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Abstract:  
 

The objective of this project is to utilize computer model to simulate and explore the 

effects of a high-permittivity (k) barrier located between capacitor plates on dielectric 

breakdown properties. By improving our knowledge of electric breakdown and 

degradation in composite dielectrics it is hoped that a more reliable capacitor with a 

graceful failure mechanism can be developed.  Using Mathsoftôs MathCad 13 software, a 

Monte Carlo based computer simulation was developed to model the treeing phenomena 

found in capacitor breakdown. The model explored the electrostatic effects of adding a 

high-k barrier within an existing dielectric causing a dielectric contrast and distorting the 

electric field. In the program, normalized local fields are compared to a random number 

between 1 and 0 to determine breakdown events. Weibull statistics were applied to the 

collected data and characteristic number of breakdown steps was compared between runs. 

Run conditions explored dielectric contrasts of 2, 10, 50, 100 and a homogeneous matrix. 

Barrier location was varied from ¼ to ¾ of the distance between capacitor plates and 

occupied 2 of 60 vertical spaces (3.3%) of capacitor thickness. Characteristic breakdown 

steps for each condition did not show significant trends until higher contrast values. It 

was noted that average time spent within the barrier increased with barrier distance from 

the initiation point and the contrast between the barrier and the matrix. It was also 

observed that lateral growth occurred with higher dielectric contrast values. Further 

development of the model to incorporate more material properties affecting breakdown 

would be highly beneficial in understanding current experimental observations. 
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Chapter 1: Introduction  
The objective of this project is to utilize computer model to simulate and explore the 

effects on dielectric breakdown of a high-k barrier incorporated into the dielectric 

between capacitor plates. 

1.1 Capacitor Basics 
Capacitors are energy storage devices made up of two electrically charged plates 

separated by a small distance. Energy is stored in the electric field established between 

the oppositely charged plates. The amount of energy stored is proportional to the 

Capacitance and the square of applied Voltage as given by Equation 1. The capacitance 

of a device is given in Equation 2 and the charge on each plate for a given voltage is 

given by Equation 3. 
[1]  

 

Equation 1: Energy in a Capacitor 

E = ½ C * V
2 

 

Equation 2: Capacitance 

C = Ůr *  Ůo *  
A
/t 

 

Equation 3: Charge on Capacitor Plate 

q = C * V 

 

 

* Where E is energy in Joules, C is capacitance in Farads, V is voltage in Volts, Ůr is permittivity relative to 

vacuum, A is area in Meters, t is thickness in Meters, and q is charge in Coulombs.  
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Figure 1: Schematic of a Capacitor 

 

As energy storage devices, there are many advantages and disadvantages to capacitors. 

As illustrated in Figure 2
[2]

 they store relatively low levels of energy, but their fast 

response times allow them to deliver their energy quickly giving them exceptional power 

per unit mass. In applications such as hybrid vehicles, both high power and high energy 

density are necessary in order to be an effective energy storage system.  

 

Figure 2: Ragone Plot of Typical Energy Storage Devices
 

 from http://www.mpoweruk.com/images/ragone_alternatives.gif 

 

To increase energy storage one can increase the capacitance of the device or increase the 

voltage. Capacitance, Equation 2 above, can be improved three ways; increasing the 
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dielectric constant of the material between the plates, increasing the surface area of the 

electrodes, or reducing the distance between plates. With the spatial limitations 

commonly encountered in capacitor applications, the easiest method is to place a high 

permittivity dielectric material between the two plates.
[1] 

 

Dielectrics are insulating materials which have negligible charge transport properties and 

become polarized in an electric field. This polarization is possible because dielectrics are 

made of atoms possessing both a positively charged nucleus and a negatively charged 

electron cloud. The polarization of a dielectricôs atoms and ions is what makes them 

useful in capacitors. As the charge distributions shift within the bulk of the material 

charges begin to appear on the surface of the dielectric. These new surface charges 

require that even more charge be present on the capacitor plates to maintain a given 

voltage, a relation which can be seen in Equation 3, as C increases, so must q to maintain 

a given V.
[3]

This increased charge density at a given voltage is why inserting a dielectric 

between capacitor plates increases the energy storage. 

 

Dielectric materials can undergo multiple types of polarization, often depending on the 

frequency of the applied field. These polarization mechanisms include electronic 

polarization of the electron cloud relative to the nucleus, atomic polarization of positively 

and negatively charge ions, dipole orientation with the field, and build up of space 

charge.
[1]

 The relation between these polarization mechanisms and frequency is 

illustrated in Figure 3 shown below. 
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Figure 3: Relative Permittivity  Vs Frequency adapted from Solymar and Walsh 
[1]

 

 

 Another method of increasing capacitance is to use high surface area materials.
[4][5]

 This 

method is used in ultra-capacitors, also known as electrochemical double layer 

capacitors, which make use of high surface area carbon at the electrodes for charge 

storage. This allows for significant size reduction of the capacitor while at the same time 

improving the capacitance. While this method increases capacitance and energy density it 

is expensive and often has lower voltage limits. 

 

The easiest way to improve energy storage is to increase the voltage across the plates.
[1]  

Higher voltages however increase the likelihood of electrical breakdown of the dielectric 

material. Simply put, dielectric breakdown is when the electric field can no longer be 

sustained within the dielectric material and it begins to act as a conducting material. 

Because the dielectric begins to conduct, once breakdown occurs the two capacitor 

electrodes are effectively shorted. This short can cause catastrophic damage to devices 

and connected components because it results in a high power release of the energy stored 

in the capacitor. The destruction of other components or of entire systems can become 

extremely costly, especially in high power and high energy applications. In applications 
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such as electric vehicles, energy production, or pulsed power applications much of the 

system could be damaged due to a capacitor failure and the resulting discharge.
[6] 

 

Because of the high cost and extreme danger associated with capacitor breakdown, much 

research has gone into improving breakdown characteristics of capacitors.
[6][7]

 Research 

has been looking for ways to improve breakdown strength and increase time to 

breakdown. By improving breakdown strength the capacitor can operate at higher 

voltages more safely. This can help compensate for unexpected voltage spikes, or 

extended periods of operation at elevated voltages. By increasing the time for full 

breakdown to occur a more graceful failure can be obtained. As breakdown progresses, 

energy is dissipated by the material and it becomes possible to detect breakdown through 

degraded performance of the device. Being able to detect a graceful failure allows for the 

faulty component to be replaced before it has a chance to damage connected equipment. 

For this reason, being able to detect a failing component can result in large amounts of 

savings and cut down production of new components thereby saving materials. 

 

One method of improving the breakdown strength of a capacitor is to place a higher 

permittivity (k) dielectric barrier within the lower permittivity matrix of the capacitor.
[8] - 

[12]
 As breakdown occurs, this barrier hinders the progress of electrical trees forcing them 

to go around the high-k layer or slowing them as they enter the barrier. This has been 

experimentally proven by multiple groups of researchers including Agoris, Gelfe, 

Auckland, et al. It is this method of improving capacitor properties that this model 

explores. 
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1.2 Previous Work 
 

There has been previous theoretical and experimental work in the field of improving 

breakdown strength through barrier introduction.
[8][9][10][13]

 Theoretical simulations have 

been done by Farr et al, in which barriers with higher breakdown strength were shown to 

impact the path of a breakdown tree.
[13]

 A stochastic model that assumed a conductive 

tree and local growth probability was presented, based on the NPW model developed by 

Niemeyer  et al.
[14]

 Bush-like structures for homogeneous dielectrics were observed while 

diverging structures that branched laterally were observed in the presence of a high 

breakdown strength barrier. These differing structures are illustrated in Figure 4 below.  
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Figure 4: No Barrier Simulation (top), 100x Breakdown Strength Barrier Simulation (mid), Glass 

Embedded in Epoxy Experiment (bottom) from Farr  et al 
[13] 

 

The barrier used in their simulations was a material with a breakdown strength, 100 times 

greater than that of the rest of the matrix. In their simulations breakdown strength (bs) of 

the cells was related to both time and electric field as shown in Equation 4. This time 

effect resulted in different tree shapes depending on the ratio of the electrical potential 

across the capacitor and the critical field (Ec). Including the time domain also accounted 

for material degradation over time. Additionally when using a higher field the model 

became more deterministic and less deviation between simulations was observed. 

 

Equation 4: Breakdown Strength 
[13] 

bsdtEtE

T

k

c =-ñ
0

))((  

*Ec is critical field, and k was set to 1 

 

Results demonstrated branching of the tree along the high strength barrier and turning 

toward the electrode once reaching the outer edges. The time for breakdown with a 

barrier present was about twice the time as the homogeneous matrix. They determined 

that the barriers prolonged the capacitor lifespan by increasing the mean tree path 
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between electrodes and that stronger interfaces between matrix and barrier lead to a more 

drastic improvement in time to breakdown.
[13] 

 

Experimental confirmation of barrier deflection of  tree propagation has been obtained by 

Gelfe, Agoris et al.
[8]-[11]

 In their work they have explored the results from various 

influences of barrier introduction. Influences from factors including mechanical strain, 

position in the gap, space charge, permittivity and conductivity gradient were observed. 

Their studies looked at barrier effects on breakdown field, and time for breakdown to 

occur.  Breakdown time increased as a result of increases in both the overall time for 

growth and, in larger part, in tree initiation time. The changes in breakdown voltage, 

breakdown time, and time until initiation were all associated with the redistribution of the 

field during failure initiation stages.
[8] 

 

Gelfe, et al. studied the effect of a solid three layer dielectric structure on breakdown in 

high electric field in other experimental work. Permittivity contrast was obtained by 

introducing ferroelectric PZT particles (lead zirconate titanate) with average spherical 

size of approximately 1 micron into a polymeric barrier layer. Their tests were run using 

a 50Hz alternating current, with a voltage ramp rate of 2kV s
-1

. It is also noted that the 

use of suspended particles in the barrier material to obtain a dielectric contrast resulted in 

field enhancement in the polymer between the PZT particles as a result of the non-

homogeneous barrier. 
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They noted an effect from position of the boundary layer, the ratio of permittivity of 

materials and the homogeneity of barrier materials. They concluded that polarization 

plays the main role in the barrier effect. Contrast refers to the ratio of the permittivity of 

the barrier to the permittivity of the matrix. The variable dratio was taken as the ratio of the 

distance between the center of the barrier and the lower capacitor plate where breakdown 

was initiated to the total distance between the two capacitor plates
[5]

. In Figure 11 below, 

d1 represents the distance between plates and d2 is the distance between the barrier and 

the point of breakdown initiation. Using these values, dratio is computed in Equation 5. 

 

Figure 5: Schematic of Capacitor with Barrier Present 

   

Equation 5: dratio definition  

1
2

d
ddratio =   

 

Agoris et al. looked at contrasts of 1, 2, 10, and 15 and noted a peak at 10 and 15 with 

dratio of .25. There was a limit in effectiveness noted such that there was minimal 

difference between the breakdown values when the barrier had a contrast of 10 and 15. 

This is shown in Figure 6
[9]

 below. In addition to the increase in breakdown strength, they 

optically observed Lichtenberg figures of breakdown path, demonstrated below in Figure 

7. 
[9] 
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Figure 6: Breakdown Field vs dratio (ɝ1) from Agoris Experiments
[9] 

 

 

Figure 7: Lichtenberg Figures of Breakdown Path from Agoris Experiments
[9] 
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They concluded that the efficiency of avoiding the breakdown depends on the ratio of 

permittivities as well as the specific energy released in the BD channel. The maximum 

increases in breakdown field occurred at minimum barrier thickness and with 

homogenous barrier material. Main reason for the barrier effect is due to the change in 

conditions during breakdown initiation.
[9] 

1.3 Fundamentals  of Analysis Tools 
Two analytic methods used in this simulation study are the Monte Carlo method of 

sampling, and Weibull Statistical analysis. The fundamentals of these methods are 

discussed below. 

 

1.3.1 Monte Carlo Method  

The Monte Carlo Method is the practice of utilizing random numbers to simulate real 

results.
[15]

 It is not a specific algorithm or method of applying the random points but 

rather the incorporation of them into a simulation. One common example of the Monte 

Carlo Method is the estimation of the area under a curve. In this simulation a curve is 

plotted in a given space and points are randomly chosen within that space. The area under 

the curve can be determined by the ratio of points occurring below the curve compared to 

the total number chosen. This process is shown  in Equation 6 below. Figure 8 below 

provides a visual example from a Mathcad simulation where 1,000 random points were 

used to estimate the area under the curve. The estimated area was 2.262 square units with 

the area from integration over the sampled interval calculated as 2.183 square units. This 

is a percent error of 3.60 and provides a reasonable approximation of the area under the 

curve. 
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Equation 6: Area Under a Curve Using Monte Carlo 

total

total

under
under A

p

p
A *=  

Where Aunder is area under the curve, ptotal is the total number of points chosen, punder is 

the number of those points below the curve and Atotal is the total plot area being analyzed

 

 

 

 

Figure 8: Plot of Function f(d) = 8d
4
 - 7d

3
 + d

2
 + 4d  with 1000 random points 

 

 

 

Another application of this simulation is to estimate the mathematical constant pi. A unit 

circle is inscribed within a unit square and random points are once again chosen. This 

time the ratio of points within the circle to total number of points used in the test gives an 

approximation of the area of the circle. Because A=́r
2
, and in the case of a unit circle 

r=1, the square of the radius is one, and thus estimated area of the circle equals pi. 
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A final example is a system of components with varying failure profiles, such as an 

electronics circuit. Each component in the circuit has various likelihoods of and mean 

time to failure. Conservative estimates could be made by assuming the circuit fails at the 

rate of the weakest component; but as this component has a range of possible failure 

conditions and lifetimes, it will not always be the first to fail. A more realistic estimate 

could be obtained by randomly selecting lifetime values for each component and then 

looking at the system. With enough simulations this could provide an accurate profile of 

the circuitôs lifetime.
[15]

 

 

In the breakdown simulation, random numbers will be used to determine breakdown 

events. Probabilities are compared to the random numbers and if greater than the number, 

that point is considered broken down. A sample Monte Carlo simulation can be found in 

Appendix E. 

 

1.3.2 Weibull Statistics  

 

Weibull analysis is a useful tool in making predictions about a productôs expected 

lifetime and is commonly encountered in lifetime testing in various fields.
[16]

 It can be 

used to analyze probability of failure at certain points of a productôs lifetime as a function 

of number of loading cycles, electric field, stress, or simply time. Electrical breakdown of 

dielectrics is a phenomenon which can be described by Weibull Statistics.
[7]

 Through 

Weibull analysis, a characteristic value, which can be used as a comparison between 

settings, can be determined.  
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The probability of an event occurring at x is described by the Weibull distribution in 

Equation 7. The two fitting parameters are the shape parameter k > 0 and the scale 

parameter ɚ > 0. Different distributions for a scale of 1 and k of 0.5, 1, 1.5, and 5, 

obtained with Minitab 16, are illustrated in Figure 9. A shape parameter of 3 begins to 

approach a typical normal distribution and becomes skewed for higher values of the k 

shape parameter. The cumulative distribution function is described by Equation 8.  

 

Equation 7: Weibull Distribution  

 

Equation 8: 2-Parameter Weibull Cumulative Distribution Function  
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Figure 9: Weibull Probability Distributions for Varying k 

 

Weibull Analysis was used in evaluation of breakdown steps for each contrast/dratio pair. 

Within each set the breakdown steps were ordered from lowest to highest and assigned a 

rank. Median rank was then computed as given by Equation 9. 

Equation 9: Median Rank 

)4.0(

)3.0(

+

-
=

N

J
MR  

 

* J= Rank of current sample,  N= Total number of samples 

A plot of the ln(BD steps) vs ln(ln(1/(1-MR))) was made and the best fit line was 

approximated. The x-intercept was taken as the characteristic breakdown steps. A sample 

Weibull analysis from recent data is provided in Appendix C. A discussion on the 

alternative three parameter Weibull distribution can be found in Appendix D. 
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Chapter 2: Model Theory and Operation  

2.1 Tree Propagation Algorithm  
The goal of the algorithm was to produce a realistic model of dielectric breakdown in 

multilayer dielectric capacitors. Results of the program were compared to published tree 

propagation results from Farrôs et al. simulations and Agorisôs et al. experimental results 

for validation. The program was constructed in Mathsoftôs MathCAD 13 software. The 

main sections of the program are Parameter Definition, Initiation, Breakdown, Result 

Reporting, and Analysis. In short, the program places boundary conditions, calculates the 

field distributions, initiates breakdown at a given point and then enters the breakdown 

loop until breakdown reaches the other end. Within the breakdown loop the probability 

for breakdown is calculated for each possible point adjacent to the tree and based off 

these probabilities random bonds are added to the tree and the new field distribution is 

calculated. Once breakdown is complete, data is displayed in various formats and stored 

for future reference. 

 

 The program utilizes the Poissonôs equation to calculate the electric field 

distribution. The capacitor plates were originally placed 20 points away from the top and 

bottom of the matrix and 10 points from the left and right edges to minimize the impact 

of the limited matrix size on the field distribution (Figure 10). There was also a boundary 

condition of zero potential placed on the top and bottom of the matrix and a loop around 

of the field on the left and right such that the field on the left equaled the field on the 

rightðfor each row j, Phi(0, j) = Phi(60, j). Currently the capacitor plates are located at 

the top and bottom of the matrix and span the entire width of the matrix. The left and 
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right wrapping boundary condition is still in place and effectively creates an infinite plate 

capacitor with perfectly parallel initial field lines. These two conditions are illustrated 

below in Figure 10. 

       

 

Figure 10: Comparison of Previous (top) and Current (bottom) Matrix  Arrangement 

 

The independent variables explored most in these simulations were the barrier dielectric 

contrast and location along the thickness direction. The effect of these variables was 



18 

analyzed through the number of steps required for electrical breakdown. The current 

iteration of the program code is described in the following sections and is included in 

Appendix A. 

 

2.1.1 Parameter Definition and Initiation  

 

The first section of the program is the parameter definition and initiation portion.  With 

the current iteration of the simulation program it is possible to control many different 

variables. They can be changed to increase the resolution, improve accuracy, or alter the 

experimental setup, though they have implications on run time. Variables that can be 

easily set and changed at the start of the program are listed in Table 1 with some current 

values listed in Table 2. 

 

Table 1: Adjustable Program Variables 

Size of the matrix Improved resolution 

Block Size (width and length) Different block properties 

Contrast value of the block Different block properties 

Block Location Different Field Effect from Block 

Potential of the electrodes Change strength of field 

Error Tolerance Limit Improve accuracy of Calculations 
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Table 2: Utiliszed State of Variables 

Variable Name Value 

Matrix Size ( i x j ) 100 x 60  

Capacitor Potential (V) +/- 2000 

Capacitor Distance from i max (# of points) 0 (on boundary) 

Capacitor Distance from j max (# of points) 0 (on boundary) 

D ratio .1 to .5 

Ůr Contrast 1, 2, 10, 50, 100 

Barrier Thickness 2 points 

 

In addition to changing these properties, it is also possible to introduce more blocks, or to 

alter the design of the block. It is also possible to design a file to run the program in 

batches and have these values redefined from run to run. In order to do this, it is 

necessary to remove their definition from the standard simulation file and define them 

within the batch file. 

 

The first line of code in the program initiates the time variable so that runtimes of 

individual sections and the program as a whole can be tracked. Following this is the 

definition of the matrix size and the initiation of the i and j variables. Once the matrix has 

been defined other variables can be defined; including the location of capacitor plates, 

and the permittivity of each point. 

 

As mentioned previously, dratio was taken as the ratio of the distance between the center 

of the barrier and the lower capacitor plate where breakdown was initiated to the total 

distance between the two capacitor plates
[5] 

illustrated again in Figure 11. 
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Figure 11: Schematic of Capacitor with Barrier Present 

   

The initial field distribution is calculated using Poissonôs equation (Equation 10) and 

plotted as a contour plot and a surface plot to allow for qualitative study of the visual 

effects of barrier influence on the field distributions. 

     

Equation 10: Poissonôs Equation for Electric Field Distribution 
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*where Ůr is relative permittivity, Ů0 is permittivity of free space, and ɟ is charge density 

 

Finally, the breakdown event is initiated at the center of the lower capacitor plate. All 

propagation events will stem from this origin. The new field distribution is calculated and 

passed into the breakdown loop. 

 

2.1.2 Breakdown  

 

The Breakdown section is the main computational section of the program. This is the 

section in which the breakdown of the matrix is simulated. The section runs as a ñdo 
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whileò loop where a sentry condition controls when the loop is exited. When tree 

propagation reaches the opposite electrode, breakdown is complete and the sentry 

condition is updated.  

 

The initial point of breakdown is set at the center of the lower capacitor plate prior to 

entering the loop and propagation continues from this point. Upon entering the loop, local 

variables are first defined and initiated. Following the initiation of these variables the 

field distribution is calculated once again using Poissonôs equation. 

 

Once the field distribution (Phi) calculations are within the given error tolerance limits 

the program proceeds to the next step. For each point in the matrix that has broken down 

the potential difference between it and its neighbors is found and calculated. These 

numbers are then added together to be used later as the normalization factor for Phi 

Summation Normalization.  

 

In order to determine when and where a breakdown event occurs, the Monte Carlo 

method of analysis is employed. The normalized field is found for points in the matrix 

that are adjacent to a point that has already broken down. The normalized field is the 

absolute value of the electric field potential at the point of interest divided by summation 

of all potential differences over the tree. The calculated normalized field is compared to a 

random value between 0 and 1 which is the threshold for breakdown. If the normalized 

field is greater than the threshold, the tree propagates to include the point; otherwise the 

tree does not propagate. Normalized local field potentials are compared to a random 
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number generated separately for each point. A sample illustration of the analysis is 

provided below in Figure 12. Black points represent already broken down locations and 

white points are the potential breakdown locations for the given step. For each bond from 

1 to 6 the potential difference along the bond is compared to the sum of all 6 potentials as 

shown in Equation 7. This value is then compared to a random number and the point is 

considered broken down if the normalized value is greater than the random number. For 

this example there could be any number of breakdown events ranging from all potential 

points to none of the potential points. 

 

 

Figure 12: Sample Breakdown Tree 

 

     

Equation 11: Probability of Breakdown using Phi Summation 
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Information is stored each time a point breaks down. This information includes the i, j 

coordinates of the point, the random number that the potential was compared to, the 

number of steps to phi calculation convergence, the number breakdown point it is, the 
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number breakdown step it broke down on, the normalized factor, the tree velocity, and 

the length of the tree. 

 

Once the potential breakdown events have been checked the program continues and if the 

maximum tree extension reaches the opposite capacitor plate the sentry condition of the 

overall loop is updated so that the program exits the breakdown loop. If not, the program 

repeats the loop starting with the recalculation of the field distribution.  

 

2.1.2.1 Normalization Parameters  

 

There were multiple ways of normalizing the relative fields at potential breakdown 

points. The relative field at each breakdown point is compared to a random number 

between 1 and 0 and if the field is greater, the point breaks down. The relative field was 

taken as the local potential difference divided by a normalization factor. The following 

methods of normalization were considered and implemented within the program: 

¶ Max potential 

¶ McPherson Model 
[19]

 

¶ Phi Summation 

 

The Max Potential method normalized the local potential differences to the total 

difference between the capacitor plates. Because the breakdown is considered to be a 

short propagating from the positive plate and carries the same voltage as that plate, the 

maximum possible difference between two points would be the potential difference 
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between the two capacitor plates. In addition, this method provided a constant 

normalization factor for all points unlike the other two methods. 

 

The McPherson Model was also tried as a normalizing factor. McPherson and colleagues 

determined that the breakdown strength of a dielectric material was proportional to 

roughly the inverse of the square root of the dielectric constant as shown in Figure 13.
[19]

  

 

Figure 13: Breakdown Strength as a Function of Dielectric Constant
 

 

This was used as a normalization method because it incorporated the relative breakdown 

strength of the materials and embodied them in the normalized value. For parts more 

likely to breakdown these normalized values would be larger as the breakdown field it 

was normalized to is lower. This method however often resulted in the entire block 

breaking down before the tree propagated beyond it. This is not consistent with literature 

in which the tree propagation is diverted at the barrier interface and spreads around the 

barrier rather than filling it.
[9]
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The third method explored and the one finally chosen as the method to use was the 

normalization by the Phi Summation factor. For this method, the summation of all local 

fields was used as the normalization factor. The potential between every possible 

breakdown point and the current tree was calculated and then added together. Once this 

phi summation factor was computed it was used as the normalizing factor. 

  

A Weibull analysis was performed on the different normalization methods for 

homogeneous matrices and matrices with a barrier having dielectric contrast of 2 and 

dratio=.5. Twenty runs were used for each instance and the results are presented below in 

Figure 14. All methods had high correlation factors which are summarized on in Table 3. 

The lowest R
2
 value was .89 obtained from the Max Potential method with a contrast of 

2. Phi summation gave the best combined correlation values, as well as was most 

consistent with literature findings.
[9][12]

 For these reasons phi summation was used as the 

normalization method for simulations. 

 

Table 3: Correlation Values for Weibull Analysis of Normalization Methods 

Condition Correlation Value, R
2
 

Max Potential, C=1 0.9424 

Max Potential, C=2 0.8932 

McPherson, C=1 0.9391 

McPherson, C=2 0.915 

Phi Summation, C=1 0.9456 

Phi Summation, C=2 0.9573 
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Figure 14: Weibull Plot of Normalization Methods 

LBD is Local Breakdown Strength (McPherson), MP is Max Potential, and PS is Phi Sum. The number 1 correlates to a homogeneous 

matrix, a number 2 corresponds to a contrast of 2 at a dratio of .5
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2.1.3 Results Reporting and Analysis  

 

 The final section of the program code is the results reporting and analysis. After 

exiting the breakdown loop, data was analyzed directly in Mathcad to minimize data 

importing and exporting. It also allowed data from each run to be automatically presented 

in the same way every time. Mathcad allowed for adjustable surface plots, potential 

contour plots, and other charts such as distance vs time to be plotted quickly, easily, and 

repeatedly from run to run. Among the images collected for each run of the program were 

potential at the start, the initial contact with the barrier, and the end of the breakdown 

event. We also generated charts of the distance vs time, and number of steps to 

convergence of the phi calculations for each step. Images of the overall shape of the tree 

were collected and the option to generate a video of the breakdown process, point-by-

point, was available. All of these images aided in developing a qualitative analysis of the 

data which helped in further quantitative analysis. 

 

After moving to batch simulations, the number of images that were collected was reduced 

for various reasons mainly space and efficiency. The images collected from each run in 

batch simulations were over all tree shape, contours of potential at contact with barrier 

and at end of breakdown, average tree velocity versus steps, and tree length versus steps. 

 

2.2 Optimization  
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Initially, the run time for each iteration of the program was incredibly high. It was 

determined that the calculation of the electrical potential was the time consuming step. 

The Phi calculations were an iterative process running within a loop until the values were 

all within the specified error tolerance limit. Due to the iterative solving method, the 

calculation of the Phi matrix could take multiple minutes in early stages of the programð

especially for large contrast values and non centered barriers. Because this calculation 

was repeated for every breakdown step, program run times were often incredibly high. 

On some occasions, run times reached 1000+ minutes. 

 

With single runs of the simulation taking hours it was difficult to gather sufficient 

number of runs to make the collected date statistically significant. It was obvious that 

something needed to be improved. One option was to run the simulation on a cluster of 

computers to improve calculation time. The only clusters available however were Linux 

based and could not run MathCad. 

 

We began looking at program optimization via streamlining and increasing the speed of 

convergence for Phi Calculations. 

 

2.2.1 Streamlining  

  

Many changes were made to the Phi Calculation loop. First were minor changes to the 

structure of the program. Initially there were multiple loops that ran under the same 

conditions but corresponding to different tasks. These were all condensed into a single 
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loop. Instead of running through the entire matrix three times successively to do 

calculations, the simulation now did all necessary calculations while only running 

through the entire matrix once on each iteration. 

 

In addition to combining loops to save time, unnecessary matrices were eliminated. One 

such matrix was the relative error matrix. Initially relative error was saved for each point 

resulting in another matrix the same size as the breakdown matrix. This lead to increased 

memory consumption and would slow the program down especially during batch runs. 

Memory was particularly a concern when running on older machines. Now, instead of 

storing all relative error values into a matrix, only the current highest value is stored as a 

single variable. The potential at each point is calculated individually, and as each new 

value is calculated it is compared with the previous value and a relative error is found. 

This value is compared to the current value stored in a variable corresponding to the max 

error and if greater, replaces the current value. At the end, rather than running through the 

matrix again to check all values of relative error versus the error tolerance, only one value 

has to be checked, saving time. 

 

The elimination of loops and matrices did improve the run time of the program and 

reduce its memory consumption. It is expected that the effects of these changes would be 

more pronounced with a larger matrix. Phi calculation times were reduced approximately 

1% with current matrix sizes. 
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Another method of streamlining employed was the use of electric field distributions from 

the previous iteration as the initial condition for the current step. Before, the initial 

condition of the phi matrix was reset to 0 except for boundary conditions and breakdown 

points. By replacing the initial condition with the previous values fewer steps were 

required for each iteration of the Breakdown loop and for steps where no points broke 

down, no calculations were required at all providing a great reduction in calculation time. 

For example in Figure 15 below which shows number of steps for convergence for each 

point, the graph never goes below 500 steps and has periods of increase where it is even 

greater. On the other hand, in Figure 16, by using the previous values as initial conditions 

the number of convergence steps was greatly reduced. Very few points exceeded even 

100 convergence steps and a large number took no extra steps past initial condition 

setting to converge. Both cases were for a homogenous matrix. 

 

Figure 15: Number of Convergence Steps for Initial Guess of a Zero Matrix 
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Figure 16: Number of Convergence Steps Using Previous Calculations as Initial Guess 

 

 

2.2.2 Relaxation Method and Intermediate Values  

 

While streamlining did reduce memory usage and run time, drastic reductions in run time 

were achieved by introducing an intermediate value in the phi calculation. The method 

presented by Ambar Mitra in Finite Difference Method for the Solution of Laplace 

Equation
[20]

 utilizes a weighted average of the final value calculated in the previous 

iteration and the calculated value in the current iteration. This weighted average is then 

taken to be the value for the iteration. The weight factor is denoted by ɤ. The calculation 

of ɤ is given by Mitra in Equation 12
[20]

. Equation 12 pertains to any rectangular N by M 
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matrix. Equation 13 below shows the weighting of the previous and current phi values. 

The intermediate value of phi is actually the value which had previously been used as the 

final value of each iteration. The effect of this method can be seen in Figure 17 below for 

a barrier of contrast 100 located at dratio=.5 where the calculation went from ~1150 

iterations to under 550 iterations 

    

Equation 12: Omega- Weight Factor for Relaxation Method 
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Figure 17: Comparison of Convergence Steps and Time 
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2.2.3 Simulation Time Reduction  

  

By introducing these time reducing methods into the code, initial, and subsequent, phi 

calculation times were reduced drastically. With the introduction of the relaxation method 

phi calculations of a uniform matrix were reduced from 550 steps to convergence over 54 

seconds to convergence in under 100 steps in only 6.5 seconds. This is a time reduction 

of 88%. The overall runtime of this benchmark was reduced from 50 minutes to 4.85 

minutes. This reduction becomes significant when the number of times the phi 

calculation is called in a simulation increases due to either a higher contrast barrier, or to 

an extended matrix. With the drastic reduction in simulation and calculation time, it 

became practical to begin batch simulations. 

  

2.3 Batch Simulation  
 

Once the individual simulation run time was reduced, a MathCad file was generated to 

run batches of the simulation. The current batch simulation file runs ten simulations in 

sequence. It makes use of the Reference function in MathCad which can open and 

execute another MathCad file. This function is used to call the already established main 

simulation program. Following the reference function, basic output, as described earlier, 

is provided for each simulation before the program proceeds to the next simulation 

iteration. Each reference and data output section is separate from the next and in order to 

prevent excessively large files, the information output by batch files is reduced compared 

to that available in the original file. 
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The information provided by the batch file for each simulation includes: 

¶ Total BD Points 

¶ Total BD Steps 

¶ Step at which breakdown reached the bottom of the barrier 

¶ Step at which breakdown passed the top of the barrier 

¶ Shape of the overall Breakdown Path 

¶ Visual of BD Points within the barrier 

¶ Electric field when breakdown reached bottom of the barrier 

¶ Electric Field when breakdown reached the opposite capacitor plate 

¶ Fractal Dimension of the BD Tree 

¶ Tree Velocity vs. BD Step 

¶ Tree Length vs. BD Step 

¶ Spreadsheet of the óTree Pathô data matrix 

¶ Spreadsheet of óBDmatrixô data matrix 

 

For the simulation as a whole, the following are provided 

¶ Electric field distribution at initial conditions. 

¶ Spreadsheet of the óDataô data matrix containing summary of main parameters 

¶ Spreadsheet of the óBDmatrix_sumô data matrix 

 

Batch simulation was successful in general. Some issues do occasionally arise during 

these simulations however. The two most frequently encountered issues are an increase in 

simulation time and, less commonly, unknown errors resulting in lost data for a single 

run. The cause of these problems is currently unknown but is being further explored at 

this time. 

 

See Appendix B for a print out of the Batch program. 
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Chapter 3: Experimental Results and Analysis 

3.1 General Effect of Contrast on Breakdown 
A wide range of dratio and contrasts were used to gain a broad understanding of trends in 

the data and identify possible underlying mechanisms. The average number of steps or 

points refers to the arithmetic mean from all test runs, while characteristic breakdown 

refers to the highest rate of breakdown as determined by the Weibull distribution curve. 

Averages will be used when discussing events such as steps to reach the barrier or time 

taken to pass through the barrier. Characteristic breakdown steps are used in the 

comparison of different scenarios as a metric to evaluate improvement in breakdown 

strength. 

3.1.1 Simulation  Data 

Data for a preliminary set of simulation runs is presented below. Weibull analysis was 

performed on each batch. The characteristic number of breakdown steps was calculated 

for each condition. That data is presented in Table 4 below along with the Weibull 

correlation factors for each analysis in Table 5. A sample Weibull Analysis is provided in 

Appendix C. 

 

Table 4: Characteristic Breakdown Steps 

Characteristic 
BD Steps      

D ratio C=1 C=2 C=10 C=50 C=100 

0.5 670.1999 642.7282 653.5286 663.5553 912.7059 

0.4 681.1651 695.233 650.2251 661.9662 715.2668 

0.3 708.9805 675.7788 672.8379 617.6127 662.0473 

0.2 672.5021 662.9081 692.4274 663.2422 630.7822 

0.1 699.53 664.5682 694.8198 647.5842 627.1558 
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Table 5: Weibull Correlation Factor R
2
 

Weibull Correlation 
Factor R

2
      

D ratio C=1 C=2 C=10 C=50 C=100 

0.5 0.8983 0.9487 0.8734 0.6086 0.8419 

0.4 0.9021 0.9429 0.973 0.8683 0.9824 

0.3 0.9054 0.9683 0.8502 0.9803 0.9485 

0.2 0.9297 0.905 0.7462 0.9682 0.913 

0.1 0.9088 0.8589 0.9422 0.9062 0.9414 

 

The Weibull Correlation factors are generally high values with the exception of the 

batches for C=50, d=.5 and C=10, d=.2. With high correlation values between plotted 

data and linear regression, it can be assumed that the calculated Characteristic number of 

breakdown steps is representative of the given conditions. As can be seen in Figure 18, 

there is no clear correlation or trend in the number of breakdown steps as either a 

function of contrast or of barrier location. Aside from the contrast of 100 at dratio=0.5 

which showed a large increase, there was no drastic difference between characteristic 

breakdown steps for each set of conditions. A potential upwards trend can be seen in the 

contrast of 100 data set but differences at the low values are not statistically significant. 

Because of this more defined trend in the contrast of 100 set, this contrast was chosen for 

a more in depth study.  
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Figure 18: Characteristic Breakdown Steps as a function of dratio at Varying Contrasts 
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 While little correlation was observed between breakdown steps and contrast or barrier 

location, the average number of steps taken to move from the lower level of the barrier to 

the upper level of the barrier did show clear trends. Average number of steps within the 

barrier generally increased not only with contrast but also with increase in dratio. The 

average values can be seen below in Table 6, and are plotted both as a function of dratio 

with varying contrasts (Figure 19) and as a function of contrast with varying dratio (Figure 

20). 

 

Table 6: Average Time in Barrier Region 

Avg Time In Block      

D ratio C=1 C=2 C=10 C=50 C=100 

0.5 39 62.2 76 123.67 321.3 

0.4 28.9 39.2 85.5 153.7 196.2 

0.3 24.4 36.7 65.6 112.6 114.11 

0.2 21.4 24.1 79.4 91.8 67.3 

0.1 15 24.5 28.2 43.6 49.4 
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Figure 19: Average Time in Block as a Function of dratio with Varying Contrasts 
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Figure 20: Average Time in Block as a Function of Contrasts with Varying dratio 
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In Figure 19 it is seen that as contrast increases the time in the barrier also increases. The 

lines representing the time for each contrast are generally stratified with the high 

contrasts giving higher values. The only time this is not true is with a dratio of .2 where 

c=100 is lower than c=10 and c=50. 

 

In Figure 20 is can be seen that generally with increasing dratio the number of steps 

likewise increases. Once again a stratified structure is observed with the high dratio values 

higher on the chart. In addition to increased number of steps, there is also an increased in 

the divergence of the values. The difference between each dratio increases as the contrast 

increases. 

 

These trends differ from literature trends which saw a peak in breakdown strength with 

contrasts of 10 and 15 and a dratio of about .25. The difference is likely due to material 

properties not accounted for within the program. While all factors are clearly present 

during an experimental study, this simulation program only accounts for field 

distributions and does not look at properties of the laminar composite such as interface 

interaction, mechanical strain, or space charges that may develop. Incorporating these 

properties would be good for future work. 

 

3.1.2 General Trends  

  

There were many general trends observed in the breakdown statistics and paths of the 

simulations. Among these trends are the branching of trees when reaching high contrast 



42 

barriers, a slowing of the vertical velocity when encountering these barriers and an 

increased simulation time and in some cases increased number of steps.  

 

3.1.2.1 Tree Shape 

 

The shape of the breakdown path is the clearest indication of the barriers having an effect 

on breakdown properties. As the contrast value of the barrier was in creased a flattening 

and stalling of the tree was noted. While differences could be seen at values of 2 and 10, 

they became much more noticeable at values of 50 and 100. Typical shape impacts from 

the barrier include widening of the tree below the barrier, a flattening and spreading 

along the barrier interface, and branching in the higher contrast runs. Examples of these 

tree shapes are show below in Figure 21 through Figure 25. Light blue colored regions 

are where only one run propagated, green colored areas had moderate traffic, and 

orange/white regions had the most traffic with white indicating all ten runs passing 

through the region. The light colored outline indicates the location of the barrier at 

dratio=0.4. 
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Figure 21: 10 Run Overlay C=1, dratio=.4 

 

 

 

Figure 22: 10 Run Overlay C=2, dratio=.4 
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Figure 23: 10 Run Overlay C=10, dratio=.4 

 

 

 

Figure 24: 10 Run Overlay C=50, dratio=.4 
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Figure 25: 10 Run Overlay C=100, dratio=.4 

 

3.1.2.2 Increased Time and Steps  

 

It was noted that for higher barrier contrasts, there was an increased number of steps 

between when the propagation reached the edge of the barrier and when it passed through 

the barrier. This trend was noticed between contrast values at the same dratio and it was 

noticed that in general as dratio increased so did the time in the barrier. This led to the 

development of common velocity profile trends as described in the next section. 
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3.1.2.3 Velocity  

 

The velocity was taken as the highest tree point vs number of breakdown steps. In the 

strict physical sense velocity would be the derivative of this curve. The step when the tree 

reached the bottom of the barrier was saved as the output ENTER and the step number 

when the tree surpassed the top of the barrier was saved in the output EXIT. With the 

ENTER and EXIT values alongside the velocity profile, a correlation could be seen 

between the higher contrast values and velocity at the barrier.  

 

This is embodied in Figure 26 on the next page. For the cases of 1, 10, 50, and 100 

contrasts at a dratio of .5, it can be seen that as contrast increases, when the breakdown 

reaches the barrier its forward progress is retarded resulting in a flattening of the plot. 

The flattening lasts until the tree passes the barrier and then continues upward. As 

contrast is increased, the length of this flat section increases as well. While noticeable in 

contrasts of 10, it is most pronounced in contrasts of 50 and greater. This trend was 

common among all dratio values. 
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Figure 26: Velocity Profiles for Different Contrasts, Dratio = .5 

              

          

C = 100  

Enter: 184 
Exit: 492 
Total Time: 308 
BD Steps: 952 
BD Points: 935 

C = 50  

Enter: 287 
Exit: 448 
Total Time: 161 
BD Steps: 651 

BD Points: 676 

C = 10  

Enter: 199 
Exit: 247 
Total Time: 48 
BD Steps: 553 
BD Points: 577 

C = 1  

Enter: 230 
Exit: 269 
Total Time: 39 
BD Steps: 641 
BD Points: 647 
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3.2 Effect of High Contrast Barrier Location on Breakdown  
 

Simulations exhibited the greatest barrier influence with higher contrast values. Because 

runs with a contrast of 100 showed the most noticeable barrier influence, a wider range of 

dratio was used but tests were only run with a homogeneous matrix and a barrier contrast 

of 100. There were also 50 runs in each set instead of only 10 as before. The goal was to 

provide a clearer picture of how the barrier location affects breakdown properties and 

how the simulation relates to previous work. 

 

3.2.1 Probability Distribution Analysis  

 

This series of simulations looked at 50 runs for seven different conditions. At dratio of .25, 

.5, and .75 a homogeneous matrix and a high contrast barrier were both tested. At a dratio 

of .875 only a high contrast barrier was tested. With the larger sample sizes, multiple 

distributions were fit to the data in order to verify that the  Weibull distribution was the 

best fit for the data. A summary of the correlation coefficients is provided in Table 7 with 

sample Minitab plots shown in Figure 27 and Figure 28 for homogeneous and high 

contrast runs at dratio = 0.5 respectively. As all distributions were relatively close the 2-

parameter Weibull was used to maintain consistency with earlier analysis. 
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Table 7: Distribution Correlation Coefficients 

 2-p Weibull 3-p Weibull Normal Lognormal 

c1 d25 0.98 0.993 0.99 0.996 

c100 d25 0.96 0.996 0.98 0.994 

c1 d5 0.99 0.994 0.99 0.987 

c100 d5 0.98 0.994 0.99 0.994 

c1 d75 0.95 0.983 0.96 0.981 

c100 d75 0.99 0.993 0.99 0.987 

c100 d875 0.99 0.989 0.99 0.981 

 

 

 

 

Figure 27:  Probability ID Plot, Homogeneous Matrix 
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Figure 28:  Probability ID Plot, High Contrast Barrier  

 

3.2.2 Characteristic Breakdown Discussion  

 

The characteristic breakdown was calculated using a Weibull distribution in both 

Microsoft Excel and Minitab16. The results are provided below in Table 8. While each 

method did give variations, the general trend is the same and all values are relatively 

close and in agreement. 

Table 8: Characteristic Breakdown Steps 

 Excel 2-p Minitab 2-p 

c1 d25 674.11 672.17 

c100 d25 652.48 646.72 

c1 d5 682.29 681.16 

c100 d5 860.84 857.74 

c1 d75 662.97 657.99 

c100 d75 953.22 951.06 

c100 d875 933.06 931.00 
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The simulations by Farr et al
[13]

 looked at a stationary barrier, while experiments by 

Agoris et al
[9]

, looked at varying both the contrast of the barrier to the matrix and the 

location of the barrier. For this reason the breakdown strength from the Agoris 

experiments was compared to the characteristic breakdown steps in these simulations. 

 

In alternating current experiments by Agoris et al
[9]

 a peak in breakdown strength was 

seen with a barrier location ¼ the distance between capacitor electrodes and a contrast of 

10 to 15. In experiments breakdown strength once again dropped after this point.  In 

simulations, there was a monotonic increase in the breakdown strength with a peak at 

dratio=0.75 in the high contrast runs. Breakdown steps at dratio=0.875 decreases, but not at 

the accelerated rate seen in experiments. Additionally the variation between these two 

points is not statistically large. The Agoris experiments had a more defined peak, while 

the simulations had a more constant and gradual increase to its maximum. In both 

situations though, the peak was observed at a dratio one quarter of the overall distance 

from the capacitor plate. These trends are demonstrated below in Figure 29 with 

experimental data indicated in dashed lines, and simulation data in solids (standard 

deviation for simulation runs is presented in Table 9). It is possible a secondary 

mechanism is present in the experiments resulting in the reduced barrier performance that 

Agoris saw. 
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Figure 29: Breakdown vs Barrier Location Partially Adapted from Agoris et al
[9]

 

 

Table 9: Standard Deviations for Simulation Runs 

 

StDev  

 

StDev  

c100 d25 63.87803 c1 d25 98.04754 

c100 d5 162.6934 c1 d5 103.0809 

c100 d75 162.9631 c1 d75 108.7605 

c100 d875 152.7797 

  

 

3.2.3. Barrier Behavior  

 

Another trend noted in the data was that in reaching the barrier, both homogeneous and 

high contrast simulations had similar numbers. After leaving the barrier though, the high 
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contrast simulations tended to approach the second electrode faster than the 

homogeneous matrix. This trend is illustrated in Figure 30 with high contrast in blue, 

homogeneous in red, and approaching the barrier in dashed lines with the time from 

barrier to full breakdown in solid lines. 

 

Figure 30: Behavior Around Barrier  

 

Shown in Figure 31, the time spent with in the barrier was higher in every case for the 

high contrast simulations, with increased time in the barrier the further from initiation the 

barrier was. The iterations spent in the barrier for homogeneous matrix was relatively 

consistent at all dratios.   
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Figure 31: Iterations Spent within Barrier Region 

 

Compared to the Farr simulations
[13]

 there were both similarities and differences. As 

discussed in Chapter 1 Farr utilized a contrast of breakdown strength, while these 

simulations looked at dielectric contrast and the effect of field. Both simulations 

demonstrated the tree growth branching laterallyseen  in Figure 32. 

 

Figure 32: Farr
[13]
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Because of the difference in properties which were used for contrast, while Farrôs 

simulation demonstrated consistent branching around the barrier (Figure 33), the same 

was not seen in our simulations. In some runs our simulations had breakdown paths that 

extended directly through the barrier such as in Figure 34. This resulted in the collective 

image in Figure 35 of 50 runs that shows trees propagating both through and around the 

barrier. In Figure 35 blue color represents few paths, and darker shades of green represent 

less traffic, with orange/white being the most overlapping trees. 

 

Figure 33: Farr Simulation: 100 Runs Around Barrier
[13] 

 

Figure 34: Simulation with Barrier Penetration  
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Figure 35: 50 Simulations Around and Through Barrier 

 

3.2.4 Weibull Analysis  

As mentioned, the characteristic breakdowns presented earlier were obtained by using 

Weibull distributions. In these analyses, the distribution functions for homogeneous cases 

had consistent profiles and failure limits with shifts seen in the high contrast cases. The 

high contrast barrier distributions also had a wider spread and more gradual peaks. These 

trends can be seen in the distributions plotted in Figure 36 below. Table 10 after the 

figure provides detailed information on the plots. 
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Figure 36: Weibull Distributions  

 

 

Table 10: Table of Weibull Statistics 

 

As seen in Figure 36 above, the homogeneous matrices have a more defined peak 

indicating a tighter distribution of breakdown values. This is also indicated by the higher 

shape parameters than those of high contrast simulations. High contrast runs had a 

smaller shape value resulting from a more spread out distribution of breakdown values. 

While the high contrast simulations had a higher characteristic breakdown values the 

lower shape parameter indicates failures occurring over a wider range of values.
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Chapter 4: Conclusions 

4.1 Conclusions 
While preliminary simulations did not demonstrate a notable barrier effect on the 

breakdown steps at low contrasts, they did demonstrate some impact on the direction of 

the breakdown path. Low contrast simulations showed little impact on breakdown 

regardless of barrier location. In the early simulations, breakdown path demonstrated 

some signs of branching at a contrast of 10, occasional branching at contrast of 50, and 

regularly occurring branches at contrast of 100. While a threshold was observed 

experimentally in literature at a contrast of 10 and 15
[9]

, in the simulations this threshold 

was around 100 with indications of branching occurring at C=50. 

 

Continued simulations with a high contrast barrier did demonstrate a noticeable effect on 

breakdown strength while varying the location of the barrier. The effect was dependent 

on the distance of the barrier from the initiation point, with the greatest increase of 

breakdown steps occurring with a dratio of .75.  

 

The shape of the breakdown path did show effects from barrier introduction, especially at 

higher contrasts. It can be seen that lower contrast values, the breakdown path generally 

proceeded through the block unhindered but as the contrast was increased off-shoots 

begin to appear and progress laterally. In addition to increasing lateral growth, the 

barriers hindered vertical growth, most easily demonstrated by the tree velocity profiles 

presented in Chapter 3. 
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In summary, 

1. Simulations correlated well with previously documented work in the field. 

2. Simulation threshold for definitive breakdown impact was a contrast of 100, with 

some impact at 50. 

3. Level of impact was barrier location dependant with optimal barrier spacing at ¾ 

the distance to the final electrode. 

4. Barrier resulted in lateral growth of the breakdown path, and stunted vertical 

progression. 

5. Steps to the barrier were similar in both cases, but time after the barrier was 

reduced in the presence of the high-k barrier. 

6. The electrostatic effect of barrier introduction does play a significant role in 

breakdown, with other material interactions and properties likely also having 

significant contributions.  

 

4.2 Future Work 
 

This simulation has many areas available for further improvement. It would be highly 

beneficial to continue improvements on calculation and overall program efficiency. 

Continued efficiency improvements would allow for larger sample sizes to be collected 

improving the statistical significance of results, as well as allow for new areas of 

exploration in the simulation parameters. 
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A larger matrix size would be a benefit to the simulation made possible by increased 

program efficiency. By increasing the size of the matrix there will be more time for the 

breakdown pattern to develop and a finer tree pattern can be observed. This was observed 

when increasing the breakdown path length from 20 to 60 and it can be expected to occur 

with further increases in path length. 

 

Future changes to the program could also include new boundary types. A periodic 

structure or randomly seeded particles or even the introduction of space charges are some 

possible barrier types that could be explored in future work. These barrier and defect 

types would have a different effect on the electric field distributions than a continuous 

uniform barrier. Because this model looks at the effects from potential distribution, these 

barriers would be expected have a different effect on tree growth. 

 

As previously mentioned, the program primarily looked at the electro-static effects of 

barrier introduction on breakdown path. To create a more realistic model; material 

interactions such as trap states or interface interactions could be introduced. Material 

properties could also be introduced to create a more realistic model. Another discrepancy 

between actual breakdown events and those in the simulation is the release of energy as 

the breakdown path progresses. 

 

As the program grows and becomes a more realistic representation of breakdown, one 

area that needs to be addressed is how to model a lossy dielectric material. A lossy 

dielectric model would more accurately represent real materials and therefore improve 



61 

the programôs accuracy in addition to opening a greater array of material choices for 

experimental verification and comparison. Current work is being done by Guneet Sethi in 

this respect. Issues that have been encountered are dealing with the imaginary part of the 

permittivity, especially in potential distribution calculations and the relaxation method 

used in calculating the field distribution. 
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APPENDIX A: Simulation Program  
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