The Pennsylvania State University
The Graduate School

MIXTURE MODELING FOR COMPLEX AND LARGE-SCALE

DATA WITH APPLICATIONS

A Dissertation in

Computer Science and Engineering
by
Mu Qiao

© 2012 Mu Qiao

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

December 2012



The dissertation of Mu Qiao was reviewed and approved* by the following:

Jia Li
Professor of Statistics and (by courtesy) Computer Science and Engineering
Dissertation Co-Adviser, Co-Chair of Committee

Daniel Kifer
Assistant Professor of Computer Science and Engineering
Co-Chair of Committee

James Ze Wang
Professor of Information Sciences and Technology
Dissertation Co-Adviser

Jesse Barlow
Professor of Computer Science and Engineering

Xiaolong (Luke) Zhang
Associate Professor of Information Sciences and Technology

Lee Coraor
Associate Professor of Computer Science and Engineering
Chair of the Graduate Program of Computer Science and Engineering

*Signatures are on file in the Graduate School.



Abstract

Mixture models have been applied in a wide range of engineering and scientific
fields. In practice, data are often complex and in large scale. The data may
be high dimensional, have missing values, or contain objects that are not well
defined in a vector space. The flexibility of mixture models enables us to model
the distribution of complex and large-scale data and estimate their probability
densities. In this dissertation, we present several new mixture models that extend
such application.

A two-way Gaussian mixture model (GMM) is proposed for classifying high di-
mensional data. This model regularizes the mixture component means by dividing
variables into groups and then constraining the parameters for the variables in the
same group to be identical. The grouping of the variables is not pre-determined,
but rather it is optimized as part of model estimation. A dimension reduction
property for a two-way mixture of distributions from a general exponential family
is proved. The issue of missing values that tend to arise when the dimension is ex-
tremely high is addressed. Estimation methods for the two-way Gaussian mixture
with or without missing data are derived. Experiments on several real data sets
show that the parsimonious two-way mixture often outperforms a mixture model
without variable grouping, and as a byproduct, significant dimension reduction is
achieved.

We propose a new approach for mixture modeling based only upon pairwise
distances via the concept of hypothetical local mapping (HLM). This work is mo-
tivated by increasingly commonplace applications involving complex objects that
cannot be effectively represented by tractable mathematical entities. The new
modeling approach consists of two steps. A distance-based clustering algorithm is
applied first. Then HLM takes as input the distances between the training data
and their corresponding cluster centroids and estimates the model parameters.
In the special case where all the training data are taken as cluster centroids, we
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obtain a distance-based kernel density. We have examined the classification per-
formance of the mixture models on many data sets. Experimental comparisons
have been made with other state-of-the-art distance-based classification methods,
for instance, k-NN, variations of k-NN, and SVM based algorithms. It is found
that HLM based algorithms are highly competitive in terms of classification ac-
curacy, and in the mean time are computationally efficient during both training
and testing. Furthermore, the HLM based modeling approach adapts readily to
incremental learning, a valuable mechanism to achieve scalability for dynamic data
arriving at a high velocity. We have developed two schemes of incremental learning
and tested them on several data sets.

Driven by demands in visual analytics, we investigate a GMM with component
means constrained in a pre-selected subspace, which allows us to visualize the
clustering or classification structure of high dimension data in a lower dimensional
subspace. We prove that the subspace containing the component means of a GMM
with a common covariance matrix also contains the modes of the density and
the class means. This finding motivates us to identify a subspace by applying
weighted principal component analysis to the modes of a kernel density and class
means. For choosing the kernel bandwidth, we acquire multiple subspaces from
the kernel densities based on a sequence of bandwidths. The GMM constrained
by each subspace is estimated, and the model yielding the maximum likelihood is
chosen. A dimension reduction property is proved in the sense of being informative
for classification or clustering. Experiments on real and simulated data sets are
conducted to examine several ways of determining the subspace and to compare
with the reduced rank mixture discriminant analysis (MDA). Our new method
with the simple technique of spanning the subspace only by class means often
outperforms the reduced rank MDA when the subspace dimension is very low,
making it particularly appealing for visualization.

Finally, to bridge the computational gap between information visualization and
data mining in visual analytics, we implement two parallel versions of hierarchi-
cal mode association clustering (HMAC), a previously proposed nonparametric
method that groups data points into a cluster if they are associated with the same
mode of a mixture-type density. Parallel HMAC runs on a cluster of compute nodes
using the message passing interface (MPI) library and dramatically improves the
speed of the original algorithm, making it feasible to perform clustering on large-
scale data.
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Chapter

Introduction

Data in the real world are often very complex and in large scale. The data may
have high dimensions, missing values, or contain objects that are more complicated
than those in a vector space (Salton et al., 1975), for instance, sets of weighted and
unordered vectors (Li and Wang, 2008). In the big data era, we frequently face
problems with data of large volume, high variety, and fast velocity. Such complex-
ity combining with the scale of data poses tremendous challenges to the design and
development of new algorithms and tools. This dissertation contributes a set of
new mixture models that aim to model the distribution of complex and large-scale
data and estimate their probability densities, with applications in classification
and clustering.

Mixture modeling has been used in various fields, for instance, to verify speak-
ers (Reynolds et al., 2000), to classify types of limb motion (Huang et al., 2005),
to predict topics of news articles (Li and Zha, 2006), and to tag online text docu-
ments (Song et al., 2008). The prominence in broad applications held by mixture
models speaks for their appeals, which come from several intrinsic strengths of
the generative modeling approach as well as the power of mixture modeling as a
density estimation method for multivariate data.

Mixture discriminant analysis (MDA), developed by Hastie and Tibshirani
(1996), has been used widely in classification. Although discriminative approaches
to classification, for instance, support vector machine (Scholkopf et al., 1999), are
often argued to be more favorable because they optimize the classification bound-

ary directly, MDA, as a generative modeling method, holds multiple practical ad-



vantages including the ease of handling a large number of classes, the convenience
of incorporating domain expertise, and the minimal effort required to treat new
classes in an incremental learning environment. The mixture model, in particular,
is inherently related to clustering or quantization if each mixture component is as-
sociated with one cluster (Celeux and Govaert, 1992; Banfield and Raftery, 1993;
McLachlan and Peel, 2000). This insight was exploited by Li and Wang (2008) to
construct a mixture-type density for sets of weighted and unordered vectors that
form a metric but not vector space, providing additional evidence for the great
flexibility of mixture modeling.

In Chapter 2, under the paradigm of MDA, we propose a two-way Gaussian
mixture model (GMM) for classifying high dimensional data. This model regu-
larizes the mixture component means by dividing variables into groups and then
constraining the parameters for the variables in the same group to be identical.
The grouping of the variables is not pre-determined, but rather it is optimized
as part of the model estimation. A dimension reduction property for a two-way
mixture of distributions from a general exponential family is proved. The issue
of missing values that tend to arise when the dimension is extremely high is ad-
dressed. Estimation methods for the two-way GMM with or without missing data
are derived. Experiments on several real data sets show that the parsimonious
two-way mixture often outperforms a mixture model without variable grouping,
and as a byproduct, significant dimension reduction is achieved.

Many data are not defined in the vector space, for instance, histogram-based
descriptors, which have been widely used in image annotation (Li and Wang, 2008),
shape matching (Li et al., 2000), and computer vision tasks (Yao et al., 2012). Each
descriptor is essentially a set of weighted vectors, describing a discrete distribution.
Some data in the real world may not be effectively represented by tractable math-
ematical entities, for example, the protein data in bioinformatics, the multimedia
data that integrates images, texts, audios, and videos. Abstracting such data may
lead to information loss and inaccuracy. Instead of modeling each data object in
a mathematical format, certain distance measure may be more easily defined to
capture data information by comparing their pairwise similarities. For such type
of complex data, a distance-based mixture model via the concept of hypothetical

local mapping (HLM) is proposed in Chapter 3. HLM takes as input the distances



between all the training data and their corresponding cluster centroids and esti-
mates the model parameters. In the special case where all the training data are
taken as cluster centroids, we obtain a distance-based kernel density. Since only
pairwise distances are required for estimation, HLM is particularly appealing to
model the distribution of data that are complex and cannot be easily described
by a mathematical representation. Experimental results show that HLM based
algorithms are highly competitive in terms of classification accuracy and computa-
tional efficiency, comparing with other state-of-the-art distance-based classification
methods, for instance, k-NN, variations of k-NN, and SVM based algorithms. The
HLM based modeling approach lends itself readily to the incremental learning sce-
nario, which becomes increasingly important with the abundance of dynamic data
arriving at a high velocity.

In the big data era, the explosion of information not only provides abundant
resources for discovery, but also poses great challenges to human cognition, that
is, how to find meaningful knowledge or patterns from data and abstract them in
effective representations so that human brains can quickly absorb information and
possibly identify innovative findings. Visual analytics, which integrates the sci-
ences and technologies from data mining, information visualization, human com-
puter interaction, and many other domains, plays a critical role in dealing with
this challenge. It attempts to facilitate analytic reasoning through interactive vi-
sualization and the coupling of human and machine computational analysis.

The mixture model has its own specialties in visual analytics. First, as a clus-
tering or classification approach, the mixture model reveals the hidden patterns
of massive data. Second, it provides relatively rich geometric insight for visualiza-
tion. In the mode-based clustering of data, a cluster corresponds to a “bump” or
a “hill” in the probability density of a mixture model. The local maximum associ-
ated with the hill, that is, the hilltop, is referred to as the mode. A ridgeline linking
two hilltops can be found to measure the separability between clusters (Li et al.,
2007). It is proved that the ridgeline passes through all the critical points, such as
modes, antimodes, and saddle points of the mixture density of the two hills (Ray
and Lindsay, 2005). The mixture model thus provides users with heuristics about
the geometric properties of data. Third, it can serve as a data reduction tool,

which visualizes the data in an informative lower dimensional subspace (Hastie



and Tibshirani, 1996; Qiao and Li, 2012). Finally, the availability of fast paral-
lel algorithms for estimating mixture models bridges the gap between real-time
visualization and computationally intensive statistical modeling.

Encouraged by the favorable characteristics of mixture models for visual ana-
lytics, in Chapter 4, we investigate a GMM with component means constrained in
a pre-selected subspace, which allows us to visualize the clustering or classification
structure of high dimension data in a lower dimensional subspace. Applications
to classification and clustering are explored. An EM-type estimation algorithm is
derived. We prove that the subspace containing the component means of a GMM
with a common covariance matrix also contains the modes of the density and the
class means. This finding motivates us to identify a subspace by applying weighted
principal component analysis to the modes of a kernel density and the class means.
For choosing the kernel bandwidth, we acquire multiple subspaces from the ker-
nel densities based on a sequence of bandwidths. The GMM constrained by each
subspace is estimated, and the model yielding the maximum likelihood is chosen.
A dimension reduction property is proved in the sense of being informative for
classification or clustering. Experiments on real and simulated data sets are con-
ducted to examine several ways of determining the subspace and to compare with
the reduced rank mixture discriminant analysis (MDA). Our new method with
the simple technique of spanning the subspace only by class means often outper-
forms the reduced rank MDA when the subspace dimension is very low, making it
particularly appealing for visualization.

In Chapter 5, we introduce two parallel versions of hierarchical model asso-
ciation clustering (HMAC). HMAC is a nonparametric clustering method which
groups data points into one cluster if they are associated with the same mode in a
mixture-type density (Li et al., 2007). It has been applied to segment images for
the analysis of color combination aesthetics (Yao et al., 2012) and to perform clus-
tering on industry engineering design data in work-centered visual analytics to aid
the search for optimal designs (Yan et tal., 2012a). Our parallel implementations
of HMAC run on a cluster of compute nodes, using the message passing interface
(MPI) library. Experimental results show that PHMAC significantly reduces the
running time of the original algorithm, making it feasible to perform clustering on

large-scale data. When used in visual analytics, the fast parallel algorithms can



render the clustering results to the visualization component within a very short
time, which enables real time human and machine interaction.

Finally, we conclude and discuss future work in Chapter 6.



Chapter

Two-way Gaussian Mixture Models

2.1 Introduction

Mixture discriminant analysis (MDA), developed by Hastie and Tibshirani (1996),
has enjoyed wide spread applications. The prominence in broad applications held
by mixture models speaks for their appeals, which come from several intrinsic
strengths of the generative modeling approach to classification as well as the power
of mixture modeling as a density estimation method for multivariate data (Fraley
and Raftery, 2002). Although discriminative approaches to classification, e.g., sup-
port vector machine (Schélkopf et al., 1999), are often argued to be more favorable
because they optimize the classification boundary directly, generative modeling
methods hold multiple practical advantages including the ease of handling a large
number of classes, the convenience of incorporating domain expertise, and the min-
imal effort required to treat new classes in an incremental learning environment.
As with other approaches to classification, many research efforts on MDA re-
volve around the issue of high dimensionality. For the Gaussian mixture, the issue
boils down to the robust estimation of the component-wise covariance matrix and
mean vector. Earlier work focused more on the covariance because the maximum
likelihood estimation often yields singular or nearly singular matrices when the
dimension is high, causing numerical breakdown of MDA. The same issue arises
for linear or quadratic discriminant analysis (LDA, QDA), less seriously than for
MDA though. An easy way to tackle this problem is to use diagonal covariance

matrices. Friedman (1989) developed a regularized discriminant analysis in which



the component-wise covariance matrix is shrunk towards a diagonal or a common
covariance matrix across components. Banfield and Raftery (1993) decomposed the
covariance matrix into parts corresponding to the volume, orientation, and shape
of each component. Parsimonious mixture models were then proposed by assuming
shared properties in those regards for the covariances in different components.

Recently, research efforts have been devoted to constraining the mean vectors
as well. It is found that when the dimension is extremely high, for instance, larger
than the sample size, regularizing the mean vector results in better classification
even when the covariance structure is maintained highly parsimoniously or when
covariance is not part of the estimation. For instance, Guo et al. (2006) extended
the centroid shrinkage idea of Tibshirani et al. (2003) and proposed to regularize
the class means under the LDA model. Some dimensions of the mean vectors are
shrunk to common values so that they become irrelevant to class labels, achieving
variable selection. Pan and Shen (2007) employed the L; norm penalty to shrink
mixture component means towards the global mean so that some variables in the
mean vectors are identical across components, again resulting in variable selection.
Along this line of research, Wang and Zhu (2008) proposed the L., norm penalty
to regularize the means and select variables.

In this work, we investigate another approach to regularizing the mixture com-
ponent means. Specifically, we divide the variables into groups and assume identi-
cal values for the means of variables in the same group under one component. This
idea was first explored by Li and Zha (2006) for a mixture of Poisson distributions
(more accurately, a product of independent Poisson distributions for multivariate
data). They called such a model a two-way mixture, reflecting the observation
that the mixture components induce a partition of the sample points, each usu-
ally corresponding to a row in a data matrix, while the variable groups form a
partition of the columns in the matrix. Another related line of research is the
simultaneous clustering or biclustering approach (Lazzeroni and Owen, 2002; Zha
et al., 2001), where sample points and their variables are simultaneously clustered
to improve the clustering effectiveness and cluster interpretability. Lazzeroni and
Owen (2002) introduced the notion of plaid model which leads to simultaneous
clustering with overlapping. Unlike two-way mixture, the simultaneous cluster-

ing approach focuses on a set of data samples and does not provide a generative



model for an arbitrary sample point, in a strict sense. Here, we study the two-way
mixture of Gaussians for continuous data and derive its estimation method. The
issue of missing data that tends to arise when the dimension is extremely high is
addressed. Experiments are conducted on several real data sets with moderate to
very high dimensions. A dimension reduction property of the two-way mixture of
distributions from any exponential family is proved.

Our motivation for exploring the two-way mixture is multifold. First, in engi-
neering applications, very differently from science where we seek a simple expla-
nation, black box classifiers are well accepted. In scientific studies, the features
(aka variables) often have natural meanings, for instance, each feature corresponds
to a gene; and the purpose is to reveal the relationship between the features and
some other phenomenon. Variable selection is desired because it identifies fea-
tures relevant to the phenomenon. In engineering systems, the features are often
defined and supplied artificially; and the purpose is to achieve good prediction
performance with as much information as possible. Therefore selecting features
may not be a concern, but how to combine their forces is critical. We thus focus
on a parsimonious mixture model that can be more robustly estimated, but not
implying the discard of any features. Moreover, estimating the two-way mixture
model is computationally less intensive than selecting variables using L; or L.,
norm penalty.

Second, from model estimation perspective, assuming identical means for vari-
ables in the same group is essentially to quantize the unconstrained means of the
variables and replace those means by a smaller number of quantized values. Con-
sider the following hypothetical setup. Suppose the means of k variables Xi, ...,
X are independently sampled from a normal distribution A/(0,s?). Denote the
means by fi1, ..., p. Suppose X;, j =1, ..., k, are independently sampled n times
from N (p;,0?%), the samples denoted by xg-i), i=1,..,n,j=1, .. k Without
regularization, the maximum likelihood estimation for p; is fi; = > ", xg-i) /n. The
total expected squared error is F [Z?Zl(,uj - ﬂj)ﬂ = ko?/n. On the other hand,
if the constrained estimator i = Z?:l > asy) /nk is used for all the pu;’s, the
total expected squared error is F [Z?Zl(,uj - ﬂ)z] = (k—1)s* + 0%/n. We see
that if s> < 0?/n, the constrained estimator fi yields lower total expected squared

error than fi;, 7 = 1, ..., k. The rationale for the quantization strategy is that if



we substitute [i;’s as the true p;’s and divide them into groups of similar values,
the p;’s in the same group are considered to be sampled from a distribution with
a small 52, and hence have a good chance of satisfying the inequality above.

The rest of this chapter is organized as follows. The two-way Gaussian mix-
ture model is formulated in Section 2.2. We consider two cases for the component
covariance matrices: diagonal for very high dimensions and unconstrained for mod-
erately high dimensions. In Section 2.3, for the two-way mixture of distributions
from any exponential family, a dimension reduction property is presented, with
proof in the Appendix. The estimation algorithm and the method to treat missing
data are described in Section 2.4. Experimental results with comparisons are pro-

vided in Section 2.5. Finally, we conclude and discuss future work in Section 2.6.

2.2 Two-way Gaussian Mixture Model

Let X = (X1, Xa, ..., X;,)", where p is the dimension of the data, and the class label
of XbeY € X ={1,2,..,K}. A sample of X is denoted by x = (21,2, ..., z,)".
We present the notation for a general Gaussian mixture model assumed for each
class before introducing the two-way model. The joint distribution of X and Y un-
der a Gaussian mixture is f(X = x,Y = k) = ai fr(X) = ax Zf:’“l Ther O (X| kery 2ker )
where ay, is the prior probability of class k, satisfying 0 < a; < 1 and Z,le ap =1,
and fr(x) is the within-class density for X. Ry is the number of mixture com-
ponents used to model class k, and the total number of mixture components for
all the classes is M = Zszl Ry. Let m, be the mixing proportions for the rth
component in class k, 0 < m, < 1, Zf:’“l T = 1. ¢(+) denotes the pdf of a
Gaussian distribution: g, is the mean vector for component r of class k and 3,
is the corresponding covariance matrix. To avoid notational complexity, we write

the above mixture model equivalently as follows

f(X =x,Y = k) = Z mem(k>¢(x|ﬂ'ma Em) ) (2'1)

where 1 < m < M is the new component label assigned in a stacked manner to all
the components in all the classes. The prior probability for the mth component

Tm = QT if m is the new label for the rth component in the kth class. Specifically,
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let Ry, = ZZ,:l Ry and Ry = 0. Then M = Ry. Let theset Ry, = {Ryp_1+1, Ry_1+

., R} be the set of new labels assigned to the R; mixture components of class
k. The quantity p,,(k) = 1 if component m “belongs to” class k and 0 otherwise.
That is, p,(k) = 1 only for m € Ry, which ensures that the density of X within
class k is a weighted sum over only the components inside class k. Moreover,
denote the associated class of component m by b(m). If p, (k) = 1, b(m) = k.

Then we have ay =}, cx Tm and m, = 75, /ag.

2.2.1 Two-way Mixture with Diagonal Covariance

If the data dimension is very high, we adopt diagonal covariance matrix 3, =

2

Tl oo am’p), i.e., the variables are independent within each mixture compo-

diag(c?

nent. Model (2.1) becomes

M p
f<X:X7sz):Zﬂ_mpm Hqswjmmm mj)‘ (22)
m=1 j=1

In Model (2.2), the variables are in general not independent within each class as
one class may contain multiple mixture components. To approximate the class con-
ditional density, the restriction of diagonal covariance matrix on each component
can be compensated by having more additive components. With diagonal covari-
ance matrices, it is convenient to treat missing values, a particularly useful trait for
applications highly prone to missing values, for instance, microarray gene expres-
sion data where more than 90% of the genes miss some measurements (Ouyang et
al., 2004). We will show that the two-way Gaussian mixture model with diagonal
covariance matrices can handle missing data effectively. On the other hand, for
moderately high dimensional data, we will propose shortly a two-way mixture with
full covariance matrices.

For Model (2.2), we need to estimate parameters ji,, ; and wa for each di-
mension j in each mixture component m. When the dimension p is very high,
sometimes p > n, we may need a more parsimonious model. We now introduce
the two-way mixture model with a grouping structure imposed on the variables. In
order not to confuse with the clustering structure of samples implied by the mixture

components, we follow the naming convention used by Li and Zha (2006): “cluster”
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refers to a variable cluster and “component” means a component in the mixture
distribution. For each class k, suppose the variables are grouped into L clusters.
The cluster identity of variable j in class k is denoted by c(k,j) € {1,2,...,L},
k=1, .. K, j=1, .. p, referred to as the cluster assignment function. The

two-way Gaussian mixture is formulated as follows:

p

M
fX=x,Y=k) = Z TmDm (k) H DT o, (b(m) 35 Tomc(biom) ) - (2.3)
m=1

J=1

Within each mixture component, variables belonging to the same cluster have

identical parameters since the second subscripts for p and o?

are given by the
variable cluster assignment function. Thus, for a fixed mixture component m,
only L, rather than p, u’s and 0%’s need to be estimated. Also note that c(k, j) is
not pre-specified, but optimized as part of model estimation. In our current study,
the cluster assignment function ¢(k, j) depends on class label k, but extension to

a component specific assignment is straightforward.

2.2.2 Two-way Mixture with Full Covariance

When the data dimension is moderately high, one may suspect that diagonal co-
variance matrices adopted in Model (2.2) are not efficient for modeling the data and
full covariance matrices can fit the data better with a substantially fewer number
of components in the mixture. In order to exploit a two-way mixture as entailed
in (2.3), we propose to first model the within-class density by a Gaussian mixture
fX=xY =k =M TP () O(X| o, Bi), where ¥, is an unconstrained
common covariance matrix across all the components in class k. Once ik is iden-
tified, a linear transform (a “whitening” operation) can be applied to X so that
the transformed data follow a mixture with component-wise diagonal covariance
matrix, more specifically, the identity matrix Ii Assume ¥, is non-singular and

~ 1 ~1 ~1
hence positive definite, we can write Xy = (X2)/(X}?), where X7 is full ranked.

~ 1

Let Wy, = ((232)")~! and Z = W}, X. The distribution of Z and Y is

9(Z=2Y =k)= Z TP (k) 0(2 Wi, 1) - (2.4)
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In the light of the above model for Z, (2.3) is a plausible parsimonious model
to impose on Z by the idea of forming variable clusters. In fact, the covariance
matrix I in (2.4) is not as general as the diagonal covariance matrix assumed in
Model (2.3). In our study, we adopt Model (2.3) directly for Z instead of fixing
the covariance matrix to I, allowing more flexibility in modeling. In initialization,
however, it is reasonable to set the mean of Z in component m as v,, = Wy,
and the covariance matrix X, = L.

In summary, let the two-way Gaussian mixture for Z be

p

M
g(Z = Z, Y = k) = Z mem(k‘) H ¢<zj|ym,c(b(m)7j)a gfn,c(b(m),j)) .
m=1

Jj=1

Since X = W~ 17, we can transform Z back to X and obtain the distribution for

the original data:
M
FX=%Y = k) = 3 mupn (R &W i, (W E (WY, (25)
m=1

where vy = (Vi c(b(m),1)5 -+ Vi,c(o(m) p))'s and By, = diag <072n,c(b(m)71)’ "'7J'r2n,c(b(m),p))'

We thus have two options when employing the two-way Gaussian mixture: (a)
if the data dimension is too high for using a full covariance matrix, we assume
diagonal covariance matrix as in Model (2.3); (b) if a full covariance matrix is
desired, we suggest Model (2.5) which involves essentially whitening all the mixture
components and then assuming Model (2.3) for the transformed data.

As a final note, to classify a sample X = x, the Bayes classification rule is used:
y = argmax, f(Y = k|X = x) = argmax, (X =x,Y = k).

2.3 Dimension Reduction

In this section, we present a dimension reduction property for the two-way mix-
ture of distributions from a general exponential family. Consider a univari-
ate distribution from an exponential family assumed for the jth variable in X:
o(x;10) = exp (Zil ns(0)Ts(xj) — B(O)) h(xz;). The parameter vector @ is re-

parameterized as the canonical parameter vector n(0) and the cumulant generating
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function B(0) . T(z;) = (T1(x), ..., Ts(x;))" is the sufficient statistic vector of z;
with size S. For a two-way mixture model, variables in the same cluster within

any class share parameters. We thus have the following model:

P

M
FX=xY =k = > mupm(k) [] ¢ (@|0ncwim.) - (2.6)
m=1

j=1

Recall that b(m) is the class which component m belongs to and c(b(m),j) is
the cluster index the jth variable belongs to. Model (2.6) implies a dimension

reduction property for the classification purpose, formally stated below.

Theorem 2.3.1. For z;’s in the [th variable cluster of class k, | = 1,..., L,
k=1, .. K, define Tjx(x) = > et jy=t T(@s), where T(x;) is the sufficient
statistic vector for x; under the distribution from the exponential family. Given
Tz,k(x), l=1,..,L, k=1, ..., K, the class label Y is conditionally independent of

X = (21, T2, ..., xp)".

This theorem results from the intrinsic fact about the exponential family: the
size of the sufficient statistic is fixed when the sample size increases. Here, to be
distinguished from the number of data points, the sample size refers to the num-
ber of variables in one cluster because within a single data point, these variables
can be viewed as i.i.d. samples. Detailed proof for the theorem is provided in
Appendix A.1.

In the above statement of the theorem, for notation simplicity, we assume the
number of variable clusters under each class is always L. It is trivial to extend
to the case where different classes may have different numbers of variable clusters.
Since the size of the sufficient statistic T(x;) is S, the total number of statistics
needed to optimally predict class label Y is SK L. In the special case of Gaussian
distribution, the size of T(z;) is S = 2, where T1(z;) = z; and Ty(z;) = 3. In the
experiment section, we will show that similar or considerably better classification
performance can be achieved with SKL < p. If the way the variables are clustered
is identical across different classes, i.e., ¢(k,j) is invariant with &, the dimension
sufficient for predicting class label Y is SL since Thk’s are identical for different
k’s.
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2.4 Model Estimation

To estimate Model (2.3), the EM algorithms with or without missing data are
derived.

Estimation without Missing Data: The parameters to be estimated in-
clude prior probabilities of the mixture components m,,, the Gaussian parameters
fmis Oy, m = 1, ., M, 1 =1, ..., L, and the cluster assignment function
clk,j) e {1,2,..,L}, k=1, .., K, j =1, ..., p. Denote the collection of all the
parameters and the cluster assignment function c(k, j) at iteration ¢ by ¢ : ¢, =
{Wﬁﬁ),uff;&)l, 2;?1 ADk,j):m=1,.MI1l=1,.,Lk=1,..,K,j=1,...p}. Let
the training data be {(x®,y®) : 4 = 1,...,n}. The EM algorithm comprises the

following two steps:

1. E-step: Compute the posterior probability, ¢;,, of each sample 7 belonging

to component m.

p
i) (¢ (t)
Gian O T P (y) H ¢ <$§ )|'u£n)7c(t)(b(m),j)’ "zm,c(t)(b(m),j)) ’ (27)
j=1

subject to Z%zl Gim =1.

2. M-step: Update 1411 by 11 = argmaxQ(¢/'|1);), where Q(v'[1)y) is given
,l/)/

below. Specifically, the updated parameters are given by Eqgs.(2.9) ~ (2.12)
to be derived shortly.

i=1 m=1 7j=1

Q'[¢r) = qumlog (” P (y”) H ( Rl )a)ﬂzin,c'(b(m),j))) - (28)

Based on (2.8), it is easy to see that the optimal 7 subject to Z% 1 ait =1,

are given by

Vo Zqim, m=1,..,M. (2.9)
i=1

t+1) 520+

The optimization of y,. 57, 0% 7", m =1, .., M, =1, .., L, and A (k. 5),

k=1, .., K, j=1, .. p,requires a numerical procedure. Our approach is to
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optimize the Gaussian parameters and the cluster assignment function alternately,

fixing one in each turn. Let n;; be the number of j’s such that ¢(k,j) = [. In

(t+1) o(t+1
m,l o m,l

Each maximizes Q(¢;11]|¢:) when the others are fixed.

one round, p ), and ¢V (k, j) are updated by the following equations.

" (4)
(t+1) _ Zizl Ji,m Zj:c(t)(b(m)d‘):l Z;

. = (2.10)
! 77b(m),l Zizl Gim
n (4) (t+1)
2(t+1) > izt Gim Zj:c(t)(b(m),j):l(xj = Mg )?
O mi — n (211)
’ Mom)d i1 Qi
= (37@ - (ttl))2 (t+1)
. m, t+
VD (k, 5) = argmaxz Z Qi | ——2 sy loglo, /I - (2.12)
{1 LY 527 e, 20%,

The optimality of Eq.(2.10) and Eq.(2.11) can be shown easily as in the deriva-

tion of the EM algorithm for a usual mixture model. Given fixed Gaussian param-

(t+1 2(t+1)

)
ml and o ml

eters u , Q(Yy11|t) can be maximized by optimizing the cluster
assignment function ¢tV (k, ) separately for each class k and each variable j.
See (Li and Zha, 2006) for the argument that applies here likewise. The optimal-
ity of c"*Y(k, ) is then obvious because of the exhaustive search through all the
possible values.

Eqgs.(2.10)—(2.12) can be iterated multiple times. However, considering the
computational cost of embedding this iterative procedure in the M-step, we adopt
the generalized EM (GEM) algorithm (Dempster et al., 1977), which ensures that
Q(Vs1|Yr) > Q(y]thy) rather than solving maxy,,, Q(¥u41|t). Thus, Egs.(2.10)~
(2.12) are applied only once. To see that Q(w1|1) > QW |thy), let QZ = {77,(;;“),
Pl g2 Ok ) cm o= 1, ML =1, Lk = 1., K,j = 1.,p} It
is straightforward to show that Qv 1|tr) > Q(¥|Yy) > Q(Yy]1)y) based on the
optimality of Eqs.(2.9)~ (2.11) conditioned on other parameters held fixed. The
computational cost for each iteration of GEM is linear in npM L.

To initialize the estimation algorithm, we first choose Ry, the number of mix-

ture components for each class k. If the training sample size of each class is roughly
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equal, we assign the same number of components to each class for simplicity. Oth-
erwise, the number of components in a class is determined by its corresponding
proportion in the whole training data set. Then we randomly assign each sample
to a mixture component m in the given class of that sample. The posterior proba-
bility ¢; . is set to 1 if sample ¢ is assigned to component m and 0 otherwise. Also,
each variable is randomly assigned to a variable cluster [ in that class. With the
initial posterior probabilities and the cluster assignment function given, an M-step
is applied to obtain the initial parameters. If any mixture component or variable
cluster happens to be empty according to the random assignment, we initialize
pma and o, ; by the global mean and variance. During the estimation, we bound
the variances 02,,; away from zero using a small fraction of the global variance in
order to avoid the singularity of the covariance matrix .

Estimation with Missing Data: When missing data exist, due to the diag-
onal covariance matrices assumed in Model (2.3), the EM algorithm requires little
extra computation. The formulas for updating the parameters in the M-step bear
much similarity to Egs. (2.9) ~ (2.12). The key for deriving the EM algorithm
when missing data exist is to compute Q(¥;41|t;) = Elog f(v|ti11) | W, 1], where
v is the complete data, w the incomplete, and f(-) the density function.

When there is no real missing data, EM takes the latent component identities
of the sample points as the “conceptual” missing data. When some variables
actually lack measurements, the missing data as viewed by EM contain not only the
conceptually missing component identities but also the physically missing values
of the variables. The derivation of (Q(vy1]t¢);) when real missing data exist is
provided in Appendix A.2. We present the EM algorithm below. Introduce A(-)
as the missing indicator function, that is, A(xg-i)) = 1 if the value of :E;i) is not

missing and 0 otherwise.

1. E-step: Compute the posterior probability, ¢;m, ¢ =1, ..., n, m =1, ..., M.
Subject to Zi\f:l Gim = 1,

Gim < TOpn(y?) x

H [A(x;l))gb (mg‘l)mgﬁ(t)(b(m),j)v027(7?,5(t)(b(m),j)) + (1 - A(Sﬂy)))} (2.13)
j=1
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2. M-step: Update the parameters in ;.1 by the following equations.

7+ Zqzm, subject to ZT{' H) -1 m=1,.,M. (2.14)

m=1

Foreachm =1, ... M,l=1, ..., L, let fngnl = A(xy))xoz) +(1 —A(xy))),ug?l.

(
J

7@
(t+1) Zz 1q1m2] O (b(m),5)=1 Tjm,l

, (2.15)

! Mb(m),1 Z?:1 Qi;m
~ (1) (t+1) (@) )

o2 i1 Gism D c<f><b<m>,a> l( jumd — P ) (L= Aa7))o® .(2.16)

i (m),l Z'L:l qi,m
($(i)_u(t+1))2 t+1) <N<t) ) (x, )_Ngffll)>2+02(t> ®) (k,5)
Let O, = —322+f) log |o,. 7|, Q2 — 22010 — =
t+1
log o5}V

D (k, §) = argmaxz ST GmlAGE)Q + (1 - AP)Q]. (2.17)

le{lv 7L}Z 1meka

2.5 Experiments

In this section, we present experimental results based on three data sets with
moderate to very high dimensions: (1) Microarray gene expression data; (2) Text
document data; (3) Imagery data. The two-way Gaussian mixture model (two-
way GMM), MDA without variable clustering (MDA-n.v.c.) and Support Vector
Machine (SVM) are compared for all the three data sets. Unless otherwise noted,
the covariance matrices in the mixture models are diagonal because most of the
data sets are of very high dimensions, e.g., p > n. To make our presentation
concise, we also recall that the total number of mixture components for all the
classes is always denoted by M, and the number of variable clusters in each class
is denoted by L.

Microarray Gene Expression Data: We apply the two-way Gaussian mix-

ture model to the microarray data used by Alizadeh et al. (2000). Every sample
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in this data set contains the expression levels of 4026 genes. There are 96 samples
divided into 9 classes. Four classes of 78 samples in total are chosen for our ex-
periment, in particular, 42 diffuse large B-cell lymphoma (DLBCL), 16 activated
blood B (ABB), 9 follicular lymphoma (FL), and 11 chronic lymphocytic leukemia
(CLL). The other classes are excluded because they contain too few points. Be-
cause the sample sizes of these 4 classes are quite different, the number of mixture
components used in each class is chosen according to its proportion in the training
data set. We experiment with a range of values for the total number of components
M. The percentage of missing values in this data set is around 5.16%. The estima-
tion method in the case of missing data is used. We use five-fold cross validation
to compute the classification accuracy.

Fig.2.1 shows the classification error rates obtained by MDA-n.v.c.. The min-
imum error rate 10.90% is achieved when M = 6. Due to the small sample size,
the classification accuracy of MDA degrades rapidly when M increases. For com-
parison, Fig.2.1 also shows the classification error rates obtained by the two-way
GMM with L = 20. As we can see, the two-way GMM always yields a smaller
error rate than MDA-n.v.c. at any M. With L = 20, the two-way GMM achieves
the minimum error rate 7.26% when M = 12. In Fig.2.1, when M = 4, i.e., one
Gaussian component is used to model each class, MDA is essentially QDA and the
two-way GMM is essentially QDA with variable clustering. The error rate achieved
by QDA without variable clustering is 13.26%, while that by QDA with variable

clustering is a smaller value of 9.48%.

Table 2.1: The classification error rates in percent achieved by the two-way GMM
for the microarray data

Error rate (%) L=5 L=10 L=30 L=50 L=70 L=90 L=110 n.wv.c.

M=4 8.69 7.12 9.48 10.82 10.82 11.93 11.93 13.26
M =18 7.26 10.02 8.60 10.82 8.46 9.48 8.46 35.30
M =36 7.35 5.83 7.17 6.15 7.34 7.48 6.23 44.65

Table 2.1 provides the classification accuracy of two-way GMM with different
values of M and L. The minimum error rate in each row is in bold font. As Table
2.1 shows, for each row, when the number of mixture components is fixed, the

lowest error rate is always achieved by the two-way GMM. According to Theorem
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Figure 2.1: The classification error rates obtained for the microarray data using
both MDA-n.v.c. and two-way GMM with L = 20 variable clusters. The total
number of components M ranges from 4 to 36.

2.3.1, this data set can be classified with accuracy 7.26% by the two-way GMM
at M = 18 and L = 5 using only 40 (2K L = 40) dimensions, significantly smaller
than the original dimension of 4026. If homogeneous variable clustering is enforced
across different classes, that is, the cluster assignment function c(k, j) is invariant
with class k, the classification accuracy is usually worse than the inhomogeneous
clustering. Due to space limitations, we will not show the numerical results. All
the results given in this section are based on inhomogeneous variable clustering.

We may use a data driven method, such as grid search and cross validation, to
find the pair of M and L that gives the smallest error rate. Under some situations,
the physical nature of the data may dominate the choices for M and L. For many
other problems, the density of the data may be well approximated by mixture
models with different values of M and L. For the purpose of classification, the
mixture structure underlying the density function has no effect. It is known that
discovering the true number of components assuming the distribution is precisely
a mixture of Gaussian is a difficult problem and is out of the scope of this work.
Effort in this direction has been made by Tibshirani and Walther (2002).

For comparison, we also apply SVM to this data set and obtain its classification
accuracy with five-fold cross validation. We use the LIBSVM package (Chang and
Lin, 2001) and the linear kernel with the default selection of the penalty parameter

C. Missing values in the microarray data are replaced by the corresponding value
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from the nearest-neighbor sample in Euclidean distance. If the corresponding value
from the nearest-neighbor sample is also missing, the next nearest sample is used.
The classification error rate obtained by SVM is 0.00%. Although the minimum
error rate of two-way GMM listed in Table 2.1, i.e., 5.83% at M = 36 and L = 10,
is larger than that of SVM, it uses only 80 (2K L = 80) dimensions comparing with
the original dimension of 4026 used by SVM. Additionally, our focus here is not
to compete with SVM, but to show that the parsimonious two-way mixture can
outperform a mixture model without variable grouping.

Text Document Data: we perform experiments on the newsgroup data
(Lang, 1995). In this data set, there are twenty topics, each containing about 1000
documents (email messages). We use the bow toolkit to process this data set.
Specifically, the UseNet headers are stripped and stemming is applied (McCallum,
1996). A document x is represented by a word count vector (xgi),a:gi), - x}(f)),
where p is the vocabulary size. The number of words occurred in the whole news-
group data is about 78,000. In our experiment, to classify a set of topics, we
pre-select words to include in the word count vectors since many words are only
related to certain topics and are barely useful for the topics chosen in the data
set. We use the feature selection approach described in (Li and Zha, 2006) to
select the words that are of high potential for distinguishing the classes based on
the variances of word counts over different classes. The feature selection in the
preprocessing step is not aggressive because we still retain thousands of words.
After selecting the words, we convert the word count vectors to word relative fre-
quency vectors by normalization. Roughly half of the documents in each topic are
randomly selected as training samples and the rest test samples.

We apply the two-way GMM to three different data sets, all with more than two
classes. Five topics from the newsgroup data, referred to in short as, comp.graphics,
rec.sport.baseball, sci.med, sci.space, talk.politics.guns, are used to form our first
data set. Each document is represented by a vector containing the frequencies of
1000 words obtained by the feature selection approach aforementioned. In the sec-
ond data set, we use the same topics as in the first one but increase the dimension
of the word frequency vector to 3455. Our third data set is of dimension 5000 and
contains eight topics: comp.os.ms-windows.misc, comp.windows.x, alt.atheism,

soc.religion.christian, sci.med, sci.space, sci.space, talk.politics.mideast. In all the
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three data sets, the sample size of each topic in the training data set is around 500,
roughly equal to that of the test data set. We assign the same number of mixture
components to each class for simplicity. Only the total number of components M
is specified in the discussion.

Table 2.2 provides the classification error rates of the two-way GMM on the
three data sets with different values of M and L. When M is fixed in each row,
the difference between the lowest error rate achieved by the two-way GMM and
the error rate of MDA-n.v.c. is also calculated. These differences are under “diff”
in the last column of each subtable. In Table 2.2a, when M = 5 and 20, the
lowest error rates obtained by the two-way GMM are equal to or smaller than the
error rates of MDA-n.v.c.. When M = 60, MDA-n.v.c. gives the overall lowest
error rate 8.54%, while the lowest error rate obtained by the two-way GMM is
9.27% at L = 50 or 110. When we increase the dimension of the word frequency
vector and the number of topics to be classified, as in the second and third data
sets, Table 2.2b and Table 2.2¢ show that the lowest error rate in each row is
most of the time achieved by MDA-n.v.c.. However, the differences shown under
the column of “diff” are always less than 1%. The performance of the two-way
GMM is thus comparable to that of MDA-n.v.c., but is achieved at significantly
lower dimensions. For instance, in Table 2.2¢, when M = 32, the value under
“diff” is 0.87% and the lowest error rate of the two-way GMM is obtained at
L = 20. According to Theorem 2.3.1, at L = 20, this data set is classified using
320 (2K L = 320) dimensions versus the original dimension of 5000. Of particular
interest is when M = 5 for the first and second data sets and M = 8 for the
third data set. In those cases, a single component is assigned to each class, and
hence MDA and the two-way GMM are essentially QDA with or without mean
regularization. We find that for QDA, variable clustering results in lower error
rates for the second data set and equal error rates for the other two.

Let us examine the two-way mixture models obtained for the two classes,
comp.os.ms-windows.misc and comp.windows.x, in the third data set. Consider
for example the models with M = 32 and L = 30. Fig.2.2 shows the number of
words in each of the 30 word (aka variable) clusters for the two classes. These
word clusters are indexed in an order of descending sizes. The sizes of these word

clusters are highly uneven. In each case, the largest cluster accounts for more than
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Table 2.2: The classification error rates in percent achieved by the two-way GMM
for the three text document data sets

(a) Data Set 1 with five classes and dimension = 1000

Error rate (%) L=10 L=30 L=50 L=70 L=90 L=110 n.wv.c. diff

M=5 9.19 8.95 9.07 9.27 9.15 9.15 8.95 0.00
M =20 12.79 9.72 9.80 8.58 9.15 9.39 8.99 -0.41
M =60 12.06 10.04 9.27 9.80 9.39 9.27 8.54 0.73

(b) Data Set 2 with five classes and dimension = 3455
Error rate (%) L=10 L=30 L=50 L=70 L=90 L=110 n.wv.c. diff

M=5 7.19 6.91 7.07 7.07 7.11 7.15 7.15  -0.24
M =20 7.88 6.99 6.79 7.88 7.84 7.11 6.06 0.73
M =60 10.91 7.03 7.43 7.72 7.43 7.35 6.42 0.61

(c) Data Set 3 with eight classes and dimension = 5000
Error rate (%) L=5 L=10 L=20 L=30 L=40 L=50 mnvc. diff

M =38 11.41 11.06 10.96 10.79 10.86 10.86  10.79 0.00
M = 32 15.58 11.71 11.11 11.66 11.24 1191 10.24 0.87
M =96 12.79  14.26 18.23 12.29 11.79 11.09 11.01 0.08
3000 3000
2500 2500

Number of words
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S o o
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Figure 2.2: The sizes of the word clusters for comp.os.ms-windows.misc (left) and
comp.windows.z (right).

half of the words. Moreover, the largest cluster contains words with nearly zero
frequencies, which is consistent with the fact that for any particular topic class, a
majority of the words almost never occur. They are thus treated indifferently by
the model.

Classification error rates obtained by SVM for these three data sets are also
reported. We use the linear kernel with different values of the penalty parameter
C to do the classification. The value of C' with the minimum cross validation

error rate on the training data set is then selected and used for the final classi-
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fication on the test data set. The SVM classification error rates on these three
data sets are 7.98% (Data Set 1), 5.98% (Data Set 2) and 9.67% (Data Set 3),
respectively. Comparing with the results listed in Table 2.2, SVM is only slightly
better than MDA-n.v.c. and two-way GMM. However, two-way GMM achieves
these error rates with a significantly smaller number of dimensions. Also, SVM is
computationally more expensive and not scalable when the number of classes is
large. Unlike two-way GMM, SVM does not provide a model for each class, which
in some applications may be needed for descriptive purpose.

Imagery Data: The data set we used contains 1400 images each represented
by a 64 dimensional feature vector. The original images contain 256 x 384 or
384 x 256 pixels. The feature vectors are generated as follows. We first divide
each image into 16 even sized blocks (4 x 4 division). For each of the 16 blocks,
the average L,U,V color components are computed. We also add the percentage
of edge points in each block as a feature. The edges are detected by thresholding
the intensity gradient at every pixel. In summary, every block has 4 features, 64
features in total for the entire image. These 1400 images come from 5 classes
of different semantics: mountain scenery (300), women (300), flower (300), city
scene (300), and beach scene (200), where the numbers in the parenthesis indicate
the sample size of each class. Five-fold cross-validation is used to compute the
classification accuracy. We use the same number of mixture components to model
each class.

Table 2.3 lists the classification error rates obtained by the two-way GMM with
a range of values for M and L. When M is fixed, as L increases, the error rates of
the two-way GMM tend to decrease. In Table 2.3, the lowest error rate in each row
is achieved by the two-way GMM. For this data set, because 2K L > 64, dimension
reduction is not obtained according to Theorem 2.3.1. However, the total number
of parameters in the model is much reduced due to variable clustering, especially
when M is large.

Since the dimension of the imagery data is moderate, at least comparing with
the previous two data collections, we also experiment with the two-way GMM with
full covariance matrices, that is, Model (2.5) in Section 2.2. Table 2.4 provides the
classification error rates obtained by this model. When M is fixed, the lowest error

rates are achieved by two-way GMM except at M = 10 and M = 20. Comparing
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Table 2.3 with Table 2.4, the performance of the two-way GMM with full covari-
ance matrices is slightly worse than the two-way GMM with diagonal covariance
matrices. In other applications, it has also been noted that using diagonal covari-
ance matrices often is not inferior to full covariance matrices even at moderate
dimensions. One reason is that the restriction on covariance can be compensated
by having more components. It is thus difficult to observe obvious improvement
by relaxing the covariance.

We apply SVM with a radial basis function (RBF) kernel to the imagery classifi-
cation problem. The penalty parameter C' and the kernel parameter v are identified
by a grid search using cross validation. The final SVM error rate with five-fold
cross validation is 31.00%. In Table 2.3, the minimum error rate of two-way GMM
is 32.43% at M = 40 and L = 36. Similar to the previous examples, the classifica-
tion accuracies of SVM and two-way GMM for the imagery data are very close. We
also apply a variable selection based SVM to this classification problem since the
dimension of the imagery data is moderately high. The wrapper subset evaluation
method (Kohavi and John, 1997) and forward best-first search in WEKA (Hall et
al., 2009) are employed to select the optimal subset of variables. In the wrapper
subset evaluation method, the classification accuracy of SVM is used to measure
the goodness of a particular variable subset. The final classification is obtained by
applying SVM to the data with selected variables. For the SVMs involved in the
variable selection scheme, the kernel function and the parameters are the same as
those for the SVM without variable selection. The best subset of variables is of
size 21, yielding a five-fold cross validation error rate of 34.93%. Comparing with
the minimum error rates listed in Table 3 and Table 4, i.e., 32.43% (M = 40 and
L = 36) and 33.21% (M = 40 and L = 56), the performance of SVM with variable
selection is slightly worse than that of two-way GMM.

Table 2.3: The classification error rates in percent achieved by the two-way GMM
for the imagery data

Errorrate (%) L=8 L=12 L=16 L=24 L=36 L=48 L=52 L=56 n.v.c.

M=5 45.50 44.00 44.57 44.21 44.64 43.50 43.93 43.64 43.79
M =10 40.29 37.86 36.93 35.57 35.43 35.07 35.50 35.00 35.57
M =20 35.21 36.29 35.64 34.93 34.79 35.07 36.00 33.93 37.36
M = 30 35.43 36.07 34.86 34.64 33.00 34.57 34.36 34.93 34.64
M =40 38.79 37.07 36.36 34.79 32.43 35.64 36.00 35.36 36.21

M =50 37.50 35.50 33.93 34.07 33.21 34.14 34.93 34.93 36.50
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Table 2.4: The classification error rates in percent achieved by the two-way GMM
with full covariance matrices for the imagery data

Errorrate (%) L=8 L=12 L=16 L=24 L=36 L=48 L=52 L=56 nv.c

M =5 46.57 45.86 44.21 44.57 44.57 43.93 43.93 43.57 43.79
M =10 42.86 42.71 41.86 40.43 40.00 37.79 37.14 37.50 35.71
M =20 42.21 43.14 39.50 38.21 36.86 37.07 36.07 35.57 34.14
M =30 43.43 42.14 41.21 39.00 38.50 36.29 35.79 36.79 35.86
M =40 43.64 42.00 41.50 38.43 36.29 36.07 33.64 33.21 33.29
M = 50 42.79 41.07 39.07 37.71 35.93 33.86 34.14 35.29 34.57

Computational Efficiency: We hereby report the running time of two-way
GMM on a laptop with 2.66 GHz Intel CPU and 4.00 GB RAM. For the microarray
data, when M = 18 and L = 70, it takes about 30 minutes to train the classifier
on four fifths of the data and test the classifier on one fifth of the data (that is,
to finish computation for one fold in a five-fold cross validation setup). For the
text document data (2514 training samples, 2475 test samples, 5 classes, 3455
dimensions), when M = 20 and L = 50, it takes about 40 minutes to train and
test the classifier. For the imagery data, at M = 30 and L = 24, two-way GMM
with diagonal covariance matrices takes only 14 seconds to finish computation for
one fold of the five-fold cross validation. The EM algorithm converges fast and the
computational cost for each iteration is linear in npM L. The longer running time
required by the microarray as well as the text document data is because of the
high dimensions and coding in Matlab. We expect much shorter running time if
the experiments are conducted using C/C++. Although the grid search of M and
L further increases the computation time, the search can be readily parallelized in

a cluster computing environment.

2.6 Summary

In this work, we proposed the two-way Gaussian mixture model for classifying
high dimensional data. A dimension reduction property is proved for a two-way
mixture of distributions from any exponential family. Experiments conducted on
multiple real data sets show that the two-way mixture model often outperforms
the mixture without variable clustering. Comparing with SVM with and without
variable selection, two-way mixture model achieves close or better performance.

Given the importance of QDA as a fundamental classification method, we also in-
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vestigated QDA with mean regularization by variable grouping, and found that the
regularization results in better classification for all the data sets we experimented
with.

For data sets arising out of engineering systems, variables, or features, often
form natural groups according to their physical meanings. Such prior knowledge
may be exploited in the future when we create variable groups in the two-way
mixture. Another issue that can be explored is the component-wise whitening
strategy we proposed for moderately high dimensional data when diagonal covari-
ance matrices are considered too restrictive. In the current experiments, we did not
observe gain from this strategy. It is worthy to study whether the approach can be
improved by more robust estimation of covariance and whether new applications

may benefit from the approach.



Chapter

Distance-based Mixture Modeling
for Classification using Hypothetical

Local Mapping

3.1 Introduction

Distance-based classifiers classify objects using only the pairwise distances between
samples in the test and training data sets. Because only the pairwise distances
are required in training and prediction, the specific representation of the data
samples can be of greater variety and in certain cases even becomes irrelevant.
This is particularly appealing to classification problems where the object cannot be
described effectively by a mathematical entity that permits well-studied analytical
operations, for example, vectors. The term distance is used in a general sense here
to indicate the pairwise relationship between data samples, which can be similarity
or dissimilarity, unless otherwise noted. In addition, the distance may be loosely
defined, which is not necessarily a true metric. Distance-based classification is used
popularly in the fields of computer vision, information retrieval, bioinformatics,
etc., attracting much attention from researchers.

In this chapter, we investigate distance-based mixture modeling for classifica-
tion using hypothetical local mapping (HLM), a mechanism originally proposed by
Li and Wang (2006). HLM has been successfully applied to estimate the probabil-
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ity distribution of images in a concept category, where each image is characterized
by its color and texture signatures, each being a set of weighted and unordered vec-
tors (Li and Wang, 2008). To estimate a mixture model, HLM takes as input the
distances between the training image signatures and their corresponding prototype
signatures. Here, by prototype, we mean the centroid of a cluster. Specifically,
given a class of objects and their pairwise distances, clustering is first applied and
each cluster of objects is locally mapped to a Euclidean space R*, preserving the
pairwise distances to the maximum extent. In the mapped space, this cluster of
data is modeled by a Gaussian distribution with spherical covariance and a mean
vector equal to the mapped prototype. Based on the relationship between the
Gaussian and Gamma distributions, the parameters of the Gaussian distribution
and the dimension of the mapped space can be estimated by fitting a Gamma
distribution using only distances between each data point and its corresponding
prototype in the original space. The local mapping is thus bypassed, causing no
additional computation, and hence called hypothetical. Finally, a mixture model
is constructed to combine these clusters.

In the current work, we aim to explore the potential of HLM as a mixture
modeling technique in a more general setting than what has been pursued in (Li
and Wang, 2008). In the previous work, the clustering algorithm exploits the
mathematical representation of an image, and is thus not pairwise distance-based.
Although HLM only uses the distances after clustering, its performance coupled
with distance-based clustering algorithms on more general data sets is unknown.
Because the parameter fitting in HLM is computationally negligible in comparison
with the pairwise distance-based clustering performed beforehand, mixture mod-
eling by HLM is almost as fast as the clustering process itself. With the existence
of some fast distance-based clustering algorithms, HLM can be substantially faster
than several major pairwise distance-based classification methods. Other compu-
tational advantages of HLM will be discussed shortly. With this merit of HLM
in mind, we push the consideration on computational efficiency one step further.
We will propose and evaluate two incremental learning schemes of constructing
mixture models by HLM. The intrinsic characteristics of HLM lend it readily to
the incremental learning scenario, which becomes increasingly important with the

abundance of high velocity stream data.
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Comparing with discriminative approaches, such as SVM with pairwise dis-
tances modified into kernels (Hochreiter and Obermayer, 2006; Zhang et al., 2006;
Chen et al., 2009), HLM inherits many practical advantages of the generative
modeling approach, including the ease of handling a large number of classes, the
convenience of incorporating domain expertise, and the minimal effort required to
treat new classes in an incremental manner. As a generative mixture modeling
approach, HLM also has profound differences from the mixture SDA (Cazzanti,
2007b). The assumption in the mixture SDA essentially puts pairwise constraints
between all the classes. The estimation of the probability distribution of one class
depends on the data in all the other classes, the complexity of which grows quickly
with the number of classes. In contrast, HLM is along the line of mixture modeling,
which establishes the density of each class separately. In addition, HLM is well
linked to the method of treating pairwise distances as features. Given a set of data,
if each data point is treated as a prototype, HLM will generate a mixture density
using all the pairwise distances. The resulting density thus becomes a generalized
kernel density.

The rest of this chapter is organized as follows. Related work is discussed in
Section 3.2. We introduce HLM in Section 3.3 and the distance-based clustering in
Section 3.4. The classification algorithm is described in Section 3.5. In Section 3.6,
we present two HLM based incremental learning schemes. Experimental results
with comparisons are provided in Section 3.7. Finally, we summarize the work and

conclude in Section 3.8.

3.2 Related Work

We review distance-based classification methods in the following categories.
Nearest Neighbors:  One of the most popular distance-based classification
methods is k-nearest neighbor (k-NN). As a lazy learning method, A-NN does
not require the training of data. Given a test sample, its distances to all the
training samples are computed. The majority class of the k closest data points is
assigned as the class label of the test sample. K-NN has enjoyed applications in
a wide range of areas, such as image retrieval (Jacobs et al., 2000), object recog-

nition (Belongie et al., 2002) , and photography composition classification (Yao et
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al., 2012). However, k-NN is sensitive to noisy training samples, especially when
the distance measure is not well defined. To mitigate this issue, various distance
measures or transformations have been proposed (Pekalska et al., 2001; Simard et
al., 1993; Weinshall et al., 1999). Several weighted versions of k-NN have also been
proposed in (Chen et al., 2009; Cost and Salzberg, 1993; Gupta et al., 2006), which
significantly improve the classification accuracy compared to standard k-NN. In
addition, to speed up classification, the distances between the test sample and a
set of prototypes from each class are usually used, instead of using all the training
data. The prototypes are not necessarily the original data. They can be a set
of edited condensing samples approximating the distribution of the original data.
The strategies of prototype selection are discussed in (Lam et al., 2002; Pekalska
et al., 2006; Lozano et al., 2006). If we have only one prototype from each class
with the class centroid being the prototype, the scheme is also called the nearest
centroid method.

Embed in Euclidean Space:  Multi-dimensional scaling (MDS) (Young and
Householder, 1938) embeds the training and test data into a lower-dimensional
Euclidean space using the pairwise distances. Shepard (1962a,b) further proposed
nonmetric MDS which only requires the pairwise distances in rank-order. Data
can also be embedded in a pseudo-Eclidean space (Pekalska et al., 2001; Goldfarb,
1985). Standard classification methods, such as k-NN, can then be applied to the
embedded data. There are several disadvantages of this approach (Cazzanti et
al., 2008). First, the classification of new test data requires the re-computation
of the embeddings of all the data. The embedding is computationally intensive.
Second, if the distance is not a true metric, the embedding may be inappropriate.
Third, the projection of data onto lower-dimensional space may cause the loss of
information and thus cannot fully preserve the relationships between the original
data.

Treat Distances as Features: Another distance-based classification approach
is to combine the distances between a test sample and the training samples as one
feature vector. Standard classifiers, such as support vector machines (SVM) and
Fisher linear discriminant analysis (LDA), are then applied to the distance feature
vectors (Pekalska et al., 2001; Graepel et al., 1999; Duin et al., 1999). Balcan et

al. (2006) proposed a general theory of learning with distances as features, which
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shows that there is a probabilistic upper bound on the classification error if almost
all the samples (at least a 1 — € fraction) have on average closer distances to
random samples in the same class than to random samples in a different class.
Wang et al. (2007) further extended it to unbounded dissimilarity functions, and
constructed a convex combination of simple classifiers on the distances to achieve
a bounded classification error. A major limitation of this approach is that the
dimensionality of the feature vector is equal to the number of training data, which
can be prohibitively high. Additionally, as pointed by Chen et al. (2009), if there
is large inter-class variance relative to intra-class variance, treating distances as
features may not have sufficient discriminative power even though the classes are
well separated.

Modify Distances into Kernels: If the pairwise distance matrix between the
training samples is symmetric and positive definite, it can be treated as a kernel
and used in any kernel classifiers, for instance, support vector machines. But many
distance matrices do not have this property. Several methods for modifying dis-
tances into kernels are discussed in (Chen et al., 2009). Hochreiter and Obermayer
(2006) proposed potential support vector machines (P-SVM) which can work with
any input data matrix. However, the final kernels in these methods are all n x n
matrices, which require intensive computation for large n. A hybrid approach of
SVM and k-NN (Zhang et al., 2006) computes the pairwise distance matrix for the
union of the test sample and its k£ neighbors, modifies the matrix into a kernel,
and then applies standard SVM. It reduces the computational cost resulted from
training on the entire data set. One problem with modifying distances into kernels
is that special effort has to be made to transform the original distances between the
test and training samples so that they are consistent with the modified distances
in producing the kernels.

Distance-based Generative Models: — This type of method was first exploited
by Li and Wang (2006) for building mixture models to annotate images. They
called it hypothetical local mapping (HLM), which requires using only distances
between each data point and its corresponding prototype. Another distance-based
generative model was proposed by Cazzanti and Gupta (2007a), namely, local
similarity discriminant analysis (local SDA). They assume that the expectation of

the similarity between a random sample z and a random class centroid u is equal
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to the mean of the similarities between the k nearest neighbors of x of the same
class and the class centroid p. Suppose the number of classes is G, this poses G2
number of constraints. Given these constraints, each class-conditional distribution
is estimated by the principle of maximum entropy. Cazzanti et al. (2008) later
proposed a more generalized SDA by assuming the expectation of the descriptive
statistic of a random sample x with respect to the class conditional distribution
to be the average of the statistics of all the training data in each class. SDA and
local SDA assume essentially a single distribution for each class. For multi-modal
cases, mixture SDA was further proposed (Cazzanti, 2007b). A weighted sum of
exponential components is used to estimate the class-conditional distribution. Note
that in mixture SDA, G? number of mixture distributions have to be estimated
due to a weighted version of the constraint in SDA. If the number of classes is
large, the quadratic growth of the number of mixture models will present a big

computational challenge.

3.3 Hypothetical Local Mapping

In this section, we introduce hypothetical local mapping (HLM) which has been
used to build a generative mixture model using the distances between each data
point and its corresponding prototype (Li and Wang, 2008). A prototype is a
representative centroid in a cluster. If restricted to be one of the data points in the
training set, a centroid is often defined as the point which has the minimum total
distance to all the other points in the same cluster. The pairwise distance may
be arbitrarily defined, subject to specific applications. Let us denote the distance
between two objects by 13(-, -) and the general space where data points reside by
Q. In the following, we first introduce the estimation of data distribution in a
single cluster by HLM and then show how HLM constructs a mixture model by

combining these clusters.

3.3.1 Estimate the distribution of a single cluster

Let X = (X1, Xy, ..., X;)! € R¥, where k is the dimension of the space. Suppose

X is a multivariate random vector that follows a normal distribution N (u,X):
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p = (p, ..., iz )" is the mean vector and 3 = 0?1 is the covariance matrix, where I
is the identity matrix. The pdf of N (i, ) is:

k LR ol | N
x) = e 202 3.1
p(r) = ( TMQ) (3.1)
Denote a Gamma distribution by (v : b, s), where b is the scale parameter and s is

the shape parameter. The pdf of (y:b,s) is

u s—le—u/b
(%) 0> 0

f(u):T(s)’ >

where I'(+) is the Gamma function. It is known that the squared Euclidean distance
between X and the mean p, || X — p/|?, follows a Gamma distribution (v : £,25?).

We assume that the neighborhood around each prototype in the original space
), that is, the cluster associated with this prototype, can be locally mapped to
RE and model the mapped data in R* by the Gaussian density in Equation (3.1).
Expressing in terms of the Gamma distribution parameters, we have &k = 2s and
02 = b/2. To estimate the Gamma distribution parameters, we need || z; — p ||* for
all data points x; in the cluster, which are mapped from the original data objects
Bi, B; € Q. Because the mapping preserves the distances, || z; — u ||*= D(ﬂi, a),
where the prototype o € €2 is the inverse of ;. The actual mapping from Q to R*
can be skipped.

Let the data point 8 € © be mapped to z € R*. Note again || x—pu ||*= D(ﬁ, a).
Reformulating Equation (3.1) with the Gamma distribution parameters b and s,

we obtain the density for [:

)ZSG—L(%D‘) )

Next, we discuss the estimation of the Gamma distribution parameters b and s.
Given a cluster of data, let the collection of distances between the prototype and

all the other data points be u = (uq, ua, ..., un). Denote the mean @ = vazl u;.
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The maximum likelihood (ML) estimator b and § are solutions of the equations:

log 3 — ¢(3) = log [a/(HiNzl ) /N
b=1/3

where ¢(-) is the di-gamma function (Evans et al., 2000):

_ dlogT'(s)

>0
ds 8

©(s)

The above set of equations can be solved by numerical methods (Li and Wang,
2008).

3.3.2 Estimate a Mixture Model

Suppose there are M clusters (prototypes) in €, with prototypes {ay, s, ..., anr}-
The overall data in 2 can be modeled by an M component mixture model. In
the following, we will use cluster and component exchangeably since every mixture
component is estimated using the data in one cluster. Let the prior probabilities
for the components be w,, n =1,..., M, 27]7%:1 wy = 1. The overall mixture model
for € is then:

_ D(B,0)

- 1 2s by
?(3) :;%(\/Tbn) e o (3.2)

The prior probability w,, is estimated empirically by the percentage of data assigned
to prototype a,. It is assumed that the mapped spaces R¥ of all the components
have the same dimension but possibly different variances. Therefore, all the com-
ponents share a common shape parameter but the scale parameter b, varies with
each component. That is, the clusters around each prototype are hypothetically
mapped to the same Euclidean space R¥, but with different spreadness. Note that
the distribution of mixture model can be flexible by having more additive com-
ponents. In Equation (3.2), each component distribution is similar to a Gaussian
kernel in nonparametric density estimate.

Denote the index set of data points assigned to prototype j by C;', j = 1,..., M.
The total number of data points is N = Zj\il |C;|. The prior probability w, for

!Strictly speaking, we exclude from C; the data point chosen as its prototype.
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component 7 is estimated by |C,|/N. Denote the ith data point by 3;, and suppose
it is assigned to cluster j. Let u; = D(ﬁi, a;). Suppose the mean of the distances
in cluster j is u; = ﬁ Ziecj uj. It is shown in (Li and Wang, 2008) that the
maximum likelihood estimation for s and b;, 7 = 1, ..., M, is solved by the following

equations:

R o _|c;|/N
log 8 — (8) = log [TTM%, @™ /(TN wr) V™

(3.3)
bj =u;/s, j=1,2,.,. M

The above equation assumes that u; > 0 for every i. Although this is theoret-
ically true, however, in practice, we may obtain singleton cluster (with only one
data point) due to limited data and thus some u’s are zeros. To resolve this issue,
we remove all the singleton clusters which have zero distances. In addition, we
may shrink l;j toward a common value, which increases the robustness of parame-
ter estimation against clusters with small sample size. That is, modify l;j =u;/$s

slightly to

|

A9

by =Ad 4 (1—))
S

V)

where A is a shrinkage factor. The amount of shrinkage depends on the size of each
IS5
ijrl )

cluster. Specifically, we set A = which approaches 1 when the cluster size is

large.

3.3.3 Estimate a Mixture Model with Weighted Distances

In some case we may have weights associated with the collection of distances u =
(uy,ug, ..., un), that is, some distances may weigh more than others. Denote the
corresponding collection of weights by w = (wy, ws, ..., wy), where Zf\il w; = 1.
Ziecj Witky

s w_Z be the weighted mean distance for prototype j. We prove in
iec; Wi

Appendix C.1 that the maximum likelihood estimation for s and bj, j=1,..., M,

Let ﬂj =

is solved by the following equations:

. . M _Xiec; Wi Ny
log § — ¢(8) = log Hj:l U - /TLE v
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Similar to Equation (3.3), we assume u; > 0 for every i, that is, remove all the
singleton clusters which have zero distances. Equations (3.3) in Section 3.3.2 are

equivalent to the above equations when all the w;’s equal to 1/N.

3.4 Distance-based Clustering

Before HLM is applied to build mixture models, we need first perform clustering
on the data in each class and find the cluster centroids. Let us denote the number
of data in class k by n,. Many distance-based clustering algorithms are available.
Distance-based clustering itself is a rich research topic and we do not intend to
provide a comprehensive review on the related work. In this chapter, we focus on
those with low computational complexity and good scalability to large datasets.
We discuss the following three approaches.

Agglomerative Clustering is one of the most popular distance-based clustering
methods. It starts with every data point as an individual cluster and merges
similar data points together based on their pairwise distances. The merging will
be stopped if the entire data has been contained in a root cluster or the desired
number of clusters is achieved. Agglomerative clustering has been applied to a wide
range of applications (Jain et al., 1999; Eisen et al., 1998; Beeferman and Berger,
2000). The main problem with agglomerative clustering is that it has O(n?) or
worse computational complexity, which is prohibitive for large data sets.

Generalized k-means minimizes the total within cluster distance, in the same
spirit as k-means, but only uses pairwise distances. Several data points are ran-
domly selected as the initial set of prototypes. The assignment of the remaining
data points to their closest prototypes yields a partition of the data set. For all
the data points in the same group, a new prototype is updated as the one with
the minimum total distance to all the other data points in the group. Then the
data points are assigned again to the new prototypes. This process continues until
a pre-determined maximum number of iterations is reached or the prototype in
each cluster has converged, resulting in a fixed partition. Suppose the number of
data points in cluster k is [, the total computational cost for generalized k-means
is O( 0 12 + K1}.)). Since I, > K in general, its computational cost is there-

fore O(Yn_, 2), whereas agglomerative clustering has O(n?) or worse complexity.
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When the data set has large samples and the sizes of partitioned subsets are rela-
tively balanced, generalized k-means reduces the computational cost considerably.
Generalized k-means is also referred to as k-medoids (Hastie et al., 2001). It can
be regarded as a heuristic method to the well-known p-median problem in the op-
eration research community (Maranzana, 1964). The goal of p-median is to locate
p facilities in order to minimize the total transportation cost between the facilities
and n demand points. P-median is a combinatorial optimization problem, which
is proved to be NP-hard (Cornuejols et al., 1977). P-median naturally arises in
clustering analysis (Rao, 1971; Mulvey and Crowder, 1971), when the p “facilities”
are selected to be the most representative data points. Suppose the set of proto-
types is {p1, ..., i} and the assignment of data point x;, ¢ = 1, ..., N, to cluster
j is C(i) = argmin, ;4 d;,;. We abuse the notation k slightly here to mean the
number of prototypes. Denote the index set of data assigned to prototype j by
C,;. The total within cluster distance is defined as Zle > iec; dip;- P-median is

to minimize this distance by locating appropriate centroids, that is,

min Z Z iy, - (3.5)

As a heuristic method of p-median problem, generalized k-means essentially finds
successively single facilities of k? subsets of demand points and then update the
subsets before repeating the process.

Vertex Substitution Heuristic (VSH) was first proposed by Teitz and Bart
(1968) as another heuristic approach to p-median problem. Similar to the gen-
eralized k-means, it first randomly selects several data points as the initial set
of prototypes and assigns the remaining data points to their closest prototype.
Exchange each prototype with a data point that is currently not a prototype or
not previously tried. Select the exchange that results in the largest reduction in
Equation (3.5). This process is repeated until no further reduction can be found.
We show the details in Algorithm (1). In practice, it is found that VSH shows
more stable performance than generalized k-means (Teitz and Bart, 1968). The

worst case complexity of VSH is O(n?) when applied to the data in class k.

2k = p in this scenario.
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Algorithm 1: Vertex Substitution Heuristic (VSH)

Input: Pair-wise distances between N data points; the number of prototypes k
Output: An estimate of the set of prototypes that solves Equation (3.5)
Set t = 1;
Randomly select k£ data points as the initial set of prototypes Vi;
begin
foreach data point v; € V; do
Compute C(i) = argminy << diy; ; // assign to the nearest

prototype
end

Compute the total within cluster distance r; = Zle ZC’(i):j dip;s

foreach v, ¢ |J Vi and not visited do
=1t

foreach v; € V; do
Exchange v, and v; and compute the new total within cluster distance

r;
Compute Ap; = 1] — 145
end
Find the data point v; satisfying
Apy <0 and j' = argmin; ;< Apj; // has the largest distance
reduction

if there exists such a data point vy then
Exchange v, and v;; and mark the new prototype set as Vi;1;

Compute r441;
else
‘ Viy1 = Vi ; // retain the previous prototype set
end
Mark vy, as visited;
=t41;

end

if no more reduction in r; then

Output V;;

Terminate;

else

Reset t = 1;

Mark all the data points as unvisited. Go back to the step begin and
repeat the above procedures;

end

end

3.5 The Algorithm

In this section, we present two approaches to classification based on HLM. For the

first approach, clustering is applied before forming a mixture density via HLM.
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For the second approach, referred to as HLM (kernel), a mixture density is formed
without performing clustering, but instead in the fashion of a kernel density esti-

mate. We summarize the steps of HLM with clustering first:

1. Perform clustering on the data in each class k using distance-based clustering
methods and identify the cluster centroids. Obtain the distances between

each data point and its corresponding prototype.

2. Suppose the total number of prototypes for all the classes is M =
>« My, where M, is the number of prototypes in class k, k
1,2,..., K. Let the indices of the prototypes in class k be F, =
{Mp_y + 1, My—1 +2,..., My_1 + My}, where My_y = My + Mo+ -+ My,
for k > 1, and My = 0. Denote the set of points assigned to component 7,
n=1,.. M, byC,.

3. Estimate a mixture model M}, for each class k:

D(ﬁ:an)

by (3.6)

S(BIMy) =) nl

nEF

where b, is the scale parameter for component 7 and s is the common shape
parameter shared by all the components in all the classes. That is, we assume
that the cluster of data around each prototype in the data set are hypotheti-
cally mapped to a Euclidean space of the same dimension, but with possibly
different spreadness. Note that it is also straightforward to make the shape
parameter s vary with the class, that is, to have s;. The only difference be-
tween these two is that distances from all the classes are collected and input
to Equations (3.3) for the former while only distances within a class are used
in the estimation for the latter. The prior probability of each component
ICyl.n € Fr.
Also, estimate the prior probabilities of each class, m, k =1, ..., K, by their

wy in Equation(3.6) is estimated empirically by [Cyl/>_, 7,

empirical frequencies.

4. To classify a test data point ¢, we compute the posterior probability of ¢
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belonging to each class k:

Pe(t) = T (t| M)

- k=12 . K. (3.7)
leil ﬂ_kgb(t’Ml)

The class label of ¢ is then argmax; ;. x pi(t).

The role of clustering conducted before mixture modeling is two-fold: as a
smoothing mechanism to suppress outliers and as a data reduction mechanism to
save computation. It is found through experiments that the first benefit is not
always true. On the contrary, treating all the original data as centroids often
outperforms a much reduced set of cluster centroids, albeit at the cost of more
computation during testing. This approach is particularly appealing when the
number of data points in a class is very small, while clustering in this case is quite
likely to lose valuable information. We thus develop a kernel version of HLM based
mixture modeling without clustering, denoted by HLM (kernel). Specifically, each
training data point is treated as a cluster centroid in the corresponding class.
Suppose the training data points are {31, B2, ..., Ox}. The number of data points
in class k is ng, Zszl n, = N. Without loss of generality, assume the indices of
the data in class k be {Bn, 41, .-, Baptn, f» Where ny, = lez;ll ng, for k > 1, and

n1 = 0. We form a nonparametric mixture model for class k:

Np+ng 1 1 . 7%
P(B| M) —z‘:ﬁzk-i-l(n_k)(ﬁ) e :

We need to decide an appropriate scale parameter b and shape parameter s, which
are common across the clusters in all the classes. A data-driven approach is
adopted. We first form pseudo clusters by grouping each data point and its near-
est neighbor in the same class. All these “tiny” clusters, each containing one data
point besides the cluster centroid, are input to the estimation process described in
3.3.2 to determine b and s. In practice, we find that this approach to estimate the

parameters usually yields good performance.
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3.6 HLM Incremental Learning

Data streams are common in the real world, for instance, network traffic, financial
transactions, web search, and social media feeds. They are ordered sequences of
data records that often arrive in batches with fast velocity, or in burst. It is
thus desirable to have models that can exploit immediately the available training
data and adapt efficiently with newly arrived data. Another motivating scenario
for learning models incrementally is when the entire data cannot be loaded into
memory at once. In this section, we will show that our proposed mixture models
based on HLM can be estimated conveniently in an incremental learning setup.
Two incremental learning schemes are proposed. The first scheme is more efficient
in computation, while the second scheme attempts to achieve better clustering by

combining old and new data in clustering.

3.6.1 Scheme I

In Section 3.3.2, the maximum likelihood estimation for model parameters is solved
by Equations (3.3). Note that, for each cluster j, only the size of the cluster |C;],
the arithmetic mean of the distances to the cluster prototype #;, and the geometric

/N "are needed in the estimation. Therefore,

mean of all the distances § = ([]v, us)
in an incremental learning setting, data up to the current batch can be discarded
after those statistics are stored. Given a new batch of data, we first perform
clustering and then obtain these statistics for each cluster. The new statistics
and those from previous data are then pooled together to solve the parameters by
Equation (3.3). Note that g will change since the number of data N increases when
a new batch of data arrives. Suppose the number of data that have arrived so far
is N1 and the number of data in a new batch is Ny. Let N = N; + N,. Suppose
we have stored g; = (vazll u;)/N. When a new batch arrives, the geometric mean
of all the distances g should be updated by g = g’lNl/N(l_[i]L\,l+1 ug )N

In this scheme, the clustering is performed separately on each batch of data.
Clusters (or related statistics) from the currently available data and the new batch
are pooled together to estimate a new HLM. This is motivated by the additive
nature of the mixture models. The distribution of data can be better approximated

by having more additive components.
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3.6.2 Scheme I1

A weighted clustering is performed on randomly sampled points from the data up
to the current batch and all the data in the new batch. We randomly sample a
small number of data points in each cluster obtained previously and assign them
relatively large weights. Smaller weights are given to the data points in the new
batch because they are not subject to sampling. Specifically, in the current data,
for a cluster j, if |C;| is larger than a pre-determined threshold, denoted by wv,
we randomly select v samples as well as the cluster centroid from that cluster.
Otherwise, for smaller |C;|, all the samples from that cluster will be selected. In
practice, v can be a very small number. Denote the weight of the ith sampled data

point by w;. The weight of a randomly selected sample i’ from cluster j is updated
by

flc;l+1 .
—|J|J{ Af |G > v
wy = vt

1.0 ,if |G| <wv .

The above function will weigh heavier individual points in down sampled clusters
with |C;| > v. On the other hand, the weight is dampened from a linear proportion
in order to lower the influence of “old” data collectively and to reduce the effect
of descreased dispersion in sampled data. When a new batch of data arrives, we
set the weight of each new data point to 1.0. A weighted clustering algorithm is
then applied to the combination of the sampled data and the data from the new
batch. The three distance-based clustering algorithms introduced in Section 3.4
can be used to perform clustering by taking a weighted distance matrix as input.
Specifically, let the distance matrix D be the original symmetric matrix of d, ;
between all pairs of data points ¢ and 7 and H be the same order diagonal matrix
with weights on the diagonal. The weighted distance matrix R is defined by R =
HD, which is no longer generally symmetric. The vertex substitution heuristic
(VSH) algorithm working on weighted distance matrix is introduced in (Teitz and
Bart, 1968).

After the cluster centroids are obtained, we re-assign to the nearest centroids
the data points that are neither in the new batch nor among the sampled data. In

this way, all the data that have arrived so far are partitioned into the new clusters,
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although many do not participate in generating the centroids. The new clustering
result is used to estimate the parameters. This process is repeated at the arrival of
every new batch. Note that because the old cluster centroids have been assigned
a relatively large weight, they are more likely to become new centroids again. In
practice, we gradually increase the total number of clusters when new data arrive

to increase the odds of new data becoming cluster centroids.

3.7 Experiments

In this section, we compare HLM with several other distance-based classification
methods on various datasets. The classification methods are described briefly

below:

1. SVM: modify the n x n symmetric distance matrix into a kernel (positive
semidefinite) by spectrum clip, which clips all the negative eigenvalues to
zero (Chen et al., 2009); and use a linear or Gaussian RBF kernel on similarity

feature vectors.

2. Potential-SVM: a more generalized SVM working with any given n x n dis-
tance matrix, which is not necessarily square or positive definite (Hochreiter
and Obermayer, 2006).

3. SVM-KNN: apply standard SVM to classification using a kernel modified
from the pairwise distance matrix between the union of a test sample and its

k nearest neighbors.

4. Similarity Discriminant Analysis (SDA): a set of generative classification
methods based on similarities (or distances) are considered, that is, basic
SDA | local SDA, and mixture SDA, where each class-conditional distribution
is estimated by maximum entropy under a constraint. Both local SDA and
mixture SDA aim to reduce the model bias issue of basic SDA. However,
the computation of mixture SDA is very intensive, which may be infeasible
for a large number of classes. Since local SDA consistently performs well in
practice and is comparable to the other two (Chen et al., 2009), we select local

SDA as the representative of this particular set of methods for comparison.
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5. k-NN: a test sample is assigned to the class most common among its k nearest

neighbors.

6. Weighted k-NN: two weight design goals are considered, that is, affinity (as-
sign larger weights to the data points that are closer to the test sample) and
diversity (assign smaller weights to highly similar data points). Specifically,
three different weight assignment approaches are tested: affinity weights,
kernel ridge interpolation weights (KRI), and kernel ridge regression weights
(KRR) (Chen et al., 2009). KRI-KNN and KRR-KNN consider both affinity

and diversity.

7. HLM (vsh, gknn, agg, kernel): the proposed mixture model using HLM, with
the clustering results obtained by VSH, generalized k-means, or agglomera-

tive clustering, or without clustering.

3.7.1 Data Sets

The information of all the tested data sets are summarized in Table 3.1. The
column entitled “Symmetric” indicates whether the distance is symmetric, and
the column entitled “Vector” indicates whether the data object is a vector. For
details of the first eight data sets, we refer interested readers to (Chen et al.,
2009). We add four more new data sets:

Imagery data has 1400 images that come from five classes of different semantics:
mountain scenery (300), women (300), flower (300), city scene (300), and beach
scene (200), where the numbers in the parentheses indicate the sample size of each
class. Each image is represented by a 64 dimensional feature vector. The distance
between images is the Euclidean distance.

Color signature has 600 images each represented by its color signature, i.e., a
set of weighted vectors (or discrete distribution). 100 images are selected from
each class of the above imagery data, with another 100 images from a new class
of semantics “man-made items”. In total, it has six classes. To form the color
signature of an image, we first convert the RGB color components of each pixel
to the LUV color components and then apply k-means on the 3-D color vectors
at all the pixels. The number of clusters in k-means is determined dynamically

by thresholding the average within cluster distance. An image segmentation is
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obtained after arranging the cluster labels of the pixels into an image according to
the pixel positions. We refer to the collection of pixels mapped to the same cluster
as a region. For each region, its average color vector and the percentage of pixels
it contains with respect to the whole image are computed. The color signature is
thus formulated as a set of weighted vectors (v, p™M)), (v p@) .. (™) pm),
where v is the mean color vector, p¥) is the associated probability, and m is the
number of regions. The mean value of m is equal to 9.98 for this data set. The
distance between images is the Mallows distance (Mallows, 1972).

Photography composition is used in (Yao et al., 2012) as the benchmark data
for composition classification. There are 150 photos that are equally divided into
three classes: horizontal, vertical, and centered. Each photo is represented by a set
of spatial relational vectors (SRV), which quantitatively characterizes its spatial
layout. Similar to the color signature data, each SRV is also a set of weighted
vectors. We refer interested readers to (Yao et al., 2012) for details of SRV. The
distance between photos is the integrated region matching (IRM) distance (Li et
al., 2000), a greedy variant of Mallows distance.

Sonar data is from the UCI machine learning repository, with 208 samples
divided into two classes (111, 97). Each sample has a 60 dimensional feature

vector. The distance between samples is the Euclidean distance.

Table 3.1: Summary of Data Sets

Name # data | # classes | Symmetric | Vector Distance Type
Amazon-47 204 47 No No Percentage
Aural Sonar 100 2 Yes No Human judgment
Caltech-101 8677 101 Yes Yes Kernel

Face Rec 945 139 Yes No Cosine similarity
Mirex07 3090 10 Yes No Human judgment

Patrol 241 8 No No Frequency

Voting 435 2 Yes Yes Value difference metric

Protein 213 4 Yes No Sequence-alignment similarity

Color Signature 600 6 Yes No Mallows distance

Photo Composition 150 3 Yes No IRM distance
Imagery 1400 5 Yes Yes Euclidean distance
Sonar 208 2 Yes Yes Euclidean distance

Since HLM uses distances as input, for some datasets with similarities, we need
to convert them into dissimilarities, that is, distances. Specifically, if the similarity
s has an obvious upper bound u, the corresponding distance is defined as d = u—s,

otherwise, d = 1/s. On the other hand, for the algorithms taking similarities as



46

input, we also need to convert distances into similarities. In Table 3.1, we have
three different distance metrics, Mallows, IRM and Euclidean distances. Since
distances have no upper bound values, the corresponding similarities are defined
as their inverse. We use an appropriate upper bound of all the similarities as the
self-similarity of a data point. In addition, if the distance between two data points
x and y is not symmetric, for example, the data in Amazon-47 and Patrol, we use
the symmetrized distance (d(z,y) + d(y,z))/2.

3.7.2 Experimental Setup and Details

For each data set, we randomly select 20% as test and the remaining 80% as
training. The classifier parameters, such as the penalty parameter C' and the RBF
parameter v for SVM, weight A for KRI k-NN and KRR £-NN, the neighborhood
size k for k-NN and local SDA, and the number of components in HLM, are all
selected by 10-fold cross validation on the training set. The trained model is
then applied to classify the held out test data. We repeat this process for 20
random partitions of training and test. The“one-versus-one” scheme (Hsu and
Lin, 2002) is used in the multi-classification of SVM. We assume equal number of
components in each class for HLM and the number of components is selected from
{1,2,3,..,10,12,14,16} by cross validation. The range of each parameter in cross
validation for the classifiers that are tested in (Chen et al., 2009) is kept the same
as the range used in that paper.

Note that in HLM, we have 2s = k, where s is the shape parameter and k is
the dimension of the mapped hypothetical space. Since the dimension of space,
k, should be an integer, we adjust the ML estimation § in Equations (3.3) to
be s* = |25+ 0.5]. In addition, we exclude the clusters containing fewer than
three data points in the estimation of model parameters. We test three different
distance-based clustering methods introduced in Section 3.4 to obtain the cluster
centroids for HLM. The Ward’s method (Ward, 1963) is used in agglomerative
clustering. Generalized k-means algorithm is initialized by the k-center algorithm
which is also based on pairwise distances. For VSH, we select the clustering which

yields the minimum total within cluster distance with 20 random initializations.
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3.7.3 Classification Results

The classification error rates of all the tested methods on the twelve data sets
are reported in this section. For each method, we show its mean error rate and
standard deviation across 20 random partitions of training and test.

Because the Amazon-47, Face Rec and Patrol data sets have very small number
of training data within each class, performing clustering in each class is not mean-
ingful. Among the HLM based algorithms, we thus only applied HLM (kernel) to
these data sets. For some special data sets such as Patrol, the distances between
data points only take three values: 0.0, 0.5, and 1.0. The distance between one
data point and its nearest neighbor is often 0.0, causing numerical issues for the pa-
rameter estimation in HLM. Therefore, for Patrol, we manually select the common
shape and scale parameters from the range of estimated values based upon HLM
(vsh). HLM (kernel) is similar to k-NN in the sense that both require distances
to all the training data to classify a test point. In HLM (kernel), every training
data point contributes smoothly to the decision function, while in k-NN, only the
closest k neighbors contribute. Note that local SDA is reduced to k-NN if there is
not enough data to fit distributions over the distances (Chen et al., 2009).

We experimented with fourteen classification algorithms. These algorithms fall
into several categories: k-NN and its variations, SVM based, local SDA, and HLM
based. For clarity, we present results for five representative algorithms in Table 3.2.
We choose one algorithm from each of the three categories in existing work, namely,
k-NN, local SDA, and SVM-similarities as features (rbf). These algorithms are well
known and relatively basic among their respective categories. In addition, the more
complicated versions are not evidently stronger. For the newly developed HLM
based algorithms, we show results of HLM (vsh) and HLM (kernel) in this table.
For completeness, we report the results of the other nine algorithms in Table 3.3.
For the first eight data sets listed in Table 3.1, the classification results of all the
algorithms other than the HLM based are taken directly from the results in (Chen
et al., 2009).

Based on Table 3.2, if we compare the generative modeling approaches, local
SDA, HLM (vsh), and HLM (kernel), we see that HLM (kernel) performs best on
7 data sets, local SDA performs best on 4 data sets, and HLM (vsh) performs best
on 1 data set. Taking also into consideration k-NN and SVM (rbf), HLM (kernel)
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performs best among the five algorithms on 6 data sets, SVM (rbf) performs best
on 4 data sets, and k-NN performs best on 1 data set (tied best with HLM).
Clearly, HLM (kernel) ranks on the top most frequently. The performance of SVM
(rbf) deviates remarkably from the other algorithms on several data sets. For the
Protein data, it yields a significantly lower error rate than the others, 2.67% versus
others ranging from 17.44% to 29.88%. On the other hand, it performs much worse
than the others on Amazon-47 and Patrol. For Amazon-47, its error rate is 75.98%
while the others range from 15.61% to 16.95%; for Patrol, its error rate is 40.73%
while the others are tightly around 11.5%. Similar performance on these three data
sets, either very good or very poor, is also observed for SVM (clip), SVM (linear),
and P-SVM, as shown in Table 3.3. In a sense, the SVM-based algorithms are more
volatile. Based on the results in Table 3.3, we can see that among the three HLM
based algorithms, HLM (vsh) consistently works well while HLM (gknn) exhibits
more variation in performance. HLM (agg) is also relatively stable in performances
but is more expensive in computation.

Computational Complexity and Running Time Recall that the total
number of data is N = ", ny, where n;, is the number of data in class k, and the
total number of clusters (aka components) for all the classes is M = >, M, where
M, is the number of components in class k. The worst scenario complexity of the
three clustering algorithms (vsh, gknn, agg) is Y, ni. After distances between
all the data points and their corresponding prototypes are obtained, statistics
required in Equations (3.3) can be computed in O(N). We solve Equations (3.3),
numerically, through binary search over a fixed range, which can be finished in
O(cM), where ¢ is a constant time to solve a single equation. Therefore, the total
complexity of estimating mixture models for all the classes is O(N + cM), given
the clustering results are available. In practice, N > M. So the model estimation
complexity is linear in the total number of data N. The main computational cost is
thus on clustering. In practice, we find that VSH runs very fast and returns good
clustering results. Comparing with local SDA and SVM based classifiers, HLM
(vsh) has significantly shorter running time, making it very attractive for large
scale computation. The two parameters of SVM (rbf), i.e., the penalty parameter
C and the RBF parameter v, are selected by grid search using cross validation,

which is extremely intensive in computation. By contrast, HLM (vsh) has only
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one parameter, the number of clusters in a class, to choose by cross validation.

HLM (kernel) has exhibited highly competitive classification performance on
most data sets. It is similar to £-NN in that the computation during classification
is mostly on getting the distances between a test point and every training point.
During training, £-NN is not totally free of computation because cross validation
is used to choose k, while HLM (kernel) only estimates two parameters by an ex-
tremely fast algorithm after one round of 1-NN is performed. However, comparing
with HLM (vsh) which exploits a possibly much smaller set of cluster centroids
than the original data, HLM (kernel) is expensive during classification for large
data sets. For such data sets, a subset of representative data points may be sam-
pled from each class and used as training data in HLM (kernel). This approach
can be further investigated in the future work.

Table 3.4 lists the running time of k-NN, local SDA, SVM (rbf), HLM (vsh),
and HLM (kernel) on several exemplary data sets. The experiments run on a 2.66
GHz Intel CPU. HLM based algorithms are implemented in C, local SDA is in
Matlab?, and the remaining algorithms are in C++*. The value listed in the table
is the average running time for one random partition of training and test data.
We conduct 20 random partitions for every data set, and within each partition,
training and testing are performed. As Table 3.4 shows, HLM (vsh) and HLM
(kernel) run significantly faster than local SDA and SVM (rbf). For most data
sets, SVM (rbf) has the longest running time while k-NN has the shortest. The
running time of HLM (kernel) is close to that of k-NN, though slightly higher on
some data sets. This is mainly due to the cost of choosing appropriate scale and
shape parameters in HLM (kernel). For local SDA, SVM (rbf), and HLM (vsh),
the classification of test data is very fast after the model has been trained. The
main computational cost is therefore on training. As aforementioned, both HLM
(kernel) and k-NN are expensive for classifying test data if the training data set
is large. For example, on the Mirex data set, the average testing time of HLM
(kernel) across 20 random partitions is 295 ms while HLM (vsh) takes only 29 ms,

about ten times faster.

3http://staff.washington.edu/lucage/software.html. The Matlab Executable (MEX) files are
available for local SDA, which run faster but require customized installations on different plat-
forms.

4http://ee.washington.edu/research/guptalab/similaritylearning /simMLL-linux.tgz.
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Table 3.2: Classification error rates of distance-based classifiers (I)

Classifier Amazon-47 Aural Sonar Caltech-101 Color-signature
k-NN 16.95 (4.85) 17.00 (7.65) 41.55 (0.95) 32.54 (3.26)
Local SDA 16.83 (5.11) 17.75 (7.66) 41.99 (0.52) 35.71 (2.67)
SVM-similarities as features (rbf) 75.98 (7.33) 14.25 (7.46) 38.16 (0.75) 36.58 (3.54)
HLM (vsh) NA 16.00 (5.39) 48.52 (1.08) 36.42 (3.42)
HLM (kernel) 15.61 (5.37) 13.75 (6.50) 40.18 (1.00) | 31.54 (3.96)
Classifier Face Rec Imagery Mirex Patrol
k-NN 4.23 (1.43) 36.64 (3.04) 61.21 (1.97) 11.88 (4.42)
Local SDA 4.55 (1.67) 42.87 (2.52) 60.94 (1.94) 11.77 (4.62)
SVM-similarities as features (rbf) 3.92 (1.29) 47.16 (2.38) 55.72 (2.06) 40.73 (5.95)
HLM (vsh) NA 44.73 (2.71) 61.62 (1.92) NA
HLM (kernel) 3.81 (1.36) 36.64 (3.13) 69.42 (2.33) | 11.46 (4.09)
Classifier Protein Photo Composition Sonar Voting
k-NN 29.88 (9.96) 25.00 (6.37) 20.24 (6.37) 5.80 (1.83)
Local SDA 17.44 (6.52) 22.67 (8.92) 20.00 (6.79) 6.38 (2.07)
SVM-similarities as features (rbf) 2.67 (2.97) 19.67 (7.14) 21.31 (5.71) 5.52 (1.77)
HLM (vsh) 23.49 (10.55) 23.50 (7.11) 24.40 (4.69) 4.89 (2.12)
HLM (kernel) 29.07 (7.52) 23.17 (8.66) 23.81 (5.05) 6.09 (1.86)

3.7.4 Incremental Learning Results

Given a data set, we randomly select 20% of the data as the held-out test and the
remaining 80% as training data used in incremental learning. Among the training
data, 20% of them are randomly selected as the initial training batch, and the rest
are divided into eight batches of equal size (10% each). One round of incremental
learning is carried out at every newly arrived batch. We experiment with the
two schemes of HLM based incremental learning, as introduced in Section 3.6.
As a comparison with a baseline, the performance of the trivial batch learning
method which retrains all the data that have arrived so far are also reported. The
Vertex Substitution Heuristic (VSH) method is used to perform clustering for all
the methods. Specifically, in HLM incremental learning scheme (II), VSH performs
the weighted clustering by taking weighted distance matrix defined in Section 3.6.2.

For both of the HLM incremental learning schemes, the number of components
(aka clusters) in each class in the initial training batch is set to 4. Because the size
of every new batch is considerable in comparison with the current data, in HLM
incremental learning scheme (I), we set the number of components in each class for

every new batch to be the same as that for the current batch, that is, 4. As noted
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Table 3.3: Classification error rates of distance-based classifiers (II)

Classifier Amazon-47 Aural Sonar Caltech-101 | Color-signature
affinity k-NN 15.00 (4.77) 15.00 (6.12) 39.20 (0.86) | 32.21 (3.13)
KRI kNN (clip) 17.68 (4.75) 14.00 (6.82) 30.13 (0.42) | 31.13 (3.00)
KRR k-NN (pinv) 16.10 (4.90) 15.25 (6.22) 29.90 (0.44) |  31.79 (3.36)
SVM-KNN (clip) 17.56 (4.60) 13.75 (7.40) 36.82 (0.60) | 31.25 (3.45)
SVM-similarities as kernel (clip) 81.34 (4.77) 13.00 (5.34) 33.49 (0.78) 34.96 (3.91)
SVM-similarities as features (linear) | 76.10 (6.92) 14.25 (6.94) 38.18 (0.78) 36.71 (3.59)
P-SVM 70.12 (8.82) 14.25 (5.97) 34.23 (0.95) |  33.54 (4.06)
HLM (gknn) NA 14.50 (5.22) 52.01 (1.13) |  39.79 (4.82)
HLM (agg) NA 13.75 (6.30) 48.03 (1.29) | 38.42 (4.04)
Classifier Face Rec Imagery Mirex Patrol
affinity k-NN 4.23 (1.48) 35.98 (3.63) 61.15 (1.90) | 11.67 (4.08)
KRI k-NN (clip) 4.15 (1.32) 35.43 (3.32) 61.20 (2.03) 11.56 (4.54)
KRR k-NN (pinv) 4.31 (1.86) 35.91 (3.54) 61.18 (1.96) | 12.81 (4.62)
SVM-KNN (clip) 4.23 (1.25) 36.13 (3.60) 61.25 (1.95) | 11.98 (4.36)
SVM-similarities as kernel (clip) 4.18 (1.25) 44.23 (2.87) 57.83 (2.05) 38.75 (4.81)
SVM-similarities as features (linear) 4.29 (1.36) 48.86 (2.59) 55.54 (2.52) 42.19 (5.85)
P-SVM 4.05 (1.44) 40.93 (2.33) 63.81 (2.70) | 40.42 (5.94)
HLM (gknn) NA 39.79 (4.82) 81.10 (1.66) NA
HLM (agg) NA 46.27 (2.98) 61.54 (1.74) NA
Classifier Protein Photo Composition Sonar Voting
affinity k-NN 30.81 (6.61) 25.33 (7.56) 20.36 (6.00) 5.86 (1.78)
KRI kNN (clip) 30.35 (9.71) 22.83 (8.18) 20.00 (4.90) 5.29 (1.80)
KRR k-NN (pinv) 9.53 (5.04) 22.67 (8.79) 20.71 (5.22) 5.52 (1.69)
SVM-KNN (clip) 11.86 (5.50) 21.50 (9.57) 20.00 (5.29) |  5.23 (2.25)
SVM-similarities as kernel (clip) 5.35 (4.60) 19.33 (7.64) 19.29 (6.25) 4.89 (2.05)
SVM-similarities as features (linear) 3.02 (2.76) 19.33 (7.42) 20.60 (5.60) 5.40 (2.03)
P-SVM 1.86 (1.89) NA 19.29 (4.64) 5.34 (1.72)
HLM (gknn) 14.53 (12.59) 23.67 (8.02) 31.43 (5.81) 6.95 (2.67)
HLM (agg) 15.00 (13.00) 24.00 (8.86) 24.88 (6.18) 5.17 (2.37)

in Section 3.6, in HLM incremental learning scheme (II), to prevent old cluster
centroids from staying as the only centroids, we gradually increase the number of
components in each class by 2 at every learning round. To compare on a common
ground this scheme and the baseline retraining scheme, we apply the latter scheme
using the same number of components in each class at every learning round.
When the available training data increase, the corresponding classification er-
ror rates achieved by each method are shown in Figure 3.1. We denote the two
HLM based incremental learning methods by HLM-Incremental (I) and (II). HLM-

Retrain is the baseline scheme which retrains all the available data at every round.



Table 3.4: Running time of distance-based classifiers

Classifier Amazon-47 | Color-signature | Imagery Mirex

k-NN 50 ms 50 ms 400 ms 950 ms

Local SDA 6.6 s 5 min 25.0 s 9 min 55.9 s | 26 min 17.0 s
SVM-similarities as features (rbf) | 10.5 s 2 min 21.3 s 20 min 4.8 s | 220 min 16.8 s
HLM (vsh) NA 40.2 s 4 min 47.8 s | 11 min 1.3 s
HLM (kernel) 30 ms 280 ms 1.7 s 4.4's
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In HLM-Incremental (II), the threshold v for down sampling in any cluster is 4.
Similarly as in the previous experiment setup and computing environment, clusters
containing less than three data points are not used in the parameter estimation
of HLM and all the experiments are conducted on a 2.66 GHz Intel CPU. Ta-
ble 3.5 shows the total running time across all the learning rounds for each of
the incremental learning methods. HLM-Incremental (I) has the shortest running
time on all the data sets, HLM-Incremental (II) being the second fastest, while
HLM-Retrain is the slowest. The proportional reduction in computation between
HLM-Incremental (I)/(II) and HLM-Retrain is most prominent with the largest
data set, Mirex.

Based on Figure 3.1, for the Mirex data and the Color-signature data before
the last two learning rounds, when the available training data increase, the classi-
fication error rates have a clear decreasing trend. For these two data sets, HLM-
Retrain stays as the winner at most of the learning rounds. However, it is interest-
ing to note that for the Voting data, HLM-Incremental (I), albeit being the fastest,
is the winner among the three across all the rounds; and HLM-Incremental (II) out-
performs HLM-Retrain at several rounds. For Mirex and Color-signature, HLM-
Incremental (II), the second fastest scheme, performs slightly worse than HLM-
Retrain at most of the learning rounds; and the fastest scheme HLM-Incremental
(I) performs worst at almost all the learning rounds. This observation indicates a
trade-off between computational intensity and performance. For all the data sets
except Color-signature, less than 5% difference is observed between the classifica-
tion error rates obtained by HLM-Incremental (II) and HLM-Retrain at the last
learning round. HLM-Incremental (II) even performs slightly better than HLM-

Retrain on the Mirex and Voting data at the last learning round. For the Imagery
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and Voting data, the error rate curves under all the methods fluctuate, and at

the last learning round, the error rates are only slightly better or even worse than

where they start off at the first round. The fluctuations of the error rate curves are

also observed at the last two learning rounds for Color-signature. We believe that

such counter intuitive outcomes are due to the inherent randomness of the data.
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Figure 3.1: The classification error rates of incremental and batch learning methods
at each learning round as the number of available training data increases.

Table 3.5: Running time of HLM based incremental learning methods (seconds)

Classifier Color-signature | Imagery | Mirex | Voting
HLM-Incremental (I) 0.22 0.40 0.84 0.14
HLM-Incremental (II) 1.06 2.48 2.87 0.59

HLM-Retrain 1.72 12.54 22.89 2.04
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3.8 Summary

A distance-based mixture modeling approach based on hypothetical local mapping
(HLM) is proposed. Because only pairwise distances are needed, HLM is particu-
larly useful for data that cannot be easily described by a mathematical entity. The
application of the proposed mixture model to classification is explored. We have
compared this approach with several other state-of-the-art distance-based classifi-
cation methods on various datasets. Experimental results show that HLM based
algorithms perform competitively at low computational cost during both training
and testing. Because a mixture model is estimated for each class separately, scal-
ability is achieved for a large number of classes. HLM adapts readily to learning a
classifier in an incremental fashion. None of the local SDA, SVM, and k-NN based
classifiers can be easily modified for incremental learning. We have proposed two
incremental learning schemes for HLM and found that they perform closely to the

baseline of retraining over all the available data, but at a much faster speed.



Chapter I

Gaussian Mixture Models with

Component Means Constrained in

Pre-selected Subspaces

4.1 Introduction

The Gaussian mixture model (GMM) is a popular and effective tool for clustering
and classification. When applied to clustering, usually each cluster is modeled by
a Gaussian distribution. Because the cluster labels are unknown, we face the issue
of estimating a GMM. A thorough treatment of clustering by GMM is referred
to (McLachlan and Peel, 2000a). Hastie and Tibshirani (1996) proposed the mix-
ture discriminant analysis (MDA) for classification, which assumes a GMM for
each class. Fraley and Raftery (2002) examined the roles of GMM for clustering,
classification, and density estimation.

As a probability density, GMM enjoys great flexibility comparing with para-
metric distributions. Although GMM can approximate any smooth density by
increasing the number of components R, the number of parameters in the model
grows quickly with R, especially for high dimensional data. The regularization of
GMM has been a major research topic on mixture models. Early efforts focused on
controlling the complexity of the covariance matrices, partly driven by the frequent

occurrences of singular matrices in estimation (Fraley and Raftery, 2002). More
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recently, it is noted that for data with very high dimensions, a mixture model with
parsimonious covariance structures, for instance, common diagonal matrices, may
still have high complexity due to the component means alone. Methods to regular-
ize the component means have been proposed from quite different perspectives. Li
and Zha (2006) developed the so-called two-way mixture of Poisson distributions
in which the variables are grouped and the means of the variables in the same
group within any component are assumed identical. The grouping of the variables
reduces the number of parameters in the component means dramatically. In the
same spirit, Qiao and Li (2010) developed the two-way mixture of Gaussians. Pan
and Shen (2007) explored the penalized likelihood method with L; norm penalty
on the component means. The method aims at shrinking the component means
of some variables to a common value. Variable selection for clustering is achieved
because the variables with common means across all the components are non-
informative for cluster labels. Wang and Zhu (2008) proposed the L., norm as a
penalty instead.

In this chapter, we propose another approach to regularizing the component
means in GMM, which is more along the line of reduced rank MDA (Hastie and
Tibshirani, 1996) but with profound differences. We search for a linear subspace in
which the component means reside and estimate a GMM under such a constraint.
The constrained GMM has a dimension reduction property. It is proved that with
the subspace restriction on the component means and under common covariance
matrices, only a linear projection of the data with the same dimension as the
subspace matters for classification and clustering. The method is especially useful
for visualization when we want to view data in a low dimensional space which best
preserves the classification and clustering characteristics.

The idea of restricting component means to a linear subspace was first explored
in the linear discriminant analysis (LDA). Fisher (1936) proposed to find a subspace
of rank » < K, where K is the number of classes, so that the projected class means
are spread apart maximally, The coordinates of the optimal subspace are derived
by successively maximizing the between-class variance relative to the within-class
variance, known as canonical or discriminant variables. Although LDA does not
involve the estimation of a mixture model, the marginal distribution of the obser-

vation without the class label is a mixture distribution. The idea of reduced rank
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LDA was used by Hastie and Tibshirani (1996) for GMM. It was proved in Hastie
and Tibshirani (1996) that reduced rank LDA can be viewed as a Gaussian maxi-
mum likelihood solution with the restriction that the means of Gaussians lie in a
L-dimension subspace, i.e., rank{u;}* = L < max(K — 1,p), where p’s are the
means of Gaussians and p is the dimension of the data. Hastie and Tibshirani
(1996) extended this concept and proposed a reduced rank version of the mixture
discriminant analysis (MDA), which performed a reduced rank weighted LDA in
each iteration of the EM algorithm.

Another related line of research is regularizing the component means of a GMM
in a latent factor space, i.e., the use of factor analysis in GMM. It was originally
proposed by Ghahramani and Hinton (1997) to perform concurrent clustering and
dimension reduction using mixture of factor analyzers; see also McLachlan and Peel
(2000b) and McLachlan et al. (2003). Factor analysis was later used to regularize
the component means of a GMM in each state of the Hidden Markov Model (HMM)
for speaker verification (Kenny et al., 2008; Povey et al., 2011). In those models,
the total number of parameters is significantly reduced due to the regularization,
which effectively prevents over fitting. Usually the EM type of algorithm is applied
to estimate the parameters and find the latent subspace.

The role of the subspace constraining the means differs intrinsically between
our approach, the reduced rank MDA and factor analysis based mixture models,
resulting in mathematical solutions of quite different nature. Within each iteration
of the EM algorithm for estimating a GMM, the reduced rank MDA finds the sub-
space with a given dimension that yields the maximum likelihood under the current
partition of the data into the mixture components. The subspace depends on the
component-based clustering of data in each iteration. Similarly, the subspaces in
factor analysis based mixture models are found through the iterations of the EM
algorithm, as part of the model estimation. However, in our method, we treat the
seek of the subspace and the estimation of the model separately. The subspace is
fixed throughout the estimation of the GMM. Mathematically speaking, we try to
solve the maximum likelihood estimation of GMM under the condition that the
component means lie in a given subspace.

Our formulation of the model estimation problem allows us to exploit multiple

and better choices of density estimate when we seek the constraining subspace. For
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instance, if we want to visualize the data in a plane while the component means
are not truly constrained to a plane, fitting a GMM with means constrained to a
plane may lead to poor density estimation. As a result, the plane sought during
the estimation will be problematic. It is thus sensible to find the plane based on
a density estimate without the constraint. Afterward, we can fit a GMM under
the constraint purely for the purpose of visualization. Moreover, the subspace
may be specified based on prior knowledge. For instance, in multi-dimensional
data visualization, we may already know that the component (or cluster) means of
data lie in a subspace spanned by several dimensions of the data. Therefore, the
subspace is required to be fixed.

We propose two approaches to finding the unknown subspace. The first ap-
proach is the so-called modal PCA (MPCA). We prove that the modes (local max-
ima) lie in the same constrained subspace as the component means. We use the
modal EM (MEM) algorithm (Li et al., 2007) to find the modes. By exploiting the
modes, we are no longer restricted to the GMM as a tool for density estimation.
Instead, we use the kernel density estimate which avoids sensitivity to initializa-
tion. There is an issue of choosing the bandwidth, which is easier than usual in
our framework by the following strategy. We take a sequence of subspaces based
on density estimates resulting from different kernel bandwidths. We then estimate
GMDMs under the constraint of each subspace and finally choose a model yielding
the maximum likelihood. Note that, each GMM is a full model for the original
data, although the component means are constrained in a different subspace. We
therefore can compare the estimated likelihood under each model. This frame-
work in fact extends beyond kernel density estimation. As discussed in (Li et al.,
2007), modes can be found using modal EM for any density in the form of a mix-
ture distribution. The second approach is an extension of MPCA which exploits
class means or a union set of modes and class means. It is easy to see that the
class means also reside in the same constrained subspace as the component means.
Comparing with modes, class means do not depend on the kernel bandwidth and
are more robust to estimate.

Experiments on the classification of several real data sets with moderate to high
dimensions show that reduced rank MDA does not always have good performance.

We do not intend to claim that our proposed method is necessarily better than
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reduced rank MDA. However, when the constraining subspace of the component
means is of a very low dimension, we find that the proposed method with the
simple technique of finding the subspace based on class means often outperforms
the reduced rank MDA, which solves a discriminant subspace using a much more
sophisticated approach. In addition, we compare our methods with standard MDA
on the data projected to the subspace containing the component means. For data
with moderately high dimensions, our proposed method works better. Besides
classification, our method easily applies to clustering.

The rest of the chapter is organized as follows. In Section 4.2, we review some
background and notation. We present a Gaussian mixture model with subspace
constrained component means, the MPCA algorithm and its extension for finding
the subspace in Section 4.3. We also present several properties of the constrained
subspace, with detailed proofs in the appendix. In Section 4.4, we describe the
estimation algorithm for the proposed model. Experimental results are provided

in Section 4.5. Finally, we conclude and discuss future work in Section 4.6.

4.2 Preliminaries and Notation

Let X = (X1, Xo, ..., X,)", where p is the dimension of the data. A sample of X
is denoted by & = (z1,22,...,x,)". We present the notations for a general Gaus-
sian mixture model before introducing the mixture model with component means
constrained to a given subspace. Gaussian mixture model can be applied to both
classification and clustering. Let the class label of X be Y € X = {1,2,..., K'}.
For classification purpose, the joint distribution of X and Y under a Gaussian

mixture is
Ry,
fX =2,Y =k) = apfo() = ar Y T, ) (4.1)
r=1

where ay, is the prior probability of class k, satisfying 0 < ax < 1 and Zszl ap =
1, and fi(x) is the within-class density for X. Ry is the number of mixture
components used to model class k, and the total number of mixture components
for all the classes is R = Zszl Ry. Let 7w, be the mixing proportions for the
rth component in class k, 0 < 7, < 1, Zi"l T = 1. ¢(+) denotes the pdf
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of a Gaussian distribution: gy, is the mean vector for component r in class k
and ¥ is the common covariance matrix shared across all the components in all
the classes. To classify a sample X = @, the Bayes classification rule is used:
y = argmax, f(Y = k| X = x) = argmax, f(X =x,Y = k).

In the context of clustering, the Gaussian mixture model is now simplified as

f(X =z)=> mo(x|p,2), (4.2)

where R is the total number of mixture components and 7, is the mixing pro-
portions for the rth component. p, and 3 denote the rth component mean and
the common covariance matrix for all the components. The clustering procedure
involves first fitting the above mixture model and then computing the posterior
probability of each mixture component given a sample point. The component with
the highest posterior probability is chosen for that sample point, and all the points
belonging to the same component form one cluster.

In this work, we assume that the Gaussian component means reside in a given
linear subspace and estimate a GMM with subspace constrained means. A new
algorithm, namely the modal PCA (MPCA), is proposed to find the constrained
subspace. The motivations of using modes to find subspace are outlined in Sec-
tion 4.3.1. Before we present MPCA, we will first introduce the modal EM algo-
rithm (Li et al., 2007) which solves the local maxima, that is, modes, of a mixture
density.

Modal EM: Given a mixture density f(X = x) = Zf‘:l 7 fr(x), as in model
(4.2), starting from any initial data point £(*), the modal EM algorithm finds a
mode of the density by alternating the following two steps until a stopping criterion
is met. Start with ¢ = 0.

1. Let p, = W}]Zrm(ff)(;)) ,r=1,...,R.

2. Update 2t = argmax,, Zle prlog f.(x).

The above two steps are similar to the expectation and the maximization steps
in EM (Dempster et al., 1977). The first step is the “expectation” step where
the posterior probability of each mixture component r, 1 < r < R, at the cur-

rent data point £® is computed. The second step is the “maximization” step.
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Zle prlog f.(x) has a unique maximum, if the f,.(x)’s are normal densities. In
the special case of a mixture of Gaussians with common covariance matrix, that
is, fr(x) = ¢(x | p,,X), we simply have x(t+!) = Zleprur. In modal EM,
the probability density function of the data is estimated nonparametrically using

Gaussian kernels, which are in the form of a Gaussian mixture distribution:

n

JX=2) = olw |23,

i=1
where the Gaussian density function is

(@ | @i, %) = W exp(—%(w Ca) S —a) |

We use a spherical covariance matrix ¥ = ¢2I,. The standard deviation o is
also referred to as the bandwidth of the Gaussian kernel. When the bandwidth of
Gaussian kernels increases, the density estimate becomes smoother, and more data
points tend to ascend to the same mode. Different numbers of modes can thus be
found by gradually increasing the bandwidth of Gaussian kernels. The data points
are grouped into one cluster if they climb to the same mode. We call the mode as
the cluster representative.

In (Li et al., 2007), a hierarchical clustering approach, namely, Hierarchical
Mode Association Clustering (HMAC), is proposed based on mode association and
kernel bandwidth growth. Given a sequence of bandwidths o1 < 0y < -+ < 0y,
HMAC starts with every point x; being a cluster by itself, which corresponds to
the extreme case that o; approaches 0. At any bandwidth o;( > 1), the modes,
that is, cluster representatives, obtained from the preceding bandwidth are input
into the modal EM algorithm. The modes identified then form a new set of cluster
representatives. This procedure is repeated across all g;’s. For details of HMAC,
we refer interested readers to (Li et al., 2007). We therefore obtain modes at
different levels of bandwidth by HMAC. The clustering performed by HMAC is
only for the purpose of finding modes across different bandwidths and should not
be confused with the clustering or classification based on the Gaussian mixture

model we propose here.
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4.3 GMM with Subspace Constrained Means

The Gaussian mixture model with subspace constrained means is presented in this
section. For brevity, we focus on the constrained mixture model in a classification
set-up, since clustering can be treated as a “one-class” modeling and is likewise
solved.

We propose to model the within-class density by a Gaussian mixture with

component means constrained to a pre-selected subspace:

Ry
fo(@) = T (x| i, 2) (4.3)
r=1
subject to
U Mg = V) g = = V) kR, = G5 (4.4)

where v;’s are linearly independent vectors, j = 1,...,¢, ¢ < p, and ¢, is a constant,
invariant to different classes. Without loss of generality, we can assume {vy, ..., v,}
span an orthonormal basis. Augment it to full rank by {v,41,...,v,}. Suppose
v={vg1,.,v}, vt ={vy,...,v,},and ¢ = (c1, ez, ..., ¢,)". Denote the projection
of a vector pu or a matrix U onto an orthonormal basis S by Proj% or Projg.
We have Projl’f " = c over all the k£ and r. That is, the projections of all the

+ coincide at e. We refer

component means pg,.’s onto the orthonormal basis v
to v as the constrained subspace' where py,’s reside (or more strictly, pg,’s reside
in the subspace up to a translation), and v+ as the corresponding null subspace.
Suppose the dimension of the constrained subspace v is d, then d = p — ¢q. With
the constraint (4.4) and the assumption of a common covariance matrix across
all the components in all the classes, essentially, we assume that the data within
each component have identical distributions in the null space v*. In the following

section, we will explain how to find an appropriate constrained subspace v.

'We abuse the notation v slightly here. The subspace is actually spanned by v. To simplify
notations, the same abuse also appears in other similar scenarios.
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4.3.1 Modal PCA

We introduce in this section the modal PCA (MPCA) algorithm that finds a con-
strained subspace for the component means of a Gaussian mixture and the prop-

erties of the found subspace. We prove in Appendix B.1 the following theorem.

Theorem 4.3.1. For a Gaussian mizture model with component means constrained
in a subspace v = {vyq1,...,0,}, ¢ < p, and a common covariance matriz across
all the components, the modes of the mizture density are also constrained in the

same subspace V.

According to Theorem 4.3.1, the modes and component means of Gaussian
mixtures reside in the same constrained subspace. We use the aforementioned
MEM algorithm introduced in Section 4.2 to find the modes of the density. To avoid
sensitivity to initialization and the number of components, we use the Gaussian
kernel density estimate instead of a finite mixture model for the density. It is well
known that mixture distributions with drastically different parameters may yield
similar densities. We are thus motivated to exploit modes which are geometric
characteristics of the densities.

Let us denote the set of modes found by MEM under the kernel bandwidth
o by G = {Mg1,Msa,..., My g }. A weighted principal component analysis is
proposed to find the constrained subspace. A weight w, , is assigned to the rth
mode, which is the proportion of sample points in the entire data ascending to

that mode. We therefore have a weighted covariance matrix of all the modes in G:

[4
Yg = Zwa,r(Ma,r - NQ)T(MU,T — Hg)
r=1

where pg = Zlﬂl Wy M. The principal components are then obtained by per-
forming an eigenvalue decomposition on ¥g. Recall the dimension of the con-
strained subspace v is d. Since the leading principal components capture the most
variation in the data, we use the first d most significant principal components to
span the constrained subspace v, and the remaining principal components to span
the corresponding null space v+.

Given a sequence of bandwidths o1 < 09 < --- < 0, the modes at different

levels of bandwidth can be obtained using the HMAC algorithm introduced in
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Section 4.2. At each level, we apply the weighted PCA to the modes, and obtain a
new constrained subspace by their first d most significant principal components. In
practice, if the number of modes found at a particular level of bandwidth is smaller
than 3, we will skip the modes at that level. For the extreme case, when o = 0,
the subspace is actually spanned by the principal components of the original data
points. We therefore obtain a collection of subspaces, v, ..., v, resulting from a
sequence of bandwidths through HMAC.

4.3.2 Extension of Modal PCA

In this section, we propose another approach to generating the constrained sub-
space, which is an extension of MPCA. Suppose the mean of class k is M’;, we
have M';, = Zf:’“l Tkr Mk, Where py,. is the rth component in class k. It is easy
to see that the class means lie in the same subspace as the Gaussian mixture
component means. From Theorem 4.3.1, we know that in Gaussian mixtures, the
modes and component means also reside in the same constrained subspace. So the
class means, modes and component means all lie in the same constrained subspace.
Comparing with the modes, class means are more robust to estimate. It is thus
natural to incorporate class means to find the subspace. In the new approach, if
the dimension d of the constrained subspace is smaller than K, the subspace is
spanned by applying weighted PCA only to class means. Otherwise, it is spanned
by applying weighted PCA to a union set of modes and class means.

Similar to modal PCA, we first assign a weight a;, to the kth class mean M/,
which is the proportion of the number of sample points in class k over the entire
data, i.e., the prior probability of class k. Suppose the set of class means is J =
{M [, Mg, Mk} T d < K, we have a weighted covariance matrix of all the

class means:

K
Sg =Y aMy—pg)" (M = pg)
r=1

where pus = 21{(:1 arM'. An eigenvalue decomposition on ¥ 7 is then performed
to obtain all the principal components. Similar to MPCA, the constrained subspace
is spanned by the first d most significant principal components. If d > K, we will
put together all the class means and modes and assign different weights to them.

Suppose 7 is a value between 0 and 100, we allocate a total of v% of weight to the
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class means, and the remaining (100 — )% weights allocated proportionally to the
modes. That is, the weights assigned to the class mean M’ and the mode M, ,
are vag% and (100 — v)w,.,%, respectively. Then the weighted covariance matrix

of the union set of class means and modes becomes

K
Soug = (%)M — pg) (M — pg)
r=1
G|
+> (100 = Y)we %) (Mo — pig) " (Mo — pig) -
r=1

Different weights can be allocated to the class means and the modes. For instance,
if we want the class means to play a more important role in spanning subspaces,
we can set v > 50. Again, an eigenvalue decomposition is performed on g7
to obtain all the principal components and the first d most significant principal

components span the constrained subspace. To differentiate this method from

MPCA, we denote it by MPCA-MEAN.

4.3.3 Dimension Reduction

The mixture model with component means under constraint (4.4) implies a dimen-

sion reduction property for the classification purpose, formally stated below.

Theorem 4.3.2. For a Gaussian mizture model with a common covariance matrix
3., suppose all the component mean ., ’s are constrained in a subspace spanned by
v =A{v41,...,0,}, ¢ <D, up to a translation, only a linear projection of the data
x onto a subspace spanned by {X'v;|j = q+1,...,p} (the same dimension as v)

1s informative for classification.

In Appendix B.2, we provide the detailed proof for Theorem 4.3.2. If the
common covariance matrix 3 is an identity matrix (or a scalar matrix), the class
label Y only depends on the projection of & onto the constrained subspace v.
However, in general, ¥ is non-identity. Hence the spanning vectors, ¥ 'v;, j =
g+ 1,...,p, for the subspace informative for classification are not orthogonal in
general as well. In Appendix B.2, we use the column vectors of orth({Xwv;|j = ¢+
1,...,p}) to span this subspace. To differentiate it from the constrained subspace in

which the component means lie, we call it as discriminant subspace. The dimension
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of the discriminant subspace is referred to as discriminant dimension, which is the
dimension actually needed for classification. The discriminant subspace is of the
same dimension as the constrained subspace. When the discriminant dimension is
small, significant dimension reduction is achieved. Our method can thus be used
as a data reduction tool for visualization when we want to view the classification
of data in a two or three dimensional space.

Although in Appendix B.2 we prove Theorem 4.3.2 in the context of classi-
fication, the proof can be easily modified to show that the dimension reduction
property applies to clustering as well. That is, we only need the data projected
onto a subspace with the same dimension as the constrained subspace v to compute
the posterior probability of the data belonging to a component (aka cluster). Sim-
ilarly, we name the subspace that matters for clustering as discriminant subspace

and its dimension as discriminant dimension.

4.4 Model Estimation

We will first describe in Section 4.4.1 the basic version of the estimation algorithm
where the constraints on the component means are characterized by (4.4). A
natural extension to the constraint in (4) is to allow the constant ¢; to vary with the
class labels, thus leading to constraint characterized in (4.10). The corresponding

algorithm is described in Section 4.4.2.

4.4.1 The Algorithm

Let us first summarize the work flow of our proposed method:

1. Given a sequence of kernel bandwidths oy < 0y < --- < 0y, apply HMAC to
find the modes of the density estimation at each bandwidth o;.

2. Apply MPCA or MPCA-MEAN to the modes or a union set of modes and
class means at each kernel bandwidth and obtain a sequence of constrained
subspaces.

3. Estimate the Gaussian mixture model with component means constrained in

each subspace and select the model yielding the maximum likelihood.
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4. Perform classification on the test data or clustering on the overall data, with

the selected model from Step 3.
Remarks:

1. In our method, the seek of subspace and the estimation of the mixture model
are separate. We first search for a sequence of subspaces and then estimate
the model constrained in each subspace separately.

2. In Step 1, the identified modes are from the density estimation of the overall
data (in clustering) or the overall training data (in classification).

3. For MPCA-MEAN, if the dimension d of the constrained subspace is smaller
than K, the subspace is spanned only by class means and is therefore fixed.
We do not need to choose the subspace.

4. Some prior knowledge may be exploited to yield an appropriate subspace.
Then, we can estimate GMM under the constraint of the given subspace

directly.

Now we will derive an EM algorithm to estimate a GMM under the constraint
of a given subspace. The estimation method for classification is introduced first.
A common covariance matrix X is assumed across all the components in all the
classes. In class k, the parameters to be estimated include the class prior probabil-
ity ax, the mixture component prior probabilities 7y, and the Gaussian parameters
Pir, X, 7 =1,2,...., Ri. Denote the training data by {(x;,y;) : ¢ = 1,...,n}. Let
ny be the number of data points in class k. The total number of data points n is
Z,{;l ng. The class prior probability a; is estimated by the empirical frequency
ng/ 25:1 ng. The EM algorithm comprises the following two steps:

1. FExpectation-step: Given the current parameters, for each class k, compute

the component posteriori probability for each data point x; within class k:

Ry
Qijor X Terd(Xi| i, ), subject toz Qijr = 1. (4.5)

r=1
2. Maximization-step: Update mp,., py, and X, which maximize the following

objective function (the i subscript indicates @; with y; = k):

K K K Ry ng
Z Z <Z qi kr) log T + Z Z Z Qi kr lOg ¢ wz“"’kra ) (46)
=1

r=1 k=1 r=1 i=1
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under the constraint (4.4).

In the maximization step, the optimal m;,’s are not affected by the constraint

(4.4) and are solved separately from py,’s and X:

ng Ry,
Ty X Zqi,kr ) Zﬂ'kr =1. (47)
i=1 r=1

Since there are no analytic solutions to p.’s and ¥ in the above constrained
optimization, we adopt the generalized EM (GEM) algorithm. Specifically, we use
a conditional maximization approach. In every maximization step of GEM, we
first fix 3, and then update the p,’s. Then we update 3 conditioned on the py,’s
held fixed. This iteration will be repeated multiple times.

Given ¥, solving py,. is non-trivial. The key steps are summarized here. For
detailed derivation, we refer interested readers to Appendix B.3. In constraint
(4.4), we have v - pg, = cj, i.e., identical across all the k and r for j = 1,...,q.
It is easy to see that ¢ = (cy, ..., ¢,)" is equal to the projection of the mean of the
overall data onto the null space v*. However, in practice, we do not need the
value of ¢ in the parameter estimation. Before we give the equation to solve g,
let us define some notations first. Assume X is non-singular and hence positive
definite, we can write ¥ = (32)(22), where 2 is of full rank. If the eigen
decomposition of ¥ is ¥ = Vg DxV4, then ¥ = DéVz@. Let Vi be a p x q
orthonormal matrix (vy,...,v,), the column vectors of which span the null space
vt. Suppose B = E%V;m”. Perform a singular value decomposition (SVD) on B,
i.e., B = UgDgV}, where Ug is a p X ¢ matrix, the column vectors of which
form an orthonormal basis for the space spanned by the column vectors of B. Let
U be a column augmented orthonormal matrix of Ug. Denote Zf:kl Qi ker DY lir.
Let @, = Z:L:’“l Qijr @i/, 1.€., the weighted sample mean of the component 7 in
class k, and &, = Ut <E_5)t - &g, Define 1y, by the following Eqs. (4.8) and
(4.9):

1. for the first g coordinates, j = 1,....¢:

SRS iy
~ / — — r r’, . .
iy, = =E=t=r=l 2. identical over r and k ; (4.8)

n
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2. for the remaining p — q coordinates, j =q¢+ 1, ..., p:
ﬁltr,j = i’kr,j : (49)

That is, the first ¢ constrained coordinates are optimized using component-pooled
sample mean (components from all the classes) while those p — ¢ unconstrained
coordinates are optimized separately within each component using the component-
wise sample mean. Note that we abuse the term “sample mean” here to mean &y,

instead of &y,~. In the maximization step, the parameter py, is finally solved by:

Given the py,.’s, it is easy to solve X:

> Zf:l Zf:kl 2?21 ql',lm"(mz’ - Nkr)t<mz' — Mkr)

n

To initialize the estimation algorithm, we first choose Ry, the number of mix-
ture components for each class k. For simplicity, an equal number of components
are assigned to each class. The constrained model is initialized by the estimated
parameters from a standard Gaussian mixture model with the same number of
components.

We have so far discussed the model estimation in a classification set-up. We
assume a common covariance matrix and a common constrained subspace for all the
components in all the classes. Similar parameter estimations can also be applied
to the clustering model. Specifically, all the data are put in one “class”. In this
“one-class” estimation problem, all the parameters can be estimated likewise, by

omitting the “k” subscript for classes. For brevity, we skip the details here.

4.4.2 Variation of the Algorithm

We have introduced the Gaussian mixture model with component means from

different classes constrained in the same subspace. It is natural to modify the
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previous constraint in (4.4) to
v;’.”kl:v;-l_llk2:-..:v;-l_llkRk :Ck'J? (4.10)

where v;’s are linearly independent vectors spanning an orthonormal basis, j =
1,...,¢, ¢ < p, and ¢;; depends on class k. That is, the projections of all the

€1

component means within class k onto the null space v coincide at the constant

¢k, where ¢, = (¢g1,C2...,Crq)". In the new constraint (4.10), {vy,...,v,} is the
same set of vectors as used in constraint (4.4), which spans the null space v*.
Because ¢, varies with class k, the subspace in which the component means from
each class reside differs from each other by a translation, that is, these subspaces
are parallel.

We train a constrained model for each class separately, and assume a common
covariance matrix across all the components in all the classes. In the new constraint
(4.10), ¢4 is actually equal to the projection of the class mean M’y onto the null
space v*. Similar to the previous estimation, in practice, we do not need the value
of ¢; in the parameter estimation. With the constraint (4.10), essentially, the
component means in each class are now constrained in a shifted subspace parallel
to v. The shifting of subspace for each class is determined by ¢, or the class
mean M. Suppose the dimension of the constrained subspace is d. In general,
the dimension that matters for classification in this variation of the algorithm is
d + K — 1, assuming that the class means already span a subspace of dimension
K —1.

We first subtract the class specific means from the data in the training set, that
is, do a class specific centering of the data. Similarly as the algorithm outlined
in Section 4.4, we put all the centered data from all the classes into one training
set, find all the modes under different kernel bandwidths, and then apply MPCA
to generate a sequence of constrained subspaces. The reason that we remove the
class specific means first is that they have already played a role in spanning the
subspace containing all the component means. When applying MPCA, we only
want to capture the dominant directions for the variation within the classes.

Comparing with the parameter estimation in Section 4.4, the only change that

we need to make is that the constrained ¢ coordinates in fij, are now identical
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over 1, but not over class k. For the first ¢ coordinates, j =1, ..., q, we have:

Ry 4

v /— kr’xkr’, j . . .

ey = Lt . identical over r in class k .
b2 nk

That is, the first ¢ constrained coordinates are optimized using component-pooled

sample mean in class k. All the other equations in the estimation remain the same.

4.5 Experiments

In this section, we present experimental results on several real and simulated data
sets. The mixture model with subspace constrained means, reduced rank MDA,
and standard MDA on the projection of data onto the constrained subspace, are
compared for the classification of real data with moderate to high dimensions. We
also visualize and compare the clustering results of our proposed method and the
reduced rank MDA on several simulated data sets.

The detailed methods tested in the experiments and their name abbreviations

are summarized as follows:

¢ GMM-MPCA The mixture model with subspace constrained means, in
which the subspace is obtained by MPCA.

¢ GMM-MPCA-MEAN The mixture model with subspace constrained
means, in which the subspace is obtained by MPCA-MEAN;, as introduced
in Section 4.3.2.

e GMM-MPCA-SEP The mixture model with component means con-
strained by separately shifted subspace for each class, as introduced in Sec-
tion 4.4.1.

¢ MDA-RR The reduced rank mixture discriminant analysis (MDA), which
is a weighted rank reduction of the full MDA.

e MDA-RR-OS The reduced rank mixture discriminant analysis (MDA),
which is based on optimal scoring (Hastie and Tibshirani, 1996), a multiple
linear regression approach.

e MDA-DR-MPCA The standard MDA on the projection of data onto the
same constrained subspace selected by GMM-MPCA.
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e MDA-DR-MPCA-MEAN The standard MDA on the projection of data
onto the same constrained subspace selected by GMM-MPCA-MEAN.

Remarks:

1. Since the most relevant work to our proposed method is reduced rank mixture
discriminant analysis (MDA), we briefly introduce MDA-RR and MDA-RR-
OS in Section 4.5.1.

2. In MDA-DR-MPCA or MDA-DR-MPCA-MEAN, the data are projected
onto the constrained subspace which has yielded the largest training like-
lihood in GMM-MPCA or GMM-MPCA-MEAN. Note that this constrained
subspace is spanned by v = {vgi1,...,0,}, which is found by MPCA or
MPCA-MEAN, rather than the discriminant subspace informative for clas-
sification. We then apply standard MDA (assume a common covariance
matrix across all the components in all the classes) to the projected training
data, and classify the test data projected onto the same subspace. Note
that, if we project the data onto the discriminant subspace spanned by
{¥7;]j = q¢+1,...,p}, and then apply standard MDA to classification, it
is theoretically equivalent to GMM-MPCA or GMM-MPCA-MEAN (ignor-
ing the variation caused by model estimation). The reason that we conduct
these comparisons is multi-fold: first, we want to see if there is advantage
of the proposed method as compared to a relative naive dimension reduc-
tion scheme; second, when the dimension of the data is high, we want to
investigate if the proposed method has robust estimation of 3; third, we
want to investigate the difference between the constrained subspace and the

discriminant subspace.

4.5.1 Reduced Rank Mixture Discriminant Analysis

Reduced rank MDA is a data reduction method which allows us to have a low
dimensional view on the classification of data in a discriminant subspace, by con-
trolling the within-class spread of component means relative to the between class
spread. We outline its estimation method in Appendix B.4, which is a weighted

rank reduction of the full mixture solution proposed by Hastie and Tibshirani
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(1996). We also show how to obtain the discriminant subspace of the reduced rank
method in Appendix B.4.

Hastie and Tibshirani (1996) applied the optimal scoring approach (Breiman
and Thaka, 1984) to fit reduced rank MDA, which converted the discriminant anal-
ysis to a nonparametric multiple linear regression problem. By expressing the
problem as a multiple regression, the fitting procedures can be generalized using
more sophisticated regression methods than linear regression (Hastie and Tib-
shirani, 1996), for instance, flexible discriminant analysis (FDA) and penalized
discriminant analysis (PDA). The use of optimal scoring also has some computa-
tional advantages, for instance, using fewer observations than the weighted rank
reduction. A software package containing a set of functions to fit MDA, FDA, and
PDA by multiple regressions is provided by Hastie and Tibshirani (1996).

Although the above benefits for estimating reduced rank MDA are gained from
the optimal scoring approach, there are also some restrictions. For instance, it can
not be easily extended to fit a mixture model for clustering since the component
means and covariance are not estimated explicitly. In addition, when the dimension
of the data is larger than the sample size, optimal scaling can not be used due to
the lack of degrees of freedom in regression. In the following experiment section,
we will compare our proposed methods with reduced rank MDA. Both our own
implementation of reduced rank MDA based on weighted rank reduction of the full
mixture, i.e., MDA-RR, and the implementation using optimal scoring from the
software package provided by Hastie and Tibshirani (1996), i.e., MDA-RR-OS, are
tested.

4.5.2 Classification

Eight data sets from various sources are used for classification. We summarize the

detailed information of these data below.

e The sonar data set consists of 208 patterns of sonar signals. Each pattern
has 60 dimensions and the number of classes is two. The sample sizes of the
two classes are (111,97).

e The robot data set has 5456 navigation instances, with 24 dimensions and
four classes (826, 2097, 2205, 328).
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e The waveform data (Hastie et al., 2001) is a simulated three-classes data of
21 features, with a waveform function generating both training and test sets
(300, 500).

e The imagery semantics data set (Qiao and Li, 2010) contains 1400 images
each represented by a 64 dimensional feature vector. These 1400 images come
from five classes with different semantics (300, 300, 300, 300, 200).

e The parkinsons data set is composed of 195 individual voice recordings,
which are of 21 dimensions and divided into two classes (147, 48).

e The satellite data set consists of 6435 instances which are square neighbor-
hoods of pixels, with 36 dimensions and six classes (1533, 703, 1358, 626,
707, 1508).

e The semeion handwritten digit data have 1593 binary images from ten
classes (0-9 digits) with roughly equal sample size in each class. Each image
is of 16 x 16 pixels and thus has 256 dimensions. Four fifths of the images
are randomly selected to form a training set and the remaining as testing.

e The yaleB face image data (Georghiades et al., 2001; Lee et al., 2005; He
et al., 2005) contains gray scale human face images for 38 individuals. Each
individual has 64 images, which are of 32 x 32 pixels, normalized to unit
vectors. We randomly select the images of five individuals, and form a data
set of 250 training images and 70 test images, with equal sample size for each

individual.

The sonar, robot, parkinsons, satellite and semeion data are from the UCI
machine learning repository. Among the above data sets, the semeion and yaleB
data have high dimensions. The other data sets are of moderately high dimensions.

For the data sets with moderately high dimensions, five-fold cross validation
is used to compute their classification accuracy except for the waveform, whose
accuracy is the average over ten simulations, the same setting used in (Hastie et
al., 2001). We assume a full common covariance matrix across all the components
in all the classes. For the semeion and yaleB data sets, the randomly split training
and test samples are used to compute their classification accuracy instead of cross
validation due to the high computational cost. Since these two data sets are of high

dimensions, for all the tested methods, we assume common diagonal covariance
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matrices across all the components in all the classes. For simplicity, the same
number of mixture components is used to model each class for all the methods.
In our proposed methods, the constrained subspaces are found by MPCA or
MPCA-MEAN, introduced in Section 4.3.1 and 4.3.2. Specifically, in MPCA, a
sequence of subspaces are identified from the training data by gradually increasing
the kernel bandwidth oy, ie., 0y < 09 < -+ < 0y, [ = 1,2,...,n. In practice, we
set 7 = 20 and choose 0;’s equally spaced from [0.16,25], where ¢ is the largest
sample standard deviation of all the dimensions in the data. HMAC is used to
obtain the modes at different bandwidths. Note that in HMAC, some ¢; may result
in the same clustering as 0;_1, indicating that the bandwidth needs to be increased
substantially so that the clustering result will be changed. In our experiments, only
the modes at the bandwidth resulting in different clustering from the preceding
bandwidth are employed to span the subspace. For the high dimensional data,
since the previous kernel bandwidth range [0.15,25] does not yield a sequence of
distinguishable subspaces, we therefore increase their bandwidths. Specifically, for
the semeion and yaleB data, the kernel bandwidth o; is now chosen equally spaced
from [46,56] and [26,36], respectively, with the interval being 0.16. In GMM-
MPCA-SEP, since the modes are identified from a new set of class mean removed
data, for both the semeion and yaleB data, the kernel bandwidth o; is now chosen
equally spaced from [3.16, 55], with the interval being 0.16. For the other data
sets, oy is still chosen equally spaced from [0.16,25]. In MPCA-MEAN; if the
dimension of the constrained subspace is smaller than the class number K, the
subspace is obtained by applying weighted PCA only to class means. Otherwise,
at each bandwidth, we obtain the subspace by applying weighted PCA to a union
set of class means and modes, with 60% weight allocated proportionally to the
means and 40% to the modes, that is, v = 60. The subspace yielding the largest
likelihood on the training data is finally chosen as the constrained subspace.
Classification Results we show the classification results of the tested
methods in this section. The classification error rates on data sets of moderately
high dimensions are shown in Tables 4.1, 4.2, and 4.3. We vary the discriminant
dimension d and also the number of mixture components used for modeling each
class. Similarly, Table 4.4 shows the classification error rates on the semeion and

yaleB data, which are of high dimensions. For all the methods except GMM-
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MPCA-SEP, the dimension of the discriminant subspace equals the dimension of
the constrained subspace, denoted by d. For GMM-MPCA-SEP, the dimension of
the discriminant space is actually K — 1 + d. In order to compare on a common
ground, for GMM-MPCA-SEP, we change the notation for the dimension of the
constrained subspace to d’, and still denote the dimension of the discriminant sub-
space by d = K —1+d'. The minimum number of dimensions used for classification
in GMM-MPCA-SEP is therefore K —1. In all these tables, if d is set to be smaller
than K — 1, we do not have the classification results of GMM-MPCA-SEP, which
are marked by “NA”. In addition, in Table 4.4b, the classification error rates of
MDA-RR-OS on yaleB data are not reported since the dimension p of the data
is significantly larger than the sample size n. The reduced rank MDA based on
optimal scoring approach cannot be applied due to the lack of degree freedom in
the regression step for the small n large p problem. The minimum error rate in
each column is in bold font. From the results in these tables, we summarize our

findings as follows:

e Comparing the three Gaussian mixture models with subspace constrained
means, GMM-MPCA-MEAN and GMM-MPCA-SEP usually outperform
GMM-MPCA, except on the waveform data. Since the class means are in-
volved in spanning the constrained subspace in GMM-MPCA-MEAN and
determine the shifting of the subspace for each class in GMM-MPCA-SEP,
the observed advantage of GMM-MPCA-MEAN and GMM-MPCA-SEP in-

dicates that class means are valuable for finding a good subspace.

e Comparing the proposed methods and the reduced rank MDA methods, when
the discriminant dimension is low, GMM-MPCA-MEAN and GMM-MPCA-
SEP usually perform better than MDA-RR and MDA-RR-OS. When the
discriminant dimension becomes higher, we do not observe a clear winner
among different methods. The results are very data-dependent. Note that
in GMM-MPCA-MEAN, when the discriminant dimension is smaller than
K —1 , the subspace is obtained by applying weighted PCA only to the class
means. For most data sets, when the discriminant dimension is very low,

GMM-MPCA-MEAN performs best or close to best.

e Comparing the proposed methods and the simple methods of finding the sub-
space first and then fitting MDA on the data projected onto the subspace,
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when the data dimension is moderately high and the discriminant dimension
is very low, GMM-MPCA /GMM-MPCA-MEAN usually perform better than
MDA-DR-MPCA/MDA-DR-MPCA-MEAN. As the discriminant dimension
increases, with certain component numbers, MDA-DR-MPCA /MDA-DR-
MPCA-MEAN may have a better classification accuracy. In addition, if
the data dimension is very high, for instance, the yaleB data, MDA-DR-
MPCA/MDA-DR-MPCA-MEAN may perform better even at lower discrim-
inant dimension. As discussed in Remark 2 of this section, for MDA-DR-
MPCA/MDA-DR-MPCA-MEAN and GMM-MPCA/GMM-MPCA-MEAN,
we essentially do classification on the data in two different subspaces, i.e.,
the constrained subspace and the discriminant subspace. For GMM-MPCA/
GMM-MPCA-MEAN, under the subspace constraint, we need to estimate
a common covariance matrix, which affects the discriminant subspace, as
shown in Section 4.3.3. Generally speaking, when the discriminant dimen-
sion becomes higher or the data dimension is high, it becomes more difficult
to accurately estimate the covariance matrix. For instance, for the high di-
mensional data, we assume a common diagonal covariance matrix, so that the
covariance estimation becomes feasible and avoids singularity issue. However,
this may result in a poor discriminant subspace, which leads to worse classifi-
cation accuracy. On the other hand, when the data dimension is moderately
high and the discriminant dimension is very low, the estimated covariance
matrix is more accurate and the discriminant subspace informative for clas-

sification is empirically better than the constrained subspace.

e As a final note, when the discriminant dimension is low, MDA-DR-MPCA-
MEAN generally outperforms MDA-DR-MPCA.

4.5.3 Sensitivity of Subspace to Bandwidths

Different kernel bandwidths may result in different sets of modes by HMAC, which
again may yield different constrained subspaces. We investigate in this section the
sensitivity of constrained subspaces to kernel bandwidths.

Assume two subspaces v; and v, are spanned by two sets of orthonormal

basis vectors {v§1>,...,v§1)} and {vf),...,vc(f)}, where d is the dimension. To
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Table 4.1: Classification error rates (%) for the data with moderately high dimen-
sions (I)
(a) Robots data

Num of components d= d=5 d="7 d=9 d=11 d =13 d =15 d =17
GMM-MPCA 41.39 35.78 31.93 31.73 31.25 31.54 31.65 31.60
GMM-MPCA-MEAN 30.32 32.06 30.11 30.52 31.19 31.40 31.69 31.29
3 GMM-MPCA-SEP NA 30.86 30.68 30.42 29.58 30.28 30.97 30.68
MDA-RR 41.22 30.32 30.85 30.57 29.95 29.95 29.95 29.95
MDA-RR-OS 40.16 32.73 32.44 30.35 30.66 30.43 30.26 31.01
MDA-DR-MPCA 44.10 40.30 35.04 32.72 33.03 33.56 33.39 32.84
MDA-DR-MPCA-MEAN 41.22 36.42 34.71 33.83 32.75 32.44 33.47 32.26
GMM-MPCA 40.74 31.91 30.77 30.15 29.40 29.05 27.91 28.24
GMM-MPCA-MEAN 26.56 31.49 29.71 29.98 28.43 28.02 28.12 28.39
4 GMM-MPCA-SEP NA 31.41 30.19 28.45 28.92 30.13 29.54 30.39
MDA-RR 40.45 33.63 30.41 28.28 27.77 27.09 27.18 27.18
MDA-RR-OS 40.91 31.87 31.36 30.24 27.88 29.01 28.59 28.61
MDA-DR-MPCA 42.26 36.16 34.64 31.95 30.06 28.90 29.77 27.56
MDA-DR-MPCA-MEAN 39.41 34.38 34.53 31.96 29.73 29.45 28.15 28.28
GMM-MPCA 37.72 29.67 29.25 29.31 27.86 27.91 26.28 26.21
GMM-MPCA-MEAN 28.72 27.86 26.98 26.69 26.83 25.90 26.37 26.14
5 GMM-MPCA-SEP NA 26.48 27.05 27.46 27.22 26.76 26.74 27.00
MDA-RR 40.39 29.01 26.52 26.08 26.03 26.61 26.52 27.09
MDA-RR-OS 39.96 30.99 29.38 28.24 28.48 27.59 28.24 27.57
MDA-DR-MPCA 41.07 35.69 32.44 30.86 29.03 27.99 28.52 26.34
MDA-DR-MPCA-MEAN 38.34 33.10 32.18 30.13 28.56 26.70 27.05 26.28

(b) Waveform data

Num of components d = d=4 d=26 d=38 d =10 d=12 d=14 d=16
GMM-MPCA 15.70 15.64 16.12 17.10 17.76 17.80 18.24 18.64
GMM-MPCA-MEAN 16.12 16.14 16.82 17.38 17.76 17.92 17.90 18.84
3 GMM-MPCA-SEP NA 17.08 17.04 17.22 17.44 17.50 17.70 18.34
MDA-RR 16.00 18.48 18.64 18.58 18.58 18.58 18.58 18.58
MDA-RR-OS 15.50 17.20 18.14 17.98 18.00 17.84 18.08 17.98
MDA-DR-MPCA 14.74 15.28 15.78 16.14 16.58 17.12 17.62 17.82
MDA-DR-MPCA-MEAN 14.74 15.50 15.76 16.50 17.00 16.94 17.26 17.48
GMM-MPCA 15.56 16.28 16.06 16.94 17.84 17.54 18.58 19.32
GMM-MPCA-MEAN 15.84 16.70 16.90 17.28 17.96 18.34 18.36 18.84
4 GMM-MPCA-SEP NA 16.34 17.14 17.56 17.56 18.02 18.16 18.16
MDA-RR 15.80 18.12 18.28 19.06 19.26 19.66 19.66 19.66
MDA-RR-OS 15.50 17.54 18.36 18.36 19.34 18.92 18.72 18.88
MDA-DR-MPCA 15.18 15.78 16.00 16.36 17.12 17.64 17.64 18.26
MDA-DR-MPCA-MEAN 15.12 15.86 16.16 16.70 17.00 17.56 17.66 18.40
GMM-MPCA 16.44 16.72 16.42 16.96 17.56 17.86 18.66 18.52
GMM-MPCA-MEAN 16.26 16.30 17.32 17.72 18.04 17.68 18.28 19.04
5 GMM-MPCA-SEP NA 17.24 16.96 17.32 17.40 17.66 17.68 18.30
MDA-RR 16.76 18.18 18.26 19.14 19.16 19.70 19.78 19.78
MDA-RR-OS 15.80 17.78 18.62 19.02 19.30 18.92 18.92 18.40
MDA-DR-MPCA 15.34 15.86 15.98 16.66 17.16 16.90 17.90 18.80
MDA-DR-MPCA-MEAN 15.08 15.70 16.76 16.16 17.30 17.90 17.56 18.38

measure the closeness between two subspaces, we project the basis of one sub-
space onto the other. Specifically, the closeness between vy and vy is defined as
closeness(vy,vy) = Z?Zl Z?Zl(vgl)t : v](-2))2. If v; and v, span the same subspace,
Z;l:l(vgl)t . ’Uj(-2))2 =1, for i = 1,2,...,d. If they are orthogonal to each other,
Z;l:l('vi(l)t . ’UJ(-Q))Q =0, for i = 1,2,...,d. Therefore, the range of closeness(vy,vs)
is (0,d). The higher the value, the closer the two subspaces are.

In our proposed methods, a collection of constrained subspaces are obtained
through MPCA or MPCA-MEAN at different kernel bandwidth o;’s, [ = 1,2, ..., 7,
and 01 < 09 < --- < 0,. To measure the sensitivity of subspaces to different

bandwidths, we compute the mean closeness between the subspace found at o
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Table 4.2: Classification error rates (%) for the data with moderately high dimen-

sions (II)
(a) Sonar data
Num of components d = d=3 d=5 d="7 d=9 d=11 d =13 d=15
GMM-MPCA 39.29 39.78 24.56 25.48 24.51 21.61 21.11 21.13
GMM-MPCA-MEAN 35.92 23.57 23.54 24.04 23.09 22.12 21.63 21.63
GMM-MPCA-SEP NA 27.85 25.45 24.54 24.06 24.55 23.56 24.02
3 MDA-RR 36.48 28.82 22.08 22.08 22.08 22.08 22.08 22.08
MDA-RR-OS 45.16 25.87 22.61 24.05 20.68 23.60 22.59 23.58
MDA-DR-MPCA 42.31 38.45 19.71 18.33 19.77 22.18 20.71 17.76
MDA-DR-MPCA-MEAN 39.43 23.56 18.77 18.33 18.83 19.78 21.20 16.81
GMM-MPCA 40.53 38.88 20.19 20.72 18.32 18.75 17.33 19.74
GMM-MPCA-MEAN 35.08 25.45 20.20 17.83 17.37 18.26 17.31 20.71
GMM-MPCA-SEP NA 26.51 22.62 22.16 20.25 19.75 20.71 19.25
4 MDA-RR 46.21 27.91 23.07 19.27 19.27 19.27 19.27 19.27
MDA-RR-OS 42.80 26.35 26.44 19.23 21.62 22.10 19.25 22.58
MDA-DR-MPCA 37.50 37.42 22.11 18.33 18.82 21.21 21.23 20.26
MDA-DR-MPCA-MEAN 40.85 22.11 20.24 19.28 20.24 19.76 20.73 19.31
GMM-MPCA 44.77 39.78 24.56 25.48 24.51 21.61 21.11 21.13
GMM-MPCA-MEAN 35.42 27.89 21.15 19.73 18.78 19.71 18.26 18.76
GMM-MPCA-SEP NA 32.31 29.35 20.21 20.22 20.21 19.23 21.17
5 MDA-RR 43.70 27.38 25.91 22.06 19.67 19.67 19.67 19.67
MDA-RR-OS 35.55 29.34 24.86 22.12 20.68 22.19 21.18 20.17
MDA-DR-MPCA 36.05 35.07 21.20 19.29 20.73 23.09 20.71 18.18
MDA-DR-MPCA-MEAN 38.37 26.44 21.21 18.34 23.10 24.56 21.64 18.74
(b) Imagery data
Num of components d = d=4 d=26 d=38 d =10 d=12 d=14 d=16
GMM-MPCA 55.36 48.00 40.36 38.64 38.36 37.43 36.07 37.86
GMM-MPCA-MEAN 44.50 36.21 36.86 37.07 36.36 36.79 36.71 36.14
3 GMM-MPCA-SEP NA NA 35.21 34.07 35.57 35.79 35.14 35.64
MDA-RR 52.57 43.14 40.21 35.86 35.86 35.71 35.29 35.29
MDA-RR-OS 52.36 42.50 38.50 34.07 35.29 35.50 34.93 34.79
MDA-DR-MPCA 59.93 49.36 42.21 41.71 41.00 39.50 37.00 38.14
MDA-DR-MPCA-MEAN 49.36 44.14 40.86 40.93 38.64 38.50 37.79 38.07
GMM-MPCA 57.00 48.29 39.79 38.14 36.57 36.93 35.64 36.64
GMM-MPCA-MEAN 45.00 37.00 39.21 36.57 35.36 35.43 35.86 36.14
4 GMM-MPCA-SEP NA NA 35.00 35.43 35.07 35.50 35.43 35.00
MDA-RR 52.21 40.64 38.93 35.79 37.50 36.50 35.29 34.86
MDA-RR-OS 51.64 43.57 37.64 35.50 34.50 32.36 34.50 33.64
MDA-DR-MPCA 59.71 50.00 40.14 40.36 38.29 37.86 36.29 37.64
MDA-DR-MPCA-MEAN 49.71 42.36 39.71 39.71 38.64 37.43 37.21 37.93
GMM-MPCA 57.79 48.50 40.36 37.57 37.36 39.07 36.07 38.29
GMM-MPCA-MEAN 45.64 36.57 38.64 36.14 37.00 36.64 35.64 35.36
5 GMM-MPCA-SEP NA NA 35.79 35.14 34.43 34.36 35.57 35.43
MDA-RR 53.21 43.36 39.00 36.07 35.86 34.43 33.93 34.07
MDA-RR-OS 52.07 42.57 39.71 34.21 32.64 34.21 33.50 32.93
MDA-DR-MPCA 58.50 48.93 39.79 38.21 39.57 39.07 36.00 38.71
MDA-DR-MPCA-MEAN 50.00 42.86 39.21 38.36 39.00 37.57 37.64 36.21

and all the other subspaces at preceding bandwidths o, I’ = 1,2,...,1 — 1. A large

mean closeness indicates that the current subspace is close to preceding subspaces.
Table 4.5 lists the mean closeness of subspaces by MPCA and MPCA-MEAN at

different bandwidth levels for the sonar and imagery data (the training set from

one fold in the previous five-fold cross validation setup). The first values in the
parentheses are by MPCA while the second values are by MPCA-MEAN. We vary
the dimension of the constrained subspace. The number of modes identified at
each level is also shown in the tables. As Table 4.5 shows, for both methods, the

subspaces found at the first few levels are close to each other, indicated by their

large mean closeness values, which are close to d, the dimension of the subspace.
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Table 4.3: Classification error rates (%) for the data with moderately high dimen-
sions (II1)

(a) Parkinsons data

Num of components d=2 d=3 d=>5 d=T7 d=9 d=11 d=13 d=15
GMM-MPCA 17.96 17.42 14.33 14.84 16.98 14.92 15.47 12.84
GMM-MPCA-MEAN 18.90 14.84 11.75 13.33 13.88 12.88 13.89 12.85
GMM-MPCA-SEP NA 11.75 13.29 12.26 13.34 13.85 11.25 13.34
3 MDA-RR 19.42 15.96 13.88 13.88 13.88 13.88 13.88 13.88
MDA-RR-OS 16.88 16.42 12.31 13.89 12.31 13.89 13.37 12.31
MDA-DR-MPCA 19.47 17.90 13.81 14.35 15.37 14.83 15.38 16.41
MDA-DR-MPCA-MEAN 19.47 17.90 13.81 14.33 15.37 15.35 15.35 15.35
GMM-MPCA 17.88 14.77 14.31 14.81 12.84 11.30 10.28 12.32
GMM-MPCA-MEAN 14.81 14.31 13.83 12.81 9.25 9.28 8.74 10.76
GMM-MPCA-SEP NA 11.28 11.33 12.29 11.80 10.29 9.76 9.79
4 MDA-RR 16.85 12.81 11.79 10.29 9.79 9.79 9.79 9.79
MDA-RR-OS 18.41 15.38 10.74 10.79 11.84 11.83 12.85 10.32
MDA-DR-MPCA 19.47 18.47 12.29 12.35 10.77 11.23 10.72 12.30
MDA-DR-MPCA-MEAN 19.47 17.43 12.29 11.81 9.72 10.24 10.72 11.76
GMM-MPCA 19.39 18.39 14.84 17.37 15.31 12.81 11.25 12.79
GMM-MPCA-MEAN 18.39 16.34 13.26 14.83 11.78 11.25 10.25 11.29
GMM-MPCA-SEP NA 14.81 10.75 12.25 11.75 10.75 10.25 10.78
5 MDA-RR 19.94 16.30 12.27 13.83 11.28 10.78 11.28 10.79
MDA-RR-OS 18.96 16.43 14.30 11.22 10.25 12.33 9.71 9.74
MDA-DR-MPCA 18.96 18.47 13.80 11.81 11.28 12.77 10.70 10.76
MDA-DR-MPCA-MEAN 18.96 19.52 12.26 11.31 9.75 12.27 10.20 9.74

(b) Satellite data

Num of components d=2 d=4 d="7 d=9 d=11 d =13 d=15 d =17
GMM-MPCA 16.74 15.01 14.16 14.67 14.06 13.95 13.97 13.63
GMM-MPCA-MEAN 16.94 14.10 13.53 13.77 13.95 13.78 13.66 13.68
3 GMM-MPCA-SEP NA NA 15.48 13.58 13.80 13.58 13.71 13.67
MDA-RR 35.18 14.41 12.84 12.96 13.46 13.60 13.66 13.53
MDA-RR-OS 34.90 13.95 13.01 13.09 12.82 13.04 13.35 13.29
MDA-DR-MPCA 17.20 14.83 13.61 13.91 13.80 13.35 13.60 13.69
MDA-DR-MPCA-MEAN 17.09 14.42 13.58 14.12 14.06 13.41 13.38 13.13
GMM-MPCA 17.02 14.13 13.61 13.80 13.58 12.90 12.93 12.88
GMM-MPCA-MEAN 17.31 13.41 13.50 13.53 13.24 12.94 12.91 12.87
4 GMM-MPCA-SEP NA NA 15.40 12.93 13.08 13.35 13.38 13.54
MDA-RR 35.06 13.35 12.60 12.77 12.74 12.73 12.63 13.05
MDA-RR-OS 34.28 13.49 11.95 12.17 11.90 12.49 11.97 12.14
MDA-DR-MPCA 17.54 14.14 13.21 13.52 13.05 12.74 12.46 12.45
MDA-DR-MPCA-MEAN 17.37 13.36 13.53 13.57 13.07 12.43 12.45 12.82
GMM-MPCA 16.25 13.66 12.90 13.29 12.79 12.26 11.92 12.24
GMM-MPCA-MEAN 16.77 12.93 12.85 12.96 12.40 12.18 11.89 12.24
5 GMM-MPCA-SEP NA NA 15.48 13.21 12.56 12.70 12.59 12.49
MDA-RR 27.43 13.27 12.85 12.34 12.15 12.18 12.29 12.28
MDA-RR-OS 30.16 13.30 12.31 12.23 11.73 11.89 11.98 11.97
MDA-DR-MPCA 16.61 13.80 12.70 12.82 12.74 12.09 11.79 12.42
MDA-DR-MPCA-MEAN 16.58 12.82 12.99 12.93 12.66 11.92 11.92 12.31

As the bandwidth o; increases, the mean closeness starts to decline, which indicates
that the corresponding subspace changes. When ¢, is small, the number of modes
identified by HMAC is large. The modes and their associated weights do not change
much. As a result, the generated subspaces at these bandwidths are relatively
stable. As o; increases, the kernel density estimate becomes smoother, and more
data points tend to ascend to the same mode. We thus have a smaller number of
modes with changing weights, which may yield a substantially different subspace.
Additionally, the subspace by MPCA-MEAN is spanned by applying weighted

PCA to a union set of modes and class means. In our experiment, we have allocated
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Table 4.4: Classification error rates (%) for the data with high dimensions

(a) Semeion data

Num of components d= d=14 d=38 d=11 d =13 d=15 d =17 d =19
GMM-MPCA 53.56 29.72 18.27 19.81 18.89 19.20 18.89 18.27
GMM-MPCA-MEAN 49.54 29.10 13.31 14.86 16.72 14.86 16.72 16.10
3 GMM-MPCA-SEP NA NA NA 13.31 12.07 13.00 16.10 14.86
MDA-RR 45.51 26.93 15.79 14.86 13.93 15.79 14.24 13.62
MDA-RR-OS 48.36 24.92 13.93 12.41 10.60 11.10 10.59 11.41
MDA-DR-MPCA 49.54 27.86 19.20 17.03 17.03 15.79 16.72 16.41
MDA-DR-MPCA-MEAN 48.30 26.01 12.07 13.62 13.31 12.07 14.24 14.55
GMM-MPCA 53.56 26.32 17.03 16.10 16.10 16.10 16.10 15.17
GMM-MPCA-MEAN 51.39 25.70 11.46 11.76 12.69 13.00 14.24 15.17
4 GMM-MPCA-SEP NA NA NA 13.31 12.07 12.07 13.62 11.76
MDA-RR 49.23 26.01 13.93 13.62 13.00 12.07 13.62 12.07
MDA-RR-OS 48.70 24.83 14.21 11.60 10.59 11.16 9.97 11.09
MDA-DR-MPCA 46.75 26.32 17.34 16.41 16.41 15.17 16.10 15.17
MDA-DR-MPCA-MEAN 44.58 26.32 13.00 11.76 15.17 13.31 13.00 13.00
GMM-MPCA 51.70 24.46 15.79 13.62 15.17 15.17 13.93 13.00
GMM-MPCA-MEAN 43.03 26.63 11.15 11.46 12.38 12.07 13.31 13.00
5 GMM-MPCA-SEP NA NA NA 13.00 11.46 13.00 12.38 13.00
MDA-RR 48.92 25.39 13.00 12.69 11.46 10.53 12.07 12.69
MDA-RR-OS 49.16 26.53 14.21 11.10 10.60 10.53 9.84 9.96
MDA-DR-MPCA 48.61 27.24 18.58 13.93 14.24 13.62 13.93 10.84
MDA-DR-MPCA-MEAN 46.13 25.08 10.22 10.84 10.84 10.53 8.98 9.29

(b) YaleB data

Num of components d=2 d=4 d=26 d=38 d =10 d=12 d=14 d=16
GMM-MPCA 84.29 64.29 64.29 55.71 45.71 38.57 40.00 34.29
3 GMM-MPCA-MEAN 31.43 17.14 52.86 51.43 38.57 30.00 28.57 27.14
GMM-MPCA-SEP NA NA 27.14 20.00 21.43 20.00 20.00 20.00
MDA-RR 87.14 42.86 27.14 17.14 28.57 8.57 11.43 11.43
MDA-DR-MPCA 82.86 58.57 50.00 44.29 37.14 42.86 25.71 32.86
MDA-DR-MPCA-MEAN 30.00 17.14 60.00 37.14 40.00 21.43 17.14 14.29
GMM-MPCA 84.29 67.14 68.57 55.71 44.29 44.29 40.00 37.14
4 GMM-MPCA-MEAN 34.29 22.86 64.29 50.00 35.71 30.00 35.71 30.00
GMM-MPCA-SEP NA NA 31.43 25.71 28.57 27.14 24.29 25.71
MDA-RR 85.71 60.00 41.43 24.29 14.29 10.00 12.86 11.43
MDA-DR-MPCA 90.00 55.71 50.00 42.86 37.14 41.43 28.57 27.14
MDA-DR-MPCA-MEAN 25.71 21.43 60.00 35.71 32.86 11.43 11.43 12.86
GMM-MPCA 85.71 65.71 65.71 55.71 50.00 45.71 42.86 40.00
5 GMM-MPCA-MEAN 37.14 14.29 60.00 51.43 47.14 42.86 41.43 38.57
GMM-MPCA-SEP NA NA 31.43 35.71 30.00 32.86 28.57 35.71
MDA-RR 85.71 61.43 42.86 42.86 32.86 30.00 22.86 24.29
MDA-DR-MPCA 87.14 67.14 52.86 38.57 34.29 34.29 17.14 22.86
MDA-DR-MPCA-MEAN 27.14 18.57 50.00 34.29 27.14 21.43 20.00 7.14

a larger weight proportionally to class means (in total, 60%) and the class means
remain unchanged in the union set at each kernel bandwidth. Therefore, the

differences between subspaces by MPCA-MEAN are smaller than that by MPCA,

indicated by larger closeness values.

4.5.4 Model Selection

In our proposed method, the following model selection strategy is adopted. We
take a sequence of subspaces resulting from different kernel bandwidths, and then
estimate a mixture model constrained by each subspace and finally choose a model
yielding the maximum likelihood. In this section, we examine our model selec-

tion criteria, and the relationships among test classification error rates, training
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likelihoods and kernel bandwidths.

Figure 4.1 shows the test classification error rates at different levels of kernel
bandwidth for several data sets (from one fold in the previous five-fold cross val-
idation setup), when the number of mixture components for each class is set to
three. The error rates are close to each other at the first few levels. As the kernel
bandwidth increases, the error rates start to change. Except for the waveform, on
which the error rates of GMM-MPCA and GMM-MPCA-MEAN are very close,
for the other data sets in Figure 4.1, the error rate of GMM-MPCA-MEAN at
each bandwidth level is lower than that of GMM-MPCA. Similarly, at each ker-
nel bandwidth level, the error rate of GMM-MPCA-SEP is also lower than that of
GMM-MPCA, except for the robot data. We also show the training log-likelihoods
of these methods with respect to different kernel bandwidth levels in Figure 4.2.
The training log-likelihoods are also stable at the first few levels and start to fluctu-
ate as the bandwidth increases. This is due to the possible big change in subspaces
under large kernel bandwidths.

In our model selection strategy, the subspace which results in the maximum log
likelihood of the training model is selected and then we apply the model under the
constraint of that specific subspace to classify the test data. In Figure 4.1, the test
error rate of the model which has the largest training likelihood is indicated by
an arrow. As we can see, for each method, this error rate is mostly ranked in the
middle among all the error rates at different levels of bandwidth, which indicate

that our model selection strategy helps find a reasonable training model.

Table 4.5: Mean closeness of subspaces by MPCA and MPCA-MEAN at different
levels of kernel bandwidth

(a) Sonar data

Bandwidth level 2 4 6 8 10 12 14
Num of modes 158 144 114 86 60 15 8
d=2 (2.00, 2.00) (2.00, 2.00) (2.00, 2.00) (1.99, 1.99) (1.98, 1.98) (1.77, 1.88) (1.43, 1.80)
d=4 (4.00, 4.00) (4.00, 4.00) (3.99, 4.00) (3.98, 3.99) (3.84, 3.94) (2.63, 3.08) (2.09, 2.96)
d=26 (6.00, 6.00) (5.99, 5.99) (5.95, 5.99) (5.91, 5.88) (5.41, 5.47) (4.48, 4.64) (3.48, 4.13)
d=38 (8.00, 8.00) (8.00, 8.00) (7.97, 7.97) (7.86, 7.89) (6.98, 7.00) (6.20, 6.40) (4.29, 5.18)
(b) Imagery data
Bandwidth level 2 4 6 8 10 12
Num of modes 1109 746 343 144 60 35
d=6 (6.00, 6.00) (5.97, 5.99) (5.32, 5.86) (5.34, 5.61) (5.21, 5.32) (5.02, 5.32)
d=38 (8.00, 8.000) (7.96, 7.96) (7.54, 7.89) (7.31, 7.76) (6.82, 7.43) (6.27, 6.85)
d =10 (10.00, 10.00) (9.80, 9.52) (9.56, 9.48) (9.25, 9.23) (8.45, 9.01) (7.71, 8.42)
d=12 (12.00, 12.00) (11.96, 11.96) (11.48, 11.50) (10.29, 10.89) (10.06, 10.33) (9.49, 9.87)
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Figure 4.1: The test classification error rates at different levels of kernel bandwidth

4.5.5 Clustering

We present the clustering results of GMM-MPCA and MDA-RR on several sim-
ulated data sets and visualize the results in a low-dimensional subspace. The
previous model selection criteria is also used in clustering. After fitting a subspace
constrained Gaussian mixture model, all the data points having the highest poste-
rior probability belonging to a particular component form one cluster. We outline
the data simulation process as follows.

The data is generated from some existing subspace constrained model. Specif-
ically, we take the training set of the imagery data from one fold in the previous
five-fold cross validation setup and estimate its distribution by fitting a mixture
model using GMM-MPCA. We will obtain five estimated component means which
are ensured to be constrained in a two dimensional subspace. A set of 200 samples
are randomly drawn from a multivariate Gaussian distribution with the previously

estimated component means as the sample means. A common identity covariance
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Figure 4.2: Training log-likelihoods at different kernel bandwidth levels

is assumed for the Gaussian multivariate distributions. We generate five sets of
samples in this way, forming a data set of 1000 samples. We scale the compo-
nent means by different factors so that the data have different levels of dispersion
among the clusters. The lower the dispersion, the more difficult the clustering
task. Specifically, the scaling factor is set to be 0.125, 0.150, and 0.250, respec-
tively, generating three simulated data with low, middle and high level dispersion
between clusters.

Figure 4.3 shows the clustering results of three simulated data sets by GMM-
MPCA and MDM-RR, in two-dimensional plots, color-coding the clusters. The
data projected onto the true discriminant subspace with true cluster labels are
shown in Figure 4.3(a). In addition, Figure 4.3(b) and Figure 4.3(c) show the
data projected onto the two-dimensional discriminant subspaces by GMM-MPCA
and MDA-RR. For all the simulated data sets, both GMM-MPCA and MDA-
RR can effectively reveal the clustering structure in a low-dimensional subspace.

To evaluate their clustering performance, we compute the clustering accuracy by
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Table 4.6: Closeness between subspaces in clustering with different dispersions

Closeness low middle  high
GMM-MPCA 1.769 1.820 1.881
MDA-RR 1.552 1.760 1.866

comparing their predicted and true clustering labels. Suppose the true cluster label
of data point x; is t; and the predicted cluster label is p;, the clustering error rate is
calculated as 1 -7 | I(t;, map(p;))/n, where n is the total number of data points,
I(x,y) is an indicator function that is equal to one if x = y otherwise zero, and
map(p;) is a permutation function which maps the predicted label to an equivalent
label in the data set. Specifically, we use the Kuhn-Munkres algorithm to find the
best matching (Lovész and Plummer, 1986). The clustering error rates are listed
in the titles above the plots in Figure 4.3. The mis-clustered data points are in
gray. When the dispersion between clusters is low or middle, the clustering error
rates of GMM-MPCA are smaller than those of MDA-RR. When the dispersion
is high, the task becomes relatively easy and the clustering accuracy of these two
methods are the same. In Table 4.6, we also show the closeness between the true
discriminant subspace and the discriminant subspaces found by GMM-MPCA and
MDA-RR. Comparing with MDA-RR, for all the three data sets, the closeness
between the subspace by GMM-MPCA and the true subspace are smaller.

4.6 Summary

In this chapter, we propose a Gaussian mixture model with the component means
constrained in a pre-selected subspace. We prove that the modes, the component
means of a Gaussian mixture, and the class means all lie in the same constrained
subspace. Several approaches to finding the subspace are proposed by applying
weighted PCA to the modes, class means, or a union set of modes and class means.
The constrained method results in a dimension reduction property, which allows us
to view the classification or clustering structure of the data in a lower dimensional
space. An EM-type algorithm is derived to estimate the model, given any con-
strained subspace. In addition, the Gaussian mixture model with the component
means constrained by separate parallel subspace for each class is investigated. Al-

though reduced rank MDA is a competitive classification method by constraining
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Figure 4.3: Two-dimensional plot for the clustering of synthetic data, color-coding
the clusters. (a) Projections onto the two-dimensional true discriminant subspace,
with true cluster labels. (b), (¢) Projections onto the two-dimensional discrimi-
nant subspace by GMM-MPCA and MDA-RR respectively, with predicted cluster
labels.

the class means to an optimal discriminant subspace within each EM iteration, ex-
periments on several real data sets of moderate to high dimensions show that when
the dimension of the discriminant subspace is very low, it is often outperformed by
our proposed method with a simple technique of spanning the constrained subspace
using only class means.

We select the constrained subspace which has the largest training likelihood
among a sequence of subspaces resulting from different kernel bandwidths. If the

number of candidate subspaces is large, it may be desired to narrow down the
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search by incorporating some prior knowledge. For instance, the proposed method
may have a potential in visualization when users already know that only a certain
dimensions of the data matter for classification or clustering, i.e., a constrained
subspace can be obtained beforehand. Finally, we expect this subspace constrained
method can be extended to other parametric mixtures, for instance, mixture of

Poisson for discrete data.



Chapter

Parallel Hierarchical Mode

Association Clustering

5.1 Introduction

Hierarchical Model Association Clustering (HMAC) is a nonparametric clustering
method which groups data points into one cluster if they are associated with the
same mode in a mixture density (Li et al., 2007). In Chapter 4, we introduce a
Gaussian mixture model with component means constrained in pre-selected sub-
spaces. The subspace is found by applying weighted principal component analysis
to the modes of a kernel density and the class means. Note that the modes are
obtained by HMAC. HMAC is robust in high dimensions, especially when clusters
of data deviate from Gaussian distributions. HMAC has been applied to segment
images for the analysis of color combination aesthetics (Yao et al., 2012). All the
modal vectors are extracted as the representative colors of an image. Since these
modal vectors are the local maximums of a mixture density, specifically, a kernel
density estimator, the representative colors tend to be more “bright” and thus
better retain the true colors. We have also applied HMAC to perform clustering
on industry engineering design data in work-centered visual analytics to aid the
search for optimal designs (Yan et tal., 2012a). As the computational component
in a visual analytics system, HMAC groups similar design data into clusters and

reveals the underlying patterns. The clustering results are passed to a visualiza-
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tion component which interacts with human by inputting selected data for the
computational component and outputting visualization results.

One challenge faced by HMAC and any other clustering methods is the scala-
bility issue with large scale data sets. In many applications, the clustering results
have to be rendered within a very short time. For instance, in visual analytics of
large scale multi-dimensional engineering design data, the capability of real-time
human and computer interaction is critical (Yan et tal., 2012b). While the visu-
alization component can display results very fast, the computational component
usually takes much longer time to mine data, find patterns and finally generate
results. We thus need a fast computational algorithm that can have the results
readily available within a very short time, bridging the gap between visualization
and data mining. Another example is with the image segmentation using HMAC.
If we aim to provide on-site color aesthetic feedback of high resolution photos to
mobile camera consumers, the segmentation process have to be finished instantly,
in addition to the data sending, receiving and analyzing cost.

In this chapter, we introduce two parallel versions of HMAC which can dra-
matically reduce the computational time of the original algorithm using parallel
computing. The basic idea of parallel computing is to either partition the core task
into various tasks that can be performed independently (task parallelism), or par-
tition the data into pieces which can be dealt with separately (data parallelism).
The final result or solution is obtained by combining the partial results when all the
sub-problems are solved (Pacheco, 2011). Two most popular parallel computing
frameworks are MapReduce (Dean, 2008) and message passing interface (MPI).
MapReduce has two steps: a “map” step to partition data into subsets that can
be processed independently on each compute node and a “reduce” step to merge
the results from the previous step. It serves as an API of the parallel computing
framework. Users do not have to worry about the partition of the data, schedul-
ing of tasks, communications, and logging. All these are handled internally by
the framework. Hadoop is an open source platform for providing the MapReduce
functions. MapReduce offers a user friendly approach to implementing parallel
algorithms. MPI is a standardized portable message passing library (Gropp et
tal., 1999), offering programmers explicit control over how machines send data or

messages to each other. Comparing with MapReduce, MPI is more demanding
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yet more flexible. In real practice, we found that MapReduce algorithms are more
suitable for data-intensive problems with non-iterative procedures and little data
exchange, while MPI algorithms are appropriate to computational-intensive prob-
lems involving iterations and huge data exchange. This is also similar to what
have been found in (Chen, 2011). Since HMAC has iterative process and is com-
putationally intensive, MPI framework is more appropriate.

According to the inference of HMAC (Li et al., 2007), the most computationally
intensive step is the modal Expectation-Maximization (MEM) algorithm which
finds the density mode for each data point using an iterative optimization. To
speed up HMAC, we have designed two parallel approaches. The first approach is
to parallelize each iterative step of MEM by dividing the data into several subsets
and assigning the calculation related with each subset data to a single compute
node (or a slave node). The computation is performed simultaneously on each
node. All the partial results are finally summarized by a master node. In the
second approach, we still divide the data into several subsets and assign each
subset to a single compute node. However, instead of parallelizing each MEM step
in HMAC, we have each compute node calculate the density modes for the assigned
data points using the original MEM. For both approaches, a master node finally
merges the found modes if they are numerically close. All the data points that are
associated with the same mode form one cluster. In the following sections, we will

provide details about these two parallel approaches.

5.2 Parallel Approach I

We parallelize the MEM algorithm, which finds a density mode for each data point.
MEM comprises two iterative steps, similar to the expectation and maximization

steps in EM (Dempster et al., 1977). Let a mixture density be

flx) = mful@) (5.1)

where z € R%, 7, is the prior probability of mixture component k, and fi(x) is the

density of component k. Given any initial value 2(°), MEM solves a local maximum
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of the mixture density, i.e., the mode, by alternating the following two steps until

a stopping criterion is met. Start with ¢ = 0,

1. E-step: pr = “}f(ﬁf)(;)) ,r=1,...,R.

2. M-step: () = argmax, % p,log f(z).

If the mixture density is a mixture of Gaussians with common covariance ma-
trix, i.e., fr(z) = &(x|ur, X), where ¢(-) is the probability density function of a
Gaussian distribution, we simply have z(t+D = ZkK:lpk,uk in the M step. In the
special case of a Gaussian kernel density function, ux = zx, m = 1/n, K = n,
where n is the total number of data points. In Gaussian kernel, we use a spher-

2 ...,0%), where the standard deviation o is

ical covariance matrix ¥ = diag(c?, o
referred to as the bandwidth of the kernel. Let us denote diag(c?, 02, ...,0%) by
D(c?) for brevity. In HMAC, we model data using Gaussian kernel density, i.e.,

fr(x) = ¢(x|xr, D(0?)). Therefore, the above two steps are simplified as

z® |z o2
1. E-step: Dr = ZZi(l ¢(:l(tk>’|f;’D82)), kE=1,..n.

2. M-step: 2D =30 prag

Now we describe the parallel approach. Suppose the total number of slave
nodes is T'. Denote the subset of data assigned to a slave node ¢ by ;. In the
E step, for each pg, the slave node processes its own assigned subset of data.
Specifically, we have slave node i compute » ;¢ ¢(xD |z, D(0?)). The master
node will then divide ¢(z®|z), D(c?)) by the sum of all the partial results from
the slave nodes. Similarly, in the M-step, we have each slave node i compute
ZkeS,- prrr and the master node will sum up all the partial results. After the
modes for all the data points are obtained, the master node will merge them (if
some modes are numerically close, they will be grouped as a single mode) and the

data points that ascend to the same mode will form a cluster.

5.3 Parallel Approach 11

Comparing with the first approach, our second parallel approach is simpler and

more straightforward. Suppose we have T slave nodes. As shown in Figure 5.1, we
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assign a subset of data to each slave node 7, denoted by S;. Instead of parallelizing
the MEM algorithm, we have each node find the modes for the assigned subset of
data using the original MEM. In this way, there is no data transferring operation
involved in the iterative MEM. Note that, to find the mode for each data point,
we still need the entire data in the MEM computation. Therefore, each slave node
should be able to access all the data. Denote the modes found by slave node ¢
for the assigned subset S; by M;. Similar to the first approach, a master node
will merge the modes { My, M, ..., M,;} if some are numerically close and then form

clusters by grouping the data points that are associated with the same mode.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Assign data to its mode
(clustering)

|
|
| |
|
} S; S Ss3 St }
|
|
Slave node | !
(MEM) ! I
A mal S —
|
i M; M, M3 !
! |
L,,,,%,,A,,,,,,,,,,,, ,,,,,,,,,,J
|
Master node } Merge mode
|
|
3 i
|
|
|

Figure 5.1: The flow of parallel approach II

5.4 Remarks on Parallel HMAC

HMAC is a hierarchical clustering algorithm. When the kernel bandwidth ¢ in-
creases, the kernel density estimate becomes smoother and more data points tend
to climb to the same model. Give a sequence of bandwidths o1 < 09 < ... < 07y,
hierarchical clustering is performed in a bottom-up manner. As introduced in
Section 4.2, HMAC starts with every point being a cluster by itself, which corre-
sponds to the extreme case where oy approaches 0. At any bandwidth o;(I > 1),
the modes, that is, cluster representatives, obtained from the preceding bandwidth
are input to the modal EM algorithm. The modes identified then form a new set
of cluster representatives. This procedure is repeated across all 0;’s. For details,

we refer interested readers to (Li et al., 2007). The hierarchical clustering results
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are thus nested, as a dendrogram. The proposed parallel approaches thus have
to be applied to the data that need to be clustered on each level of the hierar-
chy. HMAC also provides users the option of not doing nested hierarchy. In that
case, a collection of clustering results can be obtained using a sequence of kernel
bandwidths. As the bandwidth increases, the number of clusters will decrease.
Since the clustering of data under each bandwidth is independent, this non-nested

clustering process can be readily parallelized as well.

5.5 Experiments

The performance of these two proposed parallel HMAC approaches using MPI
are reported in this section. We apply the parallel algorithms on the ship design
data used in the visual analytic system (Yan et tal., 2012b), which has 2,000
samples and 17 dimensions, and the imagery data (Qiao and Li, 2010) which has
1,400 samples and 64 dimensions. The default parameters of original HMAC are
used . Figure 5.2 shows the running time of these two parallel approaches when
the number of compute nodes increases (the number of master node is always one
and the remaining are slave nodes).

These two parallel approaches are implemented using the OpenMPI library. We
run the experiments on the CyberSTAR cluster computing platform at Penn State.
Each compute node has an Intel Xeon processor with 2.67GHZ. In Figure 5.2,
the two parallel approaches using MPI are denoted by “MPI-P1” and “MPI-P2”,
respectively. As we can see, as the number of compute nodes increases, for both
data sets, the running time of MPI-P1 and MPI-P2 are significantly reduced.
Specifically, for the ship design data, when 20 compute nodes are used, the running
time of MPI-P1 and MPI-P2 are 34.4 and 17.3 seconds while the original HMAC
takes 1,360.7 seconds to obtain the clustering results. In addition, the performance
of these two parallel approaches are very close. MPI-P2 is slightly faster than MPI-

P1, possibly due to less data and message exchange.

Thttp://sites.stat.psu.edu/jiali/hmac/doc.pdf
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Figure 5.2: Running time of two parallel HMAC approaches using MPI on ship
design data (left) and imagery data (right)

5.6 Summary

We propose two parallel versions of HMAC using MPI, an open source parallel
computing library. The first parallel approach partitions the computation in each
iteration of the inference algorithm into several subtasks, which are conducted in-
dependently and concurrently. A master node summarizes all the partial results
during each iteration and also groups data into clusters finally. The second ap-
proach partitions the data into several subsets, assigns a slave node to compute
the modes for the data in each subset using the original MEM, and has a master
node do the final merging and clustering. Comparing with the original algorithm,
parallel HMAC significantly reduces the running time as the number of compute
nodes increases, making it feasible to perform clustering on large-scale data for

real applications.



Chapter

Conclusions and Future Work

We summary the contributions of this dissertation and discuss some future work.

6.1 Conclusions

This dissertation is focused on mixture modeling for complex and large-scale data
and their applications in classification and clustering. A set of new mixture models
is proposed to model the distribution of data that have high dimensions, missing
values, or are more complicated than those in a vector space, for instance, ones
that contain sets of weighted and unordered vectors.

A two-way GMM is proposed to classify high dimensional data and group
variables into clusters simultaneously. Variables in the same cluster are assumed to
have the same distributions within each class. For each cluster of variables, only a
small number of statistics are sufficient for predicting the class label, resulting in a
dimension reduction property. We assume a component-wise diagonal covariance
matrix, i.e., the variables are independent for each mixture component. This
assumption permits the treatment of missing values, a particularly useful trait for
data that are prone to missing values. EM algorithms are derived to estimate the
two-way GMM with or without missing values. Experimental results show that a
two-way mixture often outperforms a mixture model without variable grouping.

A distance-based mixture modeling approach via the concept of hypothetical
local mapping (HLM) is proposed to estimate a mixture-type density for the data

using their pairwise distances. Since only distances are required for model estima-
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tion, HLM is particularly useful for the modeling of data that cannot be effectively
described by well-studied mathematical entities. Experimental results show that
the classification performance of the proposed mixture model is highly competi-
tive, comparing with other state-of-the-art distance-based classification methods,
on various datasets. The computational cost for both training and testing are also
low. Because a mixture model is estimated for each class separately, it is easy
to handle a large number of classes in the HLM based modeling approach. In
addition, it can be extended to the classification of stream data that arrive in an
incremental fashion.

The intrinsic characteristics of mixture modeling render it a special tool for
visual analytics. Motivated by this, we propose a GMM with the component
means constrained in a pre-selected subspace. It is particularly appealing to multi-
dimensional data visualization, in which users may already know that the compo-
nent (or cluster) means of data lie in a subspace spanned by several dimensions
of the data. Therefore, the subspace is fixed and a GMM is estimated with the
component means constrained in that subspace. It is proved that the modes, the
component means of a Gaussian mixture, and the class means all lie in the same
constrained subspace. If the subspace is unknown, this motivates us to find one by
applying weighted principal component analysis to the modes, the class means, or
a union set of modes and class means. The constrained method has a dimension re-
duction property, which allows us to view the clustering or classification structure
of high dimensional data in a lower dimensional subspace. Although reduced-rank
MDA is a competitive method by constraining the component means to an optimal
discriminant subspace updated within each iteration of the EM algorithm, exper-
iments on several real datasets show that when the dimension of the discriminant
subspace is very low, our proposed method with a simple technique of spanning
the subspace using only the class means often outperforms reduced-rank MDA.

We propose parallel implementations of hierarchical mode association clustering
(HMAC) using message passing interface (MPI), an open-source parallel computing
library. HMAC is a nonparametric clustering method that groups data into one
cluster if they are associated with the same mode in a mixture density. Two
parallel approaches are tested. The first one partitions the computation in each

iteration of the MEM algorithm into subtasks, which are performed independently
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and concurrently by several slave nodes. It then has a master node sum up all the
partial results and finish the computation for one iteration. The parallelization
on each iteration continues until the MEM algorithm converges. The second one
partitions the data into several subsets and assigns a slave node to compute the
modes of data in each subset using the original MEM algorithm. Since the mode
of each individual data can be obtained separately, every slave node can perform
the assigned computation independently. Comparing with the original algorithm,
parallel HMAC significantly reduces the running time when working on large-scale
data.

6.2 Future Work

The works in this dissertation provide the starting point of mixture modeling for
complex and large-scale data. We discuss some future work in this section.

For two-way Gaussian mixtures, the variables or features may have physical
meanings in engineering systems. Prior knowledge of such physical meanings may
be exploited in grouping variables. The two-way mixture approach may be ex-
tended to achieve dimension reduction under more general settings.

In the distance-based mixture modeling using hypothetical local mapping
(HLM), a common shape parameter is assumed across all the components in all
the classes or all the components within a class. This common shape may be lim-
ited in some situations since the assumption may be conservative. We may relax
it by the quantization trick, in the same spirit as the two-way mixture model.
Specifically, we may estimate a shape parameter for every cluster separately, col-
lect all the scale parameters across the components, and then quantize them into
a few groups. To improve robustness, we assume common scale parameters for
the components that are put in the same group and then estimate common shape
parameters for components in the same group. In a nutshell, the scale parame-
ters obtained individually for each component serve as a crude estimation in the
first step. Then components with similar scale parameters are pooled together to
estimate a common scale parameter for robustness.

In the GMM with the component means constrained in a pre-selected subspace,

we select a constrained subspace that has the largest training likelihood among
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a sequence of subspaces resulting from different kernel bandwidths. When the
number of candidate subspaces is large, it may be desired to narrow down the
search by incorporating some prior knowledge. For instance, the proposed method
has a potential in visualization when people already know that certain dimensions
of the data matter for classification or clustering, i.e., a constrained subspace can
be obtained beforehand. This subspace constrained method may be extended to
other parametric mixtures, for instance, mixture of Poisson for discrete data.

We propose two parallel approaches to hierarchical mode association clustering
(HMAC), a nonparametric method that groups data points into a cluster if they
are associated with the same mode in a mixture density. The same approaches
can be applied to parallelize ridgeline EM algorithm (Li et al., 2007), which finds
the ridgeline linking two hilltops (modes) in a mixture density. The ridgeline can
be used to measure how well two hills (cluster of data) separate from each other,
enabling the diagnosis of clustering results. The combination of these approaches
can help us instantly obtain the geometric characteristics of a mixture density on

large-scale data, which provide very useful information for visual analytics.



Appendix A

Two-way Gaussian mixtures

A.1 Dimension Reduction Property

We now prove Theorem 2.3.1. Denote the number of variables in the [th cluster
in class k by ny, Zz 1 Mk = p for all k. Suppose variables in cluster [ under class
k are {jfk’l),jék’l), y 7(7’,:5 }. The general two-way mixture model in (2.6) can also

be written as
/ D
fX=x,Y=k = Zﬂ'mpm H¢ 51O c(b(m), ))
m=1 j=1
L Mk,

> o [TTT 0 (70010ma) - (A1)

meRy l=11=1

Since the distribution of (k) is from the exponential family, we have

Mk, 1 Mk, L
]:[1 (b (:Cji(k,z) |0m,l) H exp <Z 775 m, l :L‘ (k z)) B(@m’l)> h (./,Cj;k,l))

Nkl

= exp(z:nS m,l Z Jt(kz)) 77le >Hh<$ (hl))AZ

We have defined Ty ;(x) = >/t T(ffji(k,l)). More specifically, T;x(x) =
(T“@l(X), .‘.,Thkﬂg'(X))t, where Tl,k,s(x> = :]i’i TS(.Z'j(k,l)), S = 1, ceey S Substitute
(A.2) into (A.1),

JX=xY =k
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L S Nk, L Mk,
Z Tm lHeXp (Zns(gm,l)ZT(x (kz))—nle )] [HHhx(kl) ]
=1 s=1 =1

meRy =1 i=1
L s B P
= [ Z WmHGXP <Zns(9m,l)Tl,k,s( ) — 1k, B(6 Hh
meRy =1 s=1 j=1

Because f(Y = kX =x) x f(X = ),

Y =k

.f(Y = k|X = X Z Tim, HeXp (Z s m l)Tl k é( ) nk,lB(gm,l)>
meRy =1

subject to Zf: fY =k | X =x) =1. As the posterior probability of ¥ given

X = x only depends on Ty 4(x), X and Y are conditionally independent given

Tirs(x),l=1,..,Lik=1,.., K, s=1, .. 8, or equivalently, T;,(x),l =1, ...,

Lk=1,.., K.

A.2 Model Estimation

The E-step of EM computes Q(t;+1]1¢) and the M-step maximizes it. Q(¢y1]1:) =

Ellog f(v|tey1) | W,1l], where V s the complete data, w the incomplete, and
f(+) the density functlon Let 7 be the latent component identity of x®. We
abuse the notation A(x®) slightly to mean the non-missing variables in x(*). Here

v={x® y® 70 i =1 . n} and w = {AxD),y@ i =1,...,n}. Qs1|thy) =
Z?:l E [log f(X(Z)7 7(1)7 y(z)|¢t+1) | A(X(l))7 y(l)a ,lvbt}? where

B [log f(x, 7O,y 1) | AD), 5,03

= B [logwiii” [ AGD), 5 0] + B [log prio (5) | AG), 5, 0| +

p
i t41 2(t+1) i i
ZE |:10g (;5(1’5 ) ‘ M,(,.(j_)72(t+1)(b(.,.(i))7]) (e ,ct+D) (b(7(D),4) ) | A(X( ))7y( )aqut] (A?’)

Let ¢;m be the posterior probability for A(x®) being in component m under 1,

as given in Eq.(2.13).

The first term in (A.3), [10g7r (1) | A(xD), @ ] = M 1QZm10g7T(t+1)-
The second term in (A.3) is zero. For the third term, consider each j separately.
If xg-i) is not missing, that is, A(xg»i)) = 1, the distribution of the complete data

{$§i) , 70 9@ conditioned on the incomplete data is random only in terms of
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7@ € {1,..., M}, which is the pmf given by the posterior probabilities ¢im- Thus,

t41) o (t+1) i
[log o(x; ] Ni( D (1) (b(r(D),5) 021w (e 5y) | AxD), gt ),%}

@) _ -+ 2
i log ! (@ -0
(t+1) 2(t+1)
m=1 \/2770. m,c(t+1) (b(m),5) 20 m,c(t+1) (b(m),5)

If xgi) is missing, that is, A(:L‘S»i)) = 0, the distribution of the complete data
{$§i) , 70 9@} conditioned on the incomplete data is random in terms of both
2 € {1,..., M} and the variable xy) The conditional distribution of 7 is still

given by the posterior probabilities ¢;,,, m =1, ..., M. The conditional distribu-
: @ @)Y ,,G) ~@) 2(t)
Elizn of z;” given {A(x"),y", 7" = m} under ¢t is N( mc(t>( (m) ) © m,c<t>(b(m),j))'
us
(t+1) i i
Ellog ¢( | uﬂffiuu)(b(m) )’ Qr(i)’c(frJrl)(b(q—(i)),j) | A1),y ]
(t) (t+1) 2(t)
> i |log B (“mc“%b(mm ~Hm c<f+1><b<m),j>> 0 ) (o(m) )
o i+1) 2(t+1)

m=1 \/27r0' 1(71 ,c(t+D) (b(m),5) 205, ,ctFD (b(m),5)
In summary, Q(v41 | ¥y) is given by the formula below.
Let

(®) (t+1) (t) _ (D) 2(t)
A, = (57 = Hyp 41 (b ) A, — (’“‘mw(b(m),j) Hy, c<t+1><b<m>7j>) 0% o) (5(m).5)
L= (t+1) 122 = (t+1) :
202 242
m.c(4) (b(m). ) e (b(m). )
Then
n M
QWorst | ) =D aimlogmi™ +
i=1 m=1
S5 i |log — - (A(xg.’))Al +(1- A(xy)))Az)
i=1 m=1 j=1 \/2 i t+1>(b(m) )

Based on the obtained Q(;.1 | ¥;), the formulas for updating the parameters
in Eqgs.(2.14) ~ (2.17) can be easily derived.
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GMM with Subspace Constrained

Means

B.1 Proof of Theorem 3.3.1

We prove Theorem 4.3.1. Consider a mixture of Gaussians with a common covari-

ance matrix 3 shared across all the components as in (2):

f(X =z) =) mo@p,2).

13

Once ¥ is identified, a linear transform (a “whitening” operation) can be applied
to X so that the transformed data follow a mixture with component-wise diagonal
covariance, more specifically, the identity matrix I. Assume X is non-singular and
hence positive definite, we can find the natural factor of X, that is, X = (E%)tﬁ%.
If the eigen decomposition of ¥ is ¥ = Vs DgVi, then, Xz = D%Vg. Let W =
((Z2))~' and Z = WX. The density of Z is ¢(Z = z) = % m,0(z|Wu,, I).
Any mode of g(z) corresponds to a mode of f(z) and vice versa. Hence, without
loss of generality, we can assume 3 = I.

Another linear transform on Z can be performed using the orthonormal basis
V =vUvt = {v,..,v,}, where v = {v,41,...,v,} is the constrained subspace
where py,’s reside, and v+ = {vy,...,v,} is the corresponding null subspace, as

defined in Section 3. Suppose Z = Proj‘%. For the transformed data z, the
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covariance matrix is still I. Again, there is a one-to-one correspondence (via the
orthonormal linear transform) between the modes of g;(z) and the modes of gi(z).

The density of z is
R
9(Z =2 = mo(20,1),
r=1

where 6, is the projection of W, onto the orthonormal basis V', ie., O, =
Pro_]W“ . Split @, into two parts, 6,1 being the first ¢ dimensions of 8, and 0, -
being the last p— g dimensions. Since the projections of u,.’s onto the null subspace
vt are the same, 0, are identical for all the components, which is hence denoted
by 6. ;. Also denote the first ¢ dimensions of z by 2!, and the last p—q dimensions

by 2. We can write g(2) as

R
Z) = Z qub(g(l) |0-,17 Iq)¢(g(2) |97”,27 Ip—q) .
r=1

where I, indicates a ¢ x ¢ identity matrix. Since g(Z) is a smooth function, its

modes have zero first order derivatives. Note

) _ 000 T) N
9z agu) Z” (27102, 1,—g) ,
WE) g, ) Son 0
0z(2) - |9 laI Zﬂ-r 02 .

By setting the first partial derivative to =zero and using the fact
SR mp(Z)0,9,1,-,) > 0, we get

99(z16.,,1,)
0z o

and equivalently
zW = 0.1, the only mode of a Gaussian density.

For any modes of ¢(2), the first part 2! all equal to . ;, that is, the projections

1

of the modes onto the null subspace v~ coincide at 6.;. Hence the modes and
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component means lie in the same constrained subspace v.

B.2 Dimension Reduction Property

We prove Theorem 3.3.2 here. Assume v = {v,41,...,0,} is the constrained sub-
space where py,’s reside, and v+ = {wvy, ..., v,} is the corresponding null subspace,
as defined in Section 3. We use the Bayes classification rule to classify a sample x:
y = argmax, f(Y = k|X = x) = argmax, f(X =x,Y = k).

f( X =a,Y =k) = apfr(x) < a Zﬂkr exp(—(x — pe)' Sz — pyr)) . (B.1)

Let V = | ¢ |. Matrix V is orthonormal because v;’s are orthonormal by con-

t
’Up

struction. Consider the following cases of X.
3. is an identity matrix

From Eq. (B.1), we have
Ry
S i exp(— (@ - ) BN @ — )
r=1
Ry,
= Z Thr exp(— (@ — ) (VIV) (@ — ptir))
r=1

Ry,
= Z Thr exp(—(Ve — Vi, ) (Ve — Vi)
r=1

p

- ZW’W exp(— Z(fj — fkrg)?) (B.2)

J=1

where ; = v} - &, fipy; = V- P, j = 1,2,...,p. Because fig,; = c;, identical

across all k and r for j = 1,--- ,q, the first ¢ terms in the sum of exponent in Eq.
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(B.2) are all constants. We have
Ry, p
Z T €Xp(— Z(fg - ﬁkr,j)Z)
r=1 j=1

Ry,
o g T €Xp(—
r=1

(‘%j - ﬂkr,j)2) :

M=

J=q+1
Therefore,
Ry, P
fX =Y =k)ocap Y mexp(— Y (¥ — figr)’) -
r=1 Jj=q+1

That is, to classify a sample @, we only need the projection of & onto the con-

strained subspace v+ = {vy, ..., v,}.

Y. is a non-identity matrix

We can perform a linear transform (a “whitening” operation) on X so that the
transformed data have an identity covariance matrix I. Find the natural factor of
Y, that is, X = (2%)t2%. If the eigen decomposition of 3 is ¥ = Vs DV, then
S5 = DIV, Let Z = (£3)'X. The distribution of Z is

Ry

9(Z=2Y =k)=a Y mhed(z|it, I) ,

r=1

where fiy, = (2—%)t,u,,w. According to our assumption, U§ Py = Cj, i.e., iden-
tical across all k and r for j = 1,...,q. Plugging into p = (52)fig, we get
(E%'Uj)t - figr = ¢;, 7 = 1,...,q. This means for the transformed data, the compo-
nent means fi,’s have a null space spanned by {E%vj|j =1,...,q}. Correspond-
ingly, the constrained subspace is spanned by {(Z_%)tvﬂj =q+1,...,p}. Tt is easy
to verify that the new null space and constrained subspace are orthogonal, since
(E%vj)t-(z_%)t'vj/ =v;" vy =0,j=1,..qand j/ = ¢+1, ...,p. The spanning vec-
tors for the constrained subspace, (E_%)tvj, j=q+1,...,p, are not orthonormal in

general, but there exists an orthonormal basis that spans the same subspace. With
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a slight abuse of notation, we use {(Z_%)tvﬂj =q+1,...,p} todenote apx (p—q)
matrix containing the column vector (E*%)tvj. For any matrix A of dimension
p X d, d < p, let the notation orth(A) denote a p x d matrix whose column vectors
are orthonormal and span the same subspace as the column vectors of A. Accord-
ing to B.2, for the transformed data Z, we only need the projection of Z onto
a subspace spanned by the column vectors of orth({(2~2)'v;|j = ¢+ 1,...,p})
to compute the class posterior. Note that Z = (2’%)tX. So the subspace
that matters for classification for the original data X is spanned by the col-
umn vectors of (X72) x orth({(Z"2)'v;|j = ¢+ 1,..,p}). Again, these col-
umn vectors are not orthonormal in general, but there exists an orthonormal
basis that spans the same subspace. This orthonormal basis is hence spanned
by the column vectors of orth((£72) x orth({(E_%)tvﬂj =q+1,..,p})). Since
orth((E72) x orth({(272)w,]j = q+1,...,p})) = orth({Sw;|j = ¢+ 1,...,p}),!
the subspace that matters for classification is thus spanned by the column vectors
of orth({EZw;|j = q¢+1,...,p}).

In summary, only the linear projection of the data onto a subspace with the

same dimension as v matters for classification.

B.3 Derivation of pu;, in GEM

We derive the optimal py,’s under constraint (4) for a given 3. Note that the
term in Eq. (3.6) that involves p,’s is:

ng

Ry,

k=1 =1

Denote Y 0, Gigr bY lir. Let @i = > 0% i gr@i/lgr, 1.c., the weighted sample mean
of the component r in class k. To maximize Eq. (B.3) is equivalent to minimizing
the following term (Anderson, 2000):

k

Z Z Uer(Zrr — poaer)' S (Zhr — ) - (B.4)

k=1 r=1

ILet matrix A be a p x p square matrix and B be a p x d matrix, d < p. It can be proved
that orth(A x orth(B)) = orth(A x B).
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To solve the above optimization problem under constraint (4.4), we need to find
a linear transform such that in the transformed space, the constraint is imposed
on individual coordinates (rather than linear combinations of them), and the ob-
jective function is a weighted sum of squared Euclidean distances between the
transformed &y, and pg,.. Once this is achieved, the optimal solution will simply
be given by setting those unconstrained coordinates within each component by the
component-wise sample mean, and the constrained coordinates by the component-
pooled sample mean. We will discuss the detailed solution in the following.

Find the natural factor of 3, that is, ¥ = (E%)tZ%. If the eigen decomposition
of ¥ is ¥ = Vg DgV4, then, X2 = DE%JVEt:. Now perform the following change of

variables:

K Ry

Z Z lkr(aékr - ﬂkr)tz_l(iikr - H'kr)
k=1 r=1
K Ry

— ; z:; Lir {(Ei)t (& — ,U'kr):|t {(25)t (Zpr — ,U'kr):|

= Z Z lkr(ikr - Ijl'kr)t(i‘kr - ,&'kr) ) (B5)

k=1 r=1

t t
where fig, = (2’%) Ppr, and T, = (E’é> -&y,r. Correspondingly, the constraint
n (4.4) becomes

t
<2%’Uj) [y = constant over rand k, j=1,...,q. (B.6)

Let b; = Z%'vj and B = (by, by, ..., b,). Note that the rank of V = (vy,...,v,) is
g. Since X2 is of full rank, B = X2V also has rank ¢. The constraint in (B.6)

becomes
B'fiy, = B'fiye forany v, 7’ =1,... . Ry, and any k, k' =1,..., K . (B.7)

Now perform a singular value decomposition (SVD) on B, i.e., B = UgDgV},
where Vg is a ¢ x ¢ orthonormal matrix, Dp is a ¢ X ¢ diagonal matrix, which

is non-singular since the rank of B is ¢, and Ug is a p X ¢ orthonormal matrix.



108

Substituting the SVD of B in (B.7), we get
VBDBUtB[l:kr = VBDBUtB[Lk/T/,for any r, 7’ =1,...,Rg,and any k, k¥’ =1,.... K ,

which is equivalent to
Ubi, = Ugfig,, foranyr, v’ =1,... Ry, andany k, ¥ =1,...,K, (B.8)

because Vg and Dpg have full rank. We can augment Ug to a p X p orthonormal
matrix, U = (W1, ..., Uy, Wgt1, ..., Wp), Where Uyiq, ..., u, are augmented orthonor-
mal vectors. Since U is orthonormal, the objective function in Eq. (B.5) can be

written as

K Ry

5SS 1 [U @ — )] - U (@4 — fine)]

= Z Z lkr(ikr - Fl‘lﬂ”)t(jkr - ﬁkr) s (B9)

k=1 r=1

v o . t ~ v o . t ~ v o ) ) v t
where &y, = U'@y, and fig, = U'fig,. If we denote fix, = (fkr1, flkr2s o flkrp)’s

then the constraint in (B.8) simply becomes
ferj = frj » forany ror' =1, Ry, and any k, k' =1,..., K, j=1,...,q .

That is, the first ¢ coordinates of @& have to be common over all the £ and r. The

objective function (B.9) can be separated coordinate wise:

K Ry p K Rg
Z Z lkr(*’ij - Ijl'kr)%j:kr - ﬂ'k'r) - Z Z Z lkr(i‘kr,j - /\lkr,j)2 .
k=1 r=1 j=1 k=1 r=1

For the first ¢ coordinates, the optimal jix, j, 7 =1, ..., ¢, is solved by

K Rk:/ v K Rk’ v
S S iy TS iy

Hirj = K R
’, k/
Dokt Dy L n

For the remaining coordinates, fix.j, 7 = ¢+ 1,...,p:

, identical over r and k .

Uk v
:ukr,j = Lkrj -
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After i}, is calculated, we finally get pg,’s under the constraint(4.4):

Lytr o x
Hir = (EQ)tUﬂkr :

B.4 Reduced Rank Mixture Discriminant Anal-
ysis

The rank restriction can be incorporated into the mixture discriminant analysis
(MDA). It is known that the rank-L LDA fit is equivalent to a Gaussian maxi-
mum likelihood solution, where the means of Gaussians lie in a L-dimension sub-
space (Hastie and Tibshirani, 1996). Similarly, in MDA, the log-likelihood can be
maximized with the restriction that all the R = Zszl R, centroids are confined to
a rank-L subspace, i.e., rank {pu,} = L.

The EM algorithm is used to estimate the parameters of the reduced rank
MDA, and the M-step is a weighted version of LDA, with R “classes”. The com-
ponent posterior probabilities g; x,’s in the E-step are calculated in the same way
as in Eq. (4.5), which are conditional on the current (reduced rank) version of
component means and common covariance matrix. In the M-step, m,.’s are still
maximized using Eq. (4.7). The maximizations of py,. and ¥ can be viewed as
weighted mean and pooled covariance maximum likelihood estimates in a weighted
and augmented R-class problem. Specifically, we augment the data by replicating
the n; observations in class £ Ry times, with the [th such replication having the
observation weight ¢; 5. This is done for each of the K classes, resulting in an
augmented and weighted training set of Z,I::l ny Ry observations. Note that the
sum of all the weights is n. We now impose the rank restriction. For all the sample

points x;’s within class k, the weighted component mean is

ng
o Zizl Qi,krmi
Mir = =, -
D iy Qikr

Let g, = > %, Gikr- The overall mean is

K R
_ Zk:l Zr:kl q;m"l’l’kT

K K R
Zkzl Zr:kl Gy
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The pooled within-class covariance matrix is

W = Zf:l Zf:kl ?kl q; kr(xz l«lzkr)t(lii — N'k:r)
Zk 1 Zr | Qv

The between-class covariance matrix is

B— S o g (e — ) (R — B) |
Zk ].ZT‘ 1 kr

Define B* = (W~2)TBW~2. Now perform an eigen-decomposition on B, i.e.,
B* = V*DgV*", where V* = (v;,v},...,v3). Let V be a matrix consisting of the
leading L columns of W2V, Considering maximizing the Gaussian log-likelihood

subject to the constraints rank {py,.} = L, the solutions are

frr = WVVT (g — p) + 1, (B.10)

S D et Doy G (B — k) (B — ) _ (B.11)
Zk 1 Zr 1 Qi

As a summary, in the M-step of reduced rank MDA, the parameters, my,, g,
and X, are maximized by Egs. (4.7), (B.10), and (B.11), respectively.

Note that the discriminant subspace is spanned by the column vectors of V =
W~2V*, with the Ith discriminant variable as W’%vl*. In general, W’%vl*’s are not

orthogonal, but we can find an orthonormal basis that spans the same subspace.



Appendix C

Distance-based Mixture Modeling

C.1 Proof of Equation (3.4)

The collection of distances is u = (uq, us, ..., uy ), and its corresponding weight is
w = (wy,wy, ..., wy), where Z;Vil >_iec; Wi = 1. The ML estimator maximizes the
follwoing weighted log likelihood:

M
L(uls, by, by, ., bar) = > Y w;log f(u;)

j=1ieC;

M
= ZZU;Z {(sl)loguislogbj - % —logT'(s)| . (C.1)

j=1ieC; J

With a fixed s, L(ul|s, by, bs, ..., bys) can be maximized individually on every b;:

max L(uls, by, bs, ..., bar)

M
= ZmaXZwi {(s —1)logu; — slogb; — G log F(s)] : (C.2)
j=1 b

1€C;

Since Ziec]- w; [(s —1)logu; — slogb; — 7+ — log F(s)] is a concave function of b;,

we can obtain its maximum by setting the first derivative to zero:

Zwi(—§+%) ~0. (C.3)
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Let

- ZiECj Wi

a. =
’ ZiECj Wi
be the weighted average distance for prototype j. b; is solved by
b = - (C.4)
Now substitute Equation (C.4) into (C.2):

max L(uls)

ZmaXZwl[slogs+s (log———) logT'(s) — logu;

1€C; U

Since logI'(s) is a convex function of s, it is easy to show that L(uls) is also a
convex function of s. The maximum of L(u|s) is thus determined by setting its

first derivative to zero:

ZZwllogs—i—ZZwllog——ZZwﬂb

Jj=11ieC; Jj=11ieC; Jj=11ieC;
which is equivalent to:

M _Ziecj Wi
o || g
logs —9(5) =log | ——x—| - (C.5)
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