension = 6)

GMM−MPCA
GMM−MPCA−MEAN
GMM−MPCA−SEP

2 4 6 8 10 12 14
1.75

1.76

1.77

1.78

1.79

1.8

1.81

1.82

1.83

1.84

1.85
x 10

4

Kernel bandwidth level

T
ra

in
in

g
lo

g−
lik

el
ih

oo
ds

Sonar (dimension = 3)

GMM−MPCA
GMM−MPCA−MEAN
GMM−MPCA−SEP

2 4 6 8 10 12 14
−1.82

−1.81

−1.8

−1.79

−1.78

−1.77

−1.76

−1.75

−1.74
x 10

5

Kernel bandwidth level

T
ra

in
in

g
lo

g−
lik

el
ih

oo
ds

Imagery (dimension = 10)

GMM−MPCA
GMM−MPCA−MEAN
GMM−MPCA−SEP

Figure 4.2: Training log-likelihoods at different kernel bandwidth levels

is assumed for the Gaussian multivariate distributions. We generate five sets of

samples in this way, forming a data set of 1000 samples. We scale the compo-

nent means by different factors so that the data have different levels of dispersion

among the clusters. The lower the dispersion, the more difficult the clustering

task. Specifically, the scaling factor is set to be 0.125, 0.150, and 0.250, respec-

tively, generating three simulated data with low, middle and high level dispersion

between clusters.

Figure 4.3 shows the clustering results of three simulated data sets by GMM-

MPCA and MDM-RR, in two-dimensional plots, color-coding the clusters. The

data projected onto the true discriminant subspace with true cluster labels are

shown in Figure 4.3(a). In addition, Figure 4.3(b) and Figure 4.3(c) show the

data projected onto the two-dimensional discriminant subspaces by GMM-MPCA

and MDA-RR. For all the simulated data sets, both GMM-MPCA and MDA-

RR can effectively reveal the clustering structure in a low-dimensional subspace.

To evaluate their clustering performance, we compute the clustering accuracy by

85

Table 4.6: Closeness between subspaces in clustering with different dispersions

Closeness low middle high
GMM-MPCA 1.769 1.820 1.881

MDA-RR 1.552 1.760 1.866

comparing their predicted and true clustering labels. Suppose the true cluster label

of data point xi is ti and the predicted cluster label is pi, the clustering error rate is

calculated as 1−
∑n

i=1 I(ti,map(pi))/n, where n is the total number of data points,

I(x, y) is an indicator function that is equal to one if x = y otherwise zero, and

map(pi) is a permutation function which maps the predicted label to an equivalent

label in the data set. Specifically, we use the Kuhn-Munkres algorithm to find the

best matching (Lovász and Plummer, 1986). The clustering error rates are listed

in the titles above the plots in Figure 4.3. The mis-clustered data points are in

gray. When the dispersion between clusters is low or middle, the clustering error

rates of GMM-MPCA are smaller than those of MDA-RR. When the dispersion

is high, the task becomes relatively easy and the clustering accuracy of these two

methods are the same. In Table 4.6, we also show the closeness between the true

discriminant subspace and the discriminant subspaces found by GMM-MPCA and

MDA-RR. Comparing with MDA-RR, for all the three data sets, the closeness

between the subspace by GMM-MPCA and the true subspace are smaller.

4.6 Summary

In this chapter, we propose a Gaussian mixture model with the component means

constrained in a pre-selected subspace. We prove that the modes, the component

means of a Gaussian mixture, and the class means all lie in the same constrained

subspace. Several approaches to finding the subspace are proposed by applying

weighted PCA to the modes, class means, or a union set of modes and class means.

The constrained method results in a dimension reduction property, which allows us

to view the classification or clustering structure of the data in a lower dimensional

space. An EM-type algorithm is derived to estimate the model, given any con-

strained subspace. In addition, the Gaussian mixture model with the component

means constrained by separate parallel subspace for each class is investigated. Al-

though reduced rank MDA is a competitive classification method by constraining

86

−12 −10 −8 −6 −4 −2 0 2 4 6 8
−19

−18

−17

−16

−15

−14

−13

−12

−11

−10

−9
Simulation data I in true discriminant subspace

1
2
3
4
5

−14 −12 −10 −8 −6 −4 −2 0 2 4
8

9

10

11

12

13

14

15

16

17

18
GMM−MPCA 2D clustering on simulation data I (error rate =15.70%)

1
2
3
4
5

−16 −14 −12 −10 −8 −6 −4 −2 0 2
−14

−12

−10

−8

−6

−4

−2
MDA−RR 2D clustering on simulation data I (error rate =16.20%)

1
2
3
4
5

−20 −15 −10 −5 0 5 10
−28

−26

−24

−22

−20

−18

−16
Simulation data II in true discriminant subspace

1
2
3
4
5

−25 −20 −15 −10 −5 0 5
14

16

18

20

22

24

26

28
GMM−MPCA 2D clustering on simulation data II (error rate =6.60%)

1
2
3
4
5

−25 −20 −15 −10 −5 0
10

15

20

25
MDA−RR 2D clustering on simulation data II (error rate =6.80%)

1
2
3
4
5

−25 −20 −15 −10 −5 0 5 10 15
−44

−42

−40

−38

−36

−34

−32

−30

−28
Simulation data III in true discriminant subspace

1
2
3
4
5

−30 −25 −20 −15 −10 −5 0 5 10
28

30

32

34

36

38

40

42
GMM−MPCA 2D clustering on simulation data III (error rate =0.60%)

1
2
3
4
5

−30 −25 −20 −15 −10 −5 0 5 10
28

30

32

34

36

38

40

42
MDA−RR 2D clustering on simulation data III (error rate =0.60%)

1
2
3
4
5

(a) (b) (c)

Figure 4.3: Two-dimensional plot for the clustering of synthetic data, color-coding
the clusters. (a) Projections onto the two-dimensional true discriminant subspace,
with true cluster labels. (b), (c) Projections onto the two-dimensional discrimi-
nant subspace by GMM-MPCA and MDA-RR respectively, with predicted cluster
labels.

the class means to an optimal discriminant subspace within each EM iteration, ex-

periments on several real data sets of moderate to high dimensions show that when

the dimension of the discriminant subspace is very low, it is often outperformed by

our proposed method with a simple technique of spanning the constrained subspace

using only class means.

We select the constrained subspace which has the largest training likelihood

among a sequence of subspaces resulting from different kernel bandwidths. If the

number of candidate subspaces is large, it may be desired to narrow down the

87

search by incorporating some prior knowledge. For instance, the proposed method

may have a potential in visualization when users already know that only a certain

dimensions of the data matter for classification or clustering, i.e., a constrained

subspace can be obtained beforehand. Finally, we expect this subspace constrained

method can be extended to other parametric mixtures, for instance, mixture of

Poisson for discrete data.

Chapter 5
Parallel Hierarchical Mode

Association Clustering

5.1 Introduction

Hierarchical Model Association Clustering (HMAC) is a nonparametric clustering

method which groups data points into one cluster if they are associated with the

same mode in a mixture density (Li et al., 2007). In Chapter 4, we introduce a

Gaussian mixture model with component means constrained in pre-selected sub-

spaces. The subspace is found by applying weighted principal component analysis

to the modes of a kernel density and the class means. Note that the modes are

obtained by HMAC. HMAC is robust in high dimensions, especially when clusters

of data deviate from Gaussian distributions. HMAC has been applied to segment

images for the analysis of color combination aesthetics (Yao et al., 2012). All the

modal vectors are extracted as the representative colors of an image. Since these

modal vectors are the local maximums of a mixture density, specifically, a kernel

density estimator, the representative colors tend to be more “bright” and thus

better retain the true colors. We have also applied HMAC to perform clustering

on industry engineering design data in work-centered visual analytics to aid the

search for optimal designs (Yan et tal., 2012a). As the computational component

in a visual analytics system, HMAC groups similar design data into clusters and

reveals the underlying patterns. The clustering results are passed to a visualiza-

89

tion component which interacts with human by inputting selected data for the

computational component and outputting visualization results.

One challenge faced by HMAC and any other clustering methods is the scala-

bility issue with large scale data sets. In many applications, the clustering results

have to be rendered within a very short time. For instance, in visual analytics of

large scale multi-dimensional engineering design data, the capability of real-time

human and computer interaction is critical (Yan et tal., 2012b). While the visu-

alization component can display results very fast, the computational component

usually takes much longer time to mine data, find patterns and finally generate

results. We thus need a fast computational algorithm that can have the results

readily available within a very short time, bridging the gap between visualization

and data mining. Another example is with the image segmentation using HMAC.

If we aim to provide on-site color aesthetic feedback of high resolution photos to

mobile camera consumers, the segmentation process have to be finished instantly,

in addition to the data sending, receiving and analyzing cost.

In this chapter, we introduce two parallel versions of HMAC which can dra-

matically reduce the computational time of the original algorithm using parallel

computing. The basic idea of parallel computing is to either partition the core task

into various tasks that can be performed independently (task parallelism), or par-

tition the data into pieces which can be dealt with separately (data parallelism).

The final result or solution is obtained by combining the partial results when all the

sub-problems are solved (Pacheco, 2011). Two most popular parallel computing

frameworks are MapReduce (Dean, 2008) and message passing interface (MPI).

MapReduce has two steps: a “map” step to partition data into subsets that can

be processed independently on each compute node and a “reduce” step to merge

the results from the previous step. It serves as an API of the parallel computing

framework. Users do not have to worry about the partition of the data, schedul-

ing of tasks, communications, and logging. All these are handled internally by

the framework. Hadoop is an open source platform for providing the MapReduce

functions. MapReduce offers a user friendly approach to implementing parallel

algorithms. MPI is a standardized portable message passing library (Gropp et

tal., 1999), offering programmers explicit control over how machines send data or

messages to each other. Comparing with MapReduce, MPI is more demanding

90

yet more flexible. In real practice, we found that MapReduce algorithms are more

suitable for data-intensive problems with non-iterative procedures and little data

exchange, while MPI algorithms are appropriate to computational-intensive prob-

lems involving iterations and huge data exchange. This is also similar to what

have been found in (Chen, 2011). Since HMAC has iterative process and is com-

putationally intensive, MPI framework is more appropriate.

According to the inference of HMAC (Li et al., 2007), the most computationally

intensive step is the modal Expectation-Maximization (MEM) algorithm which

finds the density mode for each data point using an iterative optimization. To

speed up HMAC, we have designed two parallel approaches. The first approach is

to parallelize each iterative step of MEM by dividing the data into several subsets

and assigning the calculation related with each subset data to a single compute

node (or a slave node). The computation is performed simultaneously on each

node. All the partial results are finally summarized by a master node. In the

second approach, we still divide the data into several subsets and assign each

subset to a single compute node. However, instead of parallelizing each MEM step

in HMAC, we have each compute node calculate the density modes for the assigned

data points using the original MEM. For both approaches, a master node finally

merges the found modes if they are numerically close. All the data points that are

associated with the same mode form one cluster. In the following sections, we will

provide details about these two parallel approaches.

5.2 Parallel Approach I

We parallelize the MEM algorithm, which finds a density mode for each data point.

MEM comprises two iterative steps, similar to the expectation and maximization

steps in EM (Dempster et al., 1977). Let a mixture density be

f(x) =
K∑
k=1

πkfk(x) , (5.1)

where x ∈ Rd, πk is the prior probability of mixture component k, and fk(x) is the

density of component k. Given any initial value x(0), MEM solves a local maximum

91

of the mixture density, i.e., the mode, by alternating the following two steps until

a stopping criterion is met. Start with t = 0,

1. E-step: pr = πrfr(x(t))

f(x(t))
, r = 1, ..., R.

2. M-step: x(t+1) = argmaxx
∑R

r=1 pr log fr(x).

If the mixture density is a mixture of Gaussians with common covariance ma-

trix, i.e., fk(x) = φ(x|µk,Σ), where φ(·) is the probability density function of a

Gaussian distribution, we simply have x(t+1) =
∑K

k=1 pkµk in the M step. In the

special case of a Gaussian kernel density function, µk = xk, πk = 1/n, K = n,

where n is the total number of data points. In Gaussian kernel, we use a spher-

ical covariance matrix Σ = diag(σ2, σ2, ..., σ2), where the standard deviation σ is

referred to as the bandwidth of the kernel. Let us denote diag(σ2, σ2, ..., σ2) by

D(σ2) for brevity. In HMAC, we model data using Gaussian kernel density, i.e.,

fk(x) = φ(x|xk, D(σ2)). Therefore, the above two steps are simplified as

1. E-step: pk = φ(x(t)|xk,D(σ2))∑n
k=1 φ(x(t)|xk,D(σ2))

, k = 1, ..., n.

2. M-step: x(t+1) =
∑n

k=1 pkxk .

Now we describe the parallel approach. Suppose the total number of slave

nodes is T . Denote the subset of data assigned to a slave node i by Si. In the

E step, for each pk, the slave node processes its own assigned subset of data.

Specifically, we have slave node i compute
∑

k∈Si φ(x(t)|xk, D(σ2)). The master

node will then divide φ(x(t)|xk, D(σ2)) by the sum of all the partial results from

the slave nodes. Similarly, in the M-step, we have each slave node i compute∑
k∈Si pkxk and the master node will sum up all the partial results. After the

modes for all the data points are obtained, the master node will merge them (if

some modes are numerically close, they will be grouped as a single mode) and the

data points that ascend to the same mode will form a cluster.

5.3 Parallel Approach II

Comparing with the first approach, our second parallel approach is simpler and

more straightforward. Suppose we have T slave nodes. As shown in Figure 5.1, we

92

assign a subset of data to each slave node i, denoted by Si. Instead of parallelizing

the MEM algorithm, we have each node find the modes for the assigned subset of

data using the original MEM. In this way, there is no data transferring operation

involved in the iterative MEM. Note that, to find the mode for each data point,

we still need the entire data in the MEM computation. Therefore, each slave node

should be able to access all the data. Denote the modes found by slave node i

for the assigned subset Si by Mi. Similar to the first approach, a master node

will merge the modes {M1,M2, ...,Mt} if some are numerically close and then form

clusters by grouping the data points that are associated with the same mode.

M1 M2 M3 MT

...

Merge mode

Slave node

(MEM)

Master node

S1 S2 ST S3

Assign data to its mode

(clustering)

Figure 5.1: The flow of parallel approach II

5.4 Remarks on Parallel HMAC

HMAC is a hierarchical clustering algorithm. When the kernel bandwidth σ in-

creases, the kernel density estimate becomes smoother and more data points tend

to climb to the same model. Give a sequence of bandwidths σ1 < σ2 < ... < ση,

hierarchical clustering is performed in a bottom-up manner. As introduced in

Section 4.2, HMAC starts with every point being a cluster by itself, which corre-

sponds to the extreme case where σ1 approaches 0. At any bandwidth σl(l > 1),

the modes, that is, cluster representatives, obtained from the preceding bandwidth

are input to the modal EM algorithm. The modes identified then form a new set

of cluster representatives. This procedure is repeated across all σl’s. For details,

we refer interested readers to (Li et al., 2007). The hierarchical clustering results

93

are thus nested, as a dendrogram. The proposed parallel approaches thus have

to be applied to the data that need to be clustered on each level of the hierar-

chy. HMAC also provides users the option of not doing nested hierarchy. In that

case, a collection of clustering results can be obtained using a sequence of kernel

bandwidths. As the bandwidth increases, the number of clusters will decrease.

Since the clustering of data under each bandwidth is independent, this non-nested

clustering process can be readily parallelized as well.

5.5 Experiments

The performance of these two proposed parallel HMAC approaches using MPI

are reported in this section. We apply the parallel algorithms on the ship design

data used in the visual analytic system (Yan et tal., 2012b), which has 2,000

samples and 17 dimensions, and the imagery data (Qiao and Li, 2010) which has

1,400 samples and 64 dimensions. The default parameters of original HMAC are

used 1. Figure 5.2 shows the running time of these two parallel approaches when

the number of compute nodes increases (the number of master node is always one

and the remaining are slave nodes).

These two parallel approaches are implemented using the OpenMPI library. We

run the experiments on the CyberSTAR cluster computing platform at Penn State.

Each compute node has an Intel Xeon processor with 2.67GHZ. In Figure 5.2,

the two parallel approaches using MPI are denoted by “MPI-P1” and “MPI-P2”,

respectively. As we can see, as the number of compute nodes increases, for both

data sets, the running time of MPI-P1 and MPI-P2 are significantly reduced.

Specifically, for the ship design data, when 20 compute nodes are used, the running

time of MPI-P1 and MPI-P2 are 34.4 and 17.3 seconds while the original HMAC

takes 1,360.7 seconds to obtain the clustering results. In addition, the performance

of these two parallel approaches are very close. MPI-P2 is slightly faster than MPI-

P1, possibly due to less data and message exchange.

1http://sites.stat.psu.edu/jiali/hmac/doc.pdf

94

0 5 10 15 20 251

200

400

600

800

1,000

1,200

1,400

100
50

Number of compute nodes

R
un

ni
ng

 ti
m

e
(s

ec
)

MPI−P1
MPI−P2

0 5 10 15 20 251

200

400

600

800

1,000

1,200

1,400

1,600

50
100

Number of compute nodes

R
un

ni
ng

 ti
m

e
(s

ec
)

MPI−P1
MPI−P2

Figure 5.2: Running time of two parallel HMAC approaches using MPI on ship
design data (left) and imagery data (right)

5.6 Summary

We propose two parallel versions of HMAC using MPI, an open source parallel

computing library. The first parallel approach partitions the computation in each

iteration of the inference algorithm into several subtasks, which are conducted in-

dependently and concurrently. A master node summarizes all the partial results

during each iteration and also groups data into clusters finally. The second ap-

proach partitions the data into several subsets, assigns a slave node to compute

the modes for the data in each subset using the original MEM, and has a master

node do the final merging and clustering. Comparing with the original algorithm,

parallel HMAC significantly reduces the running time as the number of compute

nodes increases, making it feasible to perform clustering on large-scale data for

real applications.

Chapter 6
Conclusions and Future Work

We summary the contributions of this dissertation and discuss some future work.

6.1 Conclusions

This dissertation is focused on mixture modeling for complex and large-scale data

and their applications in classification and clustering. A set of new mixture models

is proposed to model the distribution of data that have high dimensions, missing

values, or are more complicated than those in a vector space, for instance, ones

that contain sets of weighted and unordered vectors.

A two-way GMM is proposed to classify high dimensional data and group

variables into clusters simultaneously. Variables in the same cluster are assumed to

have the same distributions within each class. For each cluster of variables, only a

small number of statistics are sufficient for predicting the class label, resulting in a

dimension reduction property. We assume a component-wise diagonal covariance

matrix, i.e., the variables are independent for each mixture component. This

assumption permits the treatment of missing values, a particularly useful trait for

data that are prone to missing values. EM algorithms are derived to estimate the

two-way GMM with or without missing values. Experimental results show that a

two-way mixture often outperforms a mixture model without variable grouping.

A distance-based mixture modeling approach via the concept of hypothetical

local mapping (HLM) is proposed to estimate a mixture-type density for the data

using their pairwise distances. Since only distances are required for model estima-

96

tion, HLM is particularly useful for the modeling of data that cannot be effectively

described by well-studied mathematical entities. Experimental results show that

the classification performance of the proposed mixture model is highly competi-

tive, comparing with other state-of-the-art distance-based classification methods,

on various datasets. The computational cost for both training and testing are also

low. Because a mixture model is estimated for each class separately, it is easy

to handle a large number of classes in the HLM based modeling approach. In

addition, it can be extended to the classification of stream data that arrive in an

incremental fashion.

The intrinsic characteristics of mixture modeling render it a special tool for

visual analytics. Motivated by this, we propose a GMM with the component

means constrained in a pre-selected subspace. It is particularly appealing to multi-

dimensional data visualization, in which users may already know that the compo-

nent (or cluster) means of data lie in a subspace spanned by several dimensions

of the data. Therefore, the subspace is fixed and a GMM is estimated with the

component means constrained in that subspace. It is proved that the modes, the

component means of a Gaussian mixture, and the class means all lie in the same

constrained subspace. If the subspace is unknown, this motivates us to find one by

applying weighted principal component analysis to the modes, the class means, or

a union set of modes and class means. The constrained method has a dimension re-

duction property, which allows us to view the clustering or classification structure

of high dimensional data in a lower dimensional subspace. Although reduced-rank

MDA is a competitive method by constraining the component means to an optimal

discriminant subspace updated within each iteration of the EM algorithm, exper-

iments on several real datasets show that when the dimension of the discriminant

subspace is very low, our proposed method with a simple technique of spanning

the subspace using only the class means often outperforms reduced-rank MDA.

We propose parallel implementations of hierarchical mode association clustering

(HMAC) using message passing interface (MPI), an open-source parallel computing

library. HMAC is a nonparametric clustering method that groups data into one

cluster if they are associated with the same mode in a mixture density. Two

parallel approaches are tested. The first one partitions the computation in each

iteration of the MEM algorithm into subtasks, which are performed independently

97

and concurrently by several slave nodes. It then has a master node sum up all the

partial results and finish the computation for one iteration. The parallelization

on each iteration continues until the MEM algorithm converges. The second one

partitions the data into several subsets and assigns a slave node to compute the

modes of data in each subset using the original MEM algorithm. Since the mode

of each individual data can be obtained separately, every slave node can perform

the assigned computation independently. Comparing with the original algorithm,

parallel HMAC significantly reduces the running time when working on large-scale

data.

6.2 Future Work

The works in this dissertation provide the starting point of mixture modeling for

complex and large-scale data. We discuss some future work in this section.

For two-way Gaussian mixtures, the variables or features may have physical

meanings in engineering systems. Prior knowledge of such physical meanings may

be exploited in grouping variables. The two-way mixture approach may be ex-

tended to achieve dimension reduction under more general settings.

In the distance-based mixture modeling using hypothetical local mapping

(HLM), a common shape parameter is assumed across all the components in all

the classes or all the components within a class. This common shape may be lim-

ited in some situations since the assumption may be conservative. We may relax

it by the quantization trick, in the same spirit as the two-way mixture model.

Specifically, we may estimate a shape parameter for every cluster separately, col-

lect all the scale parameters across the components, and then quantize them into

a few groups. To improve robustness, we assume common scale parameters for

the components that are put in the same group and then estimate common shape

parameters for components in the same group. In a nutshell, the scale parame-

ters obtained individually for each component serve as a crude estimation in the

first step. Then components with similar scale parameters are pooled together to

estimate a common scale parameter for robustness.

In the GMM with the component means constrained in a pre-selected subspace,

we select a constrained subspace that has the largest training likelihood among

98

a sequence of subspaces resulting from different kernel bandwidths. When the

number of candidate subspaces is large, it may be desired to narrow down the

search by incorporating some prior knowledge. For instance, the proposed method

has a potential in visualization when people already know that certain dimensions

of the data matter for classification or clustering, i.e., a constrained subspace can

be obtained beforehand. This subspace constrained method may be extended to

other parametric mixtures, for instance, mixture of Poisson for discrete data.

We propose two parallel approaches to hierarchical mode association clustering

(HMAC), a nonparametric method that groups data points into a cluster if they

are associated with the same mode in a mixture density. The same approaches

can be applied to parallelize ridgeline EM algorithm (Li et al., 2007), which finds

the ridgeline linking two hilltops (modes) in a mixture density. The ridgeline can

be used to measure how well two hills (cluster of data) separate from each other,

enabling the diagnosis of clustering results. The combination of these approaches

can help us instantly obtain the geometric characteristics of a mixture density on

large-scale data, which provide very useful information for visual analytics.

Appendix A
Two-way Gaussian mixtures

A.1 Dimension Reduction Property

We now prove Theorem 2.3.1. Denote the number of variables in the lth cluster

in class k by ηk,l,
∑L

l=1 ηk,l = p for all k. Suppose variables in cluster l under class

k are {j(k,l)
1 , j

(k,l)
2 , ..., j

(k,l)
ηk,l }. The general two-way mixture model in (2.6) can also

be written as

f(X = x, Y = k) =
M∑
m=1

πmpm(k)
p∏
j=1

φ
(
xj |θm,c(b(m),j)

)
=

∑
m∈Rk

πm

L∏
l=1

ηk,l∏
i=1

φ
(
x
j
(k,l)
i
|θm,l

)
. (A.1)

Since the distribution of x
j
(k,l)
i

is from the exponential family, we have

ηk,l∏
i=1

φ
(
x
j
(k,l)
i
|θm,l

)
=

ηk,l∏
i=1

exp

(
S∑
s=1

ηs(θm,l)Ts(xj(k,l)
i

)−B(θm,l)

)
h
(
x
j
(k,l)
i

)
= exp

(
S∑
s=1

ηs(θm,l)
ηk,l∑
i=1

Ts(xj(k,l)
i

)− ηk,lB(θm,l)

) ηk,l∏
i=1

h
(
x
j
(k,l)
i

)
(A.2)

We have defined Tl,k(x) =
∑ηk,l

i=1 T(x
j
(k,l)
i

). More specifically, Tl,k(x) =

(T l,k,1(x), ..., T l,k,S(x))t, where T l,k,s(x) =
∑ηk,l

i=1 Ts(xj(k,l)i
), s = 1, ..., S. Substitute

(A.2) into (A.1),

f(X = x, Y = k)

100

=
∑
m∈Rk

πm

[
L∏
l=1

exp

(
S∑
s=1

ηs(θm,l)
ηk,l∑
i=1

Ts(xj(k,l)
i

)− ηk,lB(θm,l)

)][
L∏
l=1

ηk,l∏
i=1

h(x
j
(k,l)
i

)

]

=

[∑
m∈Rk

πm

L∏
l=1

exp

(
S∑
s=1

ηs(θm,l)T l,k,s(x)− ηk,lB(θm,l)

)] p∏
j=1

h(xj)

 .

Because f(Y = k|X = x) ∝ f(X = x, Y = k),

f(Y = k|X = x) ∝
∑
m∈Rk

πm

L∏
l=1

exp

(
S∑
s=1

ηs(θm,l)T l,k,s(x)− ηk,lB(θm,l)

)

subject to
∑K

k=1 f(Y = k | X = x) = 1. As the posterior probability of Y given

X = x only depends on T l,k,s(x), X and Y are conditionally independent given

T l,k,s(x), l = 1, ..., L, k = 1, ..., K, s = 1, ..., S, or equivalently, Tl,k(x), l = 1, ...,

L, k = 1, ..., K.

A.2 Model Estimation

The E-step of EM computesQ(ψt+1|ψt) and the M-step maximizes it. Q(ψt+1|ψt) =

E[log f(v|ψt+1) | w, ψt], where v is the complete data, w the incomplete, and

f(·) the density function. Let τ (i) be the latent component identity of x(i). We

abuse the notation Λ(x(i)) slightly to mean the non-missing variables in x(i). Here

v = {x(i), y(i), τ (i) : i = 1, ..., n}, and w = {Λ(x(i)), y(i) : i = 1, ..., n}. Q(ψt+1|ψt) =∑n
i=1E

[
log f(x(i), τ (i), y(i)|ψt+1) | Λ(x(i)), y(i), ψt

]
, where

E
[
log f(x(i), τ (i), y(i)|ψt+1) | Λ(x(i)), y(i), ψt

]
= E

[
log π(t+1)

τ(i) | Λ(x(i)), y(i), ψt

]
+ E

[
log pτ(i)(y(i)) | Λ(x(i)), y(i), ψt

]
+

p∑
j=1

E
[
log φ(x(i)

j | µ
(t+1)

τ(i),c(t+1)(b(τ(i)),j)
, σ2(t+1)

τ(i),c(t+1)(b(τ(i)),j)) | Λ(x(i)), y(i), ψt

]
(A.3)

Let qi,m be the posterior probability for Λ(x(i)) being in component m under ψt,

as given in Eq.(2.13).

The first term in (A.3), E[log π
(t+1)

τ (i) | Λ(x(i)), y(i), ψt] =
∑M

m=1 qi,m log π
(t+1)
m .

The second term in (A.3) is zero. For the third term, consider each j separately.

If x
(i)
j is not missing, that is, Λ(x

(i)
j) = 1, the distribution of the complete data

{x(i)
j , τ

(i), y(i)} conditioned on the incomplete data is random only in terms of

101

τ (i) ∈ {1, ...,M}, which is the pmf given by the posterior probabilities qi,m. Thus,

E
[
log φ(x(i)

j | µ
(t+1)

τ(i),c(t+1)(b(τ(i)),j)
, σ2(t+1)

τ(i),c(t+1)(b(τ(i)),j)) | Λ(x(i)), y(i), ψt

]
=

M∑
m=1

qi,m ·

log
1√

2πσ2(t+1)

m,c(t+1)(b(m),j)

−

(
x

(i)
j − µ

(t+1)

m,c(t+1)(b(m),j)

)2

2σ2(t+1)

m,c(t+1)(b(m),j)

 .

If x
(i)
j is missing, that is, Λ(x

(i)
j) = 0, the distribution of the complete data

{x(i)
j , τ

(i), y(i)} conditioned on the incomplete data is random in terms of both

τ (i) ∈ {1, ...,M} and the variable x
(i)
j . The conditional distribution of τ (i) is still

given by the posterior probabilities qi,m, m = 1, ..., M . The conditional distribu-

tion of x
(i)
j given {Λ(x(i)), y(i), τ (i) = m} under ψt is N (µ

(t)

m,c(t)(b(m),j)
, σ2(t)

m,c(t)(b(m),j)
).

Thus

E[log φ(x(i)
j | µ

(t+1)

τ(i),c(t+1)(b(τ(i)),j)
, σ2(t+1)

τ(i),c(t+1)(b(τ(i)),j) | Λ(x(i)), y(i), ψt]

=
M∑
m=1

qi,m ·

log
1√

2πσ2(t+1)

m,c(t+1)(b(m),j)

−

(
µ

(t)

m,c(t)(b(m),j)
− µ(t+1)

m,c(t+1)(b(m),j)

)2

+ σ2(t)

m,c(t)(b(m),j)

2σ2(t+1)

m,c(t+1)(b(m),j)

 .

In summary, Q(ψt+1 | ψt) is given by the formula below.

Let

∆1 =
(x(i)
j − µ

(t+1)

m,c(t+1)(b(m),j)
)2

2σ2(t+1)

m,c(t+1)(b(m),j)

,∆2 =

(
µ

(t)

m,c(t)(b(m),j)
− µ(t+1)

m,c(t+1)(b(m),j)

)2

+ σ2(t)

m,c(t)(b(m),j)

2σ2(t+1)

m,c(t+1)(b(m),j)

.

Then

Q(ψt+1 | ψt) =
n∑
i=1

M∑
m=1

qi,m log π(t+1)
m +

n∑
i=1

M∑
m=1

p∑
j=1

qi,m ·

log
1√

2πσ2(t+1)

m,c(t+1)(b(m),j)

−
(

Λ(x
(i)
j)∆1 + (1− Λ(x

(i)
j))∆2

)
Based on the obtained Q(ψt+1 | ψt), the formulas for updating the parameters

in Eqs.(2.14) ∼ (2.17) can be easily derived.

Appendix B
GMM with Subspace Constrained

Means

B.1 Proof of Theorem 3.3.1

We prove Theorem 4.3.1. Consider a mixture of Gaussians with a common covari-

ance matrix Σ shared across all the components as in (2):

f(X = x) =
R∑
r=1

πrφ(x|µr,Σ) .

Once Σ is identified, a linear transform (a “whitening” operation) can be applied

to X so that the transformed data follow a mixture with component-wise diagonal

covariance, more specifically, the identity matrix I. Assume Σ is non-singular and

hence positive definite, we can find the natural factor of Σ, that is, Σ = (Σ
1
2)tΣ

1
2 .

If the eigen decomposition of Σ is Σ = VΣDΣV
t
Σ, then, Σ

1
2 = D

1
2
ΣV

t
Σ. Let W =

((Σ
1
2)t)−1 and Z = WX. The density of Z is g(Z = z) =

∑R
r=1 πrφ(z|Wµr, I).

Any mode of g(z) corresponds to a mode of f(x) and vice versa. Hence, without

loss of generality, we can assume Σ = I.

Another linear transform on Z can be performed using the orthonormal basis

V = ν ∪ ν⊥ = {v1, ...,vp}, where ν = {vq+1, ...,vp} is the constrained subspace

where µkr’s reside, and ν⊥ = {v1, ...,vq} is the corresponding null subspace, as

defined in Section 3. Suppose Z̃ = ProjZV . For the transformed data z̃, the

103

covariance matrix is still I. Again, there is a one-to-one correspondence (via the

orthonormal linear transform) between the modes of gk(z̃) and the modes of gk(z).

The density of z̃ is

g(Z̃ = z̃) =
R∑
r=1

πrφ(z̃|θr, I) ,

where θr is the projection of Wµr onto the orthonormal basis V , i.e., θkr =

ProjWµrV . Split θr into two parts, θr,1 being the first q dimensions of θr and θr,2

being the last p−q dimensions. Since the projections of µr’s onto the null subspace

ν⊥ are the same, θr,1 are identical for all the components, which is hence denoted

by θ·,1. Also denote the first q dimensions of z̃ by z̃(1), and the last p−q dimensions

by z̃(2). We can write g(z̃) as

g(Z̃ = z̃) =
R∑
r=1

πrφ(z̃(1)|θ·,1, Iq)φ(z̃(2)|θr,2, Ip−q) .

where Iq indicates a q × q identity matrix. Since g(z̃) is a smooth function, its

modes have zero first order derivatives. Note

∂g(z̃)

∂z̃(1)
=
∂φ(z̃(1)|θ·,1, Iq)

∂z̃(1)

R∑
r=1

πrφ(z̃(2)|θr,2, Ip−q) ,

∂g(z̃)

∂z̃(2)
= φ(z̃(1)|θ·,1, Iq)

R∑
r=1

πr
∂φ(z̃(2)|θr,2, Ip−q)

∂z̃(2)
.

By setting the first partial derivative to zero and using the fact∑R
r=1 πrφ(z̃(2)|θr,2, Ip−q) > 0, we get

∂φ(z̃(1)|θ·,1, Iq)
∂z̃(1)

= 0 ,

and equivalently

z̃(1) = θ·,1 , the only mode of a Gaussian density.

For any modes of g(z̃), the first part z̃(1) all equal to θ·,1, that is, the projections

of the modes onto the null subspace ν⊥ coincide at θ·,1. Hence the modes and

104

component means lie in the same constrained subspace ν.

B.2 Dimension Reduction Property

We prove Theorem 3.3.2 here. Assume ν = {vq+1, ...,vp} is the constrained sub-

space where µkr’s reside, and ν⊥ = {v1, ...,vq} is the corresponding null subspace,

as defined in Section 3. We use the Bayes classification rule to classify a sample x:

ŷ = argmaxk f(Y = k|X = x) = argmaxk f(X = x, Y = k).

f(X = x, Y = k) = akfk(x) ∝ ak

Rk∑
r=1

πkr exp(−(x− µkr)tΣ−1(x− µkr)) . (B.1)

Let V =

vt1
...

vtp

. Matrix V is orthonormal because vj’s are orthonormal by con-

struction. Consider the following cases of Σ.

Σ is an identity matrix

From Eq. (B.1), we have

Rk∑
r=1

πkr exp(−(x− µkr)tΣ−1(x− µkr))

=

Rk∑
r=1

πkr exp(−(x− µkr)t(V tV)(x− µkr))

=

Rk∑
r=1

πkr exp(−(V x− V µkr)t(V x− V µkr))

=

Rk∑
r=1

πkr exp(−
p∑
j=1

(x̆j − µ̆kr,j)2) , (B.2)

where x̆j = vtj · x, µ̆kr,j = vtj · µkr, j = 1, 2, ..., p. Because µ̆kr,j = cj, identical

across all k and r for j = 1, · · · , q, the first q terms in the sum of exponent in Eq.

105

(B.2) are all constants. We have

Rk∑
r=1

πkr exp(−
p∑
j=1

(x̆j − µ̆kr,j)2)

∝
Rk∑
r=1

πkr exp(−
p∑

j=q+1

(x̆j − µ̆kr,j)2) .

Therefore,

f(X = x, Y = k) ∝ ak

Rk∑
r=1

πkr exp(−
p∑

j=q+1

(x̆j − µ̆kr,j)2) .

That is, to classify a sample x, we only need the projection of x onto the con-

strained subspace ν⊥ = {v1, ...,vq}.

Σ is a non-identity matrix

We can perform a linear transform (a “whitening” operation) on X so that the

transformed data have an identity covariance matrix I. Find the natural factor of

Σ, that is, Σ = (Σ
1
2)tΣ

1
2 . If the eigen decomposition of Σ is Σ = VΣDΣV

t
Σ, then

Σ
1
2 = D

1
2
ΣV

t
Σ. Let Z = (Σ−

1
2)tX. The distribution of Z is

g(Z = z, Y = k) = ak

Rk∑
r=1

πkrφ(z|µ̃kr, I) ,

where µ̃kr = (Σ−
1
2)tµkr. According to our assumption, vtj · µkr = cj, i.e., iden-

tical across all k and r for j = 1, ..., q. Plugging into µkr = (Σ
1
2)tµ̃kr, we get

(Σ
1
2vj)

t · µ̃kr = cj, j = 1, ..., q. This means for the transformed data, the compo-

nent means µ̃kr’s have a null space spanned by {Σ 1
2vj|j = 1, ..., q}. Correspond-

ingly, the constrained subspace is spanned by {(Σ− 1
2)tvj|j = q+1, ..., p}. It is easy

to verify that the new null space and constrained subspace are orthogonal, since

(Σ
1
2vj)

t ·(Σ− 1
2)tvj′ = vj

t ·vj′ = 0, j = 1, ...q and j′ = q+1, ..., p. The spanning vec-

tors for the constrained subspace, (Σ−
1
2)tvj, j = q+1, ..., p, are not orthonormal in

general, but there exists an orthonormal basis that spans the same subspace. With

106

a slight abuse of notation, we use {(Σ− 1
2)tvj|j = q+1, ..., p} to denote a p× (p−q)

matrix containing the column vector (Σ−
1
2)tvj. For any matrix A of dimension

p× d, d < p, let the notation orth(A) denote a p× d matrix whose column vectors

are orthonormal and span the same subspace as the column vectors of A. Accord-

ing to B.2, for the transformed data Z, we only need the projection of Z onto

a subspace spanned by the column vectors of orth({(Σ− 1
2)tvj|j = q + 1, ..., p})

to compute the class posterior. Note that Z = (Σ−
1
2)tX. So the subspace

that matters for classification for the original data X is spanned by the col-

umn vectors of (Σ−
1
2) × orth({(Σ− 1

2)tvj|j = q + 1, ..., p}). Again, these col-

umn vectors are not orthonormal in general, but there exists an orthonormal

basis that spans the same subspace. This orthonormal basis is hence spanned

by the column vectors of orth((Σ−
1
2) × orth({(Σ− 1

2)tvj|j = q + 1, ..., p})). Since

orth((Σ−
1
2)× orth({(Σ− 1

2)tvj|j = q+ 1, ..., p})) = orth({Σ−1vj|j = q+ 1, ..., p}),1

the subspace that matters for classification is thus spanned by the column vectors

of orth({Σ−1vj|j = q + 1, ..., p}).
In summary, only the linear projection of the data onto a subspace with the

same dimension as ν matters for classification.

B.3 Derivation of µkr in GEM

We derive the optimal µkr’s under constraint (4) for a given Σ. Note that the

term in Eq. (3.6) that involves µkr’s is:

−1

2

K∑
k=1

Rk∑
r=1

nk∑
i=1

qi,kr(xi − µkr)tΣ−1(xi − µkr) . (B.3)

Denote
∑nk

i=1 qi,kr by lkr. Let x̄kr =
∑nk

i=1 qi,krxi/lkr, i.e., the weighted sample mean

of the component r in class k. To maximize Eq. (B.3) is equivalent to minimizing

the following term (Anderson, 2000):

K∑
k=1

Rk∑
r=1

lkr(x̄kr − µkr)tΣ−1(x̄kr − µkr) . (B.4)

1Let matrix A be a p × p square matrix and B be a p × d matrix, d < p. It can be proved
that orth(A× orth(B)) = orth(A×B).

107

To solve the above optimization problem under constraint (4.4), we need to find

a linear transform such that in the transformed space, the constraint is imposed

on individual coordinates (rather than linear combinations of them), and the ob-

jective function is a weighted sum of squared Euclidean distances between the

transformed x̄kr and µkr. Once this is achieved, the optimal solution will simply

be given by setting those unconstrained coordinates within each component by the

component-wise sample mean, and the constrained coordinates by the component-

pooled sample mean. We will discuss the detailed solution in the following.

Find the natural factor of Σ, that is, Σ = (Σ
1
2)tΣ

1
2 . If the eigen decomposition

of Σ is Σ = VΣDΣV
t
Σ, then, Σ

1
2 = D

1
2
ΣV

t
Σ. Now perform the following change of

variables:

K∑
k=1

Rk∑
r=1

lkr(x̄kr − µkr)tΣ−1(x̄kr − µkr)

=
K∑
k=1

Rk∑
r=1

lkr

[(
Σ−

1
2

)t
(x̄kr − µkr)

]t [(
Σ−

1
2

)t
(x̄kr − µkr)

]

=
K∑
k=1

Rk∑
r=1

lkr(x̃kr − µ̃kr)t(x̃kr − µ̃kr) , (B.5)

where µ̃kr =
(
Σ−

1
2

)t
·µkr, and x̃kr =

(
Σ−

1
2

)t
·x̄kr. Correspondingly, the constraint

in (4.4) becomes(
Σ

1
2vj

)t
µ̃kr = constant over r and k , j = 1, ..., q . (B.6)

Let bj = Σ
1
2vj and B = (b1, b2, ..., bq). Note that the rank of V = (v1, ...,vq) is

q. Since Σ
1
2 is of full rank, B = Σ

1
2V also has rank q. The constraint in (B.6)

becomes

Btµ̃kr = Btµ̃k′r′ , for any r, r′ = 1, ..., Rk, and any k, k′ = 1, ..., K . (B.7)

Now perform a singular value decomposition (SVD) on B, i.e., B = UBDBV
t
B,

where VB is a q × q orthonormal matrix, DB is a q × q diagonal matrix, which

is non-singular since the rank of B is q, and UB is a p × q orthonormal matrix.

108

Substituting the SVD of B in (B.7), we get

VBDBU
t
Bµ̃kr = VBDBU

t
Bµ̃k′r′ , for any r, r′ = 1, ..., Rk, and any k, k′ = 1, ...,K ,

which is equivalent to

U t
Bµ̃kr = U t

Bµ̃k′r′ , for any r, r′ = 1, ..., Rk, and any k, k′ = 1, ..., K, (B.8)

because VB and DB have full rank. We can augment UB to a p× p orthonormal

matrix, Û = (u1, ...,uq,uq+1, ...,up), where uq+1, ..., up are augmented orthonor-

mal vectors. Since Û is orthonormal, the objective function in Eq. (B.5) can be

written as

K∑
k=1

Rk∑
r=1

lkr[Û
t(x̃kr − µ̃j)]t · [Û t(x̃kr − µ̃kr)]

=
K∑
k=1

Rk∑
r=1

lkr(x̆kr − µ̆kr)t(x̆kr − µ̆kr) , (B.9)

where x̆kr = Û tx̃kr and µ̆kr = Û tµ̃kr. If we denote µ̆kr = (µ̆kr,1, µ̆kr,2, ..., µ̆kr,p)
t,

then the constraint in (B.8) simply becomes

µ̆kr,j = µ̆k′r′,j , for any r, r′ = 1, ..., Rk, and any k, k′ = 1, ..., K, j = 1, ..., q .

That is, the first q coordinates of µ̆ have to be common over all the k and r. The

objective function (B.9) can be separated coordinate wise:

K∑
k=1

Rk∑
r=1

lkr(x̆j − µ̆kr)t(x̆kr − µ̆kr) =

p∑
j=1

K∑
k=1

Rk∑
r=1

lkr(x̆kr,j − µ̆kr,j)2 .

For the first q coordinates, the optimal µ̆kr,j, j = 1, ..., q, is solved by

µ̆∗kr,j =

∑K
k′=1

∑Rk′
r′=1 lk′r′x̆k′r′,j∑K

k′=1

∑Rk′
r′=1 lk′r′

=

∑K
k′=1

∑Rk′
r′=1 lk′r′x̆k′r′,j
n

, identical over r and k .

For the remaining coordinates, µ̆kr,j, j = q + 1, ..., p:

µ̆∗kr,j = x̆kr,j .

109

After µ̆∗kr is calculated, we finally get µkr’s under the constraint(4.4):

µkr = (Σ
1
2)tÛ µ̆∗kr .

B.4 Reduced Rank Mixture Discriminant Anal-

ysis

The rank restriction can be incorporated into the mixture discriminant analysis

(MDA). It is known that the rank-L LDA fit is equivalent to a Gaussian maxi-

mum likelihood solution, where the means of Gaussians lie in a L-dimension sub-

space (Hastie and Tibshirani, 1996). Similarly, in MDA, the log-likelihood can be

maximized with the restriction that all the R =
∑K

k=1 Rk centroids are confined to

a rank-L subspace, i.e., rank {µkr} = L.

The EM algorithm is used to estimate the parameters of the reduced rank

MDA, and the M-step is a weighted version of LDA, with R “classes”. The com-

ponent posterior probabilities qi,kr’s in the E-step are calculated in the same way

as in Eq. (4.5), which are conditional on the current (reduced rank) version of

component means and common covariance matrix. In the M-step, πkr’s are still

maximized using Eq. (4.7). The maximizations of µkr and Σ can be viewed as

weighted mean and pooled covariance maximum likelihood estimates in a weighted

and augmented R-class problem. Specifically, we augment the data by replicating

the nk observations in class k Rk times, with the lth such replication having the

observation weight qi,kl. This is done for each of the K classes, resulting in an

augmented and weighted training set of
∑K

k=1 nkRk observations. Note that the

sum of all the weights is n. We now impose the rank restriction. For all the sample

points xi’s within class k, the weighted component mean is

µkr =

∑nk
i=1 qi,krxi∑nk
i=1 qi,kr

.

Let q′kr =
∑nk

i=1 qi,kr. The overall mean is

µ =

∑K
k=1

∑Rk
r=1 q

′
krµkr∑K

k=1

∑Rk
r=1 q

′
kr

.

110

The pooled within-class covariance matrix is

W =

∑K
k=1

∑Rk
r=1

∑nk
i=1 qi,kr(xi − µkr)t(xi − µkr)∑K
k=1

∑Rk
r=1 q

′
kr

.

The between-class covariance matrix is

B =

∑K
k=1

∑Rk
r=1 q

′
kr(µkr − µ)t(µkr − µ)∑K
k=1

∑Rk
r=1 q

′
kr

.

Define B∗ = (W− 1
2)TBW− 1

2 . Now perform an eigen-decomposition on B∗, i.e.,

B∗ = V ∗DBV
∗T , where V ∗ = (v∗1, v

∗
2, ..., v

∗
p). Let V be a matrix consisting of the

leading L columns of W− 1
2V ∗. Considering maximizing the Gaussian log-likelihood

subject to the constraints rank {µkr} = L, the solutions are

µ̂kr = WV V T (µkr − µ) + µ , (B.10)

Σ̂ = W +

∑K
k=1

∑Rk
r=1 q

′
kr(µkr − µ̂kr)t(µkr − µ̂kr)∑K
k=1

∑Rk
r=1 q

′
kr

. (B.11)

As a summary, in the M-step of reduced rank MDA, the parameters, πkr, µkr

and Σ, are maximized by Eqs. (4.7), (B.10), and (B.11), respectively.

Note that the discriminant subspace is spanned by the column vectors of V =

W− 1
2V ∗, with the lth discriminant variable as W− 1

2v∗l . In general, W− 1
2v∗l ’s are not

orthogonal, but we can find an orthonormal basis that spans the same subspace.

Appendix C
Distance-based Mixture Modeling

C.1 Proof of Equation (3.4)

The collection of distances is u = (u1, u2, ..., uN), and its corresponding weight is

w = (w1, w2, ..., wN), where
∑M

j=1

∑
i∈Cj wi = 1. The ML estimator maximizes the

follwoing weighted log likelihood:

L(u|s, b1, b2, ..., bM) =
M∑
j=1

∑
i∈Cj

wi log f(ui)

=
M∑
j=1

∑
i∈Cj

wi

[
(s− 1) log ui − s log bj −

ui
bj
− log Γ(s)

]
. (C.1)

With a fixed s, L(u|s, b1, b2, ..., bM) can be maximized individually on every bj:

max L(u|s, b1, b2, ..., bM)

=
M∑
j=1

max
∑
i∈Cj

wi

[
(s− 1) log ui − s log bj −

ui
bj
− log Γ(s)

]
. (C.2)

Since
∑

i∈Cj wi

[
(s− 1) log ui − s log bj − ui

bj
− log Γ(s)

]
is a concave function of bj,

we can obtain its maximum by setting the first derivative to zero:

∑
i∈Cj

wi(−
s

bj
+
ui
b2
j

) = 0 . (C.3)

112

Let

ūj =

∑
i∈Cj wiui∑
i∈Cj wi

be the weighted average distance for prototype j. bj is solved by

bj =
ūj
s

(C.4)

Now substitute Equation (C.4) into (C.2):

max L(u|s)

=
M∑
j=1

max
∑
i∈Cj

wi

[
s log s+ s · (log

ui
ūj
− ui
ūj

)− log Γ(s)− log ui

]
.

Since log Γ(s) is a convex function of s, it is easy to show that L(u|s) is also a

convex function of s. The maximum of L(u|s) is thus determined by setting its

first derivative to zero:

M∑
j=1

∑
i∈Cj

wi log s+
M∑
j=1

∑
i∈Cj

wi log
ui
uj
−

M∑
j=1

∑
i∈Cj

wiψ(s) = 0 ,

which is equivalent to:

log ŝ− ψ(ŝ) = log

∏M
j=1 ū

∑
i∈Cj

wi

j∏N
i=1 u

wi
i

 . (C.5)

Bibliography

A. A. Alizadeh et al. Distinct types of diffuse large B-cell lymphoma identified by
gene expression profiling. Nature, 403:503-511, 2000.

T. W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley, 2000.

J. D. Banfield and A. E. Raftery. Model-based Gaussian and non-Gaussian clus-
tering. Biometrics, 49:803-821, 1993.

M. Balcan and A. Blum. On a theory of learning with similarity functions. In Proc.
ICML, pages 73-80, 2006.

D. Beeferman and A. Berger. Agglomerative clustering of a search engine query
log. In Proc. ACM SIGKDD, pages 407-416, 2000.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition
using shape contexts. IEEE Trans. Pattern Analysis and Machine Intelligence,
24(4):509-522, 2002.

L. Breiman and R. Ihaka. Nonlinear discriminant analysis via scaling and ACE.
Technical Report 40, Department of Statistics, University of California, Berkeley,
California, 1984.

L. Cazzanti, M. R. Gupta, and A. J. Koppal. Generative models for similarity-
based classification. Pattern Recognition, 41(7):2289-2297, 2008.

L. Cazzanti and M. R. Gupta. Local similarity discriminant analysis. In Proc.
ICML, pages 137-144, 2007.

L. Cazzanti. Generative models for similarity-based classification. Ph.D. Thesis,
Department of Electrical Engineering, University of Washington, 2007.

G. Celeux and G. Govaert. A classification EM algorithm for clustering and two
stochastic versions. Computational Statistics and Data Analysis, 14:315-332,
1992.

114

C.C. Chang and C.J. Lin. (2001). LIBSVM : a library for support vector machines.
[Online]. Available: http://www.csie.ntu.edu.tw/cjlin/libsvm.

Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and L. Cazzanti. Similarity-based
classification: concepts and algorithms. Journal of Machine Learning Research,
10:747-776, 2009.

W. Y. Chen, Y. Song, H. Bai, C. J. Lin, and E. Y. Chang. Parallel spectral clus-
tering in distributed systems. IEEE Trans. Pattern Analysis and Machine In-
telligence, 33(3):568-586, 2011.

G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts
to optimize float: an Analytic Study of Exact and Approximate Algorithms.
Management Science, 23:789-810, 1977.

S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning, 10(1):57-78, 1993.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Comm. ACM, 51:107-113, 2008.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society Series
B, 39(1):1-38, 1977.

R. P.W. Duin, E. Pekalska, and D. de Ridder. Relational discriminant analysis.
Pattern Recognition Lett., 20:1175-1181, 1999.

M. Evans, N. Hastings, and B. Peacock. Statistical Distributions, 3rd ed., John
Wiley & Sons, Inc., 2000.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. Proc. of the National Academy of
Science, 95:14863-14868, 1998.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7:179-188, 1936.

J. H. Friedman. Regularized discriminant analysis. Journal of the American Sta-
tistical Association, 84(405):165-175, 1989.

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and
density estimation. Journal of the American Statistical Association, 97:611-631,
2002.

T. Graepel, R. Herbrich, and K. Obermayer. Classification on pairwise proximity
data. Adv. Neural Inform. Process. Syst., 11:438-444, 1999.

115

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many:
illumination cone models for face recognition under variable lighting and pose.
IEEE Trans. Pattern Analysis and Machine Intelligence, 23(6):643-660, 2001.

Z. Ghahramani and G. E. Hinton. The EM algorithm for factor analyzers. Technical
Report CRG-TR-96-1, The University of Toronto, Toronto, 1997.

L. Goldfarb. A new approach to pattern recognition. Prog. Pattern Recognition
2:241-402, 1985.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel programming
with the message-passing interface. Scientific and engineering computation, MIT
Press, 1999.

Y. Guo, T. Hastie, and R. Tibshirani. Regularized linear discriminant analysis and
its application in microarrays. Biostatistics, 8(1):86-100, 2006.

M. R. Gupta, R. M. Gray, and R. A. Olshen. Nonparametric supervised learning
by linear interpolation with maximum entropy. IEEE Trans. Pattern Analysis
and Machine Intelligence, 28(5):766-781, 2006.

M. Hall et al. The WEKA Data Mining Software: An Update. SIGKDD Explo-
rations, 11(1):10-18, 2009.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer-Verlag, 2001.

T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mixtures. Journal
of the Royal Statistical Society Series B, 58:155-176, 1996.

X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang. Face recognition using laplacian-
faces. IEEE Trans. Pattern Analysis and Machine Intelligence, 27(3):328-340,
2005.

S. Hochreiter and K. Obermayer. Support vector machines for dyadic data. Neural
Computation, 18(6):1472-1510, 2006.

C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector
machines. IEEE Trans. Neural Networks, 13(2):415-425, 2002.

Y. Huang, K. B. Englehart, B. Hudgins, and A. D. C. Chan. A Gaussian mixture
model based classification scheme for myoelectric control of powered upper limb
prostheses. IEEE Trans. Biomedical Engineering, 52:1801-1811, 2005.

D. W. Jacobs, D. Weinshall, and Y. Gdalyahu. Classification with nonmetric dis-
tances: image retrieval and class representation. IEEE Trans. Pattern Analysis
and Machine Intelligence, 22(6):583-600, 2000.

116

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Com-
puting Surveys, 31(3):264-323, 1999.

P. Kenny, P. Ouellet, N. Dehak, and V. Gupta. A study of interspeaker variability
in speaker verification. IEEE Trans. Audio, Speech and Language Processing,
16(5):980-987, 2008.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intel-
ligence, 97(1-2):273-324, 1997.

L. Lazzeroni and A. Owen. Plaid models for gene expression data. Statistica Sinica,
12(1):61-86, 2002.

W. Lam, C. Keung, and D. Liu. Discovering useful concept prototypes for classi-
fication based on filtering and abstraction. IEEE Trans. Pattern Analysis and
Machine Intelligence, 24(8):1075-1090, 2002.

K. Lang. NewsWeeder: Learning to Filter Netnews. In Proc. ICML, pages 331-339,
1995.

K. C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition
under variable lighting. IEEE Trans. Pattern Analysis and Machine Intelligence,
27(5):684-698, 2005.

J. Li, J. Z. Wang, and G. Wiederhold. IRM: integrated region matching for image
retrieval. In Proc. ACM MM, pages 147-156, 2000.

J. Li and J. Z. Wang. Real-time computerized annotation of pictures. In Proc.
ACM MM, pages 911-920, 2006.

J. Li, S. Ray, and B. G. Lindsay. A nonparametric statistical approach to clustering
via mode identification. Journal of Machine Learning Research, 8(8):1687-1723,
2007.

J. Li and J. Z. Wang. Real-time computerized annotation of pictures. IEEE Trans.
Pattern Analysis and Machine Intelligence, 30(6):985-1002, 2008.

J. Li and H. Zha. Two-way Poisson mixture models for simultaneous document
classification and word clustering. Computational Statistics and Data Analysis,
50:163-180, 2006.

L. Lovász and M. D. Plummer. Matching Theory. Akadémiai Kiadó - North Hol-
land, Budapest, 1986.

M. Lozano, J. M. Sotoca, J. S. Sanchez, F. Pla, E. Pekalska, and R. P.W. Duin.
Experimental study on prototype optimisation algorithms for prototype-based
classification in vector spaces. Pattern Recognition 39:1827-1838, 2006.

117

C. L. Mallows, A note on asymptotic joint normality. Annals of Mathematical
Statistics, 43(2):508-515, 1972.

F. E. Maranzana. On the location of supply points to minimize transport costs.
Opnal. Res. Quart, 15:261-270, 1964.

G. J. McLachlan and D. Peel. Finite Mixture Models. Wiley, 2000.

G. J. McLachlan, D. Peel, and R. W. Bean. Modeling high-dimensional data by
mixtures of factor analyzers. Computational Statistics and Data Analysis 41:379-
388, 2003

G. J. McLachlan and D. Peel. Mixtures of factor analyzers. In Proc. ICML, pages
599-606, 2000.

A. McCallum. (1996). Bow: A toolkit for statistical language mod-
eling, text retrieval, classification and clustering. [Online]. Available:
http://www.cs.cmu.edu/mccallum/bow

G. J. McLachlan and D. Peel. Finite Mixture Models, New York: Wiley, 2000.

J. M. Mulvey and H. P. Crowder. Cluster analysis: an application of lagrangian
relaxation. Management Science, 25:329-340, 1979.

M. Ouyang et al. Gaussian mixture clustering and imputation of microarray data.
Bioinformatics, 20:917-923, 2004.

P. Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann Publish-
ers Inc., 2011.

W. Pan and X. Shen. Penalized model-based clustering with application to variable
selection. Journal of Machine Learning Research, 8:1145-1164, 2007.

E. Pekalska, P. Paclic, and R. P.W. Duin. A generalized kernel approach to
dissimilarity-based classification. Journal of Machine Learning Research 2:175-
211, 2001.

E. Pekalska, R. P.W. Duin, and P. Paclik. Prototype selection for dissimilarity
based classifiers. Pattern Recognition Lett., 39:189-208, 2006.

D. Povey, et al. The subspace gaussian mixture model - a structured model for
speech recognition. Computer Speech and Language, 25(2):404-439, 2011.

M. Qiao and J. Li. Two-way Gaussian mixture models for high dimensional clas-
sification. Statistical Analysis and Data Mining, 3(4):259-271, 2010.

118

M. Qiao and J. Li. Gaussian mixture Models with component means constrained
in pre-selected subspaces. Journal of Computational and Graphical Statistics
(submitted), 2012.

M. R. Rao. Cluster analysis and mathematical programming. Journal of the Amer-
ican Statistical Association, 6:622-626, 1971.

S. Ray and B. G. Lindsay. The topography of multivariate normal mixtures. Annals
of Statistics, 33(5):2042-2065, 2005.

D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted
Gaussian mixture models. Digital Signal Processing, 10:19-41, 2000.

G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Comm. ACM, 18(11):613-620, 1975.

B. Schölkopf, C. J. C. Burges, and A. J. Smola. Advances in kernel methods: support
vector learning, MIT Press, 1999.

R. N. Shepard. The analysis of proximities: multidimensional scaling with an un-
known distance function, I. Psychometrika, 27(2):125-140, 1962.

R. N. Shepard. The analysis of proximities: multidimensional scaling with an un-
known distance function, II. Psychometrika, 27(2):219-246, 1962.

P. Simard, Y. L. Cun, and J. Denker. Efficient pattern recognition using a new
transformation distance. Adv. Neural Inform. Process. Syst., 5:50-68, 1993.

Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee, and C. L. Giles. Real-time
automatic tag recommendation. In Proc. ACM SIGIR, pages 515-522, 2008.

M. B. Teitz and P. Bart. Heuristic methods for estimating the generalized vertex
median of a weighted graph. Operations Research, 16:955-961, 1968.

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Class prediction by nearest
shrunken centroids, with applications to DNA microarrays. Statistical Science,
18(1):104-117, 2003.

R. Tibshirani and G. Walther. Cluster validation by prediction strength. Journal
of Computational and Graphical Statistics, 14(3):511-528, 2005.

L. Wang, C. Yang, and J. Feng. On learning with dissimilarity functions. In Proc.
ICML, pages 991-998, 2007.

S. Wang and J. Zhu. Variable selection for model-based high-dimensional clustering
and its application to microarray Data. Biometrics, 64:440-448, 2008.

119

J. H. Ward. Hierarchical Grouping to Optimize an Objective Function. Journal of
the American Statistical Association, 58(301): 236-244, 1963.

D. Weinshall, D.W. Jacobs, and Y. Gdalyahu. Classification in non-metric spaces.
Adv. Neural Inform. Process. Syst., 11:838-844, 1999.

X. Yan, M. Qiao, J. Li, T. W. Simpson, G. M. Stump, and X. L. Zhang. A work-
centered visual analytics model to support engineering design with interactive
visualization and data-Mining. In Proc. IEEE HICSS, pages 1845-1854, 2012.

X. Yan, M. Qiao, Y. Zhao, T. W. Simpson, G. M. Stump, J. Li, and X. L. Zhang.
Work-centered visual analytics: an approach to bridge information visualization
and data mining. ACM Trans. Interactive Intelligent Systems (submitted), 2012.

L. Yao, P. Suryanarayan, M. Qiao, J. Z. Wang, and J. Li. OSCAR: on-site composi-
tion and aesthetics feedback through exemplars for photographers. International
Journal of Computer Vision, 96(3):353-383, 2012.

G. Young and A. S. Householder. Discussion of a set of points in terms of their
mutual distances. Psychometrika, 3:19-22, 1938.

H. Zha, X. He., C. Ding, M. Gu, and H. Simon. Bipartite graph partitioning and
data clustering. In Proc. ACM CIKM, pages 25-32, 2001.

H. Zhang, A. C. Berg , M. Maire, and J. Malik. SVM-KNN: discriminative nearest
neighbor classification for visual category recognition. In Proc. IEEE CVPR,
pages 2126-2136, 2006.

Vita

Mu Qiao

Mu Qiao entered the Ph.D. program in Computer Science and Engineering at
Penn State University in August 2007. He also entered the concurrent M.S. pro-
gram in Statistics at Penn State in September 2009. Prior to his Ph.D. study, he
received the B.E. degree in Computer Science and Engineering from Harbin Insti-
tute of Technology in July 2007. He was an undergraduate exchange student in
Computer Science and Engineering at Hong Kong University of Science and Tech-
nology in 2006. He worked as summer intern at eBay Research Labs, IBM T. J.
Watson Research Center, Palo Alto Research Center (PARC), and IBM Almaden
Research Center, in 2009, 2010, 2011, and 2012 respectively. He is a recipient of
the 2010 American Statistical Association (ASA) Statistical Learning and Data
Mining Section Student Paper Competition Award. His research interests include
statistical machine learning, data mining, image retrieval, visual analytics, and
social computing.

