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Abstract

The origin of Gamma-Ray Bursts, one of the long-standing mysteries of mod-
ern Astrophysics, has been recently established observationally by the discovery of the
afterglows that follow them. The correlations between the temporal and spectral fea-
tures manifested by these afterglows are in accord with the predictions of the relativistic
fireball model, giving it thus a very strong support. Here we model the dynamics and
radiation emission of fireballs interacting with an external medium and compare some
of the results with the observations.

We present a one-dimensional code to solve ultra-relativistic hydrodynamic prob-
lems, using the Glimm method (based on an exact Riemann solver) for an accurate
treatment of shocks and contact discontinuities, and a finite differencing scheme in those
regions where the fluid flow is sufficiently smooth. The accuracy and convergence of this
hybrid method is investigated in tests involving strong shocks and Lorentz factors of up
to ∼ 2000.

With the aid of the hydrodynamic code we model the interaction between an
expanding fireball and a stationary external medium. We compute burst spectra and
time structures arising from synchrotron radiation and inverse Compton scatterings by
non-thermal electrons accelerated by the shocks which form during the fireball–external
medium interaction. We investigate the effect of varying the most important model
parameters on the resulting burst spectra, and we present a set of correlations among the
spectral and temporal features of the bursts. Multi-pulse structures are simulated using
a variable magnetic field and anisotropic emission, and the most important spectral and
temporal properties of the pulses are compared with observations. The fireball dynamics
is further followed to study the spectral evolution of the remnant emission.

We analyze the shape of the equal photon arrival time surfaces for different dy-
namic and radiative regimes and homogeneous or power-law external densities, and tab-
ulate the most relevant parameters describing the source brightness distribution over
these surfaces, which are useful for more accurate analytic estimates of the afterglow
evolution.

We also present an analytical approach to calculate the dynamics of the fireball–
surrounding medium interaction. It is a flexible approach, that can be easily extended to
include more complex situations, such as a continuous injection of energy at the reverse
shock, and the sideways expansion in non-spherical ejecta, and is computationally much
less expensive than hydrodynamic simulations. We investigate the effect of the relevant
model parameters on the X-ray, optical and radio fluxes, and the effects of a refreshed
shock energy input, anisotropy in the ejecta, and jet sideways expansion on the afterglow
light-curves.
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Chapter 1

Introduction

1.1 Features of Gamma-Ray Bursts

Gamma-Ray Bursts (GRBs) have been discovered in 1967 by the Vela satellites.

The localization error of about 10
o
attained at that time established the cosmic origin

of GRBs, but could not allow the identification of the burst source. This goal eluded
even later, in the 1970s and 1980s, despite much better localizations, with error boxes as
small as one square arc-minute (Atteia 1987). The Compton Gamma-Ray Observatory
(CGRO), launched in 1991, has provided burst localizations that were distributed within
seconds of the GRB detection, allowing quick searches for burst counterparts at other
wavelengths. However the localization error boxes were of a few square degrees, too large
to allow the GRB sources to be identified.

The first paper on GRBs, which announced their discovery, was published in
1973 (Klebesadel, Strong, & Olson 1973). Since then more than 2,000 observational and
theoretical articles have struggled to understand the origin and physics of these objects,
a task much complicated by the diversity shown by GRBs. More than 1,500 bursts
have been discovered until today, most of them having been detected by the Burst and
Transient Source Experiment (BATSE) on board the CGRO. Their statistical analysis
has firmly established several intriguing features, some of which are discussed below.

One of the striking features of GRBs is their wide range of durations, from less
than 10 milliseconds to more than 1,000 seconds. Fishman et al. (1994) have shown that
the distribution of the logarithm of GRBs durations is bimodal, with two peaks around
0.3 s and 2 s. Categorizing their morphology (Hurley & Desai 1986) proved to be a
difficult task, given the variety of temporal history they exhibit. GRBs fall in one of the
following categories:
1) single pulse events,
2) smooth multi-peaked events,
3) distinct, well-separated episodes, and
4) spiky, chaotic bursts.

Within the first category there is a set of bursts called FREDs (Fast Rise Exponential
Decay), which exhibit a rise time shorter than the fall time. A similar trend is observed
in many of the bursts in the second category. Type 3 bursts have gaps that can be longer
than that of the detectable emission. In many of the class 4 bursts there seems to be an
underlying emission, with peaks superposed on it. Mitrofanov et al. (1996) have shown
that the average curve of emissivity of all types of GRBs rises faster than it decays, a
feature similar to that exhibited by FREDs.
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The GRB peak intensity ranges from less than ∼ 0.2 photon/cm
2
s (which is the

BATSE detection threshold), to more than 100 photon/cm
2
s, the integral intensity dis-

tribution exhibiting a −3/2 slope above a peak rate of ∼ few photon/cm
2
s (Pendleton

et al. 1996), consistent with an Euclidean distribution, deviating from this power-law at
lower intensities, where there seems to be a paucity of bursts, consistent with the effects
arising from a cosmological distribution of GRBs.

Another important feature of GRBs is that most of their power is emitted above 50
keV, the peak of the spectrum being located quite often in the 100-300 keV range (Band
et al. 1993). The spectrum is simple and can be well approximated by a broken power-
law (Schaefer et al. 1992). The emission of most bursts shows a continuous softening
trend (Ford et al. 1995), with a temporary hardening before an increase of the count
rate (Mitrofanov et al. 1992b). Norris et al. (1996) have shown that the features of the
pulses are dependent on the observing energy (e.g. pulses peak earlier, are shorter and
more time symmetric at higher energies).

The first satisfactory models that attempted to explain the GRBs located them
in an extended galactic halo (e.g. Brainerd 1992, Podsiadlowski, Rees & Ruderman
1995) and identified highly magnetized neutron stars (Harding 1991) as their origin.
The continuously increasing number of observed burst constrained better and better the
quadrupole moment of their angular distribution, consistent with a perfectly isotropic
distribution, which required increasingly larger halo sizes to keep consistency with the
effect due to the offset of the Sun relative to the Galactic center (Hakkila et al. 1994). By
mid 1990s, the observed isotropic distribution (Meegan et al. 1992, Briggs et al. 1996)
and the deviation from a −1.5 slope power-law of the integral number – peak intensity
distribution for the fainter bursts (Meegan et al. 1992, Horack & Emslie 1994) were
strongly suggesting that GRBs are of cosmological origin. Other observations, such as
spectral hardness–brightness correlations (Mitrofanov et al. 1992a, Paciesas et al. 1992),
spectral hardness–duration anti-correlation (Kouveliotou et al. 1993), and the possible
time dilation and duration–brightness anti-correlation (Norris et al. 1994, 1995; see how-
ever Mitrofanov et al. 1996), while more equivocal, are also generally compatible with
this hypothesis.

1.2 Afterglows

The controversy regarding the origin of GRBs has been finally settled by the
Italian-Dutch BeppoSax satellite, launched in 1996. It provided both real-time and small
localization boxes (up to few tens of square arc-minutes), which allowed the discovery of
the first X-ray and optical afterglow following a GRB (Costa et al. 1997, van Paradijs et
al. 1997). Measurements of the GRB host galaxy redshift, identified based on the very
low probability of a chance positional coincidence or closeness between the burst and the
galaxy, has finally provided direct evidence for the cosmological origin of GRBs. The
long lived (up to 100 days) power-law afterglow decays observed in some cases has given
indirect confirmation of their extragalactic origin, through that the energy required by
the fireball model to explain such long afterglow timescales is consistent with the observed
GRB fluence only if the source is located at cosmological distances. Conversely, if GRBs
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originated in the galactic halo, the implied energetics within the fireball model would
lead to an afterglow decay timescale of order 1 day, substantially shorter than observed.

Table 1.1 lists all GRB afterglows detected until June 1999 for which a fading
X-ray emission has been followed, i.e. there were at least two detections in the X-ray
showing a decline. The afterglows that have dimmed below detection after their initial
discovery in X-ray and which did not have a clearly identified optical transient (OT), or
those that had more than one variable X-ray source within the localization box, have
been omitted from Table 1.1. For 4 of these X-ray afterglows an OT has never been
detected, and only 6 have been observed as variable radio sources. It is important to
note that there is no correlation between the high energy (soft or hard X-rays) intensity
of the GRB and the detection of an OT, both bright and dim GRBs producing optical
afterglows, while there are bright GRBs without a detectable OT.

The typical afterglow light-curve decay is a power-law with exponents ranging
from −1.1 to −1.4. GRB 980326, 990123, and 990510 are the exceptions, in the first
case the fading was much faster, while in the last two cases a steepening of the decay
being observed 10 days and ∼ 1 day, respectively, after the main event. In most cases
the optical emission falls below detection within 10 days from the GRB event, the most
notable exception being GRB 970508, for which the power-law fading was detectable
until ∼ 200 days. The same afterglow exhibited another unique feature, consisting of a
substantial brightening 2 days after the GRB. It was also the first afterglow that exhibited
rapid (hours to days) intensity fluctuations at radio wavelengths due to the small size of
the source (of order of few µas [micro arc-seconds]) and to the inhomogeneities in the
intragalactic medium, as predicted by Goodman (1997).

In three cases a host galaxy was not identified, either because it is below the
sensitivity of the instruments that attempted to find it, or because the GRB source was
ejected from the host galaxy and thus is not seen in its vicinity. The last column of
Table 1.1 gives the angular separation between the center of the host galaxy and the OT
(not specified if they are coincident within the measurement errors), and the apparent
diameter and magnitude of the host.

1.3 The Fireball Model

If GRB were arising from stationary sources, then the smallest measured vari-
ability timescale would imply a source size of the order of a neutron star radius. Put
together with the large energy that a cosmological GRB must release (typically more

than 10
51
ergs), it leads to the conclusion that stationary GRBs would have luminosities

exceeding by more than 10 orders of magnitude the Eddington luminosity and optical

thicknesses to Thomson scattering and pair formation in excess of 10
11
. Thus the rel-

ativistic expansion of the GRB source (the ”fireball”) is an inescapable result of their
enormous energetic budgets and short variability timescale. Moreover, the observation of
10 GeV photons for the brightest GRBs, also implies a relativistic motion of the source,
otherwise the GeV photons should have been destroyed by pair-formation on the ∼ 100
keV photons in the source (Baring & Harding 1995) or during their propagation from
the source to the observer (Fenimore, Epstein & Ho 1993). The detection of the GeV
photons and the smallest variability timescale observed (below 10 millisecond) require
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Table 1.1.
Features of GRBs afterglows detected until June 1999. Only afterglows with a clearly
identified X-ray fading source have been included. The detection of an optical/radio
afterglow is indicated with the letter Y.

GRB Optical Radio Light-Curve red- Host

# Afterglow A-glow Decay∗ shift Galaxy

970228 Y <∼ 0.1 δ
X
= 1.4 0.70 0.3” from OT

mJy δ
R
= 1.2 d=0.8”, V = 25.7

970402 R
1d
> 21

970508 Y Y δ
X
∼ 1.1 0.84 0.4” from OT

δ
R
= 1.2 d=0.5”, V = 25.3

970828 R
0.2d

> 24

971214 Y δ
R
= 1.2 3.42 0.1” from OT

d=0.6”, V = 25.6

980326 Y δ
R
= 2.1 R = 25.5 (?)

980329 Y Y δ
R
= 1.3 R = 25.7

980519 Y Y δ
I
∼ 2 R = 26.1

980613 Y δ
R
= 1.2 1.10 0.5” from OT, R = 23.9

980703 Y δ
R
= 1.2 0.97 <∼ 0.2” from OT, R = 22.6

981226 R
0.6d

> 21 Y

990123 Y Y δ
R
= 1.1→ 1.8 1.60 ∼0.6” from OT

V
50s

= 9.0 d∼1”, V = 24.2

990506 R
1h
> 19 Y R = 24.8 (?)

990510 Y δ
R
= 0.9→ 2.6 1.62

∗
F
ν
∝ T−δν
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that the fireball Lorentz factor is at least of few tens, up to as high as 1,000. For an

energy of 10
51

ergs, the fireball mass must be around 10
−6 − 10−5M�, where M� is

the mass of the Sun.
It is easy to show that an expanding fireball with the above energy and that had

initially a radius comparable to that of a neutron star (∼ 106 cm) becomes optically thin
only after most of its internal energy has been converted into kinetic, thus the escaping
photons would carry little energy (they would also have a quasi-thermal spectrum, unlike
what is observed in GRBs). Therefore shocks are required to dissipate the fireball kinetic
energy and radiate it to produce a burst. Shocks may arise from instabilities in the
relativistic wind, when faster moving ejecta overtake the slower moving parts of the
fireball (see Mészáros 1995 for a review). These ”internal shocks” occur at radii up to

10
15
cm, are marginally relativistic in the comoving frame, and can give rise to arbitrarily

complicated light-curves whose duration is determined by the details of the energy release
mechanisms (Rees & Mészáros 1994). Shocks also form during the collision with the
external medium into which the fireball expands. These ”external shocks” (or ”blast

waves”) occur at larger radii (>∼ 10
16

cm) than the internal ones, and are extremely
relativistic in the forward blast wave that moves into external medium. In this case,
the burst duration is determined by the energetics of the source and the density of the
external medium (Mészáros & Rees 1993).

These shocks can amplify pre-existing magnetic fields in the ejecta through com-
pression, shearing or turbulent dynamo mechanisms (Usov 1992, Narayan, Paczyński
& Piran 1992, Thomson & Duncan 1993), or increase magnetic field fluctuations in
the shocked external gas through relativistic two-stream instability (Medvedev & Loeb
1999), i.e. through the current sheaths that form if there is an initially anisotropic parti-
cle distribution, or through hydrodynamic turbulence triggered by local random motions
within the fireball, resulting from Rayleigh-Taylor instabilities (Waxman & Piran 1994).

Monte Carlo simulations of the particle acceleration at shock fronts (e.g. Ellison
et al. 1990) show that the first-order Fermi mechanism yields particle spectra that can
be well approximated as power-laws at energies far above the injection energy. Gallant,
Achtenberg & Kirk (1998) have shown that the spectral index of the power-law distri-
butions resulting from repeated shock crossings (due to the diffusion of particles in the
upstream region caused either by deflections in a regular magnetic field or scatterings
due to small-angle magnetic fluctuations) is consistent with the one inferred from GRB
and afterglow observations. Bykov & Mészáros (1996) and Smolsky & Usov (1999) have
described scenarios where there is an efficient transfer of energy from protons to elec-
trons, allowing the energy of the non-thermal leptonic component to reach a substantial
fraction (∼ 20%) of the equipartition value.

The shock-accelerated electrons emit synchrotron radiation, which are further
up-scattered. The comoving frame particle densities behind the shocks occuring above
the photospheric radius (the radius at which the fireball becomes transparent) are small
enough to lead to a negligible relativistic bremsstrahlung emission. In the case of GRBs
resulting from fireball instabilities, synchrotron self-absorption and pair formation are
also important processes that shape the burst spectrum, but their effect should be small
in the case of shocks caused by the interstellar medium.
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Due to the relativistic beaming the observer receives radiation from a narrow
region of the fireball, extending up to 1/Γ radians around the observer’s line of sight
toward the fireball center, where Γ is the ejecta Lorentz factor. Therefore the observer
sees only a small portion of the source, moving relativistically toward him/her, which
implies that the observer frame duration of any process that takes place in the fireball

is a factor Γ
2
shorter than in the laboratory frame, allowing thus variability timescales

much shorter than the source light-crossing time.
The fireball models developed so far differ in several aspects:

1) the manner the fireball is energized. If there is a time-extended ejection, the GRB
is produced by internal shocks. If the ejection of the fireball is impulsive, i.e. it takes
place on a short timescale, the ejecta is practically homogeneous and the burst is due to
external shocks.
2) the component that contains most of the fireball energy. Electron-positron-dominated

and magnetic-dominated fireballs result from an initial energy deposition in an almost
baryonic free environment. In the former case an energetic and short burst is expected
when the fireball becomes optically thin due to its expansion and to pair annihilations.
Baryon-dominated fireballs result when the explosive event entrains protons or ions ex-
istent in and around the burst progenitor, and convert the available thermal energy into
kinetic energy before it can be radiated away.
3) the relative strength of the magnetic fields generated by the reverse and forward

shocks that sweep up the ejecta and the interstellar medium, respectively. Regarding
this issue Mészáros , Rees, & Papathanassiou (1994) have considered three models: a)
a ”frozen-in” model, which assumes the existence of an initial magnetic field in the
ejecta, b) a ”turbulent” model, where the magnetic fields are generated through turbu-
lent growth behind both shocks (but possibly with different strengths), and c) a ”piston”
model, where the ejecta provides pressure but is an inefficient radiator, while turbulent
field growth occurs only behind the blast wave.
4) the efficiency at which the fireball radiates its energy. The model parameters in-

ferred from the properties of the observed GRB emission imply that the fireball is semi-
adiabatic during the main burst and very early afterglow, i.e. it radiates a substantial
fraction of its internal energy, and quasi-adiabatic during most of the afterglow phase.
The former conclusion maintains consistency with the energetic budgets allowed by the
most plausible GRB progenitors (Mészáros , Rees & Wijers 1999), while the latter is
also required by the observed long lived afterglows: if the fireball were quasi-radiative
during the afterglow phase, then the light-curve decay would steepen after at most few
days due to the remnant becoming non-relativistic.
5) the geometry of the fireball. Given that most of the radiation the observer receives

is emitted by the fluid moving within 1/Γ radians off the central line of sight, the ob-
server cannot tell from high energy observations alone whether the fireball is spherical or
collimated. Observations made during the optical and, possibly, radio afterglow phases
could help distinguish between these two cases, as the light-curve decay is expected to
steepen in the case of a collimated fireball, when the Doppler cone becomes wider than
that of the ejecta. Evidently, the degree of ejecta beaming is of major importance for
the total burst energetics.
6) the density of the surrounding medium. Assuming that this medium is isotropic,
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there are two major cases of interest: a) a homogeneous external gas, whose density

should be of order 1 particle/cm
3
if the burst occurs in the galactic disk, and more

tenuous (<∼ 10
−2

particle/cm
3
) if it originates in the galactic halo, and b) a pre-ejected

wind, whose density decreases as r
−2

(r being the fireball radius) for a constant velocity
wind. The former case is indicative of a binary star merger, while the latter would point
toward the collapse of a massive star which has ejected a non-relativistic wind before the
GRB fireball.

Probably the most debated issue regarding GRBs is the source of the relativistic
fireball. Several scenarios have been proposed, involving the merger of two objects (at
least one being compact, i.e. white dwarf [WD], neutron star [NS], or black hole [BH]),
or the collapse of a Wolf-Rayet star or of a supermassive star, or a failed supernova
Ib. All these events lead to the formation of a BH surrounded by a debris torus, whose
masses differ from a scenario to another. The fireball must be powered by one or both
of the available energy reservoirs: the spinning energy of the BH and the gravitational

binding energy of the torus. Strong magnetic fields (>∼ 1015 G) are required to carry away
part of the available energy on timescales of seconds, through the Blandford & Znajek
(1997) mechanism (for the BH’s rotational energy) or through a Poynting outflow (for the
torus binding and/or rotational energy). The energy extracted from a torus of mass M

t

ranges from 10
53
ε (M

t
/M�) ergs for a NS–NS merger to 10

54
ε (M

t
/M�) ergs for NS–BH

and WD–BH mergers, where ε is the efficiency of converting magnetohydrodynamically
the torus gravitational energy. The energy extracted from a BH of mass M

bh
is <∼

10
54
aε (M

bh
/M�) ergs for most scenarios, where a is the BH’s rotation parameter.

The temporal features of the energy deposition are of importance for internal
shocks, as in this model the wind variability timescale and duration determine the ob-
served pulse and burst durations, respectively. The ejection details are almost completely
wiped out during the fireball acceleration and the internal shock phase, the external shock
burst timescale being determined (as mentioned above) mainly by the fireball energy and
the external medium properties. Therefore, for external shocks GRBs, the type of fireball
progenitor is relevant only through the effect it has on the circum-burst medium, the
energetics implied by the above source scenarios being similar (and somewhat uncertain).

1.4 Outline of the Thesis

In this work we focus on GRBs produced by the collision of a relativistically ex-
panding, baryon-dominated fireball or axially symmetric jet with an isotropic (but not
necessarily homogeneous) surrounding medium, assuming turbulent magnetic field gen-
eration. This model can explain quite well the temporal structure of bursts in the
categories 1 and 2 given in section 1.1, as well as the observed shape of the spec-
trum and the most important temporal–spectral correlations. Bursts in the categories
3 and 4 can be well explained within the framework of internal shocks. Hydrody-
namic simulations of GRBs arising from unsteady winds are presented by Panaitescu
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& Mészáros (1999), while non-hydrodynamic calculations have been published by Pa-
pathanassiou & Mészáros (1996), Daigne & Mochkovitch (1998), Pilla & Loeb (1998),
Papathanassiou (1999), and Panaitescu, Spada & Mészáros (1999).

In chapter 2 we present a one-dimensional code to solve ultra-relativistic hydro-
dynamic problems, using the Glimm method for an accurate treatment of shocks and
contact discontinuities. The implementation of the Glimm method is based on an exact
Riemann solver and van der Corput sampling sequence. In order to improve computa-
tional efficiency, the Glimm method is replaced by a finite differencing scheme in those
regions where the fluid flow is sufficiently smooth. The accuracy and convergence of
this hybrid method is investigated in tests involving planar, cylindrically and spherically
symmetric flows that exhibit strong shocks and Lorentz factors of up to ∼ 2000. This
hybrid code has proven to be successful in simulating the interaction between a thin,
ultra-relativistic, spherical shell and a low density stationary medium, a situation likely
to arise in GRB, supernovae explosions, pulsar winds and AGNs.

In chapter 3 we model the interaction between an expanding fireball and a station-
ary external medium. The evolution is followed until most of the fireball kinetic energy
is converted into internal energy. The density, pressure and flow Lorentz factor profiles
are shown at different stages. Also in chapter 3 we compute burst spectra and time
structures arising from synchrotron and inverse Compton scatterings by non-thermal
electrons accelerated by the shocks which form during the fireball–external medium in-
teraction. We investigate the effect of varying the most important model parameters
on the resulting burst spectra, and we present a set of correlations among the spectral
and temporal features of the bursts, which are compared to those of observed bursts
for a representative set of model parameters. Multi-pulse structures are simulated us-
ing a variable magnetic field and anisotropic emission. The fireball dynamics is further
followed to study the spectral evolution of the ensuing afterglow.

In chapter 4 we derive the equation for the surface of photon equal arrival time
of radiation from a decelerating relativistic thin shell. Due to the deceleration, these
surfaces become distorted ellipsoids and, at late times, most of the light comes from a
ring-like region whose width depends only on the remnant age. We analyze the shape of
these surfaces for different dynamic and radiative regimes and homogeneous or power-law
external densities. We tabulate the most relevant parameters describing the surfaces and
the source brightness distribution, both for bolometric and fixed frequency observations,
which are useful for more accurate analytic estimates of afterglow light-curves.

In chapter 5 we present an analytical approach to calculate the dynamics of the
relativistic ejecta–surrounding medium interaction. It leads to numerical calculations of
fireball dynamics that are computationally faster than hydrodynamic simulations. It is
also a very flexible approach, that can be easily extended to include more complex sit-
uations, such as a continuous injection of energy at the reverse shock, and the sideways
expansion of beamed ejecta. We investigate the effect of the relevant model parameters
on the X-ray, optical and radio fluxes, and the effect of a refreshed shock energy input,
anisotropy energy deposition, and jet sideways expansion on the afterglow light-curves.
We compare our numerical results to observed afterglows and give a quantitative de-
scription of the conditions (geometry and physical parameters) in the ejecta that are
compatible with the light-curves of the 970508 afterglow, for which a large number of
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flux measurements are available. We find that the radio, optical and X-ray light-curves
of this afterglow can be explained satisfactorily within the spherically symmetric fireball
model, assuming a delayed energy injection, or by an axially symmetric jet surrounded
by a less energetic outflow.
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Chapter 2

Relativistic Hydrodynamics

2.1 Introduction

One of the challenges in ultra-relativistic hydrodynamic problems for compressible
fluids is handling the sharp discontinuities at shocks and contact discontinuities (CDs).
The main goal of this chapter is to construct a computationally efficient code based
on an algorithm that accurately resolves discontinuities during long term evolutions.
Finite difference (FD) methods with artificial viscosity have been a popular choice when
dealing with shocks; however these methods smear shocks and contact discontinuities
unless implicit updates and/or adaptive-mesh refinements are used (Norman & Winkler
1986, Woodward & Colella 1984). The Piecewise Parabolic Method (PPM – Colella &
Woodward 1984) has provided a powerful and accurate alternative to treating strong
shocks, and has recently been generalized to relativistic flows (Mart́ı & Müller 1996).
We expect the PPM to be computationally too expensive for our problem, due to the
rather lengthy procedures it involves. We chose to use the “random choice” (or Glimm)
method to develop a code that simulates the shell–stationary medium interaction over a
long time, due to its computational efficiency and robustness in problems involving long
term evolutions of discontinuities.

The theoretical foundation of the random choice method is due to Glimm (1965)
and consists of two steps: (1) the fluid is approximated at each time-step by piecewise
constant states, and local Riemann problems formed by the neighboring states are solved;
(2) the solution at the next time-step is taken to be the exact solution of these Riemann
problems at a point randomly chosen in each cell. Chorin (1976) developed the Glimm
method into a numerical one for homogeneous hyperbolic conservation laws. Sod (1978),
in his survey of finite difference methods, studied the quality of the Glimm scheme using a
1D shock tube problem. This method was found to be first order accurate and to provide
the best resolution of shocks and CDs. Colella (1982) proposed a better procedure than
Sod’s for randomly sampling the solution of a Riemann problem and investigated the
extension of the Glimm method to two dimensions using the operator splitting method.
He found that in 1D the Glimm method is superior to any FD method when computing
shock fronts, in transporting discontinuities at the correct speed and in giving the correct
shape of continuous waves.

The Glimmmethod has also been extended to inhomogeneous systems of conserva-
tion laws. For instance, Sod (1977) used operator splitting to extend the Glimm method
to cylindrically symmetric flows. Marshall & Menendez (1981) solved non-conservative
Riemann problems by integrating along characteristics. Liu (1979) introduced a gener-
alized Glimm scheme to construct global solutions for quasi-linear hyperbolic systems.
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Based on Liu’s work, Glimm, Marshall & Plohr (1984) developed their generalized ran-
dom choice method: the solution at each time-step is approximated by a piecewise steady
flow and is advanced to the next time step by solving a “generalized” Riemann problem.

In this chapter we present a numerical approach based on the Glimm method,
suitable to solve 1D hydrodynamic problems involving ultra-relativistic shocks. As men-
tioned before, the Glimm method requires solving a Riemann problem for every two
neighboring cells and thus could easily become expensive. Our approach to overcome
this problem is to limit the use of the Glimm method only to those regions of the fluid
where steep gradients are present and to apply a FD scheme (Lax or Lax-Wendroff) in
the smooth remaining part of the computational domain, including an operator splitting
technique to account for geometrical effects in problems with high degree of symmetry
(spherical or cylindrical). This shock patching approach takes advantage of the accuracy
of the Glimm method to resolve discontinuities and the computational speed of the FD
methods. Comparison of our results with those published by other authors shows that
the hybrid codes here developed are competitive and, possibly, faster. This last feature
makes them particularly suitable for problems requiring long term evolution such as
modeling the interaction of a cold shell with an external medium at large Lorentz factors
(Γ > 100).

2.2 Numerical Techniques

The special relativistic hydrodynamics (SRHD) equations governing the dynamics
of 1D perfect fluids can be written as:

∂ρ

∂t
= −v∂ρ

∂r
− 1

1− v2c2
s

[
− vρ

Γ
2
h

∂p

∂r
+ ρ

∂v

∂r
+ α

vρ

r

]
, (2.1)

∂p
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= − 1

1− v2c2
s

[
v(1 − c2

s
)
∂p

∂r
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∂v

∂r
+ α

γ̂vp

r

]
, (2.2)
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s


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Γ
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h

∂p

∂r
+ v(1 − c2

s
)
∂v

∂r
− α

v
2
c
2
s

Γ
2
r


 , (2.3)

with ρ the co-moving mass density, p the pressure and v the velocity of the fluid. Above,
Γ denotes the Lorentz factor of the flow, h = ρ + e + p the enthalpy density and c

s
=√

γ̂p/h the local sound speed. The equation of state for an ideal fluid e = p/(γ̂ − 1)
is assumed, where e is the internal energy density and γ̂ the adiabatic index. The
speed of light is set to 1. The last term in the above equations is a geometrical term,
with α = 0, 1, and 2 for planar, cylindrical and spherical symmetry, respectively. One
often finds in the literature the above SRHD equations written in terms of quantities

measured in a fixed “laboratory” frame: mass D = Γρ, momentum S = Γ
2
vh and

energy E = Γ
2
h− p −D densities (e.g. Hawley, Smarr & Wilson 1984). The use of D,

S and E yields equations which explicitly exhibit a conservation form similar to that of
their non-relativistic counterparts. The drawback of solving the SRHD equations in the
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conservative form is that iterations must be done in every grid zone to determine the basic
variables (ρ, p, v) from the set (D,S,E) whenever the variables (ρ, p, v) are required for
physical applications, thus substantially increasing the computational effort. Even more,
the variables (ρ, p, v) are required for an easier implementation of the most important
ingredient of the Glimm method: the Riemann solver (see below).

We describe first our numerical approach to solve in planar symmetry the problem
consisting of an initial discontinuity that separates two uniform states (Riemann prob-
lem). The solution to the Riemann problem in Newtonian hydrodynamics was derived by
Godunov (1959). A detailed direct implementation of Godunov’s derivation to compute
numerical solutions has been given by Chorin (1976) and Sod (1978). Harten & Lax
(1981) replaced the Riemann solver with a finite difference approximation; Roe (1981)
constructed a local linearization of the Riemann problem and Colella (1982) represented
the Riemann problem by two shocks. The analytic solution to the Riemann problem in
relativistic hydrodynamics was derived by Thompson (1986), in the particular case when
the initial states are at rest; the general case has been studied analytically by Smoller &
Temple (1993) and by Mart́ı & Müller (1994).

In any Riemann problem, Newtonian or relativistic, the initial discontinuity de-
composes into a contact discontinuity (CD) and two other elementary waves that can
be either a shock or a rarefaction wave. The pressure and the flow velocity are constant
between these elementary waves, with the density having a jump across the CD. The
general features of the solution of a Riemann problem can be seen in Figure 2.2. In
all graphs, the density profile shows from left to right: left initial state, rarefaction fan,
left post-wave state, CD, right post-wave state, shock, right initial state. All states,
excepting the rarefaction fan, are uniform, i.e. the gradients of ρ, p and v are zero. The
waves are uniquely determined by the state of the pre-wave fluid (either left or right)
(ρ, p, v)

L/R
and the post-wave pressure p∗. The first step in solving a Riemann prob-

lem is to determine the post-wave states, i.e. the two uniform states (ρ∗L, p∗, v∗) and
(ρ∗R, p∗, v∗) around the CD. We further list the equations that are used in the Riemann
solver to calculate the density ρ∗ and velocity v∗ behind each of the two elementary

waves that develop in a Riemann problem, given the pre-wave state (ρ
0
, p
0
, v
0
) and the

pressure p∗ (for more details, see Balsara 1994, Mart́ı & Müller 1994 and references

therein).
For a rarefaction wave, one can use the fact that the Riemann invariant

J± =
1

2
ln

(
1 + v

1− v
)
±
∫ c

s
ρ
dρ (2.4)

is constant through a rarefaction wave propagating to the left (+ sign) or to the right
(− sign). The integral above can be evaluated analytically using the adiabatic flow

condition p/ρ
γ̂
=const. The equality of the Riemann invariants at the head and tail of

the rarefaction wave and the fact that the entropy is constant throughout the wave yield:

v∗ =
(1 + v

0
)A±(p∗)− (1− v0)

(1 + v
0
)A±(p∗) + (1− v

0
)
, ρ∗/ρ0 =

(
p∗/p0

)1/γ̂
, (2.5)
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where

A±(p∗) =


(√

γ̂ − 1− c
s
(p∗)

) (√
γ̂ − 1 + c

s
(p
0
)
)

(√
γ̂ − 1 + c

s
(p∗)

) (√
γ̂ − 1− c

s
(p
0
)
)


±2/√γ̂−1

. (2.6)

For a shock wave, ρ∗ can be found by solving the Taub adiabatic condition (Taub
1948),

(p∗ − p0)
(
h
0
ρ
2
∗ + h∗ρ

2
0

)
= h

2
0
ρ
2
∗ − h

2
∗ρ
2
0
. (2.7)

v∗ is calculated using the pre- and post-shock flow velocities (v)
sh

and (v∗)sh in the

shock’s rest frame (Landau & Lifshitz 1987):

(v)
sh
=

√√√√ (p∗ − p0)(ρ∗ + e∗ + p0)
(ρ∗ + e∗ − ρ0 − e0)(ρ0 + e0 + p∗)

,

(v∗)sh =
√√√√ (p∗ − p0)(ρ0 + e0 + p∗)
(ρ∗ + e∗ − ρ0 − e0)(ρ∗ + e∗ + p0)

. (2.8)

The first equation above and the pre-wave v
0
are used to determine the speed of the

shock, needed to calculate the laboratory frame post-shock velocity v∗ from the second

equation.
The computation of the post-wave states is reduced now to solving the algebraic

equation v∗L(p∗) = v∗R(p∗) for p∗, where v∗L and v∗R are determined using equations

(2.5) and (2.8). Once p∗ is found, all other quantities ρ∗L, ρ∗R and v∗ can be easily
computed. In our Riemann solver it is initially assumed that the discontinuity decom-
poses into a shock and a rarefaction wave. A consistency check followed by a feedback
loop are used to ensure the initial choice of elementary waves (shock or rarefaction) is
consistent with the values of the initial state pressure and the post-wave pressure after
the last iteration: if p∗ > p

L/R
then the elementary wave is a shock, while if p∗ < p

L/R
then it is a rarefaction wave moving toward left/right. If these types of waves are not
the same as those initially chosen, then p∗ is used as the starting point for a new set of

iterations, in which the types of elementary waves are determined solely by p
L
, p∗ and

p
R
. In most of our tests, the shock-rarefaction approximation gives the correct solution

for p∗, but we did find in a few cases that, using this approximation, the iterated p∗,s−r
differs substantially from the true one. In these cases, a few more iterations are needed
to obtain the correct intermediate pressure p∗ after choosing the elementary waves that
are consistent with p

L
, p∗,s−r (calculated so far) and pR. Thus, our Riemann solver is

exact in the sense that it yields self-consistent solutions.
The second step in solving a Riemann problem, i.e. in calculating its solution

U(x, t) given the initial left and right states and the position x
0
of the CD that separates

them at t = 0, is to determine the location of the point of coordinate x relative to the CD,
the head(s) and tail(s) of the rarefaction wave(s) and relative to the shock(s) at time t.
This is done using the velocity at which the CD, the rarefaction wave(s) boundaries and
the shock(s) travel. The speed of the head of a rarefaction wave is the speed of the sound
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in the initial left or right state. Similarly, the speed of the rarefaction wave tail is the
sound speed in the corresponding post-wave state – (ρ∗L, p∗, v∗) or (ρ∗R, p∗, v∗). The
CD travels at speed v∗ and the shock’s speed is a by-product of the iteration procedure
for finding the post-wave states. In this way it is determined if after time t the point
x is in one of the yet unperturbed initial states, in a rarefaction fan or in one of the
two uniform states around the CD. If x is not inside of a rarefaction fan, the solution
U(x, t) is known: it is one of the initial states or one of the post-wave states already
calculated. If x is in a rarefaction fan, the first equation (2.5) (with p and v instead of
p∗ and v∗) and (x − x0)/ t = (v ∓ c

s
)/(1 ∓ vc

s
) are used to determine by iteration c

s
and v at (x, t), after which ρ and p can be easily computed. In problems with cylindrical
or spherical symmetry, similar to the work of Sod (1977), the geometrical effects are
taken into account by an operator splitting technique: a Glimm step is followed by a FD
update using the geometrical terms in equations (2.1)–(2.3).

The Glimm method is implemented in relativistic hydrodynamic problems with
non-uniform initial states. The fluid is approximated by a large number of cells of uniform
states u

n
j
≡ (ρ, p, v)

n
j
, centered at grid point j and time-step n. The Glimm method

naturally calls for the use of a staggered computational mesh (see Figure 2.1).
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Fig. 2.1. Staggered mesh required by the Glimm method

Given two adjacent states u
n
j
and u

n
j+1

at time-step n, the value of the approxi-

mate solution at time-step n+1/2 and position j+1/2 is taken to be the exact solution
U(x, t) of the Riemann problem consisting of the left and right states separated at time
n∆t by a fictitious CD located in the middle of the (j, j + 1) cell, evaluated at a ran-

domly chosen point inside that cell: u
n+1/2
j+1/2

= U
[
(j + ξ

n
)∆x, (n + 1/2)∆t

]
, where ξ

n
is a random number in the interval [0,1]. The random number generator used in this
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work is based on the binary expansion of n:

ξ
n
=

m∑
k=0

i
k
2
−(k+1)

where n =
m∑
k=0

i
k
2
k
(i
k
= 0, 1). (2.9)

As for any random number generator, its quality can be assessed by determining how fast
the proportion of times that a generated number is in a sub-interval I of the interval [0,1]
approaches the length of I, for any I. Colella (1982) compared this random sampling
procedure with others commonly used and showed that it introduces the smallest errors
associated with the sampling process characteristic to the Glimm method. Moreover,
these random numbers are chosen alternatively from [0,0.5] and [0.5,1], so that a spurious
propagation of a stationary CD is avoided.

In order to avoid the interaction of elementary waves generated by Riemann prob-

lems in adjacent cells, the time-step must be chosen to satisfy ∆t < ∆x
(
1 + |v|c

s

)
/
(
|v|+ c

s

)
.

Note that this is not a condition for numerical stability. A stronger upper limit on ∆t can
be imposed by requiring that the time-step is much smaller than the characteristic time
in which the wave speeds change, so that such changes are correctly treated by repeated
sampling. This restriction is obviously very important; nevertheless, all tests performed
on the code based on the Glimm method showed no correlation between the errors of the
numerical solution and the time-step size, as long as the computational grid contained
more than 100 equal zones. In other words, in all the tests considered, the maximum ∆t
allowed by the above inequality is small enough to lead to a sufficiently large number of
samplings in those regions of the fluid where fast wave speed changes occur. The second
criterion for the maximum ∆t is effective on coarser computational grids (less than 100
grid zones) where, if ∆t is set too large (∼ ∆x), the numerical solution may not be
sufficiently smooth and the location of discontinuities may be inaccurate by several grid
zones.

By construction, the Glimm method does not require tracking shocks and CDs
or a decrease of the grid cell size in regions of the fluid with sharp gradients. The main
advantages of the Glimm method are: (1) it produces completely sharp shocks and CDs,
thus allowing the use of uniform grids for treating discontinuities, (2) it is free of diffusion
and dispersion, and (3) it is conservative on the average over time. It is not conservative
over the spatial grid: in the tests considered below, the relative errors in the mass and
in the energy of the fluid fluctuate around zero with an amplitude of order 1%, for a grid
consisting of 100 equidistant zones. As expected, the finer is the computational mesh,
the lower is the amplitude of these fluctuations. The drawback of the Glimm method
is that solving by iteration the equation v∗L(p∗) = v∗R(p∗) for the post-wave pressure
p∗ may lead to expensive runs in problems involving large evolution times. One such

iteration in the Riemann solver is ∼ 10 times more time consuming than a simple FD
scheme. Usually 2 to 7 iterations are necessary in order to determine p∗ with a good
accuracy, depending on how close the left and right states are, therefore the Riemann
solver is 20 to 70 more computationally expensive than a FD scheme. In addition,
vectorization seems not to be possible with this method. Our approach to overcome
this problem is to combine the ability of the Glimm method to resolve discontinuities
with high-speed FD schemes, thus constructing a hybrid (or shock-patching) code. We
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considered two FD schemes to solve equations (2.1)–(2.3) in the smooth parts of the
fluid: Lax and two-step Lax-Wendroff (Press et al. 1992). The codes that we developed
to merge these FD schemes with the Glimm method will be referred to as the Lax and
LW codes, respectively. This approach does not depend on the choice of the FD method
since they are only meant to be applied on regions free of discontinuities. Besides their
simplicity, another reason for choosing the Lax and Lax-Wendroff schemes is that they
naturally work on the staggered grid required by the Glimm method (see Figure 2.1).

In addition to the hybrid Lax and LW codes, we also tested a code which uses
the Glimm method throughout the entire computational domain, the G code. The
hybrid codes are faster than the G code and yield smoother profiles because of their
numerical viscosity. One important ingredient in the design of these hybrid methods
is the algorithm for the detection of discontinuities. This sharp-features detector must
be such that the smearing of large gradients is prevented and, at the same time, the
over-use of the Riemann solver in reasonably smooth regions is avoided. In practice,
we found that the most robust detection algorithm is based on the relative change of
physical quantities of neighboring states; that is ε ≡ |φ

1
−φ

2
|/(φ

1
+φ

2
), with φ = p or ρ.

Typically, the criterion to apply the Glimm method was that ε > 0.1, but values as large
as 0.5 were used in problems involving large jumps across discontinuities. Occasionally,
the Glimm method may be chosen instead of the FD scheme in a cell that does not
contain a discontinuity, if large gradients occur in that cell, as the discontinuity detector
may consider a large gradient to be a discontinuity. The G code was used to calibrate
the discontinuity detector and to estimate the effects of the numerical viscosity inherent
in the hybrid codes.

2.3 Code Testing

We have considered the following tests to evaluate the ability of the G, Lax
and LW codes to simulate the propagation and reflection of shocks and CDs: (1) rela-
tivistic shock tube problems, (2) shock heating of a cold fluid in planar and spherical
geometry, (3) cylindrical and spherical shock reflection and (4) collisions of a cold rel-
ativistic shell with a stationary medium. For these tests, we calculate L1 norm errors

E
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∑
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] |T (r
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i
| (α is the numerical coefficient of

the geometrical terms), mean relative errors Ē(T ) = N
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i
)|, and

maximum relative errors Emax(T ) = max {|T (r
i
) − T

i
|/|T (r

i
)|}, with T (r

i
) the exact

solution. The quality of any of the three codes is also assessed through the convergence
rate R of the numerical solution, defined as the limit of d ln E

1
/d ln∆r when ∆r → 0.

We set the time-step close to the maximum value allowed by the FD stability
criterion for relativistic flows (∆t = ∆r), which also satisfies the Glimm method condition
for non-interaction of waves from adjacent cells. However, the time-step was occasionally
decreased if the occurrence of steep gradients would lead to an excessive evacuation of
material. Such situations occur in the G code, near the origin r = 0 in problems with
cylindrical and spherical symmetry, due to the geometrical terms, and in the LW code in
the very steep rarefaction fan that develops in the relativistic blast wave test described
below.
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The average CPU time per numerical time-step (∆t/2) and per grid cell, on a Sun
Sparc 20 Station, is 5 ÷ 6 µs for the hybrid codes. The CPU time of the hybrid codes
changes little from one test to another, as long as it is dominated by finite differencing
computations. A substantial fraction of the computational time could be used to solve
Riemann problems if the numerical grid is made of less than 50 zones, in which case the
CPU time may vary from one test to the next, reflecting the number of iterations done
in the Riemann solver. The G code CPU time depends stronger on the problem that is
solved. These times (from runs done on the same machine) are given below and show
that the hybrid codes are always faster than the G code. The Riemann solver is used at
discontinuities in all codes, therefore the higher speed of the hybrid codes does not come
from the way discontinuities are handled but from the fact that the Lax and LW codes
do fewer computations than the G code in regions free of discontinuities. The Riemann
solver requires only 1–2 iterations in those cells where the flow is smooth, since the left
and right states are close. For this reason, the hybrid codes are on average 5÷ 10 times
faster than the G code.

2.3.1 Shock Tube Problems

Relativistic shock tube problems consist of a discontinuity separating at t =
0 two uniform static fluids. As the fluid with larger pressure relaxes, a rarefaction
wave propagates into it and a shock sweeps up the lower pressure fluid. Two shock
tube problems are considered: Problem 1 has initial conditions (p, ρ)

L
= (13.3, 10),

(p, ρ)
R

= (0.66 × 10
−6
, 1), and Problem 2 with initial states (p, ρ)

L
= (10

3
, 1),

(p, ρ)
R
= (10

−2
, 1). Subscripts L and R denote left and right states, respectively. In

both problems, the initial CD is placed at x
0
= 0.5, and the adiabatic index is γ̂ = 5/3.

These initial conditions were chosen so that direct comparisons with the results obtained
by Hawley et al. (1984) and Mart́ı & Müller (1996) for Problem 1 and Norman & Win-
kler (1986), Mart́ı & Müller (1996) and Falle & Komissarov (1996) for Problem 2 are
possible; Balsara (1994) also considered these two problems. Figure 2.2 shows profiles
of p, ρ and v at t = 0.36, generated by the three codes on a uniform mesh of 400 cells,
compared against the analytic solution. An important feature to be resolved in this type
of problem is the characteristic thin and dense region between the shock and the CD.

The thickness of this region is ∆ = 4.12 × 10−2 in Problem 1 and ∆ = 9.50 × 10−3
in Problem 2. In Problem 1, the Lorentz factor in the shocked fluid is Γ

max
= 1.43

and that of the shock itself is Γ
sh
= 1.78 . The corresponding values for Problem 2 are

Γ
max

= 3.59 and Γ
sh
= 6.18 .

All codes give the correct position of the shock and CD, up to one grid-spacing.
The constant states are well realized and discontinuities are infinitely sharp. Note that
the Lax code smears the rarefaction head over more zones than does the LW code, while
the G code gives a perfectly sharp corner. We find that the rarefaction fans generated
with the G code are not completely smooth due to the randomness in the Glimm scheme
(Sod 1978). Table 2.1 lists the L1 norm errors in mass, momentum and energy at
t = 0.36, for ∆x = 1/400 in the first problem and ∆x = 1/800 in the second problem.
Also given in this table are the maximum and average relative errors in mass and energy
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conservation reached during run, as well as the convergence rates (R) of the solutions
computed using grids consisting of 50, 100, 200, 400, 800, 1600 and 3200 equal zones.

Table 2.1.
L1 norm errors E

1
, maximum Cmax

and average C̄ relative errors (%) in mass (M) and
energy (E) conservation during runs, for shock tube problems

Problem Code E
1
(D) E

1
(S) E

1
(E) Cmax

M
C̄
M

Cmax

E
C̄
E

R

1 Lax 7.21 E-2 1.33 E-1 1.34 E-1 0.31 0.12 0.50 0.24 0.79

1 LW 2.40 E-2 4.29 E-2 4.83 E-2 0.54 0.30 0.53 0.28 1.06

1 G 3.09 E-2 5.00 E-2 3.92 E-2 0.89 0.50 0.92 0.55 1.02

2 Lax 1.30 E-3 3.38 E-0 4.30 E-0 4.72 1.61 0.22 0.13 0.64

2 LW 8.89 E-4 6.81 E-1 8.66 E-1 4.74 1.61 0.15 0.07 0.88

2 G 3.69 E-4 3.33 E-1 5.06 E-1 4.78 1.60 0.33 0.19 0.97

The convergence rates show that the Glimm method is first order accurate, in
agreement with the analytic study by Liu (1977). Liu showed that the convergence
rate of the Glimm scheme is at most 1, depending on how well the sequence of random
numbers ξ

n
is distributed in the interval [0,1]. The effect of the randomness involved

in the updating of physical quantities can be seen in the solutions obtained with the G
code. In most cases, they have the largest maximum and average relative errors in mass
and energy conservation. These shock tube tests also demonstrate that combining the
Glimm method with the Lax scheme yields a code that is less than first order accurate
although, independently, both schemes are first order convergent. The CPU time per
timestep and per grid zone for the G code is 21 µs in Problem 1 and 26 µs in Problem
2. For an equal computer time, the Lax code can work on a twice finer grid, producing
solutions with comparable accuracy to those from the G code. Combining the Glimm
method with the second-order Lax-Wendroff scheme leads to a first order accurate LW
code because the errors at discontinuities dominate the overall L1 norm errors. The LW
code yields more accurate solutions than does the Lax code and has a higher convergence
rate.
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2.3.2 Shock Heating Test

The problem of a 1D cold fluid hitting a wall and generating a shock that propa-
gates into the incoming fluid and heats it, has been considered by many authors: Cen-
trella & Wilson (1984), Hawley et al. (1984), Norman & Winkler (1986), Mart́ı & Müller
(1996) and Falle & Komissarov (1996). Behind the shock, the fluid is at rest and hot
(p � ρ), provided that the impacting fluid is relativistic. The shock jump conditions
(Blandford & McKee 1976) yield the post-shock pressure p

2
, density ρ

2
and shock ve-

locity v
sh
:

p
2
= ρ

1

(
Γ
1
− 1
) (
Γ
1
γ̂
2
+ 1
)
, ρ

2
= ρ

1

Γ
1
γ̂
2
+ 1

γ̂
2
− 1 ,

v
sh
= −

(
γ̂
2
− 1
) Γ

1
v
1

Γ
1
+ 1

, (2.10)

where the subscript 1 refers to pre-shock quantities and γ̂
2
is the adiabatic index of the

shocked fluid (taken to be 4/3). Pressure, density and flow velocity profiles are uniform
ahead of and behind the shock. Since all codes use the Glimm method in the fluid cell
that contains the shock, there is no substantial difference in the results given by any of
the three codes. This planar shock heating problem is basically used to test the ability
of the codes to calculate the maximum and average error in the compression factor
η = ρ

2
/ρ
1
and to see how this error changes as the impacting fluid becomes more and

more relativistic. It is important to notice that we find that the errors in this problem are
determined only by the Riemann solver’s accuracy in calculating the post-shock pressure
in the shock’s cell. Depending on the limit at which the Riemann solver converges within

double precision, the maximum and average errors in η are between 10
−10

and 10
−11

,
many orders smaller than the values quoted by other authors.

The shock heating problem in spherical geometry is more difficult and interesting
since it tests the Glimm method under an operator splitting approach to handle the
geometrical terms. This problem consists of a cold fluid entering a sphere of radius
unity at constant velocity v

0
and was used as a test by Romero et al. (1996) and Mart́ı

et al. (1997). It has an analytic solution if the fluid is initially homogeneous ρ(0, r) =
ρ
0
and if, at any time, particles in the yet un-shocked fluid flow independently, with

constant velocity v(t, r) = v
0
(i.e. the pressure of the cold gas is negligible and does

not decelerate the relativistic inflow). From mass conservation, the density of the un-

shocked fluid is ρ
1
(t, r) =

(
1 + |v

0
|t/r

)2
ρ
0
. The post-shock density ρ

2
is determined

by the density of the un-shocked fluid at the shock position, therefore (from eq.[2.10])

ρ
2
= ρ

0

[(
γ̂
2
Γ
0
+ 1
)
/
(
γ̂
2
− 1
)]3

Γ
−2
0
. The post-shock density ρ

2
is position and time

independent.
Figure 2.3 shows p, ρ and |v| at t = 1.90 for a 400 zone grid and initial conditions

ρ
0
= 1, p

0
= 10

−10
and v

0
= 0.99999 (Γ

0
� 224). Notice that the Lax code (see Figure

2.3, upper graph) produces smoother profiles near the origin, and thus it yields smaller
errors than the LW and G codes do (Figure 2.3, middle and lower graphs, respectively).
This is due to the high numerical viscosity of the Lax scheme. The LW and G codes
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solutions are dominated by errors near the origin because of the coordinate singularity
(for regularization, see for instance van Putten 1994). No attempt has been made to
reduce these errors since, as we mentioned before, our main motivation for developing a
hydrodynamic code is to simulate the propagation of the ultra-relativistic shocks likely
to be present in GRBs, in which case the computational region of interest is considerably
away from the origin.

Table 2.2 lists the maximum and average relative errors in the ratio η = ρ
2
/ρ
0

at t = 1.90, on a 400 equidistant zone grid, for different inflow velocities. The average
relative errors are in most cases less than 1% and show no correlation with Γ

0
. These

errors can be compared with those published by Romero et al. (1996) who found that,
in the more relativistic regime, the maximum and average relative errors in η are 14%
and 2.2%, respectively, independently of the inflow velocity. We note that only the G
code gives maximum errors larger than 14%, and that the Lax code maximum errors are
smaller by a factor ∼ 10. The errors in the numerical solution obtained by Romero et
al. (1996) are due to a dip in the post-shock density near the origin, which Noh (1987)
showed that is caused by the fact that the constant pressure gas is hotter near the origin
– an effect due to the artificial viscosity technique they used. For Γ

0
= 224, the average

convergence rates of the numerical solutions are 1.00, 1.00 and 0.86 for the Lax, LW
and G code, respectively. The CPU time per timestep and per grid zone for the G code
increases from 58 µs for Γ

0
= 2.3 up to 190 µs for Γ

0
= 2236.

Table 2.2.
Maximum Emax

and average Ē relative errors (%) in ratio η = ρ
2
/ρ

0
, in the spherical

shock heating test

1− |v
0
| Γ

0
Emax

G
Emax

Lax
Emax

LW
Ē
G

Ē
Lax

Ē
LW

10
−1

2.3 -22.2 -2.57 -10.1 2.56 0.84 0.95

10
−3

22 35.2 -1.16 -13.3 0.93 0.47 1.01

10
−5

224 10.4 -1.07 -10.1 0.72 0.61 1.08

10
−7

2236 11.9 1.52 -10.1 0.97 0.35 0.57
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2.3.3 Cylindrical and Spherical Shock Reflection

This problem consists of a CD separating two uniform states. Initially, the fluid
is at rest and the pressure outside the CD is larger than inside, generating a shock
that propagates radially inward and is reflected in the origin. The left and right states
are: p

L
= ρ

L
= 1.0 and p

R
= ρ

R
= 4.0, thus the fluid is hot (γ̂ = 4/3). The CD

is initially located at r
0
= 0.5. The same problem, but only in cylindrical symmetry

and in Newtonian hydrodynamics, was considered by Sod (1977). Since the G code
cannot miss any discontinuity, we used this code to test how well the hybrid codes detect
and propagate discontinuities and simulate their interaction. We found a satisfactory
agreement among the solutions furnished by all codes, not only in the position and
strength of all discontinuities but also in the profiles in smooth fluid regions.

Figure 2.4 shows the density D, internal energy density E
int

= Γ
2
h − p − ΓD

and velocity v in the lab-frame, when the inward shock (innermost discontinuity in the
panels of Figure 2.4) is close to origin (thin dotted curves), after it is reflected (thick
dotted curves), before the outward reflected shock interacts with the CD (outermost
discontinuity) between the two fluids (thin solid curves) and after their collision (thin
and thick dashed curves). In the cylindrical symmetry case, the inward shock is reflected
at t = 0.75 and hits the CD at t = 1.16 . The corresponding times in the spherical case
are are 0.71 and 1.15 . In cylindrical symmetry, the outward shock interacts with a CD
moving in opposite direction, while in the spherical case, the outgoing shock interacts
with a CD slowly moving in the same direction, as it can be seen in the lower graphs.
There is a substantial discrepancy in the shock’s speed between our solution and that
obtained by Sod (1977) (shocks propagate faster in Newtonian hydrodynamics).

We list in Table 2.3 the errors of the solutions generated by each code on a mesh
made of 400 equal zones, at t = 1.0 . Also in this table, we report the convergence rate
R of the mass, momentum and energy solutions obtained from simulations with 100,
200, 400 and 800 zones. Since there is no analytic solution to this problem, the solutions
calculated using 3200 zones were used as exact. Note that solutions furnished by all codes
have comparable convergence rates and that these rates are closer to 1 in the cylindrical
symmetric case. This suggests that the severity of this test is partially determined by
the “strength” of the geometrical terms (1/r terms) in equations (2.1)–(2.3). The CPU
time per timestep and per grid zone for the G code is 58 µs in both problems.

2.3.4 Relativistic Blast Wave

Finally, we consider the interaction between a cold, relativistically expanding shell
(initial Lorentz factor Γ

0
) with a cold, less dense stationary medium. As the collision

evolves, the shell is decelerated, and the kinetic energy is gradually transformed into
internal energy. At the same time, a shock propagates inwards in the relativistic shell
(reverse shock), with a forward shock (or blast wave) sweeping up the external medium.
The thermal Lorentz factor of shocked fluid is comparable with its bulk Lorentz factor,
which can be roughly approximated by the Lorentz factor Γ

0
of the yet un-shocked

fluid. Therefore, the internal energy of the shocked external medium is comparable

with the shell’s initial kinetic energy when the shell has swept up a fraction Γ
−1
0

of its
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Table 2.3.
L1 norm errors E

1
in the the cylindrical (left part of the table) and spherical (right part)

shock reflection problem

R E
1
(D) E

1
(S) E

1
(E) Code E

1
(D) E

1
(S) E

1
(E) R

0.96 1.66 E-2 3.79 E-2 6.88 E-2 Lax 2.14 E-2 3.28 E-2 8.43 E-2 0.65

0.96 2.06 E-2 4.92 E-2 7.81 E-2 LW 1.27 E-2 2.53 E-2 4.38 E-2 0.84

0.91 1.34 E-2 2.92 E-2 5.31 E-2 G 9.45 E-3 2.03 E-2 3.55 E-2 0.70

mass. This occurs at the deceleration radius r
dec

= (3M/4πΓ
0
n
0
m
p
c
2
)
1/3

, with M the

shell’s mass, n
0
the number density of the stationary medium and m

p
the proton’s mass.

Deceleration effects are important when the expanding shell reaches radial coordinates

of order r
dec

. In this particular problem, we consider a shell of mass M ∼ 1.2× 1029 g,
moving at Γ

0
= 10 into a medium with number density n

0
= 1 particle/cm

3
. Therefore,

r
dec
∼ 1.2 × 1017 cm. The time for this shell to reach r

dec
is t

dec
= r

dec
/c ∼ 4.0 × 106

s (deceleration time-scale).
We set the initial position of the shell at r

0
= 0.4 r

dec
and consider that the

external medium becomes effective only for r > r
0
(deceleration effects are negligible

before t
0
= r

0
/c = 0.4 t

dec
since a fraction of only 6.4% of the external medium mass

within r
dec

has been swept up so far). The shell’s lab-frame thickness at this position is

set to a fraction 1/100 of r
0
; consequently, at t

0
the shell lab-frame number density is

N
0
∼ 5.2 × 103 cm−3. Figure 2.5 shows the co-moving (n) and lab-frame (N) number

densities inside the shocked structure, at t = 1.2, 1.4, 1.6, 1.8 and 2.0 t
dec

(before

t = 1.2 t
dec

the reverse shock crosses the inner shell and leads to the formation of a steep

rarefaction fan behind the CD).
In order to test the convergence of numerical solutions, we used the solution

generated on a mesh consisting initially of 800 equidistant zones as an exact one. During
the collision, the shocked structure expands; at t

end
= 2.0 t

dec
, it is ∼ 25 times thicker

than at t
0
. As the mesh is refined, the location of the forward shock does not change, but

the position of the CD between the two shells at t
end

shifts within a region ∼ 8×10−3 r
dec

thick. However, an uncertainty in the location of the CD of 0.4% of the distance traveled
is not surprising when a relativistic shell is evolved over time-scales 400 times larger
than its crossing time. To avoid over-estimating the errors due to the small off-set in
the position of the CD, we make a separate analysis of solutions for each shell, and we
align the CDs of the inner shell profiles before calculating the L1 norm errors of their
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solutions. Table 2.4 lists these errors in each shell solution at t
end

, for the Lax code. The

grid-spacing ∆r is given in deceleration radii. The G code can be used on the coarser
grids, but it becomes too expensive on the finer ones. The LW code requires an adaptive
time-step to avoid the un-physical pressures that occur when a steep rarefaction wave
develops in the inner shell, between t � 0.9 t

dec
and t � 1.2 t

dec
. This substantially

decreases the speed of the LW code and leads to errors comparable with those in the Lax
code’s solutions. Moreover, in this smooth region with strong gradients, the LW code
develops a sequence of discontinuous jumps with the appearance of a staircase, much
like the effect described by Woodward & Colella (1984) in connection with the use of
the linear hybridization approach in flows with large gradients.

Table 2.4.
L1 norm errors E

1
in the inner shell (left part of the table) and outer shell (right part)

solutions for the relativistic blast wave problem

E
1
(D) E

1
(S) E

1
(E) ∆r E

1
(D) E

1
(S) E

1
(E)

7.13 E-3 1.16 E-2 6.53 E-3 1.6× 10−4
5.73 E-4 1.82 E-2 1.78 E-2

3.72 E-3 5.92 E-3 3.29 E-3 8× 10−5
2.11 E-4 6.79 E-3 6.66 E-3

1.52 E-3 2.51 E-3 1.46 E-3 4× 10−5
1.81 E-4 3.21 E-3 3.10 E-3

8.98 E-4 1.42 E-3 7.83 E-4 2× 10−5
9.91 E-5 2.89 E-3 2.83 E-3

1.03 1.03 1.04 R 0.65 0.78 0.90
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Fig. 2.2. Solutions to the relativistic shock tube problems with 400 grid zones, at
t = 0.36. Left graphs for Problem 1 and right graphs for Problem 2 (see text). First row:
Lax code, second row: LW code, third row: G code. The exact solution is represented
with a solid line.



25

0.0 0.2 0.4 0.6 0.8
r

0.0

0.3

0.6

0.9

1.2

v

0.0

0.3

0.6

0.9

1.2

ρ / 2.5x10
4

0.0

0.3

0.6

0.9

1.2

p / 10
6

Lax

LW

G

Fig. 2.3. Solutions at t = 1.90 for the spherical shock heating problem with inflow
velocity |v

0
| = 0.99999 (Γ

0
� 224), on a mesh of 400 zones, at t = 1.90. Solid curves

show the analytic solution. Upper graph: Lax code, middle graph: LW code, lower
graph: G code.
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Fig. 2.4. Cylindrical (left graphs) and spherical (right graphs) shock reflection solutions
using the Lax code with a 1000 zone mesh. Note the larger lab-frame density D, internal
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(in logarithmic scale) and flow velocity v near the origin in the

spherical symmetric case. Negative velocity corresponds to a flow toward the origin, a
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Fig. 2.5. Relativistic (Γ
0
= 10) blast wave: co-moving (dotted curves) and lab-frame

(solid curves) number density at various times during the collision. From left to right,
t= 1.2, 1.4, 1.6, 1.8 and 2.0 t

dec
. Each profile shows the same structure from left to

right: inner shell (initially moving fluid) – CD – outer shell (shocked external fluid) –
blast wave. The flow Lorentz factor can be estimated from the difference between the
co-moving and laboratory frame densities. Note the second reverse shock in the inner
shell, in the t = 1.6 t

dec
and t = 1.8 t

dec
profiles.
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Chapter 3

Simulations of Gamma-Ray Bursts

from External Shocks:

Time Variability and Spectral Correlations

3.1 Introduction

In this chapter we consider bursts that arise when an ultra-relativistic cold shell
(fireball) is decelerated by interaction with the interstellar medium. As a result of the
deceleration an ultra-relativistic blast wave (“forward shock” – FS) propagates into the
external medium (EM), transferring a substantial part of the fireball kinetic energy to
the shocked EM, while another shock (“reverse shock” – RS) propagates back into the
fireball. This is the generic model usually called the “external shock model” (Mészáros
& Rees 1993). If the shell is in the linear broadening regime before it is substantially
decelerated by the EM (as described by Mészáros, Laguna & Rees 1993), a situation
that is expected under a wide range of conditions, then the RS is quasi-newtonian and
less efficient than the blast wave in converting the shell kinetic energy into heat.

We use the one-dimensional hybrid (finite differencing + exact Riemann solver)
hydrodynamic code presented in chapter 2 to simulate the propagation of the two shocks
and to model the fireball–EM interaction at large Lorentz factors (Γ

0
≥ 100). As the

conversion of kinetic to internal energy takes place, the heat stored in the post-shock
gas can be released as radiation, generating a burst. Panaitescu et al. (1997) have calcu-
lated burst light-curves from fireballs with moderate Lorentz factors (Γ

0
≤ 200), using a

simplified prescription for the energy release. The results were single-hump bolometric
light-curves with a large temporal asymmetry (light-curve decay lasting substantially
longer than its rise). In order to carry out an appropriate comparison of this model with
the rich observational database that has been accumulated by BATSE and other exper-
iments, we need to compute the spectra of such bursts, and to study the burst spectral
evolution and its correlation with the other observational properties and parameters of
the model.

In this chapter, we calculate the effect of the source evolution on the burst spec-
trum, and explore the spectral-temporal correlations predicted by the model. We also
explore the physical requirements necessary for this model to produce multiple-humped
light curves. Spherical symmetry is assumed for simplicity throughout this chapter,

which also describes well the case of jets with an opening angle θ � Γ
−1
0
. The impor-

tance of the fireball curvature (i.e. non-planar symmetry) can be assessed from the shape
of the light-curves and pulses presented below.
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3.2 Model Parameters, Assumptions, Approximations, Scaling Rela-
tions

The most important parameters that describe the dynamics of the fireball-EM
interaction and the energy release mechanism are listed in Table 3.1, together with the
relevant equations in which they appear. The evolution of an impulsive fireball has two
phases: a free expansion phase, when the amount of swept up EM is small and the
deceleration caused by it can be neglected; and a decelerated expansion phase, when the
fireball kinetic energy is used to heat the swept-up EM.

Table 3.1.
Summary of the most important parameters and physical quantities that characterize
the dynamics of the interaction fireball–EM and the burst energy release

Symbol Definition Equation

E
0

initial fireball kinetic energy –

Γ
0

initial fireball Lorentz factor E
0
= Γ

0
Mc

2

t
dec

hydrodynamic time-scale (3.4)

ε
B

magnetic field parameter U
B
= ε

B
U
int

B magnetic field intensity (3.15)

ε
e

electron energy parameter (3.10)

γ
m

minimum electron Lorentz factor (3.11)

ε
SY/IC

p
co-moving SY/IC peak energy (3.12)/(3.13)

E
SY/IC

p
detector SY/IC peak energy (3.16),(3.18),(3.19),(3.24)

Y
RS/FS

Kompaneets parameter (3.26),(3.27)

t
SY

synchrotron cooling time-scale (3.30), (3.36)

3.2.1 Free Expansion Phase

After the initial deposition of energy, the fireball is optically thick with respect to
pair formation and electron scattering, thus the radiation cannot escape. The large en-
ergy budget required by a cosmological GRB, implies that the fireball luminosity largely
exceeds the Eddington luminosity thus the fireball must expand. During this expansion
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the fireball is accelerated, as the radiation energy contained in it is adiabatically trans-
formed into bulk motion energy. The fireball evolution during this acceleration phase,
when the amount of swept-up external gas is too small to yield a significant effect and
the fireball expansion can be approximated as free, is determined by three parameters:

(1) the energy E
0
= 10

51
E
0,51

ergs deposited in the ejected fireball; (2) the entrained

baryonic mass M , parameterized through Γ
0
= E

0
/Mc

2 � 1; and (3) the initial size of

the fireball r
0
(which may be of the order of the neutron star radius , r

0
>∼ 106cm).

The shell Lorentz factor initially grows as r, and reaches a saturation value Γ ∼
Γ
0
at the ”saturation radius” r

s
= Γ

0
r
0
= 10

8
Γ
0,2

r
0,6

cm, after which the cooled

fireball coasts at constant Lorentz factor. The laboratory frame ejecta shell width is

constant ∆ � r
0
until the ”broadening radius” r

b
= Γ

2
0
r
0
= 10

10
Γ
2
0,2

r
0,6

cm is reached,

after which the shell width increases linearly with radius: ∆ ∼ r/Γ
2
0
. The optical

depth for Thomson scattering τ(r) = E
0
κ /4π r

2
c
2
Γ
0
has the value τ(r

s
) = 3.5 ×

10
10

E
0,51

r
−2
0,6

Γ
−3
0,2

at r
s
, κ = 0.40 cm

2
/g being the mass absorption coefficient for

Thomson scattering, thus τ(r
s
) > 1 as long as log Γ

0,2
+ 0.67 log r

0,6
− 0.33 logE

0,51
<

3.5 . The durations of the observed GRBs require that Γ
0
<∼ 10

3
, so that for r

0
<∼ 5 ×

10
9
cm and E

0
= 10

51
ergs, the Lorentz factor reaches saturation before optical thinness.

Therefore the ”thinning radius” is r
t
= (E

0
κ /4π c

2
Γ
0
)
1/2

= 1.9×1013 E1/2
0,51

Γ
−1/2
0,2

cm.

Note that r
t
< r

b
if log Γ

0,2
+0.4 log r

0,6
−0.2 logE

0,51
> 1.3 , and that the broadening

radius is always larger than the saturation radius.
The adiabatic index of the mixture (protons+electrons+photons) is determined

by the component that gives the largest contribution to the total pressure. The ratio of

the photon–to–electron (or proton) partial pressures is P
γ
/P
e± = aV T

3
/3Nk

B
, where

N is the total number of electrons (baryons) and V is the comoving volume of the ejecta
shell. Since the adiabatic index is initially γ̂ = 4/3 (the ejecta are radiation dominated,

both in density and pressure), the product V T
3
is constant and the pressure ratio does

not change. This means that the ejecta remain radiation dominated and the adiabatic
index is 4/3 as long as the electrons and photons are coupled, i.e. until the thinning
radius r

t
is reached. After r

t
, the plasma is cold (because r

t
> r

s
) and the expansion is

characterized by the adiabatic index 5/3. Taking into account the change in the adiabatic
index after decoupling, the ejecta comoving density and pressure are given by:

ρ =



ρ
0
(r
0
/r)

3
r < r

s
ρ
0
Γ
−1
0
(r
0
/r)

2
r
s
< r < r

b
ρ
0
Γ
0
(r
0
/r)

3
r
b
< r

(3.1)
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p =




p
0
(r
0
/r)

4
r < r

s

p
0
Γ
−4/3
0

(r
0
/r)

8/3
r
s
< r < r

t

p
0
Γ
−4/3
0

(r
t
r
4
0
/r
5
)
2/3

r
t
< r < r

b

p
0
Γ
2
0
(r
2
t
r
13
0
/r
15
)
1/3

r
b
< r

if r
t
< r

b
(3.2)

p =




p
0
(r
0
/r)

4
r < r

s

p
0
Γ
−4/3
0

(r
0
/r)

8/3
r
s
< r < r

b

p
0
Γ
4/3
0

(r
0
/r)

4
r
b
< r < r

t

p
0
Γ
4/3
0

(r
t
r
4
0
/r
5
) r

t
< r

if r
t
> r

b
(3.3)

where ρ
0
= 8.8×108 E

0,51
r
−3
0,6

Γ
−1
0,2

g/cm
3
and p

0
= 2.1×1028 E5/4

0,51
r
−15/4
0,6

Γ
−1
0,2

dyne/cm
2

are the baryonic density and pressure at r = r
0
.

3.2.2 Deceleration Phase

The deceleration caused by the interaction with the EM must be taken into ac-
count when the energy stored into the shocked EM is a substantial fraction of the initial
kinetic energy E

0
. The shocked EM internal energy is much larger than its rest mass

energy, since its random (or thermal) Lorentz factor is ∼ Γ
0
� 1. Throughout most of

this chapter we assume that the EM is homogeneous, characterized by a single parame-

ter: its number density n = 1n
0
cm
−3
. The deceleration time-scale in the stationary

frame (with respect to the Earth) of the center of explosion (the laboratory frame) is

t
dec

= r
dec
/c � (E

0
/Γ
2
0
nm

p
c
5
)
1/3 � 8.3× 105 E1/3

0,51
n
−1/3
0

Γ
−2/3
0,2

s , (3.4)

where Γ
0
= 10

2
Γ
0,2
. Note that the deceleration radius is orders of magnitude larger

than the saturation and thinning radii, so that at r
dec

the ejecta are very rarefied and

optically thin. Using equations (3.1), (3.3) and (3.4), we can calculate the laboratory
frame shell width, comoving density and pressure at the deceleration radius:

∆
dec

= 84 E
1/3
0,51

Γ
−8/3
0,2

n
−1/3
0

c s , (3.5)

ρ
dec

= 5.0 Γ
2
0,2

n
0
c
−2

ergs/cm
3
, (3.6)

p
dec

=



1.5 × 10−15 E−1/12

0,51
r
7/12
0,6

Γ
4
0,2

n
5/3
0

dyne/cm
2

if r
t
< r

b

1.9 × 10−14 E1/12
0,51

r
1/4
0,6

Γ
19/6
0,2

n
5/3
0

dyne/cm
2

if r
t
> r

b

. (3.7)

Due to the relativistic motion of the source, the observer receives radiation emitted

in dt in a much shorter time dT = dt/[2 Γ
2
(t)], where Γ(t) < Γ

0
is the Lorentz factor of
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the shocked emitting medium. The burst duration is then approximately

T
b
≈ 10 t

dec
/ 2Γ

2
0
= 420 E

1/3
0,51

n
−1/3
0

Γ
−8/3
0,2

s , (3.8)

where a factor of 10 was included in order to account for the progressive decrease of
the flow Lorentz factor of the radiating medium. Equation (3.8) and the observed GRB
durations imply that 100 <∼ Γ

0
<∼ few × 1000. It also shows that the burst peak flux F

p

satisfies F
p
(∼ E

0
D
−2
T
−1
b

) ∝ E2/3
0

Γ
8/3
0

n
1/3

D
−2
, where D is the distance to source, if

most of the available energy E
0
is radiated.

The dynamics and energetics of the deceleration phase were calculated by Rees &
Mészáros (1992) and by Sari & Piran (1995). For computational efficiency, the numerical
simulations presented here were started from 0.5 t

dec
, when only � 12% of the EM mass

within 1 r
dec

had been swept up and the deceleration prior to this time can be safely

neglected. At t = 0.5 t
dec

the only physical parameter that depends on r
0
is the internal

pressure P of the fireball, and in fact this pressure is irrelevant as long as the shell is cold

(P � ρc
2
, ρ is the comoving frame rest mass density). Therefore, the hydrodynamics of

the shell–EM collision is characterized by the set of three parameters (E
0
,Γ
0
, n).

In the co-moving frame, the shocked EM has typical densities ∼ 103 particles/cm3,
and can radiate away its internal energy through synchrotron radiation (SY) and in-
verse Compton (IC) scattering of the SY photons, in the presence of a modest magnetic
field. Such mechanisms were considered by Mészáros, Rees & Papathanassiou (1994),
who studied the spectral properties of bursts arising from external shocks, and by Sari,
Narayan & Piran (1996), who derived constraints on the radiation mechanisms parame-
ters from the variability observed in most bursts and from efficiency considerations. The
galactic magnetic field, even when compressed behind the FS, would be too weak to lead
to efficient radiation. However, a frozen-in magnetic field present in the fireball (and thus
in the fluid behind the RS) would allow the post-FS material to cool by IC scattering of
the SY photons coming from the post-RS medium. The swept-up EM could radiate even
more efficient if a random turbulent magnetic field builds up in it. In our calculation we
use for simplicity this latter scenario; moreover, a frozen-in magnetic field will usually
have only a fraction of the strength of a turbulent magnetic field at equipartition, when
the electron, proton and magnetic field energy densities are equal.

We use the following assumptions and approximations in order to simulate the
emission of SY and IC photons from the gas behind the two shocks:

1) the magnetic field B is parameterized relative to the internal energy den-

sity U
int
: U

B
= ε

B
U
int
, where U

B
= B

2
/ 8π is the magnetic field energy den-

sity. For strong shocks, equation (8) derived by Blandford & McKee (1976) yields

U
int

= 3 × 10−3 n
0
Γ
2
FS

erg/cm
3
, where Γ

FS
is the Lorentz factor of the FS shock,

so that B = 0.27 ε
1/2
B

n
1/2
0

Γ
FS

G. Since the post-shock fluids are very close to hy-

drostatic equilibrium, U
int
, and therefore B, have almost the same values behind both

shocks.
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2) shock acceleration leads to a power-law distribution of electrons

dN
e
(γ
e
) = Cγ

−p
e

dγ
e
, γ

m
≤ γ

e
≤ γ

M
, (3.9)

where γ
e
is the random electron Lorentz factor, N

e
is the number density of electrons, and

the power-law index is set p = 3. Such a distribution is initialized in every grid cell after
it is swept up by one of the two shocks, and its subsequent evolution is determined solely
by the SY and IC losses. Therefore we do not take into account adiabatic losses or further
energy exchange between protons and electrons. The former simplification is justified by
the fact that the electron cooling time-scale is much lower than the dynamic time-scale
(as shown below). We have taken γ

M
/γ
m
= 10 because the cooling time-scales for larger

γ
M

would be too short (<∼ 10−5 tdec, typically), thus following accurately the evolution
of these very energetic electrons would lead to very long numerical runs. Moreover, if Γ

0
is not low (≈ 100) or if the magnetic field is not weak or the shock acceleration inefficient
(i.e. low γ

m
), the most energetic electrons radiate at energies above the upper limit of

the BATSE window (10 keV – few MeV).
3) The minimum electron random Lorentz factor γ

m
is determined by a parameter

ε
e
which is the fraction of the internal energy of the shocked gas that is given to electrons

after shock acceleration: ∫ γ
M

γ
m

dN
e
(γ
e
)m

e
c
2
(γ
e
− 1) = ε

e
U
int

. (3.10)

Assuming magnetic fields sufficiently below equipartition, the equality of the sum of
the electronic and protonic partial pressures and the total pressure (determined by the
hydrodynamics of the fireball–EM interaction), gives:

γ
m
(ε
e
) = 3

p− 2
p− 1

1−X1−p

1−X2−p
ε
e

m
p

m
e

P

ρc
2
, (3.11)

where X = γ
M
/γ
m
. This result is valid for γ

p
� 1 (equivalent with P � ρc

2
, which is

true for the fluid behind the FS); a similar result can be obtained in the limit γ
p
−1� 1

(i.e. P � ρc
2
, which is correct for the fluid behind the RS). For the ultra-relativistic

FS, equations (8)–(10) from Blandford & McKee (1976) lead to P/ρc
2
= 0.24Γ

FS
and

γ
m,FS

= 660 ε
e
Γ
FS

. According to equation (3.6), the fireball density at r ∼ r
dec

is

much larger than that of the EM, thus the RS is mildly relativistic. Numerically, we found
that the Lorentz factor of the RS in the frame of the yet un-shocked fluid is practically

independent of Γ
0
: Γ

RS
� 1.1 . In this case it can be shown that P/ρc

2 � 4 × 10−2
which leads to γ

m,RS
� 100 ε

e
.

4) In the co-moving frame, the SY radiation emitted by any electron is approx-
imated as monochromatic, with a frequency equal to the peak frequency ν

p
(averaged

over the pitch angle) of the SY spectrum (Appendix A) of the radiation emitted by an
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electron with Lorentz factor γ
e
(t), which evolves in time, as the electron loses energy:

ε
SY
p
� 4.0× 10−9 γ2

e
(t)B eV . (3.12)

The electron cooling and continuous electron injection will produce spectra that are
flatter than the spectrum of the SY radiation emitted by a single electron below and

above the peak frequency ν
p
(νF

ν
∝ ν4/3 and νF

ν
∝ ν3/2e−ν/νp, respectively), so that

the effect of integrating over time and over electron distribution hinders the features of
a single electron spectrum. Thus, for the calculation of light-curves at energies not too
far from the synchrotron peak energy, this approximation is better than it may seem at
first sight.

5) The spectrum of the SY photons up-scattered in the Thomson regime is also
approximated as monochromatic, at the peak energy of the IC spectrum (Appendix B)
for γ

e
(t):

ε
IC
p

= 2.44 γ
2
e
(t) ε

SY
p

. (3.13)

The Klein-Nishina (K-N) effect on the scattering of SY photons with energies compa-

rable or larger than m
e
c
2
/γ
e
(t) is taken into account. The SY energy density U

SY
,

necessary for calculating the IC losses, is computed as an integral over the volume of the
shocked media of the SY local output. There is a strong relativistic beaming of the SY
photons due to the motions of the origin of a given photon and the place where the scat-
tering takes place: as seen from the co-moving frame of the up-scattering region, the SY
source is moving away, unless the two regions (of SY emission and of IC scattering) are
moving in the same direction. We assumed that the U

SY
spectrum is monochromatic,

at the peak frequency of the SY spectrum generated by the most numerous (and least
energetic) electrons that are in the same volume element where the IC scattering takes
place. This approximation is justified to some extent by the aforementioned strong rela-
tivistic beaming and the geometrical dilution of the SY output, which should make the
contribution to the U

SY
of the SY emission from the vicinity of IC scattering place to

be dominant. Due to this assumption the IC spectra shown in section 3.4 are calculated
using only the following combinations: (i) SY-RS photons scattered on electrons accel-
erated by the RS and (ii) SY-FS photons scattered on electrons accelerated by the FS.
The mixed combinations (iii) SY-RS photons scattered by FS electrons and (iv) SY-FS
photons scattered by RS electrons are not taken into account. We will assess the effect
on the computed spectra of neglecting the last two combinations.

The approximation of taking the SY and IC spectra of a single electron and that
of the SY photon field to be up-scattered as monochromatic is done for computational
efficiency. Most of this computational effort is used to calculate the burst spectrum by
integrating over the volume of the shocked fluid (which reduces to integrating over the
radial coordinate and the angle relative to the line of sight toward the center of symmetry)
and over the electron distribution in each infinitesimal volume element, and repeating
this triple integral after a time short enough to accurately treat the evolution of the
most energetic electrons (which have the shortest cooling time-scale). Adding another
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integral within the triple integral, in order to include the real SY or IC spectrum from
a single electron, would lead to excessively long runs.

The above analytic considerations and approximations allow us to calculate the
energy E

p
at the peak of the power per logarithmic energy interval (νF

ν
) for the SY and

IC spectra from both shocks, as seen from the detector frame. Numerically, we found
that about 50% of the total energy released by a burst is emitted from t = 1 t

dec
until

t = 1.5 t
dec

. During this time Γ
FS

decreases from � 0.6Γ
0
to � 0.4Γ

0
, therefore, to a

good approximation, Γ
FS
� Γ

0
/2, so that

γ
m,FS

� 1.3× 105 ε
e
(Γ
0
/400) , (3.14)

B � 54 ε1/2
B

n
1/2
0

(Γ
0
/400) G . (3.15)

Taking into account that the relativistic motion of the radiating fluid boosts the

co-moving energy by a factor between Γ (if the fluid moves at an angle Γ
−1

from the
line of sight toward the fireball center) and 2Γ (if the fluid moves on this line of sight),
where Γ � 0.7Γ

FS
is the flow Lorentz factor of the shocked fluid, we obtain for the

SY-RS radiation:

E
SY,RS
p

� 0.4 ε2
e
ε
1/2
B

n
1/2
0

(Γ
0
/400)

2
eV . (3.16)

The co-moving energy of the SY-RS photons

ε
SY,RS
p

= 2× 10−3 ε2
e
ε
1/2
B

n
1/2
0

(Γ
0
/400) eV (3.17)

is well below the limit for K-N scattering m
e
c
2
/γ
m,RS

= 5 ε
−1
e

keV, therefore

E
IC,RS
p

� 6 ε4
e
ε
1/2
B

n
1/2
0

(Γ
0
/400)

2
keV . (3.18)

The SY photons emitted by post-FS electrons with Lorentz factor γ
m,FS

have a detector

frame energy

E
SY,FS
p

� 800 ε2
e
ε
1/2
B

n
1/2
0

(Γ
0
/400)

4
keV , (3.19)

and, in the co-moving frame, are too energetic to be up-scattered in the Thomson regime:

ε
SY,FS
p

= 4 ε
2
e
ε
1/2
B

n
1/2
0

(Γ
0
/400)

3
keV� m

e
c
2
/γ
m
= 4 ε

−1
e

(Γ
0
/400)

−1
eV , (3.20)

as long as

log Γ
0,2

+
3

4
log ε

e
+
1

8
log ε

B
+
1

8
log n

0
>∼ −0.15 . (3.21)

Let’s assume that inequality (3.21) is satisfied (we argue below that it must be

so for an efficient burst). The energy m
e
c
2
/γ
e
is a good measure of the photon energy

above which the K-N reduction is very effective, in the sense that it drastically reduces
the intensity of the IC component. The up-scattered radiation will be emitted when the



36

FS electrons have cooled enough so that ε
SY,FS
p

(γ
e
) ≤ m

e
c
2
/γ
e
, implying γ

e
≤ γ

KN
=

5×104B−1/3, where B is lower than estimated above (eq.[3.15]), as the shocked material
has lost some internal energy. To a good approximation, this fraction can be taken 1/2,
so that

γ
KN

= 1.5× 104 ε−1/6
B

n
−1/6
0

(Γ
0
/400)

−1/3
. (3.22)

The SY radiation emitted by FS electrons cold enough to scatter their own SY photons
in a mild K-N regime have a detector frame energy less than

E
SY,FS
KN

� 7 ε1/6
B

n
1/6
0

(Γ
0
/400)

4/3
keV , (3.23)

which gives the peak energy of the up-scattered spectrum from the FS:

E
IC,FS
p

≈ 0.6 ε−1/6
B

n
−1/6
0

(Γ
0
/400)

2/3
TeV . (3.24)

The optical depth for Thompson scattering of the shocked fireball is

τ
RS

= E
0
σ
Th

/ 4πm
p
c
2
r
2
dec

Γ
0
� 10−6 E1/3

0,51
n
2/3
0

(Γ
0
/400)

1/3 � 1 . (3.25)

The effect of IC scattering on the SY-RS spectrum and on electron cooling can be assessed

through the Kompaneets parameter Y
RS

= γ
2
m,RS

τ
RS

:

Y
RS
� 10−2 ε2

e
E
1/3
0,51

n
2/3
0

(Γ
0
/400)

1/3 � 1 . (3.26)

Calculating a similar Kompaneets parameter for the FS is more difficult because earlier
accelerated electrons can be so cold that they scatter their own SY photons in the
Thomson regime while more recently accelerated electrons are very energetic and scatter
their SY photons in the extreme K-N regime. A simple way of obtaining upper limits
for this parameter would be to assume that all electrons have the same random Lorentz
factor and that the up-scattering takes place at the limit between the Thomson and the
K-N regimes. (At given energy ε

0
of the incident photon, the Kompaneets parameter

for electrons colder than γ
0
= m

e
c
2
/ε
0
increases as γ

2
e
while for electrons with random

Lorentz factors above γ
0
the same parameter increases as ln [2γ

e
/γ
0
].) The SY photons

emitted by electrons with γ
m,FS

(eq. [3.14]) are up-scattered in this mild K-N regime

by electrons that have γ
e
= 140 ε

−2
e

ε
−1/2
B

n
−1/2
0

(Γ
0
/400)

−3
; for such scatterings the

Kompaneets parameter is:

Y
FS
≈ 10−5ε−4

e
ε
−1
B

E
1/3
0,51

n
−1/3
0

(Γ
0
/400)

−20/3 � 1 . (3.27)

Before reaching γ
e
calculated above, electrons are cold enough to scatter the SY

photons they produce (eq. [3.22]). Assuming again that all electrons are monoenergetic
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and have γ
e
= γ

KN
, the Kompaneets parameter is:

Y
KN
FS

≈ 10−1ε−1/3
B

E
1/3
0,51

n
1/3
0

(Γ
0
/400)

−4/3
. (3.28)

For electrons colder than γ
KN

the Y parameter should increase as γ
2
e
while for more

energetic electrons the same parameter should decrease as γ
−4
e
. Thus equation (3.28)

gives an upper limit on the expected intensity of the IC-FS component relative to that
of the SY-FS emission. In deriving equations (3.27) and (3.28) we approximated the
mass of the swept up EM by a fraction 1/Γ

0
of the fireball mass. We can conclude from

equations (3.26) and (3.27) that the IC emission is not expected to alter substantially the
intensity of the SY radiation from the two shocks or the synchrotron cooling time-scale
of electrons.

The energy release mechanisms considered in this model involve only two im-
portant parameters (ε

e
, ε
B
) which, based on equation (3.19), must satisfy the double

inequality

0.1 <∼ log Γ0,2 +
1

2
log ε

e
+
1

8
log ε

B
+
1

8
log n

0
<∼ 0.7 , (3.29)

to ensure that the burst fluence in the BATSE window corresponds to a significant frac-
tion of the total energy radiated by the source. In the laboratory frame, the synchrotron
cooling time of the least energetic FS electrons is

t
SY

= (3m
e
c / 4σ

Th
U
B
γ
m
) Γ � 140 ε−1

e
ε
−1
B

n
−1
0

(
Γ
0
/400

)−2
s , (3.30)

or

t
SY
� 4× 10−4 ε−1

e
ε
−1
B

n
−2/3
0

E
−1/3
0,51

(Γ
0
/400)

−4/3
t
dec

. (3.31)

If the SY cooling time-scale is larger than the hydrodynamic time-scale t
dec

, the

progressive fluid deceleration and the adiabatic cooling of the shocked fluid lead to a
softening of the spectrum (less energetic electrons + lower Doppler blueshift) and reduce
the burst intensity (less energy radiated away by electrons). The end result is a weak,
soft and likely un-detectable burst. Therefore, efficiency considerations also require that
t
SY

< t
dec

, which, using equation (3.31), leads to

log Γ
0,2

+
3

4
log
(
ε
e
ε
B

)
+
1

4
logE

0,51
+
1

2
log n

0
> −1.9 . (3.32)

Note that if this condition is satisfied by the electrons with the minimum random γ
m

then it is also satisfied by the more energetic electrons (with γ
e
> γ

m
).

The observed burst durations determine the range of Γ
0
(from eq. [3.8] and

10ms <∼ Tb <∼ 1000 s results that 100 <∼ Γ0 < 5000), thus equations (3.29) and (3.32) can

be used to constrain the energy release parameters (ε
B
, ε
e
). Numerical simulations for

fireball Lorentz factors Γ
0
> 1000 require a large computational effort, so hereafter we

will restrict our attention to cases with Γ
0
< 1000, which give burst durations T

b
>∼ 1 s

(from eq. [3.8]), i.e. those bursts that are most often considered in the GRB statistics.
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For such initial Lorentz factors, ε
e
must be larger than 10

−2
and ε

B
should not be less

than 10
−4

in order to give a spectral peak in the BATSE window. The burst fluence in
the BATSE window is determined also by the fraction of the available energy E

0
which

is radiated at a power large enough to give at detector a photon flux above a given
threshold. It would be wrong to assume that this fraction is strictly proportional to ε

e
,

the fractional energy in electrons after shock acceleration because, even if electrons and
protons are completely “decoupled” after shock acceleration (i.e. no further energy flow
from protons to the rapidly cooling electrons), the heat stored in protons drives forward
the FS, which accelerates new electrons. In this indirect way a substantial fraction of
proton energy can be transferred to electrons and radiated. Numerically we found that
in ∆t = 2 t

dec
a burst with ε

e
= 0.1 and ε

B
= 1/3 radiates ≈ 50% of the total energy E

0
,

which is not much less than the ≈ 80% of E
0
that a burst with ε

e
= 1/3 and ε

B
= 1/3

radiates during the same time. For this reason it can be considered that ε
e
does not

have an important effect on the fractional released energy as long as it is not much less
than 0.1 .

It is easy to see that if most of the SY-FS radiation is in the BATSE window
(i.e. eq. [3.29] is satisfied) then either the K-N effect reduces severely the IC emission
(eq. [3.21] is fulfilled) or the Kompaneets parameter Y

FS
(eq. [3.27]) is less than 1. This

means that if a burst observed by BATSE represents the SY radiation emitted by the
shocked EM, then the IC-FS radiation from the same fluid is less energetic than the
SY-FS emission and can be safely neglected in calculating the cooling time-scale. On
the other hand, if equation (3.21) is not satisfied (i.e the K-N cut-off does not reduce the
efficiency of IC scattering behind the FS) then the SY-FS radiation does not arrive in
the BATSE window. This suggests that a burst visible to BATSE can also be obtained
from the IC-FS radiation if the efficiency conditions

(i) 10 keV <∼ EIC,FSp
<∼ few MeV,

(ii) Y
FS

> 1 and

(iii) t
IC

< t
dec

, t
IC

being the laboratory frame inverse Compton cooling timescale,

are simultaneously satisfied. Condition (iii) is relevant for the burst efficiency only if
condition (ii) is satisfied. It can be easily shown that condition (i) implies up-scattering
in the Thomson regime and that it cannot be fulfilled at the same time as condition

(ii). In other words, any combination of parameters 100 <∼ Γ
0
<∼ 5000, 10

−2 <∼ ε
e
≤

1/3, ε
B
≤ 1/3, E

0,51
∼ 1, n

0
∼ 1 leads to either an IC-FS component that contains a

substantial fraction of the available energy but is at energies larger than those visible to
BATSE, or to an IC-FS radiation that arrives mainly in the BATSE window but is much
less energetic than the SY-FS radiation emitted by the burst, due to a small Kompaneets
parameter. Thus the observed bursts could be IC-FS radiation only if the initial fireball

kinetic energy is much larger than 10
50
ergs/sr, in which case a much more energetic

emission should be detected at energies lower than the BATSE window.
In principle two other model parameter constraints can be obtained if it is required

that all electrons are confined in the shocked fluid and that the duration t
acc

of the
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electron acceleration process is much shorter than the corresponding SY cooling time-
scale, ensuring that electrons can reach factors γ

e
larger than the post-FS γ

m
derived

above. The former condition requires the electron gyration radius R
g
= γ

e
m
e
c
2
/eB

to be less than the thickness ∆ (>∼ r
dec
/Γ
2
0
) of the shocked fluid shell, while the latter

condition requires that t
acc
∼ R

g
/c � t

SY
. It can be shown that if the inequalities

(3.29) and (3.32) are satisfied then electrons are indeed confined in the shocked fluid
and are accelerated on a time-scale much shorter than the SY cooling time-scale, so that
these two conditions do not bring any new constraints on model parameters.

3.3 Numerical Simulation of the Hydrodynamics of Decelerating
Fireballs

The set of model parameters is (E
0
,Γ
0
, n; ε

e
, ε
B
;D), including the luminosity

distance D to source, which we set D = 10
28
cm. In this section we outline the calcu-

lations for an ejecta shell colliding with a homogeneous EM, for a representative set of

parameters Γ
0
= 100, E = 10

51
ergs, r

0
= 10

8
cm, n = 1 cm

−3
. The evolution of the in-

teraction shell–EM is followed from t = 0.4 t
dec

, at which point the physical parameters

characterizing the shell are ∆ = 33.5 c s = 1.01 × 1012 cm, p = 5.74 × 10−12 dyne/cm2
and ρ = 78.3 c

−2
ergs/cm

3
= 8.70 × 10−20 g/cm3. Deceleration effects should be neg-

ligible up to this point since only 6.4% of the EM mass within the deceleration radius
has been swept up. We consider two simple cases: the adiabatic case (no energy leaves
the system) and a simplified radiative collision case where it is assumed that a fraction

1/250 of the internal energy is radiated by the system every δt = 10
−3
t
dec

. We refer to

this recipe for energy release as the “0.25 t
dec

energy release time-scale”.

Figure 3.1 compares the density, pressure and Lorentz factor Γ inside the com-
posite structure shocked shell–shocked EM, in the adiabatic and radiative cases. The
abscissae give the (Eulerian) position relative to the CD that separates the ejecta and
the shocked EM shells. Therefore, in all graphs, the CDs at different times between
t = 0.5 t

dec
and t = 0.9 t

dec
, in steps of 0.1 t

dec
, are coincident. Each density profile has

the same structure, showing from left to right: the unshocked fireball, the reverse shock
propagating into the fireball, the shocked fireball material (condensed by a factor <∼ 10),
the CD between the inner (fireball) and outer (EM) shells, the shocked EM (≈ 100 times
denser than the unshocked EM) and the blast wave (or forward shock) that propagates
in the EM. The post-shock pressure and density satisfy the strong shock equations in

Blandford & McKee (1976). One can note that ρc
2
> p in the inner shell (therefore this

shell is cold) and that p > ρc
2
in the outer shell (the shocked EM is hot). If no energy

leaves the structure, the internal energy of the shocked regions increases as more and more
heated material accumulates between the two shocks, and accounts for the lost kinetic en-
ergy. Note that, in the adiabatic interaction, the shocked EM density is almost constant
throughout the shell and slowly decreases in time, while in the non-adiabatic case the
outer shell density is larger before the CD than behind the forward shock, and increases
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in time. In the adiabatic case, the thermal Lorentz factor of the shocked EM changes
little with position and decreases from ≈ 32 at t = 0.5 t

dec
to ≈ 26 at t = 0.9 t

dec
. In

the non-adiabatic case, the same thermal Lorentz factor is lower before the CD (≈ 26 at
t = 0.5 t

dec
, ≈ 10 at t = 0.9 t

dec
) than behind the forward shock (≈ 30 at t = 0.5 t

dec
,

≈ 20 at t = 0.9 t
dec

), since material shocked earlier had more time to radiate its internal

energy. By the time the structure reaches 0.92 r
dec

, the reverse shock has swept up all the

ejecta shell gas (in both cases). The shock shell-crossing time t
sh
= 0.52 t

dec
= 4.4×105

s is within a factor 2 to the crossing time calculated by Sari & Piran (1995). The reverse

shock velocity β
′
sh

in the frame of the unshocked fluid (which moves in the laboratory

frame at β
0
= [1−Γ−2

0
]
1/2

) is related to the laboratory frame reverse shock velocity β
sh

by β
0
− β

sh
� β′

sh
Γ
−2
0
/(1 − β′

sh
), from which β

′
sh
= Γ

2
0
(β
0
− β

sh
)/[1 + Γ

2
0
(β
0
− β

sh
)].

In the laboratory frame, β
0
− β

sh
= ∆/t

sh
� 7.7× 10−5, therefore β′

sh
= 0.43 (Lorentz

factor Γ
′
sh
� 1.10). The reverse shock is quasi-Newtonian in the ejecta shell rest frame.

After the reverse shock has crossed the fireball ejecta, a rarefaction wave prop-
agates forward into the shocked inner shell. This wave travels in the comoving frame

with the local sound speed β
′
rw

= c
s
=
√
γ̂p/h � 0.21, where h is the comoving enthalpy

density. In the laboratory frame, the wave’s velocity relative to the CD (which moves at

Γ
cd
� 66) is β

rw
−β

cd
� β′

rw
Γ
−2
cd
/(1+β

′
rw
) � 4.0×10−5. When the reverse shock crosses

the inner shell, the width of this shell is ∆
in
� 6.4 light-seconds, therefore the wave labo-

ratory frame shell-crossing time is t
rw

= ∆
in
/(β

rw
−β

cd
) = 1.6×105 s � 0.19 t

dec
. In the

non-adiabatic case, the wave’s speed relative to the CD is β
rw
−β

cd
� 3.7×10−5 and the

inner shell thickness is ∆
in
� 3.4 light-seconds, therefore t

rw
= 9.0 × 104 s � 0.11 t

dec
.

Figure 3.2 shows that after the rarefaction wave has crossed the inner shell, a
second reverse shock forms and propagates in the now rarefied material behind the CD
(this is easier to see in the Lorentz factor graphs, which show the shocked material being
decelerated across the shock). Note that when energy is released from the system the
shocked EM is denser. In the adiabatic interaction, the shocked EM behind the blast
wave moves faster than that next to the CD, and a rarefaction wave develops in the
outer shell. This is due to the fact that in the adiabatic interaction the shocked EM is
hotter and a fraction of the internal energy is re-converted into kinetic, accelerating the
forward shock more efficiently than in the non-adiabatic case. This effect can be seen
in all graphs in Figure 3.2, by comparing the forward shock position at the same times.
In both situations (adiabatic or non-adiabatic), the thermal Lorentz factor in the outer
shell decreases in time, due to the expansion of this shell (and the energy release, in the
non-adiabatic case).

3.4 Numerical Burst Light-Curves and Spectra

A hardness–brightness correlation, hardness–duration anti-correlation, and bright-
ness–duration anti-correlation are straightforward predictions of these external shock
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models. From equations (3.8), (3.19) and the fact that the peak flux scales as F
p
∝

E
2/3
0

Γ
8/3
0

n
1/3

D
−2

we see that the fireball initial Lorentz factor Γ
0
(100 ≤ Γ

0
<∼

few × 103) is the parameter with the strongest influence on the spectral and temporal
burst properties. If the other parameters have a relatively narrow range (1 ≤ E

0,51
<∼ 10,

n
0
≈ 1) or are within the limiting values suggested above (0.1 ≤ ε

e
≤ 1/3, 10−4 ≤ ε

B
≤

1/3), then the correlations or anti-correlations expected among the burst parameters are

due to their Γ
0
-dependence, and are E

p
∝ F 3/2

p
, E

p
∝ T−3/2

b
, and F

p
∝ T−1

b
. Evidence

for a hardness–brightness correlation has been presented Mitrofanov et al. (1992a), Pa-
ciesas et al. (1992), Nemiroff et al. (1994), Pelaez et al. (1994), and Mallozzi et al. (1995),
as it is implied by the hardness ratios, break energy or E

p
dependencies on the peak

count rate or brightness class shown in these articles. A quantitative comparison is not
easy as authors seldom use F

p
and E

p
in their analyses (or at least the same definition

of the burst hardness); nevertheless it appears that the observed correlation is weaker
than predicted above. The hardness–duration anti-correlation is observed by Dezalay
et al. (1992) and Kouveliotou et al. (1993) (see however Band et al. 1993), while the
evidence for a brightness–duration anti-correlation is controversial (Norris et al. 1995,
Mitrofanov et al. 1996); if present, it is probably far weaker than indicated by the above
analytic scaling. Of course, a distance dispersion of an order of magnitude, as well as a
broad luminosity function (variations of E

0
, ε
B
and ε

e
parameters among bursts) and

evolutionary effects would all tend to mask such an F
p
−T

b
anti-correlation through the

parameter Γ
0
.

Further comparison with observational data can be done using numerical results.
Figure 3.3 shows spectra (computed as flux weighted averages of 10 instantaneous spec-
tra, uniformly distributed within T

b
) generated with different values of Γ

0
when the other

parameters are held constant. The IC component from the RS is shown separately while
the other components can be distinguished in the spectrum and are identified Figure 3.3.
Note that most of the burst energy is in the SY component from the FS and that an im-
portant fraction of this energy arrives at detector in the BATSE window if the parameters
ε
B
and ε

e
are close to their maximum values (as predicted by eq. [3.29]). The burst spec-

tral flux at 550 nm is ≈ 10−10 (Γ
0
/400)

8/3
ergs cm

−2
s
−1

eV
−1

= 40 (Γ
0
/400)

8/3
mJy,

which corresponds to a magnitude V � 13− 6.7 log (Γ
0
/400).

We can now estimate the effect of approximation 5) above (mixed RS–FS com-
binations in the IC spectrum are neglected), using the previous equations for the min-
imum electron Lorentz factor behind each shock and equations (3.16) and (3.19). The
energy (in the laboratory frame) of the SY-FS photons that would be up-scattered
by post-RS electrons with γ

m,RS
at the limit between Thomson and K-N regimes is

E
RS←FS
KN

= (m
e
c
2
/γ
m,RS

) Γ � 1 ε
−1
e

(Γ
0
/400) MeV. Equation (3.19) and Figure 3.3

show that there are SY-FS photons less energetic than E
RS←FS
KN

. Therefore, due to

approximation 5), a fifth component of the spectrum (SY-FS photons IC scattered in
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the RS) is neglected. This component would have a peak below E
RS←FS
KN

γ
2
m,RS

�
10 ε

e
(Γ
0
/400) GeV if E

RS←FS
KN

< E
SY,FS
p

or at E
RS←FS
IC

= E
SY,FS
p

γ
2
m,RS

�
10 ε

4
e
ε
1/2
B

n
1/2
0

(Γ
0
/400)

4
GeV if E

RS←FS
KN

> E
SY,FS
p

. The energy of the SY-RS pho-

tons that would be up-scattered by FS electrons with γ
m,FS

in a mild K-N regime is

E
RS→FS
KN

= (m
e
c
2
/γ
m,FS

) Γ � 0.8 ε−1
e

keV. Equation (3.16) and Figure 3.3 show that

there are SY-RS photons at energies lower than E
RS→FS
KN

. Approximation [5] does not

take into account a sixth component of the spectrum (SY-RS photons IC scattered in

the FS) that would appear at E
RS→FS
IC

= E
SY,RS
p

γ
2
m,FS

= E
RS←FS
IC

. It can be

shown that the cooling of FS electrons with γ
m,FS

through this kind of scatterings is

less efficient than through SY emission. Therefore, the numerical results do not take into
account the mixed components for IC scattering and under-estimate the burst flux in the
lower energy part of the IC-FS components shown in Figure 3.3. Fortunately, the flux in
the most important energy range (the BATSE window) is very little affected. Otherwise,
the intensity of the IC component relative to the SY emission from each shock, as shown
in Figure 3.3, is consistent with the previous estimations (eqs. [3.26], [3.27], and [3.28]).

The peak energy E
p
of the spectra shown in Figure 3.3 passes through the BATSE

window as Γ
0
is increased from 100 to 800. As expected, higher Lorentz factors lead

to harder spectra (see legend). This can be also seen using the hardness ratio HR
32
,

defined as the ratio of counts in the third BATSE channel (100 keV – 300 keV) to that
in the second channel (50 keV – 100 keV): HR

32
(Γ
0
= 100) = 0.46 (T

b
� 500 s),

HR
32
(Γ
0
= 200) = 0.50 (T

b
� 100 s), HR

32
(Γ
0
= 400) = 0.80 (T

b
� 10 s), and

HR
32
(Γ
0
= 800) = 0.98 (T

b
� 2 s). Figure 3.4 shows the SY-RS spectra obtained for a

fixed Γ
0
= 400 and combinations of parameters (n; ε

B
, ε
e
) in which only one parameter

is changed relative to the “standard” combination (1 cm
−3
; 1/3, 1/3), showing the effect

produced by each parameter and allowing comparison with the spectral peaks given by
equation (3.19). The hardness ratios for the new spectra are HR

32
(0.1; 1/3, 1/3) = 0.62,

HR
32
(1; 0.1, 1/3) = 0.62, and HR

32
(1; 1/3, 0.1) = 0.43 .

The hardness ratio range allowed by the model is less wide than the range of E
p

generated by the values of Γ
0
considered, and it is useful to compare these ratios with

those of the observed bursts. The HR
32

values above are consistent to those presented

by Paciesas et al. (1992) and comparable to those found by Nemiroff et al. (1994),
Mitrofanov et al. (1996), and Kouveliotou et al. (1993). According to this last reference,
the average HR

32
is 0.87 for bursts with T

b
> 2 s. The hardness ratios HR

43
of the

simulated bursts range from 0.2 to 0.4 for 200 < Γ
0
< 400 (10 s < T

b
< 100 s) and

is � 0.6 for Γ
0
= 800, in good agreement with the values calculated by Dezalay et al.

(1992). For the bursts shown in Figures 3.3 and 3.4 the ratio HR
34,12

of the photon

fluxes in channels 3+4 (above 100 keV) and in channels 1+2 (25 keV – 100 keV) is
between 0.25 and 0.65, lower than the hardness ratios calculated by Bhat et al. (1994):
0.3 < HR

34,12
< 1. It is also important to compare with observations the low and high
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energy spectral indices α and β as defined by Band et al. (1993): α is the asymptotic
limit of the slope of the photon spectrum C

E
= dN

γ
/dE at arbitrarily low energy

(C
E
∝ Eαe−E/E0), and β is the slope of C

E
at energies higher than the spectral peak

E
p
(C
E
∝ Eβ). For the Γ

0
= 400 and Γ

0
= 800 spectra shown in Figure 3.3, the spectral

indices α obtained from fits of spectra below E
p
, using the Band function, are −1.8 and

−1.6, respectively. The high energy spectral indices for the same initial Lorentz factors
are −2.9 and −2.8 . These values are consistent with those found by Band et al. (1993):
−1.5 ≤ α ≤ 0 and −3 ≤ β ≤ −1. The expected analytic value of α is −1.5 (integrated
spectrum of SY radiation from cooling electrons) while that of β is −(1 + p/2) = −2.5
(spectrum of SY radiation from a steady-state distribution of electrons with continuous
power-law injection). The slightly lower values of the indices obtained numerically are
due to the continuous deceleration of the FS, leading to a progressive spectral softening
through decreasing magnetic field, Doppler blueshift factor and random Lorentz factor
of injected electrons. The increased steepness of the SY-FS spectra shown in Figure 3.3
below ∼ 1 keV is due to IC scattering in Thomson or mild KN regimes, as predicted by
equation (3.23).

A spectral evolution of GRB from hard to soft has been observed by many authors
(e.g. Norris et al. 1986, Mitrofanov et al. 1992a, Band et al. 1992, Bhat et al. 1994, Ford
et al. 1995). Figure 3.5 shows the light-curve and temporal evolution of the spectrum
resulting from a simulation with constant parameters ε

B
and ε

e
. A substantial fraction

(60%) of the burst radiation falls within the BATSE channels 1–4. The burst light-
curve exhibits a sharp rise and a slow decay during which the flux is well approximated

as a power-law F ∝ T
−1.2

. The bottom graph shows the burst hard to soft spectral
evolution: the hardness ratio HR

32
, the mean energy E

m
in the BATSE channels 1–

4 (defined as the ratio of the energetic flux and photon flux in this band), and the
peak energy E

p
decrease monotonously during the burst (see legend). During the light-

curve decay (T ≥ 3 s), these spectral parameters can be approximated by power-laws

in T : HR
32
∝ T

−0.1
, E

m
∝ T

−0.2
and E

p
∝ T

−1.2
(similar indices describe the

spectral evolution of the other bursts shown in Figures 3.3 and 3.4). The peak flux and
spectrum of this burst show that its peak photon flux in the BATSE window is of order

0.1 γ / cm
2
s, corresponding to a weak burst. This is due in part to the conservative

choice E
0
= 10

51
ergs over 4π steradians and to the almost maximal luminosity distance

D = 10
28
cm � 10 Gly in this example. Beaming of the fireball in a solid angle < 1 sr

would easily boost the peak photon flux of this burst above 1 γ / cm
2
s.

In an efficient burst, the synchrotron cooling time of the FS electrons is much
shorter than the hydrodynamic time-scale. Consequently, most of the burst radiation is
emitted by the leading edge of the expanding shell of shocked fluid, from a region which

is t
dec
/t
SY
≈ 10

3 ÷ 104 times thinner than the shell containing all the shocked fluid.
At detector time T corresponding to t, the observer is not receiving radiation from this
very thin sub-shell, but from a very elongated ellipsoid (Rees 1966) of semi-major axis
∼ 1 r

dec
. Consequently, the detector receives radiation that was emitted at times spread
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over ∼ 1 t
dec

, which means that the spectrum and light-curve reflect the long time-

scale variations of the burst physical parameters while all features arising from short
time-scale variations are well mixed and less distinguishable. The Lorentz factor Γ(t)
of the shocked fluid is monotonously decreasing; therefore, at constant energy release
parameters ε

e
and ε

B
(relaxation of this assumption is considered in subsection 3.5.2),

the spectral evolution of the burst shows only the time-evolution of Γ(t). Thus, the hard
to soft spectral evolution shown in Figure 3.5 is purely due to the deceleration of the
radiating fluid.

3.5 Burst Substructure

We further test the ability of the blast wave model to accommodate some of the
more frequently observed features of spectral evolution in bursts that exhibit individual
pulses:

1. the spectrum hardens before an intensity spike, and softens while the photon flux
is still increasing (Mitrofanov et al. 1992a, Kouveliotou et al. 1992, Band et al.
1992, Bhat et al. 1994, Ford et al. 1995);

2. the hardness of successive spikes decreases (Norris et al. 1986, Band et al. 1992,
Ford et al. 1995);

3. pulses peak earlier in the higher energy bands (Norris et al. 1986, Kouveliotou et
al. 1992, Norris et al. 1996);

4. pulses exhibit faster rises at higher energies and longer decays at lower energies
(Norris et al. 1996) and thus peaks are shorter at higher energy (Link, Epstein, &
Priedhorsky 1993, Fenimore et al. 1995, Mitrofanov et al. 1996),

although exceptions from these rules are not un-common. Since the flow Lorentz factor of
the radiating shocked fluid is monotonously decreasing, the simple kinematics of this fluid
cannot by itself produce spectra showing increasing hardness, nor light-curves containing
peaks (assuming spherical symmetry), so departures from this simplest case need to be
considered in order to explain such features.

3.5.1 Temporal variability from external medium inhomogeneities

The pulses that are observed in bursts could have some relation to fluctuations
in the EM density, denser EM blobs leading to a more intense release of energy. In
this scenario, the spherical symmetry is lost and a 3D hydrodynamic code is required
to perform numerical simulations. The following is a purely analytical model of the
situation. The duration of each pulse is determined by three factors:

1. the projection of the shocked inhomogeneity on the line of sight toward the center
of explosion, determined by: (1a) the laboratory frame thickness δr of the over-
heated radiating region and (1b) the angle δ θ = R/r subtended by the shocked
blob around its position θ on the spherical cap from which the observer receives
radiation, where R is the radius of the un-shocked blob, assumed spherical. R

should be less than the radius r /Γ ∼ r
dec

/Γ � 3 × 1013 n−1/3
0

(Γ
0
/400)

−5/3
cm

of the visible spherical cap, or else the pulse lasts as long as the whole burst,
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2. the time it takes to sweep up the entire inhomogeneity,

3. the laboratory frame duration of the energy release δt ∼ t
SY

(eq. [3.30]).

The contributions of these factors to the pulse duration are:

(1a) ∆T
δr
= δr/c ∼ 2R/Γ2

b
c,

(1b) ∆T
δθ
= 2 θR/c,

(2) ∆T
R
= R (Γ

−2
b

+ θ
2
)/c, and

(3) ∆T
δt
= δt (Γ

−2
b

+ θ
2
)/2,

where Γ
b
is the flow Lorentz factor of the shocked blob, which we will approximate by the

Lorentz factor Γ of the rest of the shocked EM, although it must be lower because the in-
homogeneity is denser. In calculating ∆T

δr
above we used the fact that in the laboratory

frame the shocked blob material is ∼ Γ
2
b
times denser than before the shock, therefore

δr ∼ 2R/Γ
2
b
. Since ∆T

δr
and ∆T

R
are of the order R/Γ

2
c and ∆T

δθ
≈ R/Γc, results

that ∆T
δr
, ∆T

R
� ∆T

δθ
. Furthermore, if R >∼ 10

10
ε
−1
e
ε
−1
B
n
−1
0
(Γ
0
/400)

−3
cm, then

∆T
δt
can be neglected relative to ∆T

δθ
. Thus, for 10

−3
ε
−1
e
ε
−1
B
n
−1
0
(Γ
0
/400)

−3
AU <∼

R <∼ 1n
−1/3
0

(Γ
0
/400)

−5/3
AU (assumption 1), ∆T

δθ
determines the duration of the

pulse. If R is less than the lower limit set above, then one has to consider the contribu-
tion of the cooling time to the pulse duration. If R is above the upper limit, then the
pulse duration is comparable to T

b
and it would be impossible to have bursts with more

than a few pulses.
In order to derive the distribution P (∆T ) of the durations of pulses in individual

bursts, we assume that the co-moving photon number spectrum of the radiation emitted

by each blob is a power-law dN
γ
= Cε

−σ
dε (assumption 2) over a range in energies ε

min
– ε

max
wide enough that the blue-shifted corresponding laboratory frame range covers

the band in which observations are made, for all blobs that are seen by the observer
(i.e. for all inhomogeneities that produce at detector a peak photon flux above a given
threshold C

limit
). Thus we assume that the Doppler shifted edges of the co-moving

spectrum: E
min(max)

(Γ, θ) = ε
min(max)

/[Γ(1 − v cos θ)] (v is the flow velocity) satisfy

E
min

≤ E
m
and E

M
≤ E

max
(assumption 3), where E

m
and E

M
are the lower and

upper edges of the observational band. If so then the peak photon flux C
p
of each pulse

is C
p
∝ [C/(σ − 1)][Γ(1 − v cos θ)]−σ−2. The constant C can be determined using the

fact that the total number of photons emitted per unit time in the co-moving frame

(= [C/(σ − 1)] ε1−σ
min

, if σ > 1 and ε
min

� ε
max

) is equal with the number of emitting

electrons N
e
multiplied with the number of photons emitted per unit time by each

electron, which is independent of the Lorentz factor of the electron, and depends only
on the magnetic field B. If all blobs are identical not only in size but also in density

(assumption 4), then N
e
is the same for all pulses and therefore C/(σ − 1) ∝ B ε

σ−1
min

.

The minimum co-moving energy ε
min

of the SY photons is proportional to B and to

γ
2
m
, where γ

m
is the minimum Lorentz factor of the electrons accelerated when the FS
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interacts with the EM inhomogeneity. We further assume that the parameters for energy
release (ε

e
, ε
B
, γ
M
/γ
m
, p) are the same for all blobs (assumption 5), so that B ∝ Γ and

C/(σ − 1) ∝ Γ
3σ−2

. In the end, the peak photon flux at detector for any pulse can be
written as:

C
p
(Γ, θ) ∝ F

1
(E
m
,E
M
;σ)F

2

(
p,
γ
M
γ
m

;σ

)
n
1+σ

2
blob ε

σ/2
B

ε
2(σ−1)
e

R
3 Γ

2σ−4

(1− v cos θ)σ+2
,

(3.33)
where F

1
and F

2
are generic notations for functions of the indicated variables and n

blob
is the density of the inhomogeneity.

The condition C
p
(Γ, θ) ≥ C

limit
determines which blobs yield pulses that are

detectable, provided that the kinematics Γ(Γ
0
, r) of the shell during the deceleration

phase and the spatial distribution n
b
(r) of the blobs are known. For an adiabatic inter-

action Γ(r) ∝ r
−3/2

; numerically, we found that Γ(r) = 1/2Γ
0
(r/r

dec
)
−3/2

is a good

approximation. The number density of the EM inhomogeneities is considered to be a

power-law: n
b
(r) ∝ r−m (assumption 6), thus the homogeneous distribution is the par-

ticular case m = 0. Based on these assumptions one can determine for any shell position
r the maximum angle θ

max
(r) relative to the line of sight toward the center of explosion

for which C
p
(r, θ

max
[r]) = C

limit
and integrate over r and θ to find the pulse duration

distribution. Figure 3.6 (upper graph) shows this distribution for a representative set
of parameters (R,Γ

0
,m, σ,C

max
/C
limit

), where the last parameter is a measure of how

bright is the pulse from a blob located at (r = 1 r
dec
, θ = 0) relative to the detection

threshold. Figure 3.6 allows one to assess the importance of each parameter: P (∆T ) is
rather insensitive to Γ

0
and depends strongly on R. The lack of correlation with the

initial Lorentz factor is due to the fact that θ
max

(r) is weakly dependent on Γ
0
while

the strong correlation with the blob size is clearly implied by ∆T
δθ
∝ R. If the observed

burst substructure is due to EM inhomogeneities and if the assumptions made here are
not far from reality, then the latter correlation could be used to infer from observations
the typical size of these inhomogeneities. As expected, if the pulse detection threshold
is decreased, longer pulses are seen, as more blobs at larger angles become brighter than
C
limit

.

The statistics of pulses in a set of bursts can be derived by convolving the pulse
duration distribution for individual bursts with the distribution P (Γ

0
) of the initial

Lorentz factors of the shells that generated the bursts in that set. For this, we assume
that P (Γ

0
) ∝ Γν

0
for Γ

min
≤ Γ ≤ Γ

max
(assumption 7), that all shells run into the same

EM (assumption 8), and that all bursts distances are the same (assumption 9). Such
pulse duration distributions are shown in Figure 3.6 (lower graph) for Γ

min
= 200 and

Γ
max

= 800. C
max

(as defined above) for Γ
0
= 200 was chosen 10 times larger than

C
limit

; this determines C
max

for any other Γ
0
. It can be seen that P (∆T ) is not strongly

dependent on the parameters ν and m. Thus, it is possible to estimate the size of the
blobs by using durations of pulses in different bursts, as R remains the parameter that
affects the most the pulse duration distribution. The pulse decomposition performed
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by Norris et al. (1996) shows that for the brightest bursts ∆T is between 0.1 s and few
seconds, therefore R must be of order 0.1AU.

If radiation is emitted not only from the higher density blobs but also from the
rest of the EM, then the effect of a more intense emission of radiation from a blob
combined with a stronger decrease of the flow Lorentz factor induced by the same blobs
is likely to lead to a shallow peak. In other words, the radiating power of the source is
increased but, in the same time, the radiation received by the detector is more stretched
out in time than the radiation emitted before and after, ironing out the peak. We are
forced thus to assume that only the blobs emit significant radiation (perhaps due to an
enhanced magnetic field). In this case, however, a new difficulty arises: as Sari & Piran
(1997) pointed out, if pulses do not overlap significantly then the upper bound on the
size of the emitting blobs set by the observed pulse durations limits to about 1% the
fraction of the area covered by these blobs on the spherical cap visible to the observer,
leading to a low burst efficiency. (A higher efficiency can be reached if the number of
blobs is large enough to cover the entire spherical cap visible by the observer, but then
the pulses lose their individuality, producing a single hump burst.) In order to explain
the observed burst fluences, one has then to assume that the ejecta is beamed into a
fraction 1/100 of the full sky and that almost 99% of the initial energy is not released
as γ-rays or is lost adiabatically. Thus, in principle, this explanation for a complicated
pulse structure can work if the ejecta is in a jet, without increasing the total energy

above 10
51
ergs, if 99% of this energy can go undetected.

3.5.2 Temporal variability from energy release fluctuations

To explore the limits of the ability of external shock models to generate pulses,
we consider a second, idealized scenario, in which the burst sub-structure is due to
fluctuations in the parameters ε

B
and ε

e
which characterize the release of the internal

energy stored in the shocked gas. Here we consider the case where ε
e
is constant in

time, and we assume a variable magnetic field. A time varying ε
e
should have a similar

effect on the cooling time-scale (t
SY
∝ ε
−1
B

ε
−1
e
), but a stronger one on the spectrum

(E
SY,RS
p

∝ ε
1/2
B

ε
2
e
). If the magnetic fields are such that: (1) at their maximum value

the burst radiates mainly in the BATSE window and (2) at minimum value, t
SY

> t
dec

(the source is in a γ-quiet phase), then equations (3.19) and (3.30) show that ε
B
must

vary by more than 4 orders of magnitude: ε
B,min

<∼ 10
−4

and ε
B,max

<∼ 1, i.e. the

magnetic field must vary by at least two orders of magnitude. We do not speculate here
on the nature of the microscopic process that could produce such fluctuations of more
than 2 orders of magnitude in the magnetic field strength over time-scales that should
be shorter than 0.1 t

dec
, and remark only that plasma dynamo mechanisms which build

up the field to a fraction of the equipartition value could plausibly result in such field
variations. In the presence of such variations, multiple peaked bursts are obtained, as
shown below.

In Figure 3.7 we show a burst with two peaks, resulting from a relatively large
scale variation of ε

B
(see the inset of panel a). The spectral evolution is shown with open
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symbols in panel (b): E
m
is decreasing during the first peak (T

p,1
� 1 s), then increases

and peaks around T = 2 s, approximately 1 s before the photon flux and energetic flux
peaks (T

p,2
� 3 s) and monotonously decreases through the remainder of the burst. The

hardness ratio HR
32

shows the same behavior. The monotonous spectral softening of

the burst during the first peak is due to the deceleration of the shocked fluid and also to
the fact that this simulation was started from 0.5 t

dec
. Thus, the radiation emitted by

the fluid moving at angles ∼ Γ
−1

(relative to the observer) prior to t = 0.5 t
dec

is not

accounted for, resulting in an artificial softening of the spectrum during the first peak
that obscures the spectral evolution expected from a variable magnetic field. This is not
the case with the spectral evolution during second peak, which shows clearly the second
ε
B
-pulse.

The duration and temporal symmetry of each peak can be characterized through

the rise and fall times T
R
=
∫ Tp
0 dT f(T ), T

F
=
∫ T

b
T
p
dT f(T ), where f(T ) is the photon

(or energetic) flux normalized to its maximum value (reached at the peak time T
p
), and

through the time-asymmetry ratio A = T
F
/T
R
. T

p
, the pulse duration ∆T = T

R
+ T

F
and the ratio A are given for each peak in the legends of panels (c) and (d). Note that
both pulses are narrower and peak earlier at higher energies, which are features known to
occur in observed GRBs. The rise and fall times of the pulses decrease with energy, but
their time-asymmetries show opposite trends: the first pulse appears more symmetric at
higher energy while the second is more symmetric at lower energies. In log∆T − logE,
where E is the geometrical mean of the low and high edges of the four BATSE channels,
the two pulses appear relatively scattered from a straight line; nevertheless, if a power-

law is fitted, then ∆T ∝ E−0.20. If the pulse full width at half maximum is used, then

∆T
FWHM

∝ E
−0.24

. A clearer power-law dependence is found for the single-pulse

burst shown in Figure 3.5: ∆T,∆T
FWHM

∝ E−0.15. Norris et al. (1996) decomposed
41 bright GRBs into pulses and found that the average full width half maximum of the

pulses varies with energy as E
−0.33

if only the separable pulses are used, and as E
−0.38

for all pulses in the analyzed bursts. Therefore the pulse duration–energy anti-correlation
of our simulated bursts is somewhat weaker than the observed one. The second peak in
graph (a) is slightly more time-asymmetric than the first peak (in BATSE channels 1–4:
A
1
= 5.0 and A

2
= 5.4); it also is wider, more shifted to later times at lower energies

(graph c vs. graph d) and spectrally softer (as shown by HR
32

in graph b). These are

exactly the relative features observed by Norris et al. (1996) in their pulse decomposition
analysis. The blast wave model reproduces the increase in the burst hardness before an
intensity peak but the simulated spectral hardening is weaker than what is observed.

If radiation is emitted isotropically in the co-moving frame (as would be the case
for a turbulent magnetic field), then the observer receives radiation mainly from portions

of the fluid moving at angles <∼ Γ−1 relative to the line of sight. Light emitted by such a
spherical cap at time t is spread in detector time T over ∆T (t) = r(t)/[2cΓ

2
(t)], where

r(t) is the radial coordinate of the cap. Since the flow is ultra-relativistic, r(t) � ct and
thus ∆T (t) <∼ Tb (from eq. [3.8]). This means that any instantaneous event that occurs
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in the spherical shell is seen by the observer smeared over a good fraction of the burst.
Pulse-like emission of radiation and spectral features due to a change in the fluid physical
parameters are ironed out very efficiently by sampling over the entire opening angle of
the region seen by the observer. This naturally suggests that, if spherical symmetry in
the laboratory frame is maintained, then the angular opening of the cap from which the

detector receives radiation must be less than Γ
−1

in order to reduce the blending of the
temporal and spectral features arising from fluctuations in the burst physical parameters.
This could happen if the radiation, instead of being emitted isotropically in the co-moving
frame, is beamed along the direction of fluid motion. If this radiation is concentrated
in two cones of solid angles 2π(1 − µ

co
) sr around the radius vector, then the observer

receives radiation from a cap of angular opening [(1− µ
co
)/(1 + µ

co
)]
1/2

Γ
−1

< Γ
−1
.

The effect of such an anisotropic emission can be assessed from Figure 3.8: as the
radiation in the co-moving frame is emitted within a narrower solid angle, the light-curve
becomes more time-symmetric. Due to the monotonous spectral softening (ε

B
and ε

e
are constant, Γ decreases), the photon flux decays more slowly than the energetic flux
and therefore is more time-asymmetric (see the rise and fall times given in the legend of
each graph).

Figure 3.8 can be compared with similar ones presented by Mitrofanov et al.
(1996), showing the GRB “average curve of emissivity” in the BATSE channels 2+3. In

the isotropic case, the radiation emitted by the fluid moving at large angles (<∼ Γ
−1
)

relative to the line of sight is Doppler blue-shifted by a factor <∼ 2 relative to the radiation
emitted by the fluid moving exactly toward the observer. This large angle radiation
arrives later at the detector and is mixed with the radiation emitted at later times, but
from regions moving at smaller angles. As the co-moving frame solid angle in which
radiation is emitted decreases, the detector receives less radiation from the fluid moving
at large angles, therefore the radiation emitted at different times is less mixed and the
spectrum reflects better the instantaneous physical conditions of the radiating fluid. For
Figure 3.8 this means that the spectrum shows better the deceleration of the shocked
fluid in the anisotropic case than in the isotropic one. This can be seen in the evolution of

the three spectral parameters used so far during the burst fall (T > T
p
): HR

32
∝ T−0.1,

E
m
∝ T

−0.2
and E

p
∝ T

−1.2
in the isotropic case, HR

32
∝ T

−0.5
, E

m
∝ T

−0.7
and

E
p
∝ T−2.1 if in the co-moving frame the radiation is emitted within 4π/5 sr around the

radial direction while in the most anisotropic emission considered here (4π/17 sr around

the direction of flow) HR
32
∝ T−0.9, E

m
∝ T

−1.3
and E

p
∝ T

−2.7
. During the burst

fall, the Lorentz factor of the leading edge of the expanding gas (from where comes most

of the radiation received by the detector if t
SY
� t

dec
) is approximately Γ ∝ T

−2/3
,

which implies that the fastest possible spectral peak evolution is E
p
(∝ Γ

4
) ∝ T

−2.7
.

Therefore, the most anisotropic case considered above yields a spectral evolution that
reflects very well the deceleration of the shocked fluid. For Figure 3.7, the anisotropic
emission allows the spectrum to show better the effect of a varying ε

B
(graph b, filled
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symbols): note the much faster spectral softening during the first pulse and the sharp
spectral hardening before the second peak.

The same type of anisotropic emission can be used to generate multi-peak bursts,
as shown in Figure 3.9. The standard of comparison is an isotropic emission case (top
graph of Figure 3.9), for which the radiation coming from the source is blended into a
single hump light-curve. The more anisotropic the emission is, the shorter and brighter
the pulses are and individual peaks can be distinguished better. The progressive spectral
softening makes these peaks to be less well separated in photon flux than in energy flux,
as can be seen in the middle graph. Pulses appear more distinct in the case of maximum
anisotropy considered here (bottom graph). If much internal energy were to accumulate
in the shocked fluid between two consecutive ε

B
-pulses and if most of it is radiated

during a magnetic field pulse, then the observed peaks may be blended into a single one
(as it happens with the pairs of pulses 1-2, 5-6 and 7-8 in the middle graph). The pulse
onset times, calculated from the time when t

SY
< t

dec
and using the radial coordinate

of the shell leading edge, are indicated with numbers. The peak of each pulse occurs
slightly later due to the angular opening and thickness of the source. Note that later
pulses are more time-asymmetric than earlier ones and last longer; this is caused by the
continuous deceleration of the source. A larger number of pulses can be simulated by
using an even stronger co-moving frame anisotropy.

3.6 Afterglows

The spectral evolution of the afterglow is mainly determined by that of the bulk
Lorentz factor of the shocked fluid and we will assume all other parameters (such as ε

B
and ε

e
) to be constant. The general expected behavior of Γ during the relativistic phase

is ∝ t−n, where t is the lab-frame time, n = 3 if the remnant is radiative, and n = 3/2
if it is adiabatic (Blandford & McKee 1976). Numerically we found that the remnant
Lorentz factor can be approximated by

Γ � Γ
d
(t/t

dec
)
−n

, (3.34)

for t > t
dec

and before the beginning of the non-relativistic regime, Γ
d
∼ Γ

0
/2 being

the fireball Lorentz factor after it has been swept up by the reverse shock (i.e. at the
deceleration radius).

The evolution of Lorentz factor of the fluid moving on the line of sight toward the
center (LSC) of explosion (i.e. pointing exactly toward the observer) can be calculated

analytically from dT = (1 + z) dt/(4 Γ
2
), where T is the arrival time of the photons

emitted at shock and on the LSC. The result can be cast into the simple form

Γ
LSC

(T ) = C
n
Γ
d
(T/T

γ
)
−n/(2n+1)

, (3.35)

where T
γ
≡ 2 (1 + z) t

dec
Γ
−2
d

= 92 [(1 + z)/2](E
0,52

/n
0
)
1/3

Γ
−8/3
0

s, and z is the burst

redshift. For a radiative remnant (n = 3), one can show that C
3
= 0.18.
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The the lab-frame electron cooling timescale t
SY

during the fireball deceleration

is:
t
SY

(γ
m
) = 8.4 × 106 (ε

e
ε
B
n
0
)
−1
Γ
−2

s , (3.36)

t
ad
is the adiabatic cooling timescale. The shell of shocked external matter is compressed

between the contact discontinuity and the forward shock, the increase in the shell thick-
ness in time being rather due to the continuous accumulation of external matter than
to the expansion of the shell. Thus, to a good approximation, the adiabatic timescale is

t
ad
= (2

3/2 − 1) t = 1.83 t. Using equations (3.34) and (3.36) results that for n = 3 the

γ
m
-electrons become adiabatic (t

SY
> t

ad
) when Γ drops below

Γ
ad
= 2.5 (9 ε

e
ε
B
)
−3/5

n
−2/5
0

E
−1/5
0,52

(Γ
0
/500)

1/5
. (3.37)

If there is a strong coupling between electrons and protons (i.e. energy is trans-
ferred to the radiating electrons on a timescale much shorter than that of the adiabatic
losses), the remnant and the electrons become adiabatic simultaneously, at an observer
time T

ad
that can be calculated using equations (3.37) and (3.35). After that, the evo-

lution of Γ
LSC

is given by equation (3.35) with n = 3/2 and a coefficient

C
3/2

= 0.13 (9 ε
e
ε
B
)
−3/40

n
−1/20
0

E
−1/40
0,52

(Γ
0
/500)

−1/10
(3.38)

that has a very weak dependence on the burst parameters.
In the case where electrons and protons are weakly coupled, we found numerically

that, if the energy release parameters are close to equipartition, the quasi-adiabatic
regime starts early in the afterglow, at times when the spectrum peaks in the soft UV.
An analytic calculation of the time when the weak coupling remnant becomes adiabatic
is too inaccurate and we shall further use for the coefficient in equation (3.35) a value
inferred from numerical results: C

3/2
= 0.32. Thus, for the adiabatic remnant with

weak coupling

Γ
LSC

= 6.1


E0,52

n
0


1/8(1 + z

2

)3/8
T
−3/8
d

, (3.39)

where T
d
is the observer time measured in days. Note that if C

3/2
does not depend too

strong on the burst parameters (as suggested by the eq. [3.38] for the strong coupling
case), then Γ

LSC
has a weak dependence on the model parameters. If the evolution of Γ

is the most important factor in determining the afterglow’s features, then external shock
GRBs arising from fireballs with different Γ

0
’s, exhibiting thus very different timescales,

should be followed by afterglows that have similar timescales.
Figure 3.10 shows the spectral evolution of an afterglow from a fireball with

weak coupling, where the numerical approximation to the synchrotron spectrum given
in Appendix A was used. As the forward shock decelerates, the synchrotron emission

from it shifts toward lower energies as hν
p
∝ T−1.4, consistent with the adiabatic regime
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of the remnant Γ ∝ t
−1.5

. At all times the intensity of the IC up-scattered emission is
below that of the synchrotron one, which shows that inverse Compton is less efficient in
electron cooling than synchrotron emission. 90% of the initial fireball energy is released
during the weak-coupling afterglow shown in Figure 3.10. The wide-band distribution
of the energy radiated is: 35% as γ-rays (above 100 keV), 35% as X-rays (1 keV – 100
keV), 21% in the UV (1 eV – 1 keV), 5% in optical (1 eV – 10 eV) and 5% in IR and
radio (below 1 eV). For a strong coupling remnant, the distribution is 49%, 22%, 19%,
5% and 5%, respectively.

An estimate of the time T
ν
p
when the peak of νF

ν

hν
p
∼ 10−3

(
1 + z

2

)−1
ε
2
e
(ε
B
n
0
)
1/2

Γ
4
eV , (3.40)

reaches a given observational frequency and of the source size at that time can be ob-
tained using the geometry of the equal arrival time surface described in chapter 4. From
equation (3.40), the flow Lorentz factor of the fluid that gives most radiation at detector

frequency ν is Γ
ν
= (ν/ν

γ
)
1/4

Γ
d
, where ν

γ
is the synchrotron peak frequency during

the GRB. Most of this fluid is off-set from the LSC and we shall denote by f‖ the ratio
between the projection onto the LSC of the radial coordinate (measured from the center
of explosion) of the region that gives most of the radiation and the radial coordinate of
the fluid on the LSC. This ratio is determined by the geometry of the equal arrival time
surface. The Lorentz factor of the fluid on the LSC and on the equal-T

ν
surface is

Γ
LSC

= f
n
‖ Γν = f

n
‖ (ν/νγ)

1/4
Γ
d
. (3.41)

Using equation (3.35) one obtains

T
ν
= (C

1/n
n

f
−1
‖ )

2n+1
(ν
γ
/ν)

(2n+1)/4n
T
γ
. (3.42)

For an adiabatic remnant n = 3/2, C
3/2

= 0.32, f‖ = 0.82, therefore

T
ν
= 6.3


 hν

γ

100 keV


2/3 ( hν

1 eV

)−2/3
T
γ,2

hours , (3.43)

where T
γ
= 100T

γ,2
s. For the afterglow shown in Figure 3.10, hν

γ
= 250 keV. Equation

(3.43) leads to T
1 eV

= 11h, consistent with the afterglow spectral softening shown in

Figure 3.10.
The size of the source at time T , as seen projected on a plane perpendicular to the

LSC, is R⊥ = f⊥ΓLSC [cT/(1 + z)], where f⊥ = 2
3/2

(2n + 1)[2(n + 1)]
−(n+1)/(2n+1)

.

Using (3.35) with Γ
d
expressed as a function of ν

γ
with the aid of equation (3.40), one
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finds for an adiabatic remnant (n = 3/2, f⊥ = 4.1) that at equipartition

R⊥ = 2.7× 1016
(
1 + z

2

)−3/4
n
−1/8
0


 hν

γ

100 keV


1/4 T 3/8

γ,2
T
5/8
d

cm . (3.44)

Equation (3.44) relates the remnant size to characteristics of the main burst. Using
equation (3.39), the same size can be written as:

R⊥ = 3.2× 1016
(
E
52
n
0

)1/8 (
1 + z

2

)−5/8
T
5/8
d

cm . (3.45)

For the afterglow shown in Figure 3.10, R⊥ = 3.2 × 1016 T 5/8
d

cm, thus the apparent

source radius evolves as φ = 1.8 T
5/8
d

µas. The source appears to the observer as a

disk that is brighter near the edge than near the center. The width of the outer ring
that radiates 50% of the radiation is ∼ 0.19φ. Equations (3.43) and (3.44) can be used
to test the fireball model, once the duration and peak frequency of the main burst are
measured.

3.7 Conclusions

We have discussed some features of numerically simulated GRB spectra and light-
curves from external shock models, with particular attention to the expected spectral-
temporal correlations and the expected degree of temporal substructure. The values of
the most important model parameters (Γ

0
, n; ε

B
, ε
e
) were chosen such that the burst

releases an important fraction of its energy in the BATSE window. No effort was made
to optimize these parameters so that the simulated bursts mimic the observed ones,
other than considering (phenomenologically) the effects of a variable magnetic field and
an anisotropic emission pattern in the co-moving frame for some of the models. We then
compared the features of the numerical bursts with those characteristics of the observed
GRBs that are well established, such as the spectral hardnesses, low and high energy
spectral indices, hard-to-soft spectral evolution, correlation between spectral hardness
and intensity, and the dependence of pulse features on observing energy. We summarize
here the features of the numerically simulated model bursts :

1. The brightness and spectral hardness are correlated.

2. They show a spectral hardness – duration anti-correlation : E
p
∝ T

−3/2
b

. The

observed dependence is weaker, which could be due to the variations of the energy
release parameters (ε

B
, ε
e
) from one burst to another.

3. For single pulse light-curves, the photon flux in the BATSE window rises as T
1.6

and decays approximately as T
−1.0

. The fall is steeper when the co-moving frame
emission is anisotropic.

4. The low energy index of the averaged spectrum is α = −1.7± 0.2, not far from the
expected value of −1.5 . For p = 3, the high energy index is β = −2.8±0.1, not far
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from −2.5, the theoretical value. The former index is determined by the evolution
of the accelerated electrons if the spectral peak E

p
is in the BATSE window, while

the latter index depends on the choice of the electron power-law index p.

5. The spectra show a general hard to soft evolution outside of intensity pulses. In
single hump light curves arising from isotropic co-moving frame emission, the spec-

tral evolution at T > T
p
is characterized by E

p
∝ T−1.1±0.1. If in the co-moving

frame the radiation is emitted preferentially on the direction of fluid motion, the
spectral evolution is faster.

6. The peak (or break) energy E
p
increases with intensity during a pulse, but peaks

earlier. The mean energy E
m
in the BATSE window and the hardness ratio HR

32
(or similar ones) show a similar trend. The increase in the burst hardness before
an intensity peak is stronger in the anisotropic emission case.

7. Earlier pulses are harder and have a more time-symmetric profile at higher energies.
Later pulses may show an opposite trend: more symmetry at lower energies.

8. Pulses peak earlier and are shorter in higher energy bands than at lower energies.

Numerically, we found that the pulse duration scales as E
−0.20±0.05

, which is a

weaker dependence than observed (E
0.3÷0.4

). We must recognize here that, taking
into account some of the approximations made, the BATSE channels are relatively
narrow for the accuracy of our simulations, so that the calculated pulse duration
vs. energy dependence can be considered satisfactorily close to what is observed.

9. The angular opening of the region from which the observer receives radiation limits
the number of separate pulses to very few. A larger number of pulses results if
radiation is not emitted isotropically in the co-moving frame. Later pulses are more
time-asymmetric than earlier ones and last longer if they result from a periodic
variation of the source radiating power.

10. Unless the initial fireball Lorentz factor is substantially higher than considered
here, the parameters describing the magnetic field strength and the electron energy
must not be too much below equipartition, otherwise the main burst would have
a spectral peak below ∼ 50 keV. As a consequence of this, the remnant is not
adiabatic in the early afterglow. The adiabatic phase starts earlier for a weak
coupling remnant than for one with strong coupling.

11. During the afterglow, the flow Lorentz factor of the shocked fluid has only a weak
dependence on the initial burst parameters, including the fireball initial Lorentz
factor, so that GRBs with very different peak fluxes and γ-ray durations, arising
from fireballs interacting with homogeneous surrounding media, should be followed
by afterglows whose time-scales are similar.

The above list of burst characteristics is in agreement with, or at least close to,
what is observed. It is worth noting that the brightness – duration anti-correlation
induced by the fireball Lorentz factor Γ

0
will be weakened by any dispersion in some of

other parameters involved in the model, such as the distance D to the burst, the source
initial kinetic energy E

0
, and the energy release parameters (ε

e
, ε
B
), which could explain

why this anti-correlation is controversial or, at best, a very weak one.
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Another major observational feature against which to contrast models is the bi-
modality in duration distribution. One reason why this is expected in external shock
models of GRB (Sari et al. 1996) is related to the limited energy range in which BATSE
is sensitive: significant energy arrives at the detector in the BATSE window from either
the forward shock (FS), in the case of the long bursts, or from the reverse shock (RS), in
the case of the short bursts, but from neither of these shocks for bursts with durations
T � 2 s. Moreover, such different burst origins can explain the lack of a duration –
brightness anti-correlation: the RS is less efficient than the FS in converting the fire-
ball kinetic energy into gamma-rays, diminishing the brightness of the short burst. In
our model, the RS is always mildly relativistic and radiates inefficiently (i.e. at energies
outside the BATSE window). If the expanding shell thickness increases faster than we
considered, before its deceleration becomes important, then the density of the colliding
shell can be small enough to lead to the formation of a more relativistic RS. The electron
Lorentz factor can be further boosted if an injection fraction well below unity is assumed.
In this case the bursts duration bimodality would be reproduced numerically. A different
explanation (Mészáros & Rees 1993) for a bimodal duration distribution may be that
shorter GRB arise from events in a relatively dense external environment (the external
shocks occur in the progenitor’s own pre-ejected wind or in a denser disk galactic disk
environment) while longer GRB could be due to events in a much lower density environ-
ment (e.g. the object has moved out of its own pre-ejected wind or it has escaped the
galactic disk).

In summary, the external shock or blast wave model can explain the spectral
features and correlations of most bursts. It can also explain the time histories of those
bursts which have a simple structure (up to 4-8 pulses) if the magnetic field is variable
and the co-moving emissivity is appreciably anisotropic. It is difficult to see how this
could be extended to fit also bursts with more than 8-10 pulses. There is no difficulty
in explaining the latter in outflows with “internal” shocks (e.g. Rees & Mészáros 1994),
which are expected to have similar spectral properties without limitations on the degree
of variability. Nevertheless, external shock models show a remarkable degree of qualita-
tive agreement with a large range of medium to long time-scale spectral and temporal
correlations exhibited by the GRB data. This suggests either that external shocks may
be responsible for part of the emission of a GRB, or else that a substantial subset of
bursts (i.e. the less variable ones) may be ascribed to external shock events.
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Fig. 3.1. Density, pressure and flow Lorentz factor for Γ
0
= 100, E

0
= 10

51
ergs,

r
0
= 10

8
cm and n = 1 cm

−3
, at times indicated in the legend. The left column shows

these profiles for the 0.25 t
dec

energy release time-scale, while the right column is for

the adiabatic interaction. The structure is much thinner than its curvature radius and
the position inside it is indicated relative to the contact discontinuity. Negative values
correspond to the inner shell, positive values to the outer shell. Note that in the adiabatic
interaction, the outer shell is less dense and more extended, and that the gradients in
density, pressure and Lorentz factor are smaller. After t = 0.9 t

dec
the reverse shock

crosses the inner shell, in both cases.
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Fig. 3.7. Burst sub-structure from energy release fluctuations. Time history, spectral

evolution, and pulses shapes in BATSE channels 1–4 for E
0
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−3
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Γ
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= 400, D = 10

28
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e
= 1/3, and time variable ε
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, shown in the inset of graph

(a) (light-curve). (b) Hardness ratio HR
32
and mean energy E
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in the BATSE channels

1–4. Open symbols are for an isotropic emission in the co-moving frame, filled symbols
are for an anisotropic case: radiation emitted within 4π/17 sr of the flow direction. Note
that the second peak (T

p
� 3 s) shows a stronger increase in spectral hardness in the

latter case and that in both cases the maximum spectral hardness occurs ∼ 0.5 − 1 s
before the intensity peak. (c) The first peak as seen in each BATSE channel. (d) The
second peak in the same bands. Fluxes in (c) and (d) are normalized to the peak value
in that channel. Legends in (c) and (d) give the peak time, the duration (the sum of the
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Chapter 4

The Photon Equal Arrival-Time Surface

The afterglows of gamma-ray bursts (GRB) appear to be well-fitted by decelerat-
ing relativistic fireball models (Tavani 1997; Vietri 1997; Waxman 1997a; Wijers, Rees
& Mészáros 1997). This picture (Mészáros & Rees, 1997), in its simplest form, assumes
that the bulk of the radiation comes from the external blast wave pushed ahead of the
fireball with a diminishing bulk Lorentz factor, which is predicted to produce radiation
at wavelengths longer than γ-rays, decaying as a power-law in time, in good agreement
with observations. Two interesting consequences of the deceleration dynamics are that
most of the late radiation comes from a narrow ring, rather than the entire visible surface
(Waxman 1997b), and that the usual estimate for the transverse size of a relativistically
expanding cloud under-estimates the real one (as we show in section 4.1). This has con-
sequences for the apparent expansion rate of the fireball, the evolution of scintillation
properties of the radio-emitting remnant (Goodman 1997; Frail et al. 1997), and the
probability of microlensing of GRB afterglows (Loeb & Perna 1998). The exact shape
of the equal time surface depends on the dynamic regime of the remnant, as well as on
the properties of the external medium. We present simple analytic expressions for the
source width and its “average” longitudinal and transverse sizes, for either bolometric or
fixed frequency band observations, in both homogeneous and power-law density external
media.

4.1 Equal Arrival Time Surfaces

For simplicity, we assume that the radiation source can be approximated as a
surface (we discuss this approximation in section 4.3), and take the external medium
to be isotropic, but not necessarily homogeneous. Therefore at any lab-frame time t,
the fireball is spherical. The observer equal-T (detector time) surface is symmetric
with respect to the line of sight toward the center (LSC) of the explosion, therefore its
equation is given by two coordinates: a polar angle θ measured from the LSC and a radial
coordinate r. In the absence of deceleration, the equal-T surface is an ellipsoid (Rees

1966) with semi-major axis Γ
2
0
βcT and semi-minor axis Γ

0
β
0
cT , where Γ

0
= (1−β2

0
)
−1/2

is the constant Lorentz factor of the freely expanding ejecta and c is the speed of light.
When deceleration is present, the shape of the equal-T surface departs from that of an
ellipsoid.
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The Lorentz factor γ
sh

of the shock can be approximated (Mészáros , Rees &

Wijers 1998) as a power-law in r:

γ
sh
= Γ

sh

(
r

r
dec

)−n
, n =

3− α
1 + δ

> 0 , (4.1)

where α < 3 characterizes the external gas density (ρ ∝ r
−α

), δ describes the fireball
dynamics (δ = 0 for radiative and δ = 1 for adiabatic evolution), and r

dec
is the decel-

eration radius. The hydrodynamic simulation of section 3.2.2 shows that γ
sh

decreases

slowly below r
dec

and that Γ
sh
� (2/3)Γ

0
. Thus equation (4.1) is correct only for

r > r
dec

.

From equation (4.1), the relationship between r and t for relativistic shocks is
found to be:

ct = r +
(r/r

dec
)
2n+1

2(2n + 1)Γ
2
sh

r
dec

. (4.2)

The equation of the equal-T surface is ct− r(t) cos θ = cT ; substituting t from equation
(4.2), the this equation becomes

θ = 2 sin
−1

 1

2Γ
sh

√√√√τ

a
− a

2n

2n + 1


 , (4.3)

where a = r/r
dec

and τ = T/T
dec

with T
dec
≡ (2Γ

2
sh
c)
−1
r
dec

. At given T , the fluid

moving directly towards the observer (θ = 0) is located at

x
max

= [(2n+ 1) τ ]
1/(2n+1)

r
dec

, (4.4)

this being where the radius is largest and Lorentz factor is smallest on the equal-T

surface: γ
sh,o

= [(2n+ 1) τ ]
−n/(2n+1)

Γ
sh
. We used γ

sh
≥ 2 in deriving equation (4.2),

so equation (4.3) is valid for τ ≤ (2n + 1)
−1
(Γ
sh
/2)

2+1/n
. As an example, Figure

4.1 shows the equal-T surfaces at different values of τ , for Γ
0
= 500 (Γ

sh
= 330),

for a homogeneous external medium (α = 0). For an initial burst energy release of

10
52
ergs/sr, T

dec
= 6.5 seconds, and the times indicated in Figure 4.1 correspond to 3.6

hours, 1.5 days, 5.0 days (and 15 days, lower panel), if a redshift z = 1 is assumed.
It is customary in analytic derivations to consider that, at a given time T , the

emitting surface is located at r = 2γ
2
(T )cT , and that the disk seen by the observer

has a radius R = [2γ(T )]
−1
r = γ(T )cT , as it would be in the absence of deceleration

(i.e. an ellipsoid), and to calculate the properties of the received radiation using the
physical parameters (magnetic field, electron and flow Lorentz factor etc.) of the fluid
at (x = r, y = 0), the center of the projected surface. When deceleration is present,
the radial coordinate x

max
of the center of the equal-T surface can be related to T by
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integrating dT = (2γ
2
sh
c)
−1
dr, using equation (4.1):

x
max

= 4(2n + 1)γ
2
o
cT , (4.5)

where the flow γ
o
≡ γ(x

max
) was used instead of the shock γ

sh,o
=
√
2γ
o
. Therefore

x
max

is larger by a factor 2(2n + 1) than the typically used value of 2γ
2
o
cT . For n =

1.5 (adiabatic remnant and homogeneous external gas) one obtains in equation (4.5) a
factor 16, but this factor could be as large as 28 for a radiative remnant (n = 3). The
inappropriate use of the geometry of an ellipsoid in a decelerating fireball would lead to

a transverse source size y
ell
max

= x
max

/(2γ
o
) = 2(2n + 1)γ

o
cT . The numerical factor

in this equation is 8 for n = 1.5. Waxman (1997b) argued that such a large transverse
size is incompatible with observations and that the correct transverse size is smaller
by a factor 4. Since the transverse size is important for self-absorption considerations,
for the timescale and amplitude of afterglow radio scintillations and for gravitational
microlensing, it is worth calculating accurately the above coefficient. From equation
(4.3), the maximum value of y = r sin θ is

y
max

= 2(2n + 1)
[√
2(n+ 1)

n+1
]−1/(2n+1)

γ
o
cT , (4.6)

where γ
0
is a function of T (see previous equation for γ

sh,o
). Thus the ellipsoid approx-

imation overestimates the transverse size by a factor 2.3 for a radiative remnant, and by
1.9 for an adiabatic one, in a homogeneous external medium.

4.2 Bolometric and Band Brightness Distributions

The properties of the observed radiation are determined by integrating over the
equal-T surfaces the emission from different parts of the shocked fluid, taking into ac-
count relativistic effects and the fact that each ring [θ, θ + dθ] is characterized by differ-
ent physical parameters (magnetic field, electron density, electron Lorentz factor, flow
Lorentz factor). We assume that the electrons cool only through synchrotron radiation
(our numerical simulations show that this is a good approximation), and that they are
either in the radiative or adiabatic regime. In the former case the remnant as a whole
can be either radiative or adiabatic, depending on the strength of the coupling between
electrons, protons and magnetic fields (for details on the radiative regime and dynamics
see Mészáros et al. (1997)) while in the latter case the remnant can be only adiabatic.

Using the scaling relationships for the magnetic field B
′ ∝ γr−α/2, the comoving

electron density n
′
e
∝ γr

−α
, synchrotron cooling time-scale t

′
sy
∝ γ
−3
r
α
, expansion

time-scale t
′
exp
∝ γ−1r, synchrotron power P ′

sy
∝ γ4r−α and peak of synchrotron spec-

trum ν
′
p
∝ γ3r−α/2, where γ is the flow Lorentz factor, the comoving spectral intensity
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at the synchrotron peak I
′
ν′
p
∝ n

′
e
(P
′
sy
/ν
′
p
)min {t′

sy
, t
′
exp
} is I ′

ν′
p
∝ γ
−1
r
−α/2

for ra-

diative electrons and I
′
ν′
p
∝ γr

1−3α/2
for adiabatic electrons. The observed spectral

intensity at the detected peak of the synchrotron spectrum ν
p
= [γ(1 − β cos θ)]−1ν′

p

is I
ν
p
= (ν

p
/ν
′
p
)
3
I
′
ν′
p
, therefore I

ν
p
∝ a

−(2n+α/2)
(1 + γ

2
θ
2
)
−3

if t
′
sy

< t
′
exp

and

I
ν
p
∝ a
−(4n+1.5α−1)

(1 + γ
2
θ
2
)
−3

if t
′
sy

> t
′
exp

. The bolometric comoving intensity

is I
′ ∼ I

′
ν
p
ν
′
p
, and the observed bolometric intensity is I ∼ (ν

p
/ν
′
p
)
4
I
′
. The synchro-

tron spectrum is approximated as a broken power-law: I
ν
= (ν/ν

p
)
ε
I
ν
p
below the peak

(ν < ν
p
) and I

ν
= (ν/ν

p
)
−ε
I
ν
p
above the peak (ν > ν

p
). We considered ε = −1/2 and

ε = p/2 for radiative electrons and ε = 1/3 and ε = (p − 1)/2 for adiabatic electrons, p
being the index of the electron power-law (here p = 2.5).

Figure 4.1 also shows the regions on the equal-T surfaces from where most of the
radiation comes: the upper half highlighted zone radiates 50% of the total energy; 25%
of it is emitted by the cap extending from θ = 0 up to the indicated region and the
other 25% is radiated by the area extending toward the origin. Similarly, the lower half
highlighted part radiates 80% of the energy detected. Note that the observer does not
receive most of the flux from the LSC, and that there is a significant difference between
the average radial coordinates of the regions highlighted in Figure 4.1 and that of the fluid
on the LSC (keeping also in mind that all relevant radiation parameters are power-laws
in γ, which is a power-law in r). Therefore more accurate calculations of the afterglow
radiation can be obtained by using a brightness-weighted average longitudinal coordinate
x. The factor (x

max
/x)

n
estimates the difference between an average γ that should be

used instead of γ
o
(the egg-shaped equal-T surface is elongated and r ∼ x is a good

approximation). It is also useful to calculate a brightness-weighted average transverse
coordinate y, so that y/y

max
is a first-order measure of the brightness distribution on

the equal-T surface. These averages are given in Table 4.1, as well as the width w of
the outer ring of the source projection on the plane perpendicular to the LSC containing
50% of the entire flux received at the detector. Also in Table 4.1 are the ratios between
the brightness-averaged synchrotron peak frequency ν

p
over the equal-T surface, and

ν
o
≡ ν

p
(θ = 0).

Observations at a fixed frequency band are shown in Figure 4.2. The upper
graphs give the transverse distribution of the observed synchrotron peak frequency ν

p
for various constant-T surfaces. The lower graphs show the bolometric luminosity of the
disk of radius y as a function of y. The ring appears as a steep rise in the integrated
luminosity, where ν

p
varies by approximately one order of magnitude around ν

p
(y
max

),

the peak frequency from the region seen tangentially by the observer. If observations

are made at energies <∼ 10
−1
ν
p
(y
max

) (e.g. in radio, for the times in Figure 4.2) then
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Table 4.1.
Intensity-averaged parameters on the equal arriving time surface and the width w of the
ring seen by the observer for bolometric observations

n [α, δ] x/x
max

x/(2γ
2

o
cT ) y/y

max
y/(γ

o
cT ) ν

p
/ν

o
w

3.0 [0, 0]
r

0.78 11 0.87 5.2 39 0.07

1.5 [0, 1]
r

0.82 6.6 0.76 3.2 4.0 0.17

1.5 [0, 1]
a

0.72 5.8 0.82 3.4 8.3 0.11

1.0 [2, 0]
r

0.74 4.4 0.77 2.6 6.7 0.16

0.5 [2, 1]
r

0.78 3.1 0.71 1.8 2.0 0.23

0.5 [2, 1]
a

0.49 2.0 0.76 1.9 6.8 0.20

r
radiative electrons

a
adiabatic electrons

the observer practically sees only the low-energy part of the synchrotron spectrum, and
the entire disk appears almost equally bright. However, if observations are made at
energies >∼ 10 ν

p
(y
max

) (optical or X-ray for Figure 4.2), then the observer sees mainly

the high-energy tail of the synchrotron spectrum from the power-law distribution of
electrons, and the visible region reduces to a ring. For a given observed frequency band,
as the shocked fluid is decelerated, ν

p
(y
max

) crosses the observed band, and the region

radiating in that band shrinks from the full disk to a ring with outer edge at y
max

, the

edge of the radiating surface. At energies far above or below ν
p
(y
max

), these quantities

and the width of the “visible” zone are approximately constant in time. Table 4.2 gives
the asymptotic range of the same coefficients as Table 4.1, for observations at a given
frequency. The first number in each column gives the value of the coefficient when the
source is seen as a disk (ν � ν

p
∼ ν

p
(y
max

), larger width w), and the last number

gives the asymptotic value of the coefficient when the source has reduced to a ring
(ν � ν

p
(y
max

), smaller w). The coefficients have the same range for all frequencies.

The particular frequency of the band only determines the time of the transition between
the two asymptotic values, earlier in X-rays (few hours) than in optical (∼ 1 day) or
radio (> 10 days). It can be seen that the radiative remnant gives narrower rings, and
that the ring is wider for expansion into a decreasing density medium (e.g. α = 2) than
into a homogeneous medium (α = 0).
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Table 4.2.
Intervals for brightness-averaged parameters on the equal arriving time surface and width
w of the ring seen by the observer for band observations

n [α, δ] x/x
max

x/(2γ
2

o
cT ) y/y

max
y/(γ

o
cT ) w

3.0 [0, 0]
r

0.88–0.72 12–10 0.77–0.89 4.6–5.4 0.16–0.06

1.5 [0, 1]
r

0.87–0.78 7.0–6.3 0.70–0.79 2.9–3.3 0.25–0.13

1.5 [0, 1]
a

0.89–0.77 7.1–6.2 0.67–0.79 2.8–3.3 0.30–0.14

1.0 [2, 0]
r

0.83–0.68 5.0–4.1 0.72–0.80 2.4–2.7 0.23–0.13

0.5 [2, 1]
r

0.83–0.75 3.3–3.0 0.68–0.73 1.7–1.8 0.28–0.21

0.5 [2, 1]
a

0.78–0.56 3.1–2.3 0.70–0.76 1.7–1.9 0.25–0.20

r
radiative electrons

a
adiabatic electrons

4.3 Conclusions

The main conclusions to be drawn from our calculations are:
1. For the afterglow of a fireball, the equal arrival time surfaces are distorted el-

lipsoids whose shape depends on the dynamical regime of the remnant and the density
distribution of the external medium. Equation (4.6) should be used to determine the
source size evolution (this is of relevance for the scintillation of the afterglow in radio –
Goodman 1997, Frail et al 1997).

2. Afterglow spectrum and brightness estimates should use the gas parameters at the
averaged coordinates (Tables 4.1 and 4.2) rather than those of the LSC. For given dy-
namic and radiative regimes, the ratio between the brightness-weighted peak frequency
and that arriving from the top of the equal-T surface is constant in time, so the power-
law time dependence of fluxes predicted by fireball afterglow models (Mészáros & Rees,
1997; Mészáros et al. 1997) are unchanged.

3. For narrow energy band measurements, the observed shape (ring or disk) of the
source depends on the frequency. In any band, the observer should see the source in-
creasing in size and changing its shape from a full disk to a relatively narrow ring, at
least while the expansion is relativistic. This is important for the possible gravitational
microlensing of afterglows (Loeb & Perna 1998). If bolometric observations are obtained
by piecing together band observations spanning many orders of magnitude, then most
of the energy of the afterglow should be seen coming from a relatively narrow ring, at
any time.

The thickness of the zone radiating most of the energy determines the spread δT
in the arrival time of photons emitted at lab-frame t. In the radiative case electrons cool
on a time-scale much shorter than the expansion time, only a very thin zone located
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behind the blast wave front releases significant energy and the thickness of the radiating
fluid can be neglected. The effect of the shell thickness is important only in the adiabatic
case, and was taken in consideration by Waxman (1997b). We have employed here the
equal arrival time surfaces using the kinematics of the blast wave. The radiation emitted
by the fluid behind the shock is received at a later time and the source size is increasing
in time, therefore a finite thickness leads to wider rings and lower values of the averages
x and y given in Tables 4.1 and 4.2. Our estimates of the ring’s width for an adiabatic
remnant are larger by a factor up to 2.3 than calculated by Waxman (1997b). Other
departures include allowance for different radiative regimes, and for external density
variations.

Additional complications arise when different regions on the equal-T surface are
in different dynamic and/or radiative efficiency regimes. As the fireball decelerates, the
cooling time-scale of electrons increases and they eventually become adiabatic. If there
is a strong coupling between electrons and protons + magnetic field, the remnant and
electrons evolve together from the radiative to the adiabatic regime. If this coupling is
weak, then the remnant becomes adiabatic early in its evolution. A more complex case
occurs when the power-law distributed electrons are in different radiative regimes: low
energy electrons may be adiabatic while higher energy electrons may be radiative. Our
discussion assumed a spherically symmetric fireball. However, if the ejecta is emitted in
a jet of half-angle θ

0
then the energy requirements are reduced by a factor (1−cos θ

0
)/2,

without changing our results as long as γ >∼ θ−10 . In the opposite case, the observer will

see the jet’s edge and the source size and width will be below our estimates; this could
serve as a test for whether the outflow is jet-like.
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Fig. 4.1. Surfaces of equal arrival times, for a homogeneous external medium and a
radiative (upper panel) or adiabatic remnant dynamics (lower panel). Each curve is a
transverse section through the 3-dimensional equal-T surface, highlighting the regions
that radiate 50% (upper half of each curve) and 80% (lower half) of the bolometric
flux. Projected on the plane perpendicular to the LSC, these regions appear as narrow
rings. The Cartesian coordinates are normalized to r

dec
, which for the putative burst

parameters in the text is ∼ 4 × 10
16
cm, corresponding at a redshift z = 1 (H

0
=

75km s
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−1
, Ω = 1) to an angular scale 2.5µas.
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Fig. 4.2. Distribution of peak of synchrotron spectrum (upper panels) and bolometric
luminosity (lower panels) on the equal-T surface. Left panels are for a radiative remnant
(n = 3), right panels for an adiabatic one (n = 1.5). Lower graphs: the ring is shown
by the steep rise in integrated bolometric luminosity. The brightness distribution as
observed in two fixed frequency bands (2 eV and 10 GHz), at T = 5 days, are also
shown. Lower right graph: the effect of the electron radiative regime is illustrated is
that adiabatic electrons (solid curve) lead to a narrower ring than radiative ones (dot-
dashed curve).
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Chapter 5

Multi-Wavelength Afterglows of Gamma-Ray Bursts

5.1 Introduction

Afterglows from Gamma-Ray Bursts (GRBs) have been observed from a number
of objects at X-ray, optical, and in one case also at radio wavelengths. Simple analytical
models are successful at explaining the major features of the light-curves (Mészáros &
Rees 1997, Vietri 1997, Tavani 1997, Waxman 1997a; Wijers, Rees & Mészáros 1997).
The optical and X-ray light curves presented by many authors (e.g. Pedersen et al. 1998,
Piro et al. 1998, Garcia et al. 1998, Bartolini et al. 1998) have provided evidence for oc-
casional departures from the basic overall power-law decay behavior. Such departures, as
well as the possibility of temporal power-law decays that are not exclusively determined
by the spectral index, have been shown to follow naturally from fireball models where
the radiative regime changes, the energy is not distributed isotropically in the ejecta
(Mészáros , Rees & Wijers 1998), or where the energy input depends on the Lorentz
factor during the brief injection episode of the central engine, leading to refreshed shocks
(Rees & Mészáros 1998). Here we go beyond simple analytical asymptotic models, we
derive and solve numerically the differential equations for the dynamics of the afterglow
in the general case of a inhomogeneous external medium and refreshed shock mechanism,
and calculate numerically the light-curves arising in such scenarios.

The calculation of the spectra and time history of an afterglow from a spherically
symmetric shocked fireball is equivalent to computing a quadruple integral: over the
laboratory frame time, over the structure of the shocked fluid, over the angle relative
to the line of sight toward the fireball center (LSC) of symmetry and over the electron
distribution. The hydrodynamic timesteps required to propagate the shell of shocked
fluid over times that are more than 5 orders of magnitude larger than the shell cross-
ing time and those necessary for an accurate calculation of the radiative losses lead to
exceedingly long numerical runs, which are not best suited for an investigation of the
effects of the large number of model parameters involved in the typical external shock
scenario of GRBs and afterglows (Mészáros & Rees 1997). The numerical task is even
more time-consuming in the case of anisotropic ejecta, where a new integral over the az-
imuthal angle is added. To acquire computational speed, we have developed a numerical
code that calculates accurately the evolution of the remnant shell’s flow Lorentz factor,
by solving the equation that gives the evolution of the kinetic energy of the remnant
during the ejecta–external medium interaction.

In the first part of this chapter we focus on spherically symmetric fireballs and
beamed ejecta released into a cone with an initial angle larger than few degrees, for which
there is a negligible sideways expansion of the jet before the onset of the non-relativistic
effects. In the last part of this chapter the analytical approach is extended to jets of
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initial angle of few degrees (or less), by taking into account the jet broadening in the
calculation of both the remnant dynamics and its emission.

5.2 Model Assumptions and Features

The most important parameter characterizing the temporal evolution of the after-
glow is the bulk Lorentz factor Γ of the contact discontinuity between the ejecta and the
swept up external matter. We assume that Γ is constant within the shocked fluid. The
evolution of Γ is determined by hydrodynamics of the the energy injection (when there
is one) at the reverse shock, the adiabatic losses behind both the reverse and forward
shocks, the deceleration caused by the external medium and the radiative losses.

Anisotropy of the ejecta or of the energy input is included at the simplest level,
assuming cylindrical symmetry around the jet or fireball axis that is not necessarily the
same as the LSC. A possible inhomogeneity of the external medium is considered in the
form of a power-law density. To simplify the energy release treatment, we ignore the
inverse Compton scattering of the self-generated synchrotron photons, which is a fairly
good assumption, substantiated by our previous results (Panaitescu & Mészáros 1998).
We also ignore the radiative losses behind the reverse shock, which should be negligible
given that this shock is much less relativistic than the forward shock in the early after-
glow, when the injection of delayed ejecta takes place, and thus less efficient in heating
the incoming ejecta. Nevertheless there may be a dominant contribution to the low fre-
quency (radio–optical) emission of the very early (up to few minutes) afterglow from the
electrons accelerated by the reverse shock, which is soon overcome by the forward shock
emission that shifts toward lower energies, as the remnant is decelerated.

5.3 Remnant Dynamics and Energy Release

5.3.1 External Medium

We consider an external medium whose density varies as a power-law with the
radius:

ρ
ex
(r) = ρ

d
(r/r

d
)
−α

, (5.1)

ρ
d
being the external density at r

d
, the deceleration radius defined in chapter 3 as the

radius at which the fastest (initial) part of the ejecta, moving with Lorentz factor Γ
0

and having a kinetic energy E
0
, sweeps up an amount of external gas equal to a fraction

Γ
−1
0

of its own mass M
0
= E

0
/Γ
0
c
2
:

r
d
=


(3− α)E0
Ω
0
ρ
d
c
2
Γ
2
0


1/3 , (5.2)

where Ω
0
is the solid angle of the remnant. The cases of interest are α = 0 (homogeneous

external medium) and α = 2 (constant velocity pre-ejected wind).
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The continuous interaction with the external gas increases the remnant mass by

[dM ]
ex
= Ω

0
ρ
ex
(r)r

2
dr = (3− α)

M
0

Γ
0

r
2−α

r
3−α
d

dr , (5.3)

decelerates the remnant and energizes it. Using energy and momentum conservation for
the interaction between the remnant and the infinitesimal swept-up mass [dM ]

ex
, one

obtains that the comoving frame internal energy of the newly shocked gas is (Γ − 1)
times larger than its rest-mass energy, and the changes in the remnant internal energy
U and total kinetic energy K are given by

[dU ]
ex
= A(Γ − 1)c2[dM ]

ex
, (5.4)

[dK]
ex
≡ (Mc

2
+ U)[dΓ]

ex
= −(Γ2 − 1)c2[dM ]

ex
. (5.5)

The multiplying factor A in the right-hand side of equation (5.4) was introduced to
account for possible radiative losses in the shocked external gas. It represents the fraction
of the internal energy of the shocked external gas that is not radiated away. Thus A = 0
corresponds to a fully radiative remnant, which implies radiative electrons and strong
coupling between electrons and protons, while A = 1 is for a fully adiabatic remnant.
When radiative losses are taking into account, A can be calculated (see below).

5.3.2 Delayed Energy Input

As suggested by Rees & Mészáros (1998) it is possible that the initial instan-
taneous deposition of energy in the fireball is not uniform in the entire ejecta, in the
sense that some parts of it have been given more energy and have been accelerated to
higher Lorentz factors, the slower ejecta catching up with the faster ones as these are
decelerated by the interaction with the surrounding medium. The entire process is fully
characterized by the energy distribution (dE/dΓ)

inj
in the ejecta at the end of the initial

phase of acceleration, with all other relevant quantities resulting from the kinematics and
energetics of the “catching up”. We consider that all the ejecta has been released impul-
sively, at the same location. The velocity β

f
of the incoming (delayed) ejecta satisfies

r = β
f
ct (free expansion), where t is the lab-frame time:

t = t
d
+

∫ r
r
d

dr

cβ(r)
, (5.6)

with β(r) the speed of the decelerated ejecta. We assume that there is a significant
delayed energy injection only at r > r

d
, so that equation (5.2) remains valid. Thus the

Lorentz factor Γ
f
of the delayed ejecta entering the decelerated part of the fireball is
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given by

dΓ
f

dr
= −


βf
β
− 1

 Γ

3
f
β
f

ct
. (5.7)

Using the energy and momentum conservation, one can calculate the increase in
the remnant kinetic and internal energies as result of the delayed injection:

[dU ]
inj

= [ΓΓ
f
(1− ββ

f
)− 1] c2[dM ]

inj
, (5.8)

[dK]
inj
≡ (Mc

2
+ U)[dΓ]

inj
= Γ

f
[1− Γ2(1− ββ

f
)] c

2
[dM ]

inj
, (5.9)

where

[dM ]
inj

=

(
dE

dΓ

)
inj

|dΓ
f
|

Γ
f
− 1 = F (Γ

f
,Γ)M

INJ

dr

r
, (5.10)

is the infinitesimal injected mass, F (Γ
f
,Γ) being a function that depends on the details

of the delayed energy injection, and M
INJ

the total mass of the delayed ejecta. In

the numerical calculations we shall consider the particular case of a power-law energy

distribution in the delayed ejecta: (dE/dΓ)
inj
∝ Γ

−s
f

(Rees & Mészáros 1998) for

Γ
m

< Γ
f
< Γ

d
, where Γ

m
and Γ

d
≡ Γ(r = r

d
) are the minimum and maximum

Lorentz factors of the delayed ejecta. The constant of proportionality is determined by
the total injected energy E

INJ
, which will be one of the free parameters of the model.

For the above power-law energy distribution it can be shown that

F (Γ
f
,Γ) =

s

2

(Γ
f
/Γ)

2 − 1
1− (Γ

m
/Γ
d
)
s


Γm
Γ
f


s . (5.11)

and that M
INJ

is given by

E
INJ

=



s
[
1− (Γ

m
/Γ
d
)
s−1]

Γ
m

(s− 1)
[
1− (Γ

m
/Γ
d
)
s
] − 1


 M

INJ
c
2
. (5.12)

5.3.3 Adiabatic Cooling. Remnant Volume

The delayed energy input at the reverse shock that moves into the incoming ejecta
and the heating of the external fluid by the forward shock increase the internal energy of
the remnant. This energy is lost adiabatically and radiatively. If they were acting alone,
adiabatic losses would accelerate the remnant; in the presence of the external fluid, they
re-convert internal energy into kinetic energy, which mitigates the remnant deceleration.
This is described quantitatively by

[dU ]
ad
= −(γ̂ − 1)(d

r
V
′
/V
′
)U , (5.13)
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[dK]
ad
≡ (Mc

2
+ U)[dΓ]

ad
= −Γ[dU ]

ad
, (5.14)

where V
′
= V

′
RS

+ V
′
FS

is the comoving volume of the shocked ejecta (located behind

the reverse shock) and of the swept-up external gas (behind the forward shock), and
γ̂ is the adiabatic index of the remnant gas (γ̂ = 4/3 for hot gas). In equation (5.13)

d
r
V
′
denotes the infinitesimal variation of the comoving volume due only to the radial

expansion of the gas, excluding the infinitesimal increases due to the addition of shocked
fluid and to the sideways expansion (we neglect the adiabatic losses due to the sideways
expansion, representing the acceleration of the outer parts of the fluid in the direction
perpendicular to the radial direction of the flow).

At this point we need a prescription for calculating d
r
lnV
′
. For the the radiative

losses one also has to calculate the comoving volume V
′
, to determine the comoving

energy density, necessary for the computation of the magnetic field. We consider two
models: Model 1, where we assume that the laboratory frame increase in the thickness
of the shocked fluid (external or delayed ejecta) is due only to the addition of new gas,
and Model 2, where we assume that the comoving density of the two shocked fluids
are uniform behind each shock, and have the values set by the shock jump equations.
Only Model 1 is consistent with the assumption that Γ is constant in the entire shocked
fluid, as this assumption implies that the remnant is neither dilating nor contracting in
the radial direction. Model 2 implies the existence of a velocity gradient in the shocked
fluid, nevertheless this gradient is expected to be small and the assumption of constant Γ
within the remnant may still be safely used for the calculation of the relativistic effects.

5.3.3.1 Model 1

The comoving volume is V
′
= Ω

0
r
2
Γ∆, where ∆ is the lab-frame thickness of the

remnant, determined by the relative motion of the forward and reverse shocks: d∆ =
(β
FS
−β

RS
)dt. The lab-frame reverse shock speed β

RS
can be calculated with a Lorentz

transformation from β
′
RS

, the speed of the reverse shock measured in the frame of the

ejecta entering this shock. The assumption that the frame thickness of the already
shocked fluid remains constant (or equivalently that the flow velocity is uniform within

the remnant) implies that d
r
lnV
′
= d ln(Γr

2
), therefore

d
r
V
′

V
′
M1
= 2

dr

r
+
dΓ

Γ
, (5.15)

and allows the calculation of β
′
RS

and β
FS

from Γ, the remnant bulk Lorentz factor:

β
′
RS

=
(Γ
′ − 1)(γ̂Γ′ + 1)

β
′
Γ
′
[γ̂(Γ

′ − 1) + 1]
, β
FS

=
(Γ− 1)(γ̂Γ + 1)

βΓ[γ̂(Γ − 1) + 1]
. (5.16)

where Γ
′
= ΓΓ

f
(1 − ββ

f
) is the Lorentz factor of the shocked delayed ejecta measured

in the frame of the incoming ejecta located just ahead of the reverse shock. After all the
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delayed ejecta has caught up with the remnant, or if there is no such delayed injection,
β
RS

is set equal to β, the speed of the contact discontinuity.

5.3.3.2 Model 2

In this model, the two volumes V
′
RS

and V
′
FS

can be calculated from the masses

of the shocked gases (eqs. [5.3] and [5.10]) and from the comoving densities, assumed to
be uniform in each shell and having the same value as in the proximity of the shocks. The

comoving densities ρ
′
RS

and ρ
′
FS

behind the reverse and forward shock are determined

by the comoving densities of the un-shocked fluids, ρ
′
f
and ρ

ex
, and by the Lorentz

factors of the shocked gases, Γ
′
and Γ:

ρ
′
RS

=
γ̂Γ
′
+ 1

γ̂ − 1 ρ
′
f
, ρ

′
FS

=
γ̂Γ + 1

γ̂ − 1 ρex . (5.17)

Reverse Shock. The comoving density of the ejecta ahead of the reverse shock

can be calculated by equating [dM ]
inj

given by equation (5.10) with the mass Ω
0
Γ
f
ρ
′
f
r
2
dl

swept up by the reverse shock as the remnant moves from r to r + dr, where dl =
ct|dβ

f
| = (β

f
/β − 1)dr is the infinitesimal laboratory frame distance relative to the

contact discontinuity covered by the reverse shock. The end result is

ρ
′
f
=

Γ
2
f
β
f

Ω
0
r
2
ct

(
dM

dΓ

)
inj

, (5.18)

so V
′
RS

=

(
M
0
+
∫ r
r
d
[dM ]

inj

)
/ρ
′
RS

can be calculated by integrating equation (5.10)

and using the first equation (5.17). From d
r
(ln V

′
RS

) = −d(ln ρ′
RS

) and equations (5.7)

and (5.17), one can write

d
r
V
′
RS

V
′
RS

M2
= G(Γ

f
,Γ)

dr

r
+

γ̂Γ
f

γ̂Γ
′
+ 1


βf
β
− 1

 dΓ , (5.19)

where G(Γ
f
,Γ) is a function of the details of the delayed injection. After the end of

the delayed injection the comoving volume of the shocked delayed ejecta is considered
constant.

Forward Shock. The volume of the shocked external fluid

V
′
FS

=

(
M
0
/Γ
0
+
∫ r
r
d
[dM ]

ex

)
/ρ
′
FS

can be calculated using the second equation (5.17)

and the swept-up mass obtained by integrating equation (5.3). From the second equation



81

(5.17) it can be shown that

d
r
V
′
FS

V
′
FS

M2
= α

dr

r
− γ̂

γ̂Γ + 1
dΓ . (5.20)

5.3.4 Radiative Losses

As in chapter 3 we assume that nearly all electrons are shock-accelerated to a

power-law distribution of index p > 1, dn
′
e
∝ γ
−p
e
dγ
e
, for γ

m
< γ

e
< γ

M
, where n

′
e
is

the co-moving electron number density, γ
e
is the electron random Lorentz factor. The

maximum γ
M

is determined by the synchrotron losses during the acceleration timescale,

and, for most of the afterglow, is several orders of magnitude larger than γ
m
. The

minimum γ
m
is set by parameterizing the total energy density stored in electrons after

acceleration, as a fraction ε
e
of the internal energy density of the shocked fluid (which is

given by the jump conditions at shock – Blandford & McKee 1976), and by the injection
fraction ζ � 1 of electrons that are accelerated at shock:

γ
m
=
p− 2
p− 1

ε
e
ζ

m
p

m
e

(Γ− 1) , (5.21)

m
p
and m

e
being the proton and electron masses, respectively. The comoving magnetic

field B is assumed to be turbulent and is parameterized through the fraction ε
B
of the

internal energy that is in the form of magnetic field energy,

B =

√
8π ε

B

U

V
′ . (5.22)

The radiative losses are given by a double integral over the remnant volume and
the electron distribution,

(dU)
rad

= −
∫
dV
′ ∫ γM (t

′
)

γ
m
(t′)

dn
′
e
(γ
e
)P
′
sy
(γ
e
) dt
′
, (5.23)

which can be calculated for given B and dn
′
e
(γ
e
) at each point in the shocked structure.

In equation (5.23)

P
′
sy
(γ
e
) =

1

6π
σ
Th
cB

2
(γ
2
e
− 1) (5.24)

is the synchrotron power, σ
Th

being the cross-section for electron scattering, and dt
′
=

dt/Γ = dr/(Γβc) is the time measured in the frame of the remnant.
The electron distribution in each infinitesimal “sub-shell” within the volume of

the shocked fluid is calculated by first initializing it at the time t
′
when the sub-shell is

added to the shocked structure and then tracking the evolution of the electron Lorentz
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factor γ
e
, subject to adiabatic and radiative losses:

dγ
e

da
= −1

3

d lnV
′

da
(γ
e
− 1)− 1

6π

σ
Th
B
2

m
e
c

dt
′

da
(γ
2
e
− 1) . (5.25)

5.3.5 Differential Equations for Remnant Dynamics

The remnant dynamics is given by the differential equations describing the evo-
lution of the total kinetic and internal energies, coupled through the adiabatic losses:

dU = [dU ]
inj

+ [dU ]
ad
+ [dU ]

ex
, (5.26)

dK ≡ (Mc
2
+ U)dΓ = [dK]

inj
+ [dK]

ad
+ [dK]

ex
, (5.27)

where the quantities in the right-hand side terms are given by equations (5.4), (5.5),
(5.8), (5.9), (5.13) and (5.14). By substituting the term [dU ]

ad
from equation (5.27) in

equation (5.26) ([dU ]
ad

appears in the expression of [dK]
ad

– see eq. [5.14]), one arrives

at
d[M(Γ − 1) + ΓU ] = (Γ

f
− 1)[dM ]

inj
, (5.28)

which simply states that the net variation of the total energy of the adiabatic remnant
equals the input of energy through the delayed injection (global energy conservation).

With the aid of all the relevant equations previously derived, equations (5.26) and
(5.27) can be used to calculate dΓ/dr and dU/dr, i.e. the evolution of the flow Lorentz
factor and of the co-moving internal energy. These equations are solved numerically
together with equation (5.7) for Γ

f
and the differential equation for the remnant mass

resulting from equations (5.3) and (5.10):

r
dM

dr
= F (Γ

f
,Γ)M

INJ
+ (3− α)

(
r

r
d

)3−α M
0

Γ
0

. (5.29)

As an example for the remnant dynamics equations we give here a simpler result,
obtained within Model 2 and ignoring the adiabatic losses behind the reverse shock:

dΓ

da
=
Γ
f
[1− Γ2(1− ββ

f
)]F (Γ

f
,Γ)ω

M
+ (γ̂ − 1)αΓu− 3(Γ2 − 1)Γ−1

0
a
3−α

a
[
µ+ (γ̂

2
Γ + 1)(γ̂Γ + 1)

−1
u
] , (5.30)

du

da
= [Γ

f
Γ(1− ββ

f
)− 1]F (Γ

f
,Γ)

ω
M
a
−

(γ̂ − 1)
(
α

a
− γ̂

γ̂Γ + 1

dΓ

da

)
u+ 3a

2−αΓ− 1
Γ
0

+

(
du

da

)
rad

, (5.31)

where the non-dimensional variables a = r/r
d
, u = U/M

0
c
2
µ = M/M

0
, and ω

M
=

M
inj
/M

0
have been used. The first term in the numerator of equation (5.30) and the
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first term in the right hand side of equation (5.31) are switched off when Γ
f
, calculated

by integrating equation (5.7), drops below Γ
m
.

5.3.6 Initial Conditions

If all the released ejecta has the same initial Lorentz factor then for r < r
d

there is a reverse shock sweeping the fireball and the yet unshocked part of it and the
shocked fluid move with different Lorentz factors. To avoid complications, we simulate
the dynamical evolution of the fireball starting from r = r

d
and pass over the r < r

d
stage by making an appropriate choice of the initial conditions at r = r

d
. These initial

conditions are determined by the definition of r
d
.

By equating the sum of the kinetic energy (1 + Γ
−1
0
)(Γ

d
− 1)M

0
c
2
and the lab-

oratory frame internal energy ∼ Γ
d
(Γ
d
− 1)(M

0
/Γ
0
)c
2
at r

d
with the initial energy

E
0
= (Γ

0
− 1)M

0
c
2
, it is straightforward to show that Γ

d
= 0.62Γ

0
and U(r

d
) =

(Γ
d
− 1)(M

0
/Γ
0
)c
2 ∼ 0.62M

0
c
2
. Therefore the initial conditions are

Γ(a = 1) = Γ
f
(a = 1) = 0.62Γ

0
, u(a = 1) = 0.62, µ(a = 1) = 1 + Γ

−1
0

. (5.32)

5.4 Numerical Solutions for Remnant Dynamics

The remnant Lorentz factor Γ and the internal energy U determine the electron
random Lorentz factor and the magnetic field, both necessary for the calculation of the
afterglow emission. Thus we are interested in solving the remnant differential equations
to calculate the evolution of Γ and U with the observer time T ,

dT = (1 + z)(1 − β)dt = (1 + z)


 Γ√

Γ
2 − 1

− 1

 dr

c
, (5.33)

where z is the source redshift. Equation (5.33) gives the time T
CD

when the radiation

emitted along the line of sight toward the observer and from the contact discontinuity
arrives at Earth. If most of the radiation comes from the fluid close to forward shock
then it is necessary to calculate the observer time using the Lorentz factor of this shock.
For a relativistic remnant Γ

FS
∼ √2Γ, thus T

FS
= T

CD
/2.

Equations (5.2) and (5.27) show that the remnant dynamics is determined by
ε
0
≡ E

0
/Ω

0
, the energy per solid angle in the ejecta, the jet initial solid angle, which

determines when the jet sideways expansion becomes important, the parameters n
d
and

α characterizing the surrounding medium, the remnant initial Lorentz factor Γ
0
and

the remnant radiative efficiency. In the case of an adiabatic remnant running into a
homogeneous external medium, Γ

0
cancels out from the expression for Γ(T ), thus it is

an irrelevant parameter, from the observer’s point of view. However Γ
0
is an important

parameter for a radiative remnant, or if the external medium is not homogeneous. The
remnant dynamics is also determined by the parameters of the delayed energy injection,
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which for a power-law injection are Γ
m
, Γ

0
, s and M

INJ
(or, equivalently, the entire

injected energy E
INJ

).

For a relativistic and adiabatic remnant, to a good approximation, the Lorentz
factor of the contact discontinuity evolves as (Mészáros et al. 1998)

Γ ∼ Γ
d
(r/r

d
)
−(3−α)/(1+A)

. (5.34)

Figure 5.1 shows the evolution of −d log Γ/d log r for a spherical remnant with no de-
layed energy input, running into a homogeneous external medium. The non-relativistic
phase, defined by Γ < 2, sets in at r < 10 r

d
for a fully radiative remnant and at

r < 100 r
d
for an adiabatic one. An analytical treatment of the remnant dynamics leads

to −d log Γ/d log r = (3 − α)/(1 + A), as long as the remnant is relativistic. Thus, if

α = 0, Γ ∝ r
−3

for a radiative remnant and Γ ∝ r
−3/2

for an adiabatic one. These

results hold for r
d
� r � Γ

1/3
0

r
d
in the former case and for r

d
� r � Γ

2/3
0

r
d
in the

latter. The values shown in Figure 5.1 at early times (i.e. in the relativistic phase), are

consistent with the analytical expectations. Due to the fact that the r
−3

phase is short
lived for a radiative remnant, this regime is not strictly reached for the case shown in

Figure 5.1 (Γ
0
= 500), where the steepest Γ-decay attained is ∝ r

−2.85
. Only Lorentz

factors Γ
0
> 10

3
allow this phase to fully develop at very early observer times (T < 0.1

day). In the case of a pre-ejected wind (α = 2), we obtained numerically the analytical

results Γ ∝ r
−1/2

and Γ ∝ r
−1

for an adiabatic and a radiative remnant, respectively
(these cases are not shown in Figure 5.1).

Figure 5.2 shows the effect of a delayed energy input on the dynamics of an
adiabatic remnant, assuming a homogeneous external gas and a power-law distribution
of energy per Lorentz factor in the delayed ejecta. The minimum Lorentz factor Γ

m
of

the ejecta determines the observer time when the injection ends. A sudden energy input
(i.e. large parameter s), resembling the collision of a second shell with the leading fireball,
may lead to a temporary flattening of Γ as a function of r, as shown by the small value of
−d log Γ/d log r at T ∼ 3 days for s = 10. The flux of the synchrotron radiation emitted
by the remnant at a frequency ν above the synchrotron peak ν

p
(of νF

ν
, the power-per-

decade) is proportional to Γ
8+4β

T
3
if the electrons radiating at ν are adiabatic, and

proportional to Γ
4+4β

T
2
, if the same electrons are radiative, where β is the slope of the

spectrum above ν
p
: F

ν
∝ ν−β . For β ∼ 1, as observed in most afterglows, the remnant

flux varies like Γ
12
T
3
and Γ

8
T
2
for adiabatic or radiative electrons, respectively. This

means that the afterglow corresponding to the remnant evolution shown in Figure 5.2

for s = 10 should exhibit a substantial brightening, with F
ν
increasing as fast as T

3

(adiabatic electrons) or T
2
(radiative electrons) at T ∼ 3 days.



85

5.5 Analytical Asymptotic Light-Curves

The temporal history of the afterglow flux received at Earth can be calculated
analytically by assuming that the ejecta is either spherically symmetric or is a jet with
axial symmetry, and that Γ is power-law in r. The last assumption is correct only over
a certain range of times; a different treatment is needed when the remnant slows down
to non-relativistic speeds. We consider here relativistically expanding remnants and, for
simplicity, in this section we neglect energy injection and restrict our attention to the
case when the remnant is adiabatic, as it is most likely that this stage lasts the longest
(Waxman, Kulkarni & Frail 1998). Electrons can be either radiative or adiabatic. The
former case is compatible with the assumption of an adiabatic remnant provided that
electrons are not re-energized after shock acceleration or that ε

e
is small enough that

most of the internal energy is stored in protons and magnetic fields and lost adiabatically.
In what follows, we denote by γ

m
the minimum Lorentz factor of the electrons (in the

power-law distribution) that have just been accelerated, i.e. those electrons that are
located very close the forward shock.

The definition of r
d
gives r

d
∝ (E

0
n
−1
d
Γ
−2
0
)
1/3

, where n
d
is the external medium

particle density at r
d
, and where a multiplying factor that has a weak dependence on

α has been ignored. For definiteness, we consider that the power-law behavior of the
external medium density is manifested beyond a radius R

d
, up to which the external

density is almost constant, with R
d
large enough to cover all the possible values of the

deceleration radii encountered in fireballs with reasonable values of the parameters Γ
0

and E
0
. This approximation is not affecting the remnant evolution, as the afterglow

radiation is emitted at radii much larger than R
d
. Using the relationship between the

observer time T and the lab-frame time t, T ∝ t/Γ
2
, the T -dependence of the Lorentz

factor is found to be

Γ ∝
[
(E
0
/n
d
)
(3−α)/2

Γ
α
0

]1/(12−3α)
T
−(3−α)/(8−2α)

. (5.35)

Note that Γ is independent on Γ
0
if the external medium is homogeneous. As seen by the

observer, the (transverse) source size scales as ΓT if the ejecta is spherically symmetric.

The received flux F
ν
p
at the peak ν

p
of the synchrotron spectrum is F

ν
p
∝ (ΓT )2Γ3I ′

ν′
p

(Mészáros et al. 1998), where I
′
ν′
p
is the comoving synchrotron intensity at the comoving

peak frequency ν
′
p
.

5.5.1 Radiative Electrons

If electrons are radiative, then I
′
ν
′
p
∝ n
′
e
(P
′
sy
/ν
′
p
)t
′
sy
∝ n
′
e
(γ
m
B)
−1

, where t
′
sy

is the comoving synchrotron cooling timescale and where we substituted P
′
sy
t
′
sy
∝ γ

m
.
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The magnetic field can be calculated using equation (5.22), where the comoving inter-
nal energy is determined by assuming that the laboratory frame internal energy of the
adiabatic remnant is a (constant) fraction of the initial energy Γu ∝ E

0
which leads to

B ∝ ε1/2
B

(
n
3−α
d

Γ
−2α
0

E
α
0

)1/6
r
−α/2

Γ . (5.36)

The same result can be obtained using the jump conditions at the forward shock: B
2 ∝

ε
B
(dU/dV

′
) ∝ ε

B
ρ
′
Γ ∝ ε

B
ρ
ex
Γ
2
. By using equations (5.21) (with p > 2), (5.35)

and r ∝ Γ
2
T , one can calculate I

′
ν
′
p
and the evolution of the observed peak frequency

ν
p
∝ γ

2
m
BΓ. If observations are made at a frequency ν < ν

p
, the observer “sees” the

low energy tail of the synchrotron spectrum, which has a slope of 1/3. Then F
ν
=

(ν/ν
p
)
1/3

F
ν
p
, leading to

F
rad

(ν < ν
p
) ∝ ε−2/3

B
ε
−5/3
e

ζ
8/3

E
1/3
0

T . (5.37)

Above ν
p
, the synchrotron spectrum has a slope −p/2, yielding:

F
rad

(ν > ν
p
) ∝ ε(p−2)/4

B
ε
p−1
e

ζ
2−p

E
(p+2)/4
0

T
−(3p−2)/4

. (5.38)

Note that F
rad

(ν) is independent on the external medium parameters (α, n
d
) and on

the fireball initial Lorentz factor and that it depends strongly (powers close to or above
1) on ε

e
and also on ζ if ν < ν

p
and on E

0
if ν > ν

p
.

5.5.2 Adiabatic Electrons

If the electrons are adiabatic, then I
′
ν′
p
∝ n
′
e
(P
′
sy
/ν
′
p
)∆
′ ∝ n

′
e
B∆
′
, where ∆

′
is

the comoving remnant thickness. The product n
′
e
∆
′
can be calculated using the fact

that Ω
0
(n
′
e
/ζ)m

p
r
2
∆
′
is the external medium mass swept up until radius r is reached.

Below the spectral peak

F
ad
(ν < ν

p
) ∝ ε1/3

B
ε
−2/3
e

ζ
5/3
[
Γ
−4α
0

E
2(5−α)
0

n
2(3−α)
d

]1/(12−3α)
T
(2−α)/(4−α)

.

(5.39)
For observations made above ν

p
, the synchrotron spectrum has a slope −(p − 1)/2,

therefore:

F
ad
(ν > ν

p
) ∝ ε

p+1
4

B ε
p−1
e

ζ
2−p [

Γ
−4α
0

E
3(p+3)−α

4 (3p+7)
0

n
2(3−α)
d

] 1
12−3α

T
−3

4(p−1)− α
8−2α .

(5.40)



87

Generally, the light-curve has a strong dependence on E
0
and ε

e
, and also on ζ if ν < ν

p
and on ε

B
if ν > ν

p
. Other dependences are weak to moderate. For α >∼ 2, the light-

curve depends strongly on Γ
0
and F

ad
(ν < ν

p
) increases with T . The larger α, the faster

F
ad
(ν > ν

p
) decreases with T .

5.5.3 Jets

If the ejecta is jet-like (Waxman et al. 1998), then equations (5.37)–(5.40) give
the correct observed flux in the early afterglow, when the observer does not see the edge
of the jet or the effect of the sideways escape of the ejecta. For an observer located
at an angle θ

obs
relative to the jet axis and a jet of half-angular opening θ

0
such that

θ
obs
� θ

0
, the jet edge is seen after Γ drops below θ

−1
0
. In this case, the source size is

∝ rθ
0
∝ Γ2Tθ

0
. The light-curve of the afterglow from a jet-like remnant is given by:

F
rad

(ν < ν
p
) ∝ ε−2/3

B
ε
−5/3
e

ζ
8/3
[
Γ
2α
0
E
7−2α
0

n
−(3−α)
d

]1/(12−3α)
T
1/(4−α)

, (5.41)

F
rad

(ν > ν
p
) ∝ ε

p−2
4

B ε
p−1
e

ζ
2−p [

Γ
2α
0
E
3(p+3)−α

4 (3p+10)
0

n
−(3−α)
d

] 1
12−3α

T
−3

4p− 2−α
8−2α ,

(5.42)
if electrons are radiative and by

F
ad
(ν < ν

p
) ∝ ε1/3

B
ε
−2/3
e

ζ
5/3
[
Γ
−2α
0

E
13−3α
0

n
3−α
d

]1/(12−3α)
T
−1/(4−α)

, (5.43)

F
ad
(ν > ν

p
) ∝ ε

p+1
4

B ε
p−1
e

ζ
2−p [

Γ
−2α
0

E
3(p+4)−α

4 (3p+11)
0

n
3−α
d

] 1
12−3α

T
−3

4(p−1)− 6−α
8−2α ,

(5.44)
if electrons are adiabatic.

A comparison of equations (5.37)-(5.40) and (5.41)-(5.44) shows that the light-
curve from beamed ejecta rises slower and decays faster than that from a spherical

fireball. At the onset of the Γ < θ
−1
0

phase, the decay of the afterglow steepens by

(3 − α)/(4 − α), yielding a break in the light-curve. This phase lasts until the escape
of the ejecta outside the cone in which it was initially released becomes important (see
subsection 5.7).

5.5.4 Mixed Electron Radiative Regimes

Equations (5.37)–(5.44) were derived assuming that all the electrons are either
radiative or adiabatic. The real situation is more complex, as the more energetic tail
of the power-law distribution of electrons contains electrons that are radiative and con-
tribute more to the received flux at some given frequency ν � ν

p
(γ
m
) than the less

energetic γ
m
-electrons, which become adiabatic early in the afterglow. In fact this is the

case with most of the numerical X-ray and optical afterglows shown in section 5.6. If
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the γ
m
-electrons are adiabatic, the flux at a frequency where the emission is dominated

by more energetic and radiative electrons can be derived using the I
′
ν
′
p
calculated for

adiabatic electrons and the fact that the spectrum has a slope −(p − 1)/2 for frequen-
cies above ν

p
and below the peak frequency of the synchrotron emission from electrons

that have a radiative timescale equal to the adiabatic one, and a slope −p/2 above this
frequency. Interestingly, the result is the same as given by equations (5.38) and (5.42)
for radiative γ

m
-electrons, i.e. only the constants of proportionality are altered.

We should keep in mind that the above analytical derivations do not take into
account the shape of the equal arrival time surface, i.e. the fact that photons that arrive
simultaneously at detector were emitted at different lab-frame times. Moreover, we
ignored the fact that there are electrons with Lorentz factors below the γ

m
of the freshly

accelerated electrons. For these reasons, the equations (5.37)–(5.44) are of somewhat
limited use and, for more accurate results, one must integrate numerically the afterglow
emission.

5.6 Numerical Afterglow Light-Curves

We have introduced so far the following model parameters: (1) dynamical para-
meters (E

0
;n
d
, α; Γ

0
), (2) late energy injection parameters (E

inj
,Γ
m
, s) and (3) energy

release parameters (ε
B
; ε
e
, p, ζ). To these one must add (θ

0
, θ
obs

) if the ejecta is jet-like.

In this section we asses the effect of these parameters, and consider also the situation
where E

0
and Γ

0
have an anisotropic distribution in the ejecta, which, in the simplest

case, introduces one more parameter representing the angular scale of such anisotropy.
We compare our numerical results to the observed X-ray (2–10 keV), optical (V magni-
tude) and radio (4.9 GHz) afterglows. We will be looking in particular for the parameter
values that yield X-ray and/or optical light-curves similar to GRB 970508, for which a
fairly uniform time coverage is available. The synchrotron light-curves presented in this
chapter are calculated using the numerical approximations given in Appendix A.

5.6.1 Spherically Symmetric Ejecta

The simplest case is that of spherically symmetric ejecta with a single impul-
sive input of energy. Under the simplifying assumptions of a relativistic and adiabatic
remnant, the equations (5.37) – (5.40) predict the asymptotic radio, optical and X-ray
afterglow. For the range of times considered here, ν

p
is below optical frequencies and

only the radio emission shows a peak. This peak generally occurs before ν
p
reaches few

GHz, and it is due to the remnant’s transition from the relativistic to the non-relativistic
regime. For a homogeneous external medium (α = 0), radiative electrons and p = 2.5,
the above-mentioned equations for a relativistic remnant yield for ν > ν

p
(optical and

X-ray fluxes)

F
O,X

∝ ε1/8
B

ε
3/2
e

ζ
−1/2

E
9/8
0

T
−11/8

, (5.45)
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while radio flux F
R
is given by equation (5.37). If electrons are adiabatic, then

F
O,X

∝ ε7/8
B

ε
3/2
e

ζ
−1/2

E
11/8
0

n
1/2
d

T
−9/8

, (5.46)

F
R
∝ ε1/3

B
ε
−2/3
e

ζ
5/3

E
5/6
0

n
1/2
d

T
1/2

. (5.47)

These analytical approximations are consistent, within their range of validity,
with the numerical results shown in Figure 5.3. For all the the afterglows shown in
Figure 5.3, the γ

m
-electrons become adiabatic for T between 0.01 and 10 days, while

the remnant enters the non-relativistic phase at times between 10 and 300 days, when a
slow but steady steepening of the light-curves can be seen. Figure 5.3 also shows (with
symbols) observational data taken from IAU Circulars, van Paradijs et al. (1997), Sahu
et al. (1997), Frail (1997), Piro et al. (1998) or inferred from the data presented by
Galama et al. (1997), Bartolini et al. (1998), and Sokolov et al. (1998). The numerical
results are not meant to be fits to the observational data.

If the optical and X-ray electrons are radiative, the afterglows arising from fire-
balls with larger initial energy or energy release parameters are brighter, as implied
by equation (5.45). Fireballs with harder electron distributions lead to afterglows that
have a shallower temporal decay (Figure 5.3[a2]), as predicted by equations (5.38) and
(5.40). If the electron injection fraction ζ is sufficiently small, the radio afterglow can

be undetectable (see eq. [5.47]). The peak of the radio light-curve for the ζ = 10
−2

afterglow shown in Figure 5.3 is ∼ 10µJy. For the same afterglow the synchrotron peak
from γ

m
-electrons remains above the optical range for several days, leading to an optical

afterglow that is flat for the same duration (see Figure 5.3[a2]). The non-detection of
radio emission from a remnant that yields observable optical afterglows could also be
due to an inhomogeneous external medium: the peak of the radio emission of the α = 2
(pre-ejected wind) case shown in Figure 5.3 is ∼ 30µJy.

There are some important differences between the light-curves arising from a fire-
ball running into a homogeneous external medium and into a pre-ejected wind. First
note that Figure 5.3(b1) shows that when the electrons emitting at fixed frequency (here,
in X-ray) are radiative, the afterglow is indeed independent of the external medium pa-
rameters n

d
and α (if α ≤ 1), as predicted by equation (5.38). The optical and the

radio afterglows depend on α (this is also true for the X-ray light-curve if α > 1),
indicating that in these cases the electrons that radiate most of the light in the corre-
sponding energy bands are adiabatic (eqs. [5.39] and [5.40]). In a relativistic remnant,

the lab-frame synchrotron cooling timescale t
sy
∝ Γ/(γ

e
B
2
) for electrons radiating at

a peak frequency ν
p
(γ
e
) ∝ γ

2
e
BΓ > ν

p
(γ
m
) equal to a fixed observing frequency ν is

t
sy
∝ ν−1/2(Γ/B)3/2, leading to:

t
sy
∝ ε−3/4

B
Γ
α/2
0

E
−α/4
0

n
−(3−α)/4
d

ν
−1/2

t
3α/4

. (5.48)
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which is constant in time for a homogeneous external medium, and increases as t
3/2

for a pre-ejected wind. The adiabatic cooling timescale increases as t, if the comoving
density tracks the post-shock density. Therefore the electrons radiating above ν

p
(i.e. in

optical and X-ray) that are radiative, remain so during the entire afterglow if the ex-
ternal medium is homogeneous but eventually become adiabatic if the fireball interacts
with a pre-ejected wind. The radiative regime of the electrons that emit at a given
frequency changes with the index of the external medium, as implied by the increase
of t

sy
with α (eq. 5.48), and as suggested by the light-curves shown in Figure 5.3(b1)

and 5.3(b2): for α = 0 the X-ray and optical electrons are radiative, for α = 1 only
the electrons emitting in X-ray are radiative, while for α = 2 they are all adiabatic.
Another important difference between the homogeneous and pre-ejected external media
models is manifested by the duration of the relativistic phase. From equation (5.35) one
can calculate the dependence on model parameters of the time T

nr
when the remnant

becomes non-relativistic (Γ <∼ 2):

T
nr
∝ (E

0
/n
d
)
1/3

Γ
2α/(9−3α)
0

. (5.49)

Obviously, T
nr
is Γ

0
-independent for α = 0, but it depends strongly on the fireball initial

Lorentz factor in the case of a pre-ejected wind: T
nr
∝ Γ

4/3
0

, implying that in this case

the relativistic phase lasts >∼ 100Γ
4/3
0,2

times longer than in the homogeneous external

medium case. The optical brightness of the α = 2 afterglow is correspondingly weaker,
as shown in Figure 5.3(b2).

We have ignored the effects of low-frequency synchrotron self-absorption in the
radio range, therefore the Figures 5.3(a3) and 5.3(b3) give essentially an upper limit
to the optically thin radio flux expected in this case. A simple analytical deriva-
tion of the absorption frequency is straightforward (Mészáros & Rees 1997), but it
can easily lead to misleading results, since the fireball contains electrons with ran-
dom Lorentz factors that span more than one order of magnitude, all emitting and
absorbing the synchrotron radiation. Taking into account only the newly shocked elec-
trons and ignoring a possible low-energy tail of the electron distribution below γ

m
,

it can be shown (Panaitescu & Mészáros 1998) that the self-absorption frequency is

ν
ab
∼ 6.4 (10 ε

B
)
1/5

(10 ε
e
)
−1
n
3/5
0

E
1/5
0,52

T
0
GHz (at redshift z = 1) for a relativistic

remnant and adiabatic electrons, where E
0,52

= E
0
/(10

52
ergs) and n

0
= n

d
/(1 cm

−3
).

This result is valid until the remnant becomes non-relativistic or until the shocked ma-
terial escape sideways, if the remnant is a jet. Therefore the optical thickness is τ = 1.6
at 4.9 GHz for ε

e
= ε

B
= 0.1, n

0
= 1 and E

0,52
= 1, indicating that the radio fluxes

shown in Figures 5.3(a3) and 5.3(b3) are overestimated by a factor of τ(1− e−τ )−1 ∼ 2.
Post-shock mild re-acceleration of the cooling electrons or an electron (acceleration) in-
jection fraction ζ below unity can further decrease the radio flux by reducing the number
of the low energy electrons in the remnant.
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In its simplest form considered in Figure 5.3, the fireball shock model obviously
cannot explain departures from the power-law decay, such as observed in the optical
afterglow of GRB 970508 near T ∼ 2 days. A brightening of the afterglow may arise if
there is a delayed energy input, as illustrated in Figure 5.4. The energy injection index
s was set equal to a large value so that the input resembles a second relativistic shell
that catches up with the initial fireball. For a delayed energy input E

inj
comparable

to or larger than the energy of the remnant E
0
, the light-curves exhibit a bump at the

time of interaction between the two shells. The larger E
inj

is, the more prominent

is the resulting bump. For lower Γ
m
, the collision takes place later, and this might

explain a secondary departure from a power-law, apparent in the optical afterglow of
GRB 970508 at T >∼ 50 days. (the flattening of the light-curve could also be due to a
constant contribution of the host galaxy – Pedersen et al. 1998).

In Figure 5.4 the minimum Lorentz factor Γ
m
was chosen such that the numerical

light-curve exhibits the brightening observed in the 970508 optical afterglow after T = 1
day. All light-curves shown in Figure 5.4 were calculated using the same fireball initial

energy E
0
= 6×1051 ergs, delayed energy injection (from refreshed shocks) E

inj
= 3E

0

(yielding a total energy E
0
+ E

inj
= 2.4 × 10

52
ergs), and Γ

m
= 11, and the same

set of parameters (n
0
, α; ε

B
; ε
e
). The model shown with dotted lines corresponds to

constant parameters p and ζ, chosen such that the slope of the late optical power-law
decay and the early time radio fluxes are close to the observed ones. The corresponding
X-ray afterglow is too faint, while the early optical and late radio afterglows are too
bright. Generally, such discrepancies cannot be resolved by adjusting the dynamical
parameters (E

0
, E
inj
,Γ
m
;n
0
, α) or the energy release parameters (ε

B
; ε
e
), as changes

in these parameters alter the multi-wavelength light-curves in a similar fashion. However,
a physically plausible possibility is that changes occur in the parameters p and ζ which
determine the shape of the synchrotron spectrum, and these can alter the light-curve in
a given band without significant changes in other bands.

For times T >∼ 0.3 days in Figures 5.3 and 5.4, the synchrotron peak ν
p
is below

the optical band, so that the relative intensity of the optical and the X-ray fluxes is
determined only by the slope of the spectrum above ν

p
. This suggests that a brighter

X-ray afterglow and a dimmer optical light-curve can be obtained by using a flatter
electron index p, as illustrated by the early X-ray and optical fluxes shown with dashed
lines in Figure 5.4. If p were held constant at 1.4 during the entire afterglow, the resulting
optical light-curve would decay much slower than for p = 2.3 (see eq. [5.38]), and thus
would be clearly inconsistent with the observational data. A better simultaneous fit of
the X-ray and optical afterglows can be obtained if one assumes that the electron index
changes during the evolution of the remnant. In the model shown with dashed lines in
Figure 5.4, we considered that the index p = 1.4 is constant until the second shell of
ejecta catches up with the fireball (T ∼ 2 days), and changes to p = 2.3 at the end of
the collision between the two shells. The indices p before and after the delayed energy
input were chosen so that the numerical result fits the early X-ray to optical emission
ratio and the decay of the observed optical light-curve. The electrons that radiate most
of the V -band light shown in Figure 5.4 are radiative, with some smaller contribution
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from the adiabatic γ
m
-electrons, implying that the optical spectrum should have a slope

close to −p/2. The change from p = 1.4 to p = 2.3 at T ∼ 2 days is consistent with the
optical spectral slopes reported by Djorgovski et al. (1997) (−0.65± 0.30 at T ∼ 1 day),
Metzger et al. (1997) (−0.9 ± 0.3 at T ∼ 2 days), and Sokolov et al. (1998) (−1.1 for T
between 2 and 5 days).

The radio afterglow at times shown in Figure 5.4 (T > 3 days) depends on the
late value of index p. Unlike the emission at optical and X-ray energies, the emission at
radio frequencies is due to all the electrons in the remnant, whether they are the first
accelerated electrons (that have cooled and emit only in radio) or the more energetic, re-
cently accelerated electrons (that radiate at higher frequencies but extend their emission
down into radio through the low energy synchrotron tail of slope 1/3). The later elec-
trons slightly dominate the radio emission after T ∼ 10 days, and lead to the large fluxes
shown with dotted line (ζ = 0.2) in Figure 5.4. This contribution to the radio emission
is diminished if the recently accelerated electrons have a higher post-shock acceleration
Lorentz factor, which can be achieved if the electron injection fraction ζ is decreased (see
eq. [5.21]). This is shown by the dot-dashed line in Figure 5.4, where it was assumed
that the electron acceleration injection fraction drops from ζ = 0.2 to ζ = 0.05 when the
remnant approaches the non-relativistic regime (Γ ∼ 3). At the same time the optical
afterglow exhibits a brightening due to the fact that for ζ = 0.05 the synchrotron peak
ν
p
is closer to the optical range.

5.6.2 Axially Symmetric Jets

Jet-like outflows obviously reduce the energy requirements of fireballs, which, if

extending over 4π sr, would require a total energy above 10
52
ergs to produce the optical

fluxes observed in the afterglow of GRB 970508. In Figure 5.5(a) we show light-curves
arising from jet ejecta whose properties are isotropic within the opening angle θ

0
. From

these numerical results, we can draw several conclusions:
(1) As expected, the light-curve decay steepens when the observer sees the edge of the

jet. This is shown by the departure of the dotted line (jet, observer located on the jet
axis) from the thick solid line (isotropic fireball) around T = 6 days. The smaller θ

0
,

the earlier such a steepening occurs.
(2) Jets seen at angle θ

obs
< θ

0
do not exhibit the rise shown by jets with θ

obs
> θ

0
.

(3) The larger θ
obs

, the more delayed and dimmer the afterglow peak. For energies

E
0
<∼ 1051 ergs, the optical emission from jets located at z = 1 that are seen at an angle

θ
obs

> 2 θ
0
, is unlikely to be detected.

The afterglow that fits best the observations is obtained when energy injection is in-
cluded. The thin solid line in Figure 5.5(a) is for a total delayed energy input 4 times

larger than the initial energy of the jet, leading to a total available energy of 1.9× 1051
ergs.

In a more realistic scenario, the explosive event that generates the ejecta may
lead to an angle-dependent energy distribution, as considered by Mészáros et al. (1998).
Figure 5.5(b) (which is not meant as a fit to the afterglow of GRB 970508), shows
the effect of such an anisotropic distribution for the particular choice where the energy
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per unit solid angle in the jet is an exponential in the polar angle θ: (dE
0
/dΩ)(θ) =

(dE
0
/dΩ)

axis
exp (−θ/θ

E
). For θ

E
> 0 the angular energy density decreases toward

the jet edge while for θ
E
< 0 it increases. The same angular dependence (with the

same angular scale θ
E
) was assumed for Γ

0
. The initial Lorentz factor has no effect

on the light-curve if the external medium is homogeneous, as shown in section 5.5; the
motivation for this choice was simply an isotropic mass distribution in the ejecta. To
maximize the effect of the anisotropy in the ejecta, the observer was placed on the jet
axis, and a large jet opening was chosen in order to separate this effect from the “edge

effect”. In all cases, the energy density at θ = 0
o
was set to 10

52
/π ergs/sr, which leads

to the following total jet energies: E
0,52

= 1 for the isotropic distribution (θ
E
= ∞),

E
0,52

= 0.2 for θ
E
= θ

0
/3 and E

0,52
= 8.6 for θ

E
= −θ

0
/3. The light-curve decays

agree qualitatively with the results of Mészáros et al. (1998): if dE
0
/dΩ > 0, then

more energy is emitted from fluid moving at larger angles relative to the LSC, arriving
later at detector, and yielding shallower decays than in the isotropic case. Conversely, if
dE

0
/dΩ < 0, then most energy is radiated away by the fluid moving close to the LSC;

this radiation arrives earlier at the detector and leads to steeper light-curve decays.
The case where the observer is located off the jet axis is considered in Figure

5.5(c). The parameters (dE
0
/dθ)

axis
and θ

E
were chosen so that the total energy of the

jet is the same in all cases. The conclusion that can be drawn from Figure 5.5(c) is that,
for all other parameters fixed, the light-curve seen by an off-axis observer is determined
mainly by the total energy of the jet and not by how this energy is distributed. The
ironing out of the details of the angular energy distribution in an axially symmetric jet
is due to the differential relativistic beaming of the radiation emitted by fluid moving at
angles between θ

obs
− θ

0
and θ

obs
+ θ

0
relative to the LSC.

Jets with the parameters given for Figure 5.5(a) and 5.5(c) can explain the rise
and decay of the light-curve of GRB 970508 after T ∼ 0.5 days. The emission detected
in the early part (T <∼ 0.5 day) of the optical afterglow may be due to some ejected
material lying outside the main jet. In Figures 5.5(a) and 5.5(c) we show with dot-

dashes lines the emission from such a large angle outflow, containing E
0
= 7.0 × 1050

ergs, ejected isotropically outside of the central jet of opening angle θ
0
= 10

o
, whose

axis of symmetry is offset by θ
obs

= 14
o
relative to the LSC. The sum of the light-curves

from such a two-component ejecta (central jet and large angle outflow) matches well the
features observed in the afterglow of GRB 970508. The X-ray afterglow can be fitted as
before together with the optical, by making an appropriate choice of the electron index
p in the jet and in the large angle outflow.

5.7 Narrow Jets. Sideways Expansion Effects

We consider now the case of narrow jets, with initial angle θ
0
of few degrees or

less, for which there is a significant sideways expansion (due to the pressure with the
shocked fluid) before the onset of the non-relativistic phase. For simplicity we restrict our
attention to homogeneous external media and to the case where there is no delayed energy
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injection. We make the assumption that at any time, the remnant is axially symmetric.
This is equivalent to assuming that the initial energy distribution in the ejecta and the
external gas are isotropic and that the physical parameters of the remnant respond on a
short time-scale to the effect of sideways expansion of the shocked gas.

The evolution of the opening angle θ of the remnant is given by dθ = c
s
dt
′
/r,

where c
s
= c/
√
3 is the comoving frame sound speed and t

′
is the comoving time. Using

Ω = 2π(1 − cos θ), it results that the remnant solid angle evolves as

r
dΩ

dr
=

√√√√Ω(4π − Ω)
3(Γ

2 − 1)
. (5.50)

To take into account the increase of the jet’s opening, the term Ω
0
in equation (5.3)

must be replaced by Ω and the terms representing the swept-up external medium in the
right hand sides of equations (5.29), (5.30), and (5.31) must be multiplied by a factor
Ω/Ω

0
.

Before the effect of the sideways expansion becomes important, the bulk Lorentz
factor of an adiabatic jet-like remnant running into and a homogeneous external medium
is given by

Γ = Γ
d
(r/r

d
)
−3/2

. (5.51)

The radius r
j
at which the remnant Lorentz factor has decreased to θ

−1
0
, i.e. when an

observer located on the jet’s symmetry axis ”sees” the jet’s edge, if the jet sideways
expansion until r

j
is ignored, is given by

r
j
= (Γ

d
θ
0
)
2/3

r
d
. (5.52)

Using equations (5.33) and (5.51) it can be shown that we have r ∝ T 1/4 and Γ ∝ T−3/8.
Taking the radius at which the jet’s angle is twice the initial one as the definition

of the radius r
b
where the sideways expansion becomes important, and using the equation

for r
b
derived by Rhoads (1999), we obtain

r
b
=

(
75

4

)1/3
r
j
=

(
75

8
Γ
2
0
θ
2
0

)1/3
r
d
. (5.53)

Equation (5.53) is valid only if the remnant is still relativistic at r
b
. Since the remnant

Lorentz factor at r
b
is Γ

b
= (2/5

√
3)θ
−1
0

(Rhoads 1999), this condition reduces to θ
0
�

0.1 rad ∼ 6o (Ω
0
� 4× 10−2 sr).

Equations (5.52) and (5.53) show that r
b
/r
j
∼ (75/4)

1/3 ∼ 2.7, where we used

Γ
d
= Γ

0
/
√
2, for consistency with Rhoads’ results, which is close to the value 0.62Γ

0
derived by PMR98. Therefore the jet edge effect should always be seen before that of
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the sideways expansion. Since T ∝ r4 for r < r
b
, the ratio of the observer times at which

the sideways expansion and jet edge phases begin should be T
b
/T
j
= (r

b
/r
j
)
4 ∼ 50.

As shown by Rhoads (1999), during the sideways escape phase Γ decreases expo-
nentially with radius:

Γ = Γ
b
e
−(r−r

b
)/r

e . (5.54)

The exponential constant can be cast in the form r
e
= (Γ

0
θ
0
)
2/3

r
d
= 0.47 r

b
. Thus

during the exponential regime

− d lnΓ/d(r/r
d
) = (Γ

0
θ
0
)
−2/3

. (5.55)

With the aid of equations (5.33) and (5.54) one can show that in the exponen-

tial regime Γ ∝ T
−1/2

, thus the non-relativistic phase begins at T
nr

= (1/4)Γ
2
b
T
b
=

(75 θ
2
0
)
−1
T
b
. Using equation (5.2), the times T

j
, T
b
and T

nr
can be calculated:

50T
j
= T

b
= (75 θ

2
0
)T
nr

= 1.0

(
1 + z

2

)(ε
0,54

n
0

)1/3
Ω
4/3
0,−3 day , (5.56)

where ε
0,54

is the initial energy per solid angle in units of 10
54
erg sr

−1
, n
0
is the external

medium number density in cm
−3

and Ω
0
= 10

−3
Ω
0,−3 sr.

The dynamics of adiabatic conical remnants is shown in Figure 5.6 As can be seen
the exponential regime (i.e. the flattest part of each curve) is less evident for ejecta whose

solid angle is larger than ∼ 10−2 sr, when the onset of the non-relativistic regime occurs
before the sideways expansion has a significant effect on the remnant dynamics. For a

jet with E
0
= 10

51
ergs and Ω

0
= 10

−3
sr (θ

0
= 1

o
), which the case shown in Figure 5.6

with dotted lines, equation (5.56) predicts that the jet edge is seen at T
j
= 0.5 hours,

the exponential regime starts at T
b
= 1.0 day and ends at T

nr
= 44 days. Numerically

we obtain that Γ = θ
−1

at T
j
= 1.0 hours, θ being the jet angle, T

b
= 0.35 days and

T
nr

= 37 days for Model 1, and 1.2 hours, 0.35 days and 41 days, respectively, for Model

2. Note that the numerical and analytical results are in good agreement for T
nr
.

The discrepancy for the T
j
and T

b
values arises from the fact that in the analytical

derivation the effect of the sideways expansion on the remnant deceleration during the
power-law phase was ignored. Because there is some sideways expansion during this

phase, the jet angle θ is increasingly larger than θ
0
, and Γ drops below θ

−1
after it

has reached the value θ
−1
0
, thus the analytical T

j
underestimates the numerical one.

Numerically we found that when Γ = θ
−1

the jet angle is θ
j
= 1.2 θ

0
. In the analytical

treatment presented by Rhoads (1999) the increase in the swept-up mass due to the jet
broadening during the power-law phase is ignored, which means that, for the same radius,
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the analytical Γ is larger than the numerical one, thus the analytical comoving time and
the jet angle at given r are smaller than the values obtained numerically. Therefore the
analytical T

b
overestimates the time when θ = 2 θ

0
. Numerically we found that at T

b
given by equation (5.56) the jet angle is θ = 2.5 θ

0
.

For the jet whose dynamics is shown in Figure 5.6 (θ
0
= 1

o
, Γ

0
= 500), equation

(5.55) predicts that during the exponential phase −d ln Γ/d(r/r
d
) = 0.23, which is less

than the values shown in Figure 5.6 at times after T
b
and before T

nr
: 0.33±0.08 forModel

1 and 0.30 ± 0.07 for Model 2. This is consistent with the fact that −d ln Γ/d(r/r
d
) ∝

r
−1
e
∝ r−1

b
and that the numerical r

b
is smaller than the analytical one.

The effect of the sideways expansion on the optical afterglow seen by an observer
located on the jet axis is shown in Figure 5.7(a). The initial energy per solid angle is the
same for all remnants, only the jet initial angle θ

0
is changed. The afterglow brightness

should be independent of θ
0
until T

j
, when the flow Lorentz factor has become sufficiently

low that the observer sees the edge of the jet. This feature is better seen if the sideways
expansion is ”switched off”, because in the case where it is taken into account there is a
non-negligible jet broadening until T

j
.

For the afterglows shown in Figure 5.7(a) Γ decreases to θ
−1

at T
j
= 0.005,

0.086, and 1.8 days for θ
0
= 1

o
, 3

o
, and 9

o
, respectively, if the jet broadening is not

taken into account (i.e. θ = θ
0
at all times), and 0.009, 0.16, and 4.1 days, respectively,

if the sideways expansion is accounted for. These are the times when photons emitted
from the forward shock along the remnant center–observer line (which is the jet axis
in this case) arrive at the observer. Photons emitted from the fluid located closer to
the contact discontinuity arrive up to twice later. For T < T

j
, photons emitted from

the forward shock regions moving at an angle Γ
−1

off this central line of sight arrive at

T = (1 − cos Γ−1)(r/c) ∼ (2Γ
2
)
−1
(r/c), which is factor 8 larger than the arrival time

from the forward shock T
FS

= (16Γ
2
)
−1
(r/c), as can be shown using equations (5.33)

and (5.51).
The times when the angle of the jets whose afterglows are shown in Figure 5.7(a)

reach twice their initial values are T
b
= 0.08, 1.3, and 27 days, for θ = 1

o
, 3
o
, and 9

o
,

respectively. The optical light-curves shown in Figure 5.7(a) steepen smoothly around
T
b
, while the light-curves of the non-broadening jets maintain the decay slopes they had

before T
b
(of course, T

b
has no meaning for a jet of constant opening). The light-curve

steepening that can be seen for the non-broadening θ
0
= 9

o
jet around T = 10 days is

due to the passage of the cooling break through the optical band.
It can be noticed that the slopes of the light-curves for non-broadening jets shown

in Figure 5.7(a) are not constant after the T
j
’s given above and before T

b
, as the remnant

geometrical curvature delays the photon arrival time from regions off the jet axis. More-

over, the received power per solid angle being proportional to [Γ(1−β cos δ)]−4, where δ
is the angle relative to the central line of sight at which an infinitesimal emitting region

moves, implies that at T
j
this power per solid angle from the jet edge (δ = θ

j
= Γ
−1
j
)
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is 16 times smaller than that from δ = 0, which leads to the conclusion that it should
take longer than just T

j
to see an afterglow dimming rate in excess of that existent

until ∼ T
j
(this is confirmed by the numerical results, as shown below). Put together

with the fact that T
b
∼ (7 ÷ 10)T

j
(see previous section) this suggests that the effects

arising from seeing the jet edge and from the sideways expansion may not be so clearly
distinguishable for the observer.

For the sideways expanding jets shown in Figure 5.7(a), the non-relativistic phase

begins at T
nr

= 11, 18 and 32 days (forward shock times) for θ
0
= 1

o
, 3

o
, and 9

o
,

respectively, while for the jets where sideways expansion was not taken into account in
the dynamics T

nr
= 59 days, independent of θ

0
.

The effect of the sideways expansion in the case where the observer is located
off the jet axis, at an angle θ

obs
relative to this axis, is illustrated in Figure 5.7(b).

The major difference from the θ
obs

= 0 case is that, shortly after the light-curve rises,

which happens later for larger θ
obs

, the broadening of the jet yields a brighter afterglow

than in the case where the sideways expansion is ignored. This is due to the fact that
for broadening jets there is some shocked fluid approaching the observer line of sight
toward the remnant center, along which the relativistic effects are maximal, while for
non-broadening jets it is only the decrease of the remnant bulk Lorentz factor that
”brings” the observer into the cone of the relativistically beamed radiation and thus to
see the afterglow.

5.8 Conclusions

We have presented an analytical treatment for the dynamics of an expanding
fireball, capable of following its evolution from the onset of the deceleration phase (r ∼
r
d
) until arbitrarily large times. The differential equations for the remnant dynamics

given here are valid in any relativistic regime. The major assumption underlying the
analytical derivations is that, at any time, the remnant is axially symmetric.

This analytical treatment takes into account a possible delayed energy input re-
sulting from an impulsive but uneven deposition of energy in the ejected material. For
beamed ejecta, it also takes into account the intensification of the remnant deceleration
due to the increase of the solid angle of the remnant and, thus, of the rate at which it
sweeps up external gas. The results presented above illustrate the effect of these two
factors. The treatment of the adiabatic losses and the calculations of the magnetic field
and remnant thickness require a prescription for how to calculate the remnant volume.
We considered two models for this: Model 1 is based on the assumption that, if the
accumulation of swept-up gas is subtracted, the remaining increase of the lab frame vol-

ume is due only to the r
2
increase of the remnant area, and Model 2, which is based on

the assumption that the density profile behind each shock is uniform. The two models
for the comoving volume calculation lead to significant differences in remnant dynamics
when there is a sharp delayed energy input, as shown in Figure 5.2, and in the case of
beamed ejecta, as shown in Figure 5.6.

In section 5.5 we have presented the most important analytical results on the
afterglow light-curve. They should be used with care when making comparisons with
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observed power-law decays, as electrons with different random Lorentz factors can be
in different radiating regimes. Generally, those electrons radiating in optical and X-
ray are radiative, while those radiating at radio frequencies are adiabatic, at least as
long as the remnant is relativistic. Moreover, the analytical light-curves do not take into
account the shape of the equal-arrival time surface, and assume that there is a one-to-one
correspondence between the lab-frame time of emission and the detector time. Numerical
calculations provide the environment where the effects arising from the viewing geometry
(the equal arrival time surface is not the same as the equal lab-frame time surface) or from
details of the energy release (e.g. an accurate tracking of the evolution of the electron
random Lorentz factor γ

e
) can be properly accounted for.

All of the models presented here still contain simplifying assumptions (e.g. axial
symmetry, power-law delayed energy input), which were taken as a starting point in
investigating the features of the numerical light-curves. While the present data do not
require it, relaxing these assumptions could lead to even more diverse afterglow light-
curves. The variety of behavior exemplified by the models we have discussed highlights
the potential importance of afterglow data as diagnostics for the dynamics and anisotropy
of the ejecta, and emphasizes how much more can be learned when the sample has grown
larger.
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Fig. 5.1. Evolution of −d log Γ/d log r for adiabatic (A = 1) and radiative (A = 0)
spherical remnants, with no delayed injection and homogeneous external medium. Pa-

rameters: z = 1, Γ
0
= 500, n

d
= 1cm

−3
and ε

0
≡ E

0
/Ω

0
as given in the legend, in
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. Thick curves correspond to Model 1, while thin lines are for Model

2. Obviously, the numerical results are the same for both models of adiabatic losses if
the remnant is fully radiative (A = 1). Note that a larger energy per solid angle in the
ejecta leads to a longer relativistic phase.
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the differences between the solutions obtained with the two models for adiabatic losses
are larger at times when most of the injection takes place, indicating that the adiabatic
cooling of the delayed shocked ejecta is the source of these differences.
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Fig. 5.3. The effect of the energy release (left graphs) and dynamical (right graphs)
parameters on the light-curve from a spherically symmetric fireball, calculated within
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its effect. Other parameters are: E
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ε
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= 10
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= 0.1, p = 2.5, ζ = 1 for graphs (b1)–(b3). Observational data: open
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C
magnitudes are shown as squares. Error bars are given

only for magnitude errors larger than 0.5. Graphs (a3) and (b3): triangles indicate upper
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electron re-energization would lead to lower radio fluxes.
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0
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0
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0
= 1, α = 0, ε

B
= 0.1,

ε
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symmetric remnant with the same parameters, except E
0
= 5 × 10

52
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o
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(b) Effect of an anisotropic angular distribution of energy inside a jet with θ
0
= 60

o
,

θ
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= 0
o
, (dE

0
/dΩ)

axis
= 10

52
/π ergs/sr. Other parameters (n

0
, α; ε
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, ε

e
, p) are the

same as for graph (a). The legend gives the angular scale θ
E
(see text). (c) The same

jet as in (a) seen at θ
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, but with different energy per solid angle distributions.

All jets have the same energy E
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= 1.5× 1051 ergs, isotropically distributed (solid line),

exponentially decreasing toward the jet edge (dotted line) or exponentially increasing
toward the edge (dashed line). Also shown in graphs (a) and (c) with dot-dashed lines
is the contribution from an ejecta which is isotropic everywhere outside of the jet with
opening angle θ

0
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o
and orientation θ
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o
. The isotropic component has an

energy 7 × 10
50
ergs (other parameters are as for [a]) and can account for the early

(T <∼ 1 day) afterglow emission.
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Appendix A

Synchrotron Spectrum

The calculation of the synchrotron emission in section 3.6 and chapter 5 is based
on a numerical approximation to the exact spectrum. This is done to avoid a repeated
calculation of the double integral that appears in the synchrotron function F (see below).
The computational effort can be further reduced by using the fact that F is a function
of the ratio ω/ω

c
, where

ω
c
=
3π

8

eB

m
e
c
(γ
2
e
− 1) (A.1)

is the synchrotron characteristic frequency averaged over the pitch angle. This allows one
to calculate a ”raw” synchrotron spectrum by assigning to ω

c
the energy P

sy
δt radiated

by an electron during a small lab-frame time interval δt, where

P
sy
=

1

6π
σ
Th
cB

2
(γ
2
e
− 1) (A.2)

is the frequency-integrated synchrotron power averaged over the pitch angle, to integrate
the raw spectrum over the entire evolution of the fireball/remnant, and obtain in the
end the synchrotron spectrum by spreading the raw one with the synchrotron function.

From equation (6.33) in Rybicki & Lightman (1979), the synchrotron power per
unit frequency P (ω) can be written as

P (ω) =
3
5/2

8π

P
sy

ω
c

F

(
ω

ω
c

)
; (A.3)

where

F (x) = x

∫ ∞
x

K
5/3

(ξ)dξ (A.4)

is the synchrotron function (equation [6.31c] in Rybicki & Lightman 1979) and

K
5/3

(ξ) =

√
π(ξ/2)

5/3

Γ(13/6)

∫ ∞
1

e
−ξy

(y
2 − 1)7/6dy (A.5)

is the modified Bessel function of 5/3 order (see equation [9.6.23] in Abramowitz &
Stegun 1965) and Γ(13/6) = 1.082.

The synchrotron function F is shown in Figure A.1, together with the low and
high frequency asymptotic approximations (Rybicki & Lightman 1979)

F (x) ∼ 2.15x1/3 x� 1 F (x) ∼ 1.25√xe−x x� 1 , (A.6)
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and the numerically derived approximation

F (x) ∼ 1.78x0.297e−x (A.7)

for mid-range frequencies. The synchrotron peak is at ω
p
= 0.29ω

c
, where F (ω

p
/ω
c
) =

0.92, which together with equation (A.3) leads to ω
p
P (ω

p
) = 0.17P

sy
, and the mean

synchrotron frequency is given by ω = 1.32ω
c
.

In the calculation of spectra and light-curves shown in chapters 3 and 5 we used

equation (A.7) for 5× 10−3 < x < 6 and equation (A.6) otherwise. The maximum error
of this approximation is 10% reached at x ∼ 6, the error being below 1% close to the
peak of the synchrotron function.

0 1 2 3 4 5 6
x

0.0

0.2

0.4

0.6

0.8

1.0

F
(x

)

Fig. A.1. The synchrotron function F (x). Thin continuous curves show the asymptotic
approximations given in equation (A.6), while the thin dotted shows the mid-frequency
approximation of equation (A.7). The latter is barely distinguishable from the exact
F (x) given by equation (A.4), shown with a solid continuous curve, at x ∼ 3. In the
range of interest, the approximation is better to 1%. F (x) peaks at x

p
= 0.92, where

F (x
p
) = 0.92, while x = 1.32.
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Appendix B

Inverse Compton Spectrum

We consider here the spectrum resulting from the up-scattering of a monochro-
matic photon field by an electron with random Lorentz factor γ

e
, and derive the numer-

ical approximations for the peak energy and inverse Compton power used in chapter 3.
This spectrum depends in a non-trivial way on ε

0
, the energy of the incident photon,

assumed to satisfy ε
0
< γ

e
m
e
c
2
, and on γ

e
, so that one cannot reduce the computa-

tional effort by first calculating a raw inverse Compton spectrum during the simulation
of the fireball evolution, and then spread it at the the end of the simulation, as can be
done with the synchrotron spectrum (appendix A). Consequently, we calculate the up-
scattered spectrum from an electron by assigning the entire radiated power to the peak of
the inverse Compton spectrum. Alternatively, the mean energy of the emergent photon
can be used; the resulting fireball spectra are not much different, because the ratio of the
peak and mean energies is at most 1.83 in the Thomson regime, the two energies being
practically equal for scatterings occuring in the Klein-Nishina regime. The monochro-
matic approximation for the inverse Compton spectrum from a single electron is quite
acceptable because the integration of the GRB spectrum over the electron distribution
spreads it over much more than the breadth of the up-scattered spectrum from a single
electron. We have checked that the effect of this approximation is indeed negligible by
using the full inverse Compton spectrum in one (and too long) numerical simulation.

Equation (2.48) derived by Blumenthal & Gould (1970) gives the energy distrib-
ution of the up-scattered photons:

P (ε) = 3σ
Th
cn
0
F
ε
0
[q(ε)] , (B.1)

where n
0
is the number density of the pre-scattering photons and

F
ε
0
(ε) =

ε

4γ
2
e
ε
0

f
ε
0
(ε) , f

ε
0
(ε) =




 (4x

0
q)
2

2(4x
0
q + 1)

+ 2q + 1


 (1− q) + 2q ln q


 ,

(B.2)
for

ε
0
/4γ

2
e

1 + (ε
0
/γ
e
m
e
c
2
)
≤ ε ≤

4γ
2
e
ε
0

1 + (4γ
e
ε
0
/m

e
c
2
)

(B.3)
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and zero otherwise, is the inverse Compton function. In equation (B.1)

x
0
=

γ
e
ε
0

m
e
c
2
, q =

ε/4γ
2
e
ε
0

1− (ε/γ
e
m
e
c
2
)
. (B.4)

Calculating the peak energy ε
p
of the up-scattered spectrum is thus equivalent to

determining q
p
for which F

ε
0
(ε) reaches its maximum, from where

ε
p
=

4q
p
γ
2
e
ε
0

1 + (4q
p
γ
e
ε
0
/m

e
c
2
)
. (B.5)

With the aid of equation (B.2), the frequency-integrated radiated power can be written
in the form

P =

[
9

4γ
2

∫ 1
q
min

G
ε
0
(q)dq

]
P
Th

, (B.6)

where q
min

= {4γ2
e
[1− (ε

0
/γ
e
m
e
c
2
)]}−1,

G
ε
0
(q) =

4γ
2
e
q − 4x

0
q − 1

(1 + 4x
0
q)
3

f
ε
0
(q) , (B.7)

and

P
Th

=
4

3
σ
Th
cn
0
ε
0
(γ
2
e
− 1) (B.8)

is the inverse Compton power in the Thomson regime.

Figure B.1 shows the inverse Compton spectrum for γ
e
= 10

5
(a typical value

for γ
m
in external shocks) and different incident photon energies, corresponding to scat-

terings occuring in the Thomson regime (x
0
� 1) to the extreme Klein-Nishina regime

(x
0
� 1). Note that in the transition from the former to the latter regime, the spectrum

becomes narrower.
The q

p
for the peak of the inverse Compton spectrum (see equation [B.4]) and the

up-scattering power (equation [B.6]) as functions of the energy of the incident photon,

are shown in Figure B.2 for γ
e
= 10

5
. In the Thomson regime q

p
= 0.61, thus from

equation (B.5) ε
p
∼ 2.44γ

2
e
ε
0
, while in the extreme Klein-Nishina regime q

p
= 1/2

and ε
p
∼ γ

e
m
e
c
2
. The mean up-scattered photon energies in the two regimes are ε =

(4/3)γ
2
e
ε
0
and ε = γ

e
m
e
c
2
, respectively.
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For faster numerical calculations we use the approximations:

q
p
=
1

2
+

5.91 × 10−2

1 + 0.184x
1.31
0

+
5.09× 10−2

1 + 51.6x
1.45
0

, (B.9)

which gives q
p
with an error below 1%, and

P (x
0
) = P

Th
×

 [1 + 7.67 exp(2.43 log x

0
)]
−1

x
0
≤ 1

0.107x
−1.07
0

exp(−0.569 log2 x
0
) 1 < x

0
< 30

, (B.10)

which has an error that increases with v, reaching a maximum value of 10% at x
0
= 30,

where P (x
0
) ∼ 10−3P

Th
. The inverse Compton losses are severely reduced by the Klein-

Nishina effect at x
0
> 30, where P (x

0
) ∝ P

Th
/x
2
0
, and an accurate treatment of the

inverse Compton losses in this regime is not necessary. The approximations given by
equations (B.9) and (B.10) are shown in Figure B.2.
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Appendix C

Future Avenues of Research

There are several directions in which the research whose results were presented
here can be extended and improved.

Accurate calculations of a GRB’s optical counterpart emission must take into ac-
count the synchrotron self-absorption process, which could also explain the low energy
spectral indices larger than 1/3 (the maximum value allowed by the optically thin syn-
chrotron model) observed in some bursts (Preece et al. 1998). Pair-formation within the
shocked external medium could also deplete the lower energy photons, leading to steeper
spectral slopes, thus it also must be included in a more comprehensive modeling of GRB
emission.

The extension to three dimensions of the 1-dimensional hydro code presented in
chapter 2, which was used for GRB simulations presented in chapter 3, is required for
the study of burst features arising from the collision between a relativistic fireball and
inhomogeneities in the surrounding medium. Such collisions were studied by Dermer
& Mitman (1999) and may explain the complex temporal structure of bursts in the
classes 3 and 4 discussed in section 1.1. Simulations based on a complete treatment of
the hydrodynamics of these interactions and of the radiation emission are required for a
detailed comparison with well-established burst features such as the spectral softening
and the dependence on the observing energy of pulse shape and duration.

The extension to two dimensions of the semi-analytical approach presented in
chapter 5, which was used for calculations of GRB afterglows, would allow a more accu-
rate calculation of the emission at times when the sideways expansion of beamed ejecta
leads to significant angular gradients in the jet and, more generally, calculations of jet
dynamics and emission of radiation in the case of non-isotropic distributions of the initial
energy per solid angle. The latter case is of great importance for explaining the different
GRB-to-afterglow fluence ratios that have been observed and for determining the initial
opening angle of beamed ejecta. It may also provide a means of correlating the afterglow
features with the signatures of the cataclysmic process that released the ejecta.

Ultimately, a simulation of the dynamics and radiation emission from internal
shocks in unsteady winds, such as the one presented by Panaitescu, Spada &Mészáros (1999),
followed by the simulation of the afterglow dynamics and emission from external shocks
presented in chapter 5, is desirable. Such a complete treatment of the fireball evolution
would allow one to correlate the temporal features of the main GRB with those of the
ensuing afterglow.
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[59] Mészáros , P., & Rees, M. J. 1993, ApJ , 405, 278
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[81] Panaitescu, A. & Mészáros , P. 1999, ApJ, submitted
(http://xxx.lanl.gov/astro-ph/9810258)

[82] Panaitescu, A., Spada, M. & Mészáros , P. 1999, ApJL, accepted
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