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Abstract

In a partially linear model some covariates have a linear effect, while the effect

of others may be nonlinear. We perform Monte Carlo simulations to compare two

methods for testing the significance of covariates with (possibly) nonlinear effects.

Both methods use the residuals from fitting only the covariates that have a linear

effect. One of the methods is based on the sliced inverse regression (SIR) procedure

of Li (1991) applied on the residuals. The other is an ANOVA-type procedure

modeled after Wang, Akritas, and Van Keilegom (2008). We also use the two

methods for testing two datasets, historical spirit consumption in the UK and a

CO2 study, both of which have been described in the literature with partially linear

models. This study also serves as a preliminary investigation as to whether the

asymptotic theory developed by Li (1991) for the SIR procedure is also relevant

when residuals are used.
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Chapter 1. Introduction

Partially linear models define a general class of models in which one com-

ponent of the regression function is a linear function of unknown parameter

and the other component is an unknown function. In particular, this model

specifies that the response, Yi, is related to covariates Xi and Ti through

the equation

Yi = XT
i β + g(Ti) + ξi, = 1, . . . , n, (0.1)

where Xi = (Xi1, . . . , Xir) and Ti = (Ti1, . . . , Tis). The pairs (Xi,Ti) can

be either independent and identically (IID) distributed random variables

or fixed design points, the error variables ξi are IID with zero mean and

finite variance and are uncorrelated from (Xi,Ti), the β = (β1, . . . , βr) is

the vector of unknown parameters, and g() is an unknown function that

maps Rs into R1. Engle, Granger, Rice and Weiss (1986) were among the

first to consider this model and used it to analyze the monthly electricity

sales (Y ) for four cities using as covariates the price of electricity (X1),

income (X2), and the average daily temperature (T ).

In this thesis we will consider a heteroscedastic version of this model by

modeling the error variables ξi as:

ξi = σ(Xi,Ti)εi,

where the εi are IID with zero mean and finite variance σ2
ε , and σ(Xi,Ti) is

the standard deviation of the error variable ξi in (0.1). It will be assumed

that σ(Xi,Ti) remains bounded over the range of (Xi,Ti).

Partially linear models, which belong in the class of semiparametric models,
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have a broad range of applications including microeconomics and time

series analysis; see Härdle et al. 2000, Härdle et al. 2007, Zhu 2005, Engle

et al. 1986. Their practical appeal is further enhanced by the fact that the

parametric components can be estimated at a rate of
√
n, and thus can

avoid the curse of dimensionality which plagues the fully nonparametric

models, where the nonparametric function estimation precision decreases

rapidly as the dimension of the nonlinear variable, T, increases (Härdle et

al. 2000).

One such example is the analysis of the consumption of spirits in the United

Kingdom (UK) from 1980 to 1938 by You and Zhou (2005). They looked

at the relationship between annual per capita spirit consumption, Yt, as a

result of per capita income, Xt1, and price per spirit, Xt2 (both income and

price were deflated by a general price index and all data is in logarithmic

form). The original dataset was studied by A. R. Prest (1949), discussed in

Durbin and Watson (1951), and the dataset can be found in Fuller (1976).

Another example involves the analysis of how temperature affects the re-

lationship between net ecosystem CO2 exchange (NEE) and the photosyn-

thetically active radiation (PAR). The data consists of 1997 observation of

temperature (T), NEE, and PAR from 1999. A partially linear model was

fit to the data by Li and Nie (2008).

In this thesis we consider the problem of testing the significance of the non-

parametric component of the model (0.1). The two methods that will be

compared are: (1) ANOVA-type test of Wang, Akritas, and Van Keilegom

(2008) and (2) Li’s (1991) test based on sliced inverse regression (SIR). The

performance of these methods will be evaluated on the basis of their type

I error rate and power. When the null hypothesis that there is no nonlin-

ear component holds, the type I error rate should be close to the nominal

level of significance, which is set at 0.05. Under the alternative hypothesis,
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when the model consists also of a nonlinear component, the power should

be as large as possible. The simulation settings use univariate T, but the

extension to multivariate T will be discussed.

The simulations performed also serve as a preliminary investigation as to

whether the asymptotic theory developed by Li (1991) for the SIR proce-

dure is also relevant when residuals are used and when the regression model

is heteroscedastic. This is of particular interest in the context of partial

linear models, because fitting of the T covariates is much more problem-

atic when T is high dimensional. However, it is recognized that further

numerical studies should be performed before a clear picture emerges. In

particular, the present simulations use only a one-dimensional T covariate.

In this case, Li’s (1991) test procedure takes a particularly simple form

and the results of the present simulations cannot be extrapolated to higher

dimensional T. Moreover, the present simulations use residuals obtained

under the null hypothesis that the T covariates have no effect. A method

for fitting the X covariates when the T covariates are also in the model is

briefly discussed but not used in the present simulations.

This thesis is organized as follows: Section describes the ANOVA-type

test of Wang, Akritas, Van Keilegom (2008); Section describes the Sliced

Inverse Regression test; Section details the methods used for the Monte

Carlo simulations and the two data examples; Section presents the results

from the Monte Carlo simulations and the two data examples; and Section

contains the final discussion for the thesis including a brief introduction

to the alternative type of residuals.
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Chapter 2. The ANOVA-Type Test

The name ”ANOVA-type” is due to the fact that this test is a regression

adaptation of the test for testing the equality of group (or cell) means in

a high-dimensional heteroscedastic one-way ANOVA design developed in

Akritas and Papadatos (2004). A brief description of this test is given in the

next subsection, while its regression adaptation is presented in Subsection

High-Dimensional Heteroscedastic ANOVA

Suppose we have responses Yij, i = 1, . . . , n, j = 1, . . . , ki, where for each

i the Yij, i = 1, . . . , ki, are IID with mean µi and variance σ2
i , and are

interested in testing the equality of the means. Decomposing the means as

µi = µ+ αi, where µ =
1

n

n∑
i=1

µi, and αi = µi − µ

the null hypothesis can be written as H0 = αi = 0,∀i. Assuming normality

and homoscedasticity,

F =
MST

MSE
∼
H0

Fn−k,n(k−1), (0.2)

where MST =

∑n
i=1 ki[(Ȳi· − Ȳ··)]2

(n− 1)
, with Ȳi· = k−1

i

∑ki
j=1 Yij and Ȳ·· =

(
∑n

i=1 ki)
−1
∑n

i=1

∑ki
j=1 Yij, and MSE =

1

n

n∑
i=1

1

ki − 1

ki∑
j=1

(Yij − Ȳi·)2.

Relation (0.2) is approximately correct also under heteroscedasticity pro-
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vided the design is balanced, i.e. ki = k for all i; cf. Sheffe (1959), Section

10.4.

Without normality we need to use the asymptotic approximation. Two

types of asymptotic results are available, one where the number of groups

is fixed and the group sizes tend to infinity, and one where the number of

groups tends to infinity. In the brief description of the two results that

follows, it is assumed that ki = k and also σ2
i = σ2, for all i.

Consider first the case where n stays fixed and k →∞ (see Arnold 1981).

In this case it is fairly easy to establish that, as k →∞,

MSE =
1

n

n∑
i=1

S2
i

p−→ σ2 and MST =
1

n− 1

n∑
i=1

[
√
k(Ȳi. − Ȳ..)]2

d−→
H0

σ2χ2
n−1.

Thus, by Slutsky’s theorem,

F =
MST

MSE

d−→
H0

χ2
n−1/(n− 1), as k →∞.

Consider now the case where k stays fixed and n→∞. In this case it can

be seen that, under H0,

MSE
p−→ σ2 and MST

p−→ σ2.

Hence, k stays fixed and n → ∞, F
p−→ 1 under H0, which implies that a

test cannot be constructed. To construct a test in this case, one needs to

establish an asymptotic theory for
√
n(F − 1). The basic result is
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Theorem 0.1. If k ≥ 2 stays fixed and n→∞,

√
n(F − 1)

d−→
H0

N

(
0,

2k

k − 1

)
.

This and additional results including the heteroscedastic case can be found

in Akritas and Papadatos (2004).

The ANOVA-Type Test for Model Checking in Regression

Suppose we have data (Xi, Yi), i = 1, . . . , n, which follow the regression

model

Yi = m(Xi) + εi,

and we wish to test the hypothesis H0 = m(x) = C for all x, where C

is a constant. A conceptual connection between the regression model and

the high-dimensional one-way ANOVA can be established by considering

each level Xi of the covariate as a factor level. With this convention, the

hypothesis of a constant regression function corresponds to the ANOVA

hypothesis of equality of the means. However, the test of Akritas and

Papadatos (2004) cannot be used because, typically, there is only one ob-

servation per covariate value, whereas the asymptotic theory described in

Theorem 0.1 requires at least two observations per factor level.

To get around this difficulty, one constructs artificial replications for each

”group” (i.e., each specific value of the covariate) (see Wang et al. 2008).

The groups are constructed by creating a window, Wi, around each covari-

ates value Xi of size k, which contains Xi and the (k − 1)/2 covariates Xj
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that are closest to Xi on either side. More precisely we consider Wi as a

set of indices defined by

Wi =

{
j : |F̂X(Xj)− F̂X(Xi)| ≤

k − 1

2n

}
,

where F̂X is the empirical distribution function of the covariate values.

In the definition of MST and MSE, the Yij will be replaced with the Yj,

for j ∈ Wi, and here we will denote them as Vi1, . . . , Vik the k independent

observations from group i. Then we have:

Fn =
MSE

MST
,

where

MST =
k

n− 1

n∑
i=1

(V̄i· − V̄··)2,MSE =
1

N − n

n∑
i=1

k∑
j=1

(Vij − V̄i·)2.

Under certain conditions, detailed Lemma 2.1 in Wang et al. 2008, we can

look at the asymptotic distribution in two cases:

(1) If kn = k is fixed, then as n→∞,

n1/2(MST −MSE)→ N

(
0,

2k(2k − 1)

3(k − 1)
τ 2

)
,

where τ 2 =
∫ 1

0 σ
4(x)r(x)dx. (2) If n→∞ and kn →∞ such that knn

−1 →
0, then with τ 2 defined above,

(
n

kn

)1/2

(MST −MSE)→ N

(
0,

4

3
τ 2

)
,

7



An estimator for τ 2 can be used (Wang et al. 2008),

τ̂ 2 =
1

4(n− 3)

n−2∑
j=2

R2
jR

2
j+2,

where Rj = Yj − Yj−1, j = 2, . . . , n, denote the local residuals.

Chapter 3. Sliced Inverse Regression

When the dimension of the covariate dataset is greater than the dimension

of the response variable this can often lead to computation issues. One

way to alleviate problems of this sort is through a process called dimen-

sion reduction. Dimension reduction refers to the process of reducing the

number of covariates under consideration, and thus, reducing the dimen-

sions. Some methods for dimension reduction include: principle component

analysis (PCA), nonlinear dimensionality reduction methods, and cluster

analysis, to name a few. Here the use of sliced inverse regression (SIR) will

be evaluated. SIR is different from PCA in that in takes the response into

account.

Ker-Chau Li wrote a paper detailing the method of sliced inverse regression

as it applies to dimension reduction (Li 1999). For a true (unknown) model

such that,

Y = f(β1X, ...,βKX, ε) (0.3)

with the β are unknown row vectors, f is an unknown function in RK+1,

and we make the strong assumption ε ⊥⊥ X.
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Looking at the expected value, E(bTX|βT
1 X, ...,β

T
KX) = co+c1β

T
1 X+ ...+

cKβ
T
KX = c0 + cTBTX.

Theorem 0.2. Theorem 3.1 from Li (1991) states

[E(X|Y )− E(X)]∈span(βT
k

∑
xx

, k = 1, ..., K).

We can assume, without a loss of generality, that E(X) = 0. Let there be

a b s.t. βT
k

∑
xx b = 0,∀k. To show bTE(X|Y ) = 0, we have,

bTE(X|Y ) = b1E(X1|Y ) + ...+ bpE(Xp|Y )

= E(b1X1 + ...+ bpXp|Y )

= E(bX|Y )

= E[E(bTX|βT
1 X, ...,β

T
KX, Y )|Y ]

= E[E(bTX|βT
1 X, ...,β

T
KX)|Y ].

For the last step we use equation 0.3 and the assumption of ε ⊥⊥ X.

To show that this is zero, it suffices to show that:

E(bTX|βT
1 X, ...,β

T
kX) = 0,

or

E[E(bTX|BTX)2] = 0,

9



or

E[E(bTX|BTX)bTX],

or

E[c0 + cT1 B
TX)XTb] = E(c0X

Tb) + cTBTE(XXT )b = cBT
∑
xx

b = 0.

Here we make use of the fact that E(c0X
Tb) = 0 because E(X) = 0.

The test for sliced inverse regression on (Yi,Xi), i = 1, . . . , n, is conducted

in the following way:

1. Standardize X by an affine transformation to get X̃i = Σ̂
−1/2
XX (Xi −X),

for i = 1, ..., n, where Σ̂XX and X are the sample covariance matrix and

sample mean of X respectively.

2. Divide the range of Y into H slices, I1, . . . , IH ; let the proportion of the

Yi that falls into slice h be p̂h; that is, p̂h = 1
n

∑n
i=1 δh(Yi), where δh(Yi)

takes the values 0 or 1 depending on whether Yi falls into the hth slice,

Ih, or not.

3. Within each slice, compute the sample mean of the Xi’s, denoted by

m̂h, for h = 1, . . . , H, so that m̂h = (1/np̂h)
∑

Yi∈Ih X̃i.

4. Conduct a (weighted) principal component analysis for the data m̂h, for

h = 1, . . . , H, in the following way: Form the weighted covariance matrix,

V̂ =
∑H

h=1 p̂hm̂hm̂h
T , then find the eigenvalues and the eigenvectors for V̂ .

5. Let the K largest eigenvectors (row vectors) be η̂k, for k = 1, . . . , K.

Output β̂k = η̂kΣ̂
−1/2
XX , for k = 1, . . . , K and H ≥ K + 1.

That the K dimensions for reduction have been successfully picked can be
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checked using the companion output eigenvalues V̂ from Step (4) of the SIR

process. The asymptotic distribution of the average of the smallest p−K
eigenvalues, denoted by λ̄(p−K), for V̂ can be derived based on perturbation

theory for finite-dimensional spaces. For normal X, we have the following

result.

Theorem 0.3. Theorem 5.1 from Li (1991) states, if X is normally dis-

tributed, then n(p−K)λ̄(p−K) follows a χ2 distribution with (p−K)(H −

K − 1) df asymptotically.

We apply the methodology of Li on the residuals (from least squares re-

gression), which is not yet justified theoretically. As such, this is just a

preliminary investigation as to the effectiveness of this methodology. As

previously stated, the goal is to reduce the dimensionality of the nonlinear

portion.

For the purposes of this thesis we will use 2 slices, so we know K to be 1.

As such, the test simplifies into a two sample t-test.

Chapter 4. Methods

The software package R (R Development Core Team 2010) was used to

conduct Monte Carlo simulations to evaluate the performance of each test-

ing method and for the data example analyses. We focused on the simplest

case here, that is when the nonlinear component is one dimensional. This

was done to ease the computations.

For both the Monte Carlo simulations and the data example first the linear
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component of the model was fit using least squares and then the residu-

als were used to test if the nonparametric component existed, using: (1)

ANOVA-type test of Wang, Akritas, and Van Keilegom (2008) and (2)

sliced inverse regression. We discuss alternative methods of estimation for

the linear and nonparametric components in the discussion section.

Monte Carlo Simulations

In each case 1,000 simulations were performed.

The X values were generated uniformly from
1

100
to 1 at intervals of

1

100
and then standardized. The T values were generated from the normal

distribution with a specified mean and standard deviation. The Y vector

was generated such that Y = α + βX + mXdZ + g(T), where α is the

intercept from the linear portion, β is the slope from the linear portion,

mXdZ are the heteroscedastic errors, and g(T) is the non-linear function of

T. The heteroscedastic errors, mXdZ, where m is a multiplier, d is a power

value, and Z are IID from the normal distribution with a mean of zero and

a specified variance. The simplest case is when the null hypothesis is true,

i.e., g(T) = 0. Additional simulations were run with the g(T) function

becoming more different from the null hypothesis. More details of the

function, g(T) can be found in Table 2. For the ANOVA-type test the

group size, or window, was 5.

Data Example: UK Spirit Consumption

Data were collected on the consumption of spirits in the United Kingdom

from 1870 to 1938. The dependent variable is the annual per capita spirit
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consumption, yt, and the covariates are per capita income, xt1, and price

per spirit, xt2 (both income and price were deflated by a general price index

and all data is in logarithmic form). The original dataset was studied by A.

R. Prest (1949), discussed in Durbin and Watson (1951), and the dataset

can be found in Fuller (1976, on page 427).

The data were read into R and then the linear component of the model

was fit using the built in least squares package, ’lm’. We then tested the

null hypothesis that the nonlinear component did not exist, with residuals

as the dependent variable and time (year) as the independent variable.

Data Example: Net Ecosystem CO2 Exchange

Data were collected at various sites at different elevations from 1999 to

2002. A subsection of that data from a subapline forest (approximately

3050 meters above sea level) in 1999 was analyzed. The data consist of

measurements of the net ecosystem CO2 exchange (NEE), temperature

(T), and the photosynthetically active radiation (PAR). A proposed model

for this relationship is NEE = R(T )+m(PAR)+ε, where R(T ) is a simple

linear model as a function of temperature and m(PAR) is a nonlinear

function of PAR (Li and Nie 2008).

Chapter 5. Results

Monte Carlo Simulations

When the null hypothesis is true, i.e., g = 0, both the ANOVA-type method

and the testing method based on Li’s SIR have p-values near the desired
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level of 0.05 (see Table 1).

When the alternative hypothesis is true, i.e., g 6= 0, we see that the form

of g matters (see Tables 2, 3, and 4). When g is a trigonometric function,

such as cos or sin, we see that the ANOVA-type test has higher power than

the test based on Li’s SIR. Additionally, when g is an even power function

the ANOVA-type test has higher power that the test based on Li’s SIR.

However, when g is a power function where the power is an odd number

then the test based on Li’s SIR does nearly as well as the ANOVA-type

test in terms of having high power, in fact, sometimes the test based on

Li’s SIR does better than the ANOVA-type test.

Futhermore, we see that the strength of within group variability affects

the ANOVA-type test’s ability to detect a pattern (see Figures 1, 2, 3, 4,

5, and 6). When the g function is sin(.2T)4 there is less within group

variability, for the ANOVA-type test, compared to when g = sin(.4T)4),

and as a result the power is higher for the former (see Tables 2, 3, and 4).

The ANOVA-type test appears to conservative under H0, that is when the

nonlinear portion does not exist. When we add in homoscedastic errors,

the ANOVA-type test becomes less conservative and the test based on Li’s

Sliced Inverse Regression becomes more conservative.

Data Example: Spirit Consumption in the UK

You and Zhou (2005) fit a partially linear model to the UK spirit consump-

tion data and found that this model fit the spirit consumption data better

than the time series model of Fuller (1976). So prior to testing there was

a strong indication that the null hypothesis, that the nonlinear portion

did not exist, would be rejected. Only the ANOVA-type test results in the
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rejection of the null hypothesis, with a p-value of 0.0000 (see Table 6). The

test based on Li’s SIR fails to reject the null hypothesis, with a p-value of

0.1463. We can see that the residuals have a pattern that the test based

on Li’s SIR cannot detect, since the range of the T values (year) will be

similar in each of the slices (Figure 7).

Data Example: Net Ecosystem CO2 Exchange

Li and Nie (2008) fit a partially linear model to the net ecosystem CO2

exchange data, in which NEE was related to temperature through a linear

component and related to PAR by a nonparametric function (Li and Nie

2007, 2008). The data are shown in Figure 8. Both the ANOVA-type test

and the Sliced Inverse Regression test result in the rejection of the null

hypothesis, with both tests resulting in a p-value of 0.0000 (see Table 7).

Chapter 6. Discussion

For this thesis we used the residuals obtained by least squares fitting of

the X covariates under the null hypothesis which specifies that the T co-

variates have no effect. Another type of residuals comes from estimating

the methods of Speckman (1988) and Robinson (1988).

Following their method we can take equation 0.1 and rearrange it to yield,

Yi − XT
i β = g(Ti) + ξi. From this we can see that an estimator of

the nonlinear component is ĝ(Ti) =
∑n

j=1(Yj − XT
j β)Wij, for a suit-

able set of weights Wij = Wj(Ti). Solving for Yi we get, Yi = XT
i β +∑n

j=1 YjWj(Ti) − (
∑n

j=1 Wj(Ti)X
T
j )β. Rearranging the equation we get

Yi−
∑n

j=1 YjWj(Ti) = (XT
i −
∑n

j=1 Wj(Ti)X
T
j )β+ξi. This leads to a new
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regression equation:

Ỹi = X̃i

T
β + ξi, (0.4)

where Ỹi = Yi −
∑n

j=1 YjWj(Ti) and X̃i

T
= XT

i −
∑n

j=1 Wj(Ti)X
T
j .

We suspect that the choice of residuals should not have a large effect on

the type I error rate, but that the type II error rate will be effected by the

choice of residuals especially if there is dependence between X and T. We

believe that the residuals from equation 0.4 will provide better power than

the residuals from least squares, which is what was used for the purpose of

this thesis.

Finally, there are some limitations of the work presented in this thesis.

First, the nonlinear portion consisted of just one covariate so the procedure

based on Li’s SIR reduces to a simple t-test. If T were multivariate than

we would have applied Li’s actual procedure for SIR (described in Section

). Additionally, we are fitting the residuals from least squares regression,

when it would be better to use the residuals that come from fitting the

linear model while taking the nonlinear portion into account (as described

by Equation 0.4). Another minor limitation is that we only explored using

the test based on Li’s SIR when we have two slices.
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Table 1: Results from testing H0, g = 0, from Monte Carlo simulations. Number of
simulations run each time is 1,000. The sample size is 100 and for the ANOVA-type test
the window width was 5.

Data generating equation P-value ANOVA-type test P-value Li’s test

Y = 2 + X + Z, where Z ∼norm(0,1) 0.038 0.058
Y = 2 + X + XZ, where Z ∼norm(0,1) 0.038 0.058
Y = 2 + X + 3XZ, where Z ∼norm(0,1) 0.038 0.058
Y = 2 + X + 3X2Z, where Z ∼norm(0,1) 0.023 0.041
Y = 2 + 5X + 3X2Z, where Z ∼norm(0,1) 0.023 0.041
Y = 2 + X + 3X2Z, where Z ∼norm(0,102) 0.023 0.041
Y = 2 + 5X + 3X2Z, where Z ∼norm(0,102) 0.023 0.041
Y = 2 + X + 3X2Z, where Z ∼norm(0,1002) 0.023 0.041
Y = 2 + X + 3X3Z, where Z ∼norm(0,1) 0.021 0.048
Y = 2 + X + 3X4Z, where Z ∼norm(0,1) 0.017 0.057
Y = 2 + X + 3X3Z, where Z ∼norm(0,102) 0.021 0.048
Y = 2 + X + 3X3Z, where Z ∼norm(0,1002) 0.021 0.048

Table 2: Results from testing H0, g = 0, from Monte Carlo simulations when H0 is not
true. Here T ∼N(0,36) and the form of g(T) is defined in the table below. Number of
simulations run each time is 1,000. The sample size is 100 and for the ANOVA-type test
the window width was 5.

Data generating equation Power ANOVA-type test Power Li’s test

Y = 2 + X + XZ + cos(.4T)4, where Z ∼norm(0,1) 0.416 0.059
Y = 2 + X + XZ + sin(.4T)4, where Z ∼norm(0,1) 0.455 0.065
Y = 2 + X + XZ + sin(.2T)4, where Z ∼norm(0,1) 0.463 0.063
Y = 2 + X + XZ + T2, where Z ∼norm(0,1) 1.000 0.053
Y = 2 + X + XZ + T3, where Z ∼norm(0,1) 0.998 1.000
Y = 2 + X + XZ + T4, where Z ∼norm(0,1) 0.991 0.044
Y = 2 + X + XZ + T5, where Z ∼norm(0,1) 0.982 0.994
Y = 2 + X + XZ + T6, where Z ∼norm(0,1) 0.957 0.045
Y = 2 + X + XZ + T7, where Z ∼norm(0,1) 0.946 0.889
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Table 3: Results from testing H0, g = 0, from Monte Carlo simulations when H0 is not
true. Here T ∼N(0,1) and the form of g(T) is defined in the table below. Number of
simulations run each time is 1,000. The sample size is 100 and for the ANOVA-type test
the window width was 5.

Data generating equation Power ANOVA-type test Power Li’s test

Y = 2 + X + XZ + cos(.4T)4, where Z ∼norm(0,1) 0.027 0.890
Y = 2 + X + XZ + sin(.4T)4, where Z ∼norm(0,1) 0.022 0.045
Y = 2 + X + XZ + sin(.2T)4, where Z ∼norm(0,1) 0.023 0.047
Y = 2 + X + XZ + T2, where Z ∼norm(0,1) 0.266 0.055
Y = 2 + X + XZ + T3, where Z ∼norm(0,1) 0.886 0.999
Y = 2 + X + XZ + T4, where Z ∼norm(0,1) 0.968 0.041
Y = 2 + X + XZ + T5, where Z ∼norm(0,1) 0.979 0.994
Y = 2 + X + XZ + T6, where Z ∼norm(0,1) 0.955 0.044
Y = 2 + X + XZ + T7, where Z ∼norm(0,1) 0.948 0.890

Table 4: Results from testing H0, g = 0, from Monte Carlo simulations when H0 is not
true. Here T ∼N(0,36) and the form of g(T) is defined in the table below. Number of
simulations run each time is 1,000. The sample size is 100 and for the ANOVA-type test
the window width was 5.

Data generating equation Power ANOVA-type test Power Li’s test

Y = 2 + X + Z + cos(.4T)4, where Z ∼norm(0,1) 0.416 0.059
Y = 2 + X + Z + sin(.4T)4, where Z ∼norm(0,1) 0.455 0.065
Y = 2 + X + Z + sin(.2T)4, where Z ∼norm(0,1) 0.463 0.063
Y = 2 + X + Z + T2, where Z ∼norm(0,1) 1.000 0.055
Y = 2 + X + Z + T3, where Z ∼norm(0,1) 0.998 1.000
Y = 2 + X + Z + T4, where Z ∼norm(0,1) 0.991 0.045
Y = 2 + X + Z + T5, where Z ∼norm(0,1) 0.982 0.994
Y = 2 + X + Z + T6, where Z ∼norm(0,1) 0.957 0.046
Y = 2 + X + Z + T7, where Z ∼norm(0,1) 0.946 0.889
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Table 5: UK spirit consumption data (reproduced from Durbin and Watson (1951))

Year Consumption Income Price Year Consumption Income Price
Y X1 X2 Y X1 X2

1870 1.9565 1.7669 1.9176 1905 1.9139 1.9924 1.9952
1871 1.9794 1.7766 1.9059 1906 1.9091 2.0117 1.9905
1872 2.0120 1.7764 1.8798 1907 1.9139 2.0204 1.9813
1873 2.0449 1.7942 1.8727 1908 1.8860 2.0018 1.9905
1874 2.0561 1.8156 1.8984 1909 1.7945 2.0038 1.9859
1875 2.0678 1.8083 1.9137 1910 1.7644 2.0099 2.0518
1876 2.0561 1.8083 1.9176 1911 1.7817 2.0174 2.0474
1877 2.0428 1.8067 1.9176 1912 1.7784 2.0279 2.0341
1878 2.0290 1.8166 1.9420 1913 1.7945 2.0359 2.0255
1879 1.9980 1.8041 1.9547 1914 1.7888 2.0216 2.0341
1880 1.9884 1.8053 1.9379 1915 1.8751 1.9896 1.9945
1881 1.9835 1.8242 1.9462 1916 1.7853 1.9843 1.9939
1882 1.9773 1.8395 1.9504 1917 1.6075 1.9764 2.2082
1883 1.9748 1.8464 1.9504 1918 1.5185 1.9965 2.2700
1884 1.9629 1.8492 1.9723 1919 1.6513 2.0652 2.2430
1885 1.9396 1.8668 2.0000 1920 1.6247 2.0369 2.2567
1886 1.9309 1.8783 2.0097 1921 1.5391 1.9723 2.2988
1887 1.9271 1.8914 2.0146 1922 1.4922 1.9797 2.3723
1888 1.9239 1.9166 2.0146 1923 1.4606 2.0136 2.4105
1889 1.9414 1.9363 2.0097 1924 1.4551 2.0165 2.4081
1890 1.9685 1.9548 2.0097 1925 1.4425 2.0213 2.4081
1891 1.9727 1.9453 2.0097 1926 1.4023 2.0206 2.4367
1892 1.9736 1.9292 2.0048 1927 1.3991 2.0563 2.4284
1893 1.9499 1.9209 2.0097 1928 1.3798 2.0579 2.4310
1894 1.9432 1.9510 2.0296 1929 1.3782 2.0649 2.4363
1895 1.9569 1.9776 2.0399 1930 1.3366 2.0582 2.4552
1896 1.9647 1.9814 2.0399 1931 1.3026 2.0517 2.4838
1897 1.9710 1.9819 2.0296 1932 1.2592 2.0491 2.4958
1898 1.9719 1.9828 2.0146 1933 1.2635 2.0766 2.5048
1899 1.9956 2.0076 2.0245 1934 1.2549 2.0890 2.5017
1900 2.0000 2.0000 2.0000 1935 1.2527 2.1059 2.4958
1901 1.9904 1.9939 2.0048 1936 1.2763 2.1205 2.4838
1902 1.9752 1.9933 2.0048 1937 1.2906 2.1205 2.4636
1903 1.9494 1.9797 2.0000 1938 1.2721 2.1182 2.4580
1904 1.9332 1.9772 1.9952

Table 6: Results from testing H0, g = 0, using the spirit consumption data

Testing Method P-value

ANOVA-type test 0.0000
Sliced Inverse Regression 0.1463

21



Table 7: Results from testing H0, g = 0, using the net ecosystem CO2 exchange

Testing Method P-value

ANOVA-type test 0.0000
Sliced Inverse Regression 0.0000

Figure 1: Plots of the response data, Y, and covariate with a nonlinear effect, T, generated
from Monte Carlo simulations testing H0, g = 0, when H0 is not true. The response is
generated as Y = 2 + X + XZ + g(T), where Z ∼N(0,1) and T ∼N(0,36). Number
of simulations run each time is 1,000. The sample size is 100 and for the ANOVA-
type test the window width was 5. The form of g() in each graph is as follows: (A)
g(T) = cos(.4T)4; (B) g(T) = sin(.4T)4; (C) g(T) = sin(.2T)4; (D) g(T) = T2; (E)
g(T) = T3; (F) g(T) = T4; (G) g(T) = T5; (H) g(T) = T6; and (I) g(T) = T7 .

22



Figure 2: Plots of the residuals from least squares and the covariate with a nonlinear
effect, T, generated from Monte Carlo simulations testing H0, g = 0, when H0 is not true.
The residuals come from fitting of linear model of Y on X, where the response is generated
as Y = 2 + X + XZ + g(T), where Z ∼N(0,1) and T ∼N(0,36). Number of simulations
run each time is 1,000. The sample size is 100 and for the ANOVA-type test the window
width was 5. The form of g() in each graph is as follows: (A) g(T) = cos(.4T)4; (B)
g(T) = sin(.4T)4; (C) g(T) = sin(.2T)4; (D) g(T) = T2; (E) g(T) = T3; (F) g(T) = T4;
(G) g(T) = T5; (H) g(T) = T6; and (I) g(T) = T7 .
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Figure 3: Plots of the response data, Y, and covariate with a nonlinear effect, T, generated
from Monte Carlo simulations testing H0, g = 0, when H0 is not true. The response is
generated as Y = 2 + X + 3X2Z + g(T), where Z ∼N(0,1) and T ∼N(0,1). Number
of simulations run each time is 1,000. The sample size is 100 and for the ANOVA-
type test the window width was 5. The form of g() in each graph is as follows: (A)
g(T) = cos(.4T)4; (B) g(T) = sin(.4T)4; (C) g(T) = sin(.2T)4; (D) g(T) = T2; (E)
g(T) = T3; (F) g(T) = T4; (G) g(T) = T5; (H) g(T) = T6; and (I) g(T) = T7 .
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Figure 4: Plots of the residuals from least squares and the covariate with a nonlinear
effect, T, generated from Monte Carlo simulations testing H0, g = 0, when H0 is not true.
The residuals come from fitting of linear model of Y on X, where the response is generated
as Y = 2 + X + 3X2Z + g(T), where Z ∼N(0,1) and T ∼N(0,1). Number of simulations
run each time is 1,000. The sample size is 100 and for the ANOVA-type test the window
width was 5. The form of g() in each graph is as follows: (A) g(T) = cos(.4T)4; (B)
g(T) = sin(.4T)4; (C) g(T) = sin(.2T)4; (D) g(T) = T2; (E) g(T) = T3; (F) g(T) = T4;
(G) g(T) = T5; (H) g(T) = T6; and (I) g(T) = T7 .
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Figure 5: Plots of the response data, Y, and covariate with a nonlinear effect, T, generated
from Monte Carlo simulations testing H0, g = 0, when H0 is not true. The response is
generated as Y = 2 + X + Z + g(T), where Z ∼N(0,1) and T ∼N(0,36). Number
of simulations run each time is 1,000. The sample size is 100 and for the ANOVA-
type test the window width was 5. The form of g() in each graph is as follows: (A)
g(T) = cos(.4T)4; (B) g(T) = sin(.4T)4; (C) g(T) = sin(.2T)4; (D) g(T) = T2; (E)
g(T) = T3; (F) g(T) = T4; (G) g(T) = T5; (H) g(T) = T6; and (I) g(T) = T7 .
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Figure 6: Plots of the residuals from least squares and the covariate with a nonlinear
effect, T, generated from Monte Carlo simulations testing H0, g = 0, when H0 is not true.
The residuals come from fitting of linear model of Y on X, where the response is generated
as Y = 2 + X + Z + g(T), where Z ∼N(0,1) and T ∼N(0,36). Number of simulations
run each time is 1,000. The sample size is 100 and for the ANOVA-type test the window
width was 5. The form of g() in each graph is as follows: (A) g(T) = cos(.4T)4; (B)
g(T) = sin(.4T)4; (C) g(T) = sin(.2T)4; (D) g(T) = T2; (E) g(T) = T3; (F) g(T) = T4;
(G) g(T) = T5; (H) g(T) = T6; and (I) g(T) = T7 .
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Figure 7: Plots from the UK spirit consumption data (dataset from Durbin and Watson
(1951)). The top plot shows the consumption of spirits versus the covariate with the
nonlinear effect, year. The bottom plot shows the residuals from least squares regression
versus the covariate with the nonlinear effect, year.
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Figure 8: Plots from the net ecosystem CO2 exchange data. The top plot shows the net
ecosystem exchange of CO2 versus the covariate with the nonlinear effect, year which has
been standardized following the methodology of Li and Nie (2007, 2008). The bottom plot
shows the residuals from least squares regression versus the covariate with the nonlinear
effect, standardized year.

29


