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Abstract

Chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) has

become a routine for detecting genome-wide protein-DNA interaction. The success of ChIP-

Seq data analysis highly depends on the quality of peak calling to detect peaks of tag counts

at a genomic location and evaluate if the peak corresponds to a real protein-DNA interaction

event. The challenges in peak calling include 1) how to combine the forward and the reverse

strand tag data to improve the power of peak calling, 2) how to account for the variation of

tag data observed across different genomic locations, and 3) how to use the negative control

data to reduce false positives caused by regional biases that might be generated by local

structure.

I introduce a new peak calling method based on the generalized linear model (GLMNB)

that utilizes negative binomial distribution to model tag count data and accounts for the

variation of background tags that may randomly bind to the DNA sequence at varying

levels due to local genomic structures and sequence contents. I allow local shifting of peaks

observed on the forward and the reverse stands, such that at each potential binding site,

a binding profile representing the pattern of a real peak signal is fitted to best explain the

observed tag data with maximum likelihood. Our method can also detect multiple peaks

within a local region if there are multiple binding sites in the region.
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I also extend the model to incorporate ChIP-Seq data with multiple tracks in order to

answer broader scientific questions. Assuming there are k ChIP replicates and one negative

control data under c biological conditions, the extended model with likelihood ratio test can

be used to identify 1) binding event under at least one conditions or 2) differential binding

events under different biological conditions.
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Chapter 1

Introduction

1.1 ChIP-Seq

Chromatin immunoprecipitation with massively parallel DNA sequencing (ChIP-Seq) is a

new powerful high throughput tool for detecting protein-DNA interactions. Compared with

traditional technologies, i.e., ChIP-chip, ChIP-Seq has been shown to offer higher specificity,

sensitivity, peak resolution and reproductivity with stronger signal to noise ratios but less

starting material[1].

While ChIP-Seq experiment offers higher data quality, it also gives several challenges

for calling peaks in the subsequent data analysis. First, the mapped ChIP-Seq data are

distinguished by single end, unpaired forward and reverse strands, which mark both ends

of ChIP fragments, rather than the precise protein-DNA binding sites. It is challenging to

combine both forward and reverse strands properly and increase the peak resolution. Second,

since the ChIP reactions are enrichments rather than purifications, it is critical to model the

background noise using a proper statistical model and distinguish real binding events from

background noise. ChIP-Seq data shows local biases in different genomic regions due to

chromatin structure, GC content bias in genome sequence as well as sequencing bias and
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mapping bias from experiments. Third, it is a interesting though challenging topic to increase

peak calling power and specificity by combining multiple tracks of ChIP-Seq data. Suppose a

protein has different binding preferences under different experimental conditions(for example,

different cell life cycles) for the same genome location, we may wonder whether there is a

general framework to answer the following questions: 1) find genome locations where there

is a binding event under all conditions except negative conditions; 2) find genome locations

where there is a binding event under at least one condition.

1.1.1 ChIP-Seq experiment

It is worthy to quickly go over the process of ChIP-Seq experiment so that we can understand

model setting in this dissertation. There are typically two sets of data, ChIP sample and

negative control sample. ChIP sample is the one we apply all procedures to detect the binding

tags, whereas negative control sample (or input sample) is the one we process through

exactly the same procedures as we do for ChIP sample but without adding the specific

protein or transcription factor. Therefore, negative control sample theoretically contains

all random background tags without enrichment for the specific transcription factor. There

can be false positive signals in the control sample, due to for example high GC content,

genome sequence binding affinity bias or sequencing error. As shown in Figure 1.1(a), in

the ChIP sample, the target transcription factor (TF) is added into the cell sample. The

transcription factor will cross-link with genome sequence after incubation for several hours.

Then genome sequence will be sheared by sonication or non-sequence specific enzyme. The

cutting positions are considered randomly distributed not far from TF protected DNA region

without a specific sequence pattern. But the genome sequence at or close to the binding

position has less chance been cut, thanks to the protection by TF. Therefore, the entire

genome sequence are chopped into pieces of either TF-DNA complex or DNA only. TF-DNA
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complex contains a short fragment of DNA sequence and a TF binding to it. A TF-specific

antibody (either monoclonal or polyclonal antibody) is added and specifically enriches those

TF-DNA complexes. A majority of TF-DNA complexes are caught by the antibody during

the enrichment step, whereas most DNA fragment not bound to the transcription factor

are washed out. However, since the enrichment is less efficient than purification, the DNA

fragment library actually contains a majority of DNA fragments from TF-DNA complexes

and a minority of DNA fragments from DNA fragment only. The affinity between TF-DNA

complexes and antibody is strong, whereas the affinity between DNA fragment and antibody

is weak and therefore considered as background noise. After the enrichment, TF and the

antibody are detached from DNA fragment and removed by changing the buffer condition.

All enriched DNA fragments pass through a DNA size filter. Only those DNA fragments

with a specific length (i.e. 200 base pair (bp) to 500 bp) will pass the filter and proceed to

the sequencing step.

Due to the consideration of high throughput sequencing efficiency, only the two short ends

(usually 25 to 50 nt) of each DNA fragment are sequenced separately from both 5’ and 3’ ends.

The 5’ end sequenced DNA are called forward read tags and the 3’ end sequenced DNA are

called reverse read tags. We only consider single end unpaired data in this dissertation. There

is no knowledge to pair a forward read tag and a reverse tag and map back to exactly the

same DNA fragment before sequencing. The dataset produced directly from the sequencing

procedures are called raw data. The raw data are mapped to a reference genome using short

sequence aligners, for example, Bowtie [2]. As a final step, read tags go through a data

cleaning step, where only read tags uniquely mapped to reference genome are kept. The

chromosome, start and end genome coordinates and strand direction information is stored

as four columns in the dataset. For example, the tag at chromosome 1 starting at 199518200

and ending at 199518236 from forward strand is displayed as follows:

chromosome start end dir chr1 199518200 199518236 F
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It is straightforward to extract forward and reverse tags respectively for a coordinate

range for a specific chromosome. For illustration purposes, non-overlapping bins of width

10 bp in the desired range are created. All forward (reverse) tags with starting positions in

a certain bin will be counted. In other words, the binned data contain counts of forward

(reverse) tags starting from this bin. Then the forward (reverse) count data can be plotted

as vertical bars in red(green).

Figure 1.1(b) illustrates a data display example for bined data. The X-axis is the genome

coordinate in chromosome 1. The Y-axis is the tag counts starting at a certain bin. The

red(green) vertical bars represent number of forward(reverse) tags in 10 bp wide bins. For-

ward and reverse signals form two peaks roughly 70 bp apart. The distance between observed

data peaks varies by locations, but reflects the protected region of genome sequence by TF.

The heights of forward and reverse peaks are generally similar but varies by locations too.

They represent the strength of TF binding signals if there is no background noise.

  

Transcription factor

5� end 3� end

Genomic DNA

�random� cutting

Remove protein and antibody,
DNA size filter (200- 500 bp),
Sequence both ends.

DNA fragments

Reverse 
read tags

Forward 
read tags

(a)

199517800 199518000 199518200 199518400

0
2

4
6

8

chr1

Genome Coord.

F
/R

 C
o
u
n
ts

(b)

Figure 1.1. (a)ChIP-Seq experiment and (b)ChIP-Seq data display example

According to the ChIP-Seq experiment description above combined with experience on

ChIP-Seq data analysis, there are several features of ChIP-seq data that require our atten-

tion:

• Forward tags and reverse tags are single end, unpaired count data;
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• The distribution of tags, even in the negative control sample, varies a lot along the

entire genome, with different levels of average and variation;

• The peak position of forward strand tags and reverse strand tags are shifted in op-

posite directions around the binding position, and the peak shift distances vary by

transcription factor and genome location;

• Due to different non-specific binding affinity in different locations, there are cases where

strong signals can be observed in both ChIP sample and negative control data, which

are false positives.

A unique feature of ChIP-Seq data is that the tag counts are obtained from the two

strands of the genome. Due to the ChIP-Seq technology, at each protein-DNA binding site,

the tag counts observed from the forward strands are mostly located on the left hand side of

the binding site, and the tag counts observed from the reverse strand are mostly located on

the right hand side. Due to the single-end, unpaired feature, a challenge of peak calling in

ChIP-Seq data is therefore how to combine the tag counts from the two strands to increase

the power of detecting real protein-DNA interaction sites. In particular, the accumulation

(peaks) of tag counts at real binding sites often forms specific shapes, named binding profiles

for both strands. It will help us to distinguish real protein binding event from random binding

event. The binding profile is partially related to the ChIP-Seq technology and the structure

of the proteins of interest, and therefore a valuable resource for binding event detection.

The distance between forward strand peak and reverse strand one, in other hands, varies by

transcription factors, experiments and even genome location. It should be taken into account

when designing the binding site prediction algorithm to rule out its impact on signal strength

variation as much as possible. How to best estimate such distance and therefore increase

the power of detecting real protein-DNA interaction sites is therefore an interesting topic.

In addition to real peaks, regions in the genome have varying levels of random binding
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affinity. Tags are more frequently observed at locations with open chromatin structures,

and sequence contents also affect the variability of random tag counts ([3, 4, 5]). How to

best account for the variation of tag counts across the genome and distinguish between real

protein-DNA interaction and random binding event is an important problem in peak-calling.

In the following session, a few previously published ChIP-Seq callers are reviewed in order

to identify aspects for the new peak calling method to improve power. After the review of

published methods, my peak calling method using Generalized linear model with negative

binomial distribution(GLMNB) will be present.

1.1.2 Literature review on previous published methods

Peak calling in ChIP-Seq data analysis has been a very active field since its introduction. It

seems almost impossible and not necessary to describe all details from previous methods in

this section. One can refer to a comprehensive review on method comparison in ChIP-Seq

peak callers written by Pepke et al [6], an algorithm performance review by Wilbanks et

al [7], and two ChIP-Seq technology review papers by Park [8] and Metzker [9]. Here I

would like to summarize modeling/algorithm features on several selected popular methods

published since 2008 and focus on the commons and difference compared to GLMNB. These

methods includes MACS by Zhang et al [1], SPP by Kharchenko et al [10], CisGenome by Ji

et al [11], QuEST by Valouev et al [12], BayesPeak by Spyrou et al [3, 4], SISSRs by Jothi

et al [13], HPeak by Qin et al [14].

Most previous methods utilized four steps: 1) building a background model, 2) estimating

a global peak shift, 3) calling peaks, and 4) reporting predicted binding positions with

significant p-values or false discovery rate (FDR)[15].

Yong Zhang et al presented MACS [1] in 2008, which became a very popular tool. MACS

first empirically estimates a peak shift based on a sample of high confidence windows which
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contain a large fold-enrichment between ChIP and negative control samples. Such global

peak shift size is estimated as half the distance between the modes of the forward and the

reverse peaks from high confidence windows. Tags are merged together by shifting forward

strand tags to the right and reverse strand tags to the left by this global peak shift size.

There are two steps in MACS to prepare data for call peaking. MACS first linearly scales

the total control tag count to be the same as the total ChIP tag counts so that FDR are

appropriate. MACS also removes duplicate tags in excess of the tag amount with respect

to the current sequencing depth (i.e. 1 tag per position for 3.9 million tags for FoxA1 ChIP

sample) per genomic position in order to avoid biases during ChIP-DNA PCR amplification.

MACS uses a scan window and assumes that merged tag counts in the non-overlapping

window in non-enriched regions follows a Poisson distribution, with the Poisson parameter

being the maximum value of average tag counts within a 1 thousand base pair(kb), 5 kb and

10 kb neighborhood or across the entire genome. A candidate peak is called if its p-value

under the Poisson distribution is below a threshold p-value (1e-5 by default). An empirical

FDR is reported only when a control data is available.

There are two key features in MACS. 1) Empirical modeling peak shift size and shifting

tags before peak calling. 2) MACS shifts and combines all forward and reverse strand tags

toward the center by the estimated shift size. To account for the local variability of tag

counts due to genomic features, MACS estimates a local Poisson parameter as the average

tag counts from an up to 10 kb neighboring region around each sliding window. The local

Poisson parameter is calculated differently with or without control samples.

Even though the empirical peak shift size modeling is good enough for rough determi-

nation of forward and reverse strand peak distance, such a peak shift ignores the peak shift

variation among different genomic regions. Even though MACS utilizes a local estimation

for the Poisson parameter, it does not fully consider the variation of tag count mean and

variance in different genomic regions. When there are no control data available, MACS does
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not compute a FDR. Due to the constraint of mean and variance equality in the Poisson

distribution, however, MACS is not able to model peak data if the variability of tag counts

far exceeds the mean. Also, MACS reports binding regions with highly variable sizes, rang-

ing from 200 bp to 7 kb. Due to its wide range of sizes of the predicted binding intervals,

MACS tends to call only a single peak at regions of clusters of peaks.

SPP [10] was published by Kharchenko et al in 2008. Rather than estimating the global

peak shift size based on a large number of aligned signals, SPP first selects a global peak

shift size from a cross-correlation analysis, which maximizes the linear Pearson correlation

of the tag counts between forward and reverse strands. SPP then chooses a window size

based on the estimated peak shift size. Two methods are recommended by SPP, window

tag density method(WTD) and mirror tag correlation(MTC), depending on tag distribution

immediately near the center of TF protected region. TF protected region is defined as a

region between a major forward tag peak and a major reverse tag peak, where there is

barely no ChIP-Seq tags thanks to TF protection from sonication or enzyme cutting in

ChIP-Seq experiment. For example, MTC works better if most of TF protected regions in

the entire genome are less than 30 bp. In WTD method, SPP utilizes a sliding window and

calls a peak if a binding score is locally maximized, which is defined as twice of the difference

between two qualities: 1) the geometric mean of the forward upstream tag counts and the

reverse downstream tag counts and 2) the arithmetic mean of the forward downstream tag

counts and the reverse upstream tag counts. In other words, SPP is looking for a position

that maximizes the correlation between forward/reverse strands and upstream/downstream

characters similar to Chi-square test in a contingent table. In MTC method, SPP focuses

on the mirror similarity of forward and reverse strand peak shapes. In addition to the same

binding score as that in WTD method, MTC method also looks at the Pearson’s correlation

between tag count vector of forward strand in upstream and that of reverse strand in the

downstream. A peak position is identified at the location where such mirror similarity and
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binding scores reach a local maximum. For both methods, window tag counts are adjusted

by subtracting the weighted number of negative control tags from the tag counts in ChIP

sample within the same window. The weight is calculated as the ratio of overall tag counts

from ChIP sample to overall tag counts from negative control sample. SPP returns a FDR[15]

for each window, which is estimated as the fraction of the number of binding positions with

a certain score or higher found in the negative control sample over the number found in

ChIP sample. Such a background sample is either a negative control sample if available or

a random background sample generated by randomly reassigning position of ChIP sample

tags. SPP assigned a common smallest FDR value to the top peaks until the present of a new

false positive appears as binding score increases, which does not reflect the peak strength for

top peaks.

CisGenome proposed by Hongkai Ji et al [11] uses a sliding window (window size= 100 bp)

strategy with a two-pass algorithm for peak calling. In the first pass, high-quality peaks are

detected to estimate peak shift, which is computed as median distance between the modes of

coupled forward and reverse peaks. In the second pass, the reads are shifted toward the center

by the estimated peak shift size and peaks are called using sliding window strategy again. A

peak is called if the observed tag counts within a sliding window(default 100 bp) significantly

exceeds the expected tag counts based on a background distribution. When negative control

sample is not available, CisGenome models the observed tag counts in a window using a

negative binomial distribution, which is claimed to allow the background rate of DNA tag

occurrence to vary across the genome and to have a more flexible Γ distribution. The negative

binomial parameters from the non-binding regions where there are two or fewer reads per

window. When negative control data is available, CisGenome models the difference between

ChIP counts and control counts in window using binomial distribution conditional on the

total tag counts from the ChIP and negative control samples. It has been demonstrated

that the negative binomial model can better fit ChIP-Seq datasets than the Poisson model
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[11]. CisGenome also takes advantage of control data and fits it with conditional binomial

distribution. However, this method ignores the shape of binding profile or the similarity of

forward and reverse strands.

Valouev et al [12] introduced QuEST in 2008. QuEST estimated a global peak shift

size as half of the average distance between peaks on the negative and positive strand from

regions with a large number of tags (over 600 tags within 300 bp and at least 20-fold scoring

maximum than its next local scoring maximum if control sample is not available or at least

20-fold changes between scoring maximum in ChIP sample and that in control sample).

Secondly, QuEST creates separate kernel density estimation profiles for both strands and

combines both into one height score by shifting toward the center using the estimated peak

shift size. In other words, within each window of size 21 bp, a combined kernel density is

estimated. Local peak height and ratio of peak height between ChIP sample and control

sample are used for peak calling. To be more specific, a candidate peak is called, if a

sliding window contains a shifted profile with height greater than the threshold calculated

from FDR procedure, and the following artificial criteria meets as well. The criteria include

a) the lowest point between the current peak and the adjacent higher one is lower than

0.9 times the height of the higher peak, b) the height of background peak is lower than the

background height threshold and c) the height ratio between ChIP and background is greater

than a certain threshold. A empirical FDR is used to correct multiple comparison problems.

The control data is split into two parts, pseudo-ChIP and control dataset. The same peak

calling procedure is applied on pseudo-ChIP. Peaks called from pseudo-ChIP sample are

treated as false positive calls and used to calculate FDR. The empirical FDR is calculated

as number of false positives from pseudo-ChIP sample divided by number of peaks called in

ChIP-Seq experiment. However, QuEST called peaks only based on local peak height and

ratio. QuEST does not involve any statistical models to fit the count data and does not

convert peak scores into definitive P values.
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SISSRs was introduced by Jothi et al[13] in 2008. SISSRs first estimates the average

DNA fragment length from the ChIP-Seq reads as the average distance between nearest

forward and reverse strand tags. All short read tags are directionally extended from their

start position to form a hypothetical DNA fragment by this estimated DNA fragment length,

the same method employed by Robertson et al[16]. Such DNA fragment length is used to

identify candidate binding sites and estimate false discovery rate(FDR). SISSRs partitions

the genome into small windows of equal size(by default of size 20 bp), then counts the number

of forward and reverse tags located in each window. SISSRs then calculates a net tag count

for each window, as the difference between the number of forward tags and the number of

reverse tags in the same window. A candidate binding site is recorded whenever the net tag

count transits from positive to negative, and a few arbitrary conditions are satisfied. These

conditions include: 1) the number of reverse strand tags upstream of candidate binding sites

of size F is above a user defined tag count threshold (2 tags by default); 2) the number

of forward strand tags downstream of candidate binding sites is above the same tag count

threshold; 3) the sum of these two tag counts is above another tag count threshold estimated

based on the user-set FDR.

The FDR is estimated as the ratio of the expected peak number based on background

Poisson distribution, to the number observed in the real data for a certain tag counts. Such

count value R is estimated from a Poisson background distribution. The only parameter

of Poisson background distribution is the expected number of forward and reverse tags, λ,

within a window of length the same as DNA fragment length. It can be calculated as the DNA

fragment length multiplied by the number of tags divided by the mappable genome length.

SISSRs is claimed to discover many more peaks than previous published methods, which is

probably due to the over-optimistic Poisson model with constant expected value and therefore

over-optimistic FDR calculation. By default extremely small FDR threshold of 10−3, SISSRs

discovers over 15,000, 10,000 and 5,500 peaks for GABP, FoxA1 and NRSF ChIP-Seq data,
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close to the amounts discovered by other popular peak callers such as MACS, QuEST, SPP

[7]. Even though SISSRs does not allow users to choose a specific FDR threshold, one can

still imagine that if a FDR threshold of 0.05 is used, SISSRs will discover many more peaks

with many false positives included.

BayesPeak presented by Spyrou et al [3, 4] uses a fully Bayesian hidden Markov model

to call peaks and is available in Bioconductor[17] package in R software. BayesPeak first

divides the whole genome into non-overlapping windows of equal sizes. The window size is

at least half the estimated average DNA fragment length, which is much larger than the

bin size used in previous methods, such as SISSRs[13], QuEST[12], HPeak[14]. Forward

and reverse tag counts in each window are recorded. Since the window size is at least half

the average fragment length, forward tag counts in a window are highly correlated with the

reverse tag counts in the adjacent downstream window. Instead of using two hidden states

(ChIP-enriched/ non-enriched) for each window as HPeak[14] did, BayesPeak assumes four

hidden states for two adjacent windows along the entire genome. These four hidden states

include 1) non-enriched state in both windows; 2) non-enriched state for the first window

and ChIP-enriched state for the second window; 3) ChIP-enriched state for the first window

and non-enriched state for the second window; and 4) both ChIP-enriched states for both

windows. The first hidden state is considered to have no enrichment effect, while the rest

three states are considered to have the same enrichment effect. Therefore, the forward tag

counts in the current window and the reverse tag counts in the next window in non-enriched

state are assumed to follow a Poisson distribution. The expected value equals to the product

of a relative fragment abundance parameter for non-enriched state multiplied by a correlation

parameter between ChIP sample and input sample with a power of the tag counts in both

windows from input data. The forward tag counts in the current window and the reverse

strand tag counts in the next window in ChIP-enriched state are assumed to follow a similar

Poisson distribution but another relative fragment abundance parameter for ChIP-enriched



13

state added to that for non-enriched state. And both relative fragment abundance parameters

for ChIP-enriched state and non-enriched state are assumed to follow a gamma distribution

with two different sets of parameters. Therefore, the forward tag counts and reverse tag

counts are modeled using negative binomial distribution conditioning on enrichment states.

Beta prior is used for the transition probability from ChIP-enriched state to non-enriched

state and that from ChIP-enriched state to ChIP-enriched state. Using Markov chain Monte

Carlo(MCMC), all these model parameters are estimated. The likelihood expression were

evaluated using Baum-Welch algorithm and Gibbs sampling[18]. The nature of the hidden

states is then estimated by the marginal posterior probabilities using the estimated model

parameters. For instance, if the posterior probability of ChIP-enriched state for a specific

window is greater than 0.5, then the hidden state is assigned as ChIP-enriched state. The

computing time is also a practical problem for BayesPeak. For example, it takes 11 hours

for BayesPeak on Linux laptop with 4GB memory to complete peak calling for chromosome

1 (247MB with 310,000 tags in ChIP sample and 430,000 tags in input sample). With the

help of parallel computing technology in 12 cores, it takes roughly 20 hours to complete peak

calling for FoxA1 ChIP data with negative control.

HPeak proposed by Qin et al [14] uses a hidden Markov model-based (HMM) Peak-

finding algorithm to analyze ChIP-Seq data. HPeak is a model-based approach compared

to some model-free methods discussed above, such as SPP. HPeak first extends each short

read tag directionally from its start position to form a hypothetical DNA fragment(HDF)

by a DNA fragment length, the same method employed by Robertson et al[16] and Jothi

et al[13]. HPeak then partitions the whole genome into equal size bins(by default, 25 bp)

and counts the numbers of extended HDF that fall in each bin. Then adjacent bins with

non-zero tag counts are merged into single wide candidate peaks. The read coverage of

each peak is recorded if this coverage exceeds a significance threshold. In the peak calling

step, HPeak applied a two-state HMM on the HDF coverage profile to classify bins into
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either ChIP-enriched(peak) regions or non-enriched(background) regions. For ChIP only

data, Generalized Poisson (GP) distribution and zero-inflated Poisson (ZIP) distribution

are used to model read counts in ChIP-enriched states and background states, respectively.

The generalized Poisson distribution is claimed much more flexible to model ChIP-enriched

regions than Poisson distribution, because it contains two parameters, a Poisson mean λ

and dispersion parameter, φ, and allows the variance different from the mean, similar to the

negative binomial distribution. The zero-inflated Poisson distribution is used to model non-

enriched regions whose bins contain mostly no tag because of low noise of ChIP-Seq data.

A zero-inflated Poisson distribution is a mixture distribution of point mass at zero and a

Poisson distribution, which contains two parameters, a Poisson mean µ and the proportion of

zeros π in the mixture distribution. For an experiment with both ChIP sample and negative

control sample, the HDF count differences are calculated between ChIP sample and control

sample for all bins along the whole genome. The ChIP-enriched regions in ChIP sample are

modeled using GP distribution, while both the ChIP-enriched and non-enriched regions in

control sample, along with the non-enriched regions in ChIP sample, are modeled using ZIP

distribution.

The HMM parameters are estimated from summary statistics using Viterbi algorithm[19].

For example, the initial probability of being in a peak and the transition probability from

background to peaks, are estimated as the proportion of the genome that is covered by

candidate peaks. The transition probability from peaks to background is defined in a way

such that the length of peaks is roughly equivalent to the median length of merged candidate

peaks. Two parameters in GP distribution and ZIP distribution are estimated with the

method of moments. For two-sample cases, parameters of GP and ZIP distribution are

estimated for ChIP samples and control samples, respectively.

Two steps of the Viterbi algorithm are iteratively applied until convergence: 1) condition-

ing on the current estimate of model parameters, hidden states are assigned for each bin; 2)
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conditioning on the currently assigned hidden states, bins are classified into ChIP-enriched

and non-enriched states and therefore model parameters are updated. As a result, HPeak

reports genomic location and length of merged peaks, the summit location with highest HDF

coverage, the log transformed posterior probability of bins in ChIP-enriched states. There

is no FDR reported by HPeak.

After detailed introduction on these previous published ChIP-Seq peak callers, we can

now summarize their features.

The first feature is the background modeling using negative binomial distribution rather

than Poisson distribution suggested by CisGenome, BayesPeak and HPeak. In addition

to the mean parameter in Poisson distribution, negative binomial distribution contains a

dispersion parameter which gives more flexibility to model background with variance larger

than the mean. Therefore, modeling using negative binomial distribution is claimed to better

fit ChIP-Seq data [11]. The second feature is the adjusted local tag background from MACS.

MACS utilizes an adjusted local tag average as the estimated mean parameter λ for Poisson

distribution in background; it accounts for not only the tag distribution in the current

window, but also the tag distribution in the neighboring regions. Such strategy reduces

the peak significance when the neighborhood background level is high and prevents false

positives. Another widely used feature is sliding window strategy. With proper background

modeling and multiple comparison correction, peaks can be called with appropriate FDR or

p-values.

Even though these published methods are powerful to call peaks, there are also several

aspects that require improvement. First of all, all programs above estimate a global and

constant peak shift size for all potential binding regions based on either average distance

between forward and reverse tag peaks from high confidence regions or the maximum Pearson

correlation between forward and reverse tag vectors. All programs simply merge the forward

and reverse tags together before peak calling, and thus may lose power if the estimated peak
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shift size is inaccurate at some real binding sites. The variation of peak shift distance in

different genome locations is simply ignored, which will lose power. For example, Figure

1.2 shows a histogram of half distance between forward and reverse peaks in 654 windows

containing the most tags in FoxA1 ChIP sample. The average value of 62 bp is used in

MACS to merge forward and reverse strand tags. The standard deviation of 38 bp is simply

ignored, not to mention that the sample average is not a good center tendency estimate for

skewed data.
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Figure 1.2. Histogram of half distances between forward and reverse peaks from 654 tag
rich regions

In addition, most methods except QuEST and SPP(MTC) do not incorporate any binding

shape information(including similarity between forward and reverse peaks). QuEST and

SPP(MTC) also have their own limits. QuEST only combines forward and reverse tags within

an arbitrary fixed range, 90 bp. SPP(MTC) combines forward and reverse tag information

with a wider range but does not perform well if the protected region is wider than 30 bp.

Besides these two aspects, no algorithms investigates demonstrate a simulation study
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to access the correctness of p-value and peak calling resolution. A simulation study is

demonstrated in Chapter 3.

Peak callings using MACS, SPP, CisGenome, SISSRs and BayesPeak are carried out us-

ing their default setting and their corresponding performances are compared with GLMNB.

MACS and SPP are chosen because they are ranked top two with the highest spacial reso-

lution among ChIP-Seq peak calling algorithms by Willbanks and Facciotti[7]. CisGenome

is chosen because it is the first algorithm to employ negative binomial distribution to model

the background noise and claims that negative binomial is superior to Poisson distribution.

SISSRs is chosen because it claims to discover more peaks than most other algorithms. I

want to evaluate GLMNB performance with respect to power. Finally, BayesPeak is chosen

because it is one of the two algorithms that employ Bayesian framework on peak calling.

1.1.3 Important features in ChIP-Seq data

There are also several important features that utilized the first time in this dissertation.

The first feature in ChIP-Seq data is the strong correlation between forward and reverse

strand tags. To show that, I use non-overlapping window of size 10 kb to scan all chro-

mosomes in FoxA1 ChIP sample and negative control sample and record the tag counts.

The scatter plots of forward tag counts and reverse tag counts from FoxA1 ChIP sample

in Figure 1.3(a) and negative control sample in Figure 1.3(b) are plotted. The correlation

between forward and reverse tag counts for ChIP sample(r = 0.959) and negative control

sample(r = 0.914) are both very strong. Besides, at a binding site, the tag counts often

follow a binding profile specific to the target protein, which provides valuable information

to best distinguish between a real binding event from spurious peaks caused by events other

than the target protein.

A second valuable feature in ChIP-Seq data is the variable peak shift distance depending
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Figure 1.3. Scatter plot of forward and reverse tag counts for FoxA1 ChIP-Seq data in
ChIP sample(a) and control sample(b).

on genome locations. As plotted in Figure 1.2 and discussed above, even for the same

transcription factor, the forward and reverse peak distance may vary depending on the

genome structure or sequence content. It is more flexible to use a local peak shift parameter

rather than a constant value to fit the data best.

A third essential feature is the moderate correlation between ChIP sample data and

input data. Thanks to the enrichment step in chromatin immunoprecipitation, the tag

spatial distribution in the ChIP sample is moderately correlated with that in negative control

sample. For example, in Figure 1.4, total tag counts from both strands in 10 kb non-

overlapping windows in ChIP sample are plotted against those in negative control sample

and have a Pearson’s correlation value equal to 0.576. Each black dot represents total tag

counts from ChIP sample and negative control sample in a 10 kb window. There are windows

where tag counts in ChIP sample are far greater than those in negative control sample shown

in top left side of the plot, which suggest their possible binding status. By contrast, there

are also windows where tag counts in ChIP sample are very close to those in negative control

sample shown along the bottom right edge, which suggest a non-binding status. Without the
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information from negative control sample, one may easily call those windows shown on the

bottom right edge, for example the one with 300 ChIP tags and 490 input tags, a significant

binding site according to its large value of tag counts in ChIP sample. However, it should be

classified as non-binding position. Therefore, a negative control sample should be included

in the peak calling framework in order to reduce false positives caused by this correlation.
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Figure 1.4. Scatter plot of tag counts in 10kb non-overlapping windows between ChIP
and input samples.

1.2 Significance of GLM for peak calling

There are several points I need to highlight for this Ph.D dissertation in order to distinguish

from previous methods.

First, it has be realized that the over-dispersion and high proportion of zero counts violate

the assumption for Poisson distribution. Therefore, we use negative binomial distribution to

model non-binding region. Second, we propose to call peaks with the adjustment of control
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data in GLMNB, rather than artificially set a cutoff of fold enrichment. This strategy

should be more efficient in combining control data in peak calling. Third, a few methods

that estimate peak shift only estimate a global one and ignore its variation before calling

peaks. In other words, they do not allow the peak shift to vary in different regions, which

may reduce the power of peak calling. The proposed generalized linear model (GLMNB)

includes a adjusted peak shift parameter and let the model select a value that maximizes

the likelihood. Fourth, a challenge of peak calling in ChIP-Seq data is how to combine

the tag counts from the two strands to increase the power of detecting real protein-DNA

interaction sites. In particular, the accumulation (peaks) of tag counts at real binding sits in

specific shapes referred as a binding profile, can help us distinguish real protein binding from

random binding. The binding profile is partially determined by the ChIP-Seq technology

and by the structure of the proteins of interest. In addition to real peaks, regions in the

genome have varying level of random peaks. Tags are more frequently observed at locations

with open chromatin structures, and sequence content also affects the variability of random

tag counts ([3, 4, 5]). How to best account for the variation of tag counts across the genome

and distinguish between real protein-DNA interaction and random peaks is an important

problem in peak-calling. The local peak shift estimate along with the forward and reverse

binding profiles generated in high confidence regions provides a powerful way to solve the

question above. Fifth, since we use a sliding window strategy, we utilize false discovery rate

to correct multiple testing for positively dependent tests. Last but not least, along with

the increasing amount of ChIP-seq data, it will increase the specificity if we can integrate

multiple ChIP-Seq tracks to call peaks. It is straightforward under generalized linear model

framework.
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1.3 Generalized linear model

In order to model the non-binding ChIP-seq count data using the negative binomial dis-

tribution and call peaks by hypothesis testing, we use the generalized linear model (GLM)

framework. A benefit of GLM is its capability of combining different levels of information

as covariates in the model. In such cases, we can simply add or remove different covariates

without changing the framework.

1.3.1 Generalized linear model

The theory of generalized linear models was introduced by Nelder and Wedderburn in 1972

[20] as an extension from ordinary linear regression model. It allows modeling based on ran-

dom error model besides normal distribution, for example Poisson distribution and Negative

Binomial distribution for count data. The purpose of GLM is to specify the relationship be-

tween observed response variable and a certain number of covariates. Usually, GLM model

the mean of response variable using a linear combination of covariates. Therefore, GLM

contain three components.

• A random component for the response, y, with a distribution following an exponential

family.

• A linear systematic component (linear predictor) connecting covariates, η = Xβ.

• A known monotonic, one-to-one, differentiable link function g(�) connecting the linear

predictor to the fitted values, i.e., E(y) = g−1(η).

where X are independent variables, β is a coefficient vector for X, and η is the linear

combination of X.

To sum up, in GLM, we specify the observed response value with a certain exponen-

tial family distribution, f , with parameters w = (µ, . . . ). We can model the mean µ using
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a monotonic, one-to-one, differentiable link function g(�) relating covariates X and corre-

sponding coefficients β.

Y ∼ f(y) (1.1)

µ = E(Y ) (1.2)

η = g(µ) = X′β =

p
∑

j=1

xjβj (1.3)

1.3.2 Regularity conditions for asymptotic property of maximum

likelihood estimate in Generalized Linear model

Some regularity conditions for asymptotically normal distribution of Wald test statistic and

asymptotically χ2 distribution of likelihood ratio test in generalized linear model include[21,

22]:

• The set of data values which has positive probability should not depend on the unknown

parameter.

• The observed samples are independent and identically distributed; Or if the assumption

of i.i.d. observations does not hold, the amount of information in the data increases

indefinitely as the sample size increases;

• The first and second derivatives of the log-likelihood function are defined;

• The Fisher information matrix must be positive semidefinite and continuous as a func-

tion of a parameter;

• The maximum likelihood estimator is consistent.
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1.3.3 Newton-Raphson method

Even through there are two other methods for finding estimates of GLM, Fisher score method

and iteratively re-weighted least squares (IRLS) method, we highlight the Newton-Raphson

method in the following description because of its quick convergence and straightforward

implementation. We start the Newton-Raphson method from the joint independent and

identically distributed (i.i.d.) probability function as

f(y; θ, φ) =
n
∏

i=1

f(yi; θ, φ)

The likelihood function is

 L(θ, φ; y) =
n
∏

i=1

f(θ, φ; yi)

More specifically, for exponential family,

f(yi; θ, φ) = exp

{

yiθi − b(θi)

a(φ)
+ c(yi, φ)

}

we have the following likelihood and log likelihood function

 L(y; θ, φ) =
n
∏

i=1

exp

{

yiθi − b(θi)

a(φ)
+ c(yi, φ)

}

ℓ(y; θ, φ) =
n
∑

i=1

{

yiθi − b(θi)

a(φ)
+ c(yi, φ)

}

where θ is the canonical parameter, b(θ) is the cumulative, φ is the dispersion parameter and

c() is a normalization term.

To get the first derivatives of the coefficient vector β, we use the chain rule from the log
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likelihood function,

∂ℓ

∂βj

=
n
∑

i=1

(
∂ℓi
∂θi

)(
∂θi

∂µi

)(
∂µi

∂ηi

)(
∂ηi

∂βj

)

=
n
∑

i=1

(
yi − b′(θi)

a(φ)
)(

1

V ar(µi)
)(
∂µ

∂η
)i(xij)

=
n
∑

i=1

(
yi − µi

a(φ)V ar(µi)
)(
∂µ

∂η
)i(xij) (1.4)

where i = 1, . . . , n indexes the observations and xij is the i-th observation for the j-th co-

variate Xj, j = 1, . . . , p.

We use Newton-Raphson method to find estimates β̂ by iterating the following formula.

β(r) = β(r−1) −
{

ℓ′′(β(r−1))
}−1

ℓ′(β(r−1)) (1.5)

for r = 1, 2, . . . with a reasonable vector of starting values β(0) until convergence.

The matrix of second derivatives (the observed Hessian matrix) is given by

∂2ℓ

∂βj∂βk

=
n
∑

i=1

1

a(φ)

∂

∂βk

{

(
yi − µi

V ar(µi)
)(
∂µ

∂η
)i(xij)

}

=
n
∑

i=1

1

a(φ)
[(
∂µ

∂η
)i

{

(
∂

∂µ
)i(
∂µ

∂η
)i(

∂η

∂βk

)i

}

yi − µi

V ar(µi)

+
yi − µi

V ar(µi)

{

(
∂

∂η
)i(

∂η

∂βk

)i

}

(
∂µ

∂η
)i]xij

= −
n
∑

i=1

1

a(φ)
[

1

V ar(µi)
(
∂µ

∂η
)2
i (1.6)

−(µi − yi)

{

1

V ar2(µi)
(
∂µ

∂η
)2
i

∂V ar(µi)

∂µ
− 1

V ar(µi)
(
∂2µ

∂η2
)i

}

]xijxik



25

With the first two derivatives from equations (1.4) and (1.6), one can easily implement a

Newton-Raphson algorithm to obtain the MLE of β.

The standard error of coefficient estimates can be found from the diagonal elements of

variance estimate. In fact, the usual variance estimate in statistical software package is

calculated as the inverse matrix of negative second derivatives. For GLM, we calculate the

variance estimate using observed Hessian matrix [23].

1.3.4 Poisson GLM

Count data are often fitted using a Poisson GLM. Counts refer to a simple counting of events,

i.e., number of read tags within a small range of genome coordinates in ChIP-Seq data. If

the following assumptions hold, we can fit count data using Poisson model.

• The probability of observing a single event over a small interval is approximately

proportional to the size of that interval.

• The probability of two events occurring in the same narrow interval is negligible.

• The probability of an event within a certain interval does not change over different

intervals.

• The probability of an event in one interval is independent of the probability of an event

in any other interval.

Since the Poisson probability density function (pdf) can be formulated as

f(y;µ) = e−µµ
y

y!

where µ is the expected value of y.



26

we can write it in exponential-family form as follows

f(y;µ) = exp{ylog(µ) − µ− logΓ(y + 1)}

Therefore, the canonical link is log link, θ = log(µ). In other words, we can model the counts

using a Poisson GLM

Y ∼ Poisson(µ)

log(µ) = (X)Tβ

And the mean and variance from a Poisson GLM are

E(Y ) = µ

V ar(Y ) = µ

However, there are two disadvantages about modeling count data using Poisson model. First,

the mean and variance functions of the Poisson distribution are identical. In practice, it is

almost never the fact in ChIP-Seq data. Over-dispersion happens when the real variance

is greater than the expected variance in the model. In our Poisson GLM, over-dispersion

often occurs because the real variance is higher than the expected variance, the same value

as the mean. Hence, we tend to reject less null hypothesis than we should and lose power if

over-dispersion happens.

Second, Poisson model assumes that the ratio between variance and mean are constant,

1. It is not the case for count data in ChIP-Seq data. Within a region with a fairly large

amount of tags on average, we tend to see large variation of counts. However, within a region

with small amount of tags on average, we tend to see small variation. So it suggests that
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the ratio between variance and mean should vary.

1.3.5 Negative binomial GLM

Negative binomial GLM is a good alternative model that overcomes the over-dispersion

problem of Poisson model. The negative binomial GLM uses the same log link function as

Poisson model and is almost always constructed based on a Poisson-gamma mixture model.

There are two methods for motivating the negative binomial regression model, NB-1(constant

over-dispersion) and NB-2(variable over-dispersion) regression models. Since we also need

to take into account of variable ratio between variance and mean, we here emphasize NB-2

model.

1.3.5.1 Constant over-dispersion

In constant over-dispersion NB-1 GLM, we consider the following Poisson-gamma mixture,

yi|λi, xi ∼ Poisson(λi) (1.7)

λi ∼ Γ(δ, µi)

log(µi) = xiβ

where yi is observed tag count in i-th bin in a sliding window, xi is expected tag count in

i-bin. λi is the expected value for yi under Poisson distribution, which at the same time is

a random variable following a Γ distribution with two parameters, δ and µi. δ is the scale

parameter in Γ distribution not dependent on bins and µi is the mean parameter for i-th

bin for Γ distribution. And µi after log transformation is linked to the linear combination of

expected tag count in i-th bin with β as coefficient.
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Then the mixture distribution is derived as

f(yi|xi) =

∫

∞

0

e−λiλyi

i

yi!

δµi

Γ(µi)
λµi−1

i e−λiδdλi

=
δµi

Γ(yi + 1)Γ(µi)

Γ(yi + µi)

(δ + 1)yi+µi

=
Γ(yi + µi)

Γ(yi + 1)Γ(µi)

(

δ

1 + δ

)µi
(

1

1 + δ

)yi

Let dispersion parameter α = 1/δ, we have

f(yi|xi) =
Γ(yi + µi)

Γ(yi + 1)Γ(µi)

(

1

1 + α

)µi
(

α

1 + α

)yi

With the first two moments as

E(yi) = exiβα

V ar(yi) = exiβ(1 + α)α

Since the variance to mean ratio, also named over-dispersion, is given by (1 + α)α, which is

constant for all observations, we call this setting as constant over-dispersion, or NB-1.

1.3.5.2 Variable over-dispersion

Variable over-dispersion(NB-2) GLM allow a gamma heterogeneity where the gamma noise

has a mean of 1. It is a more general situation than constant over-dispersion (NB-1) GLM.

As derived in Hardin and Hilbe’s book [24], an individual unobserved random variable ui

follows Γ distribution with mean= 1. The product µiui is the conditional Poisson mean.

yi|ui, xi ∼ Poisson(µiui) (1.8)
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where ui ∼ Γ(α = ν, β = ν) (1.9)

That is f(ui) =
νν

Γ(ν)
uν−1

i e−νui

link function: log µi = xiβ (1.10)

where yi and xi are defined the same as in equation 1.7. µi is the expected value of yi in

i-th bin from a certain sliding window. ui is a random variable following Γ distribution. ν

in equation 1.9 is a common constant for shape parameter α and rate paramter β in a Γ

distribution, which will be cancelled out after calculating unconditional distribution of yi.

Using log link function, we are able to link µi, the expected value of yi, with the linear

combination of expected tag count xi for i-th bin with β as coefficients in equation 1.10.

The conditional distribution is

f(yi|ui) =
e−µiui(µiui)

yi

yi!

The unconditional distribution is

f(yi|xi) =

∫

∞

0

e−µiui(µiui)
yi

yi!

νν

Γ(ν)
ui

ν−1e−νuidui

=
µyi

i

Γ(yi + 1)

νν

Γ(ν)

∫

∞

0

e−(µi+ν)uiu
(yi+ν)−1
i dui

=
µyi

i

Γ(yi + 1)

νν

Γ(ν)

Γ(yi + ν)

(µi + ν)yi+ν

=
Γ(yi + ν)

Γ(yi + 1)Γ(ν)

(

µi

µi + ν

)yi
(

ν

µi + ν

)ν

=
Γ(yi + ν)

Γ(yi + 1)Γ(ν)

(

1 − 1

µi/ν + 1

)yi
(

1

µi/ν + 1

)ν

Let dispersion paramter α = 1/ν

f(yi|xi) =
Γ(yi + 1/α)

Γ(yi + 1)Γ(1/α)

(

1 − 1

αµi + 1

)yi
(

1

αµi + 1

)1/α
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The moments of this distribution is given by

E(Yi) = µi

V ar(Yi) = µi + αµ2
i

Therefore, the over-dispersion is given by 1 + αµi. In exponential family notation, we

have

f(yi;µi, α) = exp{yi log

(

αµi

1 + αµi

)

+
1

α
log

(

1

1 + αµi

)

+ log Γ(yi + 1/α)

− log Γ(yi + 1) − log Γ(1/α)}

And the full log likelihood function is given by

ℓ(µ; y, α) =
n
∑

i=1

{yi log(α exp(xiβ)) − (yi +
1

α
) log(1 + α exp(xiβ))

+ log Γ(yi + 1/α) − log Γ(yi + 1) − log Γ(1/α)} (1.11)

1.4 Nonparametric regression

Suppose we have n observations (x1, y1), . . . , (xn, yn) which follows the model

yi = m(xi) + ǫi

where ǫi is a random error with E(ǫi|xi) = 0 and V ar(ǫi|xi) = σ2(homoscedasticity). It is

not necessarily a normal random variable.

Since we do not have any information about how x and y are related, we may want to

estimate m(x) without specifying a form of m(x).
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1.4.1 Kernel regression estimators

One common used method to estimate m(x) is Kernel regression estimator in the following

form.

m̂h(x) =
n
∑

i=1

∫ si

si−1

Kh(u− x)duYi

where Kh(�) =
1

h
K(

�

h
)

with si = (X(i) + X(i+1))/2, X(0) = −∞ and X(n+1) = +∞. We call it Gasser and Muller

(GM)-estimator [25]. In order to get a close form of the first and second derivatives of m̂(x),

we choose Gaussian kernel as kernel function.

K(t) =
1√
2π
exp(−t

2

2
)

So the GM-estimator can be written as

m̂h(x) =
1√
2πh

n
∑

i=1

∫ si

si−1

exp[−(u− x)2

2h2
]duYi (1.12)

with si = (X(i) + X(i+1))/2, X(0) = −∞ and X(n+1) = +∞. where the bandwidth, h,

is usually estimated using least-squares cross-validation[26]. Least-squares cross-validation

minimizes the following criterion function

LSCV (h) =
1

n

n
∑

i=1

(m̂h,−i(xi) − Yi)
2

where m̂h,−i(xi) denote the leave-one-out estimators with the i-th point dropped.
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1.5 Multiple testing correction

When we conduct a set of hypothesis testing simultaneously, we need to adjust the significant

level appropriately in order to control family wise type I error rate(FWER). In other words,

multiple testing correction is to adjust the significance level αj being more stringent for j-th

test, such that the FWER is controlled at a desired level αFWER.

1.5.1 Multiple testing correction by controlling family wise error

rate

Suppose all the hypothesis tests are independent of each other, we can adjust the significance

level directly using Bonferroni correction or Sidak correction. With Bonferroni correction,

the adjusted significance level for n hypothesis testings is

αadj =
αFWER

n

With Sidak correction, the adjusted significance level for n hypothesis testings is

αadj = 1 − (1 − αFWER)
1

n

However, both methods controlling FWER can be too conservative for large-scale testing

problems, such as ChIP-Seq data.

1.5.2 Multiple testing correction by controlling false discovery

rate

If the testing results are viewed as exploratory and can be re-tested using another indepen-

dent study, control of false discovery rate(FDR) is preferred. A false discovery rate (FDR) is
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defined as the expected rate that significant features are truly null, in my case, non-binding

status. For example, controlling FDR at 5% means among all features called significant,

5% of these are allowed to be truly non-binding on average. Comparing with the classical

approach controlling the FWER in a strong sense, the approach controlling FDR can be

viewed as controlling FWER in weak sense [15]. And FDR is a sensible measure of the bal-

ance between the number of true positives and false positives in many genome-wide studies

[27]. FDR is defined as the expected value of the proportion of number of false positives

among all of those called significant as shown below:

FDR = E(
#FalsePositives

#Positives
)

Usually, the FDR is difficult to calculate in practice. So the following calculation is used as

an approximation of FDR when the total number of testing is large[27].

FDR =
E(#FalsePositives)

#Positives

The Benjamini-Hochberg-Yekutieli procedure [15] is widely used in practice to control

the false discovery rate. If the tests are independent or positively correlated, one can find

the largest index k from a non-decreasing ordered p-values P(1) ≤ P(2) ≤ · · · ≤ P(m) from m

multiple testing, such that the following inequality holds:

P(k) ≤
k

m
α

And the top k hypotheses with the smallest p-values are rejected. It guarantees FDR con-

trolled at level α.
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When the number of testing is large, FDR can further be approximated as

ˆFDR =
m× P(k)

k

In this dissertation, this formula is used to estimated FDR from multiple tests on significance

of profile coefficient β1 and likelihood ratio test, since the number of tests is considered large

scale.



Chapter 2

Datasets and Methods

2.1 ChIP-Seq datasets

The following real ChIP-Seq data with or without negative control samples are used in

Chapter 4 and Chapter 5 to examine the performance of GLMNB and compare with other

algorithms. FoxA1 ChIP-Seq data were obtained from Zhang et al [1]. There are two

samples available, ChIP sample and negative control sample, with about 3.9 million and 5.2

million uniquely mapped tags, respectively. The ChIP libraries were prepared using PCR pre-

amplification step and size selection for DNA fragments between 150 and 400 bp. All tags are

of length 36 bp. FoxA1 was reported to bind FoxA2 motif with conservative DNA sequence

(CYTGTTACWYW), FoxA1 motif (WAAGTAAACA) and Foxo1 motif (CTGTTAC)[28,

29]. Here Y stands for C/T and W stands for A/T.

Growth-associated binding protein(GABP) ChIP sample, neuron-restrictive silencer fac-

tor(NRSF) with monoclonal antibody ChIP sample and NRSF with polyclonal antibody

ChIP sample were obtained from Valouev et al [12]. The GABP ChIP sample contains

7.9 million uniquely mapped tags. GABP was reported to bind/interact with GABPA

motif with a conservative DNA sequence of (RACCGGAAGT), where R stands for A/G.
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NRSF ChIP samples with monoclonal antibody and polyclonal antibody contain 5.4 million

and 8.8 million uniquely mapped tags, respectively. NRSF was reported to bind/interact

with REST(NRSF) motif with a conservative DNA sequence of (GGMGCTGTCCATGGT-

GCTGA) [30].

Ets variant gene 1(ETV1) ChIP data were obtained from Abe et al[31] with GEO numbers

GSM558678 and GSM558677. There are a ChIP sample and a negative control sample, with

about 10.7 million and 15.0 million uniquely mapped tags, respectively. The conservative

DNA motif sequence is (G/C/A)GGA)(A/T)(G/A).

Epstein-Barr virus nuclear antigen 2 (EBNA2) ChIP data and Recombining binding pro-

tein suppressor of hairless(RBPJ) ChIP data were obtained from Zhao et al[32]. There

are a ChIP sample and a negative control sample for EBNA2 data, with about 6.6 million

and 7.0 million uniquely mapped tags with GEO numbers GSM729852 and GSM729855,

respectively. There are two biological replicates of ChIP samples and a negative control

sample of RBPJ data, with about 7.6 million, 8.9 million and 7.0 million uniquely mapped

tags and GEO numbers GSM729853, GSM729854 and GSM729855, respectively. The con-

servative DNA motif sequences for EBNA2 and RBPJ include EBF(DGTCCCYRGGGA),

RUNX(AAACCACARM), ETS (ACAGGAAGTG), NFκB (WGGGGATTTCCC) and PU.1(MGGAAGTGAAA

motifs[32, 33], where D stands for A/G/T.

GATA1 multiple time point ChIP data are obtained from Professor Ross Hardison’s lab.

There are one ChIP sample and one negative control sample for each time point of vehicle

cells, 0hr, 3hr, 14hr, 24hr and 30hr. It is a good practical dataset for testing GLMNB in

multiple track settings.
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2.2 Simulated ChIP sample and negative control sam-

ple

Simulated ChIP sample and negative control sample are generated as described below and

used to evaluate peak calling performance in Chapter 3. The background ChIP-seq data

are simulated from a negative binomial distribution with size parameter 0.0042 and the

probability of success parameter 0.57, which roughly correspond to 9 million tags mapped

to the whole genome on each strand. We further simulated 500 ChIP-Seq peak positions

randomly with at least 5 kb apart between any two. The tags from these 500 peaks are

simulated under another negative binomial distribution. The average tag counts are given

by the FoxA1 profile shown in Figure 2.1 multiplied by a simulated peak strength, 2γ, where γ

is defined as a signal fold change relative to the profile. The probability of success parameter

of the negative binomial distribution is p = 0.1. The fold change parameter γ is generated

from a standard normal distribution. Most values of 2γ lie in [0.125, 8], which is slightly wider

than the estimated coefficients, β̂1, from the FoxA1 peaks. The peak shift for each simulated

peak region is also generated from a normal distribution with mean 100 bp and standard

deviation 20 bp. Finally we merged the simulated background data into the simulated ChIP-

Seq peak data by adding the tag counts in both data together at each genome coordinate. To

examine the capability of calling peaks when there are strong signals in both ChIP sample

and negative control sample, 95 peak positions are randomly selected from 500 ones. Tags

near these 95 positions combined with previously independently generated background tags

are treated as a negative control sample. In other words, these randomly selected peaks are

considered as non-binding positions, whose strong signals are due to non-specific binding

events. Any predicted peaks on these 95 positions are classified as false positives.
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2.3 Negative binomial GLM with shifting parameters

We propose this negative binomial generalized linear model(GLMNB) with shifting param-

eters to call peaks in ChIP-Seq data. This model is built based on generalized linear model

described in section 1.3. Before discussing the model, we have the following assumptions:

• Around a predicted binding site, there are both forward(F) and reverse(R) peaks with

adequate and comparable tag counts and similar shapes;

• Forward strand peak is on the upstream(left) of binding site and reverse strand peak

is on the downstream(right) of binding site, the same distance apart;

• There are common binding profiles/shapes among binding sites along the entire genome

for both strands.

There are six components that will be discussed in the following sections.

1. Binding profiles for forward and reverse strands respectively;

2. Sliding overlapping windows;

3. Shifting parameter from the assumed protein binding site to the forward (reverse)

peaks;

4. Negative binomial generalized linear model in general;

5. Negative binomial generalized linear model with ChIP sample only;

6. Negative binomial generalized linear model with negative control.

2.3.1 Binding profiles

We want to first construct binding profiles based on the ChIP sample data. We first use a non-

overlapping window to accumulate tag counts from high confidence region across the whole



39

genome. The window of size winsize=1,000 bp scanning through the whole genome, and col-

lect all windows that contain at least profilewincount=50 forward (reverse) tags, respectively.

The reason to use 1,000 bp rather than the same window size as peak calling is that we need

a wider window that allows profiles to shift to both sides from the center. After collecting all

such windows, we center the windows at the peak positions of forward (reverse) tags. Second,

we accumulate tags from all centered windows, and record the average of F/R tags at every

base pair. Here, we treat relative coordinates as Xj, Xj = −500,−499,−498, . . . , 499, 500

and the average counts as Yj. Remember the average counts Yj is not differentiable yet,

and therefore the first and second derivatives do not exist. Finally, we can get a smooth

curve m̂(x) using kernel regression estimator with Gaussian kernel mentioned in section

1.4.1. Here x is the relative coordinate in the window, with values between −500 and 500.

The bandwidth parameter h for kernel regression is chosen by least square cross validation

using non-parametric(np) package in R. Such bandwidth parameter h minimizes the sum

of square difference between the kernel estimated average count in each bin and observed

average counts using cross validation.

Based on the GM estimator derived from equation (1.12), we can also calculated the first

and second derivatives for m̂h(x),

m̂h(x) =
1√
2πh

n
∑

i=1

∫ sj

si−1

exp[−(u− x)2

2h2
]duYj (2.1)

m̂′

h(x) =
1√

2πh3

n
∑

i=1

∫ sj

si−1

exp[−(u− x)2

2h2
](u− x)duYj (2.2)

m̂′′

h(x) =
1√

2πh3

n
∑

i=1

∫ sj

si−1

exp[−(u− x)2

2h2
]

(

(u− x)2

h2
− 1

)

duYj (2.3)

with sj = (X(j) +X(j+1))/2, X(0) = −∞ and X(n+1) = +∞.

As a result, we obtain a binding profile for each strand, representing the smoothed and

double differentiable shapes of real binding peaks. Figure 2.1 illustrates binding profiles at
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each relative coordinate in a window before(vertical bars) and after(curves) smoothing for

forward and reverse strands. These binding profiles are generated from FoxA1 ChIP sample

data. Figure 2.2 shows the first derivative of binding profiles for forward (red) and reverse

(green) strands.
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Figure 2.1. Smoothed binding profiles constructed from FoxA1 ChIP-Seq data.
Smoothed (curve) and raw (vertical bars) forward and reverse binding profiles are
estimated from FoxA1 ChIP-Seq data, shown in red and green, respectively.

2.3.2 Sliding window

We use the sliding window strategy to scan the genome and call peaks. The size of sliding

windows is specified by users according to the selection size of DNA fragments in the ChIP-

Seq experiment and the protein protected DNA size. A sliding window width should be

wide enough to observe all the shifted forward and reverse tags around the binding site. It

yet cannot be too wide since including a wide background region will reduce predicted peak

significance. Since DNA fragments between 150 bp and 400 bp were selected in most ChIP-
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Figure 2.2. The first derivative plots of non-shifted binding profiles for forward(a) and
reverse(b) strands. Adaptive window size is chosen such that the first derivative of forward
and reverse profile is not zero.

Seq data and the protein protected DNA size is around 100 bp, we consider winsize=500

bp as appropriate default size of sliding windows. The user can choose a more appropriate

window size if desired.

The step size of sliding windows should also be considered as a trade-off between calcu-

lation efficiency and peak spatial resolution. Even through we will have high resolution by

using a small step size, a lot of unnecessary computing time will be spent on trying to call an

identical peak among several sliding windows. If the step size is too large, however, the peak

calling resolution is reduced and there is a good chance that some true peaks will be missed

between two nearby sliding windows. Stepsize=10 bp is chosen as the default step size to get

high resolution while maintaining good computing speed. Users have the flexibility to elect

their own step size to achieve the balance between spatial resolution and computing time.

After determining winsize and step size, each sliding window is divided into n bins of

binsize=10 bp. The number of forward(F) and reverse(R) tags, whose first nucleotide falls in

bins, are recorded. The count data within each bin from ChIP sample are named the observed

tag counts by bins and denoted as yF
i , i = 1, . . . , n for forward strands and yR

i , i = 1, . . . , n

for reverse strands, respectively. Here yF
i and yR

i denote observed tag count in i−th bin in
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a sliding window from forward and reverse strands, respectively. The tag counts from both

strands were merged into a tag count vector. This procedure is repeated for each sliding

window.

~y = yS =
(

yF
1 , . . . , y

F
n , y

R
1 , . . . , y

R
n

)T
(2.4)

where yS denotes the observed tag count vector from ChIP sample data. In a ChIP sample

only dataset, for example, we have n = 50 and an observed tag count vector of length 100 for

each sliding window. If a negative control sample is available, an observed tag count vector

at the same sliding window from the negative control data are collected and attached to the

observed tag count vector from the ChIP sample data, y as follows.

~y =







yS

yC






(2.5)

yC =
(

zF
1 , . . . , z

F
n , z

R
1 , . . . , z

R
n

)T
(2.6)

where yC denotes the observed tag count vector from negative control data, and zF
i , i =

1, . . . , n and zR
i , i = 1, . . . , n are tag counts per bin from negative control data.

In more general, assume that there are kj (j = 1, . . . , c) ChIP sample replicates and one

negative control sample under each of c biological conditions. We can construct an observed

tag count vector y for each sliding window as following,

y =



















~y1

~y2

. . .

~yc



















(2.7)
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~yj =

























yS
j,1

yS
j,2

. . .

yS
j,kj

yC
j

























~yS
j,j′ =

(

yF
1 , . . . , y

F
n , y

R
1 , . . . , y

R
n

)T

j,j′
, j′ = 1, . . . , kj (2.8)

yC
j =

(

zF
1 , . . . , z

F
n , z

R
1 , . . . , z

R
n

)T

j
(2.9)

2.3.3 Shifting parameter

Remember in section 2.3.1, we have discussed how to generate the binding profile from

high confidence regions in ChIP sample data. However, there is a peak shifting distance

from binding position to its upstream peak formed by forward tags and its downstream

peak formed by reverse tags. And such a distance varies by genomic locations. In order to

account for such variability and combine the information from forward and reverse strands

effectively, we add in a shifting parameter, θ, which represents such a peak shift. This

parameter measures the distance between forward/reverse strand peaks in two ends and

predicted binding sites in the middle. Since we assume the forward and reverse strand

departs the same distance from binding sites, the forward and reverse peaks are at the

genome coordinates (x− θ) and (x+ θ), where x is the predicted binding site.

As shown in Figure 2.3, suppose that we have a binding site at the center of a sliding

window. In order to fit the observed forward and reverse tags best, we need to shift the

profile of the forward strand (red) to the left and the profile of the reversed strand (green)

to the right by θ, for example 50 bp in the figure. Since the shifting parameter θ is a model

parameter, we can estimate its maximum likelihood estimator (MLE) along with other model

parameters. The detailed method on finding MLE is described in section 2.3.4. It makes
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sense to have forward and reverse smoothed profile in slightly different heights and shapes,

which is taken care of by the profile coefficient, β1, in the model. That is because forward

and reverse strand tags are single end, unpaired data and we often observe a slight difference

in shape from different windows. Allowing such a difference can fit the real data better.
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Figure 2.3. Forward(reverse) smoothed Profiles are shifted toward left(right) by a local
parameter, θ, in order to fit observed tag counts.

In more details, with a positive shifting parameter, θ the estimated height at any genome

position t of the forward strand profile and of the reverse strand profile are

m̂F (t+ θ) =
1√

2πhF

N
∑

j=1

[

∫ Sj

Sj−1

exp(−1

2

(

u− t− θ

hF

)2

)du

]

Y F
j

m̂R(t− θ) =
1√

2πhR

N
∑

j=1

[

∫ Sj

Sj−1

exp(−1

2

(

u− t+ θ

hR

)2

)du

]

Y R
j

where hF and hR are the bandwidths for forward and reverse strand. The bandwidths are
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estimated to minimize the difference between predicted shape and observed average tag

counts using least-squares cross-validation. It is implemented using R function (npregbw) in

the non-parametric library, np.

So for the i-th bin in a sliding window, the expected read tag counts in a bin centered at

position dmi after shifting are

xF
i =

∫ ci+1

ci

m̂F (t+ θ)dt ≃ m̂F (
ci + ci+1

2
+ θ) × binsize

.
= m̂F (dmi + θ) × binsize (2.10)

xR
i =

∫ ci+1

ci

m̂R(t− θ)dt ≃ m̂R(
ci + ci+1

2
− θ) × binsize

.
= m̂R(dmi − θ) × binsize (2.11)

xi
.
= (xF

i , x
R
i ) = (m̂F (dmi + θ), m̂R(dmi − θ)) × binsize (2.12)

where ci is the left boundary position of bins with equal binsize. and dmi is the middle point

of bins. Then based on equation (2.2) the first derivative of xi can be written as

∂xi

∂θ
= (

∂

∂θ
m̂F (dmi + θ),

∂

∂θ
m̂R(dmi − θ)) × binsize

∂

∂θ
m̂F (dmi + θ) =

1

h3
√

2π

N
∑

j=1

[

∫ Sj

Sj−1

exp(−1

2
(
u− dmi − θ

h
)2)(u− dmi − θ)du

]

Y F
j

∂

∂θ
m̂R(dmi − θ) =

−1

h3
√

2π

N
∑

j=1

[

∫ Sj

Sj−1

exp(−1

2
(
u− dmi + θ

h
)2)(u− dmi + θ)du

]

Y R
j

Now we can also derive the second derivative of xi from equation (2.3) as follows:

∂2xi

∂θ2
= (

∂2

∂θ2
m̂F (dmi + θ),

∂2

∂θ2
m̂R(dmi − θ)) × binsize

∂2

∂θ2
m̂F (dmi + θ) =

1

h3
√

2π

N
∑

j=1

[

∫ Sj

Sj−1

exp(−1

2
(
u− dmi − θ

h
)2)(

1

h2
(u− dmi − θ)2 + 1)du

]

Y F
j
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∂2

∂θ2
m̂R(dmi − θ) =

1

h3
√

2π

N
∑

j=1

[

∫ Sj

Sj−1

exp(−1

2
(
u− dmi + θ

h
)2)(

1

h2
(u− dmi + θ)2 − 1)du

]

Y R
j

From negative control sample, a pair of forward and reverse pseudo binding profiles are

generated using the same procedure above, denoted as m̂F
C(t + θ) and m̂R

C(t − θ), where

subscript C denotes that it comes from the negative control data. The term ”pseudo” marks

that it is false positive signals from negative control data. The pseudo estimated tag counts

from negative control data are denoted as xC
i by plugging m̂F

C(t + θ) and m̂R
C(t − θ) into

equation (2.12).

2.3.4 Negative binomial GLM for general cases

We use negative binomial distribution with a variate overdispersion parameter (NB-2) gener-

alized linear model to fit the relationship between observed count data and binding profiles

as well as binding profiles from negative control data. That is the Poisson model with

gamma heterogeneity where gamma noise has a mean of 1. As described in section 1.3.5.2,

the expected tag count, µ, after logarithm transformation with base e is linked to the linear

combination of binding profile from ChIP data, X , binding profile from negative control

data, z, and baseline average tag counts, β0.

log µ = Xβ = β0 +
c
∑

j=1





kj
∑

j′=1

(β1,j~xj,j′) + β2,j ~zj





µ = E(~y)

~xj,j′ = ((~0)T , . . . , (~0)T , . . . , (~0)T , . . . , (xS
j,j′)

T , . . . , (~0)T , . . . , (~0)T , . . . , (~0)T )T

~zj = ((xC
1 )T , . . . , (xC

1 )T , . . . , (xC
j )T , . . . , (xC

j )T , . . . , (xC
j )T , . . . , (xC

c )T , . . . , (xC
c )T )T
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Where xS
j,j′(j′ = 1, . . . , kj) is the smoothed profile vector from the j′-th ChIP sample under

the j-th biological condition. xC
j is the smoothed pseudo profile vector from negative control

sample under j-th biological condition. µi is expected tag counts, ui = exp(ǫi) is a gamma

distributed noise with mean 1. λi is the linear combination of x. β1,j is the common coefficient

for smoothed signal profile xS
j,j′ in all replicates under j-th condition. β2,j is the coefficient for

smoothed pseudo signal profile xC
j under j-th condition. And β0 is the baseline parameter.

Please note that this is a general model for three scenarios, 1) one ChIP sample only, 2) one

ChIP sample and one negative control, and 3) multiple tracks, including kj (j = 1, . . . , c)

ChIP samples under c biological conditions and one negative control sample. I will discuss

the first two scenarios in the following sub-sessions in more details and the third scenario in

Chapter 5.

2.3.5 Negative binomial GLMNB with ChIP sample only

Here we discuss the first scenario mentioned in section 2.3.4, when there is only one ChIP

sample data. This is the simplest scenario, where c = 1 and k = 1 and there is no negative

control sample. The model written in equation (2.13) can be re-written as follows.

log µ = β0 + β1~x

µ = E(y)

~x = x(θ)S

where y is the one from equation (2.4), β0 is the log of baseline average tag count from

non-specific events, θ is the peak shifting parameter and β1 is the coefficient of binding

profile.
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To test whether a binding event from this ChIP sample only, the following hypothesis is

tested against a normal distribution.

H0 : β1 = 0 (2.13)

HA : β1 > 0

According to Hardin and Hilbe [24],

β̂1
D−→ N(β1, V ar(β̂1)) (2.14)

where standard error of β̂1 is estimated from square root of the first diagonal element of

expected Hessian matrix shown in equation (1.6). Therefore, Wald test is used to examine

the significance of β1 using the asymptotic normal distribution.

An alternative approach is the likelihood ratio test(LRT). In our constant β0 strategy, the

log of baseline average tag count, β0, is fixed at the initial values, either estimated from the

current window or a neighborhood using adjusted baseline strategy (Refer to section 2.3.8

for more details). There is one variables, α, in the null model. There are three variables, β1,

θ, and α in the alternative model. One can calculate the log of the likelihood ratio between

the alternative model and null model as ∆ℓ = ℓ1−ℓ0. Then we have the following asymptotic

χ2 distribution in the non-binding region.

2 × ∆ℓ
D−→ χ2

df (2.15)

where the degrees of freedom is estimated as the sample median of 2×∆ℓ from non-binding

regions, in practice those regions with small amount of tags (for example, ≥ 5 on both

strands but ≤ 8 in either strands) per 500 bp window. Even though θ parameter violates

the regularity conditions for χ2 distribution, with a corrected degrees of freedom, one can
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still use LRT to test the significance of TF binding event[34].

The log likelihood function is as follows:

ℓ(µ; y, α) =
2n
∑

i=1

{yi log(α exp(xiβ1 + β0)) − (yi +
1

α
) log(1 + α exp(xiβ1 + β0))

+ log Γ(yi + 1/α) − log Γ(yi + 1) − log Γ(1/α)}

(2.16)

There are three parameters need to be estimated using maximum likelihood method for

ChIP sample only.

ω = (β1, θ, α)

where β1 is the coefficient for smoothed binding profile xi, θ is the shifting parameter dis-

cussed in section 2.3.3 and α is the dispersion parameter discussed in section 1.3.5.2.

Then the gradient is

∂ℓ

∂ω
= (

∂ℓ

∂β1

,
∂ℓ

∂θ
,
∂ℓ

∂α
)T

∂ℓ

∂β1

=
2n
∑

i=1

{

yixi − (yi +
1

α
)xi

αexp(xiβ1 + β0)

1 + αexp(xiβ1 + β0)

}

∂ℓ

∂θ
=

2n
∑

i=1

{

yi

(

∂xi

∂θ

)

β1 − (yi +
1

α
)

αexp(xiβ1 + β0)

1 + αexp(xiβ1 + β0)

(

∂xi

∂θ

)

β1

}

∂ℓ

∂α
=

2n
∑

i=1

{yi

α
+

1

α2
log(1 + αexp(xiβ1 + β0))

−(yi +
1

α
)

exp(xiβ1 + β0)

1 + αexp(xiβ1 + β0)
+ ψ0(yi +

1

α
)(−α−2) − ψ0(

1

α
)(−α−2)}

where ψ0(t) =
Γ′(t)

Γ(t)
is digamma function
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And the Hessian matrix is written in the following formula:

∂2ℓ

∂ω2
=













∂2ℓ
∂β2

1

∂2ℓ
∂β1∂θ

∂2ℓ
∂β1∂α

∂2ℓ
∂θ∂β1

∂2ℓ
∂θ2

∂2ℓ
∂θ∂α

∂2ℓ
∂α∂β1

∂2ℓ
∂α∂θ

∂2ℓ
∂α2













(2.17)

where

∂2ℓ

∂β2
1

=
2n
∑

i=1

(

−(yi +
1

α
)xi

αexp(xiβ1 + β0)xi

(1 + αexp(xiβ1 + β0))2

)

∂2ℓ

∂β1∂θ
=

2n
∑

i=1

(

yi
∂xi

∂θ
− (yi +

1

α
)
∂xi

∂θ

αexp(xiβ1 + β0)

1 + αexp(xiβ1 + β0)
(1 +

xiβ1

1 + αexp(xiβ1 + β0)
)

)

∂2ℓ

∂β1∂α
=

2n
∑

i=1

(

−xi
exp(xiβ1 + β0)

1 + αexp(xiβ1 + β0)
(− 1

α
+

yi + 1
α

1 + αexp(xiβ1 + β0)
)

)

∂2ℓ

∂θ2
=

2n
∑

i=1

(yiβ1
∂2xi

∂θ2
− (yi +

1

α
)β1(

αexp(xiβ1 + β0)β1(
∂xi

∂θ
)2

[1 + αexp(xiβ1 + β0)]2

+
αexp(xiβ1 + β0)

1 + αexp(xiβ1 + β0)

∂2xi

∂θ2
))

∂2ℓ

∂θ∂α
=

2n
∑

i=1

(

exp(xiβ1 + β0)β1
∂xi

∂θ

α(1 + αexp(xiβ1 + β0))
− (yi + 1

α
)exp(xiβ1 + β0)β1

∂xi

∂θ

(1 + αexp(xiβ1 + β0))2

)

∂2ℓ

∂α2
=

2n
∑

i=1

[
−yi

α2
− 2

α3
log(1 + αexp(xiβ1 + β0)) +

2exp(xiβ1 + β0)

α2(1 + αexp(xiβ1 + β0))

+
(yi + 1

α
)exp2(xiβ1 + β0)

(1 + αexp(xiβ1 + β0))2
+ ψ′

0(yi +
1

α
)

1

α4
+ ψ0(yi +

1

α
)

2

α3

−ψ′

0(
1

α
)

1

α4
− ψ0(

1

α
)

2

α3
]

In section 2.3.2, we have the close form of {xi}2n
i=1, {∂xi

∂θ
}2n

i=1 and {∂2xi

∂θ2 }2n
i=1. We are also able

to get the close form of gradient vector, Hessian matrix and therefore the covariance matrix

and standard error of β1. The Newton-Raphson method is used to obtain the maximum
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likelihood estimators (MLE) for parameters ω = (β1, θ, α). In principle, starting from a

random value of ω(0), we iteratively update ω by

ω(r) = ω(r−1) −
{

ℓ′′(ω(r−1))
}−1

ℓ′(ω(r−1)) (2.18)

for r = 1, 2, . . . until convergence, where r is the iteration index.

2.3.6 GLMNB modeling with negative control data

As stated in section 1.1.1, there are positions where strong signals appear in both the negative

control and ChIP samples. These positions are considered as false positives, and should be

identified by the algorithm automatically. There are also non-specific binding events, where

background tags are widely and evenly distributed in a few kb region in both samples because

of genome sequence structure, such as GC content. GLMNB still calls peaks in such regions

but takes this noisy background into account by automatically increasing the average baseline

tag amounts parameter β0 according to the average tag count in negative control sample.

The observed tag count vectors are constructed as described in equation (2.5) in section

2.3.2. In this case, we have c = 1 and k = 1 with one negative control sample from equation

(2.3.4).

log µ = Xβ = β0 + β1~x+ β2~z (2.19)

µ = E(y)

y =
(

(yS)T , (yC)T
)T

~x = ((x(θ)S)T , (~0)T )T

~z = ((x(θ)C)T , (x(θ)C)T )T

where β0 is the log of estimated average tag count from negative control sample, θ is the
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peak shifting parameter, β1 is the coefficient of smoothed signal profile, β2 is the coefficient

of smoothed pseudo signal profile and α is the dispersion parameter from negative binomial

model. There are four parameters need to be estimated using maximum likelihood method.

ω = (β1, θ, β2, α)

To test a binding event in the ChIP sample after considering the negative control data,

the following hypothesis is tested against normal distribution.

H0 : β1 = 0 (2.20)

HA : β1 > 0

Rather than estimating β0 from ChIP sample, we estimate β0 as the log of average

baseline tag count from negative control sample. Model specified in equation 2.19 enables

us to clarify whether the tag count vector observed in ChIP sample yS is due to TF binding

event or background noise displayed in negative control data. If observed tags from ChIP

sample yS follows the same pattern as those from negative control sample yC , then β2 will be

significantly different from zero but β1 will not. If observed tags from negative control data

yC show a noisy and widely spread pattern, β0 is increased. But β1 will not be significantly

different from zero, either. Only when yS shows a spatial distribution close to signal profile

generated from ChIP sample, but not similar to yC , β1 will be significantly different from

zero and a peak will be called.

GLMNB makes use of Wald test or likelihood ratio test to make such decisions. In the

Wald test, we are testing the same hypothesis as shown above in equation 2.20. By default,

GLMNB uses likelihood ratio test and test the significance of likelihood ratio between null

model and alternative model from 1. In the null model, there are two free parameters, coeffi-
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cient of pseudo signal profile β2 and dispersion parameter α. In the alternative model, there

are two additional parameters, coefficient of ChIP binding profile β1 and shifting parameter

θ. And two times of log-likelihood ratio is asymptotically χ2 distributed. If the asymptotic

regularity conditions hold, the degree of freedom is two. However, as discussed in section

2.3.5 and 3.1, θ parameter violates regularity conditions. Even though it is still asymptot-

ically χ2 distributed, the degree of freedom is no longer 2. It is in practice estimated from

regions with small amount tags(for example, ≥ 5 on both strands but ≤ 8 in either strands).

The log likelihood function is as follows:

ℓ(µ; y, α) =
2n
∑

i=1

{yi log(α exp(xiβ1 + ziβ2 + β0)) − (yi +
1

α
) log(1 + α exp(xiβ1 + ziβ2 + β0))

+ log Γ(yi + 1/α) − log Γ(yi + 1) − log Γ(1/α)}

(2.21)

Then the gradient is

∂ℓ

∂ω
= (

∂ℓ

∂β1

,
∂ℓ

∂θ
,
∂ℓ

∂α
,
∂ℓ

∂β2

)T

∂ℓ

∂β1

=
2n
∑

i=1

{

yixi − (yi +
1

α
)xi

αexp(xiβ1 + ziβ2 + β0)

1 + αexp(xiβ1 + ziβ2 + β0)

}

∂ℓ

∂θ
=

2n
∑

i=1

{

yi

(

∂xi

∂θ

)

β1 − (yi +
1

α
)

αexp(xiβ1 + ziβ2 + β0)

1 + αexp(xiβ1 + ziβ2 + β0)

(

∂xi

∂θ

)

β1

}

∂ℓ

∂α
=

2n
∑

i=1

{yi

α
+

1

α2
log(1 + αexp(xiβ1 + ziβ2 + β0))

−(yi +
1

α
)

exp(xiβ1 + ziβ2 + β0)

1 + αexp(xiβ1 + ziβ2 + β0)
+ ψ0(yi +

1

α
)(−α−2) − ψ0(

1

α
)(−α−2)}

∂ℓ

∂β2

=
2n
∑

i=1

{

yizi − (yi +
1

α
)zi

αexp(xiβ1 + ziβ2 + β0)

1 + αexp(xiβ1 + ziβ2 + β0)

}

where ψ0(t) =
∂Γ(t)

∂t
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And the Hessian matrix is written in the following form:

∂2ℓ

∂ω2
=



















∂2ℓ
∂β2

1

∂2ℓ
∂β1∂θ

∂2ℓ
∂β1∂α

∂2ℓ
∂β1∂β2

∂2ℓ
∂θ∂β1

∂2ℓ
∂θ2

∂2ℓ
∂θ∂α

∂2ℓ
∂θ∂β2

∂2ℓ
∂α∂β1

∂2ℓ
∂α∂θ

∂2ℓ
∂α2

∂2ℓ
∂α∂β2

∂2ℓ
∂β2∂β1

∂2ℓ
∂β2∂θ

∂2ℓ
∂β2∂α

∂2ℓ
∂β2

2



















(2.22)

where

∂2ℓ

∂β2
1

=
2n
∑

i=1

(

−(yi +
1

α
)xi

αexp(xiβ1 + ziβ2 + β0)xi

(1 + αexp(xiβ1 + ziβ2 + β0))2

)

∂2ℓ

∂β1∂θ
=

2n
∑

i=1

(

yi
∂xi

∂θ
− (yi +

1

α
)
∂xi

∂θ

αexp(xiβ1 + ziβ2 + β0)

1 + αexp(xiβ1 + ziβ2 + β0)
(1 +

xiβ1

1 + αexp(xiβ1 + ziβ2 + β0)
)

)

∂2ℓ

∂β1∂α
=

2n
∑

i=1

(

−xi
exp(xiβ1 + ziβ2 + β0)

1 + αexp(xiβ1 + ziβ2 + β0)
(− 1

α
+

yi + 1
α

1 + αexp(xiβ1 + ziβ2 + β0)
)

)

∂2ℓ

∂θ2
=

2n
∑

i=1

(yiβ1
∂2xi

∂θ2
− (yi +

1

α
)β1(

αexp(xiβ1 + ziβ2 + β0)β1(
∂xi

∂θ
)2

[1 + αexp(xiβ1 + ziβ2 + β0)]2

+
αexp(xiβ1 + ziβ2 + β0)

1 + αexp(xiβ1 + ziβ2 + β0)

∂2xi

∂θ2
))

∂2ℓ

∂θ∂α
=

2n
∑

i=1

(

exp(xiβ1 + ziβ2 + β0)β1
∂xi

∂θ

α(1 + αexp(xiβ1 + ziβ2 + β0))
− (yi + 1

α
)exp(xiβ1 + ziβ2 + β0)β1

∂xi

∂θ

(1 + αexp(xiβ1 + ziβ2 + β0))2

)

∂2ℓ

∂α2
=

2n
∑

i=1

[
−yi

α2
− 2

α3
log(1 + αexp(xiβ1 + ziβ2 + β0)) +

2exp(xiβ1 + ziβ2 + β0)

α2(1 + αexp(xiβ1 + ziβ2 + β0))

+
(yi + 1

α
)exp2(xiβ1 + ziβ2 + β0)

(1 + αexp(xiβ1 + ziβ2 + β0))2
+ ψ′

0(yi +
1

α
)

1

α4
+ ψ0(yi +

1

α
)

2

α3

−ψ′
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2.3.7 Model parameter initial values

In GLMNB algorithm, the initial value of α(0) is set as the MLE calculated from all tag

counts in the current chromosome under the null hypothesis of no protein binding. θ(0) is

set as one half of the median distance between the two peaks on forward/reverse strands

observed in the top 100 windows (ranked by total tag counts). β
(0)
1 and β

(0)
2 equal to zero.

Since we use constant β0 model as default, β0 is set as 1) logarithm of average tag count in

the current window or 2) adjusted baseline using the adjusted baseline strategy described in

section 2.3.8.

2.3.8 Adjusted baseline strategy

Despite that the fixed parameter β0 can be set as logarithm of the average tag count in the

current window, an adjusted baseline strategy from MACS is also adopted. The baseline

parameter β0 initial value is set as the logarithm of the maximum tag count average from

the current window, 1 kb, 5 kb and 10 kb from ChIP sample if negative control sample is

not available. It is set as the logarithm of the maximum tag count average from the current

window, 1 kb, 5 kb, and 10 kb from negative control sample when negative control sample

is available. Here after in this dissertation, full model refers to the constant baseline model

with adjusted baseline strategy.
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2.3.9 Sliding window filtration

We apply the above model to test all sliding windows across the genome for peak calling.

Since our test statistic is only asymptotically χ2 distributed, we filtered out all windows with

tag counts less than cutoff (=5 tags per 500 bp window by default) on either the forward

or the reverse strand. That is, we do not test in windows with very few tag counts. The

peaks with very few tags is not scientifically meaningful. So this filtration will not reduce

the statistical power. However, it can significantly reduce the number of tests and save

computing time.

2.3.10 Constant peak shifting parameter model

In order to examine the importance of the local estimated peak shifting parameter θ, I

define and execute the constant θ model, where θ is fixed at the initial value in both null and

alternative models. For example, when only ChIP sample data are available, the null model

contains one free parameter α. The alternative model contains two free parameters β1 and

α. The degree of freedom in LRT is 1. Similarly, when negative control data are available,

the degree of freedom in LRT is also 1.

2.3.11 Constant dispersion parameter model

In order to examine the importance of the additional dispersion parameter α in negative

binomial distribution compared to Poisson distribution, I define the constant α model, where

α is fixed at the estimated dispersion parameter from the entire genome in both null and

alternative models. For example, when only ChIP sample data is available, the null model

contains one free parameter β0. The alternative model contains three free parameters β1, θ

and β0. The degree of freedom in LRT is 2. Similarly, the degrees of freedom in the LRT is

2 when negative control data are available.
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2.3.12 Motif Identification

We used HOMER ([35]) to identify motifs at the predicted binding sites. HOMER searches

de novo motifs within 150bp around every predicted binding site by GLMNB, SPP, MACS,

CisGenome, SISSRs and BayesPeak, separately. If more than one motif is found, the motif

closest to the predicted binding site is recorded.



Chapter 3

Simulation Study

3.1 Peak calling on simulated ChIP sample in non-

binding region

A ChIP-Seq dataset is simulated as described in section 2.2. The simulated data contains

500 peaks distributed in a 300Mb region. Forward and reverse binding profiles are generated

using the simulated data as described in the method sections 2.3.1 and 2.3.3. Then GLMNB

is used to call peaks using a sliding window with default winsize=500 bp and stepsize=10

bp.

We first examined the p-values in non-binding regions produced by GLMNB. A non-

binding region is defined as a region at least 500 bp away from all simulated peaks, so that

tags in these regions only come from simulated background. Figure 3.1(a) shows the quantile-

quantile (QQ) plot of the GLMNB’s z-scores compared to standard normal distribution.

There are 69,003 overlapping p-values with more than 5 tags per 500 bp window calculated

from non-binding region, in which there is slight inflation in the positive end. We observed

that the GLMNB z-scores are approximately normally distributed, with a slight deviation
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that is likely due to the small tag counts in non-binding regions and also the irregular peak

shift parameter θ used in our model. We did not observe extremely strong departure in

the QQ plot at the extreme values in the positive end, suggesting that our p-values from

normal approximation are appropriate for peak calling. SPP is not based on a statistical

model and does not output valid p-values. However, if I convert the FDR from SPP into

p-values, many more SPP p-values(64,708) are discovered from non-binding regions. These

p-values are converted by multiplying FDR with the peak order and divided by total test

number, one can further convert p-values into z-scores and plot the QQ plot as shown in

Figure 3.1(b). In the positive extreme end, it appears approximately normal distribution.

So FDR estimates in SPP are appropriate. MACS does provide p-value output when there

is no negative control sample. Figure 3.1(c) shows a Quantile-Quantile(QQ) plot of MACS

z-scores (converted from p-values) compared to a standard normal distribution. This is the

most comparable result with GLMNB from MACS that we are able to obtain. Due to the

restriction of MACS program, we were only able to obtain p-values < 0.1, rather than all

p-values in the full range of [0, 1]. Further due to MACS automatic peak region expansion

procedure, we were not able to restrict the same peak width as used by GLMNB at 500 bp.

We obtained 13,781 MACS p-values < 0.1 from the non-binding regions, and the sizes of

MACS peaks ranged from 400 bp to 6 kb. As observed in Figure 3.1(c), MACS z-scores from

the non-binding regions significantly deviated from the standard normal distribution at large

values. That is, the significance output by MACS is greatly inflated in our simulated data.

For instance, at a threshold where we expect 30 false positive peaks, the actual number of

false positives called by MACS is 234. The inflation of the significance by MACS is likely

due to its Poisson model assumption. Therefore, its FDR values tend to be liberal, or much

more significant than it should be.

We further calculated the FDRs from GLMNB and compared such values with other

algorithms if a FDR is provided for ChIP sample data only. Scatter plots between FDR
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Figure 3.1. Quantile-quantile plot of z-scores output by (a) GLMNB, (b) SPP and (c)
MACS using data from non-binding regions in the simulated data.

in log10 scale and simulated peak strength are plotted for GLMNB, SPP, MACS in Figure

3.2(a)-(c). Because there are no FDR provided by CisGenome, SISSRs and BayesPeak,

the corresponding predicting strength values are plotted against simulated peak strength in

Figure 3.2(d)-(f). FDRs are in practice calculated as the expected number of false positives

divided by the total number of positives ([36]). Given that peaks are simulated, observed

FDRs are calculated as the observed number of false positives divided by the total number of

called peaks. A predicted peak is matched to a true simulated peak if the predicted binding

site is within 200 bp of the true binding site. We used 200 bp distance to evaluate software

performance because otherwise MACS will miss too many true peaks due to its automatic

expansion of peak region and therefore inaccurate prediction of binding locations. At a 5%

FDR threshold, GLMNB called 508 (non-overlapping) peaks, among which 492 were true

peaks and 16 were false positives, yielding an observed FDR 3.1% in Figure 3.2(a). Out of

the 500 simulated true peaks, 8 peaks were missed by GLMNB at 5% FDR, yielding a 98.4%

power. GLMNB gives an observed FDR(3.1%) less than the expected FDR at 5%, and

therefore conservatively controls the false positives, which is good in practice. As shown in

Figure 3.2(a), FDR values from GLMNB are in fact positively correlated with the simulated

peak strength. The FDR value is more significant for a stronger simulated peak, for example,
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the one with peak strength greater than 8 has a GLMNB FDR=10−61 on the right bottom

in the plot. So the rank of GLMNB FDR value well represents the strength of peaks.

As shown in Figure 3.2(b) SPP called 672 peaks, including 498 true positives and 174

false positives. Even though SPP called 6 more true peaks than GLMNB, the number of false

positives is much larger, resulting in an observed FDR of 174/672 = 26%. Its power is higher

but still very close to that of GLMNB, 99.6%. No false positives give extremely significant

FDR values. Since SPP is not based on any statistical models, it assigns a minimum FDR

to all top ranked peaks if their scores are stronger than the maximum scores observed in

the negative control data. Such FDR values will not change unless another false positive

appears as SPP score decreases. As a result, SPP’s FDR values look flat regardless of the

simulated peak strength. Its peak ranks do not represent protein binding strength.

MACS called 509 peaks, including 172 true positives and 337 false positives with FDR

and simulated peak strength plotted in Figure 3.2(c). MACS called many fewer true peaks

than GLMNB and SPP, yielding a power of 34.4%. There is no FDR values reported by

MACS if ChIP sample data are the only input. It however called 337 false positives, resulting

a FDR of 66.3%, which is not optimal in performance. If we lose the range of defining true

positives from 200 bp to 1,000 bp, MACS is able to increase the true positives to 341 and

reduces the false positive amount to 168 (data not shown). That is a 68.2% power and

33% FDR, still not competitive GLMNB and SPP. It is mostly due to MACS automatic

extension on peak region and therefore inaccurate peak detection. MACS FDR and the

simulated peak strength are not well correlated, suggesting that the peaks ranked by MACS

may not correctly represent the protein binding strength. For example, some false positive

peaks have much significant p-values than the true positives.

CisGenome called 486 peaks, all of which are true positives. It achieves 97.2% power

slightly lower than GLMNB and SPP and 0% FDR under FDR threshold of 5%, which

is more conservative than GLMNB and SPP. CisGenome does not output estimated FDR
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directly for ChIP sample only, so log10(p−values) are plotted against simulated peak strength

as shown in Figure 3.2(d). Such p-values are highly correlated with simulated strength when

simulated strength is small, for example, less than 2. The p-values are all 10−100 when

simulated strength are greater than 2, which makes the strongest peaks indistinguishable.

SISSRs called 618 peaks under FDR threshold 0.1% by default, among which 484 are

true positives and the rest 134 are false positives. As claimed by Jothi et al [13], SISSRs is

able to discover more peaks than other programs. However, in this specific simulated ChIP

sample data, it does not identify as many true peaks as GLMNB and SPP but many more

false positives. SISSRs achieves 96.8% power but suffers 22% observed FDR, many more

liberal than expected at 0.1% default level. SISSRs does not allow users to change FDR

threshold setting. But one can image if a less constraint FDR is set, it will suffer worse

observed FDR in this dataset. SISSRs provides total tag counts only in called positions

rather than p-values or FDR. Therefore, such total tag counts are plotted against simulated

peak strength in Figure 3.2(e). The tag counts are highly correlated with peak strength,

which could be one good measure to rank peaks. However, one also notices that several false

positives even contain roughly 50 tags.

BayesPeak called 470 peaks, among which 469 are true peaks and one is false positive.

That concludes 93.8% power slightly less than GLMNB, SPP, CisGenome and SISSRs and

0.2% FDR, more conservative than GLMNB. BayesPeak outputs a posterior probability value

of each position being enriched. Posterior probabilities in log scale from BayesPeak output

are plotted against simulated peak strength in Figure 3.2(f). Most posterior probabilities

are close to value 1.0, forming a flat line on the top regardless the simulated strength,

which indicates a good separation between enrichment and non-enrichment status. However,

posterior probabilities does not provide rich information to distinguish the strength of ChIP

signals.

In summary, GLMNB prediction has the second best power among the six ChIP-Seq peak
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callers and conservative false discovery rate based on this specific simulated ChIP sample

data. Its FDR also represents the peak strength well.
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Figure 3.2. Scatter plots between FDR in log scale and simulated peak strength called by
(a) GLMNB, (b) SPP, (c) MACS, (d) CisGenome, (e) SISSRs and (f) BayesPeak. The
simulated data contained 500 peaks randomly distributed in a 300Mb region, and each
peak was separated from each other by at least 20kb. Background tags are simulated from
negative binomial distribution.

After evaluating the power and observed FDR from the six peak callers, I want to eval-

uate the spacial resolution among them. The spacial resolution for this simulated data set

are defined as the distance between predicted peaks and nearest true peak positions. Posi-

tive(negative) distance means the predicted peak locates on the right (left) side of true peak

position. In Figure 3.3(a)-(f), histograms of such distances are plotted for the six algorithms.

The average distance from GLMNB results is -0.34 bp, a value closest to zero among the six

algorithms, with a standard deviation of 35.34 bp. It suggests its great central tendency for
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predicting binding positions for this specific simulated data. The average distance for SPP is

-1.4 bp with a standard deviation of 35.83 bp, the greatest standard deviation among the six.

MACS and SISSRs achieve similar performance in terms of distance to true peak positions

with 1.04 bp on average and a standard deviation of 28.58 bp, and 3.19 bp on average and

a standard deviation of 27.02 bp, respectively. However, CisGenome and BayesPeak give

average distance of -10.86 bp and -9.84 bp with a standard deviation of 20.44 bp and 34.22

bp, respectively. It indicates that both programs identify peaks about 10 bp upstream to the

true peak positions on average. But CisGenome achieves the smallest variation in terms of

distances between predicted peak positions to true peak positions. All six algorithms yield

an approximately symmetric histogram for the distance.

In summary, GLMNB achieved the best spatial resolution in terms of the average pre-

dicted peak distance to true peak position for this specific simulated ChIP sample data, even

though the variation is among the two biggest of the six algorithms.

Now we can move to non-binding regions and compare estimated parameters to true

simulated values in the study. The estimated parameters of signal profile coefficient β1,

peak shifting parameter θ, baseline tag counts per window β0 and dispersion parameter α

from non-binding regions are plotted in histograms in Figure 3.4. Remember tags from non-

binding region come from simulated background only. The sample average for the model

parameters is drawn using a red solid line, and the known parameter value when simulating

data is drawn in blue dashed line. The estimated β1 is approximately normally distributed

with sample mean -0.01 and a standard deviation of 0.10. Estimated β1 is expected to center

at zero because the profile should not be a statistically significant predictor for background

random noise. Therefore, β1 should be centered at zero. The estimated θ gives a sample

mean of 36 bp and a standard deviation 53 bp in non-binding regions, whereas there is no

θ or signal profile involved in the non-binding regions. Such non-zero average θ is caused

to the initial value setting in my algorithm. Before looking for MLE of model parameters,
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Figure 3.3. Spatial resolution are plotted as histogram of distance between true peak
positions and peaks called by (a) GLMNB, (b) SPP, (c) MACS, (d) CisGenome, (e)
SISSRs and (f) BayesPeak with in 200 bp region.

I set a positive initial value of 50 bp rather than 0 bp for θ so that the algorithm has

more tendency to search for meaningful solutions. Negative θ value is meaningless for my

algorithm. However, since the random noise is not generated from the signal profile, the

algorithm is free to locate a MLE solution of θ at any value between 0 bp and profile length.

That is why the estimated θ shows a positive sample mean and a large variation.

The baseline parameter β0 has an sample average -2.0 with a standard deviation of

4, higher than β0 simulation setting. This is due to the window filtration criteria in my

algorithm. All windows with less than 5 forward tags or 5 reverse tags per 500 bp are

skipped for modeling, because it is very unlikely that these windows will contain scientifically

significant binding positions even if it shows statistical significance, thanks to rare tag counts
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or unbalanced tag distribution between forward and reverse strands. Similarly, the left

skewed α with most estimated values lower than the simulation setting is also caused by the

filtration criteria.

One may notice that the Quantile-Quantile plot shown in Figure 3.1(a) is not normally

distributed. Figure 3.5(a) and (b) show the QQ plot of Wald test z-score for full model and

constant θ from non-binding regions on the same ChIP sample data, respectively. Figure

3.5(c) and (d) show the QQ plot of the likelihood ratio test(LRT) statistics for full model

and constant θ model from non-binding regions on the same ChIP sample data, respectively.

From Figure 3.5(a), one notices a slight departure of sample quantiles from theoretical quan-

tiles on the positive end. With θ parameter fixed, the z-score for profile coefficient β1 in

GLMNB is approximately normally distributed and the LRT statistic should follow a χ2

distribution. The sample quantiles are even slightly lower than the theoretical ones on the

top right end in Figure 3.5(b). Therefore, the departure of sample quantiles from theoretical

quantiles shown in Figure 3.5(a) is due to the involvement of the θ variable in the model,

which violates the regulatory conditions of generalized linear model. In fact, predictor xi in

the alternative model is a function of θ, and therefore violates the assumption for asymptotic

behavior of maximum likelihood estimator that data points should not depend on unknown

parameter θ. If the parameter θ is set as fixed value, then the condition is no longer violated.

Therefore, β1 is asymptotic normal distribution as shown in Figure 3.5(a). Besides Wald test,

I also propose the usage of likelihood ratio test. The QQ plots for likelihood ratio test for

full model and constant θ model are plotted in Figure 3.5(c) and (d). There is a slight de-

parture for full model (if assuming df=2 in black circle) on the positive end, when compared

to asymptotic χ2 distribution with degree of freedom 1. This is also due to the violation of

regulatory conditions of asymptotic normality for maximum likelihood estimator introduced

by θ parameter. Suggested by Fan et al [34], however, when there is such a violation, the

likelihood ratio test statistic still approximately follows a χ2 distribution, but no longer the
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Figure 3.4. Estimated model parameters from non-binding regions on Simulated ChIP
sample data, including profile coefficient, β1, shifting parameter, θ, baseline, β0 and
dispersion parameter, α.
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same degrees of freedom as the difference of free parameter numbers between null model and

alternative model. Simulations need to be run on rare tag regions to get an estimate of the

degrees of freedom. The rare tag regions refer to windows whose forward or reverse tags

are less than 8 but more than 5 in practice. The degrees of freedom are estimated as the

sample median (= 2.22) of LRT statistic values. Therefore, when we re-plot the QQ plot

with the corrected degrees of freedom of 2.22 in purple in Figure 3.5(c), it is asymptotically

χ2 distribution. Therefore, the likelihood ratio test is valid with correctly specified degrees

of freedom.

Even though the constant θ model enjoys the beauty of asymptotic normality and va-

lidity of likelihood ratio test, fixing θ actually reduces the peak calling power. Figure 3.6

compares GLMNB’s performance between full model and simpler model, constant θ model,

with respect to its power, FDR and spacial resolution. The constant θ model called 438

true peaks, 54(11%) less than the full model. The peak calling power of constant θ model

is 87.6%, 10.8% less than that of full model. Both modeling algorithms yield a conservative

FDR, 0.7% and 3.1% under FDR=5% threshold, for constant θ and full models, respectively.

Both algorithms give FDR values that are highly correlated with simulated peak strength.

However, FDR from full model distinguishes peaks in a more aggressive pattern. For ex-

ample, the simulated peak with strength above 8 is called with FDR close to 10−61 by full

model, whereas it is called with FDR around 10−32 by constant θ model. Peaks called by

constant θ model gives an average of distance to true peak position 14.03 bp with standard

deviation of 19.71 bp. It suggests a shifted peak locations even though with a slightly smaller

variation. Therefore, fixing θ parameter reduces peak calling power and yields a shifted peak

locations, which is not good for our algorithm.

Here, I also want to use simulation study to demonstrate the importance of dispersion

parameter α in the negative binomial background modeling in Figure 3.7. Figure 3.7(a) and

(c) are the same plots shown in Figure 3.6. Figure 3.7(b) shows the scatter plot between
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Figure 3.5. Quantile-Quantile(QQ) plot of z-score and LRT from full model and constant
θ in non-peak region p-values. The QQ plot of LRT from full model with adjusted degree
of freedom is plotted in purple asterisk in (c).

FDR in log10 scales and the simulated peak strength from the constant α model. This

constant α model achieve 95% power (475/500) and 0.4% observed FDR, only slightly lower

power than GLMNB full model. However, the correlation between FDR and simulated peak

strength is much weaker than the one in the full model. For example, points with simulated

strength between 1 and 4 are flat. FDR values in this area do not strongly correlate with

the simulated peak strength. This is due to larger standard error with the fixed α model.
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Figure 3.6. Scatter plots between FDR and Simulated strength and Predicted peak
distances from Simulated peak position from full model (a)(c) and constant θ model (b)(d).

Figure 3.7(d) further plots the predicted peak distances from true peak positions for constant

α model. The constant α model achieves an average distance of -0.07 bp and a standard

deviation of 33.38 bp, very close to the one in GLMNB full model. In summary, GLMNB

full model achieves higher power with variable α and more significant FDR than constant α

model.

After checking the necessity of using shifting parameter θ and dispersion parameter α

in the alternative model, I want to emphasize the importance of adjusted baseline β0 using
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Figure 3.7. (a)(b)Scatter plot between FDR and (c)(d) Simulated strength and Predicted
peak distances from Simulated peak position from full model and constant α model.

current simulated ChIP sample data. Inspired by MACS program, where the Poisson mean

estimate uses a higher value when the average tag count in a wider area(1 kb, 5 kb and

10 kb) is higher than the one in the current window (500 bp). This strategy reduces false

positives when the neighborhood has stronger non-specific binding affinity than other areas.

I adopt this strategy in the GLMNB full model. The initial value for baseline parameter β0 is

the logarithm of maximum values of the overall average tag counts in the entire genome and

average tag counts from the current window, 1 kb, 5 kb or 10 kb neighborhood. This is so
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called adjusted baseline strategy in GLMNB algorithm described in section 2.3.8. If fixed β0

value is set as the logarithm of the overall average tag counts in the entire genome, it is called

fixed global baseline strategy. This strategy does not account for regional tag bias where

there are noisy tags observed even in negative control data. However, the adjusted baseline

strategy discussed in section 2.3.8 does account for it. Now one can compare the performance

between GLMNB model with adjusted baseline strategy in Figure 3.8(a),(c) and the one with

fixed global baseline strategy in Figure 3.8(b),(d). Compared with the GLMNB model with

adjusted baseline strategy, GLMNB model with fixed global baseline strategy called 405 true

peaks and 1 false positive yielding 81% power and 0.2% FDR. However, GLMNB model with

fixed global baseline strategy provides less aggressive FDR and ambiguous ranking that does

not reflect simulated peak strength. For example, one true peak with peak strength around

5 is called with FDR around 10−4, which is much less significant than many other peaks

with smaller peak strength. As shown in Figure 3.8(d), the predicted peak are shifted on

average 13.35 bp from true peak positions to downstream with a standard deviation of 23.66

bp. Therefore, there is a non-zero positive shift on peak location for GLMNB with fixed

global baseline strategy. In summary, GLMNB with adjusted baseline strategy provides

more aggressive FDR values that better distinguish peaks with respect to their true peak

strength and a close to zero distance to true peak positions on average.

3.2 Peak calling on Simulated ChIP-Seq data with neg-

ative control sample

As described in Section 2.2, 95 of 500 peak positions in ChIP sample are randomly se-

lected as false positives. Tags from these 95 peak positions are combined with previ-

ously independently generated background tags and establish a negative control dataset.
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Figure 3.8. (a)(b) Scatter plot between FDR and (c)(d) Simulated strength and
Predicted peak distances from Simulated peak position from adjusted β0 full model and
constant β0 full model.

Any predicted peaks close to these 95 peaks are classified false positives. Predicted peaks

close to the rest 405 peaks are classified true positives. Figure 3.9 shows the scatter

plot between FDR and simulated peak strength for true positives called by (a) GLMNB,

(b) SPP, (c) MACS, (d) CisGenome, (e) SISSRs and (f) BayesPeak. GLMNB achieves

94.3%(382/405) power, higher than that of MACS(80%, 324/405), but slightly lower than

that of SPP (99.5%, 403/405), CisGenome (99%, 401/405), SISSRs(100%, 405/405) and
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BayesPeak(95.6%, 387/405) for this specific simulated dataset. GLMNB achieves 0% FDR,

the same level as MACS, CisGenome, SISSRs, but much better than that of SPP(20.8%,

106/509) and BayesPeak(16.4%, 76/463). Therefore, GLMNB offers conservative results

with less than expected FDR and slightly lower power. Only CisGenome and SISSRs out-

perform GLMNB in terms of power and FDR. But GLMNB outputs the best FDR that

distinguishes strong peaks from weak ones, which have strongest correlation with the simu-

lated peak strength. CisGenome outputs peaks with FDR=0 and SISSRs output FDR in a

narrow range with weaker correlation to simulated peak strength.
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Figure 3.9. Scatter plot between FDR in log scale and simulated peak strength called by
(a) GLMNB, (b) SPP, (c) MACS, (d) CisGenome, (e) SISSRs and (f) BayesPeak on
simulated ChIP data with negative control. The simulated data contained 405 real peaks
and 95 pseudo peaks(strong signals in both ChIP sample and negative sample) randomly
distributed in a 300Mb region, and each peak was separated from each other by at least 20
kb.
Note: * FDR equals to zero for all peaks called by MACS and CisGenome.
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We can take a look at the spatial resolution on true positives predicted by (a) GLMNB,

(b) SPP, (c) MACS, (d) CisGenome, (e) SISSRs and (f) BayesPeak with in 200 bp region on

simulated ChIP data with negative control in Figure 3.10. GLMNB’s true positive peaks has

an average distance to actual peak position of 2.8 bp with a moderate standard deviation

of 33 bp. SPP, MACS and SISSRs have the similar performance with close to zero average

distance and moderate standard deviation. CisGenome and BayesPeak yield predictions

with shifted average peak distance.

In summary, GLMNB and SISSRs have similar top performance on this specific simulated

ChIP data with negative control in terms of prediction power, actual FDR and spatial

resolution. However, GLMNB performs best with respect to rank peaks by simulated peak

strength.
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Figure 3.10. Histogram of distance between true peak positions and peaks called by (a)
GLMNB, (b) SPP, (c) MACS, (d) CisGenome, (e) SISSRs and (f) BayesPeak with in 200
bp region on simulated ChIP data with negative control.



Chapter 4

Real Data study

During the simulation study in Chapter 3, I investigate the validity of GLMNB test statistics,

evaluate the performance of GLMNB and compare its results with other algorithms on

simulated ChIP data with or without negative control data. Since the simulated data are

created under a certain artificial assumptions which may not hold in reality (i.e., tags follows

a negative binomial distribution with a certain shape), it is important to examine GLMNB’s

performance compared to other algorithms. In the following chapter, I use GLMNB to call

peak in real data from ChIP-Seq experiments. It is not necessary to discuss the performance

of GLMNB on all ChIP-Seq data sets mentioned in section 2.1, I mainly use FoxA1 data

set as an example. The reason is that this transcription factor has well-known binding

conservative motifs, and such a data set has been used in the research article of MACS by

Zhang et al [1]. In the following sections, I will illustrate GLMNB’s performance on FoxA1

ChIP sample only in section 4.1. Then I will compare the performance of GLMNB with other

4 algorithms, SPP, MACS, CisGenome and SISSRs on the same data in section 4.2. With

the help of negative control, one should be able to reduce false positives due to non-specific

binding events showing in both ChIP sample and negative control data. In section 4.3, I will

compare the performance of GLMNB with other 4 algorithms on FoxA1 ChIP sample data
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with negative control dataset. In section 4.4, I will brief compare all five algorithms on all

other datasets mentioned in 2.1.

4.1 GLMNB peak calling on FoxA1 ChIP sample data

only

An example of peak calling by GLMNB on FoxA1 ChIP sample data only is shown in Figure

4.1. The observed forward and reverse tag counts per bin (10bp) are plotted in red/green

vertical bars in the figure. There are 13 sliding windows around the binding site, whose

-log10(p-value) are illustrated as blue connected dots in the figure. The window centered

at chr1:199,518,124 yielded the most significant p-value= 10−11.8, which is then called as a

binding site. The fitted forward and reverse binding profiles by GLMNB is shown in red

and green curves, which are located θ = 37bp away from the window center to each side.

The blue horizontal line of length 2 × θ = 74 bp marks the width of the predicted binding

interval.

GLMNB were applied on FoxA1 ChIP sample data only with a minimum threshold of 8

tags per 500 bp window for both forward and reverse strands. At 5% FDR, GLMNB detected

4,008 FoxA1 peaks. Figure 4.2(a) shows the ranked FDR in log scale of these peaks. The

total number of sliding windows tested by GLMNB was 246,144 after filtration, and thus

with p-value< 10−3.09 the expected number of false positives is 201 of 4,008 calls, yielding

an expected 5% FDR. As shown in our simulation study, the FDR estimated by GLMNB

is actually conservative, and thus we expect the actual FDR to be less than 5%. One of

GLMNB’s feature is to allow the variaty of peak shifting parameter in different windows.

Figure 4.2(b) shows the distribution of the estimated peak shifts from all FoxA1 peaks. The

estimated peak shifts for FoxA1 have mean 44bp and standard deviation 22bp.
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Figure 4.1. A FoxA1 peak detected at chr1:199,518,124 (in blue dashed line) with
−log10(p-value)=11.8 by GLMNB. All −log10(p-value) from adjacent sliding windows are
shown in blue connected dots. A blue horizontal line of length 2 × θ = 74 bp represents the
distance between the fitted forward peak (red curve) and the reverse peak (green curve).
The Y-axis is the tag counts per 10 bp bin and negative log p-values with base 10.

FoxA1 binding sites were reported closely related to FoxA1 motifs, including Forkhead

motif(FKHR) ([1, 37]), FoxA1/LNCAP and FoxA1/MCF7 motifs. I plot in Figure4.2(b) the

histogram of the distance between each detected FoxA1 peak to its closest FoxA1-related mo-

tifs, if there is at least one motif within 150bp of the predicted binding site by GLMNB(circle

in solid line), SPP(upper triangle in dashed line) and MACS (inverse triangle in dotted line).

We also plot in Figure4.2(c) the percentage of the detected FoxA1 peaks containing a FoxA1-

related motif within 150bp distance against ranked top peaks. Among the top 4,008 FoxA1

peaks detected by GLMNB, there were roughly 87.8% to 95% peaks containing at least one
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FoxA1-related motif. SPP had similar motif percentage (88.1% to 94.7%). MACS peaks, in

contrast, can be matched with 85.4% to 89.6% FoxA1-related motifs within 150bp distance,

slightly lower than GLMNB and SPP. This is due to the inaccuracy of MACS predicted

binding positions. Figure 4.2(d) further shows the histogram of distance between GLMNB

(circle in solid line), SPP(upper triangle in dashed line) and MACS(inverse triangle in dotted

line) predicted binding sites and the closest FoxA1-related motifs. The distances between

GLMNB peaks and the closest FoxA1-related motifs were mostly within 100 bp, suggesting

the high spatial resolution of the predicted binding sites by GLMNB. Both GLMNB and

SPP outperformed MACS.

4.2 GLMNB peak calling comparisons with other al-

gorithms on FoxA1 ChIP sample only

One may note that 4,008 peaks were called in section 4.1 using conservatively high tag count

threshold, 8 tags for both strands. It is conservative not only because of its tag counts

requirement for both strands, but the symmetricity between two strands in terms of tags

counts. Biologists interested in these highly conservative peaks for a FoxA1 can use these set-

tings. If such tag count threshold lessens, one should expect more peaks. However, as a peak

caller developer, I would like to reduce such tag count threshold to 5 tags per 500 bp window

and explore the performance between GLMNB and other peak calling algorithms. Please

note that, the peak calling algorithms compared with GLMNB do not include BayesPeak

simply because its highly shifted peak resolution and high false discovery rate as shown in

Figure3.9(f) and Figure 3.10(f).

Table 4.1 gives number of peaks called by GLMNB and other four algorithms on FoxA1

ChIP data with or without negative control. Among the results from five algorithms on



81

0 1000 2000 3000 4000

1
e
−

2
4

1
e
−

1
9

1
e
−

1
4

1
e
−

0
9

1
e
−

0
4

top peaks

F
DR

(a)

0 50 100 150 200

0
2
0
0

4
0
0

6
0
0

8
0
0

GLMNB Peak shift distribution

Peak shift

Pe
a
k
 f
re

qu
e
n
c
y

mean= 44bp, sd= 22bp

(b)

0 1000 2000 3000 4000

7
5

8
0

8
5

9
0

9
5

1
0
0

Number of ranked peaks

Pe
a
k
s
 wi
th

 F
o
x
A1
−

re
la

te
d
 m

o
ti
fs

 (
%)

GLMNB

spp

MACS

(c)

−150 −100 −50 0 50 100 150

0
.0

0
.5

1
.0

1
.5

2
.0

Dist. to closest FoxA1−related motifs(bp)

Pe
rc

e
n
t

GLMNB

spp

MACS

(d)

Figure 4.2. GLMNB peak calling results for FoxA1 ChIP-Seq. (a) GLMNB peaks ranked
by expected FDR in increasing order. 4,008 GLMNB peaks were called at FDR≤ 5%. (b)
Histogram of the estimated peak shifting parameter (θ), with mean 44bp and standard
deviation 22bp. Matched motif comparison between GLMNB peaks and SPP, MACS peaks
for FoxA1 ChIP-Seq dataset. (c) Percentage of detected peaks carrying at least one
FoxA1-related motifs within 150bp to predicted binding sites by GLMNB, SPP and MACS.
(d) Histogram of the distance between predicted binding sites and closest FoxA1-related
motifs.

FoxA1 ChIP sample only, GLMNB called the least peaks (10,073) at FDR 5%, while SPP,

MACS, CisGenome and SISSRs called 33,572, 16,173, 23,406 and 24,189 (at default 0.1%

FDR) peaks, respectively. SISSRs is expected to call more peaks than other algorithms with
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the same 5% FDR level, which is shown in the previous Chapter. Peaks called by GLMNB

have a major common parts as peaks called by other algorithms for example SPP(93.8%),

MACS(92.4%), CisGenome(94.2%), SISSRs(95.5%). It suggests that GLMNB called the

most important peaks. As pointed out by Willbanks and Facciotti in their algorithm eval-

uation on sensitivity[7], more stringent peaks from some algorithms are almost completely

contained in the larger number of calls by others. And calling more peaks gain little in

term of sensitivity in their verified binding site comparison study. This is actually the case

here. At least 92.4% sharing common peaks between GLMNB and other algorithms suggests

GLMNB does not lose too much sensitivity, even though it calls less peaks.

Table 4.1. Peak Number Comparison on FoxA1 with or without negative control(total,
percent of GLMNB peaks in common)

FoxA1 GLMNB SPP MACS CisGenome SISSRs

ChIP only 10,073 33,572(93.8%) 16,173(92.4%) 23,406(94.2%) 24,189(95.5%)
With Input 5,766 33,572(96.9%) 11,778(96.0%) 8,245(92.5%) 11,272(96.7%)

Here I assessed the peak calling accuracy by the percentage of detected peaks matched

with at least one motif in 150 bp neighbor region. Figure 4.3(a) plots the percentage of

detected peaks matched with at least one FoxA1-related motifs within 150 bp to predicted

binding sites among the top 10,073 peaks ranked by FDR values in GLMNB, and other four

algorithms on FoxA1 ChIP sample data only. GLMNB’s peaks contain higher proportion of

peaks matching with a FoxA1 related motif than SPP in all top 10,073 peaks and MACS

in top 5,000 peaks, both of which were ranked top two peak callers with highest resolution.

SISSRs yields slightly higher (2% on average) percentage of peaks with motifs than GLMNB,

partially because it tends to call multiple peaks in tag intensive regions regardless the specific

binding or non-specific binding events. Therefore there is more chance to find a motif nearby.

Please refer to Figure 4.7(a) for examples. GLMNB is one of the top two peak callers among

the five in terms of peak calling accuracy. The spatial resolution is assessed by the distance
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between predicted binding sites to the nearest motif in Figure 4.3(b). One may notice

that GLMNB has a comparable spatial resolution to SPP, the one claimed with best spatial

resolution. But GLMNB has wider resolution than MACS, CisGenome and SISSRs on FoxA1

ChIP data without negative control.
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Figure 4.3. ChIP-Seq peak calling comparison with previous methods without negative
control sample on FoxA1 ChIP-Seq data. (a) Percentage of detected peaks carrying at least
one FoxA1-related motifs within 150 bp of binding sites by GLMNB and previous methods
for FoxA1. (b) Histogram of distance between nearest FoxA1 related motif within 150 bp
of predicted binding sites.

From now on in this section, I want to use some peak examples on FoxA1 ChIP sample

data to illustrate the strength and weakness of GLMNB.

Figure 4.4 shows several peak calling examples that illustrate the difference between

GLMNB and SPP. Figure 4.4(a) and (b) show two examples of GLMNB peaks not de-

tected by SPP. GLMNB is able to locate peaks at chr2:129,415,909(FDR= 10−2.72) and

chr2:181,180,699(FDR= 10−2.14) with motifs nearby. MACS, CisGenome and SISSRs did a

similar great job. However, SPP did not find them. This is due to low tag counts and no

overlapping regions between forward and reverse tags, such that there are no enough tags to

provide a significant Pearson’s correlation or Chi-square test statistic. It is not unusual in
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the real data analysis where SPP is not able to locate a binding position when tag counts

are low or there is no overlapping region for forward and reverse strands.

Figure 4.4(c) illustrates an interesting case. Around chr20:46,862,124, there is an ex-

tremely strong forward strand signal, whereas forward strand signals locate at two relative

separated areas, one close to the first peak on the left, and the other one about 400 bp apart

on the right. GLMNB, MACS, CisGenome and SISSRs paired the forward signal with the

first reverse signal and called peaks at chr20:46,862,124, chr20:46,862,139, chr20:46,862,184

and chr20:46,862,154, matching with a FoxA1 related motif at chr20:46,862,194. However,

SPP considered the forward signal should match to the second reverse strand signal, and

called a peak at chr20:46,862,322. Given two strategies matching their motifs nearby, it

seems no way to tell which strategies are correct. However, the FoxA1 ChIP DNA sample

went through a size selection between 150 bp and 400 bp. In this special case, since forward

and reverse strand signals are separated by 400 bp, the first strategy is correct.

If one is not convinced, Figure 4.4(d) illustrates a similar example. Regardless the peak

identified by all algorithms at around chr4:113,253,849 with a FoxA1 related motif matched,

GLMNB and SISSRs identified another peak at chr4:113,254,159 and chr4:113,254,190, with

a motif 20 bp to its right and a motif 10 bp to its left, respectively. Both utilized the forward

and reverse signals that are close together. However, SPP located a peak at chr4:113,254,300

by pairing the same forward signal as GLMNB and SISSRs but the two reverse tags on the

right. SPP’s peaks is 110 bp apart from its motif. The strategy used by GLMNB and other

algorithms seems more reasonable.

Figure 4.5 shows several peak calling examples that illustrate the difference between

GLMNB and MACS. Figure 4.5(a) shows a peak example called by GLMNB, MACS and

other algorithms. GLMNB called a peak at chr1:196,770,457 with FDR = 10−8.06, with a

FoxA1 related motif 8 bp on the right of predicted peak position. MACS called a peak at

chr1:196,770,408 with FDR = 10−11.5, with a FoxA1 related motif 57 bp on the right. At
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Figure 4.4. Comparison between GLMNB and SPP on FoxA1 ChIP sample only. (a) and
(b) show two examples of GLMNB peaks not detected by SPP. (c) An example of SPP
peak at the middle of forward and reverse peaks separated by 400 bp, while other
algorithms called at another location. Both peaks were matched to FoxA1-related motifs.
(d) An example of GLMNB and SPP located two different peak locations that matches to
the same FoxA1 motif.

the same time, SPP and CisGenome called a peak at chr1:196,770,446 and chr1:196,770,387,

respectively. However, SISSRs called three peaks, two of which have corresponding FoxA1

related motif within 150 bp.

Figure 4.5(b) shows an example of binding sites called by GLMNB and SPP but missed
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by MACS. GLMNB called a peak at chr17:56,970,895 with FDR= 10−1.77, matched with a

motif 4bp on its left. SPP called a peak at chr17:56,970,852 with FDR=0.2%, matched with

the same FoxA1-related motif but 19bp on its right. CisGenome and SISSRs were able to

call a peak close to the identical FoxA1-related motif. However, MACS does not call a peak

because the tag count in this region is extremely large regardless forward and reverse tags

form two peak shapes and there is a FoxA1 related motif between forward and reverse peaks.

In the FoxA1 study, we found that MACS tended to call peaks in larger sizes due to its

automatic peak interval expansion procedure. This is why often GLMNB and SPP identify

multiple binding sites in a region but only a single MACS peak was found at the strongest

peak position. A desirable feature of GLMNB is its capability to call nearby peaks. As shown

in Figure 4.5(c), forward and reverse tags form two obvious pairs of peaks separated by about

400 bp, with the stronger pair on the left and a weaker pair on the right. MACS is able

to locate the stronger peak at chr17:70,967,317 with a extremely significant FDR(10−304),

thanks to MACS modeling mechanism: model combined tag counts from both pairs against

background Poisson distribution regardless the amount of peak shapes. There is a FoxA1

motif found at 28 bp on its left. But it missed the peak on the relatively less significant

peak at around chr17:70,967,700. GLMNB called two peaks in this region, one centered at

70,967,345 (left blue circle) with θ = 77bp, and the other centered at 70,967,747 (right blue

circle) with θ = 44bp. The FDR for the two peaks were 10−33.6 and 10−8.6, respectively.

GLMNB is capable of capturing multiple peaks within a local region, because the method

is a model based approach that fits the data with a specific binding profile. For each pair

of forward and reverse strand peaks, GLMNB evaluates its binding significance in each

sliding window. Both GLMNB peaks can be matched to two FoxA1-related motifs (blue

stars, 56bp and 7bp to the left of the predicted binding sites, respectively). SPP was also

able to call two peaks in this region. Two SPP peaks (purple upper triangles) were found,

one at 70,967,302 with a motif (left purple star) 13bp to the left, the other at 70,967,760
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with a motif (right purple star) 25bp to the left. As an extreme example (Figure 4.5(d)),

GLMNB detected 3 peaks in a 5kb region, with FDR ranging from 10−5 to 10−21.5, on

chr20:51,913,000-51,918,000. Two of the three GLMNB peaks contained at least one FoxA1-

related motifs. SPP identified six peaks in the same region, four of which are within 30bp of

GLMNB peaks. Two of three peaks not called by GLMNB do not contain any FoxA1-related

motif. In contrast, MACS only called the most significant peak at chr20:51,914,386, with

FDR=10−135. CisGenome is able to call two peaks at the two most significant positions

at chr20:51,914,391 and chr20:51,917,510 matched to two FoxA1 motifs. However, SISSRs

identifies 11 binding peaks, most among the five algorithms. But only six of them can be

matched with a FoxA1 motif. In the area containing more than average tags, SISSRs tends

to call more peaks than GLMNB and other algorithms.

Figure 4.6(a) illustrates an peak called by GLMNB but missed by CisGenome. There are

two pairs of forward and reverse signals nearby each other, with two reverse peaks separated

by roughly 200 bp. All five algorithms were able to identify the stronger peak on the right.

GLMNB called the peak at chr20:54,743,954, 12 bp to FoxA1 related motif on the left, the

one closest to the motif among the five algorithms. However, only GLMNB and SISSRs

were able to located the other peak for the left pair of signals. CisGenome was not able to

locate it because it was not able to distinguish the two peaks using its default 100 bp sliding

window. MACS and SPP were not able to distinguish it due to the reason discussed above.

Figure 4.6(b), (c) and (d) illustrate three situations GLMNB did not call a peak while

CisGenome and MACS (and/or SPP, SISSRs) called a peak. There were no FoxA1 mo-

tif matched with any peaks called in these three examples. At around chr1:65,186,692 in

Figure4.6(b), the tag counts in forward and reverse strand are not comparable(1 forward tags

and 11 reverse tags). GLMNB refused to call it because of asymmetric tag counts between

two strands. However, SPP, MACS and CisGenome called it with a moderate FDR(2%

for SPP and 10−10.3 for MACS). At around chr1:149,731,382 in Figure4.6(c), the forward
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Figure 4.5. Comparison example of FoxA1 ChIP sample data between GLMNB and
MACS. (a) An example of peak detected by both GLMNB and MACS. (b) An example of
GLMNB peak undetected by MACS. (c) An example of multiple GLMNB peaks but called
a single one by MACS. Both peaks were matched to FoxA1-related motifs. (d) An extreme
example of multiple GLMNB peaks but called a single one by MACS. Three peaks are
called by the GLMNB but only the strongest one is called by MACS.

tags locate on the right of reverse tags, which does not match the ChIP-Seq experiment

assumption. Therefore, GLMNB refused to call it with negative θ. However, MACS and

CisGenome called it because both methods do not use tag direction information. At around

chr17:362,269 in Figure4.6(d), tags on both strands show an asymmetric shape. GLMNB
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failed to call it. However, MACS called it with a FDR= 10−3.6 and locate a peak at 362,269,

close to CisGenome and SISSRs peak locations. In summary, GLMNB is able to locate two

peaks located within 200 bp but will not call peaks if tags in both strands do not locate in

the correct position or form a nearly symmetric shape.
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Figure 4.6. Comparison between GLMNB and CisGenome on FoxA1 ChIP sample only.
(a) An peak example called by GLMNB but missed by CisGenome. and Three examples
called by CisGenome but missed by GLMNB because of (b) asymmetric tag counts, (c)
switched forward and reverse strand positions and (d) asymmetric tag shapes.

Figure 4.7(a) illustrates a peak where multiple SISSRs peaks were called whereas other
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four algorithms only located one. There is a strong signal at chr20:452,665,614. GLMNB

called a peak at chr20:452,665,594 with FDR= 10−9.56, with the smallest distance(20 bp)

to a FoxA1 related motif among the five algorithms. However, SISSRs located three extra

peaks by utilizing very weak signals nearby, which were considered as background noise by

other four algorithms. Only one of these three additional SISSRs peaks can be matched with

a FoxA1 motif 50 bp apart.

Figure 4.7(b), (c) and (d) illustrate three situations GLMNB did not call a peak while

SISSRS and other algorithms called a peak. There were no motif found in all three examples.

For example, at around chr1:107,227,170 in Figure 4.7(b), forward tags are on the right of

reverse tags, showing a switched and yet asymmetric shape. Only SISSRs found a peak under

such an irregular condition. At around chr15:89,161,988 in Figure 4.7(c), the observed tags

displayed an asymmetric shape, 2 forward tags and 7 tags on the right. GLMNB refused

to call it because the forward tag count did not exceed the tag count threshold. At around

chr16:76,803,371 in Figure 4.7(d), GLMNB refused to call a peak because of its evenly and

widely distributed tags for both strands, which might be due to non-specific binding event

on the background. However, SISSRs and other three algorithms called a peak without a

motif matching within 150 bp.

In summary, GLMNB called relatively less peaks than other algorithms. But it does not

reduce its sensitivity. GLMNB refuse to call a peak when forward and reverse tags form

asymmetric shapes, or evenly distribute in a wide region. According to the peak examples

shown above, GLMNB is able to call multiple peaks even when they are only 200 bp apart.
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Figure 4.7. Comparison between GLMNB and SISSRs on FoxA1 ChIP sample only. (a)
An peak example where SISSRs called more peaks than other four algorithms. and Three
examples called by SISSRs but missed by GLMNB because of (b) asymmetric tag tag
shapes between both strands, (c) asymmetric tag counts, and (d) evenly distributed tags.

4.3 GLMNB peak calling comparisons with other algo-

rithms on FoxA1 ChIP sample with negative con-

trol

By showing the strength of GLMNB on FoxA1 ChIP sample data analysis in section 4.2, we

are ready to consider negative control data and reduce false positives. We applied GLMNB
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on FoxA1 ChIP data with negative control data using the model described in Chapter 2.

As listed in Table 4.1, all five algorithms called less peaks after considering negative control

data. GLMNB called 5,766 peaks, 57.2% of peaks from ChIP sample data only, whereas

CisGenome cut the most peaks and called only 8,245 peaks, 35.2% of peaks before adding

negative control. When comparing the common peaks, GLMNB shares 92.5% of its peaks

with CisGenome, and even more with SPP(96.9%), MACS(96.0%) and SISSRs(96.7%). This

suggests GLMNB’ consistent performance and high sensitivity comparing to other methods.

Figure 4.8(a) plots the percentage of detected peaks carrying at least one FoxA1-related

motifs within 150 bp to predicted binding sites among the top 5,766 peaks ranked by FDR

values in GLMNB, and other four algorithms on FoxA1 ChIP data with negative control.

GLMNB’s peaks contain higher proportion of peaks matching with a FoxA1 related motif

than SPP in all top 5,766 peaks and MACS in top 3,500 peaks, both of which were ranked

top two peak callers with highest spatial resolution. SISSRs has slightly higher (0.5-1% on

average) percentage of peaks with motifs than GLMNB, particularly because it tends to call

multiple peaks in tag intense regions and therefore there is more chance to find a motif nearby.

Therefore, GLMNB is one of the top two peak callers among the five in terms of peak calling

accuracy. The spatial resolution is assessed using the distance between predicted binding

sites to the nearest motif in Figure 4.8(b). GLMNB has a comparable spatial resolution as

SPP, the one claimed with best spatial resolution. But GLMNB has wider resolution than

MACS, CisGenome and SISSRs on FoxA1 ChIP data with negative control.

Before going to further pairwise comparison between GLMNB and other four algorithms,

I want to address the question I proposed in Figure 1.4 in Chapter 1. Remember it was

shown there that there is a moderate correlation(0.576) between ChIP sample data and

negative control data with respect to tag counts. This greater-than-zero correlation may be

due to variable binding affinity and non-specific binding events in different genome locations.

However, it is the algorithms’ responsibility to distinguish such a non-specific binding event
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Figure 4.8. ChIP-Seq peak calling comparison with previous methods with the negative
control sample on FoxA1 ChIP-Seq data. (a) Percentage of detected peaks carrying at least
one FoxA1-related motifs within 150 bp to binding sites by GLMNB and previous methods
for FoxA1. (b) Histogram of distance between nearest FoxA1 related motif within 150 bp
to predicted binding sites.

from the TF specific binding. Let us see whether GLMNB achieved such separation on

FoxA1 ChIP-Seq data with negative control or not. In Figure 4.9, I plotted the sample tag

counts scatter plot between ChIP sample and input sample as shown in Figure 1.4. For those

windows containing at least one binding site, I plotted a red dot. For those windows without

a predicted binding site, I plotted a black dot. GLMNB classified all 10-kb windows along

the entire genome into two partitions, binding events with Pearson’s correlation between tag

counts in ChIP sample and input sample of 0.541, and a non-binding events with correlation

of 0.775. It is obvious that most windows in top left regions were classified as binding status,

since many more tags were discovered in ChIP sample compared to the negative control

sample. A lot of windows plotted in bottom right regions were classified as non-specific

binding events, as comparable or even more tags were discovered in the negative control

sample than the ChIP sample. And more proportion of windows in the far right end on the

bottom of figures were classified as non-specific binding. Even though this is a rough plot
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based on a wide (10 kb) non-overlapping window, which does not represent tag distribution

or shapes, it is plotted independently of GLMNB algorithm. Therefore, it measures the

separation between specific binding events and non-specific binding events.
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Figure 4.9. Tag counts scatter plot between ChIP sample and input sample after
GLMNB peak calling.

From now on, I will illustrate the different aspects focused by GLMNB and the other

algorithms using some representative peak calling examples. I also plotted tags per 10bp bin

in negative control data at the same genome location as the ChIP sample on the bottom of

each sub-figure. Figure 4.10(a) and (b) give two peak examples called by GLMNB but missed

by SPP. At around chr13:32,592,235 and chr13:32,592,417 in Figure 4.10(a), GLMNB called

two peaks with moderate FDR 10−2.63 and 10−2.31 and two motifs nearby. SPP, MACS,

CisGenome, SISSRs were able to call peaks at the second location but not the first location.

At around chr4:113,253,889 in Figure 4.10(b), all five algorithms were able to locate a peak

with a FoxA1 motif within 150 bp. GLMNB and SISSRs were able to utilize forward and

reverse signal at around chr4:113,254,190. However, SPP utilized the same forward signal
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but a much weaker reverse signal located at around chr4:113,254,290 and called a peak in

less plausible position.

Negative control data in the two examples above contained barely any tags. Figure

4.10(c) and (d), however, give two peak examples with strong correlated tags in negative

control data. For example, in the region around two SPP peak positions (chr17:56,201,190

with significant FDR 0.01% and chr17:56,201,790), there is comparable or even more tags

in the negative control data compared to the ChIP sample data. SPP called two peaks,

which should be classified as false positives. There was no FoxA1 related motif close to the

two peaks. GLMNB and other 3 algorithms did not call any peaks. At SPP peak position

(chr1:154,453,168 with FDR=0.1%), there are even stronger forward and reverse tags in the

negative control data compared to the ChIP sample data. It should also be classified as false

positive. There were no FoxA1 related motifs close to this SPP peak and no peaks called by

other algorithms either.

Figure 4.11(a) and (b) illustrate two peak examples called by GLMNB but missed by

MACS. Figure 4.11(c) and (d) show two peak examples called by MACS but missed by

GLMNB. Let us first look at Figure 4.11(a). There are two obvious peaks apart by 550 bp.

GLMNB was able to call both peaks at chr10:7,315,467 and chr10:7,315,957, with FoxA1

motifs 2 bp and 1 bp on their right. SPP and SISSRs were also able to locate two peaks.

However, MACS and CisGenome were only able to call peaks at the first position. MACS

failed to call the second peaks due to its automatic binding area extension and tag merging

strategy. As a result, MACS called the left one with an extreme FDR(10−317).

Figure 4.11(b) shows another scenario, where negative control contains noisy tags not

necessarily correlated with ChIP sample tags. GLMNB, SPP, CisGenome and SISSRS were

able to call this peak with relatively low significance. However, MACS completely missed it.

Figure 4.11(c) illustrates the scenario where forward and reverse tags in ChIP sample are

asymmetric even though there are few tags in the negative control data. Only MACS called
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Figure 4.10. Comparison between GLMNB and SPP on FoxA1 data with the negative
control data.

a peak at chr1:65,706,018 with FDR= 10−12.2 but there is no FoxA1 related motif nearby.

GLMNB refused to call it because the forward tag count does not exceed the minimum tag

count threshold.

Figure 4.11(d) illustrate the scenario where there is strong non-specific binding affinity

in negative control data at the area of strong ChIP signal. MACS and SPP called a peak

at chr17:55,273,416 and chr17:55,273,426 with a motif 25 bp and 15 bp on their right, re-

spectively. Due to the obvious strong similarity on tag counts and shape, GLMNB classified
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such a region as negative signals, even though there is a motif shown nearby.

In summary, GLMNB keeps its capability of calling nearby multiple peaks with negative

control data. It properly adjusts the FDR level to account for the non-specific binding

observed in negative control data, rather completely ignoring the signals as MACS does. It

also reduces false positives by refusing peaks if forward and reverse tags in ChIP data show

asymmetric shape or counts or there is a strong similarity on tag counts and shapes between

ChIP sample and negative control sample.

Figures 4.12(a) and (b) illustrate two peak examples called by GLMNB but missed by

CisGenome. GLMNB was able to locate a peak at chr20:51,729,874(FDR= 10−2.96) with a

FoxA1 motif 45 bp on its right, after taking the relatively noisy tags in negative control into

account in Figure 4.12(a). SPP and MACS is able to locate it too. But CisGenome did not

call it a peak.

Figure 4.12(b) shows an similar scenario, where the negative control contains a few tags

but not similar in size or shape to those in the ChIP sample. GLMNB was able to call it as

MACS and SPP did. But CisGenome and SISSRs failed to call it.

Figure 4.12(c) and (d) show two peak examples called by CisGenome but missed by

GLMNB because forward and reverse tags show strong asymmetric shape or size. Forward

tags in Figure 4.12(d) even shows a suspected incorrect tag counts caused by amplification

bias in ChIP-Seq PCR step. Only CisGenome called it as a binding position.

In summary, GLMNB is able to call a peak after taking into account of the relative noisy

background tags appearing in the negative control data. However, GLMNB will not call a

peak if forward and reverse tags forms obviously asymmetric size or shape even though there

are rare tags in the negative control data. CisGenome fails to make these two contributions.

In the following two cases, 1) noisy but evenly distributed tags in negative control data

as shown in Figure 4.13(a) and 2) different size or shape between background tags and ChIP

sample tags as shown in Figure 4.13(b), GLMNB was able to call peak after accounting for
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Figure 4.11. Comparison between GLMNB and MACS on FoxA1 data with negative
control. (a) and (b) illustrate two peak examples called by GLMNB but missed by MACS.
(c) and (d) show two peak examples called by MACS but missed by GLMNB.

the background noise. However, SISSRs failed to call a peak in these cases. Again with

the asymmetric size or shape of forward tags and reverse tags in ChIP sample as shown in

Figures 4.13(c) and (d), GLMNB refuses to call a peak even though there are few non-specific

binding events appearing in the negative control data.
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Figure 4.12. Comparison between GLMNB and CisGenome on FoxA1 data with negative
control. (a) and (b) illustrate two peak examples called by GLMNB after accounting for
non-specific background noise shown in negative control data, but missed by CisGenome.
(c) and (d) show two peak examples called by CisGenome but missed by GLMNB due to
asymmetricity in shape or size between forward and reverse tags in ChIP sample.

4.4 Peak calling comparisons on GLMNB and other

algorithms on ETV1, RBPJ, EBNA2

.

After going through all detailed pairwise comparison between GLMNB and SPP, MACS,
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Figure 4.13. Comparison between GLMNB and SISSRs on FoxA1 data with negative
control. (a) and (b) illustrate two peak examples called by GLMNB after accounting for
non-specific background noise shown in negative control data, but missed by SISSRs. (c)
and (d) show two peak examples called by SISSRs but missed by GLMNB due to
asymmetry in shape or size between forward and reverse tags in ChIP sample.

CisGenome or SISSRS on FoxA1 ChIP data with or without negative controls in sections 4.2

and 4.3, I would like to walk you through results on ETV1, EBNA2 and two RBPJ biological

replicates described in section 2.1 and evaluate the performance of GLMNB compared to

other peak calling algorithms.

Table 4.2 lists numbers of peaks called by GLMNB, SPP, MACS, CisGenome and SISSRs
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on ETV1, EBNA2 and two biological replicates of RBPJ ChIP-Seq data only. There seems

to be no strong patterns in terms of peak amounts, except that SPP called the most amount

peaks among the five algorithms. GLMNB called significant less amount of peaks (24,739)

than SPP and MACS for ETV1 ChIP-Seq data, but a similar number to CisGenome and

SISSRs. GLMNB’s results shared 64.4% to 86.7% peaks in common with the other four

algorithms. GLMNB called 19,230 peaks on EBNA2 ChIP-Seq data only, similar amount as

that by MACS, CisGenome and SISSRs, but significantly lower than SPP(42,551). GLMNB

shared 49.1% to 80.6% peaks with the other four algorithms.

Although RBPJ-1 and RBPJ-2 are two biological replicates on RBPJ protein with a ChIP

sample, they differ in the tag amounts in the ChIP sample data (7.6 million tags versus 8.9

million tags). As a result, many more peaks were discovered in RBPJ-2 rather than RBPJ-1

by all programs except for SPP. Peaks called by GLMNB share 45.5% to 78.5% common

peaks with the other four algorithms on RBPJ-1 data set. Peaks called by GLMNB share

much higher, 61.3% to 79.4%, common peaks with the other four algorithms on RBPJ-2

data set.

Table 4.2. Peak Number Comparison with ChIP sample only(total, percent of GLMNB
peaks in common)

ChIP name GLMNB SPP MACS CisGenome SISSRs

ETV1 24,739 43,010(82.8%) 34,658(86.7%) 31,648(83.5%) 40,441(82.0%)
EBNA2 19,230 42,551(80.6%) 18,567(69.6%) 18,785(64.2%) 18,318(49.1%)
RBPJ-1 11,612 51,104(78.5%) 11,312(50.1%) 12,638(45.5%) 11,057(46.2%)
RBPJ-2 24,071 46,400(79.4%) 38,539(76.5%) 32,155(71.1%) 12,603(61.3%)*

Although GLMNB called less peaks than SPP and other algorithms, it achieves good

sensitivity assessed by percentage of top peaks with a protein binding motif within 150 bp

around predicted binding sites. All GLMNB top peaks on ETV1 and EBNA2 ChIP data

have the highest proportion of peaks with at least one ETV1 motif found within 150 bp

among the five algorithms as shown in Figure 4.14(a) and (c). The spatial resolution is
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assessed by peaks’ distance to the closest motif if any within 150 bp region for GLMNB and

other peak calling algorithms. GLMNB achieved about the same spatial resolution as MACS

and SISSRs and superior resolution to SPP on ETV1 and EBNA2 ChIP only datasets as

shown in Figure 4.14(b) and (d).
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Figure 4.14. ChIP-Seq peak calling comparison with previous methods without negative
control sample on ETV1 and ENBA2 ChIP-Seq data. Percentage of detected peaks
carrying at least one RBPJ-related motifs within 150 bp to binding sites by GLMNB and
previous methods for ETV1(a) and EBNA2(c). Histogram of distance between nearest
motif within 150 bp to predicted binding sites for ETV1(b) and EBNA2(d).

Even though the tag counts vary a lot between RBPJ-1 and RBPJ-2, two biological repli-
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cates from the same experiment for RBPJ protein, the performance of GLMNB is consistent

in both datasets in terms of peak calling sensitivity and spatial resolution as shown in Figure

4.15. GLMNB achieved highest and consistent sensitivity in both replicates at around 80%

of peaks with motif found within 150 bp regions. It also achieved the best spatial resolution

in RBPJ-1 and lower but very similar resolution to MACS, SISSRs and SPP. In comparison,

SPP does not have an consistent performance in spatial resolution.

After examining the performance of five peak calling algorithms on the four datasets

with ChIP sample only, I want to further evaluate their performance after accounting for

negative control data. Table 4.3 lists the peak numbers called by all five algorithms on

ETV1, EBNA2, RBPJ-1 and RBPJ-2 with negative control data. GLMNB called fewer

peaks after accounting for negative controls for all datasets except for RBPJ-2. There were

2,882 more peaks called in RBPJ-2 after accounting for the negative control data. GLMNB

shared 60.2% to 91.3% of common peaks with the other four algorithms on ETV1, EBNA2

and RBPJ-1 and RBPJ-2 ChIP-Seq datasets.

Table 4.3. Peak Number Comparison with Negative Control(total, percent of GLMNB
peaks in common)

ChIP name GLMNB SPP MACS CisGenome SISSRs

ETV1 14,922 36,701(88.6%) 28,432(91.3%) 20,431(87.1%) 19,437(72.3%)
EBNA2 15,840 29,231(79.1%) 17,392(73.0%) 17,545(76.4%) 16,968(60.2%)
RBPJ-1 6,440 32,639(86.0%) 8,742(68.6%) 9,273(69.9%) 7,805(73.7%)
RBPJ-2 26,953 40,011(73.3%) 29,324(75.8%) 27,395(70.4%) 8,396(62.7%)*

I also evaluated the peak calling sensitivity by assessing the percentage of peaks with

motif in 150 bp region on ETV1 (Figure 4.16(a)), EBNA2(Figure 4.16 (c)), RBPJ-1 (Figure

4.17(a)) and RBPJ-2 (Figure 4.17(c)) with negative control data. GLMNB kept its superior

peak calling sensitivity over other four algorithms on all four datasets after accounting for

negative control. The spatial resolution of GLMNB were compared with other four peak

calling algorithms in Figure 4.16(b), (d) and Figure 4.17(b), (d). GLMNB also achieved as
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Figure 4.15. ChIP-Seq peak calling comparison with previous methods without negative
control sample on RBPJ-1 and RBPJ-2. Percentage of detected peaks carrying at least one
RBPJ-related motifs within 150 bp to binding sites by GLMNB and previous methods for
RBPJ-1 (a) and RBPJ-2(c). Histogram of distance between nearest motif within 150 bp to
predicted binding sites for RBPJ-1(b) and RBPJ-2(d).

high resolution as MACS and SISSRs in ETV1 and EBNA2. It achieved the highest spatial

resolution in RBPJ-1 dataset but the fourth in RBPJ-2 dataset.

Since the two biological replicates vary a lot at least in total number of tags in the raw

data, it is difficult to evaluate the reproducibility of GLMNB. I decided to generate two

random replicates from RBPJ-2 dataset by independently randomly sampling 60% of tags
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Figure 4.16. ChIP-Seq peak calling comparison with previous methods with control on
ETV1 and ENBA2 ChIP-Seq data. Percentage of detected peaks carrying at least one
related motif within 150 bp to binding sites by GLMNB and previous methods for
ETV1(a) and EBNA2(c). Histogram of distance between nearest motif within 150 bp to
predicted binding sites for ETV1(b) and EBNA2(d).

without replacement twice. Such replicates should contain very close number of tags and

at least share 20% of original tags in common. The independent sampling is guaranteed

by using different random seed in R. GLMNB is used to call peaks on these two replicates

using the same negative control data. 18,101 common peaks are discovered from 23,224

peaks in replicate 1 and 21,628 peaks in replicate 2. Their FDRs in logarithm scales have an
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Figure 4.17. ChIP-Seq peak calling comparison with previous methods with control on
RBPJ1 and RBPJ2. Percentage of detected peaks carrying at least one RBPJ-related
motifs within 150 bp to binding sites by GLMNB and previous methods for RBPJ1 (a) and
RBPJ2(c). Histogram of distance between nearest motif within 150 bp to predicted
binding sites for RBPJ1(b) and RBPJ2(d).

extremely strong correlation (0.97) in Figure 4.18(a). The common peaks are on average 1

bp apart with standard deviation of 53 bp as shown in Figure 4.18(a). Both results suggest

a strong reproducibility of GLMNB with two random replicates sharing common tags in a

certain degree.
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Figure 4.18. Reproducibility of GLMNB evaluated by (a) FDR scatter plot and (b)
histogram plot on distances between peaks in common on two random replicates generated
from RBPJ-2 dataset.



Chapter 5

Discussion and Future work

5.1 Discussion of GLMNB features

One feature of GLMNB is the utilization of the negative binomial distribution. The neg-

ative binomial distribution allows the baseline level of tag counts, β0, and an dispersion

parameter α, to vary across different genomic regions ([11]). The flexibility of using these

two parameters makes GLMNB a better model for the ChIP-Seq data than a Poisson based

model. Using a negative binomial model also allows us to properly account for biological

variability from binding affinity variation([3, 5]). ChIP-Seq background tags are frequently

unevenly distributed, as they depend on the chromatin structure and the sequence content.

By fitting a likelihood function to the data and obtaining a maximum likelihood estimator

for β0 and α within each sliding window, GLMNB can most efficiently and flexibly account

for the effects of local genomic features. As shown in Figure 3.7(b), allowing a variable

dispersion parameter α helps to increase the prediction power and to enhance the capability

of distinguishing strong peaks from weak ones compared to a fixed α model, not to mention

Poisson background model over-optimistically sets α = 0 and assumes the equality of mean

and variance for the entire genome. Furthermore, GLMNB fits the tag data by a binding
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profile, which is estimated from highly tag-enriched regions. As a result, GLMNB can detect

refined protein binding sites that follow a particular tag pattern rather than simply relying

on the total tag counts.

Another key feature of GLMNB is its local peak shifting parameter estimation. Most

previous peak calling programs estimate a global peak shifting size from highly tag-enriched

regions across the genome, and then use such a global estimate to merge forward/reverse

strand tags together before peak calling. This strategy ignores the interval variation of DNA

sequence protected by the binding protein. For example, a wide interval of DNA sequence

may result from sonication in a ChIP-Seq experiment, if the binding protein forms a large

complex. Similarly, a narrow interval of DNA sequence may result if a protein only partially

binds to a site. If a peak shifting parameter is not accurately estimated, the tags on the

forward and reverse strands may not be correctly merged, thus statistical power declines in

peak calling and/or reducing the accuracy for pinpointing the binding positions. GLMNB

estimates the peak shifting parameter along with other model parameters simultaneously

within each window without merging forward and reverse tags together. This strategy not

only provides a more accurate estimate for peak shifting parameter based on local tags, but

also properly combines peak strength from the two strands of the genome. As shown in Figure

3.6 in the simulation study, modeling the 500 simulated peaks with local estimate of peak

shifting parameter gives 10.8% higher power compared to global/constant shifting parameter

strategy. And peaks called by constant shifting parameter strategy were on average shifted

by 14.03 bp, an obvious reduction on spacial resolution.

As demonstrated in the FoxA1 data, GLMNB was able to detect 220 peaks that were

clustered within 98 local regions along the genome. Rather than reporting a single binding

site at the strongest peak position among multiple peaks, as did MACS and CisGenome,

GLMNB pinpointed every binding location if peaks are separated by at least 200 bp, roughly

the DNA filtration size in a ChIP-Seq experiment. Unlike SPP or SISSRs which are more
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sensitive and usually call more peaks, GLMNB applies a more conservative strategy and calls

fewer with higher confidence. For example, in Figure 4.5(d), GLMNB called three peaks at

the strongest peaks which can be paired with at least a motif. However, SISSRs identified 11

peaks but only half of them can be matched with a motif within 150 bp range. The output

of GLMNB includes the predicted binding location, the local peak shifting parameter that

measures the size of protein-protected DNA region and the statistical significance of the

peak.

There were several default parameters used by GLMNB: bin size, window size, minimum

tag counts in a window, and step size of sliding windows. I evaluated the impact of these

parameters on GLMNB’s performance using simulated data. I first tested bin size of 5,

10(default) and 20 bp, respectively, which yielded almost the same power and the false

positives. In practice, a larger bin size allows a better fit to the model, because there are

more bins with non-zero tag counts. Yet at the same time it reduces the mapping resolution,

because binding sites are then predicted based on larger interval of data points. I next tested

the cutoff value of the minimum tag counts within a window in both strands. With a cutoff

of 5, 8 (default value) and 16 tags per 500 bp window in both strands, we again obtained

almost the same most significant peaks (i.e. top 500 peaks) in the simulated data. However,

we notice a big difference with respect to the number of peaks between using 5 tags per 500

bp and 16 tags per 500 bp. Using a stringent tag cutoff number such as 16 tags per 500 bp

window, one arbitrarily filters out those peaks 1) with tags less than cutoff in both strands

and 2) with slightly asymmetric tag size but either one strand tag counts may not exceed the

cutoff. We do not worry about filtering out true positives in the first case, because these tags

counts not significantly larger than background in both strands will not yield a significant

peaks anyway. If we set the cutoff too stringent, we may miss true positives in the second

case. For example, if a cutoff of 16 tags per 500 bp window is applied, one may miss a peak

in a window containing 15 forward tags and 30 reverse tags. If a cutoff of 5 or 8 tags per
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500 bp window is applied, GLMNB is able to use the binding profile to call a peak after

compensating the significance for its asymmetric tag size. For exploratory analysis purpose,

I suggest to use a cutoff of 5 or 8 tags, and leave peak calling task to GLMNB program rather

than simply filtering it out. Therefore the default and recommended cutoff for tag counts is

5 tags per 500 bp window. It will take slightly more computing time than a larger cutoff,

but the gain is obvious. 4,008 FoxA1 peaks are called using 16 tags per 500 bp window as

a cutoff, while 10,073 are called using 5 tags per 500 bp window in the FoxA1 ChIP sample

peak calling discussed in Chapter 4.

We further tested the window size of 500 bp (default) and 1,000 bp, respectively. Again

we did not observe changes of the performance of GLMNB in the simulated data. In fact,

given that our estimated binding profiles have fixed sizes, increasing the window size itself will

not largely affect the performance. Finally, the step size of sliding windows is an important

parameter in our program. If the step size is too large, GLMNB can easily miss a true

binding site. This is true for all methods utilizing sliding windows.

One further extension of GLMNB is to incorporate negative control data into peak calling.

If no negative control sample is available, GLMNB constructs a background model based

on the ChIP sample data. If a negative control sample is available, GLMNB constructs a

background model based on tags from the negative control data. If there are no tags in a

certain region in the negative control data, GLMNB can call a peak with high confidence.

If there are noisy tags or non-specific binding tags due to regional bias, GLMNB is able to

adjust the baseline parameter β0 & dispersion parameter α and adjust the significance to

an appropriate level. If there are strong binding signals shown at the same location in both

ChIP and negative control data similar to the scenario in Figure 4.11(d), GLMNB does not

call a peak. Even though GLMNB captures the local background variation of tag occurrence

via a negative binomial model, the comparison between signal data and control data actually

further improves the modeling of background tag variation when the negative control data
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are available. It thereafter improves the specificity of peak calling and reduces false positives

caused by non-specific binding event and background noise, for example GC content in local

regions.

GLMNB corrects multiple testing using false discovery rate. It was shown in simulation

study in Chapter 2 that GLMNB is able to distinguish peaks with different simulated strength

by FDR. Such FDR is calculated based on the Wald test or the likelihood ratio test from

negative binomial background model, whose null distribution is shown in Figure 3.5(a) and

(c), and is therefore reliable.

GLMNB also offers a function to adjust the sliding window size automatically using the

first derivatives of smoothed profiles to help the user to choose an appropriate window size.

An appropriate window size can help precisely locate the predicted peak positions. If a

window size is set too large, the tag count vector may include too much region with barely

any tags. If a window size is set too small, GLMNB may lose important information, for

example a particular region that can match with ChIP signal profile. Our approach relies

on the first derivatives of smoothed binding profiles from high confident regions on forward

and reverse strands. Figure 2.2 shows an example of smoothed first derivatives from FoxA1

ChIP data. GLMNB starts from the center of profile window and extends to both sides and

looks for a position where the first derivatives stay around zero for both strands. Please

note that the flat area in the first derivatives corresponds to both far ends of smoothed

bell-shape profile. This approach will ensure that the proper window size captures adequate

information from observed tags and does not mislead the model in a sparse zero-tag area.

5.2 Computing speed

The prototype of GLMNB algorithm is developed in R but takes too long to finish the entire

genome due to the weakness of R software. For example, it took roughly a hour to finish
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1,000 MLE using maxNR function(a maximum likelihood estimate function in R using the

Newton-Raphson method) in R, which covers 30 kb region, a really small region compared

to human genome size of 3,098 Mb. Therefore, I encode all functions in a more efficient way

in C++. Depending on the sliding window parameter setting, it takes GLMNB about two

hours (40 minutes) to call peaks in the entire genome on ChIP sample with negative control

(ChIP sample only) using the default setting(minimum tag cutoff 5 tags per 500 bp window).

This computing time comes from the FoxA1 ChIP sample(3.9 million tags) with negative

control data(5.2 million tags). This is a very fast program among those utilizing directional

tag information. It takes 7 hours for BayesPeak, another algorithm utilizing directional tag

information , to analyze ChIP-Seq data with negative control sample using 12 cores running

in parallel.

5.3 Peak calling using multiple tracks

One benefit of the GLMNB framework based on generalized linear model is its ability to

extend peak calling onto multiple track ChIP-Seq data. For example, a biological scientist

may be interested in 1) increasing peak calling power using biological replicates with a

common negative control data under one biological condition; 2) identifying genome locations

where there is a binding event under all c biological conditions other than negative control

conditions; 3) identifying genome locations where there are differential binding events under

different biological conditions. In this section, I would like to explore hypothesis testing for

these three scientific questions and lay out possible future work.

Question 1) is a special case of GLMNB specific in equation (2.13) with k ChIP replicate

samples and one negative control sample under one biological condition. To simplify the
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notation, footnote j is dropped.

log µ = Xβ = β0 +
k
∑

j′=1

(β1~xj′) + β2~zj

µ = E(y)

~y =
(

(yS
1 )T , . . . , (yS

k )T , (yC)T
)T

~xj′ = ((~0)T , . . . , (~0)T , (xS
j′(θ))

T , . . . , (~0)T , . . . , (~0)T )T

~zj = ((xC(θ))T , . . . , (xC(θ))T )T

where xS
j′(θ), j′ = 1, . . . , k is the smoothed signal profile for j′-th replicates, xC(θ) is the

smoothed profile generated from negative control sample, θ is the common shifting parameter

across all samples, and β1 is the common coefficient for smoothed profile generated from all

k ChIP samples. Both xj′(θ) and xC(θ) are generated using equations (2.10) and (2.11).

To call peaks that shows strong signals in all k replicates, the following hypothesis is

tested.

H0 : β1 = 0 (5.1)

HA : β1 > 0

GLMNB tests the hypothesis above using the likelihood ratio test. In the null model

assuming no binding event, there are three free parameters, coefficient for signal profile β2,

peak shifting parameter θ and dispersion parameter α. In the alternative model assuming

the existence of binding event, there is an additional parameter, the common coefficient for

signal profiles β1. GLMNB utilizes the likelihood ratio test with an appropriately estimated

degrees of freedom to answer question 1.

Now we can move on to scientific question 2). Assume a ChIP-Seq project involving c

biological conditions, each of which contains kj(j = 1, . . . , c) ChIP samples and one negative
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control sample. Then the observed count vector is constructed as follows.

~y =
(

(yS
1,1)

T , . . . , (yS
1,k1

)T , (yC
1 )T , . . . , (yS

c,1)
T , . . . , (yS

c,kc
)T , (yC

c )T
)T

(5.2)

yS
j,j′ =

(

yF
1 , . . . , y

F
n , y

R
1 , . . . , y

R
n

)T

j,j′
, j = 1, . . . , c, j′ = 1, . . . , kj (5.3)

yC
j =

(

zF
1 , . . . , z

F
n , z

R
1 , . . . , z

R
n

)T

j
, j = 1, . . . , c (5.4)

A smoothed profile, xS
j,j′(θ), are generated for j′-th ChIP sample data under j-th biological

condition as follows. The shifted profiles are denoted as m̂F
j,j′(t + θ) and m̂R

j,j′(t− θ), where

j = 1, . . . , c and j′ = 1, . . . , kj. And the expected tag counts xj,j′(θj) are generated as

described in equations 2.10 and 2.11. The peak shifting parameter θj (j = 1, . . . , c) are the

same in all replicates in j-th biological condition. A pair of binding profile are also generated

from both forward and reverse strands using the same procedure described in section 2.3.3,

denoted as m̂F
C,j(t + θj) and m̂R

C,j(t − θj), where subscript (C, j) indicates that it is from

negative control data in j-th condition. And the expected tag counts from negative control

data are denoted as xC
j (θj) by plugging m̂F

C,j(t+ θj) and m̂R
C,j(t− θj) into equation 2.12.

Then the generalized linear model is the same as shown in equation (2.13).

log µ = Xβ = β0 +
c
∑

j=1





kj
∑

j′=1

(β1,j~xj,j′) + β2,j ~zj





µ = E(y)

~xj,j′ = ((~0)T , . . . , (~0)T , . . . , (~0)T , . . . , (xS
j,j′)

T , . . . , (~0)T , . . . , (~0)T , . . . , (~0)T )T

~zj = ((xC
1 )T , . . . , (xC

1 )T , . . . , (xC
j )T , . . . , (xC

j )T , . . . , (xC
j )T , . . . , (xC

c )T , . . . , (xC
c )T )T

where xS
j,j′(j = 1, . . . , k) is the smoothed signal profile vector from j′-th ChIP sample under

j-th biological condition. xC
j is the smoothed profile vector from negative control sample

under j-th biological condition. β1,j is the common coefficient for smoothed signal profile
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xS
j,j′ in all replicates under j-th condition. β2,j is the coefficient for smoothed signal profile

xC
j under j-th condition. And β0 is the baseline parameter.

To find genome locations where there is a binding event under at least one conditions in

scientific question 2), the following hypothesis is tested.

H0 : β1,1 = β1,2 = · · · = β1,c = 0 (5.5)

HA : at least one β1,j > 0

To find genome locations where there are differential binding events under different bio-

logical conditions in scientific question 3), the following hypothesis is tested.

H0 : β1,1 = β1,2 = · · · = β1,c (5.6)

HA : β1,j 6= β1,j∗where j 6= j∗, j, j∗ = 1, . . . , c

Table 5.1 and 5.2 list numbers of peaks called by GLMNB, MACS, CisGenome and

SISSRs at each time point separately on ChIP sample only and with negative control. One

may notice that there are a lot more predicted peaks at 3 , 7 and 14 hours compared to 0, 24

and 30 hours, which suggests differential binding of GATA1 between these two categories of

time points. It will be an interesting future project to extend the current GLMNB algorithm

and explore genome positions with differential TF binding levels under these two categories

of time points.
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Table 5.1. Peak Number Comparison with ChIP data only on GATA1 multiple time
point data(total, percent of GLMNB peaks in common)

Time point GLMNB MACS CisGenome SISSRs

0hr 6,188 6,907(62.0%) 5,426(58.1%) 6,233(54.9%)
3hr 15,780 26,515(62.1%) 29,251(63.6%) 34,120(66.2%)
7hr 18,951 22,930(88.3%) 24,171(88.9%) 29,488(80.0%)
14hr 12,053 13,088(70.4%) 14,967(84.4%) 20,221(77.8%)
24hr 3,067 5,508(47.6%) 8,592(52.1%) 11,553(47.4%)
30hr 4,996 6,826(66.3%) 9,769(67.7%) 12,868(68.6%)

Table 5.2. Peak Number Comparison with Negative Control on GATA1 multiple time
point data(total, percent of GLMNB peaks in common)

Time point GLMNB MACS CisGenome SISSRs

0hr 6,188 6,907(62.0%) 5,426(66.3%)* 6,233(54.9%)
3hr 10,868 21,177(85.3%) 14,982(74.5%) 6,546(72.7%)*
7hr 13,650 15,985(71.1%) 11,809(73.7%)* 7,148(79.1%)
14hr 14,394 12,535(50.5%)* 8,851(66.7%) 5,039(76.3%)*
24hr 4,131 1,655(60.2%)* 1,398(67.1%)* 2,518(44.1%)*
30hr 4,628 5,619(51.6%) 3,487(55.7%)* 3,852(48.5%)*

* notes programs that calls less peaks than GLMNB.
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GLMNB User’s manual

A.1 Introduction

This GLMNB software is used to analyze ChIP-Seq Signal data (BED format) and predict

transcriptional factor binding sites.

A.2 Software availability

A β version of GLMNB software, glmnb 1.0.tar.gz, is up online at SourceForge.net. The

download address is:

https://sourceforge.net/projects/glmnb/files/latest/download

Feel free to download and test it on your ChIP-Seq dataset. The package contains two

executive files(for Linux 64 bit and 32 bit systems, respectively), a README file, one ChIP

sample dataset, one negative control sample dataset in the package. The flow chart and key

functions in GLMNB are listed in Appendix B.
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A.3 Performance

The whole procedure takes 1-3 hours, depending mainly on tagcutoff, the minimum tags

counts for forward and reverse strands, respectively. The larger the tagcutoff is, the less time

GLMNB will consume. But weak binding sites may be missed. Recommend tagcutoff =5.

GLMNB requires at least 2 GB of memory, depending on the number of ChIP-Seq files

and their size. It also requires GNU Scientific Library(GSL).

False positives are reduced by including negative control sample. But the computing

time increases as well. For the FoxA1 data set provided with the package, it takes about 40

mins to run GLMNB on ChIP sample only. It takes about 2 hours to run GLMNB on ChIP

sample with input sample. It is recommended to submit a script to a server if there is a time

limit on command line from the server.

A.4 Executive file

GLMNB: an executive file complied by g++ under linux 64 bit system(x86 64) used to call

peaks and calculate corresponding false discovery rate(FDR). Please refer to section A.6 for

detailed instruction on algorithm parameters.

GLMNB 32: an executive file complied under linux 32 bit system(i686) with identical

peak calling function as GLMNB above.

A.5 ChIP-Seq data file in BED format

GLMNB takes ChIP-Seq data, both ChIP sample and negative control sample, in BED

format. They can be put in ExpData folder by default or any other directories. There

should be six columns separated by Tabs. The first column lists chromosome numbers. The

second and third columns list start and end genome coordinates of ChIP tags. The sixth
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column lists symbol of ”+” or ”-” that represents forward and reverse strands. GLMNB

only uses information from the first three columns and the sixth column, while information

in the fourth and fifth columns are not used. An example of ChIP-Seq data is listed below:

Table A.1. ChIP-Seq data example

chr1 7324 7359 0 2 +
chr1 522319 522354 0 3 -
chr1 553256 553291 0 3 -
chr1 699985 700020 0 3 +
chr1 745587 745622 0 0 +
chr1 747076 747111 0 0 +
chr1 747461 747496 0 0 +
chr1 748359 748394 0 0 -
chr1 752041 752076 0 0 +
chr1 752047 752082 0 2 -
chr1 774025 774060 0 1 -

A.6 Command

NOTE: Please run GLMNB on linux 64 bit system(x86 64) or GLMNB 32 on linux 32 bit

system(i686). The following uses GLMNB executive file as an example. For users in linux

32 bit system, please use GLMNB 32.

./GLMNB ”ExpDatafile” [-ctrlfile Input tags.bed] [-chipname FoxA1] [-tagcutoff 5]

[-FDR 0.05] [-binsize 10] [-winsize 500] [-stepsize 10]

[-printlevel 0] [-pminwincount 50] [-h 10] [-keeptempfile]

[-buildcommonsymmetricprofile] [-LRT] [-taghalfsize 18] [–help] [-version]



121

For example, command for GLMNB on ChIP sample only (FoxA1 data) is:

./GLMNB ExpData/Treatment tags.bed -chipname FoxA1 ChIPOnly

Command for GLMNB on ChIP sample with input sample (FoxA1 data) is:

./GLMNB ExpData/Treatment tags.bed -chipname FoxA1 WithInput -ctrlfile ExpData/Input tags.bed

Arguments are as follows:

ExpDatafile(required input): the ChIP signal file in BED format;

-ctrlfile: the negative control sample file in BED format;

-chipname: the transcription factor name;

-tagcutoff: the minimum tag number for a sliding window to be fitted by generalized linear

model, default 5 tags per window for both strands;

-FDR: false discover rate cutoff for output;

-winsize: sliding window size, 500 bp by default;

-binsize: bin size within each sliding window, 10 bp per bin by defaults, therefore 50 bins

for a 500-bp window;

-stepsize: step size for a sliding window, 10 bp per window by default. A larger stepsize will

increase the computing speed but reduce the spatial resolution;

-printlevel: print level for screen output, 0 for minimum screen output, 5 for detailed debug-

ging output;

-pminwincount: minimum tag counts of high confidence region for profile construction, by

default 50 tags per twice of winsize (1,000 bp);

-h: bandwidth for profile smoothing method(kernel regression), do not change it unless for

debugging purposes;

-keeptempfile: keep all temporary files for plotting, default not to keep temporary files;

-buildcommonsymmetricprofile: construct mirror profiles for forward and reverse strands(by

default, the profile for the two strands are constructed separately without guaranteed mirror

shapes);
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-LRT: use likelihood ratio test rather than the default z-score test to call peaks;

-taghalfsize: the half length of DNA, for example, for ChIP Seq data with 36bp tag length,

one should input 18;

–help: show brief command options;

-version: show version information.

A.7 Output

The final result file is ”FoxA1 chr1 GLMNB toppeaks.txt” at the current folder, containing

the following columns separated by comma:

chr: chromosome;

peakpos: predicted peak position;

peakshift: estimated peak shift;

YF: forward strand tag counts within the sliding window;

YR: reverse strand tag counts within the sliding window.

logp: log10 of pvalues used to calculate FDR;

FDR: expected false discover rate;

ZF: forward strand tag counts at the same window from input sample (displayed only when

input sample is available);

ZR: reverse strand tag counts at the same window from input sample (displayed only when

input sample is available).



Appendix B

GLMNB program Flow Chart

B.1 GLMNB program Flow Chart

The flow chart and major functions in GLMNB is illustrated in Figure B.1.

B.2 GLMNB function notations

The comments on major functions used in GLMNB are listed as follows. For further details

on GLMNB, please contact the author, Jialin Xu, at jxx120@gmail.com.

CallogGammaDiff: Calculate log Gamma difference as log(Γ(y + 1/α)) − log(Γ(1/α));

CalDigammaDiff: Calculate Digamma (the first derivative of log Gamma function) differ-

ence as ψ(y + 1/α) − ψ(1/α);

CalTrigammaDiff: Calculate Trigamma (the second derivative of log Gamma function) dif-

ference as Trigamma(y + 1/α) − Trigamma(1/α);

CalX: calculates a vector of X values for a given bin center position (dm) based on smoothed

profile of mF, mR, return a vector x of length 2*winsize/binsize;



124

� �

����������	��
�����

��������	������
	�������

���	���	���������	������
	�������
���	������	����	��������	���	���������	���������

�����	������	�������	���	������	��	��������	��������

���������	� !	���	����	���"�	���	� !#$�$%

���������&

��'(!)(*)!)������

���+�	�������� ���+�	���,�� ���+

��
��")(*�	�������)(*�	���-������)(*

������.������/

Figure B.1. Flow Chart of GLMNB program

CalFirstDeriX: Calculate the first derivatives for a given bin center position(dm) based

on smoothed average bin height, pmF and pmR, return a vector derix1 of length 2*win-

size/binsize;

CalSecondDeriX : Calculate the second derivative derix2 for a given bin center position

(dm) based on smoothed version of ppmF, ppmR, return a vector derix2 of length 2*win-

size/binsize;
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loglik NB: Calculate log likelihood value for given x, y, z vectors;

CalGrad NB: Calculate gradient for a given x, y and z vector;

CalHessian NB: Calculate Hessian matrix;

CalBeta1Stderr new: Calculate standard error from Hessian matrix;

maxNR NB R sub: function to excute Newton Raphison method and find maximum likeli-

hood estimate when activePar is not full ranked. In other words, this function will be used

for constant theta, constant alpha or any models other than full model.

maxNR NB R: function to excute Newton Raphison method and find maximum likelihood

estimate when activePar is full ranked. This function will be used for full model only.

maxNR NB R master: function to determine which functions above to call, maxNR NB R

or maxNR NB R sub, depending on whether subdimension = dimension or not.

modeltype2activePar: function to translate model type specification into activePar vector;

ConstructY: a function to construct an observed tag vector, Y, from bincounts vectos from

the first(bincountsF and bincountsR), second(bincountsF1 and bincountsR1), third(bincountsF2

and bincountsR2) and forth(bincountsF3 and bincountsR3) ChIP experiment datasets.

CreateProfile2: Create profile from high confidence regions;
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