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Abstract 

Fire is the most important disturbance process in forests of the American west.  At the finest 

scales, its immediate effects on vegetation include killing of live vegetation and the consumption 

of dead organic debris.  At the scale of one to many hectares, it drives variability in vegetation 

composition and structure.  Heterogeneity in fire behavior and effects are not driven solely by the 

vegetation itself.  Fire interacts with weather, climate and climate teleconnections, past human 

management of forested landscapes, and with topography. The effect of topography on 

heterogeneity in fire behavior and effects is not well knows, and some evidence is contradictory.  

I employ a neutral modeling approach generate an examine landscape scale patterns of fire 

intensity and fire effects.  Broadly, I address three main research questions: 1) what is the 

distribution of surface and canopy fuels in LVNP, and how do they vary with topography? 2) 

what is the effect of topography on landscape level heterogeneity in neutral models of fireline 

intensity and fire type? 3) Is topography able to explain heterogeneity in the observed severity of 

historic and contemporary fires and is it able to explain heterogeneity in modeled fireline 

intensity?  I accomplish this in stages. I use plot level data from 223 plots and 669 hemispherical 

photographs to assess the effect of topography—elevation, slope, and aspect—on the distribution 

of both surface and canopy fuels. Then I develop ten remotely sensed variables from Landast 

imagery and five topographic variables—elevation, slope, aspect, local topographic position, and 

landscape position—from the National Elevation Dataset.   I use a Random Forest algorithm to 

model and then predictively map canopy fuels.  In the second part, I model fire burning through 

homogenously distributed fuels at the 80th, 90th, and 97th percentile fuel moisture conditions and 

for a range of wind scenarios.  This set of simulations forms the base of our neutral model 

expectations and is analyzed for the effect of topography.   Finally, we map historic patches of 
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high intensity fire effects from geo-referenced aerial photographs and extract severity data from 

remotely sensed images of recent fires.  We compare the topographic conditions of these real 

high severity patches with information on high intensity fire from the neutral model approach to 

assess how important topography is in explaining the distribution of different severities.  Our 

results show that slope angle is the most important variable for determining modeled fireline 

intensity, but that elevation and local topographic position are the most important variables for 

explaining the distribution of observed locations of high severity fire.  These result support our 

conclusion that some patches of vegetation may be ‘fixed in space’ through the interaction of fire 

with topography and fuels.  
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Chapter 1—Introduction: 

The Interaction of Pattern and Process, Known Relations between Topography and Fire 

Severity, Modeling Approaches to Biogeographic Questions, and the Need for High Quality 

Fuels Maps 
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Pattern and Process 

Fire is a process that has the potential to alter vegetation development pathways for hundreds to 

thousands of years (Miller 2007; He and Mladenoff 1999; Baker 1992).  This potential can be 

realized in both low severity dominated fire regimes (Fulé et al. 1997) or in high severity 

dominated fire regimes (Turner et al. 1994).  The best understood of these relationships is the 

high frequency, low severity fire regime that typically kept ponderosa pine ecosystems of the 

southwestern US open and composed of large diameter, fire resistant stems (Fulé et al. 1997).  In 

these systems, open areas between large trees grew grasses that formed a continuous fuel bed in 

a matter of a few years.  Once a drier than average year occurred, this continuous fuel bed 

became highly flammable.  When ignited, the fuel bed would burn at low intensity, but could 

potentially burn hundreds to thousands of acres leaving most large trees healthy or minimally 

scarred but also killing seedlings and leaving the forest open (Fulé et al. 1997).  The interaction 

of fire regime and vegetation in this example produced a more or less stable, fire dependent 

ecosystem (Fulé et al. 1997; Allen et al. 2002).  In boreal and sub-alpine forests, even when 

abundant fuels are present, droughts of the necessary length and severity to make these fuels 

flammable are rare. In these systems, the interaction of fuels and climate is a limiting factor that 

drives long-interval, high severity fires.  Here, static age patterns that result from large patches of 

severely burned vegetation are the hallmark of this fire regime and can be mapped on the 

landscape (Johnson et al. 2001; Romme 1982).  

Other factors that influence the variation in fire severity that are also well understood include 

time-since-last-fire (Odion et al. 2004), fire suppression and its consequential accumulation of 

fuels and infilling of fire intolerant species (Beaty and Taylor 2001; Safford et al. 2008), logging 

and subsequent management action or non-action (Weatherspoon and Skinner 1995; Thompson 
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et al. 2007), climate, climate change, and climate teleconnections (Norman and Taylor 2003, 

Schoennagel et al. 2007; Westerling et al. 2006), vegetation composition (Collins and Stephens 

2010; Odion et al. 2010), and patchiness of vegetation (Collins and Stephens 2010). Each has 

been identified as an important driver of fire regimes and fire severity change over the course of 

the 20th century. 

 In the 20th century, a federal policy of fire suppression has altered the structure of many forests 

(Agee 1993; Fulé et al. 1997; Taylor 2000).  Prior to 1910, there was a significant debate among 

foresters and other land managers about the role of ‘light burning’—an agricultural and forestry 

practice of the south and west akin to modern prescribed burning—and the proper role of fire in 

forested ecosystems.  However, the extensive fires of 1910 pushed the advocates of complete 

elimination of fire to an ideological victory. Following the ‘Great Fires’ of 1910, all fires were 

outlawed including ‘light burning’ (Pyne 2008).  Thus the culture of suppression and the view of 

fire as a primarily destructive force became the dominant paradigm.  In this paradigm, all high 

intensity forest fire is abnormal (Pyne 2008). By suppressing fires, we had successfully reduced 

the amount of area burned per year, and thus reduced the area burned at high intensity each year.  

But by removing high intensity fire as a structuring process from the landscape, some high-fire-

intensity dependent brushfield communities (e.g. Collins and Stephens 2010; Odion et al. 

2010)—which add structural and habitat diversity to the landscape—are at risk of loss because of 

succession to conifer forest (Nagel and Taylor 2005). Furthermore, there has been growing 

recognition of the importance of the high severity component of fire regimes in mixed-conifer 

forests (Taylor and Skinner 1998; Taylor and Beaty 2005; Collins and Stephens 2010).   

Low to moderate elevation, dry pine ecosystems with extensive grass understories have likely 

been impacted the most by the policy of fire suppression causing an increase in surface fuels, 
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seedling, sapling, and tree density, and fire severity (Fulé et al. 1997; Allen et al. 2002).  On the 

other hand, sub-alpine and boreal forests have likely not been affected by fire suppression to the 

degree that their structure and composition have been significantly altered because of their 

historically long fire return intervals (Johnson et al. 2001).  Nevertheless, large portions of the 

mixed-conifer zone of the US west in general, and California in particular, now show the 

increases in fire severity predicted by critics of the full-fire-suppression paradigm (Miller et al. 

2009b). This increase in the severity of recent wildfires has become one of the main concerns of 

fire managers (Fulé et al. 2004), resource managers (Fried et al. 2004; Miller et al. 2009b), and 

land use planners in California (Syphard et al. 2007; Syphard et al. 2008).  Their concern reflects 

the fact that high severity fire is potentially the type of fire most likely to result in long-term 

changes in vegetation structure (Pierce and Taylor 2011) and the type most likely to have the 

longest-lasting effects on vegetation function (Kashian et al. 2006).   

High severity fire creates a pattern of patches on the landscape.  The arrangement of these 

patches is just one realization of the stochastic process of fire burning through a heterogeneous 

fuel, vegetation, and topographic environment that is subject to human management (sensu 

O'Sullivan and Unwin 2003).  The characteristic scales of spatial and temporal variations in these 

patches range over many orders of magnitude (Krawchuk et al. 2009; Agee 1998). At the 

landscape scale, the dominant type of fire (low, moderate or high severity) is an important driver 

of variability in patch metrics. At the scale of an individual fire, Collins et al. (2007) and 

Thompson et al. (2007) showed that weather is the primary driver of fire severity patchiness.  

While a single fire may be dominated by short-term controls, weather is essentially a stochastic 

process because of its wide range of variability and its rate of change relative to the time scale of 

a single fire.  Further, the combination of fuel, weather, and topographic conditions that occur 
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during any one fire are not necessarily comparable to the combination of conditions during other 

fires.   Because the number of fires studied by Collins et al. (2007) and Thompson et al. (2007) is 

small and fire severity is strongly influenced by the stochastic process of weather and 

environmental heterogeneity, these studies cannot be repeated in order to identify a set of 

expected topographic influences on fire severity.  

In Lassen Volcanic National Park (LVNP), high severity, low frequency fire regimes in some 

topographic positions may result in stable, fire dependent brushfield communities.  In addition, 

there is evidence that burns are becoming more intense and more severe (Miller et al. 2009b) and 

that climate change is increasing the length of the fire season (Westerling et al. 2006). What is 

less clear, however, is the role that topography plays in determining patterns of fire severity 

patches. These are all motivating factors for the study of topography and its relation to high 

severity fire regimes.  

Approaches to High Severity and Topography 

Historic and Landscape Vegetation Structure Methods 

Topography is a driver of variations in fire severity, and its influence on fire regimes is known 

generally in broad strokes through fire history studies.  Quantifying these historic fire regimes 

and their topographic controls is typically done through the analysis of fire scarred wood 

extracted from living and dead trees (Swetnam 1993; Taylor 2000; Stephens et al. 2003).  This 

method is excellent for calculating the frequency and seasonality of fires, and strong inferences 

can be made about fire size.  In the Cascade Range and in southern British Columbia, fire return 

intervals lengthen as elevation increases because winter snowpack lasts longer at these elevations 

(Beaty and Taylor 2001; Heyerdahl et al. 2001; Heyerdahl et al. 2007) and fire return intervals 
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are shorter on south-facing slopes because they slopes dry more quickly than other aspects 

(Heyerdahl et al. 2001; Taylor and Skinner 2003; Heyerdahl et al. 2007).  Frequency 

relationships vary geographically, however.  Rollins et al. (2002) compared wilderness areas in 

Montana and New Mexico and found that in Montana, south and southwestern aspects burned 

more often because they were subject to increased insolation which dried fuels more quickly. In 

contrast, northeastern aspects in New Mexico burned more often because their moisture regimes 

allowed for more rapid accumulation and connectivity of fuels (Rollins et al. 2002).  In the 

nearby Klamath Range, the influence of topography (ridges, rocky outcrops, cliffs, and roads) on 

the inhibition of fire spread is recognized (Taylor and Skinner 2003). 

The fire scar method has been used to infer topographic controls on fire frequency and size 

patterns, but these methods are limited by their inherent assumptions which lead to the 

conclusions about historic severity.  Also, direct quantification of the magnitude of topographic 

effects on fire severity in relation to other factors that are known to control severity is much 

more difficult.  Fire severity can be driven by the structure and arrangement of fuels (Odion et al. 

2004; Thompson et al. 2007), daily meteorological conditions (Collins et al. 2007), or vegetation 

type (Collins and Stephens 2010).  Additionally, high intensity fires often destroy scarred trees 

which leaves fire scar based inferences about severity suspect because the evidence is missing.  

Despite this, topography has been broadly inferred to affect severity in the nearby Klamath 

Range where historical studies suggest west facing upper slopes burn more severely (Taylor and 

Skinner 1998). Additionally, slope was shown to be positively associated with fire severity 

measures in Sequoia National Park (Knapp and Keeley 2006).  In contrast, in the specific case of 

the Big Bar complex and the Quartz fire of the Klamath Range, Alexander et al. (2006) found 

evidence that higher elevations burned less severely than lower elevations.  Using the recently 
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developed Relative differenced Normalized Burn Ratio (RdNBR; Miller et al. 2009a) several 

studies have shown that slope aspect can be a determinant of the location of high severity fire 

(Collins et al. 2007; Thompson et al 2007).  In most of these cases, however, daily 

meteorological conditions overshadowed topographic conditions in explaining spatial variation 

in fire severity (Collins et al. 2007; Thompson et al 2007). 

In the absence of other evidence, vegetation size structure, age structure, and composition have 

been used as indicators of past fire regimes.  Vegetation structure has been used to infer the 

presence of low-severity fire regimes (e.g. Taylor 2000), mixed-severity fire regimes (e.g. 

Hessburg et al. 2007), and high-severity fire regimes (e.g. Nagel and Taylor 2005).   Taylor 

(2000) used age-structure interpretation, stand composition, and fire scar analysis to show a 

distinct shift in fire frequency following the onset of fire suppression policies in Lassen Volcanic 

National Park.  Hessburg et al. (2007) used aerial photograph interpretation of stand structure to 

determine the proportion of the landscape that was represented by low-, mixed-, and high-fire 

severity patches.  Nagel and Taylor (2005) used cross-dating of trees and shrubs to show that 

brushfield communities in the Lake Tahoe Basin experienced long-interval, high severity fire.  

Additionally, patches of vegetation on the landscape can themselves be important drivers of 

within-fire variability in severity (Collins and Stephens 2010, Odion et al. 2010).   In particular, 

Collins and Stephens (2010) identified vegetation types that can be easily identified a priori from 

aerial photographs. Moreover, vegetation effects on fire severity can be self-reinforcing such that 

highly pyrogenic vegetation tends to promote fire behavior that results in its own persistence 

(Odion et al. 2010). 

Simulation Models and Neutral Models 
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To investigate real landscapes against hypotheses, biogeographers and landscape ecologists use 

neutral models (Caswell 1976; Turner et al. 2001) or simulation models built on some 

combination of physical, statistical, probabilistic, or empirical approaches (Turner et al. 2001).  

Conceptually, neutral models work by first assuming that ecological processes are independent 

and that the patterns observed in natural systems can be explained by simpler means.  When a 

neutral model is used, it often produces a baseline against which observed patterns can be 

evaluated (Gardner et al. 1987; Gardner and Urban 2007).   

Because real fires burn through highly heterogeneous conditions and are affected by stochastic 

processes, and because single fires suffer from the statistically small sample size problem, 

modeling approaches are a warranted and necessary route for investigating the various 

combinations of topography and fuels.  Simulation models have been employed to investigate 

many aspects of fire behavior, fire effects, and fire regimes, often at quite broad scales.  The 

Boundary Waters Canoe Area and the effects of Euro-American settlement and fire suppression 

on its landscape characteristics was the focus of an investigation by Baker (1992) who found that 

some landscape metrics increase quickly with shifting fire regimes while others lagged by 

decades to centuries.  Simulation models for mapping fire return intervals were compared to 

statistical models by Keane et al. (2003) who found that while simulation models generally 

performed poorly when explicitly mapping those intervals, they were nonetheless useful because 

of their wide flexibility and general ability to ‘burn’ the same landscape under different 

conditions many times and over very long time periods.  Large patches were important for the 

persistence of fire sensitive species in Mediterranean climates in the face of altered fire regimes 

(Pausas 2006).   
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Neutral models are often implemented to create baseline scenarios against which observations 

can be tested (Caswell 1976; Gardner et al. 1987; Gardner and Urban 2007).  A neutral model 

approach by McKenzie et al. (2006) examined the effect of sampling intensity and completeness 

on estimates of fire regime parameters (average size, mean fire return interval) where all of the 

factors deemed important to determining fire regimes were decoupled in the modeling approach.  

In this work, we use model generated evidence on expected distribution of fire behavior as it 

relates to topography and examine how that evidence is similar to or differs from observational 

evidence. 

Need for Fuels Mapping to Understand High Severity Fire 

At the national level, maps of forest fuels have become an important part of resource managers’ 

toolbox, especially in the context of both planning fuels treatments and assessing potential fire 

behavior.  Even with allowances for ‘natural’ fires in recent decades (Collins and Stephens 

2007), a federal policy of fire suppression in the US west over the 20th century has induced wide 

spread changes in fuel loads (Parsons and DeBenedetti 1979, Agee 1993) and fire severity 

(Safford et al. 2008; Miller et al. 2009b).  However, fire suppression induced changes in both 

fuels and fire behavior and effects are highly variable, due primarily to heterogeneity in 

vegetation communities’ responses to fire exclusion.  Sub-alpine and boreal forests have likely 

been affected very little by fuel load changes caused by fire suppression because of their 

naturally long fire-return intervals as well as their tendency to burn at high severity when fire 

does return (Schoennagel et al. 2004; Johnson et al. 2001).  Low elevation semi-arid ponderosa 

pine forests, on the other hand, likely have been greatly impacted by fuel build up due to fire 

suppression (Schoennagel et al. 2004; Fulé et al. 2001).  Furthermore, some mixed-conifer 

forests of the montane zone have fire regimes where fire behavior is predominantly controlled by 
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interannual climate variations (Schoennagel et al. 2004; Westerling et al. 2006; Collins et al. 

2007). 

At the landscape level, fuels mapping is directed towards displaying variation in fuel loads that 

have potential to influence fire behavior under specific weather conditions and in support of 

specific management objectives.  Recent efforts directed at Stewardship and Fireshed 

Assessment (SFA) are fuels-data intensive, necessitating highly accurate fuel maps (Bahro et al. 

2006).  Canopy fuel characteristics in particular are needed to accurately assess potential fire 

behavior at this level because they largely determine the potential for fires to transition from 

surface or ground fires to torching or crown fires and because small changes can have large 

impacts on potential fire behavior (Fulé et al. 2001).  Canopy fuels information has been 

developed at a national scale and is appropriate for national or regional long term fire 

management plans (Rollins and Frame 2006), but the data needed for specific management 

objectives often needs to be focused on particular landscapes, especially at the National Park or 

Forest level.  Here, a single Park or Forest may contain many vegetation types primarily due to 

strong co-variation with topography (elevation, slope, and aspect).  Thus, due to high variability 

at the Park or Forest level, intensive sampling of fuels characteristics across vegetation types and 

topographic settings is needed to accurately capture fuels heterogeneity in support of sound fire 

management. 

Critical canopy fuel parameters are needed for comprehensive fire behavior models. Fuel 

structure and arrangement is the most directly related variable to fire severity because it is the 

physical complex that interacts with the combustion process to produce heat, consume 

vegetation, and kill vegetation.  Measures of fire severity in forests are often related directly to 

the amount of canopy consumed or killed by fire (Miller and Thode 2007; Miller et al. 2009a).  
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Thus, canopy fuel variables are critical components in modeling potential fire behavior.  The 

four most widely used variables are Canopy Bulk Density (CBD), Canopy Cover (CC), Canopy 

Base Height (CBH), and Canopy Height (HT).  As a measure of the total amount of above-

ground-surface fuel that is available to wildfires, CBD typically includes foliage and up to one 

half of the smallest branchwood (0-6.4 mm) and is measured in units of kg m-3.  CC is the 

horizontal fraction of the ground that has canopy above it and is measured as a percentage of 

total area.  The lower threshold above which there is sufficient fuel for a crown fire to be self-

sustaining is quantified by CBH and is measured in m.  Lower CBH values indicate that canopy 

fuel is closer to the ground and hence could act to transition surface fire into the crown. Finally, 

HT is the average height of the dominant stratum of tree cover and affects modeled fuel 

moistures and is measured in m. 

Introduction to the Rest of the Work 

Our approach to the investigation of high severity and high intensity fire and the role that 

topography plays in the variability of high intensity and high severity fire across the landscape is 

based on two assumptions.  First, high intensity fire will often destroy past physical evidence of 

fire regimes.  This assumption necessitates the utilization of alternative methods of investigating 

high intensity fire effects.  Second, within-fire variability in intensity and severity is high, and 

weather and vegetation effects tend to be more important drivers of variability within each fire 

(e.g. Collins et al. 2007).  Given this, the investigation of one or a few fires is unlikely to reveal 

the correspondence between topography and fire intensity and high severity fire.  With these two 

assumptions in mind, we approach the analysis of high intensity fire and topography from two 

directions.  First, we use simulation modeling to generate an expected distribution of high 

intensity fire as it is related to topographic variation.  This base of expectations forms the core of 
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our neutral model approach.  Second, we map patches of high severity fire effects from the 

historic and contemporary record. This also allows for a comparison between the expected and 

observed topographic characteristics of the locations of these high severity and high intensity fire 

patterns. 

Comparison to historic patches of high severity fire will be conducted with Lassen Volcanic 

National Park as a case study.  Inside the perimeter of the park, high intensity fires from the 

historic period are being mapped from 1941 aerial photographs.  The topographic characteristics 

of historic high severity fires will be compared to the results of our neutral simulation modeling.  

To assess current patterns of fire severity patches, remotely sensed maps of fire severity derived 

from the dNBR methodology will be analyzing in comparison to the model results. 

In chapter 2, we apply Random Forest (RF, Breiman 2001; Prasad et al. 2006) regression to plot 

level field data of canopy fuel loads and predict canopy fuel values over the full extent of Lassen 

Volcanic National Park, California, USA using Landsat data and topographic characteristics as 

predictor variables.  We first model and predictively map 2010 canopy fuels characteristics using 

plot level data from 2009 and 2010. We then use the same approach to predictively map canopy 

fuels in 2003.  Finally, we integrate our estimates of canopy fuels from 2003 with a 

contemporary surface fuel map to predict potential fire behavior within the perimeter of the 2004 

Bluff fire and compare our results with other estimates of fire severity. We will demonstrate that 

intensive fuels mapping provides information that makes the prediction of fire type more 

accurate. 

In Chapter 3, we use simulation models to generate an expected distribution of fire behavior as it 

relates to topography.  We use many surface fuel models which will be distributed uniformly 
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across the landscape, independent of their typical structuring forces. Additionally, we use our 

predicted canopy fuels to create a homogenous load across the landscape. We burn these 

homogenous assemblages of fuel under 80th, 90th and 97th percentile fire weather for a range of 

wind scenarios to create the base of expectations for our neutral model.   The results of this set of 

simulation models will then be used to assess the pattern of high intensity fires on real 

landscapes.  We investigate differences in fireline intensity and fire type across these weather 

and wind scenarios for each of the homogenous surface fuels cases. We are specifically 

interested in comparing our set of simulations and their predictions of the spatial distribution of 

high intensity fire with knowledge about the real distributions of known patches of high severity 

fire across the landscape of Lassen Volcanic National Park. 

In chapter 4, we develop and then use historic, contemporary, and model generated evidence 

regarding the expected and observed locations of high severity fire effects with respect primarily 

to its topographic setting.  Inside the perimeter of LVNP, we map high intensity fire effects from 

1941 aerial photographs.  To assess current patterns of fire severity patches, remotely sensed 

maps of fire severity derived from the dNBR methodology will be analyzed in comparison to the 

model results.  We use fire behavior simulation models to generate expected locations of high 

intensity fire.  We compare the topographic characteristics of the historic and contemporary high 

severity fires with the results of the simulation modeling to assess how observed fire severity is 

related to topography in real fires vis-á-vis the effect of topography on fire intensity in simulated 

fires. 
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Analysis in Lassen Volcanic National Park, California, USA  
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Abstract 

Fire managers often need data that is spatially explicit at a fine scale (30 m) but is also laborious 

and time consuming to collect.  This study integrates Landsat 5 imagery and topographic 

information with plot and tree based measures of key canopy fuels variables.  We sampled 223 

plots of 500 m2 each in Lassen Volcanic National Park. Within each plot we recorded every tree 

by species, diameter, condition, and canopy position. Additionally, we measured each tree’s 

height, height to live crown base and height to dead crown base.  Finally, we took three 

hemispherical photographs of the forest canopy above each plot.  The plot data and the 

hemispherical photographs were used to compute four critical canopy fuels characteristics: 

Canopy Bulk Density (CBD), Canopy Cover (CC), Canopy Base Height (CBH), and canopy 

Height (HT).  We developed five topographic variables—elevation, slope, aspect, and two 

measures of topographic position—and used Landsat 5 spectral bands 1-5, and 7 as well as the 

Normalized Difference Vegetation Index (NDVI) and the Tasseled Cap Greenness, Brightness, 

and Wetness to model and then predict these canopy fuels variables for both 2009 and 2003 

across LVNP. RF models relating predictor variables to canopy fuels characteristics had pseudo-

r2 values ranging from 0.55 - 0.68.  To demonstrate the potential utility of our mapping 

procedure, we used our 2003 canopy fuels map along with a contemporary surface fuels map and 

the fire behavior modeling program FlamMap® to relate predicted fire behavior of our fuels 

maps with fire severity from the Monitoring Trends in Burn Severity (MTBS) dataset for the 

Bluff (2004) fire. 

Key Words: canopy fuels, Canopy Bulk Density, Canopy Cover, Canopy Base Height, canopy 

height, Random Forest, Lassen Volcanic National Park, Landsat 5  
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Introduction: 

At the national level, forest fuels mapping has become an important part of resource managers’ 

toolbox, especially in the context of both planning fuels treatments and assessing potential fire 

behavior.  Even with growing recognition of the beneficial effects of fire in forested ecosystems 

and the establishment of large, natural fire areas (Collins et al. 2007), fire suppression policies in 

the US west over the 20th century have induced wide spread changes in fuel loads (Parsons and 

DeBenedetti 1979, Agee 1993) and fire severity (Safford et al. 2008; Miller et al. 2009b).  

However, fire suppression induced changes in both fuels and fire behavior and effects are highly 

variable, due primarily to heterogeneity in vegetation communities’ responses to fire exclusion.   

Sub-alpine and boreal forests have likely been affected very little by fuel load changes caused by 

fire suppression because of their naturally long fire-return intervals as well as their tendency to 

burn at high severity when fire does return (Schoennagel et al. 2004; Johnson et al. 2001).  Low 

elevation semi-arid ponderosa pine forests that once burned frequently, on the other hand, likely 

have been greatly impacted by fuel build up due to fire suppression (Schoennagel et al. 2004; 

Fulé et al. 2001).  Furthermore, some mixed-conifer forests of the montane zone have mixed fire 

regimes where fire occurrence is predominantly controlled by interannual climate variations 

(Schoennagel et al. 2004; Hessburg et al. 2007). 

At the landscape level, fuels mapping is directed towards displaying variation in fuel loads that 

have potential to influence fire behavior under specific weather conditions and in support of 

specific management objectives.  Recent efforts directed at Stewardship and Fireshed 

Assessment (SFA) are fuels-data intensive, necessitating highly accurate fuel maps   This 

program enables many stakeholders (Federal, State, County and private) to work together to 

develop comprehensive fire and fuels management plans in recognition of the potential for 
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widespread, intense fire that threatens both natural resources and human infrastructure (Bahro et 

al. 2006).  Canopy fuel characteristics in particular are needed to accurately assess potential fire 

behavior at this level because they largely determine the potential for fires to transition from 

surface or ground fires to torching or crown fires and because small changes can have large 

impacts on potential fire behavior (Fulé et al. 2001).  Canopy fuels maps have been developed at 

a national scale and are appropriate for national or regional long term fire management plans 

(Rollins and Frame 2006), but the maps and data are insufficient to evaluate potential fire 

behavior and specific management objectives  in particular landscapes, especially at the National 

Park or Forest level.  A single Park or Forest may contain many vegetation types primarily due to 

the strong co-variation with topography (elevation, slope, and aspect).  Thus, approaches are 

needed to capture within Park heterogeneity in support of sound fire management at the Park or 

Forest level (e.g. Krasnow et al. 2009),  

Critical canopy fuel parameters needed to estimate potential fire behavior are Canopy Bulk 

Density (CBD), Canopy Cover (CC), Canopy Base Height (CBH), and Canopy Height (HT).  

This suite of variables determines if forest canopy characteristics could sustain a crown fire. 

CBD is a measure of the total amount of above-ground-surface fuel that is available to wildfires; 

typically including foliage and up to one half of the smallest branchwood (0-6.4 mm). CBD is 

measured in units of kg m-3.  CC is the horizontal fraction of the ground covered by the forest 

canopy and is measured as a percentage of total area.  CBH is a measure of the vertical 

continuity of fuels and expresses the lowest point of the crown above the forest floor and is 

measured in m.  Lower CBH values indicate that canopy fuel is closer to the ground and hence 

could act to transition surface fire into the crown. Finally, HT is the average height of the 

dominant stratum of tree cover and affects modeled fuel moistures and is measured in m. 
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Random Forests (RF; Breiman 2001) offer a particularly powerful new approach for 

classification and regression of ecological data that in turn can be readily applied to generating 

maps of ecological attributes (Prasad et al. 2006; Cutler et al. 2007).  RF is an extension of the 

Classification and Regression Tree (CART; De’ath and Fabricius 2000) methodology.  RF 

algorithms generally outperform CART methods at both classification (Cutler et al. 2007) and 

regression (Prasad et al. 2006). These methodologies have the additional advantage that they are 

robust to missing data, non-normal data, and data with many zeroes.  While CART has been used 

to map forest canopy fuels at the national level (Rollins and Frame 2006) and at the local level 

(Poulos et al. 2007), RF have not yet been applied to the mapping of forest canopy fuels.  RF 

has, however, been applied to predict plot level forest basal area and density using  LiDAR 

(Hudak et al. 2008), identify landcover classes using airborne hyperspectral data from Probe-1 

(Lawrence et al. 2006), and to identify landcover classes using AVIRIS and EO-1 data (Ham et 

al. 2005). 

This study quantifies plot level canopy fuel loads and predicts canopy fuels characteristic across 

the entirety of Lassen Volcanic National Park (LVNP), California, USA  using RF regression, 

Landsat data and topographic characteristics as predictor variables.  Our research is focused on 

1) quantifying surface and canopy fuel loads across LVNP and identifying how they vary 

according to topography and vegetation type; 2) comparing our assessment of canopy fuels with 

other datasets on canopy fuels; 3) using our maps of canopy fuels to predict fire behavior and 

comparing our predictions with observed fire severity within the perimeter of a 1382 ha Wildfire 

Use fire that burned in 2004 (Bluff Fire). 
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Methods 

Study Area 

LVNP lies at the southern end of the Cascade Range, a volcanic plateau punctuated by high 

volcanic peaks (Figure 2-1).  Elevation ranges from 1,609 to 3,187 m and the Park’s total area is 

42,900 ha.  Dominant vegetation communities covary with elevation (Taylor 1990, 2000; Parker 

1991; Schoenherr 1992).  The lowest elevation forests are dominated by ponderosa pine (Pinus 

ponderosa) and Jeffery pine (P. jeffreyi). Mixed conifer forests of Jeffrey pine (P. jeffreyi) and 

white fir (Abies concolor) dominate the lower montane forests.  Upper montane forests are 

composed of red fir (A. magnifica var. magnifica), white fir (A. concolor), and western white 

pine (P. monticola). Lodgepole pine (P. contorta spp. murrayana) occupies low lying 

depressions where cold air drainage is a dominant part of the regeneration climate.  High 

elevation forests are dominated by mountain hemlock (Tsuga mertensiana) and whitebark pine 

(Pinus albicaulis). The climate is Mediterranean and is characterized by hot, dry summers and 

cold, wet winters.  Average monthly temperatures at  Manzanita Lake, California (in LVNP, 

elevation  1802 m), range from -6.6 °C minimum and 5.0 °C maximum in January to 7.5 °C and 

26.1 °C in July (WRCC 2009).  Annual average precipitation is 104 cm, but inter-annual 

variability is high. Most precipitation (>80%) falls as snow between November and April and 

annual maximum snowpack depth from the Lower Lassen Peak Snow Course (usually in April or 

May) ranges from 1.63 to 8.41 m with an average of 4.63 m (NOHRSC 2010). 

Field Data Collection 

To quantify canopy fuel characteristics field sampling was conducted in Lassen Volcanic 

National Park in the summer of 2009 and 2010.  We selected 223 plots from a set of 340 surface 
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fuel sampling plots established in 1998-99 (C. Farris, 2009, personal communication) by 

grouping plots by their dominant species and then proportionally sampling from each group 

(Table 2-1).  The plots in the larger set were located to map surface fuels during the summers of 

1998 and 1999 by clustering NDVI values from Landsat imagery using ISODATA, an 

unsupervised distance to mean algorithm (ERDAS 1997).  The clusters produced by ISODATA 

were used to assign initial surface fuel models (Anderson 1982).  Field plots were used to 

support the surface fuels mapping.  Detailed fuels information was collected at these plots 

including surface quantity fuel loading using Brown’s planar intercept method (Brown 1973), 

overstory, understory, and shrub species composition, surface and litter fuel characteristics, 

canopy and understory height, and photographs for comparison with fuel load photoseries (e.g 

Blonski and Schramel 1981).  The center of each plot was permanently marked with a steel 

stake. Additional plots were located in ambiguous or highly heterogeneous spectral clusters and 

stratified based on topographic and compositional characteristics to assign final fuel models.  

Once the final surface fuels map was created, 122 accuracy assessment plots were laid out and 

visited to ensure validity of the mapping process (C. Farris, unpublished report).   

At each of the 223 plots we established a 500 m2 circular plot centered on the permanent stake.  

We re-recorded the plot’s geographic position using a GPS and also measured its slope, 

elevation, aspect, topographic position, and topographic configuration. Topographic position was 

recorded in one of five categories: ridge top, upper slope, middle slope, lower slope, or valley 

bottom.  Topographic configuration was also recorded in one of five categories: convex, convex-

straight, straight, concave-straight, or concave.  For each tree (> 5 cm diameter at breast height 

[DBH]) we measured DBH (cm), height (m), status (live or dead), and visually estimated live 

crown fraction to the nearest 5%. We rated each tree’s relative crown position using the 
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following categories and criteria: Suppressed— <25% of main canopy height; Intermediate— 

>25% but < 75% of main canopy height; Co-dominant—part of the main canopy, but receiving 

top shading from other canopy trees; Dominant—part of the main canopy and only receiving 

side-shading from other trees; Emergent—trees with crowns above the main canopy that are not 

receiving significant side-shading from any trees.  We recorded the Height to Live (Dead) Crown 

Base as the height above the ground of the lowest live (dead) limb longer than 60 cm (Fulé et al. 

2001; Skinner 2005).  To aid in determining canopy fuels characteristics, we took three upward 

facing hemispherical photographs per plot with a digital camera mounted with a full hemispheric 

lens and leveled with a bubble level at 2 m above the ground.  We estimated dead woody fuels in 

1-hr (0.0 – 0.64 cm diameter), 10-hr (0.64 – 2.54 cm), 100-hr (2.54 – 7.62 cm), 1000-hr (7.62 – 

22.86 cm) classes as well as total load using photo series interpretations and recorded our 

observations in tons per acre (t/ac) which were later converted to metric tons per hectare (t/ha).   

Plot Analysis 

We characterized stand structure in each plot by computing each species’ density and basal area 

on a per hectare basis.  We also computed species relative Importance Values (IV) for basal area 

and density (maximum 200) (Taylor 2000).  To facilitate comparison among plots we first 

grouped and set aside grass and shrub dominated plots.  Then we grouped the remaining forested 

plots according to the species with the highest IV.  Each group was denoted by its dominant 

species. 

Canopy fuels characteristics (CBD, CC, CBH, and HT) values were estimated from the data 

gathered on individual trees and from the hemispherical photographs.  We computed gap fraction 

and CC from 669 hemispherical photographs (3 per plot) using GLA software (Frazer et al. 
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1999).   GLA software computes gap fraction as the percent of open sky as seen from beneath 

the forest canopy (Frazer et al. 1999).  Gap fraction was then transformed to CBD using the 

methods described in Keane et al. (2005, eq. 5).  To calculate CBH, we combined each plots’ 

values of Height to Live Crown Base and Height to Dead Crown Base.  Because low CBH are 

most important for the transition to crown fire, we used the 1st quartile CBH as the estimate for 

each plot (Fulé et al. 2001; Skinner 2005). To compute HT, we averaged the heights of the live 

trees in the canopy in each plot (typically the Co-dominant and Dominant trees, but also 

Emergent trees if they were present). 

We quantified the effect of vegetation type, elevation, slope, and aspect on both surface and 

canopy fuel parameters.  We used the same nine vegetation types for the fuels analysis that we 

used in the stand structure descriptions.  We created five categories for each topographic 

variable.   Elevation classes were 1600-1800 m, 1800-2000 m, 2000-2200 m, 2200-2400 m, and 

2400+ m.  Aspect classes were North (315° - 45°), East (45° - 135°), South (135° - 225°), West 

(225° - 315°), and Flat.  Slope classes were 0°- 3°, 3°- 8°, 8°- 15°, 15° - 25°, and 25°+.  For each 

class we computed means, standard errors, and ranges.  We used ANOVA to test for the effect of 

each topographic variable on the mean of each fuels variable by class. 

Random Forest Modeling and Fuels Upscaling 

To scale data from the plot to the landscape level, we developed a dataset consisting of the point 

locations of the 223 plots plus 29 additional points representing barren and water areas (n = 252 

total points).  The 29 additional plots were selected based on the proportion of area in LVNP 

covered by barren (9.7% n = 25 plots) or water areas (1.8%, n = 4). These 29 additional points 
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were initialized with zero values for each of the canopy fuels characteristics.  We refer to this as 

the Full Dataset. 

To test the efficacy of our canopy fuels mapping procedure, we also sought to build a model of 

canopy fuels for the pre-fire conditions of the 2004 Bluff fire and then use these predicted fuels 

to simulate fire behavior.  To this end, we reduced the dataset of 223 field plots by removing 39 

plots that fell within areas burned since 2003.  To compensate on a proportional basis, we also 

removed 1 barren plot and 1 water plot, each selected at random.  The final dataset for 2003 

predictive fuels mapping totaled 211 points.  We refer to this as the Reduced Dataset. 

Because vegetation structure and composition in LVNP co-varies strongly with topographic 

variables including elevation, slope aspect, and potential soil moisture (Taylor 1990, 2000; 

Parker 1991) we derived a set of topographic variables related to vegetation type from a 30 m x 

30 m resolution digital elevation model (USGS 2010).  The National Elevation dataset for LVNP 

was used to obtain elevation, slope, aspect, and two measures of topographic position for each 

pixel in the park.  These two measures of topographic position—Topo_Pos_150 and 

Topo_Pos_450—are the difference between the focal pixel’s elevation with the average 

elevation of pixels within 150 m and 450 m respectively (Poulos et al. 2007; Poulos 2009).   

To facilitate the scaling of plot level data to the landscape level, we used Landsat 5 imagery of 

LVNP for July 10, 2009 and August 11, 2003.  The raw Landsat scenes were converted to at-

satellite reflectances for 6 bands (1-5 and 7).  These reflectances were then used to compute the 

Normalized Differenced Vegetation Index (NDVI) and the Tasseled Cap transformations for 

Greenness, Brightness, and Wetness (Kauth and Thomas 1976).  We used NDVI as a general 

measure of the amount of vegetation in each pixel while the Tasseled Cap transformations 
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provide information to separate forest from both other vegetation types and from barren or water 

areas.  All resulting rasters were exported for analysis in ArcGIS® (ESRI 2010). Satellite 

imagery was processed using ENVI® (ITT 2010). 

Each of the points in the Full and Reduced Datasets were intersected with the rasters 

representing topographic position, slope, aspect, elevation and the remotely sensed reflectance 

values and derived vegetation indices in ArcGIS (ESRI 2010).  This yielded two datasets with 25 

explanatory variables (independent variables) for each of the four canopy fuels variables 

(dependent variables).  Both of the datasets contained at-satellite reflectances for bands 1-5 and 

band 7, NDVI, and Tasseled Cap Brightness, Greenness, and Wetness for  July 10, 2009 and 

August 11, 2003 for a total of 20 remotely sensed variables in each. 

We used a Random Forest algorithm in R (Breimen 2001; Liaw and Wiener 2002; R 

Development Core Team 2010) to model and the scale up  the plot level estimates of each 

canopy fuel variable to the entire landscape. This resulted in four RF models and four predicted 

maps for each of the two time periods.  We developed the predicted maps in three steps.  First we 

used the Full Dataset and the Landsat derived variables from 2009 to model and predictively 

map canopy fuels characteristics for 2009.  Second, we used the Reduced Dataset and the 

Landsat derived variables from 2003 to model and predict 2009 canopy fuels characteristics.   

Finally we used the model developed from the Reduced Dataset to predictively map 2003 canopy 

fuels by applying it to all 15 of the potential explanatory variables across the entirety of our 

study area on a pixel by pixel basis within the randomForest R package (Liaw and Weiner 2002). 

In every case, the RF algorithm was run to iteratively grow 4,000 trees with 5 of the 15 

explanatory variables randomly selected at each node as potential variables to base the split on.  

A large number of trees is recommended when using RF algorithms to stabilize the Mean 
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Squared Error (MSE) over many iterations.  We used the pseudo-r2 and the MSE statistic to 

evaluate model performance.    The pseudo-r2 statistic is calculated as: 

1  
MSE

var y  

The pseudo-r2 statistic is calculated identically to the r2 statistic for standard linear regression, 

and is called pseudo because the predicted values used to calculate the MSE come from the 

random forest, and not from a linear regression (Liaw and Wiener 2002). 

To identify the relative strength of each predictor variable on each of the response variables, we 

used importance plots.  Importance plots assess the strength of each variable by reporting the 

percentage increase in the model’s MSE if that predictor variable’s values are randomized across 

the sample.  We compared each model’s output using Pearson product-moment correlations. 

We compared the results of our canopy fuels mapping with two independent datasets to assess 

the accuracy of our RF model of 2009 canopy fuels. First we retrieved landscape scale maps of 

all four canopy fuels variables (CBD, CC, CBH, and HT) available from the LANDFIRE online 

database (Rollins and Frame 2006).  We also created plot level estimates of CBD and CBH from 

the Fire and Fuels Extension of the Forest Vegetation Simulator (FFE-FVS; Reinhardt and 

Crookston 2003).  We compared each canopy fuel variables’ calculated values, predicted 2009 

values, and predicted 2003 values with the LANDFIRE value and the value derived from FFE-

FVS at the plot level using Pearson’s product moment correlations.   

Fire Models and Comparisons with the Bluff (2004) Fire 

To test the effectiveness of our modeling approach, we modeled fire behavior inside the 

perimeter of the 2004 Bluff fire.  We used FlamMap® to create an expected fire behavior 
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pattern.  FlamMap was initialized with the same elevation, slope, and aspect information used in 

the RF models as well as our predicted maps of 2003 values of CBD, CC, CBH, and HT, and the 

2000 surface fuels map.  We used Fire Family Plus® to derive fire weather parameters (1-hr, 10-

hr, 100-hr, live herbaceous, and live woody fuel moistures) as well as dominant wind speeds and 

directions for the summer of 2004 at the 80th, 90th, and 97th percentiles.  We used WindNinja® to 

translate wind speeds and directions into gridded wind vectors that take into account topography.  

We ran FlamMap® using the gridded winds and under the 80th, 90th, and 97th fuel-moisture 

scenarios.  Our outputs were fireline intensity (kW/m) and fire type index (0-no fire; 1-surface 

fire; 2-torching fire; 3-crown fire).  We averaged fireline intensity over the twelve runs.  We 

compared our modeling results with Relative difference Normalized Burn Ratio (NBR, RdNBR) 

classed and unclassed data downloaded from the Monitoring Trends in Burn Severity 

(Eidenshink et al. 2007) project.  The MTBS program uses a spectral processing algorithm on 

Landsat spectral data to assess the severity of wildfires and is presented as the difference 

between pre- and post-fire NBR and then normalized by the pre-fire NBR. RdNBR ranges from 

roughly -4000 to 4000 with the bulk of analyzed pixel lying between -250 to 2000 (Miller and 

Thode 2007). MTBS also classifies RdNBR images into fire severity categories: 1-Unburned to 

Low; 2-Low; 3-Moderate; 4-High; 5-Increased Greenness; 6-Cloud/Water mask.  Category 5 

represents pixels whose RdNBR value is negative, which indicates that the pixel was not only 

unburned, but that the post-fire pixel was also more green than in the pre-fire image.  To 

compare our modeled fire type categories, we kept the three classes from FlamMap; we also 

combined MTBS categories 1 and 2 and denoted it a “surface” fire category, we denoted MTBS 

category 3 as a “torching” fire category, and we denoted MTBS category 4 as a “crown” fire 

category.  While MTBS does not strictly map fire types, our categorization is based on a 
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comparison of the Composite Burn Index (CBI; Miller et al. 2009a) with the expected effects of 

surface, torching, and crown fire predictions of FlamMap. We used a RF approach to explain 

RdNBR values using our 5 derived topographic variables as well as 2003 predictions of CBD, 

CC, CBH, and HT, surface fuel model, and modeled average fireline intensity. 

Results and Discussion 

We quantified stand structure for each plot by computing each species’ basal area (Table 2-2) 

and density (Table 2-3) on a per hectare basis for each plot.  We identified 9 vegetation 

groupings according to computed IVs.  Seven of these types are forested types, one is a chaparral 

type and one is a meadow type.  Each is denoted by the dominant species.  The vegetation types 

are: ARNE-ARPA (Arctostaphylos nevadensis – A. patula); Mixed-Other (catch all for 

Calocedrus decurrens—Pseudotsuga menziesii—Pinus lambertiana dominated plots); Grass; 

PIJE/PIPO (P. jeffreyi—P. ponderosa); PICO (P. latifolia var. murrayana); TSME (Tsuga 

mertensiana); ABMA (Abies magnifica); ABCO (A. concolor); and PIMO (P. monticola).  

Landscape Scale Variation in Fuels 

We tested the effect of vegetation type, elevation, slope, and aspect on plot level surface and 

canopy fuel parameters using ANOVA.  Of the four categorical variables, vegetation type had 

the strongest effect on the largest number of fuel-model parameters (Table 2-4).  The Grass 

vegetation type had the lowest fuel loads in all categories. The ABCO vegetation type had the 

highest surface fuel loads for all categories except 1000-hr fuels, where the ARNE-ARPA 

vegetation type had the highest load and ABCO had the second highest load.  In addition, 

ABMA had high fuel loads across all categories.  Both the ABCO and AMBA vegetation types 

are extensive throughout LVNP and occupy cooler and wetter sites which simultaneously 
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increases moisture availability and decreases decomposition rates.  The high elevation TSME 

and PIMO vegetation types had lower fuel loads because, in these forest types, cold, high 

elevation environments limit primary biomass production.  CBH was highest in PIJE/PIPO 

forests.  CBD and CC were highest and CBH lowest in ABCO forests.  The combination of high 

surface fuel loads, high CBD and low CBH in the ABCO vegetation type describes a fuel 

complex that is susceptible to intense and potentially severe fire.  Fir forests in other parts of the 

west are also known to have higher fuels loads than other forest types under similar 

environmental conditions (van Wagtendonk et al. 1998). 

Of the three topographic variables, aspect had the strongest effects on the most number of fuel 

model parameters (Table 2-5).  Flat aspects, where the Grass vegetation type dominates, had the 

lowest coarse woody fuel loads.  1-, 10-, 100-, and 1000- hr fuels were the lowest on less 

productive south facing aspects.  This is due to primarily to two factors.  First, south facing 

slopes are less productive and more likely to burn and these two conditions interact to maintain 

low levels of coarse woody debris (Rollins et al. 2002).  Secondly, the ARNE-ARPA vegetation 

type has a generally low 1-, 10-, and 100-hr fuel load (Blonski and Schramel 1981).  Fuel loads 

were generally highest on west and north slopes where moisture stress is reduced.  These aspects 

support higher primary productivity, and therefore more coarse woody fuels production. 

Elevation had a small effect on a few of the fuel model components.  Fuels were generally 

highest at middle (1800-2000 m and 2000-2200 m) elevations and lowest at the highest (2400+ 

m) elevation (Table 2-6).  Though this pattern holds across most of the fuel model characteristics 

examined here, only 10-hr, 1000-hr and Dead Woody Total fuel loads were significantly 

different between elevation classes. This general pattern of fuel loads has been noted in other 

parts of the Sierra Nevada (van Wagtendonk et al. 1998). 
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Slope angle had the smallest effect on measured fuels parameters.  Only CBD varied 

significantly between slope angle classes, and was highest on intermediate (15°-25°) slopes 

(Table 2-7). 

Canopy Fuels 

Canopy Fuels Quantification, Modeling, and Mapping 

We computed four critical canopy fuels parameters (CBD, CBH, CC, and HT) from the field plot 

data described above and scaled our estimates up to the landscape level using RF regression and 

prediction.  Each were quantified from some combination of the plot level data and the data 

derived from the hemispherical photographs and are summarized here (Table 2-8).  We built two 

models of each computed canopy fuels parameter; one using the Full Dataset, the topographic 

variables and the 2009 spectral data, and one using the Reduced Dataset, the topographic 

variables and the 2003 spectral data. The results of the RF algorithm were consistently strong for 

CBD, CC, and HT, but weak for CBH (Table 2-9). Overall, topographic variables were largely 

unimportant in modeling and mapping the 2009 or 2003 canopy fuels parameters but vegetation 

indices and several at-satellite Landsat spectral bands were important (Figure 2-2, 2-3). NDVI, 

an important vegetation index for many types of landscape-scale and larger studies, was the most 

important predictor for most canopy fuel variables in both the Full and Reduced datasets case.  

NDVI is generally well correlated with within-pixel canopy coverage and density (Pettorelli et 

al. 2005). Hence, its importance as a variable- is not surprising.  NDVI is also known to be a 

significant predictor of canopy fuels characteristics in the northern Rockies (Rollins et al. 2004). 

Tasseled Cap transformations were also important predictor variables for each of the canopy 

characteristics, but were particularly important for CC and CBD.  The Brightness transformation 
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is useful for distinguishing bare soil area from vegetated pixels which is perhaps why it is 

important in predicting CC.  The Greenness transformation increases as canopy cover and green 

vegetation increase and can be useful in distinguishing forest from other vegetation.  The last 

transformation, Wetness, contrasts sharply with Brightness (Kauth and Thomas 1976). These 

transformations have be used previously to map landscape-scale fuel patterns (Poulos et al. 

2007), but have not, to our knowledge, been applied to RF mapping of fuels in the Pacific 

northwest.  The at-satellite reflectances of the infrared bands were generally more important than 

the visible bands in predicting canopy fuels.  Bands 4 and 5 were almost always the most 

important of the spectral bands.  Band 4 detects near-infrared wavelengths and is able to detect 

the difference between water and vegetated land. Band 5 is highly sensitive to moisture and is 

useful for assessing vegetation vigor (Avery and Berlin 1992)   A subset of LVNP with maps of 

each of the four canopy fuels variables as well as a comparison to aerial imagery shows strong 

correspondence with CBD, CC, and HT as well as weak correspondence with CBH (Figure 2-4). 

There was little difference between our two RF models.  We used the measured values from 

2009 as our dependent variables in the model building stage of our analysis, but built models 

using either the 2009 or the 2003 spectral data.  When predicting the 2009 values from the 2003 

spectral data, the results were similar to the values predicted using the 2009 spectral data. 

Comparison of Models for 2009 and 2003 Canopy Fuels 

We compared our predicted values for CBD, CC, CBH, and HT for the models built using 2009 

spectral data and 2003 spectral data using Pearson’s Product-Moment correlation test in order to 

show that predicting canopy fuels at some point in the recent past is a viable way to examine 

observed fire severity patterns.  Regardless of the time period of Landsat data that we used to 
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predict 2009 canopy fuels, our measured and modeled values were always highly correlated 

(Table 2-10).  Furthermore, our measured and predicted values were highly correlated with the 

FFE-FVS predictions for both CBD (r2 = 0.57, P < 0.001, n = 252) and CBH (r2 = 0.64, P < 

0.001, n = 252).  Our empirical methods for both CBD and CBH differ fundamentally from the 

biologically based allometric approach taken by FFE-FVS.  FFE-FVS calculates CBD based on 

allometric equations for foliage and branchwood weight for each species and further calculates 

CBH as the threshold height above which there is sufficient canopy fuel for crown fire to be 

sustained (Reinhardt and Crookston 2003).  This differs from our empirical approach based on 

hemispherical photographs and in situ measurements of limb height.  That these two approaches 

agree so strongly is perhaps testament to both the ‘correctness’ of either method, and to the fact 

that Sierra Nevada forests are well studied.  The data from the LANDFIRE database was the 

most poorly correlated to the four canopy fuels characteristics data.  The LANDFIRE project is a 

national level mapping project that relies on breadth to supply the entire nation with baseline 

fuels inputs (Rollins and Frame 2006).  LANDFIRE used a very similar biophysical modeling 

approach to our approach, but employed Classification and Regression Trees (CART) in its 

implementation.  RF have been shown to outperform CART in both classification and regression 

(Cutler et al. 2007; Prasad et al. 2006).  Furthermore, our data and model come from and are 

applied to a smaller area; this allows us to have a much higher sampling density for the 

landscape of interest.  While LANDFIRE is mapping the entirety of the Cascade range with one 

model, our more focused approach allows us to capture more of the within park heterogeneity in 

fuels and vegetation. 
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Canopy Bulk Density 

Computed CBD ranged from 0.000 to 0.306 kg m-3 (Table 2-8).  The method that we used was 

developed for the northern Rocky Mountains using several of the same species that are present in 

LVNP.  Our estimates of CBD were comparable to other estimates.  In dry ponderosa-pine 

systems of northern Arizona, Fulé et al. (2004) predicted maximum values of 0.26 kg m-3.  In the 

northern Rocky Mountains, Keane et al. (2005) described stands of with a maximum CBD of 

nearly 0.30 kg m-3 (Keane et al. 2005, Figure 6).  Finally, Keane et al. (2000) predicted values of 

0.25 kg m-3 in the Gila National Forest in New Mexico.  Our maximum predicted value of 0.238 

kg m-3 comes from forests that more closely match those found in the northern Rocky Mountain 

(Keane et al. 2005).  The Arizona (Fulé et al. 2004) and New Mexico (Keane et al. 2000) 

estimates are from forests that experience more moisture stress than ours, and are consequently 

less productive. 

FFE-FVS derived estimates of CBD were highly correlated with our computed CBD estimates 

(Table 2-10) even though the two algorithms use a fundamentally different approach.  The FFE-

FVS method uses allometric equations based on tree species, diameter and height to compute 

foliage and branchwood weight while the Keane et al. (2005) method is based on observable 

canopy gaps and hemispherical photography. We find that the Keane et al. (2005) method is the 

simplest to apply at the landscape scale because of the rapidity with which data can be gathered.  

Also, this approach is more directly comparable to a remotely sensed approach because it relates 

incoming visible light with CBD.  Perhaps the best comparison is this: the hemispherical 

photograph is capturing the degree to which a sensor like Landsat will observe an area as being 

bare or occluded by canopy, and thus Landsat bands and derived vegetation indices will be able 

to describe the forest canopy in that area accurately. On the other hand the FFE-FVS method, 
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while biologically the most accurate, is not based in any part on either incoming or reflected 

radiation. 

Canopy Cover 

Computed values of Canopy Cover (CC) ranged from 0 to 87.8% (Table 2-8).  Our RF model 

achieved the best results with this variable with a pseudo-r2 of 0.663 and an MSE of 189.9.  

Furthermore, the model replicated the range of CC values across the landscape, and correctly 

identified barren and water areas as having no CC. Our CC values were also highly correlated (r2 

= 0.698, P < 0.001, n = 252) with the values from the LANDFIRE database (Rollins and Frame 

2006).  This is expected because of the use of Landsat data and a similar predictive method by 

both our study (RF) and by the LANDFIRE study (CART). 

Canopy Height 

The distributions of measured canopy heights across the landscape were wide: from 0.0 m to 

42.3 m; however, more than 50% of plots were between 20 m and 30 m tall (113 of 223 plots).  

Our predicted values ranged from 0.0 to 31.8 m with a pseudo-r2 of 0.59 an MSE of 39.25 

(Tables 2-8 and 2-9).  Predicting canopy height from satellite data can be difficult (Hyyppä et al. 

2000).  However, using only Landsat and Landsat derived spectral characteristics along with 

topographic information gave us a RF model that outperforms other types of models including 

neural networks (Hyyppä et al. 2000).  Additionally, while LiDAR has the potential to increase 

the accuracy of canopy height estimation (Hudak et al. 2002) LiDAR data were unavailable for 

our study area and are often expensive to obtain on a per-project basis. 

 



 42 

Canopy Base Height 

CBH values ranged from 0 to 11.9 m with a mean of 0.7 m.  The data is extremely skewed to the 

right, and the mode is 0.  Our models faithfully reproduced the mean and minimum of the 

dataset, but were unable to capture the high end of the range (Table 2-9).  High values of CBH 

will limit the chance for surface fire to transition to torching or crown fire, and under-predicting 

CBH values may lead to an over-prediction of torching or crowning behavior. 

Mapping CBH across the landscape was challenging.  The model results were poor (Table 2-9), 

but our estimates were highly correlated with the FFE-FVS estimates of CBH (Table 2-10).  Our 

empirical method differs fundamentally from the allometric equation based method implemented 

by both FFE-FVS and the LANDFIRE database (Rollins and Frame 2006).  Also, our method of 

using topographic and remotely sensed spectral data is not well suited to mapping a variable like 

CBH because it is inherently hidden by forest canopies.  CBH in general, even with 

measurements can be a challenging variable to predict or map (Fulé et al. 2004). 

Modeled and Observed Fire Behavior and Severity for the Bluff Fire 

We used our derived canopy fuels layers for 2003 (CBD, CC, CBH, and HT) along with a 

contemporary surface fuels map to model fireline intensity and fire type inside the perimeter of 

the Bluff 2004 fire.  Fireline intensity varied over 5 orders of magnitude (Figure 2-5) and 

visually did not seem to match the RdNBR data downloaded from the MTBS website.  FlamMap 

predicted 72% of pixels to burn with a surface fire while the categories 1 and 2 of the MTBS 

severity categorization combined for 83% of pixels (Table 2-11; Figure 2-6).  FlamMap 

predicted the remaining 28% of the area to burn with torching behavior, with a negligible amount 

of crown fire.  MTBS rated 13.7% of the pixels as intermediate severity and 2.8% as high 
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severity.  The Bluff fire generally produced a lower amount of intermediate and high severity 

effects than other recently analyzed fires in Sierra Nevadan mixed-conifer forests (Collins et al. 

2007). 

It is important to differentiate between predicted behavior and assessed severity.  Depending on 

the scale of torching, effects may be severe or intermediate.  FlamMap does not differentiate 

between the torching of a single tree—which a program like MTBS would likely classify as 

‘low’ if it picked up the damage at all—and torching of a large patch of trees—which MTBS 

would likely classify as ‘moderate’ or ‘high’.  Furthermore, even though we used raster themes 

with a resolution of 30 m for FlamMap to match the resolution of the MTBS data, the internal 

calculations for fire type classification do not take the pixel size into account—they are in a 

sense point calculations that are in turn assigned to pixels of a given size. Therefore, 

heterogeneity in measured fire severity patterns may be due to a fine scale variation in fuels that 

a program like FlamMap—or an approach like ours—is unable to capture. 

The similar proportions of fire types predicted by FlamMap and the MTBS severity data is 

encouraging in the sense that fire modeling programs are able to predict the relative proportions 

of fire types given accurate fuels maps.  Accurate, site specific fuels maps have been used in 

preference to sources like LANDFIRE in the Colorado Front Range (Krasnow et al. 2009).  

Here, locally developed fuels maps were shown to increase the accuracy of fire modeling 

predictions of area burned. What we have shown, is that more accurate fuels information along 

with fire perimeters are able to predict the relative amounts of different types of fires.   While our 

under-prediction of CBH may have lead to an over-prediction of the proportion of torching fire 

in the specific case of the Bluff fire, the over-prediction of torching or crowning can be 

important from a safety standpoint.  These are important contributions because fire managers are 
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often focused on ecological or natural resource outcomes when deciding whether or not to 

initiate prescribed burns or whether or not to allow naturally occurring fires to burn.   

Conclusions 

Localization of fuels mapping projects is an important part of fire management planning at the 

National Park and National Forest level, especially in support of specific management actions or 

fire suppression activities.  The Stewardship and Fireshed Assessment program, in particular, is 

an intensive user of high resolution surface and canopy fuels information.  Integrating 

hemispherical photographs, plot level data, remotely sensed vegetation data, and topographic 

information with Random Forest models is an effective and efficient way to support canopy fuels 

mapping at the spatial scale of a single Park or Forest. 
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Table 2-1: Distribution of Sampling 
Plots by Dominant Species 

Dominant 
Species 

Original 
Plot Set 

Subsampled 
Plot Set 

ABCO 86 80 
ABMA 68 28 
Mixed-Other* 9 12 
ARNE-ARPA 21** 8 
Grass 9 
PICO 64 33 
PIMO 19 5 
PIPO/PIJE 51 36 
TSME 22 12 
total*** 340 223 

 

Table 2-1: Histogram of number of fuel sampling plots by dominant species.  Abbreviations are 
as follows: ABCO—Abies concolor; ABMA—A. magnifica; ARNE—Arctostaphylos 
nevadensis; ARPA—A. patula; PICO—Pinus contorta var. murrayana; PIMO—P. monticola; 
PIPO—P. ponderosa; PIJE—P. jeffreyi; TSME—Tsuga mertensiana.  *The mixed-other group 
contains plots dominated by Calocedrus decurrens (CADE), P. albicaulis (PIAL), P. 
lambertiana (PILA), and Pseudotsuga menzesii (PSME).  **This group contains plots dominated 
by both grasses and shrubs but were not broken out in the original data.  For the ANOVA 
analysis, the ARNE-ARPA plots and the Grass plots were lumped into one category representing 
17 plots.  ***The distribution of frequencies of dominant species were not statistically different 
using ANOVA (P = 0.29; df = 1, 14; F = 1.25). 
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 Table 2-2: Average Species Basal Area per Hectare (m2/ha) 

Veg. Type Status ABCO ABMA CADE PIAL PICO PIJE PILA PIMO PIPO PSME TSME 
Grand 
Total 

ABCO L 9.77 0.73 0.32 0.28 0.79 0.08 0.12 0.10 0.04 0.03 12.26 
n = 80 D 1.71 0.39 0.00 0.10 0.37 0.00 0.00 0.18 0.00 0.00 2.75 
ABMA L 0.46 13.88 0.68 0.61 0.00 0.94 0.35 16.92 
n = 28 D 0.03 2.03 0.15 0.01 0.00 0.03 0.07 2.32 
Mixed-Other L 1.76 0.12 5.16 0.34 2.03 2.63 0.55 1.40 13.99 
n = 12 D 1.36 0.00 0.07 0.00 0.50 0.43 0.10 0.22 2.68 
ARNE-ARPA L 1.93 0.57 0.67 3.16 
n = 7 
Grass L 0.00 1.95 0.00 1.95 
n = 4 D 0.72 0.00 1.79 2.51 
PICO L 0.84 1.02 5.45 0.04 0.06 0.33 0.00 0.00 7.73 
n = 33 D 0.24 0.83 1.47 0.00 0.00 0.01 0.00 0.14 2.71 
PIMO L 0.07 1.91 0.68 0.59 4.72 0.04 8.01 
n = 5 D 0.00 2.89 0.09 0.00 0.01 2.98 
PIPO/PIJE L 1.17 0.07 0.14 0.45 5.46 0.24 0.09 1.07 8.69 
n = 36 D 0.43 0.01 0.01 0.15 1.14 0.02 0.00 0.30 2.06 
TSME L 0.49 0.68 16.45 17.62 
n = 12 D 1.07 0.04 2.06 3.17 

 

Table 2-2: Average Basal Area (m2) of tree species by vegetation type on a per hectare basis.  The status column breaks down each 
vegetation type into the Live (L) and Dead (D) component of each type.  Vegetation types are described in the text. Abbreviations in 
column headings are as in Table 2-1.  
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    Table 2-3: Average Tree Stem Density per Hectare (stems ha-1)   

Veg. Type Status ABCO ABMA CADE PIAL PICO PIJE PILA PIMO PIPO PSME TSME 
Grand 
Total 

ABCO L 497.25 46.25 5.50   23.75 35.50 1.75 3.00 4.50 1.75   619.25
n = 80 D 95.25 11.75 0.75   4.75 11.00 0.00 0.00 3.00 0.00   126.50
ABMA L 14.81 497.04 58.52 9.63 1.48 35.56 26.67 643.70
n = 28 D 2.22 61.48     6.67 0.74 0.00 0.74     0.74 72.59
Mixed-Other L 185.45 9.09 121.82 20.00 58.18 25.45 27.27 27.27 474.55
n = 12 D 27.27 0.00 9.09   0.00 7.27 5.45   12.73 3.64   40.00
ARNE-ARPA L 142.86 45.71 2.86 191.43
n = 9                 
Grass L 0.00 273.33 0.00 273.33
n = 8 D 33.33       0.00 20.00           53.33
PICO L 69.09 181.21 384.85 7.27 4.24 20.61 0.00 1.21 668.48
n = 33 D 8.48 22.42     116.97 0.00 1.21 1.82 0.61   1.21 152.73
PIMO L 28.00 88.00 52.00 16.00 212.00 8.00 404.00
n = 5 D 0.00 80.00     4.00 0.00   4.00     0.00 88.00
PIPO/PIJE L 71.11 7.78 7.78 43.33 160.56 2.78 7.22 33.33 333.89
n = 36 D 37.22 1.67 0.56   19.44 28.33 1.67 0.00 11.11     100.00
TSME L 30.00 31.67 421.67 483.33
n = 12 D 10.00     5.00             36.67 51.67

 
Table 2-3: Average density of tree species by vegetation type on a per hectare basis.  The status column breaks down each vegetation 
type into the Live (L) and Dead (D) component of each type.  Vegetation types are described in the text.  Four letter species 
abbreviations are as in Table 2-1. 
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Table 2-4:  Fuel Loads by Vegetation Type 

Vegetation 
Type 1-hr*** 10-hr*** 100-hr*** 

1 to 100 hr 
total*** 1000 hr*** 

Coarse 
Woody 

Total***,† CBD*** CC*** Ht*** CBH*** N 
ABCO 1.21 ± 0.09 3.9 ± 0.22 5.16 ± 0.29 10.11 ± 0.47 9.62 ± 0.85 42.15 ± 2.91 0.13 ± 0 57.3 ± 1.8 23.4 ± 0.7 0.47 ± 0.05 80 

range 0.18 - 4.48 0.67 - 10.09 0.45 - 12.56 1.57 - 20.63 0 - 33.18 10.76 - 112.77 0.04 - 0.25 10.2 - 87.8 2.4 - 43.9 0 - 1.85 
AMBA 0.87 ± 0.11 3.56 ± 0.4 4.89 ± 0.7 9.33 ± 1.14 5.61 ± 1.43 31.39 ± 4.71 0.11 ± 0.01 48.1 ± 3.3 22.6 ± 1.6 0.77 ± 0.17 28 

range 0 - 2.02 0.22 - 8.97 0.22 - 17.04 0.45 - 28.03 0.67 - 35.42 3.36 - 88.56 0.06 - 0.21 0 - 73 0 - 35.7 0 - 3.85   
Mixed-Other 0.81 ± 0.18 2.35 ± 0.47 2.47 ± 0.58 5.63 ± 1.08 5.54 ± 1.19 31.84 ± 8.07 0.12 ± 0.02 55.2 ± 7.2 23.5 ± 2.6 0.69 ± 0.2 12 

range 0 - 1.57 0 - 4.71 0 - 6.5 0 - 11.43 0 - 15.25 0 - 84.3 0 - 0.31 0 - 85.8 0 - 32.7 0 - 2.4 
ARNE-ARPA 0.52 ± 0.22 1.97 ± 0.61 1.7 ± 0.81 4.17 ± 1.61 20.27 ± 3.21 66.14 ± 12.33 0.06 ± 0.01 15 ± 4.7 12.3 ± 2.7 0.52 ± 0.26 8 

range 0.22 - 2.02 0.9 - 5.61 0.67 - 7.17 1.79 - 14.8 3.36 - 25.11 9.19 - 95.51 0.04 - 0.1 0 - 41.4 0 - 25 0 - 2.28   
Grass 0.09 ± 0.04 0.13 ± 0.07 0.38 ± 0.25 0.58 ± 0.34 1.59 ± 1.23 10.76 ± 8.97 0.04 ± 0.01 7.8 ± 5.1 6.4 ± 2.6 0.02 ± 0.02 9 

range 0 - 0.22 0 - 0.45 0 - 2.24 0 - 2.91 0 - 10.99 0 - 81.61 0 - 0.14 0 - 46.9 0 - 17 0 - 0.18 
PICO 0.52 ± 0.07 1.91 ± 0.31 2.91 ± 0.52 5.34 ± 0.83 9.21 ± 1.59 24.89 ± 3.81 0.1 ± 0.01 41.9 ± 3.3 20.3 ± 1 0.54 ± 0.1 33 

range 0.11 - 2.02 0 - 6.5 0 - 12.11 0.22 - 19.51 0 - 35.42 0.22 - 74.21 0.03 - 0.17 0 - 71.7 2.5 - 31.6 0 - 2 
PIMO 0.63 ± 0.27 2.74 ± 0.72 2.11 ± 0.63 5.47 ± 1.41 5.07 ± 1.7 23.32 ± 8.52 0.07 ± 0.01 30.1 ± 6.7 20 ± 1.2 0.72 ± 0.25 5 

range 0.22 - 1.57 0.9 - 4.71 0.45 - 3.81 1.57 - 8.52 1.57 - 10.54 3.14 - 46.86 0.05 - 0.1 12.7 - 47.1 17.3 - 23.8 0.3 - 1.7   
PIPO/PIJE 0.49 ± 0.09 1.91 ± 0.22 2.24 ± 0.34 4.57 ± 0.56 4.01 ± 0.78 22.42 ± 3.59 0.09 ± 0.01 38.9 ± 2.6 23.2 ± 1.4 1.6 ± 0.42 36 

range 0.02 - 2.24 0.22 - 4.71 0.22 - 10.99 0.47 - 16.14 0.22 - 27.58 1.12 - 84.3 0.03 - 0.19 5.4 - 65.2 9.3 - 36.7 0 - 11.9   
TSME 0.47 ± 0.07 0.9 ± 0.13 1.88 ± 0.22 3.25 ± 0.38 2.06 ± 0.18 20.85 ± 3.14 0.11 ± 0.01 37.9 ± 3.3 17.5 ± 1.4 0.58 ± 0.28 12 

range 0.22 - 0.67 0.22 - 1.35 0.45 - 2.47 0.9 - 4.48 1.12 - 2.47 6.95 - 31.84 0.05 - 0.17 20.6 - 59.3 12 - 28.2 0 - 3.45   
total 0.81 ± 0.04 2.74 ± 0.13 3.61 ± 0.2 7.11 ± 0.34 7.49 ± 0.52 32.51 ± 1.79 0.11 ± 0 45.6 ± 1.4 21.3 ± 0.5 0.71 ± 0.08 223 

range 0 - 4.48 0 - 10.09 0 - 17.04 0 - 28.03 0 - 35.42 0 - 112.77 0 - 0.31 0 - 87.8 0 - 43.9 0 - 11.9   
 Table 2-4: Means ± standard errors and ranges for fuel loads in LVNP by vegetation type. Columns 1-hr, 10-hr, 100-hr, 1- to 100-hr 
total, 1000-hr and Dead Woody Total are in units of t/ha; CBD is in units of kg/m3; CC is in %; Ht is in m, and CBH is in m.  N is the 
number of plots in each vegetation type.  Vegetation types are described in the text.  Means were tested for significant differences by 
ANOVA: *P < 0.05; **P < 0.01; ***P < 0.001.  †Dead Woody Total includes fuels larger than 1000-hr (i.e. 22.9 cm in diameter). 
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Table 2-5:  Fuel Loads by Aspect Class  

 Aspect 1-hr* 10-hr 100-hr* 
1 to 100 hr 

total* 1000 hr* 
Dead Woody 

Total**,† CBD CC Ht CBH N 
North 
315-45 0.78 ± 0.09 2.8 ± 0.29 3.92 ± 0.45 7.51 ± 0.74 8.72 ± 1.1 32.06 ± 3.36 0.11 ± 0.01 46.8 ± 2.7 21.3 ± 1.1 0.65 ± 0.09 62 

range 0 - 2.24 0 - 10.09 0 - 17.04 0 - 28.03 0 - 35.42 0 - 112.77 0 - 0.24 0 - 85.05 0 - 43.9 0 - 4.2 
East  
45-135 0.85 ± 0.09 3.14 ± 0.29 4.17 ± 0.43 8.09 ± 0.72 8.79 ± 1.19 37.44 ± 3.59 0.11 ± 0.01 45 ± 3 20.4 ± 1.1 0.73 ± 0.16 57 

range 0 - 2.24 0 - 10.09 0 - 12.56 0 - 20.4 0 - 35.42 0 - 86.77 0.03 - 0.25 0 - 87.78 0 - 36.7 0 - 7.8 
South 
135-225 0.63 ± 0.09 2.22 ± 0.22 2.51 ± 0.27 5.34 ± 0.52 4.35 ± 0.58 22.42 ± 2.91 0.1 ± 0.01 42.7 ± 3 22.5 ± 1.1 1.04 ± 0.31 45 

range 0 - 2.24 0 - 5.61 0 - 7.4 0 - 14.8 0 - 15.25 0 - 91.03 0 - 0.17 0 - 72.58 0 - 37.6 0 - 11.9 
West 
225-315 1.01 ± 0.11 2.94 ± 0.27 3.92 ± 0.38 7.65 ± 0.65 7.42 ± 1.01 39.01 ± 4.04 0.12 ± 0.01 49.8 ± 2.5 22.2 ± 0.8 0.53 ± 0.09 49 

range 0.11 - 4.48 0.22 - 8.52 0.22 - 11.66 0.67 - 19.73 0.45 - 29.37 1.12 - 111.88 0.05 - 0.31 18.15 - 85.82 11.6 - 34.2 0 - 3.5 

Flat 0.49 ± 0.18 1.5 ± 0.61 2.06 ± 0.76 4.08 ± 1.5 6.7 ± 2.98 20.85 ± 8.07 0.08 ± 0.01 33.6 ± 7.8 17.3 ± 3 0.37 ± 0.19 10 

range 0 - 2.02 0 - 6.5 0 - 7.62 0 - 16.14 0 - 25.11 0 - 74.21 0 - 0.12 0 - 59.8 0 - 27.2 0 - 2 

Total 0.81 ± 0.04 2.74 ± 0.13 3.61 ± 0.2 7.11 ± 0.34 7.49 ± 0.52 32.51 ± 1.79 0.11 ± 0 45.6 ± 1.4 21.3 ± 0.5 0.71 ± 0.08 223 
 

Table 2-5: Means ± standard errors and ranges for fuel loads in LVNP by aspect classes. Columns 1-hr, 10-hr, 100-hr, 1- to 100-hr 
total, 1000-hr and Dead Woody Total are in units of t/ha; CBD is in units of kg/m3; CC is in %; Ht is in m, and CBH is in m.  N is the 
number of plots in each aspect class.  Aspects are measured in degrees with 0° at North.  Means were tested for significant differences 
by ANOVA: *P < 0.05; **P < 0.01. †Dead Woody Total includes fuels larger than 1000-hr (i.e. 22.9 cm in diameter). 
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Table 2-6: Fuel Loads by Elevation Range  

 Elevation 1-hr 10-hr* 100-hr 
1- to 100- 

hr total 1000-hr** 
Dead Woody 

Total*,† CBD CC Ht CBH N 
1600 – 1800 0.74 ± 0.13 2.2 ± 0.34 2.96 ± 0.47 5.9 ± 0.87 8.59 ± 1.66 30.27 ± 5.16 0.1 ± 0.01 44.8 ± 3.8 20.5 ± 1.7 0.54 ± 0.11 32 

range 0 - 2.24 0 - 8.3 0 - 10.09 0 - 20.63 0 - 33.18 0 - 86.77 0 - 0.18 0 - 82.6 0 - 38.5 0 - 2.4   
1800-2000 0.83 ± 0.07 2.89 ± 0.18 3.92 ± 0.27 7.53 ± 0.45 8.47 ± 0.67 37.44 ± 2.47 0.11 ± 0 47.9 ± 2 21.9 ± 0.7 0.81 ± 0.14 119 

range 0 - 2.24 0 - 10.09 0 - 12.56 0.22 - 20.4 0 - 29.37 0.22 - 112.77 0.03 - 0.31 0 - 87.8 0 - 43.9 0 - 11.9   
2000-2200 0.9 ± 0.11 3.14 ± 0.34 3.81 ± 0.49 7.85 ± 0.85 6.84 ± 1.21 27.58 ± 3.36 0.1 ± 0.01 44.8 ± 2.5 21.6 ± 1 0.5 ± 0.06 49 

range 0 - 4.48 0 - 10.09 0 - 17.04 0 - 28.03 0 - 35.42 0 - 88.56 0 - 0.21 0 - 70.2 0 - 35.7 0 - 1.8   
2200-2400 0.56 ± 0.13 2.24 ± 0.58 2.87 ± 0.67 5.67 ± 1.3 2.11 ± 0.43 18.61 ± 5.38 0.08 ± 0.01 35.1 ± 6.7 20.8 ± 2.8 1.03 ± 0.36 13 

range 0 - 2.02 0 - 6.95 0 - 7.17 0 - 15.69 0 - 4.93 0 - 58.74 0 - 0.16 0 - 73 0 - 32.8 0 - 3.85   
2400+ 0.54 ± 0.07 1.32 ± 0.4 2.06 ± 0.25 3.92 ± 0.63 2.35 ± 0.2 23.09 ± 3.14 0.11 ± 0.01 38.1 ± 2.8 16.4 ± 1.3 0.57 ± 0.33 10 

range 0.22 - 0.9 0.22 - 4.71 0.45 - 2.69 0.9 - 8.3 1.12 - 3.59 7.4 - 31.84 0.06 - 0.17 24.2 - 52.9 12 - 24 0 - 3.45 

Total 0.81 ± 0.04 2.74 ± 0.13 3.61 ± 0.2 7.11 ± 0.34 7.49 ± 0.52 32.51 ± 1.79 0.11 ± 0 45.6 ± 1.4 21.3 ± 0.5 0.71 ± 0.08 223 
 

Table 2-6: Means ± standard errors and ranges for fuel loads in LVNP by elevation range. Columns 1-hr, 10-hr, 100-hr, 1- to 100-hr 
total, 1000-hr and Dead Woody Total are in units of t/ha; CBD is in units of kg/m3; CC is in %; Ht is in m, and CBH is in m.  N is the 
number of plots in each elevation range.  Elevations are in meters above sea level.  Means were tested for significant differences by 
ANOVA: *P < 0.05; **P < 0.01.  †Dead Woody Total includes fuels larger than 1000-hr (i.e. 22.9 cm in diameter). 
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Table 2-7:  Fuel Loads by Slope Class  

 Slope 
Angle 1-hr 10-hr 100-hr 

1 to 100 hr 
total 1000 hr 

Dead Woody 
Total† CBD* CC Ht CBH N 

0°-3° 0.58 ± 0.05 2.15 ± 0.18 3.09 ± 0.27 5.74 ± 0.47 9.93 ± 0.96 32.28 ± 2.7 0.08 ± 0.01 34.8 ± 4.7 17.9 ± 1.7 0.41 ± 0.09 25 
range 0 - 2.02 0 - 6.5 0 - 12.11 0 - 19.51 0 - 35.42 0 - 91.03 0 - 0.16 0 - 68.2 0 - 30.6 0 - 2   

3°-8° 0.72 ± 0.04 2.67 ± 0.13 3.81 ± 0.21 7.06 ± 0.35 7.2 ± 0.42 35.65 ± 1.9 0.1 ± 0 44.5 ± 2.1 21.8 ± 0.8 0.78 ± 0.16 54 
range 0.18 - 2.24 0.22 - 8.97 0.22 - 17.04 0.67 - 28.03 0 - 27.58 1.12 - 112.77 0.05 - 0.19 15.1 - 76 9.3 - 36.7 0 - 7.8   

8°-15° 0.81 ± 0.03 2.76 ± 0.1 3.81 ± 0.15 7.33 ± 0.24 7.47 ± 0.4 33.41 ± 1.2 0.11 ± 0 48 ± 2.3 22.4 ± 0.9 0.85 ± 0.17 84 
range 0 - 2.24 0 - 10.09 0 - 12.56 0 - 20.4 0 - 35.42 0 - 88.56 0 - 0.24 0 - 84 0 - 43.9 0 - 11.9   

15°-25° 1.01 ± 0.06 3.03 ± 0.14 3.54 ± 0.17 7.56 ± 0.3 6.75 ± 0.45 28.92 ± 1.5 0.12 ± 0.01 47.4 ± 3.4 21.6 ± 1.1 0.59 ± 0.14 42 
range 0.02 - 4.48 0.22 - 8.3 0.22 - 10.09 0.47 - 19.73 0 - 25.11 1.35 - 84.3 0.03 - 0.31 0 - 87.4 0 - 35.7 0 - 5.5   

25°+ 0.87 ± 0.07 3.05 ± 0.29 3.05 ± 0.25 6.95 ± 0.57 6.7 ± 0.75 28.03 ± 2.6 0.12 ± 0.01 48.2 ± 6.1 19.3 ± 1.9 0.52 ± 0.19 18 
range 0 - 2.24 0 - 10.09 0 - 7.4 0 - 18.16 0 - 29.37 0 - 87.21 0.03 - 0.25 0 - 87.8 0 - 28.5 0 - 3.45 

Total 0.81 ± 0.3 2.74 ± 0.93 3.61 ± 1.33 7.11 ± 2.27 7.49 ± 3.48 32.51 ± 11.9 0.11 ± 0.05 45.6 ± 20.8 21.3 ± 7.8 0.71 ± 1.21 223 
 

Table 2-7: Means ± standard errors and ranges for fuel loads in LVNP by slope classes. Columns 1-hr, 10-hr, 100-hr, 1- to 100-hr 
total, 1000-hr and Dead Woody Total are in units of t/ha; CBD is in units of kg/m3; CC is in %; Ht is in m, and CBH is in m.  N is the 
number of plots in each slope class.  Slope angles are measured in degrees.  Means were tested for significant differences by ANOVA: 
*P < 0.05; **P < 0.01. †Dead Woody Total includes fuels larger than 1000-hr (i.e. 22.9 cm in diameter).
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Table 2-8: Canopy Fuels Summary Statistics 
CBD (kg m-3) CC (%) CBH (m) HT (m) 

min 0.0 0.0 0.0 0.0 
max 0.306 87.8 11.9 43.9 
mean  ± s.e. 0.105 ± 0.003 45.6 ± 1.40 0.71 ± 0.08 21.3 ± 0.52 
SD 0.178 20.848 1.211 7.815 

Table 2-8: Summary statistics of canopy fuels characteristics across all sampled plots computed 
from the analysis of each plot’s digital hemispherical photographs and tree level data.  
Abbreviations are CBD-Canopy Bulk Density; CC-Canopy Cover; CBH-Canopy Base Height; 
HT-Canopy Height. 
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Table 2-9: Random Forest Model Statistics 
Model CBD CC CBH Ht 
Full pseudo r2 0.55 0.67 -0.02 0.59 
  MSE 0.0014 196.6 1.37 40.9 

Reduced pseudo r2 0.63 0.68 0.08 0.59 
  MSE 0.0012 192.4 0.727 41.9 

 
Table 2-9: Summary of model fit statistics (pseudo-r2 and mean-squared error [MSE]).  
Abbreviations are as in Table 2-8. 
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Table 2-10: Model Comparisons and Comparisons to Other 
Datasets 

CBD FVS LANDFIRE
2009 
Model 

2003 
Model 

Measured 0.570*** 0.359*** 0.903*** 0.898*** 
FVS 0.313*** 0.576*** 0.558*** 
LANDFIRE 0.459*** 0.417*** 
2009 Model 0.929*** 
CC         
Measured 0.698*** 0.910*** 0.910*** 
LANDFIRE 0.763*** 0.733*** 
2009 Model 0.926*** 
CBH         
Measured 0.637*** 0.059 0.607*** 0.659*** 
FVS 0.056 0.519*** 0.432*** 
LANDFIRE 0.194** 0.193** 
2009 Model 0.733*** 
HT         
Measured 0.441*** 0.869*** 0.896*** 
LANDFIRE 0.570*** 0.507*** 
2009 Model 0.936*** 

 

Table 2-10: Pearson product-moment correlations between measured canopy fuels 
characteristics, modeled values for those characteristics, and two other data sources for all field 
plots plus water or barren ground cover plots.  Columns and rows are labeled as follows: 
Measured: the value of the characteristic from field measurements.  FFE-FVS: the value of the 
characteristic derived from the Fire and Fuels Extension for the Forest Vegetation Simulator 
(FFE-FVS).  LANDFIRE: the value of the characteristic obtained from the LANDFIRE dataset.  
2009 Model: the value of the characteristic based on the model built with Landsat data from 
2009, and used to predict the characteristic from 2009 values.  2003 Model: the value of the 
characteristic based on the model built with Landsat data from 2003, and used to predict the 
characteristic from 2003 values.  *P < 0.05; **P < 0.01; ***P < 0.001. 
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Table 2-11: Comparisons of Pixel Counts: 
MTBS and FlamMap  

MTBS   FlamMap
Unburned to 
Low 7008 Surface 132576
Low 5735
Moderate 2084 Torching 51573
High 426 Crown 27

Table 2-11: A comparison of pixel counts between the MTBS fire severity categorization and 
FlamMap’s fire activity index. 
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Figure 2-1: Map showing the location of Lassen Volcanic National Park in northeastern 
California, USA.  
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Figure 2-2: Variable importance plot showing rank orders of variable importance for all four RF 
models using the Full Dataset and the spectral data from 2009 to predict the measured values of 
the canopy fuels parameters.  The most important variables are at the top of the y-axis in each 
plot, and variables decrease in importance as one moves down the y-axis.  The x-axis gives the 
mean percentage decrease in MSE for each variable.  Abbreviations are: TC Bright—Tasseled 
Cap Brightness; TC Green—Tasseled Cap Greenness; TC Wet—Tasseled Cap Wetness; TM 
Band 1-5, TM Band 7 from Landsat 5, Aug. 11, 2009; Slope—Slope of each plot in degrees; 
Aspect—Aspect of each plot in degrees from north; Elevation—Elevation of each plot; TP 
150—Topographic Position of each plot relative to points within 150 m; TP 450—Topographic 
Position of each plot relative to points within 450 m.  See the text for more details on each 
variable. 
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Figure 2-3: Variable importance plot showing rank orders of variable importance for all four RF 
models using the Reduced Dataset and the spectral data from 2003 to predict the measured 
values of the canopy fuels parameters.  The most important variables are at the top of the y-axis 
in each plot, and variables decrease in importance as one moves down the y-axis.  The x-axis 
gives the mean percentage decrease in MSE for each variable.  Abbreviations are: TC Bright—
Tasseled Cap Brightness; TC Green—Tasseled Cap Greenness; TC Wet—Tasseled Cap 
Wetness; TM Band 1-5, TM Band 7 from Landsat 5, Aug. 11, 2009; Slope—Slope of each plot 
in degrees; Aspect—Aspect of each plot in degrees from north; Elevation—Elevation of each 
plot; TP 150—Topographic Position of each plot relative to points within 150 m; TP 450—
Topographic Position of each plot relative to points within 450 m.  See the text for more details 
on each variable.
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Figure 2-4: Map of a subsection of LVNP showing predicted values of canopy fuels parameters from 2009 using RF algorithm.  The 
dark patch on the map consists of Butte Lake, the Fantastic Lava Beds, and Snag Lake (from north to south) within LVNP. 
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Figure 2-5: Visual comparison of modeled Fireline Intensities (left) with remotely sensed RdNBR values (right) for the Bluff 2004 fire 
inside LVNP.
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Figure 2-6: Comparison between modeled fire type (Surface, Torching or Crown) with MTBS 
rated severity.  The MTBS uses 5 categories of severity.  We grouped categories 1 (Unburned to 
Low) and 2 (Low) together for this plot and denoted them surface fires to match FlamMap 
output.  We denoted MTBS category 3 (Intermediate) as a torching fire to match FlamMap. We 
denoted MTBS category 4 (High) as a crown fire to match FlamMap.  We ignored pixels with 
MTBS category 5 (increased greenness). 
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Chapter 3: 

A Neutral Model Approach for Evaluating the Influence of Topography and Fuels on 

Expected Fire Behavior in a Forested Landscape, Southern Cascades, USA 
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Abstract 

The effect of topography is recognized as an important driver of variation in fire behavior and 

fire severity.  Direct analysis of this effect has been limited because fire severity within a single 

fire is often driven by variation in fuels or weather and because fire-scar methodologies have 

difficulty assessing severity.  We use the fire behavior modeling program FlamMap in a neutral 

model framework to assess the effect of topography on the distribution of variations in fireline 

intensity and fire type in a diverse 400 km2 forest landscape.  In our approach, we systematically 

vary fuel moisture and wind scenarios while simultaneously holding canopy fuels variables 

(Canopy Bulk Density, Canopy Cover, Canopy Base Height, and Canopy Height) constant and 

uniformly distributing surface fuel models across the landscape.  We explain the variation 

observed in our results by employing a Random Forest algorithm and use elevation, slope, aspect 

and two measures of topographic position as explanatory variables.  Our results indicate that 

slope is the most important driver of variation in the model output however, the greatest 

differences in expected fire behavior occur when comparing across fuel models.  Additionally, 

our results support the general expectation that upper slope positions tend to burn more severely 

and expand this general notion by providing explicit evidence on the locations of expected high 

intensity fire across the landscape. 

Key Words: fire intensity, fire severity, FlamMap, neutral models, topography, simulation 

models, Lassen Volcanic National Park, elevation, slope, aspect 

  



 72 

Introduction 

Over the course of centuries, the repeated burning of an ecosystem can potentially create a 

distinctive relationship between fire regimes and vegetation structure and composition.  Perhaps 

the best understood of these relationships is the effect the high frequency, low severity fire 

regime that typically kept ponderosa pine ecosystems of the southwestern US open and 

composed of large diameter, fire resistant stems (Fulé et al. 1997).  In these forests, open areas 

between large trees grew grasses that formed a continuous fuel bed in a matter of a few years.  

Once a drier than average year occurred, this continuous fuel bed became highly flammable.  

When ignited, the fuel bed would burn at low intensity, but could potentially burn hundreds to 

thousands of acres leaving most large trees healthy or minimally scarred but also killing 

seedlings and leaving the forest open (Fulé et al. 1997).  The interaction of fire regime and 

vegetation in this example produced a more or less stable, fire dependent ecosystem that is now 

subject to alteration by human use of fire suppression (Fulé et al. 1997; Allen et al. 2002).  

Boreal and sub-alpine forests have likely not been affected by fire suppression to the degree that 

their structure and composition have been significantly altered (Johnson et al. 2001).  Yet even in 

these boreal and sub-alpine forests dominated by long-interval, high severity fires, static age 

patterns that are the evidence of high severity fires can be mapped on the landscape (Johnson et 

al. 2001; Romme 1982). In Lassen Volcanic National Park, relatively high severity, low 

frequency fire regimes in some topographic positions may result in stable, fire dependent 

brushfield communities.  By removing high intensity fire as a structuring process from the 

landscape, these communities—which add structural and habitat diversity to the landscape—are 

at risk of loss due to a century of fire suppression efforts (Nagel and Taylor 2005). 
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Quantifying topographic effects on fire intensity and severity is typically done through the 

analysis of fire scarred wood extracted from living and dead trees (Swetnam 1993; Taylor 2000; 

Stephens et al. 2003) or through the analysis of age structure patterns of tree populations (Taylor 

2000; Nagel and Taylor 2005).  This method is excellent for calculating the frequency and 

seasonality of fires, and strong inferences can be made about size.  In the Cascade Range and in 

southern British Columbia, fire return intervals lengthen as elevation increases because winter 

snowpack lasts longer at these elevations (Beaty and Taylor 2001; Heyerdahl et al. 2001; 

Heyerdahl et al. 2007) and fire return intervals are shorter on south-facing slopes because these 

slopes dry more quickly than other aspects (Heyerdahl et al. 2001; Taylor and Skinner 2003; 

Heyerdahl et al. 2007).  Frequency relationships vary geographically, however.  Rollins et al. 

(2002) compared wilderness areas in Montana and New Mexico and found that in Montana, 

south and southwestern aspects burned more often because they were subject to increased 

insolation which dried fuels more quickly. In contrast, northeastern aspects in New Mexico 

burned more often because their moisture regimes allowed for more rapid accumulation and 

connectivity of fuels (Rollins et al. 2002).  In the nearby Klamath Range, the influence of 

topography (ridges, rocky outcrops, cliffs, and roads) on the inhibition of fire spread is 

recognized (Taylor and Skinner 2003).  Additionally, high severity fires predated a large pulse of 

establishment of chaparral fields followed by infilling of fire intolerant tree species in the 

northern Sierra Nevada (Nagel and Taylor 2005). 

Direct quantification of the magnitude of topographic effects on fire severity in relation to other 

factors that are known to control severity is much more difficult.  Fire severity can be driven by 

the structure and arrangement of fuels (Odion et al. 2004; Thompson et al. 2007), daily 

meteorological conditions (Collins et al. 2007), or vegetation type.  Additionally, high intensity 
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fires often destroy scarred trees which leaves fire scar based inferences about severity suspect 

because the evidence is missing.  Despite this, topography has been broadly inferred to affect 

severity in the nearby Klamath Range where historical studies suggest west facing upper slopes 

burn more severely (Taylor and Skinner 1998). Forest stand age structures have been used to 

identify spatial variation in fire return intervals and fire severity in the southern Cascades (Beaty 

and Taylor 2001) and the northern Sierra Nevada (Beaty and Taylor 2008). Additionally, slope 

was shown to be positively associated with fire severity measures in Sequoia National Park 

(Knapp and Keeley 2006).  In contrast, in the specific case of the Big Bar complex and the 

Quartz fire of the Klamath Range, Alexander et al. (2006) found evidence that higher elevations 

burned less severely than lower elevations.  Using the recently developed Relative differenced 

Normalized Burn Ratio (RdNBR) for recent fires several studies have shown that aspect can be a 

determinant of the location of high severity fire (Collins et al. 2007; Thompson et al 2007).  In 

the few studies that have taken this approach, however, daily meteorological conditions 

overshadowed topographic conditions in explaining spatial variation in fire severity (Collins et 

al. 2007; Thompson et al 2007). 

The arrangement of fire severity patches on the landscape is just one realization of the stochastic 

process of fire burning through heterogeneous fuels, vegetation, and terrain that is also subject to 

human management (sensu O'Sullivan and Unwin 2003).  Collins et al. (2007) and Thompson et 

al. (2007) showed that for individual fires weather is the primary driver of fire severity.  

However, weather is essentially a stochastic process because of its wide range of variability and 

its rate of change relative to the time scale of a single fire.  Further, the combination of fuel, 

weather, and topographic conditions that occur during any one fire are not necessarily 

comparable to the combination of conditions during other fires.   Because the number of fires 
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studied by Collins et al. (2007) and Thompson et al. (2007) is small and fire severity is strongly 

influenced by the stochastic process of weather and environmental heterogeneity, these studies 

cannot be repeated in order to identify a set of expected patterns of fire severity for complex 

terrain. 

In order to investigate real landscapes against hypotheses, biogeographers and landscape 

ecologists use neutral and simulation models built on some combination of physical, statistical, 

or empirical approaches (Turner et al. 2001).  Neutral models have been advocated for the 

development of baseline patterns against which to test observations of real landscape (Gardner et 

al. 1993; Gardner and Urban 2007). Simulation models have been employed to investigate many 

aspects of fire behavior, fire effects, and fire regimes.  The effects of Euro-American settlement 

and fire suppression on the landscape characteristics of the Boundary Waters Canoe Area were 

investigated by Baker (1992) who found that some landscape measures increase quickly with 

shifting fire regimes while others lagged by decades to centuries.  Simulation models were 

compared to statistical models for the mapping of fire return intervals by Keane et al. (2003) who 

found that while simulation models generally performed poorly when explicitly mapping those 

intervals, they were nonetheless useful because of their wide flexibility and general ability to 

‘burn’ the same landscape under different conditions many times and over very long time 

periods.  The question of vegetation persistence in the face of altered fire regimes was 

investigated by Pausas (2006).  This study found that large patches were important for retaining 

fire sensitive species in Mediterranean climates.  Finally, the effect of sampling intensity and 

completeness on estimates of fire regime parameters (average size, mean fire return interval) was 

investigated by McKenzie et al. (2006) using a neutral model approach where all of the factors 

deemed important to determining fire regimes were decoupled in the modeling approach. 
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In this study, we employ the fire behavior simulation model FlamMap in a neutral framework to 

examine the landscape scale distribution of expected fire behavior as it relates to topography.  

FlamMap is a landscape-scale, raster based model for predicting fire behavior (Finney 2006).  

FlamMap uses raster grid themes of topographic, surface fuels, and canopy fuels variables to 

predict fire behavior characteristics independently for each location on a gridded landscape.  

FlamMap is the most appropriate model because it was developed primarily for “mapping how a 

fire might burn a given area” (Stratton 2006, p. 13, emphasis in original) and fire behavior 

calculations are rapid.  The implementation of FlamMap calculates fire parameters (fireline 

intensity, crown fire activity etc.) for each grid cell independently of other grid cells.  FlamMap 

is commonly used to estimate landscape scale fire behavior for different fuel and weather 

conditions (Stratton 2004) and is parameterized so that many combinations of fuels and weather 

can be burned across the same physical template without the need for excessive computing 

power (Finney 2006).  FlamMap can handle raster data of any resolution, provided all datasets 

are of the same resolution and extent and cover the same geographic area (Finney 2006).  

Our neutral framework is based on a homogenous distribution of many surface fuel models and 

canopy fuels parameters across the landscape, independent of their typical structuring forces.  

We burn these homogenous assemblages of fuel under 80th, 90th and 97th percentile fire weather 

for a range of wind scenarios.   This systematic variation in fire weather will then be used as the 

basis for an exploration of the role of topography on patches of high intensity fire.  We 

investigate differences in fireline intensity and fire type across these weather and wind scenarios 

for each of the homogenous surface fuels cases. The results of this set of simulation models will 

then be used to assess the pattern of high intensity fires on real landscapes.  We are specifically 

interested in comparing our set of simulations and their predictions of the spatial distribution of 
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high intensity fire with knowledge about the real distributions of known patches of high severity 

fire across the landscape of Lassen Volcanic National Park. 

Study Area 

LVNP lies at the southern end of the Cascade Range, a volcanic plateau punctuated by high 

volcanic peaks (Figure 3-1).  Elevation ranges from 1,609 to 3,187 m and the Park’s total area is 

42,900 ha.  Dominant vegetation communities co-vary with elevation (Taylor 1990, 2000; Parker 

1991; Schoenherr 1995).  The lowest elevation forests are dominated by ponderosa pine (Pinus 

ponderosa) and Jeffery pine (P. jeffreyi). Mixed conifer forests of Jeffrey pine (P. jeffreyi) and 

white fir (Abies concolor) dominate the lower montane forests.  Upper montane forests are 

composed of red fir (A. magnifica var. magnifica), white fir (A. concolor), and western white 

pine (P. monticola). Lodgepole pine (P. contorta spp. murrayana) occupies low lying 

depressions where cold air drainage is a dominant part of the regeneration climate.  High 

elevation forests are dominated by mountain hemlock (Tsuga mertensiana) and whitebark pine 

(Pinus albicaulis).  LVNP is dominated by gentle to moderate slopes and the average slope angle 

is 10.8°.  Less than 0.5% (110 ha) of LVNP occupy slopes greater than 45°.  The climate is 

Mediterranean and is characterized by hot, dry summers and cold, wet winters.  Average 

monthly temperatures at  Manzanita Lake, California (elevation 1802 m in LVNP), range from -

6.6 °C minimum and 5.0 °C maximum in January to 7.5 °C and 26.1 °C in July (WRCC 2009).  

Annual average precipitation is 104 cm, but inter-annual variability is high. Most precipitation 

(>80%) falls as snow between November and April and annual maximum snowpack depth from 

the Lower Lassen Peak Snow Course (usually in April or May) ranges from 1.63 to 8.41 m with 

an average of 4.63 m (NOHRSC 2010). 
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Methods 

Field Data Collection 

Our modeling approach calls for constant values for four critical canopy fuels components: 

Canopy Bulk Density (CBD), Canopy Cover (CC), Canopy Base Height (CBH), and Canopy 

Height (HT).  CBD is a measure of the total amount of above-ground-surface fuel that is 

available to wildfires; typically including foliage and up to one half of the smallest branchwood 

(0-6.4 mm) and is measured in units of kg m-3.  CC is the horizontal fraction of the ground that 

has canopy above it and is measured as a percentage of total area.  CBH is a measure of the 

vertical continuity of fuels and expresses the lower threshold above which there is sufficient fuel 

for a crown fire to be self-sustaining and is measured in m.  Lower CBH values indicate that 

canopy fuel is closer to the ground and hence could act to transition surface fire into the crown. 

Finally, HT is the average height of the dominant stratum of tree cover and affects modeled fuel 

moistures and is measured in m.  To determine appropriate values for these variables across the 

LVNP landscape, we collected field data in the summers of 2009 and 2010 in LVNP.  We 

selected 223 plots from a set of 340 surface fuel sampling plots established in 1998-99 (C. Farris, 

2009, personal communication) by grouping plots by their dominant species and then 

proportionally sampling from each group.  Dominant species in each plot were estimated in the 

field, and were measured as the percentage of live vegetation (i.e. all plots have 100% total 

values for each strata).  The plots in the larger set were located to map surface fuels during the 

summers of 1998 and 1999 by clustering NDVI values from Landsat imagery using an 

unsupervised distance to mean algorithm (ERDAS 1997).  Detailed fuels information was 

collected at these plots including surface fuel loading using Brown’s planar intercept method 

(Brown 1973), overstory, understory, and shrub species composition, surface and litter fuel 



 79 

characteristics, canopy and understory height, and photographs for comparison with fuel load 

photo series (e.g. Blonksi and Schramel 1981).  The center of each plot was permanently marked 

with a steel stake. These data were used to assign each plot an initial fuel model (Anderson 

1982).  These fuel models were then assigned to the results of the spectral clustering algorithm.  

Additional plots were located in ambiguous or highly heterogeneous spectral clusters and 

stratified based on topographic and compositional characteristics to assign final fuel models.  

Once the final surface fuels map was created, 122 accuracy assessment plots were laid out and 

visited to ensure validity of the mapping process (C. Farris, unpublished report).   

We located the 223 plots by navigating to them with GPS. We established a 500 m2 circular plot 

centered on the permanent stake.  We recorded the plot’s geographic position from the GPS and 

also measured its slope, elevation, aspect, topographic position, and topographic configuration. 

Topographic position was recorded in one of five categories: ridge top, upper slope, middle 

slope, lower slope, or valley bottom.  Topographic configuration was also recorded in one of five 

categories: convex, convex-straight, straight, concave-straight, or concave.  For each tree (> 5 cm 

diameter at breast height [DBH]) we measured DBH (cm), height (m), status (live or dead), and 

visually estimated live crown fraction to the nearest 5%. We rated each tree’s relative crown 

position using the following categories and criteria: Suppressed— <25% of main canopy height; 

Intermediate— >25% but < 75% of main canopy height; Co-dominant—part of the main canopy, 

but receiving top shading from other canopy trees; Dominant—part of the main canopy and only 

receiving side-shading from other trees; Emergent—trees with crowns above the main canopy 

that are not receiving significant side-shading from any trees.  We recorded the Height to Live 

(Dead) Crown Base as the height above the ground of the lowest live (dead) limb longer than 60 

cm (Fulé et al. 2001; Skinner 2005).  To aid in determining canopy fuels characteristics, we took 
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three upward facing hemispherical photographs per plot with a digital camera mounted with a 

full hemispheric lens and leveled with a bubble level at 2 m above the ground.   

Canopy Fuels 

Canopy fuels characteristics (CBD, CC, CBH, and HT) values were estimated from the data 

gathered on individual trees and from the hemispherical photographs.  We computed gap fraction 

and CC from 669 hemispherical photographs (3 per plot) using GLA software (Frazer et al. 

1999).   Gap fraction was then transformed to CBD using the methods described in Keane et al. 

(2005, eq. 5).  To calculate CBH, we combined each plots’ values of Height to Live Crown Base 

and Height to Dead Crown Base.  Because low CBH are most important for the transition to 

crown fire, we used the 1st quartile CBH as the estimate for each plot (Fulé et al. 2001; Skinner 

2005). To compute HT, we averaged the heights of the live trees in the canopy in each plot 

(typically the Co-dominant and Dominant trees, but also Emergent trees if they were present).  

We created constant raster layers representing CBD, CC, CBH, and HT from these values.  We 

computed the average of CBD, CC, and HT across all plots to create the first three constant 

rasters.  We also computed the average of the 1st quartile CBH values across the landscape and 

created a constant raster containing this value.  Constant rasters were created in ArcGIS software 

(ESRI 2010). 

Surface Fuels 

Surface fuel models are idealized assemblages of fuel characteristics (Anderson 1982) that 

produce an expected fire behavior under a given set of weather and topographic characteristics.  

We selected 7 idealized fuel models to use as homogenous fuels in LVNP.  These selections 

represent a wide range of possible fuel models for the park and also represent some extremes and 
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come from the set described by Albini (1976) (Table 3-1).  The seven models we chose are Short 

Grass (Fuel Model 1 [FM1]), Timber Grass and Understory (FM2),  Brush (FM5), Dormant 

Brush (FM6), Compact Timber Litter (FM8), Hardwood Litter (FM9), and Timber Understory 

(FM10) (Scott and Burgan 2005).  We further investigated a fuel type that is common in LVNP 

by using 6 of the 9 Timber-Litter (TL) models from Scott and Burgan (2005). Each was designed 

to supplement the original set by presenting gradations and common variations of the original 

models (Scott and Burgan 2005).  We included in our analysis TL 1, 3, 4, 5, 7, and 8.  Each of 

these models is designed to represent dry-climate conifer forests with various levels of fuel 

loads. TL 1 is for “Low Load Compact Conifer Litter” and represents recently burned, open 

forests or low density, old fir forests.  TL 3 is for “Moderate Load Conifer Litter” which adds a 

low load of coarse woody fuels to the previous model.  The TL 4 is for “Small Downed Logs” 

and can represent either stands damaged by heavy snows or ice or stands with numerous small 

dead trees. TL 5 is a “High Load Conifer Litter” model and represents a conifer litter surface 

with a high coarse woody load.  TL 7 is for “Large Downed Logs” and can be used to represent 

stands that have been severely damaged by insects or areas of blowdown from storms.  TL 8 is a 

model for “Long Needle Litter” (pine) forests and can have a variable load of coarse woody fuels 

(Scott and Burgan 2005).  We did not include TL 2, 6, or 9 in our modeling analysis because 

these models represent broadleaf forests, which are not found in any abundance in LVNP.  

Examples of each of the other models can be found in the park.  

Fire Weather 

We computed dead woody fuel moistures and wind speeds for the 80th, 90th, and 97th percentile 

condition with FireFamily Plus (Bradshaw and Tirmenstein 2010) using weather data from the 

Manzanita Lake weather station (FAM Web 2011). Fuel moisture calculations were limited to 
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the fire season of June 1 through October 31 but used the entire Manzanita Lake record which 

extends from 1962 to 2010.  I computed fuel moistures for 5 fuel components: 0 – 0.64 cm, 0.64 

– 2.54 cm, and 2.54 – 7.62 cm diameter dead woody fuels, as well as Live Herbaceous and Live 

Woody fuels to use as input to FlamMap.  0 – 0.64 cm, 0.64 – 2.54 cm, and 2.54 – 7.62 cm 

diameter dead woody fuels are often referred to by the terms 1-hr, 10-hr, and 100-hr fuels. This 

convention refers to the amount of time required for a fuel particle to reach 63% of the difference 

between its initial moisture content and a final moisture content that is in equilibrium with 

changed atmospheric conditions (Pyne et al. 1996).  Fuel moistures are given in percentages and 

interpreted as the amount of water in a particular fuel particle as a percentage of that particle’s 

oven-dry weight.  For all 5 classes of fuel moistures, percentages range from 0 (oven-dry) up to 

300 (fresh grass and herbaceous cover).  We also computed 6.2 m wind speeds for the 80th, 90th 

and 97th percentile conditions.  This is the speed of the wind at 6.2 m above the forest canopy.  

FlamMap uses the given grid of canopy cover to calculate an attenuated 6.2 m wind speed at the 

site of (simulated) surface combustion.  Lastly, we used this data to calculate the dominant 

direction of daytime winds. 

Wind Scenarios 

We applied 4 different wind scenarios for each combination of surface fuel model and fuel 

moisture condition. Wind is an important factor that controls both rates of fire spread and fire 

intensity.  Wind is addressed in FlamMap in three ways (Finney 2006).  Depending on the 

moisture profile (80th, 90th, or 97th) we simulated winds as: 1) calm (no wind); 2) blowing uphill 

at their 80th, 90th and 97th percentile speeds, respectively; 3) blowing at a constant direction and 

speed at their 80th, 90th and 97th percentile speeds, and 4) blowing at variable speeds and 

directions based on the model WindNinja ® at their 80th, 90th and 97th percentile speeds, 
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respectively. WindNinja® calculates surface wind speed and direction for a grid of arbitrary 

resolution based on the topographic interference that a constant wind would encounter.  Winds 

gridded in this way have been shown to increase the accuracy of predictions (Finney 2006; 

Stratton 2006).  

Simulation Approach 

We used FlamMap to generate expected fire behavior at the landscape scale for LVNP.  The fire 

behavior outputs we calculated fireline intensity (kW/m) and fire activity type (0 = no fire, 1 = 

surface fire, 2 = torching fire, or 3 = crown fire categorical index) (Finney 2006).  We simulated 

fire behavior for each possible combination for fuels, wind, and weather.  Fire behavior outputs 

for each run were fireline intensity and crown fire activity.  Fireline intensity is measured in 

kilowatts per meter (kW m-1) and is related to both flame length and crown fire activity (Agee 

1993).  Crown fire activity is rated on a scale of 0-3: 0) no fire activity; 1) ground fire only; 2) 

passive crown fire (torching); and 3) active crown fire.  FlamMap’s calculations are set up so 

that each successively higher class of fire activity (class 0-3) requires activity at the previous 

class, e.g. passive crown fire (class 2) can only occur in a location if there is a ground fire (class 

1) (Finney 2006). This experimental design produced 156 raster maps each for fireline intensity 

and crown fire activity index.  To simplify the dataset of landscape scale maps, we randomly 

selected 1% of the vegetated pixels inside LVNP (n = 4259, Table 3-2).  This 1% subsample was 

used to extract fireline intensity, crown fire activity indices, and all of the topographic 

information across all of LVNP by intersecting each point’s location with each raster map 

representing fireline intensity and crown fire index and all five topographic variables’ raster 

maps in a GIS. 
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Relative Importance of Variables on Fire Behavior 

We used a Random Forest approach (Breiman 2001) to quantify the effect of elevation, slope, 

aspect, and two measures of landscape position on fireline intensity.  The five topographic 

variables related to the distribution of vegetation were developed from a 30 m x 30 m resolution 

digital elevation model (USGS 2010).  A section of the National Elevation dataset representing 

LVNP was used to obtain elevation data and derive four additional topographic variables: slope, 

aspect, and two measures of topographic position.  These two measures of topographic 

position—Topo_Pos_150 and Topo_Pos_450—are the difference between the focal pixel’s 

elevation with the average elevation of pixels within 150 m and 450 m respectively (Poulos et al. 

2007; Poulos 2010). In every case, the RF algorithm was run to iteratively grow 500 trees with 1 

of the 5 explanatory variables randomly selected at each node as potential variables to base the 

split on.  A large number of trees is recommended when using RF algorithms to stabilize the 

Mean Squared Error (MSE) over many iterations.  We used the pseudo-r2 and the MSE statistic 

to evaluate model performance.    The pseudo-r2 statistic is calculated as: 

1  
MSE

var y  

The pseudo-r2 statistic is calculated identically to the r2 statistic for standard linear regression, 

and is called pseudo because the predicted values used to calculate the MSE come from the 

random forest, and not from a linear regression (Liaw and Wiener 2002).  We used importance 

plots to show rank orders of variables in terms of their ability to reduce the MSE. 

To further simplify our dataset, we combined data in the following ways.  For each surface fuel 

model, we averaged the crown fire index and the fireline intensity at each pixel over all moisture 
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and wind scenarios.  This approach yielded 2 maps for each fuel model for a total of 26 maps. To 

visualize differences between fuel models, moisture scenarios, and wind scenarios, we plotted 

log transformed fireline intensities in rank order and frequencies of crown fire indices.  Finally, 

we partitioned our 1% subset of pixels by their mapped surface fuel model and examined each by 

its frequency of surface, torching and crown fires.  From this, we created a bar plot that depicts 

the frequency of each type of fire by fuel model. 

We compared the range of variation in predicted fire behavior for the TL series of models by 

adopting a similar approach.  For each point in the 1% subset, we extracted the average fireline 

intensity and the frequencies of each of the values of the crown fire index.  TL models are not on 

the mapped surface fuel map that we used for our study.  They do, however, represent variations 

on common conifer dominated vegetation types, which are nearly ubiquitous within LVNP.  We 

compared fuel models 5, 8, and 10 with the TL series of fuel models from Scott and Burgan 

(2005). Model 8 (Compact Timber Litter) is the most common fuel model used in LVNP and the 

most similar to the TL series (Scott and Burgan 2005).  Model 5 (Brush) is the second most 

common fuel model in LVNP and has a high potential for intense behavior (torching).  Model 10 

(Timber Understory) is the likely type to which Model 8 would transition if coarse woody fuels 

increased through time and is used here to book-end the comparison of the TL series of models 

with Model 8. 

Results 

Field Plots and Canopy Fuels Characteristics 

We used field data from 223 plots and 669 hemispherical photographs to compute plot level 

CBD, CC, CBH, and HT estimates.  Because our aim in this study was to model potential fire 



 86 

behavior across the landscape using homogenous fuels, we used the means of CBD, CC, and HT 

and the mean of the lower quartile of CBH across all plots for every pixel on the landscape.  Our 

CBD values ranged from 0.00 to 0.31 kg/m3 with an average of 0.11 kg/m3. CC ranged from 0 to 

87.8% with a mean of 45.6%.  CBH lower quartiles ranged from 0.0 to 11.9 m with an average 

of 0.71 m. HT ranged from 0.0 to 43.9 m with an average of 21.3 m.  Our constant rasters, 

therefore, were 0.11 kg/m3 CBD, 45.6% CC, 0.71 m CBH, and 21.3 m HT. 

Fuel Moisture and Wind Scenarios 

Fuel moistures and 6.2 m wind speeds for the 80th, 90th, and 97th percentile conditions were 

computed with FireFamilyPlus (Bradshaw and Tirmenstein 2010) using the Manzanita Lake 

weather station data (FAM Web 2011).  Fuel moistures for 1-, 10-, and 100-hr fuels were 

typically low, ranging from 4%, 5%, and 10% respectively at the 80th percentile condition and 

declining to 2%, 3%, and 7% respectively at the 97th percentile condition (Table 3-3).  Wind 

speeds at 6.2 m increased from 16.1 kph at the 80th percentile condition to 22.5 kph at the 97th 

percentile condition.  Live herbaceous and live woody fuel moistures declined steadily from 74% 

and 102% respectively at the 80th percentile condition to 40% and 79% respectively at the 97th 

percentile condition. 

Gridded winds were computed from WindNinja® for 6.4 m wind speeds of 16.1, 19.3, and 22.5 

km/h from a direction of 247° (west-southwest).  All three models had minimum winds speeds 

somewhere in the grid of near 0 km/h (Table 3-4).  Maximum wind speeds for the three models 

ranged from 41.7 km/h at the 80th percentile to 58.4 km/h at the 97th percentile.  Mean values for 

the gridded wind predictions were all close to their respective input speeds. 
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Fireline Intensities and Crown Fire Indices 

We plotted rank order log10 transformed fireline intensities and crown fire activity index 

histograms for each fuel model, wind and weather condition to visualize the differences in 

expected fire behavior.  Within each fuel model, 97th percentile conditions produced the highest 

frequency of crown fire while 80th percentile conditions produced the lowest frequency.  

However, the greatest variation in the frequency distributions of crown fire index was related to 

the wind scenario.  The No Wind scenario always produced the least potential for crown fire.  

The Uphill Wind scenario always produced the greatest potential for crown fire.  The Gridded 

Wind scenario produced a potential for crown fire intermediate to the two previously stated 

extreme scenarios, but the potential for crown fire here was closer to the Uphill Wind than the 

No Wind scenario (see figures 3-2, 3-4, 3-6, 3-8, 3-10, 3-12, and 3-14).  For all of the models 

except 8—Compact Timber Litter—fuel moisture and winds had little overall effect on the range 

of fireline intensities.  The fuel models all had ranges between 2 and 5 (102 and 105 kW/m).  Fuel 

model 8 had a small range (1-2) and low overall values (~100  to 102). 

We also partitioned our 1% subsample by existing surface fuel model to examine the proportion 

of instances of surface, torching and crown fire (Figure 3-16 and 3-17).  Overall, torching was 

the most common type of fire, and was especially common in surface fuel models representing 

Timber Grass and Understory (Fuel Model 2), Brush (5), Dormant Brush (6), and Timber 

Understory (10) where it accounted for more than half of the predicted fires by type.  Surface 

fires were also common, and occurred predominantly in surface fuel models representing 

Compact Timber Litter (8) and Hardwood Litter (9).  Crown Fire was the least predicted of the 

fire types, occurring just under 12% of the time in Dormant Brush (Fuel Model 6). Crown fire 

was predicted in Short Grass (1), Timber Grass and Understory (2), Brush (5), and Dormant 
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Brush (6) between 3% and 12%.  In Hardwood Litter (9) and Timber Understory (10) crown fire 

was predicted less than 1% of the time, and in Compact Timber Litter (8), it was not predicted at 

all.  The Short Grass (1) model produced the most even split between surface (~50% of fires) and 

torching (~45% of fires) with the remainder being crown fires.  

We compared fuel models 2, 8, and 10 with the TL series of fuel models from Scott and Burgan 

(2005). While model 8 was dominated by surface fires and model 10 by torching fires, the TL 

series of models were expected to burn intermediately to these two.  TL1, TL3, and TL4 were 

expected to behave very similarly to model 8; TL5 and TL7 were expected to add a small 

amount of torching fires; TL8 was the only one of the TL series of models tested here to produce 

a majority of torching fires.  Model 10 was expected to produce more torching than any of the 

TL models.  In this comparison, only models 10 and 2 were expected to produce crown fires. 

Topographic Effects as Assessed by Random Forests 

We used a RF regression to assess the importance of topographic characteristics on the 

variability of fireline intensity.  Results for the subset of Albini’s (1976) surface fuel models 

showed that slope was by far the most important variable for predicting fireline intensity (Figure 

3-18).  Trees in which Slope was not included had between 55% and 145% higher MSE values.  

Other topographic variables were much weaker in their explanatory power.  Of the remaining, 

Aspect and TP450 were able to explain approximately 5% to 15% of MSE.  Results for the TL 

series of fuel models from (Scott and Burgan 2005) were similarly clear (Figure 3-19).  Slope 

was again the most important of the variables for reducing model MSE; trees not including Slope 

had between 40% and 120% higher MSE values. 
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Discussion 

Overall, wind and weather scenarios had little effect on some fuel models but a large effect on 

other models.  Fuel models 8 and 10 showed little effect of wind and weather on both fireline 

intensity and on crown fire index frequencies (Figures 3-10, 3-11, 3-14, 3-15). In other cases 

where there was a more drastic difference between moisture and/or wind scenarios, it is likely 

that the driving factor in these differences was not moisture or wind scenario per se, but these 

scenarios’ effect on fireline intensity that induced a threshold behavior towards an increase in the 

predicted amounts of torching or crown fire.  The threshold nature of canopy fuels variables has 

been noted in other studies where linear increases in canopy biomass result in non-linear 

increases in torching and crown fire probabilities (Fulé et al. 2004).  In our study, we used a 

single value for each of the four canopy fuels variables—CBD, CBH, CC, and HT—throughout 

the entire process.  In some cases, our values were never enough to create the conditions under 

which FlamMap would predict crown fire (e.g. Fuel Model 8, Figure 3-10).  In other cases, 

decreasing fuel moistures was sufficient to induce a change in the dominant type of predicted fire 

without the need to change winds or canopy fuel parameters (e.g. Fuel Model 5, Figure 3-6, No 

Winds scenario).  Finally, in other situations, changing the wind scenario had a very strong effect 

on the proportion of fire types without varying moisture or canopy fuels (e.g. Fuel Model 9, 

Figure 3-12, 97th percentile fuel moistures).  Each of these examples serves to highlight the fact 

that many variables are important in determining fire behavior.  

Slope was a dominant factor in determining fireline intensity.  Our RF regression separated slope 

out as the most important topographic variable; it reduced the MSE the most.  Slope has an 

important effect on fire behavior because fires burning upslope can preheat and dry upslope 

fuels, before combustion occurs.  This tendency for slope to affect fire intensity and severity is 
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noted in the study of real fires (Knapp and Keeley 2006).  While slope is hard-coded into a 

model like FlamMap, the variation in slope and its effect on fireline intensity is not enough to 

explain the great variation in fire types predicted by FlamMap.  For example, there was no 

burning scenario with fireline intensities sufficient to create either torching or crowning in fuel 

model 8, Compact Timber Litter.  On the other hand, even under the 80th percentile fuel moisture 

conditions, fuel models 5 and 6 (Brush and Dormant Brush) tended to exhibit torching behavior. 

Across all burning scenarios, the differences between fuel models are indeed drastic.  This 

highlights the fundamental effect of fuel load and fuel structure on potential fire behavior.  The 

other topographic variables are unused in my scenarios FlamMap, which renders there apparent 

contribution to fireline intensity spurious.  FlamMap does use aspect and elevation during pre-

burning calculations to modify initial fuel moisture; however, we did not utilize these routines 

because we wanted to control for fuel moisture while examining the others. 

The TL series of models (Scott and Burgan 2005) were burned under identical conditions to the 

models from Albini’s (1976) set of 13.  The TL models were predicted to have proportions of 

surface, torching and crown fire intermediate between Albini (1976) models 2, 8 and 10.  That 

this is the case is unsurprising as the TL series was developed to represent common variations 

and gradations of the original set (Scott and Burgan 2005).  What is most interesting about these 

models is that TL1, 3, and 4 all produced the same expectation of uniform surface fire no matter 

what the fuel moisture, wind scenario, or slope.  We could employ more severe weather and 

wind conditions to examine when these models would produce increased fire intensity and more 

extreme behavior, however these conditions would likely be unrealistic (i.e. physically 

impossible wind speeds or temperatures).  Producing different fire types largely relies on 

changing the fuel model to one that more often produces other types.  It is in this aspect of fire 
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modeling that the limitations of the modeling approach become most clear.  In order to produce 

the most likely or most realistic fire behavior, a fuel model could be chosen that might not 

necessarily accurately represent the fuel conditions of a given pixel.  This practice generally 

reflects the reality that fuels do interact with other environmental conditions to produce fire 

behavior and that choosing a fuel model on the basis of expected fire behavior underscores the 

limitations of fire models to completely capture the burning process.  

The neutral model framework (Caswell 1976) offers a conceptual frame for studies like this one.  

Caswell’s (1976) original intent was to produce a model of species distributions that did not 

depend on inter-species interactions—it was neutral to these interactions.  In this sense, 

FlamMap is a neutral model of topographic effects on fire behavior because its topographic 

inputs do not interact.  By further restricting the model by feeding it homogenous fuels, we 

reduce the variability in the output to that which is readily attributable to topography, weather, or 

wind. This approach is conceptually similar to the neutral model approach which advocates for 

the use of models that decouple processes of interest to create baselines against which 

observations can be tested (Gardner et al. 1993; Gardner and Urban 2007).   We find that slope is 

the most important predictor of fireline intensity.  Whether that fireline intensity translates into a 

fast moving grass fire, a surface fire, or a torching fire depends more on the quantity and 

arrangement of fuels present.   

The goal of studies like these and like ours is not the explicit prediction of fire behavior or 

effects, but the generation of patterns against which to judge evidence. In using a model to assess 

landscape scale variations in expected fire behavior, we note that our approach is different 

because we systematically vary fuel models, winds, and fuel moistures.  Baker (1992) used a 

model based on the fire regime parameters size and frequency to examine how Euro-American 
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settlement and fire suppression altered patch metrics in the Boundary Waters Canoe Area.  

Krasnow et al. (2009) used pixel level modeling to predict the area burned by two wildfires in 

the Colorado Front Range and found that local level mapping improved predictions of area 

burned. Stratton (2004) showed that fuel treatments were effective in reducing potential fire 

behavior in a southern Utah fuels treatment.  Pausas (2006) demonstrated that fire sensitive 

species are retained longer when they occupy large patches in a Mediterranean landscape with 

altered fire regimes.  Ager et al. (2010) used fire behavior and fire severity models in concert 

with carbon accounting procedures to assess the impact of prescribed fire and other fuels 

treatments on the capacity of the landscape to store carbon.  These types of analyses use specific 

landscapes as the template on which to conduct their modeling exercises and as a guide to 

examine how the patterns generated by the model vary across that space. Our approach shows 

how a neutral approach can be used to generate expectations of fire intensity.  Ager’s et al. 

(2010) approach is the most similar to ours, and was developed to map carbon emission or 

sequestration across a forested landscape given a large number of simulated fire ignition 

locations. 

At the landscape scale, we predicted fireline intensities to be greatest on steep slopes.  Our 

systematic exploration of the landscape scale patterns using a model approach is very different 

from observational studies of the effect of topography on fire behavior. In the Klamath 

Mountains, upper slopes were found to have burned with higher severity (Taylor and Skinner 

2003).  In contrast, upper slope positions in the Klamath Mountains were found to burn with 

comparatively lower severity by Alexander et al. (2006).  These empirical results are valuable in 

the sense that they provide specific evidence of the effects of fire on the landscape in relation to 

topography, but they are limited because of their use of historic fire scar data (Taylor and 



 93 

Skinner 2003) or their analysis of a small number of fires (Alexander et al. 2006).  Furthermore, 

single fires may be dominated by the effects of weather and wind (Collins et al. 2007) and 

historical, fire-scar based studies are limited because high intensity fire can destroy evidence of 

fire and because sampling intensity and completeness can influence conclusions made from fire-

scar evidence regarding fire regimes (McKenzie et al. 2006).  Systematically building a set of 

fireline expectations across an entire landscape gives information against which empirical studies 

can be compared. 

A systematic prediction of the locations of high intensity fire can also be useful to managers.  

The inclusion of topography as a management consideration is gaining acceptance as a broad 

heuristic under which to plan fuels treatments (North et al. 2009).  Topography is a strong driver 

of vegetation composition, and recognizing that influence means that fuels treatments will differ 

based on the location of the stand and its relative topographic position.  Our study further 

informs this approach by giving managers an explicit way of assessing topographic influence on 

fireline intensity such that stand locations can be compared with locations of potential high 

intensity fire in order that fuel treatment decisions are optimized.  

Conclusions 

Our findings support the general conclusion that upper slopes or steeper slopes burn with higher 

potential fireline intensity.  By varying wind and weather, we are further able to examine the 

proportion of fire predicted for each fuel model. Furthermore, we find that the differences in 

expected fire behavior are greatest when comparing across fuel models.  These results also show 

that in addition to the indirect effect of topography on fire behavior generated by its control of 
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vegetation composition, topography has a direct control on fire behavior through upslope heating 

of fuels.   
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  Table  3-1: Fuel Model Parameters   

Fuel 
Model 

1-hr 
(t/ha) 

10-hr 
(t/ha) 

100-hr 
(t/ha) 

Live 
Herbaceous 
(t/ha) 

Live 
Woody 
(t/ha) 

Fuelbed 
Depth 
(m) 

Dead Fuel 
moisture of 
extinction 
(%) 

1* 1.66 0 0 0 † 0.31 12 
2* 4.48 2.24 .45 1.12 † 0.31 15 
5* 2.24 1.12 0 4.48 † 0.62 20 
6* 3.36 5.61 4.48 0 † 0.76 25 
8* 3.36 2.24 5.61 0 † 0.06 30 
9* 6.54 0.92 0.34 0 † 0.06 25 

10* 6.74 4.45 11.23 4.48 † 0.31 25 
TL1 2.24 4.93 8.07 0 0 0.06 30 
TL3 1.12 4.93 6.28 0 0 0.09 20 
TL4 1.12 3.36 9.42 0 0 0.12 25 
TL5 2.58 5.61 9.86 0 0 0.18 25 
TL7 0.67 3.14 18.16 0 0 0.12 25 
TL8 13.00 3.14 3.14 0 0 0.09 35 

 

Table 3-1: Fuel Model Parameters for the fuel models used in this study. *Models from Albini 
(1976); all other models are from Scott and Burgan (2005).  †These parameters were not 
specified in the original models. 
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Table 3-2: Average Topographic Characteristics of 1% Subsample (n = 4259) 
  Elevation Slope Aspect TP150 TP450 
Average ± s.e. 2071 ± 2.7 158.5 ± 1.6 10.2 ± 0.1 0.14 ± 0.09 -0.01 ± 0.3 

 

Table 3-2: Average topographic conditions in the 1% subsample used in this study.  See text for 
description of variables.  
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Table 3-3: Fire Weather Inputs for FlamMap 

Fire 
Weather 
Percentile 

1-hr 
Fuel 

Moisture 

10-hr 
Fuel 

Moisture 

100-hr 
Fuel 

Moisture

Live 
Herbaceous 

Fuel Moisture 

Live 
Woody 

Fuel 
Moisture 

6.2 m Wind 
Speed (km h-1) 

80th 4 5 10 74 102 16.1 
90th 3 4 8 54 90 19.3 
97th 2 3 7 40 79 22.5 

 

Table 3-3: Initial fuel moistures and 6.2 m  wind speeds for the 80th, 90th and 97th fire weather 
percentiles for use in FlamMap.  The fuel moisture columns are in units of percent of oven-dry 
weight.  6.2 m wind speeds represent the wind speed at 6.2 m above the top of the forest canopy. 
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Table 3-4: Gridded Winds Output Summary 
Initial 6.2 Meter Wind Speed 

(km h-1) 
16.1 19.3 22.5 

Range 0.6-41.7 0.6-50.1 0.7-58.4 
Mean 15.9 19.2 22.2 
Standard 
Deviation 4.5 5.3 6.3 

 

Table 3-4: Summary of the gridded wind datasets.  All winds were simulated as blowing from 
247 degrees (west southwest). 
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Figure 3-1: Shaded relief map of Lassen Volcanic National Park and its location in northeastern 
California, USA. 
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Figure 3-2: Crown Fire Activity Index histograms for Fuel Model 1 by weather and wind 
scenario.  Categories are 1 – Surface Fire; 2 – Surface Fire with Torching; 3 – Crown Fire.  N = 
4259. 
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Figure 3-3: Log10 of Fireline Intensity for Fuel Model 1 by wind and weather scenario. X-axis is 
in units of rank order.  Fireline Intensity is reported in units of kilowatts per meter (kW/m). N = 
4259. 
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Figure 3-4: Crown Fire Activity Index histograms for Fuel Model 2 by weather and wind 
scenario.  Categories are 1 – Surface Fire; 2 – Surface Fire with Torching; 3 – Crown Fire.  N = 
4259. 
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Figure 3-5: Log10 of Fireline Intensity for Fuel Model 2 by wind and weather scenario.X-axis is 
in units of rank order.  Fireline Intensity is reported in units of kilowatts per meter (kW/m). N = 
4259. 
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Figure 3-6: Crown Fire Activity Index histograms for Fuel Model 5 by weather and wind 
scenario.  Categories are 1 – Surface Fire; 2 – Surface Fire with Torching; 3 – Crown Fire.  N = 
4259. 
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Figure 3-7: Log10 of Fireline Intensity for Fuel Model 5 by wind and weather scenario.X-axis is 
in units of rank order.  N = 4259. Fireline Intensity is reported in units of kilowatts per meter 
(kW/m). 
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Figure 3-8: Crown Fire Activity Index histograms for Fuel Model 6 by weather and wind 
scenario.  Categories are 1 – Surface Fire; 2 – Surface Fire with Torching; 3 – Crown Fire.  N = 
4259. 
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Figure 3-9: Log10 of Fireline Intensity for Fuel Model 6 by wind and weather scenario. X-axis is 
in units of rank order.  Fireline Intensity is reported in units of kilowatts per meter (kW/m).  N = 
4259. 
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Figure 3-10: Crown Fire Activity Index histograms for Fuel Model 8 by weather and wind 
scenario.  Categories are 1 – Surface Fire; 2 – Surface Fire with Torching; 3 – Crown Fire.  N = 
4259. 
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Figure 3-11: Log10 of Fireline Intensity for Fuel Model 8 by wind and weather scenario. X-axis 
is in units of rank order.  Fireline Intensity is reported in units of kilowatts per meter (kW/m).  N 
= 4259. 
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Figure 3-12: Crown Fire Activity Index histograms for Fuel Model 9 by weather and wind 
scenario.  Categories are 1 – Surface Fire; 2 – Surface Fire with Torching; 3 – Crown Fire.  N = 
4259. 
 



 120 

 
 
Figure 3-13: Log10 of Fireline Intensity for Fuel Model 9 by wind and weather scenario. X-axis 
is in units of rank order. Fireline Intensity is reported in units of kilowatts per meter (kW/m). N = 
4259. 
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Figure 3-14: Crown Fire Activity Index histograms for Fuel Model 10 by weather and wind 
scenario.  Categories are 1 – Surface Fire; 2 – Surface Fire with Torching; 3 – Crown Fire.  N = 
4259. 
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Figure 3-15: Log10 of Fireline Intensity for Fuel Model 10 by wind and weather scenario. X-axis 
is in units of rank order. Fireline Intensity is reported in units of kilowatts per meter (kW/m). N = 
4259. 
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Figure 3-16:  Proportion of fire types by fuel model.  Fuel models 1, 2, 5, 6, 8, 9, and 10 come 
from Albini’s (1976) set of 13. See the text for a description of the fuel models. 
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Figure 3-17: Comparison of expected proportion of fire types for Albini’s (1976) fuel models (2, 
8, 10) and Scott and Burgan’s (2005) fuel models (TL1, TL3, TL4, TL5, TL7, TL8) for common 
fuel types in LVNP.  See text for a description of the fuel models.
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Figure 3-18: Variable importance plots for fuel models 1, 2, 5, 6, 8, 9, and 10 from Albini’s (1976) set of 13.  Variables on the y-axis 
are explanatory variables with the most important listed at the top and the least important listed at the bottom.  The x-axis shows the 
change in MSE associated with each variable when it is absent from the model. 
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Figure 3-19: Variable importance plots for fuel models TL1, TL3, TL4, TL5, TL7, and TL8 from Scott and Burgan (2005).  Variables 
on the y-axis are explanatory variables with the most important listed at the top and the least important listed at the bottom.  The x-
axis shows the change in MSE associated with each variable when it is absent from the model.
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Chapter 4: 

Comparing Historic and Contemporary Measures of Fire Severity with Modeled Fire 

Behavior to Assess Topographic Controls of Within-Fire Heterogeneity 
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Abstract 

Fire is one of the dominant disturbance processes in forests of the Pacific northwest.  It interacts 

with topography, vegetation, fuel abundance and arrangement, and legacies of human use.  In 

this study, we examine how topography may influence within fire heterogeneity of observed fire 

severity and predicted fire behavior.  To accomplish this, we analyze historic aerial photographs 

of Lassen Volcanic National Park (LVNP) for evidence of high severity fire effects.  We also 

utilize Relative difference Normalized Burn Ratio (RdNBR) data for six fires that burned in the 

satellite era.  Finally, we model fireline intensity and fire type (surface, torching fire, or crown 

fire) with realistic surface and canopy fuels burned under the 80th, 90th, and 97th percentile fuel 

moisture conditions using the fire behavior simulation model FlamMap.  To attempt to explain 

the observed and modeled variation in fire severity and fire behavior, we develop five 

topographic variables—elevation, slope, aspect, local topographic position, and landscape 

position.  We also develop forest structure and composition variables for conditions prior to 

burning.  We apply a Random Forest algorithm to assess the relative importance of our predictor 

variables in explaining the variation in RdNBR values.  Our results show that historic and 

contemporary high severity fires in LVNP occurred predominantly at lower elevations and on 

exposed topographic positions.  The strength of the explanatory power of topography for some 

fires supports our conclusion that some highly pyrogenic vegetation patches may be ‘fixed in 

space’ through the interaction of topography, fuels, and the burning process. 

Key Words: fire severity, Lassen Volcanic National Park, Relative differenced Normalized 

Burn Ratio, elevation, slope, aspect, topographic position, Random Forest 
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Introduction 

Fire is a process that has the potential to structure vegetation communities for hundreds to 

thousands of years (Miller 2007; He and Mladenoff 1999; Baker 1992).  This potential can be 

realized in ecosystems with both low severity dominated regimes (Fulé et al. 1997) and high 

severity dominated regimes (Turner et al.1994; Turner in press).  Some of the well understood 

factors that influence the variation in fire severity are  time-since-last-fire (Odion et al. 2004; 

Collins and Stephens 2010), fire suppression and its consequential accumulation of fuels and 

infilling of fire intolerant species (Beaty and Taylor 2001; Safford et al. 2008), logging and 

subsequent management action or non-action (Weatherspoon and Skinner 1995; Thompson et al. 

2007), climate, climate change, and climate teleconnections (Norman and Taylor 2003, 

Schoennagel et al. 2007; Westerling et al. 2006), vegetation composition (Collins and Stephens 

2010; Odion et al. 2010), and patchiness of vegetation (Collins and Stephens 2010).  Each of 

these have been identified as important drivers of fire regime and fire severity change over the 

course of the 20th century. 

Topography is a determinant of variations in fire severity as well, and its influence on fire 

regimes is known generally in broad strokes through fire history studies. In the Cascade Range, 

upper slopes tended to burn at longer intervals and at higher severity than other topographic 

settings (Beaty and Taylor 2001).  Similarly, in the Klamath Range, upper slopes tend to burn 

with higher severity (Taylor and Skinner 2003).  In contrast, in the specific case of the Big Bar 

complex and the Quartz fire of the Klamath Range, Alexander et al. (2006) found evidence that 

higher elevation forests burned less severely than forests at lower elevations.  Heyerdahl et al. 

(2001) describe forests in the Cascades of eastern Oregon and southeastern Washington where 

fire severity was high on north and east slopes and low on south and west slopes. Rollins et al. 
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(2002) compared wilderness areas in Montana and New Mexico and found that in Montana, 

south and southwestern aspects burned more often because they were subject to increased 

insolation which dried fuels more quickly. In contrast, northeastern aspects in New Mexico 

burned more often because their moisture regimes allowed for more rapid accumulation and 

connectivity of fuels (Rollins et al. 2002).  Topography had no effect on fires studied by Baker 

and Kipfmueller (2001) in the northern Rocky Mountains. These sub-alpine forests are likely 

dominated by long-interval, high intensity fires driven by extreme weather such that topographic 

effects on fire behavior and severity are overpowered (Baker and Kipfmueller 2001). In southern 

Arizona forests, historic fires were more widespread on low-relief portions of the landscape 

while strongly dissected landscapes inhibited fire spread (Iniguez et al. 2009).  Holden et al. 

(2009) used topographic variables to predict the locations of high severity fires and found that 

elevation was the single most important predictor of high v. other fire severities. 

In the absence of other evidence, vegetation size structure, age structure, and composition have 

been used as indicators of past fire regimes.  Vegetation structure has been used to infer the 

presence of low-severity fire regimes (e.g. Taylor 2000), mixed-severity fire regimes (e.g. 

Hessburg et al. 2007), and high-severity fire regimes (e.g. Nagel and Taylor 2005).  Patches of 

vegetation on the landscape can also be important drivers of within-fire variability in severity 

(Collins and Stephens 2010, Odion et al. 2010).  Moreover, vegetation effects on fire severity 

can be self-reinforcing such that highly pyrogenic vegetation tends to promote fire behavior that 

results in its own persistence (Odion et al. 2010). 

Recently, remotely sensed pre- and post-fire imagery has enabled the development of the 

differenced Normalized Burn Ratio (dNBR) method of mapping fire severity patches (Miller and 

Thode 2007; Miller et al. 2009).  This method was developed from Landsat TM data and allows 
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a pixel by pixel classification of fire severity patches (Miller and Thode 2007). While the 

RdNBR methodology has been criticized by some because it is a measure of the decrease in the 

greenness of a pixel and inferring fire severity from this measure is an inexact science (Odion 

and Hanson 2008).  In Canadian boreal forests, RdNBR and dNBR may capture the same types 

of pre- and post-fire differences (Wulder et al. 2009) but also may not be as proficient as other 

methods for determining fire severity (Soverel et al. 2010).  However, the forest types for which 

RdNBR was originally calibrated are very similar to the types of forests that occur in our study 

area, and we use RdNBR values because they are a comparable, repeatable measure across fires 

(Miller and Thode 2007).  Collins et al. (2007) and Thompson et al. (2007) utilize dNBR data to 

examine slope, aspect, and elevation, among other variables, as predictors of fire severity and 

find that aspect is a somewhat important predictor of fire severity.  In general, however, 

topographic controls were overshadowed by other variables that drive fire severity such as daily 

meteorological condition and time since last fire (Collins et al. 2007) or stand level fuel structure 

and type (Thompson et al. 2007). 

Fuel structure and arrangement is the variable most directly related to fire severity because it is 

the physical complex that interacts with the combustion process to produce heat, consume 

vegetation, and kill vegetation.  Measures of fire severity in forests are often related directly to 

the amount of canopy consumed or killed by fire (Miller and Thode 2007).  Thus, canopy fuel 

variables are critical components in modeling potential fire behavior.  The four most widely used 

variables are Canopy Bulk Density (CBD), Canopy Cover (CC), Canopy Base Height (CBH), 

and Canopy Height (HT).  CBD is a measure of the total amount of above-ground-surface fuel 

that is available to wildfires; typically including foliage and up to one half of the smallest 

branchwood (0-6.4 mm) and is measured in units of kg m-3.  CC is the horizontal fraction of the 
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ground that has canopy above it and is measured as a percentage of total area.  CBH is a measure 

of the vertical continuity of fuels and expresses the lower threshold above which there is 

sufficient fuel for a crown fire to be self-sustaining and is measured in m.  Lower CBH values 

indicate that canopy fuel is closer to the ground and hence could act to transition surface fire into 

the crown. Finally, HT is the average height of the dominant stratum of tree cover and affects 

modeled fuel moistures and is measured in m. 

 In Lassen Volcanic National Park (LVNP), high severity, low frequency fire regimes in some 

topographic positions may result in stable, fire dependent brushfield communities.  The 

arrangement of these patches is just one realization of the stochastic process of fire burning 

through a heterogeneous fuel, vegetation, and topographic environment that is subject to human 

management (sensu O'Sullivan and Unwin 2003).  While a single fire may be dominated by 

short-term controls, weather is essentially a stochastic process because of its wide range of 

variability and its rate of change relative to the time scale of a single fire.  Further, the 

combination of fuel, weather, and topographic conditions that occur during any one fire are not 

necessarily comparable to the combination of conditions during other fires. 

We investigate the effect of topography on the location of high severity and high intensity fire 

using historic, contemporary, and model generated evidence regarding the expected and known 

locations of high severity fire effects.  Our null hypothesis is that topography (elevation, slope, 

aspect, and topographic position) do not affect observed fire effects or predicted fire intensity.  

Our alternative hypothesis is that topography does affect the spatial distribution of fire effects 

and behavior. We conducted our study with LVNP as a case study.  Inside the perimeter of the 

park, we mapped high intensity fire effects from 1941 aerial photographs.  To assess current 

patterns of fire severity patches, remotely sensed maps of fire severity derived from the dNBR 
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methodology were analyzed in comparison to the model results.  We used the fire behavior 

simulation model FlamMap® to generate expectations of the locations of high intensity fire.  We 

compared the topographic characteristics of the historic and contemporary high severity fires 

with the results of the simulation modeling. We are interested primarily in those locations where 

fire intensity and severity are strongly controlled by topography because it is in these places that 

the composition of vegetation communities will most likely reflect the interaction between fire 

and topography. Comparisons made between expected fire intensity and historic and 

contemporary fire severity can then give natural resource and fire managers guidance on fuel 

treatments and fire suppression efforts. 

Study Area 

LVNP lies at the southern end of the Cascade Range, a volcanic plateau punctuated by high 

volcanic peaks (Figure 4-1).  Elevation ranges from 1,609 to 3,187 m and the Park’s total area is 

42,900 ha.  Dominant vegetation communities covary with elevation (Taylor 1990, 2000; Parker 

1991; Schoenherr 1996).  The lowest elevation forests are dominated by ponderosa pine (Pinus 

ponderosa) and Jeffery pine (P. jeffreyi). Mixed conifer forests of Jeffrey pine (Pinus jeffreyi) 

and white fir (Abies concolor) dominate the lower montane forests.  Upper montane forests are 

composed of red fir (A. magnifica var. magnifica), white fir (A. concolor), and western white 

pine (P. monticola). Lodgepole pine (P. contorta spp. murrayana) occupies low lying 

depressions where cold air drainage is a dominant part of the regeneration climate.  High 

elevation forests are dominated by mountain hemlock (Tsuga mertensiana) and whitebark pine 

(Pinus albicaulis). The climate is Mediterranean and is characterized by hot, dry summers and 

cold, wet winters.  Average monthly temperatures at  Manzanita Lake, California (in LVNP, 

elevation  1802 m), range from -6.6 °C minimum and 5.0 °C maximum in January to 7.5 °C and 
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26.1 °C in July (WRCC 2009).  Annual average precipitation is 104 cm, but inter-annual 

variability is high. Most precipitation (>80%) falls as snow between November and April and 

annual maximum snowpack depth from the Lower Lassen Peak Snow Course (usually in April or 

May) ranges from 1.63 to 8.41 m with an average of 4.63 m (NOHRSC 2010). 

Methods 

Contemporary Fire Severity Data 

To analyze the locations of contemporary high severity fire effects, we downloaded mapped fire 

severity patterns from the Monitoring Trends in Burn Severity website (MTBS 2008).  This 

website is a clearinghouse for fire severity data on all fire that originate on federal lands 

(including National Parks, National  Forests, and Bureau of Land Management lands).  We 

downloaded the fire severity data for 6 fires that occurred inside LVNP since the beginning of 

the MTBS record in 1984.  They are the Badger (1984), Huffer (1997), Fantastic (1998), Bluff 

(2004), Prospect Peak (2005), and Horseshoe (2005) fires.  Each of these fires burned more than 

405 hectares (1000 acres).  The Prospect Peak fire was an intentionally lit, prescribed fire that 

escaped control and the Horseshoe fire was Wildland Fire Use fire that burned under conditions 

that favored low intensity burning.  The other four fires are all classified as wildfire (MTBS 

2008). We utilized MTBS records for relative differenced NBR (RdNBR), a thematic 

classification of burn severity, and a fire perimeter based on the dNBR data (Eidenshink et al. 

2007).  We chose to analyze RdNBR because it is the most comparable between fires (Miller and 

Thode 2007).  RdNBR is computed as: 

PreFireNBR PostFireNBR

PreFireNBR
1000
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where NBR is calculated from LandSat images as: 

band 4 band 7
band 4 band 7 

RdNBR is positive for pixels that have decreased vegetation cover and higher values indicate 

greater decreases.  Negative values are possible as well and interpreted as ‘unburned to low’ 

severity (values very close to zero) or as ‘increased greenness’ (negative values further from 

zero; Miller and Thode 2007).  MTBS categorical fire severity rankings are based on dNBR and 

guided by analysts (MTBS 2008).  Its 6 categories are: 1—unburned to low; 2—low; 3—

moderate; 4—high; 5—increased greenness; and 6—water/barren/cloud mask.   

Historic Severity Data 

We were also interested in locating historic patches of high severity fire on the landscape and 

analyzing their relationship with topography.  To accomplish this, we georeferenced 57 aerial 

photographs of LVNP from 1941.  We used these as the basis on which to map the location of 

patches of vegetation that are associated with high severity fire.  Vegetation types assumed to be 

associated with high severity fire included brushfields and patches of even-aged forests.  These 

patches were recognized by their relatively smooth texture on the aerial photographs and were 

also compared against a contemporaneous vegetation type map. Many of these vegetation 

patches were visited during field work in LVNP to confirm their structure as either brushfields or 

even aged forests.  We mapped these across the entirety of LVNP with a minimum patch size of 

2 ha (5 acres).   

Simulation Approach 
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We used FlamMap to generate expected fire behavior at the landscape scale for LVNP.  

FlamMap is a landscape-scale, raster based model for predicting fire behavior (Finney 2006).  

FlamMap uses raster grid themes of slope, aspect, elevation, surface fuel model, CC, CH, CBH, 

and CBD to predict fire behavior characteristics independently for each location on the gridded 

landscape.  Fire behavior outputs include, but are not limited to, fireline intensity (kW/m) and 

crown fire activity (0, 1, 2 or 3 categorical index) (Finney 2006).  FlamMap is the most 

appropriate model because it was developed primarily for “mapping how a fire might burn a 

given area” (Stratton 2006, p. 13, emphasis in original) and fire behavior calculations are rapid.  

The implementation of FlamMap calculates fire parameters (fireline intensity, crown fire activity 

etc.) for each grid cell independently of other grid cells.  FlamMap is commonly used to estimate 

landscape scale fire behavior for different fuel and weather conditions (Stratton 2004) and is 

parameterized so that many combinations of fuels and weather can be burned across the same 

physical template without the need for excessive computing power (Finney 2006).  FlamMap can 

handle raster data of any resolution, provided all datasets are of the same resolution and extent 

and cover the same geographic area (Finney 2006).  

Surface and Canopy Fuels 

A map of surface fuels for LVNP was developed  from a set of 340 surface fuel sampling plots 

established in 1998-99 by C. Farris (C. Farris, 2009, unpublished report). The plots were located 

by clustering NDVI values from Landsat imagery using ISODATA, an unsupervised distance to 

mean algorithm (ERDAS 1997). The clusters produced by ISODATA were used to assign initial 

surface fuel models (Anderson 1982).  Field plots were used to support the surface fuels 

mapping.  Detailed fuels information was collected at these plots including surface fuel loading 

using Brown’s planar intercept method (Brown 1973), overstory, understory, and shrub species 
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composition, surface and litter fuel characteristics, canopy and understory height, and 

photographs for comparison with fuel load photo series (e.g. Blonksi and Schramel 1981).  The 

center of each plot was permanently marked with a steel stake. Additional plots were located in 

ambiguous or highly heterogeneous spectral clusters and stratified based on topographic and 

compositional characteristics to assign final fuel models.  Once the final surface fuels map was 

created, 122 accuracy assessment plots were laid out and visited to ensure validity of the 

mapping process (C. Farris, unpublished report).  

Our fire behavior modeling approach calls for realistic current values for CBD, CC, CBH, and 

HT.  To determine these values we collected field data in the summers of 2009 and 2010 in 

LVNP.  We located a 223 plot subset of the above 462 plots by navigating to them with GPS and 

we established a 500 m2 circular plot centered on the permanent stake.  We recorded the plot’s 

geographic position from the GPS and also measured its slope, elevation, aspect, topographic 

position, and topographic configuration. Topographic position was recorded in one of five 

categories: ridge top, upper slope, middle slope, lower slope, or valley bottom.  Topographic 

configuration was also recorded in one of five categories: convex, convex-straight, straight, 

concave-straight, or concave.  For each tree (> 5 cm diameter at breast height [DBH]) we 

measured DBH (cm), height (m), status (live or dead), and visually estimated live crown fraction 

to the nearest 5%. We rated each tree’s relative crown position using the following categories 

and criteria: Suppressed— <25% of main canopy height; Intermediate— >25% but < 75% of 

main canopy height; Co-dominant—part of the main canopy, but receiving top shading from 

other canopy trees; Dominant—part of the main canopy and only receiving side-shading from 

other trees; Emergent—trees with crowns above the main canopy that are not receiving 

significant side-shading from any trees.  We recorded the Height to Live (Dead) Crown Base as 



 138 

the height above the ground of the lowest live (dead) limb longer than 60 cm (Fulé et al. 2001; 

Skinner 2005).  To aid in determining canopy fuels characteristics, we took three upward facing 

hemispherical photographs per plot with a digital camera mounted with a full hemispheric lens 

and leveled with a bubble level at 2 m above the ground.   

Because vegetation composition in LVNP co-varies strongly with topographic variables 

including elevation, slope, aspect, and potential soil moisture (Taylor 1990, 2000; Parker 1991) 

we derived a set of topographic variables related to vegetation type from a 30 m x 30 m 

resolution digital elevation model under the assumption that, through its strong covariation with 

vegetation, topography can potentially explain variation in RdNBR (USGS 2010).  The National 

Elevation dataset for LVNP was used to obtain elevation, slope, aspect, and two measures of 

topographic position for each pixel in the park.  These two measures of topographic position—

Topographic Position 150 (TP150) and Topographic Position 450 (TP450)—are the difference 

between the focal pixel’s elevation with the average elevation of pixels within 150 m and 450 m 

respectively (Poulos et al. 2007; Poulos 2009).  We used this set of topographic variables for 

mapping canopy fuels as well as in our later analyses of high severity or high intensity fire. 

Canopy fuels characteristics (CBD, CC, CBH, and HT) values were estimated from the data 

gathered on individual trees and from the hemispherical photographs.  We computed gap fraction 

and CC from 669 hemispherical photographs (3 per plot) using GLA software (Frazer et al. 

1999).   Gap fraction was then transformed to CBD using the methods described in Keane et al. 

(2005, eq. 5).  To calculate CBH, we combined each plots’ values of Height to Live Crown Base 

and Height to Dead Crown Base.  Because low CBH are most important for the transition to 

crown fire, we used the 1st quartile CBH as the estimate for each plot (Fulé et al. 2001; Skinner 

2005). To compute HT, we averaged the heights of the live trees in the canopy in each plot 
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(typically the Co-dominant and Dominant trees, but also Emergent trees if they were present).  

We created constant raster layers representing CBD, CC, CBH, and HT from these values.  We 

computed the average of CBD, CC, and HT across all plots to create the first three constant 

rasters.  We also computed the average of the 1st quartile CBH values across the landscape and 

created a constant raster containing this value.  Constant rasters were created in ArcGIS software 

(ESRI 2010). To facilitate the scaling of plot level data to the landscape level, we used Landsat 5 

imagery of LVNP for August 11, 2009.  The raw Landsat scene was converted to at-satellite 

reflectances for 6 bands (1-5 and 7).  These reflectances were then used to compute the 

Normalized Differenced Vegetation Index (NDVI) and the Tasseled Cap transformations for 

Greenness, Brightness, and Wetness (Kauth and Thomas 1976).  All resulting rasters were 

exported for analysis in ArcGIS® (ESRI 2010). Satellite imagery was processed using ENVI® 

(ITT 2010). 

We used a Random Forest algorithm in R (Breimen 2001; Liaw and Wiener 2002; R 

Development Core Team 2010) to model the plot level estimates of each canopy fuel variable 

and to predict canopy fuels values across the entire landscape on a pixel by pixel basis. In every 

case, the RF algorithm was run to iteratively grow 4,000 trees with 5 of the 15 explanatory 

variables randomly selected at each node as potential variables to base the split on.  A large 

number of trees is recommended when using RF algorithms to stabilize the Mean Squared Error 

(MSE) over many iterations.  We used the pseudo-r2 and the MSE statistic to evaluate model 

performance.    The pseudo-r2 statistic is calculated as: 

1  
MSE

var y  
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The pseudo-r2 statistic is calculated identically to the r2 statistic for standard linear regression, 

and is called pseudo because the predicted values used to calculate the MSE come from the 

random forest, and not from a linear regression (Liaw and Wiener 2002). 

Fire Weather and Fuel Moisture 

We computed dead woody fuel moistures and wind speeds for the 80th, 90th, and 97th percentile 

condition with FireFamily Plus (Bradshaw and Tirmenstein 2010) using weather data from the 

Manzanita Lake weather station (FAM Web 2011). Fuel moisture calculations were limited to 

the fire season of June 1 through October 31 but used the entire Manzanita Lake record which 

extends from 1962 to 2010.  I computed fuel moistures for 5 fuel components: 0 – 0.64 cm (0 – 

0.25”), 0.64 – 2.54 cm (0.25” – 1.0”), and 2.54 – 7.62 cm (1.0” – 3”) diameter dead woody fuels, 

as well as Live Herbaceous and Live Woody fuels to use as input to FlamMap.  0 – 0.64 cm, 0.64 

– 2.54 cm, and 2.54 – 7.62 cm diameter dead woody fuels are often referred to by the terms 1-hr, 

10-hr, and 100-hr fuels. This convention relates to the amount of time required for a fuel particle 

of the given diameter to reach 63% of the difference between its initial moisture content and a 

final moisture content that is in equilibrium with changed atmospheric conditions (Pyne et al. 

1996).  Fuel moistures are given in percentages and interpreted as the amount of water in a 

particular fuel particle as a percentage of that particle’s oven-dry weight.  For all 5 classes of fuel 

moistures, percentages range from 0 (oven-dry) up to 300 (fresh grass and herbaceous cover).  

We also computed 6.5 m (20’) wind speeds for the 80th, 90th and 97th percentile conditions.  This 

is the speed of the wind at 6.5 m above the forest canopy.  FlamMap uses the given grid of 

canopy cover to calculate an attenuated 6.5 m wind speed at the site of (simulated) surface 

combustion.  Lastly, we used this data to calculate the dominant direction of daytime winds. 
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Wind Scenarios 

We applied 4 different wind scenarios for each combination of surface fuel model and fuel 

moisture condition. Wind is an important factor that controls both rates of fire spread and fire 

intensity.  Wind is addressed in FlamMap in three ways (Finney 2006).  Depending on the 

moisture profile (80th, 90th, or 97th) we simulated winds as: 1) calm (no wind); 2) blowing uphill 

at their 80th, 90th and 97th percentile speeds, respectively; 3) blowing at a constant direction and 

speed at their 80th, 90th and 97th percentile speeds, and 4) blowing at variable speeds and 

directions based on the model WindNinja ® at their 80th, 90th and 97th percentile speeds, 

respectively. WindNinja® calculates surface wind speed and direction for a grid of arbitrary 

resolution based on the topographic interference that a constant wind would encounter.  Winds 

gridded in this way have been shown to increase the accuracy of predictions (Finney 2006; 

Stratton 2006).  

Simulating Fire Behavior 

We simulated fire behavior for each possible combination of wind scenario and fuel moisture.  

Fire behavior outputs for each run were fireline intensity and crown fire activity.  Fireline 

intensity is measured in kilowatts per meter (kW/m) and is related to both flame length and 

crown fire activity (Agee 1993).  Crown fire activity is rated on a scale of 0-3: 0) no fire activity; 

1) ground fire only; 2) passive crown fire (torching); and 3) active crown fire.  FlamMap’s 

calculations require that each successively higher class of fire activity (class 0-3) requires 

activity at the previous class, e.g. torching fires (class 2) can only occur in a location if there is a 

ground fire (class 1) (Finney 2006). This experimental design produced 12 raster maps each for 

fireline intensity and fire activity index.  To simplify this dataset, we averaged the fireline 
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intensity of each pixel over all 12 rasters. We also produced a pixel by pixel count of the 

frequency of each of the fire activity index values. 

Vegetation Structure Data 

We added a vegetation component to our dataset of MTBS downloaded fires (1984 and later) to 

assess how antecedent  vegetation cover might impact observed fire severities.  To accomplish 

this we geo-referenced a map of vegetation patches from the 1960s which was created by 

vegetation type mapping utilizing the interpretation of aerial photography and field 

reconnaissance of vegetation composition.  Once we georeferenced the map, we digitized the 

boundaries of the vegetation patches and added their attribute data.  The attribute data consisted 

of 4 overstory and understory density classes (1: 1-9% of available canopy space; 2: 10-39%; 3: 

40-69%; and 4: 70-100%); up to 5 canopy tree species with their relative cover expressed as a 

percentage; up to 3 ground cover species with their total cover as a percentage, and the species 

and density of any seedlings (if present). From this dataset we extracted the overstory and 

understory density classes (denoted Overstory and Understory in figures and tables), and up to 

the first 2 canopy species (denoted Canopy 1 and Canopy 2 in figures and tables). 

Analysis of High Severity and High Intensity Fire Locations 

For the collection of mapped patches of historic high severity fire, we created a point sample 

inside the boundary of each patch at a density of 1 per 5 ha.  For the remainder of LVNP, we 

created another random point sample with the same total number of points but excluding the 

areas deemed water or barren.  We extracted the elevation, slope, aspect, TP150, and TP 450 

values for each point.  We then compared the mean values of each of the topographic variables to 
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each of the two samples to examine if the mapped patches of historic high severity fire were 

located in significantly different topographic settings. 

To examine how measured contemporary fire severity and modeled fire intensity varied relative 

to topography, we set up a regular grid of points at a 30 m interval inside each of the 6 fire 

perimeter layers downloaded from the MTBS website.  To each point, we added the values of 

each of the 5 topographic variables, the four vegetation variables, the surface fuel model, the 

2003 predicted value of CBD, CC, CBH, and HT, the RdNBR value, the MTBS rated severity, 

the average fireline intensity and the fire activity index frequencies. 

We used an RF algorithm to model RdNBR as a function of topography to assess which 

topographic variables explained the largest amount of variation.  Likewise, we used an RF 

algorithm to attempt to explain model derived predictions of fireline intensity as a function of 

topography.  We used several discrete sets of variables and iteratively increased the number of 

variables in our model to examine how each set explained variability individually, and how that 

contribution might change given other variables.  First, we used only our 5 topographic variables 

to try to explain RdNBR (Model Scenario A).  In Model Scenario B, we added vegetation data 

from our historic vegetation map.  In Model Scenario C, we further added mapped surface and 

canopy fuels for the Bluff, Horseshoe, and Prospect fires only because these were the only three 

of the six fires that post-dated the production of the surface fuels map.  Finally, Model Scenario 

D attempted to explain variability in modeled fireline intensity using either the variables from 

Model Scenario B (Badger, Huffer, and Fantastic fires) or the variables from Model Scenario C 

(Bluff, Horseshoe, and Prospect fires) To compare between the two datasets, we examined each 

variable’s relative importance and its contribution to reducing the Mean Square Error of the final 

tree and each model’s total variance explained. 
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We compared the locations of high severity fire across our different lines of evidence.  Because 

it was the most limited, we based our comparisons on the data available for the high severity 

patches mapped from the 1941 aerial photographs.  Each point inside these polygons had 

elevation, slope, aspect, and topographic position information appended to it.  To develop the 

high severity portion of the other two lines of evidence we first pooled all of the data from the 6 

fires that we investigated.  Then, we selected points using the following procedures.  For the 

MTBS data, we used only those pixels with a mapped MTBS categorical severity rating of 4 

(high).  For the FlamMap derived estimates of fire behavior, we chose only those pixels with a  

fire type index of 2 (torching fire) or 3 (crown fire) on at least 6 of the 12 burning scenarios  

Because the FlamMap® derived dataset was so large, we selected a random subset that was 

intermediate in size to the MTBS dataset and the Brushfield dataset.  These three datasets were 

all compared against the sample of topographic variables for LVNP that was described above.  

We calculated means and standard deviations for elevation, slope, aspect, TP150, and TP450 for 

each dataset and compared between them with a two-sample Student’s t-test.  Because we were 

making multiple comparisons between datasets, we used an alpha level of 0.05 and a Bonferroni 

correction (n = 6 comparisons). 

Results 

MTBS Fire Severity Data 

The six fires we downloaded from the MTBS website were the Badger, Huffer, Fantastic, Bluff, 

Prospect Peak, and Horseshoe (Table 4-1).  These fires burned between 1984 and 2005.  Fires 

burned a low of 450 hecatres (Badger 1984) to a high of 1382.4 ha (Bluff 2004).  RdNBR ranges 

were large, but average RdNBR were indicative of overall distribution of area designated to the 
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severity classes.  The Horseshoe fire had the lowest overall RdNBR average—most mapped 

pixels were only somewhat less green after the fire—and  this fire burned only at Low severity.  

In contrast, the Badger fire had the highest overall average RdNBR which is indicative of its 

overall large proportion of hectares burned at moderate to high severity; the high RdNBR values 

indicate that there was a large change in vegetation cover when comparing pre- and post-fire 

imagery.  Proportionally, most of the area of all six fires was categorized as either ‘unburned to 

low’ (category 1) or ‘low’ (category 2) (Figure 4-2). The Badger and Huffer fires had the largest 

proportions of ‘moderate’ (category 3) and ‘high’ (category 4) severity effects. 

FlamMap® Fire Intensity 

We used FlamMap® to obtain expected fireline intensity and fire type inside the perimeters of 

these six fires.  Proportionally, FlamMap® almost never predicted active crown fire on the 

landscape (Figure 4-3).  Surface fire was the most common type of fire predicted.  In the case of 

the Badger fire, almost 50% of fire activity was predicted to be torching fires, but within all of 

the other fire perimeters, the proportion of torching fire was smaller. 

Canopy and Surface Fuels 

We measured CBD, CC, CBH, and HT at 223 plots across LVNP and mapped these variables for 

the entire extent of LVNP using a Random Forest approach.  Measured CBD values ranged from 

0.0 to 0.306 kg/m3. CC ranged from 0 to 87.8%.  CBH ranged from 0 to 11.9 m and HT varied 

from 0 to 43.9 m (Table 4-2).  Our RF models were generally able to explain CBD, CC, and HT 

well, but CBH could not be modeled effectively (Table 4-3).  For CBD, CC, and HT, our 

models’ had pseudo-r2 values of 0.55, 0.67, and 0.59 resprectively (Table 4-3). 
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Mapping Historic High Severity Effects 

We mapped historic high severity effects on 57 aerial photographs that were georeferenced to an 

accuracy of 7.9 m Root Mean Square Error (RMSE).  We identified 119 of patches of high 

severity effects with a mean area of 47.8 ha (range 2.12 – 626.84) and a total area of 5686.3 ha.   

The mean elevation of all sample points inside patches mapped as exhibiting high severity 

effects was 1995 m, the mean slope was 13.1°, and the mean aspect was 162.5°. 

Random Forests 

We used a random forest approach to analyze RdNBR fire severity data for 6 contemporary fires 

from the MTBS dataset in relation to several combinations of variables.  When we used only our 

5 topographic variables (Model Scenario A), Elevation was the most important variable for 

reducing MSE of the model explanation of RdNBR (Figure 4-4).  It reduced MSE by up to 134% 

for the Huffer fire but only 25.5% for the Bluff fire.  Pseudo-r2 values ranged from a low of 0.12 

for the Horseshoe fire up to a high of 0.53 for the Badger fire (Table 4-4).  Elevation was the 

most important variable in reducing MSE in 5 out of 6 cases, and second most important in the 

6th case.  Aspect and topographic position were also important.  Slope was somewhat important 

(Table 4-5). 

When we added information on the historic vegetation structure to our RF approach (Model 

Scenario B), topographic variables were still the most important (Figure 4-5).  Overstory density 

and Canopy species also contributed to reducing MSE.  Overstory density was able to reduce 

MSE by 69.1% for the RF model of Huffer fire RdNBR (Figure 4-5). The addition of vegetation 

data was able to increase the pseudo-r2 of all of our models (Table 4-4).  The largest increase was 

for the Huffer fire, where the addition of vegetation information increased pseudo-r2 to 0.69 from 
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0.44.  When we examined the ranked importance of the explanatory variables, there was little 

overall change in the order as compared to Model Scenario A (Table 4-5). 

In Model Scenario C, we added mapped surface and canopy fuels information for three recent 

fires—the Bluff, Horseshoe, and Prospect fires.  These fires occurred in 2004 (Bluff) and 2005 

(Horseshoe and Prospect) which post-dates our surface fuels map.  The results for this Model 

Scenario were somewhat different from the first two.  While one of the topographic variables 

was always the most important, some of the mapped fuels data were among the most important.  

For the Horseshoe fire, CC, HT, and CBD were the 2nd, 3rd, and 4th most important variables, 

respectively, and were able to reduce MSE by 25.1%, 23.8%, and 13.4%, respectively (Figure 4-

6).  This information also was able to further increase the pseudo-r2 for the models for each fire’s 

RdNBR (Table 4-4). 

We also sought to compare modeled fireline intensity with RdNBR, and with our variables’ 

ability to explain variation in fireline intensity compared to RdNBR.  In Model Scenario D, we 

examined modeled fireline intensity within the perimeter of each of the six fires.  For three fires, 

the Badger, Huffer, and Fantastic, we did not have surface or canopy fuels information because 

these fires pre-date our fuels information.  For the other three fires, the Bluff, Horseshoe, and 

Prospect, we were able to use surface and canopy fuels information in our RF models.  For these 

models, fuels information was important in reducing model MSE, and by up to 45.8% in the case 

of Surface Fuel model for the Prospect fire perimeter (Figure 4-7). 

Topographic Comparisons Among Datasets 

We compared the topographic variables of elevation, slope, aspect, TP150, and TP450 between 4 

different dataset in order to understand how drivers of fire severity might vary between fires 
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(Table 4-6).  Our datasets were all the pixels denoted by the MTBS fire severity category 4 (high 

severity effects; n = 1832), a sample of all pixels predicted by FlamMap® to burn with torching 

or crowning behavior in at least 6 out of 12 of our scenarios (n = 1169), a sample of 1 point per 5 

ha of historic mapped high severity patches (n = 1082), and a random sample of points in 

LVNP—excluding water and barren areas—with the same number of points as the historic 

mapped high severity patches (n = 1082).  We denote these datasets MTBS, FlamMap®, 

brushfield, and Park, respectively.  With the exception of aspect, the topographic variables 

differed significantly between most or all of the datasets.  Elevation averages ranged from a low 

of 1995 m in the brushfield dataset to a high of 2063 m for the Park as a whole.  Brushfields also 

occupied the steepest average slopes (13.1°), while high fire intensity effects predicted by 

FlamMap® occupied the lowest average slopes (9.7°).  Brushfields were also found in areas with 

generally high TP150 and TP450 values, indicating that they tend to exist higher on slopes.  This 

is in contrast to the Park as a whole where the values of TP150 and TP450 were close to zero.  

The high severity effects seen in the MTBS dataset occupied the highest topographic positions as 

compared to all other datasets. 

Discussion 

The topographic variation of high severity and high intensity fire was noteworthy.  The pixels 

mapped as high severity by MTBS and the Brushfield sample occupied significantly lower, 

steeper, and more exposed slopes than the Park as a whole.  This combination of topographic 

characteristics is strong evidence for topographic controls on fire severity beyond those 

implemented by fire modeling programs which primarily use slope and aspect to modify fire 

behavior (J. Scott, personal communication, 2011).  While a program like FlamMap® uses 

elevation to adjust fuel moistures based on adiabatic lapse rates, we did not utilize that portion of 
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the FlamMap® routine.  Furthermore, because individual pixels in FlamMap® do not interact 

with their neighbors, relative differences in topographic position are not taken into account.  That 

a RF model using only Elevation, Slope, Aspect, TP150, and TP450 was able to explain almost 

55% of the variance in RdNBR values in the Badger fire and 46% of the variance in RdNBR 

values in the Huffer fire shows that topographic drivers of fire severity can be extremely 

important.  However, lower percentages of explained variance in the other fires (14% to 28.9%) 

indicate that the explanatory power of topography might be limited to certain cases. 

Topographic characteristics retained much of the explanatory power even when considered 

alongside other, more commonly implicated, drivers of observed fire severity like pre-existing 

vegetation (Canopy 1, Canopy 2) and mapped fuels values (Surface Fuel model, CBD).    In fact, 

the addition of these other potential explanatory variables only marginally increased the pseudo-

r2 values of several models (Bluff, Fantastic, Horseshoe, and Prospect).  These variables had a 

much larger impact—though still not as large as topography—on the models for the Badger and 

Huffer fires.  Interestingly, it was these two latter fires that had the highest proportions of 

‘moderate’ and ‘high’ severity MTBS rankings.  Coupling these results to the results using only 

the topographic variables, is it plausible that topography is the dominant driver of some fires 

while not of others.  In the Klamath Mountains, Alexander et al. (2006) found that higher 

elevations—upper slope positions—burned primarily with low severity but south aspects and 

those plots dominated by intermediate sized trees (33 cm to 43.5 cm dbh) burned with high 

severity.  In contrast, Taylor and Skinner (2003) found that upper slope positions tended to burn 

with high severity in other parts of the Klamath Mountains.  These contrasting results for the 

same mountain range echo our findings that drivers of fire severity may be heterogenous not 

only within fires, but also between fires in the same forest types.  Whereas topography was an 
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extremely important driver of severity in the case of the Badger and Huffer fires, it was not as 

strong in the other four fires.  Extrapolating this implies that a single position on the landscape, 

over the course of many years and multiple fires, will burn with different severities at different 

times due to different drivers.  Our results show that these different severities are related to 

topography such that certain combinations of topographic characteristics (low elevations, and 

steep exposed slopes) tend to produce more high severity fire than other combinations of 

topographic characteristics. 

The most surprising of the results here is that historic vegetation maps and surface and canopy 

fuels information did little to improve model fit.  This is in contrast to Collins and Stephens 

(2010) who found that many patches of high severity fire were significantly associated with 

highly pyrogenic vegetation.  Similarly, Odion et al. (2010) demonstrated that highly pyrogenic 

sclerophyll vegetation and dense stands of young conifers burned with higher average severity 

than other types of vegetation.  These studies confirm the extent to which vegetation can be a 

predictor of high severity fire.  One limitation of our own vegetation map is its relative 

coarseness.  For our historic vegetation information, we relied on a hand-drawn map from 

c.1960.  This map, while impressive for its detail in its own day, is nonetheless limited in the 

amount of information it can carry forward to the present.  However, even absent vegetation 

information, topography was a strong driver in some fires.  When compared with the previously 

mentioned studies, our evidence allows for the interpretation that while fire severity may be 

driven by vegetation in some cases, topography may overwhelm its effect in other cases.  If this 

is true, it means that high intensity fire with high severity effects is more common in some 

locations which in turn implies that some patches of fire dependent vegetation may be ‘fixed in 

space.’  This notion underlies the research of Holden et al. (2009) who find that topography can 
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be used to predict the locations of high severity fire.  The idea of vegetation patches being ‘fixed 

in space’ also has implications for the steady-state shifting mosaic paradigm which posits that 

when viewed over a large enough spatial frame and a long enough temporal frame, disturbance 

prone ecosystems exhibit a relatively static proportion of vegetation types and structural stages, 

although their specific locations are random (Bormann and Likens 1979; Turner et al 1993; Perry 

2002).  In contrast, we suggest that while the proportion of the landscape occupied by a specific 

vegetation type or structural stage might be in relative equilibrium, the locations of those patches 

could be ‘fixed in place’ through the interaction of the disturbance process itself—here fire—and 

the topography. 

When comparing modeled measures of fire type from FlamMap® with the MTBS categories of 

severity, there are two evident patterns.  First, if we lump together the MTBS categories of 

‘moderate’ with ‘severe’, and we lump ‘unburned to low’ with ‘low’ (Figure 4-8), then the 

FlamMap® predictions of proportions of fire type are very similar to the proportions of severity 

effects as categorized by the MTBS project.  FlamMap® appears to be potentially overestimating 

the proportion of torching fires—which would certainly fall in the MTBS ‘moderate’ category—

but this conservative estimate of fire severity suits the application of FlamMap® well.  If federal 

agencies are to continue to use FlamMap® as a planning tool, then it behooves those agencies, in 

the interest of safety, to over-estimate the proportion of torching fires on the landscape.  Second, 

we ran FlamMap® with 12 different combinations of fuel moisture and wind scenario, which 

includes the most intense 97th percentile fuel moistures with uphill winds.  In contrast, the MTBS 

severity data reflects the effects of real fires that often did not burn under such extreme 

conditions.  Especially in the case of the Horseshoe fire, at least part of the over-prediction of 

torching fires is due to this fact.  Finally, there is also the consideration that FlamMap, while a 
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spatial model of fire behavior in the sense that it computes fire behavior for each pixel on the 

landscape, is ignorant of the effects of pixel size.  A single FlamMap calculation is the basis for 

the fire type prediction assigned to a pixel, and essentially takes place at a point.  Thus, a 

‘torching’ fire predicted by FlamMap may correspond to a pixel mapped by MTBS as ‘low’ 

severity when that MTBS pixel could have sustained one or a few trees worth of torching 

behavior. 

Conclusions 

Our study has shown that more exposed topographic positions tended to burn with higher 

severity.  In forests of the nearby Klamath Mountains, upper slope positions may burn with 

higher severity (Taylor and Skinner 2003) or lower severity (Alexander et al. 2006).  The 

contrasting results presented in these two studies may be due to the use of fire scar and tree ring 

evidence only (Taylor and Skinner 2003) or due to small sample size (Alexander et al. 2006).  

Across all of the fires that we studied, topography was able to explain much of the variation in 

RdNBR. We also find that our results corroborate the findings from other parts of the southern 

Cascades where upper slope positions and positions higher in the watershed burned with higher 

severity when compared with lower slopes or positions lower in the watershed (Beaty and Taylor 

2001).  The results presented here lend weight to the idea that some types of highly pyrogenic 

vegetation patches (here brushfields) exist where they do on the landscape because those 

landscape positions tend to be associated with high fire intensity and high fire severity.  

Therefore, certain vegetation assemblages can be ‘fixed in space’ by their topographic settings 

through a mutual association with high severity fire.  This has implications for the management 

of forested ecosystems wherein a single type of fire regime (e.g. low-severity v. high-severity) is 

posited for all instances of a vegetation type (e.g. mixed conifer) when in fact different fire 
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regimes may be associated with a single vegetation type through the interaction of fuels, 

topography, and the burning process.   
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Table 4-1: MTBS Fire Severity Hectares Burned and RdNBR Summary 
MTBS Category 
Severity 

Badger 
(1984) Bluff (2004)

Fantastic 
(1998) 

Horseshoe 
(2005) 

Huffer 
(2004) 

Prospect 
(2005) 

1 - Unburned to Low 124.2 634.5 372.7 565.8 357.3 1125.8 
2 - Low 201.5 515.2 205.6 46.5 293.8 160.3 
3 - Moderate 80.5 187.4 46.1 0 164.7 59.5 
4 - High 43.3 38.4 5.7 0 64.7 14.2 
5 - Increased 
Greenness 

0.4 6.9 0.4 5.3 0.8 2.4 

6 - Water or Barren 
Mask 

0 0 0 3.6 39.3 0 

total hectares 450 1382.4 629.7 621.2 920.7 1362.2 
RdNBR average 386 256 203 91 376 46 

RdNBR range -762 - 1223 
-13344 - 

5059 
-13408 - 

6989 
-5122 - 
6883 

-3193 - 
9833 

-6482 - 
2624 

 

Table 4-1:  Summary of fires downloaded from the MTBS website and analyzed in this study.  The top section of the table shows the 
number of hectares classified into each burn severity class by the MTBS analysis. The bottom section shows the average and range of 
RdNBR values from the MTBS analysis.
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Table 4-2: Canopy Fuels Summary Statistics 
CBD (kg m-3) CC (%) CBH (m) HT (m) 

min 0.0 0.0 0.0 0.0 
max 0.306 87.8 11.9 43.9 
mean  ± s.e. 0.105 ± 0.003 45.6 ± 1.40 0.71 ± 0.08 21.3 ± 0.52 
SD 0.178 20.848 1.211 7.815 

Table 4-2: Summary statistics of canopy fuels characteristics across all sampled plots computed 
from the analysis of each plot’s digital hemispherical photographs and tree level data.  
Abbreviations are CBD-Canopy Bulk Density; CC-Canopy Cover; CBH-Canopy Base Height; 
HT-Canopy Height. 
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Table 4-3:Random Forest Model Statistics 
CBD CC CBH Ht 

pseudo r2 0.55 0.67 -0.02 0.59 
MSE 0.0014 196.6 1.37 40.9 

 
Table 4-3: Summary of model fit statistics (pseudo-r2 and mean-squared error [MSE]).  
Abbreviations are as in Table 4-2. 
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Table 4-4: Summary of RF Models of RdNBR and Modeled Fireline Intensity  
Scenario Badger Bluff Fantastic Horseshoe Huffer Prospect

A 

pseudo-r2 0.53 0.17 0.27 0.12 0.44 0.26 
% Variance Explained 54.8 18.3 28.9 14.0 46.0 27.8 
Mean of Square 
Residuals 40991 119895 35024 51612 59800 30360 
              

B 

pseudo-r2 0.64 0.22 0.34 0.13 0.69 0.29 
% Variance Explained 65.3 24.4 35.2 14.9 69.8 30.8 
Mean of Square 
Residuals 31469 110987 31899 51031 33415 29098 
              

C 
pseudo-r2 0.24 0.16 0.32 
% Variance Explained 26.6 18.3 33.5 
Mean of Square Residuals 110082 49019 27982 
              

D 

pseudo-r2 0.44 0.16 0.26 0.15 0.19 0.15 
% Variance Explained 46.0 18.8 27.0 17.5 20.1 17.2 
Mean of Square 
Residuals 78232 258571 12970 52507 134314 44522 

 

Table 4-4: Summary of model fit statistics for our RF models of RdNBR and modeled fireline intensity.  Scenarios A, B, and C are 
models of remotely sensed values of RdNBR. Scenario D are models of fireline intensity for the area enclosed by the perimeters of the 
6 fires analyzed here.  Scenario A includes only topographic variables. Scenario B adds historic vegetation data. Scenario C (Bluff, 
Horseshoe, and Prospect fires only) adds mapped surface and canopy fuel variables. Scenario D uses modeled fireline intensity as the 
dependent variable.  
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 Table 4-5: Summary of Variable Importance Ranks 

  Badger Bluff Fantastic Horseshoe Huffer Prospect 
Modeling Scenario: A B C* D† A B C D A B C* D† A B C D A B C* D† A B C D
Elevation 2 2 - 3 1 1 2   1 1 - 1 1 1 1 3 1 1 -   1 1 2 3 
Aspect 1 1 - 1 4 4 1 4 5 - 3 2 2 4 2 3 - 5 5 5 4 1 
Slope 4 5 - 2 3 2 5 3 3 - 2 3 4 1 3 2 - 1 4 
TP150 5 3 -   2 5 3   5 4 -   5 5   5 5 - 3 2 2 1 
TP450 3 4 - 4 5 1   2 2 - 4 4 3 5 4 - 2 3 3 5 

                                                
Overstory     3 5               
Understory     4               
Canopy 1 5               4 
Canopy 2         5   5     4   4 

                                                
Surface Fuel                               2               2 
CBD     4       4       
CC     2       2       5 
CBH                   4 
HT               3             3               3   

 

Table 4-5: A summary of ranked variable importance for Modeling Scenarios A through D.  Each Modeling Scenario builds on the 
previous scenario.  Variables listed on the left hand side are described in the text. Model Scenarios A, B, and C use RdNBR values as 
the dependent variable.  Model Scenario D uses modeled fireline intensity as the dependent variable.  *Model Scenario C was not run 
for these fires because these fires pre-date the surface and canopy fuels estimates.  †For scenario D, these models do not include 
surface and canopy fuels because these fires pre-date the fuels estimates.
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Table 4-6: Summary of Topographic Variables 
Dataset Elevation Slope Aspect TP150 TP450 
MTBS 2024 11.4 199.6 1.9 8.08 

SD 73.7 6.5 105.4 5.97 20.25 
FlamMap® 2052 9.7 164.8* 1.03* 3.8* 

SD 127.2 6.9 101.1 5.21 17.27 
Park 2063 10.4 158* -0.11 -0.95 

SD 178.5 7.8 103.9 5.67 18.92 
Brushfields 1995 13.1 162.5* 1.05* 5.78* 

SD 144.9 8.5 102.3 6.28 21.27 
 

Table 4-6: Summary of topographic characteristics from random samples of high severity or high 
intensity fire locations and a comparison to a random sample of topographic variables from 
LVNP.  Dataset are: MTBS—all pixels mapped as experiencing high severity fire effects 
(category 4) by the MTBS program; FlamMap®--a subset of pixels predicted by FlamMap® to 
burn with torching or crowning behavior in at least 6 out of the 12 scenarios under which we ran 
FlamMap®; Park—a sample of pixels from across all of LVNP, excluding water and barren 
areas; and Brushfields—a sample taken at 1 point per 5 ha of all patches mapped as exhibiting 
high severity effects from geo-referenced aerial photographs of LVNP from the year 1941.  
Column variables are Elevation (m), Slope (°), Aspect (°), TP150 (unitless), and TP450 
(unitless).  All values in the columns are different at alpha level of 0.05 using a Bonferroni’s 
correction for n = 6 Student’s two-sample t-test comparisons except those marked by an asterisk 
(*). 
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Figure 4-1: Study area map showing Lassen Volcanic National Park in northeastern California as 
well as the fire perimeters of the 6 contemporary fires analyzed in this study. 
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Figure 4-2: A proportional plot of the amount of area of each fire that was categorized by MTBS 
as exhibiting different levels of fire effects. 
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Figure 4-3: A proportional chart of the frequency of different fire behavior types as predicted by 
FlamMap®. 
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Figure 4-4: Variable Importance Plots for RF explanation of RdNBR fire severity values for 6 
contemporary fires. These RF models used topographic variables only.  Variables one the y-axis 
are listed with the most important at the top.  The x-axis shows the percentage increase in MSE 
when the variable is excluded from the RF. 
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Figure 4-5: Variable Importance Plots for RF explanation of RdNBR fire severity values for 6 
contemporary fires. These RF models used topographic variables and historic vegetation data.  
Variables on the y-axis are listed with the most important at the top.  The x-axis shows the 
percentage increase in MSE when the variable is excluded from the RF. 

  

Understory

Canopy 1

Overstory

Canopy 2

Slope

TP450

TP150

Elevation

Aspect

20 40 60 80 100

Badger Fire, RdNBR

%IncMSE

Canopy 2

Canopy 1

TP450

Aspect

TP150

Understory

Overstory

Slope

Elevation

15 20 25 30

Bluff Fire, RdNBR

%IncMSE

Understory

Canopy 1

Canopy 2

Overstory

Aspect

TP150

Slope

TP450

Elevation

20 40 60 80

Fantastic Fire, RdNBR

%IncMSE

TP150

Canopy 1

Understory

Overstory

Canopy 2

Slope

TP450

Aspect

Elevation

5 10 15 20 25 30

Horseshoe Fire, RdNBR

%IncMSE

Canopy 1

Understory

TP450

Overstory

TP150

Canopy 2

Aspect

Slope

Elevation

40 60 80 100 120

Huffer Fire, RdNBR

%IncMSE

Overstory

Canopy 1

Understory

Slope

Aspect

Canopy 2

TP450

TP150

Elevation

15 20 25 30 35

Prospect Fire, RdNBR

%IncMSE



 174 

 

Figure 4-6: Variable Importance Plots for RF explanation of RdNBR fire severity values for 3 
contemporary fires. These RF models used topographic variables, historic vegetation data, and 
mapped surface and canopy fuels data.  Variables one the y-axis are listed with the most 
important at the top.  The x-axis shows the percentage increase in MSE when the variable is 
excluded from the RF. 
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Figure 4-7: Variable Importance Plots for RF explanation of fireline intensity values modeled 
inside the perimeters of 6 contemporary fires. These RF models used topographic variables, 
historic vegetation data, and mapped surface and canopy fuels data.  Variables on the y-axis are 
listed with the most important at the top.  The x-axis shows the percentage increase in MSE 
when the variable is excluded from the RF. 
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Figure 4-8: A proportional chart of the proportions of pixels mapped by MTBS as experiencing 
different fire severity levels.  This chart uses the same data as Figure 4-6 but lumps ‘unburned to 
low’ with ‘low’ and ‘moderate’ with ‘high’ for comparison purposes with Figure 4-7. 
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Chapter 5—Conclusions 

Implications for Management and Future Directions 
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Implications for Management 

Topography is a factor that is well recognized for its potential to impact to fire behavior and fire 

effects.  This research has shown how to develop fire behavior expectation across the landscape 

as they relate to topography.  It has also shown that topographic variables can potentially explain 

up to half or more of the observed variance of quantitative measures of fire severity.  Elevation 

was a very strong explanatory variable in our study.  Also, our measure of local topographic 

position—Topographic Position 150, or the difference between the elevation of a focal pixel and 

the average elevation of all pixels within 150 meters—was very important.  Managers recognize 

the importance of topography, especially its impact on controlling the spread of wildfires through 

the arrangement of rivers, lakes, and barren areas.  In a more explicit sense, North et al. (2009) 

support the use of topography as a guide for restoration treatments.  The use of strategically 

placed area treatments (SPLATs; Finney 2001) reduces the amount of area that needs to be 

treated to reduce overall landscape level extreme fire behavior (Schmidt et al. 2008).  The 

combination of these two approaches to managing landscapes for resilience in the face of 

potentially severe fire is, we hope, great. We have shown that more exposed topographic settings 

on the landscape deserve special consideration when developing fire management plans.  In 

Lassen Volcanic National Park, lower elevation slopes that were comparatively higher in 

elevation in relation to the slopes around them—and therefore more exposed—were associated 

with high severity fire.  These topographic settings that have a tendency to burn at higher 

severity than other settings are also associated with historic, observed evidence of high severity 

fire.   

We have also shown that the combination of pyrogenic vegetation and exposed slopes can ‘fix in 

place’ some patches of high intensity burning on the landscape.  Although embedded—in our 
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case study—in a mixed conifer forest that typically experiences low- to moderate-severity fire, 

these vegetation communities exist because of high severity fire, they promote high severity fire, 

and they exist in locations that increase the chances for high severity fire.  In the Sierra Nevada 

and the southern Cascades, brushfield communities are declining in area because of fire 

suppression activities and have been invaded by conifers in the modern era (Nagel and Taylor 

2005).  Historically, upper slope positions and higher elevations tended to burn with high 

severity as well (Beaty and Taylor 2001; Bekker and Taylor 2001).  Vegetation patches that are 

‘fixed in space’ have implications for the steady-state shifting mosaic paradigm.  This paradigm 

posits that when viewed over a large enough spatial frame and a long enough temporal frame, 

disturbance prone ecosystems exhibit a relatively static proportion of vegetation types and 

structural stages, although their specific locations are random (Bormann and Likens 1979; 

Turner et al 1993; Perry 2002).  In contrast, we suggest that while the proportion of the 

landscape occupied by a specific vegetation type or structural stage might be in relative 

equilibrium, the locations of those patches could be ‘fixed in place’ through the interaction of the 

disturbance process itself—here fire—and the topography. 

 

Future Directions 

The research presented here has inspired my own new perspective on the drivers of variations in 

fire severity.  These drivers fall into the broad categories of Weather, Climate, Vegetation, 

Management, and Topography (Figure 1).  Specifically, Weather includes temperature, wind 

speed and direction, and humidity; Climate include annual and interannual variations as well as 

climate teleconnections; Vegetation includes vegetation type, the amount and arrangement of 
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fuels, and changes in vegetation type; Management includes development, logging, fire 

suppression, fragmentation, and all other human impacts; and Topography includes elevation, 

slope, aspect, topographic position, and topographic configuration.  Their overlapping or non-

overlapping realms of spatial and temporal influence on fire severity necessitate different 

investigative approaches.  For example, an investigation of the effects of weather on fire severity 

requires detailed day-to-day weather observations and daily to sub-weekly maps of fire spread 

(e.g. Collins et al. 2007).  Examining the effects of management requires data on multiple fires 

over a larger area and over a longer time frame (e.g. Thompson et al. 2007).  The analysis of 

climatic effects on fire regimes often requires long-term fire records accessible only through 

paleoecological methods (e.g. Taylor 2000).  The effects of fire on different vegetation types in 

the large landscape often must be dealt with in abstractions through the use of models (He and 

Mladenoff 1999), but ‘natural experiments’ allow for the examination of the differential effects 

of vegetation treatments (Agee and Skinner 2005) and differential topographies (Iniguez et al. 

2009) on fire behavior and effects.  These approaches all take topography into account only in so 

far as it is the physical template on which the other drivers of fire severity interact.  I am not 

advocating for the use of geomorphological models to enhance our understanding of the effect of 

topography on fire severity.  However, the recognition that models may be the only way to study 

certain aspects of fire regimes has proven to be a fruitful approach in the past and should 

continue to have a prominent place in fire ecology. 

Finally, climate change has the potential to impact most of the above identified drivers of fire 

severity and also to drive changes in fire regimes themselves.  Already, it has affected weather 

by increasing minimum temperatures (Breshears et al. 2005) while concurrently lengthening the 

fire season by inducing earlier snowmelt (Westerling et al. 2006).  Climate change also makes 
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more likely the emergence of no-analog climates and novel ecosystems that can potentially bring 

with them novel fire regimes (Williams and Jackson 2007).  The seemingly stable forest 

ecosystems that exist today may be assemblages of species that established under different 

climate regimes at different points in the past such that their transience on the landscape is only 

evident on the time scale of centuries to millennia (Millar and Woolfenden 1999). In this work, 

we have shown that the potential exists on the landscape for some topographic positions to 

produce more high intensity and high severity fire than other positions.  As vegetation 

communities are broadly impacted further by climate change through migration, compositional 

changes, or structural changes, landscape heterogeneity in vegetation composition will continue 

to be driven by spatially discrete drivers of fire intensity and severity.  
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Figure 5-1: A log-log plot of the drivers of fire severity and their characteristic scales of spatial 
and temporal variation.  
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